




Preface to the Second Edition v 

of the book and a complete change in its philosophy-something I did not 
want to do. A mere addition of this new material, as an adjunct with no 
applications and no discernible goals, would have violated my guiding 
principle that all matters discussed should lead to some clearly defined 
objectives, to some highlight, to some exciting theorems. Thus I decided to 
omit the additional topics. 

Many people wrote me about the first edition pointing out typographical 
mistakes or making suggestions on how to improve the book. I should like to 
take this opportunity to thank them for their help and kindness. 





Preface to the First Edition 

The idea to write this book, and more important the desire to do so, is 
a direct outgrowth of a course I gave in the academic year 1959-1960 at 
Cornell University. The class taking this course consisted, in large part, 
of the most gifted sophomores in mathematics at Cornell. It was my 
desire to experiment by presenting to them material a little beyond that 
which is usually taught in algebra at the junior-senior level. 

I have aimed this book to be, both in content and degree of sophisti­
cation, about halfWay between two great classics, A Survey t.if Modern 
Algebra, by Birkhoff and MacLane, and Modern Algebra, by Van der 
Waerden. 

The last few years have seen marked changes in the instruction given 
in mathematics at the American universities. This change is most 
notable at the upper undergraduate and beginning graduate levels. 
Topics that a few years ago were considered proper subject matter for 
semiadvanced graduate courses in algebra have filtered down to, and 
are being taught in, the very first course in abstract algebra. Convinced 
that this filtration will continue and will become intensified in the next 
few years, I have put into this book, which is designed to be used as the 
student's first introduction to algebra, material which hitherto has been 
considered a little advanced for that stage of the game. 

There is always a great danger when treating abstract ideas to intro­
duce them too suddenly and without a sufficient base of examples to 
render them credible or natural. In order to try to mitigate this, I have 
tried to motivate the concepts beforehand and to illustrate them in con­
crete situations. One of the most telling proofs of the worth of an abstract 
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1 
Preliminary Notions 

One of the amazing features of twentieth century mathematics has 
been its recognition of the power of the abstract approach. This has 
given rise to a large body of new results and problems and has, in fact, 
led us to open up whole new areas of mathematics whose very existence 
had not even been suspected. 

In the wake of these developments has come not only a new 
mathematics but a fresh outlook, and along with this, simple new 
proofs of difficult classical results. The isolation of a problem into its 
basic essentials has often revealed for us the proper setting, in the whole 
scheme of things, of results considered to have been special and apart 
and has shown us interrelations between areas previously thought to 
have been unconnected. 

The algebra which has evolved as an outgrowth of all this is not 
only a subject with an independent life and vigor�it is one of the 
important current research areas in mathematics-but it also serves as 
the unifying thread which interlaces almost all of mathematics­
geometry, number theory, analysis, topology, and even applied 
mathematics. 

This book is intended as an introduction to that part of mathematics 
that today goes by the name of abstract algebra. The term "abstract" 
is a highly subjective one; what is abstract to one person is very often 
concrete and down-to-earth to another, and vice versa. In relation to 
the current research activity in algebra, it could be described as 
"not too abstract"; from the point of view of someone schooled in the 
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Sec. 1.1 Set Theory 

Example 1 .1 .2 Let S be the set of all integers. Given a, b E S, define 
a "' b if a - b is an even integer. We verify that this defines an equivalence 
relation of S. 

1. Since 0 = a a is even, a "' a. 
2. If a "' b, that is, if a - b is even, then b - a = - (a - b) is also even, 

whence b "' a. 
3. If a "' b and b "' c, then both a - b and b - c are even, whence 

a - c = (a - b) + (b - c) is also even, proving that a "' c. 

Example 1 .1 .3 LetS be the set of all integers and let n > 1 be a fixed 
integer. Define for a, b E S, a "' b if a - b is a multiple of n. We leave it 
as an exercise to prove that this defines an equivalence relation on S. 

Example 1 .1 .4 Let S be the set of all triangles in the plane. Two 
triangles are defined to be equivalent if they are similar (i.e., have corre­
sponding angles equal). This defines an equivalence relation on S. 

Example 1 .1 .5 Let S be the set of points in the plane. Two points a and 
b are defined to be equivalent if they are equidistant from the origin. A 
simple check verifies that this defines an equivalence relation on S. 

There are many more equivalence relations ; we shall encounter a few as 
we proceed in the book. 

D E FI N ITI O N  If A is a set and if"' is an equivalence relation on A, then 
the equivalence class of a E A is the set {x E A I a "' x }. We write it as cl (a) .  

I n  the examples just discussed, what are the equivalence classes ? In 
Example 1 . 1 . 1 ,  the equivalence class of a consists merely of a itself. In 
Example 1 .1 .2  the equivalence class of a consists of all the integers of the 
form a + 2m, where m = 0, ± I , ± 2, . . .  ; in this example there are only 
two distinct equivalence classes, namely, cl ( O )  and cl( l ) .  In Example 1 . 1 .3, 
the equivalence class of a consists of all integers of the form a + kn where 
k = 0, ± 1, ± 2, . . .  ; here there are n distinct equivalence classes, namely 
cl ( O ), cl ( l ) ,  . . .  , cl (n - 1 ) .  In Example 1 . 1 .5, the equivalence class of a 
consists of all the points in the plane which lie on the circle which has its 
center at the origin and passes through a. 

Although we have made quite a few definitions, introduced some concepts, 
and have even established a simple little proposition, one could say in all 
fairness that up to this point we have not proved any result of real substance. 
We are now about to prove the first genuine result in the book. The proof 
of this theorem is not very difficult-actually it is quite easy-but nonetheless 
the result it embodies will be of great use to us. 
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T H EO R E M  1.1.1 The distinct equivalence classes qf an equivalence relation on A 
provide us with a decomposition qf A as a union qf mutually dijoint subsets. Conversely, 
given a decomposition qf A as a union qf mutually disjoint, nonempty subsets, we can 
dttfine an equivalence relation on A for which these subsets are the distinct equivalence 
classes. 

Proof. Let the equivalence relation on A be denoted by "'. 
We frst note that since for any a E A, a "' a, a must be in cl (a), whence 

the union of the cl(a)'s is all of A. We now assert that given two equivalence 
classes they are either equal or disjoint. For, suppose that cl (a) and cl(b) 
are not disjoint ; then there is an element x E cl(a) (') cl(b). Since x E cl(a), 
a "' x; since x E cl(b), b "' x, whence by the symmetry of the relation, 
x "' b. However, a "' x and x "' b by the transitivity of the relation forces 
a ""' b. Suppose, now that y E cl(b); thus b "'y. However, from a "' b 
and b "'y, we deduce that a ""'y, that is, thaty E cl(a). Therefore, every 
element in cl(b) is in cl(a), which proves that cl(b) c cl (a). The argument 
is clearly symmetric, whence we conclude that cl(a) c cl (b). The two 
opposite containing relations imply that cl(a) = cl(b). 

We have thus shown that the distinct cl (a)'s are mutually disjoint and 
that their union is A. This proves the first half of the theorem. Now for 
the other half! 

Suppose that A = U A,. where the A,. are mutually disjoint, nonempty 
sets ( r:x is in some index set T). How shall we use them to define an equiva­
lence relation? The way is clear ; given an element a in A it is in exactly one 
A,.. We define for a, b E A, a ""' b if a and b are in the same A,.. We leave 
it as an exercise to prove that this is an equivalence relation on A and that 
the distinct equivalence classes are the A,.'s. 

Problems 

l. (a) If A is a subset of B and B is a subset of C, prove that A is a subset 
of C. 

(b) If B c A, prove that A u B = A, and conversely. 
(c) If B c A, prove that for any set C both B u C c A u C and 

B (') C c A (') C. 

2. (a) Prove that A (') B = B (') A and A u B = B u A. 
(b) Prove that (A (') B) (') C = A (') (B (') C). 

3. Prove that A u (B (') C) = (A u B) n (A u C). 

4. For a subset C of S let C' denote the complement of C in S. For any 
two subsets A, B of S prove the De Morgan rules: 
(a) (A (') B)' = A' u B'. 
(b) (A u B)' = A' (') B'. 

5. For a finite set C let o(C) indicate the number of elements in C. If A 
and B are finite sets prove o(A u B) = o(A) + o(B) - o(A (') B). 
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6. If A is a finite set having n elements, prove that A has exactly 2" distinct 
subsets. 

7. A survey shows that 63% of the American people like cheese whereas 
76% like apples. What can you say about the percentage of the 
American people that like both cheese and apples? (The given statistics 

are not meant to be accurate.) 

8. Given two sets A and B their symmetric diference is defined to be 
(A - B) u ( B  -A). Prove that the symmetric difference of A and B 

equals (A u B) - (A 11 B). 

9. Let S be a set and let S* be the set whose elements are the various sub­
sets of S. In S* we define an addition and multiplication as follows: If 
A, B e S* (remember, this means that they are subsets of S): 

(I) A + B = (A - B) u ( B  -A). 
(2) A· B = A 11 B. 
Prove the following laws that govern these operations: 

(a) (A + B) + C = A + ( B  + C). 
(b) A· ( B  +C)= A· B +A· C. 
(c)A·A=A. 

(d) A + A = null set. 
(e) If A + B = A + C then B = C. 
(The system just described is an example of a Boolean algebra. ) 

1 0. For the given set and relation below determine which def  equivalence 
relations. 
(a) Sis the set of all people in the world today, a "' b if a and b have 

an ancestor in common. 
(b) Sis the set of all people in the world today, a "' h if a lives within 

1 00 miles of h. 
(c) Sis the set of all people in the world today, a "' b if a and b have 

the same father. 
(d) Sis the set of real numbers, a "' b if a = ±b. 
(e) Sis the set of integers, a"' b if both a > b and b > a .  
(f ) Sis the set of all straight lines in  the plane, a "' b if a i s  parallel to  b. 

I I . (a) Property 2 of an equivalence relation states that if a "" b then 
b "' a; property 3 states that if a "' b and b "' c then a "" c. 
What is wrong with the following proof that properties 2 and 3 

imply property I? Let a '" b; then b ,. a, whence, by property 3 
(using a = c), a "' a. 

(b) Can you suggest an alternative of property I which will insure us 
that properties 2 and 3 do imply property 1 ? 

12. In Example 1 . 1 . 3  of an equivalence relation given in the text, prove 
that the relation defined is an equivalence relation and that there are 
exactly n distinct equivalence classes, namely, cl(O), cl ( l  ), ... , cl(n -I). 

1 3. Complete the proof of the second half of Theorem 1 . 1 . 1 . 
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mapping as a rule which associates with any element s in S some element 
tin T, the rule being, associate (or map) s E S with t E T if and only if (s, t) E M. 
We shall say that t is the image of s under the mapping. 

Now for some notation for these things. Let u he a mapping from S to 
T; we often denote this by writing u: S -+ T or S  .!. T. If tis the image of 
s under u we shall sometimes write this as u :s -+ t ;  more often, we shall 
represent this fact by t = su. Note that we write the mapping u on the 
right. There is no overall consistency in this usage; many people would 
write it as t = u(s). Algebraists often write mappings on the right; other 
mathematicians write them on the left. In fact, we shall not he absolutely 
consistent in this ourselves; when we shall want to emphasize the functional 
nature of u we may very well write t u(s). 

Examples of Mappings 
In all the examples the sets are assumed to be nonempty. 

Example 1 .2.1 Let S be any set; define z : S  -+ S by s = sz for any 
s e S. This mapping 1 is called the identity mapping of S. 

Example 1 .2.2 Let S and T he any sets and let t0 he an element of T. 
Define t :S  -+ T by t :s -+ t0 for every s E S. 

Example 1 .2.3 Let S be the set of positive rational numbers and let 
T = J x J where J is the set of integers. Given a rational number s we 
can write it as s = mJn, where m and n have no common factor. Define 
T: S -+ T by ST = (m, n) . 

Example 1 .2.4 Letj be the set ofintegers and S = {(m, n) ej x Jln :f.: 0}; 
let T be the set of rational numbers; define -r:S -+ T by (m, n)• = m/n for 
every (m, n) in S. 

Example 1 .2.5 Let J be the set of integers and S = j x ]. Define 
r:S-+ J by (m, n)t = m + n. 

Note that in Example 1 .2.5 the addition in J itself can he represented in 
terms of a mapping of J x J into j. Given an arbitrary set S we call a 
mapping of S x S into S a binary operation on S. Given such a mapping 
t : S  x S -+ S we could use it to defne a "product" • in S by declaring 
a • b = c if (a, h) • = c. 

Example 1 .2.6 Let S and T be any sets; define • : S  x T -+ S by 
(a, b)t = a for any (a, b) E S X T. This T is called the prqjection of S x T 
on S. We could similarly define the projection of S x T on T. 
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In terms of inverse images, the mapping 1: is one-to-one if for any t E T 
the inverse image of t is either empty or is a set consisting of one element. 
In the examples discussed, the mappings in Examples 1 .2. 1 ,  1 .2.3, 1 .2. 7, 
and 1.2.9 are all one-to-one. 

When should we say that two mappings from S to T are equal? A natural 
definition for this is that they should have the same effect on every element 
of S; that is, the image of any element in S under each of these mappings 
should be the same. In a little more formal manner: 

D E F I N IT ION The two mappings u and 1: of S into T are said to be equal 
if su = st for every s E S. 

Consider the following situation: We have a mapping u from S to T and 
another mapping 1: from T to U. Can we compound these mappings to 
produce a mapping from S to U? The most natural and obvious way of 
doing this is to send a given element s, in S, in two stages into U, first by 
applying u to s and then applying 1: to the resulting element su in T. This 
is the basis of the 

D E F I N ITION If u :S-+ T and 1:: T-+ U then the composition of u and 1: 
(also called their product) is the mapping u a r:S -+ U defined by means of 
s (u or) = (su)r for every s E S. 

Note that the order of events reads from left to right; a or reads: first 
perform u and then follow it up with r. Here, too, the left-right business is 
not a uniform one. Mathematicians who write their mappings on the left 
would read u or to mean first perform r and then u. Accordingly, in 
reading a given book in mathematics one must make absolutely sure as to 
what convention is being followed in writing the product of two mappings. 
We reiterate, for us a o r will always mean: first apply u and then 1:. 

We illustrate the composition of u and 1: with a few examples. 

Example 1 .2. 1 1 Let S = {x1, x2, x3} and let T = S. Let u :S -+ S be 
defined by 

and r:S-+ S by 

xlu = x2, 
x2u = x3, 

X3(1 XI; 

XlT: = Xv 
x2r = x3, 
x3r = x2. 
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of maps, s((a o 1:) o Jl) = (s(a o 1:))11 = ((sa)1:)Jl whereas s(a o (1: o Jl)) = 
(sa)(1: o Jl) = ((sa)1:)Jl. Thus, the elements s((a o 1:) o Jl) and s(a o (1: o Jl)) 
are indeed equal. This proves the lemma. 

We should like to show that if two mappings a and 1: are properly condi­
tioned the very same conditions carry over to a o 1:. 

LEMMA 1 .2.2 Let a :S --+  T and 1:: T --+  U; then 

l .  a o 1: is onto if each qf a and 1: is onto. 
2. a o 1: is one-to-one if each qf a and 1: is one-to-one. 

Proof. We prove only part 2, leaving the proof of part I as an exercise. 
Suppose that s1, s2 E S and that s1 "I= s2• By the one-to-one nature of a, 

s1 a "I= s2a. Since 1: is one-to-one and s1 a and s2a are distinct elements of T, 
(s1a)1: "I= (s2a)1: whence s1(a o 1:) = (s1a)1: "I= (s2a)-r = s2(a o 1:), proving 
that a o 1: is indeed one-to-one, and establishing the lemma. 

Suppose that a is a one-to-one mapping of S onto T; we call a a one-to-one 
correspondence between S and T. Given any t E T, by the "onto-ness" of a 
there exists an element s E S such that t = sa; by the "one-to-oneness" of 
a this s is unique. We define the mapping a-1: T --+ S by s = ta-

1 if and 
only if t = sa. The mapping a-1 is called the inverse of a. Let us compute 
a o a-1 which maps S into itself. Given s E S, let t sa, whence by 
definitions = ta-1; thus s(a o a-1) = (sa)a-

1 
= ta-1 = s. We have shown 

that a o a-
1 is the identity mapping of S onto itself. A similar computation 

reveals that a-
1 

o a is the identity mapping of T onto itself. 
Conversely, if a :S --+ T is such that there exists a Jl: T --+ S with the 

property that a o Jl and Jl o a are the identity mappings on S and T, respec­
tively, then we claim that a is a one-to-one correspondence between S and T. 
First observe that a is onto for, given t E T, t = !(Jl o a) = (tJl)a (since 
Jl o a is the identity on T) and so tis the image under a of the element lJl in 
S. Next observe that a is one-to-one, for if s1 a = s2a, using that a o Jl is the 
identity on S, we have s1 = s1(a o Jl) = (s1a)Jl = (s2a) Jl = s2(a o Jl) = s2• 
We have now proved 

' 

LEMMA 1 .2.3 The mapping a :S --+ T is a one-to-one correspondence between 
S and T if and on(y if there exists a mapping Jl : T --+ S such that a o Jl and Jl o a 
are the identity mappings on S and T, respective(]. 

D E FI N IT ION If S is a nonempty set then A(S) is the set qf all one-to-one 
mappings of S onto itself. 

Aside from its own intrinsic interest A(S) plays a central and universal 
type of role in considering the mathematical system known as a group 
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D EF I N ITION Le t n > 0 be a fixed in teger. We de fine a = h mod n if 
n I (a h).  

The rela tion is referred to as congruence modulo n, n is called the modulus of 
the rela tion , and we read a = h mod n as "a is congr uen t to h mod ulo n." 
No te , for e xample , tha t  73 = 4 mod 23, 2 1  = - 9  mod 1 0, e tc. 

Th is congr uen ce rela tion enjoys the follow ing bas ic proper ties : 

LEM MA 1 .3.3 

I .  The relation congruence modulo n difines an equivalence relation on the set qf 
integers. 

2 .  This equivalence relation has n distinct equivalence classes. 

3. !f a  = h mod n and c = d mod n, then a + c = h + d mod n and ac = 
hd mod n. 

4. !f ah = ac mod n and a is relative(} prime to n, then b = c mod n. 

Proof. We firs t ver ify tha t the rela tion congr uen ce mod ulo n is an 
e quivalen ce rela tion . Sin ce n I 0, we indeed have tha t n I (a - a) when ce 
a = a mod n for every a. F ur ther , if a = b mod n then n I (a h) ,  and so 
n I (h a) = - (a - h) ; th us h = a  mod n. F inally , if a =  h mod n and 
h = c mod n, then n I (a - h) and n I (h - c) when ce n I { (a - h) + 
(b - c) }, tha t  is , n I (a - c) . Th is ,  of co urse , impl ies tha t a = c mod n. 

Le t the e quivalen ce class , under th is rela tion , of a be deno ted by [a] ; 
we call it the congruence class (mod n) of a. G iven any in teger a, by the 
E ucl idean algor ithm , a = kn + r where 0 � r < n. But then , a E [r] and 

so [a] = [r]. Th us there are a t  mos t n d is tin ct congr uen ce classes ; namely, 
[0] , [ I ] ,  . . .  , [n - 1 ) .  However , these are d is tin ct, for if [i] = [j] w ith , 

say , 0 � i < j < n, then n I (j - i) where j - i is a pos itive in teger less 
than n, wh ich is obvio usly imposs ible. Conse quen tly , there are e xa ctly the 
n d is tin ct congr uen ce classes [0], [ 1 ] ,  . . .  , [n I ] .  We have now proved 

asser tions I and 2 of the lemma . 
We now prove par t 3. Suppose tha t  a = b mod n and c = d mod n;  

therefore , n I (a - b) and n I (c - d) when ce n I { (a d) + (c  d) }, and 
so n I {(a + c) - (h + d) }. But then a + c = h + d mod n. In add ition, 
n I { (a - h)c + (c - d)h} ac bd, when ce ac = hd mod n. 

F inally , no tice tha t  if ab = ac mod n and if a is rela tively pr ime to n, 
then the fa ct tha t  n I a(b - c) ,  by Lemma 1 . 3.2,  impl ies tha t n I (h - c) and 
so b c mod n. 

If a is no t rela tively p rime to n, the res ul t  of par t 4 may be false ; for 
ins tan ce , 2.3 = 4.3 mod 6, ye t 2 :f= 4 mod 6. 

Lemma 1 . 3.3 opens cer ta in in teres ting poss ib il ities for us . Le t Jn be the 
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system there will flow out facts and insights into the example at hand which 
would have been obscured from us by the mass of inessential information 
available to us in the particular, special case. 

We should like to stress that these algebraic systems and the axioms 
which define them must have a certain naturality about them. They must 
come from the experience of looking at many examples; they should be rich 
in meaningful results. One does not just sit down, list a few axioms, and 
then proceed to study the system so described. This, admittedly, is done 
by some, but most mathematicians would dismiss these attempts as poor 
mathematics. The systems chosen for study are chosen because particular 
cases of these structures have appeared time and time again, because some­
one finally noted that these special cases were indeed special instances of 
a general phenomenon, because one notices analogies between two highly 
disparate mathematical objects and so is led to a search for the root of 
these analogies. To cite an example, case after case after case of the special 
object, which we know today as groups, was studied toward the end of 
the eighteenth, and at the beginning of the nineteenth, century, yet it was 
not until relatively late in the nineteenth century that the notion of an 
abstract group was introduced. The only algebraic structures, so far en­
countered, that have stood the test of time and have survived to become 
of importance, have been those based on a broad and tall pillar of special 
cases. Amongst mathematicians neither the beauty nor the significance of 
the first example which we have chosen to discuss-groups-is disputed. 

2.1 Definition of a Group 

At this juncture it i s  advisable to recall a situation discussed in the first 
chapter. For an arbitrary nonempty set S we defined A(S) to be the set of 
all one-to-one mappings of the set S onto itself. For any two elements a, 
T e A (S) we introduced a product, denoted by a o -r, and on further investi­
gation it turned out that the following facts were true for the elements of 
A (S) subject to this product : 

l .  Whenever a, T e A (S), then it follows that a o T is also in A(S).  This is 
described by saying that A (S)  is closed under the product (or, sometimes, 
as closed under multiplication) . 

2. For any three elements a, T, fl E A (S), a o (-r o p) = (a o T) o fl· This 
relation is called the associative law. 

3. There is a very special element 1 e A(S) which satisfies 1 o a = a o 1 = a 
for all a e A (S) .  Such an element is called an identiry element for A(S ) .  

4. For every a e A (S )  there is an element, written as a - 1 , also in A (S) ,  
such that a o a-

1 
= a - 1 

o a = 1. This is usually described by saying 
that every element in A(S) has an inverse in A (S) .  

27 
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Doe s  the mu ltip li cation in G remind you of anything? Write ( a b) 
( 0 l) -b a 

a s  a/ + bj where J = and co mpute the produ ct in the se ter ms. 
- I  0 

Perhap s that wi ll ring a be ll with you. 

# Example 2.2.9 Let G be the set of a ll 2 x 2 matri ce s (: �)where 

a, b, c, dare integer s modu lo p, p a pri me num ber, su ch that ad - be #- 0. 

De fine the mu ltip li cation in G a s  we did in E xamp le 2 . 2.6, under standing 
the mu ltip li cation and addition of the entrie s to be tho se modu lo p. We 
leave it to the reader to verify that G i s  a non -a be lian finite group . 

In fa ct ,  how many e lement s doe s G have? Perhap s it might be in stru ctive 
for the reader to try the ear ly ca se s p = 2 and p = 3. Here one can write 
down a ll the e lement s of G e xp li cit ly. (A word of warning ! For p = 3, 
G a lready ha s 48 e lement s.) To get the ca se of a genera l prime, p wi ll require 

an idea rather than a dire ct ha cking -out of the an swer. Try it ! 

2.3 Some Prel iminary lemmas 

We have now been e xpo sed to the theory of group s for severa l page s and a s  
yet not a sing le , so litary fa ct ha s been proved a bout group s. It i s  high time 
to remedy thi s situation. A lthough the fir st few re su lt s  we demon strate are, 
admitted ly , not very e xciting (in fa ct ,  they are rather du ll) they wi ll be 
e xtreme ly u sefu L Learning the a lpha bet wa s pro ba bly not the mo st intere sting 
part of our chi ldhood edu cation , yet , on ce thi s hurd le wa s cleared , fa scinating 
vi sta s were opened before u s. 

We begin with 

LE M MA 2.3.1 If G is a group, then 

a. The identity element of G is unique. 
b. Every a E G has a unique inverse in G. 
c. For every a e G, (a - 1) - 1  a. 
d. For all a, b e G, (a · b) 1  = r 1 · a 1 • 

Proof. Before we pro ceed with the proof it se lf it might be advi sa ble to 
see what it i s  that we are going to prove. In part (a) we want to show that if 
two e lement s e and f in G en joy the property that for every a E G, a = 
a • e = e · a = a · f = f · a, then e = f In part ( b) our aim i s  to show that 

if x · a  = a ·  x = e and y ·  a = a ·y = e, where a ll of a, x,y are in G, then 
X = y. 
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I .  In the following determine whether the systems described are groups. 
If they are not, point out which of the group axioms fail to hold. 
(a) G = set of all integers, a ·  b = a - b. 
(b) G = set of all positive integers, a ·  b = ab, the usual product of 

integers. 
(c) G = ao, a1 , • • •  , a6 where 

a1 • a 1 = ai+ 1 if i + j < 7, 

a1 · a1 = a1+1_ 7 if i + j  ";: 7 

(for instance, a5 • a4 = a5+4_ 7 = a2 since 5 + 4 = 9 > 7) .  
(d)  G set  of all rational numbers with odd denominators, a • b = 

a + b, the usual addition of rational numbers. 

2. Prove that if G is an abelian group, then for all a, b e G and all integers 
n, (a · b)" = a" · b". 

3. If G is a group such that (a · b) 2 = a2 • b2 for all a, b e G, show that 
G must be abelian. 

*4. If G is a group in which (a · b) 1 = a1 • b1 for three consecutive integers , 
i for all a, b e G, show that G is abelian. 

5. Show that the conclusion of Problem 4 does not follow if we assume , 
the relation (a · b) 1 

= a1 • b1 for just two consecutive integers. 

6. In S3 give an example of two elements x,y such that (x ·y) 2  =ft x2 ·y2• 
7. In S3 show that there are four elements satisfying x2 = e and three 

elements satisfyingy3 = e. 

8. If G is a finite group, show that there exists a positive integer N such 
that aN = e for all a e G. 

9. (a) If the group G has three elements, show it must be abelian. 
(b) Do part (a) if G has four elements. 
(c) Do part (a) if G has five elements. 

1 0. Show that if every element of the group G is its own inverse, then G 
is abelian. 

1 1 . If G is a group of even order, prove it has an element a =ft e satisfying 
a2 = e. 

12. Let G be a nonempty set closed under an associative product, which 
in addition satisfies : 
(a) There exists an e e G such that a ·  e = a for all a e G. 
(b) Give a e G, there exists an elementy(a) e G such that a ·y(a) = e. 
Prove that G must be a group under this product. 
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of G. If for some choice of a, G = (a) , then G is said to be a cyclic group. 
Such groups are very special but they play a very important role in the 
theory of groups, especially in that part which deals with abelian groups. 
Of course, cyclic groups are abelian, but the converse is false. 

Example 2.4.4 Let G be a group, W a subset of G. Let ( W) be the set 
of all elements of G representable as a product of elements of W raised to 
positive, zero, or negative integer exponents. ( W) is the subgroup <if G 
generated by W and is the smallest subgroup of G containing W. In fact, ( W) 
is the intersection of all the subgroups of G which contain W (this intersec­
tion is not vacuous since G is a subgroup of G which contains W) . 

Example 2.4.5 Let G be the group of nonzero real numbers under 
multiplication, and let H be the subset of positive rational numbers. Then 
H is a subgroup of G. 

Example 2.4.6 Let G be the group of all real numbers under addition, 
and let H be the set of aU integers. Then H is a subgroup of G. 

# Example 2.4.7 Let G be the group of all real 2 x 2 matrices (: �) 
with ad - be ":/: 0 under matrix multiplication. Let 

H = {(� �) e G I ad #  o}. 

Then, as is easily verified, H is a subgroup of G. 

# Example 2.4.8 Let H be the group of Example 2 .4.7, and let 

K = { G :) }- Then K is a subgroup of H. 

Example 2.4.9 Let G be the group of all nonzero complex numbers 
a + hi (a, b real, not both 0) under multiplication, and let 

H {a + hi e G I a2 + b 2 = I }. 

Verify that H is a subgroup of G. 

D EFI N ITIO N  Let G be a group, H a subgroup of G;  for a, b e G  we say 
a is congruent to b mod H, written as a = b mod H if ab 1 e H. 

LEM MA 2.4.3 The relation a = b mod H is an equivalence relation. 
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Proof. If we look back in Chapter l ,  we see that to prove Lemma 2.4.3 
we must verify the following three conditions : For all a, b, c E G, 

l .  a :=  a mod H. 
2. a := b mod H implies b a mod H. 
3. a := b mod H, b E c mod H implies a := c mod H. 

Let's go through each of these in turn. 

I. To show that a = a mod H we must prove, using the very definition 
of congruence mod H, that aa 1 E H. Since H is a subgroup of G, e e H, 
and since aa 1 = e, aa 1  E H, which is what we were required to demon­
strate. 

2. Suppose that a := b mod H, that is, suppose ab 1 E H; we want to 
get from this b = a mod H, or, equivalently, ba 1 E H. Since ab 1 e H, 
which is a subgroup of G, (ab 1 ) - 1 e H; but, by Lemma 2.3. I ,  (ab - 1) 1 = 
(b 1 ) I a 1 = ba 1, and so ba 1 E H and b = a  mod H. 

3. Finally we require that a = b mod H and b = c mod H forces 
a = c mod H. The first congruence translates into ab 1 E H, the second 
into bc 1 e H; using that H is a subgroup of G, (ab 1 ) (bc 1) e H. How­
ever, ac- 1 = aec 1 = a(b 1b)c- 1 = (ar 1 ) (bc 1) ;  hence ac 1 e H, from 
which it follows that a c mod H. 

This establishes that congruence mod H is a bona fide equivalence 
relation as defined in Chapter I ,  and all results about equivalence relations 
have become available to us to be used in examining this particular relation. 

A word about the notation we used. If G were the group of integers under 
addition, and H = H11 were the subgroup consisting of all multiples of n, 
then in G, the relation a = b mod H, that is, ab 1 e H, under the additive 
notation, reads "a - b is a multiple ofn." This is the usual number theoretic 
congruence mod n. In other words, the relation we defined using an 
arbitrary group and subgroup is the natural generalization of a familiar 
relation in a familiar group. 

D EFIN ITION If H is  a subgroup of G, a e G, then Ha = {ha I h e H}. 
Ha is called a right coset of H in G. 

LEM MA 2.4.4 For all a e G, 

Ha = {x E G I a =  x mod H}. 

Proof. Let [a] = {x E G I a x mod H}. We first show that Ha c: [a] . 
For, if h e H, then a(ha) 1 = a(a 1 h 1 )  = h 1 E H since H is a subgroup 
of G. By the definition of congruence mod H this implies that ha E [a] 
for every h E  H, and so Ha c: [a]. 

Suppose, now, that x e [a] . Thus ax- 1 E H, so (ax 1 ) 1 = xa 1 is 
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become more and more aware of its basic character. Because the theorem 
is of such stature it merits a little closer scrutiny, a little more analysis, 
and so we give, below, a slightly different way of looking at its proof. In 
truth, the procedure outlined below is no different from the one already 
given. The introduction of the congruence mod H smooths out the listing 
of elements used below, and obviates the need for checking that the new 
elements introduced at each stage did not appear before. 

So suppose again that G is a finite group and that H is a subgroup of G. 
Let h1 , h2, . • •  , h, be a complete list of the elements of H, r = o(H). If 
H G, there is nothing to prove. Suppose, then, that H =F G; thus there 
is an a e G, a ¢  H. List all the elements so far in two rows as 

hu h2, • • •  , h, 
h1 a, h2a, . . .  , h,a. 

We claim that all the entries in the second line are different from each other 
and are different from the entries in the first line. If any two in the second 
line were equal, then h1a h1a with i =F j, but by the cancellation law this 
would lead to h1 = h1, a contradiction . If an entry in the second line were 
equal to one in the first line, then h1a = h1, resulting in a = h1 - 1h1 e H 
since H is a subgroup of G; this violates a ¢  H. 

Thus we have, so far, listed 2o(H) elements ; if these elements account 
for all the elements of G, we are done. If not, there is a b e G which did not 
occur in these two lines. Consider the new list 

h1, h2 , • • •  , h, 
h1a, h2a, . . .  , h,a, 
h1b, h2b, . . .  , h,b. 

As before (we are now waving our hands) we could show that no two 
entries in the third line are equal to each other, and that no entry in the 
third line occurs in the first or second line. Thus we have listed 3o(H) 
elements. Continuing in this way, every new element introduced, in fact, 
produces o(H) new elements. Since G is a finite group, we must eventually 
exhaust all the elements of G. But if we ended up using k lines to list all the 
elements of the group, we would have written down ko(H) distinct elements, 
and so ko(H) o(G). 

It is essential to point out that the converse to Lagrange's theorem is 
false--a group G need not have a subgroup of order m if m is a divisor of 
o(G ) .  For instance, a group of order 1 2  exists which has no subgroup of 
order 6. The reader might try to find an example of this phenomenon ; the 
place to look is in s4, the symmetric group of degree 4 which has a sub­
group of order 1 2, which will fulfill our requirement. 

Lagrange's theorem has some very important corollaries. Before we 
present these we make one definition. 
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h
1 

= h ! ) .  To prove that HK is a subgroup we must verify that it is closed 
and every element in HK has its inverse in HK. Let's show the closure 
first ;  so suppose x = hk e HK and y = h'k' e HK. Then xy = hkh'k', 
but since kh' e KH = HK, kh' = h2k2 with h2 e H, k2 e K. Hence :rv = 
h(h2k2)k' = (hh2) (k2k') E HK, and HK is closed. Also x - 1 = (hk) 1  = 
k 1h 1 e KH = HK, so x- 1 e HK. Thus HK is a subgroup of G. 

On the other hand, if HK is a subgroup of G, then for any h e H, k e K, 
h 1k 1 e HK and so kh (h 1r 1) 1  E HK. Thus KH c HK. Now if 
x is any element of HK, x 1 = hk e HK and so x = (x 1 ) 1  = (hk) 1 = 
k 1h 1 e KH, so HK c KH. Thus HK KH. 

An interesting special case is the situation when G is an abelian group 
for in that case trivially HK = KH. Thus as a consequence we have the 

COROLLARY lf H, K are subgroups f! the abelian group G, then HK is a 
subgroup f! G. 

If H, K are subgroups of a group G, we have seen that the subset HK 
need not be a subgroup of G. Yet it is a perfect meaningful question to ask: 
How many distinct elements are there in the subset HK? If we denote this 
number by o (HK),  we prove 

THEOREM 2.5.1  lf H and K are finite subgroups f! G f! orders o (H) and 
o(K) , respectively, then 

o(HK) = 
o(H)o(K) 

. 
o (H r"\ K) 

Proof. Although there is no need to pay special attention to the particular 
case in which H r"\ K = (e), looking at this case, which is devoid of some 
of the complexity of the general situation, is quite revealing. Here we 
should seek to show that o(HK) = o (H)o(K) . One should ask oneself: How 
could this fail to happen? The answer clearly must be that if we list all the 
elements hk, h E H, k E K there should be some collapsing; that is, some 
element in the list must appear at least twice. Equivalently, for some 
h # h

1 
e H, hk hik

1
• But then h

1
- 1h = kik 1 ;  now since hi e H, 

hi 1 must also be in H, thus h
1

Ih e H. Similarly, k
1
k 1 e K. Since 

hi 1h = kik 1 ,  h\ 1h E H r"\ K = (e), so h
1 

Ih = e, whence h h
1
, a 

contradiction. We have proved that no collapsing can occur, and so, here, 
o(HK) is indeed o(H)o(K) . 

With this experience behind us we are ready to attack the general case. 
As above we must ask : How often does a given element hk appear as a 
product in the list of HK? We assert it must appear o (H r"\ K) times ! 
To see this we first remark that if hi e H r"\ K, then 

( l )  
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where hh1 E H, since h E  H, h1 E H n K c H and h1 1k E K since 
h1 - 1 E H n K c K and k e K. Thus hk is duplicated in the product at 
least o(H n K) times. However, if hk = h'k', then h- 1h' = k(k') t = u, 
and u E H n K, and so h' = hu, k' = u- 1k ;  thus all duplications were 
accounted for in ( l ) .  Consequently hk appears in the list of HK exactly 
o(H n K) times. Thus the number of distinct elements in HK is the total 
number in the listing of HK, that is, o(H)o(K) divided by the number of 
times a given element appears, namely, o(H n K). This proves the theorem. 

Suppose H, K are subgroups of the finite- group G and o(H) > J o(G), 
o(K) > Jo(G) . Since HK c G, o(HK) 5 o(G). However, 

o(G) � o(HK) = 
o(H)o(K) > J;{C)J;{G) 
o(H n K) o(H n K) 

o(G) 
o (H n K) ' 

thus o(H n K) > 1 .  Therefore, H n K "# (e) . We have proved the 

C O R OLLARY If H and K are subgroups of G and o(H) > Jo(G), o(K) > 
Jo (G), then H n K "# (e) . 

We apply this corollary to a very special group. Suppose G is a finite 
group of order pq where p and q are prime numbers with p > q. We claim 
that G can have at most one subgroup of order p. For suppose H, K are 
subgroups of order p. By the corollary, H n K "# (e) , and being a sub­
group of H, which having prime order has no nontrivial subgroups, we 
must conclude that H n K = H, and so H c H n K c K. Similarly 
K c H, whence H = K, proving that there is at most one subgroup of 
order p. Later on we shall see that there is at least one subgroup of order p, 
which, combined with the above, will tell us there is exactly one subgroup 
of order p in G. From this we shall be able to determine completely the 
structure of G. 

Problems 

I .  If H and K are subgroups of G, show that H n K is a subgroup of G. 
(Can you see that the same proof shows that the intersection of any 
number of subgroups of G, finite or infinite, is again a subgroup of G?) 

2 .  Let G be a group such that the intersection of all its subgroups which 
are different from (e) is a subgroup different from (e) . Prove that 
every element in G has finite order. 

3. If G has no nontrivial subgroups, show that G must be finite of 
prime order. 
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4. (a) If H is a subgroup of G, and a E G let aHa- 1 = {aha- 1 l h E  H}. 
Show that aHa 1 is a subgroup of G. 

(b) If H is finite, what is o(aHa 1) ?  

5. For a subgroup H of G define the left coset aH of H in G as the set 
of all elements of the form ah, h e H. Show that there is a one-to-one 
correspondence between the set of left cosets of H in G and the set of 
right cosets of H in G. 

6. Write out all the right cosets of H in G where 
(a) G = (a) is a cyclic group of order 10 and H = (a2) is the 

subgroup of G generated by a2• 
(b) G as in part (a) , H = (as) is the subgroup of G generated by as. 
(c) G = A(S) , S = {xi> x2, x3 }, and H = {u E G I x1u = xd. 

7. Write out all the left cosets of H in G for H and G as in parts (a) , 
(b) , (c) of Problem 6. 

8. Is every right coset of H in G a left coset of H in G in the groups of 
Problem 6?  

9. Suppose that H i s  a subgroup of  G such that whenever Ha #- Hb 
then aH #- bH. Prove that gHg - 1 c: H for �II g E G. 

1 0. Let G be the group of integers under addition, Hn the subgroup 
consisting of all multiples of a fixed integer n in G. Determine the 
index of Hn in G and write out all the right cosets of Hn in G. 

1 1 . In Problem 1 0, what is Hn n H,.? 

12 .  If G is a group and H, K are two subgroups of finite index in G, 
prove that H n K is of finite index in G. Can you find an upper 
bound for the index of H n K in G? 

1 3. If a E G, define N(a) = {x E G j xa = ax}. Show that N(a) is a 
subgroup of G. N(a) is usually called the normalizer or centralizer of 
a in G. 

14. If H is a subgroup of G, then by the centralizer C(H) of H we mean 
the set {x E G I xh = hx all h E H}. Prove that C(H) is a subgroup 
of G. 

15. The center Z of a group G is defined by Z = {z E G I zx = xz all 
x E G}. Prove that Z is a subgroup of G. Can you recognize Z as 
C( T) for some subgroup T of G? 

1 6. If H is a subgroup of G, let N(H) = {a e G I aHa- 1 = H} [see 
Problem 4(a)]. Prove that 
(a) N(H) is a subgroup of G. (b) N(H) :: H. 

1 7. Give an example of a group G and a subgroup H such that N(H) #­
C(H) . Is there any containing relation between N(H) and C(H) ? 
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A quick inspection yields the interesting fact that the right coset HI/I is not 
a left coset. Thus, at least for this subgroup, the notions of left and right 
coset need not coincide. 

In G S3 let us consider the subgroup N = {e, 1/1, 1/12 }. Since the 
index of N in G is 2 there are two left cosets and two right cosets of N in G. 
We list these : 

Right Cosets 

N = {e, 1/J, 1/12 } 
N4> = {4>, 1/14>, l/l z4>} 

Left Cosets 

N = {e, 1/J, 1/1 2} 
4>N = {4>, 4>1/1, 4>1/1 2 } 

= {4>, 1/124>, 1/14>} 

A quick inspection here reveals that every left coset of N in G is a right 
coset in G and conversely. Thus we see that for some subgroups the notion 
of left coset coincides with that of right coset, whereas for some subgroups 
these concepts differ. 

It is a tribute to the genius of Galois that he recognized that those sub­
groups for which the left and right cosets coincide are distinguished ones. 
Very often in mathematics the crucial problem is to recognize and to discover 
what are the relevant concepts ; once this is accomplished the job may be 
more than half done. 

We shall define this special class of subgroups in a slightly different way, 
which we shall then show to be equivalent to the remarks in the above 
paragraph. 

D E FI N ITION A subgroup N of G is said to be a normal subgroup of G if 
for every g e G and n E N, gng 1 E N. 

Equivalently, if by gNg 1 we mean the set of all gng 1, n e N, then N 
is a normal subgroup of G if and only if gNg- 1 c N for every g e G. 

LEM MA 2.6.1 N is a normal subgroup of G if and only if gNg 1 = N for 
every g e G. 

Proof. If gNg 1 = N for every g e G, certainly gNg 1 c N, so N is 
normal in G. 

Suppose that N is normal in G. Thus if g e G, gNg- 1 c N and g 1 Ng = 
g 1N(g 1) 1 c N. Now, since g- 1Ng c N, N = g(g 1 Ng)g 1 c 
gNg 1 c N, whence N = gNg 1 • 

In order to avoid a point of confusion here let us stress that Lemma 2.6. 1 
does not say that for every n e N  and every g e G, gng 1 = n. No ! This 
can be false. Take, for instance, the group G to be S3 and N to be the sub-
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for any integer n, in which c ase the factor gro up sho ul d  s uggest a rel ation 
to the integers mo d n un der addition . This type o f  rel ation will be cl ari fie d  
in the ne xt section . 

Problems 

1. If H is a s ub gro up o f  G s uch th at the pro duct o f  two ri ght cosets o f  
H in G is ag ain a ri ght coset o f  H in G, prove th at His no rm al in G. 

2. If G is a gro up an d H is a s ubgro up o f  in dex 2 in G, prove th at H is 
a nor mal s ubgro up o f  G. 

3. If N is a norm al s ubgro up o f  G an d H is any s ubgro up of G, prove 
th at NH is a s ubgro up o f  G. 

4. Show th at the intersection o f  two norm al s ubgro ups o f  G is a norm al 
s ubgro up o f  G. 

5. If His a s ubgro up o f  G an d N is a norm al s ubgro up o f  G, show th at 
H n N is a norm al s ub gro up o f  H. 

6. Show th at eve ry s ubgro up o f  an abe li an gro up is norm al .  

* 7. Is the converse o f  Problem 6 tr ue ?  If yes , prove it, i f  no, give an 
ex ample o f  a non -abeli an gro up all o f  whose s ubgro ups ar e norm al .  

8. Give an ex ample o f  a gro up G, s ubgro up H, an d an element a e G 
s uch th at aHa- 1 c: H b ut aHa- 1 =F H. 

9. Suppose His the only s ubgro up o f  or der o( H) in the finite gro up G. 
Prove th at His a norm al s ubgro up o f  G. 

1 0. If His a s ubgro up o f  G, let N( H) = {g e G I gHg- 1 = H}. Prove 
( a) N( H) is a s ubgro up o f  G. 
(b ) His norm al in N( H) . 
(c ) If His a nor mal s ubgro up o f  the s ubgro up Kin G, then j'( c: N( H) 

(th at is , N( H) is the l argest s ubgro up o f  Gin which H is norm al ). 
( d) His norm al in G i f  an d only i f  N(H) = G. 

I I .  If N an d M are norm al s ubgro ups o f  G, prove th at NM is also a 
norm al s ubgro up o f  G. 

* 1 2. Suppose th at N an d M are two norm al s ubgro ups o f  G an d th at 
N n M (e) . Show th at for any n e N, m E M, nm = mn. 

1 3. If a cycl ic s ubgro up T o f  G is nor mal in G, then show th at every 
s ubgro up o f  Tis nor mal in G. 

* 14. Prove , by an ex ample , th at we c an fin d three gro ups E c: F c: G, 
where E is nor mal in F, F is norm al in G, b ut E is not nor mal in G. 

1 5. If N is norm al in G an d a e G is o f  or der o( a) ,  prove th at the or der, 
m, o f  Na in GJ N is a divisor o f  o( a).  
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Example 2.7.6 Let G be the group of positive real numbers under 
multiplication and let C be the group of all real numbers under addition. 
Define <f> :G --+ G by <f>(x) = log10x. Thus 

</>(xy) = log10(xy) = log10(x) + log10(y) = </>(x)<f>(y) 

since the operation, on the right side, in C is in fact addition. Thus </> is a 
homomorphism of G into G. In fact, not only is </> a homomorphism but, 
in addition, it is one-to-one and onto. 

# Example 2.7.7 Let G be the group of all real 2 x 2 matrices (: !) 
such that ad - be =/: 0, under matrix multiplication. Let C be the group 
of all nonzero real numbers under multiplication. Define </> :G --+ C by 

<1>(: !) = ad - be. 

We leave i t  to the reader to check that </> is a homomorphism of G onto C. 

The result of the following lemma yields, for us, an infinite class of 
examples of homomorphisms. When we prove Theorem 2.7. 1 it will turn 
out that in some sense this provides us with the most general example of a 
homomorphism. 

LEM MA 2.7.1 Suppose G is a group, N a rwrmal subgroup tif G; define the 
mapping </> from G to G/N by ¢ (x) = Nx for all x e G. Then </> is a homo­
morphism tif G onto Gf N. 

Proof. In actuality, there is nothing to prove, for we already have 
proved this fact several times. But for the sake of emphasis we repeat it. 

That ¢ is onto is trivial, for every element X e GfN is of the form 
X = Ny, y e G, so X = <f>( y) .  To verify the multiplicative property 
required in order that </> be a homomorphism, one just notes that if 
x, y e G, 

<f> (xy) = Nxy = NxNy = ¢ (x)<f> (y) .  

In Lemma 2.  7. 1 and i n  the examples preceding it, a fact which comes 
through is that a homomorphism need not be one-to-one ; but there is a 
certain uniformity in this process of deviating from one-to-oneness. This 
will become apparent in a few lines. 

D E F I N IT I O N  If </> i s  a homomorphism of G into C, the kernel of </>, K.p, is 
defined by K.p = {x e G I <f> (x) = i, i = identity element of C}. 

Before investigating any properties of K.p it is advisable to establish that, 
as a set, K.; is not empty. This is furnished us by the first part of 
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e = ¢(z) ¢(x) 1 = ¢(z)¢(x 1) = ¢(zx 1) ,  in consequence of which 
zx 1 e K; thus z E Kx. In other words, we have shown that Kx accounts 
for exactly all the inverse images of g whenever x is a single such inverse 
image. We record this as 

LEMMA 2.7.4 If ¢  is a lwmomorphism of G onto G with kernel K, then the set 
of all inverse images of g E G under ¢ in G is given by Kx, where x is any particular 
inverse image of g in G. 

A special case immediately presents itself, namely, the situation when 
K = (e) . But here, by Lemma 2.7.4, any g E G has exactly one inverse 
image. That is, ¢ is a one-to-one mapping. The converse is trivially true, 
namely, if ¢ is a one-t(}-one homomorphism of G into (not even onto) G, its 
kernel must consist exactly of e. 

D E F I N ITIO N  A homomorphism ¢ from G into G is said to be an isomor­
phism if ¢ is one-to-one. 

D E F I N ITI O N  Two groups G, G* are said to be isomorphic if there is an 
isomorphism of G onto G*. In this case we write G � G*. 

We leave to the reader to verify the following three facts : 

l .  G � G. 
2. G � G* implies G* � G. 
3 .  G � G*, G* � G** implies G � G**. 

When two groups are isomorphic, then, in some sense, they are equal. 
They differ in that their elements are labeled differently. The isomorphism 
gives us the key to the labeling, and with it, knowing a given computation 
in one group, we can carry out the analogous computation in the other. 
The isomorphism is like a dictionary which enables one to translate a 
sentence in one language into a sentence, of the same meaning, in another 
language. (Unfortunately no such perfect dictionary exists, for in languages 
words do not have single meanings, and nuances do not come through in a 
literal translation. )  But merely to say that a given sentence in one language 
can be expressed in another is of little consequence ; one needs the dictionary 
to carry out the translation. Similarly it might be of little consequence to 
know that two groups are isomorphic ; the object of interest might very well 
be the isomorphism itself. So, whenever we prove two groups to be iso­
morphic, we shall endeavor to exhibit the precise mapping which yields 
this isomorphism. 

Returning to Lemma 2. 7.4 for a moment, we see in it a means of character­
izing in terms of the kernel when a homomorphism is actually an isomor­
phism. 
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CORO LLARY A homomorphism ¢ of G into C with kernel K• is an isomorphism 
qf G into C if and onb if K• = (e). 

This corollary provides us with a standard technique for proving two 
groups to be isomorphic. First we find a homomorphism of one onto the 
other, and then prove the kernel of this homomorphism consists only of 
the identity element. This method will be illustrated for us in the proof 
of the very important 

TH E O R E M  2.7.1 Let ¢ he a homomorphism qf G onto C with kernel K. Then 
GJK � C. 

Proof. Consider the diagram 

• 1  
G 
K 

where q(g) = Kg. 
We should like to complete this to 

It seems clear that, in order to construct the mapping 1/t from GJK to C, 
we should use G as an intermediary, and also that this construction should 
be relatively uncomplicated. What is more natural than to complete the 
diagram using 
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With this preamble we formally define the mapping t/1 from GJK to C by: 
if X E GjK, X = Kg, then t/J(X) = ¢(g) . A problem immediately arises : 
is this mapping well defined? If X E GjK, it can be written as Kg in several 
ways (for instance, Kg = Kkg, k E K) ; but if X = Kg = Kg', g, g' E G, 
then on one hand t/J(X) = ¢(g) ,  and on the other, t/J(X) = f/>(g') . For 
the mapping t/1 to make sense it had better be true that ¢(g) ¢(g').  
So, suppose Kg = Kg' ;  then g = kg', where k E K, hence ¢(g) = ¢(kg') = 
¢ (k) ¢(g') = if/>(g') = ¢(g') since k E K, the kernel of ¢. 

We next determine that 1/J is onto. For, if x E C, x = ¢ (g),  g E G (since 

¢ is onto) so x = ¢(g) = t/I(Kg) . 
If X, Y E GJK, X Kg, Y = Kj, g,j E G, then XY = KgKJ = Kgj, 

so that t/J(XY) = 1/J (Kgj) = ¢(gj) = ¢(g) ¢ (f) since ¢ is a homomorphism 
of G onto C. But t/J(X) = 1/J(Kg) = ¢(g),  t/J ( Y) = t/J(Kj) = ¢(f) ,  so we 
see that 1/J(XY) t/J (X) !/J(Y) ,  and 1/J is a homomorphism of GJK onto C. 

To prove that 1/J is an isomorphism of GfK onto C all that remains is to 
demonstrate that the kernel of t/1 is the unit element of GfK. Since the unit 
element of GfK is K = Ke, we must show that if 1/J (Kg) = i, then Kg = 
Ke = K. This is now easy, for i t/J (Kg) = ¢(g) ,  so that ¢ (g) = i, 
whence g is in the kernel of ¢, namely K. But then Kg = K since K is a 
subgroup of G. All the pieces have been put together. We have exhibited 
a one¥to-one homomorphism of GfK onto C. Thus GfK � C, and Theorem 
2. 7 . I  is established. 

Theorem 2. 7.1  is important, for it tells us precisely what groups can be 
expected to arise as homomorphic images of a given group. These must be 
expressible in the form GfK, where K is normal in G. But, by Lemma 2.7. 1 ,  
for any normal subgroup N of G, Gf N is a homomorphic image of G. Thus 
there is a one-t�one correspondence between homomorphic images of G 
and normal subgroups of G. If one were to seek all homomorphic images of 
G one could do it by never leaving G as follows : find all normal subgroups 
N of G and construct all groups Gf N. The set of groups so constructed 
yields all homomorphic images of G (up to isomorphisms) . 

A group is said to be simple if it has no nontrivial homomorphic images, 
that is, if it has no nontrivial normal subgroups. A famous, long-standing 
conjecture was that a non-abelian simple group of finite order has an even 
number of elements. This important result has been proved by the two 
American mathematicians, Walter Feit and John Thompson. 

We have stated that the concept of a homomorphism is a very important 
one. To strengthen this statement we shall now show how the methods and 
results of this section can be used to prove nontrivial facts about groups. 
When we construct the group Gf N, where N is normal in G, if we should 
happen to know the structure of Gf N we would know that of G "up to N." 
True, we blot out a certain amount of information about G, but often 
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(b) If gug - 1 E U for all g E G, u E U, prove that 0 is a normal 
subgroup of G. 

5. Let U = {xyx- ly- 1 I x,y E G}. In this case 0 is usually written as 
G' and is called the commutator subgroup qf G. 
(a) Prove that G' is normal in G. 
(b) Prove that GfG' is abelian. 
(c) If GfN is abelian, prove that N :: G'. 
(d) Prove that if H is a subgroup of G and H :: G', then H is normal 

� a  
. 

6. If N, M are normal subgroups ofG, prove that NMfM :: NfN n M. 

7. Let V be the set of real numbers, and for a, b real, a :f= 0 let 

'l:ab : V --+ V defined by 'l:ab(x) = ax + b. Let G = {1:ab I a, b real, 
a :1= 0 }  and let N {1:1b  E G}. Prove that N is a normal subgroup 
of G and that Gf N :: group of nonzero real numbers under multi­
plication. 

8. Let G be the dihedral group defined as the set of all formal symbols 
xY, i = 0, I ,  j = 0, I ,  . . . , n - I ,  where x 2 e, y" = e, xy = 
y- 1x. Prove 
(a) The subgroup N = {e,y, y2, . . .  , y"- 1 }  is normal in G. 
(b) That Gf N :: W, where W = { I ,  - I }  is the group under 

the multiplication of the real numbers. 

9. Prove that the center of a group is always a normal subgroup. 

10. Prove that a group of order 9 is abelian. 

1 1 .  If G is a non-abelian group of order 6, prove that G :: S3 • 

12. If G is abelian and if N is any subgroup of G, prove that GfN is 
abelian. 

13 .  Let G be the dihedral group defined in Problem 8. Find the center 
of G. 

I4. Let G be as in Problem I 3. Find G', the commutator subgroup of G. 

1 5. Let G be the group of nonzero complex numbers under multiplication 
and let N be the set of complex numbers of absolute value I (that is, 
a + hi E  N if a2  + b2  = I ) .  Show that GfN is isomorphic to the 
group of all positive real numbers under multiplication. 

# 1 6. Let G be the group of all nonzero complex numbers under multi­
plication and let C be the group of all real 2 x 2 matrices of the form ( a b)

, where not both a and b are 0, under matrix multiplication. 
- b  a 

Show that G and C are isomorphic by exhibiting an isomorphism of 
G onto C. 
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* I 7. Let G be the group of real numbers under addition and let N be the 
subgroup of G consisting of all the integers. Prove that Gf N is 
isomorphic to the group of all complex numbers of absolute value I 
under multiplication. 

# 1 8. Let G be the group of all real 2 x 2 matrices(; �}with ad - be � 0, 

under matrix multiplication, and let 

N = {(; �) e G I ad - be = I}-

Prove that N :J G', the commutator subgroup of G. 

*# 1 9. In Problem 1 8  show, in fact, that N G'. 

#20. Let G be the group of all real 2 x 2 matrices of the form ( � �} 
where ad � 0, under matrix multiplication. Show that G' is precisely 

the set of all matrices of the form (� ;} 
2 1 .  Let S1 and S2 be two sets. Suppose that there exists a one-to-one 

mapping t/1 of S1 into S2• Show that there exists an isomorphism of 
A(S1 ) into A (S2) , where A(S) means the set of all one-to-one mappings 
of S onto itself. 

2.8 Automorphism& 

In the preceding section the concept of an isomorphism of one group into 
another was defned and examined. The special case in which the isomor­
phism maps a given group into itself should obviously be of some importance. 
We use the word "into" advisedly, for groups G do exist which have iso­
morphisms mapping G into, and not onto, itself. The easiest such example 
is the following : Let G be the group of integers under addition and define 
t/J:G --. G by t/J:x --. 2x for every x e G. Since t/J :x + y --. 2 (x + y) = 
2x + 2y, t/J is a homomorphism. Also if the image of x and y under t/J are 
equal, then 2x = 2y whence x = y. t/J is thus an isomorphism. Yet t/J is 
not onto, for the image of any integer under t/J is an even integer, so, for 
instance, I does not appear an image under t/J of any element of G. Of 
greatest interest to us will be the isomorphisms of a group onto itself. 

D EFI  N ITI ON By an automorphism of a group G we shall mean an isomorphism 
of G onto itself. 

As we mentioned in Chapter I ,  whenever we talk about mappings of a set 
into itself we shall write the mappings on the right side, thus if T:S --. S, 
x e S, then x T  is the image of x under T. 
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Let G be a group; for g E  G defne T11 :G --. G by x T9 = g- 1xg for all 
x E G. We claim that T9 is an automorphism of G. First, T9 is onto, for 
given y E G, let x = gyg- 1• Then x T1 = g 1 (x) g g 1 (gyg 1 ) g  = y, so 
T9 is onto. Now consider , for x,y E G, (xy) T9 = 1 (xy)g = g 1 (xgg "y)g = 
(g 1xg) (g 1yg) = (xT9) (yTr J Consequently T9 is a homomorphism of G 
onto itself. We further assert that T9 is one-to-one, for if x T9 = y T9, then 
g 1xg = g- 1yg, so by the cancellation laws in G, x = y. T9 is called the 
inner automorphism corresponding to g. If G is non-abelian, there is a pair 
a, b E G  such that ab # ba; but then b T0 a 1ba # b, so that T., f; I. 
Thus for a non-abelian group G there always exist nontrivial automorphisms. 

Let J(G) = { T9 E d(G) I g E G}. The computation of T9h, for g, h E  G, 
might be of some interest. So, suppose x E G; by definition, 

x T1h = (gh) 1x(gh) = h 1g 1xgh = (g- 1xg) T,. = (xT9) Th = x T9 Th. 

Looking at the start and finish of this chain of equalities we find that 
T9,. = T9 Th. This little remark is both interesting and suggestive. It is of 
interest because it immediately yields that .F(G) is a subgroup of d(G) .  
(Verify !) J(G)  is usually called the group tif inner automorphisms qf G. It is 
suggestive, for if we consider the mapping t/1 :G --. d (G) defined by 
tft (g) = T9 for every g E G, then t/t(gh) T9h T9 Th = t/t(g) tft(h) . That 
is, t/1 is a homomorphism of G into d(G )  whose image is J(G).  What is 
the kernel of t/1? Suppose we call it K, and suppose g0 E K. Then tft (g0) = I, 
or, equivalently, T90 = I. But this says that for any x E G, x T90 = x ;  
however, x T90 = g0 1xg0, and so x = g0 1xg0 for all x E G. Thus g0x = 
g0g0 1xg0 = xg0 ; g0 must commute with all elements of G. But the center 
of G, Z, was defined to be precisely all elements in G which commute with 
every element of G. (See Problem 15, Section 2.5.) Thus K c Z. However, 
if z E Z, then x Tz = z 1xz = z 1 (zx) (since zx = xz) = x, whence 
Tz I and so z E K. Therefore, Z c K. Having proved both K c Z 
and Z c K we have that Z = K. Summarizing, t/1 is a homomorphism of 
G into d(G) with image J(G) and kernel Z. By Theorem 2.7. 1 
J(G) � GfZ. In order to emphasize this general result we record it as 

LEMMA 2.8.2 J(G) � G/Z, where J(G)  is the group qf inner automorphisms 
qf G, and Z is the center qf G. 

Suppose that 4> is an automorphisms of a group G, and suppose that 
a E G has order n (that is, a" = e but for no lower positive power) . Then 
<f>(a)"   .a") = <f>(e) = e, hence <f>(a)" = e. If <f>(a)"' = e for some 
0 < m < n, then <f>(a"') = <f>(a)m = e, which implies, since 4> is one-to-one, 
that a"' = e, a contradiction. Thus 

LEM MA 2.8.3 Let G be a group and 4> an automorphism tif G. Jj a E G is 
qf order o(a) > 0, then o(<f>(a) ) = o(a) . 
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Automorphisms of groups can be used as a means of constructing new 
groups from the original group. Before explaining this abstractly, we con­
sider a particular example. 

Let G be a cyclic group of order 7, that is, G consists of all a1, where we 
assume a7 = e. The mapping ¢ :a1 -+ a2 1, as can be checked trivially, is 
an automorphism of G of order 3, that is, ¢3 = I. Let x be a symbol which 
we formally subject to the following conditions : x3 = e, x 1a1x ¢ (a1) 
a2 1, and consider all formal symbols x1al, where i = 0, 1 ,  2 and 
j = 0, I ,  2, . . .  , 6. We declare that x1ai = Jta1 if and only if i = k mod 3 
and j = l mod 7 .  We multiply these symbols using the rules x3 = a 7 = e, 
x 1ax = a2 •  For instance, (xa) (xa2 )  = x(ax)a2  x(xa2)a2  = x2a4• The 
reader can verify that one obtains, in this way, a non-abelian group of 
order 2 1 .  

Generally, if G is a group, T an automorphism of order r of G which is 
not an inner automorphism, pick a symbol x and consider all elements 
x1g, i = 0, ± 1 ,  ± 2, . . .  , g E G subject to x1g = x1'g' if and only if i = 
i' mod r, g g' and x 1ix = gT1 for all i. This way we obtain a larger 
group {G, T} ; G is normal in {G, T} and {G, T}/G � group generated by 
T = cyclic group of order r. 

We close the section by determining d(G) for all cyclic groups. 

Example 2.8.1 Let G be a finite cyclic group of order r, G = (a) , a' e. 
Suppose T is an automorphism of G. If a T  is known, since a1T = (a T) 1, 
a1 T is determined, so gT is determined for all g E G = (a) . Thus we need 
consider only possible images of a under T. Since a T  E G, and since every 
element in G is a power of a, a T  = a1 for some integer 0 < t < r. However, 
since T is an automorphism, a T  must have the same order as a (Lemma 
2.8.3) ,  and this condition, we claim, forces t to be relatively prime to r. For 
if d I t, d I r, then (a T)''4 = tt<r/tl) = a'<tfd) = (a')tltl = e; thus a T  has order 
a divisor of rfd, which, combined with the fact that a T  has order r, leads 
us to d = 1 .  Conversely, for any 0 < s < r and relatively prime to r, the 
mapping S:a1  -+ ff1 is an automorphism of G. Thus d(G) is in one-to-one 
correspondence with the group U, of integers less than r and relatively 
prime to r under multiplication modulo r. We claim not only is there such 
a one-to-one correspondence, but there is one which furthermore is an 
isomorphism. Let us label the elements of d(G) as T1 where T1 :a -+ a1, 
0 < i < r and relatively prime to r; T1T1 :a -+ a1 -+ (a1)i = ali, thus 
T1 T1 = Tu. The mapping i -+ T1 exhibits the isomorphism of U, onto 
d(G ) .  Here then, d (G) � U,. 

Example 2.8.2 G is an infinite cyclic group. That is, G consists of all a1, 
i = 0, ± I , ± 2, . . .  , where we assume that a1 e if and only if i = 0. 
Suppose that T is an automorphism of G. As in Example 2.8. 1 ,  a T  = a1• 
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The question now becomes, What values of t are possible ?  Since T is an 
automorphism of G, it maps G onto itself, so that a = g T for some g E G. 
Thus a = aiT = (a T) 1 for some integer i. Since aT = a1, we must have 
that a = d1, so that a1 1 - 1 = e. Hence ti - l = 0 ;  that is, ti = 1 .  Clearly, 
since t and i are integers, this must force t = ± I ,  and each of these gives 
rise to an automorphism, t = 1 yielding the identity automorphism I, 
t = - 1  giving rise to the automorphism T:g --+ g - 1 for every g in the 
cyclic group G. Thus here, d(G) � cyclic group of order 2. 

Problems 

I .  Are the following mappings automorphisms of their respective groups? 
(a) G group of integers under addition, T:x --+ - x. 
(b) G group of positive reals under multiplication, T:x --+ x2• 
(c) G cyclic group of order 12,  T:x --+ x3 • 
(d) G is the group S3, T:x --+ x 1• 

2. Let G be a group, H a subgroup of G, T an automorphism of G. 
Let (H) T = {h T I h E  H}. Prove (H) T is a subgroup of G. 

3. Let G be a group, T an automorphism of G, N a normal subgroup of 
G. Prove that ( N) T is a normal subgroup of G. 

4. For G = S3 prove that G � J(G) .  

5 .  For any group G prove that J (G) is a normal subgroup of  d (G) (the 
group d (G)JJ(G) is called the group rif outer automorphisms of G) .  

6. Let G be a group of order 4, G = {e, a ,  b,  ab  }, a2 = b 2 = e ,  ab  = ba. 
Determine d (G ) .  

7 .  (a) A subgroup C of G i s  said t o  be a characteristic subgroup o f  G if 
(C) T c C for all automorphisms T of G. Prove a characteristic 
subgroup of G must be a normal subgroup of G. 

(b) Prove that the converse of (a) is false. 

8. For any group G, prove that the commutator subgroup G' is a 
characteristic subgroup of G. (See Problem 5, Section 2 .  7) .  

9.  If G is  a group, N a normal subgroup of G, M a characteristic sub­
group of N, prove that M is a normal subgroup of G. 

10. Let G be a finite group, T an automorphism of G with the property 
that x T x for x E G if and only if x = e. Prove that every g E G 
can be represented as g = x- 1 (x T) for some x E G. 

1 1 .  Let G be a finite group, T an automorphism of G with the property 
that xT = x if and only if x = e. Suppose further that T2 = I. 
Prove that G must be abelian. 
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for every x E G. Ify E G, then y = (yg- 1) g  = (yg- 1)-rg, so that Tg maps 
S onto itself. Moreover, Tg is one-to-one, for if x, y E S and x-rg = y-rg, 
then xg = yg, which, by the cancellation property of groups, implies that 
x = y. We have proved that for every g E G, Tg E A(S) .  

If g, h E G, consider 'fgh· For any x E S = G, x-rgh = x(gh) = (xg)h = 
(x-rg)-rh = X'fg'fh. Note that we used the associative law in a very essential 
way here. From x-rgh = x-rg-rh we deduce that Tgh = -r9-rh. Therefore, if 
t/J :G -+ A ( S) is defined by t/J(g) = Tg, the relation Tgh = Tg'fh tells us that t/1 
is a homomorphism. What is the kernel K of t/J ? If g0 E K, then t/J(g0) = Tgo 
is the identity map on S, so that for x E G, and, in particular, for e E G, 
e-rgo = e. But e-r90 = eg0 = g0• Thus comparing these two expressions for 
e-rgo we conclude that g0 = e, whence K = (e) . Thus by the corollary to 
Lemma 2. 7.4 t/J is an isomorphism of G into A (S),  proving the theorem. 

The theorem enables us to exhibit any abstract group as a more concrete 
object, namely, as a group of mappings. However, it has its shortcomings ; 
for if G is a finite group of order o(G) ,  'then, using S = G, as in our proof, 
A (S) has o(G) ! elements. Our group G of order o(G) is somewhat lost in 
the group A(S) which, with its o (G) ! elements, is huge in comparison to G. 
We ask : Can we f nd a more economical S, one for which A (S) is smaller? 
This we now attempt to accomplish. 

Let G be a group, H a subgroup of G. Let S be the set whose elements 
are the right cosets of H in G. That is, S = {Hg I g E G}. S need not be a 
group itself, in fact, it would be a group only if H were a normal subgroup 
of G. However, we can make our group G act on S in the following natural 
way : for g E G let tg :S -+ S be defined by (Hx) tg = Hxg. Emulating the 
proof of Theorem 2.9. 1 we can easily prove 

I .  tg E A (S) for every g E G. 
2. tgh = tgth. 

Thus the mapping () :G -+ A (S) defined by () (g) = tg is a homomorphism of 
G into A (S) .  Can one always say that () is an isomorphism?  Suppose that K 
is the kernel of (). If g0 E K, then 8(g0) = tgo is the identity map on S, so 
that for every X E S, Xtgo = X. Since every element of S is a right coset of 
H in G, we must have that Hatg0 = Ha for every a E G, and using the de­
finition of tgo' namely, Hat90 = Hag0, we arrive at the identity Hag0 = Ha 
for every a E G. On the other hand, if b E G is such that Hxb = Hx for 
every x E G, retracing our argument we could show that b E K. Thus 
K = {b E G  I Hxb = Hx all x E G}. We claim that from this character­
ization of K, K must be the largest normal subgroup of G which is contained 
in H. We first explain the use of the word largest ; by this we mean that if 
N is a normal subgroup of G which is contained in H, then N must be con­
tained in K. We wish to show this is the case. That K is a normal subgroup 
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4 !  = 24 < 36 = o(G) so that in H there must be a normal subgroup 
N =F (e) , of G, of order a divisor of 9, that is, of order 3 or 9. 

2. Let G be a group of order 99 and suppose that H is a subgroup of G 
of order l l  (we shall also see, later, that this must be true) . Then i(H) = 9, 
and since 99 .-/" 9 !  there is a nontrivial normal subgroup N =F (e) of G in H. 
Since H is of order I I , which is a prime, its only subgroup other than (e) is 
itself, implying that N = H. That is, H itself is a normal subgroup of G. 

3. Let G be a non-abelian group of order 6. By Problem l l , Section 2.3, 
there is an a =F e E G satisfying a2 = e. Thus the subgroup H = { e, a} is 
of order 2, and i(H) = 3. Suppose, for the moment, that we know that H 
is not normal in G. Since H has only itself and (e) as subgroups, H has no 
nontrivial normal subgroups of G in it. Thus G is isomorphic to a subgroup 
T of order 6 in A(S) , where S is the set of right cosets of H in G. Since 
o(A(S) ) = i(H) ! = 3 ! = 6, T = S. In other words, G :: A(S) = S3 • We 
would have proved that any non-abelian group of order 6 is isomorphic to 
S3 • All that remains is to show that H is not normal in G. Since it might be 
of some interest we go through a detailed proof of this. If H = { e, a} were 
normal in G, then for every g E G, since gag - 1 E H and gag - 1 =F e, we 
would have that gag - 1 = a, or, equivalently, that ga = ag for every g E G. 
Let b E G, b ¢ H, and consider N(b) = {x E G I xb = bx}. By an earlier 
problem, N(b) is a subgroup of G, and N(b) :: H; N(b) =F H since 
b E  N(b), b ¢ H. Since H is a subgroup of N(b), o(H) I o(N(b)) 1 6. The 
only even number n, 2 < n :: 6 which divides 6 is 6. So o(N(b)) = 6 ;  
whence b commutes with all elements of G. Thus every element of G com­
mutes with every other element of G, making G into an abelian group, 
contrary to assumption. Thus H could not have been normal in G. This 
proof is somewhat long-winded, but it illustrates some of the ideas already 
developed. 

Problems 

l .  Let G be a group ; consider the mappings of G into itself, ..1.9, defined 
for g E  G by xA.g = gx for all x E G. Prove that A.9 is one-to-one and 
onto, and that A9h = A.hA.g. 

2. Let A.9 be defined as in Problem l, -r:g as in the proofof Theorem 2.9. 1 .  
Prove that for any g, h E  G, the mappings ..1.9, 7:h satisfy Ag7:h = -r:hA.9• 
(Hint : For x E G consider x(A.9-r:h) and x(-r:hA.9) . )  

3. If  0 i s  a one-to-one mapping of  G onto itself such that A.iJ = 8..1.9 
for all g E G, prove that () = -r:h for some h E G. 

4. (a) If H is a subgroup of G show that for every g E G, gHg- 1 is a 
subgroup of G. 
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While this notation is a little handier there still is waste in it, for there seems 
to be no purpose served by the symbol x. VVe could equally well represent 
the permutation as 

Gl 2 

� ) . iz z .  

Our specific example would read 

G 2 3 �) . 4 1 

Given two permutations (), t/1 in s., using this symbolic representation of () 
and t/1, what would the representation of ()�� be? To compute it we could 
start and see what ()tjJ does to x1 (henceforth written as 1 ) .  () takes 1 into 
i1 , while t/1 takes i1 into k, say, then ()tjJ takes 1 into ko Then repeat this 
procedure for 2, 3, 0 0 0 , no For instance, if () is the permutation represented 
by 

and t/J by 

2 

2 
3 

3 
2 !) ' 

then i1 = 3 and t/1 takes 3 into 2, so k = 2 and ()tjJ takes 1 into 2. Similarly 
()tjJ :2 -+ 1 ,  3 -+ 3, 4 -+ 40 That is, the representation for ()tjJ is 

G 2 

If we write 

() = G 
and 

t/I = G 
then 

()tjJ = G 2 3 !) G 2 

3 
3 

2 

2 
3 

2 
3 

!) 0 

3 
2 

3 
2 

3 
2 

!) 
!) ' 

4) = c 4 2 
2 3 

3 

This is the way we shall multiply the symbols of the form 

G� 2 � ) '  (!1 2 �.) 0 iz z. kz 

!) 0 
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Let S be a set and 0 E A(S). Given two elements a, b E  S we define 
a = 8b if and only if b = a01 for some integer i (i can be positive, negative, 
or 0) . We claim this defines an equivalence relation on S. For 

1 .  a = 0a since a = a0° = ae. 
2 .  If a = 8h, then b = a01, so that a = bO 1, whence b = 0a. 
3. If a ob, b :: gC, then b = a01, C = hOi = (a01)0} = a0i+J, which 

implies that a 8c. 

This equivalence relation by Theorem I .  I .  I induces a decomposition of S 
into disjoint subsets, namely, the equivalence classes. We call the equivalence 
class of an element s E S the orbit of s under 0 ;  thus the orbit of s under 0 
consists of all the elements s01, i = 0, ± I , ± 2, . . . .  

In particular, if S is a finite set and s e S, there is a smallest positive 
integer l = l(s) depending on s such that s01 = s. The orbit of s under (} 
then consists of the elements s, sO, s02 , • • •  , s01 1 . By a cycle of 0 we mean 
the ordered set (s, sO, s0 2, • • •  , s01- 1

) . If we know all the cycles of 0 we 
clearly know (} since we would know the image of any element under 0. 
Before proceeding we illustrate these ideas with an example. Let 

0 
2 
1 

3 
3 

4 5 6) 
5 6 4 ' 

where S consists of the elements I ,  2, . . .  , 6 (remember 1 stands for x1 , 
2 for Xz, etc.) .  Starting with 1 '  then the orbit of 1 consists of 1 = 1 0°' 
1 0 1 = 2, HP = 20 1 ,  so the orbit of 1 is the set of elements I and 2. 
This tells us the orbit of 2 is the same set. The orbit of 3 consists just of 3 ;  
that of 4 consists of the elements 4, 40 = 5, 402 = 50 = 6, 403 = 6(} = 4. 
The cycles of O are ( 1 ,  2),  {3),  (4, 5, 6) . 

We digress for a moment, leaving our particular 0. Suppose that by the 
cycle (i1, i2, • • •  , i,) we mean the permutation t/1 which sends i1 into i2, 
i2 into i3 • • • i,_ 1  into i, and i, into il> and leaves all other elements of S 
fixed. Thus, for instance, if S consists of the elements I, 2, . . . , 9, then the 
symbol ( 1 ,  3, 4, 2, 6) means the permutation 

2 3 4 5 6 
6 4 2 5 

7 8 9) 
7 8 9 

. 

We multiply cycles by multiplying the permutations they represent. Thus 
again, if S has 9 elements, 

( 1  2 8) 

3 4 5 6 
4 5 6 

3 4 5 6 
8 6 4 

7 
7 

7 
7 

: �) (! � 
� ;) . 

3 4 
3 1 

5 6 
6 4 
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1 0. Det erm in e which of t he foll owing ar e even p ermutat ion s: 
(a ) ( 1 ,  2, 3) ( 1 ,  2) . 
(b ) ( I ,  2, 3, 4, 5) ( 1 ,  2, 3) (4, 5) .  
( c) ( I ,  2) ( I ,  3) ( 1 ,  4) (2, 5) .  

I I . Pr ove t hat t he small est subgr oup of S, conta in ing ( I ,  2) and 
( I ,  2, . . .  , n) is S,. ( In ot her word s, t hese g en erat e S,.) 

* 1 2 . Pr ove t hat for n ;; 3 t he subgr oup g en erat ed by t he 3-cy cl es is A,. 

* I 3 . Pr ove t hat if a n ormal subgr oup of A, conta in s  even a singl e 3-cy cl e 
it mu st b e  all of A,. 

* I 4. Pr ove t hat As ha s n o  n ormal subgr oup s N =F (e), As. 

1 5. A ssum ing t he r esult of Pr obl em 1 4, pr ove t hat any subgr oup of A5 
ha s ord er at m ost 12. 

16.  Find all t he n ormal subgr oup s in S4• 

* 1 7. I f  n ;; 5 pr ove t hat A, is t he only n ontr ivial n ormal subgr oup in S,. 

Cayl ey 's t heor em (T heor em 2.9. 1 )  a ssert s t hat every gr oup is isom orp hic 
t o  a subgr oup of A( S)  for som e S. In part icular, it say s t hat every fin it e  
gr oup can b e  r eal ized a s  a gr oup of p ermutat ion s. Let u s  call t he r eal izat ion 
of t he gr oup a s  a gr oup of p ermutat ion s  a s  g iven in t he pr oof of Theor em 
2.9. 1 t he permutation representation of G. 

1 8. Find t he p ermuta tion r epr esentat ion of a cy cl ic gr oup of ord er n. 

1 9. Let G b e  t he gr oup {e, a, b, ab } of ord er 4, wher e  a2 = b2 = e, 
ab = ba. Find t he p ermutat ion r epr esentat ion of G. 

20. Let G b e  t he gr oup S3 • Find t he p ermutati on r epr esentat ion of S3• 
(Note : T his gives an isom orp hism of S3 int o  S6 .)  

2 1 .  Let G b e  t he gr oup {e, 0,  a,  b,  c, Oa, Ob, Oc}, wher e  a2 = b2 = c2 = 0, 
02 = e, ab = Oba = c, be = (}cb = a, ca = 9ac = b. 

(a ) Show t hat (} is in t he cent er Z of G, and t hat Z = {e, 0}. 
(b ) Find t he commutat or subgr oup of G. 
( c) Show t hat every subgr oup of G is n ormal . 
(d ) Find t he p ermutat ion r epr esentat ion of G. 
( Note : G is oft en call ed t he gr oup of qv.aternion units; it , and alg ebra ic 
sy st em s con stru ct ed fr om it, will r eapp ear in t he b ook.) 

22. Let G b e  t he d ihed ral gr oup of ord er 2n ( see Pr obl em 1 7, Sect ion 2.6) . 
Find t he p ermutat ion r epr esentat ion of G. 

Let u s  call t he r eal iza tion of a gr oup G a s  a set of p ermutat ion s  g iven in 
Pr obl em I ,  Sect ion 2.9 t he second permutation representation of G. 

23. Show t hat if G is an ab el ian gr oup, t hen t he p ermutat ion r epr esentat ion 
of G coin cid es wit h t he second p ermutat ion r epr esentat ion of G ( i.e., 
in t he n ota tion of t he pr eviou s sect ion, ..1.9 = 1:9 for all g e G. ) 
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case in the proof below. But, to be frank, we shall prove, in the very next 
section, a much stronger result, due to Sylow, which has Cauchy's theorem 
as an immediate corollary, in a manner which completely avoids Theorem 
2. 1 1 . 1 .  To continue our candor, were Cauchy's theorem itself our ultimate 
and only goal, we could prove it, using the barest essentials of group theory, 
in a few lines. [fhe reader should look up the charming, one-paragraph 
proof of Cauchy's theorem found by McKay and published in the American 
Mathematical Monthly, Vol . 66 (1 959), page 1 1 9.] Yet, despite all these 
counter-arguments we present Cauchy's theorem here as a striking illustration 
of Theorem 2. 1 1 . 1 .  

TH E O R E M  2.1 1 .3 (CAUCHY) Jj p is a prime number and p I o(G), then 
G has an element qf order p. 

Proof. We seek an element a =P e E G satisfying aP = e. To prove its 
existence we proceed by induction on o(G) ; that is, we assume the theorem 
to be true for all groups T such that o ( T) < o (G) .  We need not worry 
about starting the induction for the result is vacuously true for groups of 
order 1 .  

If for any subgroup W of G, W =P G, were it to happen that p I o (  W), 
then by our induction hypothesis there would exist an element of order p in 
W, and thus there would be such an element in G. Thus we may assume that 

p is not a divisor of the order of any proper subgroup of G. In particular, if 
a f: Z(G), since N(a) =P G, p J o(N(a) ) .  Let us write down the class 
equation : 

o(G) 
o(G) = o(Z (G))  + L 

(N( ) )  N(a) * G  o a 

Since p I  o(G),  p ,r o(N(a)) we have that 

and so 
I 

o(G) p 
o(N(a)) '  

P I  L 
o(G) 

; 
N(a) * G  o( N(a) ) 

since we also have that p I  o(G), we conclude that 

p I ( o(G) - L o(G)  = o(Z (G)).  
N(a) *G o(N(a)) 

Z(G) is thus a subgroup of G whose order is divisible by p. But, after all, 
we have assumed that p is not a divisor of the order of any proper subgroup 
of G, so that Z(G) cannot be a proper subgroup of G. We are forced to 
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accept the only possibility left us, namely, that Z (G) = G. But then G 
is abelian ; now we invoke the result already established for abelian groups 
to complete the induction. This proves the theorem. 

We conclude this section with a consideration of the conjugacy relation 
in a specific class of groups, namely, the symmetric groups S,.. 

Given the integer n we say the sequence of positive integers n1, n2, • • •  , 
n,. n1 ::5; n2 ::5; • • • ::5; n, constitute a partition of n if n = n1 + n2 + · · · + n,. 
Let p(n) denote the number of partitions of n. Let us determine p(n) for 
small values of n : 

p( l ) = 1 since 1 = 1 is the only partition of 1 ,  

p(2) = 2 since 2 = 2 and 2 = 1 + 1 ,  

p(3) = 3 since 3 = 3, 3 = + 2, 3 = I + + 1 ,  

p(4) = 5 since 4 = 4, 4 = 1 + 3, 4 = 1 + I + 2, 
4 = I + 1 + I + 1, 4 = 2 + 2. 

Some others are p(5) = 7, p(6) = 1 1 ,  p(6 1 )  1 , 1 2 1 ,505. There is a 
large mathematical literature on p(n) . 

Every time we break a given permutation in S,. into a product of disjoint 
cycles we obtain a partition of n; for if the cycles appearing have lengths nl> 
n2, • • •  , n., respectively, n1 ::5; n2 ::5; • • • :: n, then n = n1 + n2 + · · · + n,. 
We shall say a permutation u e S,. has the cycle decomposition {n1 , n2, 
. . .  , n,} if it can be written as the product of disjoint cycles of lengths 
n1, n2, • • •  , n, n1 ::5; n2 ::5; • • • ::5; n,. Thus in S9 

( I 2 3 4 5 6 7 8 9) u = 
I 3 2 5 6 4 7 9 8 

= ( 1 ) (2. 3) (4, 5, 6) (7) (8, 9) 

has cycle decomposition { I ,  I, 2, 2, 3 } ; note that 1 + 1 + 2 + 2 + 3 = 9. 
We now aim to prove that two permutations in S, are conjugate if and 
only if they have the same cycle decomposition. Once this is proved, then 
S" will have exactly p(n) conjugate classes. 

To reach our goal we exhibit a very simple rule for computing the con­
jugate of a given permutation. Suppose that u e S,. and that u sends i -+ J. 
How do we find tr 1u() where () e S,.? Suppose that 0 sends i -+ s and 

J -+ t; then 0- 1 uO sends s -+ t. In other words, to compute tr 1 uO replace 
every symbol in u by its image under 0. For example, to determine £  1u0 
where (} = ( 1 , 2, 3) (4, 7) and u = (5, 6, 7) (3, 4, 2), then, since (} :5 -+ 5,  
6 -+ 6,  7 -+ 4, 3 -+ I ,  4 -+  7,  2 -+  3, o- 1u(} is  obtained from u by re­
placing in u, 5 by 5, 6 by 6, 7 by 4, 3 by 1 ,  4 by 7, and 2 by 3, so that 
o- 1u(} = (5, 6, 4) ( 1 ,  7, 3 ) .  

With this algorithm for computing conjugates it becomes clear that two 
permutations having the same cycle decomposition are conjugate. For if 
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q = (a1, a2, • • • , an) (bp b2, • • •  , bn2) • • • (xv x2 , • • • , x,.J and -r = (a1 , a2, 
. . .  ' anJ (fJv {J2, . • • ' Pn,) . . .  (XI >  X2 > • • •  ' x .. ), then 't = tr 1q(}, where 
one could use as () the permutation 

Thus, for instance, ( 1 , 2) (3, 4, 5) (6, 7, 8) and (7, 5) ( 1 , 3, 6) (2, 4, 8) can be 
exhibited as conjugates by using the conjugating permutation 

2 
5 

3 4 5 6 7 8) 
3 6 2 4 s ·  

That two conjugates have the same cycle decomposition is now trivial 
for, by our rule, to compute a conjugate, replace every element in a given 
cycle by its image under the conjugating permutation. 

We restate the result proved in the previous discussion as 

L E M MA 2.1 1 .3 The number rif conJugate classes in Sn is p(n) , the number of 
partitions rif n. 

Since we have such an explicit description of the conjugate classes in 
S11 we can fmd all the elements commuting with a given permutation. We 
illustrate this with a very special and simple case. 

Given the permutation ( 1 , 2) in S,., what elements commute with it? 
Certainly any permutation leaving both I and 2 fixed does. There are 
(n - 2) ! such. Also ( 1 , 2) commutes with itself. This way we get 2 (n - 2) ! 
elements in the group generated by ( 1 ,  2) and the (n 2) ! permutations 
leaving l and 2 fixed. Are there others? There are n(n - l ) /2 trans­
positions and these are precisely all the conjugates of ( 1 , 2) .  Thus the con­
jugate class of ( 1 , 2) has in it n(n - l )  /2 elements. If the order of the 
normalizer of ( 1 , 2) is r, then, by our counting principle, 

o(S,.) n !  = -� = -
r r 

Thus r = 2(n � 2) ! .  That is, the order of the normalizer of ( 1 , 2) is 
2 (n - 2) ! .  But we exhibited 2(n - 2) !  elements which commute with 
( 1 , 2) ; thus the general element q commuting with ( 1 , 2) is q = ( 1 , 2 ) i-r, 
where i = 0 or l ,  r is a permutation leaving both I and 2 fixed. 

