


THIRD Eo IT ION 

IAN STEWART 
Professor 

Mathematics Institute 
University of Warwick, 

Coventry, United Kingdom 

~ 
CHAPMAN & HALL/CRC 

A CRC Press Comfany 
l Boca Ratan London New York Washington, D. C. 



Library of Congress Cataloging-in-Publication Data 

Stewart, lan, 1945-
Galois theory I Ian N. Stewart.-3rd ed. 

p. cm. - (Chapman & Hall/CRC mathematics) 
Includes bibliographical references and index. 

· 

ISBN 1-58488-393-6 (alk. paper) 
1. Galois theory. I. Title. II. Series. 

QA214.S74 2003 
512'.3-dc21 2003048995 

This book contains information obtained from authentic and highly regarded sources. Reprinted material 
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable 

efforts have been made to publish reliable data and information, but the author and the publisher cannot 

assume responsibility for the validity of all materials or for the consequences of their use. 

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic 
or mechanical, including photocopying, microfilming, and recording, or by any information storage or 
retrieval system, without prior permission in writing from the publisher. 

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for 
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC 
for such copying. 

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation, without intent to infringe. 

Visit the CRC Press Web site at www.crcpress.com 

© 2004 by Chapman & Hall/CRC 

No claim to original U.S. Government works 

International Standard Book Number 1-58488-393-6 
Library of Congress Card Number 2003048995 

Printed in the United States of America 2 3 4 5 6 7 8 9 0 
Printed on acid-free paper 



Contents 

Preface to the First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Preface to the Second Edition • . • • . . • . . . • . . • . . • • • • • • • . . • • • • . . . . . . . • . . . • . . ix 

Preface to the Third Edition • . . . • . . • . . . . . . . . . • . . . • • • • • . • • • . . • • . . • • . • • • • • xi 

Illustration Acknowledgments • • • . . • • . . . . . . . . . . . . • . • . . . . • . . . . . . . . . . . • • • • xv 

Historical Introduction . • . • • • • . • . • . • • . . . . . • • . • • • • • • • • • • . • • . . . . . . • • . . • • . • xvii 

1 Classical Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

2 The Fundamental Theorem of Algebra •• . • . . . • . . .  � . . . . . . . . . . ••• . . • . •• 17 

3 Factorization of Polynomials . •• . • . • . • . . ••• . • . . • . . . . . . . . . . •• . . . •• . . . . .  31 

4 Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 49 

5 Simple Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

6 The Degree of an Extension . •• . •••••••••• . • . . •• . . ••••• . ••• . . •• . . . . . . .  67 

7 Ruler-and-Compass Constructions • . • . •• . . . . . •• . . • . . •••••••••• . •• . . •• 75 

8 The Idea Behind Galois Theory •• . •• . . . . . •• . • . • . •••••• . • • . . . . . . . . . . • .  85 

9 Normality and Separability . . . . • . . • . . . • . . ••••• . . • . . . . . . •• . . •• . ••••••• 107 

10 Counting Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

11  Field Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

12 The Galois Correspondence • • . . . . . . . . . . . . . . . . . . . • . . • . . . • . . • . . . • • . • . • 133 

13 A Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

14 Solubility and Simplicity . • . . . . . . • . . . . . . . . . . . . . . . • • • . • . . • . . . • . . • . . . • • 143 

15 Solution by Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 



Vl 

16 Abstract Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 

17 Abstract Field Extensions . • • • . • • . • . • . • . • . . • • • . • . . . . . . • . • • . • . . • • . • . • . 177 

18 The General Polynolllial. . • • • • • • • • • • • • • • • . • . • . • . • • • • . • • • • • • • • . . . • . • . • 191 

19 Regular Polygons • . • • . • . . . • . • • • . • • • • • • • . • . . . • . . • • • • • . • . . • • • . . . • . • • • • 209 

20 Finite Fields • • . . . . • • • • . . . . . • . . • • . • • . • • • • • . . . . • . • • • . • • . • . . . • • . . . . . . . • 227 

21 Circle Division . . • . • • . . . . . . . • . • . . . . • • • . • . • • . • • • . • . . • . • • . . • . . • . • • . • • . . 233 

22 Calculating Galois Groups . • . . . . . • • • . . . . • • • . • • . . . . . • . • • • . • • . • . • . • . . . .  251 

23 Algebraically Closed Fields . . . . • • . • • . • • • • • . . • . . . • • • . • • . • . • . . . • • . • . . . • 261 

24 Transcendental Numbers . . . . • . . • . • . • . • . • • • . . . . • . . . . • • . • • • • • . • . . . . • • •  269 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ·-· . . .  279 

Index • • • . • . . • • • . • • . . . . . • • . . . . . • • • • . . . . . • • • • . . . . . . . • • . . . . . • • . • . • • . . • • • • . 283 



Preface to the First Edition 

Following normal custom, the prefaces to the first and second editions are included in full. 

However, some passages are misleading because of changes made in the third edition. 

These passages are enclosed in square brackets. 

Galois theory is a showpiece of mathematical unification, bringing together several 
different branches of the subject and creating a powerful machine for the study of 
problems of considerable historical and mathematical importance. This book is an 
attempt to present the theory in such a light, and in a manner suitable for second- and 
third-year undergraduates. 

The central theme is the application of the Galois group to the quintic eq'Qation. As 
well as the traditional approach by way of the "general" polynomial equation I have 
included a direct approach which demonstrates the insolubility by radicals of a specific 
quintic polynomial with integer coefficients, which I feel is a more convincing result. 
[The abstract Galois theory is set in the context of arbitrary field extensions, rather 
than just subfields of the complex numbers; the resulting gain in generality more than 
compensates for the extra work required.] Other topics covered are the problems of 
duplicating the cube, trisecting the angle, and squaring the circle; the construction of 
regular polygons; the solution of cubic and quartic equations; the structure of finite 
fields; and the "fundamental theorem of algbra." [The last is proved by almost purely 
algebraic methods, and provides an interesting application of Sylow theory.] 

In order to make the treatment as self-contained as possible, and to bring together 
all the relevant material in a single volume, I have included several digressions. The 
most important of these is a proof of the transcendence of 1T, which all mathematicians 
should see at least once in their lives. There is a discussion of Fermat numbers to 
emphasize that the problem of regular polygons, although reduced to a simple-looking 
question in number theory, is by no means completely solved. A construction for the 
regular 1 7  -gon is given, on the grounds that such an unintuitive result requires more 

. than just an existence proof. 
Much of the motivation for the subject is historical, and I have taken the opportunity 

to weave histori�al comments into the body of the book where appropriate. There are 
two sections of purely historical matter: a short sketch of the history of polynomials ,  
and a biography of Evariste Galois .  The latt�r is culled from several sources (listed in 
the references) [of which by far the most useful and accurate is that of Dupuy ( 1 896)]. 

I have tried to give plenty of examples in the text to illustrate the general theory, 
and have devoted one chapter to a detailed study of the Galois group of a particular 
field extension. [There are nearly two hundred exercises, with twenty harder ones for 
the more advanced student.] 
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Many people have helped� advised, or otherwise influenced me in writing this 
book, and I am suitably grateful to them. In particular my thanks are due to Rolph 
Schwarzenberger and David Tall, who read successive drafts of the manuscript; to 
Len Bulmer and the staff of the University of Warwick Library for locating documents 
relevant to the historical aspects of the subject; to Ronnie Brown for editorial guidance 
and much good advice; and to the referee who pointed out a multitude of sins of 
omission and commission on my part� whose name I fear will forever remain a 
mystery to me� owing to the system of secrecy without which referees would be in 
continual danger of violent retribution from indignant authors. 

< < 

University of Warwick 
Coventry 
Aprill972 

Ian Stewart 



Preface to the Second Edition 

It is sixteen years since the first edition of Galois Theory appeared. Classical Galois 
theory is not the kind of subject that undergoes tremendous revolutions, and a large 
part of the first edition remains intact in this, its successor. Nevertheless, a certain 
thinning at the temples and creaking of the joints have become apparent, and some 
rejuvenation is in order. 

The main changes in this edition are the addition of an [introductory] overview and 
a chapter on the calculation of Galois groups. I have also included extra motivating 
examples and modified the exercises. Known misprints have been corrected, but since 
this edition has been completely reset there will no doubt be some new ones to tax 
the reader's ingenuity (and patience)� The historical section has been modified in the 
light of new findings, and the publisher has kindly permitted me to do what I wanted 
to do in the first edition, namely, include photographs from Galois's manuscripts, and 
other historical illustrations. Some of the mathematical proofs have been changed to 
improve their clarity, and in a few cases their correctness .  Some material that I now 
consider superfluous has been deleted. I have tried to preserve the informal style of 
the original, which for many people was the book's greatest virtue. 

The new version has benefited from advice from several quarters. Lists of typo
graphical and mathematical errors have been sent to me by Stephen Barber, Owen 
Brison, Bob Coates, Philip Higgins, David Holden, Frans Oort, Miles Reid, and C. F. 
Wright. The Open University used the first edition as the basis for course M333, and 
several members of its Mathematics Department have passed on to me the lessons 
that were learned as a result. I record for posterity my favourite example of OU wit, 
occasioned by a mistake in the index: "226: Stephanie D. xix." Should refer to page 
xxi (the courseroftrue love never does run smooth, nor doe's it get indexed correctly). 

I am grateful to them, and to their students, who acted as unwitting guinea pigs; 
take heart, for your squeaks have not gone unheeded. 

·University of Warwick 
Coventry 
December 1988 

Ian Stewart 





Preface to the Third Edition 

Galois Theory was the first textbook I ever wrote, although it was my third book, 
following a set of research-level lecture notes and a puzzle book for children. When 
I wrote it, I was an algebraist, and a closet Bourbakiste to boot; that is, I followed 
the fashion of the time which favoured generality and abstraction. For the uninitiated, 
Nicolas Bourbaki is the pseudonym of a group of mathematicians - mostly French, 
mostly young - who tidied up the mathematics of the mid-20th century in a lengthy 
series of books. Their guiding principle was never to prove a theorem if it could be 
deduced as a special case of a more general theorem. To study planar geometry, work 
in n dimensions and then let n = 2. 

Fashion� change, and nowadays the presentation of mathematics has veered back 
toward specific examples and a preference for ideas that are more concrete, more 
down-to-earth. Though what counts as concrete today would have astonished the 
mathematicians of the 19th century to whom the general polynomial over the complex 
numbers was the height of abstraction, to us it is a single concrete example. 

As I write, Galois Theory has been in print for 30 years. With a lick of paint and a 
few running repairs, there is no great reason why it could not go on largely unchanged 
for another 30 years. "If it ain 't broke, don't fix it." But I have convinced myself that 
psychologically it is broke, even if its logical mechanism is as bright and shiny as ever. 
In short, the time has come to bring the mathematical setting into line with the changes 
that have taken place in undergraduate education since 1 973. For this reason, the story 
now starts with polynomials over the complex numbers, and the central quest is to 
understand when such polynomials have solutions that can be expressed by radicals
algebraic expressions involving nothing more sophisticated than nth roots. 

Only after.this tale is complete is any serious attempt made to generalize the theory 
to arbitrary fields, and to exploit the language and thought-patterns of rings, ideals, 
and modules. There is nothing wrong with abstraction and generality - they are 
still cornerstones of the mathematical enterprise. But "abstract" is a verb as well as 
an adjective: general ideas should be abstracted from something, not conjured from 
thin air. Abstraction in this sense is highly non-Bourbakiste, best summed up by the 
counter-slogan "let 2 = n ." To do that we have to start with case 2, and fight our way 
through it using anything that comes to hand, however clumsy, before_ refining our 

. methods into an elegant but ethereal technique which - without such preparation -
lets us prove case n without having any idea of what the proof does, how it works, or 
where it came from. 

It was with some trepidation that I undertook to fix my non-broke book. The process 
turned out to be rather like trying to reassemble a jigsaw puzzle to create a different 
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picture. Many pieces had to be trimmed or dumped in the wastebasket, many new 
pieces had to be cut, discarded pieces had to be rescued and reinserted. Eventually 
order re-emerged from the chaos - or so I believe. 

Along the way I made one change that may raise a few eyebrows. I have spent 
much of my career telling students that written mathematics should have punctuation 
as well as symbols. If a symbol or a formula would be followed by a comma if it 
were replaced by a word or phrase, then it should be followed by a comma; however 
strange the formula then looks. 

I still think that punctuation is essential for formulas in the main body of the text. 
If the formula is t2 + 1 ,  say, then it should have its terminating comma. But I have 
come to the conclusion that eliminating visual junk from the printed page is more 
important than punctuatory pedantry, so that when the same formula is displayed, for 
example 

then it looks silly if the comma is included, like this, 

t2 + 1 ,  

and everything is much cleaner and less ambiguous without punctuation. 
Purists will hate this, though many of them would not have noticed had I not pointed 

it out here. Until recently, I would have agreed. But I think it is time we accepted that 
the act of displaying a formula equips it with implicit (invisible) punctuation. This is 
the 2 1 st century, and typography has moved on. 

Other things have also moved on, and instant gratification is one of them. Modern 
audiences want to see some payoff today, if not last week. So I have placed the 
more accessible applications, such as the Three Geometric Problems of Antiquity, 
impossible geometric constructions, as early as possible. The price of doing this is 
that other material is necessarily delayed, and elegance is occasionally sacrificed for 
the sake of transparency. 

I have preserved and slightly extended what was undoubtedly the most popular 
feature of the book, a wealth of historical anecdote and storytelling, with the romantic 
tale of Evariste Galois and his fatal duel as its centrepiece. "Pistols at 25 paces!" Bang! 
Even though the tale has been over-romanticized by many writers, as Rothm�m ( 1982, 
Internet) has convincingly demonstrated, the true story retains elements of high drama. 
I have also added some of the more technical history, such as V�ndermonde' s analysis 
of 1 1th roots of unity, to aid motivation. I have rearranged the mathematics to put 
the concrete before the abstract, but I have not omitted anything of substance. I have 
invented new - or, at least, barely shop-soiled - proofs for old theorems when I 
felt that the traditional proofs were obscure or needlessly indirect. And I have revived 
some classical topics, such as the nontrivial. expression of roots of unity by radicals, 
having felt for 30 years that .iff is cheating. 

The climax of the book remains the proof that the quintic equation cannot be solved 
by radicals. In fact, you will now be subjected to four proofs, of varying generality. 
There is a short, snappy proof that the general polynomial equation of degree n > 5 
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cannot be solved by radicals that are rational functions of the coefficients. An optional 
section proving the Theorem on Natural Irrationalities, which was the big advance 
made by Abel in 1 824, removes this restriction, and so provides the second proof. 
Lagrange came within a whisker of proving all of the above in 1770-177 1, and 
Ruffini probably did prove it in 1 799, but with the restriction to radicals that are 
rational functions of the coefficients. He seems to have thought that he had proved 
something stronger, which confused the issue. The proof given here has the merit of 
making the role of field automorphisms and the symmetric and alternating groups 
very clear, with hardly any fuss, and it could profitably be included in any elementary 
group theory course as an application of permutations and quotient groups. Proof 
4 is a longer, abstract proof of the same fact, and this time the assumption that the 
radicals can be expressed as rational functions of the coefficients is irrelevant to the 
proof. In between is the third proof, which shows that a specific quintic equation, 
x5 - 6x 3 = 0, cannot be solved by radicals. This is the strongest statement of the 
four, and by far the most convincing; it takes the full-blooded Galois Theory to prove 
it. 

The sole remaining tasks in this preface are to thank Chapman and Hall/CRC 
Press for badgering me into preparing a revised edition and persisting for "several 
years 'Until I caved in, and for putting the whole book into Ib-TEX so that there was a 
faint chance that I might complete the task. And, as always, to thank careful readers, 
who for 30 years have sent in comments, lists of mistakes, and suggestions for new 
materiaL Two in particular deserve special mention. George Bergman suggested many 
improvements to the mathematical proofs, as well as pointing out typographical errors. 
Tom Brissenden sent a large file of English translations of documents related to Galois. 
Both have had a significant influence on this edit� on. 

University of Wmwick 
Coventry 
April 2003 

Ian Stewart 
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Historical Introduction 

Mathematics has a rich history, going back at least 5000 years. Very few sub
jects still make use of ideas that are as old as that, but in mathematics, important 
discoveries have lasting value. The latest research almost certainly makes use of 
theorems that were published last year, but it may also use results first discovered by 
Archimedes, or by some unknown Babylonian mathematician, astronomer, or priest. 
For example, ever since Archimedes proved (around 250 BC) that the volume of a 
sphere is what we would now write as �1rr3 , that discovery has been available to 
any mathematician whose research involves spheres. Although there are revolutions 
in mathematics, they are usually changes of viewpoint or philosophy; earlier results 
do not change - although the hypotheses needed to prove them may. In fact, there 
is a word in mathematics for previous results that are later changed: they are called 
Hmistakes." 

The history of Galois theory is unusually interesting. It certainly goes back to 
1 600 BC, where among the mud-brick buildings of exotic Babylon, some priest or 
mathematician worked out how to solve a quadratic equation, and they or their students 
inscribed it in cuneiform on a clay tablet. Some such tablets survive to this day, along 
with others ranging from tax accounts to observations of the motion of the planet 
Jupiter, Figure 1 .  

Adding to this rich historical brew, the problems that Galois theory solves have an 
intrinsic fascination - squaring the circle, duplicating the cube, trisecting the angle, 
constructing the regular 17 -sided polygon, solving the quintic equation. If the hairs 
on your neck do not prickle at the very mention of these age-old puzzles, you need 
to have your mathematical sensitivities sharpened. 

If those were not enough, Galois himself was a colourful and tragic figure - a 
youthful genius, one of the thirty or so greatest mathematicians who have ever lived, 
but also a political revolutionary during one of the most turbulent periods in the 
history of France. At the age of 20 he was killed in a duel, ostensibly over a woman 
and quite possibly with a close friend, and his work was virtually lost to the world; 
only some smart thinking by Joseph Liouvillerescued it. Galois's story is one of the 
most memorable among the lives of the great mathematicians, even when the more 
excessive exaggerations and myths are excised. 

Our tale, therefore, has two heros: a mathematical one, the humble polynomial 
equation, and a human one, the tragic genius. We take them in turn. 
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Figure 1 :  A Babylonian clay tablet recording the motion of Jupiter. 

Polynomial Equations 
A Babylonian clay tablet from about 1 600 BC poses arithmetical problems that 

reduce to the solution of quadratic equations (Midonick, 1965, p. 48). The tablet 
also provides firm evidence that the Babylonians possessed general methods for 
solving quadratics, although they had no algebraic notation with which to express 
their solution. Babylonian notation for numbers was in base 60, so that (when tran
scribed into modem form) the symbols 7,4;3, 1 1  denote the number 7 x 602 4 x 

60 + 3 x 60-1  + 1 1  x 60-2 = 25440}��· In 1 930 the historian of science Otto 
Neugebauer announced that some of the most ·ancient Babylonian problem tablets 
contained methods for solving quadratics . For instance, one tablet contains this prob
lem: find the side of a square given that the area minus the side is 14,30. Bearing in 
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mind that 14,30 = 870 in decimal notation, we can formulate this problem as the 
quadratic equation 

x2 - x = 870 

The Babylonian solution reads: 

Take half of 1 ,  which is 0;30, and multiply 0;30 by 0;30, which is 
0; 15 .  Add this to 14,30 to get 14,30; 15 .  This is the square of29;30. Now 
add 0;30 to 29;30. The result is 30, the side of the square. 

Although this description applies to one specific equation, it is laid out so that similar 
reasoning can be applied in greater generality, and this was clearly the Babylonian 
scribe's intention. The method is the familiar procedure of completing the square, 
which nowadays leads to the usual formula for the solution of a quadratic. See Joseph 
(2000) for more on Babylonian mathematics. 

The ancient Greeks in effect solved quadratics by geometric constructions, but 
there is no sign of an algebraic formulation until at least AD 100 (Bourbaki, 1 969, 
p. 92). The Greeks also possessed methods for solving cubic equations that involved 
the points of intersection of conics. Again, algebraic solutions of the cubic were 
unknown, and in 1494 Luca Pacioli ended his Summa di Arithmetica (Figure 2) with 
the remark that (in his archaic notation) the solution of the equations x3 + mx = n 
and x3 n = mx was as impossible at the existing state of knowledge as squaring 
the circle. 

This state of ignorance was soon to change, as new knowledge from the Middle and 
Far East swept across Europe, and the Christian Church's stranglehold on intellectual 
innovation began to weaken. The Renaissance mathematicians at Bologna discovered 
that the solution of the cubic can be reduced to that of three basic types : x3 + px = 
q ,  x3 = px q ,  and x3 + q = px. They were forced to distinguish these cases 
because they did not recognize the existence of negative numbers. It is thought, 
on good authority (Bortolotti, 1925), that Scipio del Ferro solved all three types; 
he certainly passed on his method for one type to a student, Antonio Fior. News of 
the solution leaked out, and others were encouraged to try their hand. Solutions for 
the cubic equation were rediscovered by Niccolo Fontana (nicknamed Tartaglia, "The 
Stammerer," Figure 3) in 1535. 

One of the more charming customs of the period was the public mathematical con
test, in which mathematicians engaged in mental duels using computational expertise 
as their weapons. Mathematics was a kind of performance art. Fontana demonstrated 
his methods in a public competition with Fior, but refused to reveal the details. Finally, 
he was persuaded to tell them to the physician Girolamo Cardano, having first sworn 
him to secrecy. Cardano, the "gambling scholar," was a mixture of genius and rogue, 
and when hisArs Magna (Figure 4) appeared in 1 545, it contained a complete discus
sion of Fontana's solution. Although Cardano claimed motives of the highest order 
(see the modem translation of his The Book of My Life, 1 93 1  ) , and fully acknowledged 
Fontana as the discoverer, Fontana was justifiably annoyed. In the ensuing wrangle, 
the history of the discovery became public knowledge. 
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Figure 2: A page from Pacioli's Summa di Arithmetica. 

