Preface to the Second Edition

I approached revising Topics in Algebra with a certain amount of
trepidation. On the whole, I was satisfied with the first edition and did
not want to tamper with it. However, there were certain changes I felt
should be made, changes which would not affect the general style or
content, but which would make the book a little more complete. I
hope that I have achieved this objective in the present version.

For the most part, the major changes take place in the chapter on
group theory. When the first edition was written it was fairly un-
common for a student learning abstract algebra to have had any
previous exposure to linear algebra. Nowadays quite the opposite is
true; many students, perhaps even a majority, have learned something
about 2 x 2 matrices at this stage. Thus I felt free here to draw on
2 x 2 matrices for examples and problems. These parts, which
depend on some knowledge of linear algebra, are indicated with a #.

In the chapter on groups I have largely expanded one section, that
on Sylow’s theorem, and added two others, one on direct products and
one on the structure of finite abelian groups.

In the previous treatment of Sylow’s theorem, only the existence of a
Sylow subgroup was shown. This was done following the proof of
Wielandt. The conjugacy of the Sylow subgroups and their number
were developed in a series of exercises, but not in the text proper.
Now all the parts of Sylow’s theorem are done in the text material.
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In addition to the proof previously given for the existence, two other
proofs of existence are carried out. One could accuse me of overkill
at this point, probably rightfully so. The fact of the matter is that Sylow’s
theorem is important, that each proof illustrates a different aspect of group
theory and, above all, that I love Sylow’s theorem. The proof of the con-
jugacy and number of Sylow subgroups exploits double cosets. A by-product
of this development is that a means is given for finding Sylow subgroups in a
large set of symmetric groups.

For some mysterious reason known only to myself, I had omitted direct
products in the first edition. Why is beyond me. The material is easy,
straightforward, and important. This lacuna is now filled in the section
treating direct products. With this in hand, I go on in the next section to
prove the decomposition of a finite abelian group as a direct product of
cyclic groups and also prove the uniqueness of the invariants associated with
this decomposition. In point of fact, this decomposition was already in the
first edition, at the end of the chapter on vector spaces, as a consequence of
the structure of finitely generated modules over Euclidean rings. However,
the case of a finite group is of great importance by itself; the section on finite
abelian groups underlines this importance. Its presence in the chapter on
groups, an early chapter, makes it more likely that it will be taught.

One other entire section has been added at the end of the chapter on field
theory. I felt that the student should see an explicit polynomial over an
explicit field whose Galois group was the symmetric group of degree 5, hence
one whose roots could not be expressed by radicals. In order to do so, a
theorem is first proved which gives a criterion that an irreducible poly-
nomial of degree p, p a prime, over the rational field have §, as its Galois
group. As an application of this criterion, an irreducible polynomial of
degree 5 is given, over the rational field, whose Galois group is the symmetric
group of degree 5.

There are several other additions. More than 150 new problems are to be
found here. They are of varying degrees of difficulty. Many are routine
and computational, many are very difficult. Furthermore, some inter-
polatory remarks are made about problems that have given readers a great
deal of difficulty. Some paragraphs have been inserted, others rewritten, at
places where the writing had previously been obscure or too terse.

Above I have described what I have added. What gave me greater
difficulty about the revision was, perhaps, that which I have not added. I
debated for a long time with myself whether or not to add a chapter on
category theory and some elementary functors, whether or not to enlarge the
material on modules substantially. After a great deal of thought and soul-
searching, I decided not to doso. The book, as stands, has a certain concrete-
ness about it with which this new material would not blend. It could be
made to blend, but this would require a complete reworking of the material
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of the book and a complete change in its philosophy—something I did not
want to do. A mere addition of this new material, as an adjunct with no
applications and no discernible goals, would have violated my guiding
principle that all matters discussed should lead to some clearly defined
objectives, to some highlight, to some exciting theorems. Thus I decided to
omit the additional topics.

Many people wrote me about the first edition pointing out typographical
mistakes or making suggestions on how to improve the book. I should like to
take this opportunity to thank them for their help and kindness.
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The idea to write this book, and more important the desire to do so, is
a direct outgrowth of a course I gave in the academic year 1959-1960 at
Cornell University. The class taking thiscourse consisted, in large part,
of the most gifted sophomores in mathematics at Cornell. It was my
desire to experiment by presenting to them material a little beyond that

which is usually taught in algebra at the junior-senior level.

I have aimed this book to be, both in content and degree of sophisti-
cation, about halfway between two great classics, 4 Survgy of Modern
Algebra, by Birkhoff and MacLane, and Modern Algebra, by Van der

Waerden.

The last few years have seen marked changes in the instruction given
in mathematics at the American universities. This change is most
notable at the upper undergraduate and beginning graduate levels.
Topics that a few years ago were considered proper subject matter for
semiadvanced graduate courses in algebra have filtered down to, and
are being taught in, the very first course in abstract algebra. Convinced
that this filtration will continue and will become intensified in the next
few years, I have put into this book, which is designed to be used as the
student’s first introduction to algebra, material which hitherto has been

considered a little advanced for that stage of the game.

There is always a great danger when treating abstract ideas to intro-
duce them too suddenly and without a sufficient base of examples to
render them credible or natural. Inorder to try to mitigate this, I have
tried to motivate the concepts beforehand and to illustrate them in con-
crete situations. One of the most telling proofs of the worth of an abstract

vii



viii

Preface to the First Edition

concept is what it, and the results about it, tells us in familiar situations. In
almost every chapter an attempt is made to bring out the significance of the
general results by applying them to particular problems. For instance, in the
chapter on rings, the two-square theorem of Fermat is exhibited as a direct
consequence of the theory developed for Euclidean rings.

The subject matter chosen for discussion has been picked not only because
it has become standard to present it at this level or because it is important in
the whole general development but also with an eye to this “concreteness.”
For this reason I chose to omit the Jordan-Hélder theorem, which certainly
could have easily been included in the results derived about groups. How-
ever, to appreciate this result for its own sake requires a great deal of hind-
sight and to see it used effectively would require too great a digression. True,
one could develop the whole theory of dimension of a vector space as one of
its corollaries, but, for the first time around, this seems like a much too fancy
and unnatural approach to something so basic and down-to-earth. Likewise,
there is no mention of tensor products or related constructions. There is so
much time and opportunity to become abstract; why rush it at the
beginning?

A word about the problems. There are a great number of them. It would
be an extraordinary student indeed who could solve them all. Some are
present merely to complete proofs in the text material, others to illustrate
and to give practice in the results obtained. Many are introduced not so
much to be solved as to be tackled. The value of a problem is not so much
in coming up with the answer as in the ideas and attempted ideas it forces
on the would-be solver. Others are included in anticipation of material to
be developed later, the hope and rationale for this being both to lay the
groundwork for the subsequent theory and also to make more natural ideas,
definitions, and arguments as they are introduced. Several problems appear
more than once. Problems that for some reason or other seem difficult to me
are often starred (sometimes with two stars). However, even here there will
be no agreement among mathematicians; many will feel that some unstarred
problems should be starred and vice versa.

Naturally, I am indebted to many people for suggestions, comments and
criticisms. To mention just a few of these: Charles Curtis, Marshall Hall,
Nathan Jacobson, Arthur Mattuck, and Maxwell Rosenlicht. I owe a great
deal to Daniel Gorenstein and Irving Kaplansky for the numerous con-
versations we have had about the book, its material and its approach.
Above all, I thank George Seligman for the many incisive suggestions and
remarks that he has made about the presentation both as to its style and to
its content. I am also grateful to Francis McNary of the staff of Ginn and
Company for his help and cooperation. Finally, I should like to express my
thanks to the John Simon Guggenheim Memorial Foundation; this book was
in part written with their support while the author was in Rome as a
Guggenheim Fellow.
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Preliminary Notions

One of the amazing features of twentieth century mathematics has
been its recognition of the power of the abstract approach. This has
given rise to a large body of new results and problems and has, in fact,
led us to open up whole new areas of mathematics whose very existence
had not even been suspected.

In the wake of these developments has come not only a new
mathematics but a fresh outlook, and along with this, simple new
proofs of difficult classical results. The isolation of a problem into its
basic essentials has often revealed for us the proper setting, in the whole
scheme of things, of results considered to have been special and apart
and has shown us interrelations between areas previously thought to
have been unconnected.

The algebra which has evolved as an outgrowth of all this is not
only a subject with an independent life and vigor—it is one of the
important current research areas in mathematics—but it also serves as
the unifying thread which interlaces almost all of mathematics—
geometry, number theory, analysis, topology, and even applied
mathematics.

This book is intended as an introduction to that part of mathematics
that today goes by the name of abstract algebra. The term “‘abstract™
is a highly subjective one; what is abstract to one person is very often
concrete and down-to-earth to another, and vice versa. In relation to
the current research activity in algebra, it could be described as
“not too abstract”; from the point of view of someone schooled in the
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calculus and who is seeing the present material for the first time, it may very
well be described as “quite abstract.”

Be that as it may, we shall concern ourselves with the introduction and
development of some of the important algebraic systems—groups, rings,
vector spaces, fields. An algebraic system can be described as a set of objects
together with some operations for combining them.

Prior to studying sets restricted in any way whatever—for instance, with
operations—it will be necessary to consider sets in general and some notions
about them. At the other end of the spectrum, we shall need some informa-
tion about the particular set, the set of integers. It is the purpose of this
chapter to discuss these and to derive some results about them which we can
call upon, as the occasions arise, later in the book.

1.1 Set Theory

We shall not attempt a formal definition of a set nor shall we try to lay the
groundwork for an axiomatic theory of sets. Instead we shall take the
operational and intuitive approach that a set is some given collection of
objects. In most of our applications we shall be dealing with rather specific
things, and the nebulous notion of a set, in these, will emerge as something
quite recognizable. For those whose tastes run more to the formal and
abstract side, we can consider a set as a primitive notion which one does
not define.

A few remarks about notation and terminology. Given a set § we shall
use the notation throughout a € S to read “a is an element of S.” In the same
vein, a ¢ S will read “a is not an element of S.”” The set 4 will be said to be
a subset of the set S if every element in 4 is an element of S, that is, if a € 4
implies a € . We shall write this as 4 < § (or, sometimes, as § > 4),
which may be read “4 is contained in $” (or, S contains 4). This notation
is not meant to preclude the possibility that 4 = S. By the way, what is
meant by the equality of two sets? For us this will always mean that they
contain the same elements, that is, every element which is in one is in the
other, and vice versa. In terms of the symbol for the containing relation, the
two sets 4 and B are equal, written 4 = B, if both 4 € B and B < A.
The standard device for proving the equality of two sets, something we shall
be required to do often, is to demonstrate that the two opposite containing
relations hold for them. A subset 4 of S will be called a proper subset of S
if A « Sbut 4 # S (4is not equal to S).

The null set is the set having no elements; it is a subset of every set. We
shall often describe that a set S is the null set by saying it is empty.

One final, purely notational remark: Given a set § we shall constantly
use the notation 4 = {a € S| P(a)} to read “4 is the set of all elements in
S§ for which the property P holds.” For instance, if S is the set of integers
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and if A4 is the subset of positive integers, then we can describe 4 as
A = {aeS|a> 0}. Another example of this: If § is the set consisting of
the objects (1), (2),..., (10), then the subset 4 consisting of (1), (4), (7),
(10) could be described by 4 = {({) e S|i =32 + 1, n = 0,1, 2, 3}.

Given two sets we can combine them to form new sets. There is nothing
sacred or particular about this number two; we can carry out the same pro-
cedure for any number of sets, finite or infinite, and in fact we shall. We
do so for two first because it illustrates the general construction but is not
obscured by the additional notational difficulties.

DEFINITION The union of the two sets A and B, written as 4 U B, is the
set {x | x €4 or xe B}.

A word about the use of “or.” In ordinary English when we say that
something is one or the other we imply that it is not both. The mathematical
“or” is quite different, at least when we are speaking about set theory. For
when we say that x is in A or x is in B we mean x is in at least one of A or B, and
may be in both.

Let us consider a few examples of the union of two sets. For any set 4,
A v A = A4; in fact, whenever Bis a subset of 4, 4 U B = A. If Ais the
set {x1, x5, 3} (i.e., the set whose elements are x,, x,, x;) and if B is the set
{»1,72, %1}, then A U B = {x, x5, X3,7,7,}. If A is the set of all blonde-
haired people and if B is the set of all people who smoke, then 4 U B
consists of all the people who either have blonde hair or smoke or both.
Pictorially we can illustrate the union of the two sets 4 and B by

Here, A is the circle on the left, B that on the right,and 4 U B is the shaded
part.

DEFINITION The intersection of the two sets A and B, written as 4 N B,
is the set {x | x € Aand x € B).

The intersection of 4 and B is thus the set of all elements which are both
in 4 and in B. In analogy with the examples used to illustrate the union of
two sets, let us see what the intersections are in those very examples. For



Preliminary Notions Ch. 1

anyset A, A n A = A; in fact, if B is any subset of 4,then A »n B = B.
If 4 is the set {x;, x,, x4} and B the set {y,y,,%,}, then A n B = {x,}
(we are supposing no y is an x). If 4 is the set of all blonde-haired people
and if B is the set of all people that smoke, then 4 N B is the set of all
blonde-haired people who smoke. Pictorially we can illustrate the inter-
section of the two sets 4 and B by

Here A is the circle on the left, B that on the right, while their intersection
is the shaded part.

Two sets are said to be disjoint if their intersection is empty, that is, is
the null set. For instance, if 4 is the set of positive integers and B the set of
negative integers, then 4 and B are disjoint. Note however that if C is the
set of nonnegative integers and if D is the set of nonpositive integers, then
they are not disjoint, for their intersection consists of the integer 0, and so is
not empty.

Before we generalize union and intersection from two sets to an arbitrary
number of them, we should like to prove a little proposition interrelating
union and intersection. This is the first of a whole host of such results that
can be proved; some of these can be found in the problems at the end of this
section.

PROPOSITION  For any three sets, A, B, C we have
An(BuC)=(AnNnB)u((4AnC).

Proof. The proof will consist of showing, to begin with, the relation
AnB)u(AnC)cAn(BuC) and then the converse relation
An(BuC)c (AnB)u (AnC).

We first dispose of (ANnB)u(AnC)c An (BuC). Because
B c BuQC, it is immediate that AN B c An (BuC). In a similar
manner, AN C < A n (B u C). Therefore

(ANnB)u(AnNnC)c(An(Bul)uAn(BulC))=4An(Bul).

Now for the other direction. Given an element xe 4 n (B u C),
first of all it must be an element of 4. Secondly, as an element in B U C it
is either in B or in C. Suppose the former; then as an element both of 4 and
of B, x must be in A N B. The second possibility, namely, x € C, leads us
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to x € A n C. Thus in either eventuality xe (4 N B) U (4 n C), whence
An(BuC)c(A4nB)u((A4AnC).

The two opposite containing relations combine to give us the equality
asserted in the proposition.

We continue the discussion of sets to extend the notion of union and of
intersection to arbitrary collections of sets.

Given a set T we say that T serves as an index set for the family & = {4,}
of sets if for every a € T there exists a set of 4, in the family #. The index
set T can be any set, finite or infinite. Very often we use the set of non-
negative integers as an index set, but, we repeat, T can be any (nonempty)
set.

By the union of the sets 4,, where « is in T, we mean the set {x| x € 4,
for at least one « in T}. We shall denote it by | ), 4, By the intersection
of the sets 4, where a is in T, we mean the set {x| x € 4, for everya € T};
we shall denote it by (),or 4, The sets 4, are mutually disjoint if for a # B,
4, N 4, is the null set.

For instance, if § is the set of real numbers, and if T is the set of rational
numbers, let, fora e T, 4, = {x € §|x > a}. Itis an easy exercise to see
that | J.r 4, = S whereas (\..r 4, is the null set. The sets 4, are not
mutually disjoint.

DEFINITION Given the two sets 4, B then the difference set, A — B, is the
set {xe A| x¢ B}.

Returning to our little pictures, if 4 is the circle on the left, B that on the
right, then 4 — B is the shaded area.

Note that for any set B, the set A4 satisfies 4 = (4 n B) U (4 — B).
(Prove!) Note further that B n (4 — B) is the null set. A particular case
of interest of the difference of two sets is when one of these is a subset of the
other. In that case, when B is a subset of 4, we call A — B the complement
of Bin A.

We still want one more construct of two given sets 4 and B, their Cartesian
product A x B. This set A x B is defined as the set of all ordered pairs
(a, b) where a € 4 and b € B and where we declare the pair (ay, ,) to be
equal to (g, b,) if and only if ¢, = @, and b, = b,.
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A few remarks about the Cartesian product. Given the two sets 4 and B
we could construct thesets A x Band B x A from them. As sets these are
distinct, yet we feel that they must be closely related. Given three sets 4,
B, C we can construct many Cartesian products from them: for instance, the
set A x D, where D = B x C; the set E x C, where E = A x B; and
also the set of all ordered triples (a, b,¢) where a€ 4, b € B, and ¢ € C.
These give us three distinct sets, yet here, also, we feel that these sets must
be closely related. Of course, we can continue this process with more and
more sets. To see the exact relation between them we shall have to wait
until the next section, where we discuss one-to-one correspondences.

Given any index set T we could define the Cartesian product of the sets
A, as a varies over T; since we shall not need so general a product, we do
not bother to define it.

Finally, we can consider the Cartesian product of a set 4 with itself,
A x A. Note that if the set 4 is a finite set having n elements, then the set
A x A is also a finite set, but has n? elements. The set of elements (g, a) in
A x A is called the diagonal of A x A.

A subset R of A x A issaid to define an equivalence relation on A if

1. (a,a) e R for all a € A.
2. (a, b) € R implies (b, a) € R.
3. (a,b) € R and (b, ¢) € R imply that (a,¢) € R.

Instead of speaking about subsets of 4 x A4 we can speak about a binary
relation (one between two elements of 4) on 4 itself, defining b to be related
to aif (a, b) € R. The properties 1, 2, 3 of the subset R immediately translate
into the properties 1, 2, 3 of the definition below.

DEFINITION The binary relation ~ on A4 is said to be an equivalence
relation on A if for all a, b, c in A

l.a~a.
2. a ~ bimplies b ~ a.
3.a~band b ~ cimplya ~ c.

The first of these properties is called reflexivity, the second, symmetry, and
the third, transitivity.

The concept of an equivalence relation is an extremely important one
and plays a central role in all of mathematics. We illustrate it with a few
examples.

Example 1.1.1 Let S be any set and define a ~ b, for a, b € S, if and
only ifa = b. This clearly defines an equivalence relation on S. In fact, an
equivalence relation is a generalization of equality, measuring equality up

to some property.
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Example 1.1.2 Let S be the set of all integers. Given a, b € S, define
a ~ bifa — bisaneveninteger. We verify that this defines an equivalence
relation of S.

1. Since 0 = a — aiseven, a ~ a.

2. Ifa ~ b, thatis, ifa — bis even, then b — a = —(a — b) is also even,
whence b ~ a.

3. If a~b and b ~ ¢, then both a — b and b — ¢ are even, whence
a—c¢= (a—b) + (b — ¢)is also even, proving that a ~ c.

Example 1.1.3 Let S be the set of all integers and let n > 1 be a fixed
integer. Define for a, b€ S, a ~ b if a — b is a multiple of n. We leave it
as an exercise to prove that this defines an equivalence relation on S.

Example 1.1.4 Let S be the set of all triangles in the plane. Two
triangles are defined to be equivalent if they are similar (i.e., have corre-
sponding angles equal). This defines an equivalence relation on S.

Example 1.1.6 Let S be the set of points in the plane. Two points a and
b are defined to be equivalent if they are equidistant from the origin. A
simple check verifies that this defines an equivalence relation on S.

There are many more equivalence relations; we shall encounter a few as
we proceed in the book.

DEFINITION If 4 is a set and if ~ is an equivalence relation on 4, then
the equivalence class of a € A is the set {x € A|a ~ x}. We write it as cl(a).

In the examples just discussed, what are the equivalence classes? In
Example 1.1.1, the equivalence class of a consists merely of a itself. In
Example 1.1.2 the equivalence class of a consists of all the integers of the
form a + 2m, where m = 0, +1, +2,...; in this example there are only
two distinct equivalence classes, namely, cl(0) and cl(1). In Example 1.1.3,
the equivalence class of a consists of all integers of the form a + kn where
k=0,+1, +2,...; here there are n distinct equivalence classes, namely
cl(0), cI(1),...,cl(r — 1). In Example 1.1.5, the equivalence class of a
consists of all the points in the plane which lie on the circle which has its
center at the origin and passes through a.

Although we have made quite a few definitions, introduced some concepts,
and have even established a simple little proposition, one could say in all
fairness that up to this point we have not proved any result of real substance,
We are now about to prove the first genuine result in the book. The proof
of this theorem is not very difficult—actually it is quite easy—but nonetheless
the result it embodies will be of great use to us.
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THEOREM 1.1.1  The distinct equivalence classes of an equivalence relation on A
provide us with a decomposition of A as a union of mutually disjoint subsets. Conuversely,
given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can
define an equivalence relation on A for whick these subsels are the distinct equivalence
classes.

Proof. Let the equivalence relation on 4 be denoted by ~.

We first note that since for any a € 4, a ~ a, a must be in cl(a), whence
the union of the cl(a)’s is all of 4. We now assert that given two equivalence
classes they are either equal or disjoint. For, suppose that cl(a) and cl(b)
are not disjoint; then there is an element x € cl(a) N cl(b). Since x € cl(a),
a ~ x; since x € cl(b), b ~ x, whence by the symmetry of the relation,
x ~ b. However, a ~ x and x ~ b by the transitivity of the relation forces
a ~ b. Suppose, now that y € cl(b); thus b ~ y. However, from a ~ b
and b ~ y, we deduce that a ~ y, that is, that » € cl(a). Therefore, every
element in cl(b) is in cl(a), which proves that cl(6) = cl(a). The argument
is clearly symmetric, whence we conclude that cl(a) = cl(4). The two
opposite containing relations imply that cl(a) = cl(d).

We have thus shown that the distinct cl(a)’s are mutually disjoint and
that their union is 4. This proves the first half of the theorem. Now for
the other half!

Suppose that 4 = () 4, where the 4, are mutually disjoint, nonempty
sets (e is in some index set 7). How shall we use them to define an equiva-
lence relation? The way is clear; given an element a in 4 it is in exactly one
A, We define for a, b€ A, a ~ bif a and b are in the same 4,. We leave
it as an exercise to prove that this is an equivalence relation on 4 and that
the distinct equivalence classes are the 4,’s.

Problems

1. (a) If A is a subset of B and B is a subset of C, prove that 4 is a subset
of C.
(b) If B = A, prove that A U B = A, and conversely.
(c) If B < A, prove that for any set C both Bu C < Ay C and
BnCcAnC
2. (a) Provethat An B =BnAand4Adu B =BuA.
(b) Prove that (A nB) n C = A n (B n C).
3. Provethat AU (BnC) = (AuB)n(AuC).
4. For a subset C of § let C’' denote the complement of C in S. For any
two subsets 4, B of S prove the De Morgan rules:
(a) (AnB)Y =A4'"uUB.
(b) (AU B) =A4A"nB.
5. For a finite set C let o(C) indicate the number of elements in C. If 4
and B are finite sets prove 6(4 U B) = 0(4) + o(B) — o(4 n B).
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If Ais a finite set having n elements, prove that 4 has exactly 2" distinct

subsets.

A survey shows that 639, of the American people like cheese whereas

769, like apples. What can you say about the percentage of the

American people that like both cheese and apples? (The given statistics

are not meant to be accurate.)

Given two sets A and B their symmetric difference is defined to be

(A — B) u (B — A). Prove that the symmetric difference of 4 and B

equals (4 U B) — (4 n B).

Let S be a set and let $* be the set whose elements are the various sub-

sets of . In §* we define an addition and multiplication as follows: If

A, B € §* (remember, this means that they are subsets of S):

(1) A+ B=(4 - B) u (B - 4).

(2 4-B=4n B

Prove the following laws that govern these operations:

(a) A+ B +C=4+ (B + C).

(by4-(B+ C) =4-B + 4-C

(c) A4 = A.

(d) 4 + 4 = null set.

(e) If4 + B=4 4+ Cthen B = C.

(The system just described is an example of a Boolean algebra.)

For the given set and relation below determine whichdefi equivalence

relations.

(a) S is the set of all people in the world today, @ ~ b if @ and b have
an ancestor in common.

(b) § is the set of all people in the world today, a ~ b if a lives within
100 miles of b.

(c) Sis the set of all people in the world today, a ~ & if a and b have
the same father.

(d) S is the set of real numbers, a ~ bifa = +b.

(e) Sis theset of integers, a ~ bif botha > band b > a.

(f) S§istheset of all straight linesin the plane, a ~ bif ais parallel to b.

(a) Property 2 of an equivalence relation states that if a ~ & then
b ~ a; property 3 states that if a ~ b and b ~ ¢ then a ~ ¢.
What is wrong with the following proof that properties 2 and 3
imply property 1? Let a ~ b; then & ~ a, whence, by property 3
(usinga =¢), a ~ a.

(b) Can you suggest an alternative of property 1 which will insure us
that properties 2 and 3 do imply property 1?

In Example 1.1.3 of an equivalence relation given in the text, prove

that the relation defined is an equivalence relation and that there are

exactly n distinct equivalence classes, namely, cl(0), cl(1),..., cl(n — 1).

Complete the proof of the second half of Theorem 1.1.1.
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1.2 Mappings

We are about to introduce the concept of a mapping of one set into another.
Without exaggeration this is probably the single most important and uni-
versal notion that runs through all of mathematics. It is hardly a new thing
to any of us, for we have been considering mappings from the very earliest
days of our mathematical training. When we were asked to plot the relation
» = x? we were simply being asked to study the particular mapping which
takes every real number onto its square.

Loosely speaking, a mapping from one set, S, into another, T, is a “rule”
(whatever that may mean) that associates with each element in § a unique
element ¢ in T. We shall define a mapping somewhat more formally and
precisely but the purpose of the definition is to allow us to think and speak
in the above terms. We should think of them as rules or devices or mech-
anisms that transport us from one set to another.

Let us motivate a little the definition that we will make. The point of
view we take is to consider the mapping to be defined by its “graph.” We
illustrate this with the familiar example y = x? defined on the real numbers
S and taking its values also in S. For this set S, § x S, the set of all pairs
(a, b) can be viewed as the plane, the pair (a, §) corresponding to the point
whose coordinates are a and b, respectively. In this plane we single out all
those points whose coordinates are of the form (x, x?) and call this set of
points the graph of y = x%. We even represent this set pictorially as

To find the “value” of the function or mapping at the point x = a, we look

at the point in the graph whose first coordinate is @ and read off the second
coordinate as the value of the function at x = a.

" This is, no more or less, the approach we take in the general setting to

define a mapping from one set into another.

DEFINITION IfS and T are nonempty sets, then a mapping from S to T
is a subset, M, of § x T such that for every s € S there is a unique t € T such
that the ordered pair (s, ¢) is in M.

This definition serves to make the concept of a mapping precise for us but
we shall almost never use it in this form. Instead we do prefer to think of a



Sec. 1.2 Mappings

mapping as a rule which associates with any element s in § some element
tin T, the rule being, associate (or map) s € Switht € T if and only if (s, t) € M.
We shall say that ¢ is the image of s under the mapping.

Now for some notation for these things. Let ¢ be a mapping from § to
T; we often denote this by writing 6:5 — T or S = T. If ¢ is the image of
s under ¢ we shall sometimes write this as ¢:s — ¢; more often, we shall
represent this fact by ¢ = so. Note that we write the mapping ¢ on the
right. There is no overall consistency in this usage; many people would
write it as ¢ = o(s). Algebraists often write mappings on the right; other
mathematicians write them on the left. In fact, we shall not be absolutely
consistent in this ourselves; when we shall want to emphasize the functional
nature of ¢ we may very well write ¢t = o(s).

Examples of Mappings

In all the examples the sets are assumed to be nonempty.

Example 1.2.1 Let S be any set; define 1:S - § by s = s1 for any
s € S. This mapping 1t is called the identity mapping of S.

Example 1.2.2 Let S and T be any sets and let £ be an element of T.
Define t:§ —» T by 1:5s — ¢, for every s € S.

Example 1.2.3 Let S be the set of positive rational numbers and let
T = J x J where J is the set of integers. Given a rational number s we
can write it as 5 = m/n, where m and n have no common factor. Define

7§ = T by st = (m, n).

Example 1.2.4 Let Jbe thesetofintegersand S = {(m,n) e J x J|n # 0};
let T be the set of rational numbers; define 7:§ —» T by (m, n)t = m/n for
every (m, n) in S.

Example 1.25 Let J be the set of integers and § = J x J Define
7:§ > Jby (m,n)t = m + n

Note that in Example 1.2.5 the addition in J itself can be represented in
terms of a mapping of J x J into /. Given an arbitrary set S we call a
mapping of § x § into S a binary operation on S. Given such a mapping
7:§ x § > § we could use it to define a “product” # in § by declaring
axb =cif (a,b)t = c.

Example 1.2.6 Let S and T be any sets; define 7:§ x T — S by
(a, b)t = a for any (a, b) € S x T. This 7 is called the projection of S x T
on S. We could similarly define the projection of § x T on T.

1
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Example 1.2.7 Let S be the set consisting of the elements x,, x,, x5.
Define 7:§ = S by x;7 = x;, x,T = x5, X371 = x,.

Example 1.2.8 Let S be the set of integers and let T be the set consisting
of the elements E and 0. Define 1:§ — T by declaring nt = E if n is even
and nt = 0if nis odd.

If S is any set, let {x,,..., x,} be its subset consisting of the elements
Xy, X35+ .y X, of S. In particular, {x} is the subset of § whose only element
is x. Given § we can use it to construct a new set $*, the set whose elements
are the subsets of S. We call $* the set of subsets of S. Thus for instance, if
§ = {x,, x,} then §* has exactly four elements, namely, a;, = null set,
a, = the subset, S, of S, a; = {x,}, a, = {x,}. The relation of S to S*,
in general, is a very interesting one; some of its properties are examined in
the problems.

Example 1.29 Let S be a set, T = S$*; define 7:§ > T by st =
complement of {s} in§ = § — {s}.

Example 1.2.10 Let S be a set with an equivalence relation, and let
T be the set of equivalence classes in § (note that T is a subset of S$*).
Define 7:§ —» T by st = cl(s).

We leave the examples to continue the general discussion. Given a
mapping t:§ — T we define for ¢ € T, the imverse image of t with respect to T
to be the set {s € §|¢ = st}. In Example 1.2.8, the inverse image of E is
the subset of § consisting of the even integers. It may happen that for some
tin T that its inverse image with respect to t is empty; that is, ¢ is not the
image under 7 of any element in S. In Example 1.2.3, the element (4, 2) is
not the image of any element in § under the 7 used; in Example 1.2.9, §,
as an element in §*, is not the image under the 7 used of any element in §.

DEFINITION The mapping t of § into T is said to be onto T if given
t € T there exists an element s € S such that ¢t = st.

If we call the subset St = {x € T | x = st for some s € §} the image of §
under 7, then 7 is onto if the image of § under 7 is all of 7. Note that in
Examples 1.2.1, 1.2.4-1.2.8, and 1.2.10 the mappings used are all onto.

Another special type of mapping arises often and is important: the one-
to-one mapping.

DEFINITION The mapping t of S into T is said to be a one-to-one mapping
if whenever s; # s,, then 5,7 # 5,7.
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In terms of inverse images, the mapping 7 is one-to-one if for any te T
the inverse image of ¢ is either empty or is a set consisting of one element.
In the examples discussed, the mappings in Examples 1.2.1, 1.2.3, 1.2.7,
and 1.2.9 are all one-to-one.

When should we say that two mappings from S to T are equal? A natural
definition for this is that they should have the same effect on every element
of §; that is, the image of any element in § under each of these mappings
should be the same. In a little more formal manner:

DEFINITION The two mappings ¢ and t of S into T are said to be equal
if s = st for every s € S.

Consider the following situation: We have a mapping ¢ from S to T and
another mapping 7 from T to U. Can we compound these mappings to
produce a mapping from § to U? The most natural and obvious way of
doing this is to send a given element s, in §, in two stages into U, first by
applying ¢ to s and then applying 7 to the resulting element s¢ in 7. This
is the basis of the

DEFINITION If 6:5S —» T and 7:T — U then the composition of ¢ and t
(also called their product) is the mapping ¢ o 1:§ — U defined by means of
s(6 0 1) = (so)t for every s € S.

Note that the order of events reads from left to right; ¢ o T reads: first
perform ¢ and then follow it up with 7. Here, too, the left-right business is
not a uniform one. Mathematicians who write their mappings on the left
would read 6 ot to mean first perform 7 and then ¢. Accordingly, in
reading a given book in mathematics one must make absolutely sure as to
what convention is being followed in writing the product of two mappings.
We reiterate, for us ¢ o T will always mean: first apply o and then .

We illustrate the composition of ¢ and 7 with a few examples.

Example 1.2.11 Let S = {x), x,, x3} and let T = S. Let ¢:5 —» S be
defined by

X0 = Xy,

X,0 = X3,

X30 = X1;
and 7:§ — S by

4T X15

X3T = X3,

X3T = X,.

13
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Thus
x1(001) = (%0)T = 2,7 = x,,
x3(0017) = (x,0)1
x3(0 0 1) = (x30)T = x;7 = x,.

X3T = Xy,

At the same time we can compute 7 o g, because in this case it also makes
sense. Now

x1(te0) = (7)o = (x,0) = x;,

x,(100) = (x7)0 = x30 = x,,

x3(100) = (%7)0 = 2,0 = x3.

Note that x, = x,(z o ¢), whereas x3 = x,(c o 7) whence go1 # 700,

Example 1.2.12 Let Sbe the set of integers, T thesetS x S, and suppose
0:S = T is defined by mg = (m — 1,1). Let U = § and suppose that
7:T - U(= S) is defined by (m, n)t = m + n. Thus g0 7:5 — § whereas
100:T — T; even to speak about the equality of 6o 7 and 70 ¢ would
make no sense since they do not act on the same space. We now compute
o o 7 as a mapping of § into itself and then 7 o ¢ as one on T into itself.

Givenme S, mo = (m — 1, 1) whencem(g o 1) = (mo)t = (m — 1, 1)1 =
(m — 1) + 1 = m. Thus o o 7 is the identity mapping of § into itself. What
about 70 ¢? Given (m,n) € T, (m,n)t = m + n, whereby (m, n) (tc0) =
((m,n)7)0 = (m + n)o = (m + n — 1,1). Note that 7 o ¢ is not the identity
map of T into itself; it is not even an onto mapping of T.

Example 1.2.13 Let S be the set of real numbers, T the set of integers,
and U = {E, 0}. Define ¢:§ - T by so = largest integer less than or
equal to 5, and 7: T — U defined by nt = Eif nis even, nt = 0if n is odd.
Note that in this case 7 o ¢ cannot be defined. We compute ¢ o 7 for two
real numbers s = § and s = n. Now since § = 2 + %, (})o = 2, whence
g;(aog) = (§0)t = Q)t = E; (n)o = 3, whence n(de1) = (n0)r =

t=0.

For mappings of sets, provided the requisite products make sense, a
general associative law holds. This is the content of

LEMMA 1.2.1 (AssociaTive Law) If ¢:S —» T,1:T —» U, andpu:U - V,
then (G ot)opu = 0o (Top).

Proof. Note first that ¢ o7 makes sense and takes § into U, thus
(oo 7) op also makes sense and takes S into V. Similarly oo (7o p) is
meaningful and takes § into V. Thus we can speak about the equality, or
lack of equality, of (¢ ° 7) o g and g o (7 0 p).

To prove the asserted equality we merely must show that for any s € S,
s((6 1) o u) = s(o o (z ou)). Now by the very definition of the composition
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of maps, s((det)opu) = (s(cd ot))u = ((sa)r) whereas s(o o (to ) =
(s6)(t o u) = ((sa)r)pe. Thus, the elements s((o o 1) o ) and s(o o (1 o )
are indeed equal. This proves the lemma.

We should like to show that if two mappings ¢ and t are properly condi-
tioned the very same conditions carry over to g o 7.

LEMMA 122 ZLeto:S— Tandt:T — U; then

1. & o 1 is onto if each of 6 and t is onto.
2. 0 o T is one-to-one if each of ¢ and T is one-to-one.

Proof. We prove only part 2, leaving the proof of part 1 as an exercise.

Suppose that s, 5, € § and that 5, # s5,. By the one-to-one nature of a,
5,0 # s5,0. Since 7 is one-to-one and 5,0 and s,0 are distinct elements of T,
(510)T # (s,0)t whence s,(6 1) = (5,0)t # (50)1 = 5,(601), proving
that g o 7 is indeed one-to-one, and establishing the lemma.

Suppose that ¢ is a one-to-one mapping of S onto T'; we call g a one-to-one
correspondence between S and 7. Given any t € T, by the “onto-ness” of &
there exists an element s € S such that ¢t = so; by the “one-to-oneness” of
¢ this s is unique. We define the mapping 67 *:T -+ S by s = to~ ! if and
only if t = sa. The mapping ¢~ ! is called the inverse of 6. Let us compute
g oo~ ! which maps § into itself. Given s € S, let ¢t = so, whence by
definition s = ta™!;thus s(c o6~ !) = (s6)a~! = t6~! = 5. We have shown
that g o ¢! is the identity mapping of S onto itself. A similar computation
reveals that 7! o ¢ is the identity mapping of T onto itself.

Conversely, if ¢:S — T is such that there exists a u:7 -» § with the
property that ¢ o u and p ¢ are the identity mappings on S and T, respec-
tively, then we claim that g is a one-to-one correspondence between S and 7.
First observe that & is onto for, given t € T, t = t(u-a) = (tu)a (since
1 o g isthe identity on T') and so ¢ is the image under ¢ of the element #u in
S. Next observe that ¢ is one-to-one, for if 5,6 = 5,0, using that g o u is the
identity on S, we have 5, = 5,(0 o i) = (5,0)u = (5,0) u =s5,(0 0 pt) = s5,.
We have now proved

\
LEMMA 1.2.3 The mapping 6:S — T is a one-to-one correspondence between
S and T if and only if there exists a mapping u:T — S such that ¢ o pt and o o
are the identity mappings on S and T, respectively.

DEFINITION If S is a nonempty set then A(S) is the set of all one-to-one
mappings of S onto itself.

Aside from its own intrinsic interest A(S) plays a central and universal
type of role in considering the mathematical system known as a group

15
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(Chapter 2). For this reason we state the next theorem concerning its
nature. All the constituent parts of the theorem have already been proved
in the various lemmas, so we state the theorem without proof.

THEOREM 1.2.1 If g, 1, u are elements of A(S), then

l. oo 1isin A(S).

2. (ot)opu = ago(top).

3. There exists anelement 1 (the identity map) in A(S) suchthatco1 = 100 = 0.
4. There exists an element 6~ ' € A(S) such that 6o * =g 1og = 1.

We close the section with a remark about A(S). Suppose that § has more
than two elements; let x,, x,, x, be three distinct elements in S; define the
mapping 6:5S = § by x,0 = x5, %0 = X3, %30 = x;, s¢ = s for any
s € § different from x,, x,, x;. Define the mapping 7:§ — § by x,1 = x;,
X3T = X,, and st = sfor any s € § different from x,, x,. Clearly both ¢ and
7 are in A(S). A simple computation shows that x,(¢ o 1) = x; but that
%,(to0) = x, # x3. Thusgot # t0o0. Thisis

LEMMA 1.2.4 If S has more that two elements we can find two elements o,
tin A(S) suchthatg ot # to0.

Problems

1. In the following, where ¢:§ — T, determine whether the ¢ is onto
and/or one-to-one and determine the inverse image of any te T

under o.
(a) § = set of real numbers, T = set of nonnegative real numbers,
2
56 = s

(b) § = set of nonnegative real numbers, 7" = set of nonnegative real
numbers, s = s2.

(c) § = set of integers, T = set of integers, s¢ = s2.

(d) § = set of integers, T = set of integers, s¢ = 2s.

2. If § and T are nonempty sets, prove that there exists a one-to-one
correspondence between § x Tand T x §.

3. If §, T, U are nonempty sets, prove that there exists a one-to-one
correspondence between
(a) § x T) x Uand § x (T x U).
(b) Either set in part (a) and the set of ordered triples (s, ¢, u) where
seS,teT, ue U

4. (a) If there is a one-to-one correspondence between § and 7, prove
that there exists a one-to-one correspondence between T and S.
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(b) If there is a one-to-one correspondence between § and T and

between T and U, prove that there is a one-to-one correspondence
between § and U.

If 1 s the identity mapping on §, prove that for any ¢ € 4(S),
Ool =100 = 0.

If § is any set, prove that it is impossible to find a mapping of S onto S*.

If the set § has a finite number of elements, prove the following:

(a) If ¢ maps S onto S, then ¢ is one-to-one.

(b) If ¢ is a one-to-one mapping of § onto itself, then ¢ is onto.

(c) Prove, by example, that both part (a) and part (b) are false if §
does not have a finite number of elements.

. Prove that the converse to both parts of Lemma 1.2.2are false; namely,

(a) If o o 7 is onto, it need not be that both ¢ and t are onto.
(b) If ¢ o 7 is one-to-one, it need not be that both ¢ and 7 are one-to-
one.

Prove that there is a one-to-one correspondence between the set of
integers and the set of rational numbers.

If 6:5 - T and if 4 is a subset of S, the restriction of o to 4, o, is
defined by ad, = ac for any a € 4. Prove

(a) o, defines a mapping of 4 into 7.

(b) o, is one-to-one if ¢ is.

(c) o, may very well be one-to-one even if ¢ is not.

If :5 -+ § and 4 is a subset of § such that doc = 4, prove that
(0do0), = 0400,

A set S is said to be infinite if there is a one-to-one correspondence
between § and a proper subset of §. Prove

(a) The set of integers is infinite.

(b) The set of real numbers is infinite.

(c) Ifa set S has a subset 4 which is infinite, then § must be infinite.
(Note : By the result of Problem 8, a set finite in the usual sense is not
infinite.)

If § is infinite and can be brought into one-to-one correspondence

with the set of integers, prove that there is one-to-one correspondence
between S and § x S.

Given two sets § and T we declare § < T (S is smaller than T) if
there is a mapping of T onto S but no mapping of § onto T. Prove that
ifS< Tand T < Uthen § < U.

If S and T are finite sets having m and n elements, respectively, prove
thatif m < nthen § < T.

17
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1.3 The Integers

We close this chapter with a brief discussion of the set of integers. We shall
make no attempt to construct them axiomatically, assuming instead that we
already have the set of integers and that we know many of the elementary
facts about them. In this number we include the principle of mathematical
induction (which will be used freely throughout the book) and the fact that
a nonempty set of positive integers always contains a smallest element. As
to notation, the familiar symbols: ¢ > b, a < b, |a|, etc., will occur with
their usual meaning. To avoid repeating that something is an integer, we
make the assumption that all symbols, in this section, written as lowercase Latin
letters will be integers.

Given a and b, with b # 0, we can divide a by 4 to get a nonnegative
remainder r which is smaller in size than b; that is, we can find m and r
such that a = mb + r where 0 < r < |§|. This fact is known as the
Euclidean algorithm and we assume familiarity with it.

We say that b # 0 divides a if a = mb for some m. We denote that &
divides a by & | @, and that b does not divide a by b ¥ a. Note thatifa | 1 then
a = +1, that when both a|b and & | a, then a = +b, and that any &
divides 0. If b |a, we call b a divisor of a. Note that if b is a divisor of g
and of k, then it is a divisor of mg + nk for arbitrary integers m and n. We
leave the verification of these remarks as exercises.

DEFINITION The positive integer ¢ is said to be the greatest common divisor
of a and b if

1. ¢ is a divisor of @ and of b.
2. Any divisor of a and & is a divisor of ¢.

We shall use the notation (g, ) for the greatest common divisor of a and
b. Since we insist that the greatest common divisor be positive, (a, b) =
(a, —b) = (—a, b) = (—a, —b). For instance, (60,24) = (60, —24) = 12.
Another comment: The mere fact that we have defined what is to be meant
by the greatest common divisor does not guarantee that it exists. This will
have to be proved. However, we can say that if it exists then it is unique,
for, if we had ¢; and ¢, satisfying both conditions of the definition above,
then ¢, | ¢, and ¢; | ¢;, whence we would have ¢; = +c¢;; the insistence on
positivity would then force ¢; = ¢;. Our first business at hand then is to
dispose of the existence of (a, 4). In doing so, in the nextlemma, we actually
prove a little more, namely that (a, b)) must have a particular form.

LEMMA 1.3.1 If a and b are integers, not both O, then (a, b) exists; moreover,
we can find integers my and ny such that (a, b) = mga + ngb.
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Proof. Let # be the set of all integers of the form ma + nb, where m
and n range freely over the set of integers. Since one of a or 4 is not 0, there
are nonzero integers in 4. Becausex = ma + nbisin #, —x = (—m)a +
(—n)b is also in 4 ; therefore, # always has in it some positive integers.
But then there is a smallest positive integer, ¢, in .4 ; being in .4, ¢ has the
form ¢ = mga + ngb. We claim thatec = (a, b).

Note first that if d | a and d| b, the d| (mga + nyb), whence d | c. We now
must show that ¢ |aand ¢ | b. Given any element x = ma + nbin ., then
by the Euclidean algorithm, x = & + r where 0 < r < ¢. Writing this
out explicitly, ma + nb = t(mga + ngb) + r, whence r = (m — tmg)a +
(n — tny)b and so must be in 4. Since 0 < r and r < ¢, by the choice of
¢, r = 0. Thus x = t; we have proved that ¢ |x for any x € 4. But
a=1la+0beMandb = 0a + 1b € .#, whencec|aandc|b.

We have shown that ¢ satisfies the requisite properties to be (a, b) and
so we have proved the lemma.

DEFINITION The integers a and b are relatively prime if (a, b) = 1.
As an immediate consequence of Lemma 1.3.1, we have the

COROLLARY If a and b are relatively prime, we can find integers m and n such
that ma + nb = 1.

We introduce another familiar notion, that of prime number. By this
we shall mean an integer which has no nontrivial factorization. For technical
reasons, we exclude 1 from the set of prime numbers. The sequence 2, 3, 5,
7, 11,... are all prime numbers; equally, —2, =3, —5,... are prime
numbers. Since, in factoring, the negative introduces no essential differences,
for us prime numbers will always be positive.

DEFINITION The integer p > 1 is a prime number if its only divisors are
1, +p.

Another way of putting this is to say that an integer p (larger than 1) is a
prime number if and only if given any other integer n then either (p, n) = 1
or p | n. As we shall soon see, the prime numbers are the building blocks of
the integers. But first we need the important observation,

LEMMA 1.3.2 Ifa is relatively prime to b but a | bc, then a | c.

Proof. Since a and b are relatively prime, by the corollary to Lemma
1.3.1, we can find integers m and n such that ma + nb = 1. Thus
mac + nbc = ¢. Now a|mac and, by assumption, a|nbc; consequently,
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a | (mac + nbc). Since mac + nbc = ¢, we conclude that a|¢, which is
precisely the assertion of the lemma.

Following immediately from the lemma and the definition of prime
number is the important

COROLLARY If a prime number divides the product of certain integers it must
divide at least one of these integers.

We leave the proof of the corollary to the reader.

We have asserted that the prime numbers serve as the building blocks
for the set of integers. The precise statement of this is the unique factori zation
theorem:

THEOREM 1.3.1  Any positive integer a > 1 can be factored in a unique way
as a = p"p,* - p™, where py > pp > - > p, are prime numbers and
where each a; > 0.

Proof. The theorem as stated actually consists of two distinct sub-
theorems; the first asserts the possibility of factoring the given integer as a
product of prime powers; the second assures us that this decomposition is
unique. We shall prove the theorem itself by proving each of these sub-
theorems separately.

An immediate question presents itself: How shall we go about proving
the theorem? A natural method of attack is to use mathematical induction.
A short word about this; we shall use the following version of mathematical
induction: If the proposition P (m) is true and if the truth of P(r) for all r
such that my < r < k implies the truth of P(k), then P(n) is true for all
n > my. This variant of induction can be shown to be a consequence of the
basic property of the integers which asserts that any nonempty set of positive
integers has a minimal element (see Problem 10).

We first prove that every integer a > 1 can be factored as a product of
prime powers; our approach is via mathematical induction.

Certainly my = 2, being a prime number, has a representation as a
product of prime powers.

Suppose that any integer r, 2 < r < k can be factored as a product of
prime powers. If k itself is a prime number, then it is a product of prime
powers. If k is not a prime number, then ¥ = w, where 1 < 4 < k and
1 < » < k. By the induction hypothesis, since both # and » are less than £,
each of these can be factored as a product of prime powers. Thusk = up
is also such a product. We have shown that the truth of the proposition for
all integers r, 2 < r < k, implies its truth for £. Consequently, by the
basic induction principle, the proposition is true for all integersn > my = 2;
that is, every integer n > 2 is a product of prime powers.
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Now for the uniqueness. Here, too, we shall use mathematical induction,
and in the form used above. Suppose that

a = Pldlpzlz cospt = qlﬂlquz o q’h’

where p, > p >-**p,, ¢ > g3 > -** >q, are prime numbers, and
where each ¢; > 0 and each f; > 0. Our object is to prove

= §.

T
P =91 02 = Q205 0 = 4
oy = ﬂl) oy = ﬁz,...,a, = p',

ol e o

For a = 2 this is clearly true. Proceeding by induction we suppose it to
be true for all integers #, 2 < # < a. Now, since

a =p‘ﬁ...p"o e qlﬂl...q'h

and since @, > 0, p | a, hence p, | ¢,** - ¢,*>. However, since p, is a
prime number, by the corollary to Lemma 1.3.2, it follows easily that
py = q; for some i. Thus ¢, > ¢, = p,. Similarly, since ¢, |a we get
¢, = p; for some j, whence p; > p; = ¢;. In short, we have shown that
#1 = ¢;. Therefore a = p,*1p,"* -+ p* = p,P1g,f2-+-¢f~. We claim that
this forces ¢; = ;. (Prove!) But then

;Z_l a pzaz e .prdr e th e q.ﬂn_

If =1, then g =***=a,=0 and B, =-+- = f, = 0; that is,
r =5 = |, and we are done. Ifb > 1, then since b < a we can apply our
induction hypothesis to 4 to get

b =

1. The number of distinct prime power factors (in ) on both sides is equal,
thatis,r — 1 =5 — 1, hencer = ».

2 oy =py...,0 =8,

3. pl = qZ!""pr =4

Together with the information we already have obtained, namely, p, = ¢,
and @, = B,, this is precisely what we were trying to prove. Thus we see
that the assumption of the uniqueness of factorization for the integers less
than ¢ implied the uniqueness of factorization for a. In consequence, the
induction is completed and the assertion of unique factorization is estab-
lished.

We change direction a little to study the important notion of congruence
modulo a given integer. As we shall see later, the relation that we now
introduce is a special case of a much more general one that can be defined
in a much broader context.
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DEFINITION Let n > O be a fixed integer. We define ¢ = b mod n if
n|(a — b).

The relation is referred to as congruence modulo n, n is called the modulus of
the relation, and we read ¢ = b mod n as “a is congruent to b modulo n.”
Note, for example, that 73 = 4 mod 23, 21 = —9 mod 10, etc.

This congruence relation enjoys the following basic properties:

LEMMA 1.3.3

1. The relation congruence modulo n defines an equivalence relation on the set of
integers.

2. This equivalence relation has n distinct equivalence classes.

3. Ifa =bmodnandc = dmod n, thena + ¢ = b + d mod n and ac
bd mod n.

4. If ab = ac mod n and a is relatively prime to n, then b = ¢ mod n.

Il

Proof. We first verify that the relation congruence modulo n is an
equivalence relation. Since n| 0, we indeed have that n| (a — a) whence
a = a mod n for every a. Further, if 2 = 6 mod n then n| (a — 4), and so
n|(b —a) = —(a — b); thus b = a mod n. Finally, if a = 6 mod » and
b=c¢ mod n, then n|(a — b) and n| (b — ¢) whence n| {(a — b) +
(b — ¢)}, thatis, n| (a — ¢). This, of course, implies that a = ¢ mod n.

Let the equivalence class, under this relation, of @ be denoted by [a];
we call it the congruence class (mod n) of a. Given any integer a, by the
Euclidean algorithm, a = &én + r where 0 < r < n. But then, a € [r] and
so [a] = [r]. Thus there are at most n distinct congruence classes; namely,
(0], [11,..., [» — 1]. However, these are distinct, for if [:] = [j] with,
say, 0 < 1 < j < n, then n| (j — i) where j — i is a positive integer less
than n, which is obviously impossible. Consequently, there are exactly the
n distinct congruence classes [0], [1],..., [» — 1]. We have now proved
assertions |1 and 2 of the lemma.

We now prove part 3. Suppose that 2 = b mod n and ¢ = d mod n;
therefore, n | (a — b) and n{ (¢ — d) whence n| {(a — d) + (¢ — d)}, and
son|{(a+c¢) — (b +d)}. Butthena + ¢ = b + d mod n. In addition,
n|{(a — b)c + (¢ — d)b} = ac — bd, whence ac = bd mod n.

Finally, notice that if ab = ac mod r and if a is relatively prime to n,
then the fact that n | a(b — ¢), by Lemma 1.3.2, implies thatn| () — ¢) and
so b = ¢ mod n.

If a is not relatively prime to n, the result of part 4 may be false; for
instance, 2.3 = 4.3 mod 6, yet 2 # 4 mod 6.
Lemma 1.3.3 opens certain interesting possibilities for us. Let /, be the
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set of the congruence classes mod =; that is, J, = {[0], [1],..., [» — 1]}.
Given two elements, [i] and [j] in J,, let us define

(1 + 0Ll =[+J]; (a)
(1051 = [ (b)

We assert that the lemma assures us that this “addition” and “multipli-
cation” are well defined; that is, if [{] = ['] and [j] = [j'], then [{] +[j]=
[ +j1= [ +] =[] + [j] and that [E][j] = [#1j"). (Verify!)
These operations in J, have the following interesting properties (whose
proofs we leave as exercises): for any [i], [§], [k]in J,,

L+ 0]=0]+10]
2. 1171 = [j0:]

3. ([ + 0D + (%] =[] + (5] + [4])
4. (LD = GXED

5. (1171 + [£]) = [i[j] + [i1(£] distributive law.
6. [0] + [i] = [:].

7. [1][:] = [i].

One more remark: if n = p is a prime number and if [a] # [0] is in /),
then there is an element [6] in J, such that [a][6] = [1].

The set J, plays an important role in algebra and number theory. Itis
called the set of integers mod n; before we proceed much further we will have
become well acquainted with it.

’oommutative laws.

}associativc laws.

Problems

1. Ifa | b and b | a, show that a = 4.
2. If b is a divisor of g and of &, show it is a divisor of mg + nh.

3. If a and b are integers, the least common multiple of a and b, written as
[a, 8], is defined as that positive integer d such that
(@) a|dand b |d.
(b) Whenever a | x and b | x then d | x.
Prove that [a, b] exists and that [a, b] = ab/(a, b),ifa > 0,5 > 0.

4, Ifa|x and b | x and (a, ) = 1 prove that (ab) | x.

5 If a=p*--p™ and b = p,**---pP* where the p, are distinct
prime numbers and where each o; > 0, ; > 0, prove
(a) (a, b) = p,"* - - p,** where §, = minimum of &, and B, for each i.
(b) [a, 8] = p,"*++* p.” where y; = maximum of o; and , for each i.
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6. Given a, b, on applying the Euclidean algorithm successively we have

10.

11.
12.
13.

*14.
15.

16.
17.

a =gy + 1, 0 <|b,
b= g1, + 1y 0<rn<n,
Ty = @1, + 13, 0<sr <,

T = Qea1Teer T Tes2s 0 < 74y < 1ggy-

Since the integers r, are decreasing and are all nonnegative, there is a
first integer n such that r,,, = 0. Prove that r, = (g,6). (We
consider, here, 7, = |b|.)

. Use the method in Problem 6 to calculate

(a) (1128, 33). (b) (6540, 1206).
To check that n is a prime number, prove that it is sufficient to show
that it is not divisible by any prime number p, such that p < Vn.

. Show that n > 1 is a prime number if and only if for any a either

(a,n) = lorn|a
Assuming that any nonempty set of positive integers has a minimal
element, prove
(a) If the proposition P is such that

(1) P (mp) is true,

(2) the truth of P(m — 1) implies the truth of P(m),

then P(n) is true for all n > m,.
(b) If the proposition P is such that

(1) P(mp) is true,

(2) P(m) is true whenever P(a) is true for all a such that

my <a<m,

then P(n) is true for all n > my,.
Prove that the addition and multiplication used in J, are well defined.
Prove the properties 1-7 for the addition and multiplication in J,.
If (a, n) = 1, prove that one can find [5] € J, such that [a][6] = [1]
in J,.
If p is a prime number, prove that for any integer a, ¢ = a mod p.
If (m,n) = 1, given a and b, prove that there exists an x such that
x = amod m and x = b mod n.

Prove the corollary to Lemma 1.3.2.

Prove that n is a prime number if and only if in J,, [a][6] = [0]
implies that [¢] = [b] = [0].
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Supplementary Reading
For sets and cardinal numbers:

BmxHOFF, G., and MACLANE, S., A Brief Swrvey of Modern Algebra, 2nd ed. New York:
The Macmillan Company, 1965.
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Group Theory

In this chapter we shall embark on the study of the algebraic object
known as a group which serves as one of the fundamental building
blocks for the subject today called abstract algebra. In later chapters
we shall have a look at some of the others such as rings, fields, vector
spaces, and linear algebras. Aside from the fact that it has become
traditional to consider groups at the outset, there are natural, cogent
reasons for this choice. To begin with, groups, being one-operational
systems, lend themselves to the simplest formal description. Yet
despite this simplicity of description the fundamental algebraic con-
cepts such as homomorphism, quotient construction, and the like,
which play such an important role in all algebraic structures—in fact,
in all of mathematics—already enter here in a pure and revealing form.

At this point, before we become weighted down with details, let us
take a quick look ahead. In abstract algebra we have certain basic
systems which, in the history and development of mathematics, have
achieved positions of paramount importance. These are usually sets
on whose elements we can operate algebraically—by this we mean that
we can combine two elements of the set, perhaps in several ways, to
obtain a third element of the set—and, in addition, we assume that
these algebraic operations are subject to certain rules, which are
explicitly spelled out in what we call the axioms or postulates defining
the system. In this abstract setting we then attempt to prove theorems
about these very general structures, always hoping that when these
results are applied to a particular, concrete realization of the abstract
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system there will flow out facts and insights into the example at hand which
would have been obscured from us by the mass of inessential information
available to us in the particular, special case.

We should like to stress that these algebraic systems and the axioms
which define them must have a certain naturality about them. They must
come from the experience of looking at many examples; they should be rich
in meaningful results. One does not just sit down, list a few axioms, and
then proceed to study the system so described. This, admittedly, is done
by some, but most mathematicians would dismiss these attempts as poor
mathematics. The systems chosen for study are chosen because particular
cases of these structures have appeared time and time again, because some-
one finally noted that these special cases were indeed special instances of
a general phenomenon, because one notices analogies between two highly
disparate mathematical objects and so is led to a search for the root of
these analogies. To cite an example, case after case after case of the special
object, which we know today as groups, was studied toward the end of
the eighteenth, and at the beginning of the nineteenth, century, yet it was
not until relatively late in the nineteenth century that the notion of an
abstract group was introduced. The only algebraic structures, so far en-
countered, that have stood the test of time and have survived to become
of importance, have been those based on a broad and tall pillar of special
cases. Amongst mathematicians neither the beauty nor the significance of
the first example which we have chosen to discuss—groups—is disputed.

2.1 Definition of a Group

At this juncture it is advisable to recall a situation discussed in the first
chapter. For an arbitrary nonempty set S we defined A(S) to be the set of
all one-to-one mappings of the set § onto itself. For any two elements g,
7 € A(S) we introduced a product, denoted by & ° 7, and on further investi-
gation it turned out that the following facts were true for the elements of
A(S) subject to this product:

1. Whenever g, 7 € A(S), then it follows that ¢ o 7 is also in A(S). This is
described by saying that A(S') is closed under the product (or, sometimes,
as closed under multiplication).

2. For any three elements o, 7, u € A(S), do(tou) = (6 ot) opu. This
relation is called the associative law.

3. There is a very special element 1 € A(S) which satisfies 1c0 = go1 = ¢
for all ¢ € A(S). Such an element is called an identity element for A(S).

4. For every g € A(S) there is an element, written as ¢~ !, also in A(S),
such that dog™! = 67! og = 1. This is usually described by saying
that every element in A(S) has an inverse in A(S).
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One other fact about A(S) stands out, namely, that whenever § has
three or more elements we can find two elements a, f € A(S) such that
ao f # PBoa This possibility, which runs counter to our usual experience
and intuition in mathematics so far, introduces a richness into A(S) which
would have not been present except for it.

With this example as a model, and with a great deal of hindsight, we
abstract and make the

DEFINITION A nonempty set of elements G is said to form a group if in
G there is defined a binary operation, called the product and denoted by -,
such that

1. a, b e G implies that a-b € G (closed).

2. a, b, ¢ € G implies that a-(b-c) = (a-b)c (associative law).

3. There exists an element ¢ € G such that a'¢ = ¢:a = a for all ae G
(the existence of an identity element in G).

4. For every a e G there exists an element a~* € G such that a-a™! =
a”'+a = ¢ (the existence of inverses in G).

Considering the source of this definition it is not surprising that for every
nonempty set § the set A(S) is a group. Thus we already have presented to
us an infinite source of interesting, concrete groups. We shall see later (in a
theorem due to Cayley) that these A(S)’s constitute, in some sense, a
universal family of groups. If § has three or more elements, recall that we
can find elements o, T € A(S) such that 6 ot # 7 006. This prompts us to
single out a highly special, but very important, class of groups as in the
next definition.

DEFINITION A group G is said to be abelian (or commutative) if for every
a,be G,a'b = b-a.

A group which is not abelian is called, naturally enough, non-abelian;
having seen a family of examples of such groups we know that non-abelian
groups do indeed exist.

Another natural characteristic of a group G is the number of elements it
contains. We call this the order of G and denote it by o(G). This number is,
of course, most interesting when it is finite. In that case we say that G is a
Jfinite group.

To see that finite groups which are not trivial do exist just note that if the
set § contains n elements, then the group A(S) has n! elements. (Prove!)
This highly important example will be denoted by S, whenever it appears
in this book, and will be called the symmetric group of degree n. In the next
section we shall more or less dissect 3, which is a non-abelian group of
order 6.
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2.2 Some Examples of Groups

Example 2.2.1 Let G consist of the integers 0, +1, +2,... where we
mean by ab for a, b € G the usual sum of integers, that is, a*b = a + b.
Then the reader can quickly verify that G is an infinite abelian group in
which 0 plays the role of ¢ and —a thatof a .

Example 2.2.2 Let G consist of the real numbers 1, —1 under the
multiplication of real numbers. G is then an abelian group of order 2.

Example 2.2.3 Let G = S, the group of all 1-1 mappings of the set
{%1> %3, x5} onto itself, under the product which we defined in Chapter 1.
G is a group of order 6. We digress a little before returning to S;.

For a neater notation, not just in S3, but in any group G, let us define for
any a€G, a® =¢, a' =a, a’ = a'a a® = a'a?..., & = a-a* !, and
a?=(""%a %= (a3 etc. The reader may verify that the usual
rules of exponents prevail ; namely, for any two integers (positive, negative,
or zero) m, n,

™ a = ", (1)
(a™)" = a™. (2)

(It is worthwhile noting that, in this notation, if G is the group of Example
2.2.1, a" means the integer 2a).

With this notation at our disposal let us examine §, more closely. Con-
sider the mapping ¢ defined on the set x,, x,, x5 by

X = X

¢: 2 x
X3 = X3,
and the mapping
) el
y: ARty
X3 = x;.

Checking, we readily see that ¢? = ¢, ¥ = ¢, and that

X, — X3
oy X2 = X
X3 = X,
whereas
x = x
V¢ X X%

X3 - xz-
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It is clear that ¢y # Y -¢ for they do not take x, into the same image.
Since Y3 = ¢, it follows that §y~! = Y2 Let us now compute the action
of y~'-¢pon x;,x,, x5 Since y ! = y? and
X > Xy
Y2 X = x,
*3 = X3,
we have that
X — X3
Y l-g: X322 %2
X - xq.
In other words, ¢y = y~'-¢. Consider the elements e, ¢, V¥, ¥2, ¢y,
Y- ¢; these are all distinct and are in G (since G is closed), which only has
six elements. Thus this list enumerates all the elements of G. One might ask,
for instance, Whatis the entry in the list for Y- (¢ ) ? Using ¢y = ¢~ -9,
we see that Y- (¢y) = Y-(Y~ ') = ¥~ ") ¢ = e-¢/ = ¢. Of more
interest is the form of (¢-¥):(Y-¢) = ¢-(Y-(¥-9)) = ¢-(¥*-¢) =
¢ (Y 19) = ¢:(¢Y¥) = ¢*'¢¥ = ey = Y. (The reader should not be
frightened by the long, wearisome chain of equalities here. It is the last
time we shall be so boringly conscientious.) Using the same techniques as
we have used, the reader can compute to his heart’s content others of the
25 products which do not involve e. Some of these will appear in the
exercises.

Example 2.2.4 Let n be any integer. We construct a group of order n
as follows: G will consist of all symbols &',i = 0,1,2,...,n — 1 where
we insist that a° = a" =¢, a'a/) =d* ifi + j < n and a'-a/ =q'*/""
if i + j > n. The reader may verify that this is a group. It is called a
¢yclic group of order n.

A geometric realization of the group in Example 2.2.4 may be achieved
as follows: Let § be the circle, in the plane, of radius 1, and let p, be a
rotation through an angle of 2z/n. Then 2, € A(S) and p, in A(S) generates

-1y,

a group of order n, namely, {&, pp, Pp’s- <5 Pu"

Example 225 Let S be the set of integers and, as usual, let 4(S) be
the set of all one-to-one mappings of § onto itself. Let G be the set of all
elements in A(S) which move only a finite number of elements of §; that is,
o € G if and only if the number of x in § such that xo # x is finite. If
0,1 € G, let o1 be the product of ¢ and t as elements of 4(S). We claim
that G is a group relative to this operation. We verify this now.

To begin with, if 6, 7 € G, then ¢ and 7 each moves only a finite number
of elements of §. In consequence, ¢* T can possibly move only those elements
in § which are moved by at least one of ¢ or . Hence ¢t moves only a



Sec. 2.2 Some Examplesof Groups

finite number of elements in §; this puts g7 in G. The identity element, i,
of A(S) moves no element of S; thus 1 certainly must be in G. Since the
associative law holds universally in 4(S), it holds for elements of G. Finally,
ifoc €Gand xo ' # xfor some x € S, then (xa ')o # xo, which is to say,
x(6™'+0) # xo. This works out to say merely that x # xg. In other
words, ¢ ! moves only those elements of S which are moved by . Because
¢ only moves a fipite number of elements of S, this is also true for ¢~ .
Therefore ¢~ ! must be in G.

We have verified that G satisfies the requisite four axioms which define a
group, relative to the operation we specified. Thus G is a group. The reader

should verify that G is an infinite, non-abelian group.

c
a, b, ¢, d are real numbers, such that ad — b¢c # 0. For the operation in G
we use the multiplication of matrices; that is,

a w x\ _faw + by ax + bz
(c d)'(y z)—(cw+dy cx+dz)'
The entries of this 2 x 2 matrix are clearly real. To see that this matrix is
in G we merely must show that
(aw + by)(ex + dz) — (ax + b2)(av + dy) # 0

(this is the required relation on the entries of a matrix which puts it in G).
A short computation reveals that

(aw + by)(ex + dz) — (ax + bz)(cw + dy) = (ad — bec)(wz — ») # 0

since both
= (55)
¢ d P &

are in G. The associative law of multiplication holds in matrices; therefore
it holds in G. The element
1=(1 0
0 1

isin G,since 1 -1 — 0:0 = 1 # 0; moreover, as the reader knows, or
can verify, / acts as an identity element relative to the operation of G.

Finally, if (“ Z) oAl — N 3 O Siemateh
c

d -b
ad — bc ad — be

#Example 2.2.6 Let G be the set of all 2 x 2 matrices (“ Z) where

-C a

ad — be ad — be
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makes sense. Moreover,

d a _ -b —c o ad — bc - 1 £0
ad — beJ\ad — be ad — bc\ad — bc)  (ad — b))>  ad — bc =

hence the matrix

d —-b
ad — bc ad — bc

== a

ad — bc ad — be

isin G. An easy computation shows that

d —b d —b

a b\ [ad — bc ad — b _ {1 0\ _ ad — bc ad — be a b\ .
(C d) —c a —(0 1)_ —¢ a (‘ ")’

ad — bc ad — be ad — bc ad — bec

a

thus this element of G acts as the inverse of ( Z) In short, G is a group.

¢
It is easy to see that G is an infinite, non-abelian group.

#Example 22.7 Let G be the set of all 2 x 2 matrices (“

b) , where
¢ d

a, b, ¢, d are real numbers such that ad — bc = 1. Define the operation - in
G, as we did in Example 2.2.6, via the multiplication of matrices. We
leave it to the reader to verify that G is a group. It is, in fact, an infinite,
non-abelian group.

One should make a comment about the relationship of the group in
Example 2.2.7 to that in Example 2.2.6. Clearly, the group of Example 2.2.7
is a subset of that in Example 2.2.6. However, more is true. Relative to the
same operation, as an entity in its own right, it forms a group. One could
describe the situation by declaring it to be a subgroup of the group of Example
2.2.6. We shall see much more about the concept of subgroup in a few

pages.

=b a
where a and b are real numbers, not both 0. (We can state this more
succinctly by saying that a? + b2 # 0.) Using the same operation as in
the preceding two examples, we can easily show that G becomes a group.
In fact, G is an infinite, abelian group.

#Example 2.2.8 Let G be the set of all 2 x 2 matrices ( " b),
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b
Does the multiplication in G remind you of anything? Write < ? >

as al + b J where J = ( (1) (l)> and compute the product in these terms.

Perhaps that will ring a bell with you.

#Example 2.2.9 Let G be the set of all 2 x 2 matrices @ Z where
¢

a, b, ¢, d are integers modulo p, p a prime number, such that ad — bc # 0.
Define the multiplication in G as we did in Example 2.2,6, understanding
the multiplication and addition of the entries to be those modulo p. We
leave it to the reader to verify that G is a non-abelian finite group.

In fact, how many elements does G have? Perhaps it might be instructive
for the reader to try the early cases p = 2 and p = 3. Here one can write
down all the elements of G explicitly. (A word of warning! For p = 3,
G already has 48 elements.) To get the case of a general prime, p will require
an idea rather than a direct hacking-out of the answer. Try it!

2.3 Some Preliminary Lemmas

We have now been exposed to the theory of groups for several pages and as
yet not a single, solitary fact has been proved about groups. It is high time
to remedy this situation. Although the first few results we demonstrate are,
admittedly, not very exciting (in fact, they are rather dull) they will be
extremely useful. Learning the alphabet was probably not the most interesting
part of our childhood education, yet, once this hurdle was cleared, fascinating
vistas were opened before us.

We begin with

LEMMA 231 If G is a group, then

The identity element of G is unique.

. Every a € G has a unique inverse in G.

. Foreverpae G, (a )™ ! = a

. Foralla,beG, (a-b) ' =56"1-a 1

s 8

U o

Proof. Before we proceed with the proof itself it might be advisable to
see what it is that we are going to prove. In part (a) we want to show that if
two elements e and f in G enjoy the property that for every ¢ € G, a =
a‘e=¢-a=a-f=fa then e = f. Inpart (b) our aim is to show that
ifxa=a'x =ce¢and y-a = a-y = ¢, where all of g, x,y are in G, then
x = ).

33



Group Theory Ch. 2

First let us consider part (a). Since ¢-a = a for every a € G, then, in
particular, e*f = f. But, on the other hand, since b-f = b for every
b € G, we must have that ¢+ f = ¢. Piecing these two bits of information
together we obtain f = ¢- f = ¢, and so ¢ = f.

Rather than proving part (b), we shall prove something stronger which
immediately will imply part (b) as a consequence. Suppose that for a in G,
a-x = ¢ and a-y = ¢ then, obviously, a-x = a-y. Let us make this our
starting point, that is, assume that a-x = a-y for g x,y in G. There is an
element b € G such that b-a = ¢ (as far as we know yet there may be
several such 6’s). Thus b+ (a+x) = b-(a-y); using the associative law this
leads to

x=¢x=0-a) rx=0b(ax) =b(a'y) =(b-a)y=e¢)y=).

We have, in fact, proved that a-x = a-y in a group G forces x = y.
Similarly we can prove that x-a = y-a implies that x = y. This says that
we can cancel, from the same side, in equations in groups. A note of caution,
however, for we cannot conclude thata - x = y-a implies x = y for we have
no way of knowing whether @+ x = x-a. Thisis illustrated in §; with a = ¢,
x=yY,y=y L

Part (c) follows from this by noting thata '-(a !)™ ' =¢=a !-a;
canceling off the a~! on the left leaves us with (2 ')™! = 4. This is the
analog in general groups of the familiar result —(—5) = 5, say, in the
group of real numbers under addition.

Part (d) is the most trivial of these, for

(@) (b=1-a"N) =a-((6-8"Y)-a"t) =a-(e:a”) =a-a"! =
and so by the very definition of the inverse, (a*6) ' =5 '-a 1.

Certain results obtained in the proof just given are important enough to
single out and we do so now in

LEMMA 23.2 Given a, b in the group G, then the equations a-x = b and
y-a = b have unique solutions for x and y in G. In particular, the two cancellation
laws,

a‘u=a-wimphesu = w

and

Il
&

u-a = w-a implies u
hold in G.

The few details needed for the proof of this lemma are left to the reader.
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Problems

1.

10.

11.

12.

In the following determine whether the systems described are groups.
If they are not, point out which of the group axioms fail to hold.
(a) G = set of all integers, a-b = a — b.
(b) G = set of all positive integers, a+b = ab, the usual product of
integers.
(c) G = agy,ay,...,as where
4 a; = a;4; if 14+5<17,
a;°a; = a5 if i+j527
(for instance, ag-a, = a5, 4.7 = a,sinced + 4 =9 > 7).
(d) G = set of all rational numbers with odd denominators, a*b =
a + b, the usual addition of rational numbers.

. Prove that if G is an abelian group, then for all ¢, b € G and all integers

n, (a-b)" = a"-b".

. If G is a group such that (a-6)? = a?-b? for all q, b € G, show that

G must be abelian.

. If Gis a group in which (a- b)* = a'- b for three consecutive integers .

i for all @, b € G, show that G is abelian.

. Show that the conclusion of Problem 4 does not follow if we assume *

the relation (a- b)! = a’- b for just two consecutive integers.

. In §; give an example of two elements x, y such that (x - y)? # x?-»2.

. In §; show that there are four elements satisfying x> = ¢ and three

elements satisfying > = e.

. If G is a finite group, show that there exists a positive integer N such

that @ = efor alla € G.

(a) If the group G has three elements, show it must be abelian.
(b) Do part (a) if G has four elements.
(c) Do part (a) if G has five elements.

Show that if every element of the group G is its own inverse, then G
is abelian.

If G is a group of even order, prove it has an element a # e satisfying

a? = ¢

Let G be a nonempty set closed under an associative product, which
in addition satisfies:

(a) There exists an ¢ € G such thata-e¢ = aforalla e G.

(b) Give a € G, there exists an element y(a) € G such that a-y(a) = e.
Prove that G must be a group under this product.
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13. Prove, by an example, that the conclusion of Problem 12 is false if

14.

15.

16.

M.

18.

19.

#20.

#21.

#22.

#23.
#24.

#25

we assume instead:

(a’) There exists an e€ G such thata-¢ = aforalla e G.

(b") Given a € G, there exists y(a) € G such that y(a)+a = e.

Suppose a finte set G is closed under an associative product and that

both cancellation laws hold in G. Prove that G must be a group.

(a) Using the result of Problem 14, prove that the nonzero integers
modulo p, p a prime number, form a group under multiplication
mod p.

(b) Do part (a) for the nonzero integers relatively prime to n under
multiplication mod n.

In Problem 14 show by an example that if one just assumed one of

the cancellation laws, then the conclusion need not follow.

Prove that in Problem 14 infinite examples exist, satisfying the

conditions, which are not groups.

For any n > 2 construct a non-abelian group of order 2n. (Hint:

imitate the relations in S;.)

If S is a set closed under an associative operation, prove that no

matter how you bracket a,a,-:-a,, retaining the order of the

elements, you get the same element in S (e.g., (a,°a;) " (a3°as) =

a, * (a; * (a3 * a4)); use induction on n).

Let Gbe theset of allreal 2 x 2 matrices ("
c

is a rational number. Prove that G forms a group under matrix
multiplication.

Let G be the set of all real 2 x 2 matrices (; Z) where ad # 0.

:), wheread — bc# 0

Prove that G forms a group under matrix multiplication. Is G
abelian?

Let G be theset of allreal 2 x 2 matrices (; O_ 1) where a # 0.
a

Prove that G is an abelian group under matrix multiplication.
Construct in the G of Problem 21 a subgroup of order 4.

Let G be the set of all 2 x 2 matrices (a b) where a, b, ¢, d are

(4
integers modulo 2, such that ad — b¢ # 0. Using matrix multi-
plication as the operation in G, prove that G is a group of order 6.

. (a) Let G be the group of all 2 x 2 matrices (a :’) where
¢

ad — bec # 0 and aq, b,¢,d are integers modulo 3, relative to
matrix multiplication. Show that o(G) = 48.



Sec. 24  Subgroups

(b) If we modify the example of G in part (a) by insisting that
ad — be = 1, then what is o(G)?
a

#%26. (a) Let G be the group of all 2 x 2 matrices ( Z) where a, b, ¢, d

¢
are integers modulo p, p a prime number, such that ad — bc # 0.
G forms a group relative to matrix multiplication. What is o(G)?
(b) Let H be the subgroup of the G of part (a) defined by

- et

What is o(H)?

24 Subgroups

Before turning to the study of groups we should like to change our notation
slightly. It is cumbersome to keep using the  for the group operation;
henceforth we shall drop it and instead of writing a - b for a, b € G we shall
simply denote this product as ab.

In general we shall not be interested in arbitrary subsets of a group G for
they do not reflect the fact that G has an algebraic structure imposed on it.
Whatever subsets we do consider will be those endowed with algebraic
properties derived from those of G. The most natural such subsets are
introduced in the

DEFINITION A nonempty subset H of a group G is said to be a subgroup
of G if, under the product in G, H itself forms a group.

The following remark is clear: if H is a subgroup of G and X is a subgroup
of H, then KX is a subgroup of G.

It would be useful to have some criterion for deciding whether a given
subset of a group is a subgroup. This is the purpose of the next two lemmas.

LEMMA 2.41 A nonempiy subset H of the group G is a subgraup of G if and
only if

\. a, b e H implies that ab ¢ H.
2. a € H implies thata ' € H.

Proof. 1f H is a subgroup of G, then it is obvious that (1) and (2) must
hold.

Suppose conversely that H is a subset of G for which (1) and (2) hold.
In order to establish that H is a subgroup, all that is needed is to verify that
e € H and that the associative law holds for elements of H. Since the as-
sociative law does hold for G, it holds all the more so for H, which is a
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subset of G. If ae H, by part 2, ™" € Hand sobypart 1, ¢ = aa~'e H.
This completes the proof.

In the special case of a finite group the situation becomes even nicer for
there we can dispense with part 2.

LEMMA 2.4.2 If H is a nonempty finite subset of a group G and H is closed
under multiplication, then H is a subgroup of G.

Proof. In light of Lemma 2.4.1 we need but show that whenever a € H,
then ¢~' € H. Suppose that a e H; thus a> = aae H, a® = a’ac H,
..., d" € H,...since H is closed. Thus the infinite collection of elements
a,a?,...,a" ... must all fit into H, which is a finite subset of G. Thus
there must be repetitions in this collection of elements; that is, for some
integers r, s with r > s > 0, a" = 4. By the cancellation in G, a"™* = ¢
(whence ¢ is in H);sincer —s — 1 2>20,a"* 'eHand a ! = ¢*"!
since aa""*"! =& * =¢ Thus a ! e H, completing the proof of the
lemma.

The lemma tells us that to check whether a subset of a finite group is a
subgroup we just see whether or not it is closed under multiplication.

We should, perhaps, now see some groups and some of their subgroups.
G is always a subgroup of itself; likewise the set consisting of ¢ is a subgroup
of G. Neither is particularly interesting in the role of a subgroup, so we
describe them as trivial subgroups. The subgroups between these two
extremes we call nontrivial subgroups and it is in these we shall exhibit
the most interest.

Example 2.4.1 Let G be the group of integers under addition, H the
subset consisting of all the multiples of 5. The student should check that
H is a subgroup.

In this example there is nothing extraordinary about 5; we could similarly
define the subgroup H,, as the subset of G consisting of all the multiples of n.
H, is then a subgroup for every n. What can one say about H, n H,?
It might be wise to try it for Hg n Hj.

Example 2.4.2 Let S be any set, A(S) the set of one-to-one mappings
of S onto itself, made into a group under the composition of mappings. If
X9 €S, let H(xg) = {¢ € A(S) | xo¢ = xp}. H(xo) is a subgroup of A(S).
Iffor x, # x, € S we similarly define H (x,), whatis H(x) n H(x,)?