As another application consider the permutation ( 1 ,  2, 3, . . .  , n) e S,.. 
We claim this element commutes only with its powers. Certainly it does 
commute with all its powers, and this gives rise to n elements. Now, any 
n-cycle is conjugate to ( 1 , 2, . . . , n) and there are (n - I ) ! distinct 
n-cycles in S,.. Thus if u  denotes the order of the normalizer of ( l ,  2, . . .  , n) 
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i n  S,., si nce o( S,.) /u = num ber o f  co njugates o f  ( 1 ,  2, . .. , n) i n  S,. = 

(n - 1 ) ! , 

n !  
u = n. 

(n - 1 ) !  

So the order o f  the normali zer o f  ( 1 ,  2, .. . , n) i n  S, is n. The powers o f  
( 1 ,  2,  . . .  , n) havi ng give n us n su ch eleme nts, there is no room le ft for 

others a nd we have proved our co nte ntio n. 

Problems 

1 .  List all the co njugate classes i n  S3, find the ca's, a nd veri fy the class 
eq uatio n. 

2. List all the co njugate classes i n  S4, find the c"'s a nd veri fy the class 
equatio n. 

3. List all the co njugate classes i n  the group o f  q uaternio n u nits (see 
Pro blem 2 1 ,  Se ctio n 2. 1 0) ,  find the c0's a nd veri fy the class equatio n. 

4. List all the co njugate classes i n  the dihedral group o f  order 2n, find 
the c0's a nd veri fy the class equatio n. Noti ce how the a nswer depe nds 
o n  the parity o f  n. 

5. (a) In S,. prove that there are ! n !  
disti nct r cy cles. 

r (n - r) ! 
( b) Usi ng this, find the num ber o f  co njugates that the r-cy cle 

( I ,  2, . . . , r) has i n  S,. 
( c) Prove that a ny ele me nt u i n S,. whi ch comm utes with { I ,  2, . .. , r) 

is o f  the form u (1, 2, . . .  , r)11:, where i = 0, I ,  2, .. . , r, 1: 
is a permutatio n leavi ng all o f  I ,  2, . . .  , r fixed. 

6. (a ) Fi nd the num ber o f  co njugates o f  ( I ,  2) (3, 4) i n S,., n � 4. 
( b) Fi nd the form o f  all eleme nts comm uti ng with ( I ,  2) (3, 4) i n S,. 

7. If p is a prime num ber , show that i n  SP there are (p - I ) !  + I 
eleme nts x satis fyi ng x�' = e. 

8. I f  i n  a finite group G a n  eleme nt a has exa ctly two co njugates , prove 
that G has a normal su bgroup N ¥: (e) , G. 

9. (a) Fi nd two eleme nts i n  As, the alter nati ng group o f  degree 5, whi ch 
are co njugate i n  Ss but not i n  A5•  

( b) Fi nd all the co njugate classes i n  As a nd the num ber o f  eleme nts 
i n  ea ch co njugate class. 

1 0. (a) If N is a normal su bgroup o f  G a nd a E N, show that every co n­
jugate o f  a i n  G is also in N. 

(b) Prove that o(N) = L c" for some choi ces o f  a i n  N. 
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(c) Using this and the result for Problem 9(b) , prove that in A5 there 
is no normal subgroup N other than (e) and A5• 

1 1 . Using Theorem 2. 1 1 .2 as a tool, prove that if o(G) = p", p a prime 
number, then G has a subgroup of order p� for all 0 � rx � n. 

12 .  If o(G) = p", p a prime number, prove that there exist subgroups 
N;, i = 0, 1 ,  . . .  , r (for some r) such that G = N0 ::> N1 ::> N2 ::> • • • 
::> N, = (e) where N; is a normal subgroup of N;_1 and where 
N;_ 1 /N; is abelian. 

1 3. If o(G) = p", p a prime number, and H =1= G is a subgroup of G, 
show that there exists an x E G, x ¢:. H such that x 1Hx = H. 

14. Prove that a�y subgroup of order p"- 1 in a group G of order p", 
p a prime number, is normal in G. 

* 15 .  If o(G) = p", p a prime number, and if N =I= (e) is a normal subgroup 
of G, prove that N n Z =1= (e) , where Z is the center of G. 

1 6. If G is a group, Z its center, and if G/Z is cyclic, prove that G must 
be abelian. 

1 7. Prove that any group of order 1 5  is cyclic. 

1 8. Prove that a group of order 28 has a normal subgroup of order 7. 

1 9. Prove that if a group G of order 28 has a normal subgroup of order 4, 
then G is abelian. 

2.1 2 Sylow's Theorem 

Lagrange's theorem tells us that the order of a subgroup of a finite group is 
a divisor of the order of that group. The converse, however, is false. There 
are very few theorems which assert the existence of subgroups of prescribed 
order in arbitrary finite groups. The most basic, and widely used, is a 
classic theorem due to the Norwegian mathematician Sylow. 

We present here three proofs of this result of Sylow. The first is a very 
elegant and elementary argument due to Wielandt. I t  appeared in the 
journal Archiv der Matematik, Vol. 10 ( 1 959) , pages 401 402. The basic 
elements in Wielandt's proof are number-theoretic and combinatorial. It 
has the advantage, aside from its elegance and simplicity, of producing the 
subgroup we are seeking. The second proof is based on an exploitation of 
induction in an interplay with the class equation. It is one of the standard 
classical proofs, and is a nice illustration of combining many of the ideals 
developed so far in the text to derive this very important cornerstone due to 
Sylow. The third proof is of a completely different philosophy. The basic 
idea there is to show that if a larger group than the one we are considering 
satisfies the conclusion of Sylow's theorem, then our group also must. 
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This forces us to prove Sylow's theorem for a special family of groups-the 
symmetric groups. By invoking Cayley's theorem (Theorem 2.9. 1 )  we are 
then able to deduce Sylow's theorem for all finite groups. Apart from this 
strange approach-to prove something for a given group, first prove it for a 
much larger one-this third proof has its own advantages. Exploiting the 
ideas used, we easily derive the so-called second and third parts of Sylow's 
theorem. 

One might wonder : why give three proofs of the same result when, clearly, 
one suffices ? The answer is simple. Sylow's theorem is that important that 
it merits this multifront approach. Add to this the completely diverse 
nature of the three proofs and the nice application each gives of different 
things that we have learned, the justification for the whole affair becomes 
persuasive (at least to the author) . Be that as it may, we state Sylow's 
theorem and get on with Wielandt's proof. 

T H E O R E M  2.1 2.1 (SYLow) If p is a prime number and p" I o(G),  then 
G has a subgroup if order p". 

Before entering the first proof of the theorem we digress slightly to a 
brief number-theoretic and combinatorial discussion. 

The number of ways of picking a subset of k elements from a set of n 
elements can easily be shown to be 

G) =  k) ! 

If n = p"m where p is a prime number, and if p' I m but p•+ 1 --!' m, consider (p"m) (p"m) ! 
P" 

= 
(p") ! (p"m - P") ! 

p"m(p"m - 1 )  · . .  (p"m - i) . .  · (p"m - p" + 1 )  

P"(P" - 1 ) . . · (p" - i) . .  · (p" - P" + 1 )  

The question is, What power of p divides t;:) ? Looking at this number, 

written out as we have written it out, one can see that except for the term 
m in the numerator, the power of p dividing (pam - i) is the same as that 
dividing p" - i, so all powers of p cancel out except the power which 
divides m. Thus 
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First Proof of the Theorem. Let A be the set of all subsets of G which 

have pa. elements. Thus A has t;�) elements. Given M1, M2 E A 

(M is a subset of G having pa. elements, and likewise so is M2) define 
M1 "' M2 if there exists an element g E G such that M1 = M2g. It is 
immediate to verify that this defines an equivalence relation on A. We 
claim that there is at least one equivalence class of elements in A such that 
the number of elements in this class is not a multiple of p' + 1, for if p'+ 1 is 
a divisor of the size of each equivalence class, then p' + 1 would be a divisor 

of the number of elements in A. Since A has (p;�) elements and 

p' + 1 ,J" t;�} this cannot be the case. Let {M1, . . .  , Mn} be such an 

equivalence class in A where p'+ 1 ,r n. By our very definition of equivalence 
in A, if g E G, for each i = 1 ,  . . .  , n, Mig = Mi for some j, 1 � j � n. 
We let H = {g E G I M1g = M1 }. Clearly H is a subgroup of G, for if 
a, b E  H, then M1a = Mv M1b = M1 whence M1ab = (M1a)b = M1'b = 

M1• We shall be vitally concerned with o(H) . We claim that no(H) = 
o(G) ; we leave the proof to the reader, but suggest the argument used in 
the counting principle in Section 2 . 1 1 .  Now no(H) = o(G) = pa.m ; since 
p' + 1 ,r n and pa.+ r  I Pa.m = no(H) , it must follow that Pa. l o(H),  and so 
o(H) � pa.. However, if m1 E M1,  then for all h E  H, m1h E M1 . Thus 
M1 has at least o(H) distinct elements. However, M1 was a subset of G 
containing pa. elements. Thus pa. � o(H) .  Combined with o(H) � pa. we 
have that o(H) = pa.. But then we have exhibited a subgroup of G having exactly 
pa. elements, namely H. This proves the theorem ; it actually has done more­
it has constructed the required subgroup before our very eyes ! 

What is usually known as Sylow's theorem is a special case of Theorem 
2. 1 2 . 1 ,  namely that 

COROLLARY Ijpm I o(G) ,  pm + 1 ,J" o(G),  then G has a subgroup of order pm. 

A subgroup of G of order pm, where pm I o(G) but pm + 1 ,J" o(G),  is called a 
p-Sylow subgroup of G. The corollary above asserts that a finite group has 
p-Sylow subgroups for every prime p dividing its order. Of course the 
conjugate of a p-Sylow subgroup is a p-Sylow subgroup. In a short while 
we shall see how any two p-Sylow subgroups of G-for the same prime p­
are related. We shall also get some information on how many p-Sylow 
subgroups there are in G for a given prime p. Before passing to this, we want 
to give two other proofs of Sylow's theorem. 

We begin with a remark. As we observed just prior to the corollary, 
the corollary is a special case of the theorem. However, we claim that the 
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So we get down to our first task, that of finding what power of a prime 
p exactly divides (If) ! .  Actually, it is quite easy to do this for n !  for any 
integer n (see Problem 2).  But, for our purposes, it will be clearer and will 
suffice to do it only for (p1) !. 

Let n(k) be defined by pn<k> I (pk) ! but pn(k) + 1 ,{ (pk) ! .  

LE M MA 2.1 2.1 n(k) = 1 + p + · . . -t- p1- 1 .  

Proof. If k I then, since p !  = 1 • 2 · · · (p 1 )  · p, it is clear that 
P I P ! but p2 ,{ p !. Hence n( I )  = I , as it should be. 

What terms in the expansion of (pk) ! can contribute to powers of p 
dividing (p1) ! ?  Clearly, only the multiples of p; that is, p, 2p, . . . ,p k- 1p. 
In other words n(k) must be the power of p which divides 
p(2p) (3p) · . . (p1 1p) = p�"'-1 (p" 1) ! . But then n(k) = p1- 1  + n(k - 1 ) .  
Similarly, n(k 1 )  = n(k - 2 )  + pk 2, and so on. Write these out as 

n(k) - n(k - 1 )  = pk t, 

n(k - 1 )  - n(k 2) = p" 2, 

n(2) - n( I )  = p, 
n( I )  = I .  

Adding these up, with the cross-cancellation that we get, we obtain 
n(k) = I + p + p2 + · · · + p1 1• This is what was claimed in the lemma, 
so we are done. 

We are now ready to show that s,. has a p-Sylow subgroup; that is, we 
shall show (in fact, produce) a subgroup of order pn(k) in SP". 

LEMMA 2.1 2.2 Spk has a p-Sylow subgroup. 

Proof. We go by induction on k. If k = 1 ,  then the element ( I  2 . . .  p), 
in S P is of order p, so generated a subgroup of order p. Since n( 1 )  = 1 ,  
the result certainly checks out for k = I .  

Suppose that the result is correct for k - I ; we want to show that it 
then must follow for k. Divide the integers I ,  2, . . . , p1 into p clumps, 
each with p" 1  elements as follows : 

{ I , 2, . . . , pk 1 }, {pk 1  + I , pk 1 + 2, . . .  , 2p" 1 }, . . . , 
{(p - I )pk 1 + l ,  . . .  , p"}. 

The permutation u defined by u = ( I , pk t  + I ,  2pk l  + I ,  . . . , 
(p - l )pk- 1 + I )  . . · (j,pk 1 + j, 2pk 1  + j, . . .  , (p - l )p" 1  + I  + j) . . . 
(pk 1, 2pk 1, . . .  , (p - I )p1 1, pk) has the following properties : 

I .  uP = e. 
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2. If 1: is a permutation that leaves all i fixed for i > ph- 1 (hence, affects 
only 1, 2, . . .  , pk- 1 ) , then q 1rq moves only elements in {p« 1 + I ,  
p& 1 + 2 ,  . . .  , 2pk - l },  and more generally, q-lrql moves only elements 
. { ' k- 1 1  2 ( '  m JP +  + ' . . .  ' J +  . 

Consider A = {1: E sp. I -r (i) = i if i > pk 1  } .  A is a subgroup of sp. 
and elements in A can carry out any permutation on 1 ,  2, . . . , pk- 1 . 
From this it follows easily that A :: Sp> • ·  By induction, A has a subgroup 
P1 of order p•<k - 1>. 

Let T = P
1
(q tpl u) (q 2p1q2) . . .  (q <P t>plur 1)  = P,P2 · . · P,._ l, 

where P1 = r1 -
1P1q1• Each P1 is isomorphic to P1 so has order p•<k 1>. 

Also elements in distinct P;'s influence nonoverlapping sets of integers, 
hence commute. Thus T is a subgroup of Spk. What is its order? Since 
P1 fl P1 (e) if 0 � i # j :: p - 1 ,  we see that o ( T) = o(P1)P = pP•(k- 1). 
We are not quite there yet. T is not the p-Sylow subgroup we seek ! 

Since qP = e and q - 1P1 u 1 = P1 we have u 1 Tr1 = T. Let P = 
{qit I t  E T, 0 � j :: p I }. Since q ¢ T and q 1 Tq = T we have two 
things : firstly, T is a subgroup of SP" and, furthermore, o(P) = p · o( T) = 
p · pn<k- 1 )P = p•<k - l)p+ 1• Now we are finally there ! P is the sought-after 
p-Sylow subgroup of SP". 

Why? Well, what is its order? It  is pn(k - l)p+ 1. But n(k I )  = 
1 + P  + . . .  + ph 2, hence pn(k - I ) + 1 I + P  + · · ·  + pk- 1 = n(k) . 
Since now o(P) = p-<kl, P is indeed a p-Sylow subgroup of Sp•· 

Note something about the proof. Not only does it prove the lemma, it 
actually allows us to construct the p-Sylow subgroup inductively. We 
follow the procedure of the proof to construct a 2-Sylow subgroup in S4• 

Divide I ,  2, 3, 4 into { 1 ,  2} and {3 , 4}. Let P1 = ( ( 1  2))  and r1 = 
( 1  3) (2 4) . Then P2 = q 1P

1
q = (3 4) . Our 2-Sylow subgroup is then 

the group generated by ( 1  3) (2 4) and 

T = P
1
P2 = { ( 1  2) ,  (3 4) , (1 2) (3 4) , e}. 

In order to carry out the program of the third proof that we outlined, we 
now introduce a new equivalence relation in groups (see Problem 39, 
Section 2.5) . 

D E F I N ITION Let G be a group, A, B subgroups of G. If x, y e G define 
x � y ify axb for some a E A, b E  B. 

We leave to the reader the verification-it is easy-of 

LEM MA 2.1 2.3 The relation defined above is an equivalence relation on G. 
The equivalence class if x E G is the set AxB = {axb I a E A, b E B}. 
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We call the set AxB a double coset of A, B in G. 
If A, B are finite subgroups of G, how many elements are there in the 

double coset AxB? To begin with, the mapping T:AxB -+ AxBx 1 given 
by (axb) T = axbx 1 is one-to-one and onto (verifY). Thus o(AxB) 
o(AxBx- 1) .  Since xBx 1 is a subgroup ofG, of order o(B), by Theorem 2.5. 1 ,  

o(AxB) 

We summarize this in 

o(A)o(xBx 1) 
o(A (') xBx 1 ) 

LE M MA 2.1 2.4 ff A, B are finite subgroups of G then 

o (AxB) = o(A)o(B) 
o (A () xBx- 1 ) 

o(A)o(B) 

We now come to the gut step in this third proof of Sylow's theorem. 

LEM MA 2.1 2.5 Let G be a finite group and suppose that G is a subgroup of the 
finite group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a 
p-Sylow subgroup P. lnfact, P = G (') xQx- 1 for some x E M. 

Proof. Before starting the details of the proof, we translate the hypoth­
eses somewhat. Suppose that pm I o(M),  pm+ 1 % o(M), Q is a subgroup 
of M of order pm. Let o(G) = p"t where p ,f' t. We want to produce a sub­
group P in G  of order p". 

Consider the double coset decomposition of M given by G and Q ;  
M = U GxQ. By Lemma 2. 1 2.4, 

o(GxQ) = o(G )o(Q) 
o(G (') xQx 1) 

Since G (') xQx 1 is a subgroup of xQx 1, its order is pm". We claim that 
m"' = n for some x E M. If not, then 

o(GxQ) = p
"tp"' 

= tpm+n m,., 
P"'" 

so is divisible by p"' + 1• Now, since M = U GxQ, and this is disjoint union, 
o(M) = 2: o(GxQ), the sum running over one element from each double 
coset. But pm + 1 j o(GxQ) ; hence p"'+ 1 j o(M). This contradicts p"' + 1 ,f'o(M) . 
Thus m"' = n for some x E M. But then o(G (') xQx 1) p". Since 
G (') xQ x 1 = P is a subgroup of G and has order p", the lemma is proved. 

We now can easily prove Sylow's theorem. By Cayley's theorem 
(Theorem 2.9. 1 )  we can isomorphically embed our finite group G in Sn, 
the symmetric group of degree n. Pick k so that n < pk ; then we can iso­
morphically embed Sn in SP'< (by acting on I ,  2, . . . , n only in the set 
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1 ,  2, . . . , n, . . .  , p") , hence G is isomorphically embedded in SP'<. By 
Lemma 2. 12.2, SP'< has a p-Sylow subgroup. Hence, by Lemma 2. 1 2.5, 
G must have a p-Sylow subgroup. This finishes the third proof of Sylow's 
theorem. 

This third proof has given us quite a bit more. From it we have the 
machinery to get the other parts of Sylow's theorem. 

THEOREM 2.1 2.2 (SECOND PART OF SYLOW's THEOREM) lf G is a finite 
group, p a prime and p" I o(G) but p" + 1 ,f o(G),  then any two subgroups q[G tif 
order pn are conjugate. 

Proof. Let A, B be subgroups of G, each of order p". We want to show 
that A = gBg- 1 for some g e G. 

Decompose G into double cosets of A and B; G = U AxB. Now, by 
Lemma 2. 1 2 .4, 

o (AxB) = o(A)o(B) 
o(A n xBx 1 ) 

If A =f:. xBx- 1 for every x e G then o(A n xBx 1 )  = p"' where m < n. 
Thus 

o(AxB) o(A)o(B) 
= P2" = p2n m 

P"' P"' 

and 2n m ;;: n + I .  Since p"+ 1 I o (AxB) for every x and since o(G) = 
L: o(AxB), we would get the contradiction p" + 1 I o(G) .  Thus A = gBg 1 
for some g e G. This is the assertion of the theorem. 

Knowing that for a given prime p all p-Sylow subgroups of G are conjugate 
allows us to count up precisely how many such p-Sylow subgroups there 
are in G. The argument is exactly as that given in proving Theorem 2. 1 1 . 1 .  
In some earlier problems (see, in particular, Problem 16, Section 2.5) we 
discussed the normalizer N(H), of a subgroup, defined by N(H) = 
{x e G I xHx 1 = H}. Then, as in the proof of Theorem 2. 1 1 . 1 ,  we have 
that the number tif distinct conjugates, xHx- 1 , tif H in G is the index tif N (H) in G. 
Since all p-Sylow subgroups are conjugate we have 

LEMMA 2.1 2.6 The number tif p-Sylow subgroups in G equals o(G) fo(N(P)) ,  
where P is any p-Sylow subgroup tif G. In particular, this number is a divisor tif o( G) .  

However, much more can be said about the number of p-Sylow subgroups 
there are, for a given prime p, in G. We go into this now. The technique 
will involve double cosets again. 
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Let G be a group of order I I  2 • 1 3  2• We want to determine how many 
l l -Sylow subgroups and how many 1 3-Sylow subgroups there are in G. 
The number of 1 1 -Sylow subgroups, by Theorem 2 . 1 2 . 1 3, is of the form 
1 + I lk. By Lemma 2 . 1 2.5, this must divide l l 2 · 1 3 2 ; being prime to I I , 
it must divide 1 32 • Can 1 32 have a factor of the form 1 + I lk?  Clearly no, 
other than 1 itself. Thus 1 + l lk = I ,  and so there must be only one 1 1 -
Sylow subgroup in G. Since all l l -Sy1ow subgroups are conjugate (Theorem 
2 . 1 2.2) we conclude that the 1 1 -Sylow subgroup is normal in G. 

What about the 1 3-Sylow subgroups? Their number is of the form 
1 + 1 3k and must divide 1 1  2 • 1 3  2, hence must divide 1 1  2• Here, too, we 
conclude that there can be only one 1 3-Sylow subgroup in G, and it must 
be normal. 

We now know that G has a normal subgroup A of order 1 1 2 and a normal 
subgroup B of order 1 3 2• By the corollary to· Theorem 2 . 1 1 .2, any group 
of order p2 is abelian ; hence A and B are both abelian. Since A n  B = (e) , 
we easily get AB = G. Finally, if a E A, o E B, then aha - 1 o - 1 = 
a(ha- 16- 1) E A since A is normal, and aha- 16- 1 = (aha- 1)6 1 E B since 
B is normal. Thus aoa- 1h - 1  E A n B = (e) . This gives us aba- 1h - t = e, 
and so ah = ba for a E A, b E B. This, together with AB = G, A, B abelian, 
allows us to conclude that G is abelian. Hence any group of order I I  2 • 1 3  2 
must be abelian. 

We give one other illustration of the use of the various parts of Sylow's 
theorem. Let G be a group of order 72 ; o( G) = 2 33 2• How many 3-Sylow 
subgroups can there be in G? If this number is t, then, according to Theorem 
2 . 1 2. 3, t = 1 + 3k. According to Lemma 2 . 1 2.5, t I 72, and since t is 
prime to 3, we must have t I 8. The only factors of 8 of the form 1 + 3k 
are I and 4 ;  hence t = I or t = 4 are the only possibilities. In other words 
G has either one 3-Sylow subgroup or 4 such. 

If G has only one 3-Sylow subgroup, since all 3-Sylow subgroups are 
conjugate, this 3-Sylow subgroup must be normal in G. In this case G 
would certainly contain a nontrivial normal subgroup. On the other hand 
if the number of 3-Sylow subgroups of G is 4, by Lemma 2 . 1 2.5 the index of 
N in G is 4, where N is the normalizer of a 3-Sylow subgroup. But 72 k 4 !  = 
(i(N)) ! .  By Lemma 2.9. 1 N must contain a nontrivial normal subgroup of 
G (of order at least 3) . Thus here again we can conclude that G contains a 
nontrivial normal subgroup. The upshot of the discussion is that any group 
of order 72 must have a nontrivial normal subgroup, hence cannot be 
simple. 

Problems 

1 .  Adapt the second proof given of Sylow's theorem to prove directly 
that if p is a prime and p� I o(G), then G has a subgroup of order pa. 
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2. If x > 0 is a real number, define [x] to be m, where m is that integer 
such that m � x < m + I .  If p is a prime, show that the power of 
p which exactly divides n! is given by 

3. Use the method for constructing the p-Sylow subgroup of Spk to find 
generators for 
(a) a 2-Sylow subgroup in S8• (b) a 3-Sylow subgroup in S9 • 

4. Adopt the method used in Problem 3 to fnd generators for 
(a) a 2-Sylow subgroup of S6• (b) a 3-Sylow subgroup of S6• 

5. If p is a prime number, give explicit generators for a p-Sylow sub­
group of sp2· 

6. Discuss the number and nature of the 3-Sylow subgroups and 5-
Sylow subgroups of a group of order 3 2 · 5 2• 

7. Let G be a group of order 30. 
(a) Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G 

must be normal in G. 
(b) From part (a) show that every 3-Sylow subgroup and every 

5-Sylow subgroup of G must be normal in G. 
(c) Show that G has a normal subgroup of order 1 5. 
(d) From part (c) classify all groups of order 30. 
(e) How many different nonisomorphic groups of order 30 are there? 

8. If G is a group of order 23 1 ,  prove that the 1 1 -Sylow subgroup is in 
the center of G. 

9. IfG is a group of order 385 show that its 1 1 -Sylow subgroup is normal 
and its 7-Sylow subgroup is in the center of G. 

10. If G is of order 1 08 show that G has a normal subgroup of order 3�<, 
where k ;; 2. 

I I . If o(G) = pq, p and q distinct primes, p < q, show 
(a) ifp -t" (q 1 ) , then G is cyclic. 

* (b) if p I  (q - 1 ) ,  then there exists a unique non-abelian group of 
order pq. 

* 12. Let G be a group of order pqr, p < q < r primes. Prove 
(a) the r-Sylow subgroup is normal in G. 
(b) G has a normal subgroup of order qr. 
(c) if q -!" (r - 1 ) ,  the q-Sylow subgroup of G is normal in G. 

1 3. If G is of order p2q, p, q primes, prove that G has a nontrivial nor­
mal subgroup. 
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* 14. If G is of order p2q, p, q primes, prove that either a p-Sylow sub­
group or a q-Sylow subgroup of G must be normal in G. 

15 .  Let G be a finite group in which (ab)P = aPbP for every a, b E G, 
where p is a prime dividing o(G ) .  Prove 
(a) The p-Sylow subgroup of G is normal in G. 

* (b) If P is the p-Sylow subgroup of G, then there exists a normal 
subgroup N of G with P n N = (e) and PN = G. 

(c) G has a nontrivial center. 

** 1 6. If G is a finite group and its p-Sylow subgroup P lies in the center of 
G, prove that there exists a normal subgroup N of G with P n N = 

(e) and PN = G. 

* 1 7. If H is a subgroup of G, recall that N(H) = {x E G I xHx- 1 = H}. 
If P is a p-Sylow subgroup of G, prove that N(N(P) )  = N(P) .  

* 1 8. Let P be  a p-Sylow subgroup of G and suppose a ,  b are in  the center 
of P. Suppose further that a = xbx

1 
for some x E G. Prove that 

there exists ay E N(P) such that a = yby 1 •  

* *  1 9. Let G be  a finite group and suppose that c/J is an automorphism of G 
such that c/J3 is the identity automorphism. Suppose further that 
c/J(x) = x implies that x = e. Prove that for every prime p which 
divides o(G) ,  the p-Sylow subgroup is normal in G. 

#20. Let G be the group of n x n matrices over the integers modulo p, 
p a prime, which are invertible. Find a p-Sylow subgroup of G. 

2 1 .  Find the possible number of 1 1 -Sylow subgroups, 7-Sylow subgroups, 
and 5-Sylow subgroups in a group of order 52 • 7 · 1 1 . 

22. If G is S3 and A = ( ( 1 2) ) in G, find all the double cosets AxA of 
A in G. 

23. If G is S4 and A = ( ( 1  2 3 4) ) ,  B = ( ( 1  2)) ,  find all the double 
cosets AxB of A, B in G. 

24. If G is the dihedral group of order 18 generated by a2 = b9 = e, 

ab = b 1a, find the double cosets for H, K in G, where H = (a) 
and K = (b 3 ) .  

2.1 3 Direct Products 

On several occasions in this chapter we have had a need for constructing a 
new group from some groups we already had on hand. For instance, 
towards the end of Section 2.8, we built up a new group using a given group 
and one of its automorphisms. A special case of this type of construction 
has been seen earlier in the recurring example of the dihedral group. 

However, no attempt had been made for some systematic device for 
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constructing new groups from old. We shall do so now. The method re­
presents the most simple-minded, straightforward way of combining groups 
to get other groups. 

We frst do it for two groups-not that two is sacrosanct. However, 
with this experience behind us, we shall be able to handle the case of any 
finite number easily and with dispatch. Not that any finite number is 
sacrosanct either ; we could equally well carry out the discussion in the 
wider setting of any number of groups. However, we shall have no need for 
so general a situation here, so we settle for the case of any fnite number of 
groups as our ultimate goal. 

Let A and B be any two groups and consider the Cartesian product 
(which we discussed in Chapter I )  G = A x B of A and B. G consists 
of all ordered pairs (a, b) , where a e A and b E B. Can we use the operations 
in A and B to endow G with a product in such a way that G is a group? 
Why not try the obvious? Multiply componentwise. That is, let us define, 
for (a1 , b1) and (a2, b2) in G, their product via (a1 , b1) (a2, b2) = (a1a2, b1b2). 
Here, the product a1 a2 in the first component is the product of the elements 
a1 and a2 as calculated in the group A. The product b1b2 in the second 
component is that of b1 and b2 as elements in the group B. 

With this definition we at least have a product defined in G. Is G a 
group relative to this product? The answer is yes, and is easy to verify. 
We do so now. 

First we do the associative law. Let (a1 , b1 ) ,  (a2, b2), and (a3, b3) be 
three elements of G. Then ( (a1 ,  b1 ) (a2, b2) ) (a3, b3) = (a1a2, b1b2) (a3, b3) = 
( (a1a2)a3, (b1 b2)b3) ,  while (a1 , b1 ) ( (a2, b2) (a3, b3)) = (a1 , b1 ) (a2a3, b2b3) = 
(a1.(a2a3) ,  b1 (b2b3) ) .  The associativity of the product in A and in B then 
show us that our product in G is indeed associative. 

Now to the unit element. What would be more natural than to try 
(e,j) ,  where e is the unit element of A and f that of B, as the proposed 
unit element for G? We have (a, b) (e,j )  = (ae, bj ) = (a, b) and 
(e,j) (a, b) = (ea,jb) = (a, b) . Thus (e,j) acts as a unit element in G. 

Finally, we need the inverse in G for any element of G. Here, too, 
why not try the obvious? Let (a, b) e G; try (a - 1, b - 1 ) as its inverse. 
Now (a, b) (a- I , b- 1) = (aa- 1, bb- 1 ) = (e, j) and (a - 1 , b - 1 ) (a, b) = 
(a- 1a, b 1b) = (e,j ) , so that (a- 1 , b - 1 ) does serve as the inverse for (a, b) . 

With this we have verified that G = A x B is a group. We call it the 
external direct product of A and B. 

Since G = A x B has been built up from A and B in such a trivial 
manner, we would expect that the structure of A and B would refect heavily 
in that of G. This is indeed the case. Knowing A and B completely gives 
us complete information, structurally, about A x B. 

The construction of G = A x B has been from the outside, external. 
Now we want to turn the affair around and try to carry it out internally in G. 
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Consider A = { (a,J) E G I a E A } c G = A X B, where f is the unit 
element of B. What would one expect of A? Answer: A is a subgroup of 
G and is isomorphic to A. To effect this isomorphism, define if> :A --> A 
by if>(a) = (a,J)  for a E A. I t  is trivial that if> is an isomorphism of A 
onto A. It is equally trivial that A is a subgroup of G. Furthermore, A is 
normal in G. For if (a,j) e A and (av b1 ) e G, then (al > b1) (a,J ) (a1 , b1 ) 1 

= 
(a1, b1) (a,j) (a1 1 , b1 -

1) = (a1aa1 - I , btfb
1 - 1 ) = (a1aa1 - 1 ,j)  e A. So we 

have an isomorphic copy, A, of A in G which is a normal subgroup of G. 
What we did for A we can also do for B. If .B = { (e, b) E G I b E B}, 

then .B is isomorphic to B and is a normal subgroup of G. 
We claim a little more, namely G A.B and every g E G has a unique 

decomposition in the form g = iio with ii e A and h E .B. For, g = (a, b) = 
(a,f) (e, b) and, since (a,J) E A and (e, h) E .B, we do have g = iio with 
ii = (a,J) and D = (e, b) . Why is this unique?  If (a, b) = -9!, where 
x E A and j E B, then x = (x,f), x E A and j (e,y) , y  E B;  thus (a, b) = 
xj = (x,J)  (e,y) = (x, y) . This gives x a and y = b, and so x = ii 
and j = 6. 

Thus we have realized G as an internal product AB of two normal sub­
groups, A isomorphic to A, E to B in such a way that every element g E G 
has a unique representation in the form g = iio, with ii E A and o E .B. 

We leave the discussion of the product of two groups and go to the case 
of n groups, n > I any integer. 

Let G1, e2, . . .  , en be any n groups. Let e = Gl X e2 X • • •  X en = 
{ (g1, g2, • • •  , gn) I g1 E e1} be the set of all ordered n-tuples, that is, the 
Cartesian product of e1 , e2, . . .  , en. We define a product in G via 

(gi> g2, · · · ,  gn) (gi ,  g; , · · . ,  g�) (g1g� ,  g2g; , . . . , gng�), that is, via com­
ponentwise multiplication. The product in the ith component is carried 
in the group e1• Then e is a group in which (ev e2, • • •  , en) is the unit ele­
ment, where each e1 is the unit element of G., and where (g1 , g2, • • •  , gn)

1 
= 

(g1 - 1, g2 - l , . . . , gn - I ) .  We call this group e the external direct product of 
e1, e2, • • • , en-

In G = G1 X G2 X • • • x Gn let ei = { (e1, e2, . • •  , e1_v g1, ei+ I> • . • , en) I 
g1 E e1 }. Then e1 is a normal subgroup of G and is isomorphic to G1• 
Moreover, G = 0102 . . .  en and every g E e  has a unique decomposition 
g = .i!t!h . . . .iln, where .ii E el , . . .  ' .iln E en. We leave the verification of 
these facts to the reader. 

Here, too, as in the case A x B, we have realized the group e internally 
as the product of normal subgroups e1 , • . •  , On in such a way that every 
element is uniquely representable as a product of elements g1 • • • .iJn, where 
each g1 E 01• With this motivation we make the 

' 
D E F I N IT ION Let e be a group and N1, N2, • • •  , Nn normal subgroups of 
e such that 
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true that G is the internal direct product of Kv • . .  , K,.. A more stringent 
condition is needed (see Problems 8 and 9) . 

We now can prove the desired isomorphism between the external and 
internal direct products that was stated earlier. 

THEO R EM 2.1 3 .1  Let G be a group and suppose that G is the internal direct 
product cif Nv . . .  , N.. Let T = N1 x N2 X • • • x N.. Then G and T 
are isomorphic. 

Proof. Define the mapping 1/1 : T -+ G by 

!/l( (b1, b2, • . • , b,.) )  = b1b2 • • • b,., 

where each b1 e N1, i = I ,  . . . , n. We claim that 1/1 is an isomorphism 
of T onto G. 

To begin with, 1/1 is certainly onto ; for, since G is the internal direct 
product of N1 ,  . . • , N., if x e G then x = a1a2 · · · a,. for some a1 e N1 , • • • , 
a,. e N.. But then !/J( (a1, a2, • • • , a.)) = a1a2 · · · a. = x. The mapping 
1/1 is one-to-one by the uniqueness of the representation of every element as 
a product of elements from N1, • • •  , N,.. For, if !/J( (a1 , • . • , a.)) = 
!/J( (c1 ,  • . •  , c.) ) , where a1 e N;, c1 E N;, for i I ,  2, . . .  , n, then, by the 
definition of 1/J, a1a2 · · · a. = c1c2 • • • c,.. The uniqueness in the definition 
of internal direct product forces a1 = c1, a2 = c2, • • •  , a,. = c,.. Thus 1/1 
is one-to-one. 

All that remains is to show that 1/1 is a homomorphism of T onto G. 
If X = (a10 • • •  , a,), Y = (bt> . . . , b.) are elements of T then 

1/J (XY) 

= a1 b1 a2b2 • • • a,.b n· 

However, by Lemma 2. 1 3. 1 ,  a1bi = biai if i =F j. This tells us that 
a1b1a2b2 • • · a,.b,. = a1a2 • . .  a,.b1b2 • . .  b,. . Thus 1/J (XY) = a1a2 . . · a,.b1b2 . . · b,.. 
But we can recognize a1a2 • • · a. as !/1( (av a2, . . • , a, .)) = 1/J (X) and b1 b2 • • • b,. 
as 1/J(Y). We therefore have 1/J(XY) 1/J(X )!/I ( Y) .  In short, we have shown 
that 1/1 is an isomorphism of T onto G. This proves the theorem. 

Note one particular thing that the theorem proves. If a group G is 
isomorphic to an external direct product of certain groups G1, then G is, 
in fact, the internal direct product of groups G1 isomorphic to the G1• \Ve 
simply say that G is the direct product of the G1 (or G;) . 

In the next section we shall see that every finite abelian group is a direct 
product of cyclic groups. Once we have this, we have the structure of all 
finite abelian groups pretty well under our control. 

One should point out that the analog of the direct product of groups 
exists in the study of almost all algebraic structures. We shall see this later 
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1 3. Give an example of a finite non-abelian group G which contains a 
subgroup H0 ¥ (e) such that H0 c H for all subgroups H ¥ (e) of G. 

14. Show that every group of order p
2
, p a prime, is either cyclic or is 

isomorphic to the direct product of two cyclic groups each of order p. 
* 15. Let G = A x A where A is cyclic of order p, p a prime. How many 

automorphisms does G have? 

16. If G K1 x K2 X • • • x Kn describe the center of G in terms of 
those of the K i· 

1 7 . If G = K1 x K2 X · · ·  x Kn and g E G, describe 

N(g) = {x e G I xg = gx}. 

18. If G is a finite group and Nu . . .  , Nn are normal subgroups of G 
such that G = N1N2 • • • N, and o(G) = o(N1 )o(N2) • • • o(N,.), prove 
that G is the direct product of N1, N2, • • •  , N,.. 

2.1 4 Fi nite Abelian Groups 

We close this chapter with a discussion (and description) of the structure 
of an arbitrary finite abelian group. The result which we shall obtain is a 
famous classical theorem, often referred to as the Fundamental Theorem on 
Finite Abelian Groups. It is a highly satisfying result because of its de­
cisiveness. Rarely do we come out with so compact, succinct, and crisp a 
result. In it the structure of a finite abelian group is completely revealed, 
and by means of it we have a ready tool for attacking any structural problem 
about finite abelian groups. It even has some arithmetic consequences. 
For instance, one of its by-products is a precise count of how many non­
isomorphic abelian groups there are of a given order. 

In all fairness one should add that this description of finite abelian groups 
is not as general as we can go and still get so sharp a theorem. As you shall 
see in Section 4.5, we completely describe all abelian groups generated by 
a finite set of elements-a situation which not only covers the finite abelian 
group case, but much more. 

We now state this very fundamental result. 

T H E O R E M  2.1 4.1 Every finite abelian group is the direct product of cyclic 
groups. 

Proof. Our first step is to reduce the problem to a slightly easier one. 
We have already indicated in the preceding section (see Problem 5 there) 
that any finite abelian group G is the direct product of its Sylow subgroups. 
If we knew that each such Sylow subgroup was a direct product of cyclic 
groups we could put the results together for these Sylow subgroups to 
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realize G as a direct product of cyclic groups. Thus it suffices to prove the 
theorem for abelian groups of order p" where p is a prime. 

So suppose that G is an abelian group of order p". Our objective is to 
find elements au . . .  , a" in G such that every element x e G can be written 
in a unique fashion as x = a1"'a2"• • • • a�c"k. Note that if this were true and 
a1, • • •  , a" were of order p"', . . .  , p"K, where n1 � n2 � · • • � nk, then the 
maximal order of any element in G would be p•• (Prove !). This gives us 
a cue of how to go about finding the elements a1, • • •  , ak that we seek. 

The procedure suggested by this is : let a1 be an element of maximal 
order in G. How shall we pick a2 ? Well, if A1 = (a1) the subgroup 
generated by a1, then a2 maps into an element of highest order in GfA1 •  
If we can successfully exploit this to find an appropriate a2, and if A2 = 
(a2), then a3 would map into an element of maximal order in G/A1A2, 
and so on. With this as guide we can now get down to the brass tacks of 
the proof. 

Let a1 be an element in G of highest possible order, p"•, and let A1 = 
(a1) .  Pick b2 in G such that b2, the image of b2 in C = GfAv has maximal 
order p"•. Since the order of b2 divides that of b2, and since the order of 
a1 is maximal, we must have that n1 � n2• In order to get a direct product 
of A1 with (b2) we would need A1 n (b2) = (e) ; this might not be true 
for the initial choice of b2, so we may have to adapt the element b2• Suppose 
that A1 n (b2) � (e) ; then, since b2P"• E A1 and is the first power of b2 to 
fall in A1 (by our mechanism of choosing b2) we have that b2�"'• = a/ 
Therefore (a11)P"• - •, = (b2�"'•)�"'• -•, = b2�"'• = e, whence a/P"• -.. , = e. Since 
a1 is of order P"' we must have that P"' I ip"• -••, and so p"• I i. Thus, re­
calling what i is, we have b2P"z = a11 = a/P"•. This tells us that if a2 = 
a1 -ib2 then a2�"'• = e. The element a2 is indeed the element we seek. Let 
A2 = (a2) . We claim that A1  n A2 = (e) . For, suppose that a21 e A1 ; 
since a2 = a1 -1b2, we get (a1 -1b2) 1  E A1 and so b21 E A1•  By choice of b2, 
this last relation forces p•• I t, and since a2P"• = e we must have that a21 = e. 
In short A1 n A2 = (e) . 

We continue one more step in the program we have outlined. Let 
b3 e G map into an element of maximal order in Gf(A1A2) . If the order 
of the image of b3 in G/(A1A2) is p"•, we claim that n3 :: n2 :: n1• Why? 
By the choice of n2, b3P"z e A1 so is certainly in A1A2• Thus n3 ::; n2• Since 
b3P"• e A1A2, b3P"• = a/'a21z. We claim that p"• I i1 and p•• I i2• For, 
b3�"'• E A1 hence (a11'a21•)�"'2-·3 = (b3�"'•)P"•-"• = b3�"'• E A1• This tells us 
that a21•P"z-"• E A1 and so p"• I i2p•• -••, which is to say,p"• I i2• Also b3�"'1 = 
e, hence (a11'a21•)P"• -"• = b3�"'1 = e; this says that a1hP", -"3 e A2 n A1 = (e), 
that is, a11•P"t "• = e. This yields thatp"• l i1• Let i1 = j1p"•, i2 = }2P"3 ; thus 
b3P"3 = a1hP"•a/•P"•. Let a3 = a1 -ha2 -hb3, A3 = (a3) ; note that a3P"• = e. 
We claim that A3 n (A1A2) = (e) . For if a3' E A1A2 then (a1 -ba2 -hb3)' E 
A1A2, giving us b3' E A1A2• But then P"' I t, whence, since a3P"• = e, we have 
a31 = e. In other words, A3 n (A1A2) = (e) . 
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This says that x e B1 x · · ·  x B1 x At+!  x · · ·  x AI<. 
Now since each B1 is of order p'" and since o(A1) = P"' and since 

G Bl X • • •  X Bt X At+l  X • • •  X Ak, 

Thus, if we write o(G) = pu, then 

The lemma is proved. 

k 
u = mt + L n1• i=t + l  

COROLLARY lj G  is as in Lemma 2.14.2, then o(G (p)) pk. 

Proof. Apply the lemma to the case m = I .  Then t = k, hence 
u = Ik  = k and so o(G) = p�<. 

We now have all the pieces required to prove the uniqueness of the 
invariants of an abelian group of order p". 

TH EOREM 2.1 4.2 Two abelian groups of order p" are isomorphic if and onry 
if they have the same invariants. 

In other words, if G and G' are abelian groups of order P11 and G = A 1 x · · · x AI<, 
where each A1 is a cyclic group of order P"', n1 � • • • � n�: > 0, and G' = 
B� X • • •  X B;, where each s; is a cyclic group of order ti•, hi � . . . � h. > 0, 
then G and G' are isomorphic if and only if k = s and for each i, n1 = h1• 

Proof. One way is very easy, namely, if G and G' have the same in­
variants then they are isomorphic. For then G = A 1 x · · · x A1 where 
A1  = (a1) is cyclic of order P11', and G' = B� x · · · x B� where Bj = (bi) 
is cyclic of order p"•. Map G onto G' by the map ¢(a1"1 · · · aka") = 
(b1)111 • • • (b�)ll. We leave it to the reader to verify that this defines an 
isomorphism of G onto G'. 

Now for the other direction. Suppose that G = A 1 X • • • x Ak, 
G' = B! x · · · x B�, A1, B; as described above, cyclic of orders P"', f}'•, 
respectively, where n1 � • • • � n1 > 0 and h1 � • • • � h8 > 0. We 
want to show that if G and G' are isomorphic then k = s and each n1 = h1• 

If G and G' are isomorphic then, by Lemma 2 . 1 4. 1 ,  G (p'") and G'(p'") 
must be isomorphic for any integer m � 0, hence must have the same order. 
Let's see what this gives us in the special case m = I ;  that is, what in­
formation can we garner from o(G (p)) = o(G' (p) ). According to the 
corollary to Lemma 2 . 14.2, o(G (p)) = pi: and o(G'(p)) = p•. Hence 
pk = p• and so k = s. At least we now know that the number of invariants 
for G and G' is the same. 
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If n1 =F h1 for some i, let t be the first i such that n, =F h, ; we may sup­
pose that n1 > h. Let m = h,. Consider the subgroups, H = {xP'" I x  e G} 
and H' = {(x')P'" I x' E G}, of G and G', respectively. Since G and G' are 
isomorphic, it follows easily that H and H' are isomorphic. We now ex­
amine the invariants of H and H'. 

Because G = A1 x · · · x Ak, where A1 = (a1) is of order p"1, we get that 

H = C1 x · · · x c, x · · · x c., 

where C; = (al'") is of order p"· -m, and where r is such that n, > m = 
h, ;;: n,_1 •  Thus the invariants of H are n1 - m, n2 - m, . . .  , n, - m 
and the number of invariants of H is r � t. 

Because G' = Bi x · · · x BJ,., where B1 = (bj) is cyclic of order ph1, 
we get that H '  = Di X . . . X n: -1,  where n; ( (b;)Pm) is cyclic of order 
p111 -m. Thus the invariants of H' are h1 - m, . . .  , h,_ 1  - m and so the 
number of invariants of H' is t - I .  

But H and H' are isomorphic; as we saw above this forces them to have 
the same number of invariants. But we saw that assuming that n1 =F h1 
for some i led to a discrepancy in the number of their invariants. In con­
sequence each n1 = h1, and the theorem is proved. 

An immediate consequence of this last theorem is that an abelian group 
of order p" can be decomposed in only one way-as Jar as the orders of the 
cyclic subgroups is concerned-as a direct product of cyclic subgroups. Hence 
the invariants are indeed the invariants of G and completely determine G. 

If n1 ;;: • • • ;;: nk > 0, n = n1 + · · · + nk, is any partition of n, then 
we can easily construct an abelian group of order p" whose invariants are 
n1 � • • • ;;: nk > 0. To do this, let A 1 be a cyclic group of order p"1 and 
let G = A1 x · · · x Ak be the external direct product of A1, • • •  , Ak. 
Then, by the very definition, the invariants of G are n1 ;;: • • • ;;: nk > 0. 
Finally, two different partitions of n give rise to nonisomorphic abelian 
groups of order p". This, too, comes from Theorem 2. 14.2. Hence we have 

TH EOREM 2.1 4.3 The number of nonisomorphic abelian groups of order p", 
p a prime, equals the number of partitions of n. 

Note that the answer given in Theorem 2 . 14.3 does not depend on the 
prime p; it only depends on the exponent n. Hence, for instance, the number 
of nonisomorphic abelian groups of order 24 equals that of orders 3\ or 
54, etc. Since there are five partitions of 4, namely: 4 = 4, 3 + 1, 2 + 2, 
2 + 1 + 1, 1 + I + 1 + 1 ,  then there are five nonisomorphic abelian 
groups of order p4 for any prime p. 

Since any finite abelian group is a direct product of its Sylow subgroups, 
and two abelian groups are isomorphic if and only if their corresponding 
Sylow subgroups are isomorphic, we have the 
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COROLLARY The number of nonisomorphic abelian groups of order Pt�' · · ·p,«•, 
where the p1 are distinct primes and where each a1 > 0, is p(a1 )p(a2) • • • p(a,), 
where p( u) denotes the number tif partitions tif u. 

Problems 

I .  If G is an abelian group of order p", p a prime and n1 � n2 � • • • � 
nk > 0, are the invariants of G, show that the maximal order of any 
element in G is P"'. 

2. If G is a group, A1, • • •  , Ak normal subgroups of G such that A1 n 
(A1A2 • • • A1_1 )  = (e) for all i, show that G is the direct product of 

A 1, • • •  , Ak if G = A1A2 • • • Ak. 
3. Using Theorem 2. 1 4. 1 ,  prove that if a finite abelian group has sub­

groups of orders m and n, then it has a subgroup whose order is the least 
common multiple of m and n. 

4. Describe all finite abelian groups of order 
(a) 26• (b) 1 1 6

• (c) 7 5• (d) 24 • 3 4• 
5. Show how to get all abelian groups of order 23 • 34 • 5. 

6. If G is an abelian group of order p" with invariants n1 � • • • � nk > 0 
and H #; (e) is a subgroup of G, show that if k1 � • • • � hs > 0 are 
the invariants of H, then k � s and for each i, h1 � n1 for i = I ,  2, . . .  , s .  

If G is  an abelian group, let G be the set of all homomorphisms of G 
into the group of nonzero complex numbers under multiplication. 
If t/J1 , t/Jz e G, define t/J1 • tPz by (t/J1 • t/J2) (g) = t/J1 (g)t/J2(g) for all g e G. 

7. Show that G is an abelian group under the operation defined. 

8. If t/J e G and G is finite, show that t/J(g) is a root of unity for every 
g e G. 

9. If G is a finite cyclic group, show that G is cyclic and o(G) = o(G), 
hence G and G are isomorphic. 

1 0. If g1 #; g2 are in G, G a finite abelian group, prove that there is a 
t/J e G with t/J (g1) =1- t/J(g2) . 

I I . If G is a finite abelian group prove that o(G) = o(G) and G is iso­
morphic to G. 

12. If t/J =1- I e G where G is an abelian group, show that L t/J (g) = 0. 
u e G  

Supplementary Problems 

There is no relation between the order in which the problems appear and 
the order of appearance of the sections, in this chapter, which might be 
relevant to their solutions. No hint is given regarding the difficulty of any 
problem. 
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1 .  (a) If G is a finite abelian group with elements a1 1 a2, • • •  , an, prove 
that a1a2 · · · an is an element whose square is the identity. 

(b) If the G in part (a) has no element of order 2 or more than one 
element of order 2, prove that a1a2 · · · an = e. 

(c) If G has one element, y, of order 2, prove that a1a2 · · · an = y. 
(d) ( Wilson's theMem) Ifp is a prime number show that (p - 1 ) !  = 

- 1  (p) . 
2. If p is an odd prime and if 

I I I a 
+ - + - + . . . + -- = - ,  

2 3 p - I  b 

where a and b are integers, prove that p I a. If p > 3, prove that 
Pz l a. 

3. If p is an odd prime, a ¢; 0 (P) is said to be a quadratic residue if p if 
there exists an integer x such that x

2 
= a(p) . Prove 

(a) The quadratic residues of p form a subgroup Q of the group of 
nonzero integers mod p under multiplication. 

(b) o(Q) = (p - 1 ) /2. 
(c) If q e Q, n ¢ Q (n is called a nonresidue), then nq is a nonresidue. 
(d) If n1 , n2 are nonresidues, then n1n2 is a residue. 
(e) If a is a quadratic residue of p, then a(p l)/Z = + 1 (p) . 

4. Prove that in the integers mod p, p a prime, there are at most n 
solutions of � = I (p) for every integer n. 

5.  Prove that the nonzero integers mod p under multiplication form a 
cyclic group if p is a prime. 

6. Give an example of a non-abelian group in which (xy) 3 = x3y3 for 
all x andy. 

7. If G is a finite abelian group, prove that the number of solutions of 
� = e in G, where n I o(G) is a multiple of n. 

8. Same as Problem 7, but do not assume the group to be abelian. 

9. Find all automorphisms of S3 and S4, the symmetric groups of degree 
3 and 4. 

D E FI N ITION A group G is said to be solvable if there exist subgroups G = 
N0 :: N1 :: N2 :: • • • :: N, = (e) such that each N1 is normal in N1_1 and 
N1_ 1jN1 is abelian. 

I O. Prove that a subgroup of a solvable group and the homomorphic 
image of a solvable group must be solvable. 

I I .  If G is a group and N is a normal subgroup of G such that both N 
and GfN are solvable, prove that G is solvable. 

1 2. If G is a group, A a subgroup of G and N a normal subgroup of G, 
prove that if both A and N are solvable then so is AN. 
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1 3. If G is a group, define the sequence of subgroups c<i) of G by 
( I )  co> = commutator subgroup of G = subgroup of G generated 

by all aba- 1b - 1 where a, b E  G. 
(2) c< i) = commutator subgroup of c<i - 1 > if i > I .  
Prove 
(a) Each c<i) is a normal subgroup of G. 
(b) G is solvable if and only if c<k) = (e) for some k � I .  

14. Prove that a solvable group always has an abelian normal subgroup 
M =F (e) . 
If G is a group, define the sequence of subgroups G(i) by 
(a) G0> = commutator subgroup of G. 
(b) G(i) = subgroup of G generated by all aba- 1b - 1 where a E G, 

b E G( i- 1 ) ' 

G is said to be nilpotent if G(k) = (e) for some k � I .  

1 5. (a) Show that each G(il is a normal subgroup of G and G(i) :: G( i>. 
(b) If G is nilpotent, prove it must be solvable. 
(c) Give an example of a group which is solvable but not nilpotent. 

1 6. Show that any subgroup and homomorphic image of a nilpotent group 
must be nilpotent. 

1 7. Show that every homomorphic image, different from (e) , of a nil­
potent group has a nontrivial center. 

18. (a) Show that any group of order p", p a prime, must be nilpotent. 
(b) If G is nilpotent, and H =F G is a subgroup of G, prove that 

N(H) =F H where N(H) = {x E G J xHx- 1 = H}. 

1 9. If G is a finite group, prove that G is nilpotent if and only if G is the 
direct product of its Sylow subgroups. 

20. Let G be a finite group and H a subgroup of G. For A, B subgroups 
of G, define A to be conjugate to B relative to H if B = x- 1 Ax for 
some x E H. Prove 
(a) This defines an equivalence relation on the set of subgroups of G. 
(b) The number of subgroups of G conjugate to A relative to H 

equals the index of N (A) n H in H. 

2 1 .  (a) If G is a finite group and if P is a p-Sylow subgroup of G, prove 
that P is the only p-Sylow subgroup in N(P ) .  

(b) I f  P is a p-Sylow subgroup o f  G and i f  aPk = e then, if a E N(P),  
a must be in P. 

(c) Prove that N(N(P) )  = N(P) .  

22. (a) I f  G is a finite group and P is a p-Sylow subgroup of G, prove 
that the number of conjugates of P in G is not a multiple of p.  
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(b) Breaking up the conjugate class of P further by using conjugacy 
relative to P, prove that the conjugate class of P has l + kp 
distinct subgroups. (Hint : Use part (b) of Problem 20 and 
Problem 2 1 .  Note that together with Problem 23 this gives an 
alternative proof of Theorem 2 . 1 2.3, the third part of Sylow's 
theorem.) 

23. (a) If P is a p-Sylow subgroup of G and B is a subgroup of G of order 
p\ prove that if B is not contained in some conjugate of P, then 
the number of conjugates of P in G is a multiple of p. 

(b) Using part (a) and Problem 22, prove that B must be contained 
in some conjugate of P. 

(c) Prove that any two p-Sylow subgroups of G are conjugate in G. 
(This gives another proof of Theorem 2 . 1 2.2, the second part of 
Sylow's theorem.) 

24. Combine Problems 22 and 23 to give another proof of all parts of 
Sylow's theorem. 

25. Making a case-by-case discussion using the results developed in this 
chapter, prove that any group of order less than 60 either is of prime 
order or has a nontrivial normal subgroup. 

26. Using the result of Problem 25, prove that any group of order less 
than 60 is solvable. 

27. Show that the equation x2ax = a- 1 is solvable for x in the group 
G if and only if a is the cube of some element in G. 

28. Prove that (I 2 3) is not a cube of any element in Sn. 
29. Prove that xax = b is solvable for x in G if and only if ab is the square 

of some element in G. 

30. If G is a group and a e G is of finite order and has only a finite number 
of conjugates in G, prove that these conjugates of a generate a finite 
normal subgroup of G. 

3 1 .  Show that a group cannot be written as the set-theoretic union of 
two proper subgroups. 

32. Show that a group G is the set-theoretic union of three proper sub­
groups if and only if G has, as a homomorphic image, a noncyclic 
group of order 4. 

# 33. Let p be a prime and let ZP be the integers mod p under addition and 

(ca 
d
b) multiplication. Let G be the group where a, b, c, d E zp 

are such that ad - be = I .  Let 

and let LF(2, p) = GfC. 



(a) Find the order of LF(2, p). 
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(b) Prove that LF(2, p) is simple if p � 5. 

#34. Prove that LF(2, 5) is isomorphic to A5, the alternating group of 
degree 5. 

#35. Let G = LF(2, 7) ; according to Problem 33, G is a simple group of 
order 1 68. Determine exactly how many 2-Sylow, 3-Sylow, and 
7-Sylow subgroups there are in G. 
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3 
Ring Theory 

3.1 Definition and Examples of R ings 

As we indicated in Chapter 2, there are certain algebraic systems 
which serve as the building blocks for the structures comprising the 
subject which is today called modern algebra. At this stage of the 
development we have learned something about one of these, namely 
groups. It is our purpose now to introduce and to study a second 
such, namely rings. The abstract concept of a group has its origins 
in the set of mappings, or permutations, of a set onto itself. In con­
trast, rings stem from another and more familiar source, the set of 
integers. We shall see that they are patterned after, and are gen­
eralizations of, the algebraic aspects of the ordinary integers. 

In the next paragraph it will become clear that a ring is quite 
different from a group in that it is a two-operational system ; these 
operations are usually called addition and multiplication. Yet, 
despite the differences, the analysis of rings will follow the pattern 
already laid out for groups. We shall require the appropriate analogs 
of homomorphism, normal subgroups, factor groups, etc. With the 
experience gained in our study of groups we shall be able to make the 
requisite definitions, intertwine them with meaningful theorems, and 
end up proving results which are both interesting and important 
about mathematical objects with which we have had long acquaintance. 
To cite merely one instance, later on in the book, using the tools 
developed here, we shall prove that it is impossible to trisect an angle 
of 60° using only a straight-edge and compass. 
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D E FI N ITION A nonempty set R is said to be an associative ring if in R 
there are defined two operations, denoted by + and · respectively, such 
that for all a, b, c in R:  

1 .  a + b is in R. 
2. a +  b = b + a. 
3. (a + b) + c = a + (b + c) . 
4. There is an element 0 in R such that a + 0 = a (for every a in R) . 
5. There exists an element - a  in R such that a + ( - a) = 0. 
6. a · b is in R. 
7. a ·  (b · c) = (a · b) · c. 
8. a ·  (b + c) = a ·  b + a ·  c and (b  + c) · a  = b · a  + c · a  (the two distrib­

utive laws). 

Axioms I throug'h 5 merely state that R is an abelian group under the 
operation + , which we call addition. Axioms 6 and 7 insist that R be closed 
under an associative operation · , which we call multiplication. Axiom 8 
serves to interrelate the two operations of R. 

Whenever we speak of ring it will be understood we mean associative 
ring. Nonassociative rings, that is, those in which axiom 7 may fail to hold, 
do occur in mathematics and are studied, but we shall have no occasion to 
consider them. 

It may very well happen, or not happen, that there is an element I in 
R such that a · I  = I · a  = a for every a in R; if there is such we shall 
describe R as a ring with unit element. 

If the multiplication of R is such that a • b = b · a for every a, b in R, then 
we call R a commutative ring. 

Before going on to work out some properties of rings, we pause to examine 
some examples. Motivated by these examples we shall define various 
special types of rings which are of importance. 

Example 3.1 . 1  R is the set of integers, positive, negative, and 0; + is 
the usual addition and · the usual multiplication of integers. R is a com­
mutative ring with unit element. 

Example 3. 1 .2 R is the set of even integers under the usual operations 
of addition and multiplication. R is a commutative ring but has no unit 
element. 

Example 3.1 .3 R is the set of rational numbers under the usual addition 
and multiplication of rational numbers. R is a commutative ring with unit 
element. But even more than that, note that the elements of R different 
from 0 form an abelian group under multiplication. A ring with this latter 
property is called afield. 
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where 
2 

Yii = L IXivPvJ = IXuPlj + IXi2P2j· 
v = 1 

This multiplication, when first seen, looks rather complicated. However, 
it is founded on relatively simple rules, namely, multiply LIXijeii by L.PiJeiJ 
formally, multiplying out term by term, and collecting terms, and using the 
relations eii · ekl = 0 for j #- k, eii · e11 = eil in this term-by-term collecting. 
(Of course those of the readers who have already encountered some linear 
algebra will recognize this example as the ring of all 2 x 2 matrices over 
the field of rational numbers.) 

To illustrate the multiplication, if a 
e22  + 3e12, then 

a ·  b = (el l  - e2 1 + e22) • (e22  + 3e12) 

� 1 - � 1 + �2 and h 

= el l  · e22 + 3el l  · e12 - e2 1 · e22 - 3e2 1 · e12 + e22  · e22 + 3e22 · e12 
= 0 + 3e12 - 0 - 3e22 + e22  + 0 

= 3e12 - 3e22  + e22 = 3e12 - 2e22 . 

Note that el l  · e12 = e12 whereas e12 • e1 1  = 0. Thus the multiplication 
in R is not commutative. Also it is possible for u • v = 0 with u #- 0 and 
v #- 0. 

The student should verify that R is indeed a ring. It is called the ring of 
2 x 2 rational matrices. It, and its relative, will occupy a good deal of 
our time later on in the book. 

Example 3.1 .7 Let C be the set of all symbols (a, P) where a, p are 
real numbers. We define 

(a, P) = (y, £5) if and only if IX = y and p = £5. ( 1 )  

In C we introduce an addition by defining for x = (a, p), y = (y, £5) 

X + y = (IX, P) + (y, £5) = (IX + y, P + £5). (2) 

Note that x + y is again in C. We assert that C is an abelian group under 
this operation with (0, 0) serving as the identity element for addition, and 
( - IX, -P) as the inverse, under addition, of (a, p) . 

Now that C is endowed with an addition, in order to make of C a ring 
we still need a multiplication. We achieve this by defining 

for X = (a, p), Y = (y, £5) in C, 

X · Y = (a, p) · (y, £5) = (ay - Pt5, at5 + py) . (3) 
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Note that X· Y = Y ·X. Also X· ( 1 ,  0) = ( 1 ,  0) · X =  X so that ( 1 ,  0) 
is a unit element for C. 

Again we notice that X ·  Y e C. Also, if X = (a:, p) .;= (0, 0) then, 
since a:, p are real and not both 0, a:2 + p2 .;= 0 ;  thus 

is in C. Finally we see that 

(a:, p) . 
2 2 ' 2 2 = ( I  ' 0) · ( <X - P  ) 

<X + P <X + P 

All in all we have shown that C is a field. If we write (ex, p) as ct + pi, 
the reader may verify that C is merely a disguised form of the familiar 
complex numbers. 

Example 3.1 .8 This last example is often called the ring of real quaternions. 
This ring was first described by the Irish mathematician Hamilton. Initially 
it was extensively used in the study of mechanics; today its primary interest 
is that of an important example, although it still plays key roles in geometry 
and number theory. 

Let Q be the set of all symbols cto + ct1 i + ct2j + ct3k, where all the 
numbers ct0, ct1 ,  ct2, and ct3 are real numbers. We declare two such symbols, 
cto + ct1 i + ct2j + ct3k and Po + P1 i + P2j + P3k, to be equal if and only 
if ct1 = p, for t = 0, I ,  2, 3. In order to make Q into a ring we must de­
fine a + and a ·  for its elements. To this end we defne 

I .  For any X = ct0 + ct1 i + ct2j + ct3k, Y = Po + P1 i + P2j + P3k in 
Q, X + Y = (cto + ct1 i + ct2} + ct3k) + (Po + P1i + P2} + P3k) = 
(et:o + Po) + (ct1 + P1) i  + (ct2 + P2)j + (ct3 + P3)k 

and 

2. X ·  Y = (ct0 + ct1i + ct2j + ct3k) · (Po + P1i + P2j + P3k) = 
(et:oPo - ct1P1 - ct2P2 - a:3p3) + (ctoP1 + a1Po + ct2P3 - ct3P2)i  + 
(ctoP2 + ct2Po + ct3P1 - ct1P3)j + (ctoP3 + ct3Po + ct1P2 - ct2P1)k. 

Admittedly this formula for the product seems rather formidable ; however, 
it looks much more complicated than it actually is. It comes from multi­
plying out two such symbols formally and collecting terms using the relations 
i2 = p = k2 = ijk = 1 , ij = -ji = k, jk = -kj = i, ki = - ik = j. 
The latter part of these relations, called the multiplication table of the 
quaternion units, can be remembered by the little diagram on page 1 25. As 
you go around clockwise you read off the product, e.g., ij = k, jk = i, 
ki = j; while going around counterclockwise you read off the negatives. 
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Notice that the elements ± 1 ,  ± i, ±j, ±k form a non-abelian group of 
order 8 under this product. In fact, this is the group we called the group 
of quaternion units in Chapter 2. 

The reader may prove that Q is a noncommutative ring in which 0 = 
0 + Oi + Oj + Ok and 1 = 1 + Oi + Oj + Ok serve as the zero and 
unit elements respectively. Now if X =  ao + a1i  + a

2j + rx3k is not 0, 
then not all of a0, ct1 , a2, a3 are 0 ;  since they are real, fJ = a0 2 + ct12  + 
a:/' + a3 2 :F 0 follows. Thus 

y = ao _ 0!1 j _ O!z j _ 0!3 k E Q. 
fJ fJ fJ fJ 

A simple computation now shows that X · Y = 1 .  Thus the nonzero 
elements of Q form a non-abelian group under multiplication. A ring in 
which the nonzero elements form a group is called a division ring or skew­

field. Of course, a commutative division ring is a field. Q affords us a 
division ring which is not a field. Many other examples of noncommutative 
division rings exist, but we would be going too far afield to present one here. 
The investigation of the nature of division rings and the attempts to classify 
them form an important part of algebra. 

3.2 Some S pecial Classes of Rings 

The examples just discussed in Section 3 . 1  point out clearly that although 
rings are a direct generalization of the integers, certain arithmetic facts to 
which we have become accustomed in the ring of integers need not hold in 
general rings. For instance, we have seen the possibility of a ·  b = 0 with 
neither a nor b being zero. Natural examples exist where a ·  b :F b · a. 
All these run counter to our experience heretofore. 

For simplicity of notation we shall henceforth drop the dot in a ·  b and 
merely write this product as ab. 

DEFI N ITI O N  If R is a commutative ring, then a :F 0 e R is said to be a 
zero-divisor if there exists a b e R, b :F 0, such that ab = 0. 
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D E F I N ITION A commutative ring is an integral domain if it has no zero­
divisors. 

The ring of integers, naturally enough, is an example of an integral 
domain. 

D EF I N ITION A ring is said to be a division ring if its nonzero elements 
form a group under multiplication. 

The unit element under multiplication will be written as I ,  and the 
inverse of an element a under multiplication will be denoted by a 1 • 

Finally we make the defnition of the ultra-important object known as a 
field . 

D E F I N ITION Afield is a commutative division ring. 

In our examples in Section 3. 1 ,  we exhibited the noncommutative 
division ring of real quaternions and the following fields : the rational 
numbers, complex numbers, and the integers mod 7. Chapter 5 will con� 
cern itself with fields and their properties. 

We wish to be able to compute in rings in much the same manner in 
which we compute with real numbers, keeping in mind always that there 
are differences-it may happen that ab =F ba, or that one cannot divide. 
To this end we prove the next lemma, which asserts that certain things we 
should like to be true in rings are indeed true. 

LEM MA 3.2.1 lf R is a ring, thenfor all a, b E  R 

1 .  aO = Oa = 0. 
2. a ( - b) = ( -a)b = - (ab) .  
3. ( - a) (  - b) = ab. 

1j, in addition, R has a unit element I ,  then 

4. ( - l )a = - a. 
5. ( - 1) ( - 1 ) = 1 . 

Proof. 

I .  If a E R, then aO = a(O + 0) = aO + aO (using the right distributive 
law) , and since R is a group under addition, this equation implies that 
aO = 0. 

Similarly, Oa = (0 + O)a = Oa + Oa, using the left distributive law, 
and so here too, Oa = 0 follows. 

2. In order to show that a( - b) = - (ab) we must demonstrate that 
ab + a ( - b) = 0. But ab + a( - b) = a (b + ( -b)) = aO = 0 by use of 
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the distributive law and the result of part I of this lemma. Similarly 
( -a)b  = - (ab).  

3. That ( -a)(  - b) = ab is really a special case of part 2; we single it 
out since its analog in the case of rea1 numbers has been so stressed in our 
early education. So on with it : 

( - a) ( - b) = - (a( - b) )  
= - ( - (ab) )  
= ab 

(by part 2) 
(by part 2) 

since - ( -x) = x is a consequence of the fact that in any group 
(u- 1) - 1  = u. 

4. Suppose that R has a unit element I ; then a + ( - I )a  = la  + ( - 1  )a  = 
( 1  + ( - l) )a  = Oa = 0, whence ( - l )a = - a. In particular, if a = 
- 1 ,  ( - 1 )  ( - I )  = - ( - 1 ) = I ,  which establishes part 5. 

With this lemma out of the way we shall, from now on, feel free to compute 
with negatives and 0 as we always have in the past. The result of Lemma 
3.2. 1 is our permit to do so. For convenience, a + ( - b) will be written 
a - b. 

The lemma just proved, wllile it is very useful and important, is not very 
exciting. So let us proceed to results of greater interest. Before we do so, 
we enunciate a principle which, though completely trivial, provides a 
mighty weapon when wielded properly. This principle says no more or less 
than the following : if a postman distributes 10 1  letters to 100 mailboxes 
then some mailbox must receive at least two letters. It does not sound very 
promising as a tool, does it? Yet it will surprise us ! Mathematical ideas 
can often be very difficult and obscure, but no such argument can be made 
against this very simple-minded principle given above. We formalize it and 
even give it a name. 

T H E  P I G EO N H O LE P R I NCIPLE If n objects are distributed over m places, 
and if n > m, then some place receives at least two objects. 

An equivalent formulation, and one which we shall often use is : If n 
objects are distributed over n places in such a way that no place receives 
more than one object, then each place receives exactly one object. 

We immediately make use of this idea in proving 

LEM MA 3.2.2 Afinite integral domain is afield. 

Proof. As we may recall, an integral domain is a commutative ring such 
that ab = 0 if and only if at least one of a or b is itself 0. A field, on the 
other hand, is a commutative ring with unit element in which every non­
zero element has a multiplicative inverse in the ring. 
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Let D be a finite integral domain. In order to prove that D is a field we 
must 

I .  Produce an element I E D  such that a l = a for every a E D. 
2. For every element a ¥: 0 e D produce an element b E D such that 

ab = I .  

Let xl l x2, . . . , Xn be all the elements of D, and suppose that a ¥: 0 e D. 
Consider the elements x1a, x2a, . . .  , xna ; they are all in D. We claim that 
they are all distinct ! For suppose that x1a = x1a for i=F j; then (x1 - x1)a = 0. 
Since D is an integral domain and a ¥: 0, this forces x1 - x1 = 0, and 
so x1 = x1, contradicting i ¥: j. Thus x1a, x2a, . . .  , xna are n distinct 
elements lying in D, which has exactly n elements. By the pigeonhole 
principle these must account for all the elements of D ;  stated otherwise, 
every element y e D can be written as x1a for some x1• In particular, since 
a e D, a = xioa for some x10 e D. Since D is commutative, a '" xioa = 
ax10• We propose to show that x10 acts as a unit element for every element 
of D. For, if y e D, as we have seen, y = x1a for some x1 e D, and so 
yx

10 = (x1a)x10 x1(ax10) = x1a = y. Thus x10 is a unit element for D and 
we write it as 1 .  Now 1 e D, so by our previous argument, it too is realizable 
as a multiple of a ;  that is, there exists a b e D  such that 1 = ba. The 
lemma is now completely proved. 

COROLLARY If p is a prime number then ]p, the ring of integers mod p, is a 
field. 

Proof. By the lemma it is enough to prove that ]p is an integral domain, 
since it only has a finite number of elements. If a, h E ]p and ab = 0, 
then p must divide the ordinary integer ab, and so p, being a prime, must 
divide a or b. But then either a = 0 mod p or b = 0 mod p, hence in 
]p one of these is 0. 

The corollary above assures us that we can find an infinity of fields 
having a finite number of elements. Such fields are called finite fields. The 
fields ]p do not give all the examples of finite fields ; there are others. In 
fact, in Section 7 . I  we give a complete description of all finite fields. 

We point out a striking difference between finite fields and fields such as 
the rational numbers, real numbers, or complex numbers, with which we 
are more familiar. 

Let F be a fnite field having q elements (if you wish, think of ]p with its 
p elements). Viewing F merely as a group under addition, since F has q 
elements, by Corollary 2 to Theorem 2.4. 1 ,  

a + a + · · · + a = qa = 0 

q-times 
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for any a e F. Thus, in F, we have qa = 0 for some positive integer q, even 
if a i= 0. This certainly cannot happen in the field of rational numbers, 
for instance. We formalize this distinction in the definitions we give below. 
In these definitions, instead of talking just about fields, we choose to widen 
the scope a little and talk about integral domains. 

D E F I N IT ION An integral domain D is said to be of characteristic 0 if  the 
relation ma = 0, where a t= 0 is in D, and where m is an integer, can hold 
only if m = 0. 

The ring of integers is thus of characteristic 0, as are other familiar rings 
such as the even integers or the rationals. 

D Efi N ITIO N  An integral domain D i s  said to be of finite characteristic if 
there exists a positive integer m such that ma = 0 for all a e D. 

If D is of finite characteristic, then we define the characteristic of D to be 
the smallest positive integer p such that pa = 0 for all a e D. It is not too 
hard to prove that if D is of finite characteristic, then its characteristic is a prime 
number (see Problem 6 below) . 

As we pointed out, any finite field is of finite characteristic. However, an 
integral domain may very well be infinite yet be of finite characteristic (see 
Problem 7) . 

One final remark on this question of characteristic : Why define it for 
integral domains, why not for arbitrary rings ? The question is perfectly 
reasonable. Perhaps the example we give now points out what can happen 
if we drop the assumption "integral domain. "  

Let R be the set of all triples (a, b ,  c) , where a e ]2, the integers mod 2, 
b e ]3, the integers mod 3, and c is any integer. We introduce a + and a · 
to make of R a ring. We do so by defining (a1 , hi > c;'t) + (a2, b2, c2) = 
(a1 + a2, b1 + b2, c1 + c2) and (a1 , b1 , c1 ) • (a2, b2, c2) = (a1a2, b1b2, c1c2) .  
I t  is easy to verify that R is a commutative ring. I t  is not an integral domain 
since ( I , 2, 0) · (0, 0, 7) = (0, 0, 0), the zero-element of R. Note that in R, 
2 ( 1 ,  0, 0) = ( 1 ,  0, 0) + ( I ,  0, 0) = (2, 0, 0) = (0, 0, 0) since addition in 
the first component is in ]2• Similarly 3 (0, I ,  0) = (0, 0, 0) . Finally, for 
no positive integer m is m(O, 0, I )  = (0, 0, 0) . 

Thus, from the point of view of the definition we gave above for charac­
teristic, the ring R, which we just looked at, is neither fish nor fowl. The 
definition just doesn't have any meaning for R. We could generalize the 
notion of characteristic to arbitrary rings by doing it locally, defining it 
relative to given elements, rather than globally for the ring itself. We say 
that R has n-torsion, n > 0, if there is an element a t= 0 in R such that 
na = 0, and ma i= 0 for 0 < m < n. For an integral domain D, it turns 
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out that if D has n-torsion, even for one n > 0, then it must be of finite 
characteristic (see Problem 8). 

Problems 

R is a ring in all the problems. 

1. If a, b, c, d e  R, evaluate (a + b) (c + d). 

2. Prove that if a, b E  R, then (a + b) 2 = a2 + ab + ba + b2, where 
by x2 we mean xx. 

3. Find the form of the binomial theorem in a general ring ; in other words, 
find an expression for (a + b)", where n is a positive integer. 

4. If every x e R satisfies x2 = x, prove that R must be commutative. 
(A ring in which x2 = x for all elements is called a Boolean ring.) 

5. If R is a ring, merely considering it as an abelian group under its 
addition, we have defined, in Chapter 2, what is meant by na, where 
a e R and n is an integer. Prove that if a, b e R and n, m are integers, 
then (na)(mb) = (nm) (ab) .  

6. If D is an integeral domain and D is of finite characteristic, prove that 
the characteristic of D is a prime number. 

7. Give an example of an integral domain which has an infinite number 
of elements, yet is of finite characteristic. 

8. If D is an integral domain and if na = 0 for some a #- 0 in D and 
some integer n #- 0, prove that D is of finite characteristic. 

9. If R is a system satisfying all the conditions for a ring with unit ele­
ment with the possible exception of a + b = b + a, prove that the axiom 
a + b = b + a must hold in R and that R is thus a ring. (Hint : 
Expand (a + b) ( l  + I ) in two ways. )  

10. Show that the commutative ring D i s  an integral domain if and only 
if for a, b, c e D with a #- 0 the relation ab = ac implies that b = c. 

1 1 . Prove that Lemma 3.2.2 is false if we drop the assumption that the 
integral domain is finite. 

1 2. Prove that any field is an integral domain. 

13. Useing the pigeonhole principle, prove that if m and n are relatively 
prime integers and a and b are any integers, there exists an integer x 
such that x = a mod m and x = b mod n. (Hint: Consider the re­
mainders of a, a + m, a + 2m, . . .  , a + (n - l ) m  on division by n.) 

14. Using the pigeonhole principle, prove that the decimal expansion of 
a rational number must, after some point, become repeating. 
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In studying groups we have seen that the concept of a homomorphism 
turned out to be a fruitful one. This suggests that the appropriate analog 
for rings could also lead to important ideas. To recall, for groups a homo­
morphism was defined as a mapping such that t/J(ab) = t/J(a) t/J(b) . Since 
a ring has two operations, what could be a more natural extension of this 
type of formula than the 

D EF I N ITIO N  A mapping tjJ from the ring R into the ring R' is said to be a 
homomorphism if 

I. t/J(a + b) = t/J(a) + t/J(b), 
2. t/J(ab) = t/J(a) tjl(b) , 

for all a, b E R. 

As in the case of groups, let us again stress here that the + and · occurring 
on the left-hand sides of the relations in I and 2 are those of R, whereas the 
+ and · occurring on the right-hand sides arc those of R'. 

A useful observation to make is that a homomorphism of one ring, R, 
into another, R', is, if we totally ignore the multiplications in both these 
rings, at least a homomorphism of R into R' when we consider them as 
abelian groups under their respective additions. Therefore, as far as 
addition is concerned, all the properties about homomorphisms of groups 
proved in Chapter 2 carry over. In particular, merely restating Lemma 
2. 7.2 for the case of the additive group of a ring yields for us 

LE M MA 3.3.1 1J ¢ is a homomorphism rif R into R', then 

I .  ¢ (0) = 0. 
2. ¢ ( - a) - tjl(a) for every a E R. 

A word of caution : if both R and R' have the respective unit elements 
and I '  for their multiplications it need not follow that ¢( l )  = 1 ' . 

However, if R' is an integral domain, or if R' is arbitrary but ¢ is onto, then 
</>( I )  = I '  is indeed true. 

In the case of groups, given a homomorphism we associated with this 
homomorphism a certain subset of the group which we called the kernel of 
the homomorphism. What should the appropriate definition of the kernel 
of a homomorphism be for rings ? After all, the ring has two operations, 
addition and multiplication, and it might be natural to ask which of these 
should be singled out as the basis for the definition. However, the choice 
is clear. Built into the definition of an arbitrary ring is the condition that 
the ring forms an abelian group under addition. The ring multiplication 
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was left much more unrestricted, and so, in a sense, much less under our 
control than is the addition. For this reason the emphasis is given to the 
operation of addition in the ring, and we make the 

D E FI N ITION If l/J is a homomorphism of R into R' then the kernel qf l/J, 
I(l/J), is the set of all elements a e R such that l/J(a) = 0, the zero-element 
of R'. 

LEM MA 3.3.2 If l/J is a homomorphism qf R into R' with kernel i(l/J ), then 

I .  I ( l/J) is a subgroup qf R under addition. 
2 .  If a E I(l/J) and r E R then both ar and ra are in I(l/J) .  

Proof. Since l/J is, in particular, a homomorphism of R, as an additive 
group, into R', as an additive group, ( I )  follows directly from our results in 
group theory. 

To see (2), suppose that a E I(l/J), r E R. Then l/J(a) = 0 so that l/J(ar) = 
l/J(a)l/J(r) = Ol/J(r) = 0 by Lemma 3 .2 . 1 .  Similarly l/J (ra) = 0. Thus 
by defining property of I(¢) both ar and ra are in I(l/J). 

Before proceeding we examine these concepts for certain examples. 

Example 3.3.1 Let R and R' be two arbitrary rings and define l/J(a) = 0 
for all a e R. Trivially l/J is a homomorphism and I ( l/J) = R. ¢ is called 
the zero-homomorphism. 

Example 3.3.2 Let R be a ring, R' = R and define ¢(x) = x for every 
x E R. Clearly ¢ is a homomorphism and I ( l/J) consists only of 0. 

Example 3.3.3 Let J(.J2) be all real numbers of the form m + n./2 

where m, n are integers ; J ( .J2) forms a ring under the usual addition and 
multiplication of real numbers. (Verify !) Define ¢ :] ( .J2) � J ( .J2) by 
l/J(m + n.J2) = m - n-J2. ¢ is a homomorphism of J( J2) onto ]( .J2) 
and its kernel I(l/J), consists only of O. (Verify !) 

Example 3.3.4 Let J be the ring of integers, ],, the ring of integers 
modulo n. Defne ¢:] � ln by ¢(a) = remainder of a on division by n. 
The student should verify that l/J is a homomorphism of J onto Jn and that 
the kernel, I ( ¢), of l/J consists of all multiples of n. 

Example 3.3.5 Let R be the set of all continuous, real-valued functions 
on the closed unit interval. R is made into a ring by the usual addition and 
multiplication of functions ; that it is a ring .is a consequence of the fact 
that the sum and product of two continuous functions are continuous 
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functions. Let F be the ring of real numbers and define rJ> :R -+ F by 
rJ>(f(x) )  = f (f) . rJ> is then a homomorphism of R onto F and its kernel 
consists of all functions in R vanishing at x = f. 

All the examples given here have used commutative rings. Many 
beautiful examples exist where the rings are noncommutative but it would 
be premature to discuss such an example now. 

D E FI N ITION A homomorphism of R into R' is said to be an isomorphism 
if it is a one-to-one mapping. 

D E F I N ITION Two rings are said to be isomorphic if there is an isomorphism 
of one onto the other. 

The remarks made in Chapter 2 about the meaning of an isomorphism 
and of the statement that two groups are isomorphic carry over verbatim 
to rings. Likewise, the criterion given in Lemma 2. 7.4 that a homomorphism 
be an isomorphism translates directly from groups to rings in the form 

LEM MA 3.3.3 The homomorphism rJ> of R into R' is an isomorphism if and 
only if I(rj>) = (0) . 

3.4 Ideals and Quotient Ri ngs 

Once the idea of a homomorphism and its kernel have been set up for rings, 
based on our experience with groups, it should be fruitful to carry over 
some analog to rings of the concept of normal subgroup. Once this is 
achieved, one would hope that this analog would lead to a construction in 
rings like that of the quotient group of a group by a normal subgroup. 
Finally, if one were an optimist, one would hope that the homomorphism 
theorems for groups would come over in their entirety to rings. 

Fortunately all this can be done, thereby providing us with an incisive 
technique for analyzing rings. 

The first business at hand, then, seems to be to define a suitable "normal 
subgroup" concept for rings. With a little hindsight this is not difficult. 
If you recall, normal subgroups eventually turned out to be nothing else 
than kernels of homomorphisms, even though their primary defining 
conditions did not involve homomorphisms. Why not use this observation 
as the keystone to our definition for rings ? Lemma 3.3.2 has already 
provided us with some conditions that a subset of a ring be the kernel of a 
homomorphism. We now take the point of view that, since no other in­
formation is at present available to us, we shall make the conclusions of 
Lemma 3.3.2 as the starting point of our endeavor, and so we define 
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D E F I N ITION A nonempty subset U of R is said to be a (two-sided) ideal 
of R if 

1 .  U is a subgroup of R under addition. 
2. For every u E U and r E R, both ur and ru are in U. 

Condition 2 asserts that U "swallows up" multiplication from the right 
and left by arbitrary ring elements. For this reason U is usually called a 
two-sided ideal. Since we shall have no occasion, other than in some of the 
problems, to use any other derivative concept of ideal, we shall merely use 
the word ideal, rather than two-sided ideal, in all that follows. 

Given an ideal U of a ring R, let Rf U be the set of all the distinct cosets 
of U in R which we obtain by considering U as a subgroup of R under 
addition. We note that we merely say coset, rather than right coset or left 
coset ; this is justified since R is an abelian group under addition. To restate 
what we have just said, RJU consists of all the cosets, a + U, where a E R. 
By the results of Chapter 2, Rf U is automatically a group under addition ; 
this is achieved by the composition law (a + U) + (b + U) = (a +  b) + U. 
In order to impose a ring structure on Rf U we must defne, in it, a multi­
plication. What is more natural than to define (a + U) (b + U) = 

ab + U? However, we must make sure that this is meaningful. Otherwise 
put, we are obliged to show that if a + U = a' + U and b + U = b' + U, 
then under our definition of the multiplication, (a + U) (b + U) = 
(a' + U) (b' + U) . Equivalently, it must be established that ab + U = 

a'b' + U. To this end we frst note that since a + U = a' + U, 
a = a' + u1, where u1 E U; similarly b = b' + u2 where u2 E U. Thus 
ab = (a' + u1 ) (b + u2) = a'b' + u1b' + a'u2 + u1u2 ; since U is an ideal of 
R, u1b' E U, a'u2 E U, and u1u2 E U. Consequently u1b' + a'u2 + u1u2 = 
u3 E U. But then ab = a'b' + u3, from which we deduce that ab + U = 
a' b' + u3 + U, and since u3 E U, u3 + U = U. The net consequence 
of all this is that ab + U = a'b' + U. We at least have achieved the 
principal step on the road to our goal, namely of introducing a well-defined 
multiplication. The rest now becomes routine. To establish that RJU is a 
ring we merely have to go through the various axioms which define a ring 
and check whether they hold in Rf U. All these verifications have a certain 
sameness to them, so we pick one axiom, the right distributive law, and 
prove it holds in Rf U. The rest we leave to the student as informal exercises. 
If X =  a + U, Y = b + U, Z = c + U are three elements of RJU, 
where a, b, c E R, then (X + Y)Z = ( (a + U) + (b + U)) (c + U) = 

( (a + b) + U) (c + U) = (a + b)c + U = ac + be + U = (ac + U) + 
(be + U) = (a + U) (c + U) + (b + U) (c + U) = XZ + YZ. 