The Ars Magna also contained a method, due to Ludovico Ferrari, for solving the 
quartic equation by reducing it to a cubic. Ferrari was one of Cardano' s students, 
so presumably he had given permission for his work to be published . . .  or perhaps a 
student's permission was not needed. All the formulas discovered had one striking 
property, which can be illustrated by Fontana's solution x3 + p x = q: 

3 q M.p3 q2 3 q M· 3 q2 x= - +  - + - + 3 -- - + -

2 27 4 2 27 4 

This expression, usually called Cardano's formula because he was the first to publish 
it, is built up from the coefficients p and q by repeated addition, subtraction, multi
plication, division, and - crucially - extraction of roots. Such expressions became 
known as radicals. 

Since all equations of degree <4 were now solved by radicals, it was natural to 
ask how to solve the quintic equation by radicals. Ehrenfried Waiter von Tschirnhaus 
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Figure 3: Niccolo Fontana (Tartaglia), who discovered how to solve cubic 
equations. 

claimed a solution in 1 683, but Gottfried Wilhelm Leibniz correctly pointed out that it 
was fallacious. Leonhard Euler failed to solve the quintic, but found new methods for 
the quartic, as did Etienne Bezout in 1 765. Joseph-Louis Lagrange took a major step 

. forward in his magnum opus Rejlexions sur la Resolution Algebrique des Equations 
of 1770-177 1 ,  when he unified the separate tricks used for the equations of degree 
<4. He showed that they all depend on finding functions of the roots of the equation 
that are unchanged by certain permutations of those roots, and he showed that this 
approach fails when it is tried on the quintic. It did not prove that the quintic is 
insoluble by radicals, because other methods might succeed where this particular one 
had not. But the failure of such a general method was, to say the least, suspicious. 

A general feeling that the quintic could not be solved by radicals was now in the air. 
In 1799 Paolo Ruffini published a two-volume book Teoria Generale delle Equazioni 
whose 5 16  pages constituted an attempt to prove the insolubility of the quintic. Tignol 
( 1988) describes the history, saying that "Ruffini 's proof was received with scepticism 
in the mathematical community." The length and complexity of the proof seem to have 
been the main stumbling block; at any rate, no coherent criticisms emerged. In 1 8 10 
Ruffini had another go, submitting a long paper about quintics to the French Academy; 
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Figure 4 :  Title page of Cardano's Ars Magna. 

the paper was rejected on the grounds that the referees could not spare the time to 
check it. In 1 8 1 3  he published yet another version of his impossibility proof. The 
paper appeared in an obscure journal, with several gaps in the proof (Bourbaki, 1969, 
p. 103). The most significant omission was to assume without proof that all radicals 
involved must be rational functions of the roots (see Section 8. 7). Nonetheless, Ruffini 
had made a big step forward, even though it was not appreciated at the time. 

As far as the mathematical community of the period was concerned, the question 
was finally settled by Niels Henrik Abel in 1 824, who proved conclusively that the 
general quintic equation is insoluble by radicals. In particular, he filled in the big gap 
in Ruffini's work. But Abel's proof was unnecessarily lengthy and contained a minor 
error, which, fortunately, did not invalidate the method. In 1 879 Leopold Kronecker 
published a simple, rigorous proof that tidied up Abel' s  ideas. 
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The "general" quintic is therefore insoluble by radicals, but special quintic equa
tions might still be soluble. Some are; see Section 1 .4. Indeed, for all that Abel's meth
ods could prove, every particular quintic equation might be soluble, with a special 
formula for each equation. So a new problem now arose: to decide whether anfpar
ticular equation can be solved by radicals. Abel was working on this question just 
before he died of tuberculosis in 1 829. 

In 1 832 a young Frenchman, Evariste Galois, was killed in a duel. He had for some 
time sought recognition for his mathematical theories, submitting three memoirs to 
the Academy of Sciences in Paris. They were all rejected, and his work appeared 
to be lost to the mathematical world. Then, on 4 July 1 843, Liouville addressed the 
Academy. He opened with these words : 

I hope to interest the Academy in announcing that among the papers of 
Evariste Galois I have found a solution, as precise as it is profound, of this 
beautiful problem: whether or not there exists a solution by radicals . . .  

The Life of Galois 

The most accessible account of Galois's troubled life, Bell ( 1965), is also one 
of the less reliable, and in particular seriously distorts the events surrounding his 
death. The best source I know is Rothman ( 1982) and its more recent revision on 
the Web (Rothman, Internet). The account given here is by no means exhaustive, and 
Rothman' s website is the best place to start from if you want to know more. 

Evariste Galois (Figure 5) was born at Bourg-la-Reine near Paris on 25 October 
1 8 1 1 .  His father, Nicolas-Gabriel Galois, was a Republican (Kollros, 1949); that is, 
he favoured the abolition of the monarchy. He was head of the village liberal party, 
and after the return to the throne of Louis XVTII in 1 8 14, Nicolas became town mayor. 
Evariste's mother, Adelaide-Marie (nee Demante), was the daughter of a jurisconsult, 
a legal expert who gives opinions about cases brought before him. She was a fluent 
reader of Latin, thanks to a solid education in religion and the classics. 

For the first 12  years of his life, Galois was educated by his mother, who passed on 
to him a thorough grounding in the classics, and his childhood appears. to have been 
a happy one. At the age of 10  he was offered a place at the College of Reims, but 
his mother preferred to keep him at home. In October 1 823 he entered a preparatory 
school, the College de Louis-le-Grand. There he got his first taste of revolutionary 
politics :  during his first term the students rebelled and refused to chant in chapel. He 
also witnessed heavy-handed retribution, for a hundred of the students were expelled 
for their disobedience. 

Galois performed well during his first 2 years at school, obtaining first prize in 
Latin, but then boredom set in. He was made to repeat the next year's classes, but 
predictably this just made things worse. During this period, probably as refuge from 
the tedium, Galois began to take a serious interest in mathematics .  He came across a 
copy of Adrien-Marie Legendre's Elements de Geometrie, a classic text which broke 

. with the Euclidean tradition of school geometry. According to Bell (1965) he read it 
"like a novel," and mastered it in one reading - but Bell is prone to exaggeration. 
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Figure 5:  Portrait of Evariste Galois drawn from memory by his brother Alfred, 
1 848. 

Whatever the truth here, the school algebra texts certainly could not compete with 
Legendre's masterpiece as far as Galois was concerned, and he turned instead to the 
original memoirs ofLagrange and Abel. At the age of 1 5  he was reading material in
tended only for professional mathematicians. But his class work remained uninspired, 
and he seems to have lost all interest in it. His rhetoric teachers were particularly unim
pressed by his attitude, and he was thought to be affecting ambition and originality, 
and even his own family considered him rather strange at that time. 

Galois did make life very difficult for himself. For a start, he was an untidy worker, 
as can be seen from some of his manuscripts (Bourgne and Azra, 1962). Worse, he 
tended to work in his head, committing only the results of his deliberations to pa
per. His mathematics teacher, Vernier, begged him to work systematically, no doubt 
so that ordinary mortals could follow his reasoning, but Galois ignored this advice. 
Without adequate preparation and a year early, he took the competitive examination 
for entrance to the Ecole Polytechnique. A pass would have ensured a successful 
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mathematical career, for the Polytechnique was the breeding ground of French math
ematics. Of course, he failed. Two decades later, Olry Terquem (editor of the journal 
Nouvelles Annales des Mathematiques) advanced the following explanation: HA can
didate of superior intelligence is lost with an examiner of inferior intelligence. Because 
they do not understand me, I am a barbarian ... " To be fair to the examiner, com
munication skills are an important ingredient of success, as well as natural ability. 
We. might counter Terquem with, "Because I do not take account of their inferior 
intelligence, I am an idiot." But Galois was too young and impetuous to see it that 
way. 

In 1828 Galois enrolled in an advanced mathematics course offered by Louis-Paul
Emile Richard, who recognized his ability and was very sympathetic toward him. 
He was of the opinion that Galois should be admitted to the Polytechnique without 
examination - probably because he recognized the dangerous combination of high 
talent and poor examination technique. If this opinion was ever communicated to the 
Polytechnique, it fell on deaf ears. 

The following year saw the publication of Galois 's first research paper (Galois, 
1 897) on continued fractions; though competent, it held no hint of genius. Mean
while, Galois had been making fundamental discoveries in the theory of polynomial 
equations, and he submitted some of his results to the Academy of Sciences. The ref
eree was Augustin-Louis Cauchy, who had already published work on the behaviour 
of functions under permutation of the variables, a central theme in Galois '  s theory. 

As Rothman (Internet) says, "We now encounter a major myth." Many sources 
state that Cauchy lost the manuscript, or even deliberately threw it away, either to 
conceal its contents, or because he considered it worthless. But Re ne Taton ( 197 1) 
found a letter written by Cauchy in the archives of the Academy. Dated 1 8  January 
1 830, it reads in part: 

I was supposed to present today to the Academy first a report on the 
work of the young Galoi [spelling was not consistent in those days] and 
second a memoir on the analytic determination of primitive roots [by 
Cauchy] . . . Am indisposed at home. I regret not being able to attend 
today's session, and I would like you to schedule me for the following 
session for the two indicated subjects. 

So Cauchy still had the manuscript in his possession, 6 months after Galois had 
submitted it. Moreover, he found the work sufficiently interesting to want to draw it to 
the Academy's attention. However, at the next session of the Academy, on 25 January, 
Cauchy presented only his own paper. What had happened to the paper by Galois? 

Taton suggests that Cauchy was actually very impressed by Galois's research, so 
much so that he advised Galois to prepare a new (no doubt improved) version, and to 
submit it for the Grand Prize in Mathematics, the pinnacle of mathematical honour, 
which had a March· 1 deadline. There is no direct evidence for this assertion, but 
the circumstantial evidence is quite convincing. We do know that Galois made such 
a submission in February. The following year the journal Le Globe publish.ed an 
appeal for Galois '  s aquittal during his trial for allegedly threatening the king's life 
(see below): 
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Last year before March 1 ,  M. Galois gave to the secretary of the 
Institute a memoir on the solution of numerical equations. This memoir 
should have been entered in the competition for the Grand Prize in Math
ematics. It deserved the prize, for it could resolve some difficulties that 
Lagrange had failed to do. Cauchy had conferred the highest praise on 
the author about this subject. And what happened? The memoir is lost 
and the prize is given without the participation of the young savant. 

Rothman points out that Cauchy fled France in September 1 830, so the article 
is unlikely to have been based on Cauchy's own statements. Le Globe was a jour
nal of the Saint-:Simonian organization, a neo-Christian socialist movement founded 
by the Comte de Sainte-Simone. When Galois left jail, his closest friend Auguste 
Chevalier invited him to join a Saint-Simonian commune founded by Prosper 
Enfantin. Chevalier was a very active member and an established journalist. It is 
plausible that Chevalier wrote the article, in which case the original source would 
have been Galois himself. If so, Galois knew that Cauchy had been impressed by the 
work. 

The same year held two major disasters. On 2 July · 1 829 Galois' s father committed 
suicide after a bitter political dispute in which the village priest forged Nicolas's sig
nature on malicious epigrams aimed at his own relatives. It could not have happened 
at a worse time, for a few days later Galois again sat for entrance to the Polytech
nique - his final chance. �here is a legend (Bell, 1965; Dupuy, 1 896) that he lost his 
temper and threw an eraser into the examiner's face, but according to Bertrand ( 1 899) 
this tradition is false. Apparently the examiner, Dinet, asked Galois some questions 
about logarithms. 

In one version of the story, Galois made some statements about logarithmic se
ries, Dinet asked for proofs, and Galois refused on the grounds that the answer was 
completely obvious. A variant asserts that Dinet asked Galois to outline the the
ory of "arithmetical logarithms." Galois informed him, no doubt with characteristic 
bluntness, that there were ne;> arithmetical logarithms. Dinet failed him. 

Was Galois right, though? It depends on what Dinet had in mind. The phrase 
"arithmetical logarithms" is not necessarily meaningless. In 1 801  Carl Friedrich Gauss 
had published his epic Disquisitiones Arithmeticae, which laid the foundations of 
number theory for future generations of mathematicians. Ironically, Gauss had sent 
it to the French Academy in 1 800, and it was rejected. Nice track record. In the 
Disquisitiones, Gauss developed the notion of a primitive root modulo a prime. If 
g is a primitive root (mod p) then every none;ero element m( mod p) can be written 
as a power m = ga(m). Then a(mn) = a(m) + a(n), so a(m) is analogous to log m.  
Gauss called a(m) the index of m to base g, and Article 58  of his book begins by 
stating, "Theorems pertaining to indices are completely analogous to those that refer 
to logarithms." So if this is what Dinet was asking about, any properly prepared 
candidate should have recognised it, and known about it. 

Because he had expected to be admitted to the Polytechnique, Galois had not studied 
for his final examinations. Now faced with the prospect of the Ecole Normale, then 
called the Ecole Preparatoire, which at that time was far less prestigious than the 
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Polytechnique, he belatedly prepared for them. His performance in mathematics and 
physics was excellent, in literature less so; he obtained both the Bachelor of Science 
and Bachelor of Letters on 29 December 1 829. 

Possibly following Cauchy's recommendation, in February 1 830 Galois presented 
a new version of his research to the Academy of Sciences in competition for the 
Grand Prize in Mathematics .  The manuscript reached the secretary, Joseph Fourier, 
who took it home for perusaL But he died before reading it, and the manuscript could 

. not be found among his papers. It may not have been Fourier who lost it, however; 
the Grand Prize committee had three other members: Legendre, Sylvestre-Fran�ois 
Lacroix, and Louis Poinsot. 

If the article in Le Globe is to be believed, no lesser a light than Cauchy had con
sidered Galois's manuscript to have been worthy of the prize. The loss was probably 
an accident, but according to Dupuy ( 1 896), Galois was convinced that the repeated 
losses of his papers were not just bad luck. He saw them as the inevitable effect of 
a society in which genius was condemned to an eternal denial of justice in favour of 
mediocrity, and he blamed the politically oppressive Bourbon regime. He may well 
have had a point, accident or not. 

At that time, France was in political turmoiL King Charles X succeeded Louis 
XVIII in 1 824. In 1 827 the liberal opposition made electoral gains; in 1 830 more 
elections were held, giving the opposition a majority. Charles, faced with abdication, 
attempted a coup d 'etat. On 25 July he issued his notorious Ordonnances suppressing 
the freedom of the press .  The populace was in no mood to tolerate such repression, 
and revolted. The uprising lasted 3 days, after which as a compromise the Duke of 
Orleans, Louis-Philippe, was made king. During these 3 days, while the students of 
the Polytechnique were making history in the streets, Galois and his fellow students 
were locked in by Guigniault, Director of the Ecole Normale. Galois was incensed, 
and subsequently wrote a blistering attack on the Director in the Gazette des Ecoles, 
signing the letter with his full name. An excerpt (the letter was published in December) 
reveals the general tone: 

Gentlemen: 
The letter which M. Guignault placed in the Lycee yesterday, on 

the account of one of the articles in your journal, seemed to me most 
improper. I had thought that you would welcome eagerly any way of 
exposing this man. 

Here are the facts which can be vouched for by forty-six students .  
On the morning of July 28, when several students of the Ecole 

Normale wanted to join in the struggle, M. Guigniault told them, twice, 
that he had the power to call the police to restore order in the school. The 
police on the 28th of July ! 

The same day, M. Guigniault told us with his usual pedantry: "There 
are many brave men fighting on both sides. If I were a soldier, I would 
not know what to decide. Which to sacrifice, liberty or LEGITIMACY?" 

There is the man who the next day covered his hat with an enormous 
tricolor cockade. There are our liberal doctrines !  

I 

I 
I I 



XXVlll Historical Introduction 

The editor removed the signature, the Director was not amused, and Galois was 
expelled because of his "anonymous" letter (Dalmas, 1 956). 

Galois promptly joined the Artillery of the National Guard, a branch of the militia 
composed almost entirely of Republicans. On 21 December 1 830 the Artillery of the 
National Guard, almost certainly including Galois, was stationed near the Louvre, 
awaiting the verdict of the trial of four ex-ministers. The public wanted these func
tionaries executed, and the Artillery was planning to rebel if they received only life 
sentences. Just before the verdict was announced, the Louvre was surrounded by the 
full National Guard, plus other troops who were far more trustworthy. When the ver
dict of a j ail sentence was heralded by a cannon shot, the revolt failed to materialize. 
On 3 1  December, the Artillery of the National Guard was abolished by the king, 
because it constituted a serious security threat. 

Galois was now faced with the urgent problem of making a living. On 13 January 
1 83 1  he tried to set up as a private teacher of mathematics, offering a course in 
advanced algebra. Forty students enrolled, but the class soon petered out, probably 
because Galois was too involved in politics. On 17 January he submitted a third 
version of his memoir to the Academy: On the Conditions of Solubility of Equations 
by Radicals. Cauchy was no longer in Paris, so Simeon Poisson and Lacroix were 
appointed referees. After 2 months Galois had heard no word from them. He wrote 
to the President of the Academy, asking what was happening. He received no reply. 

During the spring of 1 83 1 ,  Galois's behaviour became more and more extreme, 
verging on the paranoid. On April 1 8  Sophie Germain (one of the few women math
ematicians of the time) who studied with Gauss, wrote to Guillaume Libri about 
Galois's misfortunes: "They say he will go completely mad, and I fear this is true." 
See Henry ( 1 879). Also in April, 1 9  members of the Artillery of the National Guard, 
arrested after the events at the Louvre, were put on trial charged with attempting to 
overthrow the government; the jury acquitted them. On 9 May a banquet was held to 
celerate their acquittal; about 200 Republicans were present, all extremely hostile to 
the government of Louis-Philippe. The proceedings became more and more riotous, 
and Galois was seen with a glass in one hand and a dagger in the other. His compan
ions allegedly interpreted this as a threat to the king's life, applauded mightily, and 
ended up dancing and shouting in the street. 

The next day, Galois was arrested. At his subsequent trial, he admitted everything, 
but claimed that the toast proposed· was actually, "To Louis-Philippe, if he turns 
traitor," and that the uproar had drowned the last phrase. But he also made it crystal 
clear that he expected Louis-Philippe to do just that. Nevertheless ,  the jury acquitted 
him, probably because of his youth, and he was freed on 1 5  June . 
. On 4 July he heard the fate of his memoir. Poisson declared it "incomprehensible." 

The report (reprinted in full in Taton, 1 947) ended as follows :  

We have made every effort to understand Galois 's proof. His rea
soning is not sufficiently clear, sufficiently developed, for us to judge its 
correctness, and we can give no idea of it in this report. The author an
nounces that the proposition which is the special object of this memoir is 
part of a general theory susceptible of many applications .  Perhaps it will 
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transpire that the different parts of a theory are mutually clarifying, are 
easier to grasp together rather than in isolation. We would _then suggest 
that the author should publish the whole of his work in order to form a 
definitive opinion. But in the state which the part he has submitted to the 
Academy now is, we cannot propose to give it approval. 

XXIX 

The report may well have been entirely fair. Tignol ( 1988) points out that Galois's 
entry "did not yield any workable criterion to determine whether an equation is 
solvable by radicals." The referees' report was explicit: 

[The memoir] does not contain, as [its] title promised, the condition of 
solubility of equations by radicals ; indeed, assuming as true M. Galois's 

. proposition, one could not derive from it any good way of deciding 
whether a given equation of prime degree is soluble or not by radicals, 
since one would first have to verify whether this equation is irreducible 
and next whether any of its roots can be expressed as a rational fraction 
of two others. 

The final sentence here refers to a beautiful criterion for solubility by radicals of 
equations of prime degree that was the climax of Galois 's memoir. It is indeed unclear 
how it can be applied to any specific equation. Tignol says, "Galois's theory did not 
correspond to what was expected, it was too novel to be readily accepted." What 
the referees wanted was some kind of condition on the coefficients that determined 
solubility; what Galois gave them was a condition on the roots. As Tignol explains, the 
referees' expectation was unreasonable; no simple criterion based on the coefficients 
has ever been found, nor is one remotely likely. 

On 14 July, Bastille Day, Galois and his friend Ernest Duchatelet were at the head 
of a Republican demonstration. Galois was wearing the uniform of the disbanded 
Artillery, and Gt;mying a knife, several pistols, and a loaded rifle. It was illegal to wear 
the uniform, and even more so to be armed. Both men were arrested on the Pont-Neuf, 
and Galois was charged with the lesser offence of illegally wearing a uniform. They 
were sent to the jail at Sainte-Pelagie to await trial. While in jail, Duchatelet drew a 
picture on the wall of his cell showing the king's head, labelled as such, lying next to 
a guillotine. This presumably did not help their cause. Duchatelet was tried first; then 
it was Galois 's turn. On 23 October he was tried and convicted, and his appeal was 
turned down on 3 December. By this time he had spent more than 4 months in jail. 
Now he was sentenced to 6 months there. He worked for a while on his mathematics 
(Figure 6); then in the cholera epidemic of 1 832he was transferred to a hospital. Soon 
he was put on parole. 

Along with his freedom he experienced his first and only love affair, with a certain 
Mile. Stephanie D. From this point on, the history becomes very complicated and con
jectural. Until recently, the young lady's surname was unknown, adding to the roman
tic image of the femme fatale. The full name appears in one of Galois '  s manuscripts, but 
the surname has been obliterated, no doubt by Galois. Some forensic work by Carlos 
Infantozzi ( 1 968), who examined the manuscript more carefully than his predecessors 
had, revealed the lady as Stephanie-Felicie Poterin du Motel, the entirely respectable 
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Figure 6:  First page of preface written by Galois when in jaiL 

daughter of Jean-Louis Auguste Poterin du Motel. Jean-Louis was resident physician 
at the Sieur Faultrier, where Galois spent the last few months of his life .  

There is much mystery surrounding this interlude, which has a crucial bearing on 
subsequent events. Apparently Galois was rejected, and took it very badly. On 25 May 
he wrote to Chevalier: "How can I console myself when in one month I have exhausted 
the greatest source of happiness a man can have?" On the back of one of his papers he 
made fragmentary copies of two letters from Stephanie (Tannery, 1 908; Bourgne and 
Azra, 1 962). One begins "Please let us break up this affair" and continues " . . .  and do 
not think about those things which did not exist and which never would have existed." 
The other contains the sentences :  "I have followed your advice and I have thought 
over what. . .  has . . .  happened . . .  In any case, Sir, be assured there never would have 
been more. You're assuming wrongly and your regrets have no foundation." 