Example 2.4.3 Let G be any group, a€ G. Let (a) = {d'|i = 0, 1,
+2,...}. (a) is a subgroup of G (verify!); it is called the cyclic subgroup
generated by a. This provides us with a ready means of producing subgroups
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of G. If for some choice of a, G = (a), then G is said to be a cyclic group.
Such groups are very special but they play a very important role in the
theory of groups, especially in that part which deals with abelian groups.
Of course, cyclic groups are abelian, but the converse is false.

Example 2.4.4 Let G be a group, W a subset of G. Let (W) be the set
of all elements of G representable as a product of elements of W raised to
positive, zero, or negative integer exponents. (W) is the subgroup of G
generated by W and is the smallest subgroup of G containing W. In fact, (W)
is the intersection of all the subgroups of G which contain W (this intersec-
tion is not vacuous since G is a subgroup of G which contains W).

Example 2.4.5 Let G be the group of nonzero real numbers under
multiplication, and let A be the subset of positive rational numbers. Then
H is a subgroup of G.

Example 2.4.6 Let G be the group of all real numbers under addition,
and let H be the set of all integers. Then H is a subgroup of G.
#Example 24.7 Let G be the group of all real 2 x 2 matrices (a 3)
¢

with ad — b¢ # 0 under matrix multiplication. Let

#={ eereel

Then, as is easily verified, H is a subgroup of G.

#Example 2.4.8 Let H be the group of Example 2.4.7, and let

K = {((l) f)} Then K is a subgroup of H.

Example 2.4.9 Let G be the group of all nonzero complex numbers
a + bi (a, b real, not both 0} under multiplication, and let

H={a+ bieG|a®+ b= 1}.

Verify that H is a subgroup of G.

DEFINITION Let G be a group, H a subgroup of G; for a, b € G we say
a is congruent to b mod H, written as ¢ = b mod H ifab ' € H.

LEMMA 2.4.3 The relationa = b mod H is an equivalence relation.
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Proof. 1If we look back in Chapter 1, we see that to prove Lemma 2.4.3
we must verify the following three conditions: For all a, b, c € G,

amod H.
b mod H implies b = a mod H.
b mod H, b = ¢ mod H implies a = ¢ mod H.

W N —
NEENEEN
Wwomom

Let’s go through each of these in turn.

1. To show that a = a mod H we must prove, using the very definition
of congruence mod H, that aa ! € H. Since H is a subgroup of G, ¢ € H,
and since aa ! = ¢, aa ! € H, which 5 what we were required to demon-
strate.

2. Suppose that @ = b mod H, that is, suppose ab ' € H; we want to
get from this ¥ = a mod H, or, equivalently, ba ! € H. Since ab ' € H,
which is a subgroup of G, (ab ')~ ! € H; but, by Lemma 2.3.1, (ab~!)~! =
(6! 'a ! =ba ',andsoba '€ Hand b = a mod H.

3. Finally we require that a = b mod H and b = ¢ mod H forces
a = ¢ mod H. The first congruence translates into ab ' € H, the second
into bc ! € H; using that H is a subgroup of G, (ab ')(bc !) € H. How-
ever, ac”' = aec ' = a(b 'b)c™! = (ab~')(bc '); hence ac ' € H, from
which it follows that a = ¢ mod H.

This establishes that congruence mod H is a bona fide equivalence
relation as defined in Chapter 1, and all results about equivalence relations
have become available to us to be used in examining this particular relation.

A word about the notation we used. If G were the group of integers under
addition, and H = H, were the subgroup consisting of all multiples of =,
then in G, the relation a = b mod H, that is, ab ! € H, under the additive
notation, reads “a — b1isa multiple ofn.”” This is the usual number theoretic
congruence mod z. In other words, the relation we defined using an
arbitrary group and subgroup is the natural generalization of a familiar
relation in a familiar group.

DEFINITION If H is a subgroup of G, a € G, then Ha = {ha| h € H}.
Ha is called a right coset of H in G.

LEMMA 2.44 Forailae G,
Ha = {xeG|a = x mod H}.

Proof. Let{a] = {x € G|a = x mod H}. We first show that Ha < [a].
. For, if h e H, then a(ha) ! = a(a 'h ') = h ' € Hsince H is a subgroup
of G. By the definition of congruence mod H this implies that ka € [a]
for every 4 € H, and so Ha < [a].

Suppose, now, that x € [a]. Thus ax ' e H, so (ax *)™! = xa ! is
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also in H. That is, xa~! = k for some k € H. Multiplying both sides by a
from the right we come up with x = kg, and so x € Ha. Thus [¢] c Ha.
Having proved the two inclusions [¢] « Haand Ha < [a], we can conclude
that [a] = Ha, which is the assertion of the lemma.

In the terminology of Chapter 1, [a], and thus Ha, is the equivalence class
of a in G. By Theorem 1.1.1 these equivalence classes yield a decomposition
of G into disjoint subsets. Thus any two right cosets of H in G either are identical
or have no element in common.

We now claim that between any two right cosets Ha and Hb of H in G
there exists a one-to-one correspondence, namely, with any element Az € Ha,
where k € H, associate the element kb € Hb. Clearly this mapping is onto
Hb. We aver that it is a one-to-one correspondence, for if k)b = h,b, with
hy, h, € H, then by the cancellation law in G, k, = k; and so k,a = h,a.
This proves

LEMMA 2.4.5 There is a one-to-one correspondence between any two right cosets
of H in G.

Lemma 2.4.5 is of most interest when His a finite group, for then it merely
states that any two right cosets of H have the same number of elements.
How many elements does a right coset of H have? Well, note that H = He
is itself a right coset of H, so any right coset of H in G has o(H) elements.
Suppose now that G is a finite group, and let k¥ be the number of distinct
right cosets of H in G. By Lemmas 2.4.4 and 2.4.5 any two distinct right
cosets of H in G have no element in common, and each has o(H) elements.

Since any a € G is in the unique right coset Ha, the right cosets fill out G.
Thus if k represents the number of distinct right cosets of H in G we must
have that ko(H) = o(G). We have proved the famous theorem due to
Lagrange, namely,

THEOREM 2.4.1 If G is a finite group and H is a subgroup of G, then o(H)
is a divisor of o(G).

DEFINITION If H is a subgroup of G, the index of H in G is the number of
distinct right cosets of Hin G.

We shall denote it by ig(H). In case G is a finite group, iG(H) =
o(G)[o(H), as became clear in the proof of Lagrange’s theorem. It is quite
possible for an infinite group G to have a subgroup H # G which is of finite
index in G.

It might be difficult, at this point, for the student to see the extreme
importance of this result. As the subject is penetrated more deeply one will

1
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become more and more aware of its basic character. Because the theorem
is of such stature it merits a little closer scrutiny, a little more analysis,
and so we give, below, a slightly different way of looking at its proof. In
truth, the procedure outlined below is no different from the one already
given. The introduction of the congruence mod H smooths out the listing
of elements used below, and obviates the need for checking that the new
elements introduced at each stage did not appear before.

So suppose again that G is a finite group and that H is a subgroup of G.
Let Ay, hy ..., h, be a complete list of the elements of H, r = o(H). If
H = G, there is nothing to prove. Suppose, then, that 4 # G; thus there
isan a € G, a ¢ H. List all the elements so far in two rows as

}ll, h2" N ',hn

hya, haa, . . ., ha.

We claim that all the entries in the second line are different from each other
and are different from the entries in the first line. If any two in the second
line were equal, then A2 = h;a with i # j, but by the cancellation law this
would lead to 4; = 4, a contradiction. If an entry in the second line were
equal to one in the first line, then ka = 4, resulting in a = h,"'h;e H
since H is a subgroup of G; this violates a ¢ H.

Thus we have, so far, listed 20{H) elements; if these elements account
for all the elements of G, we are done. If not, there is a b € G which did not
occur in these two lines. Consider the new list

hl, hZ) vy hn
hya, hya,. .., ha,
hyb, hyb, ..., hb.

As before (we are now waving our hands) we could show that no two
entries in the third line are equal to each other, and that no entry in the
third line occurs in the first or second line. Thus we have listed 30(H)
elements. Continuing in this way, every new element introduced, in fact,
produces o(H) new elements. Since G is a finite group, we must eventually
exhaust all the elements of G. But if we ended up using £ lines to list all the
elements of the group, we would have written down ko(#) distinct elements,
and so ko(H) = o(G).

It is essential to point out that the converse to Lagrange’s theorem is
false——a group G need not have a subgroup of order m if m is a divisor of
0{G). For instance, a group of order 12 exists which has no subgroup of
order 6. The reader might try to find an example of this phenomenon; the
place to look is in §,, the symmetric group of degree 4 which has a sub-
group of order 12, which will fulfill our requirement.

Lagrange’s theorem has some very important corollaries. Before we
present these we make one definition.
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DEFINITION If G is a group and a € G, the order (or period) of a is the
least positive integer m such that a™ = e.

If no such integer exists we say that a is of infinite order. We use the
notation o(a) for the order of a. Recall our other notation: far two integers
u, v, u | » reads “y is a divisor of 2.”

COROLLARY 1 Jf Gis a finite group and a € G, then o(a) | o(G).

Proof. With Lagrange’s theorem already in hand, it seems most natural
to prove the corollary by exhibiting a subgroup of G whose order is o(a).
The element a itself furnishes us with this subgroup by considering the
cyclic subgroup, (a), of G generated by a; (a) consists of ¢, a, a2, .... How
many elements are there in (a)? We assert that this number is the order of a.
Clearly, since a°® = ¢, this subgroup has at most o(a) elements. If it
should actually have fewer than this number of elements, then &' = a/
for some integers 0 < i < j < o(a). Thena’~! = ¢, yet 0 <j — i < o(a)
which would contradict the very meaning of o(a). Thus the cyclic sub-
group generated by a has o(a) elements, whence, by Lagrange’s theorem,

o(a) | o(G).

COROLLARY 2 IfG is a finite group and a € G, then a®© = e.

Proof. By Corollary 1, o(a) |o(G); thus o(G) = mo(a). Therefore,
@ = g™ = (g"N)" = ™ =e.

A particular case of Corollary 2 is of great interest in number theory.
The Euler ¢-function, ¢(n), is defined for all integers n by the following:
@(1) = 1; for n > 1, ¢(n) = number of positive integers less than n and
relatively prime to n. Thus, for instance, ¢(8) = 4 since only 1, 3,5, 7
are the numbersless than 8 which are relatively prime to 8. In Problem 15(b)
at the end of Section 2.3 the reader was asked to prove that the numbers
less than n and relatively prime to n formed a group under multiplication
mod n. This group has order ¢(rn). If we apply Corollary 2 to this group
we obtain

COROLLARY 3 (Eurer) If n is a positive integer and a is relatively prime
to n, then a®™ = 1 mod n.

In order to apply Corollary 2 one should replace a by its remainder on
division by n. If n should be a prime number p, then ¢(p) =p — 1. Ifa
is an integer relatively prime to p, then by Corollary 3, a*~! = 1 mod p,
whence @ = a mod p. If on the other hand, a is not relatively prime to p,
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since p is a prime number, we must have that p | a, so that 2 = 0 mod p;
hence 0 = a” = a mod p here also. Thus

COROLLARY 4 (FermAaT) Ifp is a prime number and a is any inleger, then
a® = amod p.

COROLLARY 5 If G is a finite group whose order is a prime number p, then
G is a cyclic group.

Proof. First we claim that G has no nontrivial subgroups H; for o(H)
must divide o(G) = p leaving only two possibilities, namely, o(H) = 1 or
o(H) = p. The first of these implies H = (¢), whereas the second implies
that H = G. Suppose now that @ # ¢ € G, and let H = (a). H is a sub-
group of G, H # (¢) since a # e€ H. Thus H = G. This says that G is
cyclic and that every element in G is a power of a.

This section is of great importance in all that comes later, not only for its
results but also because the spirit of the proofs occurring here are genuinely
group-theoretic. The student can expect to encounter other arguments
having a similar flavor. It would be wise to assimilate the material and
approach thoroughly, now, rather than a few theorems later when it will
be too late.

25 A Counting Principle

As we have defined earlier, if H is a subgroup of G and a € G, then Ha
consists of all elements in G of the form ha where & € H. Let us generalize
this notion. If H, K are two subgroups of G, let

HK = {xeG|x = hk,he H, ke K}.

Let’s pause and look at an example; in S; let H = {¢, ¢}, K = {e, py}.
Since ¢? = (¢¥)? = ¢, both H and K are subgroups. What can we say
about HK? Just using the definition of HK we can see that HK consists of
the elements e, @, ¢Y, p?¥ = . Since HK consists of four elements and
4 is not a divisor of 6, the order of §; by Lagrange’s theorem HK could not
be a subgroup of §;. (Of course, we could verify this directly but it does
not hurt to keep recalling Lagrange’s theorem.) We might try to find out
why HK is not a subgroup. Note that KH = {e, ¢, ¥, pYp = ¢ 1} # HK.
This is precisely why HK fails to be a subgroup, as we see in the next lemma.

LEMMA 25.1 HK is a subgroup of G if and only if HK = KH.

Proof. Suppose, first, that HK = KH; that is, if ke H and ke K,
then hk = k;h, for some k; € K, h € H (it need not be that k£, = k or
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hy = hY). To prove that HK is a subgroup we must verify that it is closed
and every element in AK has its inverse in HK. Let’s show the closure
first; so suppose x = hke HK and y = 'k’ e HK. Then =xy = hki'K,
but since kb’ € KH = HK, kb’ = h,k, with h, € H, k, e K. Hence xy =
h(hyk)k' = (hhy)(k,k') € HK, and HK is closed. Also x™! = (hk) ! =
k 'h e KH = HK, so x"! e HK. Thus HK is a subgroup of G.

On the other hand, if HK is a subgroup of G, then for any he H, k € K|
h 'k e HK and so kh = (h 'k7') 'e HK. Thus KH < HK. Now if
xis any element of HK,x ' = hke HK andso x = (x ') ! = (hk)" =
k 'h 'eKH,so HK = KH. Thus HK = KH.

An interesting special case is the situation when G is an abelian group
for in that case trivially HK = KH. Thus as a consequence we have the

COROLLARY If H,K are subgroups of the abelian group G, then HK is a
subgroup of G.

If H, K are subgroups of a group G, we have seen that the subset HK
need not be a subgroup of G. Yet it is a perfect meaningful question to ask:
How many distinct elements are there in the subset HK? If we denote this
number by o(HK), we prove

THEOREM 2.51 If H and K are finite subgroups of G of orders o(H) and
o(K), respectively, then

o HE) = 2HE)
o(H n K)

Proof. Although there is no need to pay special attention to the particular
case in which A n K = (e¢), looking at this case, which is devoid of some
of the complexity of the general situation, is quite revealing. Here we
should seek to show that o(HK) = o(H)o(K). One should ask oneself: How
could this fail to happen? The answer clearly must be that if we list all the
elements hk, h € H, k € K there should be some collapsing; that is, some
element in the list must appear at least twice. Equivalently, for some
h # h, € H, hk = hk,. But then h,~'h = kik '; now since 4, € H,
hy ! must also be in H, thus 4, 'h e H. Similarly, £,k ' € K. Since
hy ‘h=kik 1, hy 'he HN K = (¢), so h, *h = ¢, whence h = hy, a
contradiction. We have proved that no collapsing can occur, and so, here,
o(HK) is indeed o(H )o(K).

With this experience behind us we are ready to attack the general case.
As above we must ask: How often does a given element ik appear as a
product in the list of HK? We assert it must appear o(H n K) times!
To see this we first remark that if /, € H n K, then

Bk = (k) (hy ™ R), )
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where hhy € H, since heH, hye HNn K c H and h, 'k e K since
hy"'eHn K < K and k€ K. Thus hk is duplicated in the product at
least o(H n K) times. However, if hk = K'k’, then A 'k = k(k') ! = 4,
and ue Hn K, and so &' = hu, k' = u™ 'k; thus all duplications were
accounted for in (1). Consequently At appears in the list of HK exactly
o(H n K) times. Thus the number of distinct elements in HK is the total
number in the listing of HK, that is, o(H)o(K) divided by the number of
times a given element appears, namely, o(H n K). This proves the theorem.

Suppose H, K are subgroups of the finite- group G and o(H) > \/o(G),
o(K) \/0 . Since HK < G, o(HK) < o(G). However,

H)o(K) \/o Wo(G)  o(G)
o(HnK) o(HnK) oHNK)’

o(G) 2 o(HK) =
thus o(H n K) > 1. Therefore, H n K # (¢). We have proved the

COROLLARY If H and K are subgroups of G and o(H) > \/o(G), oK) >
Vo(G), then H A K # (e).

We apply this corollary to a very special group. Suppose G is a finite
group of order pq where p and ¢ are prime numbers with p > ¢g. We claim
that G can have at most one subgroup of order p. For suppose H, K are
subgroups of order p. By the corollary, H n K # (e), and being a sub-
group of H, which having prime order has no nontrivial subgroups, we
must conclude that H n K = H, and so H @ Hn K < K. Similarly
K < H, whence H = K, proving that there is at most one subgroup of
order p. Later on we shall see that there is at least one subgroup of order p,
which, combined with the above, will tell us there is exactly one subgroup
of order p in G. From this we shall be able to determine completely the
structure of G.

Problems

I. If Hand K are subgroups of G, show that H n K is a subgroup of G.
(Can you see that the same proof shows that the intersection of any
number of subgroups of G, finite or infinite, is again a subgroup of G?)

2. Let G be a group such that the intersection of all its subgroups which
are different from (¢) is a subgroup different from (¢). Prove that
every element in G has finite order.

3. If G has no nontrivial subgroups, show that G must be finite of
prime order.
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14.
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16.
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. (a) If His a subgroup of G, and a € GletaHa™! = {aha™ ' |h € H}.

Show that aHa ! is a subgroup of G.
(b) If H is finite, what is o(aHa 1)?

. For a subgroup H of G define the left coset aH of H in G as the set

of all elements of the form ah, A € H. Show that there is a one-to-one
correspondence between the set of left cosets of H in G and the set of
right cosets of Hin G.

. Write out all the right cosets of H in G where

(@) G = (a) is a cyclic group of order 10 and H = (a?) is the
subgroup of G generated by a2.

(b) G as in part (a), H = (a®) is the subgroup of G generated by a°,

(€) G = A(S),S = {x, x5, %3}, and H = {0 € G| x;,06 = x,}.

Write out all the left cosets of H in G for H and G as in parts (a),

(b), (c) of Problem 6.

. Is every right coset of Hin G a left coset of H in G in the groups of

Problem 6?

. Suppose that H is a subgroup of G such that whenever Ha # Hb

then ai # bH. Prove that gHg ! < H for all gei.

Let G be the group of integers under addition, H, the subgroup
consisting of all multiples of a fixed integer n in G. Determine the
index of H, in G and write out all the right cosets of H, in G.

In Problem 10, what is H, n H,,?

If G is a group and H, K are two subgroups of finite index in G,
prove that H n K is of finite index in G. Can you find an upper
bound for the index of H n K in G?

If a € G, define N(a) = {x € G|xa = ax}. Show that N(a) is a
subgroup of G. N(a) is usually called the normalizer or centralizer of
ain G.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G|xh = hx all h € H}. Prove that C(H) is a subgroup
of G.

The center Z of a group G is defined by Z = {2z € G|zx = xz all
x € G}. Prove that Z is a subgroup of G. Can you recognize Z as
C(T) for some subgroup T of G?

If H is a subgroup of G, let N(H) = {ae G|aHa™' = H} [see
Problem 4(a)]. Prove that

(a) N(H) is a subgroup of G. (b) N(H) o H.

Give an example of a group G and a subgroup H such that N(H) #
C(H). Is there any containing relation between N(H) and C(H)?
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18.

*19,

*20.

21.

23.

*24.

*25.

**26.

27.
28.

If H is a subgroup of G let
N = () xHx™1.

xeG

Prove that N is a subgroup of G such that aNa™! = Nforalla € G.

If H is a subgroup of finite index in G, prove that there is only a
finite number of distinct subgroups in G of the form aHa™*.

If H is of finite index in G prove that there is a subgroup N of G,
contained in H, and of finite index in G such that aNa~! = N for
all ae G. Can you give an upper bound for the index of this
NinG?

Let the mapping 7, for a, b real numbers, map the reals into the
reals by the rule 7,:x - ax + b. Let G = {1,,| a  0}. Prove
that G is a group under the composition of mappings. Find the
formula for 7,7 4

. In Problem 21, let H = {z,, € G| ais rational}. Show that H is

a subgroup of G. List all the right cosets of H in G, and all the left
cosets of H in G. From this show that every left coset of H in G is a
right coset of H in G.

In the group G of Problem 21, let N = {1,, € G}. Prove

(@) N is a subgroup of G.

(b) IfaeG, ne N, then ana™' € N.

Let G be a finite group whose order is not divisible by 3. Suppose
that (ab)® = a®b* for all 4, b € G. Prove that G must be abelian.

Let G be an abelian group and suppose that G has elements of orders
m and n, respectively. Prove that G has an element whose order is
the least common multiple of m and n.

If an abelian group has subgroups of orders m and n, respectively,
then show it has a subgroup whose order is the least common multiple
of m and n. (Don’t be discouraged if you don’t get this problem with
what you know about group theory up to this stage. I don’t know
anybody, including myself, who has done it subject to the restriction
of using material developed so far in the text. But it is fun to try.
I've had more correspondence about this problem than about any
other point in the whole book.)

Prove that any subgroup of a cyclic group is itself a cyclic group.
How many generators does a cyclic group of order » have? (be G
is a generator if (8) = G.)

Let U, denote the integers relatively prime to » under multiplication
mod n. In Problem 15(b), Section 2.3, it is indicated that U, is a group.
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In the next few problems we look at the nature of U, as a group for some
specific values of n.

29,

30.

31

32

33
34.
35.

36.
37.
*38.

39.

41.

Show that Uy is not a cyclic group.

Show that Uy is a cyclic group. What are all its generators?
Show that Uy, is a cyclic group. What are all its generators?
Show that U, 4 is a cyclic group.

Show that U, is not a cyclic group.

Show that both U, s and U,, are cyclic groups.

Hazard a guess at what all the n such that U, is cyclic are. (You

can verify your guess by looking in any reasonable book on number

theory.)

Ifa € G and a™ = ¢, prove that o(g) | m.

If in the group G, a® = ¢, aba™' = b? for some a, b € G, find o(b).

Let G be a finite abelian group in which the number of solutions in

G of the equation ¥" = ¢ is at most n for every positive integer n.

Prove that G must be a cyclic group.

Let G be a group and 4, B subgroups of G. If x,y € G define x ~ y

if y = axb for some a € 4, b € B. Prove

(@) The relation so defined is an equivalence relation.

(b) The equivalence class of x is AxB = {axb|a € A4, b € B}.
(AxB is called a double coset of Aand B in G.)

. If G is a finite group, show that the number of elements in the double

coset AxB is
o(4)o(B)
o(4 n xBx™1).
If G is a finite group and 4 is a subgroup of G such that all double
cosets AxA have the same number of elements, show that gdg™! = 4
forall ge G.

26 Normal Subgroups and Quotient Groups

Let G be the group S, and let H be the subgroup {¢, ¢}. Since the index
of H in G is 3, there are three right cosets of H in G and three left cosets of
Hin G. We list them:

Right Cosets Left Cosets
H = {e, ¢} H = {¢, ¢}

HY = {Y, ¥} VH = {y, y¢ = ¢¥*}
HY* = (2, ¥*} Y H = (Y, ¥’¢ = ¢¥}
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A quick inspection yields the interesting fact that the right coset Hy is not
a left coset. Thus, at least for this subgroup, the notions of left and right
coset need not coincide.

In G = S, let us consider the subgroup N = {e, ¥, Y?}. Since the
index of N in G is 2 there are two left cosets and two right cosets of N in G.
We list these:

Right Cosets Left Cosets

N={V, '1’2} N = {e ¥, '/Iz}
No = {(§, Vo, ¥’¢}  ON = {4, ¢y, p¥*}
= {$, V’¢, Vo)

A quick inspection here reveals that every left coset of N in G is a right
coset in G and conversely. Thus we see that for some subgroups the notion
of left coset coincides with that of right coset, whereas for some subgroups
these concepts differ.

It is a tribute to the genius of Galois that he recognized that those sub-
groups for which the left and right cosets coincide are distinguished ones.
Very often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

We shall define this special class of subgroups in a slightly different way,
which we shall then show to be equivalent to the remarks in the above
paragraph,

DEFINITION A subgroup N of G is said to be a normal subgroup of G if
forevery geGandne N, gng '€ N.

! we mean the set of all gng !, ne N, then N
! « N for every g € G.

Equivalently, if by gNg
is a normal subgroup of G if and only if gNg~

LEMMA 2.6.1 N is a normal subgroup of G if and only if gNg ' = N for
every g € G.

Proof. 1f gNg ' = N for every g € G, certainly gNg ' < N, so N is
normal in G.

Suppose that N is normal in G. Thusifge G,gNg~™' < Nandg 'Ng
g 'Nig ') "= N. Now, since g7'Ngc N, N=g(g 'Ng)g !
gNg ' = N, whence N = gNg .

c

In order to avoid a point of confusion here let us stress that Lemma 2.6.1
does not say that for every ne€ N and every g€ G, gng ' = n. No! This
can be false. Take, for instance, the group G to be §; and N to be the sub-
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group {e, ¥, Y2}. If we compute $N¢~ ! we obtain {e, ¢y~ 1, pY2¢~1} =
{e, Y2, ¥}, yet ¢pPp~' # . All we require is that the set of elements
gNg ! be the same as the set of elements N.

We now can return to the question of the equality of left cosets and
right cosets.

LEMMA 2.6.2 The subgroup N of G is a normal subgroup of G if and only if
every kft coset of N in G is a right coset of N in G.

Proof. If N is a normal subgroup of G, then for every g€ G, gNg™! =
N, whence (gNg ')g = Ng; equivalently gN = Ng, and so the left coset
gN is the right coset Ng.

Suppose, conversely, that every left coset of N in G is a right coset of
N in G. Thus, for g € G, gN, being a left coset, must be a right coset.
What right coset can it be?

Since g = ge € gN, whatever right coset gN turns out to be, it must
contain the element g; however, g is in the right coset Ng, and two distinct
right cosets have no element in common. (Remember the proofof Lagrange’s
theorem?) So this right coset is unique. Thus gN = Ng follows. In other
words, gNg~! = Ngg~! = N, and so N is a normal subgroup of G.

We have already defined what is meant by HK whenever H, K are
subgroups of G. We can easily extend this definition to arbitrary subsets,
and we do so by defining, for two subsets, 4 and B, of G, AB = {x e G |x =
ab,a€ A, b € B}. As a special case, what can we say when 4 = B = H,
a subgroup of G? HH = {hh, | hy, h, € H} < H since H is closed under
multiplication. But HH > He = Hsince e € H. Thus HH = H.

Suppose that N is a normal subgroup of G, and that a, b € G. Consider
(Na)(Nb); since N is normal in G, aN = Na, and so

NaNb = N(aN)b = N(Na)b = NNab = Nab.

What a world of possibilities this little formula opens! But before we get
carried away, for emphasis and future reference we record this as

LEMMA 2.6.3 A subgroup N of G is a normal subgroup of G if and only if the
product of two right cosets of N in G is again a right coset of N in G.

Proof. If N is normal in G we have just proved the result. The proof of
the other half is one of the problems at the end of this section.

Suppose that N is a normal subgroup of G. The formula NaNb = Nab,
for a, b € G is highly suggestive; the product of right cosets is a right coset.
Can we use this product to make the collection of right cosets into a group?
Indeed we can! This type of construction, often occurring in mathematics
and usually called forming a quotient structure, is of the utmost importance.

51



52

Group Theory Ch.2

Let G/N denote the collection of right cosets of N in G (that is, the
elements of G/ N are certain subsets of G) and we use the product of subsets
of G to yield for us a product in G/N.

For this product we claim

1. X, Y € G/N implies XY € G[N; for X = Na, Y = Nb for some a, b€ G,
and XY = NaNb = Nab € G|N.

2. X,Y,ZeG|N, then X = Na, Y = Nb, Z = Nc with a, b ceG,
and so (XY)Z = (NaNb)Nc = N(ab)Nc = N(ab)c = Na(bc) (since G
is associative) = Na(Nbc) = Na(NbNc) = X(YZ). Thus the product
in G/N satisfies the associative law.

3. Consider the element N = Nee G/N. If Xe G/N, X = Na, a€G,
so XN = NaNe = Na = Na = X, and similarly NX = X. Con-
sequently, Ne is an identity element for G/N.

4. Suppose X = Nae G/[N (where a e G); thus Na~ ! e G/N, and
NaNa='! = Naa ' = Ne. Similarly Na 'Na = Ne. Hence Na~! is
the inverse of Na in G/ N.

But a system which satisfies 1, 2, 3, 4 is exactly what we called a group.
That is,

THEOREM 2.6 If Gisa group, N a normal subgroup of G, then G|N is also
a group. It is called the quotient group or factor group of G by N.

If, in addition, G is a finite group, what is the order of G/N? Since G/N
has as its elements the right cosets of N in G, and since there are precisely
ig(N) = o(G)[o(N) such cosets, we can say

LEMMA 26.4 If G is a finite group and N is a normal subgroup of G, then
o(G|N) = o(G)[o(N).

We close this section with an example.

Let G be the group of integers under addition and let N be the set of
all multiplies of 3. Since the operation in G is addition we shall write the
cosets of N in G as N + a rather than as Na. Consider the three cosets
N,N + 1, N + 2. We claim that these are all the cosets of Nin G. For,
givenae€G,a = 3b + ¢ where b eGandc¢ = 0, 1, or 2 (cis the remainder
of a on division by 3). Thus N+ a=N+3b+c= (N + 3b) + ¢ =
N + ¢ since 3b e N. Thus every coset is, as we stated, one of N, N + 1,
or N+ 2,and G/N = {N, N + 1, N + 2}. How do we add elements in
G/N? Our formula NaNb = Nab translates into: (N + 1) + (N + 2) =
N+3=Nsince3eN; N+2)+ (N+2)=N+4=N+1 and
so on. Without being specific one feels that G/ N is closely related to the
integers mod 3 under addition. Clearly what we did for 3 we could emulate
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for any integer n, in which case the factor group should suggest a relation
to the integers mod n under addition. This type of relation will be clarified
in the next section.

Problems

1. If H is a subgroup of G such that the product of two right cosets of
H in G is again a right coset of H in G, prove that H is normal in G.

2. If G is a group and H is a subgroup of index 2 in G, prove that H is
a normal subgroup of G.

3. If N is a normal subgroup of G and H is any subgroup of G, prove
that NH is a subgroup of G.

4. Show that the intersection of two normal subgroups of G is a normal
subgroup of G.

5. If H is a subgroup of G and N is a normal subgroup of G, show that
H ~ N is a normal subgroup of H.

6. Show that every subgroup of an abelian group is normal.

*7. Is the converse of Problem 6 true? If yes, prove it, if ro, give an
example of a non-abelian group all of whose subgroups are normal.

8. Give an example of a group G, subgroup H, and an element a € G
such that aHa™! <« H butaHa™! # H.
9. Suppose H is the only subgroup of order o(H) in the finite group G.
Prove that H is a normal subgroup of G.
10. If H is a subgroup of G, let N(H) = {ge G| gHg™' = H}. Prove
(a) N(H) is a subgroup of G.
(b) H is normal in N(H).
(c) If His a normal subgroup of the subgroup X in G, then X < N(H)
(that is, N(H) is the largest subgroup of G in which H is normal).
(d) H is normal in G if and only if N(H) = G.
I1. f N and M are normal subgroups of G, prove that NM is also a
normal subgroup of G.

*12. Suppose that N and M are two normal subgroups of G and that
NN M = (¢). Show that for any ne N, me M, nm = mn.
13. If a cyclic subgroup 7" of G is normal in G, then show that every
subgroup of 7" is normal in G.
*14. Prove, by an example, that we can find three groups E < F < G,
where E is normal in F, F is normal in G, but E is not normal in G.

15. If N is normal in G and @ € G is of order o(a), prove that the order,
m, of Na in G/N is a divisor of o(a).
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16. If N is a normal subgroup in the finite group such that iz(N) and

17.

18.

19.

20.

#21.

2.7

o(N) are relatively prime, show that any element x € G satisfying
"™ — ¢ must be in N.
Let G be defined as all formal symbols x'y/,i = 0, i,j = 0, 1, 2,...,
n — 1 where we assume
Yy = x"y) ifand only if i = ¢, =
=y =¢ n>2
=yl
(a) Find the form of the product (x'y/)(x*)") as 5.
(b) Using this, prove that G is a non-abelian group of order 2n.
(c) If n is odd, prove that the center of G is (e), while if n is even
the center of G is larger than (e).
This group is known as a dikedral group. A geometric realization of
this is obtained as follows: let y be a rotation of the Euclidean plane
about the origin through an angle of 27/n, and x the reflection about
the vertical axis. G is the group of motions of the plane generated by
yand x.
Let G be a group in which, for some integer n > 1, (ab)" = a"b"
for all a, b € G. Show that
(a) G™ = {¥"| x € G} is a normal subgroup of G.
(b) G Y = {#* !|x e G} is a normal subgroup of G.
Let G be as in Problem 18. Show
(@) @ " = b"a" "' foralla, beG.
(b) (aba=*b~*)™* 1 = ¢foralla, beG.
Let G be a group such that (ab)? = aPb® for all a, b € G, where p is
a prime number. Let § = {x € G|x”" = ¢ for some m depending
on x}. Prove s
(a) Sisa normal subgroup of G.
(b) If G = GJS and if % € Gis such that 7 = & then ¥ = &.

Icthcdxcsctofallrcal2x2matriocs(3 j) where ad # 0,

under matrix multiplication. Let N = { ((l) lb) } Prove that
(a) N is a normal subgroup of G.
(b) G/N is abelian.

Homomorphisms

The ideas and results in this section are closely interwoven with those of the
preceding one. If there is one central idea which is common to all aspects
of modern algebra it is the notion of homomorphism. By this one means
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a mapping from one algebraic system to a like algebraic system which
preserves structure. We make this precise, for groups, in the next definition.

DEFINITION A mapping ¢ from a group G into a group G is said to be a
homomorphism if for all a, b € G, ¢(ab) = ¢(a)P(b).

Notice that on the left side of this relation, namely, in the term ¢(ob),
the product ab is computed in G using the product of elements of G, whereas
on the right side of this relation, namely, in the term ¢(a)¢(b), the product
is that of elements in G.

Example 2.7.0 ¢(x) = e all xeG. This is trivially a homomorphism.
Likewise ¢p(x) = x for every x € G is a homomorphism.

Example 2.7.1 Let G be the group of all real numbers under addition
(i.e., ab for a, b € G is really the real number a + b) and let G be the group
of nonzero real numbers with the product being ordinary multiplication of
real numbers. Define ¢:G - G by ¢(a) = 2°. In order to verify that
this mapping is a homomorphism we must check to see whether ¢(ab) =
¢(a)@(b), remembering that by the product on the left side we mean the
operation in G (namely, addition), that is, we must check if 2°** = 22°,
which indeed is true. Since 2° is always positive, the image of ¢ is not all
of G, so ¢ is a homomorphism of G into G, but not onto G.

Example 2-7'2 LCt G = S3 = {e: ¢’ 'P, Wz: ¢¢s ¢¢2} and G - {” ¢}’
Define the mapping f:G — G by f($4/) = ¢'. Thus £ (e) = ¢, f () =
& fW) =, f(U?) =& f (@) = ¢, f($¥?) = ¢. The reader should
verify that f so defined is a homomorphism.

Example 2.7.3 Let G be the group of integers under addition and let
G = G. For the integer x € G define ¢ by ¢(x) = 2x. That ¢ is a homo-
morphism then follows from ¢(x + y) = 2(x + ) = 2x + 2y = ¢(x) + ¢(»).

Example 2.7.4 Let G be the group of nonzero real numbers under
multiplication, G = {l, —1}, where 1.1 = I, (=1)(=1) =1, 1(-1) =
(=11 = —1. Define ¢:G — G by ¢(x) = 1 if x is positive, ¢(x) = —1if
x is negative. The fact that ¢ is a homomorphism is equivalent to the
statements: positive times positive is positive, positive times negative is
negative, negative times negative is positive.

Example 2.7.5 Let G be the group of integers under addition, let G, be
the group of integers under addition modulo n. Define ¢ by ¢(x) =
remainder of x on division by n. One can easily verify this is a homo-
morphism.
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Example 2.7.6 Let G be the group of positive real numbers under
multiplication and let G be the group of all real numbers under addition.
Define ¢:G — G by ¢(x) = log,ox. Thus

$(9) = logio(w) = logio(x) + logio(y) = ¢(*)¢()

since the operation, on the right side, in G is in fact addition. Thus ¢ is a
homomorphism of G into G. In fact, not only is ¢ a homomorphism but,
in addition, it is one-to-one and onto.

#Example 2.7.7 Let G be the group of all real 2 x 2 matrices (‘: 3)

such that ad — b¢ # 0, under matrix multiplication. Let G be the group
of all nonzero real numbers under multiplication. Define ¢:G — G by

gb(“ ‘b]) = ad — be.

¢
We leave it to the reader to check that ¢ is a homomorphism of G onto G.

The result of the following lemma yields, for us, an infinite class of
examples of homomorphisms. When we prove Theorem 2.7.1 it will turn
out that in some sense this provides us with the most general example of a
homomorphism.

LEMMA 2.71 Suppose G is a group, N a normal subgroup of G; define the
mapping @ from G to GIN by ¢(x) = Nx for all xe€ G. Then ¢ is a homo-
morphism of G onto GfN.

Proof. In actuality, there is nothing to prove, for we already have
proved this fact several times. But for the sake of emphasis we repeat it,

That ¢ is onto is trivial, for every element X € G/N is of the form
X =Ny, yeG, so X = ¢(y). To verify the multiplicative property
required in order that ¢ be a homomorphism, one just notes that if
x, y € G,

() = Ny = NxNy = ¢p(x)¢())-

In Lemma 2.7.1 and in the examples preceding it, a fact which comes
through is that a homomorphism need not be one-to-one; but there is a
certain uniformity in this process of deviating from one-to-oneness. This
will become apparent in a few lines.

DEFINITION If ¢ is a homomorphism of G into G, the kernel of ¢, K,, is
defined by K, = {x € G| ¢(x) = ¢, ¢ = identity element of G}.

Before investigating any properties of Ky it is advisable to establish that,
as a set, K, is not empty. This is furnished us by the first part of
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LEMMA 2.7.2 If ¢ is a homomorphism of G into G, then

1. @(e) = &, the unit element of G.
2. ¢(x" 1) = ¢(x) 'forallxeG.

Proof. To prove (1) we merely calculate @¢(x)é = ¢(x) = ¢P(xe) =
¢(x)¢(e), so by the cancellation property in G we have that ¢(e) = é.

To establish (2) one notes that ¢ = ¢(e) = ¢(xx~!) = @(x)@p(x~ "), so
by thclvcry definition of ¢(x) ™! in G we obtain the result that ¢(x~ ') =
o) .

The argument used in the proof of Lemma 2.7.2 should remind any
reader who has been exposed to a development of logarithms of the argument
used in proving the familiar results thatlog 1 = Oandlog (1/x) = —logx;
this is no coincidence, for the mapping ¢:x — log x is a homomorphism of
the group of positive real numbers under multiplication into the group of
real numbers under addition, as we have seen in Example 2.7.6.

Lemma 2.7.2 shows that ¢ is in the kernel of any homomorphism, so any
such kernel is not empty. But we can say even more.

LEMMA 2.7.3 If ¢ is a homomorphism of G into G with kernel K, then K is a
normal subgroup of G.

Proof. First we must check whether K is a subgroup of G. To see this
one must show that K is closed under multiplication and has inverses in it
for every element belonging to K.

If x, y € K, then ¢(x) = ¢, ¢(y) = ¢, where é is the identity element of
G, and so ¢(xy) = ¢(x)p(») = é¢ = ¢, whence xy e K. Albso, if xe K,
¢(x) =¢, so, by Lemma 272, ¢(x~ ) = ¢(x)"! =é"! =¢; thus
x~' e K. K is, accordingly, a subgroup of G.

To prove the normality of K one must establish that for any g € G,
ke K, gkg™! € K; in other words, one must prove that ¢(gkg™!) = ¢
whenever ¢(k) = & But ¢(gkg™') = ¢(8)d(k)Pp(g™ h = ¢(g)éd(e)™' =
¢(g)p(g) * = & This completes the proof of Lemma 2.7.3.

Let ¢ now be a homomorphism of the group G onto the group G, and
suppose that K is the kernel of ¢. If g € G, we say an element x € G is an
inverse image of g under ¢ if ¢(x) = g. What are all the inverse images of
£? For § = ¢ we have the answer, namely (by its very definition) K.
Whatabout elements § # ¢? Well, suppose x € G is one inverse image of g;
can we write down others? Clearly yes, for if k € K, and if y = kx, then
d(») = ¢(kx) = ¢(k)p(x) = é2 = §. Thus all the elements Kx are in
the inverse image of # whenever x is. Can there be others? Let us suppose
that ¢(z) = § = ¢(x). Ignoring the middle term we are left with
¢(z) = ¢(x), and so P(2)P(x)~! =& But ¢(x)~! = ¢(x !), whence
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é= @(2)p(x)" ' = p(z)p(x ') = ¢p(zx '), in consequence of which
zx '€ K; thus z € Kx. In other words, we have shown that Kx accounts
for exactly all the inverse images of § whenever x is a single such inverse
image. We record this as

LEMMA 2.7.4 If ¢ is a homomorphism of G onto G with kernel K, then the set
of all inverse images of € G under ¢ in G is given by Kx, where x is any particular
inverse image of 3 in G.

A special case immediately presents itself, namely, the situation when
K = (¢). But here, by Lemma 2.7.4, any g € G has exactly one inverse
image. That is, ¢ is a one-to-one mapping. The converse is trivially true,
namely, if ¢ is a one-to-one homomorphism of G into (not even onto) G, its
kernel must consist exactly of e.

DEFINITION A homomorphism ¢ from G into G is said to be an isomor-
phism if ¢ is one-to-one.

DEFINITION Two groups G, G* are said to be isomorphic if there is an
isomorphism of G onto G*. In this case we write G & G*.

We leave to the reader to verify the following three facts:

1. G = G.
2. G =~ G* implies G* ~ G.
3. G ~ G*, G* = G** implies G ~ G**.

When two groups are isomorphic, then, in some sense, they are equal.
They differ in that their elements are labeled differently. The isomorphism
gives us the key to the labeling, and with it, knowing a given computation
in one group, we can carry out the analogous computation in the other.
The isomorphism is like a dictionary which enables one to translate a
sentence in one language into a sentence, of the same meaning, in another
language. (Unfortunately no such perfect dictionary exists, for in Janguages
words do not have single meanings, and nuances do not come through in a
literal translation.) But merely to say that a given sentence in one language
can be expressed in another is of little consequence; one needs the dictionary
to carry out the translation. Similarly it might be of little consequence to
know that two groups are isomorphic; the object of interest might very well
be the isomorphism itself. So, whenever we prove two groups to be iso-
morphic, we shall endeavor to exhibit the precise mapping which yields
this isomorphism.

Returning to Lemma 2.7.4 for a moment, we see in it a means of character-
izing in terms of the kernel when a homomorphism is actually an isomor-
phism.
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COROLLARY 4 homomorphism ¢ of G into G with kernel K is an isomorphism
of G into G if and only if K, = (e).

This corollary provides us with a standard technique for proving two
groups to be isomorphic. First we find a homomorphism of one onto the
other, and then prove the kernel of this homomorphism consists only of
the identity element. This method will be illustrated for us in the proof
of the very important

THEOREM 2.7.1 Let ¢ be a homomorphism of G onto G with kernel K. Then
GIK = G.

Proof. Consider the diagram

¢

G—"—sC
|

G

K

where o(g) = Kg.
We should like to complete this to

It seems clear that, in order to construct the mapping ¢ from G/K to G,
we should use G as an intermediary, and also that this construction should
be relatively uncomplicated. What is more natural than to complete the
diagram using

g—>¢(g)
o
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With this preamble we formally define the mapping ¥ from G/K to G by:
if Xe G/K, X = Kg, then ¢(X) = ¢(g). A problem immediately arises:
is this mapping well defined? If X € G/K, it can be written as Kg in several
ways (for instance, Kg = Kkg, ke K); but if X = Kg = Kg', g, ¢ € G,
then on one hand ¢ (X) = ¢(g), and on the other, Yy(X) = ¢(g’). For
the mapping ¥ to make sense it had better be true that ¢(g) = ¢(g’).
So, suppose Kg = Kg’; then g = kg’, where k € K, hence ¢(g) = ¢(kg’) =
oK) d(g) = ep(g’) = P(g’) since k € K, the kernel of ¢.

We next determine that ¢ is onto. For, if fe G, ¥ = ¢(g), g € G (since
¢ is onto) so ¥ = ¢(g) = Y(Kg).

If X,YeG/K, X = Kg, Y = Kf, g,f€G, then XY = KgKf = Kgf,
so that (XY) = ¢ (Kgf) = ¢(gf) = ¢(g)¢(f) since ¢ isa homomorphism
of G onto G. But y(X) = y(Kg) = ¢(g), ¥(¥) = Y(Kf) = ¢(f), so we
see that Y(XY) = ¢(X)y(Y), and ¢ is a homomorphism of G/K onto G.

To prove that { is an isomorphism of G/K onto G all that remains is to
demonstrate that the kernel of ¢ is the unit element of G/K. Since the unit
element of G/K is K = Ke, we must show that if y(Kg) = ¢, then Kg =
Ke = K. This is now easy, for é = y(Kg) = ¢(g), so that ¢(g) = ¢
whence g is in the kernel of ¢, namely K. But then Kg = K since K s a
subgroup of G. All the pieces have been put together. We have exhibited
a one-to-one homomorphism of G/K onto G. Thus G/K ~ G, and Theorem
2.7.1 is established.

Theorem 2.7.1 is important, for it tells us precisely what groups can be
expected to arise as homomorphic images of a given group. These must be
expressible in the form G/K, where K is normal in G. But, by Lemma 2.7.1,
for any normal subgroup N of G, G/N is a homomorphic image of G. Thus
there is a one-to-one correspondence between homomorphic images of G
and normal subgroups of G. If one were to seek all homomorphic images of
G one could do it by never leaving G as follows: find all normal subgroups
N of G and construct all groups G/N. The set of groups so constructed
yields all homomorphic images of G (up to isomorphisms).

A group is said to be simple if it has no nontrivial homomorphic images,
that is, if it has no nontrivial normal subgroups. A famous, long-standing
conjecture was that a non-abelian simple group of finite order has an even
number of elements. This important result has been proved by the two
American mathematicians, Walter Feit and John Thompson.

We have stated that the concept of a homomorphism is a very important
one. To strengthen this statement we shall now show how the methods and
results of this section can be used to prove nontrivial facts about groups.
When we construct the group G/ N, where N is normal in G, if we should
happen to know the structure of G/N we would know that of G “up to N.”
True, we blot out a certain amount of information about G, but often
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enough is left so that from facts about G/N we can ascertain certain ones
about G. When we photograph a certain scene we transfer a three-
dimensional object to a two-dimensional representation of it. Yet, looking
at the picture we can derive a great deal of information about the scene
photographed.

In the two applications of the ideas developed so far, which are given
below, the proadfs given are not the best possible. In fact, a little later in
this chapter these results will be proved in a more general situation in an
easier manner. We use the presentation here because it does illustrate
effectively many group-theoretic concepts.

APPLICATION 1 (Caucuy’s THEOREM FOR ABELIAN GRrRoUPS) Suppose G
is a finite abelian group and p | o(G), where p is a prime number. Then there is an
element a # e € G such that a® = e.

Proof. We proceed by induction over o(G). In other words, we assume
that the theorem is true for all abelian groups having fewer elements than
G. From this we wish to prove that the result holds for G. To start the
induction we note that the theorem is vacuously true for groups having a
single element.

If G has no subgroups H # (e), G, by the result of a problem earlier in
the chapter, G must be cyclic of prime order. This prime must be p, and
G certainly has p — 1 elements a # e satisfying a? = a”@ = ¢.

So suppose G has a subgroup N # (e), G. If p|o(N), by our induction
hypothesis, since o(N) < o(G) and N is abelian, there is an element b € N,
b # ¢ satisfying b” = ¢; since b€ N ¢ G we would have exhibited an
element of the type required. So we may assume that p } o(N). Since G
is abelian, N is a normal subgroup of G, so G/N is a group. Moreover,
o(GIN) = o(G)/o(N), and since p } o(N),

b 2(0) < o(G).
o(N)

Also, since G is abelian, G/N is abelian. Thus by our induction hypothesis
there is an element X € G/N satisfying X? = ¢,, the unit element of G/N,
X # e,. By the very form of the elements of G/N, X = Nb, b € G, so that
XP = (Nb)? = NbP. Since ¢, = Ne, XP =e¢,, X # ¢, translates into
Nb?P = N, Nb # N. Thus b’ € N, b ¢ N. Using one of the corollaries to
Lagrange’s theorem, (6°)°™ = ¢. That is, 6°"? = ¢ Let ¢ = p°™.
Certainly ¢® = ¢. In order to show that ¢ is an element that satisfies the
conclusion of the theorem we must finally show that ¢ # e. However, if
¢ =e¢ '™ = ¢, and so (Nb)°™ = N. Combining this with (Nb)? = N,
p Y o(N), p a prime number, we find that Nb = N, and so b € N, a contra-
diction. Thus ¢ # ¢, ¢ = ¢, and we have completed the induction. This
proves the result.
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APPLICATION 2 (Syrow’s THEOREM FOR ABELIAN GRrRours) If G is an
abelian group of order o(G), and if p is a prime number, such that p* | o(G), p*** ¥
o(G), then G has a subgroup of order p°.

Proof. If a = 0, the subgroup (e) satisfies the conclusion of the result.
So suppose a # 0. Then p | o(G). By Application 1, there is an element
a # e € G satisfying a? =e¢. Let § = {xe G|x” = ¢ some integer n}.
Since a € S, a # e, it follows that § # (¢). We now assert that § is a sub-
group of G. Since G is finite we must only verify that § is closed. If
x,y€S, 2" =¢, Y =¢, so that (m)"'" = x”"*"Y?"*" = ¢ (we have
used that G is abelian), proving that xy € S.

We next claim that o(§) = p? with f an integer0 < f < a. For, if some
prime ¢ | o(S), ¢ # p, by the result of Application 1 there is an element
c€S, ¢ # e, satisfying ¢ = e. However, ¢*" = ¢ for some n since c€ S.
Since p", g are relatively prime, we can find integers 4, u such that ig +
uf =1, so that ¢ = ¢! = A" = (#)*(P")* = ¢, contradicting ¢ # e.
By Lagrange’s theorem o(S) | o(G), so that 8 < a. Suppose that § < «a;
consider the abelian group G[S. Since B < « and o(G[S) = o(G)[o(S),
p|0(G|S), there is an element Sx, (xe G) in G/S satisfying Sx # S,
(Sx)”" = § for some integer n > 0. But § = (Sx)” = Sx*", and so »” € §;
consequently e = (x”)°® = (x”)?" = x”*®, Therefore, x satisfies the
exact requirements needed to put it in §; in other words, x € S. Con-
sequently Sx = § contradicting Sx # §. Thus f < a is impossible and we
are left with the only alternative, namely, that § = o § is the required
subgroup of order p*.

We strengthen the application slightly. Suppose T is another subgroup
of G of order p% T # S. Since G is abelian ST = T, so that ST is a sub-
group of G. By Theorem 2.5.1

o(S)(T) _ _##
ofSNT) oSnT)

and since § # T, o(S n T) < p? leaving us with o(ST) = p", y > a.
Since ST is a subgroup of G, o(ST) | o(G); thus p? | o(G) violating the fact
that « is the largest power of p which divides 0(G). Thus no such subgroup
T exists, and S is the unique subgroup of order p*. We have proved the

o(ST) =

COROLLARY If G is abelian of order o(G) and p* | o(G), #** ¥ o(G), there
is a unique subgroup of G of order p*.

If we look at G = §,, which is non-abelian, o(G) = 2.3, we see that G
has 3 distinct subgroups of order 2, namely, {¢, ¢}, {¢, p¥}, {e, P¥?}, so
that the corollary asserting the uniqueness does not carry over to non-
abelian groups. But Sylow’s theorem holds for all finite groups.
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We leave the application and return to the general development. Suppcse
¢ is a2 homomorphism of G onto G with kernel K, and suppose that A is a
subgroup of G. Let H = {x € G| ¢(x) € A). We assert that H is a sub-
group of G and that H > K. That H > K is trivial, for if xe K, ¢(x) = ¢
isin A, so that K = H follows. Suppose now that x,y € H; hence ¢(x) € A,
¢(») € A from which we deduce that ¢(x) = ¢(x)¢(») € A. There-
fore, xy €e H and H is closed under the product in G. Furthermore, if
xe€H, ¢(x) e Hand so ¢(x ') = ¢(x) ! € A from which it follows that
x ! e H. All in all, our assertion has been established. What can we say
in addition in case A is normal in G? Let g€ G, h € H; then ¢(h) € A,
whence ¢(ghg ') = ¢(g)¢(h)p(g) ! € A, since A is normal in G. Other-
wise stated, ghg ! € H, from which it follows that H is normal in G. One
other point should be noted, namely, that the homomorphism ¢ from G
onto G, when just considered on elements of H, induces a homomorphism
of H onto A, with kernel exactly K, since K ¢ H; by Theorem 2.7.1 we
have that A ~ H|K.

Suppose, conversely, that L is a subgroup of G and K < L. Let L =
{£€G| % = ¢(I), e L}. The reader should verify that L is a subgroup
of G. Can we explicitly describe the subgroup T = {y € G| ¢(») € L}?
Clearly L < T. Is there any element ¢ € T which is not in L? So, suppose
t e T; thus ¢(t) € L, so by the very definition of L, ¢(t) = ¢(!) for some
leL Thus ¢(ti™') = ¢(t)p(l)~! = ¢, whence tI"' € K < L, thus ¢ is
in LI = L. Equivalently we have proved that T < L, which, combined
with L = T,yields that L = T.

Thus we have set up a one-to-one correspondence between the set of
all subgroups of G and the set of all subgroups of G which contain K. More-
over, in this correspondence, a normal subgroup of G corresponds to a
normal subgroup of G.

We summarize these few paragraphs in

LEMMA 2.7.5 Let ¢ be a homomorphism of G onto G with kernel K. For A a
subgroup of G let H be defined by H = {x € G| ¢(x) € A). Then H is a sub-
group of G and H > K ; if A is normal in G, then H is normal in G. Moreover,
this association sets up a one-to-one mapping from the set of all subgroups of G onto
the set of all subgroups of G which contain K.

We wish to prove one more general theorem about the relation of two
groups which are homomorphic.

THEOREM 2.7.2. Let ¢ be a homomorphism of G onto G with kernel K, and let
N be a normal subgroup of G, N = {x € G| ¢(x) € N}. Then G|N =~ G|N.
Equivalently, GIN = (G|K)|(N/K).
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Proof. As we already know, there is a homomorphism 6 of G onto
G|N defined by 6(§) = Ni. We define the mapping y:G — G/N by
Y(g) = Ng(g) for all geG. To begin with, ¥ is onto, for if ge G,
2 = ¢(g) for some g € G, since ¢ is onto, so the typical element N in
G/|N can be represented as N¢(g) = ¢(g).

If a, b € G, Y(ab) = N¢(ab) by the definition of the mapping iy. How-
ever, since ¢ is a homomorphism, ¢(ab) = ¢(a)¢(b). Thus Y(ab) =
No(a)p(b) = Np(a)N@(b) = Y(a)y(b). So far we have shown that ¢ is
a homomorphism of G onto G/N. What is the kernel, T, of y? Firstly, if
ne N, ¢(n) e N, so that Y(n) = Np(n) = N, the identity element of
G|N, proving that N c T. On the other hand, if t € T, y(¢) = identity
element of G/N = N; but y(t) = N¢(t). Comparing these two evaluations
of Y(t), we arrive at N = N¢(t), which forces ¢(¢) € N; but this places
tin N by definition of N. Thatis, T = N. The kernel of { has been proved
to be equal to N. But then ¢ is a homomorphism of G onto G/N with
kernel N. By Theorem 2.7.1 G/N = G|N, which is the first part of the
theorem. The last statement in the theorem is immediate from the
observation (following as a consequence of Theorem 2.7.1) that G ~ G/K,
N = NIK, GIN = (GIK)/(N|K).

Problems

1. In the following, verify if the mappings defined are homomorphisms,
and in those cases in which they are homomorphisms, determine the
kernel.

(a) G is the group of nonzero real numbers under multiplication,
G =G, ¢(x) =x*aixeG.

(b) G, Gasin (a), ¢(x) = 2~.

(c) G is the group of real numbers under addition, G = G, ¢(x) =
x+ lallxeG.

(d) G, Gasin (c), ¢(x) = 13xforxeG.

(¢) G is any abelian group, G = G, ¢(x) = »* all x € G.

2. Let G be any group, g a fixed element in G. Define ¢:G — G by
¢(x) = gxg~'. Prove that ¢ is an isomorphism of G onto G.

3. Let G be a finite abelian group of order o G) and suppose the integer
n is relatively prime to o(G). Prove that every g € G can be written
as g = ¥ with xe G. (Hint: Consider the mapping ¢:G —» G
defined by ¢(») = ", and prove this mapping is an isomorphism
of G onto G.)

4. (a) Given any group G and a subset U, let U be the smallest sub-

group of G which contains U. Prove there is such a subgroup 0
in G. (U is called the subgroup generated by U.)
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(b) If gug™' e U for all g€ G, ue U, prove that U is a normal
subgroup of G.

. Let U = {xpx~ %~ ' | x,» € G}. In this case U is usually written as

G’ and is called the commutator subgroup of G.

(a) Prove that G’ is normal in G.

(b) Prove that G/G’ is abelian.

(c) If G/N is abelian, prove that N o G'.

(d) Prove that if His a subgroup of Gand H o G’, then H is normal
in G.

6. If N, M are normal subgroups of G, prove that NM/M ~ N/N n M.

13.

14.
15.

#16.

Let V be the set of real numbers, and for a, b real, a # 0 let
Ta:V - V defined by r1,(x) = ax + b. Let G = {z, | a, b real,
a # 0} and let N = {t,, € G}. Prove that N is a normal subgroup
of G and that G/N = group of nonzero real numbers under multi-
plication.

. Let G be the dihedral group defined as the set of all formal symbols

#p, i=01,j=0,1,...,n — 1, where x*

37 'x. Prove
(a) The subgroup N = {e, », »%,..., " !} is normal in G.
(b) That G/N ~ W, where W = {1, —1} is the group under

the multiplication of the real numbers.

=e¢ Yy =¢ xy =

. Prove that the center of a group is always a normal subgroup.
10.
11.
12.

Prove that a group of order 9 is abelian.

If G is a non-abelian group of order 6, prove that G =~ S;.

If G is abelian and if N is any subgroup of G, prove that G/N is
abelian.

Let G be the dihedral group defined in Problem 8. Find the center
of G.

Let G be as in Problem 13. Find G’, the commutator subgroup of G.

Let G be the group of nonzero complex numbers under multiplication
and let N be the set of complex numbers of absolute value 1 (that is,
a + bie Nif a® + 6% = 1). Show that G/N is isomorphic to the
group of all positive real numbers under multiplication.

Let G be the group of all nonzero complex numbers under multi-
plication and let G be the group of allreal 2 x 2 matrices of the form

—b a
Show that G and G are isomorphic by exhibiting an isomorphism of
G onto G.

a b . T
( , where not both a and b are 0, under matrix multiplication.
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*17. Let G be the group of real numbers under addition and let N be the
subgroup of G consisting of all the integers. Prove that G[N is
isomorphic to the group of all complex numbers of absolute value 1
under multiplication.

#18. Let Gbe thegroupofallreal2 x 2 matrices (a

3

Z), with ad — bc # 0,

under matrix multiplication, and let

N={<" b)erad—bc: 1}.
¢ d

Prove that N = G’, the commutator subgroup of G.
*#19, In Problem 18 show, in fact, that N = G'.

#20. Let G be the group of all real 2 x 2 matrices of the form <3 Z),
where ad # 0, under matrix multiplication. Show that G’ is precisely

the set of all matrices of the form <(1) T)

21. Let §; and S, be two sets. Suppose that there exists a one-to-one
mapping { of S; into §,. Show that there exists an isomorphism of
A(S,) into A(S,), where A(S) means the set of all one-to-one mappings
of § onto itself.

28 Automorphisms

In the preceding section the concept of an isomorphism of one group into
another was defined and examined. The special case in which the isomor-
phism maps a given group into itself should obviously be of some importance.
We use the word ““into” advisedly, for groups G do exist which have iso-
morphisms mapping G into, and not onto, itself. The easiest such example
is the following: Let G be the group of integers under addition and define
¢:G - G by ¢:x » 2x for every x € G. Since ¢ix +y — 2{x + y) =
2x + 2y, ¢ is a homomorphism. Also if the image of x and y under ¢ are
equal, then 2x = 2y whence x = ». ¢ is thus an isomorphism. Yet ¢ is
not onto, for the image of any integer under ¢ is an even integer, so, for
instance, 1 does not appear an image under ¢ of any element of G. Of
greatest interest to us will be the isomorphisms of a group onte itself.

DEFINITION By an automorphism of a group G we shall mean an isomorphism
of G onto itself.

As we mentioned in Chapter 1, whenever we talk about mappings of a set
into itself we shall write the mappings on the right side, thus if 7:§ — S,
x € S, then T is the image of x under T.
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Let I be the mapping of G which sends every element onto itself, that is,
xI = x for all x € G. Trivially I is an automorphism of G. Let &/ (G) denote
the set of all automorphisms of G; being a subset of 4(G), the set of one-
to-one mappings of G onto itself, for elements of &/(G) we can use the product
of A(G), namely, composition of mappings. This product then satisfies the
associative law in 4(G), and so, a fortiori, in &/ (G). Also I, the unit element
of 4(G), is in &(G), so &(G) is not empty.

An obvious fact that we should try to establish is that &/ (G) is a subgroup
of A(G), and so, in its own rights, &/(G) should be a group. If T;, T, are
in &/(G) we already know that T;T, € A(G). We want it to be in the
smaller set &/ (G). We proceed to verify this. For all x, y € G,

()T, = (=Ty)(»T),
()T, = (xTz)()’Tz) ’
therefore

)T, T, = ()T T, = (("Tl)(}'Tx)) T,
= (T T)OT)T) = Ty T5)(yT, T))-

That is, T, T, € &/(G). There is only one other fact that needs verifying
in order that &/(G) be a subgroup of 4(G), namely, that if T € &(G), then
T 'es(G). If x,5 € G, then

(GT-H)OT YT = (T~ HT)OT)T) = (1) (y]) = »,
thus
T~"(OT™') = ()T},

placing 7! in &/(G). Summarizing these remarks, we have proved

LEMMA 281 If G is a group, then o4 (G), the set of automorphisms of G, is
also a group.

Of course, as yet, we have no way of knowing that &/(G), in general, has
elements other than I. If Gis a group having only two elements, the reader
should convince himself that &/(G) consists only of I. For groups G with
more than two elements, &/(G) always has more than one element.

What we should like is a richer sample of automorphisms than the ones
we have (namely, I). If the group G is abelian and there is some element
%o € G satisfying xo # %~ !, we can write down an explicit automorphism,
the mapping T defined by x7T" = x~! for all xe G. For any group G, T'is
onto; for any abelian G, ()T = (») "' =y 2" ' =x Y™ ' = (xT)(» 7).
Also x,T = x,”! # x,50 T # I

However, the class of abelian groups is a little limited, and we should
like to have some automorphisms of non-abelian groups. Strangely enough
the task of finding automorphisms for such groups is easier than for abelian

groups.
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Let G be a group; for g € G define T,:G - G by xT, = g~ 'xg for all
x € G. We claim that T, is an automorphism of G. First, T, is onto, for
given ye G, let x = gyg'. Then xT, =g '(x)g =g (222 ")g = » so
T, is onto. Now consider,for x,y€G, (x) T, = ¢ '(w)g =g '(xa¢ »)g=
(g 'xg)(g 'yg) = (xT,)(»T,). Consequently T, is a homomorphism of G
onto itself. We further assert that 7, is one-to-one, for if xT,, = T, then
g 'xg = g lyg, so by the cancellation laws in G, x = y. T, is called the
inner automorphism corresponding to g. If G is non-abelian, there is a pair
a, b € G such that ab # ba; but then 6T, = a ba # b, so that T, # L
Thus for a non-abelian group G there always exist nontrivial automorphisms.

Let #(G) = {T, € #(G) | g € G}. The computation of T, for g, h € G,
might be of some interest. So, suppose x € G; by definition,

xTo = (gh) 'x(gh) = h ‘g 'xgh = (¢ 'xe)T, = (xT)T, = xT,T,

Looking at the start and finish of this chain of equalities we find that
T, = T,T,. This little remark is both interesting and suggestive. It is of
interest because it immediately yields that .#(G) is a subgroup of &/(G).
(Verify!) #(G) is usually called the group of inner automorphisms of G. It is
suggestive, for if we consider the mapping V:G — &(G) defined by
V(g) = T,for every g € G, then Y(gh) = T,, = T,T, = Y(g)y(h). That
is, ¥ is a homomorphism of G into & (G) whose image is #(G). What is
the kernel of ? Suppose we call it K, and suppose g, € K. Then y(g,) = 1,
or, equivalently, 7, = Z But this says that for any xe G, xT,, = x;
however, xT,, = g,” 'xg,, and so x = g, 'xg, for all xe G. Thus gy =
8080 %8, = xg; & must commute with all elements of G. But the center
of G, Z, was defined to be precisely all elements in G which commute with
every element of G. (See Problem 15, Section 2.5.) Thus X = Z. However,
if zeZ, then xT, = z 'xz = z !(zx) (since zx = xz) = x, whence
T, = I and so ze K. Therefore, Z ¢ K. Having proved both K = Z
and Z < K we have that Z = K. Summarizing,  is a homomorphism of
G into &/(G) with image #(G) and kernel Z. By Theorem 2.7.1
F#(G) = G/Z. In order to emphasize this general result we record it as

LEMMA 282 S4(G) =~ G|Z, where #(G) is the group of inner automorphisms
of G, and Z is the center of G.

Suppose that ¢ is an automorphisms of a group G, and suppose that
a € G has order n (that is, a" = e but jfor no lower positive power). Then
d(a)" =h(a") = P(e) = ¢, hence ¢(a)" =e If P(@™ = ¢ for some
0 < m < n, then ¢(a™) = ¢(a)™ = e, which implies, since ¢ is one-to-one,
that a™ = e, a contradiction. Thus

LEMMA 28.3 Let G be a group and ¢ an automorphism of G. If ae G is
of order o(a) > 0, then o(¢(a)) = o(a).
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Automorphisms of groups can be used as a means of constructing new
groups from the original group. Before explaining this abstractly, we con-
sider a particular example.

Let G be a cyclic group of order 7, that is, G consists of all ', where we
assume @' = e. The mapping ¢:a’ — a?!, as can be checked trivially, is
an automorphism of G of order 3, thatis, > = I. Let x be a symbol which
we formally subject to the following conditions: x> = ¢, x lalx = ¢(a') =
a?, and consider all formal symbols xa/, where i = 0, 1,2 and
j=0,1,2,...,6. We declare that x'a’ = x*4' if and only if i = k¥ mod 3
and j = [ mod 7. We multiply these symbols using the rules 3 = a7 = ¢,
x lax = a?. For instance, (xa)(xa?) = x(ax)a? = x(xa*)a* = x%a*. The
reader can verify that one obtains, in this way, a non-abelian group of
order 2].

Generally, if G is a group, T an automorphism of order r of G which is
not an inner automorphism, pick a symbol x and consider all elements
x'g, 1 =0, +1, £2,..., g€ G subject to x'g = x"g’ if and only if i =
i/ modrz, g = g and x 'g'x = gT" for all i. This way we obtain a larger
group {G, T}; Gis normal in {G, T} and {G, T}/G = group generated by
T = cyclic group of order r.

We close the section by determining &/(G) for all cyclic groups.

Example 2.8.1 Let G be a finite cyclic group of order , G = (a), a" = e.
Suppose T is an automorphism of G. If aT is known, since a'T = (aT)},
a'T is determined, so g7 is determined for all g € G = (a). Thus we need
consider only possible images of a under T. Since aT € G, and since every
element in G is a power of a, aT = d' for some integer 0 < ¢ < r. However,
since T is an automorphism, a7 must have the same order as a (Lemma
2.8.3), and this condition, we claim, forces ¢ to be relatively prime to . For
ifd|t, d|r, then (aT)"® = o) = ¥ = (g")/? = ¢; thusaT has order
a divisor of r/d, which, combined with the fact that a7 has order r, leads
us to d = 1. Conversely, for any 0 < s < r and relatively prime to 7, the
mapping S:a' —» a* is an automorphism of G. Thus &/(G) is in one-to-one
correspondence with the group U, of integers less than r and relatively
prime to 7 under multiplication modulo r. We claim not only is there such
a one-to-one correspondence, but there is one which furthermore is an
isomorphism. Let us label the elements of &/ (G) as T; where T;:a — ',
0 < i <r and relatively prime to r; T;T;:a —» a' - (@) = a¥, thus
T.T; = T;;. The mapping i — T; exhibits the isomorphism of U, onto
& (G). Here then, &/(G) =~ U,.

Example 2.8.2 G is an infinite cyclic group. That is, G consists of all a/,
i=0,+1, +2,..., where we assume that a’ = ¢ if and only if i = 0.
Suppose that T is an automorphism of G. As in Example 2.8.1, aT = d".
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The question now becomes, What values of ¢ are possible? Since T is an
automorphism of G, it maps G onto itself, so that a = gT for some g € G.
Thus @ = a'T = (aT)* for some integer i. Since a7 = a', we must have
that a = &', sothata'*~! = ¢. Henceti — 1 = 0; thatis, & = 1. Clearly,
since ¢ and i are integers, this must force ¢ = +1, and each of these gives
rise to an automorphism, ¢ = 1 yielding the identity automorphism /1,
t = —1 giving rise to the automorphism T:g — g~! for every g in the
cyclic group G. Thus here, &/(G) = cyclic group of order 2.

Problems

1.

Are the following mappings automorphisms of their respective groups?
(a) G group of integers under addition, T:x — —x.

(b) G group of positive reals under multiplication, 7T:x — x2.
(c) G cyclic group of order 12, T:x — x3.

(d) Gisthe group S;, T:x —» x L.

Let G be a group, H a subgroup of G, T an automorphism of G.
Let (H)T = {hT | h e H}. Prove (H) T is a subgroup of G.

. Let G be a group, T an automorphism of G, N a normal subgroup of

G. Prove that (N)T is a normal subgroup of G.

. For G = §; prove that G = #(G).
. For any group G prove that #(G) is a normal subgroup of &/ (G) (the

group & (G)/F(G) is called the group of outer automorphisms of G).

. Let G be a group oforder 4, G = {e, a, b, ab}, a®> = b2 = ¢,ab = ba.

Determine & (G).

. (a) A subgroup C of G is said to be a characteristic subgroup of G if

(C)T < C for all automorphisms 7" of G. Prove a characteristic
subgroup of G must be a normal subgroup of G.
(b) Prove that the converse of (a) is false.

. For any group G, prove that the commutator subgroup G’ is a

characteristic subgroup of G. (See Problem 5, Section 2.7).

. If G is a group, N a normal subgroup of G, M a characteristic sub-

group of N, prove that M is a normal subgroup of G.

. Let G be a finite group, T an automorphism of G with the property

that xT = x for x € G if and only if x = ¢. Prove that every ge G
can be represented as g = x~}(x7T") for some x € G.

. Let G be a finite group, 7" an automorphism of G with the property

that xT = x if and only if x = e. Suppose further that 7% = I
Prove that G must be abelian.



Sec. 29 Cayley's Theorem

*12. Let G be a finite group and suppose the automorphism 7 sends more
than three-quarters of the elements of G onto their inverses. Prove
that xT = x ! for all x € G and that G is abelian.

13. In Problem 12, can you find an example of a finite group which is
non-abelian and which has an automorphism which maps exactly
three-quarters of the elements of G onto their inverses?

*14. Prove that every finite group having more than two elements has a
nontrivial automorphism.

*15. Let G be a group of order 2n. Suppose that half of the elements of G
are of order 2, and the other half form a subgroup H of order n. Prove
that H is of odd order and is an abelian subgroup of G.

*16. Let ¢(n) be the Euler ¢-function. If a > 1 is an integer, prove that
n| ¢(a" — 1).

17. Let G be a group and Z the center of G. If T is any automorphism
of G, prove that (Z)T < Z.

18. Let G be agroup and T an automorphism of G. If, fora € G, N(a) =
{x € G| xa = ax}, prove that N(aT) = (N(a))T.

19. Let G be a group and T an automorphism of G. If N is a normal
subgroup of G such that (N)T < N, show how you could use T to
define an automorphism of G/N.

20. Use the discussion following Lemma 2.8.3 to construct
(a) a non-abelian group of order 55.

(b) a non-abelian group of order 203.

21. Let G be the group of order 9 generated by elements a, b, where a® =

b = e. Find all the automorphisms of G.

2.9 Cayley’'s Theorem

When groups firstarose in mathematics they usually came from some specific
source and in some very concrete form. Very often it was in the form of a
set of transformations of some particular mathematical object. In fact,
most finite groups appeared as groups of permutations, that is, as subgroups
of §,. (S, = A(S) when S is a finite set with n elements.) The English
mathematician Cayley first noted that every group could be realized as a
subgroup of A(S) for some §. Our concern, in this section, will be with a
presentation of Cayley’s theorem and some related results.

THEOREM 2.91 (CavLey) Evey group is isomorphic to a subgroup of
A(S) for some appropriate S.

Proof. Let G be a group. For the set § we will use the elements of G;
that is, put § = G. If ge G, define 1,:5(= G) = §(= G) by x1, = x¢
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for every xe G. If y € G, then y = (yg”')g = (3¢~ ")t so that t, maps
S onto itself. Moreover, 1, is one-to-one, for if x, y € § and x1, = y1,,
then xg = yg, which, by the cancellation property of groups, implies that
x = y. We have proved that for every g € G, 1, € A(S).

If g, h € G, consider 1,. For any x €S = G, x1y, = x(gh) = (xg)h =
(x1,)1, = 21,7, Note that we used the associative law in a very essential
way here. From xt1,, = x1,7, we deduce that 7, = 7,7,. Therefore, if
V:G — A(S) is defined by y(g) = 1,, the relation 7, = 1,1, tells us that
is a homomorphism. What is the kernel K of y? If g, € K, then y(g) = 1,
is the identity map on S, so that for x € G, and, in particular, for ¢ € G,
et,, = e. But er, = egy = g5. Thus comparing these two expressions for
et,, we conclude that g, = ¢ whence K = (¢). Thus by the corollary to
Lemma 2.7.4 y is an isomorphism of G into A(S), proving the theorem.

The theorem enables us to exhibit any abstract group as a more concrete
object, namely, as a group of mappings. However, it has its shortcomings;
for if G is a finite group of order o(G), then, using § = G, as in our proof,
A(S) has o(G)! elements. Our group G of order o(G) is somewhat lost in
the group A(S) which, with its 0(G) ! elements, is huge in comparison to G.
We ask: Can we find a more economical S, one for which A(S) is smaller?
This we now attempt to accomplish.

Let G be a group, H a subgroup of G. Let § be the set whose elements
are the right cosets of Hin G. That is, § = {Hg| g € G}. S need not be a
group itself] in fact, it would be a group only if H were a normal subgroup
of G. However, we can make our group G act on S in the following natural
way: for g€ G let t,:§ —» § be defined by (Hx)t, = Hxg. Emulating the
proof of Theorem 2.9.1 we can easily prove

1. t, € A(S) for every g € G.
2ty = Lhy

Thus the mapping 0:G — A(S) defined by 6(g) = t, is a homomorphism of
G into A(S). Can one always say that 6 is an isomorphism? Suppose that K
is the kernel of 0. If g5 € K, then 0(g,) = t,, is the identity map on S, so
that for every X € S, Xt, = X. Since every element of § is a right coset of
H in G, we must have that Hat,, = Ha for every a € G, and using the de-
finition of ¢, , namely, Hat,, = Hag,, we arrive at the identity Hag, = Ha
for every a € G. On the other hand, if b € G is such that Hxb = Hx for
every x € G, retracing our argument we could show that b € K. Thus
K = {be G| Hxb = Hx all xe G}. We claim that from this character-
ization of K, K must be the largest normal subgroup of G which is contained
in H. We first explain the use of the word largest; by this we mean that if
N is a normal subgroup of G which is contained in H, then N must be con-
tained in K. We wish to show this is the case. That K is a normal subgroup
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of G follows from the fact that it is the kernel of a homomorphism of G.
Now we assert that K <« H, for if b € K, Hab = Ha for every a € G, so,
in particular, Hb = Heb = He = H, whence b€ H. Finally, if N is a
normal subgroup of G which is contained in H, if n€ N, a€ G, then
ana ‘e N c H, so that Hana ' = H; thus Han = Ha for all aeG.
Therefore, n € K by our characterization of K.

We have proved

THEOREM 2.9.2 If G is a group, H a subgroup of G, and S is the set of all
right cosets of H in G, then there is a homomorphism 6 of G into A(S) and the kernel
of 0 is the largest normal subgroup of G which is contained in H.

The case H = (e) just yields Cayley’s theorem (Theorem 2.9.1). If H
should happen to have no normal subgroup of G other than (¢) in it, then
0 must be an isomorphism of G into A(S). In this case we would have cut
down the size of the § used in proving Theorem 2.9.1. This is interesting
mostly for finite groups. For we shall use this observation both as a means
of proving certain finite groups have nontrivial normal subgroups, and also
as a means of representing certain finite groups as permutation groups on
small sets.

We examine these remarks a little more closely. Suppose that G has a
subgroup H whose index i(H) (that is, the number of right cosets of H in G)
satisfies i(H)! < o(G). Let § be the set of all right cosets of H in G. The
mapping, 6, of Theorem 2.9.2 cannot be an isomorphism, for if it were,
0(G) would have o(G) elements and yet would be a subgroup of 4(S) which
has i(H)! < o(G) elements. Therefore the kernel of § must be larger than
() ; this kernel being the largest normal subgroup of G which is contained
in H, we can conclude that H contains a nontrivial normal subgroup of G.

However, the argument used above has implications even when i(H)! is
not less than o(G). Ifo(G) does not divide i(H)! then by invoking Lagrange’s
theorem we know that 4A(S) can have no subgroup of order ¢(G), hence no
subgroup isomorphic to G. However, 4(S) does contain 6(G), whence 6(G)
cannot be isomorphic to G; that is, @ cannot be an isomorphism. But then,
as above, H must contain a nontrivial normal subgroup of G.

We summarize this as

LEMMA 2.91 If G is a finite group, and H # G is a subgroup of G such that
o(G) Y i(H)! then H must contain a nontrivial normal subgroup of G. In particular,
G cannot be simple.

APPLICATIONS

1. Let G be a group of order 36. Suppose that G has a subgroup H of
order 9 (we shall see later that this is always the case). Then i{(H) = 4,
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4! = 24 < 36 = o(G) so that in H there must be a normal subgroup
N # (e), of G, of order a divisor of 9, that is, of order 3 or 9.

2. Let G be a group of order 99 and suppose that H is a subgroup of G
of order 11 (we shall also see, later, that this must be true). Then i(H) = 9,
and since 99 .t 9! there is a nontrivial normal subgroup N # (e) of G in H.
Since H is of order 11, which is a prime, its only subgroup other than (e) is
itself, implying that N = H. That is, H itself is a normal subgroup of G.

3. Let G be a non-abelian group of order 6. By Problem 11, Section 2.3,
there is an a # ¢ € G satisfying a? = ¢. Thus the subgroup H = {e, a} is
of order 2, and i{(H) = 3. Suppose, for the moment, that we know that H
is not normal in G. Since H has only itself and (¢) as subgroups, H has no
nontrivial normal subgroups of G in it. Thus G is isomorphic to a subgroup
T of order 6 in A(S), where S is the set of right cosets of H in G. Since
o(A(S)) = i(H)! = 3! =6,T = S. Inother words, G & A(S) = S;. We
would have proved that any non-abelian group of order 6 is isomorphic to
S5. All that remains is to show that H is not normal in G. Since it might be
of some interest we go through a detailed proof of this. If H = {e, a} were
normal in G, then for every g e G, since gag™' € H and gag™' # ¢, we
would have that gag™! = a, or, equivalently, that ga = ag for every g € G.
Let b€ G, b ¢ H, and consider N(b) = {x € G| xb = bx}. By an earlier
problem, N(b) is a subgroup of G, and N(b) o H; N(b) # H since
be N(b), b¢ H. Since H is a subgroup of N(b), o(H) |o(N(b))|6. The
only even number n, 2 < n < 6 which divides 6 is 6. So o(N (b)) = 6;
whence b commutes with all elements of G. Thus every element of G com-
mutes with every other element of G, making G into an abelian group,
contrary to assumption. Thus H could not have been normal in G. This
proof is somewhat long-winded, but it illustrates some of the ideas already

developed.

Problems

1. Let G be a group; consider the mappings of G into itself, 1,, defined
for g € G by xA, = gx for all xe G. Prove that 4, is one-to-one and
onto, and that 4, = 4,4,

2. Let 4, be defined as in Problem 1, 7, as in the proof of Theorem 2.9.1.
Prove that for any g, k € G, the mappings 1, 7, satify 4,1, = 1,4,
(Hint: For x € G consider x(4,7,) and x(7,4,).)