RJU has now been made into a ring. Clearly, if R is commutative then 
so is RJU, for (a + U) (b + U) = ab + U = ba + U = (b + U) (a + U). 
(The converse to this is  false.) If R has a unit element I ,  then Rf U has a 
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unit element I + U. We might ask : In what relation is RJU to R? With 
the experience we now have in hand this is easy to answer. There is a 
homomorphism </> of R onto RfU given by <f>(a) = a + U for every a E R, 
whose kernel is exactly U. (The reader should verify that ¢ so defined is a 
homomorphism of R onto R/ U with kernel U.) 

We summarize these remarks in 

LEM MA 3.4.1 .lf U is an ideal of the ring R, then Rf U is a ring and is a 
ho'Tlmorphic image of R. 

With this construction of the quotient ring of a ring by an ideal satisfactorily 
accomplished, we are ready to bring over to rings the homomorphism 
theorems of groups. Since the proof is an exact verbatim translation of that 
for groups into the language of rings we merely state the theorem without 
proof, referring the reader to Chapter 2 for the proof. 

TH EO R E M  3.4.1 Let R, R' be rings and ¢ a homomorphism of R onto R' with 
kernel U. Then R' is isomorphic to Rf U. Moreover there is a one-to-one correspondence 
between the set of ideals of R' and the set of ideals of R which contain U. This 
correspondence can be achieved by associating with an ideal W' in R' the ideal W in 
R defined by W = {x E R )  cp(x) E W'}. With W so defined, RJ W is iso'Tlrphic 
to R'/ W'. 

Problems 

I .  If U is an ideal of R and 1 E U, prove that U = R. 
2. IfF is a field, prove its only ideals are (0) and F itself. 

3. Prove that any homomorphism of a field is either an isomorphism or 
takes each element into 0. 

4. If R is a commutative ring and a E R, 
(a) Show that aR = {ar I r E  R} is a two-sided ideal of R. 
(b) Show by an example that this may be false if R is not commutative. 

5. If U, V are ideals of R, let U + V = {u + v I  u e U, v E V}. Prove 
that U + V is also an ideal. 

6. If U, V are ideals of R let UV be the set of all elements that can be 
written as finite sums of elements of the form uv where u E U and 
v e V. Prove that UV is an ideal of R. 

7. In Problem 6 prove that UV c U n V. 
8. If R is the ring of integers, let U be the ideal consisting of all multiples 

of 17. Prove that if V is an ideal of R and R :: V :: U then either 
V = R or V ,= U. Generalize ! 
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9. If U is an ideal of R, let r(U) = {x e R I xu = 0 for all u e U}. 
Prove that r( U) is an ideal of R. 

1 0. If U is an ideal of R let [R: U] = {x e R I rx e U for every r e R}. 
Prove that [R:U] is an ideal of R and that it contains U. 

I I . Let R be a ring with unit element. Using its elements we define a 
ring R by defining a E9 b = a + b + I ,  and a · b = ab + a + b, 
where a, b e R and where the addition and multiplication on the 
right-hand side of these relations are those of R. 
(a) Prove that R is a ring under the operations $ and 
(b) What acts as the zero-element of R? 
(c) What acts as the unit-element of R? 
(d) Prove that R is isomorphic to R. 

* 1 2 . In Example 3. 1 .6 we discussed the ring of rational 2 x 2 matrices. 
Prove that this ring has no ideals other than (0) and the ring itself. 

* 1 3. In Example 3. 1 .8 we discussed the real quaternions. Using this as a 
model we define the quatemions over the integers mod p, p an odd 
prime number, in exactly the same way; however, now considering 
all symbols of the form IXo + ex 1 i + cx2j + cx3k, where IXo• oc1, oc2, o:3 
are integers mod p. 
(a) Prove that this is a ring with p4 elements whose only ideals are 

(0) and the ring itself. 
* * (b) Prove that this ring is not a division ring. 

If R is any ring a subset L of R is called a lift-ideal of R if 
l .  L is a subgroup of R under addition. 
2 r e R, a e L implies ra e L. 

(One can similarly define a right-ideal.) An ideal is thus simultaneously a 
left- and right-ideal of R. 

14. For a e R let Ra = {xa I x e R}. Prove that Ra is a left-ideal of R. 

15. Prove that the intersection of two left-ideals of R is a left-ideal of R. 

16. What can you say about the intersection of a left-ideal and right-ideal 
of R? 

1 7. If R is  a ring and a e R let r(a) = {x e R I ax = 0}. Prove that 
r(a) is a right-ideal of R. 

18. If R is a ring and L is a left-ideal of R let A.(L) = {x e R I xa = 0 for 
all a e L}. Prove that A.(L) is a two-sided ideal of R. 

* 19. Let R be a ring in which x3 = x for every x e R. Prove that R is a 
commutative ring. 

20. If R is a ring with unit element l and ¢ is a homomorphism of R onto 
R' prove that ¢ ( 1 )  is the unit element of R'. 
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2 1 .  If R is a ring with unit element 1 and 4> is a homomorphism of R into 
an integral domain R' such that l(rf>) ¥= R, prove that rf>( l )  is the unit 
element of R'. 

3.5 More Ideals and Quotient Ri ngs 

We continue the discussion of ideals and quotient rings. 
Let us take the point of view, for the moment at least, that a field is the 

most desirable kind of ring. Why? If for no other reason, we can divide in 
a field, so operations and results in a field more closely approximate our 
experience with real and complex numbers. In addition, as was illustrated 
by Problem 2 in the preceding problem set, a field has no homomorphic 
images other than itself or the trivial ring consisting of 0. Thus we cannot 
simplify a field by applying a homomorphism to it. Taking these remarks 
into consideration it is natural that we try to link a general ring, in some 
fashion, with fields. What should this linkage involve? We have a machinery 
whose component parts are homomorphisms, ideals, and quotient rings. 
With these we will forge the link. 

But first we must make precise the rather vague remarks of the preceding 
paragraph. We now ask the explicit question : Under what conditions is the 
homomorphic image of a ring a field? For commutative rings we give a 
complete answer in this section. 

Essential to treating this question is the converse to the result of Problem 
2 of the problem list at the end of Section 3.4. 

L E M MA 3.5.1 Let R be a commutative ring with unit element whose only ideals 
are (0) and R itself. Then R is afield. 

Proof. In order to effect a proof of this lemma for any a ¥- 0 e R we 
must produce an element b ¥= 0 e R such that ab = I .  

So, suppose that a ¥= 0 is in R. Consider the set Ra = {xa I x e R}. 
We claim that Ra is an ideal of R. In order to establish this as fact we must 
show that it is a subgroup of R under addition and that if u E Ra and 
r e R then ru is also in Ra. (We only need to check that ru is in Ra for 
then ur also is since ru = ur.) 

Now, if u, v E Ra, then u = r1 a, v = r2a for some ru r2 E R. Thus 
u + v = r1a + r2a = (r1 + r2) a e Ra ; similarly - u  = - r1a = ( - r1 )a e Ra. 
Hence Ra is an additive subgroup of R. Moreover, if r e R, ru = r(r1a) = 
(rr1 )a e Ra. Ra therefore satisfies all the defining conditions for an ideal 
of R, hence is an ideal of R. (Notice that both the distributive law and 
associative law of multiplication were used in the proof of this fact.) 

By our assumptions on R, Ra = (0) or Ra = R. Since 0 ¥- a = Ia e Ra, 
Ra ¥- (0) ; thus we are left with the only other possibility, namely that 
Ra = R. This last equation states that every element in R is a multiple of 
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a by some element of R. In particular, I e R and so it can be realized as a 
multiple of a ;  that is, there exists an element b e  R such that ba = 1 .  
This completes the proof of  the lemma. 

D E F I N ITION An ideal M =1- R in a ring R is said to be a maximal ideal of 
R if whenever U is an ideal of R such that M c U c R, then either R = U 
or M = U. 

In other words, an ideal of R is a maximal ideal if it is impossible to 
squeeze an ideal between it and the full ring. Given a ring R there is no 
guarantee that it has any maximal ideals ! If the ring has a unit element 
this can be proved, assuming a basic axiom of mathematics, the so-called 
axiom of choice. Also there may be many distinct maximal ideals in a 
ring R; this will be illustrated for us below in the ring of integers. 

As yet we have made acquaintance with very few rings. Only by con­
sidering a given concept in many particular cases can one fully appreciate 
the concept and its motivation. Before proceeding we therefore examine 
some maximal ideals in two specific rings. When we come to the discussion 
of polynomial rings we shall exhibit there all the maximal ideals. 

Example 3.5.1 Let R be the ring of integers, and let U be an ideal of R. 
Since U is a subgroup of R under addition, from our results in group theory, 
we know that U consists of all the multiples of a fixed integer no ; we write 
this as U = (no) . What values of no lead to maximal ideals? 

We first assert that if p is a prime number then P = (P) is a maximal 
ideal of R. For if U is an ideal of R and U :: P, then U = (no) for some 
integer no- Since p e P  c U, p = mn0 for some integer m ;  because p is a 
prime this implies that no = 1 or no = p. If no = p, then p c u = 
(no) c P, so that U = P follows ; if n0 = 1 ,  then l e U, hence r = lr e U 
for all r e R whence U = R follows. Thus no ideal, other than R or P 
itself, can be put between P and R, from which we deduce that P is maximal. 

Suppose, on the other hand, that M = (no) is a maximal ideal of R. 
We claim that no must be a prime number, for if n0 = ab, where a, b are 
positive integers, then U = (a) :: M, hence U = R or U = M. If U R, 
then a = I is an easy consequence ; if U = M, then a e M and so a = rno 
for some integer r, since every element of M is a multiple of n0• But then 
no = ab = rn0b, from which we get that rb = l, so that b = I, no = a. 
Thus no is a prime number. 

In this particular example the notion of maximal ideal comes alive-it 
corresponds exactly to the notion of prime number. One should not, 
however, jump to any hasty generalizations ;  this kind of correspondence 
does not usually hold for more general rings. 
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if and only if ad = be? As for 2 and 3, why not try the obvious, that is, 
define 

� 
+ 

� 
= 

ad + be 
and 

a :_ = � . 
b d bd b d bd 

In fact in what is to follow we make these considerations our guide. So 
let us leave the heuristics and enter the domain of mathematics, with 
precise definitions and rigorous deductions. 

Let vi be the set of all ordered pairs (a, b) where a, b E D  and b ::/= 0. 
(Think of (a, b) as afb.) In J( we now define a relation as follows : 

(a, b) ,. (e, d) if and only if ad = be. 

We claim that this defines an equivalence relation on vi. To establish this 
we check the three defining conditions for an equivalence relation for this 
particular relation. 

I .  If (a, b) E .4, then (a, b) ,. (a, b) since ab = ba. 
2. If (a, b) , (e, d) E vi and (a, b) "'"' (e, d), then ad = be, hence eb = da, 

and so (e, d) ,. (a, b) . 
3. If (a, b) , (e, d), (e, f )  are all in vi and (a, b) ,. (e, d) and (e, d) ,. 

(e,j), then ad = be and cj = de. Thus bcj = bde, and since be = ad, 
it follows that adj = bde. Since D is commutative, this relation becomes 
afd = bed; since, moreover, D is an integral domain and d ::/= 0, this 
relation further implies that qf = be. But then (a, b) ,. (e,j )  and our 
relation is transitive. 

Let [a, b] be the equivalence class in vi of (a, b), and let F be the set of 
all such equivalence classes [a, b] where a, b E D  and b ::f:. 0. F is the 
candidate for the field we are seeking. In order to create out of F a field 
we must introduce an addition and a multiplication for its elements and then 
show that under these operations F forms a field. 

We first dispose of the addition. Motivated by our heuristic discussion at 
the beginning of the proof we define 

[a, b]  ;- [e, d] = [ad + be, bd] . 

Since D is an integral domain and both b ::/= 0 and d ::/= 0 we have that 
bd ::f:. 0 ;  this, at least, tells us that [ad + be, bd] e F. We now assert that 
this addition is well defined, that is, if [a, b] = [a', b'] and [c, d] = [e', d'], 
then [a, b] + [c, d] = [a', b'] + [c', d'] . To see that this is so, from 
[a, b] = [a', b'] we have that ab' = ba' ; from [e, d] = [e', d'] we have 
that cd' de'. What we need is that these relations force the equality of 
[a, b] + [c, d] and [a', b'] + [e', d'] . From the definition of addition this 
boils down to showing that [ad + be, bd] = [a'd' + b'e', b'd'], or, in equiva­
lent terms, that (ad + bc)b'd' = bd(a'd' + b'c' ) . Using ab' = ba', ed' = de' 
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this becomes : (ad + bc)b'd' = adb'd' + bcb'd' = ab'dd' + bb'cd' = ba'dd' + 
bb'dc' = bd(a'd' + b'c' ) ,  which is the desired equality. 

Clearly [0, b] acts as a zero-element for this addition and [ - a, b] as the 
negative of [a, b]. It is a simple matter to verify that F is an abelian group 
under this addition. 

We now turn to the multiplication in F. Again motivated by our pre­
liminary heuristic discussion we define [a, b] [c, d] = [ac, bd] . As in the 
case of addition, since b #- 0, d #- 0, bd #- 0 and so [ac, bd] E F. A com­
putation, very much in the spirit of the one just carried out, proves that if 
[a, b] = [a', b'] and [c, d] = [c', d'] then [a, b] [c, d] = [a', b'] [c', d'] . One 
can now show that the nonzero elements of F (that is, all the elements 
[a, b] where a ,P. 0) form an abelian group under multiplication in which 
[d, d] acts as the unit element and where 

[c, d] - 1  = [d, c] (since c ,P. 0, [d, c] is in F) . 

It is a routine computation to see that the distributive law holds in F. 
F is thus a field. 

All that remains is to show that D can be imbedded in F. We shall 
exhibit an explicit isomorphism of D into F. Before doing so we first notice 
that for x #- 0, y #- 0 in D, [ax, x] = [ay,y] because (ax) y = x(ay) ; let us 
denote [ax, x] by [a, 1 ] .  Define ¢ :D -+ F by ¢(a) = [a, I] for every 
a E D. We leave it to the reader to verify that ¢ is an isomorphism of D 
into F, and that if D has a unit element I ,  then ¢ ( I )  is the unit element of F. 
The theorem is now proved in its entirety. 

F is usually called the field of quotients of D. In the special case in which 
D is the ring of integers, the F so constructed is, of course, the field of 
rational numbers. 

Problems 

I .  Prove that if [a, b] = [a', b'] and [c, d] = [c', d'] then [a, b] [c, d] = 

[a', b'] [c', d'] . 

2. Prove the distributive law in F. 
3. Prove that the mapping ¢ :D -+ F defined by ¢(a) = [a, I ]  is an 

isomorphism of D into F. 

4. Prove that if K is any field which contains D then K contains a subfield 
isomorphic to F. (In this sense F is the smallest field containing D.) 

*5. Let R be a commutative ring with unit element. A nonempty subset 
S of R is called a multiplicative system if 
1 .  0 ¢  s. 
2. s1 , s2 E S implies that s1s2 e S. 
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Let ..,( be the set of all ordered pairs (r, s) where r E R, s E S. In 
J( define (r, s) � (r', s') if there exists an element s" E S such that 

s" (rs' - sr') = 0. 

(a) Prove that this defines an equivalence relation on Jt. 
Let the equivalence class of (r, s) be denoted by [r, s] , and let Rs be 

the set of all the equivalence classes. In Rs define [r1, s1 ] + [r2 , s2] = 
[r1s2 + r2s 1 , s1s2] and [r1 , s1] [r2, s2] = [r1r2, s1s2] . 
(b) Prove that the addition and multiplication described above are 

well defined and that Rs forms a ring under these operations. 
(c) Can R be imbedded in R5? 
(d) Prove that the mapping ¢ :R --+ R$ defined by ¢ (a) = [as, s] is 

a homomorphism of R into Rs and find the kernel of ¢. 
(e) Prove that this kernel has no element of S in it. 
(f) Prove that every element of the form [s1 , s2] (where s1 , s2 E S) in 

Rs has an inverse in R5• 

6. Let D be an integral domain, a, b E  D. Suppose that a" = b" and 
a"' = b"' for two relatively prime positive integers m and n. Prove that 
a =  b.  

7. Let R be a ring, possibly noncommutative, in which xy = 0 implies 
x = 0 or y = 0. If a, b E R and a" = b" and a"' = b"' for two relatively 
prime positive integers m and n, prove that a = b. 

3.7 Euclidean R i ngs 

The class of rings we propose to study now is motivated by several existing 
examples-the ring of integers, the Gaussian integers (Section 3.8), and 
polynomial rings (Section 3.9) . The definition of this class is designed to 
incorporate in it certain outstanding characteristics of the three concrete 
examples listed above. 

D E F I N ITION An integral domain R is said to be a Euclidean ring if for 
every a #: 0 in R there is defined a nonnegative integer d(a) such that 

1 .  For all a, b E  R, both nonzero, d(a) :; d(ab) .  
2 .  For any a ,  b E R, both nonzero, there exist t, r E R such that a = tb + r 

where either r = 0 or d(r) < d(b) . 

We do not assign a value to d(O) . The integers serve as an example of a 
Euclidean ring, where d (a) = absolute value of a acts as the required 
function. In the next section we shall see that the Gaussian integers also 
form a Euclidean ring. Out of that observation, and the results developed 
in this part, we shall prove a classic theorem in number theory due to 
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Fermat, namely, that every prime number of the form 4n + 1 can be 
written as the sum of two squares. 

WP begin with 

T H '.£0REM 3.7.1 Let R be a Euclidean ring and let A be an ideal qf R. Then 
tlure exists an element a0 E A such that A consists exactly qf all a0x as x ranges over R. 

Proof. If A just consists of the element 0, put ag = 0 and the conclusion 
of the theorem holds. 

Thus we may assume that A ::F (0) ; hence there is an a ::F 0 in A. Pick 
an ag E  A such that d(ag) is minimal. (Since d takes on nonnegative integer 
values this is always possible.) 

Suppose that a E A. By the properties of Euclidean rings there exist 
t, r E R such that a = tag + r where r = 0 or d (r) < d (ao) .  Since 
ag E A and A is an ideal of R, tag is in A. Combined with a E A this results 
in a - ta0 E A ;  but r = a - ta0, whence r E A. Ifr ::F 0 then d(r) < d (ag) , 
giving us an element r in A whose d-value is smaller than that of a0, in 
contradiction to our choice of ag as the element in A of minimal d-value. 
Consequently r = 0 and a tao, which proves the theorem. 

We introduce the notation (a) = {xa I x E R} to represent the ideal of 
all multiples of a.  

D E FI N ITION An integral domain R with unit element is a principal ideal 
ring if every ideal A in R is of the form A = (a) for some a E R. 

Once we establish that a Euclidean ring has a unit element, in  virtue of 
Theorem 3.7. 1 ,  we shall know that a Euclidean ring is a principal ideal ring. 
The converse, however, is false ; there are principal ideal rings which are 
not Euclidean rings. [See the paper by T. Motzkin, Bulletin rif the American 
Mathematical Society, Vol. 55 ( 1949), pages 1 1 42-1 1 46, entitled "The 
Euclidean algorithm."] 

COROLLARY TO THEOREM 3.7.1 A Euclidean ring possesses a unit 
element. 

Proof. Let R be a Euclidean ring ; then R is certainly an ideal of R, so 
that by Theorem 3.7. 1 we may conclude that R = (Uo) for some Ug E R. 
Thus every element in R is a multiple of u0• Therefore, in particular, 
u0 = UgC for some c E R. If a E R then a = xu0 for some x E R, hence 
ac = (xUg)c = x(Ugc) = xu0 = a. Thus c is seen to be the required unit 
element. 

DEFI N IT ION If a ::F 0 and b are in a commutative ring R then a is said 
to divide b if there exists a c E R such that b = ac. We shall use the symbol 
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a I b to represent the fact that a divides b and a ,.f' b to mean that a does 
not divide b. 

The proof of the next remark is so simple and straightforward that we 
omit it. 

R EMAR K 1 .  .if a I b and b I c then a I c. 
2. .if a I b and a I c then a I ( b ± c) . 
3 . .if a I b then a I bxfor all x E R. 

D EF I N IT I O N  If  a, b E  R then d E  R is said to  be a greatest common divisor 
of a and b if 

1 .  d I a and d I b. 
2. Whenever c I a and c I b then c I d. 

We shall use the notation d = (a, b) to denote that d is a greatest common 
divisor of a and b. 

LEMMA 3.7.1 Let R be a Euclidean ring. Then any two elements a and b in 
R have a greatest common divisor d. Moreover d = A.a + Jl.b for some A., f.1. E R. 

Proof. Let A be the set of all elements ra + sb where r,  s range over R. 
We claim that A is an ideal of R. For suppose that x, y E A ;  therefore 
x = ria + sib, y = r2a + s2b, and so x ± y  = (ri ± r2)a  + (si ± s2) b  E A. 
Similarly, for any u e R, ux = uCrta + sib) = (uri )a  + (usi)b e A. 

Since A is an ideal of R, by Theorem 3. 7. 1 there exists an element d E  A 
such that every element in A is a mutiple of d. By dint of the fact that 
d E  A and that every element of A is of the form ra + sb, d = A.a + Jl.b 
for some A., f.1. E R. Now by the corollary to Theorem 3. 7. 1 ,  R has a unit 
element 1 ;  thus a = l a  + Ob E A, b = Oa + l b  E A. Being in A, they 
are both multiples of d, whence d I a and d I b. 

Suppose, finally, that c I a and c I b ;  then c I A.a and c I Jl.b so that c 
certainly divides A.a + Jl.b = d. Therefore d has all the requisite conditions 
for a greatest common divisor and the lemma is proved. 

D EF I N ITI O N  Let R be a commutative ring with unit element. An 
element a E R is a unit in R if there exists an element b E R such that ab = 1 .  

Do not confuse a unit with a unit element! A unit in a ring is an element 
whose inverse is also in the ring. 

LEMMA 3.7.2 Let R be an integral domain with unit element and suppose that 
for a, b E R both a I b and b I a are true. Then a = ub, where u is a unit in R. 
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Proof. Since a I b, b = xa for some x E R;  since b I a, a = yb for some 
y E R. Thus b = x(yb) = (xy)b ;  but these are elements of an integral 
domain, so that we can cancel the b and obtain xy = 1 ;  y is thus a unit in 
R and a = yb, proving the lemma. 

D E F I N ITI O N  Let R be a commutative ring with unit element. Two 
elements a and b in R are said to be associates if b = ua for some unit u in R. 

The relation of being associates is an equivalence relation. (Problem 1 
at the end of this section.) Note that in a Euclidean ring any two greatest 
common divisors of two given elements are associates (Problem 2) . 

Up to this point we have, as yet, not made use of condition 1 in the 
definition of a Euclidean ring, namely that d (a) :: d(ab) for b =f. 0. We 
now make use of it in the proof of 

L E M MA 3.7.3 Let R be a Euclidean ring and a, b E  R. lfb =f. 0 is not a unit 
in R, then d (a) < d(ab) . 

Proof. Consider the ideal A = (a) = {xa I x E R} of R. By condition 
1 for a Euclidean ring, d (a) :: d(xa) for x =f. 0 in R. Thus the d-value of 
a is the minimum for the d-value of any element in A. Now ab E A ;  if 
d(ab) = d(a) , by the proof used in establishing Theorem 3.7. 1 ,  since the 
d-value of ab is minimal in regard to A, every element in A is a multiple of 
ab. In particular, since a E A, a must be a multiple of ab ; whence a = abx 
for some x E R. Since all this is taking place in an integral domain we 
obtain bx = I .  In this way b is a unit in R, in contradiction to the fact that 
it was not a unit. The net result of this is that d(a) < d (ab) . 

D E F I N ITION In the Euclidean ring R a nonunit n: is said to be a prime 
element of R if whenever n: = ab, where a, b are in R, then one of a or b is a 
unit in R. 

A prime element is thus an element in R which cannot be factored in R 
in a nontrivial way. 

LEM MA 3.7.4 Let R be a Euclidean ring. Then every element in R is either a 
unit in R or can be written as the product of a finite number of prime elements of R. 

Proof. The proof is by induction on d (a) . 
If d(a) = d ( l )  then a is a unit in R (Problem 3) ,  and so in this case, the 

assertion of the lemma is correct. 
We assume that the lemma is true for all elements x in R such that 

d (x) < d (a) . On the basis of this assumption we aim to prove it for a. 
This would complete the induction and prove the lemma. 
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If a is a prime element of R there is nothing to prove. So suppose that 
a =  bc where neither b nor c is a unit in R. By Lemma 3.7.3, d (b) < d(bc) = 
d(a) and d(c) < d(bc) = d(a) . Thus by our induction hypothesis b and c 
can be written as a product of a finite number of prime elements of R ;  
b = 1t11t2 • • • n., c = 7t�tt2 • • • 1t� where the n's and n"s are prime elements 
of R. Consequently a = be = n1n2 • • · n.n�n2 · · · 1t� and in this way a 
has been factored as a product of a finite number of prime elements. This 
completes the proof. 

D E F I N ITION In the Euclidean ring R, a and b in R are said to be relatively 
prime if their greatest common divisor is a unit of R. 

Since any associate of a greatest common divisor is a greatest common 
divisor, and since I is an associate of any unit, if a and b are relatively 
prime we may assume that (a, b) = I .  

LEM MA 3. 7.5 Let R be a Euclidean ring. Suppose that for a, b, c e R, a I be 
but (a, b) = I .  Then a I c. 

Proof. As we have seen in Lemma 3.7 . 1 ,  the greatest common divisor 
of a and b can be realized in the form A.a + Jlb. Thus by our assumptions, 
A.a + Jlb = I .  Multiplying this relation by c we obtain A.ac + JlbC = c. 
Now a I A.ac, always, and a I JlbC since a I be by assumption ; therefore 
a I (A.ac + Jlbc) = c. This is, of course, the assertion of the lemma. 

We wish to show that prime elements in a Euclidean ring play the same 
role that prime numbers play in the integers. If 1t in R is a prime element 
of R and a e R, then either 1t I a or (n, a) = I ,  for, in particular, (n, a) 
is a divisor of 1t so it must be 1t or I (or any unit) . If (n, a) = I ,  one-half 
our assertion is true ; if (n, a) = n, since (n, a) I a we get 1t I a, and the 
other half of our assertion is true. 

LEM MA 3.7.6 If 1t is a prime element in the Euclidean ring R and 1t I ab 
where a, b E R then 1t divides at least one of a or b. 

Proof. Suppose that 1t does not divide a ;  then (n, a) 
Lemma 3.7.5 we are led to 1t I b. 

I .  Applying 

CORO LLARY If 1t is a prime element in the Euclidean ring R and 1t I a1a2 · · · a. 
then 1t divides at least one al> a2, • • • , a •. 

We carry the analogy between prime elements and prime numbers 
further and prove 
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TH EO R E M  3.7.2 (UNIQUE FACTORIZATION THEOREM) Let R be a Eu­
clidean ring and a :f:. 0 a nonunit in R. Suppose that a = n1n2 • • • nn = 
n!n; · · · n� where the n1 and nj are prime elements of R. Then n = m and each 
n1, I :: i :: n is an associate of some nj, I :: j :: m and conversely each n/. 
is an associate of some nq. 

Proof. . Look at the relation a =  n1n2 • • · nn = n!n; · · · n�. Butn1 l n1n2 • • · nn, 
hence n1 l n!n; · · · n�. By Lemma 3.7.6, n1 must divide some n; ; since n1 and 
n� are both prime elements of R and n1 I n; they must be associates and 
n; = u1nv where u1 is a unit in R. Thus n1n2 • • • nn = n!n; · · · n� = 
u1n1n2 · · · n; _ 1ni + I · · · n� ;  cancel off n1 and we are left with n2 • • · nn = 
u1n2 · · · n; 1ni + I · · · n�. Repeat the argument on this relation with n2• 
After n steps, the left side becomes I, the right side a product of a certain 
number of n' (the excess of m over n) . This would force n :: m since the 
n' are not units. Similarly, m :: n, so that n = m. In the process we have 
also showed that every n1 has some n; as an associate and conversely. 

Combining Lemma 3. 7.4 and Theorem 3. 7.2 we have that every nonzero 
element in a Euclidean ring R can be uniquely written (up to associates) as a product 
of prime elements or is a unit in R. 

We finish the section by determining all the maximal ideals in a Euclidean 
ring. 

In Theorem 3. 7. 1 we proved that any ideal A in the Euclidean ring R is of 
the form A = (a0) where (a0) = {xa0 I x E R}. We now ask : What con­
ditions imposed on a0 insure that A is a maximal ideal of R? For this 
question we have a simple, precise answer, namely 

LEM MA 3.7.7 The ideal A = (a0) is a maximal ideal of the Euclidean ring 
R if and only if a0 is a prime element of R. 

Proof. We first prove that if a0 is not a prime element, then A = (ao) 
is not a maximal ideal. For, suppose that a0 = be where b, c E R and 
neither b nor c is a unit. Let B = (b) ; then certainly ao e B so that A c B. 
We claim that A :f:. B and that B :f:. R. 

If B = R then I e B so that I = xb for some x e R, forcing b to be a 
unit in R, which it is not. On the other hand, if A = B then b e B = A 
whence b = xa0 for some x E R. Combined with a0 = be this results in 
ao = xca0, in consequence of which xc = I .  But this forces c to be a unit 
in R, again contradicting our assumption. Therefore B is neither A nor R 
and since A c B, A cannot be a maximal ideal of R. 

Conversely, suppose . that a0 is a prime element of R and that U is an 
ideal of R such that A = (a0) c U c R. By Theorem 3.7. 1 ,  U = (u0) .  
Since a0 E A c U = (Uo) , a0 = xu0 for some x E R. But a0 is  a prime 
element of R, from which it follows that either x or u0 is a unit in R. If Uo 
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is a unit in R then U = R (see Problem 5) . If, on the other hand, x is a 
unit in R, then x- 1 e R  and the relation ao = xu0 becomes Uo = x 1ao e A  
since A is an ideal of R. This implies that U c: A ;  together with A c: U 
we conclude that U = A. Therefore there is no ideal of R which fits 
strictly between A and R. This means that A is a maximal ideal of R. 

Problems 

1. In a commutative ring with unit element prove that the relation a is 
an associate of h is an equivalence relation. 

2. In a Euclidean ring prove that any two greatest common divisors of 
a and h are associates. 

3. Prove that a necessary and sufficient condition that the element a m 
the Euclidean ring be a unit is that d (a) = d ( l ) . 

4. Prove that in a Euclidean ring (a, h) can be found as follows : 

h qoa + ru where d (r1 ) < d(a) 

a = qlrl + r2 , where d(r2) < d(r1 ) 

rl = q2r2 + r3, where d (r3) < d(r2) 

r,. 1 = q,.r,. 
and r,. (a, h) . 

5. Prove that if an ideal U of a ring R contains a unit of R, then U = R. 
6. Prove that the units in a commutative ring with a unit element form 

an abelian group. 

7. Given two elements a, h in the Euclidean ring R their least common 
multiple c E R is an element in R such that a I c and h I c and such that 
whenever a I x and h I x for x E R then c I x. Prove that any two elements 
in the Euclidean ring R have a least common multiple in R. 

8. In Problem 7, if the least common multiple of a and h is denoted by 
[a, h] , prove that [a, h] ahf(a, h) .  

3.8 A Particular Euclidean Ring 

An abstraction in mathematics gains in substance and importance when, 
particularized to a specific example, it sheds new light on this example. 
We are about to particularize the notion of a Euclidean ring to a concrete 
ring, the ring of Gaussian integers. Applying the general results obtained 
about Euclidean rings to the Gaussian integers we shall obtain a highly 
nontrivial theorem about prime numbers due to Fermat. 



1 50  Ring Theory Ch. 3 

Let j[i] denote the set of all complex numbers of the form a + hi where 
a and h are integers. Under the usual addition and multiplication of com­
plex numbers j[i] forms an integral domain called the domain of Gaussian 
integers. 

Our first objective is to exhibit J[i] as a Euclidean ring. In order to do 
this we must first introduce a function d(x) defined for every nonzero 
element in j[i] which satisfies 

I .  d (x) is a nonnegative integer for every x t= 0 E j[i] . 
2. d(x) :: d(xy) for everyy t= O in j[i] . 
3. Given u, v E j[i] there exist t, r E j[i] such that v = tu + T where 

r = 0 or d(r) < d(u) . 

Our candidate for this function d is the following : if x = a +  h i E J [i], 
then d(x) = a2 + h 2

• The d (x) so defined certainly satisfies property I ;  
in fact, if x t= 0 E j[i] then d(x) � I .  As is well known, for any two com­
plex numbers (not necessarily in j[i]) x, y, d(xy) = d (x)d ( y) ; thus if x 
and y are in addition in J[i] and y t= 0, then since d (y) � I ,  d(x) = 
d (x) l :: d(x)d(y) = d(xy) , showing that condition 2 is satisfied. All our 
effort now will be to show that condition 3 also holds for this function d in 
J[i] . This is done in the proof of 

T H E O R E M  3.8.1 j[i] is a Euclidean ring. 

Proof. As was remarked in the discussion above, to prove Theorem 3.8. 1 
we merely must show that, given x,y E J[i] there exists t, r E j[z] such 
thaty = tx + T where r = 0 or d(T) < d (x) . 

We first establish this for a very special case, namely, wherey is arbitrary 
in j[i] but where x is an (ordinary) positive integer n. Suppose that 
y = a + hi; by the division algorithm for the ring of integers we can find 
integers u, v such that a = un + u1 and h = vn + v1 where u1 and v1 are 
integers satisfying lu1 1 :s; !n and lv1 1 :: !n. Let t =  u + vi and r = u1 + v1i; 
then y = a + hi = un + u1 + (vn + v1 ) i  = (u + vi)n + u1 + v1i = 
tn + r. Since d(r) = d (u1  + v1 i) = u 12 + v12 :: n2f4: + n2f4 < n2 = d(n) , 
we see that in this special case we have shown that y = tn + r with r = 0 
or d (r) < d (n) . 

We now go to the general case ; let x i= 0 and y be arbitrary elements 
in j[i] . Thus xx is a positive integer n where x is the complex conjugate of 
x. Applying the result of the paragraph above to the elementsyx and n we 
see that there are elements t, r E j[i] such that yx = tn + r with r = 0 
or d (r )  < d(n) . Putting into this relation n = xx we obtain d(yx - txx) < 
d(n) = d(xx) ; applying to this the fact that d( yx - txx) = d(y - tx)d(x) 
and d(xx) = d(x)d (x) we obtain that d (y - tx)d(x) < d (x)d(x). Since 
x t= 0, d (x) is a positive integer, so this inequality simplifies to d(y - tx) < 
d(x) . We represent y = tx + T0, where T0 = y - tx ; thus t and r0 are in 
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j[i] and as we saw above, r0 = 0 or d (r0) = d(y - tx) < d(x) . This 
proves the theorem. 

Since J[i] has been proved to be a Euclidean ring, we are free to use the 
results established about this class of rings in the previous section to the 
Euclidean ring we have at hand, J[i] . 

LEMMA 3.8.1 Let p be a prime integer and suppose that for some integer c 
relatively prime to p we can find integers x and y such that x2 + y2 = cp. Then 
p can be written as the sum rif squares rif two integers, that is, there exist integers 
a and b such that p = a2 + b2• 

Proof. The ring of integers is a sub ring of j[i] . Suppose that the integer 
p is also a prime element of j[i] . Since cp = x2 + y2 = (x + yi) (x - yi), 
by Lemma 3. 7.6, p I  (x + yi) or p I  (x - yi) in j[i] . But if p I  (x + yi) then 
x + yi = p(u + vi) which would say that x = pu and y = pv so that p 
also would divide x' - yi. But then p2 I (x + yi) (x - yi) = cp from which we 
would conclude that p I c contrary to assumption. Similarly if p I  (x - yi) . 
Thus p is not a prime element in j[i] ! In consequence of this, 

p = (a + hi) (g + di) 

where a + hi and g + di are in j[i] and where neither a + hi nor g + di 
is a unit in j[i] . But this means that neither a2 + b2 = 1 nor g2 + d2 = 1 .  
(See Problem 2.) From p = (a + bi) (g + di) it follows easily that p = 
(a - bi)(g - di) .  Thus 

p2 = (a + bi) (g + di) (a - hi) (g - di) = (a2 + b2) (g2 + d2) .  

Therefore (a2 + b2) I P2 so a2 + b2 = 1 ,  p or p2 ; a2 + b2 #- 1 since 
a + hi is not a unit, in j[i] ; a2 + b2 #- p2, otherwise g2 + d2 = 1 ,  con­
trary to the fact that g + di is not a unit in j[i] . Thus the only feasibility 
left is that a2 + b2 = p and the lemma is thereby established. 

The odd prime numbers divide into two classes, those which have a 
remainder of 1 on division by 4 and those which have a remainder of 3 on 
division by 4. We aim to show that every prime number of the first kind 
can be written as the sum of two squares, whereas no prime in the second 
class can be so represented. 

LEM MA 3.8.2 if p is a prime number rif the form 4n + 1 ,  then we can solve 
the congruence x2 = - 1  mod p. 

Proof. Let x = 1 · 2 · 3 · · · (P - 1 ){2 . Since p - 1 = 4n, in this prod­
uct for x there are an even number of terms, in consequence of which 

X =  ( - 1 ) ( - 2) ( - 3) ' "  (  )} 
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But p - k = -k mod p, so that 

x2 =  1}- 1 ) ( - 2) · · · (  1)) 
- 1 . 2 . . .  � t_ . . .  (p - 1 )  

2 2 
_ (p - 1 ) ! = - 1  mod p. 

We are using here Wilson's theorem, proved earlier, namely that if p is 
a prime number (p - 1 ) !  = - l (p) . 

To illustrate this result, if p = 1 3, 

x = 1 · 2 · 3 · 4 · 5 · 6 = 720 = 5 mod 1 3  and 52 = - 1  mod 1 3. 

T H E O R E M  3.8.2 (FERMAT) If p is a prime number £if the form 4n + 1 ,  
then p = a2 + b2 for some integers a, b. 

Proof. By Lemma 3.8.2 there exists an x such that x2 = - 1  mod p. 
The x can be chosen so that 0 ::$; x ::$; p - 1 since we only need to use the 
remainder of x on division by p. We can restrict the size of x even further, 
namely to satisfy lxl ::$; pf2. For if x > pf2, then y = p - x satisfies 
y2 = - I  mod p but IYI ::$; pf2. Thus we may assume that we have an 
integer x such that txl ::$; P/2 and x2 + I is a multiple of p, say cp. Now 
cp = x2 + 1 ::$; p2f4 + 1 < p2, hence c < p and so p ,{' c. Invoking 
Lemma 3.8. 1 we obtain that p = a2 + b2 for some integers a and b, 
proving the theorem. 

Problems 

1 .  Find all the units in J[i] . 
2. If a + bi is not a unit of J[i] prove that a2 + b2 > 1 .  
3 .  Find the greatest common divisor in j[i] of 

(a) 3 + 4i and 4 - 3i. (b) I I  + 7i and 18  - i. 
4. Prove that if p is a prime number of the form 4n + 3, then there is 

no x such that x2 = - 1 mod p. 
5. Prove that no prime of the form 4n + 3 can be written as a2 + b2  

where a and b are integers. 

6. Prove that there is an infinite number of primes of the form 4n + 3. 
* 7. Prove there exists an infinite number of primes of the form 4n + 1 .  
*8. Determine all the prime elements in j[i] . 
*9. Determine all positive integers which can be written as a sum of two 

squares (of integers) .  
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3.9 Polynomial Ri ngs 

Very early in our mathematical education-in fact in junior high school or 
early in high school itself-we are introduced to polynomials. For a seemingly 
endless amount of time we are drilled, to the point of utter boredom, in 
factoring them, multiplying them, dividing them, simplifying them. Facility 
in factoring a quadratic becomes confused with genuine mathematical 
talent. 

Later, at the beginning college level, polynomials make their appearance 
in a somewhat different setting. Now they are functions, taking on values, 
and we become concerned with their continuity, their derivatives, their 
integrals, their maxima and minima. 

We too shall be interested in polynomials but from neither of the above 
viewpoints. To us polynomials will simply be elements of a certain ring 
and we shall be concerned with algebraic properties of this ring. Our 
primary interest in them will be that they give us a Euclidean ring whose 
properties will be decisive in discussing fields and extensions of fields. 

Let F be a field. By the ring of polynomials in the indeterminate, x, written 
as F [x], we mean the set of all symbols a0 + a1x + · · · + a/, where n 
can be any nonnegative integer and where the coefficients a0 a2, • • •  , an 
are all in F. In order to make a ring out of F[x] we must be able to recognize 
when two elements in it are equal, we must be able to add and multiply 
elements of F [x] so that the axioms defining a ring hold true for F[x] . 
This will be our initial goal. 

We could avoid the phrase "the set of all symbols" used above by intro­
ducing an appropriate apparatus of sequences but it seems more desirable 
to follow a path which is somewhat familiar to most readers. 

D E F I N ITION If p (x) = a0 + a1x + · · · + a�"' and q(x) = b0 + b1x + 
· · · + bnxn are in F [x] , then p(x) = q (x) if and only if for every integer 
i ;: 0, a 1  = b1• 

Thus two polynomials are declared to be equal if and only if their corre­
sponding coefficients are equal. 

D E F I N IT IO N  If p(x) = a0 + a1x + · · · + a,.x"' and q(x) = b0 + b1x + 
· · · + bnxn are both in F [x], then p(x) + q(x) = c0 + c1x + · · · + c,x' 
where for each i, c1 = a1 + b1• 

In other words, add two polynomials by adding their coefficients and 
collecting terms. To add 1 + x and 3 - 2x + x2 we consider 1 + x as 
1 + x + Ox2 and add, according to the recipe given in the definition, to 
obtain as their sum 4 - x + x2• 
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The most complicated item, and the only one left for us to define for 
F[x] , is the multiplication. 

D E FI N ITION If p(x) = a0 + a1x + · · · + amxm and q(x) = b0 + b1x + 
· · · + bnx", then p(x)q(x) = c0 + c1x + · · · + ckxk where c, = a,b0 + 
a1_1b1 + a1_2b2 + · · · + a0b, . 

This definition says nothing more than : multiply the two polynomials 
by multiplying out the symbols formally, use the relation :fxP = xz+P, 
and collect terms. Let us illustrate the definition with an example : 

p(x) = 1 + x - x2, 

Here a0 = 1 ,  a1 = 1 ,  a2 = - 1 , a3 = a4 = · · · = 0, and b0 = 2, b1 = 0, 
h2 = 1 ,  b3 = 1, b4 = b5 = · · · = 0. Thus 

Co = aob0 = 1 .2 = 2, 
Cl = albO + aob1 = 1 .2 + 1 .0 = 2, 
c2 = a2b0 + a1h1 + a0b2 = ( - 1 ) (2) + 1 .0 + 1 . 1  = - 1, 
c3 = a3b0 + a2h1 + a1h2 + a0b3 = (0) (2) + ( - 1 ) (0) + 1 . 1  + 1 . 1  = 2, 

c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4 
= (0) (2) + (0) (0) + ( - 1 ) ( 1 )  + ( 1 ) ( 1 )  + 1 (0) = 0, 

c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5 
= (0) (2) + (0) (0) + (0) ( 1 )  + ( - 1 ) ( 1 )  + ( 1 ) (0) + (0) (0) = - 1 , 

c6 = a6b0 + a5b1 + a4b2 + a3b3 + a2b4 + a1b5 + a0b6 
= (0) (2) + (0) (0) + (0) ( 1 )  + (0) ( 1 )  + ( - 1 ) (0) + ( 1 ) (0) + ( 1 ) (0) = 0, 

c1 = c8 = · · · = 0. 

Therefore according to our definition, 

( 1  + x - x2) (2 + x2 + x3) = c0 + c1x + · · · = 2 + 2x - x2 + 2x3 - x5• 

If you multiply these together high-school style you will see that you get 
the same answer. Our definition of product is the one the reader has always 
known. 

Without further ado we assert that F[x] is a ring with these operations, 
its multiplication is commutative, and it has a unit element. We leave the 
verification of the ring axioms to the reader. 

D E F I N ITI O N  If J (x) = ao + a1x + · · · + anx" t= 0 and an t= 0 then 
the degree ofj (x) , written as degf (x) , is n. 

That is, the degree off (x) is the largest integer i for which the ith co­
efficient off (x) is not 0, We do not define the degree of the zero poly­
nomial. We say a polynomial is a constant if its degree is 0. The degree 
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function defined on the nonzero elements of F[x] will provide us with the 
function d(x) needed in order that F[x] be a Euclidean ring. 

LEMMA 3.9.1 ljf (x), g (x) are two nonzero elements of F[x], then 

deg (f (x) g(x) ) = degf (x) + deg g(x) . 

Proof. Suppose that f(x) = a0 + a1x + · · · + amx"' and g(x) = b0 + 
b1x + · · · + bn>!' and that am #- 0 and bn #- 0. Therefore deg f (x) = m 
and deg g(x) = n. By definition, f (x) g(x) = c0 + c1x + · · · + ckxk where 
c, = a,b0 + a, _ 1b1 + · · · + a1h, _ 1  + aoh,. We claim that cm + n = 
ambn #- 0 and c1 = 0 for i > m + n. That cm + n  = ambn can be seen at a 
glance by its definition. What about c1 for i > m + n? c1 is the sum of 
terms of the form ai1-j ; since i = } + (i - j) > m + n then either j > m 
or (i - j) > n. But then one of ai or b1_i is 0, so that aibi -j = 0 ;  since c1 
is the sum of a bunch of zeros it itself is 0, and our claim has been 
established. Thus the highest nonzero coefficient ofj (x) g(x) is cm + n• whence 
deg f (x) g(x) = m + n = deg f (x) + deg g(x) . 

CORO LLARY If f (x) , g(x) are nonzero elements in F[x] then deg f (x) :: 
deg f (x) g (x) . 

Proof. Since deg f (x)g(x) = degf(x) + deg g(x) , and since deg g(x) � 
0, this result is immediate from the lemma. 

CORO LLARY F[x] is an integral domain. 

We leave the proof of this corollary to the reader. 
Since F[x] is an integral domain, in light of Theorem 3.6. 1 we can 

construct for it its field of quotients. This field merely consists of all quotients 
of polynomials and is called the field of rational functions in x over F. 

The function deg f (x) defined for all f (x) #- 0 in F[x] satisfies 

1 .  deg f (x) is a nonnegative integer. 
2. deg f (x) :: deg f (x) g(x) for all g(x) #- 0 in F[ x] . 

In order for F[x] to be a Euclidean ring with the degree function acting as 
the d-function of a Euclidean ring we still need that given f (x) , g(x) E F[x], 
there exist t (x) , r (x) in F[x] such thatf (x) = t (x) g(x) + r(x) where either 
r (x) = 0 or deg r (x) < deg g(x) . This is provided us by 

LEM MA 3.9.2 (THE DIVISION ALGORITHM) Given two polynomials f (x) 
and g(x) #- 0 in F[x] , then there exist two polynomials t (x) and r(x) in F[x] such 
thatf (x) = t (x)g(x) + r(x) where r (x) = 0 or deg r(x) < deg g(x) . 

Proof. The proof is actually nothing more than the "long-division" 
process we all used in school to divide one polynomial by another. 
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If the degree off (x) is smaller than that of g(x) there is nothing to prove, 
for merely put t (x) = 0, r(x) = f (x), and we certainly have that f (x) = 
Og(x) + f (x) where deg f (x) < deg g(x) or f (x) = 0. 

So we may assume thatj (x) = tzo + a1x + · · ·  + a,.xm and g(x) = b0 + 
b1x + · · · + b,.x" where am -:1 0, b11 -:1 0 and m ;;: n. 

Let j1 (x) = f (x) - (amfb,.)?-"g(x) ; thus degj1 (x) :5 m - I ,  so by 
induction on the degree ofj (x) we may assume that ft (x) = t1 (x)g(x) + 
r (x) where r (x) = 0 ordeg r(x) < deg g(x) . But thenf (x) - (amfb,)?-"g(x) = 
t1 (x)g(x) + r (x} , from which, by transposing, we arrive at f(x) = 

( (amfb,)?-" + t1 (x) }g(x) + r(x). If we put t (x) = (amfb11)?-" + t1 (x) 
we do indeed have that f (x) = t (x)g(x) + r (x) where t (x) , r(x) e F[x] 
and where r(x) = 0 or deg r (x) < deg g(x) . This proves the lemma. 

This last lemma fills the gap needed to exhibit F[x] as a Euclidean ring 
and we now have the right to say 

TH EO R E M  3.9.1 F[x] is a Euclidean ring. 

All the results of Section 3. 7 now carry over and we list these, for our 
particular case, as the following lemmas. It could be very instructive for 
the reader to try to prove these directly, adapting the arguments used in 
Section 3. 7 for our particular ring F[x] and its Euclidean function, the 
degree. 

LEM MA 3.9.3 F[x] is a principal ideal ring. 

L E M MA 3.9.4 Given two polynomials f (x), g(x) in F[x] they have a greatest 
common divisor d(x) which can be realized as d(x) = A.(x) f(x) + JI(x)g(x). 

What corresponds to a prime element? 

D E FI N ITION A polynomial p(x) in F[x] is said to be irreducible over F if 
whenever p(x) = a(x)b (x) with a(x) , b (x) e F[x], then one of a(x) or b(x) 
has degree 0 (i.e., is a constant) . 

Irreducibility depends on the field ; for instance the polynomial x2 + 
is irreducible over the real field but not over the complex field, for there 
x2 + I = (x + i) (x - i) where i2 = - I .  

LEM MA 3.9.5 Any polynomial in F[x] can be written in a unique manner as a 
product if irreducible polynomials in F [ x]. 

LEM MA 3.9.6 The ideal A = (p(x)) in F[x] is a maximal ideal if and only 
if p(x) is irreducible over F. 
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In Chapter 5 we shall return to take a much closer look at this field 
F[x]J(p(x) ) ,  but for now we should like to compute an example. 

Let F be the field of rational numbers and consider the polynomial 
p(x) = x3 - 2 in F[x] . As is easily verified, it is irreducible over F, whence 
F[x]f(x3 - 2) is a field. What do its elements look like? Let A = (x3 - 2), 
the ideal in F[x] generated by x3 - 2. 

Any element in F[x]J(x3 - 2) is a coset of the form f (x) + A  of the 
ideal A with f (x) in F[x] . Now, given any polynomial f (x) E F[x], by 
the division algorithm, f (x) = t (x) (x3 - 2) + r(x), where r (x) = 0 or 
deg r (x) < deg (x3 - 2) = 3. Thus r (x) = a0 + a1x + a2x2 where a0, a1 , 
a2 are in F; consequently f (x) + A  = a0 + a1x + a2x2 + t (x) (x3 - 2) + 
A = a0 + a1x + a2x2 + A  since t (x) (x3 - 2) is in A, hence by the addi­
tion and multiplication in F[x]J(x3 - 2),  f (x) + A = (a0 + A) + 
a1 (x + A) + a2 (x + A) 2 . If we put t = x + A, then every element in 
F[x]J(x3 - 2) is of the form a0 + a1t + a2t2 with ao, a1, a2 in F. What about 
t? Since t3 - 2 = (x + A) 3 - 2 = x3 - 2 + A = A = 0 (since A is 
the zero element of F[x]J(x3 - 2)) we see that t3 = 2. 

Also, if a0 + a1 t + a2t2 = b0 + b1 t + b2t2, then (a0 - b0) + (a1 - b1)t + 
(a2 - b2) t2 = 0, whence (a0 - b0) + (a1 - h1)x + (a2 - b2)x2 is in 
A = (x3 - 2).  How can this be, since every element in A has degree at 
least 3? Only if a0 - b0 + (a1 - b1 )x + (a2 - b2)x2 = 0, that is, only 
if a0 = b0, a1 = b1, a2 = b2 . Thus every element in F[x]J(x3 - 2) has 
a unique representation as a0 + a1 t  + a2t2 where a0, a10  a2 E F. By Lemma 
3.9.6, F[x]J (x3 - 2) is a field. It would be instructive to see this directly ; 
all that it entails is proving that if a0 + a1 t + a2t2 -:/: 0 then it has an 
inverse of the form rx + Pt + yt2. Hence we must solve for rx, p, y in the 
relation (a0 + a1 t + a2t2) (rx + pt + yt2) = 1 ,  where not all of ao a1, a2 
are 0. Multiplying the relation out and using t 3 = 2 we obtain 
(a0rx + 2a2P + 2a1 y) + (a1rx  + a0P + 2a2y) t + (a2rx + a1P  + a0y) t2 = 1 ;  
thus 

a0rx + 2a2P + 2a1 y = 1 ,  

a1 rx + a0p + 2a2y = 0, 

a2rx + alp + aoY = 0. 

We can try to solve these three equations in the three unknowns rx, p, y. 
When we do so we find that a solution exists if and only if 

a03 + 2a1 3 + 4a/ - 6a0a1a2 # 0. 

Therefore the problem of proving directly that F[x]J(x3 - 2) is a field 
boils down to proving that the only solution in rational numbers of 

( 1 )  
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is the solution llo = a1 = a2 = 0. We now proceed to show this. If a 
solution exists in rationals, by clearing of denominators we can show that 
a solution exists where a0, a1,  a2 are integers. Thus we may assume that 
a0, a1 ,  a2 are integers satisfying ( 1 ) .  We now assert that we may assume 
that a0, a1 , a2 have no common divisor other than 1 ,  for if a0 = b0d, 
a1 = b1d, and a2 = b2d, where d is their greatest common divisor, then 
substituting in ( 1 )  we obtain d3(b03 + 2b13 + 4b/) = d3 (6b0b1b2) ,  and so 
b03 + 2h13 + 4b/ = 6b0b1b2 • The problem has thus been reduced to 
proving that ( l )  has no solutions in integers which are relatively prime. 
But then ( 1) implies that a0 3 is even, so that a0 is even ; substituting a0 = 2a0 
in ( 1 )  gives us 4a03 + a1 3 + 2a/ = 6a0a1a2 • Thus a/, and so, a1 is even ; 
a1 = 2a1 . Substituting in ( 1 )  we obtain 2a03 + 4a13 + a/ = 6a0a1a2 • 
Thus a/, and so a2, is even ! But then /lo, at > a2 have 2 as a common 
factor ! This contradicts that they are relatively prime, and we have proved 
that the equation a03 + 2a13 + 4a/ = 6a0a1a2 has no rational solution 
other than a0 = a1 = a2 = 0. Therefore we can solve for a, p, y and 
F[x]f(x3 - 2) is seen, directly, to be a field. 

Problems 

1 .  Find the greatest common divisor of the following polynomials over 
F, the field of rational numbers : 
(a) x3 - 6x2 + x + 4 and x5 - 6x + 1 .  
(b) x2 + 1 and x6 + x3 + x + 1 .  

2 .  Prove that 
(a) x2 + x + I is irreducible over F, the field of integers mod 2. 
(b) x2 + 1 is irreducible over the integers mod 7. 
(c) x3 - 9 is irreducible over the integers mod 3 1 .  
(d) x3 - 9 is reducible over the integers mod l l .  

3. Let F, K be two fields F c: K and suppose f (x) , g(x) E F[x] are re­
latively prime in F[x] . Prove that they are relatively prime in K[x] . 

4. (a) Prove that x2 + I is irreducible over the field F of integers mod I I  
and prove directly that F[x] f(x2 + 1 )  is a field having 12 1  elements. 

(b) Prove that x2 + x + 4 is irreducible over F, the field of integers 
mod I I  and prove directly that F[x]f(x2 + x + 4) is a field 
having 12 1  elements. 

* (c) Prove that the fields of part (a) and part (b) are isomorphic. 
5. Let F be the field of real numbers. Prove that F[ x] / (x2 + 1 )  is a field 

isomorphic to the field of complex numbers. 
*6. Define the derivativef'(x) of the polynomial 

f (x) = a0 + a1x + · · · + anx" 

as j' (x) = a1 + 2a2x + 3a3x2 + · · · + nanx" - 1 • 
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Prove that iff (x) e F[x], where F is the field of rational numbers, then 
j (x) is divisible by the square of a polynomial if and only iff (x) and 
f' (x) have a greatest common divisor d (x) of positive degree. 

7. Iff (x) is in F[x], where F is the field of integers mod p, p a prime, 
and f (x) is irreducible over F of degree n prove that F[x]J(f (x) ) is a 
field with p" elements. 

3.1 0 Polynomials over the Rational Field 

We specialize the general discussion to that of polynomials whose co­
efficients are rational numbers. Most of the time the coefficients will 
actually be integers. For such polynomials we shall be concerned with their 
irreducibility. 

D E F I N ITION The polynomial f (x) = a0 + a1x + · · · + a.x", where the 
a0, a1, a2, . . .  , a. are integers is said to be primitive if the greatest common 
divisor of a0, a1,  . . •  , an is 1 .  

LEM MA 3.1 0.1 If f  (x) and g(x) are primitive polynomials, then f (x) g(x) 
is a primitive polynomial. 

Proof. Let f (x) = a0 + a1x + · · ·  + a.x" and g(x) = b0 + b1x + · · ·  + 
bmxm. Suppose that the lemma was false ; then all the coefficients of 

f (x) g(x) would be divisible by some integer larger than I ,  hence by some 
prime number p. Since f (x) is primitive, p does not divide some coefficient 
a;. Let ai be the first coefficient off (x) which p does not divide. Similarly 
let bk be the first coefficient of g(x) which p does not divide. In f (x) g(x) 
the coefficient of xi+t, ci +k' is 

ci+k = aik + (ai + 1bk_ 1  + ai+2bk _2 + · · · + ai+kb0) 

+ (aj-1bk + l + aj-2bk +2 + . . .  + aobj+k) .  ( 1 )  

Now by our choice of bk, P I bk_ 1 ,  bk_ 2, . . .  so that p I  (ai + 1 bk_ 1  + ai+2bk-2 + 
· · · + ai+kb0) .  Similarly, by our choice of ai, p I  ai _ 1 ,  ai _2, . . .  so that 

P l (ai _ 1bk + 1 + ai_ 2bk+ Z  + · · · + a0bk+) · By assumption, p I  ci +k' Thus 
by ( I ) , p I a ibk, which is nonsense since p ,j' a i and p ,j' bk. This proves 
the lemma. 

D E FI N ITION The content of the polynomial f (x) = a0 + a1x + · · · + 
a.x", where the a's are integers, is the greatest common divisor of the 
integers a0, a1, • • •  , a •. 

Clearly, given any polynomial p(x) with integer coefficients it can be 
written as p(x) = dq(x) where d is the content of p(x) and where q(x) is a 
primitive polynomial. 
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TH EO R E M  3.1 0.1 (GAuss' LEMMA) lf the primitive polynomial f (x) can 
be factored as the product of two polynomials having rational coefcients, it can be 
factored as the product of two polynomials having integer coefcients. 

Proof. Suppose that f (x) = u(x)v(x) where u(x) and v(x) have rational 
coefficients. By clearing of denominators and taking out common factors 
we can then write f (x) = (ajb) ).(x)Jl(x) where a and b are integers and 
where both ).(x) and Jl(x) have integer coefficients and are primitive. 
Thus bj (x) = a).(x)Jl (x) . The content of the left-hand side is b, since 

f (x) is primitive ; since both A(x) and Jl(x) are primitive, by Lemma 3. 10. 1  
).(x)Jl(x) is primitive, so that the content of the right-hand side is a. There-
fore a = b, (a/b) = I ,  and f (x) = ).(x)Jl(x) where A(x) and Jl(x) have 
integer coefficients. This is the assertion of the theorem. 

D E FI N IT I O N  A polynomial is said to be integer monic if all its coefficients 
are integers and its highest coefficient is I .  

Thus an integer monic polynomial is merely one of the form x!' + 
a1x!'- 1 

+ · · · + an where the a's are integers. Clearly an integer monic 
polynomial is primitive. 

COROLLARY lf an integer monic polynomial factors as the product of two non­
constant polynomials having rational coefcients then it factors as the product of two 
integer monic polynomials. 

We leave the proof of the corollary as an exercise for the reader. 
The question of deciding whether a given polynomial is irreducible or not 

can be a difficult and laborious one. Few criteria exist which declare that a 
given polynomial is or is not irreducible. One of these few is the following 
result : 

TH EO R E M  3.1 0.2 (THE EISENSTEIN CRITERION) Let f (x) = a0 + a1x + 
a2x2 + · · · + anx!' be a polynomial with integer coefcients. Suppose that for 
some prime number p, p .{' an, p I a1 ,  p I a2, • • • , p I a0, P2 .( a0• Then f (x) is 
irreducible over the rationals. 

Proof. Without loss of generality we may assume that] (x) is primitive, 
for taking out the greatest common factor of its coefficients does not disturb 
the hypotheses, since p .( an. Iff (x) factors as a product of two rational 
polynomials, by Gauss' lemma it factors as the product of two polynomials 
having integer coefficients. Thus if we assume that f (x) is reducible, then 

f (x) = (b0 + b1x + · · · + b,x') (c0 + c1x + · · · + c_x'),  

where the b's and c's are integers and where r > 0 and s > 0 .  Reading off 



Sec. 3.1 1 Polynomial Rings over Commutative Rings 

the coefficients we first get a0 = b0c0• Since p I  a0, p must divide one of 
b0 or c0• Since p2 .{' a0, p cannot divide both b0 and c0 • Suppose that p I  b0, 
p .{' c0• Not all the coefficients b0, • • • , b, can be divisible by p ;  otherwise 
all the coefficients off (x) would be divisible by p, which is manifestly false 
since p .{' an. Let bk be the first b not divisible by p, k � r < n. Thus 
p I  bk 1 and the earlier b's. But ak = bkco + bk 1c1 + bk 2c2 + · · · + b0ck, 
and p I  ak, p I  bk 1 , bk 2, • • •  , b0, so that p I  bkc0• However, p .{' c0, p .{' bk, 
which conficts with p I bkc0• This contradiction proves that we could not 
have factoredj (x) and sof (x) is indeed irreducible. 

Problems 

1 .  Let D be a Euclidean ring, F its field of quotients. Prove the Gauss 
Lemma for polynomials with coefficients in D factored as products of 
polynomials with coefficients in F. 

2. If p is a prime number, prove that the polynomial x" - p is irreducible 
over the rationals. 

3. Prove that the polynomial 1 + x + · · · + xp- I, where p is a prime 
number, is irreducible over the field of rational numbers. (Hint : Con­
sider the polynomial 1 + (x + 1 )  + (x + 1 )  2 + · · · + (x + l )p- 1 , and 
use the Eisenstein criterion.) 

4. If m and n are relatively prime integers and if 

(x - ;} (a0 + a1x + . .  · + a,x') , 

where the a's are integers, prove that m I a0 and n I a,. 

5. If a is rational and x - a divides an integer monic polynomial, prove 
that a must be an integer. 

3.1 1 Polynomial Rings over Commutative Rings 

In defining the polynomial ring in one variable over a field F, no essential 
use was made of the fact that F was a field ; all that was used was that F was 
a commutative ring. The field nature of F only made itself felt in proving 
that F[x] was a Euclidean ring. 

Thus we can imitate what we did with fields for more general rings. 
While some properties may be lost, such as "Euclideanism," we shall see 
that enough remain to lead us to interesting results. The subject could have 
been developed in this generality from the outset, and we could have 
obtained the particular results about F[x] by specializing the ring to be a 
field. However, we felt that it would be healthier to go from the concrete 
to the abstract rather than from the abstract to the concrete. The price we 
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pay for this is repetition, but even that serves a purpose, namely, that of 
consolidating the ideas. Because of the experience gained in treating 
polynomials over fields, we can afford to be a little sketchier in the proofs here. 

Let R be a commutative ring with unit element. By the polynomial ring 
in x over R, R[x], we shall mean the set of formal symbols ao + a1x + · · · + 
a,.,x"', where a0, a1, • • • , a.., are in R, and where equality, addition, and 
multiplication are defined exactly as they were in Section 3.9. As in that 
section, R[x] is a commutative ring with unit element. 

We now define the ring qf po[ynomials in the n-variables x1, • • •  , xn over R, 
R[x1, • • •  , xn] , as follows : Let R1 = R[xtJ, R2 = R1[x2] ,  the polynomial 
ring in x2 over R1, • • . , Rn = Rn _ 1 [xn]· Rn is called the ring of polynomials 
in xv . . .  , xn over R. Its elements are of the form }2a11;, . . . 1.x1 11x211 • • • xn'", 
where equality and addition are defined coefficientwise and where multipli­
cation is defined by use of the distributive law and the rule of exponents 
(x1 11x211 • • • x,,'•) (x/ •x/1 • • • x/") = x111 + llx2 11 + h · · • x/•+ in .  Of particular 
importance is the case in which R = F is a field;  here we obtain the ring 
of polynomials in n-variables over a field. 

Of interest to us will be the influence of the structure of R on that of 
R[x1 ,  • • • , xn] . The first result in this direction is 

LEM MA 3.1 1 .1 .if R is an integral domain, then so is R[x] . 

Proof. For 0 -=F f (x) = a0 + a1x + · · · + amx"', where am -=F 0, in R[x] , 
we define the degree off (x) to be m; thus deg f (x) is the index of the highest 
nonzero coefficient ofj(x) . If R is an integral domain we leave it as an 
exercise to prove that deg (f (x) g(x) ) degf (x) + deg g(x). But then, 
for f (x) -=F 0, g(x) -=F 0, it is impossible to have f (x) g(x) = 0. That is, 
R[x] is an integral domain. 

Making successive use of the lemma immediately yields the 

COROLLARY lJ R is an integral domain, then so is R[x1 , • • •  , xn] . 

In particular, when F is a field, F[xp . • •  , xnJ must be an integral domain. 
As such, we can construct its field of quotients ; we call this the field qf rational 

junctions in x1, • • .  , Xn over F and denote it by F (xu . . .  , xn) . This field 
plays a vital role in algebraic geometry. For us it shall be of utmost im­
portance in our discussion, in Chapter 5, of Galois theory. 

However, we want deeper interrelations between the structures of R and 
of R[xv · . .  , xn] than that expressed in Lemma 3 . 1 1 . 1 .  Our development 
now turns in that direction. 

Exactly in the same way as we did for Euclidean rings, we can speak 
about divisibility, units, etc., in arbitrary integral domains, R, with unit 
element. Two elements a, b in R are said to be associates if a = ub where u 
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is a unit in R. An element a which is not a unit in R will be called irreducible 
(or a prime element )  if, whenever a = be with b, c both in R, then one of b or 
c must be a unit in R. An irreducible element is thus an element which 
cannot be factored in a "nontrivial" way. 

D E F I N ITI O N  An integral domain, R, with unit element IS a umque 
factorization domain if 

a. Any nonzero element in R is either a unit or can be written as the product 
of a finite number of irreducible elements of R. 

b. The decomposition in part (a) is unique up to the order and associates 
of the irreducible elements. 

Theorem 3. 7.2 asserts that a Euclidean ring is a unique factorization 
domain. The converse, however, is false ; for example, the ring F[x1 , x2] ,  
where F is  a field, is not even a principal ideal ring (hence is  certainly not 
Euclidean) ,  but as we shall soon see it is a unique factorization domain. 

In general commutative rings we may speak about the greatest common 
divisors of elements ; the main difficulty is that these, in general, might not 
exist. However, in unique factorization domains their existence is assured. 
This fact is not difficult to prove and we leave it as an exercise ;  equally easy 
are the other parts of 

L E M MA 3.1 1 .2 lf R is a unique factorization domain and if a, b are in R, then 
a and b have a greatest common divisor (a, b) in R. Moreover, if a and b are 
relative{Y prime (i.e., (a, b) = 1 ) ,  whenever a I be then a I c. 

COROLLARY lf a E R is an irreducible element and a I be, then a I b or a I c. 

We now wish to transfer the appropriate version of the Gauss lemma 
(Theorem 3. 1 0. 1 ) ,  which we proved for polynomials with integer co­
efficients, to the ring R[x], where R is a unique factorization domain. 

Given the polynomial f (x) a0 + a1x + · · · + a,x"' in R[x] , then the 
content off (x) is defined to be the greatest common divisor of a0, a1, • • .  , am. 
It is unique within units of R. We shall denote the content off (x) by c(j) .  
A polynomial i n  R[x] is said to b e  primitive if its content is I (that is, is a 
unit in R) . Given any polynomial f (x) e R[x] , we can writef (x) = af1 (x) 
where a = c(f) and where f1 (x) E R[x] is primitive. (Prove ! )  Except for 
multiplication by units of R this decomposition off (x) , as an element of 
R by a primitive polynomial in R[ x ], is unique. (Prove ! )  

The proof of Lemma 3. 1 0. 1 goes over completely to  our present situation ; 
the only change that must be made in the proof is to replace the prime 
number p by an irreducible element of R. Thus we have 
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LEMMA 3.1 1 .3 lf R is a unique factorization domain, then the product qf two 
primitive polynomials in R [ x] is again a primitive polynomial in R [ x] . 

Given f (x) , g(x) in R[x] we can write f (x) = af1 (x), g(x) = bg1 (x), 
where a = c(f), b = c(g) and where .ft (x) and g1 (x) are primitive. Thus 

f (x) g(x) = abf1 (x) g1 (x) . By Lemma 3. 1 1 .3, j1 (x) g1 (x) is primitive. Hence 
the content off (x) g(x) is ab, that is, it is c(f)c(g) . We have proved the 

COROLLARY lf R is a unique factorization domain and iff (x) , g (x) are zn 
R[x] , then c(fg) = c(f)c(g) (up to units) . 

By a simple induction, the corollary extends to the product of a finite 
number of polynomials to read c(f1f2 • • • fk) = c(.ft )c (f2) • • • c (ji,) . 

Let R be a unique factorization domain. Being an integral domain, by 
Theorem 3.6. 1 ,  it has a field of quotients F. We can consider R[x] to be a 
subring of F[x] . Given any polynomial f (x) E F[x] , thenf (x) = (j0(x) fa) ,  
where f0(x) e R[x] and where a e R. (Prove !)  It is natural to ask for the 
relation, in terms of reducibility and irreducibility, of a polynomial in R[ x] 
considered as a polynomial in the larger ring F [ x] 

LEM MA 3.1 1 .4 lff (x) in R[x] is both primitive and irreducible as an element 
qf R[ x] , then it is irreducible as an element qf F [ x] . Conversely, if the primitive 
element f ( x) in R[ x] is irreducible as an element qf F [ x] , it is also irreducible as an 
element qf R[x] . 

Proof. Suppose that the primitive elementf (x) in R[x] is irreducible in 
R[x] but is reducible in F[x] . Thusf (x) = g(x)h(x) , where g(x) , h(x) are in 
F[x] and are of positive degree. Now g(x) = (g0 (x) Ja) , h (x) = (ho(x) Jb), 
where a, b E  R and where g0(x), h0(x) E R[x] . Also g0(x) = O% (x), 
ho(x) = f3h1 (x) , where IX =  c(g0),  fJ = c(ho), and g1 (x), h1 (x) are primitive 
in R[x] . Thus f (x) = (1Xf3jab) g1 (x)h1 (x), whence abj (x) = 1X/3g1 (x)h1 (x) . 
By Lemma 3. 1 1 .3, g1 (x)h1 (x) is primitive, whence the content of the right­
hand side is IX/3. Since] (x) is primitive, the content of the left-hand side is 
ab ; but then ab = IX/3 ; the implication of this is thatf (x) = g1 (x)h1 (x), and 
we have obtained a nontrivial factorization off (x) in R[x] , contrary to 
hypothesis. (Note : this factorization is nontrivial since each of g1 (x) , h1 (x) 
are of the same degree as g(x) , h(x) , so cannot be units in R[x] (see Problem 
4) . )  We leave the converse half of the lemma as an exercise. 

LEM MA 3.1 1 .5 lf R is a unique factorization domain and if p(x) is a primitive 
polynomial in R[ x] , then it can be factored in a unique way as the product qf irreducible 
elements in R[ x] . 

Proof. When we consider p(x) as an element in F[x] , by Lemma 3.9.5, 
we can factor it as p(x) = p1 (x) · · · A (x), where p1 (x) , P2 (x) , . . .  , A(x) are 
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irreducible polynomials in F[x] . Each p1(x) = (f1(x)fa1) , where j1(x) E 
R[x] and a1 E R;  moreover, f1(x) = c1q1(x) , where c1 = c(j1) and where 
q1(x) is primitive in R[x] . Thus each p1(x) = (c1q1(x) /a1), where a1, c1 E R 
and where q1 (x) E R[x] is primitive. Since p 1(x) is irreducible in F[x] , 
q1(x) must also be irreducible in F[x] , hence by Lemma 3. 1 1 .4 it is irreducible 
in R[x] . 

Now 

c c . . .  c 
p(x) = Pt (x) · · · h(x) = t 2 k qt (x) · · · qk(x), 

ala2 . . .  ak 

whence ata2 · · · akp(x) = c1c2 · · · ckqt (x) • · · qk(x) . Using the primitivity of 
p(x) and of qt (x) · · · qk(x) , we can read off the content of the left-hand 
side as ata2 · · • ak and that of the right-hand side as c1c2 · · · ck. Thus 
ata2 · • · ak = ctc2 · · · ck, hence p(x) = qt (x) · · · qk(x) .  We have factored 
p (x) , in R[x] , as a product of irreducible elements. 

Can we factor it in another way? If p(x) = r1 (x) · · · rk(x) , where the 
r1(x) are irreducible in R[x] , by the primitivity of p(x) , each r1 (x) must be 
primitive, hence irreducible in F[x] by Lemma 3. 1 1 .4. But by Lemma 3.9.5 
we know unique factorization in F[x] ; the net result of this is that the 
r1(x) and the q1(x) are equal (up to associates) in some order, hence p(x) 
has a unique factorization as a product of irreducibles in R[x]. 

We now have all the necessary information to prove the principal theorem 
of this section. 

TH E O R E M  3.1 1 .1 IjR is a unique factorization domain, then so is R[x] . 

Proof. Letf (x) be an arbitrary element in R[x]. We can writef (x) in 
a unique way as f (x) = eft (x) where c = c(f) is in R and where ft (x) , 
in R[x], is primitive. By Lemma 3. 1 1 .5 we can decomposeft (x) in a unique 
way as the product of irreducible elements of R[x] . What about c? 
Suppose that c = a1 (x)a2 (x) · · · am(x) m R[x] ; then 0 = deg c = 
deg (at (x) ) + deg (a2(x)) + · · · + deg (am(x) ) .  Therefore, each a1(x) must 
be of degree 0, that is, it must be an element of R. In other words, the 
only factorizations of c as an element of R[x] are those it had as an element 
of R. In particular, an irreducible element in R is still irreducible in R[ x] . 
Since R is a unique factorization domain, c has a unique factorization as a 
product of irreducible elements of R, hence of R[x] . 

Putting together the unique factorization off (x) in the form eft (x) where 
ft (x) is primitive and where c E R with the unique factorizability of c and 
offt (x) we have proved the theorem. 

Given R as a unique factorization domain, then R1 = R[xd is also a 
unique factorization domain. Thus R2 = R1 [x2] = R[xt, x2] is also a 
unique factorization domain. Continuing in this pattern we obtain 

' 
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COROLLARY 1 If R is a unique factorization domain then so is R[x11 • • •  , x.] . 

A special case of Corollary I but of independent interest and importance is 

C O R O LLARY 2 If F  is a field then F[x1, • • •  , xJ is a unique factorization 
domain. 

Problems 

I .  Prove that R[x] is a commutative ring with unit element whenever R is. 
2. Prove that R[x1, • • •  , x.] = R[xh, . . .  , x1J, where {i1 ,  • • •  , i.) is a 

permutation of ( I ,  2, . . . , n). 

3.  If R is an integral domain, prove that for f (x), g(x) in R[x], 
deg (f (x) g(x)) deg (f (x)) + deg (g(x) ) .  

4 .  I f  R is an integral domain with unit element, prove that any unit in 
R[x] must already be a unit in R. 

5. Let R be a commutative ring with no nonzero nilpotent elements (that 
is, a" = 0 implies a = 0) . Iff (x) = a0 + a1x + · · · + a,.x"' in R[x] 
is a zero�divisor, prove that there is an element h ;#: 0 in R such that 
ba0 = ba1 = · · · = ha,. = 0. 

*6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent 
elements. 

*7. If R is a commutative ring with unit element, prove that ao + a1x + 
· · · + a.x" in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and 

only if ao is a unit in R and a1 , • • •  , a. are nilpotent elements in R. 

8. Prove that when F is a field, F[x1 , x2] is not a principal ideal ring. 
9. Prove, completely, Lemma 3. 1 1 .2 and its corollary. 

10. (a) If R is a unique factorization domain, prove that every f (x) e R[x] 
can be written as f (x) = aft (x), where a E R and where f1 (x) is 
primitive. 

(b) Prove that the decomposition in part (a) is unique (up to associates) .  

I I .  If R is an integral domain, and if F i s  its field of quotients, prove that 
any element f (x) in F[x] can be written as f (x) = (fo(x)fa), where 

j0(x) E R[x] and where a E R. 
1 2. Prove the converse part of Lemma 3. 1 1 .4. 
13 .  Prove Corollary 2 to Theorem 3 . 1 1 . 1 .  
1 4. Prove that a principal ideal ring is a unique factorization domain. 
1 5. If J is the ring of integers, prove that J[x1 , • • •  , x.] is a unique fac� 

torization domain. 



Sec. 3.1 1 Polynomial Rings over Commutative Rings 

Supplementary Problems 

l .  Let R be a commutative ring ; an ideal P of R is said to be a prime ideal 
of R if  ab E P, a, b E R implies that a E P or h E P. Prove that P is a 
prime ideal of R if and only if RfP is an integral domain. 

2. Let R be a commutative ring with unit element ; prove that every 
maximal ideal of R is a prime ideal. 

3. Give an example of a ring in which some prime ideal is not a maximal 
ideal. 

4. If R is a fnite commutative ring (i.e., has only a finite number of 
elements) with unit element, prove that every prime ideal of R is a 
maximal ideal of R. 

5. If F is a feld, prove that F[x] is isomorphic to F[t] . 
6. Find all the automorphisms u of F[x] with the property that u(f) = f 

for every f E F. 
7. If R is a commutative ring, let N = {x E R I x" = 0 for some integer n} . 

Prove 
(a) N is an ideal of R. 
(b) In R = RfN if xm 0 for some m then x = 0. 

8. Let R be a  commutative ring and suppose that A is an ideal of R. 
Let N(A) = {x E R I x" E A for some n} . Prove 
(a) N(A) is an ideal of R which contains A. 
(b) N(N(A)) = N(A) . 
N (A) is often called the radical of A. 

9. If n is an integer, let J. be the ring of integers mod n. Describe N 
(see Problem 7) for J. in terms of n. 

10. If A and B are ideals in a ring R such that A n B = (0) , prove that 
for every a E A, h E  B, ab = 0. 

I I . If R is a ring, let Z(R) = {x E R I xy = yx ally E R}. Prove that 
Z (R) is a subring of R. 

1 2. If R is a division ring, prove that Z(R) is a field. 

1 3. Find a polynomial of degree 3 irreducible over the ring of integers, 
]3, mod 3. Use it to construct a field having 27 elements. 

14. Construct a field having 625 elements. 

1 5. If F is a field and p(x) E F[x] , prove that in the ring 

R = F[x] 
' (p(x) ) 

N (see Problem 7) is (0) if an only if p(x) is not divisible by the square of 
any polynomial. 
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16. Prove that the polynomialf (x) = 1 + x + x3 
+ x4 is not irreducible 

over any field F. 
1 7. Prove that the polynomial f (x) = x4 + 2x + 2 is irreducible over 

the field of rational numbers. 
1 8. Prove that ifF is a finite field, its characteristic must be a prime number 

p and F contains p" elements for some integer. Prove further that if 
a e F then aP" = a. 

19. Prove that any nonzero ideal in the Gaussian integers j[i] must contain 
some positive integer. 

20. Prove that if R is a ring in which a4 = a for every a e R then R must 
be commutative. 

2 1 .  Let R and R' be rings and ljJ a mapping from R into R' satisfying 
(a) ljl(x + y) = ljl(x) + l/J(y) for every x, y e R. 
(b) ljl(xy) = ljJ(x)ljJ(y) or ljJ(y)ljJ(x) . 
Prove that for all a, b e  R, l/J(ab) = ljJ(a) ljJ(b) or that, for all a, b e  R, 
l/J(a) = l/J(b)l/J(a) . (Hint: If a e R, let 

W11 = {x e R l l/J(ax) = l/J(a)l/J(x) } 
and 

Ua = {x e R l l/J(ax) = l/J(x)l/J(a) }.) 

22. Let R be a ring with a unit element, I ,  in which (ab) 2 = a2b2 for 
all a, b e R. Prove that R must be commutative. 

23. Give an example of a noncommutative ring (of course, without 1 )  in 
which (ab) 2 = a2b2 for all elements a and b. 

24. (a) Let R be a ring with unit element I such that (ab) 2 = (ba) 2 for 
all a, b e  R. If in R, 2x = 0 implies x = 0, prove that R must be 
commutative. 

(b) Show that the result of (a) may be false if 2x = 0 for some x =F 0 
in R. 

(c) Even if 2x = 0 implies x = 0 in R, show that the result of (a) 
may be false if R does not have a unit element. 

25. Let R be a ring in which x" = 0 implies x = 0. If (ab) 2 = a2b2 
for all a, b e R, prove that R is commutative. 

26. Let R be a ring in which x" = 0 implies x = 0. If (ab) 2 = (ba) 2 
for all a, b e R, prove that R must be commutative. 

27. Let Pt> h, . . .  , A be distinct primes, and let n = P1h · · ·A· If R is 
the ring of integers modulo n, show that there are exactly 2k elements 
a in R such that a2 = a. 

28. Construct a polynomial q(x) =F 0 with integer coefficients which has 
no rational roots but is such that for any prime p we can solve the 
congruence q(x) = 0 mod p in the integers. 
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4 
Vector Spaces and Modules 

Up to this point we have been introduced to groups and to rings ; the 
former has its motivation in the set of one-to-one mappings of a set 
onto itself, the latter, in the set of integers. The third algebraic model 
which we are about to consider-vector space-can, in large part, 
trace its origins to topics in geometry and physics. 

Its description will be reminiscent of those of groups and rings-in 
fact, part of its structure is that of an abelian group--but a vector 
space differs from these previous two structures in that one of the 
products defined on it uses elements outside of the set itself. These 
remarks will become clear when we make the definition of a vector 
space. 

Vector spaces owe their importance to the fact that so many models 
arising in the solutions of specific problems turn out to be vector 
spaces. For this reason the basic concepts introduced in them have a 
certain universality and are ones we encounter, and keep encountering, 
in so many diverse contexts. Among these fundamental notions are 
those of linear dependence, basis, and dimension which will be de­
veloped in this chapter. These are potent and effective tools in all 
branches of mathematics ; we shall make immediate and free use of 
these in many key places in Chapter 5 which treats the theory of fields. 

Intimately intertwined with vector spaces are the homomorphisms 
of one vector space into another (or into itself) . These will make up 
the bulk of the subject matter to be considered in Chapter 6. 

In the last part of the present chapter we generalize from vector spaces 
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to modules ; roughly speaking, a module is a vector space over a ring instead 
of over a field. For finitely generated modules over Euclidean rings we 
shall prove the fundamental basis theorem. This result allows us to give a 
complete description and construction of all abelian groups which are 
generated by a finite number of elements. 

4.1 Elementary Basic Concepts 

D E F I N ITION A nonempty set V is said to be a vector space over a field F 
if V is an abelian group under an operation which we denote by + ,  and 
if for every a e F, v e V there is defined an element, written av, in V subject 
to 

1 .  a(v + w) = av + ctW; 
2. (a + {J)v = av + {Jv; 
3. a({Jv) = ( a{J)v ;  
4. l v = v ;  

for all a, fJ e F, v, w e V (where the I represents the unit element of F 
under multiplication) . 

Note that in Axiom 1 above the + is that of V, whereas on the left-hand 
side of Axiom 2 it is that of F and on the right-hand side, that of V. 

We shall consistently use the following notations : 

a. F will be a field. 
b. Lowercase Greek letters will be elements of F; we shall often refer to 

elements of F as scalars. 
c. Capital Latin letters will denote vector spaces over F. 
d. Lowercase Latin letters will denote elements of vector spaces. We shall 

often call elements of a vector space vectors. 

If we ignore the fact that V has two operations defined on it and view it 
for a moment merely as an abelian group under + ,  Axiom 1 states nothing 
more than the fact that multiplication of the elements of V by a fixed scalar 
a defines a homomorphism of the abelian group V into itself. From Lemma 
4. 1 . 1  which is to follow, if a ::f:. 0 this homomorphism can be shown to be 
an isomorphism of V onto V. 

This suggests that many aspects of the theory of vector spaces (and of 
rings, too) could have been developed as a part of the theory of groups, 
had we generalized the notion of a group to that of a group with operators. 
For students already familiar with a little abstract algebra, this is the pre­
ferred point of view ; since we assumed no familiarity on the reader's part 
with any abstract algebra, we felt that such an approach might lead to a 
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too sudden introduction to the ideas of the subject with no experience to 
act as a guide. 

Example 4.1 .1 Let F be a field and let K be a field which contains F as 
a subfield. We consider K as a vector space over F, using as the + of the 
vector space the addition of elements of K, and by defining, for a E F, 
v E K, av to be the products of 11. and v as elements in the field K. Axioms 
1 ,  2, 3 for a vector space are then consequences of the right-distributive 
law, left-distributive law, and associative law, respectively, which hold for 
K as a ring. 

Example 4.1 .2 Let F be a field and let V be the totality of all ordered 
n-tuples, (a1, • • • , a,.) where the IX; E F. Two elements (11.1 , • . • , a,.) and 
(fJ1 , • • • , {J,.) of V are declared to be equal if and only if 11.1 = fJ1 for each 
i = 1 ,  2, . . . , n. We now introduce the requisite operations in V to make 
of it a vector space by defining : 

1 .  (al > · · · , a,.) + ({Jl, · · · , fJ,.) = (at + Pt , IX2 + P2, · · · , a,. + fJ,.) .  
2. y(at >  . . . , a,.) = (ya1 , . • • , ya,.) for y E F. 

It is easy to verify that with these operations, V is a vector space over F. 
Since it will keep reappearing, we assign a symbol to it, namely F<n>. 

Example 4.1 .3 Let F be any field and let V = F[x] , the set of poly­
nomials in x over F. We choose to ignore, at present, the fact that in F[x] 
we can multiply any two elements, and merely concentrate on the fact that 
two polynomials can be added and that a polynomial can always be multi­
plied by an element of F. With these natural operations F[x] is a vector 
space over F. 

Example 4. 1 .4 In F[x] let V,. be the set of all polynomials of degree less 
than n. Using the natural operations for polynomials of addition and 
multiplication, V,. is a vector space over F. 

What is the relation of Example 4. 1 .4 to Example 4. 1 .2 ?  Any element of 
V,. is of the form IXo + a1x + · · · + a,_ 1x" 1 , where ai e F; if we map 
this element onto the element (ao, av . . .  , a,._1 ) in F<"> we could reasonably 
expect, once homomorphism and isomorphism have been defined, to find 
that V,. and F<"> are isomorphic as vector spaces. 

D E F I N IT I O N  If V is a vector space over F and if W c: V, then W is a 
subspace of V if under the operations of V, W, itself, forms a vector space 
over F. Equivalently, W is a subspace of V whenever w1, w2 E W, 
a, fJ E F implies that aw1 + {Jw2 e W. 
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Note that the vector space defined in Example 4. 1 .4 is a subspace of that 
defined in Example 4. 1 .3. Additional examples of vector spaces and 
subspaces can be found in the problems at the end of this section. 

D EFI N IT I O N  If U and V are vector spaces over F then the mapping T 
of U into V is said to be a homomorphism if 

1 .  (u1 + u2) T  = u1 T + u2 T; 
2. (r:t.u1) T = r:t.(u1 T) ; 

for all u1, u2 e U, and all r:t. e F. 

As in our previous models, a homomorphism is a mapping preserving 
all the algebraic structure of our system. 