Not long afterward, Galois was challenged to a duel, ostensibly because of his 
advances toward the young lady. Again, the circumstances are veiled in mystery, 
though Rothman ( 1982, Internet) has lifted a corner of the veil. One school of thought 
(Bell, 1965; Kollros, 1 949) asserts that Galois's infatuation with Mlle. du Motel was 
used by his political opponents, who found it the perfect excuse to eliminate their 
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Figure 7: Doodles left on the table before departing for the fatal duel. Une femme, 
with the second word scribbled out, can be ·seen near the lower left corner. 

enemy on a trumped-up affair of honour. There are even suggestions that Galois was, 
in effect, assassinated by a police spy. 

But in his Memoires, Alexandre Dumas says that Galois was killed by Pescheux 
D'Herbinville, a fellow Republican. See Dumas ( 1967). Dumas described 
D'Herbinville as "a charming young man who made silk-paper cartridges which 
he would tie up with silk ribbons" (the objects concerned seem to have been an early 
fonn of cracker of the kind now familiar at Christmas). He was one of the 1 9  Republi
cans acquitted on charges of conspiring to overthrow the government, and something 
of a hero with the peasantry. D'Herbinville was certainly not a spy for the police; 
all such men were named in 1 848 when Caussidiere became chief of police. Dalmas 
( 1956) cites evidence from the police report suggesting that the other duellist was one 
of Galois's revolutionary comrades, and the duel was exactly what it appeared to be. 
This theory is largely borne out by Galois's own words on the matter (Bourgne and 
Azra, 1 962) (Figure 7). 

I beg patriots and my friends not to reproach me for dying otherwise 
than for my country. I die the victim of an infamous coquette. It is in a 
miserable brawl that my life is extinguished. Oh t why die for so trivial a 
thing, for something so despicable! . . .  Pardon for those who have killed 
me, they are of good faith. 
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Figure 8: "I have no time" (je n '  ai pas le temps) above deleted paragraph in lower 
left corner. But consider the context. 

It does appear that Stephanie was at least a proximate cause of the duel, but very 
little else is clear. 

On 29 May, the eve of the duel, Galois wrote a famous letter to his friend Auguste 
Chevalier, outlining his mathematical discoveries. This letter was eventually published 
by Chevalier in the Revue Encyclopedique. In it, Galois sketched the connection 
between groups and polynomial equations, stating that an equation is soluble by 
radicals provided its group is soluble. But he also mentioned many other ideas about 
elliptic functions and the integration of algebraic functions, and other things too 
cryptic to be identifiable. 

The scrawled comment, "I have no time," in the margins (Figure 8) has given rise 
to ·another myth: that Galois spent the night before the duel frantically writing out his 
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Figtire 9:  Marginal comment by Poisson. 

XXXlll 

mathematical discoveries. However, that phrase has next to it "(Author's note)," which 
hardly fits such a picture; moreover, the letter was an explanatory accompaniment to 
Galois 's rejected third manuscript, complete with a marginal note added by Poisson 
(Figure 9). 

The duel was with pistols . The postmortem report (Dupuy, 1 896) states that they 
were fired at 25 paces, but the truth may have been even nastier. Dalmas reprints an 
article from the 4 June 1 832 issue of Le Precursor, which reports: 

Paris, 1 June - A deplorable duel yesterday has deprived the exact 
sciences of a young man who gave the highest expectations, but whose 
celebrated precocity was lately overshadowed by his political activities .  
The young Evariste Galois . . .  was fighting with one of his old friends, a 
young man like himself, like himself a member of the Society of Friends 
of the People, and who was known to have figured equally in a political 
trial. It is said that love was the cause of the combat. The pistol was the 
chosen weapon of the adversaries, but because of their old friendship they 
could not bear to look at one another and left the decision to blind fate. 
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Figure 10: "To decipher all this mess" (dechiffrer tout ce gachis, next to last line). 
The final page written by Galois before the duel. 

At point-blank range they were each armed with a pistol and fired. Only 
one pistol was charged. Galois was pierced through and through by a ball 
from his opponent; he was taken to the hospital Cochin where he died in 
about two hours. His age was 22. L.D., his adversary, is a bit younger. 

Who was L.D.? Does the initial "D" refer to d'Herbinville? Perhaps. "D" is accept
able because of the variable spelling of the period; the "L" may have been a mistake. 
The article is unreliable on details;  it gets the date of the duel wrong, and also the 
day Galois died and his age. So the initial might also be wrong. Rothman has another 
theory, and a more convincing one. The person who best fits the description here is 
not d'Herbinville, but Duchatelet, who was arrested with Galois on the Pont-Neuf. 
Bourgne and Azra ( 1962) give his Christian name as Emest, but that might be wrong, 

. or again the "L" may be wrong. To quote Rothrnan: "we arrive at a very consistent and 
believable picture of two old friends falling in love with the same girl and deciding 
the outcome by a gruesome version of Russian roulette." 
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This theory is also consistent with a final horrific twist to the tale. Galois was. hit in 
the stomach, a particularly serious wound that was almost always fataL If indeed the 
duel was at point-blank range, this is no great surprise. If at 25 paces, he was unlucky. 

He did not die 2 hours later, as Le Precursor says, but a day later on 3 1  MaY,''of 
peritonitis; he refused the office of a priest. On 2 June 1 832 he was buried in the 
common ditch at the cemetery of Montparnasse. 

His letter to Chevalier ended with these words (Figure 10): 

Ask J acobi or Gauss publicly to give their opinion, not as to the 
truth, but as to the importance of these theorems. Later there will be, I 
hope, some people who will find it to their advantage to decipher all this 
mess . . .  





Chapter 1 

Classical Algebra 

In the first part of this book, Chapters 1 to 15 ,  we present a (fairly) modern version of 
Galois's ideas in the same setting that he used, namely, the complex numbers. Later, 
from Chapter 1 6  onward, we will generalize the setting, but the complex numbers have 
the advantages of being familiar and concrete. By restricting ourselves to complex 
numbers, we can focus on the main ideas that Galois introduced, without getting 
distracted by abstract nonsense. 

A warning is in order. The decision to work over the complex numbers has its 
advantages in terms of accessibility of the material, but it sometimes makes the 
discussion seem clumsy by comparison to the elegance of an axiomatic approach: 
This is arguably a price worth paying, because this way we appreciate the abstract 
viewpoint when it makes its appearance, and we understand where it comes from. 

We will assume familiarity with the basic theory of real and complex numbers, 
but to set the scene, we recall some of the concepts involved. We begin with a brief 
discussion of complex numbers. We introduce two important ideas; both relate to 
subsets of the complex numbers that are closed under the usual arithmetic operations.  
A subring of the complex numbers is a subset closed under addition, subtraction, 
and mutliplication; a subfield is a subring that is also closed under division by any 
nonzero element. Both concepts were formalized by Richard Dedekind in 1 87 1 ,  
though the ideas go back to Peter Gustav Lejeune-Dirichlet and Kronecker in the 
1 850s. 

We then show that the historical sequence of extensions of the number system, 
from natural numbers to integers to rationals to reals to complex numbers, can with 
hindsight be interpreted as a quest to make more and more equations have soluti.ons. 
We are thus led to the concept of a polynomial, which is central to Galois theory 
because it determines the type of equation that we wish to solve. And we appreciate 
that the existence of a solution depends on the kind of number we are permitting. 

Throughout, we use the standard notation N, Z, Q, R, C for the sets (respectively) 
of natural numbers, integers, rationals, real numbers, and complex numbers. These 
systems are related as follows :  

and each symbol here hints at a lengthy historical process in which "new numbers" 
were proposed for mathematical reasons - usually against serious resistance on the 
grounds that although their novelty was not in dispute, they were not numbers and 
therefore did not exist. 
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1.1 Complex Numbers . 
A complex number has the form 

Z = X +  iy 

where x ,  y are real numbers and i2 = - 1 .  Therefore, i = ,J=I, in some sense. 
The easiest way to define what we mean by A is to consider C as the set JR2 of 

all pairs of real numbers (x ,  y ) ,  with algebraic operations 

(xl , Yl ) + (xz , Y2) = (Xl + X2 , YI + Y2) 

(XI , YI )(x2 , Y2) = (XtX2 - Yt Y2 · X1 Y2 + X2Y1 ) 
( 1 . 1 )  

Then we identify (x , 0) with the real number x to arrange that lR c C,  and define 
i = (0, 1) .  In consequence, (x ,  y) becomes identified with x + iy. The formulas ( 1 . 1) 
imply that i2 = (0, 1 )(0, 1 )  = ( - 1 ,  0) which is identified with the real number - 1 , 
so i is a square root of minus one. Observe that (0, 1 )  is not of the form (x ,  0), so i is 
not real, which is as it should be, because - 1  has no real square root. 

This approach seems to have been published first by the Irish mathematician 
William Rowan Hamilton in 1 837, but in that year Gauss wrote to the geometer 
Wolfgang Bolyai that the same idea had occurred to him in 1 83 1 .  This was probably 
true, because Gauss usually worked things out before anybody else did, but he set 
himself such high standards for publication that many of his more important ideas 
never saw print under his name. Gauss was somewhat conservative, and shied away 
from anything potentially controversial. 

Once we see that complex numbers are just pairs of real numbers, the previously 
mysterious status of the imaginary number A becomes much more prosaic. In fact, 
to the modem eye it is the real numbers that are mysterious,  because their rigorous 
definition involves analytic ideas such as sequences and convergence, which lead into 
deep philosophical waters and axiomatic set theory. In contrast, the step from lR to 
JR2 is essentially trivial, except for the peculiarities of human psychology. 

1.2 Subfields and Subrings of the Complex Numbers 
For the first half of this book, we try to keep everything as concrete as possible-but 

not more so, as Albert Einstein is supposed to have said about keeping things simple. 
Abstract algebra courses usually introduce (at least) three basic types of algebraic 
structure defined by systems of axioms: groups, rings, and fields. Linear algebra adds 
a fourth: vector spaces. For the first half of this book, we steer clear of abstract rings 
and fields, but we do assume the basics of finite group theory and linear algebra. 

Recall that a group is a set G equipped with an operation of multiplication written 
(g , h) 1-+ g h .  If g,  h E G then g h E G.  The associative law (g h )k = g(hk) holds for 
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all g, h,  k E G. There is an identity 1 E G such that 1g  = g = g l  for all g E G. 
Finally, every g E G has an inverse g-1 E G such that gg-

1 = 1 = g-J g. The classic 
example here is the symmetric group §n , consisting of all permutations of the set 
{ 1 ,  2 ,  . . . , n }  under the operation of composition. We assume familiarity with th�se 
axioms, and with subgroups, isomorphisms, homomorphisms, normal subgroups, and 
quotient groups. 

Rings are sets equipped with operations of addition, subtraction, and multiplication; 
fields also have a notion of division. The formal definitions were supplied by Heinrich 
Weber in 1 893. The axioms specify the formal properties assumed for these operations, 
for example, the commutative law ab = ba for multiplication. In the first part of this 
book, we do not assume familiarity with abstract rings and fields. Instead, we restrict 
attention to subrings and subfields ()f C, or polynomials and rational functions over 
such subrings and subfields .  Informally, we assume that the terms polynomial and 
rational expression (or rational function) are familiar, at least over C, although for 
safety's  sake we shall define them shortly when the discussion becomes more formal, 
and redefine them when we make the whole theory more abstract in the second part 
of the book. There were no formal concepts of "ring" or "field" in Galois's day, and 
precious little linear algebra; he had to invent groups for himself. So we are still 
permitting ourselves a more extensive conceptual toolkit than he had access to. 

DEFINITION . J.J A subring of C is a subset R c C such that 1 E R, and if 
x ,  y E  R, then x + y ,  �x, and xy E R. 

A subfield of C is a sub ring K c C with the additional property that if x E K and 
x =f. 0, then x-1 E K. 

It  follows immediately that every subring of C contains 1 + ( - 1) = 0,  and is closed 
under the algebraic operations of addition, subtraction, and multiplication. A subfield 
of C has all of these properties, and is also closed under division by any nonzero 
element. Because R and K are subsets of C, they inherit the usual rules for algebraic 
manipulation. 

Example 1.2 

1. The set of all a + bi,  for a, b E Z, is a subring of C, but not a sub field. 

2. The set of all a + bi , for a ,  b E Q, is a subfield of C. 
3. The set of all polynomials in "'T, with integer coefficients, is a subring of C, but not 

a subfield. 

4. The set of all polynomials in "'T, with rational coefficients, is a subring of C. By ob
serving that "'T satisfies no nontrivial polynomial equation with rational coefficients, 
as we prove in Theorem 5, it can be proved that this set is not a subfield� 

5. The set of all rational expressions in "'T with rational coefficients (that is, fractions 
p(7r)/q(-rr) where p ,  q are polynomials over Q and q(7r) f::. 0) is a subfield of C. 
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6. The set 2Z of all even integers is not a subring of C, because. it does not contain 1 .  
(For the initiated, when we say "subring" we assume that it is a ring with 1 .) 

7 .  The set of all a +  b.J2, for a ,  b E (Q, is not a subring of C because it is not closed 
under multiplication. However, it is closed under addition and subtraction. 

DEFINITION 1.3 Suppose that K and L are subfields of C. An isomorphism 
between K and L is a map <1> : K -+ L such that 

<f>(x + y) = <f>(x) + <f>(y) <f>(xy) = <f>(x )<f>(y) 

for all x ,  y E K, where 4> is one�to-one and onto. 

It follows that <f>(-x) = -<f>(x) and <f>(x -l) = ( <f>(x)) - I . If <1> is one-to-one but not 
necessarily onto, it is a monomorphism. An isomorphism of K with itself is called an 
automorphism of K .  
Example 1.4 

1 .  Complex conjugation x + iy r-+ x - iy. is an automorphism of C. Indeed, if we 
denote this map by a, then: 

a.((x + iy) + (u + i v)) = (x + u) - (y + v) i  
= a.(x + iy) + a.(u + i v) 

a.((x + iy)(u + i v)) = a.(xu - yv + i(xv + yu)) 
= xu - yv - i (xv + yu) 
= (x - iy)(u - iv) 
= a.(x + iy)a.(u + i v) 

2. Let K be the set of complex numbers of the form p + q .J2, where p, q E Q. This 
is a subfield of C, because 

(p + q ,.Ji) -1 = 2 
p 

2 2 ' p - q 

if p and q are nonzero. The map p + q .J2 r-+ p - q .J2 is an automorphism of 
K. 

3. Let a. = .J2 E R, and let w be a primitive cube root of unity in  C. The set of all 
numbers p + qa. + ra.2 , for p, q ,  r E Q, is a subfield of C (see Exercise 1 .5). The 
map 

is a monomorphism onto its image, but not an automorphism (Exercise 1 .6). 
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1.3 Solving Equations 
A physicist friend of mine once told me that while every physicist knew what the 

big problems of physics were, his mathematical colleagues never seemed to be able to 
tell him what the big problems of mathematics were. It took me a while to realise 
that this doesn't mean that they don't know, and even longer to articulate why. The 
reason, I claim, is that the big problems of physics, at any given moment, are very 
specific challenges :  measure the speed of light, prove that the Higgs boson exists, find 
a theory to explain high-temperature superconductors. Mathematics has problems like 
that, too, indeed, Galois tackled one of them - prove that the quintic cannot be solved 
by radicals. But the big problems of mathematics are more general, and less subject 
to fashion (or disappearance by virtue of being solved). They are things like "find out 
how to solve equations like this one", "find out what shape things like this are", or 
even "find out hoW many of these gadgets can exist". Mathematicians know this, but 
it is so deeply ingrained in their way of thinking that they are seldom conscious of it. 
But such problems have given rise to entire fields of mathematics, here, respectively, 
algebra, topology, and combinatorics. I mention this because it is the first of the above 
big problems that runs like an ancient river through the middle of the territory we are 
going to explore. Find out how to solve equations. Or, as often as not, prove that it 
cannot be done with specified methods. 

What sort of equations? For Galois :  polynomials. But let's work up to those in easy 
stages. 

The usual reason for introducing a new kind of number is that the old ones are 
inadequate for solving somejmportant problem. Most of the historical problems in 
this area can be formulated using equations, though it must be said that this is a modem 
interpretation and the ancient mathematicians did not think in quite those terms. 

For example, the step from N to Z is needed because although some equations, 
such as 

t + 2 = 7  

can be solved for t E N, others, such as 

t + 7 = 2  

cannot. However, such equations can be solved in Z. (The symbol x is more traditional 
than t here, but it is convenient to standardise on t for the rest of the book, so we may 
as well start straight away.) 

Similarly, the step from Z to Q (historically, it was initially from N to Q+, the 
positive rationals) makes it possible to solve the equation 

2t = 7 

Equations of the form 

at + b  = 0 
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where a ,  b are specific numbers and t is an unknown number, or variable, are called 
linear equations. In a subfield of C, any linear equation with a =/= 0 can be solved 
with the unique solution t = -b I a.  

The step from Q to R i s  related to a different kind of equation: 

t2 = 2 

As the ancient Greeks understood (though in their own geometric manner; they did 
not possess algebraic notation and thought in a very different way from modern 
mathematicians), the "solution" t = .,J2 is an irrational number - it is not in Q. 
(See Exercise 1 .2 for a proof, which may be different from the one you have seen 
before. It is essentially one of the old Greek proofs, translated into algebra. Paul Erdos 
used to talk of proofs being from "The Book", by which he meant an alleged volume 
in the possession of the Almighty, in which only the very best mathematical proofs 
could be found. This Greek proof that the square root of 2 is irrational must surely 
be in The Book. An entirely different proof of a more general theorem is outlined in 
Exercise 1 .3 .) 

Similarly, the step from R to C centres on the equation 

t2 = - 1  

which has no real solutions since the square of any real number is positive. 
Equations of the form 

at2 + bt + c  = 0 

are called quadratic equations. The classic formula for their solutions (there can be 
0, 1 ,  or 2 of these) is of course 

-b ± ,Jb2 - 4ac 
t = -------2a 

and this gives all the solutions t provided the formula makes sense. For a start, we 
need a =/= 0. (If a = 0, then the equation is actually linear, so this restriction is not 
a problem.) Over the real numbers, the formula makes sense if b2 - 4ac > 0 but 
not if b2 - 4ac < 0; over the complex numbers, it makes sense whatever the sign of 
b2 - 4ac might be. Over the rationals, it makes sense only when b2 - 4ac is a perfect 
square - the square of a rational number. 

1.4 Solution by Radicals 
We begin by reviewing the state of the art regarding solutions of polynomial equa

tions as it was just before the time of Galois. We consider linear, quadratic, cubic, 
quartic, and quintic equations in turn. In the case of the quintic, we also describe some 
ideas that were discovered after Galois .  Throughout, we make the default assumption 
of the period: the coefficients of the equation are complex numbers. 
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1.4.1 Linear Equations 

Let a ,  b E C with a :j=. 0. The general linear equation is 

and. the solution is clearly 

1.4.2 Quadratic Equations 

at + b  = 0 

b 
t = - 

a 

Let a ,  b, c E C with a =/=  0. The general quadratic equation is 

at2 + bt + c = 0 

7 

Dividing by a and renaming the coefficients, we can consider the equivalent equation 

t2 + at +  b = 0 

The standard way to solve this equation is to rewrite it in the form 

Taking square roots, 

so that 

a 
t + - = 

2 

which is  the usual quadratic formula except for a change of notation. The process 
used here is called completing the square; as remarked in the Historical Introduction, 
it goes back to the B abylonians 3600 years ago. 

1.4.3 Cubic Equations 

Let a ,  b ,  c E C with a =j:. 0. The general cubic equation can be written in the form 

t3 + at2 + bt + c = 0 

where again we have divided by the leading coefficient to avoid unnecessary compli
cations in the formulas. 
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The first step is to change the variable to make a = 0. This is achieved by setting 
y = t + � ,  so that t = y - � .  Such a move is called a Tschirnhaus transformation, after 
the person who first made explicit and systematic use of it. The equation becomes 

where 

y3 + PY q = 0 

a2 - 2a3 + 3b 
p = -----

3 

2a3 - 9ab + 27c 
q = 

27 

To find the solution( s ), we try (rabbit out of hat) the substitution 

Now 

so that Equation ( 1 .2) becomes 

(u + v + q) + (4U" + 4'lJ)(34U"4'lJ + p) = 0  

We now choose u and v to make both terms vanish: 

which imply 

u + v + q = O  

34U"4'V + p = 0 

U + V = -q 

p3 
u v  = --

27 

Multiply Equation ( 1 .5) by u and subtract Equation ( 1 .6) to get 

. p3 
u(u + v) - uv  = -qu + 

27 

which can be rearranged to give 

which is a quadratic. 

( 1 .2) 

( 1 .3) 

( 1 .4) 

( 1 .�) 

( 1 .6) 
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The solution of quadratics now tells us that 

Because u v = q, we have 

U = -q ± vq2 + p3 2 4 27 

V = -q + vq2 + p3 

2 4 27 

9 

Changing the sign of the square root just permutes u and v ,  so we can set the sign to +. Thus, we find that 

, - q - vq2 + p3 

2 4 27 
( 1 .7) 

which (by virtue of publication, not discovery) is usually called Cardano 's formula. 
Finally, remember that the solution t of the original equation is equal to y - a /3. 

1.4.4 Peculiarities of Cardano's Formula 

An old Chinese proverb says, "Be careful what you wish for: you might get it". We 
have wished for a formula for the solution, and we've got one. It has its peculiarities. 

First, recall that over CC every nonzero complex number z has three cube roots. If 
one of them is a, then the other two are wa and w2a, where 

1 . .J3 w = -- + z-
2 2 

is a primitive cube root of L (A primitive nth root of unity is an nth root of 1 that is 
not an mth root of 1 for any proper divisor m of n . )  Then 

2 1 , ,J3 w = -- - l-
2 2 . 