3. If 0 is a one-to-one mapping of G onto itself such that 4,0 = 04,
for all g € G, prove that 8 = rt, for some % € G.

4. (a) If H is a subgroup of G show that for every ge G, gHg™ ' is a

subgroup of G.
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(b) Prove that W = intersection of all gHg~! is a normal subgroup
of G.

5. Using Lemma 2.9.1 prove that a group of order p?, where p is a prime
number, must have a normal subgroup of order p.

6. Show that in a group G of order p? any normal subgroup of order p
must lie in the center of G.

7. Using the result of Problem 6, prove that any group of order p? is
abelian.

8. If p is a prime number, prove that any group G of order 2p must have
a subgroup of order p, and that this subgroup is normal in G.

9. If o(G) is pg where p and g are distinct prime numbers and if G has
a normal subgroup of order p and a normal subgroup of order g, prove
that G is cyclic.

*10. Let o(G) be pg, p > g are primes, prove
(@) G has a subgroup of order p and a subgroup of order g¢.
(b) If g ¥ p — 1, then G is cyclic.
(c) Given two primes p, ¢, ¢|p — 1, there exists a non-abelian group
of order pgq.

(d) Any two non-abelian groups of order pg are isomorphic.

210 Permutation Groups

We have seen that every group can be represented isomorphically as a sub-
group of A(S) for some set §, and, in particular, a finite group G can be
represented as a subgroup of §,, for some n, where §, is the symmetric
group of degree n. This clearly shows that the groups S, themselves merit
closer examination.

Suppose that § is a finite set having n elements x, x5,...,x,. If
¢ e A(S) = S,, then ¢ is a one-to-one mapping of § onto itself, and we
could write ¢ out by showing what it does to every element, e.g., ¢:x; — x,,
X, = X4, X, = X3, X; = x,. But this is very cumbersome. One short cut
might be to write ¢ out as

(x, X2 X3 " "n)
Xy X Xy ccox®)’

2 3 n

where x,_is the ima‘gc of x; under ¢. Returning to our example just above,
¢ might be represented by

A1 Xy Ay Fg

Xa Xy X %3]
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While this notation is a little handier there still is waste in it, for there seems
to be no purpose served by the symbol x. We could equally well represent
the permutation as

Our specific example would read

1 2 3 4

2 4 1 3)°
Given two permutations 8, ¥ in S,, using this symbolic representation of 0
and Y, what would the representation of 8y be? To compute it we could
start and see what 8y does to x, (henceforth written as 1). 0 takes 1 into
i;, while ¢ takes 7, into £, say, then Oy takes 1 into . Then repeat this
procedure for 2, 3, ..., n. For instance, if 0 is the permutation represented
by

1 2 3 4—\)

3 1 2 ¢4
and y by

1 2 3 4

1 3 2 4)°
then i, = 3 and y takes 3 into 2, so £ = 2 and 6y takes | into 2. Similarly
0y:2 - 1, 3 - 3, 4 - 4. That is, the representation for 6y is

1 2 3 4
2 1 3 4)°

If we write

1 2 3 4
0=(3 1 2 4)
and
1 2 3 4
"’=(1 3 2 4)’
then

ow = (f 23 A 23 H_(1 234
‘/’_31241324_2‘134‘

This is the way we shall multiply the symbols of the form

1 2 . e n 1 2 .« n
i iy )] ke ky o0 k)
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Let S be a set and 6 € A(S). Given two elements a, b € § we define
a = 4b if and only if b = af’ for some integer ¢ (i can be positive, negative,
or 0). We claim this defines an equivalence relation on . For

l. a = ,asince a = af° = qe.

2. If a = 4b, then b = af’, so thata = b0 ‘, whence b = a.

3. If a=4b, b = 4, then b = ab', ¢ = 60° = (a0")0! = a6'*’, which
implies that a = .

This equivalence relation by Theorem 1.1.1 induces a decomposition of §
into disjoint subsets, namely, the equivalence classes. We call the equivalence
class of an element s € S the orbit of s under 0; thus the orbit of s under 6
consists of all the elements s6%, { = 0, +1, +2,....

In particular, if § is a finite set and s € §, there is a smallest positive
integer [ = [(s) depending on s such that s6' = 5. The orbit of s under 6
then consists of the elements s, 50, s02,. .., s0' . By a cyele of 6 we mean
the ordered set (s, 50, s62, ..., s0'~'). If we know all the cycles of 6 we
clearly know @ since we would know the image of any element under 6.
Before proceeding we illustrate these ideas with an example. Let

(1 23456
“\2 1356 4)°

where § consists of the elements 1, 2,..., 6 (remember | stands for x,,
2 for x,, etc.). Starting with 1, then the orbit of 1 consists of 1 = 16°,
16 = 2, 182 = 20 = 1, so the orbit of 1 is the set of elements 1 and 2.
This tells us the orbit of 2 is the same set. The orbit of 3 consists just of 3;
that of 4 consists of the elements 4, 40 = 5, 46 = 50 = 6, 40° = 66 = 4.
The cycles of 8 are (1, 2), (3), (4, 5, 6).

We digress for a moment, leaving our particular §. Suppose that by the
cycle (¢;,5,...,1,) we mean the permutation y which sends i, into i,,
i, into i3+ 4, into i, and ¢, into iy, and leaves all other elements of §
fixed. Thus, for instance, if S consists of the elements 1, 2, ..., 9, then the
symbol (1, 3, 4, 2, 6) means the permutation

1 2 3 45 6 7 89
3 6 42 517 8 9)

We multiply cycles by multiplying the permutations they represent. Thus
again, if § has 9 elements,

(1 2 3(5 6 4 1 8§

{1 2 3 456 78 9 (1 23 456 789
12 31456 7 8 9/\8 231647 59
(1 23 456 7 89
“12 3 81 6 4 7 5 9)°

77



Group Theory Ch. 2

Let us return to the ideas of the paragraph preceding the last one, and
ask: Given the permutation

what are the cycles of 8?7 We first find the orbit of 1; namely, 1, 16 = 2,
102 =20 = 3, 160 = 30 = 8, 160* = 80 = 5, 10° = 50 = 6, 16° = 60 = 4,
107 = 40 = 1. That is, the orbit of 1 is the set {1,2, 3, 8, 5, 6, 4}. The
orbits of 7 and 9 can be found to be {7}, {9}, respectively. The cycles of 0
thus are (7), (9), (1, 16, 16%,...,160% = (1, 2, 3, 8, 5, 6, 4). The reader
should now verify that if he takes the product (as defined in the last para-
graph) of (1,2, 3,8,5, 6, 4), (7), (9 he will obtain . That is, at least
in this case, 0 is the product of its cycles.
But this is no accident for it is now trivial to prove

LEMMA 2.10.1 Every permutation is the product of its cycles.

Proof. Let 0 be the permutation. Then its cycles are of the form
(5,50, ...,56~"). By the multiplication of cycles, as defined above, and
since the cycles of § are disjoint, the image of s € § under 6, which is 5’6,
is the same as the image of s’ under the product, ¥, of all the distinct cycles
of . So 6, y have the same effect on every element of S, hence § = ,
which is what we sought to prove.

If the remarks above are still not transparent at this point, the reader
should take a given permutation, find its cycles, take their product, and
verify the lemma. In doing so the lemma itself will become obvious.

Lemma 2.10.1 is usually stated in the form every permutation can be
uniquely expressed as a product of disjoint cycles.

Consider the m-cycle (1, 2 ..., m). A simple computation shows that
1,2,...,m) = (1,2)(1,3)--- (1, m). More generally the m-cycle
(a1, @35+ - ., a,) = (ay, a;)(ay, a3)*** (ay, a,). This decomposition is not
unique; by this we mean that an m-cycle can be written as a product of
2-cycles in more than one way. For instance, (1,2, 3) = (1, 2)(1, 3) =
(3, 1)(3, 2). Now, since every permutation is a product of disjoint cycles
and every cycle is a product of 2-cycles, we have proved

LEMMA 2.10.2 Every permutation is a product of 2-cycles.
We shall refer to 2-cycles as transpositions.

DEFINITION A permutation 0 € S, is said to be an een permutation if it
can be represented as a product of an even number of transpositions.
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The definition given just insists that § have one representation as a product
of an even number of transpositions. Perhaps it has other representations
as a product of an odd number of transpositions. We first want to show
that this cannot happen. Frankly, we are not happy with the proof we give
of this fact for it introduces a polynomial which seems extraneous to the
matter at hand.

Consider the polynomial in n-variables

p(xl,..., xX,) = H (xi _ x}).
i<j
If 8 € S, let 0 act on the polynomial p(x,.. ., x,) by
0:p(xy,. .0 %,) = 'I;L (g — %) - LIJ (%o — %oen)-

It is clear that 0:p(x,,..., x,) = *p(xy,...,%,). For instance, in S,
0 = (134)(25) takes

Plxyyens xs) = (2 — x3) (11 — x3) (%, — x4) (% — %5)(x2 — x3)

X (%3 — xa)(x2 = x5)(x3 — x4)(x3 — x3)(x4 — xg)
into

(x5 — x5) (x5 — x4) (%3 — %1) (x5 — %)(xs — %a)(xs — %)
X (25 = x2) (x4 — %) (%8 — %)(x — %),
which can easily be verified to be —p(x,,..., x5).

If, in particular, 0 is a transposition, 0:p(xy, ..., X,) = —p(%g, ..., x,)-
(Verify!) Thus if a permutation IT can be represented as a product of
an even number of transpositions in one representation, I must leave
p(x4,...,x,) fixed, so that any representation of IT as a product of trans-
position must be such that it leaves p(xy,..., x,) fixed; that is, in any
representation it is a product of an even number of transpositions. This
establishes that the definition given for an even permutation is a significant
one. We call a permutation odd if it is not an even permutation.

The following facts are now clear:

1. The product of two even permutations is an even permutation.

2. The product of an even permutation and an odd one is odd (likewise for
the product of an odd and even permutation).

3. The product of two odd permutations is an even permutation.

The rule for combining even and odd permutations is like that of com-
bining even and odd numbers under addition. This is not a coincidence
since this latter rule is used in establishing 1, 2, and 3.

Let A, be the subset of S, consisting of all even permutations. Since the
product of two even permutations is even, 4, must be a subgroup of §,.
We claim it is normal in §,. Perhaps the best way of seeing this is as follows:
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let W be the group of real numbers 1 and —1 under multiplication. Define
Y:S, » Wby y(s) = 1 if sis an even permutation, Y(s) = —1 if s is an
odd permutation. By the rules 1, 2, 3 above y is a homomorphism onto W.
The kernel of § is precisely 4,; being the kernel of a homomorphism 4,
is a normal subgroup of §,. By Theorem 2.7.1 §,/4, & W, so, since

2 = o(W) = of Sr} = %S
4, o(4,)
we see that o(4,) = 4nl. A, is called the alternating group of degree n. We
summarize our remarks in

LEMMA 2.103 S, has as a normal subgroup of index 2 the alternating group,
A, consisting of all even permutations.

At the end of the next section we shall return to §, again.

Problems

1. Find the orbits and cycles of the following permutations:
(a)(123456789)
2 3451679 8°
1 2 3 45 6
(b)(e 5 4 3 1 2)‘
2. Write the permutations in Problem 1 as the product of disjoint cycles.
3. Express as the product of disjoint cycles:
(a) (1,2, 3)(4, 5)(1,6, 7, 8,9)(1, 5).
(b) (1,2)(1, 2, 3)(1, 2).
4. Prove that (1,2,...,n) ' = (n,n = 1,n —2,...,2,1).
. Find the cycle structure of all the powers of (1, 2,..., 8).
6. (a) What is the order of an n-cycle?
(b) What is the order of the product of the disjoint cycles of lengths
my, Mp, ..., mt?
(c) How do you find the order of a given permutation?
7. Compute a~ 'ba, where
(1) a=(1,3,5)(1,2), 6 =(1,5,7,9).
(2) a=(5,7,9), b = (1, 2, 3).
8. (a) Given the permutation x = (1, 2)(3, 4), y = (5, 6)(1, 3), find a
permutation a such that a~'xa = y.
(b) Prove that there is no a such that a~ (1,2, 3)a = (1, 3)(5, 7, 8).
(c) Prove that there is no permutation a such that a~'(1,2)a =
@3 4)(1, 5).
9. Determine for what m an m-cycle is an even permutation.

o



10.

11.

*12.
*13.

*14.
15.

16.
*17.

Sec. 210 Permutation Groups

Determine which of the following are even permutations:

(a) (1,2, 3)(1, 2).

(b) (1,2, 3, 4, 5)(1, 2, 3)(4, 5).

(c) (1, 2)(1, 3)(1, 4)(2, 5).

Prove that the smallest subgroup of S, containing (1,2) and
(1,2,...,n)is S,. (In other words, these generate §,.)

Prove that for n = 3 the subgroup generated by the 3-cycles is 4,,.

Prove that if a normal subgroup of 4, contains even a single 3-cycle
it must be all of 4,,.

Prove that 45 has no normal subgroups N # (e), 4.

Assuming the result of Problem 14, prove that any subgroup of A4
has order at most 12.

Find all the normal subgroups in §,.
If n > 5 prove that A4, is the only nontrivial normal subgroup in §,.

Cayley’s theorem (Theorem 2.9.1) asserts that every group is isomorphic
to a subgroup of A(S) for some S. In particular, it says that every finite
group can be realized as a group of permutations. Let us call the realization
of the group as a group of permutations as given in the proof of Theorem
2.9.1 the permutation representation of G.

18.
19.

20.

21.

22.

Find the permutation representation of a cyclic group of order =.

Let G be the group f{e, a, b,ab} of order 4, where a? = b? = ¢,
ab = ba. Find the permutation representation of G.

Let G be the group S;. Find the permutation representation of S.
(Note: This gives an isomorphism of S5 into Sg.)

Let G be the group {e, 0, a, b, c, Oa, 8b, Oc}, where a? = b* = ¢ = 6,
0> =¢ ab = Qba = ¢, bc = Ocb = a, ca = Oac = b.

(a) Show that 8 is in the center Z of G, and that Z = {e, 0}.

(b) Find the commutator subgroup of G.

(c) Show that every subgroup of G is normal.

(d) Find the permutation representation of G.

(Note: G is often called the group of quaternion units; it, and algebraic
systems constructed from it, will reappear in the book.)

Let G be the dihedral group of order 2n (see Problem 17, Section 2.6).
Find the permutation representation of G.

Let us call the realization of a group G as a set of permutations given in
Problem 1, Section 2.9 the second permutation representation of G.

23.

Show that if G is an abelian group, then the permutation representation
of G coincides with the second permutation representation of G (i.e.,
in the notation of the previous section, 4, = 7, forall ge G.)
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24. Find the second permutation representation of §;. Verify directly
from the permutations obtained here and in Problem 20 that 4,7, =
144, for all g, b € S,.

25. Find the second permutation representation of the group G defined in
Problem 21.

26. Find the second permutation representation of the dihedral group of
order 2n.

If H is a subgroup of G, let us call the mapping {t,| g € G} defined in
the discussion preceding Theorem 2.9.2 the coset representation of G by H.
This also realizes G as a group of permutations, but not necessarily iso-
morphically, merely homomorphically (see Theorem 2.9.2).

27. Let G = (a) be a cyclic group of order 8 and let H = (a*) be its
subgroup of order 2. Find the coset representation of G by H.

28. Let G be the dihedral group of order 2n generated by elements a, b
such that a> = §" = ¢, ab = b~ 'a. Let H = {¢, a). Find the coset
representation of G by H.

29. Let G be the group of Problem 21 and let H = {e, 8}. Find the
coset representation of G by H.

30. Let G be S, the symmetric group of order n, acting as permutations
on theset {1,2,...,n}. Let H = {6 € G|no = n).
(a) Prove that H is isomorphic to S, ,.
(b) Find a set of elements a,,...,a,€ G such that Ha,,..., Ha,
give all the right cosets of H in G.
(c) Find the coset representation of G by H.

2.11 Another Counting Principle

Mathematics is rich in technique and arguments. In this great variety one
of the most basic tools is counting. Yet, strangely enough, it is one of the
most difficult. Of course, by counting we do not mean the creation of tables
of logarithms or addition tables; rather, we mean the process of precisely
accounting for all pessibilities in highly complex situations. This can some-
times be done by a brute force case-by-case exhaustion, but such a routine
is invariably dull and violates a mathematician’s sense of aesthetics. One
prefers the light, deft, delicate touch to the hammer blow. But the most
serious objection to case-by-case division is that it works far too rarely.
Thus in various phases of mathematics we find neat counting devices which
tell us exactly how many elements, in some fairly broad context, satisfy
certain conditions. A great favorite with mathematicians is the process of
counting up a given situation in two different ways; the comparison of the
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two counts is then used as a means of drawing conclusions. Generally
speaking, one introduces an equivalence relation on a finite set, measures
the size of the equivalence classes under this relation, and then equates the
number of elements in the set to the sum of the orders of these equivalence
classes. This kind of an approach will be illustrated in this section. We
shall introduce a relation, prove it is an equivalence relation, and then find
a neat algebraic description for the size of each equivalence class. From this
simple description there will flow a stream of beautiful and powerful results
about finite groups.

DEFINITION 1If g, b € G, then b is said to be a conjugate of a in G if there
exists an element ¢ € G such that b = ¢ ac.

We shall write, for this, @ ~ b and shall refer to this relation as conjugacy.

LEMMA 2111 Conjugacy is an equivalence relation on G.

Proof. As usual, in order to establish this, we must prove that

1. a ~ a;
2. a ~ b implies that b ~ a;
3.a~b, b ~cimplies thata ~ ¢

forall a, b, ¢ in G.
We prove each of these in turn.

1. Since @ = ¢~}

of conjugacy.

2. If a ~ b, then b = x™ 'ax for some x € G, hence, a = (x~ )" 15(x7 1),
andsincey = x"' € Gand a = 3~ 'by, b ~ a follows.

3. Suppose that @ ~ b and b ~ ¢ where a,b,c€G. Then b = x™ 'ax,
¢ =y by for some x, y € G. Substituting for b in the expression for ¢
we obtain ¢ = y~!(x"'ax) y = (») "'a(xy); since € G, a~cis a
consequence.

ae, a ~ a, with ¢ = ¢ serving as the ¢ in the definition

For ae G let C(a) = {x € G| a ~ x}. C(a), the equivalence class of a
in G under our relation, is usually called the conjugate class of a in G; it
consists of the set of all distinct elements of the form y~'ay as y ranges
over G.

Our attention now narrows to the case in which G is a finite group.
Suppose that C(e) has ¢, elements. We seek an alternative description of
¢,- Before doing so, note that o(G) = ¥ ¢, where the sum runs over a set
of a € G using one a from each conjugate class. This remark is, of course,
merely a restatement of the fact that our equivalence relation—conjugacy—
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induces a decomposition of G into disjoint equivalence classes—the conjugate
classes. Of paramount interest now is an evaluation of ¢,.

In order to carry this out we recall a concept introduced in Problem 13,
Section 2.5. Since this concept is important—far too important to leave to
the off-chance that the student solved the particular problem—we go over
what may very well be familiar ground to many of the readers.

DEFINITION If ae G, then N(a), the normalizer of a in G, is the set
N(a) = {x e G| xa = ax}.

N(a) consists of precisely those elements in G which commute with a.

LEMMA 2.11.2 N(a) is a subgraup of G.

Proof. 1In this result the order of G, whether it be finite or infinite, is of
no relevance, and so we put no restrictions on the order of G.

Suppose that x,ye N(a). Thus xa = ax and ja = ay. Therefore,
(x)a = x(ya) = x(ay) = (xa) y = (ax) y = a(xy), in consequence of which
xy € N(a). From ax =xa it follows that x"la =x"!(ax)x ' =x"1(xa)x" ' =
ax ', so that x™ ! is also in N(a). But then N(a) has been demonstrated
to be a subgroup of G.

We are now in a position to enunciate our counting principle.

THEOREM 2111 If G is a finite group, then ¢, = o(G)Jo(N(a)); in other
words, the number of elements conjugate to a in G is the index of the normalizer of
ainG.

Proof. To begin with, the conjugate class of a in G, C(a), consists exactly
of all the elements x 'ax as x ranges over G. ¢, measures the number of
distinct x~ 'ax’s. Our method of proof will be to show that two elements in
the same right coset of N(a) in G yield the same conjugate of a whereas
two elements in different right cosets of N(a) in G give rise to different
conjugates of a. In this way we shall have a one-to-one correspondence
between conjugates of a and right cosets of N(a).

Suppose that x, y € G are in the same right coset of N(a) in G. Thus
y = nx, where n € N(a), andso na = an. Therefore, since y~! = (nx)~! =
x~1n"!, ylag = x"'n lanx = x"'n 'max =x 'ax, whence x and y
result in the same conjugate of a.

If, on the other hand, x and y are in different right cosets of N(a) in G
we claim that x™ ax # y~ 'ay. Were this not the case, from x lax =y lay
we would deduce that yx 'a = ayx !; this in turn would imply that
»x~ ' e N(a). However, this declares x and y to be in the same right coset
of N(a) in G, contradicting the fact that they are in different cosets. The
proof is now complete.
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COROLLARY

&) - _o6)
gD Z<’(1V(a))

where this sum runs over one element a in each conjugate class.

Proof. Since o(G) = 3¢, using the theorem the corollary becomes
immediate.

The equation in this corollary is usually referred to as the class equation of G.

Before going on to the applications of these results let us examine these
concepts in some specific group. There is no point in looking at abelian
groups because there two elements are conjugate if and only if they are
equal (that is, ¢, = 1 for every a). So we turn to our familiar friend, the
group S,. Its elements are ¢, (1, 2), (1, 3), (2, 3), (1,2, 3), (1, 3,2). We
enumerate the conjugate classes:

Cle) = {e}
C(1,2) = {(1,2), (1,3)7'(1,2)(1,3), (2,3)7'(1,2)(2, 3),
(1,2,3)71(1,2)(1,2, 3), (1,3,2) " (1, 2)(1, 3, 2)}
= {(1,2), (1, 3), (2,3)} (Verify!)
C(1,2,3) = {(1,2,3), (1,3,2)} (after another verification).

The student should verify that N((1,2)) = {¢, (1,2)} and N((1,2,3)) =
{‘) (]) 2) 3)3 (l) 3: 2)}) so that c(l.Z) - % - 3’ 5(1,2.3) - .g = 2

Applications of Theorem 2.11.1

Theorem 2.11.1 lends itself to immediate and powerful application. We
need no artificial constructs to illustrate its use, for the results below which
reveal the strength of the theorem are themselves theorems of stature and
importance.

Let us recall that the center Z(G) of a group G is the set of all ae G
such that ax = xa for all x € G. Note the

SUBLEMMA a€ Z if and only if N(a) = G. If G is finite, a€ Z if and
only if o(N(a)) = o(G).

Proof. Ifa € Z, xa = axfor all x € G, whence N(a) = G. If, conversely,
N(a) = G, xa = ax for all xeG, so that ae Z. If G is finite, o(N(a)) =
o(G) is equivalent to N(a) = G.
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APPLICATION 1

THEOREM 2.11.2 Ifo(G) = p" where p is a prime number, then Z(G) # (e).
Proof. 1If a € G, since N(a) is a subgroup of G, o(N (a)), being a divisor

of o(G) = p", must be of the form o(N(a)) = p"; a € Z(G) if and only if

n, = n. Write out the class equation for this G, letting z = o(Z(G)). We

get p" = o(G) = Y (p"/p™); however, since there are exactly z elements

such that n, = n, we find that

p“=z+2-’i:..

Now look at this! p is a divisor of the left-hand side; since n, < n for each
term in the 3" of the right side,

E o
T

so that p is a divisor of each term of this sum, hence a divisor of this sum.

Therefore,
" P") _
(P n.; Ve =

Since e € Z(G), z # 0; thus z is a positive integer divisible by the prime p.
Therefore, 2 > 1! But then there must be an element, besides ¢, in Z(G)!
This is the contention of the theorem.

?

4

Rephrasing, the theorem states that a group of prime-power order must
always have a nontrivial center.

We can now simply prove, as a corollary for this, a result given in an
earlier problem.

COROLLARY Ifo(G) = p* where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. At any rate, we already
know that Z(G) # () is a subgroup of G so that o(Z(G)) = p or p2. If
0(Z(G)) = p?,then Z(G) = G and we are done. Suppose that o(Z(G)) = p;
let aeG, a¢ Z(G). Thus N(a) is a subgroup of G, Z(G) = N(a),
a€ N(a),so that o(N(a)) > p,yet by Lagrange’s theorem o(N(a)) | o(G) = p2.
The only way out is for o(N(a)) = p?, implying that a € Z(G), a con-
tradiction. Thus o(Z(G)) = p is not an actual possibility.

APPLICATION 2 We now use Theorem 2.11.1 to prove an important
theorem due to Cauchy. The reader may remember that this theorem was
already proved for abelian groups as an application of the results developed
in the section on homomorphisms. In fact, we shall make use of this special
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case in the proof below. But, to be frank, we shall prove, in the very next
section, a much stronger result, due to Sylow, which has Cauchy’s theorem
as an immediate corollary, in a manner which completely avoids Theorem
2.11.1. To continue our candor, were Cauchy’s theorem itself our ultimate
and only goal, we could prove it, using the barest essentials of group theory,
in a few lines. [The reader should look up the charming, one-paragraph
proof of Cauchy’s theorem found by McKay and published in the American
Mathematical Monthly, Vol. 66 (1959), page 119.] Yet, despite all these
counter-arguments we present Cauchy’s theorem here as a strikingillustration
of Theorem 2.11.1.

THEOREM 2.11.3 (Caucuy) If p is a prime number and p | o(G), then
G has an element of order p.

Proof. We seek an element a # ¢ € G satisfying a? = ¢. To prove its
existence we proceed by induction on o(G); that is, we assume the theorem
to be true for all groups T such that o(7T) < o(G). We need not worry
about starting the induction for the result is vacuously true for groups of
order 1.

If for any subgroup W of G, W s G, were it to happen that p |o(W),
then by our induction hypothesis there would exist an element of order p in
W, and thus there would be such an element in G. Thus we may assume that
p is not a divisor of the order of any proper subgroup of G. In particular, if
a¢ Z(G), since N(a) # G, p ¥ o(N(a)). Let us write down the class

equation:

o(G)
o(C) = oZ(G) + D i
Since p | o(G), p X o(N(a)) we have that
o(G)
o(N(a))’
and so
o(G)

?

vt 6 o(N(a) ’
since we also have that p | o(G), we conclude that

G) — o(G) ) = o(Z(G)).
("( 7 ke AV (

Z(G) is thus a subgroup of G whose order is divisible by p. But, after all,
we have assumed that p is not a divisor of the order of any proper subgroup
of G, so that Z(G) cannot be a proper subgroup of G. We are forced to

»
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accept the only possibility left us, namely, that Z(G) = G. But then G
is abelian; now we invoke the result already established for abelian groups
to complete the induction. This proves the theorem.

We conclude this section with a consideration of the conjugacy relation
in a specific class of groups, namely, the symmetric groups S,,.

Given the integer n we say the sequence of positive integers n,, n,, . . .,
n, ny < n, < -+ < n, constitute a partitionof nif n=n, + n, +--- + n,.
Let p(n) denote the number of partitions of n. Let us determine p(n) for
small values of n:

p(1) = lsince 1 = 1 is the only partition of 1,
p(2) = 2since2 =2and2 =1 + 1,
p(3) =3since3 =3,3=1+2,3=1+1+1,

p(4) =5since4 =4,4=1+3,4=1+1+ 2,
4=14+1+1+14=2+2

Some others are p(5) = 7, p(6) = 11, p(61) = 1,121,505. There is a
large mathematical literature on p(n).

Every time we break a given permutation in S, into a product of disjoint
cycles we obtain a partition of n; for if the cycles appearing have lengths n,,
Ny, ..., n,, respectively, n, <n, <-+-<n,,thenn=n, +n, ++-- + n,
We shall say a permutation ¢ €S, has the cycle decomposition {n,, n,,
..., n,} if it can be written as the product of disjoint cycles of lengths
Ny, Nyyevyfyy Ny S0y <<+ < m. Thusin §

1 2 3 45 6 7 89

o R B GEREDOIT)

has cycle decomposition {1, 1, 2,2, 3}; notethat 1 +1 +2 +2 + 3 =9.
We now aim to prove that two permutations in S, are conjugate if and
only if they have the same cycle decomposition. Once this is proved, then
S, will have exactly p(n) conjugate classes.

To reach our goal we exhibit a very simple rule for computing the con-
Jjugate of a given permutation. Suppose that ¢ € S, and that ¢ sends ¢ -» j.
How do we find 0~ '68 where 0 € S,? Suppose that 0 sends i -» s and
j — t; then 07 '60 sends s — t. In other words, to compute 0~ 'a0 replace
every symbol in & by its image under 0. For example, to determine 6 ‘a0
where 0 = (1,2,3)(4,7) and ¢ = (5, 6, 7)(3, 4, 2), then, since 0:5 — 5,
6 -+6,7—->4,3-1,4-57,2- 3, 060 is obtained from ¢ by re-
placing in ,5 by 5, 6 by 6, 7by 4, 3byl, 4by 7, and 2 by 3, so that
0~ '¢0 = (5, 6, 4)(1, 7, 3).

With this algorithm for computing conjugates it becomes clear that two
permutations having the same cycle decomposition are conjugate. For if
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6 = (ay a5, (b, by .., b,) (%5 %,...,%,) and T = (a;, a5,
tr anx)(ﬁl: ﬁl’ L] ﬂﬂz) e (Xu x2a et Xn,), then T = 9_ 10'9, where
one could use as 0 the permutation

(01 gy c an by v by o oxm e xn.-)
al az ey a”’ ﬂl « . ﬁnz LI IR xl ... xnr

Thus, for instance, (1,2)(3, 4, 5)(6, 7, 8) and (7, 5)(1, 3, 6)(2, 4, 8) can be
exhibited as conjugates by using the conjugating permutation

1 2 3 45 6 7 8
751 3 6 2 4 8

That two conjugates have the same cycle decomposition is now trivial
for, by our rule, to compute a conjugate, replace every element in a given
cycle by its image under the conjugating permutation.

We restate the result proved in the previous discussion as

LEMMA 2.11.3 The number of conjugate classes in S, is p(n), the number of
partitions of n.

Since we have such an explicit description of the conjugate classes in
S, we can find all the elements commuting with a given permutation. We
illustrate this with a very special and simple case.

Given the permutation (1,2) in §,, what elements commute with it?
Certainly any permutation leaving both 1 and 2 fixed does. There are
(n — 2)!'such. Also (1, 2) commutes with itself. This way we get 2(n — 2)!
elements in the group generated by (1, 2) and the (n — 2)! permutations
leaving 1 and 2 fixed. Are there others? There are n(n — 1)/2 trans-
positions and these are precisely all the conjugates of (1, 2). Thus the con-
jugate class of (1, 2) has in it n(n — 1)/2 elements. If the order of the
normalizer of (1, 2) is 7, then, by our counting principle,

n(n — 1) _ o(S,) _ n!

2 T r

Thus r = 2(n — 2)!. That is, the order of the normalizer of (1, 2) is
2(n — 2)!. But we exhibited 2(n — 2)! elements which commute with
(1, 2); thus the general element ¢ commuting with (1, 2) is ¢ = (1, 2)'r,
where i = 0 or 1, 7 is a permutation leaving both 1 and 2 fixed.

As another application consider the permutation (1,2,3,...,n) €S§,.
We claim this element commutes only with its powers. Certainly it does
commute with all its powers, and this gives rise to n elements. Now, any
n-cycle is conjugate to (1,2,...,2) and there are (n — 1)! distinct
n-cycles in §,. Thus if u denotes the order of the normalizer of (1, 2, ..., n)
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in §,, since o(S,)/# = number of conjugates of (1,2,...,n) in §, =
(" - l)'s

n'

="
(n — 1)}

So the order of the normalizer of (1, 2,...,n) in S, is n. The powers of
(1, 2,..., n) having given us n such elements, there is no room left for
others and we have proved our contention.

Problems

1.

10.

List all the conjugate classes in S;, find the ¢,’s, and verify the class
equation.

. List all the conjugate classes in S,, find the ¢;s and verify the class

equation.

. List all the conjugate classes in the group of quaternion units (see

Problem 21, Section 2.10), find the ¢;’s and verify the class equation.

List all the conjugate classes in the dihedral group of order 2n, find
the ¢.’s and verify the class equation. Notice how the answer depends
on the parity of x.
]
(a) In S, prove that there are I_»t distinct 7 cycles.
r(n —r)!

(b) Using this, find the number of conjugates that the r-cycle
(1,2,...,7) hasin §,.

(c) Prove that any element ¢ in S, which commutes with (1, 2,...,7r)
is of the foom ¢ = (1, 2,..., )7, where i =0,1,2,...,7,
is a permutation leaving all of 1, 2, ..., r fixed.

(a) Find the number of conjugates of (1, 2)(3, 4) in §,, n > 4.

(b) Find the form of all elements commuting with (1, 2)(3, 4) in §,.

If p is a prime number, show that in §, there are (p — 1)! + 1

elements x satisfying x? = e,

. If in a finite group G an element a has exactly two conjugates, prove

that G has a normal subgroup N ## (e), G.

(a) Find two elements in 4;, the alternating group of degree 5, which
are conjugate in S5 but not in 4.

(b) Find all the conjugate classes in A5 and the number of elements
in each conjugate class.

(a) If Nis a normal subgroup of G and a € N, show that every con-
jugate of a in G is also in N.

(b) Prove that o(N) = ¥ ¢, for some choices of  in N.
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(c) Using this and the result for Problem 9(b), prove that in A5 there
is no normal subgroup N other than (¢) and 4.

11. Using Theorem 2.11.2 as a tool, prove that if o(G) = p", p a prime
number, then G has a subgroup of order p* for all 0 < a < n.

12. If o(G) = p", p a prime number, prove that there exist subgroups
N,i=0,1,...,r (for some r) such that G = Ny o N, o N, o ---
> N, = (¢) where N; is a normal subgroup of N;_; and where
N;_,|N, is abelian.

13. If o(G) = p", p a prime number, and H # G is a subgroup of G,
show that there exists an x € G, x ¢ H such that x Hx = H.

14. Prove that a\ny subgroup of order "~ ! in a group G of order p",
p a prime number, is normal in G.

*15. If o(G) = p", p a prime number, and if N # (e) is a normal subgroup
of G, prove that N n Z # (¢), where Z is the center of G.

16. If G is a group, Z its center, and if G/Z is cyclic, prove that G must
be abelian.

17. Prove that any group of order 15 is cyclic.
18. Prove that a group of order 28 has a normal subgroup of order 7.

19. Prove that if a group G of order 28 has a normal subgroup of order 4,
then G is abelian.

212 Sylow’'s Theorem

Lagrange’s theorem tells us that the order of a subgroup of a finite group is
a divisor of the order of that group. The converse, however, is false. There
are very few theorems which assert the existence of subgroups of prescribed
order in arbitrary finite groups. The most basic, and widely used, is a
classic theorem due to the Norwegian mathematician Sylow.

We present here three proofs of this result of Sylow. The first is a very
elegant and elementary argument due to Wielandt. It appeared in the
journal Archiv der Matematik, Vol. 10 (1959), pages 401 402. The basic
elements in Wielandt’s proof are number-theoretic and combinatorial. It
has the advantage, aside from its elegance and simplicity, of producing the
subgroup we are seeking. The second proof is based on an exploitation of
induction in an interplay with the class equation. It is one of the standard
classical proofs, and is a nice illustration of combining many of the ideals
developed so far in the text to derive this very important cornerstone due to
Sylow. The third proof is of a completely different philosophy. The basic
idea there is to show that if a larger group than the one we are considering
satisfies the conclusion of Sylow’s theorem, then our group also must.

9
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This forces us to prove Sylow’s theorem for a special family of groups—the
symmetric groups. By invoking Cayley’s theorem (Theorem 2.9.1) we are
then able to deduce Sylow’s theorem for all finite groups. Apart from this
strange approach—to prove something for a given group, first prove it for a
much larger one—this third proof has its own advantages. Exploiting the
ideas used, we easily derive the so-called second and third parts of Sylow’s
theorem.

One might wonder: why give three proofs of the same result when, clearly,
one suffices? The answer is simple. Sylow’s theorem is that important that
it merits this multifront approach. Add to this the completely diverse
nature of the three proofs and the nice application each gives of different
things that we have learned, the justification for the whole affair becomes
persuasive (at least to the author). Be that as it may, we state Sylow’s
theorem and get on with Wielandt’s proof.

THEOREM 2.12.1 (Syrow) If p is a prime number and p* | o(G), then
G has a subgroup of order p*.

Before entering the first proof of the theorem we digress slightly to a
brief number-theoretic and combinatorial discussion.

The number of ways of picking a subset of £ elements from a set of =
elements can easily be shown to be

n\ _ n!
k] kl(n— k)
If n = p"m where p is a prime number, and if p" | m but p"*! } m, consider
(ﬁ“'n) __ (rm)!
i (09 (p*m — p*)!

_ Pt = ) (ffm = ) (P = gt 4 1)
PN =) -+ D)

The question is, What power of p divides <ﬁ m)? Looking at this number,
pa

written out as we have written it out, one can see that except for the term
m in the numerator, the power of p dividing (p*m — 1) is the same as that
dividing p* — ¢, so all powers of p cancel out except the power which

divides m. Thus
Py | (I’aﬂl) but g+l ) (I’a:”).
Fa b
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First Proof of the Theorem. Let 4 be the set of all subsets of G which
a,

have p* elements. Thus # has </) m> elements. Given M,, M, e #
pﬂ

(M is a subset of G having p* elements, and likewise so is M,) define
M, ~ M, if there exists an element g € G such that M, = M,g. It is
immediate to verify that this defines an equivalence relation on .#. We
claim that there is at least one equivalence class of elements in . such that
the number of elements in this class is not a multiple of p"* !, for if p"*! is
a divisor of the size of each equivalence class, then p"*! would be a divisor

of the number of elements in . Since # has (p m) elements and
pa

p"”*(ﬁ m), this cannot be the case. Let {M,,..., M,} be such an
pa

equivalence class in # where p™ ! } n. By our very definition of equivalence
inA,ifgeG, for eachi=1,...,n, Mg = M, for some j, ]| <j < n
We let H = {ge G| Mg = M,}. Clearly H is a subgroup of G, for if
a, b e H, then Mja = M,, M;b = M, whence M,ab = (M,a)b = M,b =
M,. We shall be vitally concerned with o(H). We claim that no(H) =
0(G); we leave the proof to the reader, but suggest the argument used in
the counting principle in Section 2.11. Now no(H) = o(G) = p°m; since
ptiyn and p**7 | p*m = no(H), it must follow that p* | o(H), and so
o(H) > p*. However, if m; € M,, then for all he H, mh e M,. Thus
M, has at least o(H) distinct elements. However, M, was a subset of G
containing p* elements. Thus p* > o(H). Combined with o(H) > p* we
have that o(H) = p*. But then we have exhibited a subgroup of G having exactly
p°* elements, namely H. This proves the theorem; it actually has done more—
it has constructed the required subgroup before our very eyes!

What is usually known as Sylow’s theorem is a special case of Theorem
2.12.1, namely that

COROLLARY Ifp™ | o(G), p™* ' ¥ o(G), then G has a subgroup of order p™.

A subgroup of G of order p™, where p™ | o(G) but p™*! t o(G), is called a
p-Sylow subgroup of G. The corollary above asserts that a finite group has
p-Sylow subgroups for every prime p dividing its order. Of course the
conjugate of a p-Sylow subgroup is a p-Sylow subgroup. In a short while
we shall see how any two p-Sylow subgroups of G—for the same prime p—
are related. We shall also get some information on how many p-Sylow
subgroups there are in G for a given prime p. Before passing to this, we want
to give two other proofs of Sylow’s theorem.

We begin with a remark. As we observed just prior to the corollary,
the corollary is a special case of the theorem. However, we claim that the
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theorem is easily derivable from the corollary. That is, if we know that G
possesses a subgroup of order p™, where p™ | o(G) but p™*! } o(G), then
we know that G has a subgroup of order p* for any a such that p* | o(G).
This follows from the result of Problem 11, Section 2.11. This result states
that any group of order p™, p a prime, has subgroups of order p* for any
0 < a < m. Thus to prove Theorem 2.12.1—as we shall proceed to do,
again, in two more ways—it is enough for us to prove the existence of
p-Sylow subgroups of G, for every prime p dividing the order of G.

Second Proof of Sylow’s Theorem. We prove, by induction on the order
of the group G, that for every prime p dividing the order of G, G has a
p-Sylow subgroup.

If the order of the group is 2, the only relevant prime is 2 and the group
certainly has a subgroup of order 2, namely itself.

So we suppose the result to be correct for all groups of order less than
o(G). From this we want to show that the result is valid for G. Suppose,
then, that p™ | o(G), p™** ¥ o(G), where p is a prime,m > 1. If p™ | o(H)
for any subgroup H of G, where H # G, then by the induction hypothesis,
H would have a subgroup T of order p™. However, since T is a subgroup
of H, and H is a subgroup of G, T too is a subgroup of G. But then T would
be the sought-after subgroup of order p™.

We therefore may assume that p™ } o( H) for any subgroup H of G, where
H # G. We restrict our attention to a limited set of such subgroups.
Recall that if ae G then N(a) = {x € G| xa = ax} is a subgroup of G;
moreover, if a ¢ Z, the center of G, then N(a) # G. Recall, too, that the
class equation of G states that

G)
o6) = %6,
2 o(N(a))

where this sum runs over one element a from each conjugate class. We
separate this sum into two pieces: those a which lie in Z, and those which
don’t. This gives

o(G)
&7 o(N(a))’
where z = o(Z). Now invoke the reduction we have made, namely, that
p™ ¥ o(H) for any subgroup H # G of G, to those subgroups N(a) for a ¢ Z.
Since in this case, p™ | 0(G) and p™ } o(N(a)), we must have that

o(G)
o(N(a))’

o(G) = z +

Restating this result,
o(G)
o(N(a))
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foreverya € G wherea ¢ Z. Look at the classequation with this information
in hand. Since p™ | o( G), we have that p | o(G) ; also

)
.; o(N(a))
Thus the class equation gives us that p | z. Sincep | z = o(Z), by Cauchy’s
theorem (Theorem 2.11.3), Z has an element b # ¢ of order p. Let
B = (b), the subgroup of G generated by 4. B is of order p; moreover,
since b € Z, B must be normal in G. Hence we can form the quotient group
G = G|B. We look at G. First of all, its order is o(G)Jo(B) = o(G)/[p,
hence is certainly less than o(G). Secondly, we have p™ ! [0o(G), but
™ Xo(G). Thus, by the induction hypothesis, G has a subgroup P of order
"' Let P= {xe G|xBe P}; by Lemma 2.7.5, P is a subgroup of
G. Moreover, P &~ P|B (Prove!); thus

pﬂ‘l =0(P)=Z—§-g;-=¢%l))-,

This results in o(P) = p™. Therefore P is the required p-Sylow subgroup of
G. This completes the induction and so proves the theorem.

b4

With this we have finished the second proof of Sylow’s theorem. Note
that this second proof can easily be adapted to prove that if p*|o(G), then
G has a subgroup of order p* directly, without first passing to the existence
of a p-Sylow subgroup. (This is Problem 1 of the problems at the end of
this section.)

We now proceed to the third proof of Sylow’s theorem.

Third Proof of Sylow's Theorem. Before going into the details of the
proof proper, we outline its basic strategy. We will first show that the
symmetric groups S, ¢ a prime, all have p-Sylow subgroups. The next
step will be to show that if G is contained in M and M has a p-Sylow sub-
group, then G has a p-Sylow subgroup. Finally we will show, via Cayley’s
theorem, that we can use Sy, for large enough &, as our M. With this we
will have all the pieces, and the theorem will drop out.

In carrying out this program in detail, we will have to know how large
a p-Sylow subgroup of §, should be. This will necessitate knowing what
power of p divides (p")!. This will be easy. To produce the p-Sylow sub-
group of §,, will be harder. To carry out another vital step in this rough
sketch, it will be necessary to introduce a new equivalence relation in groups,
and the corresponding equivalence classes known as double cosets. This
will have several payoffs, not only in pushing through the proof of Sylow’s
theorem, but also in getting us the second and third parts of the full Sylow
theorem.
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So we get down to our first task, that of finding what power of a prime
p exactly divides (p*)!. Actually, it is quite easy to do this for n! for any
integer n (see Problem 2). But, for our purposes, it will be clearer and will
suffice to do it only for (p*)!.

Let n(k) be defined by p™*® | ($*)! but p"®*+1 y (ph) 1.

LEMMA 2121 nk) =1 4 p + -+ 4 p¢~ L,

Proof. If k = 1 then, since p! = 1+2--+(p —~ 1)p, it is clear that
p | p! but p? f pt. Hence n(1) = 1, as it should be.

What terms in the expansion of (p*)! can contribute to powers of p
dividing (p*)!? Clearly, only the multiples of p; that is, p, 2p,...,p ¥ 1p.
In other words =n(k) must be the power of p which divides
p(20)(3p) -+ (8 'p) = pP 7P )L But then n(k) = p*7 + n(k — 1).
Similarly, n(k — 1) = n(k — 2) + p* 2, and so on. Write these out as

n(k) — n(k — 1) = p*
n(k — 1) — n(k —2) =p* 2,

n(2) = n(1) = p,
n(l) = 1.

Adding these up, with the cross-cancellation that we get, we obtain
nk) =14 p + p* + -+ + p¢ 1 Thisis what was claimed in the lemma,
so we are done.

We are now ready to show that S, has a p-Sylow subgroup; that is, we
shall show (in fact, produce) a subgroup of order p™* in S .

LEMMA 2122 S, has a p-Sylow subgroup.

Proof. We go by induction on k. If £ = 1, then the element (1 2 ... p),
in §, is of order p, so generated a subgroup of order p. Since n(l) = 1,
the result certainly checks out for k£ = 1.

Suppose that the result is correct for £ — 1; we want to show that it
then must follow for k. Divide the integers 1, 2,..., p* into p clumps,
each with p* ! elements as follows:

{152""’pk l}’{pk l+l’pk 1+2""’2pk 1}7""
{(ﬁ“‘ l)ﬁk ! + I:""ﬁk}'

The permutation ¢ defined by o = (1,p* * + 1,26 1 +1,...,
(b= D™+ 1) e (ot P52 T (o= DY T 4)
(0 L2k Y.L, (p — 1) L p*) has the following properties:

1. 6 = e
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2. If 1 is a permutation that leaves all i fixed for i > p*~ 1 (hence, affects
only 1, 2,...,p*"1), then 6 't¢ moves only elements in {p* ! + 1,
' +2,...,24 1}, and more generally, 6" /16’ moves only elements

in (GpFt + Lttt + 2,0, (4 D

Consider 4 = {teSux|t() =iifi > p* '}. A is a subgroup of Sy
and elements in 4 can carry out any permutation on 1, 2,...,p* 1
From this it follows easily that 4 & Sy :. By induction, 4 has a subgroup
P, of order p"*~ 1),

Let T = P(¢ 'Pyo)(c *Pyg?) - -(¢ » VPg? ') = PPy - P, ,,
where P; = ¢”'P,¢'. Each P; is isomorphic to P, so has order p"* 1.
Also elements in distinct P;’s influence nonoverlapping sets of integers,
hence commute. Thus T is a subgroup of S, What is its order? Since
PinP;= () if 0 <i#j<p—1,weseethat o(T) = o(P)? = p™*~ 1),
We are not quite there yet. 7 is not the p-Sylow subgroup we seek!

Since 6 = ¢ and ¢ Pj¢' = P, we have ¢ 'To = T. Let P =
{o/t|te T,0<j<p—1}. Sinced¢ Tand ¢ 'To = T we have two
things: firstly, 7 is a subgroup of Sy« and, furthermore, o(P) = p-o(7T) =
p-p"*T VP = pnk= 1P+ 1 Now we are finally there! P is the sought-after
p-Sylow subgroup of § ..

Why? Well, what is its order? It is p"™*~VP*1  But nk — 1) =
l+p+---+p* 2 hence pnk — 1) + 1 =1 4+ p +--- + p*~ 1 = n(k).
Since now o(P) = p"®, P is indeed a p-Sylow subgroup of S.

Note something about the proof. Not only does it prove the lemma, it
actually allows us to construct the p-Sylow subgroup inductively. We
follow the procedure of the proof to construct a 2-Sylow subgroup in §,.

Divide 1, 2, 3,4 into {l, 2} and {3,4}. Let P, = ((12)) and ¢ =
(13)(24). Then P, = ¢ 'P,6c = (34). Our 2-Sylow subgroup is then
the group generated by (1 3)(2 4) and

T = PP, = {(12),(34),(12)(34),¢}.

In order to carry out the program of the third proof that we outlined, we
now introduce a new equivalence relation in groups (see Problem 39,
Section 2.5).

DEFINITION Let G be a group, 4, B subgroups of G. If x, y € G define
x ~ yif y = axb forsomea e 4, b e B.

We leave to the reader the verification—it is easy—of

LEMMA 2123 The relation defined above is an equivalence relation on G.
The equivalence class of x € G is the set AxB = {axb|a € 4, b € B}.
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We call the set AxB a double coset of A, B in G.

If A, B are finite subgroups of G, how many elements are there in the
double coset AxB? To begin with, the mapping T:4xB — AxBx ! given
by (axb) T = axbx ! is one-to-one and onto (verify). Thus o(AxB) =
o(AxBx~1). Since xBx !is a subgroup of G, of order o( B), by Theorem 2.5.1,

o{A)o(xBx 1) o(A)o(B)

0(AxB) = o(AxBx~ 1) = = .
(4+5) ( ) oA nxBx ') o4~ xBx™Y)

We summarize this in

LEMMA 2.12.4 [f A, B are finite subgroups of G then

o(A)o(B)

AxB) = —2A0B)
o) = xBx )

We now come to the gut step in this third proof of Sylow’s theorem.

LEMMA 2125 Let G be a finite group and suppose that G is a subgroup of the
Sfinite group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a
p-Sylow subgroup P. In fact, P = G \ xQx" ! for some x € M.

Proof. Before starting the details of the proof, we translate the hypoth-
eses somewhat. Suppose that p™|o(M), p™* ' ¥ o(M), Q is a subgroup
of M of order p™. Let o(G) = p"t where p } t. We want to produce a sub-
group P in G of order p".

Consider the double coset decomposition of M given by G and @;
M = () GxQ. By Lemma 2.12.4,

o(Grg) = —2C0@ _ __pwr

oG xQx Y)Y oG xQx~ )

Since G n xQx ! is a subgroup of xQx !, its order is p™. We claim that

m, = n for some x € M. If not, then

o(xQ) = =y
so is divisible by p™* . Now, since M = (J GxQ, and this is disjoint union,
o(M) = ¥ 0o(GxQ), the sum running over one element from each double
coset. But p™*1|0(GxQ); hence p™*|o(M). This contradicts p™* 1 ¥o(M).
Thus m, = n for some x€ M. But then o(G r xQx ') = p". Since
G xQx ! = Pis a subgroup of G and has order p", the lemma is proved.

We now can easily prove Sylow’s theorem. By Cayley’s theorem
(Theorem 2.9.1) we can isomorphically embed our finite group G in S,
the symmetric group of degree n. Pick k so that n < p*; then we can iso-
morphically embed §, in Sp (by acting on 1,2,...,n only in the set
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1,2,...,n,...,p%, hence G is isomorphically embedded in Sp By
Lemma 2.12.2, S, has a p-Sylow subgroup. Hence, by Lemma 2.12.5,
G must have a p-Sylow subgroup. This finishes the third proof of Sylow’s
theorem.

This third proof has given us quite a bit more. From it we have the
machinery to get the other parts of Sylow’s theorem.

THEOREM 2.12.2 (SeconDp Part o Syrow’s THEOREM) If G is a finite
group, p a prime and p" | o(G) but p"*' ¥ o(G), then any two subgroups of G of
order p" are conjugate.

Proof. Let A, B be subgroups of G, each of order p*. We want to show
that 4 = gBg~! for some g € G.

Decompose G into double cosets of A and B; G = () 4xB. Now, by
Lemma 2.12.4,

o(A)o(B)

odeB) = BT

If A # xBx™! for every x€ G then o(4 N xBx ') = p™ where m < n.
Thus

and 2n — m > n + 1. Since p"*! | 0(AxB) for every x and since o(G) =
Y o(AxB), we would get the contradiction p**! |o(G). Thus A = gBg !
for some g € G. This is the assertion of the theorem.

Knowing that for a given prime p all p-Sylow subgroups of G are conjugate
allows us to count up precisely how many such p-Sylow subgroups there
arein G. The argument is exactly as that given in proving Theorem 2.11.1.
In some earlier problems (see, in particular, Problem 16, Section 2.5) we
discussed the normalizer N(H), of a subgroup, defined by N(H) =
{x€ G|xHx ' = H}. Then, as in the proof of Theorem 2.11.1, we have
that the number of distinct conjugates, xHx™*, of H in G is the index of N (H) in G.
Since all p-Sylow subgroups are conjugate we have

LEMMA 2.12.6 The number of p-Sylow subgroups in G equals o(G)[o(N(P)),
where P is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

However, much more can be said about the number of p-Sylow subgroups
there are, for a given prime p, in G. We go into this now. The technique
will involve double cosets again.
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THEOREM 2123 (TH®RD PART OF SyLow’s THEOREM)  The number of
p-Sylow subgroups in G, for a given prime, is of the form 1 + kp.

Proof. Let P be a p-Sylow subgroup of G. We decompose G into double
cosets of P and P. Thus G = () PxP. We now ask: How many elements
are there in PxP? By Lemma 2.12.4 we know the answer:

o(P)?
oP N xPx~ 1)’
Thus, if PN xPx~! #£ P then p'*!|o(PxP), where p" = o(P). Para-
phrasing this: if x ¢ N(P) then p"*! | o( PxP). Also, if x € N(P), then PxP =
P(Px) = P?x = Px, so o(PxP) = # in this case.
Now

o PxP) =

o(G) = D o(PxP) + D o(PxP),

xeN(P) ¢N(P)
where each sum runs over one element from each double coset. However,
if x€ N(P), since PxP = Px, the first sum is merely 3, 5 o(Px) over
the distinct cosets of P in N(P). Thus this first sum is just o(N(P)). What
about the second sum? We saw that each of its constituent terms is divisible
by p"*!, hence
P D0 o(PxP).
x¢N(P)
We can thus write this second sum as
D o(PxP) = p'*tu.
x¢N(P)
Therefore o(G) = o(N(P)) + p"*'u, so
O(G) e P"+ 1,
o(N(P)) o(N(P))
Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence p"* *ufo(N(P))
is an integer. Also, sincep"*! J o(G), p"* ! can’t divide o(N(P)). But then
2" lufo(N(P)) must be divisible by p, so we can write p"* *ujo(N(P)) as kp,
where £ is an integer. Feeding this information back into our equation
above, we have

28)_ _ |+ m

o(N(P))
Recalling that o(G)/o(N(P)) is the number of p-Sylow subgroups in G,
we have the theorem.

In Problems 20-24 in the Supplementary Problems at the end of this
chapter, there is outlined another approach to proving the second and third
parts of Sylow’s theorem.

We close this section by demonstrating how the various parts of Sylow’s
theorem can be used to gain a great deal of information about finite groups.
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Let G be a group of order 11%2:132, We want to determine how many
11-Sylow subgroups and how many 13-Sylow subgroups there are in G.
The number of 11-Sylow subgroups, by Theorem 2.12.13, is of the form
1 + 1lk. By Lemma 2.12.5, this must divide 112-132; being prime to 11,
it must divide 132. Can 132 have a factor of theform 1 + 11k? Clearly no,
other than 1 itself. Thus 1 + 11k = 1, and so there must be only one 11-
Sylow subgroup in G. Since all 1 1-Sylow subgroups are conjugate (Theorem
2.12.2) we conclude that the 11-Sylow subgroup is normal in G.

What about the 13-Sylow subgroups? Their number is of the form
1 + 13k and must divide 112-132, hence must divide 112 Here, too, we
conclude that there can be only one 13-Sylow subgroup in G, and it must
be normal.

We now know that G has a normal subgroup 4 of order 112 and a normal
subgroup B of order 132, By the corollary to Theorem 2.11.2, any group
of order p? is abelian; hence 4 and B are both abelian. Since 4 " B = (),
we easily get AB = G. Finally, if a€ 4, b€ B, then aba™'6"! =
a(ba™ 6™ ') € A since A4 is normal, and aba” "6~ = (aba” ')b ' € B since
Bisnormal. Thus aba™'6"' € A n B = (¢). This gives usaba™ 6! =,
and so ab = bafor a € A, b € B. This, together with AB = G, A4, B abelian,
allows us to conclude that G is abelian. Hence any group of order 112-132
must be abelian.

We give one other illustration of the use of the various parts of Sylow’s
theorem. Let G be a group of order 72; o(G) = 2332 How many 3-Sylow
subgroups can there be in G? If this number is ¢, then, according to Theorem
2.12.3, t =1 + 3k. According to Lemma 2.12.5, t] 72, and since ¢ is
prime to 3, we must have ¢ | 8. The only factors of 8 of the form 1 + 3k
are | and 4; hencet = 1 or t = 4 are the only possibilities. In other words
G has either one 3-Sylow subgroup or 4 such.

If G has only one 3-Sylow subgroup, since all 3-Sylow subgroups are
conjugate, this 3-Sylow subgroup must be normal in G. In this case G
would certainly contain a nontrivial normal subgroup. On the other hand
if the number of 3-Sylow subgroups of G is 4, by Lemma 2.12.5 the index of
Nin Gis 4, where Nisthe normalizer of a 3-Sylow subgroup. But72 } 4! =
(¢(N))!. By Lemma 2.9.1 N must contain a nontrivial normal subgroup of
G (of order at least 3). Thus here again we can conclude that G contains a
nontrivial normal subgroup. The upshot of the discussion is that any group
of order 72 must have a nontrivial normal subgroup, hence cannot be
simple.

Problems

1. Adapt the second proof given of Sylow’s theorem to prove directly
that if p is a prime and p* | o(G), then G has a subgroup of order p°.
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10.

11.

*12.

13.

. If x > 0 is a real number, define [x] to be m, where m is that integer

such that m < x < m + 1. If p is a prime, show that the power of
p which exactly divides #! is given by

3G

. Use the method for constructing the p-Sylow subgroup of Sy to find

generators for
(a) a 2-Sylow subgroup in §3. (b) a 3-Sylow subgroup in Sg.

. Adopt the method used in Problem 3 to find generators for

(a) a 2-Sylow subgroup of Ss. (b) a 3-Sylow subgroup of S.

. If p is a prime number, give explicit generators for a p-Sylow sub-

group of §:.

. Discuss the number and nature of the 3-Sylow subgroups and 5-

Sylow subgroups of a group of order 32-52,

. Let G be a group of order 30.

(a) Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G
must be normal in G.

(b) From part (a) show that every 3-Sylow subgroup and every
5-Sylow subgroup of G must be normal in G.

(c) Show that G has a normal subgroup of order 15.

(d) From part (c) classify all groups of order 30.

(e) How many different nonisomorphic groups of order 30 are there?

. If G is a group of order 231, prove that the 11-Sylow subgroup is in

the center of G.

. If G is a group of order 385 show that its 11-Sylow subgroup is normal

and its 7-Sylow subgroup is in the center of G.

If G is of order 108 show that G has a normal subgroup of order 3*,
where £ > 2.
If o(G) = pq, p and ¢ distinct primes, p < ¢, show
(a) ifp ¥ (¢ — 1), then Gis cyclic.
*(b) if p| (¢ — 1), then there exists a unique non-abelian group of
order pgq.
Let G be a group of order pgr, p < q¢ < r primes. Prove
(a) the r-Sylow subgroup is normal in G.
(b) G has a normal subgroup of order gr.
(c) if g 4 (r — 1), the ¢-Sylow subgroup of G is normal in G.
If G is of order p%q, p, ¢ primes, prove that G has a nontrivial nor-
mal subgroup.



*14.

15.

**16.

*17.

*18.

**19,

#20.

21.

22.

23.

24.
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If G is of order p2q, p, ¢ primes, prove that either a p-Sylow sub-
group or a g-Sylow subgroup of G must be normal in G.

Let G be a finite group in which (ab)? = aPb? for every a,b € G,
where p is a prime dividing o(G). Prove

(a) The p-Sylow subgroup of G is normal in G.

*(b) If P is the p-Sylow subgroup of G, then there exists a normal

subgroup N of G with P n N = (¢) and PN = G.
(c) G has a nontrivial center.
If G is a finite group and its p-Sylow subgroup P lies in the center of
G, prove that there exists a normal subgroup N of G with P n N =
(e) and PN = G.
If H is a subgroup of G, recall that N(H) = {xe G| xHx™! = H}.
If P is a p-Sylow subgroup of G, prove that N(N(P)) = N(P).
Let P be a p-Sylow subgroup of G and suppose a, 4 are in the center
of P. Suppose further that @ = xbx ! for some x e G. Prove that
there exists a y € N(P) such that a = pby 1.

Let G be a finite group and suppose that ¢ is an automorphism of G
such that ¢ is the identity automorphism. Suppose further that
¢(x) = x implies that x = ¢. Prove that for every prime p which
divides o(G), the p-Sylow subgroup is normal in G.

Let G be the group of n x n matrices over the integers modulo p,
p a prime, which are invertible. Find a p-Sylow subgroup of G.
Find the possible number of 11-Sylow subgroups, 7-Sylow subgroups,
and 5-Sylow subgroups in a group of order 52-7-11.

If Gis S5 and 4 = ((1 2)) in G, find all the double cosets AxA4 of
A4 in G.

If Gis §4 and 4 = ((1234)), B = ((12)), find all the double
cosets AxB of 4, B in G.

If G is the dihedral group of order 18 generated by a2 = §° = ¢,
ab = b 'a, find the double cosets for H, K in G, where H = (a)
and K = (b3).

Direct Products

On several occasions in this chapter we have had a need for constructing a
new group from some groups we already had on hand. For instance,
towards the end of Section 2.8, we built up a new group using a given group
and one of its automorphisms. A special case of this type of construction
has been seen earlier in the recurring example of the dihedral group.
However, no attempt had been made for some systematic device for
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constructing new groups from old. We shall do so now. The method re-
presents the most simple-minded, straightforward way of combining groups
to get other groups.

We first do it for two groups—not that two is sacrosanct. However,
with this experience behind us, we shall be able to handle the case of any
finite number easily and with dispatch. Not that any finite number is
sacrosanct either; we could equally well carry out the discussion in the
wider setting of any number of groups. However, we shall have no need for
so general a situation here, so we settle for the case of any finite number of
groups as our ultimate goal.

Let A and B be any two groups and consider the Cartesian product
(which we discussed in Chapter 1) G = 4 x B of 4 and B. G consists
of all ordered pairs (a, b), where a € 4 and b € B. Can we use the operations
in 4 and B to endow G with a product in such a way that G is a group?
Why not try the obvious? Multiply componentwise. That is, let us define,
for (a,, b;) and (a,, b,) in G, their product via (a,, b1) (a3, b,) = (a,a,, b,6,).
Here, the product a,a, in the first component is the product of the elements
a, and a, as calculated in the group 4. The product b6, in the second
component is that of b, and b, as elements in the group B.

With this definition we at least have a product defined in G. Is G a
group relative to this product? The answer is yes, and is easy to verify.
We do so now.

First we do the associative law. Let (a,, b;), (az, b;), and (a3, b5) be
three elements of G. Then ((ay, b,)(a,, b,))(as, b3) = (a,a,, b,b,)(as, b3) =
((ayaj)as, (b,by)b3), while (ay, b,)((az, b3)(as, b3)) = (ay, b,)(azas, byb3) =
(ay(azas), by(byb3)). The associativity of the product in 4 and in B then
show us that our product in G is indeed associative.

Now to the unit element. What would be more natural than to try
(e, f), where ¢ is the unit element of 4 and f that of B, as the proposed
unit element for G? We have (a, b)(e,f) = (ae, bf ) = (a, b) and
(e,f)(a, b) = (ea,fb) = (a, b). Thus (¢, f) acts as a unit element in G.

Finally, we need the inverse in G for any element of G. Here, too,
why not try the obvious? Let (a,b) € G; try (a~!, 6™ ') as its inverse.
Now (a, b)(a” ', 6™") = (aa” %, 66™") = (e, f) and (a™ Y, b 1)(a, b) =
(a 'a, b 'b) = (e, f),so that (a=!, b7 !) does serve as the inverse for (a, b).

With this we have verified that G = 4 x B is a group. We call it the
external direct product of A and B.

Since G = A x B has been built up from 4 and B in such a trivial
manner, we would expect that the structure of 4 and B would reflect heavily
in that of G. This is indeed the case. Knowing 4 and B completely gives
us complete information, structurally, about 4 x B.

The construction of G = A x B has been from the outside, external.
Now we want to turn the affair around and try to carry it out internally in G.
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Consider 4 = {(a,f)eG|ae A} =« G= A x B, where f is the unit
element of B. What would one expect of A? Answer: 4 is a subgroup of
G and is isomorphic to 4. To effect this isomorphism, define ¢:4 — 4
by ¢(a) = (a,f) for ae A. It is trivial that ¢ is an isomorphism of 4
onto 4. It is equally trivial that 4 is a subgroup of G. Furthermore, 4 is
normalin G. For if (a, f) € 4 and (a,, b;) G, then (a, b,)(a, f)(a;, b)) ! =
(ay, b1)(a, f)(ay ™%, 6,71 = (ajaa, 7%, b,f6'™Y) = (aya0,7%, f) € 4. Sowe
have an isomorphic copy, 4, of 4 in G which is a normal subgroup of G.

What we did for 4 we can also do for B. If B = {(¢,6) e G| be B},
then B is isomorphic to B and is a normal subgroup of G.

We claim a little more, namely G = AB and every g € G has a unique
decomposition in the form g = b with e 4 and b € B. For, g = (a,b) =
(a,f)(e, b) and, since (a,f) € 4 and (e, b) € B, we do have g = ab with
@ = (a,f) and b = (¢, b). Why is this unique? If (a, b) = £J, where
€A and je B, then ¥ = (x,f), xe Aand j = (¢,),y € B; thus (a, b) =
# = (x,f)(e,») = (x,9). This gives x =a and y = b, and so ¥ =3
and j = .

Thus we have realized G as an internal product 4B of two normal sub-
groups, 4 isomorphic to 4, B to B in such a way that every element g€ G
has a unique representation in the form g = @b, with ae 4 and 6 € B.

We leave the discussion of the product of two groups and go to the case
of n groups, n > 1 any integer.

Let G, G,,...,G, be any n groups. Let G =G, x G, X - x G, =
{(gy, 825> 8n) | g€ G;} be the set of all ordered n-tuples, that is, the
Cartesian product of G, G,,...,G,. We define a product in G via
(81> 825+ -+ > &) (81, 825+ - -+ &) = (€181, 8282, - - » €n&a), that is, via com-
ponentwise multiplication. The product in the ith component is carried
in the group G;. Then G is a group in which (e, e5, .. ., ¢,) is the unit ele-
ment, where each ¢; is the unit element of G;, and where (g,, g5,---,8,) ! =
(g." % 8274 ..., 8 1). We call this group G the external direct product of
G,,G,,...,G,

InG=G, x Gy x - xG,letG,={(ey,€2, 31580 €is1r--+5 nl
g €G;}. Then G; is a normal subgroup of G and is isomorphic to G,
Moreover, G = G,G, -+ G, and every g € G has a unique decomposition
g = &8, &, where §, €G,,..., g, €G, We leave the verification of
these facts to the reader.

Here, too, as in the case A x B, we have realized the group G internally
as the product of normal subgroups G, ..., G, in such a way that every
element is uniquely representable as a product of elements g, - - - g,, where
each g e G, With this motivation we make the
DEFINITION Let G be a group and N,;, N,,..., N, normal subgroups of
G such that
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1. G= NN;+--*N,.
2. Given g € G then g = mym, - -m,, m; € N, in a unique way.

We then say that G is the internal direct product of Ny, N,,..., N,

Before proceeding let’s look at an example of a group G which is the
internal direct product of some of its subgroups. Let G be a finite abelian
group of order p,*'p,% « -+ p,** where p,, p,, . .., p, are distinct primes and
each o; > 0. If P,...,P, are the p,-Sylow subgroup,..., p-Sylow
subgroup respectively of G, then G is the internal direct product of
P, P,,..., P, (see Problem 5).

We continue with the general discussion. Suppose that G is the internal
direct product of the normal subgroups N,,..., N,. The N,,..., N,
are groups in their own right—forget that they are normal subgroups of G
for the moment. Thus we can form the group T= Ny x N, x -+ x N,
the external direct product of Ny,..., N,. One feels that G and T should
be related. Our aim, in fact, is to show that G is isomorphic to T. If we
could establish this then we could abolish the prefix external and internal
in the phrases external direct product, internal direct product—after all
these would be the same group up to isomorphism—and just talk about the
direct product.

We start with

LEMMA 2.13.1 Suppose that G is the internal direct product of Ny, ..., N,.
Then for i # j, Ny N, = (¢), andif a € Ny, b € N; then ab = ba.

Proof. Suppose that x € N; n N;. Then we can write x as
X =l e Xy ey
where ¢, = ¢, viewing x as an element in N,. Similarly, we can write x as
X o=ttty Xt e

where ¢, = ¢, viewing x as an element of N;. But every element-—and so,
in particular x—has a unique representation in the form mym,---m,,
wherem; € Ny,..., m, € N,. Since the two decompositions in this form for
x must coincide, the entry from N; in each must be equal In our
first decomposition this entry is x, in the other it is e; hence x = e.
Thus N; n N; = (e) for i # j.

Suppose a € N, b € N;, and i # j. Then aba™! € N, since N, is normal;
thus aba™'6~' € N;. Similarly, since a” '€ N, ba~'6"' € N,, whence
aba™'b"' € N,. But then aba™'6"" € N, N; = (¢). Thus aba™'6"! =¢;
this gives the desired result ab = ba.

One should point out that if K;,..., K, are normal subgroups of G
such that G = K\ K,---K, and K;n K; = (e) for i # j it need not be
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true that G is the internal direct product of K, ..., K,. A more stringent
condition is needed (see Problems 8 and 9).

We now can prove the desired isomorphism between the external and
internal direct products that was stated earlier.

THEOREM 2.13.1 Let G be a group and suppose that G is the internal direct
product of Ny,..., N, Lt T =N x Ny x -+ x N,. ThenG and T
are isomorphic.

Proof. Define the mapping y: T — G by

W((by, by ..., b,)) = byby-b,,
where each b;e N, i = 1,..., n. We claim that § is an isomorphism
of T onto G.

To begin with, i is certainly onto; for, since G is the internal direct
product of Ny,..., N,, if x € G then x = a,a, - - a, for some q, € Ny, . . .,
a, € N, But then y((a, a5, ...,4a,)) = aja,-+-a, = x. The mapping
Y is one-to-one by the uniqueness of the representation of every element as
a product of elements from N,..., N, For, if y((q,...,qa,)) =
Y((¢ys---5€n), where a;€ Ny, ¢;€ Ny, for i = 1,2,..., n, then, by the
definition of y, ajay-*-a, = ¢;¢,° " *¢,. The uniqueness in the definition
of internal direct product forces a;, = ¢,, a; = ¢3,..., 4, = ¢,. Thus ¥

is one-to-one.
All that remains is to show that i) is a homomorphism of 7" onto G.
IfX =(ay,...,a,), Y =_(b,...,b,) are elements of T then

Y(XY) = y((ar,..., a.)(by,- .-, b))
= Ylayby, azb,, ..., a,b,)
= a,bjazb, -+ ayb,.

However, by Lemma 2.13.1, ab; = b;a; if i # j. This tells us that
abiazby - -ab, = ajay - a,bby b, Thus Yy(XY) = a,a,- cabbye b,
But we can recognize a,a,- - *a,as Y ((a,, ay, . ..,4a,)) = Y(X) and b6, - b,
as Y(Y). We therefore have /(XY) = y(X)¢(Y). In short, we have shown
that i/ is an isomorphism of T onto G. This proves the theorem.

Note one particular thing that the theorem proves. If a group G is
isomorphic to an external direct product of certain groups G, then G 1,
in fact, the internal direct product of groups G, isomorphic to the G, We
simply say that G is the direct product of the G, (or G).

In the next section we shall see that every finite abelian group is a direct
product of cyclic groups. Once we have this, we have the structure of all
finite abelian groups pretty well under our control.

One should point out that the analog of the direct product of groups
exists in the study of almost all algebraic structures. We shall see this later
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for vector-spaces, rings, and modules. Theorems that describe such an
algebraic object in terms of direct products of more describable algebraic
objects of the same kind (for example, the case of abelian groups above) are
important theorems in general Through such theorems we can reduce the
study of a fairly complex algebraic situation to a much simpler one.

Problems

L.
2.

10.

*]1.

12.

If A and B are groups, prove that 4 x B is isomorphic to B x 4.
If Gy, G,, G, are groups, prove that (G, x G,;) x G, is isomorphic
to G, x G, x G Care to generalize?

. If T=G, x G, x-++ x G, prove that for each i = 1,2,...,n

there is a homomorphism ¢; of T onto G,. Find the kernel of ¢,

. Let Gbeagroupandlet T = G x G.

(a) Show that D = {(g,8) €eG x G| ge G} is a group isomorphic
to G.
(b) Prove that D is normal in T if and only if G is abelian.

. Let G be a finite abelian group. Prove that G is isomorphic to the

direct product of its Sylow subgroups.

. Let 4, B be cyclic groups of order m and n, respectively. Prove that

A x Bis cyclic if and only if m and n are relatively prime.

. Use the result of Problem 6 to prove the Chinese Remainder Theorem;

namely, if m and n are relatively prime integers and %, » any two
integers, then we can find an integer x such that x = ¥ mod m and
x = v mod n.

. Give an example of a group G and normal subgroups Ny,..., N,

such that G = N,N,::-N, and N; " N; = (e) for i # j and yet
G is not the internal direct product of Ny, ..., N,.

. Prove that G is the internal direct product of the normal subgroups

N,,..., N,if and only if

1.G=N;::*N,

2 Ny (NN, Ni_(N;yy***N,) = (e)fori=1,...,n

Let G be a group, K, ..., K, normal subgroups of G. Suppose that
KinK;n---n K, = (¢). Let V; = G|K;. Prove that there is an
isomorphism of Ginto ¥V, x V3 X *+- x V,,

Let G be a finite abelian group such that it contains a subgroup
H, # (e) which lies in every subgroup H # (). Prove that G must
be cyclic. What can you say about o(G)?

Let G be a finite abelian group. Using Problem 11 show that G is
isomorphic to a subgroup of a direct product of a finite number of
finite cyclic groups.
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13. Give an example of a finite non-abelian group G which contains a

subgroup H, # (¢) such that H, < H for all subgroups H # (e) of G.

14. Show that every group of order p%, p a prime, is either cyclic or is
isomorphic to the direct product of two cyclic groups each of order p.

*15. Let G = A x A where 4 is cyclic of order p, p a prime. How many
automorphisms does G have?

16. If G = K, x K, x -+ x K, describe the center of G in terms of
those of the K.

17. If G = K, x K, x -+ xK, and g € G, describe
N(g) = {xe G| xg = gx}.

18. If G is a finite group and Ny, ..., N, are normal subgroups of G
such that G = NN, -+ N, and o(G) = o(N;)o(N,) ---o(N,), prove
that G is the direct product of Ny, N,, ..., N,.

n

214 Finite Abelian Groups

We close this chapter with a discussion (and description) of the structure
of an arbitrary finite abelian group. The result which we shall obtain is a
famous classical theorem, often referred to as the Fundamental Theorem on
Finite Abelian Groups. It is a highly satisfying result because of its de-
cisiveness. Rarely do we come out with so compact, succinct, and crisp a
result. In it the structure of a finite abelian group is completely revealed,
and by means of it we have a ready tool for attacking any structural problem
" about finite abelian groups. It even has some arithmetic consequences.
For instance, one of its by-products is a precise count of how many non-
isomorphic abelian groups there are of a given order.

In all fairness one should add that this description of finite abelian groups
is not as general as we can go and still get so sharp a theorem. As you shall
see in Section 4.5, we completely describe all abelian groups generated by
a finite set of elements—a situation which not only covers the finite abelian
group case, but much more.

We now state this very fundamental result.

THEOREM 2.14.1 Euvery finite abelian group is the direct product of cyclic
groups.

Proof. Our first step is to reduce the problem to a slightly easier one.
We have already indicated in the preceding section (see Problem 5 there)
that any finite abelian group G is the direct product of its Sylow subgroups.
If we knew that each such Sylow subgroup was a direct product of cyclic
groups we could put the results together for these Sylow subgroups to
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realize G as a direct product of cyclic groups. Thus it suffices to prove the
theorem for abelian groups of order p" where p is a prime.

So suppose that G is an abelian group of order p". Our objective is to
find elements ay, ..., g, in G such that every element x € G can be written
in a unique fashion as x = a;*'a,*? - - - q,**. Note that if this were true and
ay, ..., aq, were of order p™, ..., p™, where n; > n, > ++* > n,, then the
maximal order of any element in G would be p" (Prove!). This gives us
a cue of how to go about finding the elements a,, . . ., a; that we seek.

The procedure suggested by this is: let ¢, be an element of maximal
order in G. How shall we pick a,? Well, if 4, = (a;) the subgroup
generated by a;, then a, maps into an element of highest order in G/A4,.
If we can successfully exploit this to find an appropriate a,, and if 4, =
(a;), then a; would map into an element of maximal order in G/4,4,,
and so on. With this as guide we can now get down to the brass tacks of
the proof.

Let 4, be an element in G of highest possible order, p™, and let 4, =
(a). Pick b, in G such that b,, the image of b, in G = G/A4,, has maximal
order p™. Since the order of b, divides that of b,, and since the order of
a, is maximal, we must have that n; > n,. In order to get a direct product
of A, with (b,) we would need 4, n (b,) = (¢); this might not be true
for the initial choice of 4,, so we may have to adapt the element b,. Suppose
that 4; n (b;) # (e); then, since b,°"* € 4, and is the first power of b, to
fall in 4, (by our mechanism of choosing b,) we have that 6,°"? = a,’.
Therefore (a,')P" ™" = (b,P"2)P"1™"2 = h,P" = ¢, whence a,"?™ ™™ = ¢. Since
a, is of order p™ we must have that p" | ip™ ~"2 and so p"* |i. Thus, re-
calling what i is, we have 6,’" = a,' = a,/P". This tells us that ifa, =
a, "¥b, then a,”"* = ¢. The element g, is indeed the element we seek. Let
A, = (ay). We claim that 4; n 4, = (¢). For, suppose that a,’ € 4,;
since a, = a, ~fb,, we get (a,77b,)" € 4, and so b,' € 4,. By choice of b,,
this last relation forces p"? | ¢, and since a,”"* = ¢we musthavethata,’ = e.
In short 4; n 4, = {(e).

We continue one more step in the program we have outlined. Let
by € G map into an element of maximal order in G/(4;4,). If the order
of the image of b5 in G/(4,4,) is p™, we claim that ny < n, < n;. Why?
By the choice of n,, b5P"2 € 4, so is certainly in 4,4,. Thus n; < n,. Since
byP™ € A,A4,, byP™ = a,"a,'2. We claim that p™|i, and p"|i,. For,
bs?"? € A, hence (a,1a,'3)P"7™"3 = (by7"*)P"2™" = b,7"2 ¢ A,. This tells us
that a,'2?"2™™ € A4, and so p" | i,p" ", which is to say, p™ | i,. Also b,”" =
¢, hence (a,a,'2)?™ ™™ = b,?"t = ¢; this says that a,"""" "™ e 4, N 4, = (e),
thatis, a,"*?"* ™ = ¢. Thisyields thatp™ |i;. Leti, = j;p™, i, = j,p™; thus
byP™ = a J1P"a,iP"s Let ay = a, 7'a, 92b,, Ay = (a;); note that a,?™ = e.
We claim that 45 n (4,4,) = (¢). Forif ay' € 4,4, then (a, ~#a, b,)' e
A, A,, giving us by € 4, A4,. But then p™ | {, whence, since a;*"* = ¢, we have
a;' = e. In other words, 4; N (4,4;) = (e)-
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Continuing this way we get cyclic subgroups 4, = (q,), 4, =
(@2)s. .., 4, = (a,) of order p™,p™,..., p", respectively, with n, >
n, >+++>n such that G = 4,4,--+-4, and such that, for each i,
4;n (4,4,+--A,_;) = (¢). This tells us that every x € G has a unique
representation as x = @@ ---a, where aj € 4,,...,a,€ 4. In other
words, G is the direct product of the cyclic subgroups 4, 4,,..., 4,.
The theorem is now proved.

DEFINITION If G is an abelian group of order p", p a prime, and G =
A, x A, x +- x A, where each 4, is cyclic of order p™ with n, > n, >
+--2mn > 0, then the integers ny, n,,..., n, are called the imarants
of G.

Just because we called the integers above the invariants of G does not
mean that they are really the invariants of G. That is, it is possible that we
can assign different sets of invariants to G. We shall soon show that the
invariants of G are indeed unique and completely describe G.

Note one other thing about the invariants of G. If G = 4; x -*+ x 4,,
where 4, is cyclic of order p™, n, > n, > -+ =2 n, > 0, then o(G) =
o(4,)o(4;) +++ o(A,), hence p" = prip™m .- pM = pmtmt M ywhence n =
ny + n; + *+- + n,. In other words, ny, n,, ..., n, give us a partition of n.
We have already run into this concept earlier in studying the conjugate
classes in the symmetric group.