If T, in addition, is one-to-one, we call it an isomorphism. The kernel of 
T is defined as {u e U I u T  = 0} where 0 is the identity element of the 
addition in V. It is an exercise that the kernel of T is a subspace of U and 
that T is an isomorphism if and only if its kernel is (0) . Two vector spaces 
are said to be isomorphic if there is an isomorphism of one onto the other. 

The set of all homomorphisms of U into V will be written as Hom ( U, V) . 
Of particular interest to us will be two special cases, Hom ( U, F) and 
Hom ( U, U) . We shall study the first of these soon ; the second, which can be 
shown to be a ring, is called the ring � linear transformations on U. A great 
deal of our time, later in this book, will be occupied with a detailed study 
of Hom (U, U) . 

We begin the material proper with an operational lemma which, as in 
the case of rings, will allow us to carry out certain natural and simple 
computations in vector spaces. In the statement of the lemma, 0 represents 
the zero of the addition in V, o that of the addition in F, and - v the 
additive inverse of the element v of V. 

LEM MA 4.1 . 1  If V is a vector space over F then 

1 .  r:t.O = 0 for r:t. e F. 
2. ov = O for v e  V. 
3. ( - r:t.) v  = - (r:t.v) for a e F, v e  V. 
4. If v =1- 0, then r:t.V = 0 implies that r:t. = o. 

Proof. The proof is very easy and follows the lines of the analogous 
results proved for rings ; for this reason we give it briefly and with few 
explanations. 

I .  Since r:t.O = r:t.(O + 0) = r:t.O + r:t.O, we get r:t.O = 0. 
2. Since ov = (o + o)v = ov + ov we get ov = 0. 
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3. Since O = (ex +  ( - ex) )v  = exv + ( - ex) v, ( - ex)v = - (exv) . 
4. If exv = 0 and ex #- o then 

0 = ex 10 = ex- 1 (exv) = (ex 1ex)v = l v  = v. 

The lemma just proved shows that multiplication by the zero of V or of 
F always leads us to the zero of V. Thus there will be no danger of confusion 
in using the same symbol for both of these, and we henceforth will merely 
use the symbol 0 to represent both of them. 

Let V be a vector space over F and let W be a subspace of V. Considering 
these merely as abelian groups construct the quotient group Vf W; its 
elements are the cosets v + W where v E V. The commutativity of the 
addition, from what we have developed in Chapter 2 on group theory, 
assures us that Vf W is an abelian group. We intend to make of it a vector 
space. If ex E F, v + W E  Vf W, define ex(v + W) = av + W. As is usual, 
we must first show that this product is well defined ; that is, if v + W = 
v' + W then ex(v + W) = ex(v' + W). Now, because v + W = v' + W, 
v - v' is in W; since W is a subspace, ex(v - v') must also be in W. Using 
part 3 of Lemma 4. 1 . 1  (see Problem l )  this says that exv - exv' E W and so 
exv + W = exv' + W. Thus ex(v + W) = exv + W = exv' + W = a(v' + W) ; 
the product has been shown to be well defined. The verification of the 
vector-space axioms for Vf W is routine and we leave it as an exercise. 
We have shown 

LEM MA 4.1 .2 If V is a vector space over F and if W is a subspace of V, then 
Vf W is a vector space over F, where, for v1 + W, v2 + W E Vf W and ex E F, 

l .  (v1 + W) + (v2 + W) = (v1 + v2) + W. 
2. ex(v1 + W) = av1 + W. 

Vf W is called the quotient space of V by W. 
Without further ado we now state the first homomorphism theorem for 

vector spaces ; we give no proofs but refer the reader back to the proof of 
Theorem 2.7. 1 .  

TH EO R EM 4.1 .1  If T is a homomorphism of U onto V with kernel W, then V 
is isomorphic to Uf W. Conversely, if U is a vector space and W a subspace of U, 
then there is a homomorphism of U onto UfW. 

The other homomorphism theorems will be found as exercises at the end 
of this section. 

D E F I N ITION Let V be a vector space over F and let U1 , • . .  , Un be 
subspaces of v. v is said to be the internal direct sum of ul, . . .  ' un if every 
element v E V can be written in one and only one way as v = u1 + u2 + 

· · · + un where U; E U;. 
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Given any finite number of vector spaces over F, V1 ,  • • .  , Vn, consider 
the set V of all ordered n-tuples (v1, • • .  , vn) where v1 E V1• We declare two 
elements (v1, . • .  , vn) and (v� , . . .  , v� )  of V to be equal if and only if for 
each i, v1 = v; . We add two such elements by defining (v1, • • •  , vn) + 
(w1, • • •  , wn) to be (v1 + Wv v2 + w2, • • •  , vn + wn) · Finally, if !X E F 
and (v1, • • •  , vn) E V we define rx(v1, . • •  , vn) to be (rxv1, rxv2, • • •  , rxvn) · 
To check that the axioms for a vector space hold for V with its operations 
as defined above is straightforward. Thus V itself is a vector space over F. 
We call V the external direct sum of V1, . . .  , Vn and denote it by writing 
v = vl EE> • • •  EE> vn . 

TH EO R EM 4.1 .2 If V is the internal direct sum of U1, . . .  , Un, then V is 
isomorphic to the external direct sum of ul, . . .  , un. 

Proof. Given v E V, v can be written, by assumption, in one and only 
one way as v = u1 + u2 + · · · + un where u1 E U1 ; define the mapping 
T of V into U1 EEl · · · ® Un by vT = (u1 , . . .  , un) ·  Since v has a unique 
representation of this form, T is well defined. It clearly is onto, for the 
arbitrary element (wv . . . , wn) E U1 ® · · · EEl Un is w T where w = w1 + 
· · · + wn E V. We leave the proof of the fact that T is one-to-one and a 
homomorphism to the reader. 

Because of the isomorphism proved in Theorem 4. 1 .2 we shall henceforth 
merely refer to a direct sum, not qualifying that it be internal or external. 

Problems 

1. In a vector space show that a(v - w) = av - aw. 
2. Prove that the vector spaces in Example 4. 1 .4 and Example 4. 1 .2 are 

isomorphic. 

3. Prove that the kernel of a homomorphism is a subspace. 

4. (a) If F is a field of real numbers show that the set of real-valued, 
continuous functions on the closed interval [0, 1 ]  forms a vector 
space over F. 

(b) Show that those functions in part (a) for which all nth derivatives 
exist for n = 1 ,  2, . . . form a subspace. 

5. (a) Let F be the field of all real numbers and let V be the set of all 
sequences (a1 ,  a2, • • •  , an, . . .  ), a1 E F, where equality, addition 
and scalar multiplication are defined componentwise. Prove that 
V is a vector space over F. 

(b) Let W = { (a1 ,  . . •  , an, . . .  ) E V I  lim an = 0}. Prove that W n-+ oo 
is a subspace of V. 
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<X) 
* (c) Let U = {(a1, . • • , a,, . . .  ) E V I L: a/ is fnite}. Prove that U i s  

1= 1 
a subspace of V and is contained in W. 

6. If U and V are vector spaces over F, define an addition and a multipli­
cation by scalars in Hom ( U, V) so as to make Hom ( U, V) into a 
vector space over F. 

*7. Using the result of Problem 6 prove that Hom (F<">, F<m>) is isomorphic 
to F"m as a vector space. 

8. If n > m prove that there is a homomorphism of F(n) onto F<m> with 
a kernel W which is isomorphic to F<n- m). 

9. If v ::/= 0 e F<n> prove that there is an element T e Hom (F<"), F) 
such that v T ::/= 0. 

I 0. Prove that there exists an isomorphism of F(n) into 
Hom (Hom (F<">, F), F). 

1 1 . If U and W are subspaces of V, prove that U + W {v E V I  v = 
u + w, u e U, w e W} is a subspace of V. 

12 .  Prove that the intersection of two subspaces of V is a subspace of V. 

1 3. If A and B are subspaces of V prove that (A + B)/B is isomorphic to 
AJ(A 11 B). 

14. If T is a homomorphism of U onto V with kernel W prove that there 
is a one-to-one correspondence between the subspaces of V and the 
subspaces of U which contain W. 

15. Let V be a vector space over F and let V1 , • • •  , V,. be subspaces of 
V. Suppose that V = V1 + V2 + · · · + V,. (see Problem 1 1 ), and 
that V1 II ( V1 + · · · + V1_ 1 + V1+ 1 + · · · + V,.) = (0) for every 
i = 1 ,  2, . . .  , n. Prove that V is the internal direct sum of V1, • . •  , V,. 

1 6. Let V = V1 EB · · · EB V,. ; prove that in V there are subspaces P'1 
isomorphic to V1 such that V is the internal direct sum of the P'1• 

1 7. Let T be defined on F(Z) by (x1, x2) T = (tXX1 + f3x2, yx1 + c)x2) 
where a:, /3, y, {> are some fixed elements in F. 
(a) Prove that T is a homomorphism of F< 2> into itself. 
(b) Find necessary and sufficient conditions on a:, /3, y, {> so that T is 

an isomorphism. 

1 8. Let T be defined on F<3> by (x1, x2, x3) T = (a:1 1x1 + a:12x2 + 
a:13x3, a:21x1 + a:zzXz + a:23x3, a:31x1 + a:3zX2 + a::ux3) .  Show that T 
is a homomorphism of F< 3> into itself and determine necessary and 
sufficient conditions on the a:11 so that T is an isomorphism. 
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1 9. Let T be a homomorphism of V into W. Using T, define a homomor­
phism T* of Hom ( W, F) into Hom (V, F).  

20. (a) Prove that F{ l) is not isomorphic to F<n> for n > I .  
(b) Prove that F<2> is not isomorphic to F<3>. 

2 1 .  If V is a vector space over an infinite field F, prove that V cannot be 
written as the set-theoretic union of a finite number of proper subspaces. 

4.2 linear I ndependence and Bases 

If we look somewhat more closely at two of the examples described in the 
previous section, namely Example 4. 1 .4 and Example 4. 1 .3, we notice that 
although they do have many properties in common there is one striking 
difference between them. This difference lies in the fact that in the former 
we can find a finite number of elements, 1 ,  x, x2, • • •  , xn - 1 such that every 
element can be written as a combination of these with coefficients from F, 
whereas in the latter no such finite set of elements exists. 

We now intend to examine, in some detail, vector spaces which can be 
generated, as was the space in Example 4. 1 .4, by a finite set of elements. 

D E F I N ITION If V is a vector space over F and if v1 , • • •  , vn E V then 
any element of the form ct1v1 + ct2v2 + · · · + ctnvn, where the ct1 E F, is a 
linear combination over F of v1 , • • •  , vn. 

Since we usually are working with some fixed field F we shall often say 
linear combination rather than linear combination over F. Similarly it will 
be understood that when we say vector space we mean vector space over F. 

D E FI N ITION If S is a nonempty subset of the vector space V, then L(S),  
the linear span of S, is  the set  of all linear combinations of finite sets of 
elements of S. 

We put, after all, into L(S) the elements required by the axioms of a 
vector space, so it is not surprising to find 

LEM MA 4.2.1 L(S) is a subspace of V. 

Proof. If v and w are in L(S) , then v = A.1s1 + · · · + A.nsn and w = 
jl1 t1 + · · · + Jlmtm, where the A.'s and Jl's are in F and the s1 and t1 are all 
in S. Thus, for ct, fJ E F, ctV + {Jw = ct(A.1s1 + · · · + A.�n) + fJ(JL1t1 + 
· · · + Jlmtm) = (ct.A.l )sl + · · · + (ct.A.n)sn + (fJJL1) t1 + · · · + (fJJlm) tm and so 
is again in L(S) .  L(S) has been shown to be a subspace of V. 

The proof of each part of the next lemma is straightforward and easy 
and we leave the proofs as exercises to the reader. 
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LEMMA 4.2.2 If S, T are subsets of V, then 

1 .  S c T implies L(S) c L( T). 
2. L(S u T) = L(S) + L( T). 
3. L(L(S) ) = L(S) .  

D EF IN ITION The vector space V is said to be finite-dimensional (over F) 
if there is a finite subset S in V such that V = L(S) .  

Note that F<•> i s  finite-dimensional over F, for if  S consists of  the n vectors 
( 1 , 0, . . .  , 0) , (0, I ,  0, . . . , 0), . . .  , (0, 0, . . .  , 0, I ) , then V = L(S) . 

Although we have defined what is meant by a finite-dimensional space 
we have not, as yet, defined what is meant by the dimension of a space. 
This will come shortly. 

D E FI N IT I O N  If V is a vector space and if vi, . . . , v,. are in V, we say that 
they are linearly dependent over F if there exist elements A.1, • . •  , A.. in F, 
not all of them 0, such that A. I v1 + A.2v2 + · · · + A.,v, = 0. 

If the vectors Vv • • •  , v,. are not linearly dependent over F, they are said 
to be linearly independent over F. Here too we shall often contract the phrase 
"linearly dependent over F" to "linearly dependent," Note that if vi > . • •  , 
v,. are linearly independent then none of them can be 0, for if vi = 0, 
say, then llV1 + Ov2 + · · · + Ov .. = 0 for any a ¥- 0 in F. 

In F<3> it is easy to verify that ( I ,  0, 0) , (0, 1 ,  0) , and (0, 0, 1 )  are linearly 
independent while ( 1 ,  I ,  0) , (3, I, 3), and (5, 3, 3) are linearly dependent. 

We point out that linear dependence is a function not only of the vectors 
but also of the field. For instance, the field of complex numbers is a vector 
space over the field of real numbers and it is also a vector space over the 
field of complex numbers. The elements v1 = l ,  v2 = i in it are linearly 
independent over the reals but are linearly dependent over the complexes, 
since iv1 + ( - l ) v2 = 0. 

The concept of linear dependence is an absolutely basic and ultra­
important one. We now look at some of its properties. 

LEMMA 4.2.3 If v1 , • • •  , v,. E V are linearly independent, then every element in 
their linear span has a unique representation in the form A.1v1 + · · · + A,v,. with 
the A.i E F. 

Proof. By definition, every element in the linear span is of the form 
A.1 v1 + · · · + A..,v,.. To show uniqueness we must demonstrate that if 
A.1v1 + · · · + A..,v,. = p1v1 + · · · + p,.v,. then A.1 = Jlv A.2 = J.lz, . . • , A., = J.l,.. 
But if A.1v1 + · · · + .:t,.v,. J.l1v1 + · · · + J.l,.V,, then we certainly have 
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(,1. 1 - JldV1 + (il2 - Jl2)v2 + · · · + (il. - Jl.)v. = 0, which by the linear 
independence of v1, . . .  , v. forces ..1.1 - Jl1 = 0, il2 - Jl2 = 0, . . .  , 
An - Jln = 0. 

The next theorem, although very easy and at first glance of a somewhat 
technical nature, has as consequences results which form the very foundations 
of the subject. We shall list some of these as corollaries ; the others will 
appear in the succession of lemmas and theorems that are to follow. 

TH EO R E M  4.2.1 If v1 , . . •  , vn are in V then either they are linearly independ­
ent or some vk is a linear combination if the preceding ones, v1, . . .  , vk _ 1 .  

Proof. If v1 , . . .  , vn are linearly independent there is, of course, nothing 
to prove. Suppose then that ot1 v1 + · · · + ocnvn = 0 where not all the 
oc's are 0. Let k be the largest integer for which ock "# 0. Since ot; = 0 
for i > k, oc1v1 + · · · + ockvk = 0 which, since ock "# 0, implies that 
vk = otk 1

( - oclv1 - ot2V2 - · · · - ock- 1vk 1 )  = ( - ock-
loci )vi + · · · +  

( - ock 1ock _1 ) vk l · Thus vk is a linear combination of its predecessors. 

CORO LLARY 1 f v1, . • .  , v. in V have W as linear span and if v1, . . •  , vk 
are linearly independent, then we can find a subset rif v1, • . .  , v. if the form v1, 
v2, • • •  , vk, V;,, . . .  , V;, consisting of linearly independent elements whose linear 
span is also W. 

Proof. If v1 , • • •  , v. are linearly independent we are done. If not, weed 
out from this set the first v i• which is a linear combination of its predecessors. 
Since v1, • • .  , vk are linearly independent, j > k. The subset so constructed, 
vl> . . .  , vk, . . .  , vi l >  vi + l > ' " ' v" has n - l elements. Clearly its linear 
span is contained in W. However, we claim that it is actually equal to W; 
for, given w E W, w can be written as a linear combination of v1, • . •  , v •. 
But in this linear combination we can replace vi by a linear combination of 
v1, . • •  , vj l · That is, w is a linear combination of v1, • • •  , vj l >  vi + I > • • •  , vn. 

Continuing this weeding out process, we reach a subset v1 , . . •  , vk, 
v; , ,  . . .  , v;, whose linear span is still W but in which no element is a linear 
combination of the preceding ones. By Theorem 4.2. 1 the elements 
v1, . . .  , vk, V;1 , • • •  , V;, must be linearly independent. 

COR OLLA RY 2 If V is a finite-dimensional vector space, then it contains a 
finite set v1, . . .  , vn rif linearly independent elements whose linear span is V. 

Proof. Since V is finite-dimensional, it is the linear span of a finite 
number of elements u1, . . .  , um. By Corollary 1 we can find a subset of 
these, denoted by v1, . . . , vn, consisting of linearly independent elements 
whose linear span must also be V. 
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D E FI N ITION A subset S of a vector space V is  called a basis of V if S 
consists of linearly independent elements (that is, any finite number of 
elements in S is linearly independent) and V = L(S) . 

In this terminology we can rephrase Corollary 2 as 

CORO LLARY 3 if V is a finite-dimensional vector space and if u1, • . •  , um 
span V then some subset of up . . .  , umforms a basis of V. 

Corollary 3 asserts that a finite-dimensional vector space has a basis 
containing a finite number of elements vi > . . .  , v •. Together with Lemma 
4.2.3 this tells us that every element in V has a unique representation in the 
form ct1 v1 + · · · + ct.v. with ctp . . .  , ct. in F. 

Let us see some of the heuristic implications of these remarks. Suppose 
that V is a finite-dimensional vector space over F; as we have seen above, 
V has a basis v1, • • •  , v.. Thus every element v E V has a unique repre­
sentation in the form v = ct1v1 + · · · + rx.v •. Let us map V into F<•> by 
defining the image of ct1v1 + · · · + ct.v. to be (ct1, . . .  , ct.) . By the unique­
ness of representation in this form, the mapping is well defined, one-to-one, 
and onto ; it can be shown to have all the requisite properties of an iso­
morphism. Thus V is isomorphic to F<•J for some n, where in fact n is 
the number of elements in some basis of V over F. If some other basis of 
V should have m elements, by the same token V would be isomorphic to 
F<ml. Since both F<•l and F<ml would now be isomorphic to V, they would 
be isomorphic to each other. 

A natural question then arises ! Under what conditions on n and m are 
F<•l and F(m) isomorphic? Our intuition suggests that this can only happen 
when n = m. Why? For one thing, if F should be a field with a finite 
number of elements-for instance, if F = ]p the integers modulo the prime 
number p-then F<•l has p• elements whereas F(m) has pm elements. Iso­
morphism would imply that they have the same number of elements, and 
so we would have n = m. From another point of view, if F were the field 
of real numbers, then F<•l (in what may be a rather vague geometric way 
to the reader) represents real n-space, and our geometric feeling tells us 
that n-space is different from m-space for n #- m. Thus we might expect 
that if F is any field then F<•l is isomorphic to F(m) only if n = m. Equiv­
alently, from our earlier discussion, we should expect that any two bases of 
V have the same number of elements. It is towards this goal that we prove 
the next lemma. 

LEM MA 4.2.4 if v1 , • • •  , v. is a basis of V over F and if w1 , • • •  , wm in V 
are linearly independent over F, then m :: n. 

Proof. Every vector in V, so in particular wm, is a linear combination 
of v1, • • •  , v.. Therefore the vectors wm, v1, • • •  , v. are linearly dependent. 
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Moreover, they span V since v1, • • •  , v. already do so. Thus some proper 
subset of these wm, V;1 , • • .  , V;k with k ::; n - 1 forms a basis of V. We 
have "traded off" one w, in forming this new basis, for at least one V;. 
Repeat this procedure with the set wm- 1 ,  wm, V;. , . . •  ' V;k· From this 
linearly dependent set, by Corollary 1 to Theorem 4.2. 1 ,  we can extract a 
basis of the form wm_1 , wm, vii, . . .  , vi•' s ::; n - 2. Keeping up this 
procedure we eventually get down to a basis of V of the form w2, • • •  , 
wm_1 , wm, v,., Vp • • •  ; since w1 is not a linear combination of w2, • • •  , wm _ 1 , the 
above basis must actually include some v. To get to this basis we have 
introduced m - 1 w's, each such introduction having cost us at least one v, 
and yet there is a v left. Thus m - 1 ::; n - 1 and so m ::; n. 

This lemma has as consequences (which we list as corollaries) the basic 
results spelling out the nature of the dimension of a vector space. These 
corollaries are of the utmost importance in all that follows, not only in this 
chapter but in the rest of the book, in fact in all of mathematics. The 
corollaries are all theorems in their own rights. 

' 
COROLLARY 1 If V is finite-dimensional over F then any two bases of V 
have the same number of elements. 

Proof. Let v1, . . .  , v. be one basis of V over F and let w1 , . . .  , wm be 
another. In particular, w1, • . .  , wm are linearly independent over F whence, 
by Lemma 4.2.4, m ::; n. Now interchange the roles of the v's and w's and 
we obtain that n ::; m. Together these say that n = m. 

CO RO LLARY 2 F<•> is isomorphic F<m> if and only if n = m. 

Proof. F<•> has, as one basis, the set of n vectors, ( 1 ,  0, . . .  , 0) , (0, I ,  
0, . . .  , 0) , . . .  , (0, 0, . . .  , 0, I ) .  Likewise F<m> has a basis containing m 
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this 
section) , hence, by Corollary 1 ,  m = n. 

Corollary 2 puts on a firm footing the heuristic remarks made earlier 
about the possible isomorphism of F<•> and F<m>. As we saw in those re­
marks, Vis isomorphic to F<•> for some n. By Corollary 2, this n is unique, thus 

COROLLARY 3 If V is finite-dimensional over F then V is isomorphic to F<•> 
for a unique integer n; infact, n is the number of elements in arry basis of V over F. 

D E F I N ITI O N  The integer n in  Corollary 3 is called the dimension of V 
over F. 

The dimension of V over F is thus the number of elements in any basis 
of V over F. 

181 
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We shall write the dimension of V over F as dim V, or, the occasional 
time in which we shall want to stress the role of the field F, as dimF V. 

COROLLARY 4 Any two finite-dimensional vector spaces over F of the same 
dimension are isomorphic. 

Proof. If this dimension is n, then each is isomorphic to p<n>, hence 
they are isomorphic to each other. 

How much freedom do we have in constructing bases of V? The next 
lemma asserts that starting with any linearly independent set of vectors 
we can "blow it up" to a basis of V. 

LEMMA 4.2.5 if V is finite-dimensional over F and if uv . . .  , um e V are 
linearly independent, then we can find vectors um + 1 ,  • • •  , U11 +. in V such that 
Ul, • • • , Urn> Um+ l> • • • , Um+r  is a basis of V. 

Proof. Since V is finite-dimensional it has a basis ; let v1, • • •  , vn be a 
basis of V. Since these span V, the vectors Uv • • •  , U11, v1, • • •  , vn also span 
V. By Corollary 1 to Theorem 4.2 . 1  there is a subset of these of the form 
u1, • • •  , um, V;,, • • •  , v1• which consists of linearly independent elements 
which span V. To prove the lemma merely put um+ l = v1, , • • • , um+r = 
vir • 

What is the relation of the dimension of a homomorphic image of V to 
that of V? The answer is provided us by 

LEM MA 4.2.6 if V is finite-dimensional and if W is a subspace of V, then W 
is finite-dimensional, dim W � dim V and dim Vf W = dim V - dim W. 

Proof. By Lemma 4.2.4, if n = dim V then any n + 1 elements in V 
are linearly dependent ; in particular, any n + I elements in W are linearly 
dependent. Thus we can find a largest set of linearly independent elements 
in W, Wv . . •  , W11 and m � n. If w E  W then w1, . • .  , W11, w is a linearly 
dependent set, whence cxw + cx1 w1 + · · · + CX11W11 = 0, and not all of the 
a/s are 0. If ex = 0, by the linear independence of the w1 we would get that 
each a1 0, a contradiction. Thus a =I= 0, and so w = -cx-

1
(cx1w1 + 

· · · + a .. w,) . Consequently, Wv • • •  , w111 span W; by this, W is finite­
dimensional over F, and furthermore, it has a basis of m elements, where 
m S n. From the defnition of dimension it then follows that dim W S 
dim V. 

Now, let w1, • • •  , wm be a basis of W. By Lemma 4.2.5, we can fill this 
out to a basis, w1, . • •  , w111, v1 , • • •  , v, of V, where m + r = dim V and 
m = dim W. 

Let v1, • • • , v, be the images, in f' = Vf W, of v1, • • •  , v,. Since any 
vector v e V is of the form v = a1w1 + · · · + IX11W11 + {J1v1 + · · · + {J,v, 
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then v, the image of v, is of the form v = P1v1 + · · · + P,v, (since u\ = 
w2 = · · · = wm = 0). Thus ii1, • . •  , v, span Vj W. We claim that they are 
linearly independent, for if y1v1 + · · · + y,v, = 0 then y1v1 + · · · + 
y,v, e W, and so y1v1 + · • · + y,v, = A.1w1 + · · · + A.mwm, which, by the 
linear independence of the set w1, • • •  , wm, v1, • • •  , v, forces y1 = · · · = 

')', A.1 = · · · = Am = 0. We have shown that Vf W has a basis of r 
elements, and so, dim V/ W = r = dim V - m = dim V - dim W. 

COROLLARY If A and B are finite-dimensional subspaces of a vector space V, 
then A + B is finite-dimensional and dim (A + B) = dim (A) + dim (B) 
dim (A n B) . 

Proof. By the result of Problem 1 3  at the end of Section 4. 1 ,  

A + B A 
-- � --

B A n  B ' 

and since A and B are finite-dimensional, we get that 

dim (A + B) - dim B = dim (A   
= dim  B) 

= dim A - dim (A n B) . 

Transposing yields the result stated in the lemma. 

Problems 

l. Prove Lemma 4.2.2. 

2. (a) If F is the field of real numbers, prove that the vectors ( 1 ,  I ,  0, 0), 
(0, I, - 1 , 0) , and (0, 0, 0, 3) in F(4) are linearly independent 
over F. 

(b) What conditions on the characteristic of F would make the three 
vectors in (a) linearly dependent? 

3. If V has a basis of n elements, give a detailed proof that V is isomorphic 
to p<n>. 

4. If T is an isomorphism of V onto W, prove that T maps a basis of V 
onto a basis of W. 

5. If V is finite-dimensional and T is an isomorphism of V into V, prove 
that T must map V onto V. 

6. If V is finite-dimensional and T is a homomorphism of V onto V, 
prove that T must be one-to-one, and so an isomorphism. 

7. If V is of dimension n, show that any set of n linearly independent 
vectors in V forms a basis of V. 
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8. If V is finite-dimensional and W is a subspace of V such that dim V = 
dim W, prove that V W. 

9. If V is finite-dimensional and T is a homomorphism of V into itself 
which is not onto, prove that there is some v ::fo 0 in V such that 
vT = 0. 

10. Let F be a field and let F[x] be the polynomials in x over F. Prove 
that F[x] is not finite-dimensional over F. 

I I . Let Vn = {p(x) e F[x] j deg p(x) < n} . Define T hy 

(ao + et1x + · · · + etn- I�-
1
) T 

= oc0 + oc1 (x + I )  + et2 (x + 1 ) 2 + · · · + a:n _ 1 (x + I )"- I
. 

Prove that T is an isomorphism of V, onto itsel£ 

12. Let W = {ao + et1x + · · · + o:n- I�-
1 e F[x] I exo + a:1 + · · · + 

et,_1  = 0}. Show that W is a subspace of Vn and find a basis of W 

over F. 

1 3. Let vi, . . .  , v, be a basis of V and let w1, • • •  , w, be any n elements 
in V. Define T on V by p.1vi + · · · + ..t,v,) T = ..tiw1 + · · · + ..t,w,. 
(a) Show that R is a homomorphism of V into itself. 
(b) When is T an isomorphism ? 

I 4. Show that any homomorphism of V into itself, when V is finite­
dimensional, can be realized as in Problem 1 3  by choosing appropriate 
elements w1, • • •  , w,. 

1 5. Returning to Problem 1 3, since vi, . . .  , v, is a basis of V, each 
w1 = et11v1 + · · · + et1,v,, et11 e F. Show that the n2 elements <Xu of 
F determine the homomorphism T. 

* 16. If dimp V = n prove that dimp (Hom ( V,V) )  = n2• 
1 7. If V is finite-dimensional and W is a subspace of V prove that there 

is a subspace W1 of V such that V = W EB WI . 

4.3 Dual Spaces 

Given any two vector spaces, V and W, over a field F, we have defined 
Hom ( V, W) to be the set of all vector space homomorphisms of V into W. 

As yet Hom ( V, W) is merely a set with no structure imposed on it. We 
shall now proceed to introduce operations in it which will turn it into a 
vector space over F. Actually we have already indicated how to do so in 
the descriptions of some of the problems in the earlier sections. However 
we propose to treat the matter more formally here. 

Let S and T be any two elements of Hom ( V, W) ; this means that these 
are both vector space homomorphisms of V into W. Recalling the definition 
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of such a homomorphism, we must have (v1 + v2)S = v1S + v2S and 
(rxv1 )S = rx(v1S) for all vt> v2 E V and all rx E F. The same conditions also 
hold for T. 

We first want to introduce an addition for these elements S and T in 
Hom (V, W) .  What is more natural than to define S + T by declaring 
v(S + T) = vS + v T for all v E V? We must, of course, verify that S + T 
is in Hom ( V, W). By the very definition of S + T, if v1, v2 E V, then 
(v1 + u2) (S + T) = (v1 + v2)S + (v1 + v2) T; since (v1 + v2)S = u1S + v2S 
and (v1 + v2) T v1 T + v2 T and since addition in W is commutative, we 
get (v1 + v2) (S + T) = v1S + v1 T + v2S + v2 T. Once again invoking 
the definition of S + T, the right-hand side of this relation becomes 
v1(S + T) + v2(S + T) ; we have shown that (v1 + v2) (S + T) = 
v1 (S + T) + v2 (S + T). A similar computation shows that (cw) (S + T) = 
rx(v(S + T)) .  Consequently S + T is in Hom ( V, W) . Let 0 be that 
homomorphism of V into W which sends every element of V onto the zero­
element of W; for S E Hom ( V, W) let - S  be defined by v( -S) = - (vS) . 
It is immediate that Hom ( V, W) is an aoelian group under the addition 
defned above. 

Having succeeded in introducing the structure oLan abelian group on 
Hom ( V, W), we now turn our attention to defining AS for A e F and 
S e Hom ( V, W), our ultimate goal being that of making Hom ( V, W) 
into a vector space over F. For A e F and S e Hom ( V, W) we define 
AS by v(AS) = A(vS) for all v e V. We leave it to the reader to show that 
AS is in Hom ( V, W) and that under the operations we have defned, 
Hom ( V, W) is a vector space over F. But we have no assurance that 
Hom ( V, W) has any elements other than the zero-homomorphism. Be 
that as it may, we have proved 

LEM MA 4.3.1 Hom (V, W) is a vector space over F under the operations 
described above. 

A result such as that of Lemma 4.3. 1 really gives us very little information ; 
rather it confirms for us that the defnitions we have made are reasonable. 
We would prefer some results about Hom ( V, W) that have more of a 
bite to them. Such a result is provided us in 

T H E O R E M  4.3.1 .if V and W are Q/ dimensions m and n, respectively, over F, 
then Hom ( V, W) is Q/ dimension mn over F. 

Proof. We shall prove the theorem by explicitly exhibiting a basis of 
Hom ( V, W) over F consisting of mn elements. 

Let vt> . . .  , vm be a basis of V over F and w1, • • •  , w,. one for W over F. 
If ll E V then v = A.1v1 + · · · + Amvm where A1,  • • •  , Am are uniquely de-
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fined elements of F; defne T11 :V -+ W by v Tii = A.1w1• From the point 
of view of the bases involved we are simply letting vk T11 = 0 for k =/; i 
and v1Tu = w1• It is an easy exercise to see that T11 is in Hom ( V, W). 
Since i can be any of I, 2, . . .  , m and j any of I, 2 ,  . . . , n there are mn 
such TIJ's . 

Our claim is that these mn elements constitute a basis of Hom ( V, W) 
over F. For, let S e Hom ( V, W) ; since v1S e W, and since any element 
in W is a linear combination over F of w1, • • •  , w.,, v1S = rx1 1w1 + rx12w2 + 
· · · + a:1 11w,, for some a11 ,  a12, • • •  , a:h in F. In fact, v1S = a11w1 + · · · + 
a1,w, for i = I ,  2, . . . , m. Consider S0 = a11 T11  + a12 T12 + · · • + 
tx111T1 n + a2t T21 + · · · + at:2,T2, + · · · + au Tu + • • · + ai., Tin + · · · + 
a111 T111 + · · · + a11, T11.,. Let us compute vkSo for the basis vector vk. Now 

V�o = Va:(au Tll + • . .  + «mt Tml + . . . + am .. Tm .. ) O:n (vk Tu) + 
a12 (vk T12) + · · · + a111 (v" T111 )  + · · · + et11,(vk Tm,). Since v,. TIJ = 0 for 
i =/; k and v" T,.1 = w1, this sum reduces to v�0 = aklw1 + · · · + aknw .. , 
which, we see, is nothing but v�. Thus the homomorphisms S0 and S agree 
on a basis of V. We claim this forces S0 = S (see Problem 3, end of this 
section). However S0 is a linear combination of the T11's, whence S must 
be the same linear combination. In short, we have shown that the mn 
elements T1 1 , T12, . . .  , T111, • • •  , T111 , • • •  , T11 .. span Hom ( V, W) over F. 

In order to prove that they form a basis of Hom ( V, W) over F there 
remains but to show their linear independence over F. Suppose that 

Pu Tu + Pu Tu + • · · + P1 ,T1 o + · · · + Pu Tu + . . · + P, .. T,, + . .  · + 
Pmt T111 + · · · + P,, T,, = 0 with Pu all in F. Applying this to vi: we get 
0 = Vt(P1 1 Tll  + · · · + fJiJ TiJ + · · · + Pmn Tm,) = Puwt + Pk2w2 + · · • + 
Pt .. w, since vt TIJ = 0 for i =I k and vk TkJ = w1. However, w1, . . .  , w, 
are linearly independent over F, forcing Pti = 0 for all k and j. Thus the 
TIJ are linearly independent over F, whence they indeed do form a basis 
of Hom ( V, W) over F. 

An immediate consequence of Theorem 4.3 . 1  is that whenever V =I (0) 

and W =1: (0) are finite-dimensional vector spaces, then Hom ( V, W) does 
not just consist of the element 0, for its dimension over F is nm � 1 .  

Some special cases of Theorem 4.3. 1 are themselves of great interest and 
we list these as corollaries. 

COROLLARY 1 if dimF V = m then dimF Hom ( V, V) m2• 

Proof. In the theorem put V = W, and so m = n, whence mn = m2• 

COROLLARY 2 .lf dimp V = m then dimp Hom ( V, F) = m. 

Prool As a vector space F is of dimension I over F. Applying the 
theorem yields dimp Hom ( V, F) = m. 
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Corollary 2 has the interesting consequence that if V is finite-dimensional 
over F it is isomorphic to Hom ( V, F), for, by the corollary, they are of 
the same dimension over F, whence by Corollary 4 to Lemma 4.2.4 they 
must be isomorphic. This isomorphism has many shortcomings ! Let us 
explain. It depends heavily on the finite-dimensionality of V, for if V is 
not finite-dimensional no such isomorphism exists. There is no nice, formal 
construction of this isomorphism which holds universally for all vector 
spaces. It depends strongly on the specialities of the finite-dimensional 
situation. In a few pages we shall, however, show that a "nice" isomorphism 
does exist for any vector space V into Hom (Hom ( V, F), F) . 

D E F I N ITI O N  I f  V is a vector space then its dual space is Hom ( V, F).  

We shall use the notation V for the dual space of V. An element of V 
will be called a linear functional on V into F. 

If V is not finite-dimensional the V is usually too large and wild to be 
of interest. For such vector spaces we often have other additional structures, 
such as a topology, imposed and then, as the dual space, one does not generally 
take all of our V but rather a properly restricted subspace. If V is finite-dimen­
sional its dual space V is always defined, as we did it, as all of Hom ( V, F) . 

In the proof of Theorem 4.3. 1 we constructed a basis of Hom ( V, W) 
using a particular basis of V and one of W. The construction depended 
crucially on the particular bases we had chosen for V and W, respectively. 
Had we chosen other bases we would have ended up with a different basis 
of Hom ( V, W). As a general principle, it is preferable to give proofs, 
whenever possible, which are basis-free. Such proofs are usually referred to 
as invariant ones. An invariant proof or construction has the advantage, 
other than the mere aesthetic one, over a proof or construction using a 
basis, in that one does not have to worry how finely everything depends 
on a particular choice of bases. 

The elements of V are functions defined on V and having their values 
in F. In keeping with the functional notation, we shall usually write 
elements of V as f, g, etc. and denote the value on v E V as f (v) (rather 
than as vf).  

Let V be  a finite-dimensional vector space over F and let v1, . • •  , v.  be 
a basis of V; let fJ1 be the element of V defined by v1(vi) = 0 for i =/; j, 
v1(v1) = I ,  and v1(a1v1 + · · · + IX;V; + · · · + a.v.) = a1• In fact the V; 
are nothing but the Tii introduced in the proof of Theorem 4.3. 1 ,  for here 
W = F is one-dimensional over F. Thus we know that fJ1, • • .  , tJ. form a 
basis of V. We call this basis the dual basis of Vv . . .  , v •. If v =/; 0 E V, by 
Lemma 4.2.5 we can find a basis of the form v1 = v, v2, • • •  , v. and so 
there is an element in V, namely flv such that 171 (v1) = 61 (v) = I =/; 0. 
We have proved 



188 Vector Spaces and Modules Ch. 4 

LEM MA 4.3.2 lf V is finite-dimensional and v :F 0 e V, then there is an 
elementfe V such thatf (v) :F 0. 

In fact, Lemma 4.3.2 is true if V is infinite-dimensional, but as we have 
no need for the result, and since its proof would involve logical questions 
that are not relevant at this time, we omit the proof. 

Let Vo E v, where v is any vector space over F. As f varies over r, and 
v0 is kept fixed, f ( v0) defnes a functional on V into F; note that we are merely 
interchanging the role rif function and variable. Let us denote this function by T t>o ;  
in  other words T.0(f) = f (v0) for any fe V. What can we say about 
r.o? To begin with, TvoU + g) = (f + g) (v0) = f (vo) + g(v0) = 
Tt>o(f) + Tv0(g) ; furthermore, T.0(A.f) = ( A.J) (v0) = A.f(v0� = A. T.0(f) . 
Thus T00 is in the dual space of V! We write this space as V and refer to 
it as the second dual of V. 

,. 
Given any element v e V we can associate with it an element T. in V. 

Defne the mapping if! :  V -+ V by vif! = Tv for every v e V. Is if! a homo­
morphism of V into V? Indeed it is ! For, Tv+w(f) = f (v + w) = f (v) + 
f (w) = Tv(f) + Tw(f) ( Tv + T,.) (f) ,  and so Tv+w = T., + Tw, 
that is, (v + w)if! = vif! + wif!. Similarly for l e F, (lv)if! = A.(vif!). Thus 
if! defines a homomorphism of V into V. The construction of if! used no 
basis or special properties of V; it is an example of an invariant construction. 

When is if! an isomorphism ? To answer this we must know when vif! = 0, 
or equivalently, when Tv = 0. But if Tv = 0, then 0 = T.(f) = f (v) 
for all f E r. However as we pointed out, without proof, for a general 
vector space, given v :F 0 there is an fe V with f (v) :F 0. We actually 
proved this when V is fnite-dimensional. Thus for V finite-dimensional 
(and, in fact, for arbitrary V) if! is an isomorphism. However, when V is 
finite-dimensional if! is an isomorphism onto lf; when V is infinite-dimen­
sional if! is not onto. 

If V is finite-dimensional, by the second corollary to Theorem 4.3. 1 ,  V 
and V are of the same dimension ; similarly, V and fi are of the same dimen­
sion ; since if! is an isomorphism of V into V, the equality of the dimensions 
forces if! to be onto. We have proved 

.. 
LEM MA 4.3.3 lf V is  finite-dimensional, then if! is an isomorphism rif V onto V. 

We henceforth identify V and V, keeping in mind that this identification 
is being carried out by the isomorphism 1/J.  

D E FI N IT ION If  W is a subspace of V then the annihilator of W, A ( W) = 
{f e V lf (w) = 0 all w e  W}. 

We leave as an exercise to the reader the verification of the fact that 
A ( W) is a subspace of V. Clearly if U c W, then A(U) :: A ( W) .  
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Let W be a subspace of V, where V is finite-dimensional. Iff E V let 
j be the restriction off to W; thus ] is defined on W by ] ( w) = f ( w) for 
every w e W. Since f e V, clearly] e W. Consider the mapping T: V -+ W 
defined by fT = ] for f e V. It is immediate that (f + g) T = fT + gT 
and that (A.f) T = J.(fT) . Thus T is a homomorphism of V into W. 
What is the kernel of T? Iff is in the kernel of T then the restriction off 
to W must be 0 ;  that is, f (w) = 0 for all w e  W. Also, conversely, if 

f ( w) = 0 for all w e W then f is in the kernel of T. Therefore the kernel 
of T is exactly A ( W) .  

We now claim that the mapping T is onto W. What we must show is 
that given any element h e  W, then h is the restriction of some fe V, that 
is h = J By Lemma 4.2.5, if Wv . • •  , wm is a basis of W then it can be 
expanded to a basis of V of the form w1 , . • •  , wm, Vv . . . , v, where r + m = 
dim v. Let wl be the subspace of v spanned by Vv . . .  ' v,. Thus v = 
W Ef) W1 • If h E W define fe V by : let V E V be written as V = W + w1, 
w E  w, wl E wl ; thenf (v) = h(w) . It  is easy to see thatf is in v and that 
j = h. Thus h = fT and so T maps V onto W. Since the kernel of T is 
A ( W) by Theorem 4. 1 . 1 ,  W is isomorphic to VfA( W) .  In particular they 
have the same dimension. Let m = dim W, n = dim V, and r = dim 
A ( W) .  By Corollary 2 to Theorem 4.3. 1 ,  m = dim W and n = dim V. 
However, by Lemma 4.2.6 dim V/A( W) = dim V - dim A(W) = n - r, 
and so m = n - r. Transposing, r = n - m. We have proved 

TH EOREM 4.3.2 if V is finite-dimensional and W is a subspace qf V, then 
W is isomorphic to Vf A ( W) and dim A ( W) = dim V - dim W. 

COROLLARY A (A( W)) = W. 

Proof. Remember that in order f'or the corollary even to make sense, 
since W c V and A(A( W)) c fi, we have identified V with V. Now W c 
A(A ( W)) ,  for if w E  W then wt{l = Tw acts on V by TwU) = f (w) and 
so is 0 for all fe A ( W) .  However, dim A(A ( W))  = dim V - dim A ( W) 
(applying the theorem to the vector space V and its subspace A ( W))  so 
that dim A(A ( W) )  = dim V - dim A ( W) = dim V - (dim V - dim W) = 
dim W. Since W c A(A(W)) and they are of the same dimension, it 
follows that W = A(A ( W) ) .  

Theorem 4.3.2 has application to the study of systems of linear homogeneous 
equations. Consider the system of m equations in n unknowns 

a1 1x1 + a12x2 + · · · + a1 .x. = 0, 

a21x1 + a22x2 + · · · + a2.x. = 0, 
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where the aij are in F. We ask for the number of linearly independent 
solutions (x1 , . . .  , xn) there are in p<n) to this system. 

In p(n) let U be the subspace generated by the m vectors (a1 1 , a12, • . •  , a1 n) ,  
(a2 1 , a22, . . . , a2n) ,  . . .  , (ami > am2, . . .  , amn) and suppose that U is of 
dimension r. In that case we say the system of equations is of rank r. 

Let v1 = ( I ,  0, . . .  , 0) , v2 = (0, I ,  0, . . .  , 0) , . . . , v" = (0, 0, . . .  , 0, I )  
be used as a basis of p(n) and let vi, v2 , . . .  ' fJn be its dual basis in ft<n>. 
Any je ft<n> is of the form f = x1fJ1 + x2v2 + · · · + x"fJ", where the 
X; E F. When isje A(U) ? In that case, since (a1 1 ,  • • •  , a1 ") e U, 

0 = f (all , al2> · · · ' al n) 

= f(allvl + · · · + alnvn) 
= (xlfJl + X2V2 + · · · + xnfJn) (auvt + · · · + al nvn) 

since fJ;(llj) = 0 for i #= j and v;(v;) = I .  Similarly the other equations of the 
system are satisfied. Conversely, every solution (xi , . . .  , x") of the system 
of homogeneous equations yields an element, x1v1 + · · · + x/j"' in A(U) .  
Thereby we see that the number of linearly independent solutions of the 
system of equations is the dimension of A( U), which, by Theorem 4.3.2 is 
n - r. We have proved the following : 

T H E O R E M  4.3.3 If the system qf homogeneous linear equations : 

a1 1xi + · · · + ai nxn = 0, 

a21xi + · · · + a2nxn = 0, 

amlxl + · · · + amnxn = 0, 

where aiJ E F is qf rank r, then there are n - r linearly independent solutions zn 
p(n). 

COROLLARY If n > m, that is, if the number qf unknowns exceeds the number 
qf equations, then there is a solution (x1 , • • •  , x") where not all qf xi , . . .  , xn are 0. 

Proof. Since U is generated by m vectors, and m < n, r = dim U s; 
m < n ;  applying Theorem 4.3.3 yields the corollary. 

Problems 

I .  Prove that A ( W) is a subspace of V. 
2. If S is a subset of V let A(S) = {f E V I f  (s) = 0 all s E S}. Prove 

that A(S) = A(L(S)) ,  where L(S) is the linear span of S. 
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3. If S, T E Hom ( V, W) and v;S = V; T for all elements V; of a basis 
of V, prove that S = T. 

4. Complete the proof, with all details, that Hom ( V, W) is a vector 
space over F. 

5. If 1/1 denotes the mapping used in the text of V into V, give a complete 
proof that 1/J is a vector space homomorphism of V into V. 

6. If V is finite-dimensional and v1 # v2 are in V, prove that there is an 
j E  V such thatf (v1 ) # j (v2) .  

7. If W1 and W2 are subspaces of V, which is finite-dimensional, describe 
A ( W1 + W2) in terms of A(  W1) and A(  W2) .  

8 .  If  V is a finite-dimensional and W1 and W2 are subspaces of V, describe 
A ( W1 n W2) in terms of A ( W1 )  and A ( W2) .  

9. If F is  the field of real numbers, find A(  W) where 
(a) W is spanned by ( 1 ,  2, 3) and (0, 4, - 1 ) .  
(b) W is spanned by (0, 0 ,  1 ,  - 1 ) ,  (2, 1 ,  1 ,  0) , and (2, 1 ,  1 ,  - 1 ) .  

1 0. Find the ranks of the following systems of homogeneous linea� equations 
over F, the field of real numbers, and find all the solutions. 
(a) x1 + 2x2 - 3x3 + 4x4 = 0, 

x1 + 3x2 - x3 = 0, 
6x1 + x3 + 2x4 = 0. 

(b) x1 + 3x2 + x3 = 0, 
x1 + 4x2 + x3 = 0. 

(c) x1 + x2 + x3 + x4 + x5 = 0, 
x1 + 2x2 = 0, 
4x1 + 7x2 + x3 + x4 + x5 ,; 0, 
x2 - x3 - x4 - x5 = 0. 

1 1 .  Iff and g are in V such that f (v) = 0 implies g (v) = 0, prove that 
g = A.jfor some A. E F. 

4.4 Inner Product Spaces 

In our discussion of vector spaces the specific nature of F as a field, other 
than the fact that it is a field, has played virtually no role. In this section 
we no longer consider vector spaces V over arbitrary fields F; rather, we 
restrict F to be the field of real or complex numbers. In the first case V 
is called a real vector space, in the second, a complex vector space. 

We all have had some experience with real vector spaces-in fact both 
analytic geometry and the subject matter of vector analysis deal with these. 
What concepts used there can we carry over to a more abstract setting? 
To begin with, we had in these concrete examples the idea of length ; 
secondly we had the idea of perpendicularity, or, more generally, that of 
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angle. These became special cases of the notion of a dot product (often 
called a scalar or inner product.) 

Let us recall some properties of dot product as it pertained to the special 
case of the three-dimensional real vectors. Given the vectors v = (x1,x2,x3)  
and w = (y1 ,y2,y3) ,  where the x's and y's are real numbers, the dot prod­
uct of v and w, denoted by v · w, was defined as v · w = x1y1 + x2y2 + 
x3y3 • Note that the length of v is given by � and the angle () between 
v and w is determined by 

v · w 
cos () 

What formal properties does this dot product enjoy? We list a few : 

1 .  v · v � 0 and v · v = 0 if and only if v = 0 ;  
2 .  v • w = w · v ;  
3. u · (av + Pw) = a(u  • v) + p(u · w) ; 

for any vectors u, v, w and real numbers a, p. 
Everything that has been said can be carried over to complex vector 

spaces. However, to get geometrically reasonable definitions we must make 
some modifications. If we simply define v · w = x1y1 + x2y2 + x3y3 for 
v = (xu x2, x3) and w = (y1,y2,y3), where the x's and y's are complex 
numbers, then it is quite possible that v · v = 0 with v #- 0 ;  this is illus­
trated by the vector v = ( 1 ,  i, 0) . In fact, v • v need not even be real. If, 
as in the real case, we should want v '  v to represent somehow the length of 
v, we should like that this length be real and that a nonzero vector should 
not have zero length. 

We can achieve this much by altering the definition of dot product 
slightly. If a denotes the complex conjugate of the complex number a, 
returning to the v and w of the paragraph above let us define v · w = 
x1 ji1 + x2ji2 + x3ji3. For real vectors this new definition coincides with 
the old one ; on the other hand, for arbitrary complex vectors v #- 0, not 
only is v · v real, it is in fact positive. Thus we have the possibility of intro­
ducing, in a natural way, a nonnegative length. However, we do lose 
something ; for instance it is no longer true that v · w = w · v. In fact the 
exact relationship between these is v · w = w · v. Let us list a few properties 
of this dot product : 

l . v · w = w · v ; 
2. v · v � 0, and v · v = 0 if and only if v O ·  ' 
3. (au + Pv) · w = a(u · w) + P(v • w) ;  
4. u · (av + pw) = a (u · v ) + /3(u · w) ; 

for all complex numbers a, P and all complex vectors u, v, w. 
We reiterate that in what follows F is either the field of real or complex 

numbers . 
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D E F I N ITION The vector space V over F is said to be an inner product 
space if there is defined for any two vectors u, u E V an element (u, v) in 
F such that 

I .  (u, v) = (V,U) ; 
2. (u, u) ;;: 0 and (u, u) 0 if and only if u  = 0 ;  
3 .  (au + pv, w) = a(u, w) + p(u, w) ; 

for any u, v, w E V and a, P E F. 

A few observations about properties 1 ,  2, and 3 are in order. A function 
satisfying them is called an inner product. IfF is the field of complex numbers, 
property 1 implies that (u, u) is real, and so property 2 makes sense. Using 

l and 3, we see that (u, av + Pw) = (w + pw, u) = a(v, u) + p(w, u) = 

a(v, u) + /1(w, u) = a(u, v) + /1(u, w) . 
We pause to look at some examples of inner product spaces. 

Example 4.4.1 In p<n> define, for u = (a1, • • • , an) and v = (P1, • • • , 
Pn), (u, u) = a1/11 + a2/12 + · · · + anPn· This defines an inner product 
on p<n>. 

Example 4.4.2 In p<Z> define for u = (a1, a2) and v = (P11 P2) ,  (u, u) = 
2a1/11 + a1/12 + a2/11 + a2/12• It is easy to verify that this defines an 
inner product on p(2>. 

Example 4.4.3 Let V be the set of all continuous complex-valued 
functions on the closed unit interval [0, 1 ] .  Ifj (t ) , g(t )  E V, define 

(f(t ) ,  g (t ) )  = f: f(t)  g (t )  dt. 

We leave it to the reader to verify that this defines an inner product on V. 

For the remainder of this section V will denote an inner product space. 

DEFI N ITION If v E V then the length of u (or norm of v), written lf vlf, is 

defined by ll v ll = ..}(u, u) . 

LE M MA 4.4.1 If u, u E V and a, P E F then (au + pv, au + pv) = 
aa(u, u) + a/1(u, v) + a:p(v, u) + PP(v, v) . 

Proof. By property 3 defining an inner product space, (au + pv, au + 
pv) = r:t.(u, au + Pv) + P(v, au + Pv) ; but (u, au + Pv) = a(u, u) + /1(u, v) 
and (v, au + Pv) = a(u, u) + /1(v, v) . Substituting these in the expression 
for (au + pv, r:t.u + pv) we get the desired result. 
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CORO LLARY jj cxu jj = jcx j  !l u l l . 

Proof. ll rxu ll 2 = (rxu, rxu) = rxa(u, u) by Lemma 4.4. 1 (with v = 0) . 
Since cxa = I cx j 2 and ( u, u) = II u II 2, taking square roots yields I I rxu II = 
lcx l !l u ll . 

We digress for a moment, and prove a very elementary and familiar 
result about real quadratic equations. 

LE M MA 4.4.2 If a, b, c are real numbers such that a > 0 and aA.2 + 2bA. + 
c � 0 for all real numbers A., then b2 � ac. 

Proof. Completing the squares, 

Since it is greater than or equal to 0 for all A., in particular this must be 
true for A. =  - bfa. Thus c - (b 2fa) � 0, and since a > 0 we get b2 � ac. 

We now proceed to an extremely important inequality, usually known 
as the Schwarz inequality : 

TH E O R E M  4.4.1 If u, v E V then J (u, v) l � ll u ii li v ii . 

Proof. If u = 0 then both (u, v) = 0 and ! lu ll l! v ll = 0, so that the 
result is true there. 

Suppose, for the moment, that (u, v) is real and u # 0. By Lemma 
4.4. 1 ,  for any real number A., 0 � (A.u + v, A.u + v) = A. 2(u, u) + 
2(u, v) A. + (v, v) Let a = (u, u) , b = (u, v) , and c = (v, v) ; for these the 
hypothesis of Lemma 4.4.2 is satisfied, so that b2 � ac. That is, (u, v) 2 � 
(u, u) (v, v) ; from this it is immediate that l (u,v) l � !l u ll ll v ll . 

If ex = (u, v) is not real, then it certainly is not 0, so that ufrx is mean­
ingful. Now, 

- ,  v = - (u, v) = (u, v) = 1 ,  (u ) I 1 
ex ex (u, v) 

and so it is certainly real. By the case of the Schwarz inequality discussed 
in the paragraph above, 

since 
l = - IJ u JI ,  

lex! 
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1 < llu ll llviJ 
- lct l  ' 

whence let! � !l u ll !l v !l . Putting in that <X = (u, v) we obtain l (u, v) l � 
!l u ll !l v ll , the desired result. 

Specific cases of the Schwarz inequality are themselves of great interest. 
We point out two of them. 

1 .  If V = p<n) with (u, v) a1/11 + · · · + a,./1,., where u = (ct1 ,  • . . , ct,.) 
and v = (/Jt, . . .  , {J,.) , then Theorem 4.4. 1 implies that 

!atilt + · · · + ctnfln ! 2 :5: ( lctt l 2  + · · · + lct,.I 2) (1/Jd 2 + · · · + I/J,.I 2) . 
2. If V is the set of all continuous, complex-valued functions on [0, 1 ] with 

inner product defined by 

(f( t ) ,  g( t ) )  = Ll f(t )  g(t )  dt, 

then Theorem 4.4. 1 implies that 

ILl f (t )  i(tj dt/ 2 � Ll lf (tW dt Ll lg(tW dt. 

The concept of perpendicularity is an extremely useful and important 
one in geometry. We introduce its analog in general inner product spaces. 

D EF I N IT I O N  If u, v E V then u i s  said to be orthogonal to v if  (u, v) = 0. 

Note that if u is orthogonal to v then v is orthogonal to u, for (v, u) = 

(u, v) = U = 0. 

D EF I N ITI O N  If W is a subspace of V, the orthogonal complement of W, 
W i, is defined by Wl. = {x E Vj (x, w) = 0 for all w E  W}. 

LEMMA 4.4.3 w1. is a subspace of V. 

Proof. If a, b E  wl. then for all ct, p E F and all w E  w, (eta + {Jb, w) = 

ct(a, w) + {J(b, w) = 0 since a, b E  WL. 

Note that w (') wl. = (0) , for if w E w (') wl. it must be self-orthogonal, 
that is (w, w) = 0. The defining properties of an inner product space 
rule out this possibility unless w 0. 

One of our goals is to show that V = W + w1.. Once this is done, 
the remark made above will become of some interest, for it will imply that 
v is the direct sum of w and wl.. 
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D E F I N ITI O N  The set of vectors {v1 }  in V is an orthonormal set if 

I .  Each v1 is of length 1 (i.e., (v1, v1) = 1 ) .  
2 .  For i ¥- j, (v1, vj) = 0. 

L E M MA 4.4.4 lf {v;} is an orthonormal set, then the vectors in {v1} are linearly 
independent. lf w = IX1V1 + · · · + 1Xnvn, then IX; = (w, v1) for i = 1 ,  2, . . .  , n. 

Proof. Suppose that IX1 v1 + IX2v2 + · · · + IXnVn = 0. Therefore 0 = 
(1X1V1 + · · · + 1XnVn> V;) = 1X1 (v1, v1) + · · · + 1Xn(vn, v1) . Since (vi, v1) = 0 
for j ¥- i while (vil v1) = 1 , this equation reduces to IX; = 0. Thus the 
v/s are linearly independent. 

If w = IX1 v1 + · · · + IXnVn then computing as above yields (w, v1) = IX1• 

Similar in spirit and in proof to Lemma 4.4.4 is 

LE M MA 4.4.5 lf {v1, • . •  , vn} is an orthonormal set in V and if w E  V, then 
U = W - (w, V1 )Vl - (w, Vz)Vz - • ' '  - (w, V;)V; - ' '  • - (w, vn)vn ZS 
orthogonal to each if v1 , v2, • • •  , vn. 

Proof. Computing (u, v1) for any i ::;:; n, using the orthonormality of 
v1 , . . •  , vn yields the result. 

The construction carried out in the proof of the next theorem is one which 
appears and reappears in many parts of mathematics. It is a basic pro­
cedure and is known as the Gram-Schmidt orthogonalization process. Although 
we shall be working in a finite-dimensional inner product space, the 
Gram-Schmidt process works equally well in infinite-dimensional situations. 

T H E O R E M  4.4.2 Let V be a finite-dimensional inner product space; then V has 
an orthonormal set as a basis. 

Proof. Let V be of dimension n over F and let v1, • . .  , vn be a basis of V. 
From this basis we shall construct an orthonormal set of n vectors ; by 
Lemma 4.4.4 this set is linearly independent so must form a basis of V. 

We proceed with the construction. We seek n vectors w1 , . • .  , wn each 
of length 1 such that for i ¥- j, (wil wi) = 0. In fact we shall finally 
produce them in the following form : w1 will be a multiple of v1, w2 will be 
in the linear span of w1 and v2, w3 in the linear span of w1, w2, and v3, and 
more generally, w1 in the linear span of Wv w2, • • • , w1 1 ,  v1• 

Let 

then 

w - vl . 1 -
ll vt ll

' 
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whence l lw1 1\ = 1 .  We now ask : for what value of a is aw1 + v2 orthogonal 
to w1 ? All we need is that (aw1 + v2, w1) = 0, that is a(w1, w1 ) + 
(v2, w1) = 0. Since (w1 , w1 ) = 1 ,  a = - (v2, w1 ) will do the trick. Let 
u2 = - (v2, w1)w1 + v2 ; u2 is orthogonal to w1 ; since v1 and v2 are linearly 
independent, w1 and v2 must be linearly independent, and so u2 i= 0. 
Let w2 = (u2f llu2 1\ ) ; then {w1 , w2} is an orthonormal set. We continue. 
Let u3 = - (v3, w1 )w1 - (v3, w2)w2 + v3 ; a simple check verifies that 
(u3, w1) = (u3, w2) = 0. Since w10 w2, and v3 are linearly independent 
(for w1 , w2 are in the linear span of v1 and v2) ,  u3 i= 0. Let w3 = (u3 / ll u3 11 ) ;  
then {w1 , w2, w3 } is an orthonormal set. The road ahead is now clear. 
Suppose that we have constructed w1, w2, • • •  , w1, in the linear span of 
Vu • • •  , v1, which form an orthonormal set. How do we construct the next 
one, w1+ 1 ?  Merely put u1+ 1  = - (v1+ 1 , w1 )w1 - (v1+ 1 ,  w2)w2 - • • · ­
(v1+ 1 ,  w1)w1 + v1 + 1 . That u1 + 1  i= 0 and that it is orthogonal to each of 
w1, . • •  , w1 we leave to the reader. Put w1+ 1  = (u1+ 1 / llu 1+ 1 1\ ) ! 

In this way, given r linearly independent elements in V, we can construct 
an orthonormal set having r elements. If particular, when dim V = n, 
from any basis of V we can construct an orthonormal set having n elements. 
This provides us with the required basis for V. 

We illustrate the construction used in the last proof in a concrete case. 
Let F be the real field and let V be the set of polynomials, in a variable x, 
over F of degree 2 or less. In V we define an inner product by : if p(x), 
q(x) E V, then 

(p(x), q(x) ) = f_1/(x)q(x) dx. 

Let us start with the basis v1 = l ,  v2 = x, v3 = x2 of V. Following the 
construction used, 

which after the computations reduces to u2 = x, and so 

finally, 
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( 1 /m)(w, w) -+ 0 as m -+  oo, whence 2(v - w0, w) s 0. Similarly, - w E W, 
and so 0 s 2(v - w0, w) = 2(v w0, - w) s 0, yielding (v - w0, w) 
= 0 for all w E w. Thus v - Wo E w.L ; hence v E Wo + w.L c w + w.L. 

To finish the second proof we must prove the existence of a w0 E W 
such that l lv - w0 11 :: l lv wl l  for all w E  W. We indicate sketchily two 
ways of proving the existence of such a w0• 

Let uv . • •  , uk be a basis of W; thus any w E W is of the form w = 
il1u1 + · · · + ilkuk. Let Pu = (u1, u1) and let y1 = (v, u1) for v e  V. Thus 
(v - w, v w) = (v - il1u1 • • • - ilkuk, v - il1w1 • • • - ilkwk) = 
(v, v) - "J:,il1il1Pu - 2:L;il1y1• This quadratic function in the il's is nonnegative 
and so, by results from the calculus, has a minimum. The il's for this 
minimum, il1<0>, ).2<

0
>, • • .  , ilk(O) give us the desired vector w0 

A1(0)Ut + • • • + Ak(O)Uk in W. 
A second way of exhibiting such a minimizing w is as follows. In V define 

a metric C by C(x,y) = llx - Yll ; one shows that C is a proper metric on V, 
and V is now a metric space. Let S {w E W I  llv - wll :: II v ii } ;  in 
this metric S is a compact set (prove !) and so the continuous function 

f (w) = l lv - wjl defined for w E  S takes on a minimum at some point 
w0 E S. We leave it to the reader to verify that w0 is the desired vector 
satisfying ll v w0 ll s l lv - wll for all w E  W. 

CORO LLARY If V is  a finite-dimensional inner product space and W is a subspace 
qf V then ( WL).L  = W. 

Proof. If w E  W then for any u E W\ (w, u) = 0, whence W c 
( W.L).L. Now V = W + W.L and V = W.L + ( W.L).L ;  from these we get, 
since the sums are direct, dim ( W) = dim ( ( WL).L) .  Since W c ( W.L)J. 
and is of the same dimension as ( W.L ) .L ,  it follows that W = ( W.L)J.. 

Problems 

In all the problems V is an inner product space over F. 

I .  If F is the real field and V is F( 3>, show that the Schwarz inequality 
implies that the cosine of an angle is of absolute value at most 1 .  

2 .  If F is the real field, find all 4-tuples of real numbers (a, h ,  c, d) such 
that for u = (a1 , a2) , v = (P1, P2 )  e F< 2>, (u, v) = aa1P1 + ba2P2 + 
ca1P2 + da2P1 defines an inner product on F< 2>. 

3. In V define the distance C(u, v) from u to v by C(u, v) = Jl u - vi/ .  Prove 
that 
(a) ((u, v) � 0 and ((u, v) = 0 if and only if u = v. 
(b) ((u, v) = ((v, u) . 
(c) C(u, v) :: C(u, w) + C (w, v) (triangle inequality) . 
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4. If {wv . . .  , w ... } is an orthonormal set in V, prove that 

m 
L j (w1, v) j 2 � 1J v ll 2 for any v E V. 
1= 1 

(Bessel inequality) 

5. If V is finite-dimensional and if {wv . . .  , w.., } is an orthonormal set in 
V such that 

for every v E V, prove that {w1, • . .  , wm} must be a basis of V. 

6. If dim V n and if {w1, • . • , wm} is an orthonormal set in V, prove 
that there exist vectors wm+l• . • •  , wn such that {w1, . . .  , w..,, wm+ l• 
. . .  , w,} is an orthonormal set (and basis of V) . 

7. Use the result of Problem 6 to give another proof of Theorem 4.4.3. 

8. In V prove the parallelogram law: 

Explain what this means geometrically in the special case V = F( 3), 
where F is the real field, and where the inner product is the usual dot 
product. 

9. Let V be the real functions y = f (x) satisfying d2yfdx2 + 9y = 0. 
(a) Prove that V is a two�dimensional real vector space. 

(b) In V define (y, z) J: yz dx. Find an orthonormal basis in V. 

I 0. Let V be the set of real functions y = f (x) satisfying 

d3y d2y I I  dy - - 6 - + 6y = 0. 
dx3 dx2 dx 

(a) Prove that V is a three-dimensional real vector space. 
(b) In V define 

(u, v) = s:<X) uv dx. 

Show that this defines an inner product on V and find an ortho­
normal basis for V. 

I I . If W is a subspace of V and if v E V satisfies (v, w) + (w, v) � (w, w) 
for every w E  W, prove that (v, w) = 0 for every w E  W. 

1 2. If V is a finite-dimensional inner product space and if f is a linear 
functional on V (i.e., je V), prove that there is a flo E  V such that 
f (v) = (v, Uo) for all v E V. 



4.5 Modules 

Sec. 4.5 Modules 201 

The notion of a module will be a generalization of that of a vector space ; 
instead of restricting the scalars to lie in a field we shall allow them to be 
elements of an arbitrary ring. 

This section has many definitions but only one main theorem. However 
the defnitions are so close in spirit to ones already made for vector spaces 
that the lmain ideas to be developed here should not be buried in a sea of 
definitio\ s. 

II 
D EF I N r;·I O N  Let R be any ring ; a nonempty set M is said to be an 
R-module (or, a module over R) if M is an abelian group under an operation 
+ such that for every r E R and m E  M there exists an element rm in M 
subject to 

I .  r (a + b) = ra + rb ; 
2. r (sa) = (rs)a ;  
3 .  ( r  + s)a = ra + sa 

for all a, b E M and r, s E R. 

If R has a unit element, I ,  and if l m = m for every element m in M, then 
M is called a unital R-module. Note that if R is a field, a unital R-module 
is nothing more than a vector space over R. All our modules shall be unital ones. 

Properly speaking, we should call the object we have defined a left R­
module for we allow multiplication by the elements of R from the left. 
Similarly we could define a right R-module. We shall make no such left-right 
distinction, it being understood that by the term R-module we mean a left 
R-module. 

Example 4.5. 1 Every abelian group G is a module over the ring of 
integers ! 

For, write the operation of G as + and let na, for a E G and n an integer, 
have the meaning it had in Chapter 2. The usual rules of exponents in 
abelian groups translate into the requisite properties needed to make of G 
a module over the integers. Note that it is a unital module. 

Example 4.5.2 Let R be any ring and let M be a left-ideal of R. For 
r E R, m E M, let rm be the product of these elements as elements in R. 
The defnition of left-ideal implies that rm E M, while the axioms defining a 
ring insure us that M is an R-module. (In this example, by a ring we mean 
an associative ring, in order to make sure that r(sm) = (rs)m.) 

Example 4.5.3 The special case in which M = R; any ring R is an 
R-module over itself. 
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Example 4.5.4 Let R be any ring and let A be a left-ideal of R. Let 
M consist of all the cosets, a + A, where a E R, of A in R. 

In M define (a + A.) + (b + A.) = (a + b) + A. and r (a + A.) = ra + A. 
M can be shown to be an R-module. (See Problem 2, end of this section.)  
M is  usually written as R - A. (or, sometimes, as RJ A.) and is called the 
difrence (or quotient ) module of R by A.. 

An additive subgroup A of the R-module M is called a submodule of M 
if whenever r e R and a E A, then ra e A. 

Given an R-module M and a submodule A we could construct the quotient 
module MJA in a manner similar to the way we constructed quotient 
groups, quotient rings, and quotient spaces. One could also talk about 
homomorphisms of one R-module into another one, and prove the appro­
priate homomorphism theorems. These occur in the problems at the end 
of this section. 

Our interest in modules is in a somewhat different direction ; we shall 
attempt to find a nice decomposition for modules over certain rings. 

D E FI N IT I O N  If M is an R-module and if M1, • • •  , M. are submodules 
of M, then M is said to be the direct sum of M1, . • •  , M. if every element 
m e  M can be written in a unique manner as m = m1 + m2 + · · · + m8 
where m1 e M1, m2 e M2, • • •  , m. e M •. 

As in the case of vector spaces, if M is the direct sum of M1, • . .  , M. then 
M will be isomorphic, as a module, to the set of all s-tuples, (m1 , • . •  , m8) 
where the ith component mi is any element of Mi, where addition is com­
ponentwise, and where r (m1 , • • •  , m.) = (rm1, rm2, • • •  , rm8) for r e R. 
Thus, knowing the structure of each Mi would enable us to know the 
structure of M. 

Of particular interest and simplicity are modules generated by one 
element;  such modules are called cyclic. To be precise : 

D E F I N ITION An R-module M is said to be cyclic if there is an element 
m0 e M  such that every m E  M is of the form m = rm0 where r E R. 

For R, the ring of integers, a cyclic R-module is nothing more than a 
cyclic group. 

We still need one more definition, namely, 

D E FI N ITI O N  An R-module M is said to be .finitely generated if there exist 
elements a1 , · · · , a, E M  such that every m in M is of the form m = r1a1 + 
r2a2 + · · · + r,a,. 
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With all the needed definitions finally made, we now come to the theorem 
which is the primary reason for which this section exists. It is often called 
the fundamental theorem on finitely generated modules over Euclidean rings. 
In it we shall restrict R to be a Euclidean ring (see Chapter 3, Section 3. 7) ; 
however the theorem holds in the more general context in which R is any 
principal ideal domain. 

T H E O R E M  4.5.1 Let R be a Euclidean ring; then a7ry finitely generated R-
module, M, is the direct sum !if a finite number !if cyclic submodules. 

Proof. Before becoming involved with the machinery of the proof, let us 
see what the theorem states. The assumption that M is finitely generated 
tells us that there is a set of elements a1,  • • •  , an E M  such that every ele­
ment in M can be expressed in the form r1a1 + r2a2 + · · · + rnan, where 
the r1 E R. The conclusion of the theorem states that when R is properly 
conditioned we can, in fact, find some other set of elements b1 , • • •  , bq in 
M such that every element m E  M can be expressed in a unique fashion 
as m = s1b1 + · · · + siq with s1 e R. A remark about this uniqueness;  it 
does not mean that the s1 are unique, in fact this may be false ; it merely 
states that the elements s1b1 are. That is, if m = s1 b1 + · · · + siq and 
m = s�b1 + · · · + s�bq we cannot draw the conclusion that s1 = sJ., 
s2 = s;, . . .  , sq = s�, but rather, we can infer from this that s1b1 = 
s�b1 ,  • • •  , si11 = s�bq. 

Another remark before we start with the technical argument. Although 
the theorem is stated for a general Euclidean ring, we shall give the proof in 
all its detail only for the special case of the ring of integers. At the end we 
shall indicate the slight modifications needed to make the proof go through 
for the more general setting. We have chosen this path to avoid cluttering 
up the essential ideas, which are the same in the general case, with some 
technical niceties which are of no importance. 

Thus we are simply assuming that M is an abelian group which has a 
finite-generating set. Let us call those generating sets having as few elements 
as possible minimal generating sets and the number of elements in such a 
minimal generating set the rank of M. 

Our proof now proceeds by induction on the rank of M. 
If the rank of M is 1 then M is generated by a single element, hence i t  is 

cyclic ; in this case the theorem is true. Suppose that the result is true for all 
abelian groups of rank q - I ,  and that M is of rank q. 

Given any minimal generating set all . . .  , aq of M, if any relation of the 
form n1a1 + n2a2 + · · · + nqaq 0 (np . . .  , nq integers) implies that 
n1 a1 = n2a2 = · · · nqaq 0, then M is the direct sum of M1, M2, • • •  , Mq 
where each M1 is the cyclic module (i.e., subgroup) generated by a1, and 
so we would be done. Consequently, given any minimal generating set 
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b1, • • •  , bq of M, there must be integers r1 , • • •  , rq such that r1b1 + · · · + 
rqbq = 0 and in which not all of r1 b1 ,  r2b2, • • •  , rqbq are 0. Among all 
possible such relations for all minimal generating sets there is a smallest 
possible positive integer occurring as a coefficient. Let this integer be s1 
and let the generating set for which it occurs be a1, • • •  , aq. Thus 

( I )  

We claim that if r1a1 + · · · + rqaq = 0, then s1 I r1 ; for r1 = ms1 + t, 
0 .:5: t < s1, and so multiplying Equation ( I )  by m and subtracting from 
r1a1 + · · · + rqaq = 0 leads to ta1 + (r2 - ms2)a2 + · · · + (r9 - msq)aq = 
0 ;  since t < s1 and s1 is the minimal possible positive integer in such a 
relation, we must have that t = 0. 

We now further claim that s1 I s1 for i = 2, . . .  , q. Suppose not ; then 
s1 ,j' s2, say, so s2 = m2s1 + t, 0 < t < s1 • Now a� = a1 + m2a2, a2, • • •  , aq 
also generate M, yet s1a�  + ta2 + s3q3 + · · · + sqaq = 0 ;  thus t occurs 
as a coefficient in some relation among elements of a minimal generating 
set. But this forces, by the very choice of s1 , that either t = 0 or t � s1 • 
We are left with t = 0 and so s1 I s2 • Similarly for the other s1• Let us 
write s1 = m1s1 • 

Consider the elements ai = a1 + m2a2 + m3a3 + · · · + mqaq, a2, • • •  , aq. 
They generate M; moreover, s1ai = s1a1 + m2s1a2 + · · · + m�1aq = 
s1a1 + s2a2 + · · · + sqaq = 0. If r1ai + r2a2 + · · · + rqaq = 0, substitut­
ing for ai, we get a relation between a1, • • •  , aq in which the coefficient of 
a1 is r1 ; thus s1 I r1 and so r1ai = 0. If M1 is the cyclic module generated 
by ai and if M2 is the submodule of M generated by a2 , • • •  , aq, we have 
just shown that M1 n M2 = (0) . But M1 + M2 = M since ai, a2, • • •  , aq 
generate M. Thus M is the direct sum of M1 and M2• Since M2 is generated 
by a2, • • •  , aq, its rank is at most q - I (in fact, it is q - I ) ,  so by the 
induction M2 is the direct sum of cyclic modules. Putting the pieces together 
we have decomposed M into a direct sum of cyclic modules. 

CORO LLARY Any finite abelian group is the direct product (sum) of cyclic 
groups. 

Proof. The finite abelian group G is certainly finitely generated ; in 
fact it is generated by the finite set consisting of all its elements. Therefore 
applying Theorem 4.5. 1 yields the corollary. This is, of course, the result 
proved in Theorem 2 . 14. 1 .  

Suppose that R is a Euclidean ring with Euclidean function d. We 
modify the proof given for the integers to one for R as follows : 
I .  Instead of choosing s1 as the smallest possible positive integer occurring 

in any relation among elements of a generating set, pick it as that element 
of R occurring in any relation whose d-value is minimal. 
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1 0. An R-module M is said to be irreducible if its only submodules are (0) 
and M. Prove that any unital, irreducible R-module is cyclic. 

I I . If M is an irreducible R-module, prove that either M is cyclic or that 
for every m e M and r e R, rm = 0. 

* 12. If M is an irreducible R-module such that rm :I= 0 for some r e R 
and m e M, prove that any R-homomorphism T of M into M is either 
an isomorphism of M onto M or that m T = 0 for every m e M. 

1 3. Let M be an R-module and let E(M) be the set ofall R-homomorphisms 
of M into M. Make appropriate defnitions of addition and multi­
plication of elements of E(M) so that E(M) becomes a ring. (Hint : 
imitate what has been done for Hom ( V, V), V a vector space.) 

"' 14. If M is an irreducible R-module such that rm :I= 0 for some r e R  
and m E  M, prove that E(M) is a division ring. (This result is known 
as Schur's lemma.) 

1 5. Give a complete proof of Theorem 4.5. I for finitely generated modules 
over Euclidean rings. 

1 6. Let M be an R-module; if m E M  let l(m) = {x e R I xm = 0}. 
Show that l(m) is  a left-ideal of R. It is called the order of m. 

1 7. If l is a left-ideal of R and if M is an R-module, show that for m e  M, 
lm = {xm I x E .A.} is a submodule of M. 

* 18. Let M be an irreducible R-module in which rm :I= 0 for some r E R 
and m E  M. Let mo ¥= 0 E M and let l(mo) = {x E R I xmo = 0}. 
(a) Prove that l (mo) is a maximal left-ideal of R (that is, if l is a 

left-ideal of R such that R => l => l(mo), then l = R or l = 
.A.(mo) ) .  

(b) As R-modules, prove that M i s  isomorphic to R - l(m0) (see 
Example 4.5.4). 

Supplementary Reading 

HAI.Mos, PAUL R., Finite-Dimensional Vector SptU:es, 2nd ed. Princeton, N.J. : D. Van 
Nostrand Company, Inc., 1 958. 



5 
Fields 

In our discussion of rings we have already singled out a special class 
which we called fields. A field, let us recall, is a commutative ring 
with unit element in which every nonzero element has a multiplicative 
inverse. Put another way, a field is a commutative ring in which we 
can divide by any nonzero element. 

Fields play a central role in algebra. For one thing, results about 
them find important applications in the theory of numbers. For 
another, their theory encompasses the subject matter of the theory of 
equations which treats questions about the roots of polynomials. 

In our development we shall touch only lightly on the field of 
algebraic numbers. Instead, our greatest emphasis will be on aspects 
of field theory which impinge on the theory of equations. Although 
we shall not treat the material in its fullest or most general form, we 
shall go far enough to introduce some of the beautiful ideas, due to 
the brilliant French mathematician Evariste Galois, which have 
served as a guiding inspiration for algebra as it is today. 

5.1 Extension Fields 

In this section we shall be concerned with the relation of one field to 
another. Let F be a field ; a field K is said to be an extension of F if K 
contains F. Equivalently, K is an extension of F ifF is a subfield of K. 
Throughout this chapter F will denote a given fold and K an extension of F. 

As was pointed out earlier, in the chapter on vector spaces, if K is 
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an extension of F, then, under the ordinary field operations in K, K is a vector 
space over F. As a vector space we may talk about linear dependence, 
dimension, bases, etc., in K relative to F. 

D E FI N ITION The degree of K over F is the dimension of K as a vector 
space over F. 

We shall always denote the degree of K over F by [K:F] . Of particular 
interest to us is the case in which [ K :F] is finite, that is, when K is finite­
dimensional as a vector space over F. This situation is described by saying 
that K is a finite extension of F. 

We start offwith a relatively simple but, at the same time, highly effective 
result about finite extensions, namely, 

T H E O R E M  5.1 .1  .if L is afinite extension of K and if K is afinite extension of 
F, then L is afinite extension of F. Moreover, [L:F] = [L :K] [K:F] . 

Proof. The strategy we employ in the proof is to write down explicitly 
a basis of L over F. In this way not only do we show that L is a finite 
extension of F, but we actually prove the sharper result and the one which 
is really the heart of the theorem, namely that [L :F] = [L :K] [K:F] . 

Suppose, then, that [L :K] = m and that [K:F] = n. Let v1, . . •  , vm 
be a basis of L over K and let w1, • • .  , wn be a basis of K over F. What 
could possibly be nicer or more natural than to have the elements 111wi, 
where i = 1 ,  2, . . .  , m, j = 1 ,  2, . . .  , n, serve as a basis of L over F? 
Whatever else, they do at least provide us with the right number of elements. 
We now proceed to show that they do in fact form a basis of L over F. 
What do we need to establish this? First we must show that every element 
in L is a linear combination of them with coefficients in F, and then we 
must demonstrate that these mn elements are linearly independent over F. 

Let t be any element in L. Since every element in L is a linear combination 
of v1, • . .  , vm with coefficients in K, in particular, t must be of this form. 
Thus t = k1v1 + · · · + kmvm, where the elements k1 , . . .  , km are all in K. 
However, every element in K is a linear combination of w1, . • •  , wn with 
coefficients in F. Thus k1 = f11w1 + · · ·  + f1nwn, . . .  , k1 = f11w1 + · · ·  + 
finwn, . . .  , km = fm1w1 + · · · + fmnwn, where every jji is in F. 

Substituting these expressions for k1, • . •  , km into t = k1v1 + · · · + kmvm, 
we obtain t = (fuwl + · · · + f1 nwn)v1 + · · · + (fmlwl + · · · + fmnwn)vm 
Multiplying this out, using the distributive and associative laws, we finally 
arrive at t = f11v1w1 + · · · + f1 nv1wn + · · · + fuviwi + · · · + fmnvmwn. 
Since the fu are in F, we have realized t as a linear combination over F of 
the elements v1wi. Therefore, the elements v1wi do indeed span all of L over 
F, and so they fulfill the first requisite property of a basis. 
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We still must show that the elements V;Wi are linearly independent over F. 
Suppose that j11v1w1 + · · · + ftnv1w. + · · · + jiiviwi + · · · + fmnvmwn = 0, 
where the fii are in F. Our objective is to prove that each fii = 0. Re­
grouping the above expression yields (j1 1w1 + · · · + f1.w.)v1 + · · · + 
(fnw1 + · · · + finw.) v; + · · · + (fm1w1 + · · · + fmnw.)vm = 0. 

Since the W; are in K, and since K :: F, all the elements k; = fnw1 + · · · 
+ finwn are in K. Now k1v1 + · · · + kmvm = 0 with k1, • • .  , km E K. But, 
by assumption, v1, . . •  , vm form a basis of L over K, so, in particular they 
must be linearly independent over K. The net result- of this is that k1 = 
k2 = · · · = km = 0. Using the explicit values of the k;, we get 

for i = 1 ,  2, . . .  , m. 

But now we invoke the fact that the W; are linearly independent over F; 
this yields that each fii = 0. In other words, we have proved that the 
V;Wi are linearly independent over F. In this way they satisfy the other 
requisite property for a basis. 

We have now succeeded in proving that the mn elements V;Wi form a 
basis of L over F. Thus [ L :F] = mn ; since m = [ L :K] and n = [ K :F] 
we have obtained the desired result [L:F] = [L :K] [K:F] . 

Suppose that L, K, F are three fields in the relation L :: K :: F and, 
suppose further that [L:F] is finite. Clearly, any elements in L linearly 
independent over K are, all the more so, linearly independent over F. 
Thus the assumption that [L:F] is finite forces the conclusion that [L:K] 
is finite. Also, since K is a subspace of L, [K:F] is finite. By the theorem, 
[L :F] = [L :K] [K :F], whence [K:F] I [L :F] . We have proved the 

CORO LLARY If L is a finite extension qf F and K is a subfield of L which 
contains F, then [ K :F] I [ L :F] . 

Thus, for instance, if [L:F] is a prime number, then there can be no 
fields properly between F and L. A little later, in Section 5.4, when we 
discuss the construction of certain geometric figures by straightedge and 
compass, this corollary will be of great significance. 

D EF I N ITION An element a E K is said to be algebraic over F if there exist 
elements IXo, ex1, . . .  , ex. in F, not all 0, such that ex0a" + ex1 a•- 1 + · · · + 
ex. = 0. 

If the polynomial q(x) E F[x], the ring of polynomials in x over F, and 
if q(x) = Po� + P1xm- l 

+ · · · + Pm, then for any element b E  K, by q(b) 
we shall mean the element Pohm 

+ P1h
m- 1 

+ · · · + Pm in K. In the ex­
pression commonly used, q(b) is the value of the polynomial q(x) obtained 
by substituting b for x. The element b is said to satisfy q(x) if q(b) = 0. 
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In these terms, a e K is algebraic over F if there is a nonzero polynomial 
p(x) e F[x] which a satisfies, that is, for which p(a) = 0. 

Let K be an extension of F and let a be in K. Let Jt be the collection of 
all subfields of K which contain both F and a. Jt is not empty, for K itself 
is an element of Jt. Now, as is easily proved, the intersection of any number 
of subfields of K is again a subfield of K. Thus the intersection of all those 
subfields of K which are members of Jt is a subfield of K. We denote this 
subfield by F(a) . What are its properties ? Certainly it contains both F 
and a, since this is true for every subfield of K which is a member of Jt. 
Moreover, by the very definition of intersection, every subfield of K in Jt 
contains F(a) , yet F (a) itself is in .A. Thus F(a) is the smallest subfeld tif K 
containing both F and a. We call F(a) the subfield obtained by adjoining a to F. 

Our description of F(a), so far, has been purely an external one. We now 
give an alternative and more constructive description of F(a) . Consider all 
these elements in K which can be expressed in the form Po + P1a + · · · + P.a• ; 
here the P's can range freely over F and s can be any nonnegative integer. 
As elements in K, one such element can be divided by another, provided 
the latter is not 0. Let lJ be the set of all such quotients. VVe leave it as 
an exercise to prove that lJ is a subfield of K. 

On one hand, lJ certainly contains F and a, whence lJ :: F(a) . On 
the other hand, any subfield of K which contains both F and a, by virtue 
of closure under addition and multiplication, must contain all the elements 
Po + P1a + · · · + P.a• where each P; e F. Thus F(a) must contain all 
these elements ; being a subfield of K, F(a) must also contain all quotients 
of such elements. Therefore, F(a) :: lf. The two relations lJ c: F(a), 
U => F(a) of course imply that lJ = F(a) . In this way we have obtained 
an internal construction of F(a), namely <i;S U. 

We now intertwine the property that a E K is algebraic over F with 
macroscopic properties of the field F(a) itself. This is 

T H E O R E M  5.1 .2 The element a E K is algebraic over F if and only if F(a) 
is a finite extension qf F. 

Proof. As is so very common with so many such "if and only if" pro­
positions, one-half of the proof will be quite straightforward and easy, 
whereas the other half will be deeper and more complicated. 

Suppose that F(a) is a finite extension of F and that [F(a) :F] = m. 
Consider the elements 1 ,  a, a2, • • •  , am ; they are all in F(a) and are m + I  
in number. By Lemma 4.2 .4, these elements are linearly dependent over 
F. Therefore, there are elements txo, cc 1, • • •  , cc

m 
in F, not all 0, such that 

cc01 + cc1 a + r:t.2a2 + · · · + t:t.mam = 0. Hence a is algebraic over F and 
satisfies the nonzero polynomial p(x) = txo + t:t.1x + · · · + r:t./ in F[x] 
of degree at most m = [F(a) :F) . This proves the "if" part of the theorem. 