The expression for y, therefore, appears to lead to nine solutions of the form 

a +  w2f3 

where a, f3 are specific choices of the cube roots . 

wa. + w2f3 w2a + w2f3 
However, not all of these expressions are zeros. Equation ( 1 .4) implies Equation 

( 1 .6), but Equation ( 1 .6) implies Equation ( 1 .4) only when we make the correct choices 
of cube roots. If we choose a. ,  f3 so that 3af3 + p = 0, then the solutions are 
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Other peculiarities emerg
e 

when we try equations whose solutions are already 
known to us. For example, 

y3 + 3y - 36 = 0 

has the solution y = 3 .  Here p = 3 ,  q = . - 36, and Cardano 's formula gives 

y = \/- 1 8  + Vili \/- 1 8 - Vili 
which seems a far cry from 3. Further algebra converts it to 3 (see Exercise 1 .4). 

As Cardano observed in his book, it gets worse. The eponymous formula applied 
to 

t3 - 15t - 4 = 0 ( 1 .8) 

leads to 

( 1 .9) 

in contrast to the obvious solution t = 4. Cardano had already encountered such 
baffling expressions when trying to solve the quadratic t ( l O  - t) = 40 with the 
apparently nonsensical solutions 5 + ,J=15 and 5 - ,J=15, but there it was possible 
to see the puzzling form of the solution as expressing the fact that no solution exists. 
However, Cardano was bright enough to spot that if you ignore the question of what 
such expressions mean, and just manipulate them as if they are ordinary numbers, 
then they do indeed satisfy the equation. "So," Cardano commented, "progresses 
arithmetic subtlety, the end of which is as refined as it is useless." 

However, this shed no light on why a cubic could possess a perfectly reasonable 
solution, but the formula (more properly, the equivalent numerical procedure) could 
not find it. Around 1 560 Raphael Bombelli discovered that (2 ,j=-1)3 = 2 ± 
J - 121 ,  and recovered (see Exercise 1 .7) the solution t = 4 of ( 1 .8) from the formula 
( 1 .9), again assuming that such expressions can be manipulated just like ordinary 
numbers. But Bombelli, too, expressed scepticism that such manoeuvres had any 
sensible meaning. In 1629 Albert Girard argued that such expressions are valid as 
formal solutions of the equations, and should be included "for the certitude. of the 
general rules". Girard was influential in making negative numbers acceptable, but he 
was way ahead of his time when it came to their square roots. 

In fact, Cardano's formula is pretty much useless whenever the cubic has three real 
roots. The traditional escape route is to use trigonometric functions (Exercise 1 .8). All 
this rather baffled the Renaissance mathematicians, who did not even have effective 
algebraic notation and were wary of negative numbers, let alone imaginary ones. 

1.4.5 Quartic Equations 

Start with 
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Make the Tschimhaus transformation y = t a/  4 to get 

where 

Rewrite this in the form 

3a 
p = b - 8 

ab a2 
q = c - + -

2 4 

r = d _ ac � a2 b 
_ _  

3a
_
4 

4 16  256 

Introduce a new term u ,  and observe that 

(y2 + � + uy = (l + � Y + 2 (y2 + �) u + u2 

p2 
= -qy - r + 4 + 2uy pu u2 

1 1  

( 1 . 10) 

We choose u to make the right-hand side a perfect square. If it is, it must be the square 
of ,J2Uy - �.J2U, and then we require 

p2 
2 q2 

-r: + -4 + pu + u 
8u 

Equivalently, provided u :j::. 0, 

8u3 + 8pu2 + (2p 8r)u - q2 
= 0 

which is a cubic in u .  Solving by Cardano's method, we can find u .  Now 

so 

Finally, we can solve the above two quadratics to find y .  

( 1 . 1 1) 

If u = 0 we do not obtain Equation ( 1 . 1 1  ), but if u = 0, then q = 0, so the quartic 
Equation ( 1 . 1  0) is a quadratic in y2, and can be solved using only square roots. 
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Equation ( 1 . 1 1 )  is called the resolvent cubic of Equation ( 1 . 10) .  Explicit formulas 
for the roots can be obtained if required. Because they are complicated, we shall not 
give them here. 

1.4.6 Quintic Equations 

So far, we have a series of special tricks, different in each case. We can start to 
solve the general quintic 

in a similar way. A Tschirnhaus transformation y = t + a 15 red
u

ces it to 

However, all variations on the tricks that we used for the.quadratic, cubic, and quartic 
equations grind to a halt. 

Lagrange, in 1770-177 1 ,  analysed all of the above special tricks, and showed that 
they can all be explained using general principles about symmetric functions of the 
roots. When he applied this method to the quintic, however, he found that it reduced the 
problem to solving a sextic - an equation of degree 6. Instead of helping, the method 
now made the problem worse. A fascinating description of these ideas, together with 
a method for solving quintics whenever they are soluble by radicals, can be found 
in a lecture by George Neville Watson that was rescued from his unpublished papers 
and written up by Bemdt, Spearman, and Williams (2002). The same article contains 
a wealth of other information about the quintic, including a long list of historical and 
recent references. Because the formulas are messy and the story is lengthy, the most 
we can do here is give some flavour of what is involved. 

Lagrange observed that all methods for solving polynomial equations by radicals 
involve constructing rational functions of the roots that take a small number of values 
when the roots a j are permuted. Prominent among these is the expression · 

8 = TI<a.j - ak )  
j<k 

which takes just two values, ±o: plus for even permutations and minus for odd ones. 
Therefore, 8 = 82 (known as the discriminant because it is nonzero precisely when 
the roots are distinct, so it discriminates among the roots) is a rational function of the 
coefficients. This· gets us started, and it yields a complete solution for the quadratic, 
but for cubics upward it does not help much unless we can find other expressions in 
the roots with similar properties under permutation. 

Lagrange worked out what these expressions look like for the cubiC and the quartic, 
and noticed a pattern. For example, if a cubic polynomial has roots a.1 , a.2 , a3 and w 
is a primitive cube root of unity, then the expression 
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takes exactly two distinct values. In  fact, even permutations leave i t  unchanged, while 
odd permutations transform it to 

v = (a t  + uia2 + wa3)
3 

It follows that u v and u v are fixed by all permutations of the roots and must, 
therefore, be expressible as rational functions of the coefficients. That is, u and v 
are solutions of a quadratic equation, and can thus be expressed using square roots. 
But now the further use of cube roots expresses Ut + wa2 + w2a3 = ,;fU and Ut + 
w2az + wa3 = 4V by radicals. Because we also know that a 1  + a2 + a3 is minus 
the coefficient of t2 , we have three independent linear equations in the roots, which 
are easily solved. 

Something very similar works for the quartic, with expressions like 

But when we try the same idea on the quintic, an obstacle appears. Suppose that 
/ the roots of the quintic are a 1 , az , a3 , a4 , as . Let ' be a primitive fifth root of unity. 

Following Lagrange's lead, it is natural to consider 

There are 120 permutations of 5 roots, and they transform w into 24 distinct expres
sions. Therefore, W'js a root of a polynomial of degree 24 - a big step i.n the wrong 
direction, because we. started with a mere quintic .  

The best that can be done is  to use an expression derived by Arthur Cayley in 1 86 1 ,  
based on an idea of Robert Harley in 1 859. This expression is 

It turns out that x takes precisely 6 values when the variables are permuted in all 
120 possible ways. Therefore, x is a root of a sextic equation. The equation is very 
complicated and has no obvious roots; i t  is, perhaps, better than an equation of degree 

· 24, but it is still no improvement on the original quintic. Except when the sextic 
happens, by accident, to have a root whose square is rational, in which case the 
quintic is soluble by radicals. Indeed, this is a necessary and sufficient condition for 
a quintic to. be soluble by radicals, see Bemdt, Spearman, and Williams (2002). For 
instance, as they explain in detail, the equation 

has the solution 

t =  
5 -75 + 21 -JIQ 

125 

t5 + 15t + 1 2  = 0 

s -75 ·- 21  ,JlO 5 225 + 72-JIQ 5 225 - 72-JTO 

125 . 
+ 

125 
+ 

125 

with similar expressions for the other four roots. 
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Lagrange's general method, then, fails for the quintic. This does not prove that the 
general quintic is not soluble by radicals, because for all Lagrange or anyone else 
knew, there might be other methods that do not make the problem worse. But it does 
suggest that there is something very different about the quintic. Suspicion began to 
grow that no method would solve the quintic by radicals. Mathematicians stopped 
looking for such a solution, and started looking for an impossibility proof instead. 

Exercises 

1 . 1  Use ( 1 . 1 )  to prove that multiplication of complex numbers is commutative 
and associative. That is, if u ,  v ,  w are complex numbers, then u v  = vu and 
(uv)w = u(vw). 

1 .2 Prove that -J2 is irrational, as follows .  Assume for a contradiction that there 
exist integers a ,  b, with b # 0, such that (a/b? = 2. 

1. Show that we may assume a, b > 0. 

2. Observe that if such an expression exists, then there must be one in which 
b is as small as ·possible. 

3 .  Show that (2b - a ) 2 
= 

2 
a - b 

4. Show that 2b - a > 0, a - b > 0. 

5 .  Show that a - b < b, a contradiction. 

• 

1 .3 Prove that if q E Q then � is rational if and only if q is a perfect square; that 
is, its prime factorization is of the form q = pf1 • • • p�" where the integers a i ,  
which may be positive or negative, are all even. 

1 .4 * Prove that 

1-1 8 + v'325 + \/- 18 - v'325 = 3 

1 .5 Let a = 42 E JR., and let w be a primitive cube root of unity in <C. Prove that 
the set of all numbers p + qa + ra2, for p, q ,  r E Q, is a subfield of <C. 

1 .6 With the notation of Exercise 1 .5 , show that the map 

is a monomorphism onto its image, but not an automorphism. 
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1 .7 Use Bombelli's observation that (2 .J=1)3 = 2 ± J - 121 to show that (with 
one choice of values of the cube roots) 

12 + J- 121  + 12 - J- 12 1  = 4 

1 .8 Use the identity cos 3e = 4 cos3 e - 3 cos e to solve the cubic equation t3 + 
pt + q = 0 when 27 q2 + 4 p3 < 0. 

1 .9 Find radical expressions for all three roots of t3 - 1St :- 4 = 0. 

1 . 1 0  When 27q2 + 4p3 < 0 it is possible to try to make sense of Cardano's formula 
by generalizing Bombelli's observation; that is, to seek a, (3 such that 

Why is this usually pointless? 

1 . 1 1  * Let P (n) be the number of ways to arrange n zeros and ones in a row, given 
that ones occur in groups of three or more. Show that 

P(n) = 2P(n - 1) - P(n - 2) + P(n - 4) 

and deduce that as n � oo the ratio P��)I) � x, where x > 0 is real and 
x4 - 2x3 + x2 1 = 0. Factorize this quartic as a product of two quadratics, 
and hence find x.  

1 . 12* The largest square that fits inside an equilateral triangle can be placed in any 
of three symmetrically related positions. Eugenio Calabi noticed that there is 
exactly one other shape of triangle in which there are three equal largest squares 
(Figure 1 . 1  ) .  Prove that in this triangle the ratio x of the longest side to either 

Figure 1.1: Calabi's triangle. 
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of the shorter ones is a solution of the cubic equation 2x3 - 2x2 - 3x + 2 = 0, 
and find an approximate value of x to three decimal places. 

1 . 13 Mark the following true or false. 
a. - 1  has no square root. 
b. - 1  has no real square root. 
c. - 1  has two distinct square roots in C. 
d. Every subring of C is  a s�bfield of C. 
e. Every subfield of C is a subring of C. 
f. The set of all numbers p + q 0 for p, q E Q is a subring of C. 
g.  The set of all numbers p q0 for p, q E C is a subring of C. 
h. Cardano' s formula always gives a correct answer. 
1. Cardano's formula always gives a sensible answer. 
J .  A quintic equation over Q can never be solved by radicals. 



Chapter 2 
The Fundamental Theorem of Algebra 

At· the time of Galois, the natural setting for most mathematical investigations was 
the complex number system. The real numbers were inadequate for many questions, 
because - 1  has no real square root. The arithmetic, algebra, and - decisively -
analysis of complex numbers were richer, more elegant, and more complete than the 
corresponding theories for real numbers. 

In this chapter we establish one of the key properties of C, known as the Fundamen
tal Theorem of Algebra. This theorem asserts that every polynomial equation with co
efficients in C has a solution in C. This theorem is, of course, false over JR; take t2 + 1 = 
0. It was fundamental to classical algebra, but the name is somewhat archaic, and mod
em algebra bypasses C altogether, preferring greater generality. Because we find it 
convenient to work in the same setting as Galois, the theorem is fundamental for us. 

However, all rigorous proofs of the Fundamental Theorem of Algebra require quite 
a lot of background. Here, we approach the proof using some simple topological ideas. 
These ideas are intuitively plausible, but setting them up in full logical rigour involves 
some subtleties ,  which we ignore here. 

Later, we give an almost purely algebraic proof, using much more machinery 
(see Chapter 23). Ironically, that proof uses Galois theory to prove the Fundamental 
Theorem of Algebra, the exact opposite of what Galois did. The logic is not circular, 
because the proof in Chapter 23 rests on the abstract approach to Galois theory 
described in the second part of this book, which makes no use of the Fundamental 
Theorem of Algebra. 

2.1 Polynomials 
Linear, quadratic, cubic, quartic, and quintic equations are examples of a more 

general class :  polynomial equations. These take the form 

p(t) = 0 

where p(t) is a polynomial in t .  
Mathematics is littered . with polynomial equations arising in a huge variety of 

contexts. As a sample, here are two from the literature. You don't need to think about 
them: just observe them like a butterfly collector looking at a strange new specimen. 
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In connection with the so-called look and say sequence, John Horton Conway 
came up with one of the strangest instances of a polynomial equation that I have ever 
encountered. The sequence starts 

1 1 1  21  121 1 1 1122 1  3 122 1 1  1 3 1 12221 

The rule of formation is most readily seen in verbal form. We start with " 1  ," which 
can be read as "one one," so the next term is 1 1 .  This reads "two ones," leading 
to 21 . Read this as "one two, one one'' and you see where 121 1 comes from, and 
so on. If L(n) is the length of the nth term in this sequence, approximately how 
big is L(n)? Conway ( 1985) proves that L (n) satisfies a 72-term linear recurrence 
relation. Standard techniques from combinatorics then prove that L(n) is roughly 
proportional to cxn , where ex = 1 ·303577 . . . is the smallest real solution of the 7 1  st 
degree polynomial equation 

t 71 - t69 - 2t68 - t67 + 2t66 + 2t65 - t63 - t62 - t61 - t60 + 2t58 

+5t51 + 3t56 - 2t55 - 10t54 - 3t53 - 2t52 + 6t5 1 + 6t50 + t49 + 9t48 

-3t41 - 7t46 - 8t45 - 8t44 + 10t43 + 6142 + 8t41 - 5t40 - 12t39 

+ 7t38 - 7t37 + 7136 + t35 - 3134 + 10133 + t32 - 6t3 1  - 2130 

- 10129 - 3t28 + 2t27 + 9t26 - 3125 + 14124 - 8123 - 7t2 1  + 9t20 

+3t19 - 41 1 8  - 101 17 - 7t 16 + 1 2t15 + 7t 14 + 21 1 3  - 121 12 - 4t 1 1/ 

-2t 10 + 5t9 + 17 - 7t6 + 7t5 - 4t4 +J2t3 - 6t2 + 3t - 6 = 0 

Our second example is from frontier research in cosmology. Braden et al. ( 1990) 
show that the entropy of a black hole is '1Tr�cx2, where a. is a solution of the 7th degree 
equation 

where b, q are expressions involving temperature and various fundamental physical 
constants such as the speed of light and Planck' s constant. 

With the case for the importance of polynomial equations now clear, we start to 
develop a coherent theory of their solutions .  As the above examples illustrate, a poly
nomial is an algebraic expression involving the powers of a variable or indeterminate 
1 . We are used to thinking of such a polynomial as the function that maps 1 to the 
value of the expression concerned, so that the first polynomial represents the function 
f such that /(1) = 12 - 2t + 6 .  This function viewpoint is familiar, and it causes no 
problems when we are thinking about polynomials with complex numbers as their 
coefficients. Later (Chapter 16) we will see that when more general fields are permit
ted, it is not such a good idea to think of a polynomial as a function. So it is worth 
setting up the concept of a polynomial so that it extends easily to the general context. 

We, therefore, define a polynomial over C in the indeterminate t to be an expression 

ro + rt t + . . .  + rntn 

where ro , . . .  , rn E C, 0 < n E Z, and t is undefined. What, though, is an expres
sion, logically speaking? For set theoretic purity we can replace such an expression 
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by the sequence (ro , . . .  , r n ) (see Exercise 2.2). In such a formalism, t is just a place
holder for the sequence (0, 1 , . . .  , 0). 

The elements ro , . . .  , rn are the coefficients of the polynomiaL In the usual way, 
terms Otm may be omitted or written as 0, and l tm can be replaced by tm . 

Two polynomials are defined to be equal if and only if the corresponding coefficients 
are equal, with the understanding that powers of t not occurring in the polynomial 
may be taken to have zero coefficient. To define the sum and the product of two 
polynomials, write 

instead of 

where the summation is considered as being over all integers i > 0, and rk is defined 
to be 0 if k > n .  Then, if 

we define 

and 

rs = � qJtJ where qJ = � rhsi 
h+i=j 

(2. 1 ) 

(2.2) 

It is now easy to check directly from these definitions that the set of all polynomials 
over C in the t obeys all of the usQ.al algebraic laws (Exercise 2.3). We denote this set 
by C[t] ,  and call it the ring of polynomials over C in the indeterminate t . 

We can also define polynomials in several indeterminates t1 , t2 , • • .  , tn , obtaining 
the ring of n-variable polynomials 

in an analogous way. 
An element of C[t} will usually be denoted by a single letter, such as f, whenever 

it is clear which indeterminate is involved. If there is ambiguity, we write f (t) to 
emphasize the role played by t .  

Next, we introduce a simple but very useful concept that quantifies how complicated 
a polynomial is. 

DEFINITION 2.1 If f is a polynomial over C and f :j:. 0, then the degree of f is 
the highest power oft occurring in f with nonzero coefficient. 
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For example, t2 + 1 has degree 2, and 723t 1 101 - 9 1 1 lt55 + 43 has degree 1 10 1 .  
More generally, if f = I: ri ti and r n =/= 0 and r m = 0 for m > n ,  then f has degree n .  
We write a f for the degree of f . To deal with the case f = 0 we adopt the convention 
that ao = -00 (which symbol is endowed with the following properties: -00 < n 
for any integer n ,  - oo  + n = - oo ,  - oo x n = - oo ,  ( - ooP = - oo). 

The following result is immediate from this definition. 

PROPOSITION 2.2 

If f, g are polynomials over C, then 

a (j + g) < max(aj, a g) a(Jg) = at +  ag 

The inequality in the first line is due to the possibility of the highest terms cancelling 
(see Exercise 2.4). 

The f (t) notation makes f appear to be a function, with t as its independent variable, 
and in fact we can identify each polynomial f over C with the corresponding function. 
Specifically, each polynomial f E C[t] can be considered as a function from <C to C, 
defined as follows: if  f = I: riti and a E C, then a is mapped to I: riai . The next 
proposition proves that when the coefficients lie in C, it causes no confusion if we 
use the same symbols f to denote a polynomial and the function associated with it. 

PROPOSITION 2.3 

Two polynomials f, g over C define the same function if and only if they have the 
same coefficients. 

PROOF Equivalently, by taking the difference of the two polynomials, we must 
prove that if f(t) is a polynomial over C and f(t) = 0 for all t, then the coefficients 
of f are all 0. Write 

We now use complex differentiation. For a purely algebraic proof see Exercise 2.5. 
Because f(t) = 0 for all t E C, we may differentiate n times to deduce that f(n)(t) = 0 
for all t E C. In particular, t<n>(o) = 0 for all n .  But a simple induction shows that 
J<n)(O) = n !an , so an = 0 for all n .  0 

Proposition 2.2 implies that we can safely consider a polynomial over a subfield 
of C as either a formal algebraic expression or a function. It is easy to see that sums 
and products of polynomials agree with the corresponding sums and products of 
functions. Moreover, the same notational flexibility allows us to change the variable 
in a polynomial. For example, if t ,  u are two in determinates and f (t) = I: ri ti , then 
we may define f(u) = L: ri ui . It is also clear what is meant by such expressions as 
f(t - 3) or f(t2 + 1). 
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2.2 Fundamental Theorem of Algebra 
In Section 1 .3 we saw that the development of the complex numbers can be viewed 

as the culmination of a series of successive extensions of the natural number system. At 
each step, equations that cannot be solved within the existing number system become 
soluble in the new, extende� system. For example, C arises from JR. by insisting that 
t2 = - 1  should have a solution. 

The question then arises: why stop at C? Why not find an equation that has no 
solutions over C, and enlarge the number system still further to provide a solution? 

The answer is that no such equation exists, at least if we limit ourselves to polyno
mials. Every polynomial equation over C has a solution in C. This proposition was a 
matter of heated debate around 1700. In a paper of 1 702, Leibniz disputes that it can 
be true, citing the example 

However, in 1676 Isaac Newton had already observed the factorization into real 
quadratics: 

and Nicholas Bemoulli published the same formula in 1 719 . The resolution of the 
dispute rests on observing that ,Ji = � . In 1742 Euler asserted, without proof, that 
every real polynomial can be decomposed into linear or quadratic factors with real 
coefficients; Bemoulli now erred the other way, citing 

with zeros 1 + V2 + ,J=3, 1 - J2 + ,J=3, 1 + J2 - ,J=3, and 1 - J2 - ,J=3. 
Euler responded, in a letter to his friend Christian Goldbach, that the four factors 

occur as two complex conjugate pairs, and that the product of such a pair of factors is a 
real quadratic. He showed this to be the case for Bemoulli's proposed counterexample. 
Goldbach suggested that x4 + 12x - 20 did not agree with Euler' s assertion, and 
Euler pointed out a computational error, adding that he had proved the theorem for 
polynomials of degree <6. Euler and Jean Le Rond d' Almbert gave incomplete proofs 
for any degree; Lagrange claimed to have filled in the gaps in Euler's proof in 1772, 
but made the mistake of assuming that the roots existed, and that using the laws 
of algebra to deduce that they must be complex numbers, without proving that the 
roots whatever they were - must obey the laws of algebra. The first genuine 
proof was given by Gauss in his doctoral thesis of 1799. Later, Gauss gave three other 
proofs, all based on different ideas. 