Before discussing the uniqueness of the invariants of G, one thing should
be made absolutely clear: the elements a,,..., q, and the subgroups
Ay, ..., A, which they generate, which arose above to give the decom-
position of G into a direct product of cyclic groups, are not unique. Let’s
see this in a very simple example. Let G = {e, q, b, ab} be an abelian
group of order 4 where a®> = b% = ¢, ab = ba. Then G = 4 x B where
A = (a), B = (b) are cyclic groups of order 2. But we have another
decomposition of G as a direct product, namely, G = C x B where
C = (ab) and B = (b). So, even in this group of very small order, we can
get distinct decompositions of the group as the direct product of cyclic
groups. Our claim—which we now want to substantiate—is that while
these cyclic subgroups are not unique, their orders are

DEFINITION If G is an abelian group and s is any integer, then G(s) =
{xeG|x = ¢}

Because G is abelian it is evident that G(s) is a subgroup of G. We now
prove

LEMMA 2.14.1 If G and G’ are isomorphic abelian groups, then for every
integer s, G(s), and G'(s) are isomorphic.
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Proof. Let ¢ be an isomorphism of G onto G'. We claim that ¢ maps
G(s) isomorphically onto G’(s). First we show that ¢(G(s)) = G'(s).
For, if x € G(s) then ¥ = ¢, hence ¢(¥*) = ¢(e) = ¢. But ¢(¥*) = ¢(x)°;
hence ¢(x)* = ¢ and so ¢(x) is in G'(s). Thus ¢(G(s)) = G'(s).

On the other hand, if «' € G’(s) then (¥')* = ¢. But, since ¢ is onto,
v = ¢(y) for some y € G. Therefore ¢’ = (')’ = ¢(»)* = ¢()°). Be-
cause ¢ is one-to-one, we have 3* = ¢ and so y € G(s). Thus ¢ maps G(s)
onto G'(s).

Therefore since ¢ is one-to-one, onto, and a homomorphism from G (s)
to G'(s), we have that G(s) and G’(s) are isomorphic.

We continue with

LEMMA 2.14.2 Let G be an abelian group of order p°, p a prime. Suppose
that G = A; X Ay x <+ %X A,, where each A; = (a;) is cyclic of order p™,
andn;, > ny =+ 2 m > 0. If mis an integer such that n, > m > n,, then
G(p™) =B, x --x B, x Ayyy X -** x A, where B, is cyclic of order
™ generated by o™ ", for i < t. The order of G (p™) is p*, where

k
u=mt+ Z ng.
i=t+1

Proof. First of all, we claim that 4,,,,..., 4, are all in G(p™). For,
since m2myy 2 2m>0, if j2t+1, a7 = (af)" =e.
Hence 4, forj > t + 1 lies in G(p"™).

Secondly, if i <t then n;, > m and (g ")’ = g™ = ¢, whence
each such ¢ ™ is in G(p™) and so the subgroup it generates, B, is also
in G(p™).

Since B,, ..., By, 4;41,..., 4; are all in G(p™), their product (which
is direct, since the product 4,4,--+4, is direct) is in G(p™). Hence
G(p™) 2By X - x B, X A,y X+ X A,

On the other hand, if x = a,*a,* - - - g,* is in G(p™), since it then satisfies
2" =¢ weset e = 3" = g " .- g " However, the product of the
subgroups 4,,..., 4, is direct, so we get

a " =g ..., =,

Thus the order of g, that is, p™ must divide 4,;p™ for i = 1,2,...,k If
i 2 ¢ + 1 thisis automatically true whatever be the choice of 4, 4,,..., 4;
since m 2 m4yy >+ 2>2m, hence p™|p™, ¢ >t + 1. However, for
i <t we get from p™ | 4,p™ that p™~™| A,. Therefore 4; = yp™ ™™ for
some integer »;, Putting all this information into the values of the 4,s in
the expression for x as x = a,** - - - g,** we see that

x = all’xP"‘l"" .o .a"’lp"l-ma'*“hvl e ak;*'
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This says thatx € By x *++ x B, x A4y X ** X 4.
Now since each B; is of order p™ and since o(d4;) = p™ and since
G =By XX B x A,y x " x 4y

o(G) = o(By)o(By) -+~ o(B)o(dyyy) = 0(Ay) = prp™ - PP PR
R

Thus, if we write o(G) = p*, then t-times
k
u =mt + n;.
i=f+1

The lemma is proved.

COROLLARY  If G is as in Lemma 2.14.2, then o(G(p)) = p*.

Proof. Apply the lemma to the case m = 1. Then ¢ = k, hence
u = lk = kand so o(G) = p*.

We now have all the pieces required to prove the uniqueness of the
invariants of an abelian group of order p".

THEOREM 2.14.2 Tuwo abelian groups of order p" are isomorphic if and only
if they have the same invariants.

In other words, if G and G’ are abelian groups of order p” and G = A; x -+ x 4,,
where each A; is a cyclic group of order p", ny > *++>n, >0, and G' =
B} x +++ x B, whereeach B} is a cyclic group of order pM, h; > -+ > h, > 0,
then G and G’ are isomorphic if and only if k = s and for each i, n; = h;.

Proof. One way is very easy, namely, if G and G’ have the same in-
variants then they are isomorphic. For then G = 4; x -+ x 4, where
A4; = (a;) is cyclic of order p™, and G’ = B} x --* x B; where B] = (b})
is cyclic of order p™. Map G onto G’ by the map ¢(a,** ---q) =
(b1)% - -~ (bp)™. We leave it to the reader to verify that this defines an
isomorphism of G onto G’.

Now for the other direction. Suppose that G = 4, x **+ x A,
G' = B} x +++ x B, A;, B; as described above, cyclic of orders p", h
respectively, where n, >--+>n, >0 and & >--+>h, > 0. We
want to show that if Gand G’ are isomorphic then £ = s and each n; = A,

If G and G’ are isomorphic then, by Lemma 2.14.1, G(p™) and G’(p™)
must be isomorphic for any integer m > 0, hence must have the same order.
Let’s see what this gives us in the special case m = 1; that is, what in-
formation can we garner from o(G(p)) = o(G’'(p)). According to the
corollary to Lemma 2.14.2, o(G(p)) = p* and o(G’'(p)) = p*. Hence
¥ = p*and so k = s. At least we now know that the number of invariants
for G and G’ is the same.
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If n; # & for some i, let ¢ be the first i such that n, # & ; we may sup-
pose that n, > k. Let m = 4,. Consider the subgroups, H = {x*"|x € G}
and H’ = {(x')?" | x’ € G}, of G and G’, respectively. Since G and G’ are
isomorphic, it follows easily that H and H’ are isomorphic. We now ex-
amine the invariants of H and H".

Because G = 4, x *-- x A,, where 4; = (a,) is of order p™, we get that

H=C x--x C x-+xC,

where C; = (af") is of order p»~™ and where r is such that n, > m =
h, > n,.,. Thus the invariants of H are n, —m, n, —m,...,n, —m
and the number of invariants of His r > t.

Because G’ = B} x *++ x Bi, where B; = (b]) is cyclic of order p",
we get that H' = Dy x --+ x D,_,, where D} = ((§})?") is cyclic of order
p"~™ Thus the invariants of H' are & — m,..., h_, — m and so the
number of invariants of H'is ¢t — 1.

But H and H' are isomorphic; as we saw above this forces them to have
the same number of invariants. But we saw that assuming that n; # &,
for some ¢ led to a discrepancy in the number of their invariants. In con-
sequence each n; = 4,;, and the theorem is proved.

An immediate consequence of this last theorem is that an abelian group
of order p" can be decomposed in only one way—as far as the orders of the
cyclic subgroups is concerned—as a direct product of cyclic subgroups. Hence
the invariants are indeed the invariants of G and completely determine G.

Ifny2---2n>0 n=n+--++n, is any partition of n, then
we can easily construct an abelian group of order p" whose invariants are
ng >--+2mn > 0. To do this, let 4; be a cyclic group of order p™ and
let G =A4, x---x A, be the external direct product of 4,,..., 4,.
Then, by the very definition, the invariants of G are n, > --- > n, > 0.
Finally, two different partitions of n give rise to nonisomorphic abelian
groups of order p". This, too, comes from Theorem 2.14.2. Hence we have

THEOREM 2.14.3 The number of nonisomorphic abelian groups of order p",
b a prime, equals the number of partitions of n.

Note that the answer given in Theorem 2.14.3 does not depend on the
prime p; it only depends on the exponent n. Hence, for instance, the number
of nonisomorphic abelian groups of order 2* equals that of orders 3%, or
54, etc. Since there are five partitions of 4, namely: 4 = 4,3 + 1, 2 + 2,
2+1+4+ 1, 1+1+1+41, then there are five nonisomorphic abelian
groups of order p* for any prime p.

Since any finite abelian group is a direct product of its Sylow subgroups,
and two abelian groups are isomorphic if and only if their corresponding
Sylow subgroups are isomorphic, we have the
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COROLLARY  The number of nonisomorphic abelian groups of order p,*- - -p,*,
where the p, are distinct primes and where each oy > 0, is p(a,)p(a,) - -« p(a,),
where p(u) denotes the number of partitions of u.

Problems

1.

If G is an abelian group of order p", p a prime and ny > n, > --- >
n, > 0, are the invariants of G, show that the maximal order of any
element in G is p".

. If G is a group, 4,,..., A, normal subgroups of G such that 4; n

(4,4,---4;_;) = (e¢) for all i, show that G is the direct product of
Ay AIfG = 4,45+ 4,

. Using Theorem 2.14.1, prove that if a finite abelian group has sub-

groups of orders m and n, then it has a subgroup whose order is the least
common multiple of m and n.

. Describe all finite abelian groups of order

(a) 25 (b) 115 (c) 75  (d) 2%-3%

. Show how to get all abelian groups of order 2% - 3% -5,

6. If G is an abelian group of order " with invariants n, > +«->n, > 0

10.

11,

12,

and H # (¢) is a subgroup of G, show that if & > -+- > h, > 0 are
the invariants of H, then £ > sand for eachi, &, < n;fori =1,2,...,s.

If G is an abelian group, let G be the set of all homomorphisms of G
into the group of nonzero complex numbers under multiplication.

If¢,, ¢, € G, define ¢, - ¢; by (¢, - $,)(g) = $1(g)¢,(¢) forallge G.

. Show that G is an abelian group under the operation defined.

. If ¢ € G and G is finite, show that ¢(g) is a root of unity for every

g€G.

. If G is a finite cyclic group, show that G is cyclic and o(G) = o(G),

hence G and G are isomorphic.

If g, # g, are in G, G a finite abelian group, prove that there is a
¢ € G with ¢(g1) # ¢(g)-

If G is a finite abelian group prove that o(G) = 0(G) and G is iso-
morphic to G.

If ¢ # 1 € C where G is an abelian group, show that 9 ¢(g) = 0.

geG

Supplementary Problems

There is no relation between the order in which the problems appear and
the order of appearance of the sections, in this chapter, which might be
relevant to their solutions. No hint is given regarding the difficulty of any
problem,
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. (a) If G is a finite abelian group with elements a,, a,,. .., a,, prove

that a,a, <+ - a, is an element whose square is the identity.
(b) If the G in part (a) has no element of order 2 or more than one
element of order 2, prove that a;a, - -a, = e.
(c) If G has one element, y, of order 2, prove that a,a; *--a, = .
(d) (Wilson’s theorem) If p is a prime number show that (p — 1)! =

= 1(p).
. If p is an odd prime and if
1,1 1 a
l+ -+ -4 —— =,
2 3 p—1 b

where a and b are integers, prove that p|a. If p > 3, prove that

e

. If p is an odd prime, a # 0 (p) is said to be a quadratic residue of p if

there exists an integer x such that x> = a(p). Prove

(a) The quadratic residues of p form a subgroup @ of the group of
nonzero integers mod p under multiplication.

(b) o(Q) = (¢ — 1)/2.

(c) If ge Q, n¢ Q (nis called a nonresidue), then ng is a nonresidue.

(d) If ny, n, are nonresidues, then n;n, is a residue.

(e) If a is a quadratic residue of p, then a® /2 = +1(p).

. Prove that in the integers mod p, p a prime, there are at most n

solutions of * = 1(p) for every integer n.

. Prove that the nonzero integers mod p under multiplication form a

cyclic group if p is a prime.
Give an example of a non-abelian group in which (xy)? = x3y? for
all x and y.

. If G is a finite abelian group, prove that the number of solutions of

%" = ¢ in G, where n | o(G) is a multiple of n.

. Same as Problem 7, but do not assume the group to be abelian.
. Find all automorphisms of §; and S, the symmetric groups of degree

3 and 4.

DEFINITION A group G is said to be solvable if there exist subgroups G =
Ny o N, o N, o+ N, = (e) such that each N, is normal in N,_, and
N[N, is abelian.

10.

11.

12.

Prove that a subgroup of a solvable group and the homomorphic
image of a solvable group must be solvable.

If G is a group and N is a normal subgroup of G such that both N
and G/N are solvable, prove that G is solvable.

If G is a group, 4 a subgroup of G and N a normal subgroup of G,
prove that if both 4 and N are solvable then so is AN.



13.

14.
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If G is a group, define the sequence of subgroups G” of G by

(1) G = commutator subgroup of G = subgroup of G generated
by all aba™ 16~ where a, b € G.

(2) G = commutator subgroup of GV~ ifi > 1.

Prove

(a) Each G is a normal subgroup of G.

(b) G is solvable if and only if G® = (¢) for some £ > 1.

Prove that a solvable group always has an abelian normal subgroup

M # (e).

If G is a group, define the sequence of subgroups G;, by

(a) G(;y = commutator subgroup of G.

(b) Gy = subgroup of G generated by all aba™'6~! where a € G,
be G,y

G is said to be nilpotent if Gy = (e) for some k > 1.

15.

16.

17.

18.

19.

20.

21.

22.

(a) Show that each G is a normal subgroup of G and G;, o G.
(b) If G is nilpotent, prove it must be solvable.
(c) Give an example of a group which is solvable but not nilpotent.

Show that any subgroup and homomorphic image of a nilpotent group
must be nilpotent.

Show that every homomorphic image, different from (¢), of a nil-
potent group has a nontrivial center.

(a) Show that any group of order p", p a prime, must be nilpotent.
(b) If G is nilpotent, and H # G is a subgroup of G, prove that
N(H) # Hwhere N(H) = {xe G|xHx™! = H}.

If G is a finite group, prove that G is nilpotent if and only if G is the
direct product of its Sylow subgroups.

Let G be a finite group and H a subgroup of G. For 4, B subgroups

of G, define 4 to be conjugate to B relative to H if B = x~ !4x for

some x € H. Prove

(a) This defines an equivalence relation on the set of subgroups of G.

(b) The number of subgroups of G conjugate to A relative to H
equals the index of N(4) n H in H.

(a) If G is a finite group and if P is a p-Sylow subgroup of G, prove
that P is the only p-Sylow subgroup in N(P).

(b) If P is a p-Sylow subgroup of G and if ¢** = ¢ then, if a € N(P),
a must be in P.

(c) Prove that N(N(P)) = N(P).

(a) If G is a finite group and P is a p-Sylow subgroup of G, prove
that the number of conjugates of P in G is not a multiple of p.
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23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

#33.

(b) Breaking up the conjugate class of P further by using conjugacy
relative to P, prove that the conjugate class of P has 1 + kp
distinct subgroups. (Hint: Use part (b) of Problem 20 and
Problem 21. Note that together with Problem 23 this gives an
alternative proof of Theorem 2.12.3, the third part of Sylow’s
theorem.)

(a) If Pis a p-Sylow subgroup of G and B is a subgroup of G of order
p*, prove that if B is not contained in some conjugate of P, then
the number of conjugates of P in G is a multiple of p.

(b) Using part (a) and Problem 22, prove that B must be contained
in some conjugate of P.

(c) Prove that any two p-Sylow subgroups of G are conjugate in G.
(This gives another proof of Theorem 2.12.2, the second part of
Sylow’s theorem.)

Combine Problems 22 and 23 to give another proof of all parts of

Sylow’s theorem.

Making a case-by-case discussion using the results developed in this

chapter, prove that any group of order less than 60 either is of prime

order or has a nontrivial normal subgroup.

Using the result of Problem 25, prove that any group of order less

than 60 is solvable.

Show that the equation x%ax = a~ ! is solvable for x in the group

G if and only if a is the cube of some element in G.

1

Prove that (1 2 3) is not a cube of any element in §,.

Prove that xax = b is solvable for x in G if and only if ab is the square
of some element in G.

If G is a group and a € G is of finite order and has only a finite number
of conjugates in G, prove that these conjugates of a generate a finite
normal subgroup of G.

Show that a group cannot be written as the set-theoretic union of
two proper subgroups.

Show that a group G is the set-theoretic union of three proper sub-
groups if and only if G has, as a homomorphic image, a noncyclic
group of order 4.

Let p be a prime and let Z, be the integers mod p under addition and

b) where q, b,¢,d € Z,

multiplication. Let G be the group (:l d

are such that ad — bc = 1. Let

¢= {6 1) (%o )

and let LF(2, p) = G/C.
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(a) Find the order of LF(2, p).
(b) Prove that LF(2, p) is simple if p > 5.

#34. Prove that LF(2,5) is isomorphic to As, the alternating group of
degree 5.

#35. Let G = LF(2,7); according to Problem 33, G is a simple group of
order 168. Determine exactly how many 2-Sylow, 3-Sylow, and
7-Sylow subgroups there are in G.

Supplementary Reading
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ematical Monthly, Vol. 66 (1959), page 119.
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Ring Theory

3.1 Definition and Examples of Rings

As we indicated in Chapter 2, there are certain algebraic systems
which serve as the building blocks for the structures comprising the
subject which is today called modern algebra. At this stage of the
development we have learned something about one of these, namely
groups. It is our purpose now to introduce and to study a second
such, namely rings. The abstract concept of a group has its origins
in the set of mappings, or permutations, of a set onto itself. In con-
trast, rings stem from another and more familiar source, the set of
integers. We shall see that they are patterned after, and are gen-
eralizations of, the algebraic aspects of the ordinary integers.

In the next paragraph it will become clear that a ring is quite
different from a group in that it is a two-operational system; these
operations are usually called addition and multiplication. Yet,
despite the differences, the analysis of rings will follow the pattern
already laid out for groups. We shall require the appropriate analogs
of homomorphism, normal subgroups, factor groups, etc. With the
experience gained in our study of groups we shall be able to make the
requisite definitions, intertwine them with meaningful theorems, and
end up proving results which are both interesting and important
about mathematical objects with which we have had long acquaintance.
To cite merely one instance, later on in the book, using the tools
developed here, we shall prove that it is impossible to trisect an angle
of 60° using only a straight-edge and compass.
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DEFINITION A nonempty set R is said to be an associative ring if in R
there are defined two operations, denoted by + and * respectively, such
that for all @, b, ¢ in R:

l. a + bisin R.

a+b=">6+a

.(a+b) +c=a+ (b+ o).

. There is an element 0 in R such that ¢ + 0 = a (for every a in R).

. There exists an element —a in R such that a + (—a) = 0.

a*bisin R.

a-(b-c) = (a-b)-c

a-(b+c¢)=a'b+acand(b +¢)ra=b'a+ c:a (the two distrib-
utive laws).

N

®NO U

Axioms 1 through 5 merely state that R is an abelian group under the
operation +, which we call addition. Axioms 6 and 7 insist that R be closed
under an associative operation -, which we call multiplication. Axiom 8
serves to interrelate the two operations of R.

Whenever we speak of ring it will be understood we mean associative
ring. Nonassociative rings, that is, those in which axiom 7 may fail to hold,
do occur in mathematics and are studied, but we shall have no occasion to
consider them.

It may very well happen, or not happen, that there is an element 1 in
R such that a-1 = 1-a = a for every a in R; if there is such we shall
describe R as a ring with unit element.

If the multiplication of R is such thata b = b -a for every a, b in R, then
we call R a commutative ring.

Before going on to work out some properties of rings, we pause to examine
some examples. Motivated by these examples we shall define various
special types of rings which are of importance.

Example 3.1.1 R is the set of integers, positive, negative, and 0; + is
the usual addition and - the usual multiplication of integers. R is a com-
mutative ring with unit element.

Example 3.1.2 R is the set of even integers under the usual operations
of addition and multiplication. R is a commutative ring but has no unit
element.

Example 3.1.3 R is the set of rational numbers under the usual addition
and multiplication of rational numbers. R is a commutative ring with unit
element. But even more than that, note that the elements of R different
from O form an abelian group under multiplication. A ring with this latter
property is called a fleld.
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Example 3.14 R is the set of integers mod 7 under the addition and
multiplication mod 7. That is, the elements of R are the seven symbols
0,1,2,3,%75, 6, where
1. T + j = k where k is the remainder of ¢ + j on division by 7 (thus, for

instance, 4 + 5 = 2 since 4 + 5 = 9, which, when divided by 7,

leaves a remainder of 2).

2. 1-j = M where m is the remainder of ij on division by 7 (thus, 53 = T

since 5-3 = 15 has | as a remainder on division by 7).

The student should verify that R is a commutative ring with unit element.
However, much more can be shown ; namely, since

I'T=T=25-5,

2:3=1=%.3

35=1=735.3
the nonzero elements of R form an abelian group under multiplication.
R is thus a field. Since it only has a finite number of elements it is called a

Jinite field.

Example 3.1.6 R is the set of integers mod 6 under addition and
multiplication mod 6. If we denote the elements in R by 01.2.... 5,
oneseesthat 2:3 = 0, yet Z # Oand 3 # 0. Thus it is possible in a ring R
that a+ b = O with neither a = 0 nor b = 0. This cannot happen in a field
(see Problem 10, end of Section 3.2), thus the ring R in this example is
certainly not a field.

Every example given so far has been a commutative ring. We now
present a noncommutative ring.

Example 3.1.6 R will be the set of all symbols
2
@y 8y + %2653 + 02163, + Gpz6; = ; LT
1=

where all the «;; are rational numbers and where we decree
2

';_:1 &y = ‘.;2-:1 By (1)

ifand only if foralls,j = 1, 2, o, = B,
2

2 2
2 ey + UZ: Buey = 2 (ay + By 2

I,j=1 WJ=1 i,Jj=1

2 2 2
(,,,z:.:, au‘u) . (”231 pU‘U) = ";l Yijeups (3)
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where
2

Yij = Z ainBoy = ayuBij + 2By
vl

This multiplication, when first seen, looks rather complicated. However,
it is founded on relatively simple rules, namely, multiply 3'a;e;; by 38;;¢;;
formally, multiplying out term by term, and collecting terms, and using the
relations ¢;; - ¢, = O for j # k, ¢;;- ¢;; = ¢; in this term-by-term collecting.
(Of course those of the readers who have already encountered some linear
algebra will recognize this example as the ring of all 2 x 2 matrices over
the field of rational numbers.)

To illustrate the multiplication, if a = ¢;;, — ¢;; + ¢35 and & =
€32 + 3812, then

a-b = (e — €31 + €22) * (€22 + 3e12)

exrveaz + ey €1y —€y17€5 — 3eyy0ei; + €337€25 + 3ey30¢12
=0+ 3¢, —0—3¢,; +¢,+0
= 3¢5 — 36y, + €3, = 3¢y, — 2655
Note that ¢, *¢;, = ¢, whereas ¢;,¢;; = 0. Thus the multiplication
in R is not commutative. Also it is possible for #-v = 0 with # # 0 and
v#0.
The student should verify that R is indeed a ring. It is called the ring of

2 x 2 rational matrices. It, and its relative, will occupy a good deal of
our time later on in the book.

Example 3.1.7 Let C be the set of all symbols (a, f) where a, 8 are
real numbers. We define

(¢, B) = (y, 6) ifand only ifa = pand g = 4. (1)
In C we introduce an addition by defining for x = (a, 8), y = (7, 0)
x+y=(68 + (8 =(x+7yp+ ) (2)

Note that x + y is again in C. We assert that C is an abelian group under
this operation with (0, 0) serving as the identity element for addition, and
(—a, —f) as the inverse, under addition, of (a, f).

Now that C is endowed with an addition, in order to make of C a ring
we still need a multiplication. We achieve this by defining

for X = (a,p), Y =(196)inC,
XY= (2P (70 = (ay — B6, a6 + By). 3)
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Note that XY = Y-X. Also X-(1,0) = (1,0)-X = X so that (l,0)
is a unit element for C.

Again we notice that X+Y e C. Also, if X = (a, B) # (0, 0) then,
since a, B are real and not both 0, a2 + B2 # 0; thus

- @ -8
Y= (az + ﬂz’az + Bz)

isin C. Finally we see that
o -p
a, ) - , = (1, 0).
(@ F) (a2+ﬁ2 oc2+,32> (1, 0)

All in all we have shown that C is a field. If we write (a, ) as o + fi,
the reader may verify that C is merely a disguised form of the familiar

complex numbers.

Example 3.1.8 Thislast example is often called the ring of real quaternions.
This ring was first described by the Irish mathematician Hamilton. Initially
it was extensively used in the study of mechanics; today its primary interest
is that of an important example, although it still plays key roles in geometry
and number theory.

Let @ be the set of all symbols ay + o7 + a,j + o3k, where all the
numbers ag, @), ®,, and a5 are real numbers. We declare two such symbols,
o + oyt + o) + azkand By + i + P, + Psk, to be equal if and only
ifoa, =B, for t =0,1,2,3. In order to make @ into a ring we must de-
fine a + and a - for its elements. To this end we define

1. For any X = og + 07 + a,j + azk, ¥ = By + Byi + Boj + B3k in
Q, X+ Y= (a9 + ay + arj + azk) + (Bo + Bri + B2j + Bsk)=
(a9 + Bo) + (o) + Br)i + (a2 + Bo)j + (a3 + B3)k

and

2 XY = (0 + o3 + 05 + azk) - (Bo + B + Boj + B3k) =
(tBo — ayfy — azfy — a3f3) + (Afy + a1fo + af3 — a3Ba)i +
(B2 + azfo + a3By — o1B3)j + (%Bs + asfo + af; — af))k.

Admittedly thisformula for the product seems rather formidable ; however,
it looks much more complicated than it actually is. It comes from multi-
plying out two such symbols formally and collecting terms usmg the relations

P =2=k=4gk= 1, = —ji=kjk=—k=1i ki=—ik =]
The latter part of these relations, called the multlphcatlon table of the
quaternion units, can be remembered by the little diagram on page 125. As
you go around clockwise you read off the product, e.g., ij = k, jk = i,
ki = j; while going around counterclockwise you read off the negatives.
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Notice that the elements +1, +i, +j, +k form a non-abelian group of
order 8 under this product. In fact, this is the group we called the group
of quaternion units in Chapter 2.

The reader may prove that  is a noncommutative ring in which 0 =
0+ 0:+0/+ 0k and 1 =1 + 0 + 0j + Ok serve as the zero and
unit elements respectively. Now if X = ay + a;i + 037 + a3k is not O,
then not all of g, ay, &y, a3 are 0; since they are real, f = ag® + o2 +
@? + az% # 0 follows. Thus

y=2_%,;_%;_ %feq.

BB B B

A simple computation now shows that XY = 1. Thus the nonzero
elements of @ form a non-abelian group under multiplication. A ring in
which the nonzero elements form a group is called a division ring or skew-
Jfield. Of course, a commutative division ring is a field. @ affords us a
division ring which is not a field. Many other examples of noncommutative
division rings exist, but we would be going too far afield to present one here.
The investigation of the nature of division rings and the attempts to classify
them form an important part of algebra.

3.2 Some Special Classes of Rings

The examples just discussed in Section 3.1 point out clearly that although
rings are a direct generalization of the integers, certain arithmetic facts to
which we have become accustomed in the ring of integers need not hold in
general rings. For instance, we have seen the possibility of a6 = 0 with
neither a nor b being zero. Natural examples exist where a-b # b -a.
All these run counter to our experience heretofore.

For simplicity of notation we shall henceforth drop the dot in a6 and
merely write this product as ab.

DEFINITION If R is a commutative ring, then a # 0 € R is said to be a
Zero-divisor if there existsa b € R, b # 0, such that ab = 0.
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DEFINITION A commutative ring is an integral domain if it has no zero-
divisors.

The ring of integers, naturally enough, is an example of an integral
domain.

DEFINITION A ring is said to be a division ring if its nonzero elements
form a group under multiplication.

The unit element under multiplication will be written as 1, and the
inverse of an element a under multiplication will be denoted by a 1.

Finally we make the definition of the ultra-important object known as a
field.

DEFINITION A field is a commutative division ring.

In our examples in Section 3.1, we exhibited the noncommutative
division ring of real quaternions and the following fields: the rational
numbers, complex numbers, and the integers mod 7. Chapter 5 will con-
cern itself with fields and their properties.

We wish to be able to compute in rings in much the same manner in
which we compute with real numbers, keeping in mind always that there
are differences—it may happen that ab # ba, or that one cannot divide.
To this end we prove the next lemma, which asserts that certain things we
should like to be true in rings are indeed true.

LEMMA 3.21 If Ris a ring, then for alla, b e R

1. a0 = 0a = 0.

2. a(=b) = (—a)b = —(ab).

3. (—a)(=b) = ab.

If, in addition, R kas a unit element 1, then

4. (=1)a = —a.
5 (=1)(-1) =1

Proof.

1. If ae R, then a0 = a(0 + 0) = a0 + a0 (using the right distributive
law), and since R is a group under addition, this equation implies that
a0 = 0.

Similarly, 0Oa = (0 + 0)a = Oz + Oa, using the left distributive law,
and so here too, 0a = 0 follows.

2. In order to show that a(—b) = —(ab) we must demonstrate that
ab + a(—b) = 0. But ab + a(—b) = a(b + (—b)) = a0 = 0 by use of
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the distributive law and the result of part 1 of this lemma. Similarly
(—a)b = —(ab).

3. That (—a)(—b) = ab is really a special case of part 2; we single it
out since its analog in the case of real numbers has been so stressed in our
early education. So on with it:

(—a)(=b) = —(a(—b)) (bypart2)
—b(— (ab)) (by part 2)
=a

since —(—x) = x is a consequence of the fact that in any group
(=)~ = u

4. Suppose that R has a unit element 1; thena + (—1)a = la + (—~1)a =
(I + (=1))a = 0a = 0, whence (—1)a = —a. In particular, if a =
-1, (=1)(-1) = —(—1) = 1, which establishes part 5.

With this lemma out of the way we shall, from now on, feel free to compute
with negatives and 0 as we always have in the past. The result of Lemma
3.2.1 is our permit to do so. For convenience, a + (—¥5) will be written
a—b.

The lemma just proved, while it is very useful and important, is not very
exciting. So let us proceed to results of greater interest. Before we do so,
we enunciate a principle which, though completely trivial, provides a
mighty weapon when wielded properly. This principle says no more or less
than the following: if a postman distributes 101 letters to 100 mailboxes
then some mailbox must receive at least two letters. It does not sound very
promising as a tool, does it? Yet it will surprise us! Mathematical ideas
can often be very difficult and obscure, but no such argument can be made
against this very simple-minded principle given above. We formalize it and
even give it a name.

THE PIGEONHOLE PRINCIPLE If n objects are distributed over m places,

and if n > m, then some place receives at least two objects.

An equivalent formulation, and one which we shall often use is: If n
objects are distributed over n places in such a way that no place receives
more than one object, then each place receives exactly one object.

We immediately make use of this idea in proving

LEMMA 3.2.2 A finite integral domain is a field.

Proof. As we may recall, an integral domain is a commutative ring such
that ab = 0 if and only if at least one of a or b is itself 0. A field, on the
other hand, is a commutative ring with unit element in which every non-
zero element has a multiplicative inverse in the ring.
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Let D be a finite integral domain. In order to prove that D is a field we
must

1. Produce an element 1 € D such that al = a for everya € D.
2. For every element a # 0 € D produce an element b € D such that
ab = 1.

Let x;, x,,...,x, be all the elements of D, and suppose that a # 0 e D.
Consider the elements x,a, x,4, . .., x,a; they are all in D. We claim that
they are all distinct! For suppose that x;a = x;a for i3 j; then (x; —x;)a =0.
Since D is an integral domain and a # 0, this forces x; — x; = 0, and
so x; = x;, contradicting ¢ # j. Thus x4, x,a,..., x,a are n distinct
elements lying in D, which has exactly n elements. By the pigeonhole
principle these must account for all the elements of D; stated otherwise,
every element y € D can be written as x,a for some x;. In particular, since
aeD, a = x;a for some x;,€ D. Since D is commutative, a2 = x;a2 =
ax,. We propose to show that x; acts as a unit element for every element
of D. For, if y e D, as we have seen, y = x;a for some x; € D, and so
X = (x0)x;, = xi(ax;;) = x;a =y. Thus x;_ is a unit element for D and
we write it as 1. Now | € D, so by our previous argument, it too is realizable
as a multiple of a; that is, there exists a b € D such that 1 = ba. The
lemma is now completely proved.

COROLLARY  If p is a prime number then J,, the ring of inlegers mod p, is a
Sield.

Proof. By the lemma it is enough to prove that J,is an integral domain,
since it only has a finite number of elements. If a, 6 € J, and ab = 0,
then p must divide the ordinary integer ab, and so p, being a prime, must
divide a or b. But then either a = O mod p or b = 0 mod p, hence in
Jp one of these is 0.

The corollary above assures us that we can find an infinity of fields
having a finite number of elements. Such fields are called finite fields. The
fields J, do not give all the examples of finite fields; there are others. In
fact, in Section 7.1 we give a complete description of all finite fields.

We point out a striking difference between finite fields and fields such as
the rational numbers, real numbers, or complex numbers, with which we
are more familiar.

Let F be a finite field having ¢ elements (if you wish, think of J, with its
p elements). Viewing F merely as a group under addition, since F has ¢
elements, by Corollary 2 to Theorem 2.4.1,

a+a++a=4qa=0

g-times
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for any a € F. Thus, in F, we have ga = 0 for some positive integer g, even
if @ # 0. This certainly cannot happen in the field of rational numbers,
for instance. We formalize this distinction in the definitions we give below.
In these definitions, instead of talking just about fields, we choose to widen
the scope a little and talk about integral domains.

DEFINITION An integral domain D is said to be of characteristic O if the
relation ma = 0, where a # 0 is in D, and where m is an integer, can hold
only if m = 0.

The ring of integers is thus of characteristic 0, as are other familiar rings
such as the even integers or the rationals.

DEFINITION An integral domain D is said to be of finite characteristic if
there exists a positive integer m such that ma = 0 for all e € D.

If D is of finite characteristic, then we define the characteristic of D to be
the smallest positive integer p such that pa = O for all a € D. It is not too
hard to prove that if D is of finite characteristic, then its characteristic is a prime
number (see Problem 6 below).

As we pointed out, any finite field is of finite characteristic. However, an
integral domain may very well be infinite yet be of finite characteristic (see
Problem 7).

One final remark on this question of characteristic: Why define it for
integral domains, why not for arbitrary rings? The question is perfectly
reasonable. Perhaps the example we give now points out what can happen
if we drop the assumption “integral domain.”

Let R be the set of all triples (a, b,¢), where a € J,, the integers mod 2,
b € J,, the integers mod 3, and ¢ is any integer. We introduce a 4+ and a -
to make of R a ring. We do so by defining (a,, by, ¢,) + (a3, b5,¢,) =
(ay + ag, by + by, ¢ + ¢3) and (ay, by, ¢1) * (az, by, ¢5) = (aya3, b,b5, ¢465).
Itis easy to verify that R is a commutative ring. Itis not an integral domain
since (1,2, 0) - (0,0,7) = (0,0, 0), the zero-element of R. Note that in R,
2(1,0,0) = (1,0,0) + (1,0,0) = (2,0,0) = (0,0,0) since addition in
the first component is in J,. Similarly 3(0, 1,0) = (0, 0, 0). Finally, for
no positive integer m is m(0, 0, 1) = (0, 0, 0).

Thus, from the point of view of the definition we gave above for charac-
teristic, the ring R, which we just looked at, is neither fish nor fowl. The
definition just doesn’t have any meaning for R. We could generalize the
notion of characteristic to arbitrary rings by doing it locally, defining it
relative to given elements, rather than globally for the ring itself. We say
that R has n-torsion, n > 0, if there is an element a # 0 in R such that
na = 0, and ma # 0 for 0 < m < n. For an integral domain D, it turns

129



130

Ring Theory Ch. 3

out that if D has n-torsion, even for one n > 0, then it must be of finite
characteristic (see Problem 8).

Problems

R is a ring in all the problems.

1. Ifa, b,¢c,d€e R, evaluate (a + b)(¢ + d).

10.

11.

12.
13.

14.

Prove that if a,be R, then (a + 6)2 = a®> 4 ab + ba + b2, where
by x? we mean xx.

Find the form of the binomial theorem in a general ring; in other words,
find an expression for (@ + b)", where n is a positive integer.

If every x € R satisfies x* = x, prove that R must be commutative.
(A ring in which x? = x for all elements is called a Boolean ring.)

. If R is a ring, merely considering it as an abelian group under its

addition, we have defined, in Chapter 2, what is meant by na, where
a € R and = is an integer. Prove that if ¢, 6 € R and n, m are integers,
then (na)(mb) = (nm)(ab).

. If D is an integeral domain and D is of finite characteristic, prove that

the characteristic of D is a prime number.

. Give an example of an integral domain which has an infinite number

of elements, yet is of finite characteristic.

. If D is an integral domain and if na = O for some a # 0 in D and

some integer n # 0, prove that D is of finite characteristic.

. If R is a system satisfying all the conditions for a ring with unit ele-

ment with the possible exception ofa + 6 = & + a, prove that the axiom
a+b=05b+ a must hold in R and that R is thus a ring. (Hint:
Expand (a + 6)(1 + 1) in two ways.)

Show that the commutative ring D is an integral domain if and only

if for a, b,c € D with a # 0 the relation ab = ac implies that b = c.

Prove that Lemma 3.2.2 is false if we drop the assumption that the
integral domain is finite.

Prove that any field is an integral domain.

Useing the pigeonhole principle, prove that if m and n are relatively
prime integers and a and b are any integers, there exists an integer x
such that x = amod m and x = dmod n. (Hint: Consider the re-
mainders of a,a + mya + 2m,...,a + (n — 1)m on division by n.)

Using the pigeonhole principle, prove that the decimal expansion of
a rational number must, after some point, become repeating.
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3.3 Homomorphisms

In studying groups we have seen that the concept of a homomorphism
turned out to be a fruitful one. This suggests that the appropriate analog
for rings could also lead to important ideas. To recall, for groups a homo-
morphism was defined as a mapping such that ¢(ab) = ¢(a)p(b). Since
a ring has two operations, what could be a more natural extension of this
type of formula than the

DEFINITION A mapping ¢ from the ring R into the ring R’ is said to be a
homomorphism if

L ¢+ b) = ¢(a) + $(b),
2. ¢(ab) = P(a)(b),

for all a, b € R.

Asin the case of groups, let us again stress here that the + and - occurring
on the left-hand sides of the relations in 1 and 2 are those of R, whereas the
+ and - occurring on the right-hand sides arc those of R’.

A useful observation to make is that a homomorphism of one ring, R,
into another, R', is, if we totally ignore the multiplications in both these
rings, at least a homomorphism of R into R’ when we consider them as
abelian groups under their respective additions. Therefore, as far as
addition is concerned, all the properties about homomorphisms of groups
proved in Chapter 2 carry over. In particular, merely resiating Lemma
2.7.2 for the case of the additive group of a ring yields for us

LEMMA 3.3.1 If ¢ is a homomorphism of R into R’, then

1. $(0) = 0.
2. ¢(—a) = — ¢(a) foreverya e R.

A word of caution: if both R and R’ have the respective unit elements
I and 1’ for their multiplications it need not follow that ¢(1) = 1".
However, if R’ is an integral domain, or if R’ is arbitrary but ¢ is onto, then
¢(1) = 1’ is indeed true.

In the case of groups, given a homomorphism we associated with this
homomorphism a certain subset of the group which we called the kernel of
the homomorphism. What should the appropriate definition of the kernel
of a homomorphism be for rings? After all, the ring has two operations,
addition and multiplication, and it might be natural to ask which of these
should be singled out as the basis for the definition. However, the choice
is clear. Built into the definition of an arbitrary ring is the condition that
the ring forms an abelian group under addition. The ring multiplication
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was left much more unrestricted, and so, in a sense, much less under our
control than is the addition. For this reason the emphasis is given to the
operation of addition in the ring, and we make the

DEFINITION If ¢ is a homomorphism of R into R’ then the kernel of ¢,
I(@), is the set of all elements a € R such that ¢(a) = O, the zero-element
of R,

LEMMA 3.3.2 If ¢ is a homomorphism of R into R' with kernel I(¢), then

1. I(¢) is a subgroup of R under addition.
2. If ae I(¢) and r € R then both ar and ra are in I1(¢).

Proof. Since ¢ is, in particular, a homomorphism of R, as an additive
group, into R’, as an additive group, (1) follows directly from our results in
group theory.

To see (2), suppose that a € I(¢), r € R. Then ¢(a) = 0 so that ¢(ar) =
¢(a)p(r) = 0¢(r) = 0 by Lemma 3.2.1. Similarly ¢(ra) = 0. Thus
by defining property of I(¢) both ar and ra are in I(¢).

Before proceeding we examine these concepts for certain examples.

Example 3.3.1 Let R and R’ be two arbitrary rings and define ¢(a) = 0
for all a e R. Trivially ¢ is a homomorphism and I(¢) = R. ¢ is called

the zero-homomorphism.

Example 3.3.2 Let R be a ring, R’ = R and define ¢(x) = x for every
x € R. Clearly ¢ is 2 homomorphism and 7(¢) consists only of 0.

Example 3.3.3 Let J(\/i)_be all real numbers of the form m + n\/§
where m, n are integers; J(\/Z) forms a ring under the usual addition and
multiplication of real numbers. (Verify!) Define ¢:J (\/2_) - J (\/ﬁ) by

¢(m + n\/i) =m — nv/2. ¢ is a homomorphism of J(+/2) onto J(/2)
and its kernel I(¢), consists only of 0. (Verify!)

Example 3.3.4 Let J be the ring of integers, J,, the ring of integers
modulo n. Define ¢:J — J, by ¢(a) = remainder of a on division by n.
The student should verify that ¢ is a homomorphism of J onto J, and that
the kernel, I(¢), of ¢ consists of all multiples of n.

Example 3.3.5 Let R be the set of all continuous, real-valued functions
on the closed unit interval. R is made into a ring by the usual addition and
multiplication of functions; that it is a ring is a consequence of the fact
that the sum and product of two continuous functions are continuous
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functions. Let F be the ring of real numbers and define ¢:R - F by
¢(f(x)) =f(3). ¢ is then a homomorphism of R onto F and its kernel

consists of all functions in R vanishing at x = 3.

All the examples given here have used commutative rings. Many
beautiful examples exist where the rings are noncommutative but it would
be premature to discuss such an example now.

DEFINITION A homomorphism of R into R’ is said to be an isomorphism
if it is a one-to-one mapping.

DEFINITION Two rings are said to be isomorphic if there is an isomorphism
of one onto the other.

The remarks made in Chapter 2 about the meaning of an isomorphism
and of the statement that two groups are isomorphic carry over verbatim
torings. Likewise, the criterion given in Lemma 2.7.4 that a homomorphism
be an isomorphism translates directly from groups to rings in the form

LEMMA 3.3.3 The homomorphism ¢ of R into R' is an isomorphism if and
only if 1(g) = (0).

3.4 lIdeals and Quotient Rings

Once theidea of a homomorphism and its kernel have been set up for rings,
based on our experience with groups, it should be fruitful to carry over
some analog to rings of the concept of normal subgroup. Once this is
achieved, one would hope that this analog would lead to a construction in
rings like that of the quotient group of a group by a normal subgroup.
Finally, if one were an optimist, one would hope that the homomorphism
theorems for groups would come over in their entirety to rings.

Fortunately all this can be done, thereby providing us with an incisive
technique for analyzing rings.

The first business at hand, then, seems to be to define a suitable “normal
subgroup” concept for rings. With a little hindsight this is not difficult.
If you recall, normal subgroups eventually turned out to be nothing else
than kernels of homomorphisms, even though their primary defining
conditions did not involve homomorphisms. Why not use this observation
as the keystone to our definition for rings? Lemma 3.3.2 has already
provided us with some conditions that a subset of a ring be the kernel of a
homomorphism. We now take the point of view that, since no other in-
formation is at present available to us, we shall make the conclusions of
Lemma 3.3.2 as the starting point of our endeavor, and so we define
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DEFINITION A nonempty subset U of R is said to be a (two-sided) ideal
of R if

1. U is a subgroup of R under addition.
2. For every u € U and r € R, both ur and ru are in U.

Condition 2 asserts that U ‘“‘swallows up’ multiplication from the right
and left by arbitrary ring elements. For this reason U is usually called a
two-sided ideal. Since we shall have no occasion, other than in some of the
problems, to use any other derivative concept of ideal, we shall merely use
the word ideal, rather than two-sided ideal, in all that follows.

Given an ideal U of a ring R, let R/U be the set of all the distinct cosets
of U in R which we obtain by considering U as a subgroup of R under
addition. We note that we merely say coset, rather than right coset or left
coset; this is justified since R is an abelian group under addition. To restate
what we have just said, R/U consists of all the cosets, a + U, where a € R.
By the results of Chapter 2, R/U is automatically a group under addition;
this is achieved by the composition law (e + U) + (b + U) = (a + b) + U.
In order to impose a ring structure on R/U we must define, in it, a multi-
plication. What is more natural than to define (a + U)(b + U) =
ab + U? However, we must make sure that this is meaningful. Otherwise
put, we are obliged to show thatifa + U=a' + Uand b + U =¥ + U,
then under our definition of the multiplication, (a + U)(b + U) =
(¢ + U)(¥’ + U). Equivalently, it must be established that ab + U =
a't’ + U. To this end we first note that since a + U =4 + U,
a=d + u;, where u, € U; similarly b = b’ + u, where u, € U. Thus
ab = (a' + u))(b + uy) = a't’ + u,b' + a'uy + uyuy; since U is an ideal of
R, u b’ eU, a'u eU, and uu, e U. Consequently u b’ + a'u, + uu;, =
u3 € U. But then ab = a’b’ + u;, from which we deduce that ab + U =
a't’ + uy + U, and since u3eU, u3; + U = U. The net consequence
of all this is that ab + U = a’t’ + U. We at least have achieved the
principal step on the road to our goal, namely of introducing a well-defined
multiplication. The rest now becomes routine. To establish that R/U is a
ring we merely have to go through the various axioms which define a ring
and check whether they hold in R/U. All these verifications have a certain
sameness to them, so we pick one axiom, the right distributive law, and
prove it holds in R/U. The rest we leave to the student as informal exercises.
If X=a+4+ U, Y=b+ U, Z=c + U are three elements of R/U,
where a,b,ceR, then (X + Y)Z = ((a+ U) + (b + U))(c + U) =
((@a+b6) +U)c+U)=(@a+bc+U=a +b + U= (ac + U) +
(bc + U)y=(a+U)(c+U)+ b+ U)c+U)=XZ+ YZ

R/U has now been made into a ring. Clearly, if R is commutative then
sois R/U, for (a+ U)(b+ U) =ab+ U=ba+ U= (b+ U)(a+ U).
(The converse to this is false.) If R has a unit element 1, then R/U has a
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unit element 1 + U. We might ask: In what relation is R/U to R? With
the experience we now have in hand this is easy to answer. There is a
homomorphism ¢ of R onto R|U given by ¢(a) = a + U for every a € R,
whose kernel is exactly U. (The reader should verify that ¢ so defined is a
homomorphism of R onto R/U with kernel U.)

We summarize these remarks in

LEMMA 3.41 If U is an ideal of the ring R, then RJU is a ring and is a
homomorphic image of R.

With this construction of the quotient ring of a ring by an ideal satisfactorily
accomplished, we are ready to bring over to rings the homomorphism
theorems of groups. Since the proof is an exact verbatim translation of that
for groups into the language of rings we merely state the theorem without
proof, referring the reader to Chapter 2 for the proof.

THEOREM 3.4.1 Let R, R’ be rings and ¢ a homomorphism of R onto R’ with
kernel U. Then R’ is isomorphic to R|U. Moreover there is a one-to-one correspondence
between the set of ideals of R’ and the set of ideals of R which contain U. This
correspondence can be achieved by associating with an ideal W' in R’ the ideal W in
R defined by W = {xe R| ¢(x) e W'}. With W so defined, R|W is isomorphic
to R'|W'.

Problems

1. If Uis an ideal of R and 1 € U, prove that U = R.

2. If F is a field, prove its only ideals are (0) and F itself.

3. Prove that any homomorphism of a field is either an isomorphism or
takes each element into 0.

4. If R is a commutative ring and a € R,
(a) Show that aR = {ar|r € R} is a two-sided ideal of R.
(b) Show by an example that this may be false if R is not commutative.

5. If U,V are ideals of R, let U+ V={u+v|ueU,veV}. Prove
that U + V is also an ideal.

6. If U, V are ideals of R let UV be the set of all elements that can be
written as finite sums of elements of the form uv where u € U and
ve V. Prove that UV is an ideal of R.

7. In Problem 6 prove that UV <« U n V.

8. If Ris the ring of integers, let U be the ideal consisting of all multiples
of 17. Prove that if V is an ideal of R and R > ¥V > U then either
V = Ror V.= U. Generalize!
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10.

11.

*12.

*13.

.If U is an ideal of R, let r(U) = {x e R|xu = 0 for all u e U).

Prove that r(U) is an ideal of R.

If U is an ideal of R let [R:U)] = {x € R|rx € U for every r € R}.
Prove that [R:U] is an ideal of R and that it contains U.

Let R be a ring with unit element. Using its elements we define a
ring R by defining a®b=a+b + 1, and a*b = ab + a + b,
where a,b € R and where the addition and multiplication on the
right-hand side of these relations are those of R.

(a) Prove that R is a ring under the operations @ and -.

(b) What acts as the zero-element of R?

(c) What acts as the unit-element of R?

(d) Prove that R is isomorphic to R.

In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices.
Prove that this ring has no ideals other than (0) and the ring itself.

In Example 3.1.8 we discussed the real quaternions. Using this as a

model we define the quaternions over the integers mod p, p an odd

prime number, in exactly the same way; however, now considering

all symbols of the form oy + ;7 + ayj + a3k, where a, oy, o), a3

are integers mod p.

(a) Prove that this is a ring with p* elements whose only ideals are
(0) and the ring itself.

**(b) Prove that this ring is not a division ring.

If R is any ring a subset L of R is called a l¢ft-ideal of R if

1. L is a subgroup of R under addition.
2 reR,aeLlimpliesrae L.

(One can similarly define a right-ideal.) An ideal is thus simultaneously a
left- and right-ideal of R.

14.
15.
16.

17.

18.

*19.

20.

For a € R let Ra = {xa | x € R}. Prove that Ra is a left-ideal of R.
Prove that the intersection of two left-ideals of R is a left-ideal of R.

What can you say about the intersection of a left-ideal and right-ideal
of R?

If Ris a ring and a€e R let r(a) = {x e R|ax = 0}. Prove that
r(a) is a right-ideal of R.

If Ris a ring and L is a left-ideal of Rlet A(L) = {x e R|xa = O for
all a € L}, Prove that A(L) is a two-sided ideal of R.

Let R be a ring in which x3 = x for every x € R. Prove that R is a
commutative ring.

If R is a ring with unit element 1 and ¢ is a homomorphism of R onto
R’ prove that ¢(1) is the unit element of R'.
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21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into
an integral domain R’ such that 7(¢) # R, prove that ¢(1) is the unit
element of R’.

3.5 More ldeals and Quotient Rings

We continue the discussion of ideals and quotient rings.

Let us take the point of view, for the moment at least, that a field is the
most desirable kind of ring. Why? If for no other reason, we can divide in
a field, so operations and results in a field more closely approximate our
experience with real and complex numbers. In addition, as was illustrated
by Problem 2 in the preceding problem set, a field has no homomorphic
images other than itself or the trivial ring consisting of 0. Thus we cannot
simplify a field by applying a homomorphism to it. Taking these remarks
into consideration it is natural that we try to link a general ring, in some
fashion, with fields. What should this linkage involve? We have a machinery
whose component parts are homomorphisms, ideals, and quotient rings.
With these we will forge the link.

But first we must make precise the rather vague remarks of the preceding
paragraph. We now ask the explicit question: Under what conditions is the
homomorphic image of a ring a field? For commutative rings we give a
complete answer in this section.

Essential to treating this question is the converse to the result of Problem
2 of the problem list at the end of Section 3.4.

LEMMA 3.5.1 Let R be a commutative ring with unit element whose only ideals
are (0) and R itself. Then R is a field.

Proof. In order to effect a proof of this lemma for any a # 0 e R we
must produce an element b # 0 € R such that ab = 1.

So, suppose that a # 0 is in R. Consider the set Ra = {xa|x e R}.
We claim that Rais an ideal of R. In order to establish this as fact we must
show that it is a subgroup of R under addition and that if « € Ra and
r € R then ru is also in Ra. (We only need to check that ru is in Ra for
then ur also is since ru = ur.)

Now, if u,v € Ra, then u = r,a, v = r,a for some r, 7, € R. Thus
u+v=ra+ra=(r, + r)aeRa;similarly —u = —ra = (—r,)a€ Ra.
Hence Ra is an additive subgroup of R. Moreover, if r € R, ru = r(ra) =
(rry)a € Ra. Ra therefore satisfies all the defining conditions for an ideal
of R, hence is an ideal of R. (Notice that both the distributive law and
associative law of multiplication were used in the proof of this fact.)

By our assumptions on R, Ra = (0) or Ra = R. Since 0 # a = la € Ra,
Ra # (0); thus we are left with the only other possibility, namely that
Ra = R. This last equation states that every element in R is a multiple of
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a by some element of R. In particular, 1 € R and so it can be realized as a
multiple of a; that is, there exists an element b € R such that ba = 1.
This completes the proof of the lemma.

DEFINITION An ideal M # R in a ring R is said to be a maximal ideal of
R if whenever U is an ideal of R such that M < U < R, then either R = U
or M =U.

In other words, an ideal of R is a maximal ideal if it is impossible to
squeeze an ideal between it and the full ring. Given a ring R there is no
guarantee that it has any maximal ideals! If the ring has a unit element
this can be proved, assuming a basic axiom of mathematics, the so-called
axiom of choice. Also there may be many distinct maximal ideals in a
ring R; this will be illustrated for us below in the ring of integers.

As yet we have made acquaintance with very few rings. Only by con-
sidering a given concept in many particular cases can one fully appreciate
the concept and its motivation. Before proceeding we therefore examine
some maximal ideals in two specific rings. When we come to the discussion
of polynomial rings we shall exhibit there all the maximal ideals.

Example 3.56.1 Let R be the ring of integers, and let U be an ideal of R.
Since U is a subgroup of R under addition, from our results in group theory,
we know that U consists of all the multiples of a fixed integer ny; we write
this as U = (ny). What values of n, lead to maximal ideals?

We first assert that if p is a prime number then P = () is a maximal
ideal of R. For if U is an ideal of R and U = P, then U = (n,) for some
integer n,. Since pe P < U, p = mn, for some integer m; because p is a
prime this implies that ny =1 or ng = p. If ny = p, then P <« U =
(ng) = P, so that U = P follows; if ny = 1, then 1 € U, hence r = Ire U
for all € R whence U = R follows. Thus no ideal, other than R or P
itself, can be put between P and R, from which we deduce that P is maximal.

Suppose, on the other hand, that M = (7)) is a maximal ideal of R.
We claim that n, must be a prime number, for if n, = ab, where q, b are
positive integers, then U = (@) > M, hence U = Ror U =M. If U = R,
then a = 1 is an easy consequence; if U = M, then a e M and so a = rn,
for some integer r, since every element of M is a multiple of n5. But then
ny = ab = ryb, from which we get that rb = 1, so that b = 1, 1y = a.
Thus n, is a prime number.

In this particular example the notion of maximal ideal comes alive—it
corresponds exactly to the notion of prime number. One should not,
however, jump to any hasty generalizations; this kind of correspondence
does not usually hold for more general rings.
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Example 3.5.2 Let R be the ring of all the real-valued, continuous
functions on the closed unit interval. (See Example 3.3.5.) Let

M= {f(x)eR|f(}) = 0}.

M is certainly an ideal of R. Moreover, it is a maximal ideal of R, for if the
ideal U contains M and U # M, then there is a function g(x) € U,
g(x) ¢ M. Since g(x) ¢ M, g(}) = a # 0. Now h(x) = g(x) — a« 5 such
that A(3) = g(}) — @ = 0, so that k(x) e M = U. But g(x) is also in U;
therefore @ = g(x) — h(x) e U and so 1 = aa" '€ U. Thus for any
function ¢(x) € R, t(x) = lt(x) € U, in consequence of which U = R.
M is therefore a maximal ideal of R. Similarly if y is a real number 0 <
y <1, then M, = {f(x) eR|f(y) = 0} is a maximal ideal of R. It
can be shown (see Problem 4 at the end of this section) that every maximal
ideal is of this form. Thus here the maximal ideals correspond to the points
on the unit interval.

Having seen some maximal ideals in some concrete rings we are ready
to continue the general development with

THEOREM 3.5.1 If R is a commutative ring with unit element and M is an
ideal of R, then M is a maximal ideal of R if and only if R|M is a field.

Proof. Suppose, first, that M is an ideal of R such that R/M is a field.
Since R/M is a field its only ideals are (0) and R/M itself. But by Theorem
3.4.1 there is a one-to-one correspondence between the set of ideals of
R|M and the set of ideals of R which contain M. The ideal M of R corre-
sponds to the ideal (0) of R/M whereas the ideal R of R corresponds to
the ideal R/M of R/M in this one-to-one mapping. Thus there is no ideal
between M and R other than these two, whence M is a maximal ideal.

On the other hand, if M is a maximal ideal of R, by the correspondence
mentioned above R/M has only (0) and itself as ideals. Furthermore R/M
is commutative and has a unit element since R enjoys both these properties.
All the conditions of Lemma 3.5.1 are fulfilled for R/M so we can conclude,
by the result of that lemma, that R/M is a field.

We shall have many occasions to refer back to this result in our study of
polynomial rings and in the theory of field extensions.

Problems

1. Let R be a ring with unit element, R not necessarily commutative, such
that the only right-ideals of R are (0) and R. Prove that R is a division
ring.
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*2. Let R be a ring such that the only right ideals of R are (0) and R.
Prove that either R is a division ring or that R is a ring with a prime
number of elements in which ab = O for every a, b € R.

3. Let J be the ring of integers, p a prime number, and (p) the ideal of
J consisting of all multiples of p. Prove
(a) J/(p) is isomorphic to J,, the ring of integers mod p.
(b) Using Theorem 3.5.1 and part (a) of this problem, that J, is a
field.
**4. Let R be the ring of all real-valued continuous functions on the closed
unit interval. If M is a maximal ideal of R, prove that there exists a
real number y, 0 <y <1, such that M =M, ={ f(x)eR| f(y) =0}.

3.6 The Field of Quotients of an Integral Domain

Let us recall that an integral domain is a commutative ring D with the
additional property that it has no zero-divisors, that is, if ab = 0 for some
a, b € D then at least one of a or 6 must be 0. The ring of integers is, of
course, a standard example of an integral domain.

The ring of integers has the attractive feature that we can enlarge it to
the set of rational numbers, which is a field. Can we perform a similar
construction for any integral domain? We will now proceed to show that
indeed we can!

DEFINITION Aring R can be imbedded in a ring R’ if there is an isomorphism
of Rinto R'. (If R and R’ have unit elements 1 and 1’ we insist, in addition,
that this isomorphism takes 1 onto 1°.)
R’ will be called an over-ring or extension of R if R can be imbedded in R'.
With this understanding of imbedding we prove

THEOREM 3.6.1 Every integral domain can be imbedded in a field.

Proof. Before becoming explicit in the details of the proof let us take an
informal approach to the problem. Let D be our integral domain; roughly
speaking the field we seek should be all quotients a/b, where a, b € D and
b # 0. Of course in D, a/b may very well be meaningless. What should
we require of these symbols a/6? Clearly we must have an answer to the
following three questions :

1. When is a/b = ¢/d?
2. What is (afb) + (c/d)?
3. What is (a/b)(c/d)?

In answer to 1, what could be more natural than to insist that afb = ¢/d
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if and only if ad = bc? As for 2 and 3, why not try the obvious, that is,
define

ad + bc and

[ ac
+ = - = .
d bd bd bd

B~

In fact in what is to follow we make these considerations our guide. So
let us leave the heuristics and enter the domain of mathematics, with
precise definitions and rigorous deductions.

Let .4 be the set of all ordered pairs (a, b)) where a, be D and b # 0.
(Think of (a, b) as afb.) In .# we now define a relation as follows:

(a, b) ~ (c,d) if and only if ad = bc.

We claim that this defines an equivalence relation on .#. To establish this
we check the three defining conditions for an equivalence relation for this
particular relation.

1. If (a, b) € #, then (a, b) ~ (a, b) since ab = ba.

2. If (a,b), (c,d)e M and (a,b) ~ (¢, d), then ad = bc, hence cb = da,
and so (¢, d) ~ (a, b).

3. If (a,b),(c, d), (¢, f) are all in A and (a,b) ~ (¢,d) and (c,d) ~
(e,f), then ad = bc and ¢f = de. Thus b¢f = bde, and since bc = ad,
it follows that adf = bde. Since D is commutative, this relation becomes
afd = bed; since, moreover, D is an integral domain and d # 0, this
relation further implies that gf = be. But then (a, ) ~ (¢, f) and our
relation is transitive.

Let [a, b] be the equivalence class in . of (a, b), and let F be the set of
all such equivalence classes [a, b] where a,be D and b # 0. F is the
candidate for the field we are seeking. In order to create out of F a field
we must introduce an addition and a multiplication for its elements and then
show that under these operations F forms a field.

We first dispose of the addition. Motivated by our heuristic discussion at
the beginning of the proof we define

[a,b] + [c,d] = [ad + bc, bd].

Since D is an integral domain and both 6 # 0 and d # 0 we have that
bd # O; this, at least, tells us that [ad + bc, bd] € F. We now assert that
this addition is well defined, that is, if [a, b] = [4’, '] and [¢,d] = [¢, d’),
then [a, 6] + [¢,d] = [d,b'] + [¢’,d"]. To see that this is so, from
[a, b] = [a’, 6] we have that ab’ = ba’; from [c,d] = [¢',d"] we have
that ¢d’ = d¢’. What we need is that these relations force the equality of
[a, 6] + [c, d] and [d, b'] + [¢',d’']. From the definition of addition this
boils down to showing that [ad + bc, bd] = [a'd" + b'¢’, b'd’], or, in equiva-
lent terms, that (ad + bc)b'd’ = bd(a'd’ + b'c’). Using ab’ = ba', cd' = dc’
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this becomes: (ad + bc)b'd’ = adb'd’ + bcb'd’ = ab'dd’ + bb'cd’ = ba'dd’ +
bb'dc’ = bd(a'd’" + b'c’), which is the desired equality.

Clearly [0, b] acts as a zero-element for this addition and [—a, 6] as the
negative of [a, b]. It is a simple matter to verify that F is an abelian group
under this addition.

We now turn to the multiplication in F. Again motivated by our pre-
liminary heuristic discussion we define [a, b][¢, d] = [ac, bd]. As in the
case of addition, since 4 # 0, d # 0, bd # 0 and so [ac, bd] € F. A com-
putation, very much in the spirit of the one just carried out, proves that if
[a, 8] = [d, '] and [¢, d] = [¢’, d'] then [a, b][¢, d] = [d', b’'][¢’, d']. One
can now show that the nonzero elements of F (that is, all the elements
[a, ] where a # 0) form an abelian group under multiplication in which
[d, d] acts as the unit element and where

[c,d]™! = [d, ¢] (since ¢ # O, [d, ¢] is in F).

It is a routine computation to see that the distributive law holds in F.
F is thus a field.

All that remains is to show that D can be imbedded in F. We shall
exhibit an explicit isomorphism of D into F. Before doing so we first notice
that for x # 0, y # 0in D, [ax, x] = [ap, y] because (ax) » = x(ap); let us
denote [ax,x] by [a,1]. Define ¢:D — F by ¢(a) = [a, 1] for every
aeD. We leave it to the reader to verify that ¢ is an isomorphism of D
into F, and that if D has a unit element 1, then ¢ (1) is the unit element of F.
The theorem is now proved in its entirety.

F is usually called the field of quotients of D. In the special case in which
D is the ring of integers, the F so constructed is, of course, the field of
rational numbers.

Problems

1. Prove that if [a, b] = [d’, §'] and [¢,d] = [¢’,d’] then [a, b][¢, d] =
[a, &'][¢', d'].

2. Prove the distributive law in F.

3. Prove that the mapping ¢:D — F defined by ¢(a) = [a, 1] is an
isomorphism of D into F.

4. Prove that if K is any field which contains D then K contains a subfield
isomorphic to F. (In this sense F is the smallest field containing D.)

*5. Let R be a commutative ring with unit element. A nonempty subset

S of R is called a multiplicative system if

1. 0 ¢S.
2. 5, 55 € S implies that 55, € S.
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Let .# be the set of all ordered pairs (r, s) where re R, se€S. In
M define (r,s) ~ (r’,s’) if there exists an element s” € § such that

s"(rs" — sr') = 0.

(a) Prove that this defines an equivalence relation on ..

Let the equivalence class of (7, s) be denoted by [r, s], and let Rg be
the set of all the equivalence classes. In Rg define [r), 5;] + [r3, 2] =
(1152 + 71251, 51520 and [1y, 5,1[12, $2] = [1172, 5152].

(b) Prove that the addition and multiplication described above are
well defined and that Rg forms a ring under these operations.

(c) Can R be imbedded in Rg?

(d) Prove that the mapping ¢:R — R, defined by ¢(a) = [as, 5] is
a homomorphism of R into Rg and find the kernel of ¢.

(e) Prove that this kernel has no element of § in it.

(f) Prove that every element of the form [sy, s,](where s;, 5, €§) in
R has an inverse in Rg.

6. Let D be an integral domain, e, b € D. Suppose that ¢" = " and
a™ = b™ for two relatively prime positive integers m and n. Prove that
a=b

7. Let R be a ring, possibly noncommutative, in which xy = 0 implies
x=00ry =0. Ifg, b€ R and 2" = b" and a™ = b™ for two relatively
prime positive integers m and n, prove that a = b.

3.7 Euclidean Rings

The class of rings we propose to study now is motivated by several existing
examples—the ring of integers, the Gaussian integers (Section 3.8), and
polynomial rings (Section 3.9). The definition of this class is designed to
incorporate in it certain outstanding characteristics of the three concrete
examples listed above.

DEFINITION An integral domain R is said to be a Euclidean ring if for
every a # 0 in R there is defined a nonnegative integer d(a) such that

1. For all g, b € R, both nonzero, d(a) < d(ab).
2. For any a, b € R, both nonzero, there exist ¢, r € R such thata = tb + r
where either r = 0 or d(r) < d(b).

We do not assign a value to d(0). The integers serve as an example of a
Euclidean ring, where d(a2) = absolute value of a acts as the required
function. In the next section we shall see that the Gaussian integers also
form a Euclidean ring. Out of that observation, and the results developed
in this part, we shall prove a classic theorem in number theory due to

143



144

Ring Theory Ch. 3

Fermat, namely, that every prime number of the form 4n + 1 can be
written as the sum of two squares.
We begin with

THZOREM 3.7.1 Let R be a Euclidean ring and let A be an ideal of R. Then
there exists an element ay € A such that A consists exactly of all agx as x ranges over R.

Proof. If A just consists of the element 0, put a, = 0 and the conclusion
of the theorem holds.

Thus we may assume that 4 # (0); hence there is an @ # 0 in A. Pick
an a, € A4 such that d(a,) is minimal. (Since d takes on nonnegative integer
values this is always possible.)

Suppose that a € A. By the properties of Euclidean rings there exist
t,r€R such that a = tay + r where r =0 or d(r) < d(ay). Since
ay € A and 4 is an ideal of R, tay is in 4. Combined with a € 4 this results
ina — tay € A;butr = a — tay, whencer € A. Ifr # Othend(r) < d(ap),
giving us an element r in 4 whose d-value is smaller than that of ag, in
contradiction to our choice of g, as the element in 4 of minimal d-value.
Consequently r = 0 and a = ta,, which proves the theorem.

We introduce the notation (a) = {xa|x € R} to represent the ideal of
all multiples of a.

DEFINITION An integral domain R with unit element is a principal ideal
ring if every ideal 4 in R is of the form 4 = (a) for some a € R.

Once we establish that a Euclidean ring has a unit element, in virtue of
Theorem 3.7.1, we shall know that a Euclidean ring is a principal ideal ring.
The converse, however, is false; there are principal ideal rings which are
not Euclidean rings. [See the paper by T. Motzkin, Bulletin gf the American
Mathematical Society, Vol. 55 (1949), pages 1142-1146, entitled “The
Euclidean algorithm.”]

COROLLARY TO THEOREM 3.71 A Euclidean ring possesses a unit
element.

Proof. Let R be a Euclidean ring; then R is certainly an ideal of R, so
that by Theorem 3.7.1 we may conclude that R = (u4,) for some u#, € R.
Thus every element in R is a multiple of u, Therefore, in particular,
4y = ugc for some ¢ € R. If a e R then a = xu, for some x € R, hence
ac = (xuy)c = x(up¢) = xug = a. Thus ¢ is seen to be the required unit
element.

DEFINITION Ifa # O and b are in a commutative ring R then a is said
to divide b if there exists a ¢ € R such that & = ac. We shall use the symbol
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a| b to represent the fact that a divides & and a 4 b to mean that a does
not divide b.

The proof of the next remark is so simple and straightforward that we
omit it.

REMARK 1. Ifa|band b|cthena]ec.
2. Ifalbanda|cthenal (b + ¢).
3. If a| b then a| bx for all x € R.

DEFINITION 1Ifa, b € R then d € R is said to be a greatest common divisor
of a and b if

1. d|aand d]|b.
2. Whenever c|aand ¢ | b thenc | d.

We shall use the notation d = (a, b) to denote that d is a greatest common
divisor of a and b.

LEMMA 3.7.1 Let R be a Euclidean ring. Then any two elements a and b in
R have a greatest common divisor d. Moreover d = la + ub for some A, u € R.

Proof. Let A be the set of all elements ra + sb where r, s range over R.
We claim that A4 is an ideal of R. For suppose that x, y € 4; therefore
x=ra+ s5;b, y=r,a+ 5b, and so x + y = (r, + r;)a + (s, + 5,)be A.
Similarly, for any u € R, ux = u(rja + s5,b) = (ur,)a + (us;)b € A.

Since 4 is an ideal of R, by Theorem 3.7.1 there exists an element d € 4
such that every element in 4 is a mutiple of d. By dint of the fact that
d € A and that every element of 4 is of the form ra + sb, d = Ada + pb
for some A, p € R. Now by the corollary to Theorem 3.7.1, R has a unit
element 1; thus a=1a+ 0bed, b =0a + lbeA. Being in A, they
are both multiples of d, whence d | a and d | b.

Suppose, finally, that ¢|a and ¢ | b; then ¢| Aa and ¢| ub so that ¢
certainly divides Aa + ub = d. Therefore d has all the requisite conditions
for a greatest common divisor and the lemma is proved.

DEFINITION Let R be a commutative ring with unit element. An
element a € R is a unit in R if there exists an element b € R such that ab = 1.

Do not confuse a unit with a unit element! A unit in a ring is an element
whose inverse is also in the ring.

LEMMA 3.7.2 Let R be an integral domain with unit element and suppose that
Jor a, b€ R both a| b and b | a are true. Then a = ub, where u is a unit in R.
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Proof. Since a| b, b = xa for some x€ R; since b|a, a = yb for some
y€eR. Thus b = x(yb) = (xp)b; but these are elements of an integral
domain, so that we can cancel the b and obtain xp = 1; y is thus a unit in
R and a = ypb, proving the lemma.

DEFINITION Let R be a commutative ring with unit element. Two
elements a and b in R are said to be associates if & = ua for some unit uin R.

The relation of being associates is an equivalence relation. (Problem 1
at the end of this section.) Note that in a Euclidean ring any two greatest
common divisors of two given elements are associates (Problem 2).

Up to this point we have, as yet, not made use of condition 1 in the
definition of a Euclidean ring, namely that d(a) < d(ab) for b # 0. We
now make use of it in the proof of

LEMMA 3.7.3 Let R be a Euclidean ring and a, b € R. Ifb # 0 is not a unit
in R, then d(a) < d(ab).

Proof. Consider the ideal A = (a) = {xa| x € R} of R. By condition
1 for a Euclidean ring, d(a) < d(xa) for x # 0 in R. Thus the d-value of
a is the minimum for the d-value of any element in A Now ab € 4; if
d(ab) = d(a), by the proof used in establishing Theorem 3.7.1, since the
d-value of ab is minimal in regard to A, every element in 4 is a multiple of
ab. In particular, since a € 4, a must be a multiple of ab; whence a = abx
for some x € R. Since all this is taking place in an integral domain we
obtain bx = 1. In this way b is a unit in R, in contradiction to the fact that
it was not a unit. The net result of this is that d(a) < d(ab).

DEFINITION In the Euclidean ring R a nonunit n is said to be a prime
element of R if whenever n = ab, where a, b are in R, then one ofaor b is a
unit in R.

A prime element is thus an element in R which cannot be factored in R
in a nontrivial way.

LEMMA 3.7.4 Let R be a Euclidean ring. Then every element in R is either a
unit in R or can be written as the product of a finite number of prime elements of R.

Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in R (Problem 3), and so in this case, the
assertion of the lemma is correct.

We assume that the lemma is true for all elements x in R such that
d(x) < d(a). On the basis of this assumption we aim to prove it for a.
This would complete the induction and prove the lemma.
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If a is a prime element of R there is nothing to prove. So suppose that
a = bcwhere neither 6 nor ¢ is a unit in R. By Lemma 3.7.3,d(b) < d(bc) =
d(a) and d(¢) < d(b¢) = d(a). Thus by our induction hypothesis  and ¢
can be written as a product of a finite number of prime elements of R;
b=mmn, 7, ¢ =mnyn, -, where the #’s and n"’s are prime elements
of R. Consequently a = b¢c = mymy -+ - @,y - - * @, and in this way a
has been factored as a product of a finite number of prime elements. This
completes the proof.

DEFINITION In the Euclidean ring R, a and 6 in R are said to be relatively
prime if their greatest common divisor is a unit of R.

Since any associate of a greatest common divisor is a greatest common
divisor, and since 1 is an associate of any unit, if ¢ and b are relatively
prime we may assume that (a, ) = 1.

LEMMA 3.7.5 Let R be a Euclidean ring. Suppose that for a, b, c € R, a | bc
but (a, b) = 1. Thena|ec.

Proof. As we have seen in Lemma 3.7.1, the greatest common divisor
of a and b can be realized in the form Aa + pb. Thus by our assumptions,
Aa + pb = 1. Multiplying this relation by ¢ we obtain Aac + ube = c.
Now a| Aac, always, and a | pubc since a|bc by assumption; therefore
a| (Aac + pbe) = ¢. This is, of course, the assertion of the lemma.

We wish to show that prime elements in a Euclidean ring play the same
role that prime numbers play in the integers. If 7 in R is a prime element
of R and a € R, then either n|a or (m,a) = 1, for, in particular, (7, a)
is a divisor of 7 so it must be 7 or 1 (or any unit). If (w, a) = I, one-half
our assertion is true; if (m, @) = 7, since (m, a) |a we get m|a, and the
other half of our assertion is true.

LEMMA 3.7.6 If © is a prime element in the Euclidean ring R and 7 | ab
where a, b € R then T divides at least one of a or b.

Proof. Suppose that © does not divide a; then (m,a) = 1. Applying
Lemma 3.7.5 we are led to 7 | b.

COROLLARY If m is a prime element in the Euclidean ring R and ©|aya, - --a,
then T divides at least one ay, a,, . . .,a,.

We carry the analogy between prime elements and prime numbers
further and prove
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THEOREM 3.7.2 (UniQue FacrorizatioN THEOREM) Let R be a Eu-
clidean ring and a # 0 a nonunit in R. Suppose that a = mym, - 7, =
Ty * * * W, where the 7; and T'; are prime elements of R. Then n = m and each
m, 1 < i < nis an associate of some mj, | < j < m and conversely each m)
is an associate of some T,

Proof. . Lookattherelationa = nym, - - * 1, = nymy - - -7, Butn, |mym,- + o,
hence n, | n}75 - - - @,,. By Lemma 3.7.6, 7; mustdivide some =} ; since , and
7y are both prime elements of R and =, | 7; they must be associates and
n; = u,m;, where u; is a unit in R. Thus myn,* "7, = winy 7@, =
U T TS T M4y " * ° M cancel off m; and we are left with n, -+ 7w, =
WMy M M4y "N Repeat the argument on this relation with 7.
After n steps, the left side becomes 1, the right side a product of a certain
number of ' (the excess of m over n). This would force n < m since the
7' are not units. Similarly, m < n, so that n = m. In the process we have

also showed that every m; has some n] as an associate and conversely.

Combining Lemma 3.7.4 and Theorem 3.7.2 we have that every nonzero
element in a Euclidean ring R can be uniquely written (up to associates) as a product
of prime elements or is a unit in R.

We finish the section by determining all the maximal ideals in a Euclidean
ring.

In Theorem 3.7.1 we proved that any ideal 4 in the Euclidean ring R is of
the form A4 = (ay) where (ay) = {xay | x € R}. We now ask: What con-
ditions imposed on g, insure that 4 is a maximal ideal of R? For this
question we have a simple, precise answer, namely

LEMMA 3.7.7 The ideal A = (ag) is a maximal ideal of the Euclidean ring
R if and only if a, is a prime element of R.

Proof. We first prove that if g, is not a prime element, then 4 = (a;)
is not a maximal ideal. For, suppose that a, = bc where b, ce R and
neither b nor ¢ is a unit. Let B = (b); then certainly ¢, € B so that 4 = B.
We claim that A # B and that B # R.

If B =R then 1€ B so that 1 = xb for some x € R, forcing b to be a
unit in R, which it is not. On the other hand, if A = B then be B = A
whence b = xa, for some xe R. Combined with a; = b¢ this results in
ay = xca,y, in consequence of which xc = 1. But this forces ¢ to be a unit
in R, again contradicting our assumption. Therefore B is neither 4 nor R
and since A = B, A cannot be a maximal ideal of R.

Conversely, suppose. that a, is a prime element of R and that U is an
ideal of R such that 4 = (ay) =« U = R. By Theorem 3.7.1, U = (i,).
Since ape A c U = (4,), ay = xuy for some xeR. But gy is a prime
element of R, from which it follows that either x or ug is a unit in R. If u,
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is a unit in R then U = R (see Problem 5). If, on the other hand, x is a
unit in R, then x™! € R and the relation a, = xu, becomes u, = x 'a; e A
since 4 is an ideal of R. This implies that U < 4; together with 4 <« U
we conclude that U = 4. Therefore there is no ideal of R which fits
strictly between 4 and R. This means that 4 is a maximal ideal of R.

Problems
1. In a commutative ring with unit element prove that the relation a is
an associate of 4 is an equivalence relation.

2. In a Euclidean ring prove that any two greatest common divisors of
a and b are associates.

3. Prove that a necessary and sufficient condition that the element a in
the Euclidean ring be a unit is that d(a) = d(1).

4. Prove that in a Euclidean ring (a, b) can be found as follows:
b = goa + r;, where d(r,) < d(a)
a = qr, +r, where d(r;) < d(r,)

51

gy + 13, where d(ry) < d(rp)

ru 1 = Gy

and r, = (a, b).
5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.

6. Prove that the units in a commutative ring with a unit element form
an abelian group.

7. Given two elements a, b in the Euclidean ring R their least common
multiple c € R is an element in R such that @ |¢ and 6] ¢ and such that
whenever a | x and b | x for x € R then ¢ | x. Prove that any two elements
in the Euclidean ring R have a least common multiple in R.

8. In Problem 7, if the least common multiple of a and & is denoted by
[a, b], prove that [a, b] = ab/(a, b).

3.8 A Particular Euclidean Ring

An abstraction in mathematics gains in substance and importance when,
particularized to a specific example, it sheds new light on this example.
We are about to particularize the notion of a Euclidean ring to a concrete
ring, the ring of Gaussian integers. Applying the general results obtained
about Euclidean rings to the Gaussian integers we shall obtain a highly
nontrivial theorem about prime numbers due to Fermat.
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Let J[:] denote the set of all complex numbers of the form a + b where
a and b are integers. Under the usual addition and multiplication of com-
plex numbers J[i] forms an integral domain called the domain of Gaussian
wnlegers.

Our first objective is to exhibit J[i] as a Euclidean ring. In order to do
this we must first introduce a function d(x) defined for every nonzero
element in J[i] which satisfies

1. d(x) is a nonnegative integer for every x # 0 € J[i].

2. d(x) < d(xp) for everyy # 0in J[i].

3. Given u, ve J[i] there exist ¢, r € J[i] such that v = tu + r where
r = 0or d(r) < d(u).

Our candidate for this function d is the following: if x =a + bi € J[i],
then d(x) = a? + b2 The d(x) so defined certainly satisfies property 1;
in fact, if x # 0 € J[i] then d(x) > 1. Asis well known, for any two com-
plex numbers (not necessarily in J[:]) x, y, d(xy) = d(x)d(y); thus if x
and y are in addition in J[:] and y # O, then since d(y) > 1, d(x) =
d(x)l < d(x)d(y) = d(xy), showing that condition 2 is satisfied. All our
effort now will be to show that condition 3 also holds for this function d in
J[Z]. Thisis done in the proof of

THEOREM 3.8.1 J[i] is a Euclidean ring.