Now to the "only if" part. Suppose that a in K is algebraic over F. By 
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assumption, a satisfies some nonzero polynomial in F[x] ; let p(x) be a 
polynomial in F[x] of smallest positive degree such that p(a) = 0. We 
claim that p(x) is irreducible over F. For, suppose that p(x) = f (x)g (x) , 
where f (x), g (x) e F[x] ; then 0 = P(a) = f (a)g(a) (see Problem I )  and, 
since f (a) and g(a) are elements of the field K, the fact that their product 
is 0 forces f (a) = 0 or g(a) = 0. Since p(x) is of lowest positive degree 
with p(a) = 0, we must conclude that one of deg f (x) � deg p(x) or 
deg g(x) � deg p(x) must hold. But this proves the irreducibility of p(x) . 

We define the mapping t/1 from F[x] into F(a) as follows. For any 
h(x) E F[x] , h (x) t/J = h(a). We leave it to the reader to verify that t/J is a 
ring homomorphism of the ring F[x] into the field F (a) (see Problem 1 ) .  
What is V, the kernel of t/J ?  By the very definition of t/1, V = 
{h(x) E F[x] I h(a) = 0}. Also, p(x) is an element of lowest degree in the 
ideal Vof F [x] . By the results of Section 3.9, every element in Vis a multiple 
of p(x) , and since p(x) is irreducible, by Lemma 3.9.6, V is a maximal ideal 
of F[x] . By Theorem 3.5. 1 ,  F[x] fV  is a field. Now by the general homo­
morphism theorem for rings (Theorem 3.4. 1 ) ,  F[x] f V  is isomorphic to the 
image of F[x] under t/J. Summarizi.ng, we have shown that the image of 
F[x] under t/J is a subfield of F(a) . This image contains xt/J = a and, for 
every ct. E F, ct.t/1 ='ct.. Thus the image of F[x] under t/1 is a subfield of 
F[a] which contains both F and a ;  by the very definition of F(a) we are 
forced to conclude that the image of F [x] under t/1 is all of F(a). Put more 
succinctly, F[x] fV  is isomorphic to F(a) . 

Now, V = (p(x) ) ,  the ideal generated by p(x) ; from this we claim that 
the dimension of F[x] /V, as a vector space over F, is precisely equal to 
deg p(x) (see Problem 2) . In view of the isomorphism between F[x] f V and 
F (a) we obtain the fact that [F(a) :F] = deg p(x) . Therefore, [F(a) :F] is 
certainly finite ; this is the contention of the "only if" part of the theorem. 
Note that we have actually proved more, namely that [F(a) :F] is equal to 
the degree of the polynomial of least degree satisfied by a over F. 

The proof we have just given has been somewhat long-winded, but 
deliberately so. The route followed contains important ideas and ties in 
results and concepts developed earlier with the current exposition. No part 
of mathematics is an island unto itself. 

We now redo the "only if" part, working more on the inside of F(a) . 
This reworking is, in fact, really identical with the proof already given ; the 
constituent pieces are merely somewhat differently garbed. 

Again let p (x) be a polynomial over F of lowest positive degree satisfied 
by a. Such a polynomial is called a minimal polynomial for a over F. We 
may assume that its coefficient of the highest power of x is 1 ,  that is, it is 
monic ; in that case we can speak of the minimal polynomial for a over F 
for any two minimal, monic polynomials for a over F are equal. (Prove !) 

21 1 
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Suppose that p(x) is of degree n ;  thus p(x) = x" + a1x" 1 + · · · + a,. 
where the a; are in F. By assumption, a• + a1a" 1  + · · · + a, = 0, 
whence a" = - a1a" 1 - a2a" 2 · · · - a,. What about a"+ 1 ? From 
the above, a"+ 1 = -a1a" - a2a" 1  - • • • - a,a; if we substitute the 
expression for a• into the right-hand side of this relation, we realize a"+ 1 
as a linear combination of the elements I ,  a, . . .  , a" 1  over F. Con­
tinuing this way, we get that a"+k, for k ;;: 0, is a linear combination over 
F of I ,  a, a2, • • •  , a" 1 •  

Now consider T {Po + P1a + · · · + p,_ 1a"- 1 I P0, P1 , • • • , p,_1 E F}. 
Clearly, T is closed under addition ; in view of the remarks made in the 
paragraph above, it is also closed under multiplication. Whatever further 
it may be, T has at least been shown to be a ring. Moreover, T contains 
both F and a. We now wish to show that T is more than just a ring, that 
it is, in fact, a field. 

Let 0 ;:p u = Po + P1a + · · · + p,_1a• l be in T and let h(x) = Po + 
P1x + · · · + p,_ 1x"

1 E F [x]. Since u ;:p 0, and u = h(a), we have that 
h(a) ;:p 0, whence p(x) -( h(x). By the irreducibility of p(x) , p(x) and h(x) 
must therefore be relatively prime. Hence we can find polynomials s(x) 
and t (x) in F[x] such that p(x)s (x) + h(x) t (x) = 1 .  But then I = 
p(a)s(a) + h(a)t (a) = h(a) t (a) , since p(a) = 0;  putting into this that 
u = h (a), we obtain ut (a) = 1 .  The inverse of u is thus t (a) ; in t (a) all 
powers of a higher than n - I can be replaced by linear combinations of I ,  
a, . . .  , a" 1 over F, whence t (a) E T. We have shown that every nonzero 
element of T has its inverse in T; consequently, T is a field. However, 
T c F(a) , yet F and a are both contained in T, which results in T = F(a) . 
We have identified F(a) as the set of all expressions Po + P1a + · · · + 
Pn lan 1. 

Now T is spanned over F by the elements I ,  a, . . .  , a" 1  in consequence 
of which [T:F] s; n. However, the elements I ,  a, a2, • • •  , a• I are 
linearly independent over F, for any relation of the form Yo + y1a + · · · 
+ y, _1 a" 1 , with the elements )I; e F, leads to the conclusion that a 
satisfies the polynomial y0 + y1x + · · · + y,_ 1x" 1  over F of degree 
less than n. This contradiction proves the linear independence of I ,  a, . . .  , 
a" 1, and so these elements actually form a basis of T over F, whence, in 
fact, we now know that [T:F] = n. Since T = F(a), the result 
[F(a) :F] = n follows. 

D E FI N ITION The element a E K is said to be algebraic cif degree n over 
F if it satisfies a nonzero polynomial over F of degree n but no nonzero 
polynomial of lower degree. 

In the course of proving Theorem 5. 1 .2 (in each proof we gave), we proved 
a somewhat sharper result than that stated in that theorem, namely, 
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TH EO R E M  5.1 .3 .if a E K is algebraic of degree n over F, then [F(a) :F] = n. 

This result adapts itself to many uses. We give now, as an immediate 
consequence thereof, the very interesting 

TH EO R E M  5.1 .4 .(f a, b in K are algebraic over F then a ±  b, ab, and afb 
(if b # 0) are all algebraic over F. In other words, the elements in K which are 
algebraic over F form a subfield if K. 

Proof. Suppose that a is algebraic of degree m over F while b is algebraic 
of degree n over F. By Theorem 5. 1 . 3  the subfield T = F(a) of K is of 
degree m over F. Now b is algebraic of degree n over F, a fortiori it is algebraic 
of degree at most n over T which contains F. Thus the subfield W = T(b) 
of K, again by Theorem 5. 1 .3, is of degree at most n over T. But [ W :F] = 
[ W:T][ T:F] by Theorem 5. 1 . 1 ; therefore, [ W:F] ::; mn and so W is a 
finite extension of F. However, a and b are both in W, whence all of 
a ± b, ab, and afb are in W. By Theorem 5. 1 .2, since [ W:F] is finite, 
these elements must be algebraic over F, thereby proving the theorem. 

Here, too, we have proved somewhat more. Since [W:F] ::; mn, every 
element in W satisfies a polynomial of degree at most mn over F, whence the 

CO R O LLARY .if a and b in K are algebraic over F if degrees m and n, respectively, 
then a ± b, ab, and afb (if b # 0) are algebraic over F if degree at most mn. 

In the proof of the last theorem we made two extensions of the field F. 
The first we called T; it was merely the field P(a) . The second we called W 
and it was T(b). Thus W = (F(a) ) (b) ; it is customary to write it as 
F(a, b) .  Similarly, we could speak about F(b, a) ; it is not too difficult to 
prove that F(a, b) = F(b, a) . Continuing this pattern, we can define 
F(a1 , a2, • • •  , an) for elements a1 , • . .  , an in K. 

D EF I N ITI O N  The extension K of F is called an algebraic extension of F 
if every element in K is algebraic over F. 

We prove one more result along the lines of the theorems we have proved 
so far. 

TH EO R EM 5.1 .5 .if L is an algebraic extension if K and if K is an algebraic 
extension ifF, then L is an algebraic extension if F. 

Proof. Let u be any arbitrary element of L ;  our objective is to show that 
u satisfies some nontrivial polynomial with coefficients in F. What infor­
mation do we have at present? We certainly do know that u satisfies some 

21 3 
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polynomial x" + u1 x"- 1 + · · · + a"' where Up • • •  , an are in K. But K 
is algebraic over F; therefore, by several uses of Theorem 5 . 1 .3, M = 

F(u1 , • • •  , an) is a finite extension of F. Since u satisfies the polynomial 
x" + u1 x"- 1 + · · · + an whose coefficients are in M, u is algebraic over 
M. Invoking Theorem 5. 1 .2 yields that M(u) is a finite extension of M. 
However, by Theorem 5. 1 . 1 ,  [M(u) :F] = [M(u) :M] [M:F], whence 
M(u) is a finite extension of F. But this implies that u is algebraic over F, 
completing proof of the theorem. 

A quick description ofTheorem 5. 1 .5 :  algebraic over algebraic is algebraic. 

The preceding results are of special interest in the particular case in 
which F is the field of rational numbers and K the feld of complex numbers. 

D E F I N ITI O N  A complex number is said to be an algebraic number if it is 
algebraic over the feld of rational numbers. 

A complex number which is not algebraic is called transcendental. At the 
present stage we have no reason to suppose that there are any transcendental 
numbers. In the next section we shall prove that the familiar real number 
e is transcendentaL This will, of course, establish the existence of trans­
cendental numbers. In actual fact, they exist in great abundance ; in a 
very well-defned way there are more of them than there are algebraic 
numbers. 

Theorem 5. 1 .4 applied to algebraic numbers proves the interesting fact 
that the algebraic numbers form afield; that is, the sum, products, and quotients 
of algebraic numbers are again algebraic numbers. 

Theorem 5. 1 .5 when used in conjunction with the so-called "fundamental 
theorem of algebra," has the implication that the roots of a polynomial 
whose coefficients are algebraic numbers are themselves algebraic numbers. 

Problems 

I .  Prove that the mapping ljt :F[x] -+ F(a) defined by h(x) ljt = h(a) 
is a homomorphism. 

2. Let F be a field and let F[x] be the ring of polynomials in x over F. 
Let g(x) , of degree n, be in F[x] and let V = (g(x) ) be the ideal 
generated by g(x) in F[x] . Prove that F[x]f V is an n-dimensional 
vector space over F. 

3. (a) If V is a finite-dimensional vector space over the field K, and if 
F is a subfield of K such that [K:F] is finite, show that V is a 
finite-dimensional vector space over F and that moreover 
dimF (V)  = (dimx ( V) ) ((K :F]) . 

(b) Show that Theorem 5. 1 . 1  is a special case of the result of part (a). 
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4. (a) Let R be the field of real numbers and Q the field of rational 
numbers. In R, .J2 and .J3 are both algebraic over Q. Exhibit 
a polynomial of degree 4 over Q satisfied by .J2 + .Ji 

(b) What is the degree of .J2 + .J3 over Q ?  Prove your answer. 
(c) What is the degree of .J2 .J3 over Q?  

5 .  With the same notation as in Problem 4 ,  show that .J2 + lf5 is 
algebraic over Q of degree 6. 

*6. (a) Find an element u e R such that Q( .J2, �5) = Q(u). 
(b) In Q( .J2, �5) characterize all the elements w such that Q(w) 'f. 

Q(.J2, �5) . 
7. (a) Prove that F(a, b) F(b, a) . 

(b) If (i1 , i2, • • •  , i,) is any permutation of ( 1 ,  2, . . . , n), prove that 

F(a1, • • •  , a,) = F(a11 , a12, • • • , a1J. 

8. If a, b e K are algebraic over F of degrees m and n, respectively, 
and if m and n are relatively prime, prove that F(a, b) is of degree mn 
over F. 

9. Suppose that F is a field having a finite number of elements, q. 
(a) Prove that there is a prime number p such that a +  a + ·  · · + a =  0 for all a e F. � 
(b) Prove that q = p" for some integer n. 
(c) If a e F, prove that aq = a. 
(d) If b e K is algebraic over F, prove bqm = b for some m > 0. 

An algebraic number a is said to be an algebraic integer if it satisfies an 
equation of the form am + o:1am- l  + · · · + o:m = 0, where CCv • • •  , o:m are 
integers. 

10. If a is any algebraic number, prove that there is a positive integer n 
such that na is an algebraic integer. 

1 1 .  If the rational number r is also an algebraic integer, prove that r 
must be an ordinary integer. 

1 2. If a is an algebraic integer and m is an ordinary integer, prove 
(a) a + m is an algebraic integer. 
(b) ma is an algebraic integer. 

13 .  If o: is an algebraic integer satisfying o:3 + o: + 1 = 0 and fJ is an 
algebraic integer satisfying {32 + fJ - 3 0, prove that both 
ct + fJ and o:{J are algebraic integers. 

* *  14. (a) Prove that the sum of two algebraic integers is an algebraic 
integer. 

21 5 
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{b) Prove that the product of two algebraic integers is an algebraic 
integer. 

1 5. (a) Prove that sin 1 °  is an algebraic number. 
(b) From part (a) prove that sin m0 is an algebraic number for any 

integer m. 

5.2 The Transcendence of e 

In defining algebraic and transcendental numbers we pointed out that it 
could be shown that transcendental numbers exist. One way of achieving 
this would be the demonstration that some specific number is transcendental. 

In  1 85 1  Liouville gave a criterion that a complex number be algebraic ;  
using this, he  was able to  write down a large collection of  transcendental 
numbers. For instance, it follows from his work that the number 
. 101 0010000001 00 . . .  1 0  . . .  is transcendental ; here the number of zeros 
between successive ones goes as 1 !, 2 !, . . . . . .  , n !, . . .  . 

This certainly settled the question of existence. However, the question 
whether some given, familiar numbers were transcendental still persisted. 
The first success in this direction was by Hermite, who in 1873 gave a proof 
that e is transcendental. His proof was greatly simplified by Hilbert. The 
proof that we shall give here is a variation, due to Hurwitz, of Hilbert's 
proof. 

The number 11: offered greater difficulties. These were finally overcome 
by Lindemann, who in I 882 produced a proof that 11: is transcendental. 
One immediate consequence of this is the fact that it is impossible, by 
straightedge and compass, to square the circle, for such a construction 
would lead to an algebraic number 0 such that 02 = 11:. But if 0 is algebraic 
then so is 02, in virtue of which 11: would be algebraic, in contradiction to 
Lindemann's result. 

In 1934, working independently, Gelfond and Schneider proved that if 
a and b are algebraic numbers and if b is irrational, then ab is transcendental. 
This answered in the affirmative the question raised by Hilbert whether 
2./2 was transcendental. 

For those interested in pursuing the subject of transcendental numbers 
further, we would strongly recommend the charming books by C. L. Siegel, 
entitled Transcendental Numbers, and by I. Niven, Irrational Numbers. 

To prove that e is irrational is easy ; to prove that 11: is irrational is much 
more difficult. For a very clever and neat proof of the latter, see the paper 
by Niven entitled "A simple proof that 11: is irrational," Bulletin of the American 
Mathematical Society, Vol. 53 ( 1 947), page 509. 

Now to the transcendence of e. Aside from its intrinsic interest, its proof 
offers us a change of pace. Up to this point all our arguments have been of 
an algebraic nature; now, for a short while, we return to the more familiar 
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grounds of the calculus. The proof itself will use only elementary calculus ; 
the deepest result needed, therefrom, will be the mean value theorem. 

T H E O R E M  5.2.1 The number e is transcendental. 

Proof. In the proof we shall use the standard notation f(i> (x) to denote 
the ith derivative off (x) with respect to x. 

Suppose that f (x) is a polynomial of degree r with real coefficients. 
Let F(x) = f (x) + J( l> (x) + J(2> (x) + · · · + j<'> (x) . We compute 
(dfdx) (e-xF(x)) ; using the fact thatj<r+ I > (x) = 0 (sincef(x) is of degree r) 
and the basic property of e, namely that (dfdx)ex = eX, we obtain 
(dfdx) (e-xF(x)) = -e-xj (x) . 

The mean value theorem asserts that if g(x) is a continuously differentiable, 
single-valued function on the closed interval [xi , x2] then 

where 0 < () < 1 .  

We apply this to our function e-xF(x), which certainly satisfies all the 
required conditions for the mean value theorem on the closed interval 
[xi ,  x2] where xi = 0 and x2 = k, where k is any positive integer. We then 
obtain that e-kF(k) - F(O) = -e-8k"j (()kk)k, where Ok depends on k and 
is some real number between 0 and 1 .  Multiplying this relation through by 
ek yields F(k) - F(O)ek = - eO -Bk>"J (()kk)k. We write this out explicitly : 

F( l )  - eF(O) = _p -el)j (()I ) = ei ,  

F(2) - e2F(O) = - 2e20 -81>j(2()2) = e2, ( 1 )  

Suppose now that e is an algebraic number; then it satisfies some relation 
of the form 

(2) 

where c0, ci , . . .  , c. are integers and where c0 > 0. 
In the relations ( 1 )  let us multiply the first equation by ci , the second by 

c2, and so on ; adding these up we get ciF(l ) + c2F(2) + · · · + c.F(n) -
F(O) (c1e + c2e2 + · · · + c.e") = ciei + c2e2 + · · · + c.e • . 

In view of relation (2) , cie + c2e2 + · · · + c.e" = - c0, whence the 
above equation simplifies to 

All this discussion has held for the F(x) constructed from an arbitrary 
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polynomial J (x) . We now see what all this implies for a very specific 
polynomial, one first used by Hermite, namely, 

J (x) = 
1 xr 1 ( l  - x)P(2 - x)P · · · (n - x)P. 

(p - l ) ! 

Here p can be any prime number chosen so that p > n and p > c0• For 
this polynomial we shall take a very close look at F (0) , F ( l ) ,  . . .  , F ( n) 
and we shall carry out an estimate on the size of 81 0 82, • • •  , 8,. 

When expanded,] (x) is a polynomial of the form 

 p- 1 aoxP  
X + + + . • • ' 

(p - 1 ) !  (p - 1 ) !  (p - 1 ) !  

where a0, a1 , • • .  , are integers. 
When i � p we claim that jCi> (x) is a polynomial, with coefficients 

which are integers all of which are multiples of p. (Prove ! See Problem 2.) 
Thus for any integer j, jCi>(j), for i � p, is an integer and is a multiple qf p. 

Now, from its very definition,j(x) has a root of multiplicity p at x = I, 2, 
. . . , n. Thus for j = I, 2, . . . , n,J (j) = O,j( ll (j) = 0, . . .  , J <r 1> (j) = 0. 
However, F(j) = j (j) + j(ll(j) + . . .  + pr 1l(j) + J<P> (j) + . . .  + 

j<•>(j) ; by the discussion above, for j = I ,  2, . . .  , n, F(j) is an integer and 
is a multiple qf p. 

What about F(O) ? Sincef (x) has a root of multiplicity p - I at x = 0, 
J (0) = j(ll (O) = · · · = pr 2> (0) = 0. For i � p, j<il (O) is an integer 
which is a multiple of p. But J<P- 1> (0) = (n !)P and since p > n and is a 
prime number, p ../" (n !)P so that j<r 1> (0) is an integer not divisible by p. 
Since F(O) = J (0) + j( ll (O) + · · · + j<P- 2>(0) + j<P- 1 >(0) + j<P>(O) + 
· · · + j<•>(O) , we conclude that F(O) is an integer not divisible by p. Because 
c0 > 0 and p > c0 and because P ../" F(O) whereas P I F( l ) , P I F(2) , . . .  , 
p I  F (n) , we can assert that c0F(O) + c1F( l )  + · · · + c,F(n) is an integer 
and is not divisible by p. 

However, by (3), c0F(O) + c1F(l )  + · · · + c,F(n) = c181 + · · · + c,8,. 
What can we say about e1? Let us recall that 

 -  • • •  -  8; = 
(p - I ) ! 

where 0 < (}1 < 1 .  Thus 

As p  --+ oo ,  
 --+ 0' 

(p - I ) ! 
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q(x) . Since q(x) is of degree n - m < n, by our induction hypothesis, q(x) 
has at most n - m roots in K, which, together with the other root a, 
counted m times, tells us that p(x) has at most m + (n m) = n roots in 
K. This completes the induction and proves the lemma. 

One should point out that commutativity is essential in Lemma 5.3.2. 
If we consider the ring of real quaternions, which falls short of being a field 
only in that it fails to be commutative, then the polynomial x2 + I has at 
least 3 roots, i,j, k (in fact, it has an infinite number of roots). In a some­
what different direction we need, even when the ring is commutative, that 
it be an integral domain, for if ab = 0 with a ::f:. 0 and b ::f:. 0 in the com­
mutative ring R, then the polynomial ax of degree 1 over R has at least 
two distinct roots x = 0 and x b in R. 

The previous two lemmas, while interesting, are of subsidiary interest. 
We now set ourselves to our prime task, that of providing ourselves with 
suitable extensions of F in which a given polynomial has roots. Once this is 
done, we shall be able to analyze such extensions to a reasonable enough 
degree of accuracy to get results. The most important step in the construction 
is accomplished for us in the next theorem. The argument used will be very 
reminiscent of some used in Section 5. 1 .  

THEO R E M  5.3.1 lf p(x) is a polynomial in F[x] of degree n ;;: I and is 
irreducible over F, then there is an extension E ofF, such that [E:F] = n, in which 
p(x) has a root. 

Proof. Let F[x] be the ring of polynomials in x over F and let V = 
(p (x) ) be the ideal of F[x] generated by p(x) . By Lemma 3.9.6, V is a 
maximal ideal of F[x] , whence by Theorem 3.5. 1 ,  E F[x] f V is a field. 
This E will be shown to satisfy the conclusions of the theorem. 

First we want to show that E is an extension of F; however, in fact, it is 
not ! But let F be the image of F in E; that is, F = {a + V l oc e F}. We 
assert that F is a field isomorphic to F; in fact, if tfr is the mapping from 
F[x] into F[x] f V  = E defined by 1 (x)tfr = 1 (x) + V, then the restriction 
of t/1 to F induces an isomorphism of F onto F. (Prove !) Using this iso­
morphism, we identify F and F; in this way we can consider E to be an extension 
ofF. 

We claim that E is a fnite extension of F of degree n = deg p(x) , for the 
elements 1 + v, X +  v, (x + V) 2 = x2 + v, . . . , (x + V) 1 = x1 + v, . . . , 
(x + Vt- 1 = x"- 1  + V form a basis of E over F. (Prove !)  For con­
venience of notation let us denote the element xtfr x + V in the field 
E as a. Given 1 (x) E F[x] , what is 1 (x) tfr? We claim that it is merely 
1{a), for, since tfr is a homomorphism, if 1 (x) = Po + P1x + · · · + pi<;<, 
then 1 (x)tfr = Pol/! + (P1 l/l) (xl/J) + · · · + (Pktfr) (xl/J)k, and using the 
identification indicated above of fJt/1 with fJ, we see that 1 (x)l/J = 1 (a) . 
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In particular, smce p(x) E V, p(x)r/J = 0; however, p(x)r/J = p(a) . Thus 
the element a = xr/J in E is a  root qf p(x) . The field E has been shown to satisfy 
all the properties required in the conclusion of Theorem 5.3. 1 ,  and so this 
theorem is now proved. 

An immediate consequence of this theorem is the 

COROLLARY If f (x) E F[x], then there is a finite extension E qf F in which 
f (x) has a root. Moreover, [E:F] ;: degf (x) . 

Proof. Let p(x) be an irreducible factor off (x) ; any root of p(x) is a 
root ofj(x). By the theorem there is an extension E of F with [E:F] = 
deg p(x) ;: deg f(x) in which p(x), and so, j (x) has a root. 

Although it is, in actuality, a corollary to the above corollary, the next 
theorem is of such great importance that we single it out as a theorem. 

TH EO R E M  5.3.2 Let f (x) E F[x] be qf degree n � 1 .  Then there is an ex­
tension E qf F qf degree at most n !  in whichf (x) has n roots (and so, a full com­
plement of roots) . 

Proof. In the statement of the theorem, a root of multiplicity m is, of 
course, counted as m roots. 

By the above corollary there is an extension E0 of F with [ E0 :F] ;: n in 
whichf (x) has a root ex. Thus in E0[x] , J (x) factors asf (x) = (x - cx)q(x), 
where q(x) is of degree n - 1 .  Using induction (or continuing the above 
process) ,  there is an extension E of E0 of degree at most (n - 1 ) ! in which 
q(x) has n - 1 roots. Since any root ofj (x) is either ex or a root of q(x), we 
obtain in E all n roots ofj (x) . Now, [E:F] = [E:E0] [E0 :F] ;: (n - l ) !n = n !  
All the pieces of the theorem are now established. 

Theorem 5.3.2 asserts the existence of a finite extension E in which the 
given polynomial f (x) , of degree n, over F has n roots. Ifj(x) = a0xn 

+ 
a1xn- l + · · · + an, a0 # 0 and if the n roots in E are cx1, • . •  , cxn, making 
use of the corollary to Lemma 5 .3. l ,j (x) can be factored over E asf (x) = 
a0(x - cx1 ) (x - cx2) • • • (x - cxn) · Thus f(x) splits up completely over E 
as a product of linear (first degree) factors. Since a finite extension of F 
exists with this property, a finite extension of F qf minimal degree exists which 
also enjoys this property of decomposing] (x) as a product of linear factors. 
For such a minimal extension, no proper subfield has the property that 

f (x) factors over it into the product of linear factors. This prompts the 

D E FI N IT I O N  If f (x) E F[x], a finite extension E of F is said to be a 
splitting field over F for f (x) if over E (that is, in E [x]) ,  but not over any 
proper subfield of E, f (x) can be factored as a product of linear factors. 
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L E M MA 5.3.4 There is an isomorphism -,;** tif F[x] /(J (x)) onto F'[t]f(J' (t ) )  
with the property that.for every rx e F, ex-,;** = a.', (x + (f(x)) )1:** = t + (f' (t)) .  

Proof. Before starting with the proof proper, we should make clear what 
is meant by the last part of the statement of the lemma. As we have already 
done several times, we can consider F as imbedded in F[x] / (f(x)) by 
identifying the element ct e F with the coset rx + (f(x)) in F[x] f(f (x) ) .  
Similarly, we can consider F'  to b e  contained in F'[t ] / (f' (t ) ) .  The 
isomorphism -,;** is then supposed to satisfy [11. + (f(x) )] r* * = a' +  (j'(t ) ) .  

We seek an isomorphism -,;** of F[x]/ (f(x)) onto F'[t ] / (f' ( t ) ) . 
What could be simpler or more natural than to try the -,;**  defined by 
[g(x) + (f(x) ) ]-,;**  = g'(t) + (f' ( t ) )  for every g(x) e F[x] ? We leave 
it as an exercise to fill in the necessary details that the -,;* * so defined is well 
defined and is an isomorphism of F[x]f (f(x) ) onto F'[t] /(f ' (t ) )  with the 
properties needed to fulfill the statement of Lemma 5.3.4. 

For our purpose--that of proving the uniqueness of splitting fields­
Lemma 5.3.4 provides us with the entering wedge, for we can now prove 

TH EO REM 5.3.3 .lf p(x) is irreducible in F[x] and if v is a root qf p(x), then 
F(v) is isomorphic to F'(w) where w is a root of p'(t ) ; moreover, this isomorphism 
a can so be chosen that 

1 .  va = w. 
2. rxa = rx' for every a. e F. 

Proof. Let v be a root of the irreducible polynomial p(x) lying in some 
extension K of F. Let M = {f (x) e F[x] I f (v) = 0}. Trivially M is an 
ideal of F[x], and M ¥= F[x] . Since p(x) e M  and is an irreducible poly­
nomial, we have that M = (p(x) ) .  As in the proof of Theorem 5. 1 .2, map 
F[x] into F(v) c K by the mapping t/1 defined by q(x) t/1 = q(v) for every 
q(x) e F[x] . We saw earlier (in the proof of Theorem 5 . 1 .2) that t/1 maps 
F[x] onto F(v) . The kernel of t/1 is precisely M, so must be (p(x) ) .  By the 
fundamental homomorphism theorem for rings there is an isomorphism t/1* 
of F[x] f(p(x) ) onto F(v) . Note further that at/1* = rx for every a e F. 
Summing up : t/J*  is an isomorphism of F[x] f(p(x) ) onto F(v) leaving 
every element of F fixed and with the property that v = [x + (p(x)) ]t/1*. 

Since p(x) is irreducible in F[x] , p' (t) is irreducible in F'[t] (by Lemma 
5.3.3),  and so there is an isomorphism 9* of F'[t ] / (p' (t))  onto F' (w) where 
w is a root of p' (t) such that 8* leaves every element of F' fixed and such 
that [t + (p'( t ) ]9* = w. 

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma 
5.3.4 there is an isomorphism -,;**  of F[x]f (p(x) ) onto F'[t ] / (P' (t ) )  which 
coincides with 1: on F and which takes x + (p(x) ) onto t + (p' ( t ) ) .  Con-
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sider the mapping a = (l/1* ) - 1 r**O* (motivated by 

(1/J•J '  .,.. F'[t ]  o• 
F(v) � (p (x)) 

-
(p' ( t ) )

- F' (w)) 

of F(v) onto F'(w). It is an isomorphism of F(v) onto F'(w) since all the 
mapping 1/J* , 1:* *, and 0* are isomorphisms and onto. Moreover, since 
v = [x + (p(x) ) ]l/1*, va = (v(I/J* ) - 1)r**O* = ( [x + (p(x)]1:**)0* = 
[t + (p' ( t ) ) ]O* = w. Also, for a. e F, a.a = (a.(I*) - 1 ) r* *O* = (a.r**)O* 
a.'O* = a.'. We have shown that a is an isomorphism satisfying all the 
requirements of the isomorphism in the statement of the theorem. Thus 
Theorem 5.3.3 has been proved. 

A special case, but itself of interest, is the 

CORO LLARY lf p(x) e F[x] is irreducible and if a, b are two roots of p (x), 
then F (a) is isomorphic to F (b) by an isomorphism which takes a onto b and which 
leaves every element ofF fixed. 

We now come to the theorem which is, as we indicated earlier, the 
foundation stone on which the whole Galois theory rests. For us it is the 
focal point of this whole section. 

T H EOREM 5.3.4 Any splitting fields E and E' of the polynomials f(x) e F[x] 
and f'  (t) e F'[t], respectively, are isomorphic by an isomorphism ¢ with the prop­
erry that a.¢ = a.' for every a. e F. (In particular, any two splitting fields of the 
same polynomial over a given field F are isomorphic by an isomorphism leaving every 
element ofF fixed.) 

Proof. We should like to use an argument by induction ; in order to do 
so, we need an integer-valued indicator of size which we can decrease by 
some technique or other. We shall use as our indicator the degree of some 
splitting field over the initial field. It may seem artificial (in fact, it may 
even be artificial), but we use it because, as we shall soon see, Theorem 5.3.3 
provides us with the mechanism for decreasing it.  

If [E:F] = 1, then E = F, whence f (x) splits into a product of linear 
factors over F itself. By Lemma 5.3.3/'(t) splits over F' into a product of 
linear factors, hence E' = F'. But then ¢ = r provides us with an iso­
morphism of E onto E' coinciding with r on F. 

Assume the result to be true for any field F0 and any polynomial f (x) e 
F0[x] provided the degree of some splitting field Eo ofj (x) has degree less 
than n over F0, that is, (E0 :F0] < n. 

Suppose that [E:F] = n > 1 ,  where E is a splitting field off( x) over F. 
Since n > l ,  f (x) has an irreducible factor p(x) of degree r > I .  Let 
p'(t ) be the corresponding irreducible factor ofj'(t ) .  Since E splitsf (x) , a 
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full complement of roots ofj (x), and so, a priori, of roots ofp(x) , are in E. 
Thus there is a v E E such that p(v) = 0; by Theorem 5. 1 .3, [F(v) :F] = r. 
Similarly, there is a w E E' such that p' (w) = 0. By Theorem 5.3.4 there 
is an isomorphism u of F(v) onto F'(w) with the property that au = rx' 
for every a E F. 

Since [F(v) :F] r > 1 ,  

[E:F(v)] [E:F] 
[F(v) :F] 

n < n. 
r 

We claim that E is a splitting field for f (x) considered as a polynomial over 
F0 = F(v) , for no subfield of E, containing F0 and hence F, can split f (x) , 
since E is assumed to be a splitting field off (x) over F. Similarly E' is a 
splitting field forf'(t )  over F� = F'(w) . By our induction hypothesis there 
is an isomorphism ¢ of E onto E' such that a¢ au for all a E F0• But 
for every rx E F, rxu = rx' hence for every rx E F c F0, a¢ = au = rx'. 
This completes the induction and proves the theorem. 

To see the truth of the "(in particular . . .  ) "  part, let F = F' and let 1: 
be the identity map rx1: = rx for every rx E F. Suppose that E1 and E2 are 
two splitting fields of f (x) E F[x]. Considering E1 = E :: F and E2 = 
E'  :: F' = F, and applying the theorem just proved, yields that E1 and 
E2 are isomorphic by an isomorphism leaving every element of F fixed. 

In view of the fact that any two splitting fields of the same polynomial 
over F are isomorphic and by an isomorphism leaving every element of F 
fixed, we are justifed in speaking about the splitting field, rather than a 
splitting field, for it is essentially unique. 

Examples 

I .  Let F be any field and let p (x) = x2 + rx + {J, rx, fJ e F, be in F[x] . 
If K is any extension of F in which p(x) has a root, a, then the element 
b = -a - a also in K is also a root of p (x) . If b = a it is easy to check 
that p(x) must then be p(x) = (x - a) 2, and so both roots of p(x) are in 
K. If b =/; a then again both roots of p (x) are in K. Consequently, p(x) 
can be split by an extension of degree 2 of F. We could also get this result 
directly by invoking Theorem 5.3.2. 

2. Let F be the field of rational numbers and letf(x) = x3 - 2. In the 
field of complex numbers the three roots off (x) are �2, wVz, ro2 �2, 
where ro = ( - 1  + .J3 i)/2 and where Vz is a real cube root of 2. Now 
F (�2) cannot split x3 - 2,  for, as a subfield of the real field, it cannot 
contain the complex, but not real, number wlfz . Without explicitly 
determining it, what can we say about E, the splitting field of x3 - 2 over 
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F? By Theorem 5.3.2, [E:F] � 3 !  = 6; by the above remark, since 
x3 - 2 is irreducible over F and since [F(t'2) :F] = 3, by the corollary to 

  Theorerri 5. 1 . 1 ,  3 =  I [E:F] . Finally, [E:F] >  = 3. 
The only way out is [E:F] 6. We could, of course, get this result by 
making two extensions F1 = F(V2) and E = F1 (ro) and showing that w 
satisfies an irreducible quadratic equation over F1 • 

3. Let F be the field of rational numbers and let 

j (x) = x4 + x2 + I  e F [x] . 

We claim that E F(w), where w = ( - I + -./3 i)/2, is a splitting feld 
ofj (x) . Thus [E:F] = 2, far short of the maximum possible 4! = 24. 

Problems 

1. In the proof of Lemma 5.3. 1 ,  prove that the degree of q(x) is one less 
than that of p(x). 

2. In the proof of Theorem 5.3. 1 ,  prove in all detail that the elements 
1 + V, x + V, . . .  , x" 1 + V form a basis of E over F. 

3. Prove Lemma 5.3.3 in all detail. 
4. Show that 1:**  in Lemma 5.3.4 is well defined and is an isomorphism 

of F[x] f (J (x) ) onto F[t]f (J'(t) ) . 
5. In Example 3 at the end of this section prove that F ( w) is the splitting 

field of x4 + x2 + 1 .  

6. Let F be the field of rational numbers. Determine the degrees of the 
splitting fields of the following polynomials over F. 
(a) x4 + I .  (b) x 6  + 1 .  
(c) x4 - 2. (d) x5 - 1 .  
{e) x6 + x 3  + I .  

7. I f  p is a prime number, prove that the splitting field over F, the field 
of rational numbers, of the polynomial xP - I is of degree p I .  

* *8. If n > 1 ,  prove that the splitting field of x� - I over the field of 
rational numbers is of degree <l(n) where <l is the Euler <l-function. 

(This is a well-known theorem. I know of no easy solution, so don't 
be disappointed if you fail to get it. If you get an easy proof, I would 
like to see it. This problem occurs in an equivalent form as Problem I 5, 
Section 5.6.) 

*9. If F is the field of rational numbers, fnd necessary and sufficient 
conditions on a and b so that the splitting field of x3 + ax + b has 
degree exactly 3 over F. 

IO. Let p be a prime number and let F = ]p, the field of integers mod p. 
(a) Prove that there is an irreducible polynomial of degree 2 over F. 
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Let F be any subfield of the field of real numbers. Consider all the points 
(x,y) in the real Euclidean plane both of whose coordinates x and y are in 
F; we call the set of these points the plane of F. Any straight line joining two 
points in the plane of F has an equation of the form ax + by + c = 0 
where a, b, c are all in F (see Problem 2). Moreover, any circle having as 
center a point in the plane of F and having as radius an element of F has 
an equation of the form x2 + y2 + ax + by + c = 0, where all of a, b, c 
are in F (see Problem 3) .  We call such lines and circles lines and circles 
in F. 

Given two lines in F which intersect in the real plane, then their inter­
section point is a point in the plane ofF (see Problem 4) . On the other hand, 
the intersection of a line in F and a circle in F need not yield a point in the 
plane of F. But, using the fact that the equation of a line in F is of the form 
ax + by + c = 0 and that of a circle in F is of the form x2 + y2 + dx + 
try + f 0, where a, b, c, d, e,f are all in F, we can show that when a line 
and circle of F intersect in the real plane, they intersect either in a point in 
the plane ofF or in the plane ofF ( ../y) for some positive 1' in F (see Problem 
5) .  Finally, the intersection of two circles in F can be realized as that of 
a line in F and a circle in F, for if these two circles are x2 + y2 + a1 x + 
b1y + c1 = 0 and x2 + y2 + a2x + b

2
y + c2 = 0, then their intersection 

is the intersection of either of these with the line (a1 a2)x + (b1 - b2) y + 
(c1 - c2) = 0, so also yields a point either in the plane of F or of F(  •.F;) 
for some positive 1' in F. 

Thus lines and circles of F lead us to points either in F or in quadratic 

extensions of F. If we now are in F( ·/yd for some quadratic extension of 
F, then lines and circles in F( ../y1) intersect in points in the plane of 

F( ../y1, ../y2) where ')12 is a positive number in F( ../y1 ) .  A point is con­
structible from F if we can find real numbers 1!.1, • • • , A.,., such that 1!.1 2 e F, 
1!.2 2 E F(A-1 ) ,  A./ e F(A-1, 1!.2) ,  • • •  , A,. 2 e F(A-1, • • • , 1!., _ 1 ) ,  such that the 
point is in the plane of F (A-1 , • • • , A.") . Conversely, if ')I e F is such that 

../y is real then we can realize 1' as an intersection of lines and circles in F 
(see Problem 6) . Thus a point is constructible from F if and only if we 
can find a finite number of real numbers 1!.1, • • •  , A"' such that 

l .  [F(I!.1 ) :F] = I or 2 ;  
2. [F(I!.1 ,  • • •  , It,) :F(It1,  • . • , A;_ 1)] = I or 2 for i = 1 ,  2, . . . , n ;  

and such that our point lies in  the plane of  F(A-1 ,  • • •  , An) . 
We have defned a real number ex to be constructible if by use of straight­

edge and compass we can construct a line segment of length oc. But this 
translates, in terms of the discussion above, into : a is constructible if starting 
from the plane of the rational numbers, F0, we can imbed ex in a field 
obtained from F0 by a finite number of quadratic extensions. This is 
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T H E O R E M  5.4.1 The real number a is constructible if and only if we can find 
a finite number qf real numbers A 1 ,  • • •  , An such that 

I .  ,t1 2 E Fo, 
2 .  A;2 e F0(A1, • • •  , A;_ 1 )  for i = 1 ,  2, . . .  , n, 

such that a E F0(A1, • . • , An) ·  

However, we can compute the degree of  F0(A1 ,  • . • , An) over F0, for by 
Theorem 5. 1 . 1  

[Fo(A1 , • • •  , An) :Fo] = [F0(A1 , • • •  , An) :F0(A1 , . • • , An_ 1 )] • • • 
x [F0 (A1 ,  • • •  , A;) :F0 (A1, • • •  , A;_ 1) ]  • • • 
x [F0(A1) :F0] . 

Since each term in the product is either 1 or 2, we get that 

and thus the 

C O R O LLARY 1 lfa is constructible then a lies in some extension qf the rationals 
of degree a power qf 2. 

If a is constructible, by Corollary I above, there is a subfield K of the real 
field such that a e K and such that [K:F0] = 2'. However, F0(a) c K, 
whence by the corollary to Theorem 5 . 1 . 1 [F0(a) :F0] I [K:F0] = 2' ; thereby 
[F0(a) :F0] is also a power of 2. However, if a satisfies an irreducible 
polynomial of degree k over F0, we have proved in Theorem 5. 1 .3 that 
[F0(a) :F0] = k. Thus we get the important criterion for nonconstructibility 

CORO LLARY 2 lf the real number a satisfies an irreducible polynomial over 
the field qf rational numbers qf degree k, and if k is not a power qf 2, then a is not 
constructible. 

This last corollary enables us to settle the ancient problem of trisecting 
an angle by straightedge and compass, for we prove 

T H E O R E M  5.4.2 It is impossible, by straightedge and compass alone, to trisect 
60°. 

Proof. If we could trisect 60° by straightedge and compass, then the 
length a = cos 20° would be constructible. At this point, let us recall the 
identity cos 3(} = 4 cos3 (J - 3 cos e. Putting (J = 20° and remembering 
that cos 60° = t, we obtain 4a3 - 3a = t, whence 8a3 - 6a - 1 = 0. 
Thus a is a root of the polynomial 8x3 - 6x - 1 over the rational field. 
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However, this polynomial is irreducible over the rational field (Problem 
7(a) ), and since its degree is 3, which certainly is not a power of 2, by 
Corollary 2 to Theorem 5.4. 1 ,  a is not constructible. Thus 60° cannot be 
trisected by straightedge and compass. 

Another ancient problem is that of duplicating the cube, that is, of 
constructing a cube whose volume is twice that of a given cube. If the 
original cube is the unit cube, this entails constructing a length a such that 
a3 = 2. Since the polynomial x3 - 2 is irreducible over the rationals 
(Problem 7(b)) ,  by Corollary 2 to Theorem 5.4. 1 ,  a is not constructible. 
Thus 

TH EO R E M  5.4.3 By straightedge and compass it is impossible to duplicate the 
cube. 

We wish to exhibit yet another geometric figure which cannot be con­
structed by straightedge and compass, namely, the regular septagon. To 
carry out such a construction would require the constructibility of a = 
2 cos (2n/7) . However, we claim that a satisfies x3 + x2 - 2x - I 
(Problem 8) and that this polynomial is irreducible over the field of rational 
numbers (Problem 7(c) ) .  Thus again using Corollary 2 to Theorem 5.4. 1 
we obtain 

TH E O R E M  5.4.4 It is impossible to construct a regular septagon by straightedge 
and compass. 

Problems 

I .  Prove that if a, {3 are constructible, then so are a ± {3, a{3, and af {3 
(when {3 =f. 0) . 

2. Prove that a line in F has an equation of the form ax + by + c = 0 
with a, b, c in F. 

3. Prove that a circle in F has an equation of the form 

x2 + y2 + ax + by + c = 0, 

with a, b, c in F. 

4. Prove that two lines in F, which intersect in the real plane, intersect 
at a point in the plane of F. 

5. Prove that a line in F and a circle in F which intersect in the real 

plane do so at a point either in the plane of F or in the plane ofF ( JY) 
where }' is a positive number in F. 

6. If }' E F is positive, prove that Jr is realizable as an intersection of 
lines and circles in F. 
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7. Prove that the following polynomials are irreducible over the field of 
rational numbers. 
(a) 8x3 - 6x - I .  
(b) x 3  - 2. 
(c) x3 + x2 - 2x - I .  

8. Prove that 2 cos (2nf7) satisfies x 3  + x2 - 2x - I .  (Hint: Use 
2 cos (2n/7) = e2"'11 7 + e- 2"if7.) 

9. Prove that the regular pentagon is constructible. 
I 0. Prove that the regular hexagon is constructible. 
1 1 . Prove that the regular 1 5-gon is constructible. 
12 .  Prove that it is possible to trisect 72°. 
1 3. Prove that a regular 9-gon is not constructible. 

* 14. Prove a regular 1 7-gon is constructible. 

5.5 More about Roots 

We return to the general exposition. Let F be any field and, as usual, let 
F[ x] be the ring of polynomials in x over F. 

D E FI N ITION If j (x) = aox" + o:1x"- 1 + · · · + o:;x" ;  + · · · + 1Xn_1x + 
1Xn in F[x] , then the derivative ofj (x) , written as f ' (x) , is the polynomial 

f' (x) = no:0x" 1 + (n - l )o:1x"
2 + " ·  + (n - i)o:;x" ; 1 + . . · + 1Xn- 1 

in F[x] . 

To make this definition or to prove the basic formal properties of the 
derivatives, as applied to polynomials, does not require the concept of a 
limit. However, since the field F is arbitrary, we might expect some strange 
things to happen. 

At the end of Section 5.2, we defined what is meant by the characteristic 
of a field. Let us recall it now. A field F is said to be of characteristic 0 if 
ma :F 0 for a :F 0 in F and m > 0, an integer. If ma = 0 for some m > 0 
and some a :F 0 E F, then F is said to be of finite characteristic. In this 
second case, the characteristic of F is defined to be the smallest positive 
integer p such that pa = 0 for all a E F. It turned out that if F is of finite 
characteristic then its characteristic p is a prime number. 

We return to the question of the derivative. Let F be a field of character­
istic p :p 0. In this case, the derivative of the polynomial xP is pxr 1 = 0. 
Thus the usual result from the calculus that a polynomial whose derivative 
is 0 must be a constant no longer need hold true. However, if the charac­
teristic of F is 0 and if f'(x) = 0 for f (x) E F[x], it is indeed true that 

f (x) = IX E F (see Problem I ) .  Even when the characteristic of F is 
p :p 0, we can still describe the polynomials with zero derivative ; if 
f '(x) = 0, thenf (x) is a polynomial in xP (see Problem 2) . 
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We now prove the analogs of the formal rules of differentiation that we 
know so well. 

L E M MA 5.5.1 For any f (x), g(x) E F[x] and any a E F, 

1 . (f (x) + g(x) ) ' = J' (x) + g' (x) . 
2. (af (x) )' = aj ' (x) .  
3. (J (x) g (x) ) ' = f'(x) g(x) + f(x) g' (x) . 

Proof. The proofs of parts 1 and 2 are extremely easy and are left as 
exercises. To prove part 3, note that from parts 1 and 2 it is enough to 
prove it in the highly special case f (x) = x1 and g(x) = xi where both 
i and j are positive. But then f (x) g(x) = xi+l, whence (J (x) g(x) ) ' = 
(i + j)x1+i- 1 ; however, j '(x) g(x) = ix1 - 1xi = ixl+J- l and f (x)g' (x) = 

jx1:J- 1 = jx1+i- l ; consequently,j'{x)g {x) + f (x) g'(x) = (i + j)x1 +i - l = 

(J (x)g(x) ) '. 

Recall that in elementary calculus the equivalence is shown between the 
existence of a multiple root of a function and the simultaneous vanishing of 
the function and its derivative at a given point. Even in our setting, where 
F is an arbitrary field, such an interrelation exists. 

LEM MA 5.5.2 The polynomial f (x) e F[x] has a multiple root if and only if 
f (x) andj'(x) have a nontrivial (that is, if positive degree) common factor. 

Proof. Before proving the lemma proper, a related remark is in order, 
namely, ifj (x) and g(x) in F[x] have a nontrivial common factor in K[x], 
for K an extension of F, then they have a non trivial common factor in F [ x]. 
For, were they relatively prime as elements in F[x], then we would be 
able to find two polynomials a(x) and b(x) in F[x] such that a(x) J (x) + 
b (x) g(x) = 1 .  Since this relation also holds for those elements viewed 
as elements of K[x] , in K[x] they would have to be relatively prime. 

Now to the lemma itsel£ From the remark just made, we may assume, 
without loss of generality, that the roots ofj(x) all lie in F (otherwise ex­
tend F to K, the splitting field ofj(x) ) .  Ifj (x) has a multiple root .x, then 

f (x) = {� - a)mq(x), where m > I .  However, as is easily computed, 
( (x - a)m)' = m(x - a)m- l whence, by Lemma 5.5. 1 ,  J'(x) = 
(x - .x)mq' (x) + m(x - a)m - lq(x) = (x - a)r(x), since m > I .  But this 
says that f (x) and j'(x) have the common factor x - a, thereby proving 
the lemma in one direction. 

On the other hand, if f (x) has no multiple root then f (x) = 
(x - .x1 ) (x - .x2) • • • (x - an) where the .x/s are all distinct (we are 
supposingf (x) to be monic) .  But then 
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where the 1\ denotes the term is omitted. We claim no root off (x) IS a 
root ofj'(x) , for 

since the roots are all distinct. However, ifj (x) andf'(x) have a nontrivial 
common factor, they have a common root, namely, any root of this common 
factor. The net result is that f (x) and f' (x) have no nontrivial common 
factor, and so the lemma has been proved in the other direction. 

CORO LLARY 1 lff (x) E F[x] is irreducible, then 

I .  lf the characteristic of F  is O,J (x) has no multiple roots. 
2. If the characteristic of F  is p ¥- 0, f (x) has a multiple root only if it is of the 

formf (x) = g(xP) . 

Proof. Since f (x) is irreducible, its only factors in F[x] are I and f(x) . 
Ifj (x) has a multiple root, thenf(x) andf'(x) have a nontrivial common 
factor by the lemma, hence f (x) I J ' (x) . However, since the degree ofj '(x) 
is less than that off (x), the only possible way that this can happen is for 
f ' (x) to be 0. In characteristic 0 this implies thatf (x) is a constant, which 
has no roots ; in characteristic p ¥- 0, this forcesf (x) = g(xP) .  

We shall return in a moment to discuss the implications of Corollary I 
more fully. But first, for later use in Chapter 7 in our treatment of finite 
fields, we prove the rather special 

CO RO LLARY 2 If F  is a field of characteristic p ¥- 0, then the polynomial 
xP" - x E F[x], for n � I ,  has distinct roots. 

Proof. The derivative of xP" - x is p•xpn- t - I = - 1 , since F is of 
characteristic p. Therefore, xP" - x and its derivative are certainly rela­
tively prime, which, by the lemma, implies that xP" - x has no multiple 
roots. 

Corollary I does not rule out the possibility that in characteristic p ¥- 0 
an irreducible polynomial might have multiple roots. To clinch matters, 
we exhibit an example where this actually happens. Let F0 be a field of 
characteristic 2 and let F = F0(x) be the field of rational functions in x 
over F0• We claim that the polynomial t2 - x in F[t] is irreducible over F 
and that its roots are equal. To prove irreducibility we must show that 
there is no rational function in F0(x) whose square is x; this is the content 
of Problem 4. To see that t2 - x has a multiple root, notice that its deriv­
ative (the derivative is with respect to t ;  for x, being in F, is considered as a 
constant) is 2t = 0. Of course, the analogous example works for any prime 
characteristic. 
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Now that the possibility has been seen to be an actuality, it points out 
a sharp difference between the case of characteristic 0 and that of charac­
teristic p. The presence of irreducible polynomials with multiple roots in 
the latter case leads to many interesting, but at the same time complicating, 
subtleties. These require a more elaborate and sophisticated treatment 
which we prefer to avoid at this stage of the game. Therifore, we make the 
flat assumption for the rest qf this chapter that all .fields occurring in the text material 
proper are fields qf characteristic 0. 

D E F I N ITION The extension K of F is a simple extension qf F if K = F(a.) 
for some a. in K. 

In characteristic 0 (or in properly conditioned extensions in characteristic 
p # 0 ;  see Problem 14) all finite extensions are realizable as simple ex­
tensions. This result is 

TH EO R E M  5.5.1 lf F is qf characteristic 0 and if a, b, are algebraic over F, 
then there exists an element c E F(a, b) such that F(a, b) = F(c) . 

Proof. Letf (x) and g(x), of degrees m and n, be the irreducible poly­
nomials over F satisfied by a and b, respectively. Let K be an extension 
of F in which both f (x) and g(x) split completely. Since the characteristic 
of F is 0, all the roots off(x) are distinct, as are all those of g(x) . Let the 
roots of f (x) be a =  a1, a2, • • •  , am and those of g(x) , b = b1 , b2, • • •  , b,. 

If j ¥= l ,  then b J # b 1 = b, hence the equation a1 + lb 1 = a1 + lb1 = 
a + ).b has only one solution ). in K, namely, 

l =  
b - bj 

Since F is of characteristic 0 it has an infinite number of elements, so we 
can find an element y E F such that a; + yb1 # a + yb for all i and for 
all j --t= I .  Let c = a  + yb ; our contention is that F(c) = F(a, b) . Since 
c E F(a, b),  we certainly do have that F(c) c F(a, b) . We will now show 
that both a and b are in F(c) from which it will follow that F(a, b) c F(c) . 

Now b satisfies the polynomial g(x) over F, hence satisfies g(x) considered 
as a polynomial over K = F(c) . Moreover, if h(x) = f (c - yx) then 
h (x) e K[x] and h (b)  = f (c - yb) = f (a) = 0, since a =  c - yb. Thus in 
some extension of K, h(x) and g(x) have x - b as a common factor. We 
assert that x - b is in fact their greatest common divisor. For, if b1 --t= b 
is another root of g(x), then h(b1) = f (c - yb1) # 0, since by our choice 
of y, c - yb 1 for j --t= 1 avoids all roots a1 off (x) . Also, since (x - b) 2 ,r g(x), 
(x b) 2 cannot divide the greatest common divisor of h(x) and g(x) . Thus 
x - b is the greatest common divisor of h(x) and g(x) over some extension 
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of K. But then they have a nontrivial greatest common divisor over K, 
which must be a divisor of x - b. Since the degree of x - b is 1 ,  we see 
that the greatest common divisor of g(x) and h(x) in K[x] is exactly x - b. 
Thus x - b e  K[x], whence b e  K; remembering that K = F(c) ,  we obtain 
that b E  F(c) . Since a = c - yb, and since b, c e F(c) , y e F c: F (c) , we 
get that a E F(c) , whence F (a, b) c: F (c) . The two opposite containing 
relations combine to yield F (a, b) = F(c) . 

A simple induction argument extends the result from 2 elements to any 
finite number, that is, if a1,  • • •  , <Xn are algebraic over F, then there is an 
element c E F(a1, • • •  , an) such that F(c) = F(a1, • • •  , an) · Thus the 

COROLLARY Any finite extension cif afield cif characteristic 0 is a simple extension. 

Problems 

1. If F is of characteristic 0 and f (x) E F[ x] is such that f' (x) = 0, 
prove thatf(x) = ex E F. 

2. If F is of characteristic p =I 0 and if f (x) e F [x] is such that 
f' (x) = 0, prove thatf (x) = g(xP) for some polynomial g(x) e F[x] . 

3. Prove that (f (x) + g(x) ) ' = f'(x) + g' (x) and that (af (x) ) ' = 
cxf '(x) forf (x), g(x) e F [x] and a E F. 

4. Prove that there is no rational function in F(x) such that its square is x. 
5. Complete the induction needed to establish the corollary to Theorem 

5.5. 1 .  

An element a in an extension K of F is called separable over F i f  i t  satisfies 
a polynomial over F having no multiple roots. An extension K of F is 
called separable over F if all its elements are separable over F. A feld F 
is called perfect if all finite extensions of F are separable. 

6. Show that any field of characteristic 0 is perfect. 
7. (a) If F is of characteristic p =I 0 show that for a, b e  F, (a + b)�" = 

aP"' + bPm. 
(b) If F is of characteristic p =I 0 and if K is an extension of F let 

T = {a E K I aP" E F for some n}. Prove that T is a subfield of 
K. 

8. If K, T, F are as in Problem 7{b) show that any automorphism of K 
leaving every element of F fixed also leaves every element of T fixed. 

*9. Show that a field F of characteristic p =1 0 is perfect if and only if 
for every a E F we can find a b E F such that bP = a. 

I 0. Using the result of Problem 9, prove that any finite field is perfect. 
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** 1 1 . If K is an extension of F prove that the set of elements in K which 
are separable over F forms a subfeld of K. 

12. If F is of characteristic p ¢. 0 and if K is a finite extension of F, 
prove that given a E K either aP" E F for some n or we can find an 
integer m such that aP"' ¢ F and is separable over F. 

1 3. If K and F are as in Problem 1 2, and if no element which is in K 
but not in F is separable over F, prove that given a E K we can find 
an integer n, depending on a, such that aP" E F. 

14. If K is a finite, separable extension of F prove that K is a simple 
extension of F. 

1 5. If one of a or b is separable over F, prove that F(a, b) is a simple 
extension of F. 

5.6 The Elements of Galois Theory 

Given a polynomial p(x) in F[x] , the polynomial ring in x over F, we shall 
associate with p(x) a group, called the Galois group of p(x) . There is a very 
close relationship between the roots of a polynomial and its Galois group ; 
in fact, the Galois group will turn out to be a certain permutation group 
of the roots of the polynomial. We shall make a study of these ideas in this, 
and in the next, section. 

The means of introducing this group will be through the splitting field 
of p(x) over F, the Galois group of p(x) being defined as a certain group of 
automorphisms of this splitting field. This accounts for our concern, in so 
many of the theorems to come, with the automorphisms of a field. A 
beautiful duality, expressed in the fundamental theorem of the Galois theory 
(Theorem 5.6.6), exists between the subgroups of the Galois group and the 
subfields of the splitting field. From this we shall eventually derive a 
condition for the solvability by means of radicals of the roots of a polynomial 
in terms of the algebraic structure of its Galois group. From this will follow 
the classical result of Abel that the general polynomial of degree 5 is not 
solvable by radicals. Along the way we shall also derive, as side results, 
theorems of great interest in their own right. One such will be the funda­
mental theorem on symmetric functions. Our approach to the subject is 
founded on the treatment given it by Artin. 

Recall that we are assuming that all our felds are of characteristic 0, 
hence we can (and shall) make free use of Theorem 5.5. 1 and its corollary. 

By an automorphism rif the fold K we shall mean, as usual, a mapping a 
of K onto itself such that a(a + b) = a(a) + a (b)  and a(ab) a (a)a (b) 
for all a, b e K. Two automorphisms a and T of K are said to be distinct 
if a(a) ¢. T (a) for some element a in K. 

We begin the material with 
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T H E O R E M  5.6.1 .if K is a field and if u1 , • • •  , u. are distinct automorphisms 
qf K, then it is impossible to find elements a1 , • • • , a., not all 0, in K such that 
a1u1 (u) + a2u2 (u) + · · ·  + a.u.(u) = Ofor all u e K. 

Proof. Suppose we could find a set of elements a1, • . .  , a. in K, not all 
0, such that a1u1 (u) + · · ·  + a.u.(u) = 0 for all u e K. Then we could 
find such a relation having as few nonzero terms as possible;  on renumbering 
we can assume that this minimal relation is 

( I )  

where a1, • • •  , am are all different from 0. 
If m were equal to I then a1u1(u) = 0 for all u e K, leading to a1 = 0, 

contrary to assumption. Thus we may assume that m > I .  Since the auto­
morphisms are distinct there is an element c e K such that u1 (c) #- um(c) . 
Since cu e K for all u e K, relation ( I )  must also hold for cu, that is, 
a1u1 (cu) + a2u2 (cu) + . . .  + amum(cu) = 0 for all u e K. Using the hypo­
thesis that the a's are automorphisms of K, this relation becomes 

a1u1 (c)u1 (u) + a2u2(c)u2(u) + · · · + amum(c)um(u) = 0. (2) 

Multiplying relation ( 1 )  by u1 (c) and subtracting the result from (2) 
yields 

If we put b; = a;(u;(c) - u1 (c)) for i = 2, . . .  , m, then the b; are in K, 
bm = am(um(c) - u1 (c) ) #- 0, since am #- 0, and um(c) - u1 (c) #- 0 yet 
b2u2 (u) + · · · + bmum(u) = 0 for all u e K. This produces a shorter rela­
tion, contrary to the choice made ; thus the theorem is proved. 

D E F I N ITI O N  If G is a group of automorphisms of K, then the fixedfield 
of G is the set of all elements a e K such that u(a) = a for all u e G. 

Note that this definition makes perfectly good sense even if G is not a 
group but is merely a set of automorphisms of K. However, the fixed field 
of a set of automorphisms and that of the group of automorphisms generated 
by this set (in the group of all automorphisms of K) are equal (Problem I ) ,  
hence we lose nothing by defining the concept just for groups of auto­
morphisms. Besides, we shall only be interested in the fixed fields of groups 
of automorphisms. 

Having called the set, in the definition above, the fixed field of G, it 
would be nice if this terminology were accurate. That it is we see in 

LE M MA 5.6.1 The.fixedfield qfG is a subfield qf K. 
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Proof. Let a, b be in the fixed field of G. Thus for all u E G, u(a) = a 
and u(h) = b. But then u(a ± b) = u(a) ± u(h) = a ± h and u(ah) = 
u(a)u (h) = ah ; hence a ± b and ab are again in the fixed field of G. If 
b =F 0, then u( r 1 ) = u( b) - 1 = b I, hence b - 1 also falls in the fxed 
field of G. Thus we have verified that the fxed feld of G is indeed a sub­
feld of K. 

We shall be concerned with the automorphisms of a field which behave 
in a prescribed manner on a given subfield. 

D EF I N IT I O N  Let K be a field and let F be a subfield of K. Then the 
group cif automorphisms cif K relative to F, written G (K, F), is the set of all 
automorphisms of K leaving every element of F fixed ; that is, the auto­
morphism u of K is in G(K, F) if and only if u(a) = a for every a E F. 

It is not surprising, and is quite easy to prove 

LE M MA 5.6.2 G (K, F) is a subgroup cif the group cif all automorphisms cif K. 

We leave the proof of this lemma to the reader. One remark : K contains 
the field of rational numbers F0, since K is of characteristic 0, and it is easy 
to see that the fixed field of any group of automorphisms of K, being a field, 
must contain F0• Hence, every rational number is left fixed by every 
automorphism of K. 

We pause to examine a few examples of the concepts just introduced. 

Example 5.6.1 Let K be the field of complex numbers and let F be the 
field of real numbers. We compute G (K, F) . If u is any automorphism of 

K, since i2 = - 1, u(i) 2 = uW) = u( - 1 ) I ,  hence u(i) = ± i. If, 
in addition, u leaves every real number fixed, then for any a + bi where 
a, b are real, u(a + hi) = u(a) + u(b)u(i) = a ± bi. Each of these possi­
bilities, namely the mapping u1(a + hi) = a  + bi and u2 (a + hi) = a  - bi 
defines an automorphism of K, u1 being the identity automorphism and 
u2 complex-conjugation. Thus G (K, F) is a group of order 2. 

What is the fixed field of G (K, F) ? It certainly must contain F, but does 
it contain more ? If a + bi is in the fixed field of G (K, F) then a + hi 
u2 (a + bi) = a - hi, whence h = 0 and a = a + hi E F. In this case 
we see that the fixed field of G (K, F) is precisely F itself. 

Example 5.6.2 Let F0 be the field of rational numbers and let K = 

Fo(V2) where V2 is the real cube root of 2. Every element in K is of the 

form ceo + a1V2 + a2(V<i.) 2, where a0, <X1, a2 are rational numbers. If 
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in G (K, F) . By the corollary to Theorem 4.3.3 the system of n homogeneous 
linear equations in the n + 1 unknowns xi> . . .  , x,+ 1 : 

u1 (u 1)x1 + 112(u1 )x2 + · · · + 1111+ 1 (u1)x,+ 1  = 0 

u1 (u,)x1 + u2 (u,)x2 + · · · + u,+ 1 (u,)x,+ 1 0 

has a nontrivial solution (not all 0) x1 = al> • • •  , x,+ 1 = a,+ 1 in K. Thus 

( I )  

for i 1 ,  2 ,  . . .  , n. 
Since every element in F is left fixed by each 111 and since an arbitrary 

element t in K is of the form t = a1u1 + · · · + IX11U11 with a1, • • •  , IX11 
in F, then from the system of equations ( 1 )  we get a1u1 (t) + · · · + 
a,+ 1u, +1 (t )  = 0 for all t e K. But this contradicts the result of Theorem 
5.6. 1 .  Thus Theorem 5.6.2 has been proved. 

Theorem 5.6.2 is of central importance in the Galois theory. However, 
aside from its key role there, it serves us well in proving a classic result 
concerned with symmetric rational functions. This result on symmetric 
functions in its turl{ will play an important part in the Galois theory. 

First a few remarks on the field of rational functions in n-variables over a 
field F. Let us recall that in Section 3. 1 1  we defined the ring of polynomials 
in the n-variables xi> . . . , x, over F and from this defined the field of 
rational functions in x1 , • • •  , x,, F(x1, • • •  , x,) , over F as the ring of all 
quotients of such polynomials. 

Let S, be the symmetric group of degree n considered to be acting on the 
set [ 1 ,  2, . . .  , n] ; for u E S, and i an integer with 1 � i � n, let u(i) be 
the image of i under u. We can make S, act on F(xu . . . , x,) in the 
following natural way : for 0' E S, and r (xp . . . , x,) E F(x1, • • •  , x,), define 
the mapping which takes r(xl> • . •  , x;,) onto r(x.,.(l )> . . •  , x.,.(n)) ·  We shall 
write this mapping of F(x1, • • •  , X11) onto itself also as u. It is obvious 
that these mappings define automorphisms of F(x1 , • • •  , x,.). What is 
the fixed field of F(x1, • • •  , x,) with respect to S, ? It consists of all 
rational functions r (xv . . .  , x,.) such that r(x10 • • •  , x11) = r (x.,.(I }• . . . , x.,.( n)) 
for all u e S,. But these are precisely those elements in F(x1 , • • •  , x11) 
which are known as the symmetric rational functions. Being the fixed field 
of S, they form a subfield of F(xl> . . . , x,), called the field of symmetric 
rational functions which we shall denote by S. We shall be concerned 
with three questions : 

1 .  What is [F(x1, • • •  , x,) :S] ? 
2. What is G (F(x1, • • •  , x,) , S) ? 
3. Can we describe S in terms of some particularly easy extension of F? 
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[F(x1 , • • •  , x.) :S] � o(G (F(xm . . .  , x.) , S) )  � o(S.) = n ! .  If we could 
show that [F(x1, • • •  , x.) :F(a1, • . .  , a.)] ::; n ! ,  well then, since F(a1, • • • , a.) 
is a subfield of S, we would have n! � [F(x1 , • • •  , x.) :F(a1, • • •  , a.)] = 
[F(x1 , • • •  , x.) :S] [S:F(a1, . . .  , a.)] � n ! .  But then we would get that 
[F(x1, • • •  , x.) :S] = n !, [S:F(a1 , • • •  , a.)] = I and so S =F(a1 , • • • , a.) , 
and, finally, s. = G (F(x1 , • • •  , x.) , S) (this latter from the second sen­
tence of this paragraph) .  These are precisely the conclusions we seek. 

Thus we merely must prove that [F(x1, • • •  , x.) :F(a1 , • • • , a.)] ::; n ! .  
To see how this settles the whole affair, note that the polynomial p(t) = 
t" - a1t" - 1 + a1t"- 1 · · · + ( - l ta., which has coefficients in F(a1 , . . •  , a.) , 
factors over F(xu . . .  , x.) as p(t) = (t - x1) (t - x1) • • • (t - x.) . (This 
is in fact the origin of the elementary symmetric functions.) Thus p(t ) ,  
of degree n over F(a1 , • • •  , a.) , splits as a product of linear factors over 
F(x1 , • • •  , x.) . It cannot split over a proper subfield of F(x1 , • • •  , x.) 
which contains F(a1 , • • •  , a.) for this subfield would then have to contain 
both F and each of the roots of p(t ) ,  namely, x1 , x1, . . .  , x. ; but then this 
subfield would be all of F(x1, • • •  , x.) . Thus we see that F(x1 , • • •  , x.) is 
the splitting field of the polynomial p(t) = t" - a1t" - 1 + · · · + ( - l )"a. 
over F(a1 , • • •  , a.) . Since p(t) is of degree n, by Theorem 5.3.2 we get 
[F(x1 , • • •  , x") :F(a1 , • • •  , a.)] :: n ! .  Thus all our claims are established. 
We summarize the whole discussion in the basic and important result 

TH EO R EM 5.6.3 Let F be afield and let F(x1 , • • •  , x.) be thefield of rational 
functions in x1 ,  • • •  , x" over F. Suppose that S is the field of symmetric rational 
functions; then 

I .  [F(x1, • • •  , x.) :S] = n !. 
2. G (F(x1 , • .• • , x") ,  S) = S., the symmetric group of degree n. 
3. lf a1 , • • •  , a. are the elementary symmetric functions in x1, • . .  , x., then 

S = F(a1 , a1, • • •  , a.) . 
4. F(x1, • • •  , x.) is the splitting field over F(a1 , • • •  , a.) = S of the polynomial 

t" - a1t"- 1 + a1t"- 1 • • • + ( - l )"a •. 
We mentioned earlier that given any integer n it is possible to construct 

a field and a polynomial of degree n over this field whose splitting field is of 
maximal possible degree, n !, over this field. Theorem 5.6.3 explicitly 
provides us with such an example for if we put S = F(a1 , • • •  , a.) , the 
rational function field in n variables a1 , • • •  , a. and consider the splitting 
field of the polynomial t" - a1t"- 1 + a1t" - 1 • • •  + ( - I ta. over S then 
it is of degree n !  over S. 

Part 3 of Theorem 5.6.3 is a very classical theorem. It asserts that a sym­
metric rational function in n variables is a rational function in the elementary symmetric 

junctions of these variables. This result can even be sharpened to : A symmetric 
polynomial in n variables is a polynomial in their elementary symmetric 
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functions (see Problem 7). This result is known as the theorem on symmetric 
polynomials. 

In the examples we discussed of groups of automorphisms of fields and of 
fixed fields under such groups, we saw that it might very well happen that F 
is actually smaller than the whole fixed field of G (K, F) . Certainly F is 
always contained in this field but need not fill it out. Thus to impose the 
condition on an extension K of F that F be precisely the fixed field of 
G (K, F) is a genuine limitation on the type of extension of F that we are 
considering. It is in this kind of extension that we shall be most interested. 

D EF I N ITION K is  a normal extension of F if K is  a fnite extension of F 
such that F is the fixed field of G(K, F) . 

Another way of saying the same thing : If K is a normal extension of F, 
then every element in K which is outside F is moved hy some element in 
G (K, F). In the examples discussed, Examples 5.6. 1 and 5.6.3 were 
normal extensions whereas Example 5 .6.2 was not. 

An immediate consequence of the assumption of normality is that it 
allows us to calculate with great accuracy the size of the fixed field of any 
subgroup of G (K, F) and, in particular, to sharpen Theorem 5.6.2 from an 
inequality to an equality. 

T H E O R E M  5.6.4 Let K be a normal extension of F  and let H be a subgroup 
of G (K, F) ; let Kn = {x e K I u(x) = xfor all u E H} be the fixed field of H. 
Then 

I .  [K:Kn] = o(H). 
2. H = G (K, Kn)· 

(In particular, when H = G (K, F), [K:F] = o (G (K, F) ).) 

Proof. Since very element in H leaves Kn elementwise fixed, certainly 
H c G (K, Kn) ·  By Theorem 5 .6.2 we know that [K:Kn) � o(G (K, Kn)) ; 
and since o(G(K, Kn)) � o(H) we have the inequalities [K :Kn] � 
o (G (K, Kn)) � o(H). If we could show that [K:Kn] = o(H), it would 
immediately follow that o(H) = o(G (K, Kn)) and as a subgroup of 
G (K, Kn) having order that of G (K, Kn), we would obtain that H = 
G (K, Kn) · So we must merely show that [K:Kn] = o(H) to prove every­
thing. 

By Theorem 5.5. 1 there exists an a e K such that K = Kn(a) ; this a 

must therefore satisfy an irreducible polynomial over Kn of degree m = 
[K:Kn] and no nontrivial polynomial of lower degree (Theorem 5. 1 .3). 
Let the elements of H be ul> u2, • • •  , uh, where u1 is the identity of G(K, F) 
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and where h = o(H) . Consider the elementary symmetric functions of 
a = u1 (a), u2 (a), . . .  , u11(a) , namely, 

II 
tx1 = u1 (a) + u2 (a) + · · · + u11(a) = L u;(a) 

; "" 1 

tx2 = L u1(a)uj (a) 
i<j 

Each a:; is invariant under every u E H. (Prove !)  Thus, by the definition 
of Ku, tx1, a:2, • • •  , txh are all elements of Ku. However, a (as well as 
u2 (a) , . . .  , u11(a) ) is a root of the polynomial p(x) (x - u1 (a) ) (x - u2 (a) ) · · · 
(x - u11(a)) = � - tx1�-

1 
+ tx2�- 2 + · · · + ( - 1 )ha11 having coefficients 

in Ku. By the nature of a, this forces h � m = [K :Kll] , whence o (H) � 
[K:Ku] . Since we already know that o(H) � [K:Ku] we obtain o(H) = 
[K :Ku], the desired conclusion. 

When H = G (K, F) , by the normality if K over F, Ku = F; consequently 
for this particular case we read off the result [K:F] = o(G (K, F) ) .  

We are rapidly nearing the central theorem of  the Galois theory. What 
we still lack is the relationship between splitting fields and normal extensions. 
This gap is filled by 

THEOREM 5.6.5 K is a normal extension ifF if and only if K is the splitting 
field of some polynomial over F. 

Proof. In one direction the proof will be highly reminiscent of that of 
Theorem 5.6.4. 

Suppose that K is a normal extension of F; by Theorem 5.5. 1 ,  K = F(a) . 
Consider the polynomial p(x) = (x - u1 (a) ) (x - u2(a)) · · · (x - u,.(a) ) 
over K, where u1, u2, • • •  , u" are all the elements of G(K, F). Expanding 
p(x) we see that p(x) = x" - a:1x"- 1 + o:2x" - 2 + · · · + ( - 1  )"txn where 
tx1,  • . .  , ctn are the elementary symmetric functions in a =  u1 (a) , u2(a) , . . .  , 
u"(a) . But then ct1, • • •  , a, are each invariant with respect to every 
u e G (K, F), whence by the normality of K over F, must all be in F. 
Therefore, K splits the polynomial p(x) e F[x] into a product of linear 
factors. Since a is a root of p(x) and since a generates K over F, a can be in 
no proper subfield of K which contains F. Thus K is the splitting field of 
p(x) over F. 

Now for the other direction ; it is a little more complicated. We separate 
off one piece of its proof in 

LEM MA 5.6.3 Let K be the splitting field if f (x) in F[x] and let p(x) be an 
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This can only happen if all its coefficients are 0 ;  in particular, A.o - 0 = 0 
whence () = A.o so is in F. This completes the induction and proves that K 
is a normal extension of F. Theorem 5.6.5 is now completely proved. 

D E F I N ITION Let f (x) be a polynomial in F[x] and let K be its splitting 
field over F. The Galois group off (x) is the group G (K, F) of all the auto­
morphisms of K, leaving every element of F fixed. 

Note that the Galois group of f (x) can be considered as a group of 
permutations of its roots, for if a is a root of f (x) and if u e G (K, F), 
then u(a) is also a root off (x) . 

We now come to the result known as the fundamental theorem qf Galois 
theory. It sets up a one-to-one correspondence between the subfields of the 
splitting field off (x) and the subgroups of its Galois group. Moreover, it 
gives a criterion that a subfield of a normal extension itself be a normal 
extension of F. This fundamental theorem will be used in the next section 
to derive conditions for the solvability by radicals of the roots of a poly­
nomial. 

TH EO R E M  5.6.6 Let f (x) be a polynomial in F[x] , K its splitting field over 
F, and G (K, F) its Galois group. For any subfield T of K which contains F let 
G (K, T) = {u e G (K, F) I u(t) = t for every t e  T} and for any subgroup 
H qf G(K, F) let Kn = {x E K I u(x) = x for every u e H}. Then the asso­
ciation qf T with G (K, T) sets up a one-to-one correspondence qf the set qf sub .fields 
qf K which contain F onto the set qf subgroups qf G (K, F) such that 

I .  T = KG(K,T)• 
2. H = G (K, K8) . 
3 .  [K: T] = o(G (K, T)) ,  [ T:F] = index of G (K, T) in G (K, F) . 
4. T is a normal' extension qf F if and only if G (K, T) is a normal subgroup qf 

G (K, F). 
5. When T is a normal extension qf F, then G ( T, F) is isomorphic to 

G (K, F) fG (K, T). 

Proof. Since K is  the splitting field off (x) over F it is also the splitting 
field off (i) over any subfield T which contains F, therefore, by Theorem 
5.6.5, K is :a normal extension of T. Thus, by the definition of normality, 
T is the fixed field of G (K, T), that is, T = KG(K,T)' proving part l .  

Since K is a normal extension ofF, by Theorem 5.6.4, given a subgroup H 
of G (K, F), then H = G (K, K8) , which is the assertion of part 2. More­
over, this shows that any subgroup of G (K, F) arises in the form G (K, T), 
whence the association of T with G (K, T) maps the set of all subfields of K 
containing F onto the set of all subgroups of G (K, F). That it is one-to-one 
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G(K, F)fG (K, T).  This finishes the proof of part 5 and thereby completes 
the proof of Theorem 5.6.6. 

Problems 

1 .  If K is a field and S a  set of automorphisms of K, prove that the fixed 
field of S and that of S (the subgroup of the group of all automorphisms 
of K generated by S) are identical. 

2. Prove Lemma 5.6.2. 
3. Using the Eisenstein criterion, prove that x

4 
+ x3 + x2 + x + I 

is irreducible over the field of rational numbers. 
4. In Example 5.6.3, prove that each mapping u, defined is an auto­

morphism of F 0 (OJ) . 
5. In Example 5.6 . 3, prove that the fixed field of F0(w) under Ut , 

u2, u3, u4 is precisely F0• 
6. Prove directly that any automorphism of K must leave every rational 

number fixed. 
*7.  Prove that a symmetric polynomial in x1, • • •  , X11 is a polynomial in 

the elementary symmetric functions in xt, . . .  , X11• 

8. Express the following as polynomials in the elementary symmetric 
functions in xt , x2, x3 : 
(a) x1 2 + x2 2 + x/. 
(b) xl 3 + Xz

3 
+ xJ

3• 
(c) (x1 - x2)

2
(xt - x3)

2(x2 - x3)
2• 

9. If tXv a2, a3 are the roots of the cubic polynomial x 3 
+ 7x2 -

8x + 3, find the cubic polynomial whose roots are 

(b) ..!._, ..!._, ..!._, 
tXt a2 a3 

* 1 0. Prove Newton's identities, namely, if tXt, a2, • • •  , et11 are the roots of 
f (x) = � + a1x"

t 
+ a2�- 2 + · · · + a11 and if sk = a/ + 

rx/ + · · · + rx/ then 
(a) sk + atsk-I  + a2sk_2  + · · · + ak -tst + kak = 0 if k = 1 , 2, . . . , n. 
(b) sk + a1sk-I + · · · + a�k -n = 0 for k > n. 
(c) For n = 5, apply part (a) to determine s2, s3, s4, and s5• 

1 1 . Prove that the elementary symmetric functions in xt, . . .  , x11 are 
indeed symmetric functions in x1, • • •  , x11• 

12. If p(x) = � - I prove that the Galois group of p(x) over the field 
of rational numbers is abelian . 

The complex number w is a primitive nth root qf uniry if w" = I but w"' =F 
for 0 < m < n. F0 will denote the field of rational numbers. 
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13 .  (a) Prove that there are cjJ(n) primitive nth roots of unity where 
cjJ(n) is the Euler ¢-function. 

(b) If OJ is a primitive nth root of unity prove that F0(0J) is the 
splitting field of x" I over F0 (and so is a normal extension 
of F0) .  

(c) If OJ1, . . • , OJ.J>(n l are the cjJ(n) primitive nth roots of unity, prove 
that any automorphism of F0{0J1) takes OJ1 into some OJ1• 

(d) Prove that [F0(0J1 ) :F0] � c/J(n) . 

14. The notation is as in Problem 13 . 
* (a) Prove that there is an automorphism u1 of F0(0J1) which takes OJ1 

into OJ1• 
(b) Prove the polynomial p,.(x) = (x - OJ1) (x OJ2) • • • (x - OJ<J>(n)) 

has rational coefficients. (The polynomial p, (x) is called the 
nth cyclotomic po(ynomial.) 

*(c) Prove that, in fact, the coefficients of p,.(x) are integers. 

* * 1 5. Use the results of Problems 1 3  and 14 to prove thatp,(x) is irreducible 
over F0 for all n � I .  (See Problem 8, Section 3.) 

1 6. For n = 3, 4, 6, and 8, calculate p,.(x) explicitly, show that it has 
integer coefficients and prove directly that it is irreducible over F0• 

1 7. (a) Prove that the Galois group of x3 - 2 over F0 is isomorphic to 
s3, the symmetric group of degree 3. 

(b) Find the splitting field, K, of x3 - 2 over F0• 
(c) For every subgroup H of S3 find Kn and check the correspondence 

given in Theorem 5.6.6. 
(d) Find a normal extension in K of degree 2 over F0• 

1 8. If the field F contains a primitive nth root of unity, prove that the 
Galois group of x" - a, for a e F, is abelian. 

5.7 Solvabil ity by Radicals 

Given the specific polynomial x2 + 3x + 4 over the field of rational 
numbers F0, from the quadratic formula for its roots we know that its 

roots are ( - 3 ± .J- 7) /2 ; thus the field F0 ( J7 i) is the splitting field of 
x2 + 3x + 4 over F0• Consequently there is an element ')' = - 7 in F0 
such that the extension field F0(0J) where OJ2 = ')' is such that it contains 
all the roots of x2 + 3x + 4. 

From a slightly different point of view, given the general quadratic poly­
nomial p(x) = x2 + a1x + a2 over F, we can consider it as a particular 
polynomial over the field F(al> a2) of rational functions in the two variables 
a1 and a2 over F; in the extension obtained by adjoining OJ to F(al > a2) 
where OJ2 = a1 2 - 4a2 e F(au a2) ,  we find all the roots of p(x) . There is 
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a formula which expresses the roots of p(x) in terms of a1 , a2 and square 
roots of rational functions of these. 

For a cubic equation the situation is very similar ; given the general cubic 
equation p(x) = x3 + a1x2 + a2x + a3 an explicit formula can be given, 
involving combinations of square roots and cube roots of rational functions 
in a1,  a2, a3• While somewhat messy, they are explicitly given by Cardan's 
formulas : Let p = a2 - (a1 2/3) and 

and let 

and 

q Jp3 q2 
- +  - + -
2 27 4 

(with cube roots chosen properly) ; then the roots are P + Q - (a1/3) , 
wP + ro2Q - (a1 /3) , and ro2P + wQ - (a1/3) , where ro :F I is a cube 
root of I .  The above formulas only serve to illustrate for us that by 
adjoining a certain square root and then a cube root to F(a1 , a2, a3) we 
reach a field in which p (x) has its roots. 

For fourth-degree polynomials, which we shall not give explicitly, by 
using rational operations and square roots, we can reduce the problem to 
that of solving a certain cubic, so here too a formula can be given expressing 
the roots in terms of combinations of radicals (surds) of rational functions 
of the coefficients. 

For polynomials of degree five and higher, no such universal radical 
formula can be given, for we shall prove that it is impossible to express 
their roots, in general, in this way. 

Given a field F and a polynomial p (x) E F [x], we say that p(x) is solvable 
by radicals over F if we can find a finite sentence of fields F1 = F(ro1), 
F2 = F1 (ro2) ,  . . •  , Fk = Fk _ 1 (wk) such that ro/' E F, w2�1 E Fp . . . , 
wk�k E Fk-I such that the roots of p(x) all lie in Fk. 

If K is the splitting field of p (x) over F, then p (x) is solvable by radicals 
over F if we can find a sequence of fields as above such that K c Fk. An 
important remark, and one we shall use later, in the proof of Theorem 
5. 7.2, is that if such an F" can be found, we can, without loss of generality, 
assume it to be a normal extension of F; we leave its proof as a problem 
(Problem I ) .  

By the general polynomial of degree n over F, p(x) = K' + a1K' 1 + · · · + an, 
we mean the following : Let F(a1, • • •  , an) be the field of rational functions, 
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in the n variables a1 , • • • , an over F, and consider the particular 
polynomial p(x) = x" + a1x"- 1 + · · · + an over the field F(ap . . .  , an) · 
We say that it is solvable by radicals if it is solvable by radicals over 
F(a1 , • • • , an) .  This really expresses the intuitive idea of "finding a for­
mula" for the roots of p(x) involving combinations of mth roots, for various 
m's, of rational functions in av a2, • • • , an. For n = 2, 3, and 4, we pointed 
out that this can always be done. For n � 5, Abel proved that this cannot 
be done. However, this does not exclude the possibility that a given poly­
nomial over F may be solvable by radicals. In fact, we shall give a criterion 
for this in terms of the Galois group of the polynomial. But first we must 
develop a few purely group-theoretical results. Some of these occurred as 
problems at the end of Chapter 2, but we nevertheless do them now officially. 

D E FI N ITION A group G is said to be solvable if we can find a finite chain 
of subgroups G = N0 :: N1 :: N2 :: • • • :: Nk = (e) , where each Ni is a 
normal subgroup of Ni- l and such that every factor group Ni_ 1fNi is 
abelian. 

Every abelian group is solvable, for merely take N0 = G and N1 = (e) 
to satisfy the above definition. The symmetric group of degree 3, S3, is 
solvable for take N1 = {e, ( I ,  2, 3), ( 1 ,  3, 2) } ;  N1 is a normal subgroup of 
S3 and S3fN1 and N1f(e) are both abelian being of orders 2 and 3, respec­
tively. It can be shown that S4 is solvable (Problem 3).  For n � 5 we 
show in Theorem 5.7. 1 below that Sn is not solvable. 

We seek an alternative description for solvability. Given the group G and 
elements a, b in G, then the commutator of a and b is the element a- 1b- 1ab. 
The commutator subgroup, G', of G is the subgroup of G generated by all the 
commutators in G. (It is not necessarily true that the set of commutators 
itself forms a subgroup of G.) It was an exercise before that G' is a normal 
subgroup of G. Moreover, the group GfG' is abelian, for, given any two 
elements in it, aG', bG', with a, b e G, then 

(aG') (bG ') = abG ' = ba(a- 1b 1ab) G' 
= (since a- 1b- 1ab e G') baG' = (bG') (aG' ) .  

On the other hand, if  M i s  a normal subgroup of G such that GfM i s  abelian, 
then M :: G',  for, given a, b e G, then (aM) (bM) = (bM) (aM), from 
which we deduce abM = baM whence a- 1b- 1abM = M and so 
a- 1b- 1ab e M. Since M contains all commutators, it contains the group 
these generate, namely G'.  

G '  is  a group in its own right, so we can speak of its commutator subgroup 
c<2> = (G ' ) ' . This is the subgroup of G generated by all elements 
(a') - 1 (b') - 1a'b' where a', b' e G'.  It is easy to prove that not only is G<2> 
a normal subgroup of G'  but it is also a normal subgroup of G (Problem 4) . 
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We continue this way and define the higher commutator subgroups G(m) by 
c<m> = (c<m - l l) ' .  Each c<m> is a normal subgroup of G (Problem 4) and 
G(m- 1>jc<ml is an abelian group. 