We now state this property of the complex numbers formally, and explore some of 
its easier consequences; it is the aforementioned Fundamental Theorem of Algebra. 
As we have observed, this is a good name if we are thinking of classical algebra, but 
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not such a good name in the context of modem abstract algebra, which constructs 
suitable fields as it goes along and avoids explicit use of complex numbers. 

THEOREM 2.4 (Fundamental Theorem of Algebra) 
Let p(t) be a polynomial over C, with 8p > 1 . Then there exists at least one z E C 
such that p(z) � 0. 

Such a number z is called a root of the equation p(t) = 0, or a zero of the polynomial 
p. For example, i is a root of the equation t2 + 1 = 0 and a zero of t2 + 1 .  Polynomial 
equations may have more than one root; indeed, t2 + 1 = 0 has at least one other 
root, -i . 

In this section we prove the Fundamental Theorem of Algebra using some relatively 
simple ideas from real analysis and topology. This section can be skipped if you wish; 
the methods are not used again. A proof that is almost purely algebraic will be given 
in Chapter 23, Corollary 1 3, but we need to develop Galois theory to make the proof 
rigorous .  Many other proofs exist; one of the most common uses complex analysis 
(see Stewart and Tall ( 1983) Theorem 1 0.7). 

The ideas behind the proof we give here (but not their precise expression) go back 
to Gauss, who disguised the underlying geometry by converting it into complicated 
trigonometric formulas. For technical reasons, we use different tactics from those 
employed in the usual version of this proof. The main idea is to consider the winding 
number of a curve, and we start by describing that. 

Let § denote the unit circle, parametrized by arc length e. We can think of e in 
two equivalent ways. Either e E R  and we identify e + 2k'Tf with 6 for any integer k, 
which effectively reduces 6 to the range [0, 271" ), qr we think of e as an element of the 
quotient group R/27rZ. 

A loop in R2 is a continuous map -y : § --+ R 2, and its image -y(§) is a closed curve 
in the plane R2 . 

Suppose that -y(§) does not contain the origin (0, 0) E R2 ; that is, -y(e) # (0, 0) for 
6 E §. Then any point (x , y) E -y(§) lies on a unique ray through the origin; that is, a 
half-line extending from the origin to infinity. The argument 4> of (x , y)  is the angle 
between the positive x -axis and this ray, measured counterclockwise. The argument 
can be considered as an element of R, and it is unique up to the addition of any integer 
multiple of 27r. See Figure 2. 1 .  

Using e to parametrize §, let -y(e) = (xe , Ye) .  Choose a value cf>o of the argument 
of (x0 , y0). It is intuitively plausible that there exists a unique choice of argument cf>e 
for the point (xa , Ye) such that 

1 .  cf>e is equal to cf>o when e = 0. 

2. cf>e varies continuously with e. 

It is not hard to prove this using real analysis and some elementary topology. 
Intuitively, the idea is to walk along the curve -y(§) using very small steps, and to 
choose the unique value of the argument that causes it to change by a very small 
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Figure 2.1: Definition of the argument. 

0 

Figure 2.2: · Winding numbers. 

(x,y) 

3 
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amount at each step. At any rate, we assume that such a choice is possible. We call it 
a .continuous choice of argument for -y.  

DEFINITION 2.5 Let -y be a loop in R2 not passing through the origin. Let <!>a 
be a continuous choice of argument for -y. Then the winding number of -y round the 
origin is 

( ) 
<!>27r - <l>o w -y = ---

27r 

This number does not depend on the initial choice-<!>0, because starting with <Po + 
2k7r forces us to replace <!>a by <l>e + 2k7r, and the extra 2k7r's cancel. Figure 2.2 
illustrates the topology of the winding number. 

Examples 2.6 

1. Suppose that -y is constant, say -y((:)) = (x0 , y0) =f::. (0, 0) for all e. Then the choice <l>o 
works for all e, not just e = 0; in particular, being constant, it varies continuously 
with e .  In this case, the winding number is 

w(-y) = <l>o <l>o = 0 27r 
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2. Suppose that 'Y(6) = enie where n EZ. Now we can choose <!>e = n6. Therefore, 

2n7T - 0 
w('Y) = = n 

27T 

The winding number has an important property: it remains constant if 'Y is con
tinuously deformed, always avoiding passing through the origin. By this we mean 
the following. Consider a continuous map 

'Y : § X  (0, 1 ]  -+ �_2 \ {(0, 0)} 

Then 'Y defines a continuously varying family ofloops 'Ye, where 'Ye( e) = 'Y(e, e). 
We do not prove this property here, but we note one consequence: 

THEOREM 2. 7 
With the above notation, w('Ye) = w('Yo) for all £ E [0, 1 ]. In particular, 

(2.3) 

PROOF We sketch the proof. Some topology is needed to justify the assertions 
made. 

The winding numbers are well defined as no 'Ye meets the origin. The value of 
w( 'Ye) varies continuously with £. Because it is an integer, it must, therefore, be 
constant. So w('Ye) = w('Yo) for all £ E [0, 1 ] .  Setting £ = 1 ,  we have proved 
Equation (2.3). 0 

If some 'Yeo passes through the origin, then the winding number may change. 
Figure 2.3 shows how this can happen. 

We can now give a topological proof of the Fundamental Theorem of Algebra: 

Figure 2.3: How the winding number can change when a deformation of the loop 
passes through the origin. 
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PROOF OF THEOREM 2.4 Let p(t) be a nonconstant polynomial in C[t] . With
out loss of generality we may assume that the highest coefficient of p(t) is 1 .  We as
sume that p(t) has no zeros in C and obtain a contradiction. Let the degree a p = n > 1 .  

For each e E [0, 1 )  define a loop -y� by 

where 

When e = 1 ,  define 

Now 'Ye is defined for all e E [0, 1 ] .  

e 
r (e) = -

1
-
- e 

We claim that -y : § x [0, 1 ]  --'>- I�? is continuous, where -y(6 ,  e) = 'Ye(6). This is 
obvious except at e =  1 .  As e --'>- 1 ,  the function r(e) tends to +oo, so 

Suppose that 

Then 

p(r(e)eif1) 

r(e)n + 1 

The second term on the right-hand side tends to 0 as r(e) tends to +oo, and the first 
term tends to eni a . Therefore, for each 6, . 

Because we can take 6 to lie in the closed interval [0, 21T], the convergence is uniform 
in 6. Therefore, -y is continuous. 

The assumption that p(z) is nonzero for all z E C implies that the curve defined 
by 'Ye does not meet the origin for any e E [0, 1 ] .  Indeed, -y8(6) =·  0 if and only 
if p(r(e)eie) = 0. By Theorem 2.7, w(-y0) = w(-yi). However, Examples 2.6 show 
that w(-y0) = 0, whereas w(-y1 )  = n > 1 .  This is a contradiction. Therefore, the 
assumption that p(t) has no zeros in C is false, which is what we wish to prove. 0 



26 The Fundamental Theorem of Algebra 

2.3 Implications 
The Fundamental Theorem of Algebra has some useful implications. Before prov

ing the most basic of these, we first prove the Remainder Theorem. 

THEOREM 2.8 (Remainder Theorem) 
Let p(t) E C[t] with ap > 1, and let ex E C. 

1. There exist q(t) E C[t] and r E C such that p(t) = (t - ex)q(t) + r. 

2. The constant r satisfies r = p(ex). 

PROOF Let y = t - ex so that t = y + ex. Write p(t) = Pntn + · · · + Po where 
Pn f::. 0 and n > 1 .  Then 

p(t) = Pn(Y + ex)n + · · · + Po 

Expand the powers of y + ex  by the binomial theorem, and collect terms to get 

where 

( n-l + = y any . . .  

= (t - ex)q(t) + r 

q(t) = an (t ex)n + · · · + a1 (t - ex) + ao 

r = ao 

Now substitute t = ex in the identity p(t) = (t - ex)q(t) r to get 

p(ex) = (ex - ex)q(ex) + r = O.q(ex) + r = r 

COROLlARY 2.9 

The complex number ex is a zero of p(t) if and only ift - ex divides p(t) in C[t]. 

PROPOSITION 2.10 

0 

Let p(t)  E <C[t] with ap = n ::: 1 .  Then there exist ex ! ,  . . .  ' exn E <C, and 0 # k E C, 
such that 

p(t) = k(t - ext )  · · · (t - exn ) (2.4) 
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PROOF Use induction on n .  The case n = 1 is obvious .  If n > 1 we know, by the 
Fundamental Theorem of Algebra, that p(t) has at least one zero in C; call this zero 
«n . By the Remainder Theorem, there exists q(t) E <C[t] such that 

p(t) = (t - Ci.n)q(t) (2.5) 

(note that the remainder r = p(an) = 0). Then oq = n - 1, so by induction 

q(t) = k(t - Ci.t ) · · · (t - Ci.n-1 )  (2.6) 

For suitable complex numbers k, a1 , . . .  ; Ci.n-1 · Substitute Equation (2.6) in Equation 
(2.5) and the induction step is complete. 0 

It follows immediately that the a.j are the only complex zeros of p(t). 
The zeros a j need not be distinct. Collecting together those that are equal, we can 

rewrite Equation (2.4) in the form 

where the f3 j are distinct, the m j are integers > 1 ,  and m1 + · · · mz = n .  We call 
m j the multiplicity of the zero f3 j of p(t) .  

In particular, we have proved that every complex polynomial of degree n has 
precisely n complex zeros, counted according to multiplicity. 

Exercises 

2. 1 Let p(t) E Q[t] .  Show that p(t) has a unique expression in the form 

p(t) = (t - Ci.t )  · · · (t - Ci.r)q(t) 

(except for reordering the Ci.j) where Ci.j E Q for 1 < j ::=:: r and q(t) has no 
zeros in Q[t] .  Prove that here the Ci.j are precisely the zeros ofp(t)  in Q. 

2.2 A set theorist would define C[t ]  as follows. Consider the set S of all infinite 
sequences 

where an E C for all n E N, and such that an = 0 for all but a finite set of n .  
Define operations of  addition and multiplication on S by the rules 

(an ) + (bn) = (tn) where tn = an + bn 

(an)(bn) = (un) where Un = anbo + an-1b1 · · · + aobn 
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Prove that <C [t] ,  so defined, satisfies all of the usual laws of algebra for addition, 
subtraction, and multiplication. Define the map 

e : <e -+ s 

e(k) = (k, o, o,  o, . . .  ) 

and prove that e(<C) c s is isomorphic to <C. 
Finally, prove that if we identify a E C with e (a) E S and the indeterminate 

t with (O, 1 ,  0, 0, 0, . . .  ) E S, then (an) = a0+ · · · +aNtN, where N is chosen 
so that an = 0 for n > N. Thus we can define polynomials as sequences of 
complex numbers corresponding to the coefficients. 

2.3 Using Equations (2. 1 ,  2.2), prove that polynomials over C obey the following 
algebraic laws: 
f g = g + f, f + (g + h) = (/ +  g) + h ,  fg = gf, f(gh) = (fg)h ,  and 
f (g + h) = f g + f h . 

2.4 Show that a (j g) ·Can be less than max(aj, a g) and, indeed, that act + g) 
can be less than min(aj, ag) . 

2.5* If z1 , zz ,  . . .  , Zn are distinct complex numbers, show that the determinant 

1 
Zl 

D =  zr 

n-1 z1 

Is nonzero . .  

1 
Z2 
z� 

. . . 

. . . 
n-1 z2 

1 

n-1 Zn 

(Hint: Consider the z j as . independent indeterminates over <C. Then D is a 
polynomial in the Zj . of total degree 0 + 1 + 2 + · · · (n - 1 )  = !n(n - 1) .  
Moreover, D vanishes whenever Zj = Zk, for k =j:. j,  as it then has two identical 
rows. Therefore D is divisible by Zj - Zk for all j =j:. k, hence it is divisible by 
flj<k (Zj - Zk). Now compare degrees.) . 

For obscure reasons, the determinant D is called a Vandermonde determinant 
(no such expression occurs in Alexandre-Theophile Vandermonde's  published 
writings). 

2.6 Use the Vandermonde determinant to prove that if a polynomial f(t) vanishes 
for all t E C, then all coefficients of f are zero. (Hint. Substitute t = 1 ,  2, 3 ,  . . .  
and solve the resulting system of linear equations for the coefficients.) 
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2. 7 What is wrong with the following proof of Proposition 2.3? 
Suppose f(t) = 0 for all t E C, where f(t) = antn + · · · + ao. Set t = 0 

to deduce that ao = 0. Then f(t) = t(antn-I + · · · + a1) = 0 for all t E C, so 
antn-l + · · · + a1 = 0 for all t E C. By induction on the degree, an = · · · .:.:.::.. , 

G J  = 0. 

2.8 Show that the proof in Exercise 2.7 can be repaired by appealing to continuity 
of polynomial functio;ns over C. 

2.9 A curve 'Y in C is defined by 

-y(6) = ( cos 36 ,  sin 3H 
1
� cos ( H :) ) 

Find the winding number of 'Y. 
2. 1 0  Prove, without using the winding number, that every cubic polynomial over R 

can be expressed as a product of linear factors over C. 

2. 1 1  * Do the same for cubic polynomials over C. 

2 . 12  Let 'Y be a loop and let 'Y be defined by 'Y(G) = -y(2-rr - G). Prove that 'Y is a 
loop, and w('Y) = -w(-y). 

2. 1 3  Let 'Y 1 , 'Y2 be loops, and define 'Y 1 + 'Y2 by { 'Y t  (2G) if G < '1T 
('Yt + 'Yz)(G) = 

-y2(2G - 2'1T) if (} > '1T 

Show that 'Y l + 'Y2 is a loop, and w('YI + 'Yz) = w('Yt )  + w(-yz) .  

2. 14 Mark the following true or false. Here f, g are polynomials over C. 

a. a(j - g) > min(aj, ag). 
b. 8 (f - g) < min(8f, 8g). 
c .  8 (f - g) < max(8f, 8g). 
d. 8(f - g) ::;: max(8f, 8g). 
e. Every polynomial over C has at least one zero in C. 

f. Every polynomial over C of degree > 1 has at least one zero in JR. 

g. The winding number of any loop not passing through the origin is a 
positive integer. 





Chapter 3 

Factorization of Polynomials 

Not only is there an algebra of polynomials, there is an arithmetic. That is, there 
are notions analogous to the integer-based concepts of divisibility, primes, prime 
factorization, and highest common factors. These notions are essential for any serious 
understanding of polynomial equations, and we develop them in this chapter. 

It was noticed early on that if f is a product g h of polynomials of smaller degree, 
then the solutions of f(t)  = 0 are precisely those of g(t) = 0 together with those of 
h(t) = 0. For example, to solve the equation 

t3 - 6t2 + 1 1  t - 6 = 0 

we can spot the factorization (t - l )(t - 2)(t - 3) and deduce that the roots are t = 
1 ,  2, 3 .  From this simple idea emerged the arithmetic of polynomials - a systematic 
study of divisibility properties of polynomials with particular reference to analogies 
with the integers . In particular, there is an analogue for polynomials of the Euclidean 
Algorithm for finding the highest common factor of two integers. 

In this chapter we define the relevant notions of divisibility and show that there are 
certain polynomials, the irreducible ones, that play a similar role to prime numbers in 
the ring of integers. Every polynomial over a given subfield of <C can be expressed as 

· a product of irreducible polynomials over the same subfield in an essentially unique 
way. We relate zeros of polynomials to the factorization theory. 

Throughout this chapter all polynomials are assumed to lie in K[t] , where K is a 
sub field of the complex numbers, or in R [t ] ,  where R is a subring of the complex 
numbers. Some theorems are valid over R, while others are valid only over K; we 
will need both types. 

3.1 The Euclidean Algorithm . 
In number theory, one of the key concepts is divisibility: an integer a is divisible by 

an integer b if there exists an integer c such that a = be. For instance, 60 is divisible 
by 3 because 60 = 3 x 20, but 60 is not divisible by 7. Divisibility properties of 
integers lead to such ideas as primes and factorization. We wish to develop similar 
ideas for polynomials. 

Many important results in the factorization theory of polynomials derive from the 
observation that one polynomial may always be divided by another provided that a 
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remainder term is allowed. This is a generalization of the Remainder Theorem, in 
which f is assumed to be linear. 

PROPOSITION 3.1 (Division Algorithm) 
Let f and g be polynomials . over K, and suppose that f is nonzero. Then there exist 
u_nique polynomials q and r over K, such that g = f q + r and r has a strictly smaller 
degree than f. 

PROOF We use induction on the degree of g. If og = -oo then g = 0 and we 
may take q = r = 0. If og = 0 then g = k is an element of K. If also of = 0 then f 
is an element of K, and we may take q = k/f and r = 0. Otherwise, of > 0 and we 
may take q = 0 and r = g .  This starts the induction. 

Now assume that the result holds for all polynomials of degree <n, and let &g = 
n > 0. If &f > &g, then we may as before take q = 0, r = g. Otherwise, 

where am # 0 # bn and m < n .  Let 

Because the terms of highest degree cancel (which is the object of the exercise) 
we have og1 < og . By induction there are polynomials q1 and r1 over K such that 
g1 = fq i + r1 and or1 < &f. Let 

r = -r1 

Then 

so g = f q r ;  clearly, &r < &f as required. 
Finally, we prove uniqueness. Suppose that 

Then f(q t - q2) = r2 - r1 . By Proposition 2.2, the polynomial on the left has higher 
degree than that on the right, unless both are zero. Since f # 0 we must have q1 = q2 
and r1 = r2 . Thus q and r are unique. 0 

With the above notation, q is called the quotient and r is called the remainder on 
dividing g by f. The inductive process we employed to find q and r is called the 
Division Algorithm. 
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Example 3.2 
Divide g(t) = t4 - 7t3 + 5t2 + 4 by f = t2 + 3 and find the quotient and remainder. 

Observe that 

has the same leading coefficient as g. Then 

which has the same leading coefficient as 

-7t(t2 + 3) = -7t3 - 21t  

Therefore, 

which has the same leading coefficient as 

Therefore, 

g - t2(t2 + 3) + 7t(t2 + 3) - 2(t2 + 3) = 2lt  - 2 

So 

g = (t2 + 3)(t2 - 7t + 2) (21 t  - 2) 

and the quotient q(t) = t2 - 7t + 2, while the ren:;tainder r(t) = 2lt - 2. 

The next step is to introduce notions of divisibility for polynomials, and in particular 
the idea of highest common factor, which is crucial to the arithmetic of polynomials. 

DEFINITION 3.3 Let f and g be polynqmials over K. We say thatf divides g (or 
f is a factor of g, or g is a multiple of f) if there exists some polynomial h over K 
such that g = fh. The notation f i g  will mean that f divides g, while ffg will mean 
that f does not divide g. 

DEFINITION 3.4 A polynomial d over K is a highest common factor (hcf) of 
polynomials f and g over K if  d l f  and d !g and further, whenever e l f  and e lg, we 
have e !d. 

Note that we have &aid a highest common factor rather than the highest common 
factor. This is because hcf's need not be unique. The next lemma shows that they are 
unique apart from constant factors. 



34 Factorization of Polynomials 

LEMMA 3.5 
If d is an hcf of the polynomials f and g over K, and if 0 =/=- k E K, then kd is also 
an hcffor f and g. 

If d and e are two hcf's for f and g, then there exists a nonzero element k E K 
such that e = kd. 

PROOF Clearly, kdl f  and kd jg. If e l f  and e lg  then e ld so that e lkd. Hence kd 
is an hcf. If d and e are hcf's then by definition e ld and d je .  Thus e = kd for some 
polynomial K. Because e Id  the degree of e is less than or equal to the degree of d, 
so K must have degree <0.  Therefore, K is  a constant, and so belongs to K. Since 
0 =/=- e = kd, we must have k =/=- 0. 0 

We shall prove that any two nonzero polynomials have an hcf by providing a 
method to calculate one. This method is a generalization of the technique used by 
Euclid (Elements, Book 7, Proposition 2) around 600 BC for calculating hcf's of 
integers, and is accordingly known as the Euclidean Algorithm. 

ALGORITHM 3.6 (Euclidean Algorithm) 
Ingredients: Two polynomials f and g over K, both nonzero. 
Recipe: For notational convenience let f = r _ 1 ,  g = ro . Use the Division Algorithm 
to find successively polynomials qj and rt such that 

r_I = q1ro + r1 

ro = q2r1 + r2 
r1 = q3r2 r3 

Br1 < Bro 

ar2 < arl 
ar3 < or2 (3 . 1 )  

Because the degrees of the ri decrease, we must eventually reach a point where the 
process stops; this can happen only if some rs+2 = 0. The last equation in the list 
then reads 

(3 .2) 

and it provides the answer we seek: 

THEOREM 3. 7 
With the above notation, rs+I is an hcffor f and g. 

PROOF First, we show that rs+ 1 divides both f and g. We use descending induction 
to show that rs+I Iri for all i .  Clearly, rs+l lrs+l · Equation (3 .2) shows that rs+I lrs . 
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Equation (3 . 1) implies that if rs+I I ri+2 and rs+t lrt+l then rs+I Iri . Hence rs+t lri for 
all i ;  in particular, rs+d ro = g and rs+dr -1 = f. 

Now suppose that elf and e lg .  By Equation (3. 1 )  and induction, e lrt for all i .  In 
particular, e lrs+ l · Therefore, rs:+I is an hcf for f and g, as claimed. D 

Example 3.8 
Let f = t4 + 2t3 + 2t2 + 2t + 1 ,  g = t2 - 1 over Q. We compute an hcf as follows: 

t4 + 2t3 + 2t2 + 2t + 1 = (t2 + 2t + 3)(t2 - 1)  + 4t + 4 

2 . ( 1 1 ) 
t - 1 = ( 4t + 4) 4 t - 4 

Hence 4t + 4 is an hcf. So is any rational multiple of it, in particular, t + 1 .  