Proof. As was remarked in the discussion above, to prove Theorem 3.8.1
we merely must show that, given x,y€ J[i] there exists ¢, re J[i] such
thaty = t&x + r where r = O or d(r) < d(x).

We first establish this for a very special case, namely, where y is arbitrary
in J[i] but where x is an (ordinary) positive integer n. Suppose that
y = a + bi; by the division algorithm for the ring of integers we can find
integers u, v such that a = un + u, and b = vn + v, where #; and v, are
integers satisfying |u,| < 4n and |v;| € n. Let ¢t = u + viand r = u; + v,i;
theny = a +bi = un + uy + (vn + v)i = (u + vi)n + v, + vyi =
tn + r. Sinced(r) = d(u; + ;i) = u?> + v,> < 0?4 + n?[4 < n? = d(n),
we see that in this special case we have shown that y = tn + r withr =0
ord(r) < d(n).

We now go to the general case; let x # 0 and y be arbitrary elements
in J[i]. Thus x% is a positive integer n where % is the complex conjugate of
x. Applying the result of the paragraph above to the elements y% and n we
see that there are elements ¢, r€ J[i] such that & =tn + r with r =0
ord(r) < d(n). Putting into this relation n = x% we obtain d( y% — ix%) <
d(n) = d(x%); applying to this the fact that d( y%¥ — tx%) = d(y — tx)d(%)
and d(x%) = d(x)d(%) we obtain that d(y — tx)d(%) < d(x)d(%). Since
x # 0, d(%) is a positive integer, so this inequality simplifies to d( y — tx) <
d(x). We represent y = tx + ro, where ry = y — tx; thus ¢ and r, are in
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J[{] and as we saw above, rg = 0 or d(r,) = d(y — tx) < d(x). This
proves the theorem.

Since J[i] has been proved to be a Euclidean ring, we are free to use the
results established about this class of rings in the previous section to the
Euclidean ring we have at hand, J[¢].

LEMMA 3.81 Let p be a prime integer and suppose that for some integer ¢
relatively prime to p we can find integers x and y such that x* + y* = cp. Then
p can be written as the sum of squares of two integers, that is, there exist integers
a and b such that p = a® + b2.

Proof. The ring of integers is a subring of J[i]. Suppose that the integer
p is also a prime element of J[i]. Since ¢p = x2 + »? = (x + yi)(x — yi),
by Lemma 3.7.6, p | (x + yi) or p| (x — i) in J[i]. Butifp| (x + pi) then
x + yi = p(u + vi) which would say that x = pu and » = pv so that p
also would divide x' — yi. But then p? | (x + yi)(x — i) = ¢p from which we
would conclude that p | ¢ contrary to assumption. Similarly if p | (x — y1).
Thus p is not a prime element in J[z]! In consequence of this,

b= (a+ bi)(g + di)

where a + b and g + di are in J[i{] and where neither a + bi nor g + di
is a unit in J[i]. But this means that neither a> + 62 = | nor g2 + d% = 1.
(See Problem 2.) From p = (a + bi)(g + di) it follows easily that p =
(a — bi)(g — di). Thus

p? = (a + bi)(g + di)(a — bi) (g — di) = (a® + b?)(g* + d?).

Therefore (a® + 62)|p* so a®> + b2 =1, p or p?; a® + b% # 1 since
a + bi is not a unit, in J[i]; a® + b* # p?, otherwise g2 + d*> = 1, con-
trary to the fact that g + di is not a unit in J[:]. Thus the only feasibility
left is that a2 + 62 = p and the lemma is thereby established.

The odd prime numbers divide into two classes, those which have a
remainder of | on division by 4 and those which have a remainder of 3 on
division by 4. We aim to show that every prime number of the first kind
can be written as the sum of two squares, whereas no prime in the second
class can be so represented.

LEMMA 3.8.2 If p is a prime number of the form 4n + 1, then we can solve

the congruence x> = —1 mod p.

Proof. Letx =1:2-3---(p— 1)/2. Since p — 1 = 4n, in this prod-

uct for x there are an even number of terms, in consequence of which

f= (DR ((45)
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But p — k = —k mod p, so that

2 = (1.2.../’__%__1)(_1)(_2)...<_<!;_1>>
g b= lp ]
2 2

=1 b4 cee(p = 1)
=(p—-1)!= —1modp.
We are using here Wilson’s theorem, proved earlier, namely that if p is
a prime number (p — 1)! = —1(p).
To illustrate this result, if p = 13,
x=1:2-3-4:5-6 =720 = 5mod 13 and 52 = —1 mod 13.

THEOREM 3.8.2 (FErMAT) If p is a prime number of the form 4n + 1,
then p = a® + b> for some integers a, b.

Proof. By Lemma 3.8.2 there exists an x such that x2 = —1 mod p.
The x can be chosen so that 0 < x < p — 1 since we only need to use the
remainder of x on division by p. We can restrict the size of x even further,
namely to satisfy |x] < p/2. For if x > pf2, then y = p — x satisfies
92 = —1modp but |y| < p/2. Thus we may assume that we have an
integer x such that }x] < /2 and x? + 1 is a multiple of p, say ¢p. Now
p=x*+1<p?4+1 <p? hence ¢ <p and so pj}fec Invoking
Lemma 3.8.1 we obtain that p = a?> + b2 for some integers a and b,
proving the theorem.

Problems
1. Find all the units in J[z].
2. If a + bi is not a unit of J[i] prove that a? + b2 > 1.

3. Find the greatest common divisor in J[z] of

(a) 3 + 4iand 4 — 3i. (b) 11 + 7iand 18 — 1.
4. Prove that if p is a prime number of the form 4n + 3, then there is
no x such that x2 = —1 mod p.

5. Prove that no prime of the form 4n + 3 can be written as a? + b2
where a and b are integers.

6. Prove that there is an infinite number of primes of the form 4n + 3.
*7. Prove there exists an infinite number of primes of the form 4n + 1.
*8. Determine all the prime elements in J[Z].

*9. Determine all positive integers which can be written as a sum of two
squares (of integers).
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3.9 Polynomial Rings

Very early in our mathematical education—in fact in junior high school or
early in high school itself—we are introduced to polynomials. Fora seemingly
endless amount of time we are drilled, to the point of utter boredom, in
factoring them, multiplying them, dividing them, simplifying them. Facility
in factoring a quadratic becomes confused with genuine mathematical
talent.

Later, at the beginning college level, polynomials make their appearance
in a somewhat different setting. Now they are functions, taking on values,
and we become concerned with their continuity, their derivatives, their
integrals, their maxima and minima.

We too shall be interested in polynomials but from neither of the above
viewpoints. To us polynomials will simply be elements of a certain ring
and we shall be concerned with algebraic properties of this ring. Our
primary interest in them will be that they give us a Euclidean ring whose
properties will be decisive in discussing fields and extensions of fields.

Let F be a field. By the ring of polynomials in the indeterminate, x, written
as F[x], we mean the set of all symbols a; + a,x + ‘- + a,x", where n
can be any nonnegative integer and where the coefficients gy, ay,..., a,
areall in F. In order to make a ring out of F[x] we must be able to recognize
when two elements in it are equal, we must be able to add and multiply
elements of F[x] so that the axioms defining a ring hold true for F[x].
This will be our initial goal.

We could avoid the phrase “the set of all symbols™ used above by intro-
ducing an appropriate apparatus of sequences but it seems more desirable
to follow a path which is somewhat familiar to most readers.

DEFINITION If p(x) = ay + a;x + * - + a,x™ and ¢(x) = by + bx +
+++ + b,x" are in F[x], then p(x) = ¢g(x) if and only if for every integer
i = 0, a; = b'-.

Thus two polynomials are declared to be equal if and only if their corre-
sponding coefficients are equal.

DEFINITION If p(x) = a9 + ayx + *** + a,x™ and ¢(x) = by + b,x +
«+++ bx" are both in F[x], then p(x) + ¢(x) =co + c;x + -+ + ¢
where for each i, ¢; = a; + b;.

In other words, add two polynomials by adding their coefficients and
collecting terms. To add 1 + x and 3 — 2x + x? we consider 1 + x as
1 + x + 0x2 and add, according to the recipe given in the definition, to
obtain as their sum 4 — x + x2.
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The most complicated item, and the only one left for us to define for
F[x], is the multiplication.

DEFINITION If p(x) = a5 + ajx + -+ + a,x™ and g¢(x) = by + byx +
“++ 4 bx", then p(x)q(x) = co + €1x + +* + ¢x* where ¢, = aby +
@1y + a,_2b; + - + apb,.

This definition says nothing more than: multiply the two polynomials

by multiplying out the symbols formally, use the relation #*xf = x**#,
and collect terms. Let us illustrate the definition with an example:

px) =1+ x —x2 q@x) =24 22 4+ x5
Here ¢y =1, a0, =1,a,= -1, a3, =0a,=+--=0,and by =2, b, = 0,
b, =1, b3 =1L b, =bs =---=0. Thus
€ = Gobp = 1.2 = 2,
€, = a1bg + apb; = 1.2 + 1.0 = 2,
€ = a3by + a1by + by, = (=1)(2) + 1.0 + 1.1 = —1,
€3 =azby + axb, + a\b, + agby = (0)(2) + (~1)(0) + 1.1 + 1.1 = 2,
asby + azb, + ayb, + aby + agb,

€4 =
= (0)(2) + (0)(0) + (—=1)(1) + (1)(1) + 1(0) = O,
65 = asby + azby + asb, + azb3 + a1b4 + agbs
= (0)(2) + (0)(0) + (O)(1) + (=1)(1) + (1)(0) + (0)(0) = —1,
€6 = agby + asb, + asb, + asby + ayby + a,bs + apbs

(0)(2) + (0)(0) + (0)(1) + (0)(1) + (=1)(0) + (1)(0) + (1)(0) =0,

g =¢g =+=0.

Therefore according to our definition,
I+x—x)Q2+x2+2% =co4+ex +- =2+ 2x —x2 + 2x> — &5

If you multiply these together high-school style you will see that you get
the same answer. Our definition of product is the one the reader has always
known.

Without further ado we assert that F[x] is a ring with these operations,
its multiplication is commutative, and it has a unit element. We leave the
verification of the ring axioms to the reader.

DEFINITION If f(x) =ay + ax + '+ ax" #0 and a, # 0 then
the degree of f (x), written as deg f (x), is n.

That is, the degree of f(x) is the largest integer i for which the ith co-
efficient of f(x) is not 0. We do not define the degree of the zero poly-
nomial. We say a polynomial is a constant if its degree is 0. The degree
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function defined on the nonzero elements of F[x] will provide us with the
function d(x) needed in order that F[x] be a Euclidean ring.

LEMMA 3.9.1 Iff(x), g(x) are two nonzero elements of F[x], then

deg (f (x)&(x)) = deg f(x) + deg g().

Proof. Suppose that f(x) = gy + a;x + *** + a,x™ and g(x) = by +
bx + -+ bx" and that a, # 0 and b, # 0. Therefore deg f(x) = m
and deg g(x) = n. By definition, f (x)g(x) = ¢o + ;¥ + *** + ¢, x* where
¢, =aby + a_1by + -+ a1,y + agb,. We claim that ¢,,, =
ayb, # 0 and ¢; = 0 for ¢ > m + n. That ¢,,, = a,b, can be seen at a
glance by its definition. What about ¢; for i > m + a? ¢; is the sum of
terms of the form ab;_;; since ¢ = j + (¢ —j) > m + n then either j > m
or ({ —j) > n. But then one of q; or §;—; is 0, so that ¢;b;_; = 0; since ¢;
is the sum of a bunch of zeros it itself is 0, and our claim has been
established. Thus the highest nonzero coefficient of f (x) g(x) is ¢,, 4 ,, whence

deg f (x)g(x) = m + n = deg f (x) + deg g(x).

COROLLARY If f (x), g(x) are nonzero elements in F[x] then deg f(x) <
deg f (x) g (x)-

Proof. Since deg f (x)g(x) = deg f(x) + deg g(x), and since deg g(x) >
0, this result is immediate from the lemma.

COROLLARY F[x] is an integral domain.

We leave the proof of this corollary to the reader.

Since F[x] is an integral domain, in light of Theorem 3.6.1 we can
construct for it its field of quotients. This field merely consists of all quotients
of polynomials and is called the field of rational functions in x over F.

The function deg f (x) defined for all f (x) # O in F[x] satisfies

1. deg f (x) is 2 nonnegative integer.
2. deg f(x) < deg f(x)g(x) for all g(x) # 0 in F[x].

In order for F[x] to be a Euclidean ring with the degree function acting as
the d-function of a Euclidean ring we still need that given f (x), g(x) € F[x],
there exist ¢(x), r(x) in F[x] such that f (x) = t(x)g(x) + r(x) where either
r(x) = 0 or deg r(x) < deg g(x). This is provided us by

LEMMA 3.9.2 (THE DivisioN ALGORITHM) Given two polynomials f(x)
and g(x) # 0 in F[x], then there exist two polynomials t(x) and r(x) in F[x] such
that f (x) = t(x)g(x) + r(x) where r(x) = 0 or deg r(x) < deg g(x).

Proof. The proof is actually nothing more than the “long-division”
process we all used in school to divide one polynomial by another.
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If the degree of f (x) is smaller than that of g(x) there is nothing to prove,
for merely put ¢(x) = 0, r(x) = f(x), and we certainly have that f(x) =
Og(x) + f (%) where deg f (x) < deg g(x) or f(x) = 0.

So we may assume that f(x) = ¢y + a;x + - -+ + a,x™ and g(x) = b, +
byx + -+ + bx" wherea,, # 0, b, # 0 and m = n.

Let fi(x) = f(x) — (a,/b,)x™ "g(x); thus degf,(x) < m — 1, so by
induction on the degree of f (x) we may assume that fj(x) = ¢,(x)g(x) +
r(x) wherer(x) = 0 ordeg r(x) < deg g(x). Butthen f (x) — (a,,/b,)x™ "g(x)
t,(x)g(x) + r(x), from which, by transposing, we arrive at f(x)
(an/b)™ " + 1,(x))8(®) + r(x). If we put 1(x) = (anfb)x™" + t,(x)
we do indeed have that f (x) = t(x)g(x) + r(x) where t(x), r(x) € F[x]
and where r(x) = 0 or deg r(x) < deg g(x). This proves the lemma.

This last lemma fills the gap needed to exhibit F[x] as a Euclidean ring
and we now have the right to say

THEOREM 3.9.1 F[x] is a Euclidean ring.

All the results of Section 3.7 now carry over and we list these, for our
particular case, as the following lemmas. It could be very instructive for
the reader to try to prove these directly, adapting the arguments used in
Section 3.7 for our particular ring F[x] and its Euclidean function, the
degree.

LEMMA 3.9.3 F[x] is a principal ideal ring.

LEMMA 3.9.4 Given two polynomials f (x), g(x) in F[x] they have a greatest
common divisor d(x) which can be realized as d(x) = A(x) f(x) + p(x)g(x).

What corresponds to a prime element?

DEFINITION A polynomial p(x) in F[x] is said to be irreducible over F if
whenever p(x) = a(x)b(x) with a(x), b(x) € F[x], then one of a(x) or b(x)
has degree O (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial x2 + I
is irreducible over the real field but not over the complex field, for there
x2 + 1 = (x + i) (x — i) where i* = —1.

LEMMA 3.9.5 Any polynomial in F(x] can be written in a unique manner as a
product of irreducible polynomials in F[x].

LEMMA 3.9.6 The ideal A = (p(x)) in F[x] is a maximal ideal if and only
if p(x) is irreducible over F.
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In Chapter 5 we shall return to take a much closer look at this field
F[x]/(p(x)), but for now we should like to compute an example.

Let F be the field of rational numbers and consider the polynomial
p(x) = x3 — 2in F[x]. Asis easily verified, it is irreducible over F, whence
F[x]/(x3 — 2) is a field. What do its elements look like? Let 4 = (x3 — 2),
the ideal in F[x] generated by x3 — 2.

Any element in F[x]/(x® — 2) is a coset of the form f(x) + A4 of the
ideal 4 with f(x) in F[x]. Now, given any polynomial f(x) € F[x], by
the division algorithm, f(x) = ¢(x)(x® — 2) + r(x), where r(x) =0 or
deg r(x) < deg (x* — 2) = 3. Thus r(x) = gy + a;x + a,x> where ag, a,,
a, are in F; consequently f (x) + A = ay + a;x + ax? + t(x)(x® — 2) +
A = ay + a;x + a;x? + A since t(x)(x® — 2) is in 4, hence by the addi-
tion and multiplication in F[x]/(x® — 2), f(x) + 4 = (ap + A4) +
a,(x + A) + ay(x + A)2. If we put ¢ = x + A4, then every element in
F[x]/(x® = 2) is of the form a, + a,¢ + a,t? with gy, a;, a, in F. What about
2 Since t* —2=(x+4)?-2=x>-2+4=A4=0 (since 4 is
the zero element of F[x]/(x®> — 2)) we see that t3 = 2.

Also, ifag + a;t + ayt? = by + byt + byt then (a9 — by) + (a; — b))t +
(a; — b,)t? = 0, whence (ag — by) + (a; — by)x + (a; — b,)x? is in
A = (x* — 2). How can this be, since every element in A has degree at
least 37 Only if ay — by + (a; — b;)x + (a; — b,)x? = 0, that is, only
if @y = by, a; = by, a; = b,. Thus every element in F[x]/(x® — 2) has
a unique representation as a, + a;¢t + a,t? where a, a,, a, € F. By Lemma
3.9.6, F[x]/(x® — 2) is a field. It would be instructive to see this directly;
all that it entails is proving that if ay + a;¢ + a5t # O then it has an
inverse of the form a + Bt + yt2. Hence we must solve for , B, 7 in the
relation (ap + a,¢t + ayt?)(x + Bt + yt?) = 1, where not all of gy ay, a,
are 0. Multiplying the relation out and using t* = 2 we obtain
(a0x + 22,8 + 2a1y) + (@@ + aof + 2a,9)t + (a2 + a1 + agy)t? = 1;
thus

aa + 2a,f + 201y = 1,

a;¢ + aoB + 2a,y = 0,
0.

ax + a8 + agy

We can try to solve these three equations in the three unknowns a, §, y.
When we do so we find that a solution exists if and only if

ay® + 22, + 4a,® — 6aga,a, # 0.

Therefore the problem of proving directly that F[x]/(x* — 2) is a field
boils down to proving that the only solution in rational numbers of

ay® + 2a, + 4a, = 6a4a,a, (N
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is the solution @y = a; = a, = 0. We now proceed to show this. If a
solution exists in rationals, by clearing of denominators we can show that
a solution exists where ag, a,, a, are integers. Thus we may assume that
ag, a,, a, are integers satisfying (1). We now assert that we may assume
that ag, a,,a, have no common divisor other than 1, for if gy = byd,
a;, = bd, and a, = b,d, where d is their greatest common divisor, then
substituting in (1) we obtain d3(by® + 26,3 + 4b,%) = d3(6byb,b,), and so
bo® + 2b,3 + 4b,> = 6byb,b,. The problem has thus been reduced to
proving that (1) has no solutions in integers which are relatively prime.
But then (1) implies that a,> is even, so that a, is even; substituting a, = 2a,
in (1) gives us 400> + @, + 2a,® = 609a,a,. Thus a,>, and so, g, is even;
a, = 20,. Substituting in (1) we obtain 2> + 4a,® + a,° = 60,2, a,.
Thus 4,3 and so a,, is even! But then @y, q;,a, have 2 as a common
factor! This contradicts that they are relatively prime, and we have proved
that the equation ¢y + 24, + 44, = 6a4a,a, has no rational solution
other than g, = a; = a; = 0. Therefore we can solve for «, f, y and
F[x]/(x® — 2) is seen, directly, to be a field.

Problems

1. Find the greatest common divisor of the following polynomials over
F, the field of rational numbers:
(a) x> — 6x2 + x + 4and x° — 6x + 1.
(b) x2 + land x® + x3 4+ x + 1.
2. Prove that
(a) x2 + x + 1 is irreducible over F, the field of integers mod 2.
(b) x2 + 1 is irreducible over the integers mod 7.
(c) ¥ — 9is irreducible over the integers mod 31.
(d) x* — 9 is reducible over the integers mod 11.
3. Let F, K be two fields F = K and suppose f(x), g(x) € F[x] are re-
latively prime in F[x]. Prove that they are relatively prime in K[x].

4. (a) Prove that x> 4 1 is irreducible over the field F of integers mod 11
and prove directly that F[x]/(x2 + 1) is a field having 121 elements.
(b) Prove that x2 + x + 4 is irreducible over F, the field of integers
mod 11 and prove directly that F[x]/(x* + x + 4) is a field
having 121 elements.
*(c) Prove that the fields of part (a) and part (b) are isomorphic.
5. Let F be the field of real numbers. Prove that F[x]/(x?> + 1) is a field
isomorphic to the field of complex numbers.

*6. Define the derivative f'(x) of the polynomial

S(x) =ap + a)x + -+ + g "
as S'(x) = a1 + 2a,x + 3azx? + -+ + na "L
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Prove that if f (x) € F[x], where F is the field of rational numbers, then
f () is divisible by the square of a polynomial if and only if f(x) and
f'(x) have a greatest common divisor d(x) of positive degree.

7. If f(x) is in F[x], where F is the field of integers mod p, p a prime,
and f (x) is irreducible over F of degree n prove that F[x]/(f (x)) is a
field with p" elements.

3.10 Polynomials over the Rational Field

We specialize the general discussion to that of polynomials whose co-
efficients are rational numbers. Most of the time the coefficients will
actually be integers. For such polynomials we shall be concerned with their
irreducibility.

DEFINITION The polynomial f(x) = a5 + a;x + -+ + a,x", where the
ag, a3, 4y, . - - , @, are integers is said to be primitive if the greatest common
divisor of a4, ay, ..., a,is 1.

LEMMA 3.10.1 If f(x) and g(x) are primitive polynomials, then f (x)g(x)
is a primitive polynomial.

Proof. Let f(x) =ay +ajx+ -+ a,x" and g(x) = by + byx + - +
b,x™. Suppose that the lemma was false; then all the coefficients of
S (x)g(x) would be divisible by some integer larger than 1, hence by some
prime number p. Since f (x) is primitive, p does not divide some coefficient
a;. Let a; be the first coefficient of f (x) which p does not divide. Similarly
let b, be the first coefficient of g(x) which p does not divide. In f(x)g(x)

: j+k .
the coeflicient of x/*¥, Cjtio IS

Civg = by + (@j41bk—1 + 54202 + - + aj4,00)

+ (gj-1bys1 + @j_zbysz + -0 + agbjiy)- (1)
Now by our choice of by, p|b;_1, by—2, - - - 50 that p|(a;+ b1 + aj42b,-2 +
*** + a;,.4b). Similarly, by our choice of aj, p|a;_;, a;_5,... so that

Pl(aj_ybyyy + @j_2byy2 + ¢+ + agbyy ;). By assumption, p|c;y,. Thus
by (1), ¢ |a;bi, which is nonsense since p 4 a; and p 4 b,. This proves
the lemma.

DEFINITION The content of the polynomial f(x) = ay + a;x + -+ +
a,x", where the a’s are integers, is the greatest common divisor of the
integers ag, ay, . . ., Q.

Clearly, given any polynomial p(x) with integer coefficients it can be
written as p(x) = dg(x) where d is the content of p(x) and where ¢(x) is a
primitive polynomial.
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THEOREM 3.10.1 (Gauss’ LEMMA) If the primitive polynomial f(x) can
be factored as the product of two polynomials having rational coefficients, it can be
JSactored as the product of two polynomials having integer coefficients.

Proof. Suppose that f (x) = u(x)v(x) where u(x) and v(x) have rational
coefficients. By clearing of denominators and taking out common factors
we can then write f (x) = (a/b)A(x)ju(x) where a and b are integers and
where both A(x) and pu(x) have integer coefficients and are primitive.
Thus &f (x) = al(x)u(x). The content of the left-hand side is b, since
f (x) is primitive; since both A(x) and p(x) are primitive, by Lemma 3.10.1
A(x)u(x) is primitive, so that the content of the right-hand side is a. There-
fore a = b, (afb) =1, and f(x) = A(x)u(x) where A(x) and pu(x) have
integer coefficients. This is the assertion of the theorem.

DEFINITION A polynomial is said to be integer monic if all its coefficients
are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form »" +
a;x"~ ! + -+ + a, where the a’s are integers. Clearly an integer monic
polynomial is primitive.

COROLLARY If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of two
integer monic polynomials.

We leave the proof of the corollary as an exercise for the reader.

The question of deciding whether a given polynomial is irreducible or not
can be a difficult and laborious one. Few criteria exist which declare that a
given polynomial is or is not irreducible. One of these few is the following
result:

THEOREM 3.10.2 (THE EisensTEIN CRITERION) Let f (x) = a5 + a;x +
a,x% + -+« + a,x" be a polynomial with integer coefficients. Suppose that for
some prime number p, p X app|ay, pl @z ..., p| a0, p2 ¥ ag. Then f(x) is

trreducible over the rationals.

Proof. Without loss of generality we may assume that f (x) is primitive,
for taking out the greatest common factor of its coefficients does not disturb
the hypotheses, since p t a,. If f(x) factors as a product of two rational
polynomials, by Gauss’ lemma it factors as the product of two polynomials
having integer coefficients. Thus if we assume that f (x) is reducible, then

S = (bo + bax + - + bx) (0 + ¥ + 0 + ),

where the b’s and ¢’s are integers and where r > 0 and s > 0. Reading off
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the coefficients we first get ag = bycy. Since p | ay, p must divide one of
by or ¢o. Since p? ) ay, p cannot divide both by and ¢,. Suppose that p | b,
p X ¢g. Not all the coefficients by, . .., b, can be divisible by p; otherwise
all the coefficients of f (x) would be divisible by p, which is manifestly false
since p ¥ a,. Let b, be the first b not divisible by p, £ < r < n. Thus
p | b, | and the earlier b’s. But a, = by + by 164 + bx 265 + -+ + boey
and plag, p|b; 150k 25..-, b so that p|be,. However, p ¥ co, p } by,
which conflicts with p | ¢,. This contradiction proves that we could not
have factored f (x) and so f (x) is indeed irreducible.

Problems

1. Let D be a Euclidean ring, F its field of quotients. Prove the Gauss
Lemma for polynomials with coefficients in D factored as products of
polynomials with coefficients in F.

2 If p is a prime number, prove that the polynomial " — p is irreducible
over the rationals.

3. Prove that the polynomial 1 + x + ++- + xP~ 1, where p is a prime
number, is irreducible over the field of rational numbers. (Hint: Con-
sider the polynomial | + (x + 1) + (x + 1)2 + -+ + (x + 1)?P7!, and
use the Eisenstein criterion.)

4. If m and n are relatively prime integers and if
m r
(v = 2o + oax o+ a0,
n

where the a’s are integers, prove that m | gy and n| q,.

5. If a is rational and x — a divides an integer monic polynomial, prove
that @ must be an integer.

3.11 Polynomial Rings over Commutative Rings

In defining the polynomial ring in one variable over a field F, no essential
use was made of the fact that F was a field ; all that was used was that F was
a commutative ring. The field nature of F only made itself felt in proving
that F[x] was a Euclidean ring.

Thus we can imitate what we did with fields for more general rings.
While some properties may be lost, such as “Euclideanism,” we shall see
that enough remain to lead us to interesting results. The subject could have
been developed in this generality from the outset, and we could have
obtained the particular results about F[x] by specializing the ring to be a
field. However, we felt that it would be healthier to go from the concrete
to the abstract rather than from the abstract to the concrete. The price we
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pay for this is repetition, but even that serves a purpose, namely, that of
consolidating the ideas. Because of the experience gained in treating
polynomials over fields, we can afford to be a little sketchier in the proofs here.

Let R be a commutative ring with unit element. By the polynomial ring
in x over R, R[x], we shall mean the set of formal symbols a5 + a,x+ --- +
a,x", where ay, a,...,a, are in R, and where equality, addition, and
multiplication are defined exactly as they were in Section 3.9. As in that
section, R[x] is a commutative ring with unit element.

We now define the ring of polynomials in the n-variables x,, . .., x, over R,
R[x,, ..., x,), as follows: Let R, = R[x;], R, = R,[x;], the polynomial
ring inx, over R,, ..., R, = R,_,[x,]. R, is called the ring of polynomials
in x,...,x, over R. Its elements are of the form Ya,;, , x “x,' -+ xf,
where equality and addition are defined coefficientwise and where multipli-
cation is defined by use of the distributive law and the rule of exponents
(xlinxziz “eex,in) (xlj‘xzjz .o x“jn) = xlix +j’x2 i2tj2. .. x"iu+.i.._ Of particular
importance is the case in which R = F is a field; here we obtain the ring
of polynomials in z-variables over a field.

Of interest to us will be the influence of the structure of R on that of
R[x,,...,x,]). The first result in this direction is

LEMMA 3.11.1 If R is an integral domain, then so is R[x].

Proof. For 0 # f(x) = ay + ayx + *- - + a,x™ where a,, # 0, in R[x],
we define the degree of f(x) to be m; thus deg f (x) is the index of the highest
nonzero coefficient of f(x). If R is an integral domain we leave it as an
exercise to prove that deg (f (x)g(x)) = degf (x) + deg g(x). But then,
for f(x) # 0, g(x) # 0, it is impossible to have f(x)g(x) = 0. That is,
R[x] is an integral domain.

Making successive use of the lemma immediately yields the
COROLLARY If R is an integral domain, then so is Rx,, ..., x,].

In particular, when F is a field, F[x,, ..., x,] must be an integral domain.
As such, we can construct its field of quotients; we call this the field of rational
Sunctions in x,, ..., %, over F and denote it by F(x,,...,«,). This field
plays a vital role in algebraic geometry. For us it shall be of utmost im-
portance in our discussion, in Chapter 5, of Galois theory.

However, we want deeper interrelations between the structures of R and
of R[x,,...,x,] than that expressed in Lemma 3.11.]1. Our development
now turns in that direction.

Exactly in the same way as we did for Euclidean rings, we can speak
about divisibility, units, etc., in arbitrary integral domains, R, with unit
element. Two elements a, b in R are said to be associates if a = ub where u
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is a unit in R. An element a which is not a unit in R will be called irreducible
(or a prime element) if, whenever a = b¢ with b, ¢ both in R, then one of b or
¢ must be a unit in R. An irreducible element is thus an element which
cannot be factored in a “nontrivial” way.

DEFINITION An integral domain, R, with unit element is a wurique
Sactorization domain if

a. Any nonzero element in R is either a unit or can be written as the product
of a finite number of irreducible elements of R.

b. The decomposition in part (a) is unique up to the order and associates
of the irreducible elements.

Theorem 3.7.2 asserts that a Euclidean ring is a unique factorization
domain. The converse, however, is false; for example, the ring F[x,, x,],
where Fis a field, is not even a principal ideal ring (hence is certainly not
Euclidean), but as we shall soon see it is a unique factorization domain.

In general commutative rings we may speak about the greatest common
divisors of elements; the main difficulty is that these, in general, might not
exist. However, in unique factorization domains their existence is assured.
This fact is not difficult to prove and we leave it as an exercise; equally easy
are the other parts of

LEMMA 3.11.2 If R is a unique factorization domain and if a, b are in R, then
a and b have a greatest common divisor (a, b) in R. Moreover, if a and b are
relatively prime (i.e., (a, b) = 1), whenever a | bc then a | c.

COROLLARY Ifa € R is an irreducible element and a | bc, then a | b or a | c.

We now wish to transfer the appropriate version of the Gauss lemma
(Theorem 3.10.1), which we proved for polynomials with integer co-
efficients, to the ring R[x], where R is a unique factorization domain.

Given the polynomial f (x) = ay + a,x + -+ + a,%™ in R[x], then the
content of f (x) is defined to be the greatest common divisor of ag, a,, . . . , @,
It is unique within units of R. We shall denote the content of f (x) by ¢(f).
A polynomial in R[x] is said to be primitive if its content is 1 (that is, is a
unit in R). Given any polynomial f(x) € R[x], we can write f (x) = af,(x)
where a = ¢(f) and where f;(x) € R[x] is primitive. (Prove!) Except for
multiplication by units of R this decomposition of f(x), as an element of
R by a primitive polynomial in R[x], is unique. (Prove!)

The proof of Lemma 3.10.1 goes over completely to our present situation;
the only change that must be made in the proof is to replace the prime
number p by an irreducible element of R. Thus we have
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LEMMA 3.11.3 If R is a unique factorization domain, then the product of two
primitive polynomials in R[x] is again a primitive polynomial in R[x].

Given f(x), g(x) in R[x] we can write f(x) = afi(x), g(x) = bg,(x),
where a = ¢(f), b = ¢(g) and where f,(x) and g,(x) are primitive. Thus
f(x)g(x) = abfi(x)g,(x). By Lemma 3.11.3, f(x) g,(x) is primitive. Hence
the content of f (x) g(x) is ab, that is, it is ¢(f)c(g). We have proved the

COROLLARY If R is a unique factorization domain and if f (x), g(x) are in
R[x], then c(fg) = c(f)c(g) (up to units).

By a simple induction, the corollary extends to the product of a finite
number of polynomials to read ¢(f1f; * fo) = ¢(fi)e(Sfa) - ¢(Sfo)-

Let R be a unique factorization domain. Being an integral domain, by
Theorem 3.6.1, it has a field of quotients F. We can consider R[x] to be a
subring of F[x]. Given any polynomial f (x) € F[x], then f (x) = ( fo(x)/a),
where fy(x) € R[x] and where a € R. (Prove!) It is natural to ask for the
relation, in terms of reducibility and irreducibility, of a polynomial in R[x]
considered as a polynomial in the larger ring F[x]

LEMMA 3.11.4 If f(x) in R[x] is both primitive and irreducible as an element
of R[x], then it is irreducible as an element of F[x]. Conversely, if the primitive
element f (x) in R[x] is irreducible as an element of F[x], it is also irreducible as an
element of R[x].

Proof. Suppose that the primitive element f (x) in R[x] is irreducible in
R[x] but is reducible in F[x]. Thusf(x) = g(x)h(x), where g(x), h(x) are in
F[x] and are of positive degree. Now g(x) = (go(x)/a), h(x) = (hy(x)/b),
where a,be R and where go(x), ho(x) € R[x]. Also go(x) = ag,(x),
ho(x) = Bhy(x), where a = ¢(g), B = ¢(hy), and g,(x), h,(x) are primitive
in R[x]. Thus f(x) = (af/ab)g,(x)hi(x), whence abf (x) = afg,(x)h;(x).
By Lemma 3.11.3, g, (x);(x) is primitive, whence the content of the right-
hand side is af. Since f (x) is primitive, the content of the left-hand side is
ab; but then ab = aff; the implication of this is that f (x) = g,(x)k,(x), and
we have obtained a nontrivial factorization of f (x) in R[x], contrary to
hypothesis. (Note: this factorization is nontrivial since each of g, (x), &, (x)
are of the same degree as g(x), &(x), so cannot be units in R[x] (see Problem
4).) We leave the converse half of the lemma as an exercise.

LEMMA 3.11.5 If R is a unique factorization domain and if p(x) is a primitive
polynomial in R[x], then it can be factored in a unique way as the product of irreducible
elements in R[x].

Proof. When we consider p(x) as an element in F[x], by Lemma 3.9.5,
we can factor it as p(x) = p;(x) '+ - p.(x), where p;(x), p,(x), ..., p(x) are
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irreducible polynomials in F[x]. Each p;(x) = (fi(x)/a;), where fi(x) e
R[x] and gq; € R; moreover, f;(x) = ¢;q;(x), where ¢; = ¢(f;) and where
¢i(x) is primitive in R[x]. Thus each p;(x) = (¢;9:(x)/a;), where a;, c;e R
and where ¢;(x) € R[x] is primitive. Since p;(x) is irreducible in F[x],
¢i(x) must also be irreducible in F[x], hence by Lemma 3.11.4 it is irreducible
in R[x].

Now
PRIRES

¢
=L g(x) - qulx)
a,8; """ d

p(x) = pi(%) -~ pulx)

whence aja, -+ g p(x) = c6; * gy (x) - - - gi(x). Using the primitivity of
p(x) and of ¢;(x) - - gx(x), we can read off the content of the left-hand
side as a;a,-°a, and that of the right-hand side as ¢;c; - -¢,. Thus
a,a, " @, =¢6," ¢, hence p(x) = g;(x) - g (x). We have factored
p(x), in R[x], as a product of irreducible elements.

Can we factor it in another way? If p(x) = r,(x) - -, (x), where the
r;(x) are irreducible in R[x], by the primitivity of p(x), each r;(x) must be
primitive, hence irreducible in F[x] by Lemma 3.11.4. But by Lemma 3.9.5
we know unique factorization in F[x]; the net result of this is that the
r;(x) and the ¢;(x) are equal (up to associates) in some order, hence p(x)
has a unique factorization as a product of irreducibles in R[x].

We now have all the necessary information to prove the principal theorem
of this section.

THEOREM 3.11.1 If Risaunique factorization domain, then sois R[x].

Proof. Let f(x) be an arbitrary element in R[x]. We can write f (x) in
a unique way as f (x) = ¢f;(x) where ¢ =¢(f) is in R and where f;(x),
in R[x], is primitive. By Lemma 3.11.5 we can decompose f; (x) in a unique
way as the product of irreducible elements of R[x]. What about ¢?
Suppose that ¢ = a,(x)a,(x)---a,(x) in R[x]; then 0 = degc¢ =
deg (a,(x)) + deg (azx(x)) + - -- + deg (a,(x)). Therefore, each a;(x) must
be of degree O, that is, it must be an element of R. In other words, the
only factorizations of ¢ as an element of R[x] are those it had as an element
of R. In particular, an irreducible element in R is still irreducible in R[x].
Since R is a unique factorization domain, ¢ has a unique factorization as a
product of irreducible elements of R, hence of R[x].

Putting together the unique factorization of f(x) in the form ¢f](x) where
f1(x) is primitive and where ¢ € R with the unique factorizability of ¢ and
of f;(x) we have proved the theorem.

Given R as a unique factorization domain, then R; = R[x,] is also a
unique factorization domain. Thus R, = R,[x,] = R[x,, x,] is also a
unique factorization domain. Continuing in this pattern we obtain

N
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COROLLARY 1 If R is a unique factorization domain then so is R[x,, ..., x,].
A special case of Corollary 1 but of independent interest and importance is

COROLLARY 2 If F is a field then F[xy,...,x,) is a unique factorization

domain.

Problems

1. Prove that R[x] is a commutative ring with unit element whenever R is.

2. Prove that R[x,,...,x,] = R[x;,...,x;], where (i,...,7,) is a
permutation of (1, 2, ..., n).

3. If R is an integral domain, prove that for f (x), g(x) in R[x],
deg (f(¥)&(x)) = deg (f(x)) + deg (&(x)).

4. If R is an integral domain with unit element, prove that any unit in
R[x] must already be a unit in R.

5. Let R be a commutative ring with no nonzero nilpotent elements (that
is, @" = 0 implies a = 0). If f(x) = a5 + a;x + -+ + a,x" in R[x]
is a zero-divisor, prove that there is an element 4 # 0 in R such that
bag = ba; = +++ = ba, = 0.

*6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent
elements.

*7. If R is a commutative ring with unit element, prove that a, + a;x +
:++ 4+ a,x"in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and
only if @y is a unit in R and q,, ..., a, are nilpotent elements in R.

8. Prove that when F is a field, F[x,, x,] is not a principal ideal ring.

9. Prove, completely, Lemma 3.11.2 and its corollary.

10. (a) If R is a unique factorization domain, prove that every f (x) € R[x]
can be written as f (x) = af;(x), where ae R and where f{(x) is
primitive.

(b) Prove that the decomposition in part (a) is unique (up to associates).

11. If R is an integral domain, and if Fis its field of quotients, prove that
any element f (x) in F[x] can be written as f (x) = ( f3(x)/a), where

Jo(x) € R[x] and where a € R.

12. Prove the converse part of Lemma 3.11.4.

13. Prove Corollary 2 to Theorem 3.11.1.

14. Prove that a principal ideal ring is a unique factorization domain.

15. If J is the ring of integers, prove that J[x,,..., x,] is a unique fac-
torization domain.
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Supplementary Problems

L.

10.

11.

12.
13.

14.
15.

Let R be a commutative ring; an ideal P of R is said to be a prime ideal
of Rif abe P, a, b € R implies that ae P or b € P. Prove that P is a
prime ideal of R if and only if R/P is an integral domain.

. Let R be a commutative ring with unit element; prove that every

maximal ideal of R is a prime ideal.

. Give an example of a ring in which some prime ideal is not a maximal

ideal.

. If R is a finite commutative ring (i.e., has only a finite number of

elements) with unit element, prove that every prime ideal of R is a
maximal ideal of R.

. If F is a field, prove that F[x] is isomorphic to F[¢].
. Find all the automorphisms ¢ of F[x] with the property that ¢(f) = f

for every f € F.

. If R is a commutative ring, let N = {x € R | x” = O for some integer n}.

Prove
(a) N is an ideal of R.
(b) In R = RIN if & = O for some m then # = 0.

. Let R be a commutative ring and suppose that 4 is an ideal of R.

Let N(A) = {xe R|x" € A for some n}. Prove
(a) N(A) is an ideal of R which contains 4.

(b) N(N(4)) = N(4).

N (4) is often called the radical of A.

. If n is an integer, let J, be the ring of integers mod n. Describe N

(see Problem 7) for J, in terms of n.

If A and B are ideals in a ring R such that 4 n B = (0), prove that
for everyae 4, be B, ab = 0.

If Ris a ring, let Z(R) = {xe R|xy = yxall ye R}. Prove that
Z(R) is a subring of R.

If R is a division ring, prove that Z(R) is a field.

Find a polynomial of degree 3 irreducible over the ring of integers,
J3> mod 3. Use it to construct a field having 27 elements.

Construct a field having 625 elements.
If Fis a field and p(x) € F[x], prove that in the ring
- FlA
(p(x))"

N (see Problem 7) is (0) if an only if p(x) is not divisible by the square of
any polynomial.
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Prove that the polynomial £ (x) = 1 + x + x* + x* is not irreducible
over any field F.

Prove that the polynomial f(x) = x* + 2x + 2 is irreducible over
the field of rational numbers.

Prove that if F is a finite field, its characteristic must be a prime number
p and F contains p" elements for some integer. Prove further that if
a € F then a?” = a.

Prove that any nonzero ideal in the Gaussian integers J[i] must contain
some positive integer.

Prove that if R is a ring in which a* = a for every a € R then R must
be commutative.

Let R and R’ be rings and ¢ a mapping from R into R’ satisfying

(@) é(x +7) = ¢(x) + ¢()) for every x, y € R.

(b) @(xp) = ¢(x)@(») or $(»)P(x).
Prove that for all a, b € R, ¢(ab) = ¢(a)@(b) or that, for all a,b € R,
¢(a) = ¢(b)p(a). (Hint: Ifae R, let

W, = {xeR| ¢(ax) = ¢(a)¢(x)}
and
U, = {xe R| ¢(ax) = ¢(x)¢(a)}.)

Let R be a ring with a unit element, 1, in which (ab)? = 2262 for

all a, b € R. Prove that R must be commutative.

Give an example of a noncommutative ring (of course, without 1) in

which (ab)? = a2b? for all elements a and b.

(a) Let R be a ring with unit element 1 such that (ab)? = (ba)? for
all g, € R. Ifin R, 2x = 0 implies x = 0, prove that R must be
commutative.

(b) Show that the result of (a) may be false if 2x = O for some x # 0
in R.

(c) Even if 2x = 0 implies x = 0 in R, show that the result of (a)
may be false if R does not have a unit element.

Let R be a ring in which ¥* = 0 implies x = 0. If (ab)? = a%b?

for all a, b € R, prove that R is commutative.

Let R be a ring in which ¥* = 0 implies x = 0. If (ab)? = (ba)?

for all a, b € R, prove that R must be commutative.

Let p,, p3, - - - » £ be distinct primes, and let n = pp, -+ p,. If R is

the ring of integers modulo n, show that there are exactly 2* elements

ain R such that ¢? = a.

Construct a polynomial g(x) # O with integer coefficients which has

no rational roots but is such that for any prime p we can solve the

congruence ¢(x) = 0 mod p in the integers.
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Vector Spaces and Modules

Up to this point we have been introduced to groups and to rings; the
former has its motivation in the set of one-to-one mappings of a set
onto itself, the latter, in the set of integers. The third algebraic model
which we are about to consider—vector space—can, in large part,
trace its origins to topics in geometry and physics.

Its description will be reminiscent of those of groups and rings—in
fact, part of its structure is that of an abelian group-—but a vector
space differs from these previous two structures in that one of the
products defined on it uses elements outside of the set itself. These
remarks will become clear when we make the definition of a vector
space.

Vector spaces owe their importance to the fact that so many models
arising in the solutions of specific problems turn out to be vector
spaces. For this reason the basic concepts introduced in them have a
certain universality and are ones we encounter, and keep encountering,
in so many diverse contexts. Among these fundamental notions are
those of linear dependence, basis, and dimension which will be de-
veloped in this chapter. These are potent and effective tools in all
branches of mathematics; we shall make immediate and free use of
these in many key places in Chapter 5 which treats the theory of fields.

Intimately intertwined with vector spaces are the homomorphisms
of one vector space into another (or into itself). These will make up
the bulk of the subject matter to be considered in Chapter 6.

In the last part of the present chapter we generalize from vector spaces
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to modules; roughly speaking, a module is a vector space over a ring instead
of over a field. For finitely generated modules over Euclidean rings we
shall prove the fundamental basis theorem. This result allows us to give a
complete description and construction of all abelian groups which are
generated by a finite number of elements.

41 Elementary Basic Concepts

DEFINITION A nonempty set V is said to be a wvector space over a field F
if V is an abelian group under an operation which we denote by +, and
if for every a € F, v € V there is defined an element, written av, in ¥ subject
to

l. alv + w) = av + aw;
2. (a0 + Bv = av + Pu;
3. a(pv) = (aP)e;

4. lv = v;

for all a, f € F, v, w e V (where the | represents the unit element of F
under multiplication).

Note that in Axiom 1 above the + is that of V, whereas on the left-hand
side of Axiom 2 it is that of F and on the right-hand side, that of V.
We shall consistently use the following notations:

a. F will be a field.

b. Lowercase Greek letters will be elements of F; we shall often refer to
elements of F as scalars.

c. Capital Latin letters will denote vector spaces over F.

d. Lowercase Latin letters will denote elements of vector spaces. We shall
often call elements of a vector space vectors.

If we ignore the fact that ¥ has two operations defined on it and view it
for a moment merely as an abelian group under +, Axiom 1 states nothing
more than the fact that multiplication of the elements of V by a fixed scalar
o defines a homomorphism of the abelian group V into itself. From Lemma
4.1.1 which is to follow, if & # 0 this homomorphism can be shown to be
an isomorphism of V onto V.

This suggests that many aspects of the theory of vector spaces (and of
rings, too) could have been developed as a part of the theory of groups,
had we generalized the notion of a group to that of a group with operators.
For students already familiar with a little abstract algebra, this is the pre-
ferred point of view; since we assumed no familiarity on the reader’s part
with any abstract algebra, we felt that such an approach might lead to a
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too sudden introduction to the ideas of the subject with no experience to
act as a guide.

Example 41.1 Let F be a field and let K be a field which contains F as
a subfield. We consider K as a vector space over F, using as the + of the
vector space the addition of elements of K, and by defining, for a € F,
v e K, av to be the products of & and » as elements in the field K. Axioms
1, 2, 3 for a vector space are then consequences of the right-distributive
law, left-distributive law, and associative law, respectively, which hold for
K as a ring.

Example 4.1.2 Let F be a field and let V be the totality of all ordered

n-tuples, (&y,...,®,) where the «; € F. Two elements (a,,..., «,) and
(81, ..., B,) of V are declared to be equal if and only if «; = B, for each
i=1,2,...,n. We now introduce the requisite operations in V to make

of it a vector space by defining:

Lo(oye-05 ) + (Bys---5Ba) = (al + Bisoy + Baseesty + Ba)-
2. y(og, .oy 0,) = (yoy, ..., ya,) for y € F.

It is easy to verify that with these operations, V is a vector space over F.
Since it will keep reappearing, we assign a symbol to it, namely F{™,

Example 4.1.3 Let F be any field and let V = F[x], the set of poly-
nomials in x over F. We choose to ignore, at present, the fact that in F[x]
we can multiply any two elements, and merely concentrate on the fact that
two polynomials can be added and that a polynomial can always be multi-
plied by an element of F. With these natural operations F[x] is a vector
space over F.

Example 4.1.4 In F[x] let V, be the set of all polynomials of degree less
than n. Using the natural operations for polynomials of addition and
multiplication, V, is a vector space over F.

What is the relation of Example 4.1.4 to Example 4.1.2? Any element of
V, is of the form ay + o;x + +++ + a,_,x" !, where o; € F; if we map
this element onto the element (ag, &y, - . ., &,_,) in F™ we could reasonably
expect, once homomorphism and isomorphism have been defined, to find
that ¥V, and F™ are isomorphic as vector spaces.

DEFINITION If V is a vector space over F and if W = V, then W is a
subspace of V if under the operations of V, W, itself, forms a vector space
over F. Equivalently, W is a subspace of V whenever w,,w,e W,
o, B € F implies that aw, + fw, € W.
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Note that the vector space defined in Example 4.1.4 is a subspace of that
defined in Example 4.1.3. Additional examples of vector spaces and
subspaces can be found in the problems at the end of this section.

DEFINITION If U and V are vector spaces over F then the mapping T
of U into V is said to be a homomorphism if

L (uy + up)T =, T + u,T;
2. (0u))T = a(u, T);

for all u,, u, € U, and all a € F.

As in our previous models, a homomorphism is a mapping preserving
all the algebraic structure of our system.

If T, in addition, is one-to-one, we call it an isomorphism. The kernel of
T is defined as {ue U|uT = 0} where O is the identity element of the
addition in V. It is an exercise that the kernel of T is a subspace of U and
that T is an isomorphism if and only if its kernel is (0). Two vector spaces
are said to be isomorphic if there is an isomorphism of one onto the other.

The set of all homomorphisms of U into V will be written as Hom (U, V).
Of particular interest to us will be two special cases, Hom (U, F) and
Hom (U, U). We shall study the first of these soon; the second, which can be
shown to be a ring, is called the ring of linear transformations on U. A great
deal of our time, later in this book, will be occupied with a detailed study
of Hom (U, U).

We begin the material proper with an operational lemma which, as in
the case of rings, will allow us to carry out certain natural and simple
computations in vector spaces. In the statement of the lemma, O represents
the zero of the addition in V, o that of the addition in F, and —v the
additive inverse of the element v of V.

LEMMA 4.1.1 If Vis a vector space over F then

l. 0 = 0 for a € F.

2 oo =0forveV.

3. (—a)v = —(ow) foraeF, veV.

4. If v # O, then av = O implies that o = o.

Proof. The proof is very easy and follows the lines of the analogous
results proved for rings; for this reason we give it briefly and with few
explanations.

1. Since 20 = a(0 + 0) = a0 + «0, we get a0 = 0.
2. Since ov = (0 + 0)v = ov + ov we get ov = 0.
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3. Since0 = (¢ + (—a))ov = av + (—a)y, (—a)y = —(w).
4. Ifav = 0 and a # o then

0=0a '0=a"Yw) = (¢« 'a)p =lv =

The lemma just proved shows that multiplication by the zero of V or of
F always leads us to the zero of V. Thus there will be no danger of confusion
in using the same symbol for both of these, and we henceforth will merely
use the symbol 0 to represent both of them.

Let V be a vector space over F and let W be a subspace of V. Considering
these merely as abelian groups construct the quotient group V/W; its
elements are the cosets ¥ + W where ve V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that V/W is an abelian group. We intend to make of it a vector
space. Ifae F,v + W e V/W, define a(v + W) = av + W. As is usual,
we must first show that this product is well defined; that is, if v + W =
v + Wthen a(v + W) = a(v’ + W). Now, because v + W =o' + W,
v — ¥ is in W; since W is a subspace, a(v — v’) must also be in W. Using
part 3 of Lemma 4.1.1 (see Problem 1) this says that av — av’ € W and so
w+W=a'+W. Thusa(v + W)=+ W=a' + W=0a(' + W);
the product has been shown to be well defined. The verification of the
vector-space axioms for V/W is routine and we leave it as an exercise.
We have shown

LEMMA 4.1.2 If V is a vector space over F and if W is a subspace of V, then
VIW is a vector space over F, where, for v, + W, v, + WeV|W and a € F,

Lo+ W)+ (0 + W) =(y +2) + W
2. a(vy + W) =av, + W.
V|W is called the quotient space of V by W.
Without further ado we now state the first homomorphism theorem for

vector spaces; we give no proofs but refer the reader back to the proof of
Theorem 2.7.1.

THEOREM 4.1.1 If T is a homomorphism of U onto V with kernel W, then V
is isomorphic to U/W. Conversely, if U is a vector space and W a subspace of U,
then there is a homomorphism of U onto U/W.

The other homomorphism theorems will be found as exercises at the end
of this section.

DEFINITION Let V be a vector space over F and let U,,..., U, be
subspaces of V. V is said to be the internal direct sum of Uy, ..., U, if every
element v € ¥ can be written in one and only one way as v = u; + u, +
+++ + u, where y; € U,.
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Given any finite number of vector spaces over F, V,,..., V,, consider
the set V of all ordered n-tuples (v,, . .., v,) where v; € V;. We declare two
elements (vy,...,v,) and (vy,..., ;) of V to be equal if and only if for
each 7, v; = v;. We add two such elements by defining (v,...,7,) +
(wyy ..., w, to be (v, + wy, v, + wyy..., 0, + w,). Finally, if a e F
and (vy,...,v, € V we define a(vy,...,v,) to be (av,av,,...,av,).
To check that the axioms for a vector space hold for V with its operations
as defined above is straightforward. Thus V itself is a vector space over F.
We call V the external direct sum of Vy,..., V, and denote it by writing
V=V, @ @V,

THEOREM 4.1.2 If V is the internal direct sum of U,,..., U,, then V is
isomorphic to the external direct sum of Uy, ..., U,.

Proof. Given v eV, v can be written, by assumption, in one and only
one way as v = u; + u; + *** + u, where u; € U;; define the mapping
Tof Vinto Uy ®---® U, by vT = (uy,...,u,). Since v has a unique
representation of this form, T is well defined. It clearly is onto, for the
arbitrary element (w,,...,w,) e Uy @ '-® U, is wT where w = w;, +
-+ + w, € V. We leave the proof of the fact that T is one-to-one and a
homomorphism to the reader.

Because of the isomorphism proved in Theorem 4.1.2 we shall henceforth
merely refer to a direct sum, not qualifying that it be internal or external.

Problems

1. In a vector space show that a(v — w) = av — aw.

2. Prove that the vector spaces in Example 4.1.4 and Example 4.1.2 are
isomorphic.

3. Prove that the kernel of a homomorphism is a subspace.

4. (a) If F is a field of real numbers show that the set of real-valued,
continuous functions on the closed interval [0, 1] forms a vector
space over F.
(b) Show that those functions in part (a) for which all ath derivatives
exist forn = 1, 2, ... form a subspace.

5. (a) Let F be the field of all real numbers and let ¥ be the set of all
sequences (ay,a3,...,a,,...), a; € F, where equality, addition
and scalar multiplication are defined componentwise. Prove that

V is a vector space over F.
(b) Let W = {(ay,...,4a,,...)€ V|lima, = 0}. Prove that W

n— o

is a subspace of V.
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6.

*7.

10.

11.

12.
13.

14.

15.

16.

17.

18.

*(c) Let U = {(ay,...,a,,...) e V| Z a;? is finite}. Prove that Uis
i=1
a subspace of V and is contained in W.

If U and V are vector spaces over F, define an addition and a multipli-
cation by scalars in Hom (U, V) so as to make Hom (U, V) into a
vector space over F.

Using the result of Problem 6 prove that Hom (F®™, F™) is isomorphic
to F"™ as a vector space.

. If n > m prove that there is a homomorphism of F(™ onto F™ with

a kernel W which is isomorphic to F¢*~™,

. If v # 0€ F™ prove that there is an element T € Hom (F®™, F)

such that T # 0.

Prove that there exists an isomorphism of F™ into
Hom (Hom (F®, F), F).

If U and W are subspaces of V, prove that U + W = {se V|0 =
u + w, ue U, we W}is a subspace of V.

Prove that the intersection of two subspaces of V is a subspace of V.

If A and B are subspaces of V prove that (4 + B)/B is isomorphic to
A4/(4 n B).

If T is a homomorphism of U onto V with kernel W prove that there
is a one-to-one correspondence between the subspaces of V' and the
subspaces of U which contain W.

Let V be a vector space over F and let V,,..., V, be subspaces of
V. Suppose that V= V; + V, + <+ + V, (see Problem 11), and
that V,n (V, + -+ Vi, + Viyy ++:++ V,) = (0) for every
t=1,2,..., n. Prove that Vis the internal direct sum of V,..., V.

Let V=V, @ @ V,; prove that in V there are subspaces V,
isomorphic to V; such that V is the internal direct sum of the V.

Let T be defined on F® by (x,x,)T = (ax;, + Bx;, yx, + Ox3)

where «, 8, 7, § are some fixed elements in F.

(a) Prove that T is a homomorphism of F(?) into itself.

(b) Find necessary and sufficient conditions on «, f, 7,  so that T is
an isomorphism.

Let T be defined on F® by (x,, x5, %) T = (0g,%, + %, +
0y3X3y Og1X; + Op%; + (p3X3, ®3;X; + A3zx; + azxy). Show that T
is a homomorphism of F(* into itself and determine necessary and
sufficient conditions on the a;; so that T is an isomorphism.
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19. Let T be a homomorphism of Vinto W. Using T, define a homomor-
phism T* of Hom (W, F) into Hom (V, F).

20. (a) Prove that F(!) is not isomorphic to F™ for n > 1.
(b) Prove that F(? is not isomorphic to F(3.

21. If V is a vector space over an infinite field F, prove that V cannot be
written as the set-theoretic union of a finite number of proper subspaces.

4.2 Linear Independence and Bases

If we look somewhat more closely at two of the examples described in the
previous section, namely Example 4.1.4 and Example 4.1.3, we notice that
although they do have many properties in common there is one striking
difference between them. This difference lies in the fact that in the former
we can find a finite number of elements, 1, x, x2,..., £~ ! such that every
element can be written as a combination of these with coefficients from F,
whereas in the latter no such finite set of elements exists.

We now intend to examine, in some detail, vector spaces which can be
generated, as was the space in Example 4.1.4, by a finite set of elements.

DEFINITION If V is a vector space over F and if v,,..., v, € V then
any element of the form o,v, + o0, + -+ + a,v,, where the a;eF, is a
linear combination over F of vy, ..., v,.

Since we usually are working with some fixed field F we shall often say
linear combination rather than linear combination over F. Similarly it will
be understood that when we say vector space we mean vector space over F.

DEFINITION If S is a nonempty subset of the vector space V, then L(S),
the linear span of S, is the set of all linear combinations of finite sets of
elements of S.

We put, after all, into L(S) the elements required by the axioms of a
vector space, so it is not surprising to find

LEMMA 4.21 L(S) is a subspace of V.

Proof. If v and w are in L(S), then v = A;5; + --- + A5, and w =
Myt + ©° 4+ pt., where the A’s and p’s are in F and the s, and ¢, are all
in §. Thus, for a,BeF, av + fw = a(A;s; + - + A5, + Bust, +
e ﬂmtm) = (a'll)‘rl + o+ (a'ln)‘rn + (ﬁ#l)tl + + (ﬁ“m)tm and SO
is again in L(S). L(S) has been shown to be a subspace of V.

The proof of each part of the next lemma is straightforward and easy
and we leave the proofs as exercises to the reader.
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LEMMA 4.2.2 IfS, T are subsets of V, then

1. § < T implies L(S) = L(T).
2. L(SuU T) = L(S) + L(T).
3. L(L(S)) = L(S).

DEFINITION The vector space V is said to be finite-dimensional (over F)
if there is a finite subset Sin Vsuch that V = L(S).

Note that F is finite-dimensional over F, for if S consists of the n vectors
(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0, 1), then V = L(S).

Although we have defined what is meant by a finite-dimensional space
we have not, as yet, defined what is meant by the dimension of a space.
This will come shortly.

DEFINITION If Vis a vector space and if », ..., v, are in V, we say that
they are linearly dependent over F if there exist elements A,,..., 4, in F,
not all of them 0, such that 4,2, + A0, + -+ + 4,0, = 0.

If the vectors v,,. .., v, are not linearly dependent over F, they are said
to be linearly independent over F. Here too we shall often contract the phrase
“linearly dependent over F”’ to “linearly dependent.”” Note that if v,,...,
v, are linearly independent then none of them can be 0, for if »;, = 0,
say, then av; + Ov; + -+ 4+ Ov, = O for any a % O in F.

In F® it is easy to verify that (1, 0, 0), (0, 1, 0), and (0, O, 1) are linearly
independent while (1, 1, 0), (3, 1, 3), and (5, 3, 3) are linearly dependent.

We point out that linear dependence is a function not only of the vectors
but also of the field. For instance, the field of complex numbers is a vector
space over the field of real numbers and it is also a vector space over the
field of complex numbers. The elements »; = 1, », = 7 in it are linearly
independent over the reals but are linearly dependent over the complexes,
since iv; + (—1)p, = 0.

The concept of linear dependence is an absolutely basic and ultra-
important one. We now look at some of its properties,

LEMMA 4.23 Ifv,...,v, € V are linearly independent, then every element in
their linear span has a unique representation in the form Ayv, + -+ + A0, with
the A; e F.

Proof. By definition, every element in the linear span is of the form
Ao + -+ + A, To show uniqueness we must demonstrate that if
).11)1 +0t '{nvn = 1 + o+, then '{l =§11,}.2 =Hzs o }'n = Hp-
But if Ao, + -+ A0, = o, + <+ + u,0, then we certainly have
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Ay — p)oy, + (A3 — pr)o, + -+ + (4, — p,)v, = 0, which by the linear
independence of v,...,v, forces A, — pu, =0, 4, — pu, =0,...,
j’n = Hp = 0.

The next theorem, although very easy and at first glance of a somewhat
technical nature, has as consequences results which form the very foundations
of the subject. We shall list some of these as corollaries; the others will
appear in the succession of lemmas and theorems that are to follow.

THEOREM 4.21 If v, ..., v, are in V then either they are linearly independ-

ent or some v, is a linear combination of the preceding ones, vy, ..., Uy_;.

Proof. Ifwv,,..., v, are linearly independent there is, of course, nothing
to prove. Suppose then that ou; + -+ + o, = 0 where not all the
o’s are 0. Let k£ be the largest integer for which «, # 0. Since a; = 0
for i >k, a0, +-°+ o, = 0 which, since a, # 0, implies that
U = o (—wy — avy — = gy ) = (=T ley)y 4o
(—a; 'op_;)t; ;- Thus v, is a linear combination of its predecessors.

COROLLARY 1 Ifv,,...,v, in V have W as linear span and if v,, ..., v,
are linearly independent, then we can find a subset of vy, ..., v, of the form v,,
Uy evvs Upy Uiy oo, Uy comsisting of linearly independent elements whose linear
span is also W.

Proof. Ifwv,,...,v, are linearly independent we are done. If not, weed
out from this set the first v;, which is a linear combination of its predecessors.
Since v, .. ., v, are linearly independent, j > k. The subset so constructed,
Uty o o> UpsevesUj 15 Ujyg,+--,0, has n — 1 elements. Clearly its linear
span is contained in W. However, we claim that it is actually equal to W;
for, given w € W, w can be written as a linear combination of v,,..., v,
But in this linear combination we can replace v; by a linear combination of
Uy, ++,9; 1. Thatis, wis a linear combination of vy, ..., 0; 1,0j41,...,0,

Continuing this weeding out process, we reach a subset v,,..., 7,
Vi, - - - » ¥;, whose linear span is still W but in which no element is a linear
combination of the preceding ones. By Theorem 4.2.1 the elements
Ugy e« «s Upy Uyy - - -5 ¥; must be linearly independent.

COROLLARY 2 If V is a finite-dimensional vector space, then it contains a
Sfinite set vy, . . ., v, of linearly independent elements whose linear span is V.

Proof. Since V is finite-dimensional, it is the linear span of a finite
number of elements u,,..., u,. By Corollary 1 we can find a subset of
these, denoted by v,,..., v, consisting of linearly independent elements
whose linear span must also be V.
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DEFINITION A subset S of a vector space V is called a basis of V if §
consists of linearly independent elements (that is, any finite number of
elements in S is linearly independent) and V = L(S).

In this terminology we can rephrase Corollary 2 as

COROLLARY 3 If V is a finite-dimensional vector space and if uy,...,u,
span V then some subset of u,,. . ., u, forms a basis of V.

Corollary 3 asserts that a finite-dimensional vector space has a basis
containing a finite number of elements v,,...,v, Together with Lemma
4.2.3 this tells us that every element in V has a unique representation in the
form a0, + -+ + v, with a,, ..., a,in F.

Let us see some of the heuristic implications of these remarks. Suppose
that V is a finite-dimensional vector space over F; as we have seen above,
V has a basis v,..., v, Thus every element v € V' has a unique repre-
sentation in the form » = o0, + *** + a,0,. Let us map V into F™ by
defining the image of a;v;, + -+ + a,, to be (a4, ..., 2,). By the unique-
ness of representation in this form, the mapping is well defined, one-to-one,
and onto; it can be shown to have all the requisite properties of an iso-
morphism. Thus V is isomorphic to F™ for some n, where in fact n is
the number of elements in some basis of V over F. If some other basis of
V should have m elements, by the same token V would be isomorphic to
F™_ Since both F™ and F™ would now be isomorphic to V, they would
be isomorphic to each other.

A natural question then arises! Under what conditions on n and m are
F® and F™ isomorphic? Our intuition suggests that this can only happen
when n = m. Why? For one thing, if F should be a field with a finite
number of elements—for instance, if ¥ = ], the integers modulo the prime
number p—then F™ has p" elements whereas F™ has p™ elements. Iso-
morphism would imply that they have the same number of elements, and
so we would have n = m. From another point of view, if F were the field
of real numbers, then F™ (in what may be a rather vague geometric way
to the reader) represents real n-space, and our geometric feeling tells us
that n-space is different from m-space for n # m. Thus we might expect
that if F is any field then F™ is isomorphic to F™ only if n = m. Equiv-
alently, from our earlier discussion, we should expect that any two bases of
V have the same number of elements. It is towards this goal that we prove
the next lemma.

LEMMA 424 Ifv,,...,v,isa basis of V over F and if w,,...,w, in V
are linearly independent over F, then m < n.

Proof. Every vector in V, so in particular w,, is a linear combination
of vy, ..., v, Therefore the vectors w,, v,, ..., v, are linearly dependent.



Sec. 4.2 Linear Independence and Bases

Moreover, they span V since vy, ..., v, already do so. Thus some proper
subset of these w,, v;,...,2; with k¥ < n — 1 forms a basis of V. We
have ‘“traded off”” one w, in forming this new basis, for at least one v;.
Repeat this procedure with the set w,_,, w,, v;,,...,v,. From this
linearly dependent set, by Corollary 1 to Theorem 4.2.1, we can extract a
basis of the form w,_,, w,, v;,...,7;, s < n — 2. Keeping up this
procedure we eventually get down to a basis of V of the form w,, ...,
Wpy— 1> Wp Ugs Ug - - - ; SINCE W, is not a linear combination of wy, . . ., w,_;, the
above basis must actually include some ». To get to this basis we have
introduced m — 1 w’s, each such introduction having cost us at least one v,

and yet there is a v left. Thus m — 1 < n — | and so m < n

This lemma has as consequences (which we list as corollaries) the basic
results spelling out the nature of the dimension of a vector space. These
corollaries are of the utmost importance in all that follows, not only in this
chapter but in the rest of the book, in fact in all of mathematics. The
corollaries are all theorems in their own rights.

COROLLARY 1 If V is finite-dimensional over F then any two bases of V
have the same number of elements.

Proof. Let v,,...,v, be one basis of V over F and let w,,...,w,, be
another. In particular, w, ..., w,, are linearly independent over F whence,
by Lemma 4.2.4, m < n. Now interchange the roles of the ’s and w’s and
we obtain that n < m. Together these say that n = m.

COROLLARY 2 F®™ is isomor pkic F™ if and only if n = m.

Proof. F™ has, as one basis, the set of n vectors, (1,0,...,0), (0, 1,
0,...,0),...,(0,0,...,0,1). Likewise F“ has a basis containing m
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this
section), hence, by Corollary 1, m = a.

Corollary 2 puts on a firm fodting the heuristic remarks made earlier
about the possible isomorphism of F™ and F™. As we saw in those re-
marks, Vis isomorphic to F® for some n. By Corollary 2, this z is unique, thus

COROLLARY 3 If V is finite-dimensional over F then V is isomorphic to F™
Jor a unique integer n; in fact, n is the number of elements in any basis of V over F.

DEFINITION The integer n in Corollary 3 is called the dimension of V
over F.

The dimension of V over F is thus the number of elements in any basis
of V over F.
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We shall write the dimension of V over F as dim V, or, the occasional
time in which we shall want to stress the role of the field F, as dimg V.

COROLLARY 4 Any two finite-dimensional vector spaces over F of the same
dimension are isomorphic.

Proof. 1f this dimension is », then each is isomorphic to F™, hence
they are isomorphic to each other.

How much freedom do we have in constructing bases of ¥? The next
lemma asserts that starting with any linearly independent set of vectors
we can “blow it up” to a basis of V.

LEMMA 4.25 If V is finite-dimensional over F and if uy,...,u, €V are
linearly independent, then we can find vectors u, ., ..., 4,,, in V such that
Ups e oo s Uy gy oo vy Upyy, S a basis of V.

Proof. Since V is finite-dimensional it has a basis; let v,,...,v, be a
basis of V. Since these span V, the vectors 4,,...,u,, v, ..., 0, also span
V. By Corollary 1 to Theorem 4.2.1 there is a subset of these of the form
Upy. ooy Uy Ups..., 0, which consists of linearly independent elements
which span V. To prove the lemma merely put 4,y = v;, ..., Upy, =
v,

r

What is the relation of the dimension of a homomorphic image of V to
that of V? The answer is provided us by

LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of V, then W
is finite-dimensional, dim W < dim V and dim V/W = dim V — dim W.

Proof. By Lemma 4.2.4, if n = dim V then any » + 1 elements in V
are linearly dependent; in particular, any n + 1 elements in W are linearly
dependent. Thus we can find a largest set of linearly independent elements
in W, w,,...,w,, and m < n. If we W then w,,...,w,, wis a linearly
dependent set, whence aw + oyw, + -+ + a,w, = 0, and not all of the
a;’sare 0. If« = 0, by the linear independence of the w; we would get that
each a; = 0, a contradiction. Thus a # 0, and so w = —a~ !(aw, +
.-+ + a,w,). Consequently, w,,...,w,, span W; by this, W is finite-
dimensional over F, and furthermore, it has a basis of m elements, where
m < n. From the definition of dimension it then follows that dim W <
dim V.

Now, let wy, ..., w, be a basis of W. By Lemma 4.2.5, we can fill this
out to a basis, wy,...,w,, v,...,0, of V, where m + r = dim V and
m = dim W.

Let 7,,...,7 be the images, in ¥ = V/W, of v,,...,v,. Since any
vector v € V is of the form v = aw, + -+ + a,w, + By, + -+ B,
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then o, the image of v, is of the form » = B, + -+ B,, (since @&, =
Wy =+ =w, = 0). Thus 3,,...,7, span V/{W. We claim that they are
linearly independent, for if 3,9, + ---+ 39, =0 then y,v, +---+
y,v,€ W, and so yv; + -+ + pp, = Liw, + - + A,w,, which, by the
linear independence of the set w,,...,w,, v,,...,v, forces y, =+-- =
% =4 =+=4,=0. We have shown that V/W has a basis of r
elements, and so, dim V/W =r = dim V — m = dim V — dim W.

COROLLARY If A and B are finite-dimensional subspaces of a vector space V,
then A + B is finite-dimensional and dim (4 + B) = dim (4) + dim (B) -~
dim (4 n B).

Proof. By the result of Problem 13 at the end of Section 4.1,

A+B _ 4
B An B’

and since 4 and B are finite-dimensional, we get that

dim (4 + B) — dim B = dim (212 = dim (-4
B AnB

= dim 4 — dim (4 n B).

Transposing yields the result stated in the lemma.

Problems

1. Prove Lemma 4.2.2.

2. (a) If Fis the field of real numbers, prove that the vectors (1, 1, 0, 0),
(0, 1, —1,0), and (0,0, 0, 3) in F are linearly independent
over F.
(b) What conditions on the characteristic of F would make the three
vectors in (a) linearly dependent?
3. If V' hasa basis of n elements, give a detailed proof that V is isomorphic
to F".
4. If T is an isomorphism of V onto W, prove that T maps a basis of V
onto a basis of W.
5. If V is finite-dimensional and T is an isomorphism of V into V, prove
that 7" must map V onto V.
6. If V is finite-dimensional and T is a homomorphism of V onto V,
prove that T must be one-to-one, and so an isomorphism.
7. If V is of dimension n, show that any set of n linearly independent
vectors in V forms a basis of V.
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10.

11.

12.

13.

14.

15.

*16.
17.

4.3

. If V is finite-dimensional and W is a subspace of V such that dim V =

dim W, prove that V = W.

. If V is finite-dimensional and T i a homomorphism of V into itself

which is not onto, prove that there is some v % 0 in V such that
vT = 0.

Let F be a field and let F[x] be the polynomials in x over F. Prove
that F[x] is not finite-dimensional over F.

Let V, = {p(x) € F[x] | deg p(x) < n}. Define T by
(@0 + anx + o0+ 2y @ )T

=+ oM+ 1)+ oo+ D+ o+ )T
Prove that T is an isomorphism of V, onto itself.
Let W = {ap + ayx + "+ 2,2 P e F[x] | g + oy + -+ +
o,y = 0}. Show that W is a subspace of V, and find a basis of W
over F.

Let v,,...,v, be a basis of V¥ and let w,, ..., w, be any n elements
in V. Define Ton Vby (4,9, + <+ + A4,0,)T = Aywy + -+ + A0,
(a) Show that R is a homomorphism of V into itself.

(b) When is T an isomorphism?

Show that any homomorphism of V into itself, when V is finite-
dimensional, can be realized as in Problem 13 by choosing appropriate
elements wy, ..., w,.

Returning to Problem 13, since v,,...,9, is a basis of V, each
wy = ayvy +*° + 4, @ € F. Show that the n? elements a;; of
F determine the homomorphism T.

If dimy V = n prove that dimp (Hom (V,V)) = n2

If V is finite-dimensional and W is a subspace of V prove that there
is a subspace W, of Vsuch that V.= W @ W,.

Dual Spaces

Given any two vector spaces, ¥ and W, over a field F, we have defined
Hom (V, W) to be the set of all vector space homomorphisms of V into W.
As yet Hom (V, W) is merely a set with no structure imposed on it. We
shall now proceed to introduce operations in it which will turn it into a
vector space over F. Actually we have already indicated how to do so in
the descriptions of some of the problems in the earlier sections. However
we propose to treat the matter more formally here.

Let S and T be any two elements of Hom (V, W) ; this means that these
are both vector space homomorphisms of V into W. Recalling the definition



Sec. 4.3 Dual Spaces

of such a homomorphism, we must have (v; + v,)S = v,§ + v,§ and
(02,)S = a(v,S) for all v;,v, € V and all a € F. The same conditions also
hold for T.

We first want to introduce an addition for these elements S and T in
Hom (V, W). What is more natural than to define S + T by declaring
o(S+ T) =uS + vT for all ve V? We must, of course, verify that S+ T
is in Hom (V, W). By the very definition of § + T, if vy, v, € V, then
(W +8)S+T)=(,+v))S+ (v +v,)T; since (v, +,)S=v,5+ 1,5
and (v; + v,) T = v; T + v, T and since addition in W is commutative, we
get (v, +v)S+ T)=0,8+ v, T + v,§ + v,T. Once again invoking
the definition of § + 7, the right-hand side of this relation becomes
v,(S+ T) +v,(S+ T); we have shown that (v; + v,)(S + T) =
v,(S+ T) + v,(S+ T). A similar computation shows that («z)(S+ T) =
a(v(S + T)). Consequently S + T is in Hom (V, W). Let 0 be that
homomorphism of V into W which sends every element of V onto the zero-
element of W; for S € Hom (V, W) let —S be defined by v( —S) = —(aS).
It is immediate that Hom (¥, W) is an abelian group under the addition
defined above.

Having succeeded in introducing the structure of.an abelian group on
Hom (V, W), we now turn our attention to defining AS for 1€ F and
S € Hom (V, W), our ultimate goal being that of making Hom (V, W)
into a vector space over F. For A € F and § € Hom (V, W) we define
AS by v(AS) = A(vS) for all v € V. We leave it to the reader to show that
AS is in Hom (¥, W) and that under the operations we have defined,
Hom (V, W) is a vector space over F. But we have no assurance that
Hom (V, W) has any elements other than the zero-homomorphism. Be
that as it may, we have proved

LEMMA 431 Hom (V, W) is a vector space over F under the operations
described above.

A result such as that of Lemma 4.3.1 really gives us very little information
rather it confirms for us that the definitions we have made are reasonable.
We would prefer some results about Hom (V, W) that have more of a
bite to them. Such a result is provided us in

THEOREM 4.31 If V and W are of dimensions m and n, respectively, over F,
then Hom (V, W) is of dimension mn over F.

Proof. We shall prove the theorem by explicitly exhibiting a basis of
Hom (V, W) over F consisting of mn elements.

Let vy, ..., v, be a basis of V over F and w,, ..., w, one for W over F.
If ve V then v = A,, + -+ + A,0,, where 4,,..., 4, are uniquely de-
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fined elements of F; define T,;:¥V - W by vT;; = Aw;. From the point
of view of the bases involved we are simply letting 2, 7;; = 0 for k£ # ¢
and v;T;; = w; It is an easy exercise to see that 7;; is in Hom (V, W).
Since ¢ can be any of 1,2,...,m and j any of 1,2,...,n there are mn
such T7j’s.

Qur claim is that these mn elements constitute a basis of Hom (V, W)
over F. For, let §e€ Hom (V, W); since v,S € W, and since any element
in W is a linear combination over F of wy, ..., w,, v,S = o, ,w, + a,,w, +
«++ + o ,w,, for some ay,,a;5,...,%, in F. In fact, ;§ = o, + - +
o;w, for i =1,2,...,m Consider S = a,,Ty; + 02Ty, + -+ +
W, Tyn + 0Ty + 0+ g, T+t oDyt + 0y Ty +00 +
Oy Topy +*°° + 0pnT,,,. Let us compute 9,5, for the basis vector v,. Now
980 = (0 Ty + 4 G Lo + 0+ tpTp,) = o (@T) +
@@ Ty2) + 00+ Ut (% Tm1) + ¢+ 8mp(U4Tn). Since 3, Ty = 0 for
i # k and 9, T}; = w;, this sum reduces to 35, = o,y + -+ + W,
which, we see, is nothing but 9,S. Thus the homomorphisms S, and S agree
on a basis of V. We claim this forces 3 = S (see Problem 3, end of this
section). However S is a linear combination of the 77;’s, whence S must
be the same linear combination. In short, we have shown that the mn
elements Ty, Thpy .oy Thpyevvs Topas - -+ 5 Ty span Hom (V, W) over F.

In order to prove that they form a basis of Hom (V, W) over F there
remains but to show their linear independence over F. Suppose that
BuuTis + BiaTia + -+ ByaTip + o+ Bu Ty + o + BiuTip + 00+ +
BmiTmy +** + BunTpn = 0 with B;; all in F. Applying this to v, we get
0=0,(BaTis + -+ ByTij + - + BanTomn) = Bray + Browy + -+ +
B, since v,‘TU =0 for ¢ # k and va,,j = w;. However, w,,...,w,
are linearly independent over F, forcing B;; = O for all £ and j. Thus the
T;; are linearly independent over F, whence they indeed do form a basis
of Hom (V, W) over F.

An immediate consequence of Theorem 4.3.1 is that whenever V # (0)
and W s (0) are finite-dimensional vector spaces, then Hom (¥, W) does
not just consist of the element 0, for its dimension over Fis nm > 1.

Some special cases of Theorem 4.3.1 are themselves of great interest and
we list these as corollaries.

COROLLARY 1 Ifdimp V = m thendimp Hom (V, V) = m?2.

Proof. In the theorem put ¥ = W, and so m = n, whence mn = m?.

COROLLARY 2 Ifdimy V = m then dimy Hom (V, F) = m.

Proof. As a vector space F is of dimension 1 over F. Applying the
theorem yields dimy Hom (V, F) = m.
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Corollary 2 has the interesting consequence that if V is finite-dimensional
over F it is isomorphic to Hom (V, F), for, by the corollary, they are of
the same dimension over F, whence by Corollary 4 to Lemma 4.2.4 they
must be isomorphic. This isomorphism has many shortcomings! Let us
explain. It depends heavily on the finite-dimensionality of V, for if V is
not finite-dimensional no such isomorphism exists. There is no nice, formal
construction of this isomorphism which holds universally for all vector
spaces. It depends strongly on the specialities of the finite-dimensional
situation. In a few pages we shall, however, show that a “nice’” isomorphism
does exist for any vector space V into Hom (Hom (V, F), F).