In terms of these higher commutator subgroups of G, we have a very 
succinct criterion for solvability, namely, 

LEMMA 5.7.1 G is solvable if and only if c<kl = (e) for some integer k. 

Proof. If Q(kl = (e) let N0 = G, N1 = G ', N2 = G< 2>, . . .  , Nk = 

c <kl = (e) . We have 

G = N0 :: N1 :: N2 :: • • • :: Nk = (e) ; 

each N; being normal in G is certainly normal in N; 1 •  Finally, 

N. c( i- 1> c( i- l) 
� = -- = 

N; c< il  

hence is abelian. Thus by the definition of solvability G is a solvable group. 
Conversely, if G is a solvable group, there is a chain G = N0 :: N1 :: 

N2 :: • • • :: N
k 

= (e) where each N; is normal in N; 1  and where N; _ 1/N; 
is abelian. But then the commutator subgroup Nf _ 1  of N; _ 1  must be 
contained in N;. Thus N1 :: N� = G', N2 :: N� :: (G') '  = c< 2>, 
N3 :: N� :: (G(2l)'  = G( 3l, . . .  , N; => G (il, (e) = Nk :: c<k>. We therefore 
obtain that c<kl = (e) . 

CORO LLARY If G is a solvable group and if G is a homomorphic image of G, 
then G is solvable. 

Proof. Since G is a homomorphic image of G it is immediate that (G) <kl 
is the image of c<k> . Since c<k> = (e) for some k, (G) <k> = (e) for the same 
k, whence by the lemma G is solvable. 

The next lemma is the key step in proving that the infinite family of 
groups sn, with n � 5, is not solvable;  here sn is the symmetric group of 
degree n. 

LEMMA 5.7.2 Let G = Sn, where n � 5 ;  then c<kl for k = I ,  2, . . .  , 
contains every 3-cycle of S n· 

Proof. We first remark that for an arbitrary group G, if N is a normal 
subgroup of G, then N' must also be a normal subgroup of G (Problem 5) . 

We claim that if N is a normal subgroup of G = Sn, where n � 5, which 
contains every 3-cycle in Sn, then N' must also contain every 3-cycle. For 
suppose a = ( I ,  2, 3), b = ( I ,  4, 5) are in N (we are using here that 
n � 5) ; then a-

1b- 1ab = (3, 2, 1 ) (5, 4, 1 ) ( 1 ,  2, 3) ( 1 , 4, 5) = ( 1 ,  4, 2) , as 
a commutator of elements of N must be in N'. Since N' is a normal 
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F hence on all of K = F(u) . But then en: = ur, whence the Galois group 
is abelian. 

Note that the lemma says that when F has all nth roots of unity, then 
adjoining one root of x" - a to F, where a e F, gives us the whole splitting 
field of x" - a ;  thus this must be a normal extension of F. 

We assume for the rest of the section that F is a field which contains all nth roots 
of uniry for every integer n. We have 

T H EO R E M  5.7.2 If p(x) e F[x] is solvable by radicals over F, then the Galois 
group over F of p(x) is a solvable group. 

Proof. Let K be the splitting field of p(x) over F; the Galois group of 
p(x) over F is G (K, F) . Since p(x) is solvable by radicals, there exists a 
sequence of fields 

F c F1 = F (ro1) c F2 = F1 (ro2) c · · · c Fk = Fk- I (wk) ,  

where ro/1 e F, w2'2 e F1 , • . •  , wk'k E Fk-t and where K c Fk. As we 
pointed out, without loss of generality we may assume that Fk is a normal 
extension of F. As a normal extension of F, Fk is also a normal extension 
of any intermediate field, hence Fk is a normal extension of each F1• 

By Lemma 5. 7.3 each F1 is a normal extension of F1_ 1 and since Fk is 
normal over F1 _ 1 , by Theorem 5.6.6, G(Fk, F1) is a normal subgroup in 
G (Fk, F1 1 ) .  Consider the chain 

G (Fk, F) => G (Fk, F1) => G (Fk, F2) => • • • => G (Fk, Fk_1) => (e) . ( 1 )  

As we just remarked, each subgroup i n  this chain is a normal subgroup 
in the one preceding it. Since F1 is a normal extension of Fi- t >  by the 
fundamental theorem of Galois theory (Theorem 5.6.6) the group of F1 
over F1_ I > G (F1, F1_ 1 )  is isomorphic to G (Fk, F1_ 1 ) /G (Fk, F1) . However, 
by Lemma 5.7.3, G (F1, F1_ 1 ) is an abelian group. Thus each quotient 
group G (Fk, F1_ 1 ) /G (Fk, F1) of the chain ( 1 )  is abelian. 

Thus the group G (Fk, F) is solvable ! Since K c Fk and is a normal 
extension of F (being a splitting field), by Theorem 5.6.6, G (Fk, K) 
is a normal subgroup of G (Fk, F) and G (K, F) is isomorphic to 
G (Fk, F)JG (Fk, K) . Thus G(K, F) is a homomorphic image of G (Fk, F), a 
solvable group ; by the corollary to Lemma 5.7. 1 ,  G (K, F) itself must then 
be a solvable group. Since G (K, F) is the Galois group of p(x) over F the 
theorem has been proved. 

We make two remarks without proof. 

1 .  The converse of Theorem 5. 7.2 is also true ; that is, if the Galois group 
of p(x) over F is solvable then p(x) is solvable by radicals over F. 
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2. Theorem 5. 7.2 and its converse are true even if F does not contain 
roots of unity. 

Recalling what is meant by the general polynomial of degree n over F, 
p(x) = x" + a1x"- 1 + · · · + a,, and what is meant by solvable by radicals, 
we close with the great, classic theorem of Abel : 

THEOREM 5.7.3 The general polynomial of degree n � 5 is not solvable by 
radicals. 

Proof. In Theorem 5.6.3 we saw that if F (av . . .  , a,) is the field of 
rational functions in the n variables a1 , • • •  , a,, then the Galois group of 
the polynomial p(t) = t" + a1t" - 1 + · · · + a, over F(av . . .  , a,) was S,., 
the symmetric group of degree n. By Theorem 5.7. 1 ,  S, is not a solvable 
group when n � 5, thus by Theorem 5. 7.2, p(t) is not solvable by radicals 
over F(a1 , • • .  , a,) when n � 5.  

Problems 

* I .  If p(x) is solvable by radicals over F, prove that we can find a sequence 
of fields 

F c F1 = F(w1) c F2 = F1 (w2) c · · · c Fk = Fk_ 1 (wk) ,  

where rot'' E F, w2'2 E F1, • • .  , w{k E Fk-l> Fk containing all the 
roots of p(x) , such that Fk is normal over F. 

2. Prove that a subgroup of a solvable group is solvable. 
3. Prove that S4 is a solvable group. 
4. If G is a group, prove that all G(k) are normal subgroups of G. 

5. If N is a normal subgroup of G prove that N' must also be a normal 
subgroup of G. 

6. Prove that the alternating group (the group of even permutations in 
S,.) A, has no nontrivial normal subgroups for n � 5. 

5.8 Galois Groups over the Rationals 

In Theorem 5.3.2 we saw that, given a field F and a polynomial p(x), of 
degree n, in F[x], then the splitting field of p(x) over F has degree at most 
n !  over F. In the preceding section we saw that this upper limit of n !  is, 
indeed, taken on for some choice of F and some polynomial p(x) of degree 
n over F. In fact, if F0 is any field and if F is the field of rational functions 
in the variables a1, • • •  , a, over F0, it was shown that the splitting field, K, 
of the polynomial p(x) = x" + a1x"- 1 + · · · + a, over F has degree 
exactly n !  over F. Moreover, it was shown that the Galois group of K over 
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F is Sn, the symmetric group of degree n. This turned out to be the basis 
for the fact that the general polynomial of degree n, with n � 5, is not 
solvable by radicals. 

However, it would be nice to know that the phenomenon described 
above can take place with fields which are more familiar to us than the 
field of rational functions in n variables. What we shall do will show that 
for any prime number p, at least, we can find polynomials of degree p over 
the field of rational numbers whose splitting fields have degree p !  over the 
rationals. This way we will have polynomials with rational coefficients 
whose Galois group over the rationals is SP. In light of Theorem 5. 7.2, we 
will conclude from this that the roots of these polynomials cannot be ex­
pressed in combinations of radicals involving rational numbers. Although 
in proving Theorem 5. 7.2 we used that roots of unity were in the field, and 
roots of unity do not lie in the rationals, we make use of remark 2 following 
the proof of Theorem 5. 7.2 here, namely that Theorem 5. 7.2 remains valid 
even in the absence of roots of unity. 

We shall make use of the fact that polynomials with rational coefficients 
have all their roots in the complex field. 

We now prove 

T H E O R E M  5.8.1 Let q(x) be an irreducible polynomial of degree p, p a prime, 
over the field Q of rational numbers. Suppose that q(x) has exactly two nonreal roots 
in the field of complex numbers. Then the Galois group of q(x) over Q is SP, the 
�mmetric group of degree p. Thus the splitting field of q(x) over Q has degree p !  
over Q. 

Proof. Let K be the splitting field of the polynomial q(x) over Q. If 
a is a root of q(x) in K, then, since q(x) is irreducible over Q, by Theorem 
5.1 .3, [Q(a) :Q] = p. Since K :: Q(a) :: Q and, according to Theorem 
5. 1 . 1 ,  [K:Q] = [K:Q(a)] [Q(a) :Q] = [K:Q(a)]p, we have that P l [K:Q] .  
If G is the Galois group of K over Q ,  by Theorem 5.6.4, o(G) = [K:F] . 
Thus p I  o(G) . Hence, by Cauchy's theorem (Theorem 2. 1 1 .3),  G has 
an element u of order p. 

To this point we have not used our hypothesis that q(x) has exactly two 
nonreal roots. We use it now. If lXI> a2 are these nonreal roots, then 
a1 = �2, a2 = �1 (see Problem 13, Section 5.3), where the bar denotes 
the complex conjugate. If a3, • • •  , aP are the other roots, then, since they 
are real, �i = ai for i � 3. Thus the complex conjugate mapping takes 
K into itself, is an automorphism T of K over Q, and interchanges a:I and 
a2, leaving the other roots of q(x) fixed. 

Now, the elements of G take roots of q(x) into roots of q(x), so induce 
permutations of ai, . . .  , aP. In this way we imbed G in SP. The auto­
morphism T described above is the transposition ( 1 ,  2) since -r(a1) = a2, 
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t(et2) = et1, and t(et1) = et1 for i � 3. What about the element (1 e G, 
which we mentioned above, which has order p? As an element of SP, 
(1 has order p. But the only elements of order p in SP are p-cycles. Thus (1 

must be a p-cycle. 
Therefore G, as a subgroup of SP, contains a transposition and a p-cycle. 

It is a relatively easy exercise (see Problem 4) to prove that any transposition 
and any p-cycle in SP generate SP. Thus (1 and t generate SP. But since 
they are in G, the group generated by (1 and t must be in G. The net result 
of this is that G = SP. In other words, the Galois group of q(x) over Q is 
indeed sp. This proves the theorem. 

The theorem gives us a fairly general criterion to get SP as a Galois group 
over Q. Now we must produce polynomials of degree p over the rationals 
which are irreducible over Q and have exactly two nonreal roots. To pro­
duce irreducible polynomials, we use the Eisenstein criterion (Theorem 
3. 1 0.2 ) .  To get all but two real roots one can play around with the co­
efficients, but always staying in a context where the Eisenstein criterion is 
in force. 

We do it explicitly for p = 5. Let q(x) = 2x 5 - l Ox + 5. By the 
Eisenstein criterion, q(x) is irreducible over Q. We graph y = q(x) = 

2x5 - lOx + 5. By elementary calculus it has a maximum at x = - I  
and a minimum at x = I (see Figure 5.8. 1 ) .  As the graph clearly indicates, 

y 

( I , - 3) 

Figure 5.8. 1 

y = q(x) = 2x5 - lOx + 5 crosses the x-axis exactly three times, so q(x) 
has exactly three roots which are real. Hence the other two roots must be 
complex, nonreal numbers. Therefore q(x) satisfies the hypothesis of 
Theorem 5.8. 1 ,  in consequence of which the Galois group of q(x) over Q 
is S5 • Using Theorem 5.7.2, we know that it is not possible to express the 
roots of q(x) in a combination of radicals of rational numbers. 
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I .  In S5 show that ( 1  2) and ( 1  2 3 4 5) generate S5• 
2. In S5 show that ( l  2) and (l 3 2 4 5) generate S5• 
3. If p > 2 is a prime, show that ( I  2) and ( I  2 · · · p - I p) generate SP. 
4. Prove that any transposition and p-cycle in SP, p a prime, generate SP. 
5. Show that the following polynomials over Q are irreducible and have 

exactly two nonreal roots. 
(a) p(x) = x3 - 3x - 3, 
(b) p (x) = x 5 

- 6x + 3, 
(c) p(x) = x 5 + 5x4 + l 0x3 + l0x2 - x - 2. 

6. What are the Galois groups over Q of the polynomials in Problem 5?  
7 .  Construct a polynomial of degreee 7 with rational coefficients whose 

Galois group over Q is S7• 
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6 
Linear Transforllations 

In Chapter 4 we defined, for any two vector spaces V and W over the 
same field F, the set Hom ( V, W) of all vector space homomorphisms 
of V into W. In fact, we introduced into Hom ( V, W) the operations 
of addition and of multiplication by scalars (elements of F) in such a 
way that Hom ( V, W) itself became a vector space over F. 

Of much greater interest is the special case V = W, for here, in 
addition to the vector space operations, we can introduce a multi­
plication for any two elements under which Hom ( V, V) becomes a 
ring. Blessed with this twin nature-that of a vector space and of a 
ring-Hom ( V, V) acquires an extremely rich structure. It is this 
structure and its consequences that impart so much life and sparkle 
to the subject and which justify most fully the creation of the abstract 
concept of a vector space. 

Our main concern shall be concentrated on Hom ( V, V) where V 
will not be an arbitrary vector space but rather will be restricted to be 
a finite-dimensional vector space over a field F. The finite­
dimensionality of V imposes on Hom ( V, V) the consequence that 
each of its elements satisfies a polynomial over F. This fact, perhaps 
more than any other, gives us a ready entry into Hom ( V, V) and 
allows us to probe both deeply and effectively into its structure. 

The subject matter to be considered often goes under the name of 
linear algebra. It encompasses the isomorphic theory of matrices. The 
statement that its results are in constant everyday use in every aspect 
of mathematics (and elsewhere) is not in the least exaggerated. 

260 
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A popular myth is that mathematicians revel in the inapplicability of 
their discipline and are disappointed when one of their results is "soiled" 
by use in the outside world. This is sheer nonsense ! It is true that a mathe� 
matician does not depend for his value judgments on the applicability of a 
given result outside of mathematics proper but relies, rather, on some 
intrinsic, and at times intangible, mathematical criteria. However, it is 
equally true that the converse is false-the utility of a result has never 
lowered its mathematical value. A perfect case in point is the subject of 
linear algebra ; it is real mathematics, interesting and exciting on its own, 
yet it is probably that part of mathematics which finds the widest applica­
tion-in physics, chemistry, economics, in fact in almost every science and 
pseudoscience. 

6.1 The Algebra of Linear Transformations 

Let V be a vector space over a field F and let Hom ( V, V) , as before, be 
the set of all vector-space�homomorphisms of V into itself. In Section 4.3 
we showed that Hom ( V, V) forms a vector space over F, where, for 
T� >  T2 e Hom ( V, V), T1 + T2 is defined by v( T1 + T2) = v T1 + vT2 
for all v e V and where, for ex e F, a T1 is defined by v(a T1 )  = a(vT1) . 

For T1, T2 e Hom (V, V), since vT1 e V for any v e V, (v T1) T2 makes 
sense. As we have done for mappings of any set into itself, we define 
T1 T2 by v ( T1 T2) = (vT1) T2 for any v e V. We now claim that T1 T2 e 
Hom ( V, V) . To prove this, we must show that for all o:, p e F and all 
u, v e V, (cxu + Pv) ( T1 T2) = a(u( T1 T2)) + P(v( T1 T2)) . We compute 

(au + Pv) ( Tl T2) = ((au + Pv) T.) T2 
= (a(u T1) + P(vT1) )  T2 
= cx(u T1 )  T2 + P(v T1) T2 

cx(u( T1 T2)) + P(v( T1 T2)) . 
We leave as an exercise the following properties of this product in 

Hom (V, V) : 

L ( T1 + T2) T3 = T1 T3 + T2 T3 ; 
2. T3( T1 + T2) = T3 T1 + T3 T2 ; 
3. T1 ( T2 T3) = ( T1 T2) T3 ; 
4. a( T1 T2) = (a T1) T2 = T1 (a T1,) ; 
for all T1, T2, T3 e Hom ( V, V) and all a e F. 

Note that properties I ,  2, 3, above, are exactly what are required to 
make of Hom ( V, V) an associative ring. Property 4 intertwines the 
character of Hom (V, V), as a vector space over F, with its character as a 
ring. 
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a, b E  A, v Tab = v(ab) = (va)b = (vTa) Tb = v( Ta Tb) (we have used 
the associative law of A in this computation), which implies that Tab = 
TaTb. In this way, t/1 is also a ring-homomorphism of A. So far we have 
proved that t/1 is a homomorphism of A, as an algebra, into A(V) .  All that 
remains is to determine the kernel of t/J. Let a e A be in the kernel of t/J ;  
then at/J = 0, whence Ta = 0 and so v Ta = 0 for all v E V. Now V = A, 
and A has a unit element, e, hence e Ta = 0. However, 0 = e Ta = ea = a, 
proving that a = 0. The kernel of t/1 must therefore merely consist of 0, 
thus implying that t/1 is an isomorphism of A into A ( V) . This completes the 
proof of the lemma. 

The lemma points out the universal role played by the particular algebras, 
A ( V) , for in these we can find isomorphic copies of any algebra. 

Let A be an algebra, with unit element e, over F, and let p(x) = a0 + 
a1x + · · · + anX' be a polynomial in F[x] . For a e A, by p(a) , we shall 
mean the element aoe + a1a + · · · + anan in A. If p(a) = 0 we shall say 
a satisfies p(x) . 

LEMMA 6.1 .2 Let A be an algebra, with unit element, over F, and suppose that 
A is of dimension m over F. Then every element in A satisfies some nontrivial poly­
nomial in F [ x] of degree at most m. 

Proof. Let e be the unit element of A ;  if a e A, consider the m + I 
elements e, a, a2, • • •  , am in A. Since A is m-dimensional over F, by Lemma 
4.2.4, e, a, a2, • • •  , am, being m + 1 in number, must be linearly dependent 
over F. In other words, there are elements ao, a1, • • •  , am in F, not all 
0, such that aoe + a1a + · · · + amam = 0. But then a satisfies the non­
trivial polynomial q(x) = IXo + a1x + · · · + am�' of degree at most m, 
in F[x]. 

If V is a finite-dimensional vector space over F, of dimension n, by 
Corollary 1 to Theorem 4.3 . 1 ,  A ( V) is of dimension n2 over F. Since A ( V) 
is an algebra over F, we can apply Lemma 6. 1 .2 to it to obtain that every 
element in A ( V) satisfies a polynomial over F of degree at most n2• This 
fact will be of central significance in all that follows, so we single it out as 

THEOREM 6.1 .1 If V is an n-dimensional vector space over F, then, given any 
element T in A(V) ,  there exists a nontrivial polynomial q(x) e F[x] of degree at 
most n2, such that q( T) = 0. 

We shall see later that we can assert much more about the degree of q(x) ; 
in fact, we shall eventually be able to say that we can choose such a q(x) 
of degree at most n. This fact is a famous theorem in the subject, and is 
known as the Cayley-Hamilton theorem. For the moment we can get by 
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S = - _!._ (akrk- 1 + · · ·  + rx1) rxo 

acts as an inverse for T, whence T is invertible. 
Suppose, on the other hand, that T is invertible, yet a0 = 0. Thus 

0 = a1 T + a2 T2 + · ·  · + ak Tk = (a1 + a2 T + · · ·  + akTk- 1) T. Multi­
plying this relation from the right by r- 1 yields a1 + a2 T + · · · + 
ak Tk- 1 = 0, whereby T satisfies the polynomial q(x) = a1 + a2x + · · · + 
akxk 1 in F[x] . Since the degree of q(x) is less than that of p(x), this is 
impossible. Consequently, rxo =1- 0 and the other half of the theorem is 
established. 

COROLLARY 1 If V is finite-dimensional over F and if T e A(V) is in­
vertible, then r- 1 is a polynomial expression in T over F. 

Proof. Since T is invertible, by the theorem, CXo + a1 T + · · · + 
ak Tk = 0 with rxo =1- 0. But then 

T- 1 = - _!._ (rx1 + a2 T + · · · + ak Tk 1) .  
CXo 

COROLLARY 2 If V is finite-dimensional over F and if T E A( V) is singular, 
then there exists an S =1- 0 in A( V) such that ST = TS = 0. 

Proof. Because T is not regular, the constant term of its minimal 
polynomial must be 0. That is, p(x) = a1x + · · · + ak�> whence 0 = 
a1 T + · · · + akTk. If S = rx1 + · · · + akTk- 1 , then S =1- 0 (since 
a1 + · · · + akxk- 1  is of lower degree than p(x)) and ST = TS = 0. 

COROLLARY 3 If V is finite-dimensional over F and if T E A( V) is right­
invertible, then it is invertible. 

Proof. Let TU = l .  If T were singular, there would be an S =f. 0 
such that ST = 0. However, 0 = (ST) U = S( TU) = Sl = S =1- 0, 
a contradiction. Thus T is regular. 

We wish to transfer the information contained in Theorem 6. 1 .2 and its 
corollaries from A(V) to the action of T on V. A most basic result in this 
vem 1s 

TH EOREM 6. 1 .3 If V is finite-dimensional over F, then T E A( V) is singular 
if and only if there exists a v =1- 0 in V such that v T = 0. 

Proof. By Corollary 2 to Theorem 6.1 .2, T is singular if and only if 
there is an S =f. 0 in A(V) such that ST = TS = 0. Since S =1- 0 there 
is an element w E V such that wS =1- 0. 
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Let v = wS; then v T  = (wS) T = w(ST) = wO = 0. We have produced 
a nonzero vector v in V which is annihilated by T. Conversely, if v T = 0 
with v =1= 0, we leave as an exercise the fact that T is not invertible. 

We seek still another characterization of the singularity or regularity of 
a linear transformation in terms of its overall action on V. 

D EFI N ITION If T e A ( V) ,  then the range of T, VT, is defned by VT = 
{v T I  v e  V}. 

The range of T is easily shown to be a subvector space of V. It merely 
consists of all the images by T of the elements of V. Note that the range 
of T is all of V if and only if T is onto. 

THEOREM 6.1 .4 .(f V is finite-dimensional over F, then T e A ( V) is regular 
if and only if T maps V onto V. 

Proof. As happens so often, one-half of this is almost trivial ; namely, 
if T is regular then, given v e V, v = ( v T-

1 ) T, whence VT = V and 
T is onto. 

On the other hand, suppose that T is not regular. We must show that 
T is not onto. Since T is singular, by Theorem 6. 1 .3, there exists a vector 
v1 =I= 0 in V such that v1 T = 0. By Lemma 4.2.5 we can fill out, from v1, 
to a basis v1 , v2, • • •  , vn of V. Then every element in VT is a linear com­
bination of the elements w1 = v1 T, w2 = v2 T, . . . , Wn = vn T. Since 
w1 = 0, VT is spanned by the n - 1 elements w2, • • •  , wn;  therefore 
dim VT � n - 1 < n = dim V. But then VT must be different from V; 
that is, T is not onto. 

Theorem 6. 1 .4 points out that we can distinguish regular elements from 
singular ones, in the finite-dimensional case, according as their ranges are 
or are not all of V. If T e A ( V) this can be rephrased as : T is regular if 
and only if dim ( VT) = dim V. This suggests that we could use dim ( VT) 
not only as a test for regularity, but even as a measure of the degree of 
singularity (or, lack of regularity) for a given T E A ( V).  

D E FI N ITIO N  If V is fnite-dimensional over F, then the rank of T is the 
dimension of VT, the range of T, over F. 

We denote the rank of T by r (T) .  At one end of the spectrum, if r(T) = 
dim V, T is regular (and so, not at all singular) . At the other end, if 
r ( T) 0, then T 0 and so T is as singular as it can possibly be. The 
rank, as a function on A(  V), is an important function, and we now investigate 
some of its properties. 
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L E M MA 6.1 .3 If V is finite-dimensional over F then for S, T E A(V) .  

I .  r(ST) ::5; r (  T) ; 
2. r( TS) ::5; r ( T) ;  

(and so, r(ST) ::5; min {r( T) ,  r (S ) }) 

3. r (ST) = r ( TS) = r ( T) for S regular in A (V) .  

Proof. We go through 1 ,  2, and 3 in order. 

I .  Since VS c V, V(ST) = ( VS) T c VT, whence, by Lemma 4.2.6, 
dim ( V(ST)) ::5; dim VT; that is, r (ST) ::5; r ( T) .  

2 .  Suppose that r (  T )  = m .  Therefore, V T  has a basis of m elements, 
wl> w2, • • •  , wm. But then ( VT)S is spanned by w1S, w2S, . . .  , wmS, hence 
has dimension at most m. Since r (TS) = dim ( V( TS)) = dim ( ( VT)S) ::5; 
m = dim VT = r( T), part 2 is proved. 

3 .  If S is invertible then VS = V, whence V(ST) = ( VS) T = VT. 
Thereby, r (ST) = dim (V(ST)) = dim ( VT) = r (T) .  On the other hand, 
if VT has w1 , • • •  , wm as a basis, the regularity of S implies that w1S, . : .  , 
wmS are linearly independent. (Prove !) Since these span V( TS) they form 
a basis of V(TS) . But then r ( TS) = dim ( V( TS)) = dim ( VT) = r ( T) .  

COROLLARY Ij T E A(V) and ifS E A ( V) is regular, then r ( T) = r(STS- 1) .  

Proof. By part 3 of the lemma, r(STS- 1) = r(S( TS- 1) )  = r( (TS- 1)S) = 
r ( T) .  

Problems 

In all problems, unless stated otherwise, V will denote a finite-dimensional 
vector space over a field F. 

I .  Prove that S E A ( V) is regular if and only if whenever v1, • • •  , vn E V 
are linearly independent, then v1S, v2S, . . .  , vnS are also linearly 
independent. 

2. Prove that T E A(  V) is completely determined by its values on a 
basis of V. 

3 .  Prove Lemma 6. 1 . 1  even when A does not have a unit element. 

4. If A is the field of complex numbers and F is the field of real numbers, 
then A is an algebra over F of dimension 2. For a = oc + f3i in A, 
compute the action of Ta (see Lemma 6. 1 . 1 ) on a basis of A over F. 

5. If V is two-dimensional over F and A = A(V) ,  write down a basis 
of A over F and compute Ta for each a in this basis. 

6. If dimp V > I prove that A ( V) is not commutative. 

7. In A ( V) let Z = { T E A (V) I ST = TS for all S E A(V) }. Prove that 
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24. Using the result of Problem 23, prove that given a E A either a is 
nilpotent or there is an element b =F 0 in A of the form b = ah(a) , 
where h(x) e F[x] , such that b2 = b. 

25. If A is an algebra over F (not necessarily finite-dimensional) and if 
for a E A, a2 - a is nilpotent, prove that either a is nilpotent or there 
is an element b of the form b = ah(a) =F 0, where h(x) E F[x], such 
that b2 = b. 

*26. If T =F 0 E A (V) is singular, prove that there is an element S E A(V) 
such that TS = 0 but ST =F 0. 

27. Let V be two-dimensional over F with basis v1, v2• Suppose that 
T E A( V) is such that v1 T = av1 + Pv2, v2 T = yv1 + 15v2, where 
a, p, y, 15 E F. Find a nonzero polynomial in F[x] of degree 2 satisfied 
by T. 

28. If V is three-dimensional over F with basis v1 , v2, v3 and if T E A( V) 
is such that vi T = ail v1 + ai2v2 + ai3v3 for i = 1, 2, 3, with all 
aii E F, find a polynomial of degree 3 in F[x] satisfied by T. 

29. Let V be n-dimensional over F with a basis v1 , • • .  , vn. Suppose that 
T E A( V) is such that 

v1 T = v2, v2 T = v3, • • • , vn_ 1  T = vn, 

vn T = - anv1 - an 1v2 - . . .  - a1vn, 
where a1, . . .  , an E F. Prove that T satisfies the polynomial 

p(x) = xn + a1� 1 + a2xn 2 + · · · + an over F. 
30. If T E A ( V) satisfies a polynomial q(x) E F[x], prove that for S e 

A(V) ,  S regular, STS- 1 also satisfies q(x) . 
3 1 .  (a) If F is the field of rational numbers and if V is three-dimensional 

over F with a basis v1 , v2, v3, compute the rank of T E A( V) 
defined by 

v1 T = v1 - v2, 
v2 T = v1 + v3, 
v3 T = v2 + v3• 

(b) Find a vector v E V, v =F 0. such that v T = 0. 
32. Prove that the range of T and U = {v E V I  v T  = 0} are subspaces 

of V. 
33. If T E A(V) ,  let V0 = {v E V I  vTk = 0 for some k}. Prove that 

V0 is a subspace and that if vTm E V0, then v E V0• 
34. Prove that the minimal polynomial of T over F divides all polynomials 

satisfied by T over F. 
* 35. If n ( T) is the dimension of the U of Problem 32 prove that r ( T) + 

n(T) = dim V. 
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6.2 Characteristic Roots 

For the rest of this chapter our interest will be limited to linear transfor­
mations on finite-dimensional vector spaces. Thus, henceforth, V will always 
denote a finite-dimensional vector space over a field F. 

The algebra A(V) has a unit element; for ease of notation we shall write 
this as 1 ,  and by the symbol A. - T, for A. E F, T E A ( V) we shall mean 
A. l - T. 

D E FI N ITION If T e A ( V) then A. e F  1s called a characteristic root (or 
eigenvalue) of T if A. - T is singular. 

We wish to characterize the property of being a characteristic root in the 
behavior of T on V. We do this in 

T H E O R E M  6.2.1 The element A. e F  is a characteristic root rif T e A(V) if 
and only if for some v #- 0 in V, v T = A.v. 

Proof. If A. is a characteristic root of T then A. - T is singular, whence, 
by Theorem 6. 1 .3, there is a vector v #- 0 in V such that v(A. - T) = 0. 
But then A.v = vT. 

On the other hand, if vT = A.v for some v #- 0 in V, then v(A. - T) = 0, 
whence, again by Theorem 6. 1 .3, A. - T must be singular, and so, A. is a 
characteristic root of T. 

LEMMA 6.2.1 If A. E F is a characteristic root rif T E A(V),  then for any 
polynomial q(x) E F[x], q(A.) is a characteristic root rif q( T) .  

Proof. Suppose that A. E F is a characteristic root of T. By Theorem 
6.2. 1 ,  there is a nonzero vector v in V such that vT = A.v. What about vT2 ? 

Now vT2 = (A.v) T = A.(vT) = A.(A.v) = A. 2v. Continuing in this way, 
we obtain that vTk = A_kv for all positive integers k. If q(x) = a0xm + 
a1?- 1 + · · · + am, ai E F, then q( T) = a0 Tm + a1 Tm- 1 + · · · + a

m
, 

whence vq(T) = v(ao Tm + a1 Tm 1 + · · · + am) =  ao(vTm) + a1 (v Tm- 1) + 
· · · + rxm

v = (rJ.oA.m + rx1A.m- 1 + · · · + rxm)v  = q(A.)v by the remark made 
above. Thus v(q(A.) - q( T)) = 0, hence, by Theorem 6.2. 1 ,  q(A.) is a 
characteristic root of q( T) . 

As immediate consequence of Lemma 6.2. 1 ,  in fact as a mere special 
case (but an extremely important one), we have 

TH EO R EM 6.2.2 If A. E F is a characteristic root rif T E A(V),  then A. is a 
root rif the minimal polynomial of T. In particular, T only has a finite number of 
characteristic roots in F. 
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Proof. Let p(x) be the minimal polynomial over F of T; thus p( T) 0. 
If A. e F is a characteristic root of T, there is a v =1= 0 in V with vT = A.v. 
As in the proof of Lemma 6.2. 1 ,  vp( T) = p(A)v ;  but p(T) = 0, which 
thus implies that p(A)v = 0. Since v =I= 0, by the properties of a vector 
space, we must have that p(A) = 0. Therefore, A is a root of p(x) . Since 
p(x) has only a finite number of roots (in fact, since deg p(x) ::; n2 where 
n = dimp V, p(x) has at most n2 roots) in F, there can only be a finite 
number of characteristic roots of T in F. 

If T e A( V) and if S e A( V) is regular, then (STS- 1 )  2 = STS 1STS 1 = 
ST2S- 1, (STS 1) 3 = ST3S 1, • • •  , (STS- 1) 1 = ST1S- 1 •  Consequently, 
for any q(x) e F[x] , q(STS - 1 )  = Sq( T)S- 1•  In particular, if q ( T) = 0, 
then q(STS- 1) = 0. Thus if p(x) is the minimal polynomial for T, then it 
follows easily that p(x) is also the minimal polynomial for srs- 1 • We have 
proved 

LEM MA 6.2.2 lJ T, S e A ( V) and if S is regular, then T and STS 1 have 
the same minimal polynomial. 

D EFI N IT ION The element 0 =1= v E V is called a characteristic vector of T 
belonging to the characteristic root A. E F if v T = A.v. 

What relation, if any, must exist between characteristic vectors of T 
belonging to different characteristic roots? This is answered in 

' 

THEOREM 6.2.3 IJ A1, . • •  , A.k in F are distinct characteristic roots of T E 
A( V) and if v

1
, • . •  , vk are characteristic vectors of T belonging to A1 , • • • , Ak> 

respectively, then v1, • • •  , vk are linearly independent over F. 

Proof. For the theorem to require any proof, k must be larger than I ; 
so we suppose that k > 1 .  

If Vu • • •  , vk are linearly dependent over F, then there is a relation of the 
form a 1 v

1 + · · · + r:xkvk 0, where rxu . . . , ak arc all in F and not all of 
them are 0. In all such relations, there is one having as few nonzero co­
efficients as possible. By suitably renumbering the vectors, we can assume 
this shortest relation to be 

We know that v1 T = A1v1, so, applying T to equation ( l ) ,  we obtain 

AtPtvl + · · · + AiPh = 0. 

( I )  

(2) 

Multiplying equation ( 1 )  by A1 and subtracting from equation (2), we 
obtain 
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(b) In terms of a, p, y, ij find necessary and sufficient conditions that 
T have two distinct characteristic roots in F. 

5. If V is two-dimensional over a field F prove that every element in 
A ( V) satisfies a polynomial of degree 2 over F. 

*6. If V is two-dimensional over F and if S, T E A(V),  prove that 
(ST - TS) 2 commutes with all elements of A (V) .  

7 .  Prove Corollary 2 to Theorem 6.2.3. 

8. If V is n-dimensional over F and T E A( V) is nilpotent (i.e., T" = 0 
for some k) , prove that rn = 0. (Hint : If v E v use the fact that v, vT, 
vT2, . • •  , vTn must be linearly dependent over F.) 

6.3 Matrices 

Although we have been discussing linear transformations for some· time, it 
has always been in a detached and impersonal way ; to us a linear trans­
formation has been a symbol (very often T) which acts in a certain way on 
a vector space. When one gets right down to it, outside of the few concrete 
examples encountered in the problems, we have really never come face to 
face with specific linear transformations. At the same time it is clear that 
if one were to pursue the subject further there would often arise the need 
of making a thorough and detailed study of a given linear transformation. 
To mention one precise problem, presented with a linear transformation 
(and suppose, for the moment, that we have a means of recognizing it), 
how does one go about, in a "practical" and computable way, finding its 
characteristic roots? 

What we seek first is a simple notation, or, perhaps more accurately, 
representation, for linear transformations. We shall accomplish this by 
use of a particular basis of the vector space and by use of the action of a 
linear transformation on this basis. Once this much is achieved, by means 
of the operations in A( V) we can induce operations for the symbols created, 
making of them an algebra. This new object, infused with an algebraic life 
of its own, can be studied as a mathematical entity having an interest by 
itself. This study is what comprises the subject of matrix theory. 

However, to ignore the source of these matrices, that is, to investigate the 
set of symbols independently of what they represent, can be costly, for we 
would be throwing away a great deal of useful information. Instead we 
shall always use the interplay between the abstract, A(V),  and the concrete, 
the matrix algebra, to obtain information one about the other. 

Let V be an n-dimensional vector space over a field F and let vv . . .  , vn 
be a basis of V over F. If T E A( V) then T is determined on any vector as 
soon as we know its action on a basis of V. Since T maps V into V, v1 T, 

273 
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v2 T, . . .  , v,. T must all be in V. As elements of V, each of these is realizable 
in a unique way as a linear combination of v1, • • •  , v, over F. Thus 

v1 T = IX11  v1 + IX12v2 + • · • + o:11v, 
V2 T = IX21v1 + IX22V2 + · · · + 1X2,v, 
vi T = a:11v1 + IX12v2 + · · · + a:1,v, 

v,. T = a:,.1v1 + a:,2v2 + · · · + IX,.,.v,, 
where each a:iJ E F. This system of equations can be written more compactly as 

" 
v1 T = L aliv 1, for i = I ,  2, . . .  , n. 

j = l  
The ordered set of n2 numbers IX11 in F completely describes T. They will 

serve as the means of representing T. 

DEFI N ITION Let V be an n-dimensioned vector space over F and let 
v1 , • • • , v, be a basis for V over F. If T e A ( V) then the matrix of T in the 
basis v1, • . .  , v,., written as m( T), is 

m( T) = (r�: r�: 
IX,l a.,2 

where vi T = LJ a1l'r 

• . .  IX ) 1 11 
. . . az,. 

: ' 
a,.,. 

A matrix then is an ordered, square array of elements of F, with, as yet, 
no further properties, which represents the effect of a linear transformation 
on a given basis. 

Let us examine an example. Let F be a field and let V be the set of all 
polynomials in x of degree n - I or less over F. On V let D be defned 
by (Po + Ptx + . . · + P .. -tx"- 1)D = Pt + 2P2x + · . . + iP1x1- 1 

+ · · · + 
(n - l ) p, _1x"- 2 . It is trivial that D is a linear transformation on V; in 
fact, it is merely the differentiation operator. 

What is the matrix of D ?  The questions is meaningless unless we specify 
a basis of V. Let us first compute the matrix of D in the basis v1 = I ,  
v2 = x, v3 = x2, • • .  , v1 = x1- 1 , • • .  , v, = x"- 1 • Now, 

v1D = ID = 0 = Ov1 + Ov2 + · · · + Ov,. 
v2D = xD = I = lv1 + Ov2 + · · · + Ov, 

v1D = x1- 1D = (i - l )xi- Z 
= Ov1 + Ov2 + · · · + Ov1_ 2  + (i - l )v1_ 1 + Ov1 

+ · · · + Ov,. 

�,D = x" - 1D = (n - l )x"- 2 

= Ov1 + Ov2 + · · · + Ov,_2  + (n - l)v, _ 1  + Ov,. 
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Going back to the very definition of the matrix of a linear transformation 
in a given basis, we see the matrix of D in the basis v1 , . . •  , v,, m1 (D), is 
in fact (0 0 0 

I 0 0 
m1 (D) = 0 2 0 0 0 3 0 0 0 0 0 0 0 

(n - I )  �) 
However, there is nothing special about the basis we just used, or in how 

we numbered its elements. Suppose we merely renumber the elements of 
this basis ; we then get an equally good basis w1 = x"- 1, w2 = x"- 2, • • .  , 
w1 = x" 1, • • •  , w, = I .  What is the matrix of the same linear trans­
formation D in this basis? Now, 

w1D = x" 1D = (n - I )x"- 2 

= Ow1 + (n - l )w2 + Ow3 + · · · + Ow, 

w1D = x"- 1D = (n - i)xn- i- l 
= Ow1 + · · · + Ow1 + (n - i)wi+ l  + Owl+2 + · · · + Ow, 

whence m2 (D), the matrix of D in this basis is 0 (n - I )  0 0 0 0 0 0 (n - 2) 0 0 0 0 0 0 (n - 3) 0 0 
m2(D) 0 0 0 0 0 I 0 0 0 0 0 

Before leaving this example, let us compute the matrix of D in still another 
basis of V over F. Let u1 = I ,  u2 = I + x, u3 = I + x2, • • •  , u, = I + x"- 1 ;  
it is easy to verify that u1, • . .  , u, form a basis of V over F. What is the 
matrix of D in this basis? Since 

u1D = ID = 0 = Ou1 + Ou2 + · · · + Ou, 
u2D = ( I  + x)D = I = l u1 + Ou2 + · · · + Oun 
u3D = ( I  + x2)D = 2x = 2 (u2 - u1) = - 2u1 + 2u2 + Ou3 + · · · + Ou,. 

u,D = ( I  + x" 1)D = (n - l )x"- 2 = (n - l ) (u, - u1) 
= - (n - l )u1 + Ou2 + · · · + Ou,_2 + (n - l )u,_ 1 + Ou,. 
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The matrix, m3 (D), of D in this basis is 

0 0 0 0 0 
I 0 0 0 0 

- 2  2 0 0 0 
- 3  0 3 0 0 

m3(D) = 0 0 
0 0 

- (n - I )  0 0 (n - I )  0 

By the example worked out we see that the matrices of D, for the three 
bases used, depended completely on the basis. Although different from each 
other, they still represent the same linear transformation, D, and we could 
reconstruct D from any of them if we knew the basis used in their determi­
nation. However, although different, we might expect that some relationship 
must hold between m1 (D), m2(D) , and m3(D) . This exact relationship will 
be determined later. 

Since the basis used at any time is completely at our disposal, given a 
linear transformation T (whose defnition, after all, does not depend on any 
basis) it is natural for us to seek a basis in which the matrix of T has a 
particularly nice form. For instance, if T is a linear transformation on V, 
which is n-dimensional over F, and if T has n distinct characteristic roots 
A.v . . . , An in F, then by Corollary 2 to The"orem 6.2.3 we can find a basis 
v1 , • • •  , vn of V over F such that v1 T = A.1v1• In this basis T has as matrix 
the especially simple matrix, 

m(T) 

We have seen that once a basis of V is picked, to every linear transforma­
tion we can associate a matrix. Conversely, having picked a fixed basis 
v1, . • . , vn of V over F, a given matrix 

rx11 e F, 

gives rise to a linear transformation T defned on V by v1 T = LJ rx11v1 on 
this basis. Notice that the matrix of the linear transformation T, just con­
structed, in the basis v1 , • • •  , vn is exactly the matrix with which we started. 
Thus every possible square array serves as the matrix of some linear trans­
formation in the basis v1 , • • • , v". 
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It is clear what is intended by the phrase the first row, second row, . . . , 
of a matrix, and likewise by the first column, second column, . . .  . In the 
matrix 

the element r:x11 is in the ith row and jth column ; we refer to it as the (i, j) 
entry of the matrix. 

To write out the whole square array of a matrix is somewhat awkward ; 
instead we shall always write a matrix as (rxu) ;  this indicates that the (i, j) 
entry of the matrix is rxu. 

Suppose that V is an n-dimensional vector space over F and v1 , • • • , v, 
is a basis of V over F which will remain fixed in the following discussion. 
Suppose that S and Tare linear transformations on V over F having matrices 
m(S) = (u11), m(T) = (-r11), respectively, in the given basis. Our objective 
is to transfer the algebraic structure of A(V) to the set of matrices having 
entries in F. 

To begin with, S = T if and only if vS = vT for any v e V, hence, if 
and only if v1S = v1T for any v1 , • • •  , v, forming a basis of V over F. 
Equivalently, S = T if and only if uu = -r11 for each i andj. 

Given that m(S) = (uiJ) and m(T) = (-r11) , can we explicitly write down 
m(S + T) ? Because m(S) = (u11), v1S = .E1 uiJv1; likewise, v1T = .E1 -r1�1, 
whence 

v1(S + T) = vtB + v1T = L u11v1 + L -r0v1 = L (u11 + -r11)v1• 
j j J 

But then, by what is meant by the matrix of a linear transformation in a 
given basis, m(S + T) = (A.,1) where ).IJ = u11 + Tu for every i and j. 
A computation of the same kind shows that for y E F, m(yS) = (p11) 
where Po = yu 11 for every i and j. 

The most interesting, and complicated, computation is that of m(ST). 
Now 

However, v,.T = 1:1 -r,.1v1 ; substituting in the above formula yields 

(Prove !) Therefore, m(ST) = (vii), where for each i and j, vii = 
Lk Utt'fl<j• 
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At first glance the rule for computing the matrix of the product of two 
linear transformations in a given basis seems complicated. However, note 
that the (i, j) entry of m(ST) is obtained as follows:  Consider the rows of 
S as vectors and the columns of T as vectors ; then the (i, j) entry of m(ST) 
is merely the dot product of the ith row of S with the jth column of T. 

Let us illustrate this with an example. Suppose that 

and 

m(S) = G !) (- 1  0) 
m(T) = 

2 3 
; 

the dot product of the first row of S with the first column of T is ( I )  ( - 1 ) + 
(2) (2) = 3, whence the ( I ,  I )  entry of m(ST) is 3 ;  the dot product of the 
first row of S with the second column of T is ( I )  (0) + (2) (3) = 6, whence 
the ( l ,  2) entry of m(ST) is 6 ;  the dot product of the second row of S with 
the first column of T is (3) ( - 1 ) + (4) (2) = 5, whence the (2, 1 )  entry of 
m(ST) is 5 ;  and, finally the dot product of the second row of S with the 
second column of T is (3) (0) + (4) (3) = 12, whence the (2, 2) entry of 
M (ST) is 1 2. Thus 

m(ST) = G 1:} 
The previous discussion has been intended to serve primarily as a motiva­

tion for the constructions we are about to make. 
Let F be a field ; an n x n matrix over F will be a square array of elements 

in F, 

(which we write as (a.IJ) ) .  Let Fn = {(a.11) l a.11 e F} ;  in Fn we want to 
introduce the notion of equality of its elements, an addition, scalar multipli­
cation by elements of F and a multiplication so that it becomes an algebra 
over F. We use the properties of m(T) for T e  A(V) as our guide in this. 

I .  We declare (a.iJ) (p11) , for two matrices in Fn, if and only if a.lJ = 
(J11 for each i andj. 

2. We define (cx11) + CPu) = (). 11) where }.11 = a.IJ + (J11 for every i, j. 
3. We define, for y e F, y(a11) = (p.li) where p.i/ = yali for every i and j. 
4. We define (au) (fJ11) = (v11), where, for every i and j, v11 = Lk a1kfJkJ· 

Let V be an n-dimensional vector space over F and let vi > . . .  , v. be a 
basis of V over F; the matrix, m( T) , in the basis v1, • . .  , vn associates with 
T e  A(V) an element, m(T) ,  in F,. Without further ado we claim that the 
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mapping from A ( V) into F,. defined by mapping T onto m(T) is an algebra 
isomorphism of A(V) onto F,.. Because of this isomorphism, F,. is an 
associative algebra over F (as can also be verified directly) . We call F,. 
the algebra cif all n x n matrices over F. 

Every basis of V provides us with an algebra isomorphism of A ( V) onto 
F,.. It is a theorem that every algebra isomorphism of A ( V) onto F,. is so 
obtainable. 

In light of the very specific nature of the isomorphism between A ( V) and 
F,., we shall often identify a linear transformation with its matrix, in some 
basis, and A(V) with F,.. In fact, F,. can be considered as A(V) acting on 
the vector space V = F(n) of all n-tuples over F, where for the basis v1 = 
( I ,  0, . . .  , 0) , v2 = (0, 1 ,  0, . . . , 0), . . . , v, = (0, 0, . . .  , 0, 1 ) ,  (rxii) e F,. 
acts as v1(rx11) = ith row of (rxij) · 

We summarize what has been done in 

THEOREM 6.3.1 The set cif all n x n matrices over F form an assocwtwe 
algebra, F,., over F. If V is an n-dimensional vector space over F, then A(V) and 
F,. are isomorphic as algebras over F. Given ar basis v1, • • •  , v,. cif V over F, if 
for T e A( V) ,  m( T) is the matrix cif T in the basis vv . . . .  v,., the mapping 
T � m(T) provides an algebra isomorphism cif A(V) onto F,. 

The zero under addition in F,. is the zero-matrix all of whose entries are 0 ;  
we shall often write it merely as 0. The unit matrix, which is the unit element 
of F,. under multiplication, is the matrix whose diagonal entries are I and 
whose entries elsewhere are 0 ;  we shall write it as I, I, (when we wish to 
emphasize the size of matrices) , or merely as l .  For rx E F, the matrices 

(blank spaces indicate onry 0 entries) are called scalar matrices. Because of the 
isomorphism between A ( V) and F,., it is clear that T e A ( V) is invertible 
if and only if m(  T), as a matrix, has an inverse in F,.. 

Given a linear transformation T E A(V) ,  if we pick two bases, v1, • • •  , v,. 
and w1, • . •  , w ,  of V over F, each gives rise to a matrix, namely, m1 ( T) and 
m2 ( T),  the matrices of T in the bases vl> . . . , v, and w1, • . •  , w,, respec­
tively. As matrices, that is, as elements of the matrix algebra F,., what is 
the relationship between m1 ( T) and m2( T) ? 

THEOREM 6.3.2 If V is n-dimensional over F and if T e A ( V) has the ma­
trix m1 ( T) in the basis v1, • • •  , v,. and the matrix m2( T) in the basis w1, • • •  , w,. 
cif V over F, then there is an element C e F,. such that m2 ( T) = Cm1 ( T)C- 1

• 
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In fact, if S is the linear transformation of V defined by viS =  wifor i = I ,  2, . . . , n, 
then C can be chosen to be m1 (S) .  

Proof. Let m1( T) = (a.ii) and m2( T) = (p11) ; thus v1 T =  L,1 a.11v1, 
w1 T = L.1 Piiw1• 

Let S be the linear transformation on V defined by v1S = w1• Since 
v1, • • •  , v" and w1, • • •  , w" are bases of V over F, S maps V onto V, hence, 
by Theorem 6. 1 .4, S is invertible in A ( V) .  

Now wi T =  L.1 Piiw1 ; since w1  = viS, o n  substituting this in the ex­
pression for wiT we obtain (viS) T = L.1 pi1(v1S) .  But then vi(ST) = 
(L,1 p11v1)S; since S is invertible, this further simplifies to vi(STS 1) = 
L.1 piiv1• By the very definition of the matrix of a linear transformation in 
a given basis, m1 (STS 1) = (pii) = m2( T) .  However, the mapping 
T -+  m1 ( T) is an isomorphism of A ( V) onto F" ; therefore, m1 (STS - 1) = 
m1 (S)m1 ( T)m1(S- 1) = mi (S)m1 ( T)m1 (S) 1 • Putting the pieces together, 
we obtain m2( T) = m1 (S)m1 ( T)mi (S) I, which is exactly what is claimed 
in the theorem. 

We illustrate this last theorem with the example of the matrix of D, in 
various bases, worked out earlier. To minimize the computation, suppose 
that V is the vector space of all polynomials over F of degree 3 or less, and let 
D be the differentiation operator defined by (ao + a.1x + a.2x2 + a.3x3)D = 
a. I + 2a.2x + 3a.3x2. 

As we saw earlier, in the basis v1 = I ,  v2 = x, v3 = x2, v4 = x3, the 
matrix of D is 

In the basis ui = I ,  u2 = + x, u3 = I + x2, u4 = I + x3, the matrix 
of D is 

Let S be the linear transformation of V defined by viS =  w1 ( = vi) ,  
v2S = w2 = 1 + x = vi  + v2, v3S = w3 = I + x2 = v1 + v3, and also 
v4S = w4 = I + x3 = v1 + v4• The matrix of S in the basis v1 , v2, v3, v4 
is 
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c- 1 (
-
: � � �) · 

- I  0 0 l 
Then 

(l 0 0 

Cm1 (D)C- 1 l 0 
0 1 
0 0 (-! 0 0 

0 0 = 
2 0 

- 3  0 3 

�) (� 
�) 

0 0 
0 0 
2 0 
0 3 

�) (- :  0 - I 
0 - 1  

= m2 (D), 

0 0 �) l 0 
0 I 
0 0 

as it should be, according to the theorem. (Verify all the computations 
used ! )  

The theorem asserts that, knowing the matrix of a linear transformation 
in any one basis allows us to compute it in any other, as long as we know the 
linear transformation (or matrix) of the change of basis. 

We still have not answered the question : Given a linear transformation, 
how does one compute its characteristic roots ? This will come later. From 
the matrix of a linear transformation we shall show how to construct a 
polynomial whose roots are precisely the characteristic roots of the linear 
transformation. 

Problems 

I .  Compute the following matrix products : 

(a) 

(b) 

{c) 

(i 2 3)( I 
1 2 0 
4 5 - 1  ( 1 6)C - 2} 

- 6  I 2 3 

C ,  T 3 3 3 
l l l 3 3 3 • 

l .l l 3 3 3 

(d) (- : �r· 
- 1  

0 !) 2 
- 1  - I  

2. Verify all the computations made in the example illustrating Theorem 
6.3.2. 
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3. In Fn prove directly, using the definitions of sum and product, that 
(a) A(B + C) = AB + AC; 
(b) (AB)C = A(BC) ; 
for A, B, C E Fn. 

4. In F2 prove that for any two elements A and B, (AB - BA) 2 is a 
scalar matrix. 

5. Let V be the vector space of polynomials of degree 3 or less over F. 
In V define T by (<Xo + a1x + a2x2 + a3x3) T = a0 + a1 (x + 1 )  + 
a2 (x + 1 )  2 + a3 (x + 1 )  3• Compute the matrix of T in the basis 
(a) 1 ,  x, x2, x3. 
(b) 1 ,  1 + x, 1 + x2, 1 + x3• 
(c) If the matrix in part (a) is A and that in part (b) is B, find a 

matrix C so that B = CAC- 1
. 

6. Let V = F( 3) and suppose that 

H � !) 
is the matrix of T e A( V) in the basis v1 = ( 1 , 0, 0), v2 = (0, 1 , 0), 
v3 = (0, 0, 1 ) .  Find the matrix of T in the basis 
(a) u1 = ( 1 ,  1 ,  1 ) ,  u2 = (0, 1 ,  1 ) ,  u3 (0, 0, 1 ) .  
(b) u1 = ( 1 ,  1 ,  0), u2 = ( 1 ,  2, 0) , u3 = ( 1 ,  2, 1 ) .  

7.  Prove that, given the matrix 

1 0) 
0 1 E F3 

- 1 1  6 

(where the characteristic of F is not 2), then 
(a) A 3 - 6A 2 + l lA - 6 = 0. 
(b) There exists a matrix C E F3 such that (1 0 

CAC - 1 = 0 2 
0 0 

8. Prove that it is impossible to find a matrix C E F2 such that 

for any a., P E F. 

1) c - t  = (a. o) 
1 0 p ' 

9. A matrix A E Fn is said to be a diagonal matrix if all the entries off 
the main diagonal of A are 0, i.e., if A = (aii) and a.ii = 0 for i "# j. 
If A is a diagonal matrix all of whose entries on the main diagonal 
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1 1 .  
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are distinct, find all the matrices B E  F. which commute with A, that is, 
all matrices B such that BA = AB. 
Using the result of Problem 9, prove that the only matrices in F. 
which commute with all matrices in F. are the scalar matrices. 

Let A E F. be the matrix 

0 0 0 0 0 
0 0 1 0 0 0 

A 
0 0 0 0 0 

0 0 0 0 0 1 
0 0 0 0 0 0 

whose entries everywhere, except on the superdiagonal, are 0, and 
whose entries on the superdiagonal are 1 's. Prove A" = 0 but A• l i= 0. 

* 1 2. If A is as in Problem 1 1 , find all matrices in F. which commute with 
A and show that they must be of the form et0 + et1A + et2A2 + · · · + 
a._1A"- 1 where et0, et1 , . • . , a._ 1 E F. 

1 3. Let A e F2 and let C(A) = {B E F2 I AB = BA}. Let C(C(A)) = 
{G E F2 I ex = XC for all X E C(A) }. Prove that if G E C(C(A)) then 
G is of the form Cto + et1A, ao, Ct1 E F. 

14. Do Problem 1 3  for A E F3, proving that every G E C(C(A)) is of 
the form et0 + et1 A + et2A 2• 

1 5. In F. let the matrices Eii be defined as follows : Eii is the matrix 
whose only nonzero entry is the (i, j) entry, which is I .  Prove 
(a) The Eii form a basis of F. over F. 
(b) EuEkl = 0 for j i= k ; EiiEi1 = Eil. 
(c) Given i, j, there exists a matrix C such that CE;;C- 1 = En. 
(d) If i i= j there exists a matrix C such that CE;p - 1 = E12• 
(e) Find all B E  F. commuting with E12•  
(f) Find all B E  F. commuting with E1 1 • 

1 6. Let F be the field of real numbers and let C be the field of complex 
numbers. For a E C let Ta :C -+ C by x Ta = xa for all x E C. Using 
the basis 1 ,  i find the matrix of the linear transformation Ta and so get 
an isomorphic representation of the complex numbers as 2 x 2 
matrices over the real field. 

1 7. Let Q be the division ring of quaternions over the real field. Using 
the basis 1 ,  i, j, k of Q over F, proceed as in Problem 1 6  to find an 
isomorphic representation of Q by 4 X 4 matrices over the field of 
real numbers. 

* 18. Combine the results of Problems 1 6  and 1 7  to find an isomorphic 
representation of Q as 2 x 2 matrices over the field of complex 
numbers. 
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1 9. Let Jl be the set of all n x n matrices having entries 0 and I in such 
a way that there is one I in each row and column. (Such matrices 
are called permutation matrices.) 
(a) If M E Jl, describe AM in terms of the rows and columns of A. 
(b) If M E Jl, describe MA in terms of the rows and columns of A. 

20. Let Jl be as in Problem 19. Prove 
(a) Jl has n !  elements. 
(b) If M E  Jl, then it is invertible and its inverse is again in Jl. 
(c) Give the explicit form of the inverse of M. 
(d) Prove that Jl is a group under matrix multiplication. 
(e) Prove that Jl is isomorphic, as a group, to s., the symmetric 

group of degree n. 
2 1 .  Let A = (rx.ij) be such that for each i, Lj ali = I .  Prove that is 

a characteristic root of A (that is, I - A is not invertible) .  

22. Let A = (rx.ij) be such that for every j, L; a il  = I .  Prove that is 
a characteristic root of A. 

23. Find necessary and sufficient conditions on rx., p, y, {J, so that 

A = (� !) is invertible. When it is invertible, write down A - 1 

explicitly. 

24. If E E F. is such that E2 = E :f. 0 prove that there is a matrix 
C E F. such that 

CEC 1 

0 
0 

0 0 

0 
0 

0 
0 

0 
0 

0 

0 

0 
0 

0 

0 

0 
0 

where the unit matrix in the top left corner is r x r, where r is the 
rank of E. 

25. If F is the real field, prove that it is impossible to find matrices 
A, B E F. such that AB - BA = I .  

26. If F is of characteristic 2 ,  prove that in F2 it is possible to find matrices 

A, B such that AB - BA = 1 .  
27. The matrix A is called triangular if all the entries above the main 

diagonal are 0. (If all the entries below the main diagonal are 0 the 
matrix is also called triangular) . 
(a) If A is triangular and no entry on the main diagonal is 0, prove 

that A is invertible. 
(b) If A is triangular and an entry on the main diagonal is 0, prove 

that A is singular. 
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28. If A is triangular, prove that its characteristic roots are precisely the 
elements on its main diagonal. 

29. If Nk = 0, N e F", prove that 1 + N is invertible and find its inverse 
as a polynomial in N. 

30. If A e F" is triangular and all the entries on its main diagonal are 0, 
prove that A" = 0. 

3 1 .  If A e F" is triangular and all the entries on its main diagonal are 
equal to a. i= 0 e F, fnd A - I .  

32. Let S, T be linear transformations on V such that the matrix o f  S 
in one basis is equal to the matrix of T in another. Prove there exists 
a linear transformation A on V such that T = ASA- 1 . 

6.4 Canonical Forms : Triangular Form 

Let V be an n-dimensional vector space over a field F. 

D E F I N ITI O N  The linear transformations S, T e A(V) are said to be 
similar if there exists an invertible element c E A( V) such that T = esc - 1• 

In view of the results of Section 6.3, this defnition translates into one 
about matrices. In fact, since Fn acts as A(V) on p<n>, the above definition 
already defines similarity of matrices. By it, A, B e  Fn are similar if there 
is an invertible C e F n such that B = GAG- I .  

The relation on A(V) defned by similarity is  an equivalence relation ; 
the equivalence class of an element will be called its similarity class. Given 
two linear transformations, how can we determine whether or not they are 
similar? Of course, we could scan the similarity class of one of these to see 
if the other is in it, but this procedure is not a feasible one. Instead we try 
to establish some kind of landmark in each similarity class and a way of 
going from any element in the class to this landmark. We shall prove the 
existence of linear transformations in each similarity class whose matrix, 
in some basis, is of a particularly nice form. These matrices will be called 
the canonical forms. To determine if two linear transformations are similar, 
we need but compute a particular canonical form for each and check if 
these are the same. 

There are many possible canonical forms ; we shall only consider three of 
these, namely, the triangular form, Jordan form, and the rational canonical 
form, in this and the next three sections. 

D E F I N ITI O N  The subspace W of V IS invariant under T e A(V) if 
WT c W. 

LEMMA 6.4.1 If W c V is invariant under T, then T induces a linear 
transformation T on Vf W, defined by ( v + W) T = v T + W. If T satisfies 
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the polynomial q(x) e F[ x] , then so does 1'. If PI (x) is the minimal polynomial 
for 1' over F and if p(x) is that for T, then PI (x) I p(x) . 

Proof. Let V = VfW; the elements of V are, of course, the cosets 
v + W of W in V. Given ii = v + W e  V define li T = vT + W. To 
verify that 1' has all the formal properties of a linear transformation on V 
is an easy matter once it has been established that 1' is well defined on V. We 
thus content ourselves with proving this fact. 

Suppose that ii = vi + W = v2 + W where vi , v2 E V. We must show 
that vi T + W = v2 T + W. Since vi + W = v2 + W, vi - v2 must be 
in W, and since W is invariant under T, (vi - v2) T must also be in W. 
Consequently vi T - v2 T E W, from which it follows that vi T + W = 
v2 T + W, as desired. We now know that 1' defines a linear transformation 
on V = Vf W. 

If ii = v + W e  V, then ii(�) = vT2 
+ W = (vT) T + W = 

(v T + W) T = ((v + W) T) T = ii( T )
2

; thus ( T
2) = ( 1') 2• Similarly, 

('Tk) = ( 'l')k for any k ;;: 0. Consequently, for any polynomial q(x) e 
F[x], q( T) = q( T) .  For any q(x) e F[x] with q(T) = 0, since 0 is the 

zero transformation on V, 0 = q(T) = q(T). 
Let Pt (x) be the minimal polynomial over F satisfied by 1'. If q( T) = 0 

for q(x) e F[x] , then p1 (x) I q(x) . If p(x) is the minimal polynomial for T 
over F, then p(T) = 0, whence p(T) = 0;  in consequence, PI (x) I P(x). 

As we saw in Theorem 6.2.2, all the characteristic roots of T which lie 
in F are roots of the minimal polynomial of T over F. We say that all the 
characteristic roots of T are in F if all the roots of the minimal polynomial of T 
over F lie in F. 

In Problem 27 at the end of the last section, we defined a matrix as being 
triangular if all its entries above the main diagonal were 0. Equivalently, if 
T is a linear transformation on V over F, the matrix of T in the basis 
vi, • • •  , vn is triangular if 

vi T = cx1 1vi 
v2 T = cx2 1vi + cx22v2 

v1 T  = cxuvi + cx12v2 + · · · + cxiiv1, 
vn T = cxnl vl + . . .  + CXmnvn, 

i.e. , if v1 T is a linear combination only of v1 and its predecessors in the basis. 

TH EO R E M  6.4.1 If T e  A ( V) has all its characteristic roots in F, then there 
is a basis of V in which the matrix of T  is triangular. 

Proof. The proof goes by induction on the dimension of V over F. 
If dimF V = 1 ,  then every element in A ( V) is a scalar, and so the 

theorem is true here. 
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Suppose that the theorem is true for all vector spaces over F of dimension 
n - 1 ,  and let V be of dimension n over F. 

The linear transformation T on V has all its characteristic roots in F; 
let .l1 e F be a characteristic root of T. There exists a nonzero vector v1 
in V such that v1 T = .l1vp Let W = {av1 I a e F} ; W is a one-dimensional 
subspace of V, and is invariant under T. Let P = VJ W; by Lemma 4.2.6, 
dim P = dim V - dim W = n I .  By Lemma 6.4. 1 ,  T induces a 
linear transformation T on V whose minimal polynomial over F divides 
the minimal polynomial of T over F. Thus all the roots of the minimal 
polynomial of T, being roots of the minimal polynomial of T, must lie in F. 
The linear transformation T in its action on V satisfies the hypothesis of 
the theorem ; since r is (n I )-dimensional over F, by our induction 
hypothesis, there is a basis v2, ii3, . • •  , v,. of r over F such that 

v2 1' = a22ii2 
v3 1' = a32v2 + a3 3v3 

Let v2, • • •  , v,. be elements of V mapping into ii2, • • •  , v,., respectively. 
Then v1 , v2 , • • •  , v,. form a basis of V (see Problem 3, end of this section) . 
Since ii2 T = a22v2, v2 1' - a22ii2 = 0, whence v2 T - a22v2 must be in W. 
Thus v2 T - a22v2 is a multiple of v1 , say a21v1,  yielding, after transposing, 
v2 T = a21 v1 + a22v2• Similarly, v; T - a ;2v2 - a;3v3 - • • • - a;;v1 e W, 
whence v1T = o:i1v 1  + a12v2 + · · · + a;;v1• The basis v1 ,  • • •  , v,. of V over 
F provides us with a basis where every v1T is a linear combination of v1 
and its predecessors in the basis. Therefore, the matrix of T in this basis 
is triangular. This completes the induction and proves the theorem. 

We wish to restate Theorem 6.4. 1 for matrices. Suppose that the matrix 
A e F, has all its characteristic roots in F. A defines a linear transforma­
tion T on F<"> whose matrix in the basis 

v1 ( 1 ,  0, . . .  , 0), v2 = (0, 1 ,  0, . . .  , 0), . . .  , v, = (0, 0, . . . , 0, I ) ,  

is precisely A. The characteristic roots of T, being equal t o  those o f  A,  are 
all in F, whence by Theorem 6.4. 1 , there is a basis of F<•l in which the 
matrix of T is triangular. However, by Theorem 6.3.2, this change of basis 
merely changes the matrix of T, namely A, in the first basis, into CAC - 1 

for a suitable C c F,. Thus 

ALTER NATIVE FO R M  OF THEOREM 6.4.1 If the matrix A e F, has 
all its characteristic roots in F, then there is a matrix C e F, such that GAG- 1 zs 
a triangular matrix. 
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Theorem 6.4. 1 (in either form) is usually described by saying that T 
(or A) can be brought to triangular form over F. 

If we glance back at Problem 28 at the end of Section 6.3, we see that 
after T has been brought to triangular form, the elements on the main 
diagonal of its matrix play the following significant role : they are precisely 
the characteristic roots qf T. 

We conclude the section with 

TH EO R E M  6.4.2 lf V is n-dimensional over F and if T e A ( V) has all its 
characteristic roots in F, then T satisfies a polynomial of degree n over F. 

Proof. By Theorem 6.4. 1 ,  we can find a basis vt, . . .  , v" of V over F 
such that : 

vt T = Atvt 
V2 T = OC21 vt + A.2v2 

v1 T = ocilvt + · · · + oc1,1_tvi-t + A.1v;, 

for i = I ,  2, . . . , n. 
Equivalently 

vt ( T - A.t) = 0 
v2 ( T  - A2) = oc2tvt 

vi( T - At) = ocuvt + · · · + oci , i- tvl- t> 

for i = I ,  2, . . . , n. 
What is v2 ( T - A2) ( T - At) ? As a result of v2 ( T - A2) = oc2tvt and 

vt ( T - At) = 0, we obtain v2 ( T - A2) ( T - At) = 0. Since 

( T - A2) ( T - At) = ( T - At) ( T - A2), 
vt ( T - A.2) ( T - At)  = vt ( T - At) ( T - A2) = 0. 

Continuing this type of computation yields 

vt ( T - A1) ( T - A1 -t)  · • · ( T - At) = 0, 
v2 ( T - I. .) ( T - A.1 1)  • • • ( T - At) = 0, 

V; ( T - A;) ( T - A; - t)  • . . ( T - At)  = 0. 

For i = n, the matrix S = ( T - An) (  T - An- t) · · · ( T - At) satisfies 
vtS = v2S = · · · = v"S = 0. Then, since S annihilates a basis of V, S must 
annihilate all of V. Therefore, S = 0. Consequently, T satisfies the poly­
nomial (x - At) (x - A2) • • • (x - An) in F[x] of degree n, proving the 
theorem. 

Unfortunately, it is in the nature of things that not every linear trans­
formation on a vector space over every field F has all its characteristic roots 
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in F. This depends totally on the field F. For instance, if F is the field of 
real numbers, then the minimal equation of 

(_� �) 
over F is x2 + I ,  which has no roots in F. Thus we have no right to assume 
that characteristic roots always lie in the field in question. However, we 
may ask, can we slightly enlarge F to a new field K so that everything works 
all right over K? 

The discussion will be made for matrices ; it could be carried out equally 
well for linear transformations. What would be needed would be the follow­
ing : given a vector space V over a field F of dimension n, and given an 
extension K of F, then we can embed V into a vector space Vx over K of 
dimension n over K. One way of doing this would be to take a basis v1, • • •  , 
v, of V over F and to consider Vx as the set of all a:1v1 + · · · + a:,v, with 
the a:l E K, considering the VI linearly independent over K. This heavy use 
of a basis is unaesthetic ; the whole thing can be done in a basis-free way 
by introducing the concept of tensor product of vector spaces. We shall not 
do it here; instead we argue with matrices (which is effectively the route 
outlined above using a fixed basis of V) . 

Consider the algebra F,. If K is any extension field of F, then F, c: K, 
the set of n x n matrices over K. Thus any matrix over F can be considered 
as a matrix over K. If T e F11 has the minimal polynomial p(x) over F, 
considered as an element of K, it might conceivably satisfy a different 
polynomial p0(x) over K. But then p0(x) I p(x) , since p0(x) divides all 
polynomials over K (and hence all polynomials over F) which are satisfied 
by T. We now specialize K. By Theorem 5.3.2 there is a finite extension, 
K, of F in which the minimal polynomial, p(x) , for T over F has all its roots. 
As an element of K "' for this K, does T have all its characteristic roots in 
K? As an element of K,, the minimal polynomial for T over K, p0 (x) 
divides p(x) so all the roots of p0(x) are roots of p(x) and therefore lie in K. 
Consequently, as an element in K11, T has all its characteristic roots in K. 

Thus, given T in F,, by going to the splitting field, K, of its minimal 
polynomial we achieve the situation where the hypotheses of Theorems 6.4. 1 
and 6.4.2 are satisfied, not over F, but over K. Therefore, for instance, T 
can be brought to triangular form over K and satisfies a polynomial of 
degree n over K. Sometimes, when luck is with us, knowing that a certain 
result is true over K we can "cut back" to F and know that the result is still 
true over F. However, going to K is no panacea for there are frequent 
situations when the result for K implies nothing for F. This is why we have 
two types of "canonical form" theorems, those which assume that all the 
characteristic roots of T lie in F and those which do not. 

A final word ; if T e F ,, by the phrase "a characteristic root of T" we shall 
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mean an element A. in the splitting field K of the minimal polynomial 
p(x) of T over F such that A. - T is not invertible in K,.. It is a fact (see 
Problem 5) that every root of the minimal polynomial of T over F is a 
characteristic root of T. 

Problems 

1 .  Prove that the relation of similarity is an equivalence relation in A(V) .  

2 .  If T E F,. and if K => F, prove that as an element of K,., T is in­
vertible if and only if it is already invertible in F,.. 

3. In the proof of Theorem 6.4. 1 prove that v1 , • • •  , v,. is a basis of V. 

4. Give a proof, using matrix computations, that if A is a triangular 
n x n matrix with entries A.1, • • •  , A.,. on the diagonal, then 

*5. If T E F,. has minimal polynomial p(x) over F, prove that every 
root of p(x), in its splitting field K, is a characteristic root of T. 

6. If T E A( V) and if A. E F is a characteristic root of T in F, let U;. = 
{v E V I  vT = A.v}. If S E A(V) commutes with T, prove that U;. 
is invariant under S. 

* 7. If .,({ is a commutative set of elements in A( V) such that every 
M E .,({ has all its characteristic roots in F, prove that there is a 
C E A ( V) such that every CMC - 1 , for M e .,({, is in triangular form. 

8. Let W be a subspace of V invariant under TE A(  V). By restricting 
T to W, T induces a linear transformation 'f (defined by wf = 
w T  for every w E  W). Let p(x) be the minimal polynomial of T 
over F. 
(a) Prove that p(x) I p(x), the minimal polynomial of T over F. 
(b) If T induces T on VJ W satisfying the minimal polynomial p(x) 

over F, prove that p(x) I p(x)p(x) . 
* (c) If p(x) and p(x) are relatively prime, prove that p(x) = p(x)p(x) . 
* (d) Give an example of a T for which p(x) =/: p(x)p(x) . 

9. Let .,({ be a nonempty set of elements in A(V) ; the subspace W c V 
is said to be invariant under .,({ if for every M E .,({, W M c W. If 
W is invariant under .,({ and is of dimension r over F, prove that there 
exists a basis of V over F such that every M E  .,({ has a matrix, in 
this basis, of the form 

where M1 is an r x r matrix and M2 is an (n - r) x (n - r) matrix. 
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1 0. In Problem 9 prove that MI is the matrix of the linear transformation 
M induced by M on W, and that M2 is the matrix of the linear trans­
formation IVl induced by M on VJ W. 

* 1 1 .  The nonempty set, .II, of linear transformations in A ( V) is called an 
irreducible set if the only subspaces of V invariant under .II are (0) 
and V. If .II is an irreducible set of linear transformations on V and if 

D = { T  e A (V) I TM = MT for all M e  .II}, 

prove that D is a division ring. 
* 1 2. Do Problem I I  by using the result (Schur's lemma) of Problem 14, 

end of Chapter 4, page 206. 

* 1 3. If F is such that all elements in A( V) have all their characteristic 
roots in F, prove that the D of Problem I I  consists only of scalars. 

1 4. Let F be the field of real numbers and let ( O I) e F2 • 
- 1  0 

(a) Prove that the set .II consisting only of (-� �) 
is an irreducible set. 

(b) Find the set D of all matrices commuting with 

(-� �) 
and prove that D is isomorphic to the field of complex numbers. 

1 5. Let F be the field of real numbers. 
(a) Prove that the set 

.1 = { (- ! i � �) ' (  � -� ! i) } 
0 0 - I  0 - 1  0 0 0 

is an irreducible set. 
(b) Find all A e F 4 such that AM = MA for all M e  .II. 
(c) Prove that the set of all A in part (b) is a division ring isomorphic 

to the division ring of quaternions over the real field. 
1 6. A set of linear transformations, .II c A (V) ,  is called decomposable 

if there is a subspace W c V such that V = W E9 WI, W i= (0) , 
W i= V, and each of W and WI is invariant under .II. If .II is not 
decomposable, it is called indecomposable. 



292 Unear Transformations Ch. 6 

(a) If Jt is a decomposable set of linear transformations on V, prove 
that there is a basis of V in which every M e .,/{ has a matrix 
of the form 

where M1 and M2 are square matrices. 
(b) If V is an n-dimensional vector space over F and if T e A ( V) 

satisfies T" = 0 but T"- 1 # 0, prove that the set { T} (con­
sisting of T) is indecomposable. 

1 7. Let T e A(V) and suppose that p(x) is the minimal polynomial for 
T over F. 
(a) If p(x) is divisible by two distinct irreducible polynomials p1 (x) 

and p2(x) in F[x], prove that {T} is decomposable. 
(b) If { T}, for some T e A ( V) is indecomposable, prove that the 

minimal polynomial for T over F is the power of an irreducible 
polynomial. 

18. If Te  A ( V) is nilpotent, prove that T can be brought to triangular 
form over F, and in that form all the elements on the diagonal are 0. 

19. If T e A ( V) has only 0 as a characteristic root, prove that T is nil­
potent. 

6.5 Canonical Forms : Ni lpotent Transformations 

One class of linear transformations which have all their characteristic roots 
in F is the class of nilpotent ones, for their characteristic roots are all 0, 
hence are in F. Therefore by the result of the previous section a nilpotent 
linear transformation can always be brought to triangular form over F. 
For some purposes this is not sharp enough, and as we shall soon see, a 
great deal more can be said. 

Although the class of nilpotent linear transformations is a rather re­
stricted one, it nevertheless merits study for its own sake. More important 
for our purposes, once we have found a good canonical form for these we 
can readily find a good canonical form for all linear transformations which 
have all their characteristic roots in F. 

A word about the line of attack that we shall follow is in order. We 
could study these matters from a "ground-up" approach or we could invoke 
results about the decomposition of modules which we obtained in Chapter 4. 
We have decided on a compromise between the two ; we treat the material 
in this section and the next (on Jordan forms) independently of the notion 
of a module and the results about modules developed in Chapter 4. How­
ever, in the section dealing with the rational canonical form we shall com­
pletely change point of view, introducing via a given linear transformation 
a module structure on the vector spaces under discussion ; making use of 
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Theorem 4.5. 1 we shall then get a decomposition of a vector space, and the 
resulting canonical form, relative to a given linear transformation. 

Even though we do not use a module theoretic approach now, the reader 
should note the similarity between the arguments used in proving Theorem 
4.5. 1 and those used to prove Lemma 6.5.4. 

Before concentrating our efforts on nilpotent linear transformations we 
prove a result of interest which holds for arbitrary ones. 

LEMMA 6.5.1 lf V = V1 EB V2 EB · · · EB Vk, where each subspace V1 is rif 
dimension n 1 and is invariant under T, an element rif A ( V), then a basis rif V can 
be found so that the matrix rif T in this basis is rif the form 

(t 0 

where each A 1 is an n1 X n1 matrix and is the matrix of the linear transformation 
induced by T on V1• 

Proof. Choose a basis of V as follows : v 1 ( 1 >, . • .  , v" / 1 > is a basis of V1, 
v1< 2>, v2<2>, • . •  , vn,<2> is a basis of V2, and so on. Since each V1 is invariant 
under T, v/1> T E  V1 so is a linear combination of v1(i>, v2< i), . . .  , vn,(i>, 
and of only these. Thus the matrix of T in the basis so chosen is of the 
desired form. That each A1 is the matrix of T;, the linear transformation 
induced on V1 by T, is clear from the very definition of the matrix of a 
linear transformation. 

We now narrow our attention to nilpotent linear transformations. 

LEMMA 6.5.2 lf T E A(V) is nilpotent, then cx0 + cx1 T + . .  · + ex'" T'", 
where the cx1 E F, is invertible if CXo =F 0. 

Proof. If S is nilpotent and CXo =F 0 E F, a simple computation shows that 

(CXo + S) (..!. - .. + 
S2 

+ . . . + (- 1 )' 1 s•
1) = 1 , 

CXo CXo 2 CXo 3 CXo r 
if S' = 0. Now if T' = 0, S = cx1 T + cx2 T2 + · · · + cxm T'" also must 
satisfy S' = 0. (Prove !) Thus for cx0 =F 0 in F, cx0 + S is invertible. 

Notation. M, will denote the t x t matrix 

( � � � � �) . 0 0 0 I 
0 0 0 0 

all of whose entries are 0 except on the superdiagonal, where they are all 1 's. 
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D E F I N ITION If T e A( V)  is nilpotent, then k is called the index tif nil­
potence of T if T" = 0 but Tk- 1 ¥ 0. 

The key result about nilpotent linear transformations is 

THEOREM 6.5.1 lf T E A ( V) is nilpotent, tif index tif nilpotence n1 ,  then a 
basis tif V can be found such that the matrix tif Tin this basis has the form 

Proof. The proof will be a little detailed, so as we proceed we shall 
separate parts of it out as lemmas. 

Since T"' = 0 but T"1 - 1 ¥ 0, we can fnd a vector v e V such that 
vT"• - 1 ¥ 0. We claim that the vectors v, v T, . . .  , vT"• 1 are linearly 
independent over F. For, suppose that IX1 v + a2vT + · · · + IX11

1
vT"' - 1 = 0 

where the a1 e F; let a. be the first nonzero IX, hence 

vrs
-

l (a.. + 1Xs+ t T + . . .  + a.n ,T"• -•) = 0. 

Since a.. "# 0, by Lemma 6.5.2, a.. + a.s+t  T + · · · + (1.111 T"• -• is invertible, 
and therefore vr•- t = 0. However, s < n1,  thus this contradicts that 
vT"• 1 ¥ 0. Thus no such nonzero a.. exists and v, v T, . . .  , vT"• - 1 have 
been shown to be linearly independent over F. 

Let V1 be the subspace of V spanned by v1 = v, v2 = vT, . . .  , V11, = 
vT"' - 1 ; V1 is invariant under T, and, in the basis above, the linear trans­
formation induced by T on V1 has as matrix Mn, ·  

S o  far we have produced the upper left-hand corner of the matrix o f  the 
theorem. We must somehow produce the rest of this matrix. 

LEM MA 6.5.3 lf u E V1 is such that uT"1 k = 0, where 0 < k :s; n1, then 
u = u0Tkfor some Uo E Vt. 

Proof. Since u E vl , u = CllV + (J.2VT + . . . + a.kvrk - l  + ak+lvT" + 
· · · + Cl111vT"1 1 • Thus 0 = uT"• -•  = C£1vT"• -k + · · · + a.kvT"•- 1• 
However, vT"• -k, . . .  , vT"' 1 are linearly independent over F, whence 
C£1 = a.2 = · · · = IX" 0, and so, u = Clk+ 1vTk + · · · + (J.111vT"' - 1 = u0Tk, 
where Uo = a:k+lv + . . . + C£,1vT"· -•- t E V1 • 

The argument, so far, has been fairly straightforward. Now it becomes 
a little sticky. 
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LEM MA 6.5.4 There exists a subspace W of V, invariant under T, such that 
v = VI Ee w. 

Proof. Let W be a subspace of V, of largest possible dimension, such that 

1 .  VI n W = (0) ; 
2. W is invariant under T. 

We want to show that V = VI + W. Suppose not; then there exists an 
element z E V such that z ¢: VI + W. Since T"' = 0, there exists an in­
teger k, 0 < k :: ni, such that zTk E VI + w and such that zTi ¢: VI + w 
for i < k. Thus zTk = u + w, where u E VI and where w E w. But then 
0 = zT"1 = (zTk) T"1 -k = uT"1 k + wT"1 k ;  however, since both VI 
and w are invariant under T, u Tn, k E VI and w T"1 k  E W. Now, since 
VI n w = (0) , this leads to u Tn, k  = - w Tn, k E VI n w = (0) , resulting 
in u Tn, k  = 0. By Lemma 6.5.3, u = u0 Tk for some Uo E VI ; therefore, 
zTk = u + w = u0Tk + w. Let zi = z - u0 ; then zi Tk = zTk - u0Tk = 
w E w, and since w is invariant under T this yields ZI rm E w for all 
m ;: k. On the other hand, if i < k, ZI Ti = zTi - UoTi ¢: v1 + w, for 
otherwise zTi must fall in VI + W, contradicting the choice of k. 

Let w1 be the subspace of v spanned by w and ZI, ZI T, . . .  ' ZI rk- 1. 

Since zi ¢: W, and since WI :: W, the dimension of WI must be larger than 
that of W. Moreover, since zi Tk E W and since W is invariant under T, 
WI must be invariant under T. By the maximal nature of W there must 
be an element of the form w0 + aizi + a2zi T + · · · + a

k
ziTk

I "# 0 in 
WI n v1, where Wo E w. Not all of ai, . . •  ' a

k 
can be 0 ;  otherwise we 

would have 0 "# w0 E W n VI = (0), a contradiction. Let a. be the first 
nonzero a ;  then w0 + zi r•-

I
(a. + as+ I T + · · · + a

k
Tk •) E V1 • Since 

a. "# 0, by Lemma 6.5.2, a. + a,+ 1  T + · · · + a
k
Tk s is invertible and its 

inverse, R, is a polynomial in T. Thus W and VI are invariant under R;  
however, from the above, WoR + zi r·- 1 E VIR c VI, forcing zi rs I E 
VI + WR c VI + w. Since s - 1 < k this is impossible ;  therefore 
VI + W = V. Because VI n W = (0) , V = VI Ee W, and the lemma is 
proved. 

The hard work, for the moment, is over; we now complete the proof of 
Theorem 6.5. 1 .  

By Lemma 6.5.4, V = VI E!3 W where W is invariant under T. Using 
the basis Vu • • •  , vn, 

of VI and any basis of W as a basis of V, by Lemma 
6.5. 1 ,  the matrix of T in this basis has the form 

where A2 is the matrix of T2, the linear transformation induced on W by T. 
Since T"1 = 0, T 2 "' = 0 for some n2 .:s; ni . Repeating the argument used 
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for T on V for T2 on W we can decompose W as we did V (or, invoke an 
induction on the dimension of the vector space involved). Continuing this 
way, we get a basis of V in which the matrix of T is of the form 

That n1 + n2 + · · · + n, = dim V is clear, since the size of the matrix is 
n x n where n = dim V. 

D E FI N ITION The integers n1 ,  n2, • • •  , n,  are called the invariants of T. 

D E F I N ITION If T E A(V) is nilpotent, the subspace M of V, of dimen­
sion m, which is invariant under T, is called cyclic with respect to T if 

l .  MT"' = (0) ,  MT"'-
1 =/:- (0) ; 

2. there is an element z E M  such that z, z T, . . . ' zrm 1 form a basis of M. 

(Note : Condition I is actually implied by Condition 2) .  

LEM MA 6.5.5 If M, of dimension m, is cyclic with respect to T, then the 
dimension of MT" is m - k for all k :: m. 

Proof. A basis of MT" is provided us by taking the image of any basis of 
M under T". Using the basis z, zT, . . .  , zT"' I of M leads to a basis zT1r., 
zTk+ I, . . .  , zT"'- 1 

of MT1r.. Since this basis has m - k elements, the 
lemma is proved. 

Theorem 6.5. 1 tells us that given a nilpotent T in A(V) we can find 
integers n1 ;; n2 ;; • • • ;; n, and subspaces, V1, • . •  , V, of V cyclic with 
respect to T and of dimensions ni, n2, • • •  , n,, respectively such that 
v = VI ffi . . . ffi v,. 

Is it possible that we can find other integers m1 � m2 � • • • ;; m, and 
subspaces UI> . . .  , U, of V, cyclic with respect to T and of dimensions 
mi, . . .  , m,, respectively, such that V = U1 (f) • · • Efj u.? We claim that 
we cannot, or in other words that s = r and m1 = n1, m2 = n2, • • •  , m, = 
n,. Suppose that this were not the case ; then there is a first integer i such 
that m1 '# n1• We may assume that m1 < n1• 

Consider VT"'•. On one hand, since V = VI Efj • • • ffi V,, VT"'• = 
vl T"'• ffi . . . ED V;T"'· ffi . . . ffi V,T"''. Since dim VI T"'• = nl - m;, 
dim V2 T"'• n2 - m1, • • •  , dim V1T"'' = n1 - m1 (by Lemma 6.5.5) , 
dim VT"'1 ;; (n1 - m1) + (n2 - m1) + · · · + (n1 - m1). On the other 
hand, since V = UI ffi · · · ffi u. and since U1T"'• = (0) for j ;; i, VT"'' = 
U1 T"'' ffi U2 Tm, + · · · ffi U1_I T"''. Thus 

dim vrm• = (mi - m;) + (m2 - m;) + . . .  + (mi-I  - m;) . 
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By our choice of i, n1 = m1, n2 = m2, . . •  , n1_ 1 = m1_ 1 , whence 

dim vrm· = (n1 - m;) + (n2 - m;) + . . .  + (nl 1 m;) .  