We end this chapter by deducing from the Euclidean Algorithm an important prop
erty of the hcf of two polynomials. 

THEOREM 3.9 

Let f and g be nonzero polynomials over K, and let d be an ·hcffor f and g. Then 
there exist polynomials a and b over K such that 

d = af + bg 

PROOF Because hcf's are unique up to constant factors, we may assume that 
d = rs+l where Equations (3. 1 )  and (3.2) hold. We claim as an induction hypothesis 
that there exist polynomials ai and bi such that 

This is clearly true when i = s + 1 ,  for we may then take at = 1 ,  bi = 0. By Equation 
(3. 1 )  

Hence by induction 

so that if we put 

we have 
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Hence by descending induction 

d = a_1 r-1 + b-1 ro = af + bg 

where a =  a_t ,  b = h-I · This completes the proof. D 
The induction step above affords a practical method of calculating a and b in any 

particular case. 

3.2 Irreducibility 
Now we investigate the analogue, for polynomials, of prime numbers. The concept 

required is irreducibility. In particular, we prove that every polynomial over a subring 
of C can be expressed as a product of irreducibles in an essentially unique way. 

An integer is prime if it cannot be expressed as a product of smaller integers. The 
analogue for polynomials is similar; we interpret smaller as smaller degree. So the 
following . definition yields the polynomial analogue of a prime number. 

DEFINITION 3.10 A polynomial over a subring R of C is reducible if it is a 
product of two. polynomials over R of smaller degree. Otherwise it is irreducible. 

Examples 3.11 

1 .  All polynomials of degree 0 or 1 are irreducible, ·because they certainly cannot be 
expressed as a product of polynomials of smaller degree. 

2. The polynomial t2 - 2 is irreducible over Q. To show this we suppose, for a 
contradiction, that it is reducible. Then 

t2 - 2 = (at + b)( et + d) 

where a, b ,  c ,  d, E Q. Dividing out if necessary we may assume a =  c = 1 . Then 
b + d = 0 and bd = -2, so that b2 = 2. But no rational number has its square 
equal to 2 (Exercise L2). 

3. However, t2 - 2 is reducible over the larger subfield JR, for now 

t2 - 2 = (t - ../2)(t + ../2) 
This shows · that an irreducible polynomial may become reducible over a larger 
subfield of C. 

4. The polynomial 6t + 3 is irreducible in Z[t] .  Although it has factors 

6t + 3 = 3(2t + 1 )  
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the degree of 2t 1 is the same as that of 6t + 6. So this factorization does not 
count. 

5. The constant polynomial 6 is irreducible in Z[t] .  Again, 6 = 2 · 3 does not count. 

Any reducible polynomial can be written as the product of two polynomials of 
smaller degree. If either of these is reducible it, too, can be split up into factors of 
smaller degree . . . and so on. This process must tenninate because the degrees cannot 
decrease indefinitely. This is the idea behind the proof of: 

THEOREM 3.12 

Any nonzero polynomial over a sub ring R ofC is a product of irreducible polynomials 
over R. 

PROOF Let g be any nonzero polynomial over R. We proceed by induction on the 
degree of g .  If a g = 0 or 1 ,  then g is automatically irreducible. If a g > 1 ,  then either 
g is irreducible or g = hk where oh , 8k < ag. By induction, h and K are products 
of irreducible polynomials, whence g is such a product. The theorem follows by 
induction. 0 

Example 3.13 

We can use Theorem 3 . 12  to prove irreducibility in some cases, especially for cubic 
polynomials over Z. For instance, let R = Z. The polynomial 

f(t) = t3 - 5t + 1 

is irreducible. If not, then it must have a linear factor t - a over Z, and then a E Z 
and f(a) = 0. Moreover, there must exist (3, 'Y E  Z such that 

f(t) = (t - a)(t2 + (3t + "/) 

= t3 + ((3 - a)t2 + ("/ a(3)t - <X"/ 

so, in particular, <X"/ = - 1 . Therefore, a = L But f ( 1 )  = -3 -:j:. 0 and f ( -1 )  = 
5 -:j:. 0. Therefore, no such factor exists. 

Irreducible polynomials are analogous to prime numbers. The importance of prime 
numbers in Z stems not so much from the possibility of factorizing every integer into 
primes, but more from the uniqueness (up to order) of the prime factors. Likewise the 
importance of irreducible polynomials depends upon a uniqueness theorem. Unique
ness of factorization is not obvious, see Stewart and Tall (2002) Chapter 4. In certain 
cases it is possible to express every element as a product of irreducible elements, 
without this expression being in any way unique. We shall heed the warning and 
prove the uniqueness of factorization for polynomials. To avoid technical issues like 
those in Examples 3 . 1 1(4,5), we restrict attention to ·polynomials over a subfield K 
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of C. It is possible to prove more general theorems by introducing the idea of a unique 
factorization domain; see Fraleigh ( 1989) Chapter 6. 

For convenience we make the following: 

DEFINITION 3.14 If f and g are polynomials over a subfield K of C with hcf 
equal to 1, we say that f and g are coprime, or f is prime to g. (The common phrase 
coprime to is wrong. The prefix 'eo ' and the 'to ' say the same thing, so it is redundant 
to use both.) 

The key to unique factorization is a statement analogous to an important property 
of primes in Z, and is used in the same way. 

LEMMA 3.15 · 

Let K be a subfield of CC, f an irreducible polynomial over K, and g, h polynomials 
over K. If f divides g h, then either f divides g or f divides h.  

PROOF Suppose that ffg. We claim that f and g are coprime. For if d is an hcf 
for f and g, then since f is irreducible and d If, either d = kf for some k E K, or 
d = k E K. In the first case, f Ig ,  contrary to hypothesis. In the second case, 1 is also 
an hcf for f and g, so they are coprime. By Theorem 3 .9, there exist polynomials 
a and b over K such that 

1 = af + bg 

Then 

h = haf + hbg 

Now f lhaf, and f lhbg because f lgh. Hence f lh .  This completes the proof. D 
We may now prove the uniqueness theorem. 

THEOREM 3.16 
For any subfield K ofC, factorization of polynomials over K into irreducible polyno
mials is unique up to constant factors and the order in which the factors are written. 

PROOF Suppose that f = /1 . . . fr = g1 . . .  8s . where f is a polynomial over 
K and /1 � . . . , fr , g1 , . . .  , 8s are irreducible polynomials over K. If all the /;. are 
constant, then f E K, so all the g i are constant. Otherwise, we may assume that no /;. 
is constant by dividing out all of the constant terms. Then /1 l81 . . .  8s . By an obvious 
induction based on Lemma 3 . 15 ,  fdgi for some j .  We can choose notation so that 
j = 1 ,  and then ft i8I · Because /1 and 81 are irreducible and /1 is not a constant, 
we must have /1 = k1 g1 for some constant k1 . Similarly fz = kzg2 , . . .  , fr = krgr 

where kz , . . .  , kr are constant. The remaining g1 (l > r)  must also be constant, or else 
the degree of the right-hand side would be too .large. The theorem is proved. 0 
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3.3 Gauss's Lemma 
It is in general very difficult to decide - without using computer algebra, at any 

r'l.te - whether a given polynomial is irreducible. As an example, think about 

t l6 + t l5 + t 14 + t l3 + t 12 + t l l  t lO + t9 + t 8 + t? + t6 
+ t5 + t4 + t3 + t2 + t + 1 

This is not an idle example; we shall be considering precisely this polynomial in 
Chapter 1 9  in connection with the regular 17 -gon, and its irreducibility (or not) will 
be crucial. 

To test for irreducibility by trying all possible factors is usually futile. Indeed, at 
first sight there are infinitely many potential factors to try, although with suitable short 
cuts the possibilities can be reduced to a finite, usually unfeasibly large, number. The 
resulting method can be applied, in principle, to polynomials over Q, for example. 
See van der Waerden ( 1953); Garling (1960). Even then, the method is not really 
practicable. 

Instead, we have to invent a few useful tricks. In the next two sections we describe 
two of them: Eisenstein's Criterion. and reduction modulo a prime. Both tricks apply 
in the first instance to polynomials over Z. However, it is known that irreducibility 
over Z is equivalent to irreducibility over Q. This was proved by Gauss, and it is an 
extremely useful result which we use repeatedly. 

LEMMA 3.17  (Gauss's Lemma) 

Let f be a polynomial over Z that is irreducible over Z. Then f, considered as a 
polynomial over Q, is also irreducible over Q. 

PROOF The point of this lemma is that when we extend the subring of coeffi
cients from Z to Q, there are hosts of new polynomials which, perhaps, might be 
factors of f.  We show that in fact they are not So we suppose that f is irreducible 
over Z but reducible over Q, so that f = gh where g and h are polynomials over 
Q, of smaller degree, and seek a contradiction. Multiplying through by the prod
uct of the denominators of the coefficients of g and h ,  we can rewrite this equa
tion in the form nf = g' h', where n E Z and g', h' are polynomials over Z. We 
now show that we can cancel out the prime factors of n one by one, without going 
outside /Z[t] .  

Suppose that p is a prime factor of n .  We claim that if 

then either p. divides all the coefficients 8i ,  or else p divides all the coefficients h j .  
If not, there must be smallest values i and j such that p f 8i and p f hi . However, p 
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divides the coefficient of t i+J in g'h', �hich is 

hogi+J + h tgi+J-1 + · · · + hJgi + · · · + hi+Jgo 

and by the choice of i and j ,  the prime p divides every term of this expression except 
perhaps h1gi . But p divides the whole expression, so p lhJgi . However, p f hJ and 
p f gi , a contradiction. This establishes the claim. 

Without loss of generality, we may assume that p divides every coefficient gi . 
Then g' = pg" where g" is a polynomial over Z of the same degree as g' (or g). Let 
n = pn1 .  Then pn1 f  = pg"h', so that n 1 f  = g"h' . Proceeding in this way we can 
remove all . the prime factors of n ,  arriving at an equation f = gli. Here g and ii are 
polynomials over Z, which are rational multiples of the original g and h ,  so 8 g = 8 g 
and oh = oh . But this contradicts the irreducibility of f over Z, so the lemma is 
proved. D 

COROLLARY 3.18 

Let f E Z[t] and suppose that over Q[t] there is a factorization into irreducibles: 

Then there exist ai EQ such that aigi EZ[t]  and a1 . . .  as = 1 .  Furthermore, 

is a factorization off into irreducibles in Z[t] . 

PROOF Factorize f into irreducibles over Z[t], obtaining f = h1 . . .  hr . By 
Gauss's Lemma, each h 1 is irreducible over Q. By uniqueness of factorization in 
Q[t] , we must have r = s and h 1 = a1g1 for a1 EQ. Clearly, a1 . . .  as = .1 . The 
corollary is now proved. 0 

3.4 Eisenstein's Criterion 
No, not Einstein. Ferdinand Gotthold Eisenstein was a student of Gauss, and greatly 

impressed his tutor. We can apply the tutor's lemma to prove the student's criterion 
for irreducibility. 

THEOREM 3.19 (Eisenstein 's Criterion) 

Let 

be a polynomial over Z. Suppose that there is a prime q such that 
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(1) q {an 

(2) q lai (i = 0, . . . , n - 1 )  

(3) q2 fao 

Then f is irreducible over Q. 
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PROOF By Gauss's Lemma, i t  i s  sufficient to show tp.at f is  irreducible over Z. 
Suppose for a contradiction that f = gh, where 

are polynomials of smaller degree over Z. Then r > 1 ,  s > 1 ,  and r + s = n .  Now 
boco = ao so by (2) q Jbo or q Ieo .  By (3) q cannot divide both bo and eo, so without 
loss of generality we can assume q lbo ,  q f eo. ·If all b j are divisible by q , then an is 
divisible by q , contrary to Condition ( 1 )  above. Let b j be the first coefficient of g not 
divisible by q .  Then 

where j < n.  This implies that q divi�es eo, because q divides aj , bo , . . . , bj-1 , but 
not b j . This is a contradiction. Hence f is irreducible. 0 

Examples 3.20 

1 .  Consider 

2 5 f(t) = -t5 + -t4 9 3 

1 
t3 + - over Q 

3 

This is irreducible over Q if and only if 

9 f(t) = 2t5 + 1 5t4 9t3 + 3 

is irreducible over Q. Eisenstein's criterion now applies with q = 3, showing that 
f is irreducible. 

2. Consider 

f(t) = t 16 + t 15 + . . . + 1 

as mentioned above. As it stands, f is not susceptible to the Eisenstein treat
ment. But f(t) is obviously irreducible if and only if f(t 1 )  is irreducible. 
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(Hint: f(t)  = g(t)h(t) if and only if f(t + 1)  = g(t l)h(t + 1 ).) If we expand 
this monster, we obtain 

f(t + 1 )  = t 16 + 17t 15 + 1 36t14 680t 13 + 2380t 12 + 6188t 1 1  

+ 12376t 10 1 9448t9 + 243 10t8 243 10t7 1 9448t6 

+ 1 2376t5 + 6 188t4 + 2380t3 + 680t2 + 1 36t 1 7  

= t 16 + 17(t 15 + 8t 14 + 40t 13 + 140t 12 364t 1 1  + 728t 10 

+ 1 144t9 + 1430t8 + 1430t7 + 1 144t6 + 728t5 + 364i4 

+ 140t3 + 40t2 + 8t + 1 )  

(3 .3) 

Therefore, Eisenstein's criterion applies with q = 1 7, so f is irreducible over Q. 
There is, incidentally, a good reason why this method works here, which does not 
emerge clearly from direct calculations. See Lemma 13  for details. 

3.5 Reduction Modulo p 
A second trick to prove irreducibility of polynomials is that Z[t] involves reducing 

the polynomial modulo a prime integer p. 
Recall that if n E Z, two integers a ,  b are congruent modulo n ,  written 

a =  b (mod n) 

if a - b is  divisible by n .  The number n i s  the modulus, and "modulo" is  Latin for 
"to the modulus". Congruence modulo n is an equivalence relation, and the set of 
equivalence classes is denoted by · Zn . Arithmetic in Zn is just like arithmetic in Z, 
except that n = 0. 

Under addition, Zn is a cyclic group of order .n .  Indeed, this is a standard way to 
define cyclic group. 

The multiplicative structure of Zn is more interesting. For some values of n ,  there are 
elements that do not have (multiplicative) inverses - consider 2 E Z6, for example. 
It is easy to see that a E Zn has an inverse if and only if a is prime to n .  

DEFINITION 3.21 The group of units Z� of Zn consists of the elements a E Zn 
such that 1 < a < n and a is prime to n under the operation of multiplication. 

The order of this group is given by an important arithmetical function. 

DEFINITION 3.22 The Euler function <!>(n) is the number of integers a, with 
1 < a < n - 1, such that a is prime to n. 
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Definition 3.22 implies immediately that the order of Z� is equal to <j>(n). 
The Euler function <f>(n) has numerous interesting properties. In particular, 

if p is prime, and 

<j>(r )<j>(s) = <!>(r s) 

when r, s are coprime (see Exercise 3 . 1 ). 
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The test for irreducibility that we now wish to discuss is most easily explained by 
an example. The idea is this. There is a natural map Z --+ Zn in which each m E Z 
maps to its congruence class modulo n .  The natural map extends in an obvious way 

' to a map Z[t] --+ Zn [t] .  Now a reducible polynomial over Z is a product gh of 
polynomials of lower degree, and this factorization is preserved by the map. Pro
vided n does not divide the highest coefficient of the given polynomial, the image 
is irreducible over Zn . So if the image of a polynomial is irreducible over Zn , then 
the original polynomial must be irreducible over Z. (The corresponding statement 
for reducible polynomials is in general false; consider t2 - 2 E Q[t] when p = 2.) 
Since Zn is finite, there are only finitely many possibilities to check when deciding 
irreducibility. 

In practice, the trick is to choose the right value for n .  

Example 3.23 

Consider 

f(t) = t4 + 15t3 + 7 over Z 

· Over Z5 this becomes t4 + 2. If this is reducible over Z5 , then either it has a factor of 
degree 1 ,  or it is a product of two factors of degree 2. The first possibility gives rise to 
an element x E Zs such that x4 + 2 = 0. No such element exists (there are only five 
elements to check) so this case is ruled out. In the remaining case we have, without 

· loss of generality, 

t4 + 2 = (t2 at + b )(t2 + et + d) 

Therefore, a +  c = 0, ac + b + d = 0, bd = 2. Thus, b d = a2 which can take only 
the values 0, 1 ,  4 because these are the only squares in Z5 • Hence, either b(l - b) = 2 
or -b2 = 2 or b(4 - b) = 2. Trying all possible values 0, 1 ,  2, 3, 4 for b we see that 
none of these equations can hold. Hence, t4 + 2 is irreducible over Z5 and, therefore, 
the original f(t) is irreducible over Z, and hence over Q. 

Notice that if instead we try to work in Z3 , then f(t) becomes t4 + 1, which equals 
(t2 + t - l )(t2 - t - 1 )  and so is reducible. Thus working (mod 3) fails to prove 
irreducibility. 
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-3 .. 6 Zeros of Polynomials 
We have already studied the zeros of a polynomial over C. It will be useful to 

employ similar terminology for polynomials over a subring R of C, because then we 
can keep track of where the zeros lie. -We begin with a formal definition. 

DEFINITION 3.24 Let R be a sub ring of C, and let f be a polynomial over R. 
An element a E R  such that f(a) = 0 is a zero of f in R. 

To illustrate some basic phenomena associated with zeros, we consider polynomials 
over the real numbers: In this case, we can draw the graph y = f (x) (in standard 
terminology, with x E R in place of t ). The graph might, for example, resemble 
Figure 3. 1 .  

The zeros of f are the values of x at which the curve crosses the x-axis. Consider 
the three zeros marked A, B ,  C in the diagram. At A the curve cuts straight through the 
axis; at B it bounces off it; at C it slides through horizontally. These phenomena are 
generally distinguished by saying that B and C are multiple zeros of f(t). The single 
zero B must be thought of as two equal zeros (or more) and C as three (or more). 

But if they are equal, how can there be two of them? The answer is the concept 
of multiplicity of a zero introduced in Section 2.3. We now reformulate this concept 
without using the Fundamental Theorem of Algebra, which in this context is the 
proverbial nutcracking sledgehammer. The key is to look at linear factors of f. 

LEMMA 3.25 

Let f be a polynomial over the subfield K of C. An element a E K is a zero off if 
and only if (t - a) lf(t) in K [t]. 

PROOF We know that (t - a) l f(t) in C[t] by Theorem 2.8, but we want slightly 
more. If (t - a) l f(t) in K[t] ,  then f(t) = (t - a)g(t) for some polynomial g over K, 
so that f(a) = (a - a)g(a) = 0. 

Figure 3.1: Multiple zeros of a (real) polynomial. The multiplicity is 1 at (A), 
2 at (B), and 3 at (C). 
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Conversely, suppose f(rx) = 0. By the Division Algorithm, there exist polynomials 
q ,  r E K[t] such that 

f(t) = (t - cx)q(t) + r (t) 

where ar < 1 .  Thus, r(t) = r E K. Substituting a for t ,  

0 = f(cx) = (a - a)q(a) + r 

so·r :.._ 0. Hence, (t - cx) l f(t) E K[t] as required. 0 
We can now say what we mean by a multiple zero, without appealing to the 

Fundamental Theorem of Algebra. 

DEFINITION 3.26 Let f be a polynomial over the subfield K of C. An element 
a E K is a simple zero of f if (t - cx) l f(t) but (t - a)2 f f(t). The element a is a 
zero off of multiplicity m if(t - cx)m l f(t) but (t - cx)m+l f f(t). Zeros .of multiplicity 
greater than 1 are' repeated or multiple zeros. 

For example, t3 -3t+2 overQ has zeros at a =  1 ,  -2. It factorizes as (t- 1)2(t+2). 
Hence, -2 is a simple zero, while 1 is a zero of multiplicity 2. 

When K = JR. and we draw a graph, as in Figure 1 . 1 ,  points like A are the simple 
zeros; points like B are zeros of even multiplicity; and points like C are zeros of odd 
multiplicity > 1 .  For subfields of C other than JR. (except perhaps Q, or other sub fields 
of JR.) a graph has no evident meaning, but the simple geometric picture for JR. is often 
helpful. 

LEMMA 3.27 

Let f be a nonzero polynomial over the subfield K of C, and let its distinct zeros be 
rx1 , . . .  , CXr with multiplicities m 1 ,  . . .  , mn respectively. Then · 

where g has no zeros in K. 

(3 .4) 

Conversely, if Equation (3 .4) holds and ·g has no zeros in K, then the zeros of f in 
K are a 1 ,  . . . , CXr, with multiplicities m 1 ,  . . .  , mr, respectively. 

PROOF For any a E K the polynomial t - a is irreducible. Hence, for distinct 
a, (3 E K the polynomials t - a  and t - 13 are coprime in K[t]. By uniqueness of 
factorization (Theorem 2.3) Equation (3 .4) must hold. Moreover, g cannot have any 
zeros in K, or else f would have extra zeros or zeros of larger multiplicity. 

The converse follows easily from uniqueness of factorization. 0 
From this lemma we deduce a famous theorem. 
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THEOREM 3.28 
The number of zeros of a polynomial over a subfield of C, counted according to 
multiplicity, is less than or equal to its degree. 

PROOF In Equation (3.4) we must have m1 + · · · + mr < 8f. 

Exercises 

0 

3 . 1 For the following pairs of polynomials f and g over Q, find the quotient and 
remainder on dividing g by f. 

a. g = t 7 - t3 �5, f = t3 + 7 
b. g = t2 + 1 ,  f = t2 
c. g = 4t3 .:._ 17t2 t - 3 ,  f = . 2t + 5 

d. g = t4 - 1 ,  f = t2 + 1 
e. g = t4 - 1 , f = 3t2 + 3t 

3.2 Find hers for these pairs of polynomials, and check that your results are com
mon factors of f and g . 

3 .3 Express these hcf's in the form af + bg. 