DEFINITION IfV is a vector space then its dual space is Hom (V, F).

We shall use the notation ¥ for the dual space of V. An element of ¥
will be called a linear functional on V into F.

If V is not finite-dimensional the ¥ is usually too large and wild to be
of interest. Forsuch vector spaces we often have other additional structures,
such as a topology,imposed and then, as the dual space, one does not generally
take all of our ¥ but rather a properly restricted subspace. If V is finite-dimen-
sional its dual space Vis always defined, as we did it, as all of Hom (V, F).

In the proof of Theorem 4.3.1 we constructed a basis of Hom (V, W)
using a particular basis of ¥ and one of W. The construction depended
crucially on the particular bases we had chosen for V and W, respectively.
Had we chosen other bases we would have ended up with a different basis
of Hom (V, W). As a general principle, it is preferable to give proofs,
whenever possible, which are basis-free. Such proofs are usually referred to
as invariant ones. An invariant proof or construction has the advantage,
other than the mere aesthetic one, over a proof or construction using a
basis, in that one does not have to worry how finely everything depends
on a particular choice of bases.

The elements of ¥ are functions defined on V and having their values
in F. In keeping with the functional notation, we shall usually write
elements of ¥ as f; g, etc. and denote the value on v € V as f (v) (rather
than as gf).

Let V be a finite-dimensional vector space over F and let v,...,v, be
a basis of V; let 4, be the element of ¥ defined by 3i(v;) = 0 for i # j,
3,(v;) =1, and dy(avy + * + oy + -0 + o0,) = . In fact the 3;
are nothing but the T'; introduced in the proof of Theorem 4.3.1, for here
W = F is one-dimensional over F. Thus we know that 4,,..., 4, form a
basis of V. We call this basis the dual basis of v,,...,v, Ifv # 0eV, by
Lemma 4.2.5 we can find a basis of the form v, = v, v,,...,v, and so
there is an element in ¥V, namely 4,, such that 4,(y,) = 4,(») = 1 # 0.
We have proved
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LEMMA 4.3.2 If V is finite-dimensional and v # 0 € V, then there is an
element fe V such that f (v) # O.

In fact, Lemma 4.3.2 is true if V is infinite-dimensional, but as we have
no need for the result, and since its proof would involve logical questions
that are not relevant at this time, we omit the proof.

Let z, € V, where V is any vector space over F. As f varies over ¥, and
v is kept fixed, f (v,) defines a functional on V into F; note that we are merely
interchanging the role of function and variable. Let us denote thisfunction by 7, ;
in other words T, (f) = f(vy) for any fe V. What can we say about
T,? To begin with, T,(f + &) = (f + £)@®) =S (%) + &) =
To(f) + Tiy(8); furthermore, T, (3f) = (4f)(20) = 47 (o) = AT ().
Thus T, is in the dual space of V! We write this space as V and refer to
it as the second dual of V.

Given any element v € V¥ we can associate with it an element 7, in 74
Define the mapping y:V — 7 by oy = T, for every ve V. Is y a homo-
morphism of V into 7? Indeeditis! For, Torlf) =f(v +w) =f(v) +
F@) = T(f) + Tulf) = (T, + T(f), and s0 T,y = T, + T,
that is, (v + W)Y = vy + wy. Similarly for AeF,(Av)y = A(vy). Thus
Y defines a homomorphism of V into V. The construction of y used no
basis or special properties of V; it is an example of an invariant construction.

When is ¥ an isomorphism? To answer this we must know when vy =0,
or equivalently, when T,= 0. But if T, =0, then 0 = T (f) = f(v)
for all fe V. However as we pointed out, without proof, for a general
vector space, given v # O there is an fe V with f(v) # 0. We actually
proved this when V is finite-dimensional. Thus for V finite-dimensional
(and, in fact, for arbitrary V) y is an isomorphism. However, when V is
finite-dimensional  is an isomorphism onto ¥; when V is infinite-dimen-
sional y is not onto.

If V is finite-dimensional, by the second corollary to Theorem 4.3.1, V
and V are of the same dimension; similarly, ¥ and 7 are of the same dimen-
sion ; since ¥ is an isomorphism of V into 7, the equality of the dimensions
forces Y to be onto. We have proved

LEMMA 4.3.3 If Vis finite-dimensional, then \y is an isomorphism of V onto p.

We henceforth identify ¥V and It', keeping in mind that this identification
is being carried out by the isomorphism .

DEFINITION If W is a subspace of V then the annihilator of W, A(W) =
{(feV/[f(w) =0all we W)

We leave as an exercise to the reader the verification of the fact that
A(W) is a subspace of V. Clearly if U = W, then A(U) o A(W).
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Let W be a subspace of V, where V is finite-dimensional. If fe ¥ let
f be the restriction of f to W; thus f is defined on W by f (w) = f (w) for
every w € W. Since f€ 7, clearly f € W. Consider the mapping T:V —» W
defined by fT = f for fe V. It is immediate that (f + g)T =/T +¢T
and that (Af)T = A(fT). Thus T is a homomorphism of ¥V into W.
What is the kernel of T? If fis in the kernel of T then the restriction of f
to W must be 0; that is, f(w) = 0 for all we W. Also, conversely, if
f(w) =0 for all we W then fis in the kernel of T. Therefore the kernel
of T is exactly A(W).

We now claim that the mapping T is onto W. What we must show is
that given any element k€ W, then & is the restriction of some fe ¥, that
is h =f. By Lemma 4.2.5, if w,, ..., w, is a basis of W then it can be
expanded to a basis of V of the form w, ..., w,, v,,..., 9, where r + m =
dim V. Let W, be the subspace of V spanned by v,,...,v,. Thus V =
W@ W,. If he W define fe V by: let ve V be written as v = w + w,,
we W, w, € Wi; then f(v) = h(w). Itis easy to see that fisin 7 and that
f=h Thus h =fT and so T maps V onto W. Since the kernel of T is
A(W) by Theorem 4.1.1, W is isomorphic to ?/A(W). In particular they
have the same dimension. Let m = dim W, n = dim V, and r = dim
A(W). By Corollary 2 to Theorem 4.3.1, m = dim W and n = dim V.
However, by Lemma 4.2.6 dim V/A(W) = dim V — dim A(W) = n — 7,

and so m = n — r. Transposing, r = n — m. We have proved

THEOREM 4.3.2 If V is finite-dimensional and W is a subspace of V, then
W is isomorphic to V|A(W) and dim A(W) = dim V — dim W.

COROLLARY A(A(W)) =

Proof. Remember that in order for the corollary even to make sense,
since W < V and A(A(W)) < 9, we have identified ¥ with 7. Now W <
A(A(W)), for if we W then wy = T, acts on V by T, (f) = f(w) and
so is 0 for all fe A(W). However, dlm A(A(W)) = dim 7 — dim A(W)
(applying the theorem to the vector space V and its subspace A(W)) so
that dim A(4(W)) = dim ¥ — dim A(W) = dim V — (dim V — dim W) =
dim W. Since W < A(A(W)) and they are of the same dimension, it
follows that W = A(A(W)).

Theorem 4.3.2 has application to the study of systems of linear homogeneous
equations. Consider the system of m equations in n unknowns

a4 % + a3% + 0 + ayx, = 0,

a31% + ay% + 0+ a3,x, = 0,

1%y + Am2%2 + e+ Gpn¥y = 0:
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where the g;; are in F. We ask for the number of linearly independent
solutions (xy,. .., x,) there are in F™ to this system.

In F™ let U be the subspace generated by the m vectors (a,,a25 - - - 5@1,)»
(@2158325-++582p)s -+ 5 (Am1s Amas -+ Bmy) and suppose that U is of

dimension r. In that case we say the system of equations is of rank r.

Letv, = (1,0, ...,0),5, =(0,1,0,...,0), ...,9, = (0,0, ...,0, 1)
be used as a basis of F™ and let 3, 4,,. .., , be its dual basis in F™,
Any fe F®™ is of the form f= x4, + x4, +** + x,5,, where the
x;€F. Whenis fe A(U)? In that case, since (a,4,..., a;,) € U,

0 =f(au’ [ PIEREE) alu)

= f(ayy, + - + a5,0,)

= (08y + 220, + - + x,9,) (@01 + 00+ ay,0,)

= %18y + %2812 + 07+ X84,
since 7;(»;) = Ofori # jand 4;(v;) = 1. Similarly the other equations of the
system are satisfied. Conversely, every solution (x;,...,x,) of the system
of homogeneous equations yields an element, x,d, + --- + x,5,, in A(U).
Thereby we see that the number of linearly independent solutions of the

system of equations is the dimension of 4(U), which, by Theorem 4.3.2 is
n — 7. We have proved the following:

THEOREM 4.3.3 If the system of homogencous linear equations :
apx + 0+ 4%, =0,

an% + 0+ a,%, =0,

am1%y + et Anp¥n = 0’

where a;; € F is of rank 1, then there are n — r linearly independent solutions in
F™,

COROLLARY Ifn > m, that is, if the number of unknowns exceeds the number
of equations, then there is a solution (xy, . .., x,) where not all of x,, ..., x, are 0.

Proof. Since U is generated by m vectors, and m <n, r = dim U <
m < n; applying Theorem 4.3.3 yields the corollary.

Problems

1. Prove that A(W) is a subspace of V.

2. If § is a subset of V let A(S) = {fe V|f(s) = OallseS). Prove
that A(S) = A(L(S)), where L(S) is the linear span of §.
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3. If S, TeHom (V, W) and 4§ = u;T for all elements v; of a basis
of V, prove that § = T.

4. Complete the proof, with all details, that Hom (V, W) is a vector
space over F.

5. If ¢ denotes the mapping used in the text of V into 8 give a complete
proof that s is a vector space homomorphism of V into V.

6. If V is finite-dimensional and 3 # v, are in V, prove that there is an
f€ Vsuch that f (v,) # f(2,).

7. If W, and W, are subspaces of V, which is finite-dimensional, describe
AW, + W,) in terms of A(W,) and A(W,).
8. If Vis a finite-dimensional and W, and W, are subspaces of V, describe
AW, n W,) in terms of A(W,) and A(W,).
9. If Fis the field of real numbers, find A(W) where
(a) W is spanned by (1, 2, 3) and (0, 4, —1).
(b) W is spanned by (0,0, 1, —1), (2,1, 1,0),and (2,1, 1, —1).
10. Find the ranks of the following systems of homogeneous linear equations
over F, the field of real numbers, and find all the solutions.
(a) % + 2x; — 3x3 + 4x, = 0,
X +3x, —x,=0

6x; + x3 + 2x, = 0.

(b) %, + 3x, + 23, =0,
x, + 4x, + x3 = 0.

(€) %1 + % + %3 + x4 + x5 =0,
% + 2x, =0,

4x, + Tx; + %3 + x4 + x5 = 0,
X, — X3 — x4 — x5 = 0.
11. If f and g are in V¥ such that f(») = 0 implies g(») = 0, prove that
g = Affor some A € F.

4.4 Inner Product Spaces

In our discussion of vector spaces the specific nature of F as a field, other
than the fact that it is a field, has played virtually no role. In this section
we no longer consider vector spaces V over arbitrary fields F; rather, we
restrict F to be the field of real or complex numbers. In the first case V
is called a real vector space, in the second, a complex vector space.

We all have had some experience with real vector spaces—in fact both
analytic geometry and the subject matter of vector analysis deal with these.
What concepts used there can we carry over to a more abstract setting?
To begin with, we had in these concrete examples the idea of length;
secondly we had the idea of perpendicularity, or, more generally, that of

191



192

Vector Spaces and Modules Ch. 4

angle. These became special cases of the notion of a dot product (often
called a scalar or inner product.)

Let us recall some properties of dot product as it pertained to the special
case of the three-dimensional real vectors. Given the vectors v = (xy,%,,%3)
and w = (3,,7,,73), where the x’s and y’s are real numbers, the dot prod-
uct of v and w, denoted by v-w, was defined as v-w = x, 3, + x,9, +
x393. Note that the length of v is given by \/z)_v and the angle § between
v and w is determined by

g vow
cos NSNS
What formal properties does this dot product enjoy? We list a few:

l.v:v >20and v-v = Oif and only if v = 0;
2. 0w =w:'v;

3. u- (v + Pw) = a(u-v) + Pfu-w);

for any vectors #, v, w and real numbers a, .

Everything that has been said can be carried over to complex vector
spaces. However, to get geometrically reasonable definitions we must make
some modifications. If we simply define v-w = x;y, + x,9, + x5, for
v = (x, X5, x3) and w = (3,52, 3), where the x’s and »’s are complex
numbers, then it is quite possible that »-v = 0 with » ¢ 0; this is illus-
trated by the vector v = (1,1, 0). In fact, v*2 need not even be real. If]
as in the real case, we should want v : » to represent somehow the length of
v, we should like that this length be real and that a nonzero vector should
not have zero length.

We can achieve this much by altering the definition of dot product
slightly. If @ denotes the complex conjugate of the complex number a,
returning to the » and w of the paragraph above let us define v-w =
%, ¥, + X35, + x355. For real vectors this new definition coincides with
the old one; on the other hand, for arbitrary complex vectors v # 0, not
only is v - v real, it is in fact positive. Thus we have the possibility of intro-
ducing, in a natural way, a nonnegative length. However, we do lose
something; for instance it is no longer true that v»-w = w-v. In fact the
exact relationship between these is v - w = w~7v. Let us list a few properties
of this dot product:

l.v-w = w-v;

2. v-v 2 0,and v-» = Oif and only if » = O;
3. (au + Pv) - w = a(u-w) + Plv-w);

4. u- (v + Pw) = q(u-v)+ Plu-w);

for all complex numbers @,  and all complex vectors u, v, w.
We reiterate that in what follows F is either the ficld of real or complex
numbers.
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DEFINITION The vector space V over F is said to be an ianer product
space if there is defined for any two vectors u,v € V an element (u, v) in

F such that

L (u,0) = (770);

2. (u,u) > 0 and (4, u) = 0ifand only if u = 0;
3. (au + Pv, w) = a(u, w) + Pv, w);

for any u,v,we Vand a, € F.

A few observations about properties 1, 2, and 3 are in order. A function
satisfying them is called an inner product. 1f Fis the field of complex numbers,
property 1 implies that (u, #) is real, and so property 2 makes sense. Using
1 and 3, we see that (u, v + Pw) = (w + Pw, u) = a(v, u) + Plw,u) =
a(@;u) + B, u) =a(u, 2) + By, w).

We pause to look at some examples of inner product spaces.

Example 441 In F® define, for u = (a;,...,a,) and v = (B;,...,
B.), (u,v) = af; + aBf, + -+ a,B, This defines an inner product
on F™,

Example 4.4.2 In F‘® define for u = (ay, ;) and v = (B4, B2), (4, v) =
20,8, + o, + o, + a,B;,. It is easy to verify that this defines an
inner product on F),

Example 4.4.3 Let V be the set of all continuous complex-valued
functions on the closed unit interval [0, 1]. If £(¢), g(¢) € V, define

(f(1), 20)) = f £ 5T d
(1]

We leave it to the reader to verify that this defines an inner product on V.

For the remainder of this section ¥V will denote an inner product space.

DEFINITION If v € V then the length of v (or norm of v), written o], is
defined by |0l = (@, v).

LEMMA 441 If u,veV and o,BeF then (au + Pv,ou + Pv) =
ad(u, u) + of(u,v) + ap(v, u) + BB, v).

Proof. By property 3 defining an inner product space, (au + fv, au +
pv) = a(u, au + Pv) + P(v,au + Pv); but (u, au + Pv) = &x(u,u) + f(u, v)
and (v, au + Pv) = a(v,u) + P(v,v). Substituting these in the expression
for (au + Pv, au + Pv) we get the desired result.
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COROLLARY |Jlau|l = |a| llzl.

Proof. |lau|? = (au, au) = ac(u,u) by Lemma 4.4.1 (witho = 0).
Since a@ = |a|?> and (u,u) = ||u|?, taking square roots yields |au| =
foe Y]]

We digress for a moment, and prove a very elementary and familiar
result about real quadratic equations.

LEMMA 4.4.2 If a, b, c are real numbers such that a > O and al? + 2b1 +
¢ > 0 for all real numbers 2, then b < ac.

Proof. Completing the squares,

2
a,12+2b,1+c=1(a,1+b)2+(c-b_).
a

a

Since it is greater than or equal to O for all 4, in particular this must be
true for A = —bfa. Thus ¢ — (b%/a) > 0, and since a > 0 we get b2 < ac.

We now proceed to an extremely important inequality, usually known
as the Schwarz inequality :

THEOREM 4.4.1 Ifu,ve V then |(u, 9)| < |lu| llz|l.

Proof. If u =0 then both (u,v) = 0 and ||| |2|| = 0, so that the
result is true there.

Suppose, for the moment, that (u,?) is real and u # 0. By Lemma
4.4.1, for any real number A, 0 < (du + v, Au + v) = A%(u, u) +
2(u, v)A + (v,v) Let a = (u,u), b = (4, v), and ¢ = (v, v); for these the
hypothesis of Lemma 4.4.2 is satisfied, so that 62 < ac. That is, (4, )% <
(u, u) (v, v); from this it is immediate that |(u,2)] < (|| ||2]-

If @ = (u, v) is not real, then it certainly is not 0, so that ufe is mean-

ingful. Now,
Lo)=lwn= ' wa=1,
o o (u, v)

and so it is certainly real. By the case of the Schwarz inequality discussed
in the paragraph above,

u u
1l = (—, v>| < || ol
o o
since
u 1
== —llul,
lorf
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we get

| <l el
a

3
whence |a| < |lz|| ||2]|. Putting in that & = (x, v) we obtain |(x, v)| <
[lz]| [l#]l, the desired result.

Specific cases of the Schwarz inequality are themselves of great interest.
We point out two of them.

1. If V=F® with (z,0) = 0,8, + +** + B, where u = (a,...,a,)
and v = (By, ..., B.,), then Theorem 4.4.1 implies that

legBy + o 4 oBu | < (lg)® + < + ) DUBY? + -+ + 184D

2. If V is the set of all continuous, complex-valued functions on [0,1] with
inner product defined by

(ﬂmﬂm=JUmR3@
0
then Theorem 4.4.1 implies that

ffm@wtstﬂmwﬁWwwa
0 0 0

The concept of perpendicularity is an extremely useful and important
one in geometry. We introduce its analog in general inner product spaces.

DEFINITION If u,ve V then u is said to be orthogonal to v if (u,v) = 0.

Note that if  is orthogonal to v then v is orthogonal to u, for (v, u) =
(o) =T =0

DEFINITION If W is a subspace of V, the orthogonal complement of W,
W, is defined by W+ = {xe V|(x,w) = Oforall we W}

LEMMA 4.43 W<isa subspace of V.

Proof. 1fa,b e W then for all a, fe Fand all we W, (za + fb, w) =
o(a, w) + B(b, w) = Osince a, b € W*.

Note that W n W+ = (0), for if we W n W* it must be self-orthogonal,
that is (w, w) = 0. The defining properties of an inner product space
rule out this possibility unless w = 0.

One of our goals is to show that ¥V = W + W', Once this is done,
the remark made above will become of some interest, for it will imply that
V is the direct sum of W and W*.
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DEFINITION The set of vectors {v;} in V is an orthonormal set if

1. Each v; is of length 1 (i.e., (v;, ;) = 1).
2. Fori # j, (v;,v;) = 0.

LEMMA 4.4.4 If {v;} is an orthonormal set, then the vectors in {v;} are linearly
independent. If w = a0, + -+ + a0, then 0 = (w,v;) for i=1,2,...,n

Proof. Suppose that a;v; + o0, + *++ + a,p, = 0. Therefore 0 =
(@01 + "0 + 0n 9;) = (g, 0) + *** + a,(2,, v;). Since (v;,v) =0
for j # i while (v;,v) = 1, this equation reduces to a; = 0. Thus the
v,’s are linearly independent.

If w= a9, + -+ a,v, then computing as above yields (w, v;) = a;.

Similar in spirit and in proof to Lemma 4.4.4 is

LEMMA 4.45 If {v,,...,v,} is an orthonormal set in V and if we V, then
u =uw — (ws vl)vl - (w3 02)02 -t = (w> vi)vi -t = (w: vn)vn is
orthogonal to each of vy, vy, ..., v,

Proof. Computing (u, v;) for any i < n, using the orthonormality of
Uy, ..., 0, yields the result.

The construction carried out in the proof of the next theorem is one which
appears and reappears in many parts of mathematics. It is a basic pro-
cedure and is known as the Gram-Schmidt orthogonalization process. Although
we shall be working in a finite-dimensional inner product space, the
Gram-Schmidt process works equally well in infinite-dimensional situations.

THEOREM 4.4.2 Let V be a finite-dimensional inner product space; then V has
an orthonormal set as a basis.

Proof. Let V be of dimension n over F and let v,, ..., v, be a basis of V.
From this basis we shall construct an orthonormal set of n vectors; by
Lemma 4.4.4 this set is linearly independent so must form a basis of V.

We proceed with the construction. We seek n vectors w,, ..., w, each
of length 1 such that for i # j, (w;, w;) =0. In fact we shall finally
produce them in the following form: w, will be a multiple of v,, w, will be
in the linear span of w, and v,, w, in the linear span of w,, w,, and v,, and
more generally, w; in the linear span of w , w,,...,w; ;, ;.

Let

%

W = ——;
llog i

(2 w1 =1
(o, 1) (nvlu’uvlu) oz P = b

then
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whence |lw,|| = 1. We now ask: for what value of « is aw, + v, orthogonal
to w;? All we need is that (aw, + v, w,) = 0, that is a(w,, w,) +
(v3, wy) = 0. Since (wy,w;) =1, a = — (v, w;) will do the trick. Let
u; = — (vy, wy)w; + v,; u, is orthogonal to w,; since v; and v, are linearly
independent, w; and v, must be linearly independent, and so u, # O.
Let w, = (uy/|lusl); then {w,, w,} is an orthonormal set. We continue.
Let uy = —(v3, wy)w; — (v3, wy)w, + v3; a simple check verifies that
(24, w;) = (uy, wy) = 0. Since w,, w,, and v, are linearly independent
(for wy, w, are in the linear span of v; and v,), u3 # 0. Let wy = (u5/|lus]);
then {w,, w,, w;} is an orthonormal set. The road ahead is now clear.
Suppose that we have constructed w, w,,..., w;, in the linear span of
vy, ..., ; which form an orthonormal set. How do we construct the next
one, w;,,? Merely put u;y; = —(U4y, W)Wy — (Vigp, W)Wy, — **° —
(vi41, w)w; + v;.,. That u;,; # 0 and that it is orthogonal to each of
wy, . .., w; we leave to the reader. Put w; . = (u;4,/llu;4,l)!

In this way, given r linearly independent elements in V, we can construct
an orthonormal set having r elements. If particular, when dim V = n,
from any basis of V' we can construct an orthonormal set having n elements.
This provides us with the required basis for V.

We illustrate the construction used in the last proof in a concrete case.
Let F be the real field and let V be the set of polynomials, in a variable x,
over F of degree 2 or less. In V we define an inner product by: if p(x),
g(x) € V, then

1
(p(x), () = J P(9)g(x) d

Let us start with the basis v, = 1, v, = x, v; = x? of V. Following the
construction used,

uy = —(v3 wl)wl + 03,

which after the computations reduces to u, = x, and so

finally,

uy = — (03, wy) wy — (v3, w,) wy + vy = '—3— + ¥,
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and so

P

1 2
flusll \/J (—l + xz) = 4
-1\ 3

We mentioned the next theorem earlier as one of our goals. We are now
able to prove it.

ws (=1 + 32%).

THEOREM 4.43 If V is a finite-dimensional inner product space and if W is
a subspace of V, then V = W + W*. More particularly, V is the direct sum of
W and W+,

Proof. Because of the highly geometric nature of the result, and because
it is so basic, we give several proofs. The first will make use of Theorem
4.4.2 and some of the earlier lemmas. The second will be motivated geo-
metrically.

First Proof. As a subspace of the inner product space V, W is itself an
inner product space (its inner product being that of V restricted to W).
Thus we can find an orthonormal set wy, . . ., w, in W which is a basis of W.
If veV, by Lemma 4.4.5, v =02 — (v, w))w; — (v, w)w, —+++ —
(v, w,)w, is orthogonal to each of wy,...,w, and so is orthogonal to W.
Thus 29€ W%, and since v =9y + ((v, wy)wy, + -+ + (v, w,)w,), veE
W + W Therefore V=W + W' Since W n W' = (0), this sum is
direct.

Second Proof. 1In this proof we shall assume that F is the field of real
numbers. The proof works, in almost the same way, for the complex
numbers; however, it entails a few extra details which might tend to obscure

the essential ideas used.
Let v € V; suppose that we could find a vector wy € W such that

lo — we|| < lv — w| for all we W. We claim that then (v — wg, w) = 0
for all w € W, that is, v — wy € W™,
If we W, then wy + w € W, in consequence of which

(v —wpv—wp) < (v — (wy + w),v — (W + w)).

However, the right-hand side is (w, w) + (v — wp, v — wy) — 2(v — wy, w),
leading to 2(v — wy, w) < (w,w) for all weW. If m is any positive
integer, since w/m € W we have that

—2(v—w°,w) =2<u _wo,g)s(.u-),g)="—:5(w,w),

and so 2(v — wg, w) < (1/m)(w, w) for any positive integer m. However,
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(1fm)(w, w) = 0 as m = o0, whence 2(v — wy, w) < 0. Similarly, —we W,
and 0 0 < —2(v — wy, w) = 2(v — wy, —w) < 0, yielding (v — wy, w)
= 0 for all w e W. Thus v — wy € W*; hence vew, + W+ c W + Wi

To finish the second proof we must prove the existence of a woe W
such that v — wy] < |lv — w| for all we W. We indicate sketchily two
ways of proving the existence of such a w,

Let u,,..., u, be a basis of W; thus any we W is of the form w =
Ay + 0+ Ay Let By = (w,u;) and let y; = (v, ;) for ve V. Thus
v—wov—w =@W-—- lu — " — Qv — Liw — - — Qw) =
(0,v) — 24 4;B;; — 22A;y;. This quadratic function in the A’s is nonnegative
and so, by results from the calculus, has a minimum. The A’s for this
minimum, 1,9, L, ... ) 1, give us the desired vector w, =
L + o+ 3O in W.

A second way of exhibiting such a minimizing w is as follows. In V define
a metric { by {(x,») = ||x — y|; one shows that { is a proper metric on V,
and V i now a metric space. Let S = {weW| v —w| < |lof}; in
this metric S is a compact set (prove!) and so the continuous function
f(w) = |lv — w]l defined for w e S takes on a minimum at some point
wy € S. We leave it to the reader to verify that w, is the desired vector
satisfying ||lo — wqll < |lo — w| for all we W.

COROLLARY If V is a finite-dimensional inner product space and W is a subspace
of V then (WYt = W.

Proof. If we W then for any ue W', (w,u) =0, whence W c
(WHE, Now V= W + W* and V = Wt + (W*)L; from these we get,
since the sums are direct, dim (W) = dim (W")*). Since W < (W*)*
and is of the same dimension as (W!), it follows that W = (W*)

Problems
In all the problems V is an inner product space over F.
1. If F is the real field and V is F®, show that the Schwarz inequality
implies that the cosine of an angle is of absolute value at most 1.

2. If F is the real field, find all 4-tuples of real numbers (a, b, ¢, d) such

that for u = (a,,a;), 2 = (B, B2) € FD, (u,0) = aq, B, + bayf, +
¢o, B, + doyf, defines an inner product on F(2?),

3. In V define the distance {(u, v) from u to v by {(u,v) = {u — v|]. Prove

that

(a) {(u,v) = 0and {(»,v) = Oif and only ifu =
(b) L(u,v) = L(, u).

(c) C(u,v) < {(u, w) + {(w, v} (triangle inequality).
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4.

10

1.

12.

If {w,, ..., w,} is an orthonormal set in V, prove that

> I(w; 9)I* < [o]* for any v e V.
i=1

(Bessel inequality)

. If V is finite-dimensional and if {w,, ..., w,} is an orthonormal set in

V such that
4 2 2
3 lws 917 = o]
=1

for every v e V, prove that {w,, ..., w,} must be a basis of V.

If dim V = n and if {w,, ..., w,} is an orthonormal set in V, prove
that there exist vectors wg4;,...,w, such that {wy, ..., wp W1,
., w,}1is an orthonormal set (and basis of V).

. Use the result of Problem 6 to give another proof of Theorem 4.4.3.

. In V prove the parallelogram law:

e + of? + flu ~ o = 2(Jul® + fol?).

Explain what this means geometrically in the special case V = F(3,
where F is the real field, and where the inner product is the usual dot
product.

. Let V be the real functions y = f(x) satisfying d%y/dx* + 9y = 0.

(a) Prove that V is a two-dimensional real vector space.

R
(b) In V define (y, 2) = f yz dx. Find an orthonormal basis in V.
0

Let V be the set of real functions y = f (%) satisfying
dy _sdY
dx3_6¢x2+” — 6y = 0.

a) Prove that V is a three-dimensional real vector space.

(
(b) In V define
(u, v) = J.o uy dx.

Show that this defines an inner product on V and find an ortho-
normal basis for V.
If W is a subspace of V and if v € V satisfies (v, w) + (w, v) < (w, w)
for every w e W, prove that (v, w) = O for every we W.
If V is a finite-dimensional inner product space and if f is a linear
functional on V (ie., fe V), prove that there is a u,€ V such that
S @) = (v, 4) for allve V.
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4.5 Modules

The notion of a module will be a generalization of that of a vector space;
instead of restricting the scalars to lie in a field we shall allow them to be
elements of an arbitrary ring.

This section has many definitions but only one main theorem. However
the definitions are so close in spirit to ones already made for vector spaces
that the|main ideas to be developed here should not be buried in a sea of
definitios.

‘\
DEFINIVION Let R be any ring; a nonempty set M is said to be an
R-module (or, a module over R) if M is an abelian group under an operation
+ such that for every r € R and m € M there exists an element rm in M
subject to

1. r(a + b) = ra + rb;
2. r(sa) = (rs)a;
3. (r + s)a=ra+ sa

foralla, be M and r, s € R.

If R has a unit element, 1, and if Im = m for every element m in M, then
M is called a unital R-module. Note that if R is a field, a unital R-module
is nothing more than a vector space over R. All our modules shall be unital ones.

Properly speaking, we should call the object we have defined a left R-
module for we allow multiplication by the elements of R from the left.
Similarly we could define a right R-module. We shall make no such left-right
distinction, it being understood that by the term R-module we mean a left
R-module.

Example 4.6.1 Every abelian group G is a module over the ring of
integers!

For, write the operation of G as + and let na, for 2 € G and » an integer,
have the meaning it had in Chapter 2. The usual rules of exponents in
abelian groups translate into the requisite properties needed to make of G
a module over the integers. Note that it is a unital module.

Example 4.6.2 Let R be any ring and let M be a left-ideal of R. For
r€ R, me M, let rm be the product of these elements as elements in R.
The definition of left-ideal implies that rm € M, while the axioms defining a
ring insure us that M is an R-module. (In this example, by a ring we mean
an associative ring, in order to make sure that r(sm) = (rs)m.)

Example 4.5.3 The special case in which M = R; any ring R is an
R-module over itself.
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Example 4.56.4 Let R be any ring and let A be a left-ideal of R. Let
M consist of all the cosets, a + A, where a € R, of A in R.

In Mdefine(@a+ A) + (b+ A) =(a+0b) +Aandr(@a+ i) =ra + A
M can be shown to be an R-module. (See Problem 2, end of this section.)
M is usually written as R — A (or, sometimes, as R/A1) and is called the
difference (or quotient) module of R by A.

An additive subgroup 4 of the R-module M is called a submodule of M
if whenever 7 € R and a € A, then ra € A.

Given an R-module M and a submodule 4 we could construct the quotient
module M/A in a manner similar to the way we constructed quotient
groups, quotient rings, and quotient spaces. One could also talk about
homomorphisms of one R-module into another one, and prove the appro-
priate homomorphism theorems. These occur in the problems at the end
of this section.

Our interest in modules is in a somewhat different direction; we shall
attempt to find a nice decomposition for modules over certain rings.

DEFINITION If M is an R-module and if M,,..., M, are submodules
of M, then M is said to be the direct sum of My, ..., M, if every element
me M can be written in a unique manner as m =m; + my, + -+ + m,
where my e M, mye M,,...,m,e M,

As in the case of vector spaces, if M is the direct sum of M,, ..., M, then
M will be isomorphic, as a module, to the set of all s-tuples, (m, ..., m,)
where the ith component m; is any element of M;, where addition is com-
ponentwise, and where r(m,...,m) = (rm;, rm,,...,rm;) for re R.
Thus, knowing the structure of each M; would enable us to know the
structure of M.

Of particular interest and simplicity are modules generated by one
element; such modules are called ¢yelic. To be precise:

DEFINITION An R-module M is said to be ¢yclic if there is an element
mg € M such that every m € M is of the form m = rm, where r € R.

For R, the ring of integers, a cyclic R-module is nothing more than a
cyclic group.
We still need one more definition, namely,

DEFINITION An R-module M is said to be finitely generated if there exist
elements a, * * +, a, € M such that every m in M is of the form m = r,a; +
ra, + -+ r.a,
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With all the needed definitions finally made, we now come to the theorem
which is the primary reason for which this section exists. It is often called
the fundamental theorem on finitely generated modules over Euclidean rings.
In it we shall restrict R to be a Euclidean ring (see Chapter 3, Section 3.7);
however the theorem holds in the more general context in which R is any
principal ideal domain.

THEOREM 4.51 Let R be a Euclidean ring; then any finitely generated R-
module, M, is the direct sum of a finite number of cyclic submodules.

Proof. Before becoming involved with the machinery of the proof, let us
see what the theorem states. The assumption that M is finitely generated
tells us that there is a set of elements a,, ..., a, € M such that every ele-
ment in M can be expressed in the form r,a, + ra, + +++ + r,a,, where
the r; € R. The conclusion of the theorem states that when R is properly
conditioned we can, in fact, find some other set of elements b,,..., &, in
M such that every element m € M can be expressed in a unique fashion
as m = s;b, + +++ + s,b, with s;€ R. A remark about this uniqueness; it
does not mean that the s; are unique, in fact this may be false; it merely
states that the elements s;b, are. That is, if m = 5,6, + -+ + 5,6, and
m = s1b, + -+ + s;b, we cannot draw the conclusion that s, = s,
$3 = S$3,...,8, = 5;, but rather, we can infer from this that s;b, =
$b1s . ooy Sby = sgb,.

Another remark before we start with the technical argument. Although
the theorem is stated for a general Euclidean ring, we shall give the proof in
all its detail only for the special case of the ring of integers. At the end we
shall indicate the slight modifications needed to make the proof go through
for the more general setting. We have chosen this path to avoid cluttering
up the essential ideas, which are the same in the general case, with some
technical niceties which are of no importance.

Thus we are simply assuming that M is an abelian group which has a
finite-generating set. Let us call those generating sets having as few elements
as possible minimal generating sets and the number of elements in such a
minimal generating set the rank of M.

Our proof now proceeds by induction on the rank of M.

If the rank of M is 1 then M is generated by a single element, hence it is
cyclic; in this case the theorem is true. Suppose that theresult is true for all
abelian groups of rank ¢ — 1, and that M is of rank q.

Given any minimal generating set a,, ..., a, of M, if any relation of the
form nja, + nya; + -+ + ma, =0 (ny,...,n, integers) implies that
na, = npa; == na, = 0, then M s the direct sum of M, M,,..., M,
where each M, is the cyclic module (i.e., subgroup) generated by a;, and
so we would be done. Consequently, given any minimal generating set
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by, ..., b, of M, there must be integers r,, ..., r, such that r;b; + -+ +
7., = 0 and in which not all of rb,, 7,6,,...,76, are 0. Among all
possible such relations for all minimal generating sets there is a smallest
possible positive integer occurring as a coefficient. Let this integer be s,

and let the generating set for which it occurs be @y, ..., a;. Thus

5180 + 58, + 00+ s,a, = 0. (D

We claim that if rjg; + -+ + r,g, = 0, then s, | ry; for ry = ms; + ¢,

0 <t < 55, and so multiplying Equation (1) by m and subtracting from
na, + -+ ra, =0 leads to ta;, + (r, — ms)a, + -+ + (r, — ms)a, =

0; since ¢t < s5; and s, is the minimal possible positive integer in such a
relation, we must have that ¢ = 0.

We now further claim that s, | 5; for : = 2,..., ¢. Suppose not; then
51 X 5y, 5ay,50 53 =mysy + 1,0 <t <s. Noway =a, + mya,,a,,...,4q,
also generate M, yet sjaj + la, + 535 + *** + 5,8, = 0; thus ¢ occurs
as a coefficient in some relation among elements of a minimal generating
set. But this forces, by the very choice of s, that either ¢t = 0 or ¢ > s,.
We are left with ¢t = 0 and so s, | 5,. Similarly for the other s;. Let us
write s; = m;s;.

Consider the elements a} = @, + mya; + maay + -+ + ma, az,-- -, a,
They generate M; moreover, s;a} = s;a; + mysa; + -+ + mgs,a, =
5181 + 58, + +-+ + 5,0, = 0. If ria} + 8, + -+ + 1,8, = 0, substitut-

ing for af, we get a relation between ay, . . ., a, in which the coefficient of
a, is ry; thus s; | r; and so r;at = 0. If M, is the cyclic module generated
by a} and if M, is the submodule of M generated by a,,. .., a, we have
just shown that M, n M, = (0). But M, + M, = M since a}, a,,...,4q,
generate M. Thus M is the direct sum of M, and M,. Since M, is generated
by a,,..., a, its rank is at most ¢ — | (in fact, it is ¢ — 1), so by the
induction M, is the direct sum of cyclic modules. Putting the pieces together
we have decomposed M into a direct sum of cyclic modules.

COROLLARY Any finite abelian group is the direct product (sum) of cyclic
groups.

Proof. The finite abelian group G is certainly finitely generated; in
fact it is generated by the finite set consisting of all its elements. Therefore
applying Theorem 4.5.1 yields the corollary. This is, of course, the result
proved in Theorem 2.14.1.

Suppose that R is a Euclidean ring with Euclidean function d. We
modify the proof given for the integers to one for R as follows:
1. Instead of choosing s, as the smallest possible positive integer occurring
in any relation among elements of a generating set, pick it as that element
of R occurring in any relation whose d-value is minimal.
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2. In the proof that s, |r, for any relation rja, + - - + 148, =0, the
only change needed is that , = ms; + ¢ where either

t=0 or d(t) <d(s);

the rest goes through. Similarly for the proof that s, | s;.

Thus with these minor changes the proof holds for general Euclidean
rings, whereby Theorem 4.5.1 is completely proved.

Problems

2.

3

Verify that the statement made in Example 4.5.1 that every abelian
group is a module over the ring of integers is true.

Verify that the set in Example 4.5.4 is an R-module.

Suppose that R is a ring with a unit element and that M is a module
over R but is not unital. Prove that there exists an m # 0 in M such
that rm = 0 for all r € R.

Given two R-modules M and N then the mapping T from M into N is
called a homomorphism (or R-homomorphism or module homomorphism) if
l. my + m))T = miT + m,T;
2. (rmy) T = r(m, T);
for all m;, m;, e Mand all r € R.

4.

If T is a homomorphism of M into N let K(T) = {xe M| xT = 0}.
Prove that K(T) is a submodule of M and that I(T) = {xT' | xe M}
is a submodule of N,

. The homomorphism T is said t be an isomorphism if it is one-to-one.

Prove that T is an isomorphism if and only if K(7T") = (0).
Let M, N, Q be three R-modules, and let T be a homomorphism of
M into N and § a homomorphism of N into Q. Define 7S:M — Q

by m(TS) = (mT)S for any me M. Prove that TS is an R-homo-
morphism of M into Q and determine its kernel, K(TS).

. If Mis an R-module and 4 is a submodule of M, define the quotient

module M/A (use the analogs in group, rings, and vector spaces as a
guide) so that it is an R-module and prove that there is an R-homo-
morphism of M onto M|A.

If T is a homomorphism of M onto N with K(T) = A, prove that N
is isomorphic (as a module) to M| A4,

. If A and B are submodules of M prove

(@) 4 n B is a submodule of M.
(b) A+ B=f{a+ b|lae 4, be B}is asubmodule of M.
(c) (4 + B)/B is isomorphic to 4/(4 n B).
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10.

11.

*]2.

13.

*14.

15.

16.

17.

*18.

An R-module M is said to be irreducible if its only submodules are (0)
and M. Prove that any unital, irreducible R-module is cyclic.

If M is an irreducible R-module, prove that either M is cyclic or that
foreveryme M and re R, rm = 0.

If M is an irreducible R-module such that rm # 0 for some re R
and m € M, prove that any R-homomorphism 7" of M into M is either
an isomorphism of M onto M or that mT = 0 for every m € M.

Let M be an R-module and let £(M) be the set ofall R-homomorphisms
of M into M. Make appropriate definitions of addition and multi-
plication of elements of E(M) so that E(M) becomes a ring. (Hint:
imitate what has been done for Hom (V, V), V a vector space.)

If M is an irreducible R-module such that rm # 0 for some re R
and m € M, prove that E(M) is a division ring. (This result is known
as Schur’s lemma.)

Give a complete proof of Theorem 4.5.1 for finitely generated modules

over Euclidean rings.

Let M be an R-module; if me M let A(m) = {xe R | xm = O}.

Show that A(m) is a left-ideal of R. It is called the order of m.

If A is a left-ideal of R and if M is an R-module, show that for m € M,

Am = {xm| x € A1} is a submodule of M.

Let M be an irreducible R-module in which rm # 0 for some re R

and me M. Let my # 0e M and let A(m,) = {x e R | xmy = 0}.

(a) Prove that A(my) is a maximal left-ideal of R (that is, if 4 is a
left-ideal of R such that R > 1 > A(mg), then A =R or A =

A(mq))-
(b) As R-modules, prove that M is isomorphic to R — A(mg) (see

Example 4.5.4).

Supplementary Reading

Haimos, Paur R., Finite-Dimensional Vector Spaces, 2nd ed. Princeton, N.J.: D. Van
Nostrand Company, Inc., 1958.
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Fields

In our discussion of rings we have already singled out a special class
which we called fields. A field, let us recall, is a commutative ring
with unit element in which every nonzero element has a multiplicative
inverse. Put another way, a field is a commutative ring in which we
can divide by any nonzero element.

Fields play a central role in algebra. For one thing, results about
them find important applications in the theory of numbers. For
another, their theory encompasses the subject matter of the theory of
equations which treats questions about the roots of polynomials.

In our development we shall touch only lightly on the field of
algebraic numbers. Instead, our greatest emphasis will be on aspects
of field theory which impinge on the theory of equations. Although
we shall not treat the material in its fullest or most general form, we
shall go far enough to introduce some of the beautiful ideas, due to
the brilliant French mathematician Evariste Galois, which have
served as a guiding inspiration for algebra as it is today.

5.1 Extension Fields

In this section we shall be concerned with the relation of one field to
another. Let F be a field; a field X is said to be an extension of F if K
contains F. Equivalently, K is an extension of F if F is a subfield of K.
Throughout this chapter F will denote a given field and K an extension of F.
As was pointed out earlier, in the chapter on vector spaces, if X is
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an extension of F, then, under the ordinary field operations in K, K is a vector
space over F. As a vector space we may talk about linear dependence,
dimension, bases, etc., in K relative to F.

DEFINITION The degree of K over F is the dimension of K as a vector
space over F.

We shall always denote the degree of K over F by [K:F]. Of particular
interest to us is the case in which [K:F] is finite, that is, when K is finite-
dimensional as a vector space over F. This situation is described by saying
that K is a finite extension of F.

We start off with a relatively simple but, at the same time, highly effective
result about finite extensions, namely,

THEOREM 5.1.1 If L is a finite extension of K and if K is a finite extension of
F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].

Proof. The strategy we employ in the proof is to write down explicitly
a basis of L over F. In this way not only do we show that L is a finite
extension of F, but we actually prove the sharper result and the one which
is really the heart of the theorem, namely that [L:F] = [L:K][K:F].

Suppose, then, that [L:K] = m and that [K:F] =n. Let vy,...,9,
be a basis of L over K and let w,,...,w, be a basis of K over F. What
could possibly be nicer or more natural than to have the elements »w;,
where i1 =1,2,...,m, j=1,2,...,n, serve as a basis of L over F?
Whatever else, they do at least provide us with the right number of elements.
We now proceed to show that they do in fact form a basis of L over F.
What do we need to establish this? First we must show that every element
in L is a linear combination of them with coefficients in F, and then we
must demonstrate that these mn elements are linearly independent over F.

Let ¢ be any element in L. Since every element in Lis a linear combination
of vy,..., 0, with coefficients in K, in particular, ¢ must be of this form.
Thus ¢ = kv, + -+ - + kv, where the elements &;,..., %, are all in XK.
However, every element in K is a linear combination of w,, ..., w, with
coefficients in F. Thus &, = fj,w; + *** + fisns - - - k; = fuw;, + -+ +
SinWns+ ooy by = foqwy + *** + fount¥n, Where every f}; is in F.

Substituting these expressions for &y, ..., &, into ¢t = kv, + -+ + k0,
we obtain ¢ = (fllwl + +.f1nwn)vl + + (fmlwl + - +fmnwn)um
Multiplying this out, using the distributive and associative laws, we finally
arrive at ¢ = fl;0,w; + -+ fiw, + 00+ fijpaw; + 000+ funlm@ae
Since the f;; are in F, we have realized ¢ as a linear combination over F of
the elements »,w;. Therefore, the elements »,w; do indeed span all of L over
F, and so they fulfill the first requisite property of a basis.



Sec. 5.1 Extension Fields

We still must show that the elements »;w; are linearly independent over F.
Suppose that fy, 0,0+ + fi1w,+ + fijpw;i+ 0+ S0, =0,
where the f;; are in F. Our objective is to prove that each f;; = 0. Re-
grouping the above expression yields (fj,wy + - + fi,wa)v; + - +
(.filwl + - +.finwn)vi + e+ (fmlwl + et +fmnwn)vm = 0

Since the w; are in K, and since K o F, all the elements k; = fj;w, + **
+ finw, are in K. Now kv, + --- + k,»,, = 0 with k,..., %, e K. But,
by assumption, vy, ..., s, form a basis of L over K, so, in particular they
must be linearly independent over K. The net result. of this is that k; =
ky =++- =k, = 0. Using the explicit values of the &;, we get

Jaw, ¥+ fiuw, =0 for 1=1,2,...,m

But now we invoke the fact that the w; are linearly independent over F;
this yields that each f;; = 0. In other words, we have proved that the
vw; are linearly independent over F. In this way they satisfy the other
requisite property for a basis.

We have now succeeded in proving that the mn elements »,w; form a
basis of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F]
we have obtained the desired result [L:F] = [L:K][K:F].

Suppose that L, K, F are three fields in the relation L > K o F and,
suppose further that [L:F] is finite. Clearly, any elements in L linearly
independent over K are, all the more so, linearly independent over F.
Thus the assumption that [L:F] is finite forces the conclusion that [L:K]
is finite. Also, since K is a subspace of L, [K:F] is finite. By the theorem,
[L:F] = [L:K][K:F], whence [K:F] | [L:F]. We have proved the

COROLLARY If L is a finite extension of F and K is a subfield of L which
contains F, then [K:F] | [L:F].

Thus, for instance, if [L:F] is a prime number, then there can be no
fields properly between F and L. A little later, in Section 5.4, when we
discuss the construction of certain geometric figures by straightedge and
compass, this corollary will be of great significance.

DEFINITION An element a € K is said to be algebraic over F if there exist
elements o, ay,...,a, in F, not all 0, such that oga" + ;@™ ! + -+« +
a, = 0.

If the polynomial ¢(x) € F[x], the ring of polynomials in x over F, and
if g(x) = Box™ 4 Bix™~ ! + -+ + B, then for any element b € K, by ¢(b)
we shall mean the element Byb™ 4 B,6™ ! + -+ 4 B, in K. In the ex-
pression commonly used, ¢(b) is the value of the polynomial g(x) obtained
by substituting & for x. The element b is said to satisfy q(x) if ¢(b) = O.
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In these terms, a € K is algebraic over F if there is a nonzero polynomial
p(x) € F[x] which a satisfies, that is, for which p(a) = 0.

Let K be an extension of F and let @ be in K. Let .# be the collection of
all subfields of K which contain both F and a. . is not empty, for K itself
isan element of .#. Now, as is easily proved, the intersection of any number
of subfields of K is again a subfield of K. Thus the intersection of all those
subfields of K which are members of .# is a subfield of XK. We denote this
subfield by F(a). What are its properties? Certainly it contains both F
and g, since this is true for every subfield of K which is a member of .#.
Moreover, by the very definition of intersection, every subfield of K in #
contains F(a), yet F(a) itself is in #. Thus F(a) is the smallest subfield of K
containing both F and a. We call F(a) the subfield obtained by adjoining a to F.

Our description of F(a), so far, has been purely an external one. We now
give an alternative and more constructive description of F(a). Consider all
these elementsin K which can be expressed in the form f, + f,a + - - - + f,a°;
here the f’s can range freely over F and s can be any nonnegative integer.
As elements in K, one such element can be divided by another, provided
the latter is not 0. Let U be the set of all such quotients. We leave it as
an exercise to prove that U is a subfield of X.

On one hand, U certainly contains F and a, whence U > F(a). On
the other hand, any subfield of X which contains both F and a, by virtue
of closure under addition and multiplication, must contain all the elements
fBo + Bia + -+ + Ba® where each B;€F. Thus F(a) must contain all
these elements; being a subfield of K, F(a) must also contain all quotients
of such elements. Therefore, F(a) > U. The two relations I/ = F(a),
U o F(a) of course imply that U = F(a). In this way we have obtained
an internal construction of F(a), namely as U.

We now intertwine the property that a € K is algebraic over F with
macroscopic properties of the field F(a) itself. This is

THEOREM 5.1.2 The element a € K is algebraic over F tf and only if F(a)
is a finite extension of F.

Proof. As is so very common with so many such “if and only if* pro-
positions, one-half of the proof will be quite straightforward and easy,
whereas the other half will be deeper and more complicated.

Suppose that F(a) is a finite extension of F and that [F(a):F] = m.
Consider the elements 1, @, a?,...,a™; they are all in F(a) and are m + 1
in number. By Lemma 4.2.4, these elements are linearly dependent over
F. Therefore, there are elements o, a,, ..., a, in F, not all 0, such that
ol + ;@ + wa® + ¢+ + o,a™ = 0. Hence a is algebraic over F and
satisfies the nonzero polynomial p(x) = oy + o3 + -+ + a,¥" in F[x]
of degree at most m = [F(a):F]. This proves the “if”* part of the theorem.

Now to the “only if** part. Suppose that a in K is algebraic over F. By
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assumption, a satisfies some nonzero polynomial in F[x]; let p(x) be a
polynomial in F[x] of smallest positive degree such that p(a) = 0. We
claim that p(x) is irreducible over F. For, suppose that p(x) = f (x)g(x),
where f (x), g(x) € F[x]; then O = p(a) = f(a)g(a) (see Problem 1) and,
since f (a) and g(a) are elements of the field K, the fact that their product
is 0 forces f(a) = 0 or g(a) = 0. Since p(x) is of lowest positive degree
with p(a) = 0, we must conclude that one of deg f(x) > deg p(x) or
deg g(x) > deg p(x) must hold. But this proves the irreducibility of p(x).

We define the mapping ¥ from F[x] into F(a) as follows. For any
h(x) € F[x], h(x)yy = h(a). We leave it to the reader to verify that i is a
ring homomorphism of the ring F[x] into the field F(a) (see Problem 1).
What is V, the kernel of ? By the very definition of ¢, V =
{h(x) € F[x] | h(a) = 0}. Also, p(x) is an element of lowest degree in the
ideal V of F[x]. By the results of Section 3.9, every element in Vis a multiple
of p(x), and since p(x) is irreducible, by Lemma 3.9.6, V is a maximal ideal
of F[x]. By Theorem 3.5.1, F[x]/V is a field. Now by the general homo-
morphism theorem for rings (Theorem 3.4.1), F[x]/V is isomorphic to the
image of F[x] under ). Summarizing, we have shown that the image of
F[x] under y is a subfield of F(a). This image contains x{) = a and, for
every o € F, aif =~a. Thus the image of F[x] under s is a subfield of
F[a] which contains both F and a; by the very definition of F(a) we are
forced to conclude that the image of F[x] under  is all of F(a). Put more
succinctly, F[x]/V is isomorphic to F(a).

Now, V = (p(x)), the ideal generated by p(x); from this we claim that
the dimension of F[x]/V, as a vector space over F, is precisely equal to
deg p(x) (see Problem 2). In view of the isomorphism between F[x]/V and
F(a) we obtain the fact that [F(a):F] = deg p(x). Therefore, [F(a):F] is
certainly finite; this is the contention of the ‘“‘only if”’ part of the theorem.
Note that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

The proof we have just given has been somewhat long-winded, but
deliberately so. The route followed contains important ideas and ties in
results and concepts developed earlier with the current exposition. No part
of mathematics is an island unto itself.

We now redo the “only if”” part, working more on the inside of F(a).
This reworking is, in fact, really identical with the proof already given; the
constituent pieces are merely somewhat differently garbed.

Again let p(x) be a polynomial over F of lowest positive degree satisfied
by a. Such a polynomial is called a minimal polynomial for a over F. We
may assume that its coefficient of the highest power of x is I, that is, it is
monic; in that case we can speak of th¢ minimal polynomial for a over F
for any two minimal, monic polynomials for a over F are equal. (Prove!)
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Suppose that p(x) is of degree n; thus p(x) = x" + ;" ' + -+ + q,
where the a; are in F. By assumption, a" + a;@" ' +-+- + a, =0,
whence a" = —a;8" ! — 8" 2 ~ -+ — «,. What about 4"*!'? From
the above, a"*! = —qa" — a,a" ' — -+ — a,a; if we substitute the
expression for a” into the right-hand side of this relation, we realize a"*?
as a linear combination of the elements 1, @,...,a" ! over F. Con-
tinuing this way, we get that a"**, for k = 0, is a linear combination over
Fofl,a a®,...,a" L.

Now consider T = {fy + Bia + -+ + Bp—1a"" ' | Bos Bys- .-, B,-1 € F).
Clearly, T is closed under addition; in view of the remarks made in the
paragraph above, it is also closed under multiplication. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T contains
both F and a. We now wish to show that T is more than just a ring, that
it is, in fact, a field.

Let 0 #u=pf,+ pya+ -+ B,_,a" * bein T and let h(x) = B, +
Bix + -+ + Bno_y¥" '€F[x). Since u # 0, and u = h(a), we have that
h(a) # 0, whence p(x) ¥ h(x). By the irreducibility of p(x), p(x) and A(x)
must therefore be relatively prime. Hence we can find polynomials s(x)
and {(x) in F[x] such that p(x)s(x) + h(x)t(x) = 1. But then 1 =
pla)s(a) + h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that
u = h(a), we obtain ut(a) = 1. The inverse of u is thus ¢(a); in {(a) all
powers of a higher than n — 1 can be replaced by linear combinations of 1,
a,...,a" ! over F, whence {(a) € T. We have shown that every nonzero
element of T has its inverse in T'; consequently, T is a field. However,
T < F(a), yet F and a are both contained in T, which resultsin T = F(a).
We have identified F(a) as the set of all expressions f, + f,a + -+ +
pn la" l‘

Now T is spanned over F by the elements 1, @,...,a" ! in consequence
of which [T:F] < n. However, the elements 1,a,a% ...,a" ! are
linearly independent over F, for any relation of the form y, + 7y, + - -
+ y,_;a" !, with the elements y; € F, leads to the conclusion that a
satisfies the polynomial o + y,x + ++* + 7,_,¥" ! over F of degree
less than n. This contradiction proves the linear independence of 1, a,. . .,
a" 1, and so these elements actually form a basis of T over F, whence, in
fact, we now know that [7:F] = n Since T = F(a), the result
[F(a):F] = n follows.

DEFINITION The element a € K is said to be algebraic of degree n over
F if it satisfies a nonzero polynomial over F of degree n but no nonzero
polynomial of lower degree.

In the course of proving Theorem 5.1.2 (in each proof we gave), we proved
a somewhat sharper result than that stated in that theorem, namely,
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THEOREM 5.1.3 If a € K is algebraic of degree n over F, then [F(a):F] = n.

This result adapts itself to many uses. We give now, as an immediate
consequence thereof, the very interesting

THEOREM 5.1.4 If a, b in K are algebraic over F then a + b, ab, and a/b
(if b # 0) are all algebraic over F. In other words, the elements in K which are
algebraic over F form a subfield of K.

Proof. Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.1.3 the subfield T = F(a) of K is of
degree m over F. Now b is algebraic of degree n over F, a fortiori it is algebraic
of degree at most n over T which contains F. Thus the subfield W = T'(b)
of K, again by Theorem 5.1.3, is of degree at most n over 7. But [W:F] =
[W:T][T:F] by Theorem 5.1.1; therefore, [W:F] < mn and so W is a
finite extension of F. However, a and b are both in W, whence all of
a + b, ab, and a/b are in W. By Theorem 5.1.2, since [W:F] is finite,
these elements must be algebraic over F, thereby proving the theorem.

Here, too, we have proved somewhat more. Since [W:F] < mn, every
element in W satisfies a polynomial of degree at most mn over F, whence the

COROLLARY Ifaandbin K are algebraic over F of degrees m and n, respectively,
then a + b, ab, and alb (if b # O) are algebraic over F of degree at most mn.

In the proof of the last theorem we made two extensions of the field F.
The first we called T; it was merely the field (a). The second we called W
and it was 7T (b). Thus W = (F(a))(b); it is customary to write it as
F(a, b). Similarly, we could speak about F(b, a); it is not too difficult to
prove that F(a, b) = F(b, a). Continuing this pattern, we can define
F(ay,a,,...,a,) for elements q,,...,a,in K.

DEFINITION The extension K of F is called an algebraic extension of F
if every element in K is algebraic over F.

We prove one more result along the lines of the theorems we have proved
so far.

THEOREM 5.1.5 If L is an algebraic extension of K and if K is an algebraic
extension of F, then L is an algebraic extension of F.

Proof. Let u be any arbitrary element of L; our objective is to show that
u satisfies some nontrivial polynomial with coefficients in F. What infor-
mation do we have at present? We certainly do know that u satisfies some
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polynomial x* + ¢, ! + -+ + ¢,, where 6,...,0, are in K. But K
is algebraic over F; therefore, by several uses of Theorem 5.1.3, M =
F(o,,...,0,) is a finite extension of F. Since u sauisfies the polynomial
2 + 0,2 ! + -+ + o, whose coefficients are in M, u is algebraic over
M. Invoking Theorem 5.1.2 yields that M (u) is a finite extension of M.
However, by Theorem 5.1.1, [M(u):F] = [M(u):M][M:F], whence
M (u) is a finite extension of F. But this implies that u is algebraic over F,
completing proof of the theorem.

A quickdescription of Theorem 5.1.5: algebraic overalgebraicis algebraic.

The preceding results are of special interest in the particular case in
which Fis the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to be an algebraic number if it is
algebraic over the field of rational numbers.

A complex number which is not algebraic is called transcendental. At the
present stage we have no reason to suppose that there are any transcendental
numbers. In the next section we shall prove that the familiar real number
e is transcendental. This will, of course, establish the existence of trans-
cendental numbers. In actual fact, they exist in great abundance; in a
very well-defined way there are more of them than there are algebraic
numbers.

Theorem 5.1.4 applied to algebraic numbers proves the interesting fact
that the al gebraic numbers form a field; that is, the sum, products, and quotients
of algebraic numbers are again algebraic numbers.

Theorem 5.1.5 when used in conjunction with the so-called “fundamental
theorem of algebra,” has the implication that the roots of a polynomial
whose coefficients are algebraic numbers are themselves algebraic numbers.

Problems
1. Prove that the mapping y:F[x] - F(a) defined by A(x)}y = A(a)

is a homomorphism.

2. Let F be a field and let F[x] be the ring of polynomials in x over F.
Let g(x), of degree n, be in F[x] and let ¥V = (g(x)) be the ideal
generated by g(x) in F[x]. Prove that F[x]{V is an n-dimensional
vector space over F.

3. (a) If V is a finite-dimensional vector space over the field K, and if
F is a subfield of K such that [K:F] is finite, show that V is a
finite-dimensional vector space over F and that moreover
dimy (V) = (dimg (V))([K:F)).

(b) Show that Theorem 5.1.1 is a special case of the result of part (a).
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. (a) Let R be the field of real numbers and @ the field of rational

numbers. In R, V2 and V/3 are both algebraic over Q. Exhibit
a polynomial of degree 4 over Q satisfied by V2 + 3.
(b) What is the degree of \/E + \/§ over Q? Prove your answer.
(c) What is the degree of \/E \/§ over Q?

. With the same notation as in Problem 4, show that \/5 + i/g is

algebraic over @ of degree 6.

(a) Find an element u € R such that Q(\/E, 3/3) = Q(u).

(b) In Q(\/E, 3/-5-) characterize all the elements w such that Q(w) #
Q2, ¥5).

(a) Prove that F(a, b) = F(b, a).

(b) If (4, 45, ..,1,) is any permutation of (1, 2,..., n), prove that

F(ay,...,a,) = F(a;, ay,...,a;,).

If a, b € K are algebraic over F of degrees m and n, respectively,
and if m and = are relatively prime, prove that F (a, b) is of degree mn
over F.

Suppose that F is a field having a finite number of elements, q.

(a) Prove that there is a primenumber psuch thata4+a++--+a=0
for all ¢ € F. -tithes

(b) Prove that ¢ = p" for some integer n.

(c) Ifa € F, prove that a? = a.

(d) If b € K is algebraic over F, prove 67" = b for some m > 0.

An algebraic number a is said to be an algebraic integer if it satisfies an
equation of the form a™ + @;a™~! + --+ + a, = 0, where a,, ..., a,, are
integers.

10.

I1.

12.

13.

**14,

If a is any algebraic number, prove that there is a positive integer n
such that na is an algebraic integer.

If the rational number r is also an algebraic integer, prove that r
must be an ordinary integer.

If a is an algebraic integer and m is an ordinary integer, prove

(a) @ + m is an algebraic integer.

(b) ma is an algebraic integer.

If @ is an algebraic integer satisfying a® + @ + 1 = 0 and f is an
algebraic integer satisfying B%> + f — 3 = 0, prove that both
o + f and af are algebraic integers.

(a) Prove that the sum of two algebraic integers is an algebraic
integer.
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{b) Prove that the product of two algebraic integers is an algebraic
integer.

15. (a) Prove that sin 1° is an algebraic number.
(b) From part (a) prove that sin m° is an algebraic number for any
integer m.

5.2 The Transcendence of e

In defining algebraic and transcendental numbers we pointed out that it
could be shown that transcendental numbers exist. One way of achieving
this would be the demonstration that some specific number is transcendental.

In 1851 Liouville gave a criterion that a complex number be algebraic;
using this, he was able to write down a large collection of transcendental
numbers. For instance, it follows from his work that the number
.101001000000100 ... 10 ... is transcendental; here the number of zeros
between successive ones goes as 1, 21,... ..., nl,. ...

This certainly settled the question of existence. However, the question
whether some given, familiar numbers were transcendental still persisted.
The first success in this direction was by Hermite, who in 1873 gave a proof
that e is transcendental. His proof was greatly simplified by Hilbert. The
proof that we shall give here is a variation, due to Hurwitz, of Hilbert’s
proof.

The number # offered greater difficulties. These were finally overcome
by Lindemann, who in 1882 produced a proof that # is transcendental.
One immediate consequence of this is the fact that it is impossible, by
straightedge and compass, to square the circle, for such a construction
would lead to an algebraic number 6 such that 82 = #. But if 8 is algebraic
then so is 62, in virtue of which z would be algebraic, in contradiction to
Lindemann’s result.

In 1934, working independently, Gelfond and Schneider proved that if
a and b are algebraic numbers and if 4 is irrational, then a® is transcendental.
This answered in the affirmative the question raised by Hilbert whether
2¥2 was transcendental.

For those interested in pursuing the subject of transcendental numbers
further, we would strongly recommend the charming books by C. L. Siegel,
entitled Transcendental Numbers, and by 1. Niven, Irrational Numbers.

To prove that ¢ is irrational is easy; to prove that z is irrational is much
more difficult. For a very clever and neat proof of the latter, see the paper
by Niven entitled “A simple proof that = is irrational,”” Bulletin of the American
Mathematical Society, Vol. 53 (1947), page 509.

Now to the transcendence of e. Aside from its intrinsic interest, its proof
offers us a change of pace. Up to this point all our arguments have been of
an algebraic nature; now, for a short while, we return to the more familiar



Sec. 5.2 Transcendence of e

grounds of the calculus. The proof itself will use only elementary calculus;
the deepest result needed, therefrom, will be the mean value theorem.

THEOREM 5.2.1 The number ¢ is transcendental.

Proof. In the proof we shall use the standard notation f(?(x) to denote
the ith derivative of f (x) with respect to x.

Suppose that f(x) is a polynomial of degree r with real coeflicients.
Let F(x) = f(x) + f®x) + f@P(x) +-+++ fP(x). We compute
(d)dx)(e~*F (x)); using the fact that f"*1(x) = 0 (since f (x) is of degree r)
and the basic property of e, namely that (d/dx)e* = ¢*, we obtain
(@/dx)(e™*F (x)) = —e™f ().

The mean value theorem asserts that if g(x) is a continuously differentiable,
single-valued function on the closed interval [x,, x,] then

glx) — g(x) _ gV + 0(x, — x1)), where 0 <0 < I
X1 T X

We apply this to our function ¢™*F(x), which certainly satisfies all the
required conditions for the mean value theorem on the closed interval
[%;, x,] where x;, = 0 and x, = k, where k is any positive integer. We then
obtain that e *F (k) — F(0) = —e~%*f (0,k)k, where 0, depends on k and
is some real number between 0 and 1. Multiplying this relation through by
é yields F(k) — F(0)e* = —e* ~%*f (9,k)k. We write this out explicitly:

F(l) = eF(0) = —&17%00 (6)) = &y,
F(2) — e?F(0) = —2:20 77 (20,) = e, )

F(n) — @F(0) = —ne %) (n0)) = ¢,

Suppose now that ¢ is an algebraic number; then it satisfies some relation
of the form

("ne'l + cn—le’._l +- + 618 + cO = 0’ (2)

where ¢, ¢y, ..., ¢, are integers and where ¢, > 0.

In the relations (1) let us multiply the first equation by ¢;, the second by
¢y, and so on; adding these up we get ¢,F(1) + ¢,F(2) + -+ + ¢,F(n) —
F(0)(cye + ca6® + o0 + 6,8") = 8, + €385 + 70 + G,o,.

In view of relation (2), ¢ + c,e2 + -+ + c,e" = —cy, whence the
above equation simplifies to

oF ) + ¢ F(1) + -+ ¢, F(n) = &g, + -+ + ¢c,¢, (3)

All this discussion has held for the F(x) constructed from an arbitrary

217



218

Fields Ch.5

polynomial f(x). We now see what all this implies for a very specific
polynomial, one first used by Hermite, namely,

1 1] — x)P(2 — x)P---(n — x)P
S (%) =(p——l)!xp (1 )P(2 ) ( x)P.

Here p can be any prime number chosen so that p > n and p > ¢,. For
this polynomial we shall take a very close look at F(0), F(1),..., F(n)

and we shall carry out an estimate on the size of ¢, &,,.. ., &,.
When expanded, f (x) is a polynomial of the form

(nt)? P 1 apX? ax?*!

(-1 G-t o

where ag, a,, ..., are integers.

When i > p we claim that f®(x) is a polynomial, with coefficients
which are integers all of which are multiples of . (Prove! See Problem 2.)
Thus for any integer §, £ (), for i > p, is an integer and is a multiple of p.

Now, from its very definition, f (x) has a root of multiplicity p at x = 1, 2,
wooyn. Thusforj=1,2,...,n0,f(j) =0, V() =0,...,f® V(j)=0.
However, F(j) = f(Jj) +f(l)(j) o +f(”_1)(j) +f(’)(j) 4+ oo+

() ; by the discussion above, for j = 1,2,...,n, F(j) is an integer and

is a multiple of p.

What about F(0)? Since f (x) has a root of multiplicity p — 1 at x = 0,

fO) =fD0) =-+=fP"D(0) =0. For i >p, fP(0) is an integer

which is a multiple of p. But f®~1(0) = (n!)? and since p > n and is a
prime number, p 4 (n!)? so that f®*~1(0) is an integer not divisible by p.
Since F(0) = f(0) + f™M(0) + -+ + f®~D(0) + f®~D(0) + fP(0) +
-+ + £)(0), we conclude that F(0) is an integer not divisible by p. Because
co > 0 and p > ¢, and because p f F(0) whereas p| F(1),p| F(2),...,
p| F(n), we can assert that ¢oF(0) + ¢, F(1) + -+ + ¢, F(n) is an integer
and is not divisible by p.

However, by (3), ¢oF(0) + ¢;F(1) + -+ + ¢, F(n) = c,8; + - + c,8,.
What can we say about ¢;? Let us recall that

o =T — if)P- - (n — i0)P(i0)"" Y
! (p — !
where 0 < 6; < 1. Thus

L

. nP(nl)?
led < e o - l)!.
Asp - o,
"nP(n!)?

(p — !
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(Prove!) whence we can find a prime number larger than both ¢y and n and
large enough to force |c&y + -+ + ¢8| < 1. But ¢;8 + -+ ¢, =
coF(0) + -+ + ¢, F(n), so must be an integer; since it is smaller than 1 in
size our only possible conclusion is that ¢;&; + -+ - + ¢, = 0. Conse-
quently, ¢oF(0) + -+ + ¢,F(n) = 0; this however is sheer nonsense, since
we know that p } (¢F(0) + --- + ¢,F(n)), whereas p | 0. This contradic-
tion, stemming from the assumption that e is algebraic, proves that ¢ must
be transcendental.

Problems

1. Using the infinite series for ¢,
1 1 1 1

8 ] gt oy g g
2! m!

prove that e is irrational.
2. If g(x) is a polynomial with integer coefficients, prove that if p is a prime

number then for ¢ > p,
4 (__e(*)_
dx* \(p — I)!

is a polynomial with integer coefficients each of which is divisible by p.
3. If a is any real number, prove that (a"/m!) = 0 as m — oo.
4. If m > 0 and n are integers, prove that £*" is transcendental.

5.3 Roots of Polynomials

In Section 5.1 we discussed elementsin a given extension K of F which were
algebraic over F, that is, elements which satisfied polynomials in F[x].
We now turn the problem around; given a polynomial p(x) in F[x] we
wish to find a field K which is an extension of F in which p(x) has a root.
No longer is the field K available to us; in fact it is our prime objective to
construct it. Once it is constructed, we shall examine it more closely and
see what consequences we can derive.

DEFINITION If p(x) € F[x], then an element a lying in some extension
field of F is called a root of p(x) if p(a) = 0.

We begin with the familiar result known as the Remainder Theorem.

LEMMA 5.3.1 If p(x) € F[x] and if K is an extension of F, then for any ele-
mentb € K, p(x) = (x — b)g(x) + p(b) where ¢(x) € K[x] and where deg ¢(x) =
deg p(x) — 1.
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Proof. Since F < K, F[x] is contained in K [x], whence we can con-
sider p(x) to be lying in K[x]. By the division algorithm for polynomials
in K[x], p(x) = (x — b)g(x) + r, where ¢(x) € K[x] and where r =0
or degr < deg (x — b) = 1. Thus either r = 0 or degr = 0; in either
case r must be an element of K. But exactly what element of K is it?
Since p(x) = (x — b)g(x) + r, p(b) = (b — b)q(b) + r = r. Therefore,
p(x) = (x — b)g(x) + p(b). That the degree of ¢(x) is one less than that of
p(x) is easy to verify and is left to the reader.

COROLLARY Ifae€ K is a root of p(x) € F[x), where F = K, then in K[x],
(x — a) | p(x).

Proof. From Lemma 5.3.1, in K[x], p(x) = (x — a)g(x) + p(a) =
(x — a)g(x) since p(a) = 0. Thus (x — a) | p(x) in K]x].

DEFINITION The element a€ K is a root of p(x) € F[x] of multiplicity
m if (x — a)™| p(x), whereas (x — a)™* ! f p(x).

A reasonable question to ask is, How many roots can a polynomial have
in a given field? Before answering we must decide how to count a root of
multiplicity m. We shall always count it as m roots. Even with this convention
we can prove

LEMMA 5.3.2 A4 polynomial of degree n over a field can have at most n rools in
any extension field.

Proof. We proceed by induction on n, the degree of the polynomial p(x).
If p(x) is of degree 1, then it must be of the form ax + f where a, § are
in a field F and where a # 0. Any a such that p(a) = 0 must then imply
that aa + B = 0, from which we conclude that a = (—f/a). That is,
p(x) has the unique root —pf/a, whence the conclusion of the lemma
certainly holds in this case.

Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(x) is of degree n over F. Let K be any
extension of F. If p(x) has no roots in K, then we are certainly done, for the
number of roots in K, namely zero, is definitely at most n. So, suppose that
(%) has at least one root a € K and that a is a root of multiplicity m. Since
(x — a)™| p(x), m < n follows. Now p(x) = (x — a)™¢(x), where ¢(x) € K[x]
is of degree n — m. From the fact that (x — a)"*! y p(x), we get that
(x* — a) & g(x), whence, by the corollary to Lemma 5.3.1, a is not a root
of g(x). If b # a is a root, in K, of p(x), then 0 = p(b) = (b — a)™q(b);
however, since b — a # 0 and since we are in a field, we conclude that
¢(b) = 0. That is, any root of p(x), in K, other than a, must be a root of
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¢(x). Since g(x) is of degree n — m < n, by our induction hypothesis, g(x)
has at most n — m roots in K, which, together with the other root a,
counted m times, tells us that p(x) has at most m + (n — m) = n roots in
K. This completes the induction and proves the lemma.

One should point out that commutativity is essential in Lemma 5.3.2.
If we consider the ring of real quaternions, which falls short of being a field
only in that it fails to be commutative, then the polynomial x> + 1 has at
least 3 roots, i,j, k (in fact, it has an infinite number of roots). In a some-
what different direction we need, even when the ring is commutative, that
it be an integral domain, for if & = 0 with a # 0 and b # 0 in the com-
mutative ring R, then the polynomial ax of degree 1 over R has at least
two distinct roots x = 0 and x = b in R.

The previous two lemmas, while interesting, are of subsidiary interest.
We now set ourselves to our prime task, that of providing ourselves with
suitable extensions of F in which a given polynomial has roots. Once this is
done, we shall be able to analyze such extensions to a reasonable enough
degree of accuracy to get results. The most important step in the construction
is accomplished for us in the next theorem. The argument used will be very
reminiscent of some used in Section 5.1.

THEOREM 5.31 If p(x) is a polynomial in F([x] of degree n > 1 and is
irreducible over F, then there is an extension E of F, such that [E:F] = n, in which
p(x) has a root.

Proof. Let F[x] be the ring of polynomials in x over F and let V =
(p(x)) be the ideal of F[x] generated by p(x). By Lemma 3.9.6, V is a
maximal ideal of F[x], whence by Theorem 3.5.1, E = F[x]/V is a field.
This E will be shown to satisfy the conclusions of the theorem.

First we want to show that E is an extension of F; however, in fact, it is
not! But let F be the image of Fin Ej; that is, F = {« + V| ae F}. We
assert that F is a field isomorphic to F; in fact, if | is the mapping from
F[x] into F{x]/V = E defined by f(x)y = f (x) + V, then the restriction
of  to F induces an isomorphism of F onto F. (Prove!) Using this iso-
morphism, we identify F and F; in this way we can consider E to be an extension
of F.

We claim that E is a finite extension of F of degree n = deg p(x), for the
elements] + V, x+ V,(x + V)2 =2+ V,...,x + Vi=x+7,...,
(x + V) ! =%"1 4+ V form a basis of E over F. (Prove!) For con-
venience of notation let us denote the element xy = x + V in the field
E as a. Given f (x) € F[x], what is f (x)y? We claim that it is merely
f(a), for, since Y is a homomorphism, if f(x) = o + fux + -+ + Bixt,
then f ()Y = Bo¥ + (BrW)(x¥) + -+ + (Bu)(x)*, and using the
identification indicated above of Sy with £, we see that f (x)¥ = f (a).
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In particular, since p(x) € V, p(x)y = 0; however, p(x) = p(a). Thus
the element a = x\ in E is a root of p(x). The field E has been shown to satisfy
all the properties required in the conclusion of Theorem 5.3.1, and so this
theorem is now proved.

An immediate consequence of this theorem is the

COROLLARY If f(x) € F[x], then there is a finite extension E of F in which
S (x) has a root. Moreover, [E:F] < deg f (x).

Proof. Let p(x) be an irreducible factor of f(x); any root of p(x) is a
root of f(x). By the theorem there is an extension E of F with [E:F] =
deg p(x) < deg f(x) in which p(x), and so, f (x) has a root.

Although it is, in actuality, a corollary to the above corollary, the next
theorem is of such great importance that we single it out as a theorem.

THEOREM 5.3.2 Let f(x) € F[x] be of degree n > 1. Then there is an ex-
tension E of F of degree at most n! in which f (x) has n roots (and so, a full com-
plement of roots).

Proof. In the statement of the theorem, a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension Eg of F with [Ey:F] < nin
which f (x) has aroot . Thusin Ey[x], f (x) factors as f (x) = (x — a)g(x),
where g(x) is of degree n — 1. Using induction (or continuing the above
process), there is an extension E of E, of degree at most (» — 1)! in which
g(x) has n — | roots. Since any root of f (x) is either a or a root of g(x), we
obtain in E all nroots of f (x). Now, [E:F] =[E:Ey][Ey:F] < (n—1)n=n!
All the pieces of the theorem are now established.

Theorem 5.3.2 asserts the existence of a finite extension E in which the
given polynomial f (x), of degree n, over F has n roots. If f(x) = apx" +
a "'+ + a, ay # 0 and if the n roots in E are a,,..., a, making
use of the corollary to Lemma 5.3.1, f (x) can be factored over E as f (x) =
ap(x — a;)(x — ay) * - (x — a,). Thus f(x) splits up completely over E
as a product of linear (first degree) factors. Since a finite extension of F
exists with this property, a finite extension of F of minimal degree exists which
also enjoys this property of decomposing f (x) as a product of linear factors.
For such a minimal extension, no proper subfield has the property that
f (x) factors over it into the product of linear factors. This prompts the

DEFINITION If f(x) € F[x], a finite extension E of F is said to be a
splitting field over F for f(x) if over E (that is, in E[x]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.
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We reiterate: Theorem 5.3.2 guarantees for us the existence of splitting fields.
In fact, it says even more, for it assures that given a polynomial of degree
n over F there is a splitting field of this polynomial which is an extension of
F of degree at most n! over F. We shall see later that this upper bound of
n! is actually taken on; that is, given n, we can find a field F and a poly-
nomial of degree n in F[x] such that the splitting field of f (x) over F has
degree n!.

Equivalent to the definition we gave of a splitting field for f (x) over F is
the statement: E is a splitting field of f (x) over F if E ts a minimal extension
of F in which f (x) has n roots, where n = deg f (x).

An immediate question arises: given two splitting fields E; and E, of the
same polynomial f (x) in F[x], what is their relation to each other? At
first glance, we have no right to assume that they are at all related. Our
next objective is to show that they are indeed intimately related; in fact,
that they are isomorphic by an isomorphism leaving every element of F
fixed. It is in this direction that we now turn.

Let F and F' be two fields and let T be an isomorphism of F onto F”.
For convenience let us denote the image of any a € F under t by «’; that
is, ot = a’. We shall maintain this notation for the next few pages.

Can we make use of 7 to set up an isomorphism between F[x] and F'[t],
the respective polynomial rings over F and F’'? Why not try the obvious?
For an arbitrary polynomial f(x) = ap¥" + 0;x"" ! + -++ + a, € F[x] we
define t* by f(x)t* = (2 + ¥ ' + - + @)t = ot + oy +
e (1; 3

It is an easy and straightforward matter, which we leave to the reader,
to verify.

LEMMA 5.3.3 t* defines an tsomorphism of F[x] onto F'[t] with the property
that ot* = a' for every o« € F.

Iff (x) is in F[x] we shall writef (x)* asf’(¢). Lemma 5.3.3 immediately
implies that factorizations of f(x) in F[x] result in like factorizations of
S'(t) in F’[t], and vice versa. In particular, f(x) is irreducible in F[x]
if and only if f'(¢) is irreducible in F'[¢].

However, at the moment, we are not particularly interested in polynomial
rings, but rather, in extensions of F. Let us recall that in the proof of
Theorem 5.1.2 we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between F[x]/(f(x)) and F'[t]/(f'(t)), where (f(x))
denotes the ideal generated by f (x) in F[x] and (f’(¢)) that generated by
S'(t) in F’[t]. The next lemma, which is relevant to this question, is actually
part of a more general, purely ring-theoretic result, but we shall content
ourselves with it as applied in our very special setting.
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LEMMA 5.3.4 There is an isomorphism t** of F[x]/(f (x)) onto F'[t]/(f’(¢))
with the property that for every a € F, at** = o/, (x + (f(x)))7** =t + (f'(2)).

Proof. Before starting with the proof proper, we should make clear what
is meant by the last part of the statement of thelemma. As we have already
done several times, we can consider F as imbedded in F[x]/( f(x)) by
identifying the element o € F with the coset o + (f(x)) in F[x]/(f (x)).
Similarly, we can consider F’ to be contained in F'[t]/(f’'(¢)). The
isomorphism t** is then supposed to satisfy ¢ + ( f(x))]t** =o' + (f'(t)).