However, this contradicts the fact proved above that dim VTm• ;: 
(n1 - m1) + · · · + (n1_ 1 m1) + (n1 - m1), since n1 m1 > 0. 

Thus there is a unique set of integers n1 � n2 ;: • • • � n, such that V is 
the direct sum of subspaces, cyclic with respect to T of dimensions n1 , 
n2, . . .  , n,. Equivalently, we have shown that the invariants of T are unique. 

Matricially, the argument just carried out has proved that if n1 ;: n2 ;: 
· · · ;: n, and m1 � m2 � • • • ;: m., then the matrices �J and (t' 
are similar only if r = s and n1 = m1, n2 = m2, • • •  , n, m,. 

So far we have proved the more difficult half of 

T H E O R E M  6.5.2 Two nilpotent linear transformations are similar if and only 
if they have the same invariants. 

Proof. The discussion preceding the theorem has proved that if the two 
nilpotent linear transformations have different invariants, then they can­
not be similar, for their respective matrices U and (t' 
cannot be similar. 

In the other direction, if the two nilpotent linear transformations S and T 
have the same invariants n1 ;: • • • ;: n, by Theorem 6.5. 1 there are bases 
v1 , • • •  , vn and w1, . • .  , wn of V such that the matrix of S in v1 , • • •  , vn and 
that of T in w1 , • • • , wn, are each equal to 

But if A is the linear transformation defned on V by v1A = W;, then S = 
A TA 1 (Prove ! Compare with Problem 32 at the end of Section 6.3) ,  
whence S and T are similar. 

Let us compute an example. Let 

0 
0 

297 
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act on p( 3> with basis ui = ( 1 ,  0, 0) , u2 = (0, 1 ,  0) , u3 = (0, 0, 1 ) .  Let 
v1 = u1, v2 = ui T = u2 + u3, v3 = u3 ; in the basis v1 , v2, v3 the matrix 
of T is (0 1 0) � � , 

0 0 0 

so that the invariants of T are 2, 1 .  If A is the matrix of the change of 
basis, namely (1 0 0) 

0 1 1 , 
0 0 1 

a simple computation shows that 

m • � G � �) 
One final remark : the invariants of T determine a partition of n, the 

dimension of V. Conversely, any partition of n, n1 � • • · � n, ni + 
n2 + · · · + n, = n, determines the invariants of the nilpotent linear 
transformation. 

Thus the number of distinct similarity classes of nilpotent n x n matrices is precisely 
p(n) , the number of partitions of n. 

6.6 Canonical Forms : A Decomposition of V: Jordan Form 

Let V be a finite-dimensional vector space over F and let T be an arbitrary 
element in AF(V) . Suppose that vi is a subspace of v invariant under T. 
Therefore T induces a linear transformation T1 on V1 defined by u T1 = 
u T  for every u E V1• Given any polynomial q(x) E F[x] , we claim that 
the linear transformation induced by q(T) on Vi is precisely q(Ti ) .  (The 
proof of this is left as an exercise.) In particular, if q(T) = 0 then q(T1) = 
0. Thus T1 satisfies any polynomial satisfied by T over F. What can be 
said in the opposite direction ? 

LEMMA 6.6.1 Suppose that V = Vi EB V2, where Vi and V2 are subspaces 
of V invariant under T. Let Ti and T2 be the linear transformations induced by 
T on Vi and V2, respectively. If the minimal polynomial of Ti over F is p1 (x) while 
that of T2 is p2 ( x), then the minimal polynomial for T over F is the least common 
multiple ofpi (x) andh (x) . 
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Proof. If p(x) is the minimal polynomial for T over F, as we have seen 
above, both p(TI) and p(T2) are zero, whence P1 (x) I p(x) and P2(x) I p(x) . 
But then the least common multiple of P1 (x) and p2 (x) must also divide p(x) . 

On the other hand, if q(x) is the least common multiple of PI (x) and 
h (x) , consider q(T) . For vi E VI , since Pt (x) I q(x) , v1q(T) = viq(TI) = 0;  
similarly, for v2 E V2, v2q(T) = 0 .  Given any v E V, v can be  written as 
v = vi + v2, where v1 E VI and v2 E V2, in consequence of which vq(T) = 
(v1 + v2)q(T) = v1q(T) + v2q(T) = 0. Thus q(T) = 0 and T satisfies 
q(x) . Combined with the result of the first paragraph, this yields the lemma. 

CORO LLARY lj V = VI EB • • · EB Vk where each V1 is invariant under T 
and if p1(x) is the minimal polynomial over F of T1, the linear transformation induced 
by T on V1, then the minimal polynomial of T over F is the least common multiple 
of PI (x), Pz (x), · · · , A(x) . 

We leave the proof of the corollary to the reader. 
Let T E AF( V) and suppose that p(x) in F[ x] is the minimal polynomial 

of T over F. By Lemma 3.9.5, we can factor p(x) in F[x] in a unique way 
as p(x) = qi (x)1•q2 (x)12 • • • qk(x)1k, where the q1(x) are distinct irreducible 
polynomials in F[x] and where li, 12, • • •  , lk are positive integers. Our 
objective is to decompose V as a direct sum of subspaces invariant under 
T such that on each of these the linear transformation induced by T has, 
as minimal polynomial, a power of an irreducible polynomial. If k = 1 ,  
V itself already does this for us. So, suppose that k > I .  

Let VI = {v E V I  vql (T)11 = 0}, Vz = {v E V I  vqz(T)h = 0}, . . .  ' 
vk = {v E v I  vqk(T)1k = 0}. It is a triviality that each V; is a subspace 
of V. In addition, V1 is invariant under T, for if u E V;, since T and q1(T) 
commute, (uT)q1(T)1' = (uq1 (T)1') T = OT = 0. By the definition of V1, 
this places u Tin V1• Let T1 be the linear transformation induced by T on V1• 

T H EO R E M  6.6.1 For each i = 1 ,  2, . . . , k, V1 # (0) and V = VI EB V2 EB • • • EB Vk. The minimal polynomial of T1 is q1(x/'. 

Proof. If k = 1 then V = VI and there is nothing that needs proving. 
Suppose then that k > I .  

We first want to prove that each V1 # (0) . Towards this end, we intro-
duce the k polynomials : 

h1 (x) = q2 (x/2q3 (x)1' • • • qk(x) 1k, 
h2 (x) = q1 (x)1 'q3 (x)13 • • • qk(x)\ . . . , 
h1(x) = IT qi(x) 11, • • •  , 

j •l'i  

h)x) = qi  (x) ''qz (x)h . . .  qk I (x) 'k- t . 
Since k > I ,  h1(x) # p(x) , whence h1( T) # 0. Thus, given i, there is a 
v E V such that w = vh1( T) # 0. But wq1(T)1' = v(h1(T)q1(T) 1') = vp(T) 
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= 0. In consequence, w # 0 is in V1 and so V1 # (0). In fact, we have 
shown a little more, namely, that Vh1(T) # (0) is in V1• Another remark 
about the h; (x) is in order now : if vj E vj for j # i, since qj(x) 1J I h,(x) , 
vih1( T) = 0. 

The polynomials h1 (x), h2 (x), . . .  , hk (x) are relatively prime. (Prove !) 
Hence by Lemma 3.9.4 we can find polynomials a1 (x), . . .  , ak(x) in 
F[x] such that a1 (x)h1 (x) + · · · + ak(x)hk(x) = I .  From this we get 
a1 (T)h1 (T) + · · · + ak(T)hk(T) = I ,  whence, given v E V, v = vi = 
v(a1 ( T)h1 ( T) + · · · + ak( T)hk (T) )  = va1 ( T)h 1 ( T) + · · · + vak ( T)hk (T) .  
Now, each va1 (T)h;(T) i s  in Vh1(T), and since we have shown above that 
Vh1(T) c V1, we have now exhibited v as v = v1 + · · · + vk, where each 

V; = va; (T)h;(T) is in v,. Thus v = vl + Vz + . . . + vk. 
We must now verify that this sum is a direct sum. To show this, it is 

enough to prove that if u1 + u2 + · · · + uk = 0 with each u1 e V1, then 
each u1 = 0. So, suppose that u1 + u2 + · · · + uk = 0 and that some u1, 
say u1 ,  is not 0. Multiply this relation by h1 (T) ; we obtain u1h1 (T) + · · · + 
ukh1 (T) = Oh1 (T) = 0. However, uih1 (T) = 0 for j # 1 since ui E Vi; 
the equation thus reduces to u1h1 (T) = 0. But u1q1 (T) 1' = 0 and since 
h1 (x) and q1 (x) are relatively prime, we are led to u1 0 (Prove !) which 
is, of course, inconsistent with the assumption that u1 # 0. So far we 
have succeeded in proving that V = V1 $ V2 $ · · · $ Vk. 

To complete the proof of the theorem, we must still prove that the 
minimal polynomial of T1 on V1 is q(x) 1•. By the definition of V1, since 
V1q1(T)11 = 0, q1(T1) 1' = 0, whence the minimal equation of T1 must be a 
divisor of q1 (x) 11, thus of the form q1 (x)fl with j1 :: 11• By the corollary to 
Lemma 6.6. 1 the minimal polynomial of T over F is the least common 
multiple of q1 (x)f•, . • .  , qk (x)f" and so must be q1 (x)fi · · · qk(x)fk. Since 
this minimal polynomial is in fact q1 (x) 1• • • • qk(x) 1" we must have that 
j1 � /1 ,  fz � 12, • • •  , .h � lk. Combined with the opposite inequality 
above, this yields the desired result 11 = f1 for i = l ,  2, . . .  , k and so com­
pletes the proof of the theorem. 

If all the characteristic roots of T should happen to lie in F, then 
the minimal polynomial of T takes on the especially nice form q(x) 
(x - A.1)11 • • • (x - A.k)1" where A.1, • • •  , A.k are the distinct characteristic 
roots of T. The irreducible factors q1(x) above are merely q1(x) = x - A.1• 
Note that on V1, T1 only has A.1 as a characteristic root. 

CORO LLARY .lf all the distinct characteristic roots A.1, • • •  , A.k of T  lie in F, then 
v can be written as v vl $ . . .  Ef) vk where V; = {v E v I  v ( T - A;)1• = 0} 
and where T1 has only one characteristic root, A.l> on V1• 

Let us go back to the theorem for a moment ; we use the same notation 
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T;, V; as in the theorem. Since V = V1 E!1 • • • E!1 Vk, if dim Vi = ni, by 
Lemma 6.5 . 1  we can find a basis of V such that in this basis the matrix of 
T is of the form 

J 
where each Ai is an ni x ni matrix and is in fact the matrix of Ti. 

What exactly are we looking for? We want an element in the similarity 
class of T which we can distinguish in some way. In light of Theorem 6.3.2 
this can be rephrased as follows : We seek a basis of V in which the matrix 
of T has an especially simple (and recognizable) form. 

By the discussion above, this search can be limited to the linear trans­
formations Ti ; thus the general problem can be reduced from the discussion 
of general linear transformations to that of the special linear transformations 
whose minimal polynomials are powers of irreducible polynomials. For 
the special situation in which all the characteristic roots of T lie in F we do 
it below. The general case in which we put no restrictions on the charac­
teristic roots of T will be done in the next section. 

We are now in the happy position where all the pieces have been con­
structed and all we have to do is to put them together. This results in the 
highly important and useful theorem in which is exhibited what is usually 
called the Jordan canonical form. But first a definition. 

D E FI N ITI O N  The matrix ' 
A. 1 0 0 
0 A. 

 
0 A. 

with A.'s on the diagonal, 1 's on the superdiagonal, and O's elsewhere, is a 
basic jordan block belonging to A.. 

T H E O R E M  6.6.2 Let T E AF( V) have all its distinct characteristic roots, 
A.1 , • • • , A.k, in F. Then a basis if V can be found in which the matrix T is if the 

form 

J 
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where each 

and where B11, • • •  , B1,1 are basic Jordan blocks belonging to 11• 

Proof. Before starting, note that an m X m basic Jordan block belonging 
to 1 is merely 1 + Mm, where Mm is as defined at the end of Lemma 6.5.2. 

By the combinations of Lemma 6.5. 1 and the corollary to Theorem 6.6. 1 ,  
we can reduce to the case when T has only one characteristic root 1, that is, 
T - 1 is nilpotent. Thus T = 1 + ( T - 1), and since T - 1 is nil­
potent, by Theorem 6.5. 1 there is a basis in which its matrix is of the form 

(" '  MJ 
But then the matrix of T is of the form 

r ). J + ("' MJ r .. BJ 
using the first remark made in this proof about the relation of a basic Jordan 
block and the Mm's. This completes the theorem. 

Using Theorem 6.5. 1 we could arrange things so that in each ]1 the size 
of B11 :?: size of B12 :?: When this has been done, then the matrix 

is called the jordan form of T. Note that Theorem 6.6.2, for nilpotent 
matrices, reduces to Theorem 6.5. 1 .  

We leave as an exercise the following : Two linear transformations in 
Ap( V) which have all their characteristic roots in F are similar if and only if they 
can be brought to the same jordan form. 

Thus the Jordan form acts as a "determiner" for similarity classes of this 
type of linear transformation. 

In matrix terms Theorem 6.6.2 can be stated as follows : Let A E Fn 
and suppose that K is the splitting field qf the minimal polynomial of A over F; 
then an invertible matrix C E K n can be found so that CA C- 1 is in Jordan form. 
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We leave the few small points needed to make the transition from Theorem 
6.6.2 to its matrix form, just given, to the reader. 

One final remark : If A e Fn and if in Kn, where K is the splitting field 
of the minimal polynomial of A over F, 

J 
where each }1 corresponds to a different characteristic root, AI> of A, then 
the multiplicity of A; as a characteristic root of A is defined to be n;, where }1 
is an n1 x n1 matrix. Note that the sum of the multiplicities is exactly n. 

Clearly we can similarly defne the multiplicity of a characteristic root 
of a linear transformation. 

Problems 

I .  If S and T are nilpotent linear transformations which commute, 
prove that ST and S + T are nilpotent linear transformations. 

2. By a direct matrix computation, show that 

G � ; !) md (� � � !) 
are not similar. 

3. If n1 ;;: n2 and m1 ;;: m2, by a direct matrix computation prove that 

( Mn, Mn) and ( Mm, Mm) 
are similar if and only if n1 = m1, n2 = m2• 

*4. If n1 ;;: n2 2 n3 and m1 2 m2 2 m3, by a direct matrix computation 
prove that 

and 

are similar if and only if n1 = m1 , n2 = m2, n3 = m3• 

5. (a) Prove that the matrix 

I 
- 1  

I 

is nilpotent, and find its invariants and Jordan form. 
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(b) Prove that the matrix in part (a) is not similar to 

(- : 
1 

- 1  
0 -i) 

6. Prove Lemma 6.6. 1 and its corollary even if the sums involved are not 
direct sums. 

7. Prove the statement made to the effect that two linear transformations 
in Ap( V) all of whose characteristic roots lie in F are similar if and 
only if their Jordan forms are the same (except for a permutation in 
the ordering of the characteristic roots) .  

8. Complete the proof of the matrix version of Theorem 6.6.2, given in 
the text. 

9. Prove that the n x n matrix 

0 0 0 0 0 
1 0 0 0 0 
0 I 0 0 0 
0 0 I 0 0 

0 0 0 0 

having entries 1 's on the subdiagonal and O's elsewhere, is similar to M,.. 

1 0. If F has characteristic p > 0 prove that A = (� �) satisfies A' = I .  

I I . I f  F has characteristic 0 prove that A = (� �) satisfies A"' = 1 ,  
for m > 0, only if ex =  0. 

12 .  Find all possible Jordan forms for 
(a) All 8 x 8 matrices having x2(x - I )  3 as minimal polynomial. 
(b) All 10  x 1 0  matrices, over a field of characteristic different from 

2, having x2(x - 1 ) 2(x + 1 ) 3 as minimal polynomial. 

1 3. Prove that the n x n matrix 

A =  (i 
is similar to 

(� � � 0 0 0 

if the characteristic of F is 0 or if it is p and p ,{' n. What is the multi­
plicity of 0 as a characteristic root of A ?  
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A matrix A = (rx;i) is said to be a diagonal matrix if a,IJ = 0 for i :f. j, 
that is, if all the entries off the main diagonal are 0. A matrix (or linear 
transformation) is said to be diagonalizable if it is similar to a diagonal 
matrix (has a basis in which its matrix is diagonal) .  

14. If T is in A ( V) then T is diagonalizable (if all its characteristic roots 
are in F) if and only if whenever v(T - A.)"' = 0, for v E V and 
A. e F, then v(T - A.) = 0. 

1 5. Using the result of Problem 14, prove that if E2 = E then E is 
diagonalizable. 

1 6. If E2 = E and F2 = F prove that they are similar if and only if they 
have the same rank. 

1 7. If the multiplicity of each characteristic root of T is I ,  and if all the 
characteristic roots of T are in F, prove that T is diagonalizable 
over F. 

1 8. If the characteristic of F is 0 and if T e Ap(V) satisfies T"' = I ,  
prove that if the characteristic roots of T are in F then T is diagonaliz­
able. (Hint : Use the Jordan form of T.) 

* 1 9. If A, B E F are diagonalizable and if they commute, prove that 
there is an element C e Fn such that both CAC- 1 and CBC 1 are 
diagonal. 

20. Prove that the result of Problem 1 9  is false if A and B do not commute. 

6.7 Canonical Forms : Rational Canonical Form 

The Jordan form is the one most generally used to prove theorems about 
linear transformations and matrices. Unfortunately, it has one distinct, 
serious drawback in that it puts requirements on the location of the charac­
teristic roots. True, if T e  Ap( V) (or A E Fn) does not have its characteristic 
roots in F we need but go to a finite extension, K, of F in which all the char­
acteristic roots of T lie and then to bring T to Jordan form over K. In 
fact, this is a standard operating procedure ; however, it proves the result 
in Kn and not in Fn. Very often the result in Fn can be inferred from that 
in Kn, but there are many occasions when, after a result has been established 
for A E Fn, considered as an element in Kn, we cannot go back from Kn to 
get the desired information in Fn. 

Thus we need some canonical form for elements in Ap(V) (or in Fn) 
which presumes nothing about the location of the characteristic roots of its 
elements, a canonical form and a set of invariants created in Ap( V) itself 
using only its elements and operations. Such a canonical form is provided 
us by the rational canonical form which is described below in Theorem 6. 7 . I  
and its corollary. 
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Let T E AF( V) ; by means of T we propose to make V into a module over 
F[x] , the ring of polynomials in x over F. We do so by defining, for any 
polynomial f (x) in F[x], and any V E  V, f (x)v = vj (T) . We leave the 
verification to the reader that, under this definition of multiplication of 
elements of V by elements of F[x], V becomes an F[x]-module. 

Since V is finite-dimensional over F, it is finitely generated over F, hence, 
all the more so over F[x] which contains F. Moreover, F[x] is a Euclidean 
ring ; thus as a finitely generated module over F[x], by Theorem 4.5. 1 ,  V is 
the direct sum of a finite number of cyclic submodules. From the very way 
in which we have introduced the module structure on V, each of these 
cyclic submodules is invariant under T; moreover there is an element m0, 
in such a submodu1e M, such that every element m, in M, is of the form 
m = mof (T) for some f (x) E F[x] . 

To determine the nature of T on V it will be, therefore, enough for us to 
know what T looks like on a cyclic submodule. This is precisely what we 
intend, shortly, to determine. 

But first to carry out a preliminary decomposition of V, as we did in 
Theorem 6.6. 1 ,  according to the decomposition of the minimal polynomial 
of T as a product of irreducible polynomials. 

Let the minimal polynomial of T over F be p(x) = q1 (x)e' · · · qk(x)ek, 
where the qi(x) are distinct irreducible polynomials in F[x] and where 
each ei > 0 ;  then, as we saw earlier in Theorem 6.6. 1 ,  V = V1 EB V2 EB · · · 
EB Vk where each Vi is invariant under T and where the minimal polynomial 
of T on Vi is q;(xy•. To solve the nature of a cyclic submodule for an 
arbitrary T we see, from this discussion, that it suffices to settle it for a T 
whose minimal polynomial is a power of an irreducible one. 

We prove the 

LEM MA 6.7.1 Suppose that T, in AF( V), has as minimal polynomial over F the 
polynomial p(x) = Yo + y1x + · · · + y,_ 1x• 1 + x'. Suppose, further, that 
V, as a module (as described above) , is a cyclic module (that is, is cyclic relative to T.) 
Then there is basis of V over F such that, in this basis, the matrix of T  is 

Proof. Since V is cyclic relative to T, there exists a vector v in V such 
that every element w, in V, is of the form w = vf (T) for somej (x) in F[x] . 

Now if for some polynomial s(x) in F[x], vs(T) = 0, then for any w 
in V, ws(T) = (vf (T))s(T) = vs(T)j (T) = 0 ;  thus s (T) annihilates all 
of V and so s(T) = 0. But then p(x) I s(x) since p(x) is the minimal poly-
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nomial of T. This remark implies that v, v T, v T2, • • • , v T" 1 are linearly 
independent over F, for if not, then aov + a.1

v T  + · · · + a.,._ 1v T'- 1  = 0 
with ao, . . .  , a.,_ 1 in F. But then v(ao + a.1 T + · · · + a.,_ 1 T' 1 )  = 0, 
hence by the above discussion p(x) I (a.0 + a1x + · · · + a.,_1x'- 1) ,  which 
is impossible since p(x) is of degree r unless 

a.0 = a.1 = · · · = a, _ 1 = 0. 

Since T' = - y0 - y1 T - • · · - y, _1 T' 1 , we immediately have that 
T'+1c, for k ;;: 0, is a linear combination of I ,  T, . . .  , r• t, and so f (T), 
for any f (x) E F[xJ, is a linear combination of I' T, . . .  ' T' 1 over F. 
Since any w in V is of the form w = 1!f (T) we get that w is a linear com­
bination of v, v T, . . . , vr• 1 • 

We have proved, in the above two paragraphs, that the elements v, v T, 
. . .  , vr•- 1 form a basis of V over F. In this basis, as is immediately veri­
fied, the matrix of T is  exactly as claimed 

D EF I N IT I O N  If  f (x) 'l'o + 'l'1X + · · · + Yr lx' 1 + x' is in F[x] , 
then the r x r matrix 

0 I 0 0 
0 0 I 0 

0 0 0 
Yo - yl - Yr 1 

is called the companion matrix off (x) . We write it as C(j (x)) .  

Note that Lemma 6 .  7 . I  says that if V is  cyclic relative to T and f the minimal 
polynomial of T  in F[x] is p(x) then for some basis of V the matrix of T is C (p(x) ) .  

Note further that the matrix C (f (x) ) , for any monic f (x) in F[x] , satisfies 
f (x) and has f (x) as its minimal polynomial. (See Problem 4 at the end of 
this section ; also Problem 29 at the end of Section 6: 1 . )  

We now prove the very important 

THEOREM 6.7.1 If T in Ap( V) has as minimal polynomial p (x) = q(x)", 
where q(x) is a monic, irreducible polynomial in F[xJ, then a basis of V over F can 
be found in which the matrix of T is of the form (C(q(x)"') 

C (q(x)"2) 

where e = e1 ;;: e2 ;;: • • • ;;: e,. 

Proof. Since V, as a module over F[x] , is fnitely generated, and since 
F[xJ is Euclidean, we can decompose V as V = V1 $ · · · $ V, where the 
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V1 are cyclic modules. The V1 are thus invariant under T; if T1 is the 
linear transformation induced by T on V1, its minimal polynomial must be 
a divisor of p(x) q(x)" so is of the form q(x)"•. We can renumber the 
spaces so that e1 � e2 :2: • · • � e,. 

Now q(T)"' annihilates each V1, hence annihilates V, whence q(TY• 
0. Thus e1 � e; since e1 is clearly at most e we get that e1 = e. 

By Lemma 6. 7. 1 ,  since each V1 is cyclic relative to T, we can find a basis 
such that the matrix of the linear transformation of T1 on V1 is C(q(x)"'). 
Thus by Theorem 6.6. I a basis of V can be found so that the matrix of T 
in this basis is 

r(q(x)') 

COROLLARY If T in Ap(V) has minimal polynomial p(x) = q1 (x)lt · · · qk(x) 1• 
over F, where q1 (x), . . .  , qk(x) are irreducible distinct polynomials in F[x], then a 
basis rif V can be found in which the matrix qf T is of the form 

where each 

where e1 = en � e12 � • • • ;;: e1r1• 

Proof. By Theorem 6.5. 1 ,  V can be decomposed into the direct sum 
V = V1 EB • • • EB V,., where each V1 is invariant under T and where the 
minimal polynomial of T1, the linear transformation induced by T on V1, 
has as minimal polynomial q1 (x)"1• Using Lemma 6.5. 1 and the theorem 
just proved, we obtain the corollary. If the degree of q1(x) is db note that 
the sum of all the d1e11 is n, the dimension of V over F. 

D E F I N ITION The matrix of T in the statement of the above corollary 
is called the rational canonical form of T. 

D E F I N ITI O N  The polynomials q1 (xY11, q1 (x)"12, • • •  , q1 (x)"•'•, . . . , q.(x)"k', 
. . .  , q,.(x)"•'• in F[x] are called the elementary divisors of T. 

One more definition ! 
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D E F I N IT ION If dimF ( V) = n, then the characteristic polynomial of T, 
Pr(x) , is the product of its elementary divisors. 

We shall be able to identify the characteristic polynomial just defined 
with another polynomial which we shall explicitly construct in Section 6.9. 
The characteristic polynomial of T is a polynomial of degree n lying in 
F[x] . It has many important properties, one of which is contained in the 

R EMARK Every linear transformation T E AF(V) satisfies its characteristic 
polynomial. Every characteristic root of T  is a root of Pr(x) . 

Note 1. The first sentence of this remark is the statement of a very famous 
theorem, the Cayley-Hamilton theorem. However, to call it that in the form 
we have given is a little unfair. The meat of the Cayley-Hamilton theorem 
is the fact that T satisfies Pr(x) when Pr{x) is given in a very specific, con­
crete form, easily constructible from T. However, even as it stands the 
remark does have some meat in it, for since the characteristic polynomial is 
a polynomial of degree n, we have shown that every element in Ap(V) does 
satisfy a polynomial of degree n lying in F[x]. Until now, we had only 
proved this (in Theorem 6.4.2) for linear transformations having all their 
characteristic roots in F. 

Note 2. As stated the second sentence really says nothing, for whenever T 
satisfies a polynomial then every characteristic root of T satisfies this same 
polynomial ; thus Pr(x) would be nothing special if what were stated in the 
theorem were all that held true for it. However, the actual story is the 
following : Every characteristic root of T is a root of Pr(x), and conversely, 
every root of Pr(x) is a characteristic root of T; moreover, the multiplicity of any 
root of Pr(x), as a root of the polynomial, equals its multiplicity as a characteristic 
root oj T. We could prove this now, but defer the proof until later when we 
shall be able to do it in a more natural fashion. 

Proof of the Remark. We only have to show that T satisfies Pr(x), but 
this beomes almost trivial. Since Pr{x) is the product of q1 (x)8 1 1 ,  q1 (x)eu, 
. . .  , qk(xyk• , . . .  , and since e11 = e1 , e2 1 = e2, • • •  , eu = ek, Pr(x) is di­
visible by p(x) = q1 (x)"1 • • • qk (xY", the minimal polynomial of T. Since 
p(T) = 0 it follows that Pr(T) = 0. 

We have called the set of polynomials arising in the rational canonical 
form of T the elementary divisors of T. It would be highly desirable if these 
determined similarity in Ap( V), for then the similarity classes in Ap( V) 
would be in one-to-one correspondence with sets of polynomials in F[x] . 
We propose to do this, but first we establish a result which implies that two 
linear transformations have the same elementary divisors. 

THEOREM 6.7.2 Let V and W be two vector spaces over F and suppose that 1/1 
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is a vector space isomorphism rif V onto W. Suppose that S E AF( V) and T e 
AF(W) are such that for any v e V, (vS)t/1 = (vt/1) T. Then S and T have the 
same elementary divisors. 

Proof. We begin with a simple computation. If v e V, then (vS2) t/l = 
((vS)S)t/1  ( (vS)t/J) T ( (vt/J) T) T = (vt/J) T2• Clearly, if we continue in 
this pattern we get (vSm)t/1  = (vt/J)Tm for any integer m � 0 whence for 
any polynomial f (x) e F[x] and for any v e V, (if (S) )t/1 = (vt/l)f (T) . 

If f (S) = 0 then (vt/l) f (T) = 0 for any v e V, and since 1/1 maps V 
onto W, we would have that Wj (T) = (0), in consequence of which 
f (T) = 0. Conversely, if g(x) e F[x] is such that g(T) = 0, then for any 
v e V, (vg(S) )1/1 = 0, and since 1/1 is an isomorphism, this results in 
vg(S) = 0. This, of course, implies that g (S) = 0. Thus S and T satisfy 
the same set of polynomials in F[x], hence must have the same minimal polynomial. 

where qi (x) , . . .  , q1(x) are distinct irreducible polynomials in F[x] 
If U is a subspace of V invariant under S, then Ut/1 is a subspace of W 

invariant under T, for (Ut/1) T = (US)t/1 c: Ut/J. Since U and Ut/J are 
isomorphic, the minimal polynomial of sl , the linear transformation induced 
by S on U is the same, by the remarks above, as the minimal polynomial of 
T1 , the linear transformation induced on Ut/J by T. 

Now, since the minimal polynomial for S on V is p(x) = q1 (x/' · · · qk(x)"", 
as we have seen in Theorem 6. 7. I and its corollary, we can take as the 
first elementary divisor of S the polynomial q1 (x)"' and we can find a sub­
space of V1 of V which is invariant under S such that 

1 .  V = VI Ef) M where M is invariant under S. 
2. The only elementary divisor of SI> the linear transformation induced 

on V1 by S, is q1 (x) "'. 
3 .  The other elementary divisors of S are those of the linear transformation 

S2 induced by S on M. 

We now combine the remarks made above and assert 

1 .  w wt EB N where WI = vl 1/1 and N Mt/1 are invariant under T. 
2.  The only elementary divisor of T1, the linear transformation induced 

by T on WI, is qi (x) .. ' (which is an elementary divisor cif T since the minimal 
polynomial of T is p(x) = q1 (x)"' · · · qk(x)"") .  

3 .  The other elementary divisors of T are those of the linear transformation 
T2 induced by T on N. 

Since N = Mt/1, M and N are isomorphic vector spaces over F under the 
isomorphism t/12 induced by 1/f. Moreover, if u E M  then (uS2)1/12 
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(uS)r/1 = (ur/1) T = (ur/12) T2, hence S2 and T2 are in the same relation 
vis-a-vis r/12 as S and T were vis-a-vis r/1. By induction on dimension (or 
repeating the argument) S2 and T2 have the same elementary divisors. 
But since the elementary divisors of S are merely q1 (x)"' and those of S2 
while those of T are merely q1 (x)"' and those of T2, S, and T must have 
the same elementary divisors, thereby proving the theorem. 

Theorem 6. 7 . I  and its corollary gave us the rational canonical form and 
gave rise to the elementary divisors. We should like to push this further 
and to be able to assert some uniqueness property. This we do in 

TH EO R EM 6.7.3 The elements S and T in AF( V) are similar in AF(V) if 
and on{!' if they have the same elementary divisors. 

Proof. In one direction this is easy, for suppose that S and T have the 
same elementary divisors. Then there are two bases of V over F such that 
the matrix of S in the first basis equals the matrix of T in the second (and 
each equals the matrix of the rational canonical form) .  But as we have 
seen several times earlier, this implies that S and T are similar. 

We now wish to go in the other direction. Here, too, the argument 
resembles closely that used in Section 6.5 in the proof of Theorem 6.5.2. 
Having been careful with details there, we can afford to be a little sketchier 
here. 

We frst remark that in view of Theorem 6.6. 1 we may reduce from the 
general case to that of a linear transformation whose minimal polynomial 
is a power of an irreducible one. Thus without loss of generality we may 
suppose that the minimal polynomial of T is q(x)" where q(x) is irreducible 
in F [  x] of degree d. 

The rational canonical form tells us that we can decompose V as V = 
VI ® . . . $ v, where the subspaces vi are invariant under T and where 
the linear transformation induced by T on Vi has as matrix C(q(xY1), the 
companion matrix of q(x)"1• We assume that what we are really trying to 
prove is the following : If v = UI $ u2 $ . . .  $ us where the uj are 
invariant under T and where the linear transformation induced by T on Ui 
has as matrix C(q(x)1J), /1 ;;: /2 ;;: • • • ;;: fs, then r = s and e1 = /1, 
e2 = J2, . • • , e, = fr. (Prove that the proof of this is equivalent to proving 
the theorem !) 

Suppose then that we do have the two decompositions described above, 
v VI ® . . .  ® v, and v = ul $ . . . E9 u., and that some el =I= ft· 
Then there is a frst integer m such that em =I= fm, while e1 = /1, • . •  , em - I  = 
fm-I ' We may suppose that em > fm · 

Now g(T)I� annihilates Um, Um+I >  . . .  , U,, whence 
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However, it can be shown that the dimension of U1q(T)fm for i :s; m is 
d (f; - fm) (Prove !)  whence 

dim ( Vq(T)fm) = d (f1 - fm) + " '  + d (fm- 1 - fm) •  

O n  the other hand, Vq(T)fm :: V1q(T)fm EB · · · Ei) • • • Ei) Vmq(T)fm and 
since V1q(T)fm has dimension d(e1 - fm),  for i :s; m, we obtain that 

dim ( Vq(T)1m) � d(e; - fm) + ' ' '  + d (em - fm) •  

Since e1 = fv . . .  , em - 1 = fm - 1 and em > fm, this contradicts the equality 
proved above. We have thus proved the theorem. 

COROLLARY 1 Suppose the two matrices A, B in Fn are similar in Kn where 
K is an extension of F. Then A and B are already similar in Fn. 

Proof. Suppose that A, B E  F" are such that B = c- 1 AC with c E Kn. 
We consider Kn as acting on K<">, the vector space of n-tuples over K. 
Thus F<n> is contained in K<n> and although it is a vector space over F it is 
not a vector space over K. The image of F<n>, in K<n>, under C need not fall 
back in F(n) but at any rate F<n>c is a subset of K<n> which is a vector space 
over F. (Prove !) Let V be the vector space F<n> over F, W the vector space 
F<n>c over F, and for v E V let vi/J = vC. Now A E AF( V) and B E  AF( W) 
and for any v E V, (vA)ifJ = vAG = vCB = (vi/J)B whence the conditions 
of Theorem 6.7.2 are satisfied. Thus A and B have the same elementary 
divisors ; by Theorem 6. 7.3, A and B must be similar in Fn. 

A word of caution : The corollary does not state that if A, B E  Fn are such 
that B = c - 1AC with C e Kn then C must of necessity be in Fn ; this is 
false. It merely states that if A, B e Fn are such that B = c - 1AC with 
C E Kn then there exists a (possibly different) D E  Fn such that B = 
n- 1AD. 

Problems 

I .  Verify that V becomes an F[x]-module under the definition given. 
2. In the proof of Theorem 6. 7.3 provide complete proof at all points 

marked " (Prove) ."  

*3. (a) Prove that every root of the characteristic polynomial of  T is a 
characteristic root of T. 

(b) Prove that the multiplicity of any root of Pr(x) is equal to its 
multiplicity as a characteristic root of T. 

4. Prove that for f (x) e F[x], C(f(x) ) satisfies f(x) and has f (x) as its 
minimal polynomial. What is its characteristic polynomial? 

5. If F is the field of rational numbers, find all possible rational canonical 
forms and elementary divisors for 
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(a) The 6 x 6 matrices m F6 having (x - l ) (x2 + 1 ) 2 as minimal 
polynomial. 

(b) The 15  x 1 5  matrices in F1 5 having (x2 + x + 1 ) 2 (x3 + 2) 2 
as minimal polynomial. 

(c) The 10  x 10 matrices in F10 having (x2 + 1 ) 2 (x3 + 1) as mini­
mal polynomial. 

6. (a) If K is an extension of F and if A is in Kn, prove that A can be 
written as A = A.1A1 + · · · + A.kAk where A1 , . . .  , Ak are in Fn 
and where ..1.1 , • . •  , A.k are in K and are linearly independent over 
F. 

(b) With the notation as in part (a) , prove that if B E  Fn is such that 
AB = 0 then A1B = A2B = · · · = AkB = 0. 

(c) If C in Fn commutes with A prove that C commutes with each 
of A1 ,  A2, • • •  , Ak. 

* 7. If Au . . .  , Ak are in Fn and are such that for some ..1.1 , • • •  , A.k in K, 
an extension of F, A.1A1 + · · · + A.kAk is invertible in Kn, prove that 
if F  has an infinite number qf elements we can find IX1 , • • •  , IXk in F such 
that IX1A1 + · · · + IXkAk is invertible in Fn. 

*8. If F is a .finite field prove the result of Problem 7 is false. 
*9. Using the results of Problems 6(a) and 7 prove that if F has an infinite 

number of elements then whenever A, B E  Fn are similar in Kn, where 
K is an extension of F, then they are familiar in Fn. (This provides us 
with a proof, independent of canonical forms of Corollary 1 to Theorem 
6.7.3 in the special case when F is an infinite field.) 

10. Using matrix computations (but following the lines laid out in Problem 
9) , prove that if F is the field of real numbers and K that of complex 
numbers, then two elements in F2 which are similar with K2 are already 
similar in F2 • 

6.8 Trace and Transpose 

After the rather heavy going of the previous few sections, the uncomplicated 
nature of the material to be treated now should come as a welcome respite. 

Let F be a field and let A be a matrix in Fn. 

D E FI N IT I O N  The trace of A is the sum of the elements on the mam 
diagonal of A. 

We shall write the trace of A as tr A ;  if A =  (1Xjj), then 
n 

tr A = L IX;;· 
i= 1 

The fundamental formal properties of the trace function are contained in 
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LEM MA 6.8.1 For A, B e  Fn and A e F, 

I .  tr ( AA) = A tr A. 
2. tr (A + B) = tr A + tr B. 
3. tr (AB) = tr (BA) . 

Proof. To establish parts 1 and 2 (which assert that the trace is a linear 
functional on Fn) is straightforward and is left to the reader. We only 
present the proof of part 3 of the lemma. 

If A = (ali) and B = (f31i) then AB = (yli) where 
n 

Yii = L (Xikpkj 
k = 1 

and BA 
n 

Jlij = I: Pikakj· 
k= 1 

Thus 

if we interchange the order of summation in this last sum, we get 

COROLLARY Ij A is invertible then tr (ACA - 1) = tr C. 

Proof. Let B = CA 1 ; then tr (ACA 1 ) = tr (AB) = tr (BA) = 

tr ( CA 1 A) = tr C. 

This corollary has a twofold importance ; first, it will allow us to defne 
the trace of an arbitrary linear transformation ; secondly, it will enable us 
to find an alternative expression for the trace of A. 

D E F I N ITI ON If T e A ( V) then tr T, the trace of T, is  the trace of m1 (T) 
where m1 (T) is the matrix of T in some basis of V. 

We claim that the definition is meaningful and depends only on T and 
not on any particular basis of V. For if m1 (T) and m2 (T) are the matrices 
of T in two different bases of V, by Theorem 6.3.2, m1 (T) and m2 (T) are 
similar matrices, so by the corollary to Lemma 6.8. 1 they have the same 
trace. 

LEM MA 6.8.2 /f T e A ( V) then tr T is the sum qf the characteristic roots qf 
T (using each characteristic root as qften as its multiplicity) . 
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Proof. We can assume that T is a matrix in F, ; if K is the splitting field 
for the minimal polynomial of T over F, then in K,, by Theorem 6.6.2, T 
can be brought to its Jordan form, ]. J is a matrix on whose diagonal 
appear the characteristic roots of T, each root appearing as often as its 
multiplicity. Thus tr J = sum of the characteristic roots of T; however, 
since J is of the form A T A - 1 , tr J = tr T, and this proves the lemma. 

If T is nilpotent then all its characteristic roots are 0, whence by Lemma 
6.8.2, tr T = 0. But if T is nilpotent, then so are T2, T3, • • • ; thus 
tr Ti = 0 for all i � 1 .  

What about other directions, namely, if tr Ti = 0 for i = I ,  2, . . .  
does it follow that T is nilpotent ? In this generality the answer is no, for 
if F is a field of characteristic 2 then the unit matrix 

in F2 has trace 0 (for I + 1 = 0) as do all its powers, yet clearly the unit 
matrix is not nilpotent. However, if we restrict the characteristic of F to 
be 0, the result is indeed true. 

LEMMA 6.8.3 lJ F is a field rif characteristic 0, and if T E AF( V) is such 
that tr Ti = 0 for all i � 1 then T is nilpotent. 

Proof. Since T E AF( V) ,  T satisfies some minimal polynomial p(x) = 

xm + ct1Xm- 1 + . . .  + am ; from ym + ct1 ym- 1 + . . .  + ocm-1 T + ctm = 0, 
taking traces of both sides yields 

tr ym + oc1 tr ym- 1 + · · · + ctm_ 1  tr T + tr ctm = 0. 

However, by assumption, tr Ti = 0 for i � 1 ,  thus we get tr am = 0; if 
dim V = n, tr am = nctm whence nctm = 0. But the characteristic of F is 0; 
therefore, n #- 0, hence it follows that ocm = 0. Since the constant term 
of the minimal polynomial of T is 0, by Theorem 6. 1 .2 T is singular and 
so 0 is a characteristic root of T. 

We can consider T as a matrix in F, and therefore also as a matrix in K,., 
where K is an extension of F which in turn contains all the characteristic 
roots of T. In K,, by Theorem 6.4. 1 ,  we can bring T to triangular form, 
and since 0 is a characteristic root of T, we can actually bring it to the form 

0 0 

* 
= (�I  
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where 

is an (n - I )  x (n - I )  matrix (the *'s indicate parts in which we are 
not interested in the explicit entries) . Now 

hence 0 = tr Tk 
= tr T/. Thus T2 is an (n - I )  x (n - I )  matrix with 

the property that tr T2 
k 

= 0 for all k � I .  Either using induction on n, 
or repeating the argument on T2 used for T, we get, since oc2 , • • •  , oc" are 
the characteristic roots of T2, that oc2 = · · · = ct" = 0. Thus when T is 
brought to triangular form, all its entries on the main diagonal are 0, 
forcing T to be nilpotent. (Prove !) 

This lemma, though it might seem to be special, will serve us in good 
stead often. We make immediate use of it to prove a result usually known 
as the jacobson lemma. 

L E M M A  6.8.4 If F  is of characteristic 0 and if S and T, in A,( V), are such 
that ST - TS commutes with S, then ST - TS is nilpotent. 

Proof. For any k � I we compute (ST - TS)k. Now (ST - TS)k = 
(ST - TS)k- l (ST - TS) = (ST - TS)k- 1ST - (ST - TS)k- 1 TS. 
Since ST - TS commutes with S, the term (ST - TS)k- 1ST can be 
written in the form S ((ST - TS)k- 1 T) . If we let B = (ST - TS)k- 1 T, 
we see that (ST - TS)k = SB - BS; hence tr ( (ST - TS)k) = 
tr (SB - BS) = tr (SB) - tr (BS) = 0 by Lemma 6.8. 1 .  The previous 
lemma now tells us that ST - TS must be nilpotent. 

The trace provides us with an extremely useful linear functional on F" 
(and so, on A,( V)) into F. We now introduce an important mapping of 
Fn into itself. 

D E FI N ITION If A = (oc1i) E F" then the transpose of A, written as A', 
is the matrix A' = (y1i) where 'Iii = ctii for each i andj. 

The transpose of A is the matrix obtained by interchanging the rows and 
columns of A. The basic formal properties of the transpose are contained in 
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LEMMA 6.8.5 For all A, B e  F", 

1 .  (A') '  = A.  
2. (A + B)'  = A'  + B'. 
3. (AB)' = B'A'. 

Proof. The proofs of parts 1 and 2 are straightforward and are left to 
the reader ; we content ourselves with proving part 3. 

Suppose that A = (r.xii) and B = (pii) ;  then AB = (A.;i) where 
n 

Aij = L r.x;k{Jkj" 
k= 1 

Therefore, by definition, (AB)' = (Jlii) ,  where 
n 

Jlij = Aj; = L !1.jkpki• 
k= 1 

On the other hand, A' = (yii) where Yii = !1.i; and B' 

eii = {J ii' whence the (i, j) element of B'A' is 
n n n 

L: eik'lkj = L: Pki!Y.jk = I: !1.jkflki = Jlij· 
k = 1  k = 1  k= 1 

That is, (AB) ' = B' A' and we have verified part 3 of the lemma. 

In part 3, if we specialize A =  B we obtain (A 2) '  = (A') 2• Continuing, 
we obtain (Ak) '  = (A')k for all positive integers k. When A is invertible, 
then (A- 1 ) '  = (A') - 1 . 

There is a further property enjoyed by the transpose, namely, if A. e F 
then (A.A)' = A.A' for all A E Fn. Now, if A E Fn satisfies a polynomial 
r.x0Am + 11.1Am- 1 + · · · + !1.m = 0, we obtain (11.0Am + · · · + !1.

m
) '  = 0' = 0. 

Computing out (11.0Am + · · · + !1.m) '  using the properties of the transpose, 
we obtain 11.0(A')m + 11.1 (A')m - 1 + · · · + !1.m = 0, that is to say, A' satisfies 
any polynomial over F which is satisfied by A. Since A = (A')', by the 
same token, A satisfies any polynomial over F which is satisfied by A'. 
In particular, A and A' have the same minimal polynomial over F and so 
they have the same characteristic roots. One can show each root occurs with 
the same multiplicity in A and A'. This is evident once it is established that 
A and A' are actually similar (see Problem 1 4). 

D E F I N ITION The matrix A i s  said to be a symmetric matrix if A' = A. 

D E FI N ITION The matrix A is said to be a skew-symmetric matrix if 
A' = - A. 

When the characteristic of F is 2, since I = - I ,  we would not be able 
to distinguish between symmetric and skew-symmetric matrices. We make 
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the flat assumption for the remainder of this section that the characteristic of F is 
diferent from 2. 

Ready ways for producing symmetric and skew-symmetric matrices are 
available to us. For instance, if A is an arbitrary matrix, then A + A' is 
symmetric and A - A' is skew-symmetric. Noting that A = t(A + A') + 

t(A - A') , every matrix is a sum of a symmetric one and a skew-symmetric 
one. This decomposition is unique (see Problem 19) .  Another method of 
producing symmetric matrices is as follows : if A is an arbitrary matrix, 
then both AA' and A' A are symmetric. (Note that these need not be equal.) 

It is in the nature of a mathematician, once given an interesting concept 
arising from a particular situation, to try to strip this concept away from 
the particularity of its origins and to employ the key properties of the con­
cept as a means of abstracting it. We proceed to do this with the transpose. 
We take, as the formal properties of greatest interest, those properties of 
the transpose contained in the statement of Lemma 6.8.5 which asserts that 
on F" the transpose defines an anti-automorphism of period 2. This leads 
us to make the 

D E F I N IT I O N  A mapping * from F" into F" is called an adjoint on F" if 

I .  (A*) * = A ;  
2 .  (A + B) * = A* + B* ; 
3. (AB) * = B* A* ; 

for all A, B E Fn. 

Note that we do not insist that (A.A) * = A.A* for A. E F. In fact, in some 
of the most interesting adjoints used, this is not the case. We discuss one 
such now. Let F be the field of complex numbers ; for A = (!Xii) E F", let 
A* = (yii) where Yii = aii the complex conjugate of r:xji· In this case * is 
usually called the Hermitian at!joint on Fn. A few sections from now, we 
shall make a fairly extensive study of matrices under the Hermitian adjoint. 

Everything we said about transpose, e.g., symmetric, skew-symmetric, 
can be carried over to general adjoints, and we speak about elements sym­
metric under * (i.e., A* = A), skew-symmetric under •, etc. In the exercises 
at the end, there are many examples and problems referring to general 
adjoints. 

However, now as a diversion let us play a little with the Hermitian 
adjoint. We do not call anything we obtain a theorem, not because it is 
not worthy of the title, but rather because we shall redo it later (and properly 
label it) from one central point of view. 

So, let us suppose that F is the field of complex numbers and that the 
adjoint, •, on F" is the Hermitian adjoint. The matrix A is called Hermitian 
if A* = A. 
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First remark : If A #= 0 e F,., then tr (AA*)  > 0. Second remark : As a 
consequence of the first remark, if A1 , • • •  , Ak e F,. and if A1A1 * + A2A2 * + 

· · · + AkAk * = 0, then A1 A2 = · · · Ak = 0. Third remark : If A 
is a scalar matrix then A* = l, the complex conjugate of A. 

Suppose that A e F,. is Hermitian and that the complex number a + {Ji, 
where a and fJ are real and i 2  = I ,  is a characteristic root of A. Thus 
A - (a + fJi) is not invertible ; but then (A - (a + fJi) ) (A - (a - fJi)) 
(A - a) 2 + fJ2 is not invertible. However, if a matrix is singular, it must 
annihilate a nonzero matrix (Theorem 6. 1 .2, Corollary 2). There must 
therefore be a matrix C 'f: 0 such that C( (A - a) 2 + fJ2) = 0. We multiply 
this from the right by C *  and so obtain 

( I )  

Let D = C (A - a) and E = fJC. Since A* = A and a i s  real, 
C(A a) 2C* DD* ; since fJ is real, fJ2CC* = EE *. Thus equation 
( l )  becomes DD* + EE* = D; by the remarks made above, this forces 
D = D and E = D. We only exploit the relation E = D. Since 0 E = 
fJC and since C # 0 we must have fJ = D. What exactly have we proved? 
In fact, we have proved the pretty (and important) result that if a complex 
number A is a characteristic root of a Hermitian matrix, then A must be real. Ex­
ploiting properties of the field of complex numbers, one can actually restate 
this as follows : The characteristic roots of a Hermitian matrix are all real. 

We continue a little farther in this vein. For A e F., let B = AA* ; B 
is a Hermitian matrix. If the real number a is a characteristic root of B, 
can a be an arbitrary real number or must it be restricted in some way? 
Indeed, we claim that a must be nonnegative. For if a were negative then 
a - fJ2, where fJ is a real number. But then B - a =  B + fJ 2 = 
AA* + fJ2 is not invertible, and there is a C # 0 such that C(AA* + fJ 2) 
= D. Multiplying by C *  from the right and arguing as before, we obtain 
fJ = D, a contradiction. We have shown that any real characteristic root 
of AA* must be nonnegative. In actuality, the "real" in this statement 
is superfluous and we could state : For any A e F. all the characteristic 
roots of AA* are nonnegative. 

Problems 

Unless otherwise specified, symmetric and skew-symmetric refer to 
transpose . 

1 .  Prove that tr (A + B) = tr A + tr B and that for A e F, tr (AA) = 
A tr A. 

2. (a) Using a trace argument, prove that if the characteristic of F is 0 
then it is impossible to find A, B e F,. such that AB - BA = I .  
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(b) In part (a) , prove, in fact, that 1 - (AB - BA) cannot be nil­
potent. 

3. (a) Letf be a function defined on Fn having its values in F such that 

l .  j (A + B) = j (A) + j (B) ; 
2. j (A.A) Aj (A) ; 
3. f (AB) = j (BA) ; 

for all A, B E  Fn and all A E F. Prove that there is an element 
et0 E F such that f (A) = eto tr A for every A in F11• 

(b) If the characteristic of F is 0 and if the f in part (a) satisfies the 
additional property that f ( l )  = n, prove that f (A) = tr A for 
all A E Fn. 

Note that Problem 3 characterizes the trace function. 

*4. (a) If the field F has an infinite number of elements, prove that every 
element in F11 can be written as the sum of regular matrices. 

(b) If F has an infinite number of elements and if j, defined on F11 
and having its values in F, satisfies 

l .  j (A + B) = j (A) + j (B) ; 
2. j (AA) = Aj {A) ; 
3. f (BAB- 1) = j (A) ; 

for every A E F11, A E F and invertible element B in F11, prove 
that f (A) = Clo tr A for a particular eto E F and all A E F11• 

5. Prove the Jacobson lemma for elements A, B E  F11 if n is less than 
the characteristic of F. 

6. (a) If C E F11, define the mapping de on F11, by dc (X) = XC - CX 
for X e F.,. Prove that dc(XY) = (dc(X) ) Y  + X(dc( Y)) .  
(Does this remind you of the derivative?) 

(b) Using (a) , prove that if AB - BA commutes with A,  then for 
any polynomial q(x) e F[x] , q(A)B - Bq(A) = q' (A) (AB BA) ,  
where q' (x) is the derivative of q(x) . 

*7. Use part (b) of Problem 6 to give a proof of the Jacobson lemma. 
(Hint : Let p(x) be the minimal polynomial for A and consider 0 = 
p(A)B - Bp(A) .)  

8. (a) If A is a triangular matrix, prove that the entries on the diagonal 
of A are exactly all the characteristic roots of A. 

(b) If A is triangular and the elements on its main diagonal are 0, 
prove that A is nilpotent. 

9. For any A, B e  F,. and A e F prove that (A')'  = A, (A + B)' 
A' + B', and (A.A)' = AA'. 

I 0. If A is invertible, prove that (A - 1 ) ' = (A') 1 • 

1 1 .  If A is skew-symmetric, prove that the elements on its main diagonal 
are all 0. 
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12. If A and B are symmetric matrices, prove that AB is symmetric if 
and only if AB = BA. 

13 .  Give an example of an A such that AA' '# A' A.  

* 14.  Show that A and A' are similar. 

1 5. The symmetric elements in F, form a vector space ; find its dimension 
and exhibit a basis for it. 

* 1 6. In F, let S denote the set of symmetric elements ; prove that the 
subring of F, generated by S is all of F,. 

* 1 7. If the characteristic of F is 0 and A E F,. has trace 0 ( tr A = 0) prove 
that there is a C E F,. such that GAG - 1 has only O's on its main 
diagonal. 

* 1 8. If F is of characteristic 0 and A E F. has trace 0, prove that there 
exist B, C E F,. such that A = BC - CB. (Hint : First step, assume, by 
result of Problem 1 7, that all the diagonal elements of A are 0.) 

1 9. (a) If F is of characteristic not 2 and if * is any adjoint on F,, let 
S = {A E F. I A* = A } and let K = {A E F,. I A* = - A }. Prove 
that S + K = F,. 

(b) If A E F,. and A = B + C where B E S and C E K, prove that 
B and C are unique and determine them. 

20. (a) If A, B E  S prove that AB + BA E S. 
(b) If A, B E  K prove that AB - BA E K. 
(c) If A E S and B E  K prove that AB - BA E S and that AB + 

BA e K. 

2 1 .  If 4J is an automorphism of the field F we define the mapping <I> on 
F. by : If A = (aij) then <J>(A) = (4J(a;j) ) .  Prove that <I>(A + B) = 
<J>(A) + <J>(B) and that <J>(AB) = <I>(A)<J>(B) for all A, B E  F,.. 

22. If * and ® define two adjoints on F,, prove that the mapping 
t/1 :A -+ (A*)® for every A E F,. satisfies t/J(A + B) = t/J(A) + t/J(B) 
and t/J(AB) = t/J(A)t/J(B) for every A, B E  F,.. 

23. If * is any adjoint on F, and A. is a scalar matrix in F., prove that A.* 
must also be a scalar matrix. 

*24. Suppose we know the following theorem : If t/1 is an automorphism 
of F, (i.e., t/1 maps F, onto itself in such a way that t/J(A + B) = 
t/J(A) + t/J(B) and t/J(AB) = t/J(A)t/J(B)) such that t/J (A.) = A. for 
every scalar matrix A., then there is an element P E F,. such that 
t/J(A) = PAP - 1 for every A E F,.. On the basis of this theorem, prove : 
If * is an adjoint of F, such that A.* = A. for every scalar matrix A. 
then there exists a matrix P e F, such that A* = PA'P - 1 for every 
A E F,.. Moreoever, p - 1P' must be a scalar. 

25. If P E F,. is such that p - 1P' -:f. 0 is a scalar, prove that the mapping 
defined by A* = PA'P - 1 is an adjoint on F,. 
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Its properties are closely tied to the multiplicative properties of matrices. 
Aside from its effectiveness as a tool in proving theorems, the determinant 

is valuable in "practical" ways. Given a matrix T, in terms of explicit 
determinants we can construct a concrete polynomial whose roots are the 
characteristic roots of T; even more, the multiplicity of a root of this poly­
nomial corresponds to its multiplicity as a characteristic root of T. In fact, 
the characteristic polynomial of T, defned earlier, can be exhibited as this 
explicit, determinantal polynomial. 

Determinants also play a key role in the solution of systems of linear 
equations. It is from this direction that we shall motivate their definition. 

There are many ways to develop the theory of determinants, some very 
elegant and some deadly and ugly. We have chosen a way that is at neither 
of these extremes, but which for us has the advantage that we can reach the 
results needed for our discussion of linear transformations as quickly as 
possible. 

In what follows F will be an arbitrary field, F,. the ring of n X n matrices 
over F, and F(n) the vector space of n-tuples over F. By a matrix we shall 
tacitly understand an element in F,.. As usual, Greek letters will indicate 
elements of F (unless otherwise defined) . 

Consider the system of equations 

Olu xl + Ol t2X2 p l l 
CX2 1X1 + a22x2 Pz· 

We ask : Under what conditions on the Ol;i can we solve for x1, x2 given 
arbitrary P1 , P2 ? Equivalently, given the matrix 

A = (au 
0(21 

when does this map F< 2) onto itself? 
Proceeding as in high school, we eliminate x1 between the two equations ; 

the criterion for solvability then turns out to be cx1 1cx22 - ct1 2a2 1 =I= 0. 
We now try the system of three linear equations 

CXuX1 + a12x2 + Gt13X3 = pl,  
tX2 1X1 + a22x2 + IX23x3 = p2, 
tX3 1X1 + a32x2 + tX33X3 = p3, 

and again ask for conditions for solvability given arbitrary p1 ,  p2, p3. 
Eliminating x1 between these two-at-a-time, and then x2 from the resulting 
two equations leads us to the criterion for solvability that 

Ctuet2 2ct33 + 1Xua:23a:31 + CX1 3a21a:32 - a1 2a210:33 
- O:ui.Xz30:32 - a:131.Xzz0:31 =I= 0. 

323 
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Using these two as models (and with the hindsight that all this will work) 
we shall make the broad jump to the general case and shall define the de­
terminant of an arbitrary n x n matrix over F. But first a little notation ! 

Let S,. be the symmetric group of degree n; we consider elements in S, 
to be acting on the set { 1 ,  2, . . . , n}. For u E s., u(i) will denote the image 
of i under u. (We switch notation, writing the permutation as acting from 
the left rather than, as previously, from the right. We do so to facilitate 
writing subscripts.) The symbol ( - 1 ) .. for u E S, will mean + I if u is an 
even permutation and - 1  if u is an odd permutation. 

D E F I N ITION If A = (a1j) then the determinant f! A, written det A, is the 
element L.,.,8,. ( l ) .. a1 .-(1 la2.,(2) • • • a,.,(n) in F. 

We shall at times use the notation 

for the determinant of the matrix 

Note that the determinant of a matrix A is the sum (neglecting, for the 
moment, signs) of all possible products of entries of A, one entry taken 
from each row and column of A. In general, it is a messy job to expand the 
determinant of a matrix-after all there are n !  terms in the expansion-but 
for at least one type of matrix we can do this expansion visually, namely, 

LEMMA 6.9.1 The determinant f! a triangular matrix is the product of its 
entries on the main diagonal. 

Proof. Being triangular implies two possibilities, namely, either all the 
elements above the main diagonal are 0 or all the elements below the main 
diagonal are 0. We prove the result for A of the form 

0 

and indicate the slight change in argument for the other kind of triangular 
matrices. 

Since a1 1 = 0 unless i = l ,  in the expansion of det A the only nonzero 
contribution comes in those terms where u ( l )  = L Thus, since u is a 
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permutation, u(2) ¥- I ;  however, if u(2) > 2, a2a(l) = 0, thus to get a 
nonzero contribution to det A, u(2) = 2. Continuing in this way, we must 
have u(i) = i for all i, which is to say, in the expansion of det A the only 
nonzero term arises when u is the identity element of S". Hence the sum of 
the n !  terms reduces to just one term, namely, aua22 · · · a""' which is the 
contention of the lemma. 

If A is lower triangular we start at the opposite end, proving that for a 
nonzero contribution u(n) = n, then u(n - 1 )  = n - 1 ,  etc. 

Some special cases are of interest : 

l . If 

is diagonal, det A 

2. If 

J 
the identity matrix, then det A 1 .  

3 .  If 

the scalar matrix, then det A = A.". 
Note also that if a row (or column) of a matrix consists ofO's then the determinant 

is 0, for each term of the expansion of the determinant would be a product 
in which one element, at least, is 0, hence each term is 0. 

Given the matrix A = (aii) in F" we can consider its first row v1 = 
(a1 1 ,  a12, . • •  , a1 ") as a vector in p<n> ;  similarly, for its second row, v2, and 
the others. We then can consider det A as a function of the n vectors 
v1 , • • •  , v". Many results are most succinctly stated in these terms so we 
shall often consider det A = d (v1 , • • •  , v") ; in this the notation is always 
meant to imply that v1 is the first row, v2 the second, and so on, of A.  

One further remark : Although we are working over a field, we could just 
as easily assume that we are working over a commutative ring, except in 
the obvious places where we divide by elements. This remark will only 
enter when we discuss determinants of matrices having polynomial entries, 
a little later in the section. 

325 
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L EM MA 6.9.2 lf A e F, and y e F then d(v1, • • •  , v1_ 1 ,  yvl> vl+ 1 ,  • • •  , v,) = 
yd(v1 , • • •  , v1 _ 1 ,  v1, v1 + 1 >  • • • , v,) .  

Note that the lemma says that i f  all the elements i n  one row of A are 
multiplied by a fixed element y in F then the determinant of A is itself 
multiplied by y. 

Proof. Since only the entries in the ith row are changed, the expansion 
of d(v1 , • • •  , v1 _ 1 ,  1v1, v1+ 1 ,  • • • , v,.) is 

L ( - l )"'ata(l ) · · · al- 1 ,a( l- 1 ) ("/aia(l))al +l ,a(l + 1 ) · · · a,..,.(n); aESn 
since this equals )' LaE S" ( - l )"ata(l ) · · · ala( !) · · · ana( n)> it does indeed 
equal yd (v1, • • •  , v,) . 

LEMMA 6.9.3 

d(v1, • • •  , v1_ 1 >  v1, vl+ l• • . .  , v,) + d(v1 , • • • , v1_ 1 , u1, v1+ v ·  . .  , v,) 
= d(v1, • • •  , v1_ 1 ,  v1 + u1, vi+ 1 ,  • • •  , v,) .  

Before proving the result, let us see what it  says and what it does not say. 
It does not say that det A + det B det (A + B) ; this is false as is mani-
fest in the example 

A = ( I 0) 
0 0 ' B = (o o) 

0 I ' 

where det A = det B = 0 while det (A + B) = I .  It does say that if A 
and B are matrices equal everywhere but in the ith row then the new matrix 
obtained from A and B by using all the rows of A except the ith, and using 
as ith row the sum of the ith row of A and the ith row of B, has a deter­
minant equal to det A + det B. If 

A =  G !) and B = (I 1) 
3 

4 ' 

then 

det A - 2, (2 43) --
det B = 1 ,  det 

3 - 1 = det A + det B. 

Proof. If v1 = (a1 I >  • • •  , a� n) , . . .  , v1 = (ail, . . .  , a1,), • • •  , v, = 
(a,0 . . .  , a,,) and if u1 CPu,  . . .  , P1,.) , then 

d(v1 , • • •  , v1_ 1 ,  u1 + v1, v1 +I > • • •  , v,) 
= L ( - 1 )"alq(l )  . . .  1X;- 1 ,a(l- 1 )(ct;a(i) + Pta( I)) lXI + l ,a(l+ I )  • • • ana(n) 

a E Sn 
= L ( - l )"ctla(l )  · · · a;-l ,a( i-l )ctla(l) · · · 1Xna(n) 

aES" 
+ L ( l )"'ctla(l )  • • • 1X;- 1 ,a(t - 1 )Pta(i) • • • IX,.(n) 

aESn 
d(v. , . . . , v1, • • • , v,) + d(v1 , • • •  , u1, • • • , v,) . 



Sec. 6.9 Determinants 327 

The properties embodied in Lemmas 6.9. I ,  6.9.2, and 6.9.3, along with 
that in the next lemma, can be shown to characterize the determinant 
function (see Problem 1 3, end of this section) .  Thus, the formal property 
exhibited in the next lemma is basic in the theory of determinants. 

LEMMA 6.9.4 If two rows of A are equal (that is, v, 
det A = 0. 

v, for r =F s), then 

Proof. Let A = (a11) and suppose that for some r, s where r =F s, 
a,1 a,1 for allj. Consider the expansion 

det A = L { - I )"'ccla(l) • ' ' CCra(r) • • • CCsa(s) ' ' ' CCna(n)· 
« E sn 

In the expansion we pair the terms as follows : For a e S 11 we pair the term 
( l )"a:ta(l )  • • • CCna(n) with the term { - l  )"'cchu(l)  • • • cc,,u(n) where -r is 
the transposition (u{r) , u(s)) .  Since -r is a transposition and -r 2 = I ,  this 
indeed gives us a pairing. However, since ct.ra(r) = cc,..,.(r)> by assumption, 
and ct,a<r> = ct••a<•>• we have that a,.,.<•> = cts•a<•>· Similarly, ctsa<•> = 
am(r)· On the other hand, for i =F r and i =F s, since -ru(i) = u(i), 
!Xta(l) = IXitu(l)• Thus the terms C(lu(l) • • •  CCnu(n) and a1ta( l )  • • •  ctnta(n) are 
equal. The first occurs with the sign { - I)a  and the second with the sign 
( l )  •a in the expansion of det A. Since -r is a transposition and so an 
odd permutation, ( - 1 )'a = - ( - 1  )". Therefore in the pairing, the paired 
terms cancel each other out in the sum, whence det A 0. (The proof 
does not depend on the characteristic of F and holds equally well even in 
the case of characteristic 2.) 

From the results so far obtained we can determine the effect, on a de­
terminant of a given matrix, of a given permutation of its rows. 

LEMMA 6.9.5 Interchanging two rows of A changes the sign of its determinant. 

Proof. Since two rows are equal, by Lemma 6.9.4, d (v1, • • •  , v1_ 1 ,  
v1 + v1, vi + I •  . . . , v1_ 1 ,  v1 + v1, v1 + 1, • • •  , v,) = 0. Using Lemma 6.9.3 
several times, we can expand this to obtain d (v1 , • • •  , v1_ 1 ,  vi> . . . , v1_ 1 0 
v1, • • .  , v,) + d(v1, • • •  , v1_v v1, . • •  , v1_1 ,  v1, • • •  , v,) + d(v1, • • •  , v1_ 1 ,  V;, 

• . . , v1_ 1 ,  v1, • • •  , v,.) + d(v1 , • • •  , v1_1 ,  v1, • . .  , v1_ 1 ,  v1, . . .  , v11) = 0. 
However, each of the last two terms has in it two equal rows, whence, by 
Lemma 6.9.4, each is 0. The above relation then reduces to d(v1, • • •  , v1_ 1 , 
v1, • • •  , v1_1 , v1, . . .  , v,.) + d(v1, • • •  , v1_ 1, v1, • . .  , v1_1 ,  v1, • • •  , v,) = 0, 
which is precisely the assertion of the lemma. 

COROLLARY If the matrix B is obtained from A by a permutation of the rows 
of A then det A = ± det B, the sign being + 1 if the permutation is even, I 
if the permutation is odd. 
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We are now in a position to collect pieces to prove the basic algebraic 
property of the determinant function, namely, that i t  preserves products. 
As a homomorphism of the multiplicative structure of F,. into F the de­
terminant will acquire certain important characteristics. 

THEOREM 6.9.1 For A, B e  F,., det (AB) = (det A) (det B) . 

Proof. Let A = (aii) and B = (pii) ;  let the rows of B be the vectors 
u1 , u2, • • • , u,.. We introduce the n vectors w1, • • •  , w,. as follows : 

w1 = a;11 u1 + a12u2 + · · • + lXt nU,., 
W2 = IXzt U1 + IX22U2 + · · · + a2,.u,., 

Consider d(wl > • . .  , w,) ; expanding this out and making many uses of 
Lemmas 6.9.2 and 6.9.3, we obtain 

d(w1 , • • •  , w,) = L 1Xu1 a212 • • • Ct.,1"d(u11, u12, • • •  , u;J . 
i t ,  i2, .. . , in 

In this multiple sum it , . . .  , i, run independently from I to n. However, if 
any two i, = i8 then u1, u1• whence d(u1,, • • • , ulr, . . . , u1., • • •  , u1.) = 0 
by Lemma 6.9.4. In other words, the only terms in the sum that may give a 
nonzero contribution are those for which all of it , i2 , • • •  , i,. are distinct, 
that is for which the mapping 

2 

is a permutation of I ,  2, . . .  , n. Also any such permutation ts possible. 
Finally note that by the corollary to Lemma 6.9.5, when 

ts a permutation, then d(u�,, u12, • • • , u1J = ( - l )"'d(u1 ,  • • • , U11) = 
( - 1 )"  det B. Thus we get 

d(wu . . .  , w,.) L IXta(l )  • • ' IXna(n)( - I )"' det B 
aESn 

(det B) L ( - l ) "'Ct.1,.(t ) " ' Ct.,.,.<,> 
<rES,. 

= (det B) (det A).  

We now wish to identify d (w1, • • • , w,) as det (AB) . However, smce 

wt = auu1 + · · · + Ct.1,.u,., w2 = a21u1 + · · · + a2,u11, • • • , w, 

= 1Xn1ul + · · · + Ct.,,.u, 
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we get that d (w1 , • • • , w.) is det C where the first row of C is w1 , the second 
is w2, etc. 

However, if we write out Wu in terms of coordinates we obtain 

w! = cxuut + · · · + CXtnun = CXu (Pu, Pt2> • · · ' Pt n) 

+ · · • + CXtn CPnt> · • • ' Pnn) 
(cxuPu + cx12P2 1 + · · · + CXt nPnt >  cxuP1 2 + · · · 
+ CXtnPn2> . . .  , cxuPtn + . . .  + cxt .P •• ) 

which is the first row of AB. Similarly w2 is the second row of AB, and so 
for the other rows. Thus we have C = AB. Since det (AB) = det C = 

d(w1 , • • • , w.) = (det A) (det B) , we have proved the theorem. 

COROLLARY 1 If A is invertible then det A ::1= 0 and det (A - 1) = 

(det A) - 1 •  

Proof Since AA - 1 = I ,  det (AA- 1) = det I = I .  Thus by the theorem, 
I = det (AA- 1 ) = ( det A) ( det A - 1 ) .  This relation then states that 
det A ::1= 0 and det A - 1  = l fdet A.  

COROLLARY 2 If A is invertible then for all B, det (ABA - 1 ) = det B. 

Proof. Using the theorem, as applied to (AB)A- 1, we get 
det ( (AB)A- 1 ) = det (AB) det (A - 1 ) = det A det B det (A - 1 ). Invoking 
Corollary I ,  we reduce this further to det B. Thus det (ABA - 1) = det B. 

Corollary 2 allows us to define the determinant of a linear transformation. 
For, let T E A( V) and let m1 (T) be the matrix of T in some basis of V. 
Given another basis, if m2 (T) is the matrix of T in this second basis, then 
by Theorem 6.3.2, m2 (T) = Cm1 (T)C- I, hence det (m2 (T) )  = det (m 1 (T)) 
by Corollary 2 above. That is, the matrix of T in any basis has the same 
determinant. Thus the definition : det T = det m1 (T) is in fact independent 
of the basis and provides A(V) with a determinant function. 

In one of the earlier problems, it was the aim of the problem to prove that 
A', the transpose of A, is similar to A. Were this so (and it is) ,  then A' and 
A, by Corollary 2, above would have the same determinant. Thus we should 
not be surprised that we can give a direct proof of this fact. 

LEMMA 6.9.6 det A = det (A' ) .  

Proof. Let A = (cxii) and A' = (Pii) ; of course, P11 = cx11•  Now 

det A = L ( - I  )acxla(l) · • · CXna(n) 
aESn 

while 

det A' = L ( - l )apla(l) · · · Pna(n) = L ( - l )acxa(l)l · · · CXa(n)n· aESn aESn 
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However, the term ( - 1  )"aa( t)l • • • cx.,.(n)n is equal to ( - 1  ) "a1 .,. l(t ) • • • 
a,..,.- •(n)• (Prove !) But u and u 1 are of the same parity, that is, if u is odd, 
then so is u 1 ,  whereas if u is even then u- 1 is even. Thus 

Finally as u runs over Sn then u- 1 runs over S,.. Thus 

det A' = L ( - l )" - 1tl t a - >(t ) " " " tlnu - •(n) 
, - >  E Sn 

= det A .  

In light of  Lemma 6.9.6, interchanging the rows and columns of  a matrix 
does not change its determinant. But then Lemmas 6.9.2-6.9.5, which held 

for operations with rows of the matrix, hold equally for the columns of the same matrix. 
We make immediate use of the remark to derive Cramer's rule for solving 

a system of linear equations. 
Given the system of linear equations 

tluXI + . . . + al nxn Pt 

we call A = (ali) the matrix of the system and A = det A the determinant of 
the system. 

Suppose that A #; 0 ;  that is, 

A = #- 0. 

By Lemma 6.9.2 (as modified for columns instead of rows), 

IX,n 

However, as a consequence of Lemmas 6.9.3, 6.9.4, we can add any multiple 
of a column to another without changing the determinant (see Problem 5). 
Add to the ith column of X;A, x1 times the first column, x2 times the second, 

• . •  , xi times thejth column (for j #; i). Thus 
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and using ocklx1 + · · · 
+ ocknxn = pk, we finally see that 

!Xu IX1 , 1- 1  /31 oc1 , i + 1 IX1 n 
X;A = A;, say. 

IX1 n 1Xn, i - 1  /Jn tXn, i + l 1Xnn 
Hence, x1 = A;/A. This is 

TH EO R E M  6.9.2 (CRAMER's RuLE) If the determinant, A, of the system of 
linear equations 

oc"1x1 + · · · 
+ a""x" = Pn 

is difrent from 0, then the solution of the system is given by x1 = AdA, where 
A1 is the determinant obtained from A by replacing in A the ith column by /31 , 
fJ2, • • • '  Pn· 

Example The system 
x1 + 2x2 + 3x3 = - 5, 

2x1 + x2 + x3 = - 7, 
x1 + x2 + x3 = 0, 

has determinant 
I 2 3 

A 2 I I I =1- 0, 
I 

hence 
- 5 2 3 - 5 3 2 - 5  
- 7  2 - 7  2 - 7  

0 I ' I 0 I I 0 x1 = 
A 

x2 = 
A 

x3 = 
A 

We can interrelate invertibility of a matrix (or linear transformation) 
with the value of its determinant. Thus the determinant provides us with a 
criterion for invertibility. 

TH EO R E M  6.9.3 A is invertible if and onry if det A =1- 0. 

Proof. If A is invertible, we have seen, in Corollary I to Theorem 6.9. 1 ,  
that det A =1- 0. 

Suppose, on the other hand, that det A =1- 0 where A = (ocij) · By 
Cramer's rule we can solve the system 

IXuX1 + 
· · · + IX1 nXn = /J1 
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for x1 , • • •  , xn given arbitrary /31 , • • •  , Pn· Thus, as a linear transformation 
on p<n>, A' is onto ; in fact the vector (f3v . . .  , f3n) is the image under A' of 

 . . . ,  Being onto, by Theorem 6. 1 .4, A' is invertible, hence A 

is invertible (Prove ! ) .  
We can see Theorem 6.9.3 from an alternative, and possibly more in­

teresting, point of view. Given A E Fn we can embed it in Kn where K is an 
extension of F chosen so that in Kn, A can be brought to triangular form. 
Thus there is a B E  Kn such that 

here At, . . . , An are all the characteristic roots of A, each occurring as 
often as its multiplicity as a characteristic root of A. Thus det A 
det (BAB 1 ) = A1 A2 

• • • An by Lemma 6.9. 1 .  However, A is invertible 
if and only if none of its characteristic roots is 0 ;  but det A f= 0 if and 
only if At A2 • • • An f= 0, that is to say, if no characteristic root of A is 0. 
Thus A is invertible if and only if det A f= 0. 

This alternative argument has some advantages, for in carrying it out we 
actually proved a subresult interesting in its own right, namely, 

L E M MA 6.9.7 det A is the product, counting multiplicities, of the characteristic 
roots of A. 

D E F I N ITION Given A E F", the secular equation of A is the polynomial 
det (x - A) in F[x]. 

Usually what we have called the secular equation of A is called the 
characteristic polynomial of A. However, we have already defined the 
characteristic polynomial of A to be the product of its elementary divisors. 
It is a fact (see Problem 8) that the characteristic polynomial of A equals its secular 
equation, but since we did not want to develop this explicitly in the text, we 
have introduced the term secular equation. 

Let us compute and example. If 

then 

x - A = (x 0) - ( 1 2) = (x - l  -2) ; 
0 X 3 0 - 3  X 
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hence det (x - A) = (x - l )x - ( - 2) ( - 3) = x2 - x - 6. Thus the 
secular equation of 

G �) 
is  x2 - x - 6. 

A few remarks about the secular equation : If A. is a root of det (x - A),  
then det (A. - A) 0 ; hence by Theorem 6.9.3, A. - A is  not invertible. 
Thus A. is a characteristic root of A. Conversely, if A. is a characteristic root 
of A, A. - A is not invertible, whence det ( A.  - A) = 0 and so A. is a root 
of det (x - A).  Thus the explicit, computable polynomial, the secular 
equation of A, provides us with a polynomial whose roots are exactly the characteristic 
roots of A.  We want to go one step further and to argue that a given root 
enters as a root of the secular equation precisely as often as it has multiplicity 
as a characteristic root of A. For if A; is the characteristic root of A with 
multiplicity m,, we can bring A to triangular form so that we have the 
matrix shown in Figure 6.9. 1 ,  where each A; appears on the diagonal m; 

0 0 

BAB 1 = 

* 0 

Figure 6.9. 1 

times. But as indicated by the matrix in Figure 6.9.2, det (x - A) = 
det (B(x - A)B- 1) = (x - A.1)m' (x - ).2)m2 • • • (x - A.k)lnk, and so each 

B(x A)B 1 = x - BAB 1 = 

0 

* 

Figure 6.9.2 

0 
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A-1, whose multiplicity as a characteristic root of A is m1 is a root of the poly­
nomial det (x - A) of multiplicity exactly m1• We have proved 

TH EO R E M  6.9.4 The characteristic roots of A are the roots, with the correct 
multiplicity, of the secular equation, det (x - A), of A. 

We finish the section with the significant and historic Cayley-Hamilton 
theorem. 

TH EO R E M  6.9.5 Every A E F,. satisfies its secular equation. 

Proof. Given any invertible B e  K,. for any extension K of F, A e F 
and BAB - 1 satisfy the same polynomials. Also, since det (x - BAB- 1) = 
det (B (x - A)B- 1 )  = det (x - A ) ,  BAB - 1 and A have the same secular 
equation. If we can show that some BAB- 1 satisfies its secular equation, 
then it will follow that A does. But we can pick K :: F and B e  K,. so 
that BAB- 1 is triangular; in that case we have seen long ago (Theorem 
6.4.2) that a triangular matrix satisfies its secular equation. Thus the 
theorem is proved. 

Problems 

I .  If F is the field of complex numbers, evaluate the following determi-
nants : 

2 3 
5 6 8 - 1  

(a) !2 � i � I · 4 3 0 0 
(b) 4 5 6 .  (c) 

1 0  1 2  1 6  - 2 '  I 7 8 9 
2 3 4 

2. For what characteristics of F are the following determinants 0 :  

3 
(a) I 

2 

2 3 0 
2 1 0 7 
I 1 1 • 

4 5 6 

3 4 5 
(b) 4 5 3 ? 

5 3 4 

3. If A is a matrix with integer entries such that A -
1 

is also a matrix 
with integer entries, what can the values of det A possibly be? 

4. Prove that if you add the multiple of one row to another you do not 
change the value of the determinant. 

*5. Given the matrix A = {rx11) let A11 be the matrix obtained from A by 
removing the ith row and jth column. Let MIJ = { - 1 ) i+ 1 det A11• 
Mli is called the cqfactor of rx1i' Prove that det A = rxuM11 + · · · + 

rx.1,.M1,.. 
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6. (a) If A and B are square submatrices, prove that 

det (� �) = (det A) (det B) . 

(b) Generalize part (a) to 

(A1 

det 

0 :} 
where each A ;  is a square submatrix. 

7. If C(f) is the companion matrix of the polynomial f(x), prove that 
the secular equation of C (f) is f (x). 

8. Using Problems 6 and 7, prove that the secular equation of A is its 
characteristic polynomial. (See Section 6. 7 ;  this proves the remark 
made earlier that the roots of PT(x) occur with multiplicities equal to 
their multiplicities as characteristic roots of T.) 

9. Using Problem 8, give an alternative proof of the Cayley-Hamilton 
theorem. 

1 0. If F is the field of rational numbers, compute the secular equation, 
characteristic roots, and their multiplicities, of 

(a) (! � � �) (b) G 2 3) 
2 4 . 
4 7 

{c) (I ! ! 1 )  
I I .  For each matrix in Problem 10  verify by direct matrix computation 

that it satisfies its secular equation. 

* 1 2. If the rank of A is r, prove that there is a square T x T submatrix of 
A of determinant different from 0, and if r < n, that there ts no 
(r + I )  x (r + I )  submatrix of A with this property. 

* 1 3. Letf be a function on n variables from p<n> to F such that 
(a) f (v1 ,  • • •  , vn) = 0 for V; = vi E p<n> for i =f. j. 
(b) J (v1 ,  • • •  , cwi, . . . , vn) = rxj (v1 , • • •  , vn) for each i, and rx E F. 
(c) f (v1 , • • •  , vi + ui, vi+ l >  • • •  , vn) = f (v1, • • •  , vi I >  V;, vi+ l >  • • .  , vn) 

+ f (vu . . .  ' vi- 1 > ui, vi+ I > • . • ' vn) · 
(d) f (e1 , • • • , en) = I ,  where e1 = ( 1 ,  0, . . .  , 0), e2 = (0, I ,  0, . . .  , 0) , 

. . .  , en =  (0, 0, . . .  , 0, 1 ) .  
Prove that f (v1 ,  • • • , vn) = det A for any A E Fn, where v1 is the 
frst row of A, v2 the second, etc. 

1 4. Use Problem 1 3  to prove that det A' = det A. 
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15. (a) Prove that AB and BA have the same secular (characteristic) 
equation. 

(b) Give an example where AB and BA do not have the same minimal 
polynomial. 

1 6. If A is triangular prove by a direct computation that A satisfies its 
secular equation. 

1 7. Use Cramer's rule to compute the solutions, in the real field, of the 
systems 

(a) x + y + z = I ,  
2x + 3y + 4;:; = 1 ,  
X - y - Z = 0. 

(b) X + y + z + w = I,  
x + 2y + 3;: + 4w = 0, 
x + y + 4z + 5w = I ,  
x + y + 5;: + 6w = 0. 

1 8. (a) Let GL(n, F) be the set of all elements in F,. whose determinant 
is different from 0. Prove GL(n, F) IS a group under matrix 
multiplication. 

(b) Let D(n, F) {A e GL(n, F) I det A 1 }. Prove that D(n, F) 
is a normal subgroup of GL(n, F). 

(c)  Prove that GL(n, F)/D(n, F) is isomorphic to the group of non­
zero elements ofF under multiplication. 

1 9. If K be an extension field of F, let E(n, K, F) = {A E GL(n, K) l 
det A E F}. 
(a) Prove that E(n, K, F) is a normal subgroup of GL(n, K). 

* (b) Determine GL(n, K) /E(n, K, F). 

*20. If F is the field of rational numbers, prove that when N is a normal 
subgroup of D(2, F) then either N = D(2, F) or N consists only of 
scalar matrices. 

6.1 0 Hermitian, U nitary, and Normal Transformations 

In our previous considerations about linear transformations, the specific 
nature of the field F has played a relatively insignificant role. When it did 
make itself felt it was usually in regard to the presence or absence of charac­
teristic roots. Now, for the first time, we shall restrict the field F-generally 
it will be the field of complex numbers but at times it may be the field of 
real numbers-and we shall make heavy use of the properties of real and 
complex numbers. Unless explicitly stated otherwise, in all rif this section F will 
denote the field rif complex numbers. 

We shall also be making extensive and constant use of the notions and 
results of Section 4.4 about inner product spaces. The reader would be 
well advised to review and to digest thoroughly that material before 
proceeding. 
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One further remark about the complex numbers : Until now we have 
managed to avoid using results that were not proved in the book. Now, 
however, we are forced to deviate from this policy and to call on a basic 
fact about the field of complex numbers, often known as "the fundamental 
theorem of algebra," without establishing it ourselves. It displeases us to pull 
such a basic result out of the air, to state it as a fact, and then to make use 
of it. Unfortunately, it is essential for what follows and to digress to prove 
it here would take us too far afield. We hope that the majority of readers 
will have seen it proved in a course on complex variable theory. 

FACT 1 A polynomial with coefcients which are complex numbers has all its 
roots in the complex field. 

Equivalently, Fact I can be stated in the form that the only nonconstant 
irreducible polynomials over the field of complex numbers are those of 
degree I .  

FACT 2 The only irreducible, nonconstant, polynomials over the field of real 
numbers are either of degree I or of degree 2.  

The formula for the roots of a quadratic equation allows us to prove easily 
the equivalence of Facts I and 2. 

The immediate implication, for us, of Fact I will be that every linear 
transformation which we shall consider will have all its characteristic roots in the 

field of complex numbers. 
In what follows, V will be a finite-dimensional inner-product space over 

F, the field of complex numbers ; the inner product of two elements of V 
will be written, as it was before, as (v, w) . 

LEM MA 6.1 0.1 If T e A(V) is such that (vT, v) = O for all v e V, then 
T = 0. 

Proof. Since (vT, v) = 0 for v E V, given u, w E  V, ( (u + w) T, u + w) = 
0. Expanding this out and making use of (uT, u) = (wT, w) = 0, we 
obtain 

(u T, w) + (wT, u) = 0 for all u, w E  V. ( I )  

Since equation ( I )  holds for arbitrary w in V, it still must hold if we 
replace in it w by iw where i2 = - I ;  but (uT, iw) = - i(uT, w) whereas 
((iw) T, u) = i(wT, u) . Substituting these values in ( I )  and canceling out i 
leads us to 

- (uT, w) + (wT, u) = 0. (2) 

Adding ( I )  and (2) we get (wT, u) = 0 for all u, w E  V, whence, in 
particular, (wT, wT) = 0. By the defining properties of an inner-product 
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space, this forces wT = 0 for all w E  V, hence T = 0. (Note : If V is an 
inner-product space over the real field, the lemma may be false. For 
example, let V = { (oc, p) I oc, p real}, where the inner-product is the dot 
product. Let T be the linear transformation sending ( oc, P) into ( - p, oc) . 
A simple check shows that (vT, v) = 0 for all v E V, yet T ¥- 0.) 

D E FI N ITION The linear transformation T e A ( V) is said to be unitary 
if (uT, vT) = (u, v) for all u, v E V. 