3 .4 Decide the irreducibility or otherwise of the following polynomials: 

a. t4 + 1 over JR. 
b. t4 + 1 over Q 
c: t1 + l l t3 - 33t + 22 over Q 
d. t3 + t2 + t + 1 over Q 
e. t3 - 7 t2 + 3t + 3 over Q 

3 .5 Decide the irreducibility or otherwise of the following polynomials :  

a. t4 + t3 + t2 + t + 1 over Q (Hint: Substitute t 1 in place of t and appeal 
to Eisenstein's Criterion.) 

b. t5 + t4 + t3 + t2 + t 1 over Q 
c. t6 + t5 + t4 + t3 + t2 + t + 1 over Q 

3.6 In each of the above cases, factorize the polynomial into irreducibles. 

3.  7 Say that a polynomial f over a subfield K of C is prime if whenever f Ig  h 
either fig or f lh .  Show that a polynomial f ¥= 0 is prime if and only if it is 
irreducible. 
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3.8 Find the zeros of the following polynomials; first over Q, then JR, then C. 

a. 13 + 1 
b. 13 - 6t2 + 1 1  I - 6 
c. t5 + t + 1 
d. t2 + 1 
e. t4 t3 + t2 + t + 1 
f. t4 - 6t2 + 1 1  

3 .9 Let <f>(n) be the Euler function. Prove that 
<f>(pk) = (p - 1 )pk- 1 

if p is prime, and 

cf>(r )<f>(s) = <f>(r s) 

when r, s are coprime. Deduce a formula for <l:>(n) in terms of the prime factor
ization of n. 

3 . 10 Prove that 

<P(n) = n  IT ( 1 - �) 
p pnme, pin 

p 

3 . 1 1 If a is prime to n ,  where both are integers, prove that a<P<n) = 1 (mod n). 

3 . 12 Prove that for any m E N  the equation <l:>(n) = m has only finitely many 
solutions n . Find examples to show that there may be more than one solution. 

3 . 1 3 Guess and prove a formula for Ld!n <!>(d). 

3 . 14 If n is odd, prove that <f>(4n) = 2cf>(n). 

3 . 1 5 Check that 
3 

1 + 2 = 24>(3) 

4 1 + 3 = -<!>(4) 2 
5 

1 + 2 + 3 + 4 = 2<1>(5) 

6 
1 + 5 = 24>(6) 

7 
1 + 2 + 3 + 4 + 5 + 6 = 2<P(7) 

What is the theorem? Prove it 
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3 . 16* Prove that if g E Z24 then g2 = 1 ,  so g has order 2 or is the identity. Show that 
'24 is the largest value of n for which every nonidentity element of Z� has order 

· 2. Which are the others? 

3. 17  Mark the following true or false. (Here polynomial means polynomial over C.) 

a. Every polynomial of degree n has n distinct zeros. 
b. Every polynomial of degree n has at most n distinct zeros. 
c. Every polynomial of degree n has at least n distinct zeros. 
d. If f, g are nonzero polynomials and f divides g,  then a f < a g .  
e. If f, g are nonzero polynomials and f divides g, then aj < a g .  
f. Every polynomial of degree 1 i s  irreduCible. 
g. Every irreducible polynomial has prime degree. 
h. If a polynomial f has integer coefficients and is irreducible over Z, then 

it is irreducible over Q. 
1 .  If a polynomial f has integer coefficients and is irreducible over Z, then 

it is irreducible over IR. 
J .  If a polynomial f has integer coefficients and is irreducible over IR, then 

it is irreducible over Z. 



Chapter 4 

Field Extensions 

Galois's origin�! theory was couched in terms of polynomials over the complex field. 
The modem approach is a consequence of the methods used, starting around 1890 and 
flourishing in the 1920s and 1930s, to generalize the theory to arbitrary fields. From 
this viewpoint the central object of study ceases to be a polynomial, and becomes 
instead a field extension related to a polynomial. Every polynomial f over a field 
K defines another field L containing K (or at any rate a subfield isomorphic to K). 
There are conceptual advantages in setting up the theory from this point of view. In 
this chapter we define field extensions (always working inside C) and explain the link 
with polynomials. 

4.1 Field Extensions 
Suppose that we wish to study the quartic polynomial 

f(t) = t4 - 4t2 + 5 

over Q. Its irreducible factorization over Q is 

f(t) = (t2 + 1 )(t2 - 5) 

so the zeros of f in C are ±i and ±.J5. There is a natural subfield L of C associated 
with these zeros; in fact, it is the unique smallest subfield that contains them. We 
claim that L consists of all complex numbers of the form 

p + q i  + rvfs sivfs (p, q ,  r, s E Q) 

Clearly, L must contain every such element, and it is not hard to see that sums and 
products of such elements have the same form. It is harder to see that inverses of 
(nonzero) such elements also have the same form, but it is true. We postpone the 
proof to Example 4.8. Thus the study of a polynomial over Q leads us to consider a 
subfield L of C that contains Q. In the same way, the study of a polynomial over an 
arbitrary subfield K of C will lead to a subfield L of C that contains K. We shall call 
L an extension of K. For technical reasons this definition is too restrictive; we wish to 
allow cases where L contains a subfield isomorphic to K, but not necessarily equal to it. 
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DEFINITION 4.1 A field extension is a monomorphism L : K � L, where K and 
L are subfields of C. We say that K is the smallfield and L is the large field. 

Notice that with a strict set theoretic definition of function, the map L determines 
both K and L (see the definition of monomorphism). We often think of a field ex
tension as being a pair of fields (K, L) when it is clear which monomorphism is 
intended . 

. Example 4.2 

1 .  The inclusion maps LI : Q � R, L2 : R � CC, and L3 : Q � C are all field 
extensions. 

2. Let K be the set of all real numbers of the form p + q .J'i, where p, q E Q. Then 
K is a subfield of CC by Example 1 .4. The inclusion map L : Q � K is a field 
extension. 

If L : K � L is a field extension, then we can usually identify K with its image 
L(K), so that L can be thought of as an inclusion map and K can be thought of as a 
subfield of L. Under these circumstances we use the notation 

L : K  

for the extension, and say that L is an extension of K. In th� future we shall identify 
K and L(K) whenever this is legitimate. . 

' 

The next concept is one which pervades much of abstract algebra. 

DEFINITION 4.3 Let X be a subset of CC. Then the subfield of CC generated by X 
is the intersection of all subfields of CC that contain X. 

It is easy to see that this definition is equivalent to either of the following. 

1 .  The (unique) smallest subfield of C that contains X. 

2. The set of all elements of CC that can be obtained from elements of X by a finite 
sequence of field operations, provided X ::j:. {0} or 0.  

PROPOSITION 4.4 
Every subfield ofC contains Q. 

PROOF Let K c C be a subfield. Then 0, 1 E K by definition, so inductively 
we find that 1 + · · · 1 = n lies in K for every integer n > 0. Now K is closed under 
additive inverses, so -n also lies in K, proving that Z c · K. Finally, if p, q E Z and 
q ::j:. 0, closure under products and multiplicative inverses shows that pq-1 E K. 
Therefore, Q K as claimed. 0 
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COROLLARY 4.5 
Let X be a subset of C. Then the subfield of CC generated by X contains Q. 

Because of Corollary 4.5, we use the notation 

Q(X) 

for the subfield of C generated by X. 

Example 4. 6 
We shall find the subfield K of CC generated by X == { 1 , i } .  By Proposition 4.4, K 
must contain Q. Since K is closed under the arithmetical operations, it must contain 
all complex numbers of the form p + q i ,  where p ,  q E Q. Let M be the set of all 
such numbers. We claim that M is a sub field of C. Clearly, M is closed under sums, 
differences, and products. Further, 

( + ')-1 p 
P qz == 2 2 p + q  

q . 
--- l 
p2 + q2 

so that every nonzero element of M has a multiplicative inverse in M. Hence M is 
a subfield, and contains X. Because K is the smallest subfield containing X, we have 
K c M But M c K by definition. Hence K == M, and we have found a description 
of the sub field generated by N.. 

· In the case of a field extension L : K, we are mainly interested in subfields lying 
between K and L. This means that we can restrict attention to subsets X that contain 
K equivalently to sets of the form K U Y where Y c L. 

DEFINITION 4.7 If L : K is a field extension and Y is a subset of L, then the 
subfield of CC generated by K U Y is written K (Y') and is said to be obtained from K 
by adjoining Y. 

Clearly, K (Y) c L since L is a subfield of C. Notice that K (Y) is in general 
considerably larger than K U Y. 

This notation is open to all sorts of useful abuses. If Y has a single element y 
we write K(y) instead of K({y}), and in the same spirit, K(y1 , • • •  , Yn)  will replace 
K({yi , . .  · • YnD· 

Example 4.8 

Let K == Q and let Y == { i ,  .J5}. Then K(Y) must contain K and Y. It also contains 
the prodqct i.JS. Because K :::> Q, the subfield K(Y) must contain all elements 

a ==  p + qi + r,J5 + siv's (p, q , r, s  E Q). 

Let L c C be the set of all such a. If we prove that L is a subfield of C, then it follows 
that K ( Y) = L. Moreover, L is a subfield of C if and only if for a i= 0 we can find an 
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inverse a-1 E L .  If fact, we shall prove that if (p, q ,  r, s) =j:. (0, 0, 0, 0) then a =j:. 0, 
and then 

(p + qi + r0 + s i.JS)-
1 E L 

First, suppose that p + qi  + r-JS + si-JS = 0. Then 

p + r0 = -i(q + s0) 

Nowboth p+r-JS and -(q+s-JS) arereal, but i is imaginary. Therefore, p+r-JS = 0 
and q s-JS = 0. If r =j:. 0 then -J5 = -pI r E Q, but .J5 is irrational. Therefore, 
r = 0, whence p = 0. Similarly, q = s = 0. 

Now we prove the existence of a-1 in two stages. Let M be the subset of L 
containing all p + qi (p, q E Q). Then we can write 

et = X +  y,JS 

where x = p + i q and y = r + i s  E M. Let 

(3 = p + qi rJS - si ,j5 = X  - y,J5 E L 

Then 

a(3 = (x yv's)(x - yJ5) = x2 - 5y2 = z 

say, where z E M. Because et =j:. 0 and (3 ::f. 0, we have z =j:.lO, so et-1 = (3z-1 • Now 
write z = u vi (u , v E Q) andconsiderw = u - vi .  Sincezw = u2+v2 E Q wehave 

z-1 = (u2 + v2)-l w E M 

so et-1 = (3z-1 E L. 
Alternatively, we can obtain an explicit formula by working out the expression 

(p + qi  + rv's siJ5)(p - qi  + rJS - siv's) 
x (p + qi - rJS - siv's)(p - qi - rv's + s iv's) 

and showing that it belongs to Q, and then dividing by 

(p + qi  + rv's + s iv's) 

(see Exercise 4.6.) 

Examples 4.9 

1 .  The sub field JR(i) of <C must contain all elements x + i y where x ,  y E JR. But those 
elements comprise the whole of <C. Therefore, <C = JR(i) .  

2 .  The subfield P of JR consisting of all numbers p + q ,J2 where p, q E Q is  easily 
seen to equal Q( ,.Ji). 
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3. It is not always true that a subfield of the form K{a.) consists of all elements of 
the form j + ka. where j, k E K. It certainly contains all such elements, but they 
need not form a subfield. 

For example, in IR : Q let a. be the real cube root of 2, and consider Q{ a). As well as 
a, the subfield Q(a.) must contain a.2 • We show that a2 i= j + ka. for j, k E Q. For a 
contradiction, suppose that a.2 = j +ka. Then 2 = a3 = ja. ka2 = jk+ (j k2)a.. 
Therefore, (j+k2)a = 2-jk. Since a. is irrational, (j+k2) = 0 = 2-jk. Eliminating 
j ,  we find that k3 = 2, contrary to k E Q. 

In fact, Q(a) is precisely the set of all elements of IR of the form p + qa + ra2 , 
where p,  q ,  r E Q. To show this, we prove that the set of such elements is a subfield. 
The only (minor) difficulty is finding a multiplicative inverse (see Exercise 4.7). 

4.2 Rational Expressions 
We can perform the operations of addition, subtraction, · and multiplication in the 

polynomial ring C[t ] ,  but (usually) not division. For example, C[t] does not contain 
an inverse t-1 for t (see Exercise 4.8). 

However, we can enlarge C[t] to prqvide inverses in a natural way. We have seen 
that we can think of polynomials f(t) E C[t] as functions from C to itself. Similarly, 
we can think of fractions p(t)jq(t) E C(t) as functions. These are called rational 
functions of the complex variable t ,  and their formal statements ill terms of polyno
mials are rational expressions in the indeterminate t . However, there is now a technical 
difficulty. The domain of such a function is not the whole of C� all of the zeros of q (t) 
have to be removed, or else we are trying to divide by zero. Complex analysts often 
work in the Riemann sphere C U oo, and cheerfully let 1 I oo = 0, but care must be 
exercised if this is done. The civilised way to proceed is to remove all the potential 
troublemakers. So we take the domain of p(t)/ q (t) to be 

{z E C : q (z) i= 0} 

As we have seen, any complex polynomial q has only finitely many zeros, so the 
domain here is almost all of C. We have to be careful, but we shouldn't get into much 
trouble provided we are attentive. 

In the same manner we can also construct the set 

C(t1 , . . .  , tn ) 
of all rational functions in n variables (rational expressions in n indeterminates). 
One use of such functions is to specify the subfield generated by a given set X. It is 
straightforward to prove that C(X) consists of all rational expressions 

p(X I , . . .  , Xn )  
q (yl , · · · ' Yn) 

where p ,  q are polynomials over Q, the xi and Yi belong to X, and q(x 1 , . . .  , Xn) i= 0. 
For a proof, see Exercise 4.9. 
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4.3 Simple Extensions 
The basic building-blocks for field extensions are those obtained by adjoining one 

element. 

DEFINITION 4.10 A simple extension is afield extension L : K such that L = · 

K(a)for s_ome a E L. 

Examples 4.11 

1 .  As the notation shows, the extensions in Examples 4.9 are all simple. 

2. Beware: An extension ·may be simple without appearing to be. Consider L 
Q(i, -i ,  .JS, -.JS) . As written, it appears to require the adjunction of four new 
elements. Clearly, just two, i and 0, suffice. But we claim that in fact only one 
element is needed, because L = L' where L' = Q(i + ,JS), which is obviously 
simple. To prove this, it is enough to show that i E L' and .J5 E L', because these 
imply that L c L' and L' c L, so L = L' . Now L' contains 

(i ,+ v"s)2 = - 1  + 2iv"s + 5 = 4 2iJs 

Thus, it also contains 

(i + J5)(4 + 2iJ5) = l4i - 2-JS 

Therefore, it contains 

14i - 2J5 + 2(i + .J5) = l6i 
' 

so it contains i .  But then it also contains (i + ,JS) - i = .JS. Therefore, L = I/ 
as claimed, and the extension Q(i , -i , ,JS, - ,J5) : Q is in fact simple. 

I 
3 .  On the other hand, lR :  Q is not a simple extension (Exercise 4.5). , 

Our aim in the next chapter is to classify all possible simple extensions. We end this 
chapter by formulating the concept of isomorphism of extensions. In Chapter 5 we 
develop techniques for constructing all possible simple extensions up to isomorphism. 

DEFINITION 4.12 An isomorphism between two field extensions L : K -+ K, 
j : L -+ L is a pair (A, J.L) of field isomorphisms A :  K -+ L,  J.L :  K -+ L, such that 
for all k E K 

j(A(k)) = J.L(L(k)) 
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Another, more pictorial way of putting this is to say that the diagram 

K � K 
A. .J, + J-L 

L � L 
j 

commutes - that is, the two paths from K to L give the same map. 
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The reason for setting up the definition like this is that in addition to the field 
structure being preserved by isomorphism, the embedding of the small field in the 
large one is also preserved. 

Various identifications may be made. If we identify K and L(K), and L and j (L), 
then L and j are inclusions, and the commutativity condition now becomes 

where tJ.I K denotes the restriction of fJ. to K. If we further identify K and L then A. 
becomes the identity, and so tJ.IK is the identity. In what follows we shall attempt to 
use these identified conditions wherever possible. But on a few occasions (notably 
Theorem 9 .6) we shall need the full generality of the first definition. 

Exercises 

4.1 Prove that isomorphism of field extensions is an equivalence relation. 

4.2 Find the subfields of C generated by: 

�· {0, 1 }  
b. {0} 
c. {0, 1 ,  i }  
d. {i , ,J2} 
e. {,J2, v'3} 
f. m: 
g. m: u { i }  

4.3 Describe the subfields of  C of the form: 

a. Q(,J2) 
b. Q(i) 
c. Q( a) where a is the real cube root of 2 
d. Q( vis, v'?) 
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e. Q(i-Jff) 
f. Q(e2 + 1 )  
g. Q(�) 

4.4 This exercise illustrates a technique that we tacitly assume in several subsequent 
exercises and examples. 

Prove that 1 ,  ,fi, ,J3, ,J6 are linearly independent over Q. 
(Hint: Suppose that p q,fi + r.J3 s,J6 = 0 with p, q ,  r, s E  Q. We may 
suppose that r =j:. 0 or s =j:.: 0 (why?). If so, then we can write ,J3 in the form 

a +  b,fi v'3 = = e + J-Ji 
c + d,fi . 

where a ,  b, c, d, e , f E Q. Square both sides and obtain a contradiction.) 

4.5 Show that lR is not a simple extension of Q as follows: 

a .  Q is countable. 
b. Any simple extension of a countable field is countable. 
c. IR is not countable. 

4.6 Find a formula for the inverse of p + qi + r,JS + si ,JS, where p , q ,  r, s E Q. 

4.7 Find a formula for the inverse of p + qa. + ra.2 , where p, q ,  r E Q and a. = 4'3. 
4.8 Prove that t has no multiplicative inverse in C[t ]  . 

. 
4.9 Prove that C(X) consists of all rational expressions 

p(Xl , · · · , Xn) 
q(yJ , · · · ' Yn) 

• A 

where p, q E Q[t] ,  the Xj and Yi belong to X, and q(x1 , . . .  , Xn) =j:. 0. 

4. 1 0  Mark the following true or false. 

a. If X is the empty set, then Q(X) = Q. 
b. If X is a subset of Q, then Q(X) -:- Q. 
c. If X contains an irrational number, then Q(X) =j:.: Q. 
d. Q( ,fi) = Q. 
e. Q( ,fi) = R. 
f. R( ,fi) = JR. 

g. Every subfield of C contains Q. 
h. Every subfield of <C contains R. 
1.  If a. =j:. · 13  and both are irrational, then Q( a., 13) is not a simple extension 

of Q. 
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Simple Extensions 

The basic building block of field theory is the simple field extension. Here one new 
element a. is adjoined to a given subfield K of C, along with all rational expressions in 
that element over K .  Any finitely generated extension can be obtained by a sequence 
of simple extensions, so the structure of a simple extension provides vital information 
about all of the extensions that we shall encounter. 

We first classify simple extensions into two very different kinds: transcendental 
and algebraic. If the new element a. satisfies a polynomial equation over K, then 
the extension is algebraic; if not, it is transcendental. Up to isomorphism, K has 
exactly one simple transcendental extension. For most fields K there are many more 
possibilities for simple algebraic extensions; they are classified by the irreducible 
polynomials m over K. 

The structure of simple algebraic extensions can be described in terms of the 
polynomial ring K [t] ,  with operations being performed modulo m.  In Chapter 16 we 
generalize this construction using the notion of an ideal. 

5.1 Algebraic and Transcendental Extensions 
Recall that a simple extension of a subfield K of C takes the form K(a.) where in 

nontrivial cases a. � K. We classify the possible simple extensions for any K. There 
are two distinct types: algebraic and transcendental. 

DEFINITION 5.1 Let K be a subfield ofC and let a.· E C. Then a. is algebraic over 
K if  there exists a nonzero polynomial p over K such that p(a.) = 0. Otherwise, a. is 
transcendental over K. 

We shorten algebraic over Q to algebraic, and transcendental over Q to transcen
dental. 

Examples 5.2 

1 .  The number a. = ,J2 is algebraic because a.2 - 2 = 0. 

2. The number a. = ;:;2 is algebraic because a3 
- 2 = 0. 
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3. The number 1T = 3. 14159 . . .  is transcendentaL We postpone a proof to Chapter 
24. In Chapter 7 we use the . transcendence of 1T to prove the impossibility of 
squaring the circle. 

4. The number a =  p is algebraic over Q(1r) because a2 - 1T = 0. 

5 .  However, a = p is transcendental over Q. To see why, suppose that p(p) = 0 
where 0 =j:. p(t) EQ[t] .  Separating out terms of odd and even degree, we can write 
this as a(1r) + b(1r)p = 0, so a(1r) = -b(1r)p and a2(1r) = 7rb2(7r). Thus, 
f(7r) = 0, where 

Now B(a2) is even, and B(tb2) is odd, so the difference f(t) is nonzero. But this 
implies that 7r is algebraic, a contradiction. 

In the next few sections we classify all possible simple extensions, and find ways 
to construct them. The transcendental case is very straightforward: if K (t) is the 
set of rational functions of the indeterminate t over K, then K(t) : K is the unique 
simple transcendental extension of Kup to isomorphism. If K(a) : K is algebraic, the 
possibilities are richer, but tractable. We show that there is a unique monic irreducible 
polynomial m over K such that m( a) = 0, and that m determines the extension 
uniquely up to isomorphism; 

We begin by constructing a simple transcendental extension of any subfield. 

THEOREM S.3 
The set of rational expressions K (t) is a simple transcendental extension of the subfield 
K ofC. 

PROOF Clearly, K (t) : K is a simple extension generated by t .  If p is a polynomial 
over K such that p(t) = 0, then p = 0 by definition of K(t), so the extension is 
transcendental. 0 

5.2 The Minimal Polynomial 
The construction o f  simple algebraic extensions is a much more delicate issue. It 

is controlled by a polynomial associated with the generator a of K(a) : K called the 
minimal polynomiaL To define it we first set up a technical definition. 