We seek an isomorphism t** of F[x]/(f(x)) onto F'[t]/(f'(t)).
What could be simpler or more natural than to try the 7** defined by
[g(x) + (f(®))]** = g'(¢) + (f'(t)) for every g(x) e F[x]? We leave
it as an exercise to fill in the necessary details that the 7** so defined is well
defined and is an isomorphism of F[x]/( f(x)) onto F'[¢]/(f'(t)) with the
properties needed to fulfill the statement of Lemma 5.3.4.

For our purpose---that of proving the uniqueness of splitting fields—
Lemma 5.3.4 provides us with the entering wedge, for we can now prove

THEOREM 5.3.3 If p(x) is irreducible in F[x] and if v is a root of p(x), then
F (v) is isomorphic to F'(w) where w is a root of p'(t); moreover, this isomorphism
o can so be chosen that

1. vo = w.
2. ag = o for every o € F.

Proof. Let v be a root of the irreducible polynomial p(x) lying in some
extension K of F. Let M = {f (x) € F[x]| f(v) = 0}. Trivially M is an
ideal of F[x], and M # F[x]. Since p(x) € M and is an irreducible poly-
nomial, we have that M = (p(x)). Asin the proof of Theorem 5.1.2, map
F[x] into F(v) ¢ K by the mapping ¢ defined by ¢(x)¢ = ¢(v) for every
g(x) € F[x]. We saw earlier (in the proof of Theorem 5.1.2) that ¢ maps
F[x] onto F(v). The kernel of ¢ is precisely M, so must be (p(x)). By the
fundamental homomorphism theorem for rings there is an isomorphism y/*
of F[x]/(p(x)) onto F(v). Note further that ay* = a for every a€F.
Summing up: ¢* is an isomorphism of F[x]/(p(x)) onto F(v) leaving
every element of F fixed and with the property that » = [x + (p(x))]¢*.

Since p(x) is irreducible in F[x], p'(¢) is irreducible in F'[t] (by Lemma
5.3.3), and so there is an isomorphism 0* of F’[t]/(¢'(t)) onto F'(w) where
w is a root of p’(t) such that 8* leaves every element of F’ fixed and such
that [t + (p'(¢)]10* = w.

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma
5.3.4 there is an isomorphism 7** of F[x]/(p(x)) onto F'[¢]/(#'(t)) which
coincides with 7 on F and which takes x + (p(x)) onto ¢ + (p'(¢)). Con-
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sider the mapping ¢ = (¥*)~'t**0* (motivated by
W) ' Fix] il F'ie] =
(p(x)  (#(1)

of F(v) onto F'(w). It is an isomorphism of F(») onto F’'(w) since all the
mapping ¥*, t**, and 0* are isomorphisms and onto. Moreover, since
v = [x + (p()W*, ve = W*)"Hr**0* = ([x + (p(x)]**)0* =
[t + (p'(2))]10* = w. Also, for a€ F, ac = (a(p*) ™ !)t**0* = (ar**)0* =
a'0* = a’. We have shown that ¢ is an isomorphism satisfying all the
requirements of the isomorphism in the statement of the theorem. Thus
Theorem 5.3.3 has been proved.

F'(w))

F(v)

A special case, but itself of interest, is the

COROLLARY If p(x) € F[x] is irreducible and if a, b are two roots of p(x),
then F(a) is isomorphic to F (b) by an isomorphism which takes a onto b and which
leaves every element of F fixed.

We now come to the theorem which is, as we indicated earlier, the
foundation stone on which the whole Galois theory rests. For us it is the
focal point of this whole section.

THEOREM 5.3.4 Any splitting fields E and E’ of the polynomials f (x) € F[x]
and f'(t) € F'[t], respectively, are isomorphic by an isomorphism ¢ with the prop-
erty that ap = of for every a € F. (In particular, any two splitting fields of the
same polynomial over a given field F are isomorphic by an isomorphism leaving every
element of F fixed.)

Proof. We should like to use an argument by induction; in order to do
so, we need an integer-valued indicator of size which we can decrease by
some technique or other. We shall use as our indicator the degree of some
splitting field over the initial field. It may seem artificial (in fact, it may
even be artificial), but we use it because, as we shall soon see, Theorem 5.3.3
provides us with the mechanism for decreasing it.

If [E:F] = 1, then E = F, whence f(x) splits into a product of linear
factors over F itself. By Lemma 5.3.3 f'(t) splits over F’ into a product of
linear factors, hence E' = F’. But then ¢ = 7 provides us with an iso-
morphism of E onto E’ coinciding with 7 on F.

Assume the result to be true for any field F, and any polynomial f(x) €
F,[x] provided the degree of some splitting field £, of f (x) has degree less
than n over F, that is, [E,:F,] < n.

Suppose that [E:F] = n > 1, where E is a splitting field of f( x) over F.
Since n > 1, f(x) has an irreducible factor p(x) of degree r > 1. Let
p’'(t) be the corresponding irreducible factor of f’(¢). Since E splits f (x), a
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full complement of roots of f (x), and so, a priori, of roots of p(x), are in E.
Thus there is a v € E such that p(») = 0; by Theorem 5.1.3, [F(v):F] = r.
Similarly, there is a w € E’ such that p'(w) = 0. By Theorem 5.3.4 there
is an isomorphism ¢ of F(v) onto F'(w) with the property that ae = o
for every a € F.

Since [F(¥):F] =r > 1,

[E:F@)) = B _ 7,

[F(»):F] r
We claim that E is a splitting field for /(%) considered as a polynomial over
Fy = F(v), for no subfield of E, containing F;, and hence F, can split f (x),
since E is assumed to be a splitting field of f (x) over F. Similarly E’ is a
splitting field for f'(t) over Fj = F’(w). By our induction hypothesis there
is an isomorphism ¢ of E onto E’ such that a¢ = ac for all ae F,,. But
for every a € F, ao = o' hence for every ae F c F,, ap = ac = o'.
This completes the induction and proves the theorem.

To see the truth of the *“(in particular...)” part, let F = F’ and let 1
be the identity map at = a for every a € F. Suppose that E;, and E, are
two splitting fields of f(x) € F[x]. Considering E; = E > F and E, =
E’' o F' = F, and applying the theorem just proved, yields that E, and
E, are isomorphic by an isomorphism leaving every element of F fixed.

In view of the fact that any two splitting fields of the same polynomial
over F are isomorphic and by an isomorphism leaving every element of F
fixed, we are justified in speaking about tke splitting field, rather than a
splitting field, for it is essentially unique.

Examples

1. Let F be any field and let p(x) = x* + ax + B, o, B€ F, be in F[x].
If K is any extension of F in which p(x) has a root, g, then the element
b= ~o — a also in K is also a root of p(x). If b = a it is easy to check
that p(x) must then be p(x) = (* — a)?, and so both roots of p(x) are in
K. If b # a then again both roots of p(x) are in K. Consequently, p(x)
can be split by an extension of degree 2 of F. We could also get this result
directly by invoking Theorem 5.3.2.

2. Let F be the field of rational numbers and let f(x) = x> — 2. In the
field of complex numbers the three roots of f (x) are 3/ 5, wi/ 5, w? 3/ 5,
where @ = (-1 + \/_?-) 7)/2 and where 3/5 is a real cube root of 2. Now
F(%) cannot split x> — 2, for, as a subfield of the real field, it cannot

contain the complex, but not real, number ws./é Without explicitly
determining it, what can we say about E, the splitting field of x* — 2 over
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F? By Theorem 5.3.2, [E:F] < 3! = 6; by the above remark, since
x3 — 2 is irreducible over F and since [F (if’é) :F] = 3, by the corollary to
Theorem 5.1.1, 3 = [F(¥/2):F]| [E:F]. Finally, [E:F] > [F(¥2):F] = 3.
The only way out is [E:F] = 6. We could, of course, get this result by
making two extensions F; = F(z/é) and E = F,(w) and showing that @
satisfies an irreducible quadratic equation over F.

3. Let F be the field of rational numbers and let
f(x) = x* + x> + 1 e F[x].

We claim that E = F(w), where o = (—1 + V3 1)/2, is a splitting field
of f(x). Thus [E:F] = 2, far short of the maximum possible 4! = 24.

Problems

. In the proof of Lemma 5.3.1, prove that the degree of ¢(x) is one less
than that of p(x).
2. In the proof of Theorem 5.3.1, prove in all detail that the elements

1+ V,x+V,...,x" ! + Vform a basis of E over F.

. Prove Lemma 5.3.3 in all detail.
4. Show that 7** in Lemma 5.3.4 is well defined and is an isomorphism
of FIx/(f () onto F[1/(f"(£)).
5. In Example 3 at the end of this section prove that F (w) is the splitting
field of x* + x* + 1.
6. Let F be the field of rational numbers. Determine the degrees of the
splitting fields of the following polynomials over F.
(a) »* + 1. (b) % + 1.
(c) x* — 2. (d) x5 — 1.
(e) x5 + %3+ 1.
7. If p is a prime number, prove that the splitting field over F, the field
of rational numbers, of the polynomial x* — 1 is of degree p — 1.
**8. If n > 1, prove that the splitting field of x® — 1 over the field of
rational numbers is of degree @(r) where @ is the Euler ®-function.
(This is a well-known theorem. I know of no easy solution, so don’t
be disappointed if you fail to get it. If you get an easy proof, I would
like tosee it. This problem occurs in an equivalent form as Problem 15,
Section 5.6.)

*9, If F is the field of rational numbers, find necessary and sufficient
conditions on @ and & so that the splitting field of x* + ax + b has
degree exactly 3 over F.

10. Let p be a prime number and let F = J,, the field of integers mod p.
(a) Prove that there is an irreducible polynomial of degree 2 over F.

(24}
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(b) Use this polynomial to construct a field with p? elements.
*(c) Prove that any two irreducible polynomials of degree 2 over F
lead to isomorphic fields with p? elements.

11. If E is an extension of F and if f(x) € F[x] and if ¢ is an automor-
phism of E leaving every element of F fixed, prove that ¢ must take a
root of f (x) lying in E into a root of f (x) in E.

12. Prove that F (2/ 2), where F is the field of rational numbers, has no
automorphisms other than the identity automorphism.

13. Using the result of Problem 11, prove that if the complex number
@ is a root of the polynomial p(x) having real coefficients then @, the
complex conjugate of a, is also a root of p(x).

14. Using the result of Problem 11, prove that if m is an integer which is
not a perfect square and if @ + ﬂ\/;:- (@, p rational) is the root of a
polynomial p(x) having rational coefficients, then a — ﬂ\/; is also a
root of p(x).

*15. If F is the field of real numbers, prove that if ¢ is an automorphism
of F, then ¢ leaves every element of F fixed.

16 (a) Find all real quaternions ¢ = @, + a,i + a,j + a3k satisfying

2= —1
*(b) For a ¢ as in part (a) prove we can find a real quaternion s such
that sts™! = 4.

5.4 Construction with Straightedge and Compass

We pause in our general development to examine some implications of the
results obtained so far in some familiar, geometric situations.

A real number o is said to be a constructible number if by the use of straight-
edge and compass alone we can construct a line segment of length o We
assume that we are given some fundamental unit length. Recall that from
high-school geometry we can construct with a straightedge and compass a
line perpendicular to and a line parallel to a given line through a given
point. From this it is an easy exercise (see Problem 1) to prove that if
o and f are constructible numbers then so are a + f, aff, and when g # 0,
a/B. Therefore, the set of constructible numbers form a subfield, W, of the
field of real numbers.

In particular, since 1 € W, W must contain F,, the field of rational
numbers. We wish to study the relation of W to the rational field.

Since we shall have many occasions to use the phrase ‘“‘construct by
straightedge and compass” (and variants thereof) the words construct, con-
structible, construction, will always mean by straightedge and compass.

If we W, we can reach w from the rational field by a finite number of
constructions.
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Let F be any subfield of the field of real numbers. Consider all the points
(x,») in the real Euclidean plane both of whose coordinates x and y are in
F; we call the set of these points the plane of F. Any straight line joining two
points in the plane of F has an equation of the form ax + by + ¢ =0
where q, b, ¢ are all in F (see Problem 2). Moreover, any circle having as
center a point in the plane of F and having as radius an element of F has
an equation of the form x? + 2 + ax + by + ¢ = 0, where all of q, b, ¢
are in F (see Problem 3). We call such lines and circles lines and circles
in F.

Given two lines in F which intersect in the real plane, then their inter-
section point is a point in the plane of F (see Problem 4). On the other hand,
the intersection of a line in F and a circle in F need not yield a point in the
plane of F. But, using the fact that the equation of a line in F is of the form
ax + by + ¢ = 0 and that of a circle in F is of the form x?* + »? + dx +
ey + f = 0, where g, b, ¢, d, ¢,f are all in F, we can show that when a line
and circle of F intersect in the real plane, they intersect either in a point in
the plane of F or in the plane ofF(\/y) for some positive p in F (see Problem
5). Finally, the intersection of two circles in F can be realized as that of
a line in F and a circle in F, for if these two circles are #* + % + a;x +
bl_y + ¢, =0 and %% + 9% + ayx + b,9 + ¢, = 0, then their intersection
is the intersection of either of these with the line (a; — a,)x + (6, — 6,) y +
(¢, = ¢;) = 0, so also yields a point either in the plane of F or of F \/y)
for some positive y in F.

Thus lines and circles of F lead us to points either in F or in quadratic
extensions of F. If we now are in F( \/ y,) for some quadratic extension of
F, then lines and circles in F( \/ y,) intersect in points in the plane of

\/')’1, \/yz) where p, is a positive number in F \/'yl) A point is con-
structlble from F if we can find real numbers A,, ..., 4,, such that 4,2 € F,
2€eF(A), A€ F(Ay, A)y .oy A2 €F(Ayy ..oy Ay—y), such that the
point is in the plane of F(A,,..., 4,). Conversely, if y € F is such that
N y is real then we can realize y as an intersection of lines and circles in F
(see Problem 6). Thus a point is constructible from F if and only if we
can find a finite number of real numbers 1, ..., 4,, such that

1. [F(4,):F] = 1or2;
2. [F(Ay, o s A):F (Ao i)l =lor2fori =1,2,...,n

and such that our point lies in the plane of F(4,,..., 4,).

We have defined a real number « to be constructible if by use of straight-
edge and compass we can construct a line segment of length «. But this
translates, in terms of the discussion above, into: « is constructible if starting
from the plane of the rational numbers, Fg, we can imbed « in a field
obtained from Fy by a finite number of quadratic extensions. This is
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THEOREM 5.4.1 The real number a is constructible if and only if we can find
a fimite number of real numbers A, ..., A, such that

1. 2,2 € F,,
2- liZEFo(ll,...,ﬂ.i_l)fOIl' = 1, 2,...,”,

such that o € Fo(Ay, ..., A,).

However, we can compute the degree of Fy(4,,..., 4,) over F, for by
Theorem 5.1.1

(Fo(Aps - -5 A)iFo]l = [Fody, -+ A)iFo(dys v v Apy)] -
X [Fo(Ayyevvs i) Fo(Ayyevvy Aimy)]
x [Fo(41) :Fq].
Since each term in the product is either 1 or 2, we get that

[Foldiy o ooy A0)iFp] = 2,
and thus the

COROLLARY 1 If a is constructible then o lies in some extension of the rationals
of degree a power of 2.

If a is constructible, by Corollary 1 above, there is a subfield KX of the real
field such that « € K and such that [K:Fy] = 2". However, Fy(a) c K,
whence by the corollary to Theorem 5.1.1 [Fy(a) :F] | [K:Fy] = 27; thereby
[Fo(a):Fg] is also a power of 2. However, if a satisfies an irreducible
polynomial of degree £ over F,, we have proved in Theorem 5.1.3 that
[Fo(a):Fo] = k. Thus we get the important criterion for nonconstructibility

COROLLARY 2 If the real number o satisfies an trreducible polynomial over
the field of rational numbers of degree k, and if k is not a power of 2, then a is not
constructible.

This last corollary enables us to settle the ancient problem of trisecting
an angle by straightedge and compass, for we prove

THEOREM 5.4.2 It is impossible, by straightedge and compass alone, to trisect
60°.

Proof. 1f we could trisect 60° by straightedge and compass, then the
length a = cos 20° would be constructible. At this point, let us recall the
identity cos 30 = 4 cos® @ — 3 cos §. Putting 8 = 20° and remembering
that cos 60° = 4, we obtain 40® — 30 = 3, whence 803 — 6 — 1 = 0.
Thus a is a root of the polynomial 8x3 — 6x — 1 over the rational field.
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However, this polynomial is irreducible over the rational field (Problem
7(a)), and since its degree is 3, which certainly is not a power of 2, by
Corollary 2 to Theorem 5.4.1, & is not constructible. Thus 60° cannot be
trisected by straightedge and compass.

Another ancient problem is that of duplicating the cube, that is, of
constructing a cube whose volume is twice that of a given cube. If the
original cube is the unit cube, this entails constructing a length « such that
a® = 2. Since the polynomial x3 — 2 is irreducible over the rationals
(Problem 7(b)), by Corollary 2 to Theorem 5.4.1, & is not constructible.
Thus

THEOREM 5.4.3 By straightedge and compass it is impossible to duplicate the
cube.

We wish to exhibit yet another geometric figure which cannot be con-
structed by straightedge and compass, namely, the regular septagon. To
carry out such a construction would require the constructibility of a =
2 cos (2n/7). However, we claim that « satisfies x® + x? — 2x — 1
(Problem 8) and that this polynomial is irreducible over the field of rational
numbers (Problem 7(c)). Thus again using Corollary 2 to Theorem 5.4.1
we obtain

THEOREM 5.4.4 It is impossible to construct a regular septagon by straightedge
and compass.

Problems

1. Prove that if a, § are constructible, then so are « + f, aff, and «/f
(when g # 0).

2. Prove that a line in F has an equation of the form aex + by + ¢ = 0
with a, b, ¢ in F.

3. Prove that a circle in F has an equation of the form

2+ tax+b+c=0,
with q, b, ¢ in F.

4. Prove that two lines in F, which intersect in the real plane, intersect
at a point in the plane of F.

5. Prove that a line in F and a circle in F which intersect in the real
plane do so at a point either in the plane of For in the plane ofF(\/;)
where y is a positive number in F.

6. If y e F is positive, prove that N _}; is realizable as an intersection of
lines and circles in F.
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7. Prove that the following polynomials are irreducible over the field of
rational numbers.
(a) 8x° — 6x — 1.
(b) x? — 2.
(c) % + %% — 2x — 1.
8. Prove that 2 cos (2n/7) satisfies x> + x2 — 2x — 1. (Hint: Use
2 cos (2n]7) = e3®7 4 ¢~ 2%l
9. Prove that the regular pentagon is constructible.
10. Prove that the regular hexagon is constructible.
11. Prove that the regular 15-gon is constructible.
12. Prove that it is possible to trisect 72°.
13. Prove that a regular 9-gon is not constructible.
*14. Prove a regular 17-gon is constructible.

5.5 More about Roots

We return to the general exposition. Let F be any field and, as usual, let
F[x] be the ring of polynomials in x over F.

DEFINITION If f(x) = apx" + ;2" ' + -+ ax "+ - + q,_,x +
o, in F[x], then the derivative of f (x), written as f'(x), is the polynomial
flx) =nag® '+ (n—Noyx® 2 4o+ (n—d)a ' e o,
in F[x].

To make this definition or to prove the basic formal properties of the
derivatives, as applied to polynomials, does not requirc the concept of a
limit. However, since the field F is arbitrary, we might expect some strange
things to happen.

At the end of Section 5.2, we defined what is meant by the characteristic
of a field. Let us recall it now. A field F is said to be of characteristic 0 if
ma # Ofora # O0in F and m > 0, an integer. If ma = 0 for some m > 0
and some a # 0 € F, then F is said to be of finite characteristic. In this
second case, the characteristic of F is defined to be the smallest positive
integer p such that pa = O for all a € F. It turned out that if F is of finite
characteristic then its characteristic p is a prime number.

We return to the question of the derivative. Let F be a field of character-
istic p # 0. In this case, the derivative of the polynomial »? is px?~! = 0.
Thus the usual result from the calculus that a polynomial whose derivative
is 0 must be a constant no longer need hold true. However, if the charac-
teristic of F is 0 and if f'(x) = 0 for f(x) € F[x], it is indeed true that
f(x) = aeF (see Problem 1). Even when the characteristic of F is
p # 0, we can still describe the polynomials with zero derivative; if
f'(x) = 0, then f (x) is a polynomial in x” (see Problem 2).
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We now prove the analogs of the formal rules of differentiation that we
know so well.

LEMMA 5.51 For any f (x), g(x) € F[x] andany o € F,

L (f(®) +2(®) =/"(x) + &%)
2. (af (x))" = af "(2).
3. (f(®e() = f'(x)e(x) + [ ()& ()

Proof. The proofs of parts 1 and 2 are extremely easy and are left as
exercises. To prove part 3, note that from parts 1 and 2 it is enough to
prove it in the highly special case f(x) = x' and g(x) = # where both
i and j are positive. But then f(x)g(x) = x'*J, whence (f(x)g(x))’ =
(i +7)%*9~1; however, f'(x)g(x) = ix' el = it and f(x)g'(x) =
Jxixd=1 = j'*i=1; consequently, f'(x)g(x) + f(x)g'(x) = (i +j)x'* "t =
(f (1)e()"

Recall that in elementary calculus the equivalence is shown between the
existence of a multiple root of a function and the simultaneous vanishing of
the function and its derivative at a given point. Even in our setting, where
F is an arbitrary field, such an interrelation exists.

LEMMA 55.2 Thke polynomial f (x) € F[x] has a multiple root if and only if
S (x) and f'(x) have a nontrivial (that is, of positive degree) common factor.

Proof. Before proving the lemma proper, a related remark is in order,
namely, if f (x) and g(x) in F[x] have a nontrivial common factor in K[x],
for K an extension of F, then they have a nontrivial common factor in F [x].
For, were they relatively prime as elements in F[x], then we would be
able to find two polynomials a(x) and b(x) in F[x] such that a(x) f (x) +
b(x)g(x) = 1. Since this relation also holds for those elements viewed
as elements of K[x], in K[x] they would have to be relatively prime.

Now to the lemma itself. From the remark just made, we may assume,
without loss of generality, that the roots of f(x) all lie in F (otherwise ex-
tend F to K, the splitting field of f(x)). If f (¥) has a multiple root a, then
f(x) = (x — a)"q(x), where m > 1. However, as is easily computed,
((x — &)™) = m(x — )™ ' whence, by Lemma 5.5.1, f'(x) =
(x = &)"q'(x) + m(x — )™ ¢q(x) = (x — a)r(x), since m > 1. But this
says that f(x) and f’(x) have the common factor x — a, thereby proving
the lemma in one direction.

On the other hand, if f(x) has no multiple root then f(x) =
(x —ay)(x —ay) ~++(x — a,) where the a/s are all distinct (we are
supposing f (x) to be monic). But then

n

S = e —a) e (F =) e (x — a)

i=1
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where the A denotes the term is omitted. We claim no root of f (x) is a
root of f'(x), for
Sie) = H (o — “j) # 0,
j#i

since the roots are all distinct. However, if f (x) and f'(x) have a nontrivial
common factor, they have a common root, namely, any root of this common
factor. The net result is that f(x) and f'(x) have no nontrivial common
factor, and so the lemma has been proved in the other direction.

COROLLARY 1  Iff(x) € F[x] is irreducible, then

1. If the characteristic of F is 0, f (x) has no multiple roots.
2. If the characteristic of F is p # 0, f (x) has a multiple root only if it is of the

Jorm f (x) = g(xP).

Proof. Since f (x) is irreducible, its only factors in F[x] are 1 and f(x).
If f (x) has a multiple root, then f (x) and f'(x) have a nontrivial common
factor by the lemma, hence f (x) | f’'(x). However, since the degree of f'(x)
is less than that of f (x), the only possible way that this can happen is for
f'(x) to be 0. In characteristic O this implies that f (x) is a constant, which
has no roots; in characteristic p # 0, this forces f (x) = g(xP).

We shall return in a moment to discuss the implications of Corollary 1
more fully. But first, for later use in Chapter 7 in our treatment of finite
fields, we prove the rather special

COROLLARY 2 If F is a field of characteristic p # O, then the polynomial
xP" — x € F[x], for n > 1, has distinct roots.

Proof. The derivative of " — x is p"xP""! — 1 = —1, since F is of

characteristic p. Therefore, x" — x and its derivative are certainly rela-
tively prime, which, by the lemma, implies that " — x has no multiple
roots.

Corollary 1 does not rule out the possibility that in characteristic p # 0
an irreducible polynomial might have multiple roots. To clinch matters,
we exhibit an example where this actually happens. Let Fy be a field of
characteristic 2 and let F = F,(x) be the field of rational functions in x
over F,. We claim that the polynomial ¢ — x in F[¢] is irreducible over F
and that its roots are equal. To prove irreducibility we must show that
there is no rational function in Fy(x) whose square is x; this is the content
of Problem 4. To see that t2 — x has a multiple root, notice that its deriv-
ative (the derivative is with respect to ¢; for x, being in F,is considered as a
constant) is 2¢ = 0. Of course, the analogous example works for any prime
characteristic.
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Now that the possibility has been seen to be an actuality, it points out
a sharp difference between the case of characteristic 0 and that of charac-
teristic p. The presence of irreducible polynomials with multiple roots in
the latter case leads to many interesting, but at the same time complicating,
subtleties. These require a more elaborate and sophisticated treatment
which we prefer to avoid at this stage of the game. Therefore, we make the
flat assumption for the rest of this chapter that all fields occurring in the text material
proper are fields of characteristic 0.

DEFINITION The extension K of F is a simple extension of F if K = F(a)
for some a in K.

In characteristic O (or in properly conditioned extensions in characteristic
p # 0; see Problem 14) all finite extensions are realizable as simple ex-
tensions. This result is

THEOREM 5.51 If F is of characteristic O and if a, b, are algebraic over F,
then there exists an element ¢ € F(a, b) such that F(a, b) = F(c).

Proof. Let f (x) and g(x), of degrees m and n, be the irreducible poly-
nomials over F satisfied by a and b, respectively. Let K be an extension
of F in which both f(x) and g(x) split completely. Since the characteristic
of Fis 0, all the roots of f (x) are distinct, as are all those of g(x). Let the
roots of f(x) be a = a,,a,,...,a, and those of g(x), b = b,,b,,...,0,.

If j # 1, then b; # b, = b, hence the equation a; + Ab; = a; + b, =
a + Ab has only one solution A in K, namely,

A=

Since F is of characteristic 0 it has an infinite number of elements, so we
can find an element y € F such that a; + yb; # a + yb for all ¢ and for
all j 2 1. Let ¢ = a + yb; our contention is that F(c) = F(a, b). Since
c€ F(a,b), we certainly do have that F(c)  F(a, b). We will now show
that both a and 4 are in F(c) from which it will follow that F(a, b) = F(c).

Now b satisfies the polynomial g(x) over F, hence satisfies g(x) considered
as a polynomial over K = F(c). Moreover, if A(x) = f(c — yx) then
h(x) € K[x] and h(b) = f (c — yb) =f(a) = O, since a = ¢ — yb. Thus in
some extension of K, h(x) and g(x) have x — b as a common factor. We
assert that x — b is in fact their greatest common divisor. For, if b; # b
is another root of g(x), then A(b;) = f(c — yb;) # 0, since by our choice
of y, ¢ — yb;forj # 1 avoidsall roots a; of f(x). Also,since (x — b)2 } g(x),
(x — )2 cannot divide the greatest common divisor of A(x) and g(x). Thus
x — b is the greatest common divisor of A(x) and g(x) over some extension

235



236

Fields Ch.5

of K. But then they have a nontrivial greatest common divisor over K,
which must be a divisor of x — b. Since the degree of x — b is 1, we see
that the greatest common divisor of g(x) and &(x) in K[x] is exactly x — b.
Thus x — b € K[x], whence b € K; remembering that K = F(c), we obtain
that b e F(c). Since a = ¢ — yb, and since b,ce€ F(¢), ye F < F(c), we
get that a € F(¢), whence F(a, b) < F(c). The two opposite containing
relations combine to yield F(a, b) = F(c).

A simple induction argument extends the result from 2 elements to any
finite number, that is, if a,, ..., «, are algebraic over F, then there is an
element ¢ce F(ay,...,a,) such that F(c) = F(ay,...,a,). Thus the

COROLLARY  Any finite extension of a field of characteristic O is a simple extension.

Problems

l. If F is of characteristic 0 and f(x) € F[x] is such that f'(x) = 0,
prove that f(x) = ¢ € F.

2. If F is of characteristic p # 0 and if f(x) € F[x] is such that
f'(x) =0, prove that f (¥) = g(xF) for some polynomial g(x) € F[x].

3. Prove that (f(x) + g(x))’ =f'(x) + g(x) and that (af (x))" =
af '(x) for f (x), g(x) € F[x] and « € F.

4. Provethat there is no rational functionin F(x) such thatits square is x.

5. Complete the induction needed to establish the corollary to Theorem
5.5.1.

An element a in an extension K of F is called separable over F ifit satisfies
a polynomial over F having no multiple roots. An extension K of F is
called separable over F if all its elements are separable over F. A field F
is called perfect if all finite extensions of F are separable.

6. Show that any field of characteristic 0 is perfect.
7. (a) If Fis of characteristic p # 0 show that for a, b€ F, (a + b)7" =
af™ + b,
(b) If Fis of characteristic p # 0 and if K is an extension of F let
T = {ae K| 0" € Ffor some n}. Prove that T is a subfield of
K.
8. If K, T, F are as in Problem 7(b) show that any automorphism of K
leaving every element of F fixed also leaves every element of T fixed.
*9. Show that a field F of characteristic p # 0 is perfect if and only if
for every a € F we can find a b € F such that §* = a.

10. Using the result of Problem 9, prove that any finite field is perfect.
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**]1. If K is an extension of F prove that the set of elements in K which
are separable over F forms a subfield of K.

12. If F is of characteristic p # 0 and if K is a finite extension of F,
prove that given a € K either ¢ € F for some n or we can find an
integer m such that ¢®™ ¢ F and is separable over F.

13. If K and F are as in Problem 12, and if no element which is in K
but not in F is separable over F, prove that given a € K we can find
an integer n, depending on a, such that a?" € F.

14. If K is a finite, separable extension of F prove that K is a simple
extension of F.

15. If one of a or b is separable over F, prove that F(a, b) is a simple
extension of F.

5.6 The Elements of Galois Theory

Given a polynomial p(x) in F[x], the polynomial ringin x over F, we shall
associate with p(x) a group, called the Galois group of p(x). There is a very
close relationship between the roots of a polynomial and its Galois group;
in fact, the Galois group will turn out to be a certain permutation group
of the roots of the polynomial. We shall make a study of these ideas in this,
and in the next, section.

The means of introducing this group will be through the splitting field
of p(x) over F, the Galois group of p(x) being defined as a certain group of
automorphisms of this splitting field. This accounts for our concern, in so
many of the theorems to come, with the automorphisms of a field. A
beautifiil duality, expressed in the fundamental theorem of the Galois theory
(Theorem 5.6.6), exists between the subgroups of the Galois group and the
subfields of the splitting field. From this we shall eventually derive a
condition for the solvability by means of radicals of the roots of a polynomial
in terms of the algebraic structure of its Galois group. From this will follow
the classical result of Abel that the general polynomial of degree 5 is not
solvable by radicals. Along the way we shall also derive, as side results,
theorems of great interest in their own right. One such will be the funda-
mental theorem on symmetric functions. Our approach to the subject is
founded on the treatment given it by Artin.

Recall that we are assuming that all our fields are of characteristic 0,
hence we can (and shall) make free use of Theorem 5.5.1 and its corollary.

By an automorphism of the field K we shall mean, as usual, a mapping ¢
of K onto itself such that o(a + b) = a(a) + o(b) and a(ab) = a(a)o(b)
for all a, 5 e K. Two automorphisms ¢ and 7 of K are said to be distinct
if a(a) # 1(a) for some element a in K.

We begin the material with
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" THEOREM 5.6.1 If K is a field and if a,, ..., 0, are distinct automorphisms

of K, then it is impossible to find elements a,,. .., a,, not all 0, in K such that
a,0,(u) + ayo,(u) + - + a,0,(u) = 0jforallue K.

Proof. Suppose we could find a set of elements a,,..., a, in K, not all
0, such that a,6,(u) + - + a,0,(u) = 0 for all ue K. Then we could
find such a relation having as few nonzero terms as possible; on renumbering
we can assume that this minimal relation is

alal(u) + 4+ amam(u) =0 (1)

where ay, .. ., a, are all different from 0.

If m were equal to 1 then a,0,(x) = O for all u € K, leading to a;, = 0,
contrary to assumption. Thus we may assume that m > 1. Since the auto-
morphisms are distinct there is an element ¢ € K such that g,(c) # 0,(c).
Since cu € K for all u € K, relation (1) must also hold for cu, that is,
a,0,(cu) + a,o,(cu) + -+ + a,0,(cu) = 0 for all ue K. Using the hypo-
thesis that the ¢’s are automorphisms of X, this relation becomes

a,01(c)0y(u) + a305(c)02(u) + *** + 80u(c)0u(u) = 0. (2)

Multiplying relation (1) by &,(c) and subtracting the result from (2)
yields

2,(02(¢) — 61())o2(w) + *+* + 8,(0,(c) — 0,(c))0,(u) =0.  (3)

If we put b; = a,(04(¢c) — 0,(c)) for i = 2,...,m, then the b, are in K,
b, = an(6,(c) — a,(c)) # 0, since a, # 0, and a,(c) — a,(c) # 0 yet
byo,(u) + -+ + b,0,,(#) = 0 for all ue K. This produces a shorter rela-
tion, contrary to the choice made; thus the theorem is proved.

DEFINITION If G is a group of automorphisms of K, then the fixed field
of G is the set of all elements a € K such that a(a) = a for all 6 € G.

Note that this definition makes perfectly good sense even if G is not a
group but is merely a set of automorphisms of K. However, the fixed field
of a set of automorphisms and that of the group of automorphisms generated
by this set (in the group of all automorphisms of K) are equal (Problem 1),
hence we lose nothing by defining the concept just for groups of auto-
morphisms. Besides, we shall only be interested in the fixed fields of groups
of automorphisms.

Having called the set, in the definition above, the fixed field of G, it
would be nice if this terminology were accurate. That it is we see in

LEMMA 5.6.1 The fixed field of G is a subfield of K.



Sec. 5.6 Elements of Galois Theory

Proof. Let a, b be in the fixed field of G. Thus for all 6€ G, o(a) = a
and g(b) = b. But then od(a + b) = g(a) + 6(b) = a + b and o(ab) =
d(a)o(b) = ab; hence a + b and ab are again in the fixed field of G. If
b # 0, then 6(b™') = o(b)"! = b !, hence b~ ! also falls in the fixed
field of G. Thus we have verified that the fixed field of G is indeed a sub-
field of K.

We shall be concerned with the automorphisms of a field which behave
in a prescribed manner on a given subfield.

DEFINITION Let K be a field and let F be a subfield of K. Then the
group of automorphisms of K relative to F, written G(K, F), is the set of all
automorphisms of K leaving every element of F fixed; that is, the auto-
morphism ¢ of K is in G(K, F) if and only if ¢(¢) = a for every o€ F.

It is not surprising, and is quite easy to prove
LEMMA 5.6.2 G(K, F) is a subgroup of the group of all automor phisms of K.

We leave the proof of this lemma to the reader. One remark: K contains
the field of rational numbers Fj, since K is of characteristic 0, and it is easy
to see that the fixed field of any group of automorphisms of K, being a field,
must contain F,. Hence, every rational number is left fixed by every
automorphism of K.

We pause to examine a few examples of the concepts just introduced.

Example 5.6.1 Let K be the field of complex numbers and let F be the
field of real numbers. We compute G (K, F). If ¢ is any automorphism of
K, since i* = —1, o(i)? = ¢(¢®) = 6(—1) = —1, hence o(t) = +i If,
in addition, ¢ leaves every real number fixed, then for any a + & where
a, b are real, g(a + bi) = o(a) + o(b)o(i) = a + bi. Each of these possi-
bilities, namely the mapping ¢,(a + bi) = a + bi and o,(a + b)) = a — bi
defines an automorphism of K, ¢y being the identity automorphism and
0, complex-conjugation. Thus G(K, F) is a group of order 2.

What is the fixed field of G(K, F)? It certainly must contain F, but does
it contain more? If a + bt is in the fixed field of G(K, F) then a + bi =
oy(a + bi) = a — bi, whence 6 =0 and a =a + bieF. In this case

we see that the fixed field of G (K, F) is precisely F itself.

Example 5.6.2 Let F, be the field of rational numbers and let K =
Fo(:\‘/Q) where {7'/2 is the r::al cube root of 2. Every element in K is of the
form oy + aI:\,/Q + az(i/Q)z, where o, @;, a, are rational numbers. If
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¢ is an automorphism of K, then 0’(2/5)3 = o'((:/ 5)3) = ¢(2) = 2, hence
6(3/5) must also be a cube root of 2 lying in K. However, there is only
one real cube root of 2, and since K is a subfield of the real field, we must

have that a(:/i) =32. But then a(ay + a,f/i + 12(2/5)2) =0y +
2,2 + a,(¥/2)2, that is, ¢ is the identity automorphism of K. We thus

see that G(K, F,) consists only of the identity map, and in this case the
Jixed field of G(K, Fy) is not F, but is, in fact, larger, being all of K.

Example 5.6.3 Let F, be the field of rational numbers and let =
¢*/3; thus ®® = 1 and o satisfies the polynomial x* + x* + x? + x + 1
over F,. By the Eisenstein criterion one can show that x* + x* 4 x2 4
x + 1 is irreducible over F;, (see Problem 3). Thus K = F,(w) is of degree
4 over F and every element in X is of the form oy + o, + 0% + ay0°
where all of oy, @;, ®3,and a3 are in F,. Now, for any automorphism
o of K, a(w) # 1, since (1) =1, and o(w)® = (@ =0(1) =1,
whence o(w) is also a 5th root of unity. In consequence, o(w) can only
be one of w, w? w? or w*. We claim that each of these possibilities
actually occurs, for let us define the four mappings a,, 6,, 03, and o4 by
0i(% + 0,0 + 0 + 0?) = o + 5 (0") + n(e')? + ay(0’)3, for
t =1,2,3,and 4 Each of these defines an automorphism of K (Problem
4). Therefore, since o € G(K, F,) is completely determined by o(w),
G (K, F,) is a group of order 4, with ¢; as its unit element. In light of
022 = 04 0,° = 03, 0,* =0, G(K, F,) is a cyclic group of order 4.
One can easily prove that the fixed field of G (K, F,) is F, itself (Problem 5).
The subgroup 4 = {o,, 6.} of G(K, F,) has as its fixed field the set of all
elements oy + a,(@? + ®3), which is an extension of F, of degree 2.

The examples, although illustrative, are still too special, for note that in
each of them G (K, F) turned out to be a cyclic group. This is highly
atypical for, in general, G(K, F) need not even be abelian (see Theorem
5.6.3). However, despite their speciality, they do bring certain important
things to light. For one thing they show that we must study the effect of
the automorphisms on the roots of polynomials and, for another, they point
out that F need not be equal to all of the fixed field of G(K, F). The cases in
which this does happen are highly desirable ones and are situations with
which we shall soon spend much time and effort.

We now compute an important bound on the size of G (K, F).

THEOREM 5.6.2 If K is a finite extension of F, then G (K, F) is a finite group
and its order, o(G (K, F)) satisfies o(G (K, F)) < [K:F]).

Proof. Let [K:F] = n and suppose that u,, ..., u, is a basis of K over
F. Suppose we can find n + 1 distinct automorphisms 6y, G3,..., 0y,
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in G(K, F). By the corollary to Theorem 4.3.3 the system of » homogeneous
linear equations in the n + 1 unknowns x;,..., x,,,:

o (u)xy + Ga(u)x + 0+ Oy (#)Xp =0
oy (u)x + ox(uxy + o0+ Oy (W)%,4y = 0

oy (4p)x;, + Uz("n)xz + 0t Opyy (Up)Xpey = 0
has a nontrivial solution (not all 0) x;, = a;,...,x,4; = a,; in K. Thus
0,0, (1) + a30,(u;) + * 0+ @giy Oy (u) =0 1)

fori = 1,2,...,n.

Since every element in F is left fixed by each &; and since an arbitrary
element ¢ in K is of the form ¢ = qu, + - + a,u, with ..., a,
in F, then from the system of equations (1) we get a,0,(¢) + -+
8,+10,41(t) = 0 for all e K. But this contradicts the result of Theorem
5.6.1. Thus Theorem 5.6.2 has been proved.

Theorem 5.6.2 is of central importance in the Galois theory. However,
aside from its key role there, it serves us well in proving a classic result
concerned with symmetric rational functions. This result on symmetric
functions in its turn will play an important part in the Galois theory.

First a few remarks on the field of rational functions in n-variables over a
field F. Let us recall that in Section 3.11 we defined the ring of polynomials
in the n-variables x;, ..., x, over F and from this defined the field of
rational functions in xy,..., x,, F(x,...,x,), over F as the ring of all
quotients of such polynomials.

Let S, be the symmetric group of degree n considered to be acting on the
set [1,2,...,n]; for 6 €S, and i an integer with 1 < i < n, let o(i) be
the image of i under 6. We can make S, act on F(x,, ..., x,) in the
following natural way: for ¢ €S, and r(x;,..., x,) € F(x,, ..., x,), define
the mapping which takes 7(x,, ..., x;) onto 7(X,u1ys .+ -5 %,(). We shall
write this mapping of F(x,...,x,) onto itself also as g. It is obvious
that these mappings define automorphisms of F(x;,...,x,). What is
the fixed field of F(x,...,x,) with respect to S,? It consists of all
rational functions 7 (xy, . . ., x,) such that 7(xy, ..., x,) = 7%,y -+ 5 %o(m)
for all o€ S, But these are precisely those elements in F(x,..., x,)
which are known as the symmetric rational functions. Being the fixed field
of S, they form a subfield of F(x,,..., x,), called the field of symmetric
rational functions which we shall denote by S. We shall be concerned
with three questions:

1. What is [F(xy, ..., x,):S5]?

2. What is G(F(xy, ..., x,), S)?
3. Can we describe S in terms of some particularly easy extension of F?

241



242

Fields Ch.5

We shall answer these three questions simultaneously.

We can explicitly produce in § some particularly simple functions con-
structed from x;,...,x, known as the elementary symmetric functions in
Xy,.+., %, These are defined as follows:

g =x+x+ctx, =) x
a2=2x,xj

a3 = Z XX %

a, = XXy " %,

That these are symmetric functions is left as an exercise. Forn = 2, 3 and
4 we write them out explicitly below.

n=2
a; = x; + x;5.
az = xle.
n=3
a = x + x, + x;
a, = xx3 + x3x3 + xx3.
03 = x]xzxs.
n=4

a; =% + X + x3 + X4

a; = XX + x3X3 + Xy X4 + x3%3 + x%4 + x3x4.
3y = XXXy + X\ x2X4 + X X3X4 + x%3%4

Ay = X XpX3X4

Note that when n = 2, x, and x, are the roots of the polynomial ¢ —
a,t + a,, that when n = 3, x,, x,, and x; are roots of t> — a,t? + a,t — a,
and that when n = 4, x,, x5, x5, and x4 are all roots of t* — a,t3 + a,t? —
azt + ag,.

Since ay, ..., a, are all in S, the field F(ay,...,a,) obtained by ad-
joining a;,...,a, to F must lie in S§. Our objective is now twofold,
namely, to prove

L. [F(x;5...,x,):8] = nl.
2. S =F(ay,...,a,).

Since the group §, is a group of automorphisms of F(x,...,x,)
leaving § fixed, S, < G(F(x,..., x,), §). Thus, by Theorem 5.6.2,
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[F(xy...5 %,):8] = o(G(F(xp5---5 %,),8)) = 0(S,) =n!. If we could
show that [F(xy,...,x,):F(a,,...,a,)] <n!, well then, since F(a,...,a,)
is a subfield of S, we would have n! > [F(x,..., x,):F(ay,...,a,)] =
[F(xy...,%,):S1[S:F(ay,...,a,)] =n!. But then we would get that
[F(xy...,%,):8] =n!, [S:F(ay,...,a,)]=1 and so S=F(ay,...,a,),
and, finally, §, = G(F(x,...,x,),S) (this latter from the second sen-
tence of this paragraph). These are precisely the conclusions we seek.

Thus we merely must prove that [F(xy,...,x,):F(a,...,a,)] < nl
To see how this settles the whole affair, note that the polynomial p(t) =
t"—a,t" ! +a,t"" 2+ + (—1)"a,, which has coefficients in F(ay,...,a,),
factors over F(x,,...,x,) as p(¢) = (t — x,)(t — x3) - - (¢ — x,). (This
is in fact the origin of the elementary symmetric functions.) Thus p(t),
of degree n over F(ay,...,a,), splits as a product of linear factors over
F(x;,...,x,). It cannot split over a proper subfield of F(x,..., x,)
which contains F(a,, ..., a,) for this subfield would then have to contain
both F and each of the roots of p(t), namely, x,, x,, ..., x,; but then this
subfield would be all of F(x,...,x,). Thus we see that F(x,,..., x,) is
the splitting field of the polynomial p(t) = t" — a;t"" ' + -+ + (=1)"a,
over F(a,,...,a,). Since p(t) is of degree n, by Theorem 5.3.2 we get
[F(xy...,%,):F(a,...,a,)] < n!. Thus all our claims are established.
We summarize the whole discussion in the basic and important result

THEOREM 5.6.3 Let F be a field and let F (x,, . . ., x,) be the field of rational
Sunctions in x,,...,x, over F. Suppose that S is the field of symmetric rational
Sunctions ; then

1. [F(xy,...,%,):8] = al

2. G(F(xy,.-.,%,),S) =S, the symmetric group of degree n.

3. If ay,...,a, are the elementary symmetric functions in xq, ..., X, then
S = F(ay,a3,...,a,).

4. F(xy, ..., x,) is the splitting field over F(a,, ..., a,) = S of the polynomial
t" — a "t oa" %+ (=1,

We mentioned earlier that given any integer # it is possible to construct
a field and a polynomial of degree n over this field whose splitting field is of
maximal possible degree, n!, over this field. Theorem 5.6.3 explicitly
provides us with such an example for if we put §$ = F(aq,,...,a,), the
rational function field in n variables a,, ..., a, and consider the splitting
field of the polynomial t" — a,t"" ! + a,t""2--- + (—1)"a, over S then
it is of degree n! over S.

Part 3 of Theorem 5.6.3 is a very classical theorem. It asserts that a sym-
metric rational function in n variables is a rational function in the elementary symmetric
Sunctions of these variables. This result can even be sharpened to: A symmetric
polynomial in n variables is a polynomial in their elementary symmetric
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functions (see Problem 7). This result is known as the theorem on symmetric
polynomials.

In the examples we discussed of groups of automorphisms of fields and of
fixed fields under such groups, we saw that it might very well happen that F
is actually smaller than the whole fixed field of G (K, F). Certainly F is
always contained in this field but need not fill it out. Thus to impose the
condition on an extension K of F that F be precisely the fixed field of
G (K, F) is a genuine limitation on the type of extension of F that we are
considering. It is in this kind of extension that we shall be most interested.

DEFINITION K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(X, F).

Another way of saying the same thing: If K is a normal extension of F,
then every element in K which is outside F is moved by some element in
G(K, F). In the examples discussed, Examples 5.6.1 and 5.6.3 were
normal extensions whereas Example 5.6.2 was not.

An immediate consequence of the assumption of normality is that it
allows us to calculate with great accuracy the size of the fixed field of any
subgroup of G(K, F) and, in particular, to sharpen Theorem 5.6.2 from an
inequality to an equality.

THEOREM 5.6.4 Let K be a normal extension of F and let H be a subgroup
of G(K,F); let Ky = {xe K| o(x) = xforalloc € H} be the fixed field of H.
Then

1. [K:Ky) = o(H).
2. H = G(K, Ky).

(In particular, when H = G (K, F), [K:F]) = o(G(K, F)).)

Proof. Since very element in H leaves K ; elementwise fixed, certainly
H <= G(K, Ky). By Theorem 5.6.2 we know that [K:Ky) > o(G (K, Ky));
and since o{G(K, Ky)) = o(H) we have the inequalities [K:Kg,] >
o(G(K, Ky)) = o(H). If we could show that [K:K,] = o(H), it would
immediately follow that o(H) = o(G(K, Ky)) and as a subgroup of
G (K, Ky) having order that of G(K, Ky), we would obtain that H =
G (K, Ky). So we must merely show that [K:K,] = o(H) to prove every-
thing.

By Theorem 5.5.1 there exists an a € K such that K = K,(a); this a
must therefore satisfy an irreducible polynomial over K of degree m =
[K:Ky]) and no nontrivial polynomial of lower degree (Theorem 5.1.3).
Let the elements of H be 4, 03, . .., 0, where o, is the identity of G(K, F)
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and where A = o(H). Consider the elementary symmetric functions of

a = o0y(a), 0,(a), ..., o,(a), namely,
A

4 = 0,(a) + 03(a) + - + o4(a) = 3 04(a)

i=1
% = Z oi(a)o;(a)

i<j

;3;: = 0,(a)o,(a) - - o4(a).

Each ¢; is invariant under every o € H. (Prove!) Thus, by the definition
of Ky, oy, 05,..., 0 are all elements of Ky However, a (as well as
0, (a),...,04(a)) is a root of the polynomial p(x) = (x — 6,(a))(x — 0;(a)) - -
(x — oua) = & — a1 + 0”2 + --+ + (=1)"a, having coefficients
in K. By the nature of g, this forces & > m = [K:K], whence o(H) >
[K:Ky]. Since we already know that o(H) < [K:Kj] we obtain o(H) =
[K:Ky], the desired conclusion.

When H = G(K, F), by the normality of K over F, K;; = F; consequently
for this particular case we read off the result [K:F] = o(G(K, F)).

We are rapidly nearing the central theorem of the Galois theory. What
we still lack is the relationship between splitting fields and normal extensions.
This gap is filled by

THEOREM 5.6.5 K is a normal extension of F if and only if K is the splitting
Sfield of some polynomial over F.

Proof. In one direction the proof will be highly reminiscent of that of
Theorem 5.6.4.

Suppose that K is a normal extension of F; by Theorem 5.5.1, K = F(a).
Consider the polynomial p(x) = (x — 6,(a))(x — 6,(a)) -+ (x — 7,(a))
over K, where 0y, 0,,...,q, are all the elements of G(K, F). Expanding
p(x) we see that p(x) = x" — ;2" ! + ax" "% + ++- 4+ (=~1)"a, where
oy, - - ., 0, are the elementary symmetric functions in a = ¢,(a), 0,(a), ...,
o,(a). But then a,,...,, are each invariant with respect to every
o e G (K, F), whence by the normality of K over F, must all be in F.
Therefore, K splits the polynomial p(x) € F[x] into a product of linear
factors. Since a is a root of p(x) and since a generates K over F, a can be in
no proper subfield of K which contains F. Thus X is the splitting field of
p(x) over F.

Now for the other direction; it is a little more complicated. We separate
off one piece of its proof in

LEMMA 5.6.3 Let K be the splitting field of f (x) in F[x] and let p(x) be an
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irreducible factor of f(x) in F([x). If the roots of p(x) are ay, ..., a,, then for
each i there exists an automorphism o; in G (K, F) such that oa,) = a,.

Proof. Since every root of p(x) is a root of f (x), it must lie in K. Let
a,, a; be any two roots of p(x). By Theorem 5.3.3, there is an isomorphism
t of F; = F(a,) onto F|{ = F(a;) taking @; onto a; and leaving every
element of F fixed. Now K is the splitting field of f (x) considered as a
polynomial over F ; likewise, K is the splitting field of f (x) considered as a
polynomial over F;. By Theorem 5.3.4 there is an isomorphism ¢; of K
onto K (thus an automorphism of K) coinciding with 7 on F;. But then
oa;) = t(a;) = a; and o, leaves every element of F fixed. This is, of
course, exactly what Lemma 5.6.3 claims.

We return to the completion of the proof of Theorem 5.6.5. Assume that
K is the splitting field of the polynomial f (x) in F[x]. We want to show
that K is normal over F. We proceed by induction on [K:F], assuming
that for any pair of fields K, F; of degree less than [K:F] that whenever
K, is the splitting field over F; of a polynomial in F;[x], then K, is normal
over F,.

If f(x) € F[x] splits into linear factors over F, then K = F, which is
certainly a normal extension of F. So, assume that f (x) has an irreducible
factor p(x) € F[x] of degree r > 1. The r distinct roots a,, a,...,a, of
p(x) all lie in K and K is the splitting field of f (x) considered as a poly-
nomial over F(a;). Since

. e By
LKFE = royr — 7 <™
by our induction hypothesis X is a normal extension of F(a, ).

Let 0 € K be left fixed by every automorphism ¢ € G(K, F); we would
like to show that 0 is in F. Now, any automorphism in G (K, F(¢,)) certainly
leaves F fixed, hence leaves @ fixed; by the normality of K over F(a,),
this implies that 0 is in F(a;). Thus

6= lo + l,a, + Azalz + 4 l,_la"_l where 10"' shpoq efF. (l)
By Lemma 5.6.3 there is an automorphism o, of K, ¢,;€ G(K, F), such
that o,(a;) = @;; since this o; leaves 8 and each 4, fixed, applying it to
(1) we obtain
6=Ao+llu‘+‘.zagz+"'+l,_la('_l for i=l,2,...,7. (2)
Thus the polynomial
g = A7+ AT+ Ax + (Ao - 6)

in K[x], of degree at most r — 1, has the r distinct roots a,, ay, ..., c,.
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This can only happen if all its coefficients are 0; in particular, 33 — 6 = 0
whence @ = J; so is in F. This completes the induction and proves that X
is a normal extension of F. Theorem 5.6.5 is now completely proved.

DEFINITION Let f(x) be a polynomial in F[x] and let K be its splitting
field over F. The Galois group of f (x) is the group G (K, F) of all the auto-
morphisms of K, leaving every element of F fixed.

Note that the Galois group of f(x) can be considered as a group of
permutations of its roots, for if a is a root of f(x) and if 6 € G(K, F),
then ¢(a) is also a root of f (x).

We now come to the result known as the fundamental theorem of Galois
theory. It sets up a one-to-one correspondence between the subfields of the
splitting field of f (x) and the subgroups of its Galois group. Moreover, it
gives a criterion that a subfield of a normal extension itself be a normal
extension of F. This fundamental theorem will be used in the next section
to derive conditions for the solvability by radicals of the roots of a poly-
nomial.

THEOREM 5.6.6 Let f (x) be a polynomial in F[x], K its splitting field over
F, and G(K, F) its Galois group. For any subfield T of K which contains F let
G(K, T)={ceG(K,F)|o(t) =t foreveryte T} and for any subgroup
H of G(K,F) let Ky = {xeK|o(x) = x foreveryc € H}. Then the asso-
ciation of T with G(K, T) sets up a one-to-one correspondence of the set of subfields
of K which contain F onto the set of subgroups of G (K, F) such that

T = Kgk,1y-

H = G(K, Ky).

[K:T] = o(G(K, T)), [T:F] = index of G(K, T) in G(K, F).

T is a normal extension of F if and only if G(K, T) is a normal subgroup of
G(K, F).

5. When T is a normal extension of F, then G(T, F) is isomorphic to
G(K,F)|[G(K, T).

LN

Proof. Since K is the splitting field of f (x) over F it is also the splitting
field of f (¥) over any subfield 7" which contains F, therefore, by Theorem
5.6.5, K is:a normal extension of 7. Thus, by the definition of normality,
T is the fixed field of G(K, T), that is, T = Kgk,1y, proving part 1.

Since K is a normal extension of F, by Theorem 5.6.4, given a subgroup H
of G(K, F), then H = G(K, Ky), which is the assertion of part 2. More-
over, this shows that any subgroup of G (K, F) arises in the form G (K, T),
whence the association of 7" with G(K, T') maps the set of all subfields of K
containing F onto the set of all subgroups of G (K, F). That it is one-to-one
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is clear, for, if G(K, T;) = G(K, T;) then, by part 1, T, = Kg y,) =
Kewrn = T

Since K is normal over T, again using Theorem 5.6.4, [K:T]
o(G(K, T)); but then we have o(G(K, F)) = [K:F] = [K:T)[T-F]
o(G(K, T))[T:F], whence

[T:F] =

o(G (K, F))

o(G(X, T)) = index of G(K, T)

in G(K, F). This is part 3.

The only parts which remain to be proved are those which pertain to
normality. We first make the following observation. T isa normal extension
of F if and only if for every 6 € G(K, F), o(T) =« T. Why? We know
by Theorem 5.5.1 that T = F(a); thus if ¢(T) < T, then o(a) € T for
all 0 € G(K, F). But, as we saw in the proof of Theorem 5.6.5, this implies
that T is the splitting field of

p) = T (= ofa)
¢€G(K,F)

which has coefficients in F. As a splitting field, T, by Theorem 5.6.5, is
a normal extension of F. Conversely, if T is a normal extension of F, then
T = F(a), where the minimal polynomial of a, p(x), over F has all its roots
in T (Theorem 5.6.5). However, for any ¢ € G(K, F), o(a) is also a root
of p(x), whence o(a) must be in T. Since T is generated by a over F, we
get that (T) < T for every 0 € G(K, F).

Thus T is a normal extension of F if and only if for any ¢ € G(X, F),
t€G(K,T) and te T, o(t)e T and so z(o(t)) = o(t); that is, if and
only if ¢~ 'zo(t) = t. But this says that T is normal over F if and only
if 67'G(K, T)o =« G(K, T) for every o€ G(K, F). This last condition
being precisely that which defines G(K, T) as a normal subgroup of
G (K, F), we see that part 4 is proved.

Finally, if T is normal over F, given o€ G(K, F), since o(T) = T,
o induces an automorphism o, of T defined by o,(t) = o(t) for every
te T. Because o, leaves every element of F fixed, o, must be in G(T, F).
Also, as is evident, for any o,y € G(K, F), (0y)s = 04¥, whence the
mapping of G(K, F) into G(T, F) defined by ¢ — o, is a homomorphism
of G(K, F) into G(T, F). What is the kernel of this homomorphism?
It consists of all elements ¢ in G(K, F) such that o, is the identity map on
T. That is, the kernel is the set of all 0 € G(K, F) such that t = g,(t) =
o(t); by the very definition, we get that the kernel is exactly G(K, T).
The image of G(K, F) in G(T, F), by Theorem 2.7.1 is isomorphic to
G (K, F)/G(K, T), whose order is o(G(K, F))/o(G(K, T)) = [T:F] (by
part 3) = o(G(T, F)) (by Theorem 5.6.4). Thus the image of G(KX, F)
in G(T, F) is all of G(T, F) and so we have G(T, F) isomorphic to
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G(K, F)/G(K, T). This finishes the proof of part 5 and thereby completes
the proof of Theorem 5.6.6.

Problems

1.

*7.

*10.

11.

12.

If K is a field and § a set of automorphisms of K, prove that the fixed
field of S and that of § (the subgroup ofthe group of all automorphisms
of K generated by S) are identical.

. Prove Lemma 5.6.2.
. Using the Eisenstein criterion, prove that x* + x> + x? + x + 1

is irreducible over the field of rational numbers.

. In Example 5.6.3, prove that each mapping o, defined is an auto-

morphism of Fy(w).

. In Example 5.6.3, prove that the fixed field of Fy{w) under o,

0,, 03, 04 is precisely Fj.

. Prove directly that any automorphism of K must leave every rational

number fixed.
Prove that a symmetric polynomial in xy, ..., x, is a polynomial in
the elementary symmetric functions in xy, ..., x,.

. Express the following as polynomials in the elementary symmetric

functions in x;, x;, X5:
(@) x % + %% + x32
(b) %2 + x> + x>
(© (71 = %) 2(x, = x3)%(x, — x3)%

. If a;,0;, a3 are the roots of the cubic polynomial x* + 7x2 —

8x + 3, find the cubic polynomial whose roots are

O N CR A A

o 0y O
Prove Nawton’s identities, namely, if oy, oy, ..., &, are the roots of
S =2 +ax ' +a, %+~ +a, and if s =ar+
a* + -+ + a,* then
(@) sy +aysyy +agsya + -+ a5, +hay =0ifk=1,2,...,n
(b) sx + a5y + - + ay5y., = Ofor k > n
(c) Forn = 5, apply part (a) to determine s, 53, 54, and ss.
Prove that the elementary symmetric functions in x,..., x, are
indeed symmetric functions in x,, . .., x,.
If p(x) = " — 1 prove that the Galois group of p(x) over the field

of rational numbers is abelian.

The complex number ® is a primitive nth root of unity if ®® = 1 but ©™ # 1
for0 < m < n. Fy will denote the field of rational numbers.
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13. (a) Prove that there are ¢(n) primitive nth roots of unity where
¢(n) is the Euler ¢-function.

(b) If w is a primitive nth root of unity prove that Fy(w) is the
splitting field of x® — 1 over F, (and so is a normal extension
of Fy).

(c) If @y, ..., Wy, are the ¢(n) primitive nth roots of unity, prove
that any automorphism of Fy(w,) takes w, into some ;.

(d) Prove that [Fy(w,):Fo] < ¢(n).

14. The notation is as in Problem 13.
*(a) Prove that there is an automorphism g, of Fy(w,) which takes w,
into ;.

(b) Prove the polynomial p,(x) = (¥ — w,)(x — @;)"** (¥ — W)
has rational coefficients. (The polynomial p,(x) is called the
nth ¢yclotomic polynomial.)

*(c) Prove that, in fact, the coefficients of p,(x) are integers.

**15. Use the results of Problems 13 and 14 to prove that p,(x) is irreducible
over F, for all n > 1. (See Problem 8, Section 3.)

16. For n = 3,4,6, and 8, calculate p,(x) explicitly, show that it has
integer coefficients and prove directly that it is irreducible over F,.

17. (a) Prove that the Galois group of x> — 2 over F is isomorphic to
S5, the symmetric group of degree 3.
(b) Find the splitting field, K, of x> — 2 over F,,
(c) For every subgroup H of §; find K 4 and check the correspondence
given in Theorem 5.6.6.
(d) Find a normal extension in K of degree 2 over F,,.

18. If the field F contains a primitive nth root of unity, prove that the
Galois group of ¥ — a, for a € F, is abelian.

5.7 Solvability by Radicals

Given the specific polynomial x? + 3x + 4 over the field of rational
numbers F,, from the quadratic formula for its roots we know that its

roots are (—3 + \/-7)/2; thus the field Fo(ﬁi) is the splitting field of
x? 4+ 3x + 4 over F,. Consequently there is an element y = —7 in F,
such that the extension field Fo(w) where w? = y is such that it contains
all the roots of x> + 3x + 4.

From a slightly different point of view, given the general quadratic poly-
nomial p(x) = x? + a;x + a, over F, we can consider it as a particular
polynomial over the field F(a;, a,) of rational functions in the two variables
a, and a2 over F in the extension obtained by adjoining w to F(ay, a,)
where w? = a,2 — 4a, € F(a,, a,), we find all the roots of p(x). There is
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a formula which expresses the roots of p(x) in terms of a,, a, and square
roots of rational functions of these.

For a cubic equation the situation is very similar; given the general cubic
equation p(x) = x> + a,x? + a,x + a; an explicit formula can be given,
involving combinations of square roots and cube roots of rational functions
in a,, ay, a5. While somewhat messy, they are explicitly given by Cardan’s
Sformulas: Let p = a; — (a;%/3) and

3
o267 am

27 3
3 2
P=d_€+JL ¢’
2 27+ 4

_ 3 g A &
Wy
{with cube roots chosen properly); then the roots are P + Q — (a,/3),
0P + 0?*Q — (4,/3), and 0?P + wQ — (a,/3), where w # | is a cube
root of 1. The above formulas only serve to illustrate for us that by
adjoining a certain square root and then a cube root to F(a,, a,, a;) we
reach a field in which p(x) has its roots.

For fourth-degree polynomials, which we shall not give explicitly, by
using rational operations and square roots, we can reduce the problem to
that of solving a certain cubic, so here too a formula can be given expressing
the roots in terms of combinations of radicals (surds) of rational functions
of the coefficients.

For polynomials of degree five and higher, no such universal radical
formula can be given, for we shall prove that it is impossible to express
their roots, in general, in this way.

Given a field F and a polynomial p(x) € F[x], we say that p(x) is solvable
by radicals over F if we can find a finite sentence of fields F, = F(w,),
F, = Fi(0;);..-, Fy = F,_,(»,) such that w,""e€F, w,*€eF,..
™ € F, _; such that the roots of p(x) all lie in F,.

If K is the splitting field of p(x) over F, then p(x) is solvable by radicals
over F if we can find a sequence of fields as above such that K < F,. An
important remark, and one we shall use later, in the proof of Theorem
5.7.2, is that if such an F} can be found, we can, without loss of generality,
assume it to be a normal extension of F; we leave its proof as a problem
(Problem 1).

By the general polynomial of degree n over F, p(x) =x"+a;x ' +--- +a,,
we mean the following: Let F(a,, ..., a,) be the field of rational functions,

q + 43

and let

and

Al
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in the n variables a,,...,a, over F, and consider the particular
polynomial p(x) = x" + a;X"~ ' + -+* + a, over the field F(a,,...,a,).
We say that it is solvable by radicals if it is solvable by radicals over
F(a,,...,a,). This really expresses the intuitive idea of ‘““finding a for-
mula” for the roots of p(x) involving combinations of mth roots, for various
m’s, of rational functions in a,, a,, ..., a,. Forn = 2, 3, and 4, we pointed
out that this can always be done. For n > 5, Abel proved that this cannot
be done. However, this does not exclude the possibility that a given poly-
nomial over F may be solvable by radicals. In fact, we shall give a criterion
for this in terms of the Galois group of the polynomial. But first we must
develop a few purely group-theoretical results. Some of these occurred as
problems at the end of Chapter 2, but we nevertheless do them now officially.

DEFINITION A group G is said to be solvable if we can find a finite chain
of subgroups G = N, o Ny o N, o -+ > N, = (¢), where each N, is a
normal subgroup of N;_, and such that every factor group N;_,/N; is

abelian.

Every abelian group is solvable, for merely take N, = G and N, = (¢)
to satisfy the above definition. The symmetric group of degree 3, S;, is
solvable for take N, = {e, (1,2, 3), (1, 3, 2)}; N, is a normal subgroup of
S; and S3/N, and N;/(¢) are both abelian being of orders 2 and 3, respec-
tively. It can be shown that §, is solvable (Problem 3). For n > 5 we
show in Theorem 5.7.1 below that §,, is not solvable.

We seek an alternative description for solvability. Given the group G and
elements a, b in G, then the commutator of a and b is the element a6~ 1ab.
The commutator subgroup, G’, of G is the subgroup of G generated by all the
commutators in G. (It is not necessarily true that the set of commutators
itself forms a subgroup of G.) It was an exercise before that G’ is a normal
subgroup of G. Moreover, the group G/G’ is abelian, for, given any two
elements in it, aG’, bG’, with a, b € G, then

(aG")(bG') = abG’' = ba(a'b 'ab)G’
= (since a” 6" ab € G') baG' = (bG')(aG").

On the other hand, if M is a normal subgroup of G such that G/Mis abelian,
then M > G’, for, given a, b€ G, then (aM)(bM) = (bM)(aM), from
which we deduce abM = baM whence a~'6"'abM = M and so
a '67'ab e M. Since M contains all commutators, it contains the group
these generate, namely G’.

G'is a group in its own right, so we can speak of its commutator subgroup
G = (G')’. This is the subgroup of G generated by all elements
(a")~1(b") " 'a’b’ where a’, b’ € G'. It is easy to prove that not only is G2
a normal subgroup of G’ but it is also a normal subgroup of G (Problem 4).
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We continue this way and define the higher commutator subgroups G™ by
G™ = (G™~ VY. Each G'™ is a normal subgroup of G (Problem 4) and
G™~D|G™ is an abelian group.

In terms of these higher commutator subgroups of G, we have a very
succinct criterion for solvability, namely,

LEMMA 5.7.1 G is solvable if and only if G = (e) for some integer k.
Proof. If G® = (¢) let Ny=G, N,=G', N,=GP,... N, =
G® = (¢). We have
G=Ny>N oN,> >N = (g);
each N; being normal in G is certainly normal in N; ;. Finally,
N,_, GU-b Gt—1
N, G® ~ (¢¢Dy

hence is abelian. Thus by the definition of solvability G is a solvable group.

Conversely, if G is a solvable group, there is a chain G = N, o N, o
N, o -+ o N, = (¢) where each N, is normal in ¥; , and where N;_,/N;
is abelian. But then the commutator subgroup N/_; of N;_, must be
contained in N, Thus N, > Nj=G’, N, o N; > (G') = G?,
Ny > N; o (GP)Y =GP,...,N;2GY, (¢) = N, > GH®. We therefore
obtain that G® = (e).

COROLLARY If G is a solvable group and if G is a homomorphic image of G,
then G is solvable.

Proof. Since G is a homomorphic image of G it is immediate that (G)®
is the image of G®. Since G® = () for some &, (G)® = (¢) for the same
k, whence by the lemma G is solvable.

The next lemma is the key step in proving that the infinite family of
groups §,, with n > 5, is not solvable; here §, is the symmetric group of
degree n.

LEMMA 5.7.2 Let G=S,, where n>5; then G® for k=1,2,...,
contains every 3-cycle of S,.

Proof. We first remark that for an arbitrary group G, if N is a normal
subgroup of G, then N’ must also be a normal subgroup of G (Problem J5).
We claim that if N is a normal subgroup of G = S, where n > 5, which
contains every 3-cycle in §,, then N’ must also contain every 3-cycle. For
suppose a = (1,2,3), b = (1,4,5) are in N (we are using here that
n>5); then a” 67 "ab = (3,2, 1)(5,4,1)(1,2,3)(1,4,5) = (1,4,2), as

a commutator of elements of N must be in N’. Since N’ is a normal
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subgroup of G, for any % € S,, ~ *(1, 4, 2)n must also be in N’. Choose a
= in §, such that n(l) =i}, n(4) = i3, and n(2) = i,, where i, i;,i; are
any three distinct integers in the range from 1 to n; then n7 (1,4, 2)x =
(¢4, i2,13) is in N’. Thus N’ contains all 3-cycles.

Letting N = G, which is certainly normal in G and contains all 3-cycles,
we get that G’ contains all 3-cycles; since G’ is normal in G, G® contains
all 3-cycles; since G is normal in G, G® contains all 3-cycles Con-
tinuing this way we obtain that G® contains all 3-cycles for arbitrary k.

A direct consequence of this lemma is the interesting group-theoretic
result.

THEOREM 5.7.1 §, is not solvable for n > 5.

Proof. If G = §,, by Lemma 5.7.2, G® contains all 3-cycles in §,, for
every k. Therefore, G® # (¢) for any k, whence by Lemma 5.7.1, G cannot
be solvable.

We now interrelate the solvability by radicals of p(x) with the solvability,
as a group, of the Galois group of p(x). The very terminology is highly
suggestive that such a relation exists. But first we need a result about the
Galois group of a certain type of polynomial.

LEMMA 5.7.3 Suppose that the field F has all nth roots of unity ( for some
particular n) and suppose that a # 0 is in F. Let x* — a€ F(x] and let K be
its splitting field over F. Then

1. K = F(u) where u is any root of X* — a.
2. The Galois group of x* — a over F is abelian.

Proof. Since F contains all nth roots of unity, it contains § = ¢2*/*;
note that {" = 1 but {™ # l1for0 < m < n

If ue K is any root of ¥ — a, then u, fu, £u,..., " 'u are all the
roots of ¥* — a. That they are roots is clear; that they are distinct follows
from: {'u = Fuwith0 < i <j < n, thensinceu # 0, and (& — &)u = 0,
we must have & = &/, which is impossible since &~! = 1, with 0 <j — i
< n. Since £€F, all of u,&u,..., " *u are in F(u), thus F(u) splits
x" — a; since no proper subfield of F(u) which contains F also contains ,
no proper subfield of F(x) can split * — a. Thus F(x) is the splitting
field of x* — a, and we have proved that K = F(u).

If o, t are any two elements in the Galois group of #* — a, that is, if
0, T are automorphisms of K = F(u) leaving every element of F fixed, then
since both g(uz) and t(u) are roots of ¥* — a, o{u) = &'u and t(u) = &Eu
for some i and j. Thus ot(u) = o(&u) = Eo(u) (since & € F) = E¢u =
&'*iu; similarly, to(u) = £'*J/u. Therefore, ot and to agree on z and on
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F hence on all of K = F(u). But then g7 = tg, whence the Galois group
is abelian.

Note that the lemma says that when F has all ath roots of unity, then
adjoining one root of " — a to F, where a € F, gives us the whole splitting
field of x" — a; thus this must be a normal extension of F.

We assume for the rest of the section that F is a field which contains all nth roots
of unity for every integer n. We have

THEOREM 5.7.2 If p(x) € F[x] is solvable by radicals over F, then the Galois
group over F of p(x) is a solvable group.

Proof. Let K be the splitting field of p(x) over F; the Galois group of
p(x) over F is G(K, F). Since p(x) is solvable by radicals, there exists a
sequence of fields

FcF,=F(o) cF, =F(w) c-rc B = F_ (o),

where w,"" €F, w,*eF,,..., 0/ €F,_; and where K c F,. As we
pointed out, without loss of generality we may assume that F, is a normal
extension of F. As a normal extension of F, F, is also a normal extension
of any intermediate field, hence F; is a normal extension of each F;.

By Lemma 5.7.3 each F; is a normal extension of F;_, and since F, is
normal over F;_;, by Theorem 5.6.6, G(F,, F;) is a normal subgroup in
G(F,, F; ;). Consider the chain

G(Fy, F) > G(Fy, Fy) > G(F,, F3) -+ 2 G(Fy, Fiy) > (¢)- (1)

As we just remarked, each subgroup in this chain is a normal subgroup
in the one preceding it. Since F; is a normal extension of F;_,, by the
fundamental theorem of Galois theory (Theorem 5.6.6) the group of F;
over F;_,, G(F;, F;_,) is isomorphic to G(F,, F;_,)|G (F,, F;). However,
by Lemma 5.7.3, G(F;, F;_,) is an abelian group. Thus each quotient
group G(F,, F;_,)[G (Fy, F;) of the chain (1) is abelian.

Thus the group G(F,, F) is solvable! Since K < F, and is a normal
extension of F (being a splitting field), by Theorem 5.6.6, G(F,, K)
is a normal subgroup of G(F,, F) and G(K, F) is isomorphic to
G(F,, F)|G(F,, K). Thus G(K, F) is a homomorphic image of G(F,, F), a
solvable group; by the corollary to Lemma 5.7.1, G(K, F) itself must then
be a solvable group. Since G (K, F) is the Galois group of p(x) over F the

theorem has been proved.
We make two remarks without proof.

1. The converse of Theorem 5.7.2 is also true; that is, if the Galois group
of p(x) over F is solvable then p(x) is solvable by radicals over F.
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2. Theorem 5.7.2 and its converse are true even if F does not contain
roots of unity.

Recalling what is meant by the general polynomial of degree n over F,
p(x) = x" + ¢, ¥~ ! + -+ + a,, and what is meant by solvable by radicals,
we close with the great, classic theorem of Abel:

THEOREM 5.7.3 The general polynomial of degree n > 5 is not solvable by
radicals.

Proof. In Theorem 5.6.3 we saw that if F(a,,..., a,) is the field of
rational functions in the n variables a,, ..., a, then the Galois group of
the polynomial p(¢) = t" + a;t""! + -+ + a, over F(a,,...,a,) was S,
the symmetric group of degree n. By Theorem 5.7.1, S, is not a solvable
group when n > 5, thus by Theorem 5.7.2, p(¢) is not solvable by radicals
over F(ay,...,a,) when n > 5.

Problems

*1. If p(x) is solvable by radicals over F, prove that we can find a sequence
of fields
Fc F, =F(w) c F, =F, (0))c " c F, = F_, (o),

where ;"' €F, w,"*€F,,...,w/*€F,_,, F, containing all the
roots of p(x), such that F, is normal over F.
Prove that a subgroup of a solvable group is solvable.

Prove that S, is a solvable group.

. If G is a group, prove that all G*® are normal subgroups of G.

S S

If N is a normal subgroup of G prove that N’ must also be a normal
subgroup of G.

6. Prove that the alternating group (the group of even permutations in
S,) A4, has no nontrivial normal subgroups for n > 5.

5.8 Galois Groups over the Rationals

In Theorem 5.3.2 we saw that, given a field F and a polynomial p(x), of
degree n, in F[x], then the splitting field of p(x) over F has degree at most
n! over F. In the preceding section we saw that this upper limit of »! is,
indeed, taken on for some choice of F and some polynomial p(x) of degree
n over F. In fact, if F is any field and if F is the field of rational functions
in the variables a,, ..., a, over F, it was shown that the splitting field, K,
of the polynomial p(x) = x" + a;x""! + -+ + g, over F has degree
exactly n! over F. Moreover, it was shown that the Galois group of K over
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F is §,, the symmetric group of degree n. This turned out to be the basis
for the fact that the general polynomial of degree n, with n > 5, is not
solvable by radicals.

However, it would be nice to know that the phenomenon described
above can take place with fields which are more familiar to us than the
field of rational functions in n variables. What we shall do will show that
for any prime number p, at least, we can find polynomials of degree p over
the field of rational numbers whose splitting fields have degree p! over the
rationals. This way we will have polynomials with rational coefficients
whose Galois group over the rationals is S,. In light of Theorem 5.7.2, we
will conclude from this that the roots of these polynomials cannot be ex-
pressed in combinations of radicals involving rational numbers. Although
in proving Theorem 5.7.2 we used that roots of unity were in the field, and
roots of unity do not lie in the rationals, we make use of remark 2 following
the proof of Theorem 5.7.2 here, namely that Theorem 5.7.2 remains valid
even in the absence of roots of unity.

We shall make use of the fact that polynomials with rational coefficients
have all their roots in the complex field.

We now prove

THEOREM 5.8.1 Let q(x) be an irreducible polynomial of degree p, p a prime,
over the field Q of rational numbers. Suppose that q(x) has exactly two nonreal roots
in the field of complex numbers. Then the Galois group of q(x) over @ is S, the
symmetric group of degree p. Thus the splitting field of q(x) over Q has degree p!
over Q.

Proof. Let K be the splitting field of the polynomial ¢(x) over Q. If
o is a root of g(x) in K, then, since ¢(x) is irreducible over @, by Theorem
5.1.3, [Q(a):Q] = p. Since K o Q(a) @ and, according to Theorem
5.1.1, [K:Q] = [K:Q(2)][Q(x):Q] = [K:Q(a)]p, we have that p|[K:Q].
If G is the Galois group of K over @, by Theorem 5.6.4, o(G) = [K:F].
Thus p | o(G). Hence, by Cauchy’s theorem (Theorem 2.11.3), G has
an element o of order p.

To this point we have not used our hypothesis that g(x) has exactly two
nonreal roots. We use it now. If a,,a, are these nonreal roots, then
oy = &y, a; = &y (see Problem 13, Section 5.3), where the bar denotes
the complex conjugate. If aj,..., a, are the other roots, then, since they
are real, a; = a; for ¢ > 3. Thus the complex conjugate mapping takes
K into itself, is an automorphism 7 of K over @, and interchanges a, and
o3, leaving the other roots of ¢(x) fixed.

Now, the elements of G take roots of ¢(x) into roots of ¢(x), so induce
permutations of a;,..., a, In this way we imbed G in §,. The auto-
morphism 7 described above is the transposition (1,2) since z(a;) = a,,
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which we mentioned above, which has order p? As an element of S,
o has order p. But the only elements of order p in §, are p-cycles. Thus o
must be a p-cycle.

Therefore G, as a subgroup of §,, contains a transposition and a p-cycle.
It is a relatively easy exercise (see Problem 4) to prove that any transposition
and any p-cycle in S, generate §,. Thus ¢ and 7 generate §,. But since
they are in G, the group generated by ¢ and 7 must be in G. The net result
of this is that G = §,. In other words, the Galois group of ¢(x) over @ is
indeed §,. This proves the theorem.

t{a;) = oy, and t{a;) = a; for i > 3. What about the element ¢ € G,

The theorem gives us a fairly general criterion to get S, as a Galois group
over . Now we must produce polynomials of degree p over the rationals
which are irreducible over @ and have exactly two nonreal roots. To pro-
duce irreducible polynomials, we use the Eisenstein criterion (Theorem
3.10.2). To get all but two real roots one can play around with the co-
efficients, but always staying in a context where the Eisenstein criterion is
in force.

We do it explicitly for p = 5. Let g(x) = 2x®> — 10x + 5. By the
Eisenstein criterion, ¢(x) is irreducible over Q. We graph y = ¢q(x) =
2x5 — 10x + 5. By elementary calculus it has a maximum at x = —1
and a minimum at x = 1 (see Figure 5.8.1). As the graph clearly indicates,

J
4

(0, 5)
IR

t l 4

T (1, =3)
Figure 5.8.1

y = ¢q(x) = 2% — 10x + 5 crosses the x-axis exactly three times, so g(x)
has exactly three roots which are real. Hence the other two roots must be
complex, nonreal numbers. Therefore ¢(x) satisfies the hypothesis of
Theorem 5.8.1, in consequence of which the Galois group of ¢(x) over @
is §5. Using Theorem 5.7.2, we know that it is not pussible to express the
roots of ¢(x) in a combination of radicals of rational numbers.
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Problems

1. In §5 show that (1 2) and (1 2 3 4 5) generate S;.

2. In S5 show that (1 2) and (I 3 2 45) generate Ss.

3. If p > 2 is a prime, show that (12) and (12---p — 1p) generate S,.
4. Prove that any transposition and p-cycle in S, p a prime, generate S,,.
5. Show that the following polynomials over @ are irreducible and have

exactly two nonreal roots.
(a) p(x) = 23 — 3x — 3,
(b) p(x) = x° — 6x + 3,
(c) p(x) = x> + 5x* + 1023 + 1022 — x — 2.