A unitary transformation is one which preserves all the structure of V, 
its addition, its multiplication by scalars and its inner product. Note that a 
unitary transformation preserves length for 

! !v i/ = J (v, v) = J (vT, vT) = 1/ vTI! . 

Is the converse true? The answer is provided us in 

LEM MA 6.1 0.2 lj (vT, vT) = (v, v) for all v e  V then T is unitary. 

Proof. The proof is in the spirit of that of Lemma 6. IO. l .  Let u, v E V: 
by assumption ( (u + v) T, (u + v) T) = (u + v, u + v) . Expanding this 
out and simplifying, we obtain 

(uT, vT) + (vT, uT) = (u, v) + (v, u) , ( 1 )  

for u, v E V. I n  ( I )  replace v by iv; computing the necessary parts, this yields 

- (uT, vT) + (vT, uT) = - (u, v) + (v, u) . (2) 

Adding ( 1 )  and (2) results in ( u T, vT) = ( u, v) for all u, v E V, hence 
T is unitary. 

We characterize the property of being unitary in terms of action on a 
basis of V. 

TH EO R EM 6.1 0.1 The linear transformation T on V is unitary if and only if 
it takes an orthonormal basis of V into an orthonormal basis of V. 

Proof. Suppose that {v1 , . . •  , vn } is an orthonormal basis of V; thus 
(v1, vi) = 0 for i ¥- j while (v1, v1) = I .  We wish to show that if T is 
unitary, then {v1 T, . . .  , vnT} is also an orthonormal basis of V. But 
(v1 T, viT) = (v1, vi) = 0 for i ¥- j and (v1 T, v1T) = (v;, v1) = I ,  thus 
indeed {v1 T, . . .  , vnT} is an orthonormal basis of V. 

On the other hand, if T E A(V) is such that both {v1 , . . .  , vn} and 
{v1 T, . . .  , vnT} are orthonormal bases of V, if u, w E  V then 

n 
u = L OC;Vi, i = 1 

n 
w = L P;v;, i= 1 
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whence by the orthonormality of the v;'s, 
n 

(u, w) = L a;/3;. 
i= l 

However, 
n n 

u T = L ct;v; T and 
i = l  

wT = L /l;v;T 
i= 1 

whence by the orthonormality of the v;T's, 
n 

(uT, wT) L ct;P; = (u, w), 
i =  1 

proving that T is unitary. 

Theorem 6. 10. 1 states that a change of basis from one orthonormal basis 
to another is accomplished by a unitary linear transformation. 

LEMMA 6.1 0.3 If T e A(V) then given any V E  V there exists an element 
w E  V, depending on v and T, such that (u T, v) = (u, w) for all u E V. This 
element w is uniquely determined by v and T. 

Proof. To prove the lemma, it is sufficient to exhibit a w E  V which 
works for all the elements of a basis of V. Let {u1 , . . •  , un} be an ortho­
normal basis of V; we define 

An easy computation shows that (u;, w) = (u;T, v) hence the element w 
has the desired property. That w is unique can be seen as follows : Suppose 
that (uT, v) = (u, w1 ) = (u, w2) ;  then (u, w1 - w2) = 0 for all u E V 
which forces, on putting u = w1 - w2, w1 = w2• 

Lemma 6. 10.3 allows us to make the 

D E F I N ITION If T e A(V) then the Hermitian acijoint of T, written as T*, 
is defined by (uT, v) = (u, vT*) for all u, v E V. 

Given v E V we have obtained above an explicit expression for vT* (as 
w) and we could use this expression to prove the various desired properties 
of T*. However, we prefer to do it in a "basis-free" way. 

LEMMA 6.1 0.4 If T E A(V) then T* E A (V) .  Moreover, 

1 .  (T*)*  = T; 
2. (S + T)* = S* + T* · ' 
3. (AS)* = As* ; 
4. (ST) * = T*S* ; 

for all S, T E A(V) and all A. E F. 
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Proof. We must first prove that T* is a linear transformation on V. If 
u, v, w are in V, then (u, (v + w) T*) = (uT, v + w) = (uT, v) + (uT, w) = 
(u, vT*) + (u, wT*) = (u, vT* + wT*),  in consequence of which 
(v + w) T* = vT* + wT*. Similarly, for A. E F, (u, (A.v) T*) = (u T, A.v) = 
'A(uT, v) = 'A(u, vT*) = (u, A.(vT*)) ,  whence (A.v) T* = A.(vT* ) .  We have 
thus proved that T* is a linear transformation on V. 

To see that (T* )*  = T notice that (u, v(T* )*) = (uT*, v) = (v, uT*)  = 
(vT, u) = (u, vT) for all u, v E V whence v(T*)*  = vT which implies that 
(T* ) *  = T. We leave the proofs of (S + T)* = S* + T* and of (A.T) * = 
'AT* to the reader. Finally, (u, v(ST)* )  = (uST, v) = (uS, vT* ) = 
(u, vT*S*) for all u, v E V; this forces v(ST) * = vT*S* for every v E V 
which results in (ST)* = T*S* .  

As  a consequence of the lemma the Hermitian adjoint defines an  adjoint, 
in the sense of Section 6.8, on A(V) .  

The Hermitian adjoint allows us  to give an  alternative description for 
unitary transformations in terms of the relation of T and T*. 

LEMMA 6.1  0.5 T E A( V) is unitary if and only if TT* = 1 .  

Proof. If T is unitary, then for all u, v E V, (u, vTT*) = (uT, vT) 
(u, v) hence TT* = 1 .  On the other hand, if TT* = 1 ,  then (u, v) 
(u, vTT*) = (uT, vT), which implies that T is unitary. 

Note that a unitary transformation is nonsingular and its inverse is just 
its Hermitian adjoint. Note, too, that from TT* = 1 we must have that 
T*T = 1 .  We shall soon give an explicit matrix criterion that a linear 
transformation be unitary. 

TH E O R E M  6.1 0.2 If {v1 , • • . , vn} is an orthonormal basis of V and if the 
matrix of T E A ( V) in this basis is (a: 11) then the matrix of T* in this basis is 
(Pii) , where P11 = fi11• 

Proof. Since the matrices of T and T* in this basis are, respectively, 

(a:ii) and (P11) , then 

Now 

n 
v1 T = L a:iivl and 

i = l  

n 
v1T* = L Piiv1. i=l 

by the orthonormality of the v;'s. This proves the theorem. 

This theorem is very interesting to us in light of what we did earlier in 
Section 6.8. For the abstract Hermitian adjoint defined on the inner-product 
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space V, when translated into matrices in an orthonormal basis of V, becomes 
nothing more than the explicit, concrete Hermitian adjoint we defined 
there for matrices. 

Using the matrix representation in an orthonormal basis, we claim that 
T E A( V) is unitary if and only if, whenever (rxij) is the matrix of T in this 
orthonormal basis, then 

while 

n 
L rxiia.ik i= 1 

n 

0 for j # k 

L lrxiil
2 

= 1 . i= 1 
In terms of dot products on complex vector spaces, it says that the rows of 
the matrix of T form an orthonormal set of vectors in F<n> under the dot 
product. 

D E FI N IT I O N  T E A(V) is called self-adjoint or Hermitian if T* T. 

If T* = - T we call skew-Hermitian. Given any S E A(V) ,  

s = + l ' S + S* .  - S*) 
2 2i 

and since (S + S*)/2 and (S - S*)/2i are Hermitian, S = A + iB where 
both A and B are Hermitian. 

In Section 6.8, using matrix calculations, we proved that any complex 
characteristic root of a Hermitian matrix is real ; in light of Fact I ,  this can 
be changed to read : Every characteristic root of a Hermitian matrix is real. 
We now re-prove this from the more uniform point of view of an inner­
product space. 

TH EOREM 6.1 0.3 lf T E A(V) is Hermitian, then all its characteristic roots 
are real. 

Proof. Let A. be a characteristic root of T; thus there is a v # 0 in V 
such that v T  = ..lv. We compute : A.(v, v) = (A.v, v) = (vT, v) = (v, vT*) = 
(v, vT) = (v, ..lv) = 1(v, v) ; since (v, v) # 0 we are left with ..1. = 1 hence 
A. is real . 

We want to describe canonical forms for unitary, Hermitian, and even 
more general types of linear transformations which will be even simpler 
than the Jordan form. This accounts for the next few lemmas which, 
although of independent interest, are for the most part somewhat technical 
in nature. 
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LEM MA 6.1 0.6 If S e A( V) and if vSS* = 0, then vS = 0. 

Proof. Consider (vSS*, v) ; since vSS* = 0, 0 = (vSS*, v) = (vS, v(S*)* )  = 
(vS, vS) by Lemma 6. 1 0.4. In an inner-product space, this implies that 
vS = 0. 

COROLLARY If T is Hermitian and vT" = 0 for k :?: 1 then v T  = 0. 

Proof. We show that if vT2"' = 0 then v T  = 0 ;  for if S = T2"' - ' ,  then 
S* = S and SS* = T2"', whence (vSS*, v) = 0 implies that 0 = vS = 
vT2'"- ' . Continuing down in this way, we obtain vT 0. If vT« = 0, 
then vT2"' = 0 for 2m > k, hence v T  0. 

We introduce a class of linear transformations which contains, a s  special 
cases, the unitary, Hermitian and skew-Hermitian transformations. 

D E FI N ITION T E A ( V) is  said to be normal if TT* = T*T. 

Instead of proving the theorems to follow for unitary and Hermitian 
transformations separately, we shall, instead, prove them for normal linear 
transformations and derive, as corollaries, the desired results for the unitary 
and Hermitian ones. 

LEM MA 6.1 0.7 f N is a normal linear transformation and if vN = 0 for 
v E V, then vN* 0. 

Proof. Consider (vN*, vN*) ; by definition, (vN*, vN*) = (vN*N, v) = 
(vNN*, v) , since NN* = N* N. However, vN = 0, whence, certainly, 
vNN* = 0. In this way we obtain that (vN*, vN*) = 0, forcing vN* = 0. 

CO ROLLARY 1 If A. is a characteristic root qf the normal transformation N 
and if vN = A.v then vN* = Av. 

Proof. Since Nis normal, NN* = N* N, therefore, (N - A.) (N - A.)* = 
(N - A.) (N* - J:) = NN* - A.N* - J:N + A.J: = N* N - A.N* - J.N + 
).}. = (N* - J.) (N - A.) = (N - A.)* (N - A.), that is to say, N - A. is 
normal. Since v(N - A.) = 0 by the normality of N A., from the lemma, 
v(N - A.) * = 0, hence vN* = Av. 

The corollary states the interesting fact that if A. is a characteristic root of 
the normal transformation N not only is l a characteristic root of N* but 
any characteristic vector of N belonging to A. is a characteristic vector of 
N* belonging to A: and vice versa. 

COROLLARY 2 If T is unitary and if A. is a characteristic root qf T, then 
Ill = I .  



Sec. 6.1 0 Hermitian. U nitary. and Normal Transformations 

Proof. Since T is unitary it is normal. Let .. be a characteristic root of 
T and suppose that v T  = ..v with v i= 0 in V. By Corollary 1 ,  vT* = Iv, 
thus v = vTT* = A.vT* = llv smce TT* = I .  Thus we get ..A: = I ,  
which, of course, says that 1 ..1 = I .  

We pause to see where we are going. Our immediate goal is to prove that 
a normal transformation N can be brought to diagonal form by a unitary 
one. If ..1 ,  . . •  , A.k are the distinct characteristic roots of V, using Theorem 
6.6. I we can decompose v as v = vl EB . . .  EB vk, where for V; E V;, 
v;(N - ..;)"' = 0. Accordingly, we want to study two things, namely, the 
relation of vectors lying in different V;'s and the very nature of each V;. 
When these have been determined, we will be able to assemble them to 
prove the desired theorem. 

LEMMA 6.1 0.8 If N is normal and if vNk = 0, then vN = 0. 

Proof. Let S = NN* ;  S is Hermitian, and by the normality of N, 
vSk = v(NN*)k = vNk(N*)k = 0. By the corollary to Lemma 6. 1 0.6, we 
deduce that vS = 0, that is to say, vNN* = 0. Invoking Lemma 6. 10.6 
itself yields vN = 0. 

CORO LLARY If N zs normal and if for .. E F, v(N - A.)k 

vN = ..v.  
0,  then 

Proof. From the normality of N it follows that N - .. is normal, whence 
by applying the lemma just proved to N - .. we obtain the corollary. 

In line with the discussion just preceding the last lemma, this corollary 
shows that every vector in V; is a characteristic vector of N belonging to the charac­
teristic root ..;. We have determined the nature of V; ; now we proceed to 
investigate the interrelation between two distinct V;'s. 

LEMMA 6.1 0.9 Let N be a normal transformation and suppose that .. and 
p. are two distinct characteristic roots of N. If v, w are in V and are such that 
vN = ..v, wN = p.w, then (v, w) = 0. 

Proof. We compute (vN, w) in two different ways. As a consequence 
of vN = A.v, (vN, w) = (A.v, w) = A.(v, w) . From wN = p.w, using Lemma 
6. 10. 7 we obtain that wN* = jiw, whence (vN, w) = (v, wN*) = (v, jiw) = 
p.(v, w) . Comparing the two computations gives us A.(v, w) = p.(v, w) and 
since .. i= p., this results in (v, w) = 0. 

All the background work has been done to enable us to prove the basic 
and lovely 
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T H E O R E M  6.1 0.4 If N is a normal linear transformation on V, then there exists 
an orthonormal basis, consisting of characteristic vectors of N, in which the matrix of 
N is diagonal. Equivalently, if N is a normal matrix there exists a unitary matrix 
U such that UNU- 1 ( = UNU*) is diagonal. 

Proof. We fill in the informal sketch we have made of the proof prior 
to proving Lemma 6. 10.8. . 

Let N be normal and let A.1, . . .  , A.k be the distinct characteristic roots 
of N. By the corollary to Theorem 6.6. 1 we can decompose V = 

v1 E/1 • . . EB vk where every vi E vi is annihilated by (N - A.i)"'. By the 
corollary to Lemma 6. 1 0.8, Vi consists only of characteristic vectors of N 
belonging to the characteristic root A.i. The inner product of V induces an 
inner product on Vi ; by Theorem 4.4.2 we can find a basis of Vi orthonormal 
relative to this inner product. 

By Lemma 6. 1 0.9 elements lying in distinct V/s are orthogonal. Thus 
putting together the orthonormal bases of the V/s provides us with an 
orthonormal basis of V. This basis consists of characteristic vectors of N, 
hence in this basis the matrix of N is diagonal. 

We do not prove the matrix equivalent, leaving it as a problem ; we only 
point out that two facts are needed : 

I .  A change of basis from one orthonormal basis to another is accomplished 
by a unitary transformation (Theorem 6. 1 0. 1 ) .  

2 .  I n  a change of basis the matrix of a linear transformation is changed 
by conjugating by the matrix of the change of basis (Theorem 6.3.2) . 

Both corollaries to follow are very special cases of Theorem 6. 1 0.4, but 
since each is so important in its own right we list them as corollaries in order 
to emphasize them. 

CORO LLARY 1 If T is a unitary transformation, then there is an orthonormal 
basis in which the matrix of T is diagonal; equivalently, if T is a unitary matrix, 
then there is a unitary matrix U such that UTU- 1 ( = UTU*) is diagonal. 

CO RO LLARY 2 If T is a Hermitian linear transformation, then there exists an 
orthonormal basis in which the matrix of T is diagonal; equivalently, if T is  a Hermitian 
matrix, then there exists a unitary matrix U such that UTU - 1  ( = UTU*) is 
diagonal. 

The theorem proved is the basic result for normal transformations, for it 
sharply characterizes them as precisely those transformations which can 
be brought to diagonal form by unitary ones. It also shows that the distinc­
tion between normal, Hermitian, and unitary transformations is merely a 
distinction caused by the nature of their characteristic roots. This is made 
precise in 
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LEM MA 6.1 0.1 0 The normal transformation N is 

I .  Hermitian if and on{Y if its characteristic roots are real. 
2. Unitary if and on{Y if its characteristic roots are all of absolute value l .  

Proof. We argue using matrices. If N is Hermitian, then it is normal and 
all its characteristic roots are real. If N is normal and has only real charac­
teristic roots, then for some unitary matrix U, UNU 1  = UNU* = D, 
where D is a diagonal matrix with real entries on the diagonal. Thus 
D* = D ;  since D* = (UNU*)*  = UN* U*, the relation D* = D implies 
UN* U * = UNU *, and since U is invertible we obtain N* = N. Thus N 
is Hermitian. 

We leave the proof of the part about unitary transformations to the reader. 

If A is any linear transformation on V, then tr (AA *) can be computed 
by using the matrix representation of A in any basis of V. We pick an 
orthonormal basis of V; in this basis, if the matrix of A is (et.u) then that of 
A* is ({3iJ) where {3ii = fiji• A simple computation then shows that 
tr (AA *)  Li,i jet.1) 2 and this is 0 if and only if each et.1i = 0, that is, if 
and only if A = 0. In a word, tr (AA *) = 0 if and on{Y if A = 0. This is a 
useful criterion for showing that a given linear transformation is 0. This 
is illustrated in 

L E M MA 6.1 0.1 1 If N is normal and AN = NA, then AN* = N* A. 

Proof. We want to show that X AN* - N*A is 0; what we shall 
do is prove that tr XX* = 0, and deduce from this that X =  0. 

Since N commutes with A and with N*, it must commute with AN* -
N*A, thus XX* = (AN* - N*A) (NA * - A * N) = (AN* N*A)NA* ­
(A N* - N*A)A*N = N { (A N* - N*A)A* } - { (AN* - N*A)A* }N. 
Being of the form NB - BN, the trace of XX* is 0. Thus X = 0, and 
AN* = N*A. 

We have just seen that N* commutes with all the linear transformations 
that commute with N, when N is normal ; this is enough to force N * to be a 
polynomial expression in N. However, this can be shown directly as a 
consequence of Theorem 6. 10.4 (see Problem 1 4) .  

The linear transformation T is Hermitian i f  and only i f  (vT, v) is real 
for every v e V. (See Problem 1 9. )  Of special interest are those Hermitian 
linear transformations for which (v T, v) � 0 for all v e V. We call these 
nonnegative linear transformations and denote the fact that a linear trans­
formation is nonnegative by writing T � 0. If T � 0 and in addition 
(vT, v) > 0 for v i= 0 then we call T positive (or positive definite) and write 
T > 0. We wish to distinguish these linear transformations by their charac­
teristic roots. 
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LEMMA 6.1 0.1 2 The Hermitian linear transformation T is nonnegative 
(positive) if and only if all of its characteristic roots are nonnegative (positive) . 

Proof. Suppose that T ;: 0 ;  if A. is a characteristic root of T, then 
v T  = A.v for some v #- 0. Thus 0 :: (v T, v) = (A.v ,v) = A.(v, v) ; since 
(v, v) > 0 we deduce that A. ;: 0. 

Conversely, if T is Hermitian with nonnegative characteristic roots, then 
we can find an orthonormal basis {v1 , . • •  , vn} consisting of characteristic 
vectors of T. For each v1, v1 T = A.1v1, where A.1 ;: 0. Given v E V, 
v = }:a1v1 hence vT = 2.,a1v1 T = }:A.,t:x1v1• But (vT, v) = (}:A.1t:x1v1, }:t:x1v1) 
= }:A.1t:x1ii11 by the orthonormality of the v;'s . Since A.1 ;: 0 and t:x1ii1 ;: 0, 
we get that (v T, v) ;: 0 hence T ;: 0. 

The corresponding "positive" results are left as an exercise. 

LE M MA 6.1 0.1 3 T ;: 0 if and only if T = AA* for some A. 

Proof. We first show that AA* ;: 0. Given v E V, (vAA*, v) = 
(vA, vA) ;: 0, hence AA* ;: 0. 

On the other hand, if T ;: 0 we can find a unitary matrix U such that 

UTU* = 
(A. I 

where each A.1 is a characteristic root of T, hence each A.1 ;: 0. Let 

since each A.1 ;: 0, each JT.1 is real, whence S is Hermitian. Therefore, 
U*SU is Hermitian ; but 

An 
) U = T. 

We have represented T in the form AA *, where A = U*SU. 
Notice that we have actually proved a little more ; namely, if in construct­

ing S above, we had chosen the nonnegative .J""1 for each A.1, then S, and 
U*SU, would have been nonnegative. Thus T ;: 0 is the square of a non­
negative linear transformation ; that is, every T ;: 0 has a nonnegative 
square root. This nonnegative square root can be shown to be unique (see 
Problem 24) . 

We close this section with a discussion of unitary and Hermitian matrices 
over the real field. In this case, the unitary matrices are called orthogonal, and 
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satisfy Q Q '  = 1 .  The Hermitian ones are just symmetric, in this case. 
We claim that a real symmetric matrix can be brought to diagonal form by an 

orthogonal matrix. Let A be a real symmetric matrix. We can consider A as 
acting on a real inner-product space V. Considered as a complex matrix, 
A is Hermitian and thus all its characteristic roots are real . If these are 
A;, . . . , Ak then v can be decomposed as v = VI Et> • • • Et> vk where 
v1(A - A;)"1 = 0 for v1 E V1• As in the proof of Lemma 6. 10.8 this forces 
v1A = A1v1• Using exactly the same proof as was used in Lemma 6. 10.9, we 
show that for V; E V;, vi E vi with i "I= j, (vi> vj) = 0. Thus we can find 
an orthonormal basis of V consisting of characteristic vectors of A. The 
change of basis, from the orthonormal basis { ( 1 ,  0, . . .  , 0) , (0, I, 0, . . .  , 0), 
. . .  , (0, . . .  , 0, 1 ) }  to this new basis is accomplished by a real, unitary matrix, 
that is, by an orthogonal one. Thus A can be brought to diagonal form by 
an orthogonal matrix, proving our contention. 

To determine canonical forms for the real orthogonal matrices over the 
real field is a little more complicated, both in its answer and its execution. 
We proceed to this now ; but first we make a general remark about all 
unitary transformations. 

If W is a subspace of V invariant under the unitary transformation T, 
is it true that W', the orthogonal complement of W, is also invariant under 
T? Let w e W and x e W';  thus (wT, xT) (w, x) = 0 ; since W is 
invariant under T and T is regular, WT W, whence xT, for x E W', 
is orthogonal to all of W. Thus indeed ( W') T c W'. Recall that V = 
W Et>  W'. 

Let Q be a real orthogonal matrix ; thus T = Q + Q - l  = Q + Q '  is 
symmetric, hence has real characteristic roots. If these are A1, . • • , Ak, 
then v can be decomposed as v = vl ED • • • ED vk, where V; E v implies 
v1 T = A1v1• The V/s are mutually orthogonal. We claim each V1 is invariant 
under Q. (Prove !)  Thus to discuss the action of Q on V, it is enough to 
describe it on each vi. 

On V1, since A1v1 = v1 T = v1(Q + Q - 1 ) , multiplying by Q yields 
v1(Q 2 A;Q + I )  = 0. Two special cases present themselves, namely 
A1 = 2 and A; = - 2 (which may, of course, not occur) , for then 
v1( Q ± I )  2 = 0 leading to v1( Q ± 1) = 0. On these spaces Q acts as l 
or as - I . 

If A; ¥= 2, then Q has no characteristic vectors on V;, hence for 
v "I= 0 E V1, v, vQ are linearly independent. The subspace they generate, 
W, is invariant under Q, since vQ 2 = A1vQ - v. Now V1 = W Ee W' 
with W' invariant under Q. Thus we can get V1 as a direct sum of two­
dimensional mutually orthogonal subspaces invariant under Q. To find 
canonical forms of Q on V1 (hence on V), we must merely settle the question 
for 2 x 2 real orthogonal matrices. 
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Let Q be a real 2 x 2 orthogonal matrix satisfying Q 2 - A.Q + I = 0 ;  

suppose that Q = (� !} The orthogonality of Q implies 

I . , 
I . , 

IX')I + p� = 0 ;  

since Q 2 - A.Q  + I = 0, the determinant of Q is I ,  hence 

IX� - py = I .  

( I )  

(2) 

(3) 

(4) 

We claim that equations ( 1 )-(4) imply that IX = �. p = - y. Since 
IX2 + p2 = I ,  IIXI :: I ,  whence we can write IX = cos () for some real angle 
() ; in these terms p = sin e. Therefore, the matrix Q looks like 

( cos () 
- sin () 

sin ()) · 
cos () 

All the spaces used in all our decompositions were mutually orthogonal, 
thus by picking orthogonal bases of each of these we obtain an orthonormal 
basis of V. In this basis the matrix of Q is as shown in Figure 6. 1 0. 1 .  

D 
  

Figure 6. 10. 1  

cos e, sin (), 
- sin e, cos (), 

Since we have gone from one orthonormal basis to another, and since 
this is accomplished by an orthogonal matrix, given a real orthogonal 
matrix Q we can find an orthogonal matrix T such that TQT- 1 ( = TQT*) is 
of the form just described. 
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1 .  Determine which of the following matrices are unitary, Hermitian, 
normal. ( I l) (� 0 0 �) (a) 1 0 (b) (i �) · (c) 

0 1 
1 0 0 1 
0 0 

3 0 0 

0 I 1 

(d) (
2 

I 2 � i) · 
(e) .J2 .J2 

I 1 0 
.J2 .J2 

2.  For those matrices in Problem l which are normal, find their charac­
teristic roots and bring them to diagonal form by a unitary matrix. 

3 .  If T is unitary, just using the defnition (vT, uT) = (v, u) , prove 
that T is nonsingular. 

4. If Q is a real orthogonal matrix, prove that det Q = ± I . 
5. If Q is a real symmetric matrix satisfying Q" = 1 for k ;:;: I ,  prove 

that Q 2  = I .  

6. Complete the proof of Lemma 6. 10.4 by showing that (S + T) * = 
S* + T* and (lT)* = A:T* . 

7. Prove the properties of * in Lemma 6. 10.4 by making use of the explicit 
form of w = vT* given in the proof of Lemma 6. 10.3. 

8. If T is skew-Hermitian, prove that all of its characteristic roots are 
pure imaginaries. 

9. If T is a real, skew-symmetric n x n matrix, prove that if n is odd, 
then det T = 0. 

10. By a direct matrix calculation, prove that a real, 2 x 2 symmetric 
matrix can be brought to diagonal form by an orthogonal one. 

I I . Complete the proof outlined for the matrix-equivalent part of Theorem 
6. 10.4. 

12. Prove that a normal transformation is unitary if and only if the charac­
teristic roots are all of absolute value I .  

1 3 .  I f  Nv . . .  , N" i s  a finite number o f  commuting normal transformations, 
prove that there exists a unitary transformation T such that all of 
TN1T- 1 are diagonal. 
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14. If N is normal, prove that N* = p(N) for some polynomial p(x) . 

1 5. If N is normal and if AN = 0, prove that AN* = 0. 

16 .  Prove that A is normal if and only if A commutes with AA * . 

1 7. If N is normal prove that N = LA;E; where E;2 = E;, E;* = E;, 
and the A.;'s are the characteristic roots of N. (This is called the spectral 
resolution of N.) 

1 8. If N is a normal transformation on V and iff (x) and g(x) are two 
relatively prime polynomials with real coefficients, prove that if 
l![ (N) = 0 and wg(N) = 0, for v, w in V, then (v, w) = 0. 

1 9. Prove that a linear transformation T on V is Hermitian if and only if 
(vT, v) is real for all v E V. 

20. Prove that T > 0 if and only if T is Hermitian and has all its charac­
teristic roots positive. 

2 1 .  If A � 0 and (vA, v) = 0, prove that vA = 0. 

22. (a) If A � 0 and A 2 commutes with the Hermitian transformation 
B then A commutes with B. 

(b) Prove part (a) even if B is not Hermitian. 
23. If A � 0 and B � 0 and AB = BA, prove that AB � 0. 

24. Prove that if A � 0 then A has a unique nonnegative square root. 
25. Let A = (ct;j) be a real, symmetric n x n matrix. Let 

(a) If A > 0, prove that A. > 0 for s = 1 ,  2, . . . , n. 
(b) If A > O prove that det A. > O for s = 1 , 2, . . .  , n. 
(c) If det A. > 0 for s = 1 ,  2, . . . , n, prove that A > 0. 
(d) If A � 0 prove that A. � 0 for s = 1 ,  2, . . . , n. 
(e) If A � 0 prove that det A. � 0 for s = 1 ,  2, . . . , n. 
(f) Give an example of an A such that det A. � 0 for all s = 1 ,  2, 

. . .  , n yet A is not nonnegative. 

26. Prove that any complex matrix can be brought to triangular form 
by a unitary matrix. 

6.1 1 Real Quadratic Forms 

We close the chapter with a brief discussion of quadratic forms over the 
field of real numbers. 

Let V be a real, inner-product space and suppose that A is a (real) sym-
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metric linear transformation on V. The real-valued function Q (v) defined 
on V by Q (v) = (vA, v) is called the quadratic form associated with A .  

If we consider, as we may without loss of generality, that A is a real, 
n x n symmetric matrix (a11) acting on p(n) and that the inner product for 
(c51 , • • •  , c5,.) and (y1 , • • •  , y,.) in p<nl is the real number c5I)'1 + c52y2 + · · · 
+ c5,.y,, for an arbitrary vector v = (x1 , • • •  , x,.) in p<n) a simple calcula­
tion shows that 

Q (v) = (vA, v) = a1 1x1 2 + · · · + a,,.x,. 2 + 2 ,L: rxiix1x1. 
i<j 

On the other hand, given any quadratic function in n-variables 

YuXt 2 + . . .  + y ,,x, 2 + 2 ,L: y iJxixJ, 
i<j 

with real coefficients y 11, we clearly can realize it as the quadratic form 
associated with the real symmetric matrix C = (y11) . 

In real n-dimensional Euclidean space such quadratic functions serve to 
define the quadratic surfaces. For instance, in the real plane, the form 
ax2 + pxy + yy2 gives rise to a conic section (possibly with its major axis 
tilted) .  It is not too unnatural to expect that the geometric properties of 
this conic section should be intimately related with the symmetric matrix 

P/2) 
y ' 

with which its quadratic form is associated. 
Let us recall that in elementary analytic geometry one proves that by a 

suitable rotation of axes the equation ax2 + pxy + yy2 can, in the new 
coordinate system, assume the form a 1 (x') 2 + y1{y') 2 • Recall that 
a1 + y1 a +  y and rxy - P2/4 = rx1y1•  Thus rx1 , y1 are the charac­
teristic roots of the matrix 

P/2) · 
'i' ' 

the rotation of axes is just a change of basis by an orthogonal transformation, 
and what we did in the geometry was merely to bring the symmetric matrix 
to its diagonal form by an orthogonal matrix. The nature of ax2 + pxy + 
yy2 as a conic was basically determined by the size and sign of its charac­
teristic roots rx 1 ,  y 1 • 

A similar discussion can be carried out to classify quadric surfaces in 
3-space, and, indeed quadric surfaces in n-space. What essentially deter­
mines the geometric nature of the quadric surface associated with 

rx11x1 2 + · · · + a,.,.x,. 2 + 2 ,L: rxiJx1x1 
i<j 
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is the size and sign of the characteristic roots of the matrix (tX1J) · If we 
were not interested in the relative flatness of the quadric surface (e.g., if we 
consider an ellipse as a flattened circle), then we could ignore the size of the 
nonzero characteristic roots and the determining factor for the shape of the 
quadric surface would be the number of 0 characteristic roots and the num­
ber of positive (and negative) ones. 

These things motivate, and at the same time will be clarified in, the 
discussion that follows, which culminates in Sylvester's law qf inertia. 

Let A be a real symmetric matrix and let us consider its associated 
quadratic form Q (v) = (vA, v). If T is any nonsingular real linear trans­
formation, given v E F<">, v = wT for some w e  F<">, whence (vA, v) = 
(wTA, wT) = (w TAT', w). Thus A and TAT' effectively define the same 
quadratic form. This prompts the 

D E FI N ITION Two real symmetric matrices A and B are congruent if 
there is a nonsingular real matrix T such that B = TAT'. 

LEMMA 6.1 1 .1 Congruence is an equivalence relation. 

Proof. Let us write, when A is congruent to B, A � B. 

I .  A � A for A = l A l '. 
2 .  If A � B then B = TAT' where T is nonsingular, hence A = SBS' 

where S = T- 1•  Thus B � A. 
3. If A �  B and B � C then B = TAT' while C RBR', hence C = 

R TA T'R' = (RT)A(RT)', and so A � C. 

Since the relation satisfies the defining conditions for an equivalence 
relation, the lemma is proved. 

The principal theorem concerning congruence Is its characterization, 
contained in Sylvester's law. 

TH E O R E M  6.1 1 . 1 Given the real .rymmetric matrix A there is an invertible 
matrix T such that 

TAT' = c -I$ 
0.) 

where I, and I.. are respectively the r x r and s x s unit matrices and where 0, 
is the t x t z:.ero-matrix. The integers r + s, which is the rank qf A, and r - s, 
which is the signature qf A, characterize the congruence class qf A. That is, two real 
.rymmetric matrices are congruent if and only if they have the same rank and signature. 

Proof. Since A is real symmetric its characteristic roots are all real ; let 
A.l> • • .  , A., be its positive characteristic roots, - A.,+ I• . . .  , - A.+s its 
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negative ones. By the discussion at the end of Section 6. 10 we can find a 
real orthogonal matrix C such that 

CAC - 1 = GAG' = 

o, 

where t = n - r - s. Let D be the real diagonal matrix shown in Figure 
6. 1 1 . 1 .  

D 

I 

.J 2, 

Figure 6. 1 1 . 1  
I, 

A simple computation shows that 

DCAC'D' = 

(I, -Is ) 
o, 

. 

Thus there is a matrix of the required form in the congruence class of A. 
Our task is now to show that this is  the only matrix in the congruence 

class of A of this form, or, equivalently, that 

L =  (J, - I. ) 
o, 

and M = (J,. -I.. ) 
o,. 

are congruent only if r = r', s = s', and t = t ' .  
Suppose that M = TLT' where T is  invertible. By Lemma 6. 1 .3 the 

rank of M equals that of L;  since the rank of M is n - t' while that of L 
is n - t we get t = t' .  

Suppose that r < r' ; since n = r + s + t = r' + s' + t' ,  and since 
t = t', we must have s > s' . Let U be the subspace of p<n> of all vectors 
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having the first r and last t coordinates 0 ;  U is s-dimensional and for u #- 0 
in U, (uL, u) < 0. 

Let W be the subspace of p(n) for which the r' + 1 ,  . . .  , r' + s' com­
ponents are all 0 ;  on W, (wM, w) � 0 for any w E  W. Since T is invertible, 
and since W is (n - s')-dimensional, WT is (n - s')-dimensional. For 
w e  W, (wM, w) � 0 ;  hence (wTLT', w) � 0 ;  that is, (w TL, wT) � 0. 
Therefore, on WT, (wTL, wT) � 0 for all elements. Now dim ( WT) + 

dim U = (n - s') + r = n + s - s' > n ;  thus by the corollary to Lemma 
4.2.6, WT n U ::F 0. This, however, is nonsense, for if x ::F 0 e WT n U, 
on one hand, being in U, (xL, x) < 0, while on the other, being in WT, 
(xL, x) � 0. Thus r = r' and so s = s'. 

The rank, r + s, and signature, r - s, of course, determine r, s and so 
t = (n - r - s), whence they determine the congruence class. 

Problems 

1 .  Determine the rank and signatur-e of the following real quadratic forms :  
(a) x1 

2 + 2x1x2 + x2 2• 
(b) x1

2 
+ x1x2 + 2x1x3 + 2x/ + 4x2x3 + 2x3 

2
. 

2. If A is a symmetric matrix with complex entries, prove we can find a 

complex invertible matrix B such that BAB' = e· o) and that r, 

the rank of A, determines the congruence class of A relative to complex 
congruence. 

3. If F is a field of characteristic different from 2, given A e Fn, prove that 
there exists a B e  Fn such that BAB' is diagonal. 

4. Prove the result of Problem 3 is false if the characteristic of F is 2. 

5. How many congruence classes are there of n X n real symmetric matrices. 

Supplementary Reading 

HALMOs, PAUL R., Finite-Dimensional Vector Spaces, 2nd ed. Princeton, N.J.: D. Van 
Nostrand Company, 1 958. 



7 
Selected Topics 

In this final chapter we have set ourselves two objectives. Our first 
is to present some mathematical results which cut deeper than most 
of the material up to now, results which are more sophisticated, and 
are a little apart from the general development which we have followed. 
Our second goal is to pick results of this kind whose discussion, in 
addition, makes vital use of a large cross section of the ideas and 
theorems expounded earlier in the book. To this end we have decided 
on three items to serve as the focal points of this chapter. 

The first of these is a celebrated theorem proved by Wedderburn in 
1 905 ("A Theorem on Finite Algebras," Transactions rif the American 
Mathematical Society, Vol. 6 ( 1 905) ,  pages 349-352) which asserts that 
a division ring which has only a finite number of elements must be a 
commutative field. We shall give two proofs of this theorem, differing 
totally from each other. The first one will closely follow Wedderburn's 
original proof and will use a counting argument ; it will lean heavily 
on results we developed in the chapter on group theory. The second 
one will use a mixture of group-theoretic and field-theoretic arguments, 
and will draw incisively on the material we developed in both these 
directions .  The second proof has the distinct advantage that in the 
course of executing the proof certain side-results will fall out which 
will enable us to proceed to the proof, in the division ring case, of a 
beautiful theorem due to Jacobson ("Structure Theory for Algebraic 
Algebras of Bounded Degree," Annals rif Mathematics, Vol. 46 ( 1 945),  
pages 695-707) which is  a far-reaching generalization ofWedderburn's 
theorem. 
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Our second high spot is a theorem due to Frobenius ("i.Jber lineare 
Substitutionen und bilineare Formen," Journal fiir die Reine und Angewandte 
Mathematik, Vol. 84 ( 1877) , especially pages 59-63) which states that the 
only division rings algebraic over the field of all real numbers are the field 
of real numbers, the field of complex numbers, and the division ring of real 
quaternions. The theorem points out a unique role for the quaternions, and 
makes it somewhat amazing that Hamilton should have discovered them 
in his somewhat ad hoc manner. Our proof of the Frobenius theorem, now 
quite elementary, is a variation of an approach laid out by Dickson and 
Albert ; it will involve the theory of polynomials and fields. 

Our third goal is the theorem that every positive integer can be represented 
as the sum of four squares. This famous result apparently was first con­
jectured by the early Greek mathematician Diophantos. Fermat grappled 
unsuccessfully with it and sadly announced his failure to solve it (in a paper 
where he did, however, solve the two-square theorem which we proved in 
Section 3.8) . Euler made substantial inroads on the problem ; basing his 
work on that of Euler, Lagrange in 1 770 finally gave the first complete proof. 
Our approach will be entirely different from that of Lagrange. It is rooted 
in the work of Adolf Hurwitz and will involve a generalization of Euclidean 
rings. Using our ring-theoretic techniques on a certain ring of quaternions, 
the Lagrange theorem will drop out as a consequence. 

En route to establishing these theorems many ideas and results, interesting 
in their own right, will crop up. This is characteristic of a good theorem­
its proof invariably leads to side results of almost equal interest. 

7.1 Finite Fields 

Before we can enter into a discussion of Wedderburn's theorem and finite 
division rings, it is essential that we investigate the nature of fields having 
only a finite number of elements. Such fields are called finite fields. Finite 
fields do exist, for the ring JP of integers modulo any prime p, provides us 
with an example of such. In this section we shall determine all possible 
finite fields and many of the important properties which they possess. 

We begin with 

LEMMA 7.1 .1 Let F be a finite field with q elements and suppose that F c K 
where K is also a finite field. Then K has qn elements where n = [ K :F] . 

Proof. K is a vector space over F and since K is finite it is certainly finite
dimensional as a vector space over F. Suppose that [K:F] = n; then K 
has a basis of n elements over F. Let such a basis be v 1 ,  v2, • • •  , vn. Then 
every element in K has a unique representation in the form a1 v1 + 

a2v2 + · · · + anvn where a 1 ,  a2, • • •  , an are all in F. Thus the number of 
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elements in K is the number of cx1 v1 + cx2v2 + · · · + cx.v. as the cx1 , 
cx2, • • •  , ex. range over F. Since each coefficient can have q values K must 
clearly have q" elements. 

COR OLLARY 1 Let F be a finite field; then F has pm elements where the prime 
number p is the characteristic of F. 

Proof. Since F has a finite number ,of elements, by Corollary 2 to 
Theorem 2.4. 1 ,  f 1 = 0 where f is the number of elements in F. Thus F 
has characteristic p for some prime number p. Therefore F contains a field 
F0 isomorphic to ]p· Since F0 has p elements, F has pm elements where 
m = [F:F0] , by Lemma 7. 1 . 1 .  

CORO LLARY 2 lf the finite field F has pm elements then every a E F satisfies 
aP'" = a. 

Proof. If a = 0 the assertion of the corollary is trivially true. 
On the other hand, the nonzero elements ofF form a group under multi­

plication of order pm - 1 thus by Corollary 2 to Theorem 2.4. 1 ,  ap'"- 1 = 1 
for all a :f= 0 in F. Multiplying this relation by a we obtain that aP'" = a. 

From this last corollary we can easily pass to 

LEMMA 7 .1 .2 lf the finite field F has pm elements then the polynomial xP'" - x 
in F[x] factors in F[x] as xP'" - x = IIAeF (x - A.) . 

Proof. By Lemma 5.3.2 the polynomial xP'" - x has at most pPm roots 
in F. However, by Corollary 2 to Lemma 7. 1 . 1  we know pm such roots, 
namely all the elements of F. By the corollary to Lemma 5.3. 1 we can 
conclude that xP'" - x = IIAeF (x - A.) . 

COROLLARY lf the field F has pm elements then F is the splitting field of the 
polynomial xP'" - x. 

Proof. By Lemma 7. 1 .2, xP'" - x certainly splits in F. However, it 
cannot split in any smaller field for that field would have to have all the 
roots of this polynomial and so would have to have at least pm elements. 
Thus F is the splitting field of xP'" - x. 

As we have seen in Chapter 5 (Theorem 5.3.4) any two splitting fields 
over a given field of a given polynomial are isomorphic. In light of the 
corollary to Lemma 7 . 1 .2 we can state 

LEMMA 7.1 .3 Any two finite fields having the same number of elements are 
isomorphic. 
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Proof. If these fields have pm elements, by the above corollary they are 
both splitting fields of the polynomial xP� - x, over ]p whence they are 
isomorphic. 

Thus for any integer m and any prime number p there is, up to iso­
morphism, at most one field having pm elements. The purpose of the next 
lemma is to demonstrate that for any prime number p and any integer m 
there is a field having pm elements. When this is done we shall know that 
there is exactly one field having pm elements where p is an arbitrary prime 
and m an arbitrary integer. 

LEMMA 7.1 .4 For every prime number p and every positive integer m there exists 
afield having pm elements. 

Proof. Consider the polynomial xP� - x in ]p[x], the ring of polynomials 
in x over ]p, the field of integers mod p. Let K be the splitting field of this 
polynomial. In K let F = {a E K I a� = a}. The elements of F are thus 
the roots of xP� - x, which by Corollary 2 to Lemma 5.5.2 are distinct ; 
whence F has pm elements. We now claim that F is a field. If a, b E  F 
then aP� = a, bP� = b and so (ab)P� = aP�bPm = ab ; thus ab E F. Also 
since the characteristic is p, (a ± b)Pm = aPm ± bPm = a ± b, hence 
a ± b E  F. Consequently F is a subfield of K and so is a field. Having 
exhibited the field F having pm elements we have proved Lemma 7. 1 .4. 

Combining Lemmas 7. 1 .3 and 7. 1 .4 we have 

T H E O R E M  7.1 .1  For every prime number p and every positive integer m there 
is a unique field having pm elements. 

We now return to group theory for a moment. The group-theoretic 
result we seek will determine the structure of any finite multiplicative 
subgroup of the group of nonzero elements of any field, and, in particular, 
it will determine the multiplicative structure of any finite field. 

LEMMA 7.1 .5 Let G be a finite abelian group enjoying the property that the 
relation X' = e is satisfied by at most n elements of G, for every integer n. Then G 
is a cyclic group. 

Proof. If the order of G is a power of some prime number q then the 
result is very easy. For suppose that a E G is an element whose order is as 
large as possible ; its order must be q' for some integer r. The elements 
e, a, a2, • • •  , aq' 1 give us q' distinct solutions of the equation xq' = e, 
which, by our hypothesis, implies that these are all the solutions of this 
equation. Now if b E G its order is q' where s :: r, hence bq' = (bq')q'-•  = e. 
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By the observation made above this forces b = ai for some i, and so G is 
cyclic. 

The general finite abelian group G can be realized as G = Sq,Sqz . . .  , Sqk 
where the q; are the distinct prime divisors of o(G) and where the Sq, are 
the Sylow subgroups of G. Moreover, every element g E G can be written 
in a unique way as g = sls2, . . .  ' sk where S; E sq, (see Section 2.7) . Any 
solution of x" = e in Sq, is one of x" = e in G so that each Sq, inherits the 
hypothesis we have imposed on G. By the remarks of the first paragraph 
of the proof, each Sq, is a cyclic group ; let a; be a generator of Sq.- We 
claim that c = a1a2, . . .  , ak is a cyclic generator of G. To verify this all 
we must do is prove that o(G) divides m, the order of c. Since em = e, we 
have that a1ma2m · · · akm = e. By the uniqueness of representation of an 
element of G as a product of elements in the Sq,, we conclude that each 
at = e. Thus o(Sq.) I m for every i. Thus o(G) = o(Sq1)o(Sq2) • • • o(SqJ I m. 
However, m I o(G) and so o(G) = m. This proves that G is cyclic. 

Lemma 7. 1 .5 has as an important consequence 

LEM MA 7.1 .6 Let K be afield and let G be a finite subgroup of the multiplicative 
group of nonzero elements of K. Then G is a cyclic group. 

Proof. Since K is a field, any polynomial of degree n in K[ x] has at most 
n roots in K. Thus in particular, for any integer n, the polynomial x" - 1 
has at most n roots in K, and all the more so, at most n roots in G. The 
hypothesis of Lemma 7 . 1 .5 is satisfied, so G is cyclic. 

Even though the situation of a finite field is merely a special case of 
Lemma 7. 1 .6, it is of such widespread interest that we single it out as 

T H E O R E M  7.1 .2 The multiplicative group of nonzero elements of a finite field 
is cyclic. 

Proof. Let F be a finite field. By merely applying Lemma 7. 1 .6 with 
F = K and G = the group of nonzero elements of F, the result drops out. 

We conclude this section by using a counting argument to prove the 
existence of solutions of certain equations in a finite field. We shall need 
the result in one proof of the Wedderburn theorem. 

LEMMA 7.1 .7 lf F is a finite field and ex i= 0, P # 0 are two elements of F  
then we can find elements a and b in F such that 1 + cxa2 + pb2 = 0. 

Proof. If the characteristic of F is 2, F has 2" elements and every 
element x in F satisfies x2" = x. Thus every element in F is a square. In 
particular cx 1 = a2 for some a E F. Using this a and b = 0, we have 
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I + o:a2 + fJb2 = 1 + o:o:- 1 + 0 = 1 + l = 0, the last equality being a 
consequence of the fact that the characteristic of F is 2. 

If the characteristic of F is an odd prime p, F has p" elements. Let 
W11 = { l  + o:x2 j x e F}. How many elements are there in Wa ? We 
must check how often I + cxx2 = I + cxy2• But this relation forces cxx2 
o:y2 and so, since o: -# 0, x2 = y2• Finally this leads to x ±y. Thus for 
x ::ft 0 we get from each pair x and - x one element in W,., and for x = 0 
we get I e W,.. Thus W,. has l + (pn - I )  /2 = (p" + I )  /2 elements. 
Similarly Wp = { - fJx2 I x E F} has (p" + I )  /2 elements. Since each of 
W" and Wfl has more than half the elements of F they must have a non­
empty intersection. Let c E w" (l Wp. Since c E w", c = l + cxa2 for 
some a e F; since c e Wp, c = - {Jb2 for some b e  F. Therefore 1 + cxa2 
-fJb2, which, on transposing yields the desired result I + o:a2 + fJb2 = 0. 

Problems 

1. By Theorem 7. 1 .2 the nonzero elements of ]p form a cyclic group under 
multiplication. Any generator of this group is called a primitive root of p. 
(a) Find primitive roots of: 1 7, 23, 3 1 .  
(b) How many primitive roots does a prime p have ? 

2. Using Theorem 7. 1 .2 prove that x2 = I mod p is solvable if and only 
if the odd prime p is of the form 4n + 1 .  

3 .  I f  a is an integer not divisible by the odd prime p, prove that x2 = a 
mod p is solvable for some integer x if and only if a<r l )/ l = l mod p. 
(This is called the Euler criterion that a be a quadratic residue mod p.) 

4. Using the result of Problem 3 determine if: 
(a) 3 is a square mod 1 7. 
(b) 1 0  is a square mod 1 3. 

5. If the field F has p" elements prove that the automorphisms of F form 
a cyclic group of order n. 

6. If F is a finite field, by the quaternions over F we shall mean the set of 
all <Xo + o:1 i + cx2j + o:3k where cx0, o:1, o:2 , o:3 e F and where addition 
and multiplication are carried out as in the real quaternions (i.e., 
i 2 = F = k2 = ijk = - 1 , etc.) .  Prove that the quaternions over a 
finite field do not form a division ring. 

7.2 Wedderburn's Theorem on Finite Division Rings 

In 1905 Wedderburn proved the theorem, now considered a classic, that a 
finite division ring must be a commutative field. This result has caught the 
imagination of most mathematicians because it is so unexpected, interrelating 
two seemingly unrelated things, namely the number of elements in a certain 
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algebraic system and the multiplication of that system. Aside from its 
intrinsic beauty the result has been very important and useful since it arises 
in so many contexts. To cite just one instance, the only known proof of the 
purely geometric fact that in a finite geometry the Desargues configuration 
implies that of Pappus (for the definition of these terms look in any good 
book on projective geometry) is to reduce the geometric problem to an 
algebraic one, and this algebraic question is then answered by invoking the 
Wedderburn theorem. For algebraists the Wedderburn theorem has served 
as a jumping-off point for a large area of research, in the 1940s and 1950s, 
concerned with the commutativity of rings. 

THEO R E M  7.2.1 (WEDDERBURN) A finite division rzng zs necessarily a 
commutative field. 

First Proof. Let K be a fnite division ring and let Z = {z e K 1 zx = xz 
for all x e K} be its center. If Z has q elements then, as in the proof of 
Lemma 7. 1 . 1 ,  it follows that K has q" elements. Our aim is to prove that 
Z K, or, equivalently, that n = 1 .  

If a E K let N(a) = {x e K I xa = ax}. N(a) clearly contains Z, and, 
as a simple check reveals, N(a) is a subdivision ring of K. Thus N(a) 
contains q"(a) elements for some integer n(a) . We claim that n(a) I n. For, 
the nonzero elements of N(a) form a subgroup of order q"(a) - l of the 
group of nonzero elements, under multiplication, of K which has q" - 1 
elements. By Lagrange's theorem (Theorem 2.4. 1 )  q"(a) - 1 is a divisor 
of q" - 1 ;  but this forces n(a) to be a divisor of n (see Problem 1 at the end 
of this section) .  

In  the group of  nonzero elements of  K we have the conjugacy relation 
used in Chapter 2, namely a is a conjugate of b if a = x 1bx for some 
x :1: 0 in K. 

By Theorem 2. 1 1 . 1  the number of elements in K conjugate to a is the 
index of the normalizer of a in the group of nonzero elements of K. Therefore 
the number of conjugates of a in K is (q" - 1 ) /(q"(a) - 1 ) .  Now a e Z if 
and only if n(a) = n, thus by the class equation (see the corollary to 
Theorem 2 . l l . l )  

q" - l = q  q" -
   n(a) I n   -

n(a)"'n 
( 1 )  

where the sum is carried out over one a i n  each conjugate class for a's not 
in the center. 

The problem has been reduced to proving that no equation such as ( 1 )  
can hold i n  the integers. Up to this point w e  have followed the proof in 
Wedderburn's original paper quite closely. He went on to rule out the 
possibility of equation ( 1 )  by making use of the following number-theoretic 
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By induction we assume that <l>d(x) is a monic polynomial with integer 
coefficients for d I n, d =F n. Thus K' - I = <l>,(x) g(x) where g(x) is a 
monic polynomial with integer coefficients. Therefore, 

K' - l 
<I>,(x) = -- ,  

g (x) 

which, on actual division (or by comparing coefficients) , tells us that <l>,.(x) 
is a monic polynomial with integer coefficients. 

We now claim that for any divisor d of n, where d =F n, 

in the sense that the quotient is a polynomial with integer coefficients. To 
see this, frst note that 

x" - I = fl <l>k(x) , 
kid 

and since every divisor of d is also a divisor of n, by regouping terms on 
the right-hand side of (3) we obtain � - 1 on the right-hand side ;  also 
since d < n, � 1 does not involve <I>,(x) . Therefore, x" 1 = 
<I> , (x) (x" I )  f (x) where 

has integer coefficients, and so 

I K' - 1 
<l>,(x) � 

in the sense that the quotient is a polynomial with integer coefficients. 
This establishes our claim. 

For any integer t, <l>,(t) is an integer and from the above as an integer 
divides (t" - 1 ) /(t" - I ) .  In particular, returning to equation ( I ) ,  

l q" - I <l>,. (q) q"(a) -
and <I>,.(q) I (q" I ) ;  thus by ( I ), <I>,.(q) I (q - I ) .  We claim, however, 
that if n > 1 then I<I>,(q) l > q - L For <I>,(q) = ll (q - 0) where 0 runs 
over all primitive nth roots of unity and lq - 01 > q - I for all 0 =F I 
a root of unity (Prove !) whence I<I>,(q) l = fllq - 01 > q - 1 .  Clearly, 
then <l>,(q) cannot divide q - l ,  leading us to a contradiction. We must, 
therefore, assume that n = I ,  forcing the truth of the Wedderburn theorem. 

Second Proof. Before explicitly examining finite division rings again, 
we prove some preliminary lemmas. 
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LEMMA 7.2.1 Let R be a ring and let a E R. Let Ta be the mapping qf R 
into itself difined by xTa = xa - ax. Then 

T 1 m(m - l ) a2xam- 2 X am = xam - maxam- + 
2 

 -  -  3 m
- 3  

a xa + · · · . 
3 !  

Proof. What is xTa 2 ? xT/ = (x Ta) Ta = (xa - ax) Ta = (xa - ax)a -
a(xa - ax) = xa2 - 2axa + a2x. What about xTa 3 ? xTa 3 = (x Ta 2) Ta = 
(xa2 - 2axa + a2x)a - a(xa2 - 2axa + a2x) = xa3 - 3axa2 + 3a2xa - a 3x. 
Continuing in this way, or by the use of induction, we get the result of 
Lemma 7.2. 1 .  

CORO LLARY .if R is a ring in which px = 0 for all x E R, where p is a prime 
number, then xTaPm = xaPm - aPmx. 

Proof. By the formula of Lemma 7.2. 1 ,  if p = 2, xTa 2 = xa2 - a2x, 
since 2axa = 0. Thus, x Ta 4 = (xa2 - a2x)a2 - a2(xa2 - a2x) = xa4 -
a4x, and so on for xTa 2m.  

Ifp is  an odd prime, again by the formula of Lemma 7.2. 1 ,  

T P P P 1 p(p - I ) 2 p - 2 P x a = xa - pa.'Ca - + 
2 

a xa + · · · - a x, 

and since 
 - I )  • • • (p - i + I )  

p . ,  z .  
for i < p ,  all the middle terms drop out and we are left with xTaP = 
xaP - aPx = xTaP· Now xT/2 = x( TaPY = xTaP>, and so on for the 
higher powers of p. 

LEMMA 7.2.2 Let D be a division ring qf characteristic p > 0 with center Z, 
and let P = {0, I ,  2, . . .  , (p - I ) }  be the subjield of Z isomorphic to ]p· Suppose 
that a E D, a rf= Z is such that aP" = a for some n ;: I .  Then there exists an 
x E D such that 

I .  xax 1 # a. 
2. xax- 1 E P (a) the .field obtained by adjoining a to P. 

Proof. Define the mapping Ta of D into itself by yTa = ya - ay for 
every y E D. 

P (a) is a finite field, since a is algebraic over P and has, say, pm elements. 
These all satisfy uPm = u. By the corollary to Lemma 7.2. 1 ,  yT/m = 
yaPm - aPmy = ya - ay = yTa, and so Tapm = Ta. 
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Now, if A. E P(a) , (..l.x) Ta = (..l.x)a  - a(..l.x) = ..l.xa - A.ax = A.(xa - ax) 
= A.(xT") , since A. commutes with a. Thus the mapping U of D into itself 
defined by U:y -+ Ay commutes with T., for every A. E P(a). Now the 
polynomial 

uP'" - u II (u - A.) 
AE P(a) 

by Lemma 7.2. 1 .  Since Ta commutes with U for every A. E P(a), and smce 
T,/'"' = T0, we have that 

0 Tap'" - Ta = IT (Ta - AI) . 
A E P(a) 

If for every A. #- 0 in P (a), T .. - AI annihilates no nonzero element in 
D (ify(Ta - AI) = 0 impliesy = 0), since T0(Ta - A.1/) • • • (Ta A.kl) = 
0, where Au . . .  , A.k are the nonzero elements of P(a), we would get 
Ta = 0. That is, 0 = yTa = ya - ay for every y E D  forcing a E Z con­
trary to hypothesis. Thus there is a A. #- 0 in P (a) and an x #- 0 in D 
such that x(T0 - A.I) 0. Writing this out explicitly, xa - ax - Ax = 0 ;  
hence, xax 1 = a + A. is in P (a) and is not equal to a since A. #- 0 .  This 
proves the lemma. 

COROLLARY In Lemma 7.2.2, xax 1 = ai #- a for some integer i. 

Proof. Let a be of order s; then in the field P (a) all the roots of the 
polynomial u• l are l ,  a, a2, • • •  , a• 1 since these are all distinct roots 
and they are s in number. Since (xax 1 )• = xa•x- 1 = l, and since 
xax 1 e P (a) , xax 1 is a root in P(a) of u• - 1 ,  hence xax 1 = a1• 

We now have all the pieces that we need to carry out our second proof of 
Wedderburn's theorem. 

Let D be a finite division ring and let Z be its center. By induction we 
may assume that any division ring having fewer elements than D is a 
commutative field. 

We first remark that if a, b e D  are such that b'a = ab1 but ba #- ab, 
then b1 e Z. For, consider NW) = {x e D i b1x = xb'}. N(b1) is a sub­
division ring of D;  if it were not D, by our induction hypothesis, it would 
be commutative. However, both a and b are in N(b') and these do not 
commute ; consequently, N(b') is not commutative so must be all of D. 
Thus b' e Z. 

Every nonzero element in D has finite order, so some positive power of it 
falls in Z. Given w E D let the order f! w relative to Z be the smallest positive 
integer m(w) such that wm<w) E Z. Pick an element a in D but not in Z 
having minimal possible order relative to Z, and let this order be r. We 
claim that r is a prime number, for if r = r1r2 with l < r1 < r then a'• is not 
in Z. Yet (a'1) '2 = a' e Z, implying that a'• has an order relative to Z 
smaller than that of a. 
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2a1
2 = a1 (a1 + {b1 + 11a1b1 ) + (a1 + {b1 + 11a1b1)a1 = 0. This contra­

diction finishes the proof and Wedderburn's theorem is established. 

This second proof has some advantages in that we can use parts of it to 
proceed to a remarkable result due to Jacobson, namely, 

THEOREM 7.2.2 (jACOBSON} Let D be a division ring such that for every 
a e D there exists a positive integer n(a) > l ,  depending on a, such that a"(a) = a. 
Then D is a commutative field. 

Proof. If a ::f= 0 is in D then a" = a and (2a)"' 2a for some integers 
n, m > 1 .  Let s = (n 1 ) (m - I )  + I ;  s > I and a simple calculation 
shows that a• = a and (2aY = 2a. But (2a)• = 2•a• = 28a, whence 
2"a = 2a from which we get (2• - 2)a = 0. Thus D has characteristic 
p > 0. If P c Z is the field having p elements (isomorphic to ]p),  since 
a is algebraic over P, P (a) has a finite number of elements, in fact, ph ele­
ments for some integer h. Thus, since a e P (a), aPh = a. Therefore, if 
a ¢ Z all the conditions of Lemma 7 .2.2 are satisfed, hence there exists a 
b e D such that 

( I ) 

By the same argument, bPk b for some integer k > I .  Let 

w {x e D i x = it tPua;bi where pu e P} · 

W is fnite and is closed under addition. By virtue of ( I )  it is also closed 
under multiplication. (Verify !) Thus W is a fnite ring, and being a sub­
ring of the division ring D, it itself must be a division ring (Problem 3). 
Thus W is a finite division ring ; by Wedderburn's theorem it is commutative. 
But a and b are both in W; therefore, ab = ba contrary to d'b ba. This 
proves the theorem. 

Jacobson's theorem actually holds for any ring R satisfying a"(a) = a for 
every a e R, not just for division rings. The transition from the division 
ring case to the general case, while not difficult, involves the axiom of choice, 
and to discuss it would take us too far afield. 

Problems 

I. If t > 1 is an integer and (tm - l ) l (t" - 1 ) ,  prove that m I n. 
2. If D is a division ring, prove that its dimension (as a vector space) 

over its center cannot be 2. 
3. Show that any finite subring of a division ring is a division ring. 
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4. (a) Let D be a division ring of characteristic p :f: 0 and let G be a 
finite subgroup of the group of nonzero elements of D under 
multiplication. Prove that G is abelian. (Hint : consider the sub· 
set {x e D l x = :LA-1g1, :11 e P, g1 e G}.) 

(b) In part (a) prove that G is actually cyclic . 

*5. (a) If R is a finite ring in which x" x, for all x E R where n > I 
prove that R is commutative. 

(b) If R is a finite ring in which x2 = 0 implies that x = 0, prove 
that R is commutative. 

*6. Let D be a division ring and suppose that a E D  only has a finite 
number of conjugates (i.e., only a finite number of distinct x- 1ax) . 
Prove that a has only one conjugate and must be in the center of D. 

7. Use the result of Problem 6 to prove that if a polynomial of degree n 
having coefficients in the center of a division ring has n + I roots in the 
division ring then it has an infinite number of roots in that division ring. 

*8. Let D be a division ring and K a subdivision ring of D such that 
xKx - 1 c K for every x :f: 0 in D. Prove that either K c Z, the center 
of D or K = D. (This result is known as the Brauer-Cartan-Hua theorem.) 

*9. Let D be a division ring and K a subdivision ring of D. Suppose that 
the group of nonzero elements of K is a subgroup of finite index in the 
group (under multiplication) of nonzero elements of D. Prove that 
either D is finite or K = D. 

1 0. If 0 :f: I is a root of unity and if q is a positive integer, prove that 

lq - 01 > q - I .  

7.3 A Theorem of Frobenius 

In 1877 Frobenius classified all division rings having the field of real numbers 
in their center and satisfying, in addition, one other condition to be described 
below. The aim of this section is to present this result of Frobenius. 

In Chapter 6 we brought attention to two important facts about the 
field of complex numbers. We recall them here : 

FACT 1 Every polynomial of degree n over the field of complex numbers 
has all its n roots in the field of complex numbers. 

FACT 2 The only irreducible polynomials over the field of real numbers 
are of degree I or 2. 

D E F I N ITION A division algebra D is said to be algebraic over afield F if 

l .  F is contained in the center of D ;  
2 .  every a E D  satisfies a nontrivial polynomial with coefficients i n  F. 
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If D, as a vector space, is finite-dimensional over the field F which is 
contained in its center, it can easily be shown that D is algebraic over F (see 
Problem I ,  end of this section) . However, it can happen that D is algebraic 
over F yet is not finite-dimensional over F. 

We start our investigation of division rings algebraic over the real field 
by first finding those algebraic over the complex field. 

LEMMA 7.3.1 Let C be the field of complex numbers and suppose that the division 
ring D is algebraic over C. Then D = C. 

Proof. Suppose that a E D. Since D is algebraic over C, a" + 
oc1a" 1 

+ · · · + ocn_1a + oc" = 0 for some oc1 , oc2, • • •  , oc" in C. 
Now the polynomial p(x) = x" + oc1x" 1 

+ · · · + oc" 1x + oc" in C[x], 
by Fact I ,  can be factored, in C [ x] , into a product of linear factors ; that is, 
p(x) = (x - A.1 ) (x - A.2) • • • (x - A.") ' where A.1 , A.2, • • •  , A." are all in C. 
Since C is in the center of D, every element of C commutes with a, hence 
p(a) = (a - A.1) (a - A.2) · · · (a - A.") . But, by assumption, p(a) = 0, 
thus (a - A.1) (a - A.2) · · · (a - A.") = 0. Since a product in a division 
ring is zero only if one of the terms of the product is zero, we conclude that 
a - A.k = 0 for some k, hence a = A.k, from which we get that a E C. 
Therefore, every element of D is in C; since C c D, we obtain D = C. 

We are now in a position to prove the classic result of Frobenius, namely, 

THEOREM 7.3.1 (FROBENIUS) Let D be a division ring algebraic over F, 
the field of real numbers. Then D is isomorphic to one of: the field of real numbers, 
the field of complex numbers, or the division ring of real quaternions. 

Proof. The proof consists of three parts. In . the first, and easiest, we 
dispose of the commutative case ; in the second, assuming that D is not 
commutative, we construct a replica of the real quaternions in D; in the 
third part we show that this replica of the quaternions fills out all of D. 

Suppose that D =1= F and that a is in D but not in F. By our assumptions, 
a satisfies some polynomial over F, hence some irreducible polynomial over 
F. In consequence of Fact 2, a satisfies either a linear or quadratic equation 
over F. If this equation is linear, a must be in F contrary to assumption. 
So we may suppose that a2 - 2oca + f3 = 0 where oc, f3 E F. Thus 
(a - oc) 2 = oc2 - {3 ;  we claim that oc2 - f3 < 0 for, otherwise, it would 
have a real square root D and we would have a - oc = ± D and so a would 
be in F. Since oc2 - f3 < 0 it can be written as - y2 where y E F. Con­
sequently (a - oc) 2 = - y2, whence [(a - oc) fy] 2 = - I . Thus if a E D, 
a ¢  F we can find real oc, y such that [ (a - oc)fyp = - 1 . 

If D is commutative, pick a E D, a ¢  F and let i = (a - oc)fy where oc, y 
in F are chosen so as to make i2 = - 1 .  Therefore D contains F(i), a field 
isomorphic to the field of complex numbers. Since D is commutative and 
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zi + iz = wi + iw + ao W 
2 

+ i2) + Po ( ji + ij) + i'o (ki + ik) 
2 2 

= ao - ao = O ;  

similarly ;:j + jz = 0 and zk + kz = 0 .  We claim these relations force z 
to be 0. For 0 = zk + kz = zij + ijz = (zi + iz) j + i(jz - ;:j) = 
i(Jz - ;:j) since zi + iz 0. However i :j:. 0, and since we are in a 
division ring, it follows that jz - ;:j = 0. But jz + ;:j 0. Thus 2jz = 0, 
and since 2j :j:. 0 we have that z = 0. Going back to the expression for 
z we get 

hence w e T, contradicting w ¢ T. Thus, indeed, w e T. Since w = 
(u - a.)ffJ, u = fJw + a. and so u e T. We have proved that any element 
in D is in T. Since T c D we conclude that D = T; because T is iso­
morphic to the real quaternions we now get that D is isomorphic to the 
division ring of real quaternions. This, however, is just the statement of 
the theorem. 

Problems 

I .  If the division ring D is finite-dimensional, as a vector space, over the 
field F contained in the center of D, prove that D is algebraic over F. 

2 .  Give an example of a field K algebraic over another field F but not 
finite-dimensional over F. 

3. If A is a ring algebraic over a field F and A has no zero divisors prove 
that A is a division ring. 

7.4 Integral Quaternions and the Four-Square Theorem 

In Chapter 3 we considered a certain special class of integral domains 
called Euclidean rings. When the results about this class of rings were 
applied to the ring of Gaussian integers, we obtained, as a consequence, 
the famous result of Fermat that every prime number of the form 4n + l 
is the sum of two squares. 

We shall now consider a particular subring of the quaternions which, in 
all ways except for its lack of commutativity, will look like a Euclidean ring. 
Because of this it will be possible to explicitly characterize all its left-ideals. 
This characterization of the left-ideals will lead us quickly to a proof of the 
classic theorem of Lagrange that every positive integer is a sum of four 
squares. 
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Let Q be the division ring of real quaternions. In Q we now proceed to 
introduce an adjoint operation, *• by making the 

D E FI N ITI O N  For X = ao + !Xli + IX2j + IX3k in Q the arijoint of x, de­
noted by x*, is defined by x* = C4J - IX1 i - IX2j - IX3k. 

LEMMA 7.4.1 The adjoint in Q satisfies 

I .  x** = x ;  
2 .  (()x + yy) *  = ()x* + yy* ;  
3. (xy) * = y*x* ; 

for all x,y in Q and all real (j and y. 

Proof. If X = ao + IXli + IX2j + IX3k then x* = ao - IXli - IX2j - IX3k, 
whence x** = (x*) * = IXo + 1X1i + IX2j + IX3k, proving part I .  

Let x = IX0 + IX1i + 1X2} + IX3k and y = Po + P1i + P2J + P3k be in Q 
and let (j and y be arbitrary real numbers. Thus ()x + yy = (<>1Xo + yp0) + 
(<>1X1 + YP1) i  + (<>1X2 + YP2) }  + (<>1X3 + · yp3)k ; therefore by the definition 
of the *• (<>x + yy) *  = (<>ao + YPo) - (<>lXI + YP1) i  - (<>1X2 + YP2) i -
(<>1X3 + YP3)k = <> (ao - IX1i - 1X2j - 1X3k) + y(Po - P1i - P2i - P3k) = 
()x* + yy* .  This, of course, proves part 2. 

In light of part 2, to prove 3 it  is  enough to do so for a basis of Q over 
the reals. We prove it for the particular basis 1 ,  i,j, k. Now ij = k, hence 
(ij) * = k* = - k  = ji = ( -j) ( - i) = j*i*. Similarly (ik) * = k*i*, 
(jk) * = k*j*. Also W) * = ( - 1 ) *  = - 1  = (i*) 2, and similarly for j 
and k. Since part 3 is true for the basis elements and part 2 holds, 3 is true 
for all linear combinations of the basis elements with real coefficients, 
hence 3 holds for arbitrary x and y in Q. 

D E FI N ITI O N  If x E Q then the norm of x, denoted by N(x) , 1s defined 
by N(x) = xx* . 

Note that if X = ao + !Xli + IX2j + IX3k then N(x) = xx* = (ao + !Xli + 
IX2j + IX3k) (C4J - IX1i - IX2j - IX3k) = C4J2 + IX/ + IX/ + IX/ ; therefore 
N(O) = 0 and N(x) is a positive real number for x =F 0 in Q .  In particular, 
for any real number IX, N(!X) = !X2 . If x =F 0 note that x- 1 = [ I fN(x)]x* . 

LEM MA 7.4.2 For all x,y E Q, N(xy) = N(x) N(y) .  

Proof. By the very definition of norm, N(xy) = (xy) (xy) * ;  by part 3 
of Lemma 7.4. 1 ,  (xy)* = y*x* and so N(xy) = xyy*x* . However, yy* = 
N(y) is a real number, and thereby it is in the center of Q ;  in particular it 
must commute with x*. Consequently N(xy) = x(yy*)x* = (xx*) (yy*) = 
N(x)N(y) .  
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As an immediate consequence of Lemma 7 .4.2 we obtain 

LEM MA 7.4.3 (LAGRANGE IDENTITY) lf ao, txl > tx:z, tx3 and Po, Pt> P:z, p3 
are real numbers then (a.02 + tx1 2  + a/ +  tx/) (P0 2  + P/ + P2 2 + P32) = 
(aoPo - «tPt - a.:zPz - a3p3) 2 + (aoPt + rttPo + rt:zP3 - a3P:z) 2  + 
(aoPz - «tP3 + «zPo + a.3Pt) 2 + (aoP3 + a.tP:z - rxzPt + a.3Po) 2• 

Proof. Of course there is one obvious proof of this result, namely, 
multiply everything out and compare terms. 

However, an easier way both to reconstruct the result at will and, at the 
same time, to prove it, is to notice that the left-hand side is N(x) N(y) 
while the right-hand side is N(xy) where x ao + a.1i + a2

j + a.3k and 
y = Po + P1i + P2

j + P3k. By Lemma 7.4.2, N(x)N(y) = N(xy), ergo 
the Lagrange identity. 

The Lagrange identity says that the sum of four squares times the sum 
of four squares is again, in a very specific way, the sum of four squares. A 
very striking result of Adolf Hurwitz says that if the sum of n squares times 
the sum of n squares is again a sum of n squares, where this last sum has 
terms computed bilinearly from the other two sums, then n = 1 ,  2, 4, or 8. 
There is, in fact, an identity for the product of sums of eight squares but 
it is too long and cumbersome to write down here. 

Now is the appropriate time to introduce the Hurwitz ring of integral 
quaternions. Let { = !(1  + i + j + k) and let 

LEM MA 7.4.4 H is a subring qf Q. lf x E H then x* e H and N(x) zs a 
positive integer for every non;:;ero x in H. 

We leave the proof of Lemma 7.4.4 to the reader. It should offer no 
difficulties. 

In some ways H might appear to be a rather contrived ring. Why use the 
quaternions {? Why not merely consider the more natural ring Q0 = 
{mo + m1i + m

2
j + m3k I mo, m1, m

2
, m3 are integers}?  The answer is that 

Q0 is not large enough, whereas H is, for the key lemma which follows to 
hold in it. But we want this next lemma to be true in the ring at our disposal 
for it allows us to characterize its left-ideals. This, perhaps, indicates why 
we (or rather Hurwitz) chose to work in H rather than in Q0• 

LEMMA 7.4.5 (LEFT-DIVISION ALGORITHM) Let a and b be in H with 
b =1- 0. Then there exist two elements c and d in H such that a cb + d and 
N(d) < N(b) . 
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In the special case in which a is an arbitrary element of H and b is a 
positive integer we have now shown the lemma to be true. 

We go to the general case wherein a and b are arbitrary elements of H 
and b #- 0. By Lemma 7.4.4, n = bb* is a positive integer; thus there exists 
a c e Hsuch that ab* = en +  d1 where N(d1) < N(n) . Thus N(ab* - en) < 
N(n) ; but n = bb* whence we get N(ab* - ebb*) < N(n) , and so 
N((a - cb)b*) < N(n) = N(bb*) .  By Lemma 7.4.2 this reduces to 
N(a - cb) N(b*) < N(b)N(b*) ; since N(b*) > 0 we get N(a - cb) < N(b) . 
Putting d = a - cb we have a = cb + d where N(d) < N(b) . This 
completely proves the lemma. 

As in the commutative case we are able to deduce from Lemma 7.4.5 

LEMMA 7.4.6 Let L be a lift-ideal of H. Then there exists an element u E L 
such that every element in L is a lift-multiple of u;  in other words, there exists 
u E L such that every x E L is of the form x = ru where r E H. 

Proof. If L = (0) there is nothing to prove, merely put u = 0. 
Therefore we may assume that L has nonzero elements. The norms 

of the nonzero elements are positive integers (Lemma 7.4.4) whence there 
is an element u #- 0 in L whose norm is minimal over the nonzero elements 
of L. If x E L, by Lemma 7.4.5, x = cu + d where N(d) < N(u) . However 
d is in L because both x and u, and so cu, are in L which is a left-ideal. 
Thus N(d) = 0 and so d = 0. From this x = cu is a consequence. 

Before we can prove the four-square theorem, which is the goal of this 
section, we need one more lemma, namely 

LEMMA 7.4.7 If a E H then a 1 E H if and only if N(a) = I .  
Proof. If both a and a 1 are in H, then by Lemma 7.4.4 both N(a) 

and N(a- 1 ) are positive integers. However, aa- 1 = I , hence, by Lemma 
7.4.2, N(a)N(a 1 ) = N(aa- 1) = N( l )  = I . This forces N(a) = I . 

On the other hand, if a E H and N(a) = I ,  then aa* = N(a) = 1 and 
so a- 1 = a*. But, by Lemma 7.4.4, since a E H we have that a* E H, 
and so a 1 = a* is also in H. 

We now have determined enough of the structure of H to use it effectively 
to study properties of the integers. We prove the famous classical theorem 
of Lagrange, 

TH EOREM 7.4.1 Every positive integer can be expressed as the sum of squares 
of four integers. 

Proof. Given a positive integer n we claim in the theorem that n = 
x0 2 + x1 2 + x2 2 + x3 2 for four integers x0, x1 , x2, x3 •  Since every integer 
factors into a product of prime numbers, if every prime number were 
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realizable as a sum of four squares, in view of Lagrange's identity (Lemma 
7.4.3) every integer would be expressible as a sum of four squares. We 
have reduced the problem to consider only prime numbers n. Certainly the 
prime number 2 can be written as 1 2 + 1 2 + 02 + 02 as a sum of four 
squares. 

Thus, without loss of generality, we may assume that n is an odd prime 
number. As is customary we denote it by p. 

Consider the quaternions Wp over ]p, the integers mod p ;  Wp = 
{ ao + Ct.l i + Ct.2j + et.3k I ao, Ct.l, Ct.2, Ct.3 E ]p}· wp is a finite ring ; moreover, 
since p i= 2 it is not commutative for ij = -ji i= ji. Thus, by Wedder­
burn's theorem it cannot be a division ring, hence by Problem 1 at the 
end of Section 3.5, it must have a left-ideal which is neither (0) 
nor wp: 

But then the two-sided ideal V in H defined by V = {x0( + x1i + x2j + 
x3k I p divides all of x0, x1 , x2, x3 } cannot be a maximal left-ideal of H, 
since Hf V is isomorphic to WP. (Prove !) (If V were a maximal left-ideal 
in H, HJ V, and so WP, would have no left-ideals other than (0) and 
HJV) . 

Thus there is a left-ideal L of H satisfying : L i= H, L i= V, and L => V. 
By Lemma 7.4.6, tliere is an element u E L such that every element in L is 
a left-multiple of u. Since p E V, p E L, whence p = cu for some c E H. 
Since u ¢ V, c cannot have an inverse in H, otherwise u = c- 1p would be 
in V. Thus N(c) > 1 by Lemma 7.4.7. Since L i= H, u cannot have an 
inverse in H, whence N(u) > 1 .  Since p = cu, p2 = N(p) = N(cu) = 
N(c) N(u) . But N(c) and N(u) are integers, since both c and u are in H, 
both are larger than 1 and both divide p2• The only way this is possible 
is that N(c) = N(u) = p. 

Since u E H, u = moe + mli + m2j + m3k where mo, ml , m2, m3 are in­
tegers ; thus 2u = 2mo( + 2mli + 2m2j + 2m3k = (mo + moi +moj + mok) + 
2ml i + 2m2} + 2m3k = mo + (2ml + mo) i + (2m2 + mo) j + (2m3 + mo)k. 
Therefore N(2u) = mo2 + (2m1 + mo) 2 + (2m2 + m0) 2 + (2m3 + mo) 2. 
But N(2u) = N(2)N(u) = 4p since N(2) = 4 and N(u) = p. We have 
shown that 4p = m0 2 + (2m1 + m0) 2 + (2m2 + mo) 2 + (2m3 + m0) 2 . We 
are almost done. 

To finish the proof we introduce an old trick of Euler's : If 2a = x0 2 + 
x1 2 + x2 

2 + x3 2 where a, x0, x1 , x2 and x3 are integers, then a = Yo 2 + 
y1 

2 + y2 
2 + y3 2 for some integers y0,y1,y2,y3• To see this note that, since 

2a is even, the x's are all even, all odd or two are even and two are odd. 
At any rate in all three cases we can renumber the x's and pair them in 
such a way that 

Xo + xl 
Yo  Xo - xl 

YI = ' 
2 

and 
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are all integers. But 

Yo 2 + Yt 2 + Y2 
2 + Y3 2 

' 

= (Xo  X1r +   X1r + (X2  X3r +   X3r 
= t{x/ + Xt 2 + x2 2 + x3 2) 

= t(2a) 

= a. 

Since 4p is a sum of four squares, by the remark just made 2p also is ; 
since 2p is a sum of four squares, p also must be such a sum. Thus p = 
ao 2 + a1 2 + a2 2 

+ a3 2 for some integers ao. a1 , a2, a3 and Lagrange's 
theorem is established. 

This theorem itself is the starting point of a large research area in number 
theory, the so-called Waring problem. This asks if every integer can be written 
as a sum of a fixed number of kth powers. For instance it can be shown 
that every integer is a sum of nine cubes, nineteen fourth powers, etc. 
The Waring problem was shown to have an affirmative answer, in this 
century, by the great mathematician Hilbert. 

Problems 

I . Prove Lemma 7.4.4. 

2. Find all the elements a in Q0 such that a 1 is  also in Q0• 

3. Prove that there are exactly 24 elements a in H such that a - 1 is also 
in H. Determine all of them. 

4. Give an example of an a and b, b =F 0, in Q0 such that it is impossible 
to find c and d in Q0 satisfYing a = cb + d where N(d) < N (b) . 

5. Prove that if a E H then there exist integers a:, p such that a 2  + 
a:a 

+ 
p = 0. 

6. Prove that there is a positive integer which cannot be written as the 
sum of three squares. 

*7. Exhibit an infinite number of positive integers which cannot be written 
as the sum of three squares. 

Supplementary Reading 

For a deeper discussion of finite fields : ALBERT, A. A., Fundamental Concepts of Higher 

Algebra. Chicago : University of Chicago Press, 1956. 





Index 

ABEL, 237, 252, 256 
Abelian group, 28 

structure of finite, 109, 204 
structure of finitely generated, 203 

Adjoint(s), 3 18, 32 1 
Hermitian, 3 18,  3 1 9, 322, 336, 339, 

340 
quaternions, 372 

Adjunction of element to a field, 2 1 0 
ALBERT, 356, 377 
Algebra, 262 

algebraic division, 368 
of all n x n matrices over F, 278, 

279 
Boolean, 9, 1 30 
fundamental theorem of, 337 
linear, 260 
of linear transformations, 261 

Algebraic of degree n ,  2 1 2, 2 1 3  
Algebraic division algebra, 368 
Algebraic element, 209, 2 1 0  
Algebraic extension, 2 1 3  
Algebraic integer, 2 1 5  
Algebraic number(s), 2 1 4-2 1 6  
Algorithm 

division, 1 55 
Euclidean, 1 8  
left-division, 373 

ALPERIN, 1 19 

Alternating group, 80, 256 
Angle, trisecting, 230 
Annihilator of a subspace, 1 88 
ARTIN, 237, 259, 378 
Associates, 146, 162 
Associative law(s), 1 4, 23, 27,  28, 

36 
Associative ring, 1 2 1  
Automorphism(s) 

of a cyclic group, 66, 67 
of the field, 237 
fixed field of a group of, 238 
group of inner, 68 
group of outer, 70 
inner, 68 
of K relative to F, 239 

Axiom of choice, 1 38, 367 

Basis(es), 1 77, 180 
dual, 1 87 
orthonormal, 196, 338 

Bessel inequality, 200 
Binary relation, I I  
BIRKHOFF, 2 5  
BIRKHOFF, G .  D . ,  362 
Boolean algebra, 9, 1 30 
Boolean ring, 1 30 
Brauer-Cartan-Hua theorem, 368 
BURNSIDE, I I 9 

379 





Difference set, 5 
Dihedral group, 54, 8 1  
Dimension, 1 8 1  
DIOPHANTOS, 356 
Direct product of groups, 103 

external, 1 04, 105 
internal, I 06 

Direct sum 
external, 1 75 
internal, 1 74, 1 75 
of modules, 202 

Disjoint sets, 4 
mutually, 5 

Distributive law(s), 23, 1 2 1  
Divisibility, 1 44, 145 
Division algebra, algebraic, 368 
Division algorithm for polynomials, 155 
Division ring, 126 

finite, 360 
Divisor (s), 1 8  

elementary, 308, 309, 3 1 0  
greatest common, 18, 1 45 

Domain 
integral, 1 26 
unique factorization, 1 63 

Dot product, 192 
Double coset, 49, 97, 98 
Dual basis, 1 87 
Dual, second, 188 
Dual space, 184, 187 
Duplicating the cube, 2 3 1  

Eigenvalue, 270 
Eisenstein criterion, 160, 240, 249 
Element(s) 

algebraic, 209, 21 0 
conjugate, 83 
identity, 2 7, 28 
order of, 43 
order of (in a module), 206 
period of, 43 
prime, 1 46, 1 63 
separable, 236 

Elementary divisors of a linear trans­
formation, 308, 309, 3 1 0  

Elementary symmetric functions, 242, 
243 

Empty set, 2 
Equality 

of mappings, 1 3  
of sets, 2 

Equation(s) 
class, 85, 361 
linear homogeneous, 189, 1 90 
rank of system of linear, 190 
secular, 332 

Equivalence class, 7 
Equivalence relation, 6 
Euclidean algorithm, 1 8  
Euclidean rings, 1 43, 371  
EuLER, 43, 356, 376 
Euler criterion, 360 

Index 381 
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Residue, quadratic, 1 16, 360 
Resolution, spectral, 350 
Restriction of mapping, 1 7  
Right coset, 40 
Right ideal, 136 
Right invertible, 264 
Ring(s), 120 

associative, 1 2 1  
Boolean, 9, 1 30 
commutative, 1 2 1  
division, 126, 360 
Euclidean, 1 43, 371  
homomorphisms of, 1 3 1  
isomorphisms of, 133 
of linear transformations, 261 
nonassocia tive, 1 2 1  
polynomial, 1 6 1  
of polynomials, 1 6 1  
o f  polynomials in n-variables, 1 62 
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of all one-to-one mappings, 1 5  
o f  all subsets, 12  
difference, 5 
disjoint, 4 
empty, 2 
image under mapping, 1 2  
index, 5 
infinite, I 7 
of integers modulo n, 22, 23 
intersection of, 3, 4 
null, 2 
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higher commutator, 253 
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Sylow's theorem, 62, 9 1- 1 0 1  
Sylvester's law o f  inertia, 352 
Symmetric difference, 9 
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243 
Symmetric group(s), 28, 75, 24 1 ,  253-

257, 284 
Symmetric matrix, 3 1 7  
Symmetric polynomial, 243, 244 
Symmetric rational functions, 241 

field of, 241 
Symmetry of relations, 6 
System, multiplicative, 1 42 
System of linear equations, 1 89, 1 90 

determinant of, 330 
rank of, 1 90 

Theorem 
of algebra, fundamental, 337 
Brauer-Cartan-Hua, 368 
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Jacobson's, 367 
Lagrange's, 40, 356, 375 
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of e, 2 1 6  
of n, 2 1 6  
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algebra of linear, 261 
Hermitian linear, 336, 341 
invariants of nilpotent linear, 296 
invertible linear, 264 
linear, 26 1 
nilpotent linear, 268, 292, 294 
nonnegative linear, 345 
normal linear, 336, 342 
range of linear, 266 
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singular linear, 264 
unitary, 336, 338 

Transitivity of relations, 6 
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Transpositions, 78 
Triangle inequality, 1 99 
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Trisecting an angle, 230 
Trivial subgroups, 38 

Union of sets, 3 
Unique factorization domain, 163 
Unique factorization theorem, 20, 1 48 
Unit in matrix algebra, 279 
Unit in ring, 1 45 
Unital R-module, 201 
Unitary transformation, 336, 338 
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VAN DER WAERDEN, 259 
VANDIVER, 362 
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homomorphism of, 1 73 
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real, 1 9 1  
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Waring problem, 377 
WEDDERBURN, 355, 356, 360 
Wedderburn's theorem, 355, 360, 376 
WEISNER, 259 
WrELANDT, 92 
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ZARISKI, 1 69 
Zero-divisor, 125 
Zero-matrix, 279 

1 5-gon, regular, 232 
9-gon, regular, 232 
1 7-gon, regular, 232 
2 x 2 rational matrices, ring of, 1 23 