6. What are the Galois groups over @ of the polynomials in Problem 5?

7. Construct a polynomial of degreee 7 with rational coefficients whose
Galois group over @ is S.
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Linear Transformations

In Chapter 4 we defined, for any two vector spaces V and W over the
same field F, the set Hom (V, W) of all vector space homomorphisms
of Vinto W. In fact, we introduced into Hom (V, W) the operations
of addition and of multiplication by scalars (elements of F) in such a
way that Hom (V, W) itself became a vector space over F.

Of much greater interest is the special case V = W, for here, in
addition to the vector space operations, we can introduce a multi-
plication for any two elements under which Hom (V, V') becomes a
ring. Blessed with this twin nature—that of a vector space and of a
ring—Hom (V, V) acquires an extremely rich structure. It is this
structure and its consequences that impart so much life and sparkle
to the subject and which justify most fully the creation of the abstract
concept of a vector space.

Our main concern shall be concentrated on Hom (V, V) where V
will not be an arbitrary vector space but rather will be restricted to be
a finite-dimensional vector space over a field F. The (finite-
dimensionality of V imposes on Hom (V, V) the consequence that
each of its elements satisfies a polynomial over F. This fact, perhaps
more than any other, gives us a ready entry into Hom (V, V) and
allows us to probe both deeply and effectively into its structure.

The subject matter to be considered often goes under the name of
linear algebra. It encompasses the isomorphic theory of matrices. The
statement that its results are in constant everyday use in every aspect
of mathematics (and elsewhere) is not in the least exaggerated.
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A popular myth is that mathematicians revel in the inapplicability of
their discipline and are disappointed when one of their results is “soiled”
by use in the outside world. This is sheer nonsense! It is true that a mathe-
matician does not depend for his value judgments on the applicability of a
given result outside of mathematics proper but relies, rather, on some
intrinsic, and at times intangible, mathematical criteria. However, it is
equally true that the converse is false—the utility of a result has never
lowered its mathematical value. A perfect case in point is the subject of
linear algebra; it is real mathematics, interesting and exciting on its own,
yet it is probably that part of mathematics which finds the widest applica-
tion—in physics, chemistry, economics, in fact in almost every science and
pseudoscience.

6.1 The Algebra of Linear Transformations

Let V be a vector space over a field F and let Hom (V, V), as before, be
the set of all vector-space-homomorphisms of V into itself. In Section 4.3
we showed that Hom (V, V) forms a vector space over F, where, for
T,, T,e Hom (V, V), T, + T, is defined by o(Ty + T,) =T, + vT,
for all ve V and where, for « e F, aT, is defined by »(aT}) = a(sT}).

For T,, T, e Hom (V, V), since vT, € V for any veV, (vT,) T, makes
sense. As we have done for mappings of any set into itself, we define
T T, by o(T,T,) = (¢T,) T, for any ve V. We now claim that 7,7, €
Hom (V, V). To prove this, we must show that for all &, f € F and all
wveV, (@ + B)(T,Ty) = a((T,T3)) + BO(T,Ty)). We compute

(au + Bo)(T1 T3) = ((aw + Bo) TH) T,

(a(uTy) + B(xT1)) T,
= awl)T, + BT\ T,
a(u(T,T7)) + B((T,T,)).

We leave as an exercise the following properties of this product in
Hom (V, V):
L(T, + T,)T; = T)T;, + T,T;;
2. Ta(Tl + TZ) = T3Tl + T3T2;
3. T\(T,T;) = (T, T,)Ts;
4. o(T\T,) = (aTy) T, = Ty(aT3);
forall T,, T,, T, € Hom (V, V) and all x € F.

Note that properties 1, 2, 3, above, are exactly what are required to
make of Hom (V, V) an associative ring. Property 4 intertwines the

character of Hom (V, V), as a vector space over F, with its character as a
ring.

il
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Note further that there is an element, I, in Hom (V, V), defined by
ol = v for all » € V, with the property that T/ = IT = T for every T e
Hom (V, V). Thereby, Hom (¥, V) is a ring with a unit element. More-
over, if in property 4 above we put T, = I, we obtain aT; = T(al).
Since ()T, = a(IT,) = aTy, we see that (al)Ty = Ty(al) for all T, €
Hom (V, V), and so al commutes with every element of Hom (V, V).
We shall always write, in the future, al merely as a.

DEFINITION An associative ring 4 is called an algebra over Fif A is a
vector space over F such that for all g, b€ 4 and a € F, a(ab) = (xa)b =

a(ab).

Homomorphisms, isomorphisms, ideals, etc., of algebras are defined as
for rings with the additional proviso that these must preserve, or be in-
variant under, the vector space structure.

Our remarks above indicate that Hom (¥, V) is an algebra over F. For
convenience of notation we henceforth shall write Hom (V, V) as 4(V);
whenever we want to emphasize the role of the field F we shall denote it by
Ag(V).

DEFINITION A linear transformation on V, over F, is an element of Ag(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
Jformations on V.

For arbitrary algebras 4, with unit element, over a field F, we can prove
the analog of Cayley’s theorem for groups; namely,

LEMMA 6.1.1 If A is an algebra, with unit element, over F, then A is isomorphic
to a subalgebra of A(V') for some vector space V over F.

Proof. Since A is an algebra over F, it must be a vector space over F.
We shall use V = 4 to prove the theorem.

If ae 4, let T,:A - A be defined by »T, = va for every ve 4. We
assert that T is a linear transformation on V(=4). By the right-distribu-
tive law (2 +2,)T, = (9 + v;)a = 9,8 + v,a = v, T,+ v, T,. Since 4
is an algebra, (w)T, = (w)a = a(va) = a(vT,) for ve 4, ae€ F. Thus
T, is indeed a linear transformation on 4.

Consider the mapping y:4 — A(V) defined by ay = T, for every
ae A. We claim that  is an isomorphism of 4 into A(V). To begin with,
if a,bed and a,B€F, then for all ve 4, vT 45 = v(aa + Bb) =
o(va) + P(vb) [by the left-distributive law and the fact that 4 is an algebra
over F] = a(vT,) + B(vT,) = »(aT, + BT,) since both T, and T, are
linear transformations. In consequence, Too,p = @7, + BT}, whence ¢
is a vector-space homomorphism of 4 into 4(V). Next, we compute, for
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a,bed, vT, =v(ab) = (va)b = (vT,)T, = v(T,T,) (we have used
the associative law of 4 in this computation), which implies that T,, =
T,T,. In this way, \ is also a ring-homomorphism of 4. So far we have
proved that y is a homomorphism of 4, as an algebra, into 4(V). All that
remains is to determine the kernel of . Let a € 4 be in the kernel of ¢;
then ay = 0, whence 7, = 0 and so v7, = 0 for all ve V. Now V = 4,
and 4 has a unit element, ¢, hence ¢7, = 0. However, 0 = ¢T, = ea = a,
proving that a = 0. The kernel of i must therefore merely consist of 0,
thus implying that y is an isomorphism of 4 into A(V). This completes the
proof of the lemma.

The lemma points out the universal role played by the particular algebras,
A(V), for in these we can find isomorphic copies of any algebra.

Let 4 be an algebra, with unit element ¢, over F, and let p(x) = o +
o, % + -+ + + a,x" be a polynomial in F[x]. For a € A4, by p(a), we shall
mean the element oge + o;a + -+ + a,a" in 4. If p(a) = 0 we shall say

a satisfies p(x).

LEMMA 6.1.2 Let A be an algebra, with unit element, over F, and suppose that
A is of dimension m over F. Then every element in A satisfies some nontrivial poly-
nomial in F[x] of degree at most m.

Proof. Let ¢ be the unit element of 4; if ae A, consider the m + 1
elements ¢, a, a2,...,a™ in 4. Since 4 is m-dimensional over F, by Lemma
424, ¢ a,a%, ...,a" being m + 1 in number, must be linearly dependent
over F. In other words, there are elements og, &y, ..., a, in F, not all
0, such that age + o;a + -+ - + a,a™ = 0. But then a satisfies the non-
trivial polynomial ¢(x) = og + a;x + -+ + a,x™, of degree at most m,
in F[x].

If V is a finite-dimensional vector space over F, of dimension n, by
Corollary 1 to Theorem 4.3.1, A(V) is of dimension n? over F. Since A(V)
is an algebra over F, we can apply Lemma 6.1.2 to it to obtain that every
element in A4(V) satisfies a polynomial over F of degree at most n2. This
fact will be of central significance in all that follows, so we single it out as

THEOREM 6.1.1 If V is an n-dimensional vector space over F, then, given any
element T in A(V), there exists a nontrivial polynomial q(x) € F[x] of degree at
most n?, such that ¢(T) = 0.

We shall see later that we can assert much more about the degree of g(x);
in fact, we shall eventually be able to say that we can choose such a ¢(x)
of degree at most n. This fact is a famous theorem in the subject, and is
known as the Cayley-Hamilton theorem. For the moment we can get by
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without any sharp estimate of the degree of ¢(x); all we need is that a
suitable g(x) exists.

Since for finite-dimensional V, given T € A(V), some polynomial ¢(x)
exists for which ¢(7T") = 0, a nontrivial polynomial of lowest degree with
this property, p(x), exists in F[x]. We call p(x) a minimal polynomial for T
over F. If T satisfies a polynomial k(x), then p(x) | A(x).

DEFINITION An element T e A(V) is called right-invertible if there exists
an S € A(V) such that TS = 1. (Here 1 denotes the unit element of A(V).)

Similarly, we can define left-invertible, if there is a Ue A(V) such
that UT = 1. If T is both right- and left-invertible and if 7S = UT = 1,
it is an easy exercise that § = U and that § is unique.

DEFINITION An element T in A(V) is invertible or regular if it is both
right- and left-invertible; that is, if there is an element S € A(V) such that
ST =TS =1. Wewrite Sas T™1.

An element in A(V) which is not regular is called singular.

It is quite possible that an element in A(V) is right-invertible but is not
invertible. An example of such: Let F be the field of real numbers and let
V be F[x], the set of all polynomials in x over F. In V let § be defined by

92)S = 2 o)
and T by
{) T = f 9(x) d.
1

Then ST # 1, whereas TS = 1. As we shall see in a moment, if V is
finite-dimensional over F, then an element in 4(¥) which is right-invertible
is invertible.

THEOREM 6.1.2 If V is finite-dimensional over F, then T e A(V) is in
vertible if and only if the constant term of the minimal polynomial for T is not 0.

Proof. Let p(x) = ag + yx +*** + apx*, a, # 0, be the minimal
polynomial for T over F.

If g #£ 0, since 0 =p(T) = T* + o, T* ' + -+ + ;T + o9, we
obtain

1= T( s (GT** g P ospanag “1))
%o

= ( —al—o(akT.-l + -4 a,))T.
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Therefore,

S = — l(akT"'l + 4 oay)
%o
acts as an inverse for 7', whence T is invertible.

Suppose, on the other hand, that T is invertible, yet o = 0. Thus
0=0,T + ;T2 + -+ o, T* = (&, + ;T + -+ + o T* 1) T. Multi-
plying this relation from the right by 77! yields a; + 0T + - +
o T*"! = 0, whereby T satisfies the polynomial g(x) = a; + azx + -+ +
ox* 1in F[x]. Since the degree of ¢(x) is less than that of p(x), this is
impossible. Consequently, o, # 0 and the other half of the theorem is
established.

COROLLARY 1 If V is finite-dimensional over F and if Te A(V) is in-
vertible, then T~ ! is a polynomial expression in T over F.

Proof. Since T is invertible, by the theorem, oy + ;7 + -+« +
o T* = 0 with oy # 0. But then

T ! = —i(al + T+ + T ).
%

COROLLARY 2 If V is finite-dimensional over F and if T € A(V) is singular,
then there existsan S # 0 in A(V) such that ST = TS = 0.

Proof. Because T is not regular, the constant term of its minimal
polynomial must be 0. That is, p(x) = ayx + -+ + ox*, whence 0 =
T + -+ T If S=a +---+ T* !, then § 3 0 (since
o, + *+* + a1 is of lower degree than p(x)) and ST = TS = 0.

COROLLARY 3 If V is finite-dimensional over F and if T € A(V) is right-
tnvertible, then it is invertible.

Proof. Let TU = 1. If T were singular, there would be an § # 0
such that ST = 0. However, 0 = (ST)U = S(TU) =81 = § # 0,
a contradiction. Thus T is regular.

We wish to transfer the information contained in Theorem 6.1.2 and its
corollaries from A(V) to the action of T on V. A most basic result in this
vein is
THEOREM 6.1.3 If V is finite-dimensional over F, then T € A(V) is singular
if and only if there exists av # 0 in V such that vT = 0.

Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if
there is an § # 0 in A(V) such that ST = 7S = 0. Since S # O there
is an element w € V such that wS # 0.
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Let v = wS; then T = (wS) T = w(ST) = w0 = 0. We have produced
a nonzero vector v in V which is annihilated by 7. Conversely, if 7 = 0
with v # 0, we leave as an exercise the fact that T is not invertible.

We seek still another characterization of the singularity or regularity of
a linear transformation in terms of its overall action on V.

DEFINITION If T e A(V), then the range of T, VT, is defined by VT =
{2T|ve V}

The range of T is easily shown to be a subvector space of V. It merely
consists of all the images by T of the elements of V. Note that the range
of T is all of V if and only if T is onto.

THEOREM 6.1.4 If V is finite-dimensional over F, then T € A(V) is regular
if and only if T maps V onto V.

Proof. As happens so often, one-half of this is almost trivial; namely,
if T is regular then, given veV, v = (T~ )T, whence VT = V and
T is onto.

On the other hand, suppose that T is not regular. We must show that
T is not onto. Since T is singular, by Theorem 6.1.3, there exists a vector
v; # 01in Vsuch that o, T = 0. By Lemma 4.2.5 we can fill out, from v,,
to a basis v;, 05, ..., v, of V. Then every element in VT is a linear com-
bination of the elements w, =, T, w, =v,7,...,w, =v,T. Since
w; =0, VT is spanned by the n — 1 elements w,,...,w,; therefore
dim VT <n —1 < n=dim V. But then VT must be different from V;
that is, T is not onto.

Theorem 6.1.4 points out that we can distinguish regular elements from
singular ones, in the finite-dimensional case, according as their ranges are
or are not all of V. If T € A(V) this can be rephrased as: T is regular if
and only if dim (V'T) = dim V. This suggests that we could use dim (VT)
not only as a test for regularity, but even as a measure of the degree of
singularity (or, lack of regularity) for a given T € A(V).

DEFINITION If V is finite-dimensional over F, then the rank of T is the
dimension of VT, the range of T, over F.

We denote the rank of T'by r(T). At one end of the spectrum, if r(T) =
dim V, T is regular (and so, not at all singular). At the other end, if
r(T) = 0, then T = 0 and so T is as singular as it can possibly be. The
rank, as a function on A( V), is an important function, and we now investigate
some of its properties.
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LEMMA 6.1.3 If V is finite-dimensional over F then for S, T € A(V).

1. r(ST) < r(T);
2. 7(TS) < r(T);

(and so, r(ST) < min {r(T), r(S)})
3. r(ST) = r(TS) = r(T) for S regular in A(V).
Proof. We go through 1, 2, and 3 in order.

1. Since VS < V, V(ST) = (VS)T < VT, whence, by Lemma 4.2.6,
dim (V(ST)) < dim VT; thatis, r(ST) < r(T).

2. Suppose that r(T') = m. Therefore, VT has a basis of m elements,
Wy, Wy ..., W, But then (VT)S is spanned by w,S, w,S, ..., w,S, hence
has dimension at most m. Since r(7S) = dim (V(7TS)) = dim ((V'T)S) <
m = dim VT = r(T), part 2 is proved.

3. If S is invertible then VS = V, whence V(ST) = (VS)T = VT.
Thereby, 7(ST) = dim (V(ST)) = dim (VT) = r(T). On the other hand,
if VT has wy, ..., w, as a basis, the regularity of S implies that w,S,. ..,
w,,S are linearly independent. (Prove!) Since these span V(TS) they form
a basis of V(TS). But then r(TS) = dim (V(TS)) = dim (VT) = r(T).

COROLLARY IfTe A(V)andif Se A(V) is regular, thenr(T) = r(STS™1).

Proof. By part 3 of the lemma, r(STS™ ) =r(S(7S™ 1)) =r((TS™1)S) =
(T).

Problems

In all problems, unless stated otherwise, V will denote a finite-dimensional
vector space over a field F.

1. Prove that S € A(V) is regular if and only if whenever vy,...,0, €V
are linearly independent, then ».S, »,S,...,9,5 are also linearly
independent.

2. Prove that T e A(V) is completely determined by its values on a
basis of V.

3. Prove Lemma 6.1.1 even when 4 does not have a unit element.

4. If A is the field of complex numbers and F is the field of real numbers,

then A4 is an algebra over F of dimension 2. For ¢ = a + fi in A4,
compute the action of 7, (see Lemma 6.1.1) on a basis of 4 over F.

5. If V is two-dimensional over F and 4 = A(V), write down a basis
of 4 over F and compute T, for each a in this basis.

6. If dim;z ¥V > 1 prove that A(V) is not commutative.
7.In AV) let Z = {TeA(V)|ST = TSforall Se A(V)}. Prove that
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Z merely consists of the multiples of the unit element of A(V) by the
elements of F.

If dimg (V) > 1 prove that A(V) has no two-sided ideals other than
(0) and A(V).

Prove that the conclusion of Problem 8 is false if V is not finite-
dimensional over F.

If V is an arbitrary vector space over F and if T e A(V) is both
right- and left-invertible, prove that the right inverse and left inverse
must be equal. From this, prove that the inverse of T is unique.

If V is an arbitrary vector space over F and if T € A(V) is right-
invertible with a unique right inverse, prove that T is invertible.

Prove that the regular elements in 4A(V) form a group.

If F is the field of integers modulo 2 and if V is two-dimensional over
F, compute the group of regular elements in 4(V) and prove that
this group is isomorphic to S, the symmetric group of degree 3.

If F is a finite field with ¢ elements, compute the order of the group
of regular elements in 4(V) where V is two-dimensional over F.

Do Problem 14 if V is assumed to be n-dimensional over F.

If V is finite-dimensional, prove that every element in 4A(V) can be
written as a sum of regular elements.

An element E e A(V) is called an idempotent if E* = E. If E€ A(V)
is an idempotent, prove that V = Vy, @ V; where 9E = 0 for all
v € Vp and 9, E = o, for all v, € V.

If TeA(V), F of characteristic not 2, satisfies T = T, prove
that V.=V, @ V;, @ V, where

(@) 99 € V, implies g, T = 0.

() 2, € V, implies o, T = v,.

(c) v; € V, implies 9, T = —v,.

If V is finite-dimensional and T # 0 € A(V), prove that there is
an S € A(V) such that E = TS # 0 is an idempotent.

The element Te A(V) is called nilpotent if T™ = 0 for some m. If
T is mlpotent and if T = av for some v # 0 in V, with a € F, prove
that @ = 0.

If TeA(V) is nilpotent, prove that oy + &, 7T + ;7% + -+ +
a, T* is regular, provided that a, # 0.

If 4 is a finite-dimensional algebra over F and if a € 4, prove that
for some integer k£ > 0 and some polynomial p(x) € F[x], a* =
a*1p(a).

Using the result of Problem 22, prove that for a € 4 there is a poly-
nomial ¢(x) € F[x] such that a* = a%**¢(a).
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Using the result of Problem 23, prove that given a € 4 either a is
nilpotent or there is an element b # 0 in 4 of the form b = ak(a),
where h(x) € F[x], such that 62 = b.

If A is an algebra over F (not necessarily finite-dimensional) and if
for a € 4, a® — a is nilpotent, prove that either a is nilpotent or there
is an element b of the form & = ah(a) # 0, where h(x) € F[x], such
that 6% = b.

If T # 0€ A(V) is singular, prove that there is an element Se A(V)
such that TS = 0 but ST # 0.

Let V be two-dimensional over F with basis vy, v,. Suppose that
TeA(V) is such that v, T = aw, + Pv;, v, T = ypv; + 6v,, where
o, B, 7, 0 € F. Find a nonzero polynomial in F[x] of degree 2 satisfied
by T.

If V is three-dimensional over F with basis v,, v,, v3 and if T € A(V)
is such that v;T = a;;v, + a;0, + o303 for ¢ = 1,2,3, with all
a;; € F, find a polynomial of degree 3 in F[x] satisfied by 7.

Let V be n-dimensional over F with a basis vy, ..., v,. Suppose that
T € A(V) is such that

1T =0, 0T =v3,...,0,_, T =uv,

T = —apwy —a, 19 — " — Y,
where a3, ..., a, € F. Prove that T satisfies the polynomial
px) = 3" + " '+ ax" 2 + -+ + a, over F.

If Te A(V) satisfies a polynomial ¢(x) € F[x], prove that for Se

A(V), S regular, STS ™! also satisfies q(x).

(a) If Fis the field of rational numbers and if V is three-dimensional
over F with a basis v,, v,, v3, compute the rank of T e A(V)
defined by

v, T = v, — vy,
v, T = v, + v,
v3T = vy + vs.
(b) Find a vector ve V, v # 0. such that vT = 0.

Prove that the range of T"and U = {ve V|vT = 0} are subspaces
of V.

If TeA(V), let Vo = {veV|vT* = 0 for some k}. Prove that
V, is a subspace and that if vT™ € V,, then v € V.

Prove that the minimal polynomial of T over F divides all polynomials
satisfied by T over F.

If n(T) is the dimension of the U of Problem 32 prove that r(T) +
n(T) = dim V.
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6.2 Characteristic Roots

For the rest of this chapter our interest will be limited to linear transfor-
mations on finite-dimensional vector spaces. Thus, henceforth, V will always

denote a_finite-dimensional vector space over a field F.
The algebra A(V) has a unit element; for ease of notation we shall write

this as 1, and by the symbol A — T, for AeF, T € A(V) we shall mean
Al — T

DEFINITION If TeA(V) then AeF is called a characteristic root (or
agenvalue) of T if A — T is singular.

We wish to characterize the property of being a characteristic root in the

behavior of T on V. We do this in

THEOREM 6.21 The element A€ F is a characteristic root of T e A(V) if
and only if for somev # Oin V, vT = Av.

Proof. If A is a characteristic root of T then 4 — T is singular, whence,
by Theorem 6.1.3, there is a vector » # 0 in V such that v(A — T) = 0.
But then Av = oT.

On the other hand, if vT = Av for some v # 0 in V, then v(4 — T) = 0,
whence, again by Theorem 6.1.3, A — T must be singular, and so, 4 is a
characteristic root of T.

LEMMA 6.21 If AeF is a characteristic root of T e A(V), then for any
polynomial q(x) € F[x], q(A) is a characteristic root of q(T).

Proof. Suppose that A € F is a characteristic root of 7. By Theorem
6.2.1, there is a nonzero vector v in V such that 7 = Av. What about v72?

Now 0T? = (A0)T = A(vT) = A(4v) = A%». Continuing in this way,
we obtain that 7% = A*» for all positive integers k. If g(x) = opx™ +
al"‘}"_l + tet + ams a;EF, then Q(T) = aOT"' + ale—l + e + am’
whence 09(T) = v(tgT™+ o, T™ "+ -+ +a,) = 0g(@T™ +a,(@T™" 1) +
vt o = (0gA™ + A" + -+ + a,)o = g(4)v by the remark made
above. Thus v(¢(A) — ¢(T)) = 0, hence, by Theorem 6.2.1, ¢(4) is a

characteristic root of ¢(T).

As immediate consequence of Lemma 6.2.1, in fact as a mere special
case (but an extremely important one), we have

THEOREM 6.2.2 If A€ F is a characteristic root of T € A(V), then A is a
root of the minimal polynomial of T. In particular, T only has a finite number of
characteristic roots in F.
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Proof. Let p(x) be the minimal polynomial over F of T’; thus p(T) = 0.
If A€ F is a characteristic root of T, thereis a v # 0 in V with 2T = Ao.
As in the proof of Lemma 6.2.1, vp(T) = p(A)v; but p(T) = 0, which
thus implies that p(A)v» = 0. Since » # 0, by the properties of a vector
space, we must have that p(4) = 0. Therefore, 4 is a root of p(x). Since
p(x) has only a finite number of roots (in fact, since deg p(x) < n*> where
n = dimg V, p(x) has at most n? roots) in F, there can only be a finite
number of characteristic roots of T in F.

If Te A(V)andifS e A(V) i regular, then (STS™1)2 = STS STS ! =
ST3S~1, (STS Y3 =8T3S L,...,(STS™ Y = ST!S~!. Consequently,
for any ¢(x) € F[x], ¢(STS™') = S¢(T)S~!. In particular, if ¢(T) = 0,
then ¢(STS™ ') = 0. Thus if p(x) is the minimal polynomial for T, then it
follows easily that p(x) is also the minimal polynomial for 7S~ !. We have
proved

LEMMA 6.2.2 If T,Se A(V) and if S is regular, then T and STS ' have
the same minimal polynomial.

DEFINITION The element 0 # v € V is called a characteristic vector of T
belonging to the characteristic root A€ Fif v T = Av.

What relation, if any, must exist between characteristic vectors of T
belonging to different characteristic roots? This is answered in
A Y

THEOREM 6.2.3 If Ay, ..., A, in F are distinct characteristic roots of T €
A(V) and if vy, ..., v, are characteristic vectors of T belonging to Ay, ..., Ay
respectively, then vy, . .., v, are linearly independent over F.

Proof. For the theorem to require any proof, £ must be larger than 1;
so we suppose that £ > 1.

If o, ..., v, are linearly dependent over F, then there is a relation of the
form o0, + **- + oy = 0, where u;,..., o, are all in F and not all of
them are 0. In all such relations, there is one having as few nonzero co-
efficients as possible. By suitably renumbering the vectors, we can assume
this shortest relation to be

ﬁlsl+'..+ﬁj0j=0> ﬁl#ox"')ﬂj¢0° (])
We know that »;T = A;v;, so, applying T to equation (1), we obtain
Alﬂlvl + v + l}-ﬂjl?} = O. (2)

Multiplying equation (1) by A; and subtracting from equation (2), we
obtain

(A2 — A4)Baws + -+ + (4; — A)Bjp; = 0.
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Now A;— 4; # 0 for i > 1, and f; # 0, whence (4; — 4,)B; # 0. But
then we have produced a shorter relation than that in (1) between 2,
3, - .., 0. This contradiction proves the theorem.

COROLLARY 1 If Te A(V) and if dimp V = n then T can have at most
n distinct characteristic roots in F.

Proof. Any set of linearly independent vectors in ¥V can have at most n
elements. Since any set of distinct characteristic roots of 7, by Theorem
6.2.3, gives rise to a corresponding set of linearly independent characteristic
vectors, the corollary follows.

COROLLARY 2 If Te A(V) and if dimp V = n, and if T has n distinct
characteristic rools in F, then there is a basis of V over F which consists of characteristic
vectors of T.

We leave the proof of this corollary to the reader. Corollary 2 i but the
first of a whole class of theorems to come which will specify for us that a
given linear transformation has a certain desirable basis of the vector space
on which its action is easily describable.

Problems
In all the problems Vis a vector space over F.

1. If Te A(V) and if ¢(x) € F[x] i such that ¢(T) = Q is it true that
every root of g(x) in F is a characteristic root of T? Either prove that
this is true or give an example to show that it is false.

2. If Te A(V) and if p(x) is the minimal polynomial for T over F, sup-
pose that p(x) has all its roots in F. Prove that every root of p(x) is a
characteristic root of T.

3. Let V be two-dimensional over the field F, dof real numbers, with a
basis #;, v,. Find the characteristic roots and corresponding charac-
teristic vectors for T defined by
@) 0,7 =2, + 25, 1,7 =0, — 0,

(b) ﬂlT = 501 + 602, va = —702.
(¢) 9,T = v, + 20,, 2,T = 3y, + 6v,.

4. Let V be as in Problem 3, and suppose that T'e A(V) is such that
0, T = av, + Pv;, v,T = yv; + 6v,, where a, f, 7,6 are in F.
(a) Find necessary and sufficient conditions that 0 be a characteristic
root of T in terms of a, f, 7, 4.
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(b) In terms of a, B, y, 6 find necessary and sufficient conditions that
T have two distinct characteristic roots in F.

5 If V is two-dimensional over a field F prove that every element in
A(V) satisfies a polynomial of degree 2 over F.

*6. If V is two-dimensional over F and if S, T € A(V), prove that
(ST — TS)? commutes with all elements of A(V).

7. Prove Corollary 2 to Theorem 6.2.3.

8. If V is n-dimensional over F and T € A(V) is nilpotent (i.e., T*= 0
for some k), prove that 7" = 0. (Hint: If v € V use the fact that v, » T,
vT?,...,vT" must be linearly dependent over F.)

6.3 Matrices

Although we have been discussing linear transformations for some-time, it
has always been in a detached and impersonal way; to us a linear trans-
formation has been a symbol (very often T') which acts in a certain way on
a vector space. When one gets right down to it, outside of the few concrete
examples encountered in the problems, we have really never come face to
face with specific linear transformations. At the same time it is clear that
if one were to pursue the subject further there would often arise the need
of making a thorough and detailed study of a given linear transformation.
To mention one precise problem, presented with a linear transformation
(and suppose, for the moment, that we have a means of recognizing it),
how does one go about, in a “practical” and computable way, finding its
characteristic roots?

What we seek first is a simple notation, or, perhaps more accurately,
representation, for linear transformations. We shall accomplish this by
use of a particular basis of the vector space and by use of the action of a
linear transformation on this basis. Once this much is achieved, by means
of the operations in A(V) we can induce operations for the symbols created,
making of them an algebra. This new object, infused with an algebraic life
of its own, can be studied as a mathematical entity having an interest by
itself. This study is what comprises the subject of matrix theory.

However, to ignore the source of these matrices, that is, to investigate the
set of symbols independently of what they represent, can be costly, for we
would be throwing away a great deal of useful information. Instead we
shall always use the interplay between the abstract, A(V'), and the concrete,
the matrix algebra, to obtain information one about the other.

Let V be an n-dimensional vector space over a field F and let vy, ..., v,
be a basis of ¥V over F. If T € A(V) then T is determined on any vector as
soon as we know its action on a basis of V. Since T maps Vinto V, v, T,
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v,T,...,v,T mustall bein V. As elements of V, each of these is realizable
in a unique way as a linear combination of vy, ..., v, over F. Thus

0T = a0y + a0 + 700 + P,

0, T = 030, + 00, + *+« + 0y,0,

v; T = ayvy + o0, + 00 + i,

vnT = anlvl + “nz”z + 0+ annvni

where each a;; € F. Thissystem of equations can be written more compactly as
n
vy, T = o0 for t=1,2,...,n
The ordered set of n? numbers a;; in F completely describes T. They will
serve as the means of representing 7.

DEFINITION Let V be an n-dimensioned vector space over F and let
vy,...,0, be a basis for V over F. If T e€ A(V) then the matrix of T in the
basis vy, . .., v,, written as m(T), is

®yp %y "7 Oy,

m(T) = G21 Q22 "77 O,

Oy %pp """ Opy
where »,T = ¥; o; 25

A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let V be the set of all
polynomials in x of degree n — 1 or less over F. On V let D be defined
by (Bo + Brx +cc + Booy " )D =By + 2Bpx + - + i 4+ 0
(n — 1)B,_;x"" 2. It is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The questions is meaningless unless we specify
a basis of V. Let us first compute the matrix of D in the basis »; = 1,
v, =% v =x%,...,0,=x"1 ..., 0, = 2" 1. Now,

vy D=1D =0=0y, + Ov, +--+ Oy,
”zD=XD=1=lUI+0v2+"'+0v"

oD = #7'D = (i — 1)x*~?
=00 + 00, + -+ 005 + (¢ — Doy + Op;
+ LY + Ovn
2, D = #~'D = (n — ])x"2

Ov; + Ovy +-++ +0v,_, + (n — 1)v,_, + Ouv,
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Going back to the very definition of the matrix of a linear transformation
in a given basis, we see the matrix of D in the basis vy, ..., v, m;(D), is
in fact

conNvOO
OCwooo
| oocooco©
cocoocooo

(n—=1)

However, there is nothing special about the basis we just used, or in how
we numbered its elements. Suppose we merely renumber the elements of
this basis; we then get an equally good basis w, = "1, w, = "2, ..,
w,=x" i . ..,w,=1. What is the matrix of the same linear trans-
formation D in this basis? Now,

w,D=x" D= (n— 1)x""2

= 0w, + (n - Nw, + Ow; + -+ + Ow,
;U,D 7D = (n — k"t
= Owl + o0+ Ow, + (ﬂ - i)wi+1 + Ow,_” + o+ Ow,,

;u,,D=1D=0=0w1+0w2+---+0w,,,

whence m, (D), the matrix of D in this basis is

0 (n—1) 0 0 00

0 0 (n—2) 0 00

0 0 0 (n—3) 00
my(D) =| 0 ..

0 0 0 ... 01

0 0 0 ... 00

Before leaving this example, let us compute the matrix of D in still another
basis of V over F. Let uy =1, uy=1+4x, uy3=1+x%..  ju,=1+x""1;
it is easy to verify that u,,..., u, form a basis of V over F. What is the
matrix of D in this basis? Since

u1D=1D=O=Ou1+Ou2 -*-"‘-*-Ou’l

u2D=(l+x)D=1=1u1+0u2+...+0u”
U3D = (1 + xz)D = 2x = 2(“2 - “1) = —2“1 + 2“2 + 01(3 4+ e+ Oun
wD=(+% YD =(n—1x2=(n— 1) — u)

—(n— Duy + Ouy + -+ + Oup_p + (n — Du,, + Ou,
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The matrix, my(D), of D in this basis is

0 00 0 0

1 00 0 o0

-2 20 0 o0

-3 03 0 o0

my(D) = 0 o0
0 o0

—~(r=1) 00 ... (n—1) 0

By the example worked out we see that the matrices of D, for the three
bases used, depended completely on the basis. Although different from each
other, they still represent the same linear transformation, D, and we could
reconstruct D from any of them if we knew the basis used in their determi-
nation. However, although different, we might expect that some relationship
must hold between m, (D), m,(D), and m5(D). This exact relationship will
be determined later.

Since the basis used at any time is completely at our disposal, given a
linear transformation T (whose definition, after all, does not depend on any
basis) it is natural for us to seek a basis in which the matrix of T has a
particularly nice form. For instance, if T is a linear transformation on V,
which is #n-dimensional over F, and if T has n distinct characteristic roots
Ay - .., 4, in F, then by Corollary 2 to Theorem 6.2.3 we can find a basis
U1, ...,0, of Vover F such that ;T = Ap;. In this basis T has as matrix
the especially simple matrix,

A, 0 0 ... 0

0 1, 0 ... 0
m(T) =

0 0 . ... A,

We have seen that once a basis of V is picked, to every linear transforma-
tion we can associate a matrix. Conversely, having picked a fixed basis
3, ..., 0, of Vover F, a given matrix

Ayg  ove Agy
: S P a;; € F,
Oy b Xnp,

gives rise to a linear transformation 7 defined on V by v;T = 3°; a;9; on
this basis. Notice that the matrix of the linear transformation 7, just con-
structed, in the basis v, . .., v, is exactly the matrix with which we started.
Thus every possible square array serves as the matrix of some linear trans-
formation in the basis v, ..., ,.
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It is clear what is intended by the phrase the first row, second row,. . .,
of a matrix, and likewise by the first column, second column,.... In the
matrix

the element «;; is in the ith row and jth column; we refer to it as the (7, j)
entry of the matrix.

To write out the whole square array of a matrix is somewhat awkward;
instead we shall always write a matrix as («;;); this indicates that the (7, )
entry of the matrix is «;;.

Suppose that V is an z-dimensional vector space over F and v,,..., 7,
is a basis of ¥V over F which will remain fixed in the following discussion.
Suppose that §and T are linear transformations on V over F having matrices
m(S) = (04;), m(T) = (1), respectively, in the given basis. Our objective
is to transfer the algebraic structure of A(V') to the set of matrices having
entries in F.

To begin with, S = T if and only if o§ = ¢T for any v € V, hence, if
and only if 4§ = ;T for any v,,..., v, forming a basis of V over F.
Equivalently, § = T if and only if 6;; = 1;; for each i and,.

Given that m(S) = (6,;) and m(T) = (7;;), can we explicitly write down
m(S + T)? Because m(S) = (0y)), ;S = X; 6,2;; likewise, 9, T = 3; 7,0},
whence

UI(S + T) = U;S + U‘T = Z U'jllj + Z fijvj = Z: (G'U + TU)UJ.
i i J

But then, by what is meant by the matrix of a linear transformation in a
given basis, m(S + T) = (4,;) where 4;, = 6;; + 7;; for every i and j.
A computation of the same kind shows that for y € F, m(yS) = (p;;)
where p;; = yo;; for everyi and j.

The most interesting, and complicated, computation is that of m(ST).
Now

2(ST) = (@S5)T = (Z aikvk> T =" o4(sT).

However, 4, T = 3; 7, v;; substituting in the above formula yields
2(ST) = 3" o (Z 'r,u-vj) =3 (Z a,-kt,‘j)vj.
k i i k
(Prove!) Therefore, m(ST) = (v;;}, where for each ¢ and j, v;; =
Tk OuTyje
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At first glance the rule for computing the matrix of the product of two
linear transformations in a given basis seems complicated. However, note
that the (i, j) entry of m(ST) is obtained as follows: Consider the rows of
S as vectors and the columns of T as vectors; then the (i, j) entry of m(ST)
is merely the dot product of the ith row of § with the jth column of T.

Let us illustrate this with an example. Suppose that

12
m(s) =(3 4)

and

the dot product of the first row of S with the first column of T is (1)(—1) +
(2)(2) = 3, whence the (1, 1) entry of m(ST) is 3; the dot product of the
first row of S with the second column of T is (1)(0) + (2)(3) = 6, whence
the (1, 2) entry of m(ST) is 6; the dot product of the second row of S with
the first column of T is (3)(—1) + (4)(2) = 5, whence the (2, 1) entry of
m(ST) is 5; and, finally the dot product of the second row of § with the
second column of T is (3)(0) + (4)(3) = 12, whence the (2, 2) entry of

M(ST) is 12. Thus
5 6

ST) = :

m(ST) (5 12)

The previous discussion has been intended to serve primarily as a motiva-
tion for the constructions we are about to make.
Let F be a field; an n x n matrix over F will be a square array of elements

in F,
(“11 Oz - “1::)
Fn1 Opz o Uy

(which we write as (a;;)). Let F, = {(a;)]|a;; € F}; in F, we want to
introduce the notion of equality of its elements, an addition, scalar multipli-
cation by elements of F and a multiplication so that it becomes an algebra
over F. We use the properties of m(T') for T € A(V') as our guide in this.

. We declare (a;;) = (B;;), for two matrices in F,, if and only if a;; =
B;; for each i andj.

2. We define (2;;) + (Bi;) = (4;;) where 4;; = a;, + B;; for every i, j.

3. We define, for y € F, y(a;;) = (g;;) where u;; = ya;; for every i and .

4. We define (a;;)(B;;) = (vi;), where, for every i and j, v;; = 2o CirBje
Let V be an n-dimensional vector space over F and let v,,...,v, be a

basis of V over F; the matrix, m(T), in the basis #,, . . ., v, associates with

T e A(V) an element, m(T), in F,. Without further ado we claim that the
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mapping from A(V) into F, defined by mapping 7 onto m(T) is an algebra
isomorphism of A(V) onto F,. Because of this isomorphism, F, is an
associative algebra over F (as can also be verified directly). We call F,
the algebra of all n x n matrices over F.

Every basis of V provides us with an algebra isomorphism of A(V) onto
F,. Ttis a theorem that every algebra isomorphism of A(V) onto F, is so
obtainable.

In light of the very specific nature of the isomorphism between A(V) and
F,, we shall often identify a linear transformation with its matrix, in some
basis, and A(V) with F,. In fact, F, can be considered as A(V) acting on
the vector space V = F® of all a-tuples over F, where for the basis v, =
(1,0,...,0), v, =1¢(0,1,0,...,0),..., v,=1(0,0,...,0,1), {(o;) €F,
acts as v(e;,) = ith row of (;;).

We summarize what has been done in

THEOREM 6.3.1 The set of all n x n matrices over F form an associative
algebra, F,, over F. If V is an n-dimensional vector space over F, then A(V) and
F,, are isomorphic as algebras over F. Given any basis v, ...,v, of V over F, if
Jor TeA(V), m(T) is the matrix of T in the basis vy, ....v,, the mapping
T — m(T) provides an algebra isomor phism of A(V') onto F,,.

The zero under addition in F, is the zero-matrix all of whose entries are 0;
we shall often write it merely as 0. The unit matrix, which is the unit element
of F, under multiplication, is the matrix whose diagonal entries are 1 and
whose entries elsewhere are 0; we shall write it as /, /, (when we wish to
emphasize the size of matrices), or merely as 1. For a € F, the matrices

o
C{I:
o

(blank spaces indicate only O entries) are called scalar matrices. Because of the
isomorphism between A(V) and F,, it is clear that T e A(V) is invertible
if and only if m(T'), as a matrix, has an inverse in F,,.

Given a linear transformation T € A(V), if we pick two bases, v,,...,v,
and wy,. .., w, of Vover F, each gives rise to a matrix, namely, m,(T) and
m,(T), the matrices of T in the bases v,...,v, and w,, ..., w,, respec-
tively. As matrices, that is, as elements of the matrix algebra F,, what is
the relationship between m;(T) and m,(T)?

THEOREM 6.3.2 If V is n-dimensional over F and if T € A(V) has the ma-
trix my(T) in the basis v, ..., v, and the matrix my(T) in the basis w,, . .., w,
of V over F, then there is an element Ce F, such that my(T) = Cmy(T)C™1.
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In fact, if S is the lincar transformation of V defined by v,S = w; for i = 1,2,...,n,
then C can be chosen to be m,(S).

Proof. Let my(T) = (a;;) and my(T) = (B;;); thus ;T = 3; ay;
w,T = 3%; B;jw;.

Let S be the linear transformation on V defined by »,S = w, Since
Vy,.-.,0, and w,, ..., w, are bases of V over F, § maps V onto V, hence,
by Theorem 6.1.4, S is invertible in A(V).

Now w;T = ¥ ; B;w;; since w; = v;§, on substituting this in the ex-
pression for w;T we obtain (v,S)T = X ; B;;(v;S). But then v(ST) =
(X Bijv;)S; since S is invertible, this further simplifies to »,(STS !) =
2j Bijv;- By the very definition of the matrix of a linear transformation in
a given basis, m(STS ') = (B;;) = my(T). However, the mapping
T - my(T) is an isomorphism of A(V) onto F,; therefore, m,(STS™!) =
my (S)my(T)my(S ™) = my(S)m,(T)m,(S) !. Putting the pieces together,
we obtain my(T) = m,(S)m;(T)m,(S) !, which is exactly what is claimed
in the theorem.

We illustrate this last theorem with the example of the matrix of D, in
various bases, worked out earlier. To minimize the computation, suppose
that V is the vector space of all polynomials over F of degree 3 or less, and let
D be the differentiation operator defined by (¢tg + a,x + 0,x2 + a3x®)D =
a, + 2a,x + 3ayxl.

As we saw earlier, in the basis v, = 1, v, = x, v3 = 2, v, = x3, the
matrix of D is

my (D) =

O N OO
W o oo
OO OO

(=R B -]

In the basis u; =1, u; =1 + x, u3 = 1 + x%, uy = 1 + x3, the matrix
of D is

0
0
0

WO oo

0 0

1 0
-2 0
-3 0

Let S be the linear transformation of V defined by »§ = w,(=v,),
v S=w,=1+x=0v,+0v, v:8=w;=1+x*=0v, +0v;, and also
08 =ws =1 + x3 = v, + v,. The matrix of S in the basis ,, v,, v3, v4
is

—
SO =0
O = OO
-0 O O
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A simple computation shows that

1 0 0 O
-1 1 0 0
-1 _
C_—IOIO
-1 0 0 1
Then
1 0 0 O 0 0 0 O 1 0 0O
1 1 0 Opf1 O O O\[/~1 1 0 O
-1 _
CrDC" =11 01 0flo 2 0 of|-1 01 0
1 0 0 1/\0 0 3 0/ \=1 0 01
g0 0 0O
1 0 0 O
-3 0 3 O

as it should be, according to the theorem. (Verify all the computations
used!)

The theorem asserts that, knowing the matrix of a linear transformation
in any one basis allows us to compute it in any other, as long as we know the
linear transformation (or matrix) of the change of basis.

We still have not answered the question: Given a linear transformation,
how does one compute its characteristic roots? This will come later. From
the matrix of a linear transformation we shall show how to construct a
polynomial whose roots are precisely the characteristic roots of the linear
transformation.

Problems

1. Compute the following matrix products:

@ (1 2 3/ 1 0 1
(1 -1 2( o 2 3).
3 4 5/\—1 —1 -1

(b)(

@1 1
)

2. Verify all the computations made in the example illustrating Theorem
6.3.2.

N -
i =2}
N——

fon)
NeH
W G ol
W G P

Wl L=
S ——
. N
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. In F, prove directly, using the definitions of sum and product, that

(a) A(B + C) = 4B + AC;
(b) (4B)C = A(BC);
for A, B, Ce F,.

. In F, prove that for any two elements A and B, (AB — BA)? is a

scalar matrix.

. Let V be the vector space of polynomials of degree 3 or less over F.

In V define T by (ap + ax + ax? + 03x®) T = o9 + o,(x + 1) +

ay(x + 1)2 + a3(x + 1)3. Compute the matrix of 7 in the basis

(a) 1, x, x2, x3.

() L1 +x 1 + %2, 1 + x3.

(c) If the matrix in part (a) is 4 and that in part (b) is B, find a
matrix C so that B = CAC™!.

. Let ¥V = F®) and suppose that

1 1 2
-1 2 1
01 3

is the matrix of T € A(V) in the basis v, = (1, 0,0), », = (0, 1, 0),
vy = (0,0, 1). Find the matrix of T in the basis

(a) U = (19 1, l)) u; = (03 1, 1): Uy = (09 0) l)

(b) u, =(1,1,0), u, =(1,2,0), u3=(,21).

. Prove that, given the matrix

0 10
A=(0 0 1]|eF
6 —11 6

(where the characteristic of F is not 2), then
(a) 4> — 64* + 114 — 6 = 0.
(b) There exists a matrix C € F; such that

1 00
cac~t* =10 2 o].

0 0 3

. Prove that it is impossible to find a matrix C € F, such that

C(l 1) C_1=(a 0>,
0 1 0 B

for any a, f € F.

. A matrix A€ F, is said to be a diagonal matrix if all the entries off

the main diagonal of 4 are 0, i.e., if 4 = («;;) and a;; = 0 for i # j.
If 4 is a diagonal matrix all of whose entries on the main diagonal
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are distinct, find all the matrices B € F, which commute with A4, that is,
all matrices B such that B4 = AB.

10. Using the result of Problem 9, prove that the only matrices in F,
which commute with all matrices in F, are the scalar matrices.

11. Let 4 € F, be the matrix

=

0100 ...0
0010..00

A=9001...(:)(:)’
0000 ... 0.1
0000 ..00

whose entries everywhere, except on the superdiagonal, are 0, and
whose entries on the superdiagonal are 1’s. Prove 4" = 0 but 4" ! # 0.

*]12. If 4 is as in Problem 11, find all matrices in F, which commute with
A and show that they must be of the form ay + ;4 + a,4% + -+ +
a,_, A"~ ! where ag, &y, ..., &, €F.

13. Let AeF, and let C(4) = {BeF,| AB = BA}. Let C(C(4)) =
{GeF,| GX = XG for all Xe C(4)}. Prove that if G € C(C(A)) then
G is of the form oy + 0,4, 0, @, € F.

14. Do Problem 13 for A4 € F,, proving that every Ge C(C(4)) is of
the form ay + a4 + a,4>

15. In F, let the matrices E;; be defined as follows: E;; is the matrix
whose only nonzero entry is the (i, j) entry, which is 1. Prove
(a) The E;; form a basis of F, over F.

(b) E;Eq = Oforj # k; EjE; = Ey.

(c) Given i, j, there exists a matrix C such that CE;,C™! = E;,.
(d) If i # j there exists a matrix C such that CE;;C™! = E,,.
(e) Find all B € F, commuting with E, ,.

(f) Find all B € F, commuting with E,,.

16. Let F be the field of real numbers and let C be the field of complex
numbers. For ae C let T,:C - C by xT, = xa for all xe C. Using
the basis 1, 7 find the matrix of the linear transformation 7, and so get
an isomorphic representation of the complex numbers as 2 x 2
matrices over the real field.

17. Let @ be the division ring of quaternions over the real field. Using
the basis 1, 1, j, k of @ over F, proceed as in Problem 16 to find an
isomorphic representation of @ by 4 x 4 matrices over the field of
real numbers.

*18. Combine the results of Problems 16 and 17 to find an isomorphic
representation of @ as 2 x 2 matrices over the field of complex
numbers.
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19.

20.

21.
22.

23.

24.

25.

26.

217.

Let A be the set of all n x n matrices having entries 0 and 1 in such

a way that there is one 1 in each row and column. (Such matrices

are called permutation matrices.)

(a) If M e #, describe AM in terms of the rows and columns of A4.

(b) If M € A, describe MA in terms of the rows and columns of 4.

Let .# be as in Problem 19. Prove

(a) # has n! elements.

(b) If M e A, then it is invertible and its inverse is again in .

(c) Give the explicit form of the inverse of M.

(d) Prove that .# is a group under matrix multiplication.

(e) Prove that .# is isomorphic, as a group, to §,, the symmetric
group of degree n.

Let 4 = (x;;) be such that for each 7, 3';a;; = 1. Prove that 1 is

a characteristic root of 4 (that is, 1 — A is not invertible).

Let 4 = (a;;) be such that for every j, 3; a;, = 1. Prove that I is

a characteristic root of 4.

Find necessary and sufficient conditions on a, f, y, 6, so that

A= (a 'g ) is invertible. When it is invertible, write down A~1
14

explicitly.

If E€F, is such that E2 = E # 0 prove that there is a matrix
C € F, such that

10 ...0]0...0
01 ...0
cEC 1 00 ... 1] 0...0
=lo ...o0lo0..o0/
0 ...0 ]| 0...0

where the unit matrix in the top left corner is r x r, where 7 is the
rank of E.

If F is the real field, prove that it is impossible to find matrices
A, B € F, such that AB — B4 = 1.

If F is of characteristic 2, prove that in F) it is possible to find matrices
A, B such that AB — B4 = 1.

The matrix 4 is called triangular if all the entries above the main

diagonal are 0. (If all the entries below the main diagonal are O the

matrix is also called triangular).

(a) If 4 is triangular and no entry on the main diagonal is 0, prove
that 4 is invertible.

(b) If A4 is triangular and an entry on the main diagonal is 0, prove
that A4 is singular.
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28. If A is triangular, prove that its characteristic roots are precisely the
elements on its main diagonal.

29. If N* = 0, Ne F,, prove that 1 + N is invertible and find its inverse
as a polynomial in N.

30. If A € F, is triangular and all the entries on its main diagonal are 0,
prove that 4" = 0.

31. If AeF, is triangular and all the entries on its main diagonal are
equaltoa # 0 € F,find 47 1.

32. Let S, T be linear transformations on V such that the matrix of §
in one basis is equal to the matrix of T in another. Prove there exists
a linear transformation 4 on V such that T = ASA~ 1.

6.4 Canonical Forms: Triangular Form

Let V be an n-dimensional vector space over a field F.

DEFINITION The linear transformations S, Te A(V) are said to be
similar if there exists an invertible element C € 4(V) such that T = CSC ™ 1.

In view of the results of Section 6.3, this definition translates into one
about matrices. In fact, since F, acts as A(V) on F™| the above definition
already defines similarity of matrices. By it, 4, B € F, are similar if there
is an invertible C € F, such that B = CAC™ L.

The relation on A(V) defined by similarity is an equivalence relation;
the equivalence class of an element will be called its similarity class. Given
two linear transformations, how can we determine whether or not they are
similar? Of course, we could scan the similarity class of one of these to see
if the other is in it, but this procedure is not a feasible one. Instead we try
to establish some kind of landmark in each similarity class and a way of
going from any element in the class to this landmark. We shall prove the
existence of linear transformations in each similarity class whose matrix,
in some basis, is of a particularly nice form. These matrices will be called
the canonical forms. To determine if two linear transformations are similar,
we need but compute a particular canonical form for each and check if
these are the same.

There are many possible canonical forms; we shall only consider three of
these, namely, the triangular form, Jordan form, and the rational canonical
form, in this and the next three sections.

DEFINITION The subspace W of V is tnvariant under T € A(V) if
WT c w.

LEMMA 6.41 If W c V is invariant under T, then T induces a linear
trangformation T on V|W, defined by (v + W)T = oT + W. If T satisfies
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the polynomial q(x) € F[x), then so does T. If p,(x) is the minimal polynomial
Jor T over F and if p(x) is that for T, then p,(x) | p(x).

Proof. Let V = V/W,; the elements of P are, of course, the cosets
v+ W of Win V. Given v =v + We V define 3T =T + W. To
verify that T has all the formal properties of a linear transformation on 7
is an easy matter once it has been established that T is well defined on V. We
thus content ourselves with proving this fact.

Suppose that v = »; + W = v, + W where v, v, e V. We must show
that 9, T+ W =v,T + W. Since v; + W =v, + W, v, — v, must be
in W, and since ¥ is invariant under T, (»; — v,) T must also be in W.
Consequently y T — »,T e W, from which it follows that 6 T + W =
v, T + W, as desired. We now know that T defines a linear transformation
on V = VIW.

f 2=0+ WePV, then 3T?) =oT* + W= (TNT + W =
@T + W)T = (v + W)T)T = 5(T)?; thus (T7) = (T)% Similarly,
(T*) = (T)* for any k > 0. Consequently, for any polynomial ¢(x) e
F[x], ¢(T) = q(T). For any g(x) € F[x] with ¢(T) = 0, since 0 is the
zero transformation on ¥, 0 = ¢(T) = ¢(T').

Let p,(x) be the minimal polynomial over F satisfied by T. If ¢(T) = 0
for ¢(x) € F[x], then p,(x) | ¢(x). If p(x) is the minimal polynomial for T
over F, then p(T) = 0, whence p(T) = 0; in consequence, p,(x) | p(x).

As we saw in Theorem 6.2.2, all the characteristic roots of T which lie
in F are roots of the minimal polynomial of T over F. We say that all the
characteristic roots of T are in F if all the roots of the minimal polynomial of T
over F liein F.

In Problem 27 at the end of the last section, we defined a matrix as being
triangular if all its entries above the main diagonal were 0. Equivalently, if
T is a linear transformation on V over F, the matrix of T in the basis
Uys - -+ » U, is triangular if

0T = o0

0, T = 03,0, + 0330,

1, T = o;0 + vy +° 00 + Ay,
v, T = apvy + " + Opplns

i.e., if ;T is a linear combination only of ; and its predecessors in the basis.

THEOREM 6.41 If Te A(V) has all its characteristic roots in F, then there
is a basis of V in which the matrix of T is triangular.

Proof. The proof goes by induction on the dimension of V over F.
If dim; V =1, then every element in A(V) is a scalar, and so the
theorem is true here.
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Suppose that the theorem is true for all vector spacesover F of dimension
n — 1, and let V be of dimension n over F.

The linear transformation 7 on V has all its characteristic roots in F;
let A, € F be a characteristic root of T. There exists a nonzero vector v,
in V such that 9, T = A,;v,. Let W = {av, | 2 € F}; W is a one-dimensional
subspace of V, and is invariant under 7. Let ¥ = V/W; by Lemma 4.2.6,
dim P =dim V—dimW =n—1. By Lemma 6.4.1, T induces a
linear transformation 7" on P whose minimal polynomial over F divides
the minimal polynomial of T over F. Thus all the roots of the minimal
polynomial of T, being roots of the minimal polynomial of 7, must lie in F.
The linear transformation T in its action on P satisfies the hypothesis of
the theorem; since V is (n — 1)-dimensional over F, by our induction
hypothesis, there is a basis v,, 7, .. ., 7, of ¥ over F such that

5, T = a,,7,

EBT = d3252 + a3353
BiT — 0(;252 + ai353 + e + GI“E,-

anT = “nzaz + “5353 S o ‘xnnaa'

Let v,,...,v, be elements of V mapping into ..., 7, respectively.
Then v, v,,..., v, form a basis of V (see Problem 3, end of this section).
Since 7, T = a,,0,, 9,7 — 3,9, = 0, whence v, T — a,,0, must be in W.
Thus ,T — a,,0, is a multiple of v, say a,,2;, yielding, after transposing,
0V, T = 05,0, + 0350,.  Similarly, o,T — a0, — aj303 — 0 ~ a;0,€ W,
whence o;,T = a; v, + a;,0, + - - + a; ;. The basis v,,..., v, of V over
F provides us with a basis where every »;T is a linear combination of »;
and its predecessors in the basis. Therefore, the matrix of T in this basis
is triangular. This completes the induction and proves the theorem.

We wish to restate Theorem 6.4.1 for matrices. Suppose that the matrix
A e F, has all its characteristic roots in F. A defines a linear transforma-
tion 7 on F™ whose matrix in the basis

9, = (1,0,...,0),5, = (0,1,0,...,0),...,0, = (0,0,...,0,1),

is precisely A. The characteristic roots of T, being equal to those of 4, are
all in F, whence by Theorem 6.4.1, there is a basis of F in which the
matrix of T is triangular. However, by Theorem 6.3.2, this change of basis
merely changes the matrix of T, namely 4, in the first basis, into C4C~*!
for a suitable C = F,. Thus

ALTERNATIVE FORM OF THEOREM 6.41 If the matrix Ae F, has
all its characteristic roots in F, then there is a matrix C € F, such that CAC™ "' is
a triangular matrix.
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Theorem 6.4.1 (in either form) is usually described by saying that T
(or A) can be brought to triangular form over F.

If we glance back at Problem 28 at the end of Section 6.3, we see that
after T has been brought to triangular form, the elements on the main
diagonal of its matrix play the following significant role: they are precisely
the characteristic roots of T.

We conclude the section with

THEOREM 6.4.2 If V is n-dimensional over F and if T € A(V) has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.

Proof. By Theorem 6.4.1, we can find a basis vy,...,v, of V over F

such that:
Dl T = A.lvl
Z}zT = a2101 + )\sz

U‘T = i1 i + a('i_lvi_l + }.ll)‘-,
fori =1,2,...,n
Equivalently
w(T —4) =0
{’z(T — A3) = 0340

v (T — A) = ayoy + 00+ o121,

fori =1,2,...,n
What is 0,(T — 4,)(T — A,)? As a result of v,(T — 1,) = a,,v; and
v,(T — ;) = 0, we obtain v,(T — 4,)(T — 4;) = 0. Since

(T = )T = 4) = (T = )T — 1),
(T — )T — 4) 0(T — )(T = 4;) = 0.

Continuing this type of computation yields

0 (T — A)(T = A4—1) (T — 4) =0,
0 (T = A )NT — A ) (T = 4) = 93

o(T = A)(T = Ai—y) (T = 4) = 0.

For i = n, the matrix § = (T — A,)(T — 4,—1) - (T — A,) satisfies
0,8 = 0,8 =+ =y,5 = 0. Then, since § annihilates a basis of V, S must
annihilate all of V. Therefore, § = 0. Consequently, T satisfies the poly-
nomial (x — Ay)(x — A;)---(x — 4,) in F[x] of degree n, proving the
theorem.

Unfortunately, it is in the nature of things that not every linear trans-
formation on a vector space over every field F has all its characteristic roots
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in F. This depends totally on the field F. For instance, if F is the field of
real numbers, then the minimal equation of

(-1 o)

over Fis x2 + 1, which has no roots in F. Thus we have no right to assume
that characteristic roots always lie in the field in question. However, we
may ask, can we slightly enlarge F to a new field K so that everything works
all right over K?

The discussion will be made for matrices; it could be carried out equally
well for linear transformations. What would be needed would be the follow-
ing: given a vector space V over a field F of dimension n, and given an
extension K of F, then we can embed V into a vector space Vi over K of
dimension n over K. One way of doing this would be to take a basis #,, . . .,
v, of V over F and to consider Vy as the set of all ¢, + -- - + a,v, with
the «; € K, considering the v; linearly independent over K. This heavy use
of a basis is unaesthetic; the whole thing can be done in a basis-free way
by introducing the concept of tensor product of vector spaces. We shall not
do it here; instead we argue with matrices (which is effectively the route
outlined above using a fixed basis of V).

Consider the algebra F,. If K is any extension field of F, then F, c K,
the set of n x n matrices over K. Thus any matrix over F can be considered
as a matrix over K. If T €F, has the minimal polynomial p(x) over F,
considered as an element of K, it might conceivably satisfy a different
polynomial po(x) over K. But then py(x) | p(x), since po(x) divides all
polynomials over K (and hence all polynomials over F) which are satisfied
by 7. We now specialize K. By Theorem 5.3.2 there is a finite extension,
K, of F in which the minimal polynomial, p(x), for T over F has all its roots.
As an element of K,, for this K, does T have all its characteristic roots in
K? As an element of K,, the minimal polynomial for T over K, p,(x)
divides p(x) so all the roots of py(x) are roots of p(x) and therefore lie in K.
Consequently, as an element in K,, T has all its characteristic roots in K.

Thus, given T in F,, by going to the splitting field, K, of its minimal
polynomial we achieve the situation where the hypotheses of Theorems 6.4.1
and 6.4.2 are satisfied, not over F, but over K. Therefore, for instance, T
can be brought to triangular form over K and satisfies a polynomial of
degree n over K. Sometimes, when luck is with us, knowing that a certain
result is true over K we can “cut back’ to F and know that the result is still
true over F. However, going to K is no panacea for there are frequent
situations when the result for X implies nothing for . This is why we have
two types of “canonical form™ theorems, those which assume that all the
characteristic roots of T lie in F and those which do not.

A final word; if T € F,, by the phrase ““a characteristic root of T’ we shall
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mean an element A in the splitting field K of the minimal polynomial

p(x)

of T over F such that 1 — T is not invertible in K,. It is a fact (see

Problem 5) that every root of the minimal polynomial of T over F is a
characteristic root of T.

Problems

1. Prove that the relation of similarity is an equivalence relation in A(V).

*3.

*7.

9.

.If TeF, and if K o F, prove that as an element of K,, T is in-

vertible if and only if it is already invertible in F,.

. In the proof of Theorem 6.4.1 prove that v,,...,v, is a basis of V.

. Give a proof, using matrix computations, that if 4 is a triangular

n X n matrix with entries 4, ..., 4, on the diagonal, then

(A =2a)d=2y)--(4d—=4) =
If TeF, has minimal polynomial p(x) over F, prove that every
root of p(x), in its splitting field K, is a characteristic root of T.
If Te A(V) and if A€ F is a characteristic root of T in F, let U, =
{veV|vT = Av}). If Se A(V) commutes with T, prove that U,
is invariant under S.
If # is a commutative set of elements in A(V) such that every

M e .# has all its characteristic roots in F, prove that there is a
C € A(V) such that every CMC ™, for M € .#, is in triangular form.

. Let W be a subspace of V invariant under T'e A(V). By restricting

T to W, T induces a linear transformation T (defined by wT =
wT for every we W). Let p(x) be the minimal polynomial of 7T
over F. __
(a) Prove that p(x) | p(x), the minimal polynomial of T over F.
(b) If T induces T on VW satisfying the minimal polynomial p(x)
over F, prove that p(x) | (x)p(x).
*(c) If p(x) and p(x) are relatively prime, prove that p(x) = p(x)p(x).
*(d) Give an example of a T for which p(x) # p(x)p(x).
Let .# be a nonempty set of elements in A(V'); the subspace W < V
is said to be tnvariant under M if for every Me M, WM c W. If
W is invariant under .# and is of dimension r over F, prove that there
exists a basis of V over F such that every M e .# has a matrix, in

this basis, of the form
(i)
My, M, ’

where M, is an r x 7 matrix and M, is an (r — r) x (n — r) matrix.




10.

*11.

*]2.

*13.

14.

15.

16.
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In Problem 9 prove that M, is the matrix of the linear transformation
M induced by M on W, and that M, is the matrix of the linear trans-
formation M induced by M on V[W.

The nonempty set, .#, of linear transformations in A(V) is called an
irreducible set if the only subspaces of V invariant under .# are (0)
and V. If .# is an irreducible set of linear transformations on V and if

D = {TeA(V)| TM = MT for all M € .4},

prove that D is a division ring.

Do Problem 11 by using the result (Schur’s lemma) of Problem 14,
end of Chapter 4, page 206.

If F is such that all elements in A(V) have all their characteristic
roots in F, prove that the D of Problem 11 consists only of scalars.

Let F be the field of real numbers and let

0 1
e F,.
(-1 o)en

(a) Prove that the set .# consisting only of

01
-1 0
is an irreducible set.

(b) Find the set D of all matrices commuting with

01
-1 0
and prove that D is isomorphic to the field of complex numbers.

Let F be the field of real numbers.
(a) Prove that the set

01 00 0 00 1
10 00 0 01 0
M= oo o11°l o -1 00
00 —1 0o/ \-i 00

is an irreducible set.
(b) Find all 4 € F, such that AM = MA for all Me . 4.
(c) Prove that the set of all 4 in part (b) is a division ring isomorphic
to the division ring of quaternions over the real field.
A set of linear transformations, .# < A(V), is called decomposable
if there is a subspace W < V such that V=W ® W,, W # (0),
W # V, and each of W and W, is invariant under .#. If .# is not
decomposable, it is called indecomposable.
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(a) If # is a decomposable set of linear transformations on V, prove
that there is a basis of V in which every M e .# has a matrix

of the form
M, 0
0 M)

where M, and M, are square matrices.

(b) If V is an n-dimensional vector space over F and if T e A(V)
satisfies 7"= 0 but 7" ! # 0, prove that the set {7} (con-
sisting of T') is indecomposable.

17. Let T e A(V) and suppose that p(x) is the minimal polynomial for
T over F.
(a) If p(x) is divisible by two distinct irreducible polynomials p,(x)
and p,(x) in F[x], prove that {T'} is decomposable.
(b) If {T?}, for some T € A(V) is indecomposable, prove that the
minimal polynomial for T over F is the power of an irreducible
polynomial.

18. If T'e A(V) is nilpotent, prove that T can be brought to triangular
form over F and in that form all the elements on the diagonal are 0.

19. If T € A(V) has only 0 as a characteristic root, prove that T is nil-
potent.

6.5 Canonical Forms: Nilpotent Transformations

One class of linear transformations which have all their characteristic roots
in F is the class of nilpotent ones, for their characteristic roots are all 0,
hence are in F. Therefore by the result of the previous section a nilpotent
linear transformation can always be brought to triangular form over F.
For some purposes this is not sharp enough, and as we shall soon see, a
great deal more can be said.

Although the class of nilpotent linear transformations is a rather re-
stricted one, it nevertheless merits study for its own sake. More important
for our purposes, once we have found a good canonical form for these we
can readily find a good canonical form for all linear transformations which
have all their characteristic roots in F.

A word about the line of attack that we shall follow is in order. We
could study these matters from a *“‘ground-up” approach or we could invoke
results about the decomposition of modules which we obtained in Chapter 4.
We have decided on a compromise between the two; we treat the material
in this section and the next (on Jordan forms) independently of the notion
of a module and the results about modules developed in Chapter 4. How-
ever, in the section dealing with the rational canonical form we shall com-
pletely change point of view, introducing via a given linear transformation
a module structure on the vector spaces under discussion; making use of
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Theorem 4.5.1 we shall then get a decomposition of a vector space, and the
resulting canonical form, relative to a given linear transformation.

Even though we do not use a module theoretic approach now, the reader
should note the similarity between the arguments used in proving Theorem
4.5.1 and those used to prove Lemma 6.5.4.

Before concentrating our efforts on nilpotent linear transformations we
prove a result of interest which holds for arbitrary ones.

LEMMA 651 If V=V, @V, ®---® WV, where each subspace V; is of
dimension n; and is invariant under T, an element of A(V'), then a basis of V can
be found so that the matrix of T in this basis is of the form

4 0 ... 0
0 4, ... 0
0 0 ... 4,

where each A; is an n; X n; matrix and is the matrix of the linear transformation

induced by T on V,.

Proof. Choose a basis of V as follows: !, ..., v, (! is a basis of V,,
2,2, 0,3, ..., 0, @ is a basis of V,, and so on. Since each V, is invariant
under T, »;?T eV, so is a linear combination of »,,s,?,. .. 0 @,
and of only these. Thus the matrix of T in the basis so chosen is of the
desired form. That each 4; is the matrix of T}, the linear transformation
induced on V; by T, is clear from the very definition of the matrix of a
linear transformation.

We now narrow our attention to nilpotent linear transformations.

LEMMA 6.5.2 If T e A(V) is nilpotent, then oy + o, T + -+ + a,T™,
where the a; € F, is invertible if ay # O.

Proof. If S is nilpotent and o # 0 € F, a simple computation shows that

1 S $2 N
(%+S)(———2+——5+"'+(—1)’1 )
G %o %o
if =0 Now if T"=0, S =, T + 2,72 + -+ + a,7T™ also must
satisfy S = 0. (Prove!) Thus for ay # 0 in F, oy + S is invertible.

r =1’

Notation. M, will denote the ¢t x ¢ matrix

010 ..00
001 ...00
00 ...01
00 ...00

all of whose entries are 0 except on the superdiagonal, where they are all 1’s.
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DEFINITION If Te A(V) is nilpotent, then k is called the index of nil-
potence of Tif T = 0 but T*~! # 0,

The key result about nilpotent linear transformations is

THEOREM 6.5.1 If T € A(V) is nilpotent, of index of nilpotence n,, then a
basis of V can be_found such that the matrix of T in this basis has the form

M, 0 ... 0O

0o M, ... 0
0o 0 ... M

B

where ny > 1y >0 =z n, and where ny + ny + - + n, = dim, V.

Proof. The proof will be a little detailed, so as we proceed we shall

separate parts of it out as lemmas.

Since T™ =0 but T"~! % 0, we can find a vector ve V such that
vT™~' % 0. We claim that the vectors v,0T,...,vT™ ! are linearly
independent over F. For, suppose that oo + 0T + «++ + o, 0T™ "' = 0
where the o; € F; let oy be the first nonzero «, hence

st*l(a’ + as+lT + 0+ a“Tﬂl—S) = 0.

Since o, # 0, by Lemma 6.5.2, g + o5, T + -** + o, T™ ™% is invertible,
and therefore v7*~! = 0. However, s < n,, thus this contradicts that
vT™ ! 2 0. Thus no such nonzero a, exists and v, v7T,, ..., »T™~! have
been shown to be linearly independent over F.

Let ¥, be the subspace of V spanned by v, = 3 v, = o7,...,v, =
vT™~1; V, is invariant under T, and, in the basis above, the linear trans-
formation induced by T on V; has as matrix M, .

So far we have produced the upper left-hand corner of the matrix of the
theorem. We must somehow produce the rest of this matrix.

LEMMA 6.53 If ue V, is such that uT™ * = 0, where 0 < k < n,, then
u = uyT* for some uy € V.

Proof. Since ue V;, u = ay + ovT + -+ + qpT* ! + a, 0T +
o+ @ oT™7L Thus 0 = uT™™* = apT™™* +--- + qpT™m" L
However, »T™ % ..., 9T™"! are linearly independent over F, whence
ay =0, =-+-=o, =0, and so, u = o . WT* + -+ - + 0, 0T™ 1 = 4, Tk
where #; = a0 + - + a, 0T *"1e V.

The argument, so far, has been fairly straightforward. Now it becomes
a little sticky.
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LEMMA 6.5.4 There exists a subspace W of V, invariant under T, such that
V=V, ew.

Proof. Let W be a subspace of V, of largest possible dimension, such that
1. Vin W = (0);

2. W is invariant under 7.

We want to show that V' = V; + W. Suppose not; then there exists an
element z € V such that z¢ V; + W. Since T™ = 0, there exists an in-
teger k, 0 < k < ny, such that zZT* e V, + W and such that zT' ¢ V, + W
for i <k. Thus zT* = u + w, where ue V| and where w e W. But then
0 = zT" = (THT™™* = uT™ * + wT™ *; however, since both V,
and W are invariant under T,uT™ *e V, and wT™ *e W. Now, since
V, n W = (0), this leads to «T™ * = —wT™ *eV; n W = (0), resulting
in «T™ ¥ =0. By Lemma 6.5.3, u = u,T* for some u, € V;; therefore,
ZT* = u + w = ugT* + w. Let 2z, = 2 — uy; then 2, T* = zT* — 4 ,T* =
w e W, and since W is invariant under T this yields z,7™ e W for all
m > k. On the other hand, if i < &k, 2,7 = 2T — u,T'¢ V, + W, for
otherwise 27" must fall in V; + W, contradicting the choice of £.

Let W, be the subspace of V spanned by W and z,,2,T,...,2,T* 1.
Since z; ¢ W, and since W; o> W, the dimension of W, must be larger than
that of W. Moreover, since z,T* € W and since W is invariant under 7,
W, must be invariant under 7. By the maximal nature of W there must
be an element of the form wy + 0,2, + a2, T + - + 4z, T* ' # 0 in
W, n V;, where w,e W. Not all of a;,..., a, can be 0; otherwise we
would have 0 # wye W n V; = (0), a contradiction. Let a be the first
nonzero «; then wy + 2, 75" Yoy + gy, T + -+ + o T* *) e V;. Since
a, # 0, by Lemma 6.5.2, a; + o,y T + + -+ + o, T* * is invertible and its
inverse, R, is a polynomial in T. Thus W and V; are invariant under R;
however, from the above, w,R + 2, T° '€ V,R c V,, forcing 2,T* '€
V,+ WR<cV,+ W. Since s —1 <k this is impossible; therefore
Vi+ W=V. Because V,n W = (0), V=V, @ W, and the lemma is
proved.

The hard work, for the moment, is over; we now complete the proof of
Theorem 6.5.1.

By Lemma 6.5.4, V = V; @ W where W is invariant under 7. Using
the basis v, ..., v,, of V; and any basis of W as a basis of V, by Lemma
6.5.1, the matrix of T in this basis has the form

M, O
0 4,)

where A4, is the matrix of T, the linear transformation induced on W by T.
Since T™ = 0, T,"* = 0 for some n, < n,. Repeating the argument used
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for T on V for T, on W we can decompose W as we did V (or, invoke an
induction on the dimension of the vector space involved). Continuing this
way, we get a basis of V in which the matrix of T is of the form

M, 0 ... 0
0 M,

That n, + n, + +++ + n, = dim V is clear, since the size of the matrix is
n x n where n = dim V.

DEFINITION The integers ny,n,,...,n, are called the invariants of T.

DEFINITION If T e€ A(V) is nilpotent, the subspace M of V, of dimen-
sion m, which is invariant under T, is called cyclic with respect to T if

l. MT™ = (0), MT™ ! # (0);
2. there is an element z € M such that z, zT, ..., zT™ ! form a basis of M.

(Note: Condition 1 is actually implied by Condition 2).

LEMMA 6.5.5 If M, of dimension m, is cyclic with respect to T, then the
dimension of MT* ism — k for all k < m.

Proof. A basis of M T* is provided us by taking the image of any basis of
M under T* Using the basis z, zT, ..., zT™ ! of M leads to a basis zT*,
zT**1 .., zT™ ' of MT*. Since this basis has m — k elements, the

lemma is proved.

Theorem 6.5.1 tells us that given a nilpotent 7 in A(V) we can find
integers n; > n, > --- > n, and subspaces, V;,..., V, of V cyclic with
respect to T and of dimensions ny,n,, ..., n, respectively such that
V=V, ® @YV,

Is it possible that we can find other integers m; > m, > - > m, and -
subspaces U, ..., U; of V, cyclic with respect to T and of dimensions
my, ..., m,, respectively, such that V= U, @ ---@ U,? We claim that
we cannot, or in other words that s =rand m; = ny,, my = n,,...,m, =
n,. Suppose that this were not the case; then there is a first integer ¢ such
that m; # n. We may assume that m; < n,.

Consider VT™. On one hand, since V=V, &---®V, VI'™ =
mr~ - Vrm @---@® V, T™. Since dim V,;T™ = n, — m,
dim V,T™ = n, — my, ...,dim V;T™ = n;, — m; (by Lemma 6.5.5),
dim VT™ > (n, — m;) + (n, — m;) ++--+ (n; — m;). On the other
hand, since V= U, @ --+@® U, and since U;T™ = (0) forj > ¢, VT™ =
ur~e U,T™ + +--@ U,_,T™. Thus

dim VT™ = (my — my) + (my — m) + -+ + (my_y — my).
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By our choice of i, ny = my, n, = m,,...,n;_y = m;_, whence
dim VT™ = (n; — m;) + (n — m) + -+ (n my).

However, this contradicts the fact proved above that dim V7™ >
(g —my) +---+ (m—y m) + (n; — my), sincen; my; > 0.

Thus there is a unique set of integers n, > n, = *-+ = n, such that V is
the direct sum of subspaces, cyclic with respect to 7 of dimensions n,,
Nay ..., n,. Equivalently, we have shown that the invariants of T are unique.

Matricially, the argument just carried out has proved thatif n, > n, >

*»*2>n, and m; > m, > -+ > m, then the matrices
M, ... 0 M, ... 0
? o S 0 oo
o . M o . m,

are similar onlyif r = sand n;, = my, ny = m,,..., n, = m,
So far we have proved the more difficult half of

THEOREM 6.5.2 Two nilpotent linear transformations are similar if and only
if they have the same invariants.

Proof. The discussion preceding the theorem has proved that if the two
nilpotent linear transformations have different invariants, then they can-
not be similar, for their respective matrices

M, ... 0 M,
et and |: E
0 .o M 0 ..M,

ny ms,

0

cannot be similar.

In the other direction, if the two nilpotent linear transformations S and T
have the same invariants n; > **+ > n,, by Theorem 6.5.1 there are bases
Uiy.+., U, and wy, ..., w, of ¥V such that the matrix of § in v,,...,v, and
that of T in w,, ..., w,, are each equal to

M, ... 0

0 e M,
But if A is the linear transformation defined on V by v,4 = w;, then S =
ATA ' (Prove! Compare with Problem 32 at the end of Section 6.3),
whence § and T are similar.

Let us compute an example. Let

01 1
T=|0 0 0)eF,
000
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act on F® with basis , = (1,0,0), u, = (0,1,0), uy = (0,0, 1). Let
v, = Uy, vy = uy T = uy + u3, v3 = uz; in the basis v, v,, v; the matrix

of T is
(O 1 0
o0 | o],
0 0 _6)

so that the invariants of 7T are 2, 1. If 4 is the matrix of the change of

basis, namely
1 00
01 1],
0 0 1

a simple computation shows that

010
ATA ' =0 0 o0].

0 00

One final remark: the invariants of 7 determine a partition of n, the
dimension of V. Conversely, any partition of n, n, >--->n,, n, +
ny + -+ + n,=n, determines the invariants of the nilpotent linear

transformation.
M, ... 0

Thus the number of distinct similarity classes of nilpotent n x n matrices is precisely
p(n), the number of partitions of n.

6.6 Canonical Forms: A Decomposition of V: Jordan Form

Let V be a finite-dimensional vector space over F and let T be an arbitrary
element in A(V'). Suppose that V, is a subspace of V invariant under T.
Therefore T induces a linear transformation 7; on V, defined by uT, =
uT for every ue V,. Given any polynomial ¢(x) € F[x], we claim that
the linear transformation induced by ¢(T") on V, is precisely ¢(7T";). (The
proof of this is left as an exercise.) In particular, if ¢(T") = 0 then ¢(T";) =
0. Thus T, satisfies any polynomial satisfied by T over F. What can be
said in the opposite direction?

LEMMA 6.6.1 Suppose that V =V, @ V,, where V| and V, are subspaces
of V invariant under T. Let T, and T, be the linear transformations induced by
T on V, and V,, respectively. If the minimal polynomial of T over F is p,(x) while
that of T, is p,(x), then the minimal polynomial for T over F is the least common

multiple of p, (x) and p,(x).
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Proof. If p(x) is the minimal polynomial for T over F, as we have seen
above, both p(T;) and p(T,) are zero, whence p, (x) | p(x) and p,(x) | p(x).
But then the least common multiple of p, (x) and p,(x) must also divide p(x).

On the other hand, if ¢(x) is the least common multiple of p,(x) and
pa2(x), consider ¢(T'). For v, € Vy, since p,(x) | ¢(x), v,9(T) = v,q9(T,) = 0;
similarly, for v, € V,, v,9(T) = 0. Given any ve V, v can be written as
v = v, + v,, where v, € V; and v, € V,, in consequence of which vg(T) =
(1 + v2)e(T) = v,9(T) + v,9(T) = 0. Thus ¢(T) = 0 and T satisfies
¢(x). Combined with the result of the first paragraph, this yields the lemma.

COROLLARY If V=V, ®: - @V, where each V; is invariant unde