DEFINITION 5.4 A polynomial f(t) = ao + a1 t + · · · + antn over a subfield K of 
C is monic if an = 1 .  
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Clearly, every polynomial is a constant multiple of some monic polynomial, and 
for a nonzero polynomial this monic polynomial is unique. Further, the product of 
two monic polynomials is again monic. 

Now suppose that K(a.) : K is a simple algebraic extension. There is a polynomial 
p over K such that p(a.) = 0.  We may suppose that p is monic. Therefore, there exists 
at least one monic polynomial of smallest degree that has a. as a zero. We claim that 
p is unique. To see why, suppose that p ,  q are two such. Then p(a.) - q(a.) = 0, so if 
p =!= q then some constant multiple of p - q is a monic polynomial with a. as a zero, 
contrary to the definition. Hence, there is a unique monic polynomial p of smallest 
degree such that p(a.) = 0. We give this a name. 

DEFINITION 5.5 Let L : K be a field extension, and suppose that a. E L is 
algebraic over K. Then the minimal pofynomial of a. over K is the unique monic 
polynomial m over K of smallest degree such that m (  a.) = 0. 

For example, i E C is algebraic over JR. If we let m(t) = t2 + 1 ,  then m(i )  = 0. 
Clearly, m is monic. The only monic polynomials over R of smaller degree are those 
of the form t + r ,  where r E JR, or the constant polynomial 1 .  But i cannot be a zero 
of any of these, or else we would have i E JR. Hence the minimal polynomial of i 
over R is t2 + 1 .  

· 

It is natural to ask which polynomials can be minimal. The next lemma provides 
information on this question. 

LEMMA 5.6 

If a. is an algebraic element over the subfield K ofC, then the minimal polynomial of 
a. over K is irreducible over K. It divides every polynomial of which a is a zero. 

PROOF Suppose that the minimal polynomial m of a. over K is reducible so that 
m = fg where f and g are of smaller degree. We may assume f and g are monic. 
Since m(a) = 0 we have f(a)g(a.) = 0, so either f(a.) = 0 or g(a.) = 0. But this 
contradicts the definition of m.  Hence m is irreducible over K. 

Now suppose that p is a polynomial over K such that p(a.) = 0. By the divi
sion algorithm, there exist polynomials q and r over K such that p = mq + r and 
ar < am .  Then 0 = p(a.) = 0 + r(a.). If r -:j:. 0 then a suitable constant multi
ple of r is monic, which contradicts the definition of m.  Therefore, r = 0, so m 
divides p. 0 

Conversely, if K is a subfield of C, then it is easy to show that any irreducible 
polynomial over K can be the mimimum polynomial of an algebraic element over K. 

THEOREM 5.7 
If K is any subfield ofC and m is any irreducible monic polynomial over K, then there 
exists a. E C, algebraic over K, such that a has minimal polynomial m over K. 
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PROOF Let a be any zero of m in <C. Then m(a) = 0, so the minimal polynomial 
f of a over K divides m. But m is irreducible over K and both f and m are monic; 
therefore, f = m. . D 

5.3 Simple Algebraic Extensions 
Next, we describe the structure of the field extension K (a) : K when a has minimal 

polynomial m over K. We proceed by analogy with a basic concept of number theory. 
Recall from Section 3.5 that for any positive integer n it is possible to perform 
arithmetic modulo n, and that integers a ,  b, are congruent modulo n ,  written 

a =  b (mod n) 

if a - b is  divisible by n .  In the same way, given a polynomial m E K[t] , we can 
calculate with polynomials modulo m .  We say that polynomials a ,  b E K[t] are 
congruent modulo m, written 

a =  b (mod m) 

if a(t) - b(t) i s  divisible by m(t) in K[t] .  

LEMMA 5.8 
Suppose that a1 = a2(mod m) tindb1 = b2(mod m). Then a1 +a2 = b1 +b2(mod m), 
and a1a2 = b1b2(mod m). 

PROOF Weknowthata1 -a2 = am andb1 -b2 = bm forpolynomials a ,  b E  K[t] .  
Now 

which p�oves the first statement. For the product, we need � slightly more elaborate 
argument: 

LEMMA 5.9 

a1b1 - a2b2 = a1 b1 - a1b2 + a 1b2 ....c. a2b2 
= a1 (b1 - b2) b2(a1 - a2) 

= (a1b + b2a)m 

D 

Every polynomial a E K[t] is congruent modulo m to a unique polynomial of degree 
<dm. 
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PROOF Divide a by m with remainder, so that a = qm + r where q ,  r E K[t] 
.and or < am. Then a - r =  qm, so a = r(mod m). It remains to prove uniqueness. 
Suppose that r = s(mod m) where or, os < am. Then r - s is divisible by m but has 
smaller degree than m.  Therefore, r - s = 0, so r = s, proving uniqueness. D 

We call r the reduced form of a modulo m. Lemma 5 .9 shows that we can calculate 
with polynomials modulo m in terms of their reduced forms. Indeed, the reduced 
form of a + b is the reduced form of a plus the reduced form of b, while the reduced 
form of ab is the remainder, after dividing by m, of the product of the reduced form 
of a and the reduced form of b. 

Slightly more abstractly, we can work with equivalence classes. The relation = 
(mod m) is an equivalence relation on K[t ] ,  so it partitions K[t] into equivalen·ce 
classes. We write [a] for the equivalence class of a E K[t] . Clearly, 

[a] = {/  E K [t] : m l(a - /)} 

The sum and product of [a] and [ b] can be defined as: 

[a] + [b] = [a + b] [a] [b] = [ab] 

Each equivalence class contains a unique polynomial of degree < am, namely, the 
reduced form of a .  Therefore, algebraic computations with equivalence classes are 
the same as computations with reduced forms, and both are the same as computations 
in K[t] with the added convention that m(t) is identified with 0. In particular, the 
classes [0] and [ 1 ]  are additive and multiplicative identities ,  respectively. 

We write 

K [t]/(m) 

for the set of equivalence classes of K[t ]  modulo m. Readers who know about ideals 
in rings will see at once that K[t]/ (m} is a thin disguise for the quotient ring of K[t] 
by the ideal generated by m, and the equivalence classes are cosets of that ideal, but 
at this stage of the book these concepts are more abstract than we really need. 

A key result is Theorem 5 . 1  0. 

THEOREM 5.10 
Every nonzero element of K[t]/ (m) has a multiplicative inverse in K [t]/ (m) if and 
only if m is irreducible in K [t] . 

PROOF If m is reducible, then m = ab where aa, ob < am. Then [a] [b] = 
. [ab] = [m] = [0] . Suppose that [a] has an inverse [c], so that [c] [a] = [ 1 ] .  Then 
[0] = [c] [O] = [c] [a) [b] = [ l ] [b] = [b] , so m divides b. Since ob < am, we must 
have b = 0 so m = 0, but by convention 0 is not irreducible. 

If m is irreducible, let a E K [t] with [a] =/= [0] ; that is, mfa . Therefore, a is prime 
to m, so their highest common factor is 1 .  By Theorem 3 .9, there exist h ,  k E K[t] 
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such that ha + km - 1 .  Then [h] [a] + [k] [m] = [ 1] ,  but [m] = [0] so [ 1 ]  
[h] [a] + [k] [m] = [h] [a] + [k][O] = [h] [a] + [0] = [h] [a] . Thus, [h] i s  the required 
mverse. 0 

Again, in abstract terminology, what we have proved is that K [t ]/ {m) is a field 
if and only i fm is irreducible in K[t] . See Chapter 16  for a full explanation and 
generalizations. 

5�4 Classifying Simple Extensions 
We shall now demonstrate that the above methods suffice for the construction of 

all possible simple extensions (up to isomorphism). Again, transcendental extensions 
are easily dealt with. 

THEOREM 5.11 
Every simple transcendental extension K(a) : K is isomorphic to the extension 
K (t) : K of rational expressions in an indeterminate t over K. The isomorphism 
K(t) -+ K can be chosen to map t to a, and to be the identity on K. 

PROOF Define a map <f> :  K(t) -+ K(a) by / 

<f>(f(t)/ g(t)) = f(a)/ g(a) 

If g # 0, then g(a) # 0 (since a is transcendental) so this definition makes sense. It is 
clearly a homomorphism, and a simple calculation shows that it is a monomorphism. 
It is clearly onto, and so is an isomorphism. Further, <f>IK is the identity, so that <f> 
defines an isomorphism of extensions. Finally, <f>(t) = a. . 0 

The classification for simple algebraic extensions is just as straightforward, but 
more interesting: 

THEOREM 5.12 

Let K(a) : K be a simple algebraic extension, and let the minimal polynomial 
of a over K be m. Then K(a) : K is isomorphic to K[t] j (m) .  The isomorphism 
K[t ]j (m) -+ K(a) can be chosen to map t to a (and to be the identity on K). 

PROOF The isomorphism is defined by (p(t)] � p(a), where [p(t)] is the equiv
alence class of p(t)(mod m). This map is well-defined because p(a) = 0 if and only 
if m !p .  It is clearly a field monomorphism. It maps t to a, and its restriction to K is 
the identity. 0 
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COROLLARY 5.13 
Suppose K(a) : K and K(J3) : K are simple algebraic extensions, such that a and J3 
have the same minimal polynomial m over K. Then the two extensions are isomorphic, 
and the isomorphism of the large fields can be taken to map a to J3 (and to be the 
identity on K). 

PROOF Both extensions are isomorphic to K [t ] / (m} . The isomorphisms concerned 
map t to a and t to J3, respectively. Call them L, j ,  re-spectively. Then j L -l is an 
isomorphism from K(a) to K(J3) that is the identity on K and maps a to J3. 0 

LEMMA 5.14 

Let K (a) : K be a simple algebraic extension, let the minimal polynomial of ex over K 
be m, and let am = n. Then { 1 ,  ex, . . .  , an-I } is a basis for K  (a) over K. In particular, 
[K(a) : K] = n. 

PROOF The theorem is a restatement of Lemma 5.9. 

For certain later applications we need a slightly stronger version of Theorem 5 . 1 2  
to cover extensions of isomorphic (rather than identical) fields. Before we can state 
the more general theorem we need the following. 

DEFINITION 5.15 Let L� : K � L be afield monomorphism. Then there is a map 
i; :  K[t] � L [t] defined by 

(ko , . . .  , kn E K). It is easy to prove that t is a monomorphism. If L is an isomorphism, . 
then so is 1:. 

The hat is unnecessary, once the statement is clear, and it may be dispensed with. 
So in the future we use the same symbol L for the map between subfields of <C and for 
its extension to polynomial rings. This will not cause confusion since 'L(k) = L(k) for 
any k E K. 

THEOREM 5.16 

Suppose that K and L are subfields of CC and L : K � L is an isomorphism. Let 
K(a) , L(J3) be simple algebraic extensions of K and L, respectively, such that a 
has minimal polynomial ma.(t) over K and J3 has minimal polynomial m�(t) over L. 
Supposefurther thatm�(t) = L(ma.(t)). Then there exists an isomorphism j : K(a) � 
L(J3) such that i lK = L and j (a) = J3. 
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PROOF We can summarize the hypotheses in the diagram 

K � K(a.) 
L + + j 
L � L({3) 

where j is yet to be determined. Using the reduced form, every element of K(a.) 
is of the form p(a.) for a polynomial p over K of degree < Bmcx. Define j (p(a.)) = 
(t.(p))({3) where L(p) is defined as above. Everything else follows easily from 
Theorem 5. 12. 0 

The point of this theorem is that the given map 1.. can be extended to a map j between 
the larger fields. Such extension theorems, saying that under suitable conditions maps 
between subobjects can be extended to maps between objects, constitute important 
weapons in the mathematician's armoury. Using them we can extend our knowledge 
from small structures to large ones in a sequence of simple steps. 

Theorem 5 . 16 implies that under the given hypotheses the extensions K(a.) : K 
and L({3) : L are isomorphic. This allows us to identify K with L and K(a.) with 
L({3), via the maps 1.. and j .  

Theorems 5 .  7 and 5 . 12 together give a complete characterization of simple alge
braic extensions in terms of polynomials. Each extension c'orresponds to an irreducible 
monic polynomial, and given the small field and this polynomial, we can reconstruct 
the extension. 

Exercises 

5 . 1  Is the extension Q( .JS, ,.f?) simple? If so, why? If not, why not? 

5 .2 Find the minimal polynomials over the small field of the following elements in 
the following extensions: 

a. i in <C :  Q 
b. i in <C :  R 
c. viz in R : Q . 
d. c.JS + 1 )/2 m c :  Q 
e. (iy'3 - 1)/2 in C :  Q 

5 .3 Show that if a. has minimal polynomial t2 - 2 over Q and {3 has minimal 
polynomial t2 - 4t + 2 over Q, then the extensions Q(a.) : Q and Q({3) : Q are 
isomorphic. 

5.4 For which of the following m(t) and K do there exist extensions K(a.) of K for 
which a. has minimal polynomial m(t)? 
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a. m(t)  = t2 - 4, K = 1R 
b. m(t) = t2 - 3 ,  K = R 
c. m(t) = t2 - 3, K = Q 
d. m(t)  = t1 - 3t6 + 4t3 - t - 1, K = R 

5 .5 Let K be any subfield of C and let m(t) be a quadratic polynomial over K 
(Bm = 2). Show that all zeros of m(t) lie in an extension K(a) of K where 
a2 = k E K.  Thus, allowing square roots J/( enables us to solve all quadratic 
equations over K. 

5 .6 Construct extensions Q(a) : Q where a has the following minimal polynomial 
over Q:  

a .  t2 - 5 
b. t4 + t3 + t2 + t + 1 
c. t3 + 2 

5 .7 Is Q(,.fi, .J3, ,JS) : Q a simple extension? 

5.8 Suppose that m(t)  is irreducible over K, and a has minimal polynomial m(t) 
over K. Does m(t) necessarily factorize over K(a) into linear (degree 1) poly
nomials? (Hint: Try K = Q, a =  the real cube root of 2.) 

5.9 Mark the following true or false. 

a. Every field has nontrivial extensions. 
b. Every field has nontrivial algebraic extensions. 
c .  Every simple extension is algebraic. 
d. Every extension is simple. 
e. All simple algebraic extensions of a given subfield of <C are isomorphic. 
f. All simple transcendental extensions of a given subfield of C are isomor

phic. 
g. Every minimal polynomial is monic. 
h. Monic polynomials are always irreducible. 
1. Every polynomial is a constant multiple of an irreducible polynomial. 





Chapter 6 

The Degree of an Extension 

A technique that has become very useful in mathematics is associating a given · struc
ture with a different one of a type better understood. In this chapter we exploit the 
technique by associating a vector space with any field extension. This places at our 
disposal the machinery of linear algebra - a very successful algebraic theory - and 
with its aid we can make considerable progress. The machinery is sufficiently pow
erful to solve three notorious problems which remained unanswered for over 2000 
years. We discuss these problems in the next chapter, and devote the present chapter 
to developing the theory. 

6.1 Definition of the Degree 
It is not hard to define a vector space structure on a field extension. It already has 

one ! More precisely: 

THEOREM 6.1 

If L : K is a field extension, then the operations 

(A, u)  1-+ Au (A E K, u E L)  
(u, v )  1-+ u + v (u , v E L)  

define on L the sfructure of a vector space over K. 

P:Q.OOF The set L is a vector space over K if the two operations just defined satisfy 
the following axioms: 

1 .  u + V = V + u for all u ,  V E L.  

2. (u + v) + w = u + (v + w) for all u, v , w E L. 

3 .  There exists 0 E L  such that 0 + u = u for all u E L. 

4 .  For any u E L  there exists -u E L  such that u + (-u) = 0. 

5 .  If A E K, u, v E L, then A(u + v) = Au + Av. 
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6. If 1 is the multiplicative identity of K, then 1 u = u for all u E L.  

7 .  If A, 1-L E K, then A(�-.tu) = (A.�-.t)u for all u E L . 

Each of these statements follows immediately because K and L are subfields of C 
and K c L. 0 

We know that a vector space V over a subfield K of <C (indeed over any field, but 
we're not supposed to know about those yet) is uniquely determined, up to isomor
phism, by its dimension. The dimension is the number of elements in a basis, a subset 
of vectors that spans V and is linearly independent over K. The following definition 
is the traditional terminology in the context of field extensions. 

DEFINITION 6.2 The degree [L : K] of a field extension L : K is the dimension 
of L considered as a vector space over K. 

Example 6.3 

1 .  The complex numbers <C are two-dimensional over the real numbers JR, because a 
basis is { 1 ,  i } .  Hence [C : R] = 2. 

2. The extension Q(i, ,JS) : Q has degree 4. The elements { 1 ,  ,JS, i ,  i,JS} form a 
basis for Q(i, ,JS) over Q, by Example 4.8. · 

Isomorphic field extensions obviously have the same degree. 

6.2 The Tower Law 
The next theorem, known as the (short) tower law, lets us calculate the degree of 

a complicated extension if we know the degrees of certain simpler ones. 

THEOREM 6.4 (Short Tower Law) 
If K, L ,  M are subfields of C and K L c M, then 

[M : K] = [M : L] [L : K] 

Note: For those who are happy with infinite cardinals this formula needs no extra 
explanation; the product on the right is just multiplication of cardinals. For those who 
are not, the formula needs interpretation if any of the degrees involved is infinite. This .· 

interpretation is the obvious one: if either [M : L] or [L : K] = ·oo, then [M : K] = oo; 
and if [M : K] = oo, then either [M : L] = oo or [L : K] = oo. 
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PROOF Let (xJtei be a basis for L as vector space over K and let (y1)1e1 be a 
basis for M over L .  For all i E I and j E J we have xi E L , y1 E M. We shall show 
that (Xi YJ)i ei, JeJ is a basis for M over K (where Xi YJ is the product in the subfit!ld 
M). Since dimensions are cardinalities of bases, the theorem will follow. 

First� we prove linear independence. Suppose that some finite linear combination 
of the putative basis elements is zero; that is, 

We can rearrange this as 

L kijXi Yj = 0 
i ,j 

(kij E K) 

Since the coefficients l:t ktjXt lie in L and the y1 are linearly independent over L,  

Repeating the argument inside L we find that kt1 = 0 for all i E I, j E J .  So the 
elements Xt y 1 are linearly independent over K. 

Finally, we ��ow that the Xt y 1 span M over K. Any element x E M can be written 

for suitable A.1 E L, because the y1 span M over L. Similarly, for any j E J 

for Aij E K.  Putting the pieces together, 

as required. 

Example 6.5 

X = L AijXi YJ 
i,j 

0 

Suppose we wish to find [Q(-./2, .J3) : Q]. It is easy to see that { 1 ,  -./2} is a basis 
for Q( -./2) over Q. To see this, let a E Q ( -../2). Then a = p + q -./2 where p, q E Q, 
proving that { 1 ,  -./2} spans Q(-../2) over Q. It remains to show that 1 and -./2 are 
linearly independent over Q. Suppose that p + q-./2 = 0, where p, qE  Q. If q =f. 0, 
then -./2 = pjq, which is impossible since ,J2 is irrational. Therefore, q = 0. But 
this implies p = 0. 
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In much the same way we can show that { 1 ,  .J3} is a basis for Q(,.fi, .J3) over 
Q( ..fi). Every element of Q( ..fi, .J3) can be written as p + q ..fi + r .J3 + s ,J6 where 
p,  q ,  r, s E Q. Rewriting this as 

(p + q-/2) + (r + sh)-J3 

we see that { 1 ,  .J3} spans Q(,.fi, .J3) over Q(..fi). To prove linear independence 
we argue much as above. If 

(p + qh) + (r + sh)-J3 = 0 

then either (r + s..fi) = 0, whence also {p + q,.fi) = 0, or else 

-J3 - (p + q-/2)j(r + sh) E Q(-/2) 

Therefore, .J3 = a +  b..fi where a ,  b E Q. Squaring, we find that ab..fi is rational, 
which is possible only if either a = 0 or b = 0. But then .J3 = a or .J3 = b,.fi, 
both of which are absurd unless a =  b = 0. Then (p + q,.fi) = (r s..fi) = 0 and 
we have proved that { 1 ,  .J3} is a basis. Hence, 

· 

[Q(-/2, -J3)] : Q = [Q(h, -J3) :  Q(-J2)] [Q(h) :  Q] 

= 2 x 2 = 4  

The theorem even furnishes a basis for Q( ../2, ../3) over Q: form all possible pairs 
of products from the two bases { 1 ,  ..fi} and { 1 ,  .J3} to get the combined basis 
{ 1 ,  ../2, .J3, ,.)6} .  

. 

By induction on n we easily parlay the short tower law into a useful generalization: 

COROLLARY 6.6 (Tower Law) 
If Ko c K1 · · · C Kn are subfields ofC, then 

In order to use the tower law we have to get started. The degree of a simple extension 
is fairly easy to find. 

PROPOSITION 6.7 
Let K ( o.) : K be a simple extension. If it is transcendental, then [ K ( o.) : K] = oo. 
If it is algebraic, then [K(o.) : K] = om, where m is the minimal polynomial of o. 
over K. 

PROOF For the transcendental case it suffices to note that the elements 1 ,  o., a. 2 , • . •  

are linearly independent over K. For the algebraic case, we appeal to Lemma 5 . 14. D 
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For example, we know that C = R(i) where i has minimal polynomial r2 + 1 , of 
degree 2, hence [C : R] = 2, which agrees with our previous remarks. 

Example 6.8 
We now illustrate a technique that we shall use, without explicit reference, whenever 
we discuss extensions of the form Q(.J<il, . . . , �) : Q with rational a. i .  The 
technique can be used to prove a general theorem about such extensions (see Exercise 
6. 15) .  The question we tackle is: find [Q( .J2, ,.;3, v'S) : Q]. 

By the tower law, 

[Q( .J2, ,.;3, v'S) : Q] 
= [Q(.J2, ,.;3, v'S) : Q(.J2, -J§")][Q(.J2, ,.;3) : Q(.J2)][Q(.J2) :  Q] 

It is obvious that each factor equals 2, but it takes some effort to prove it. As a 
cautionary remark, the degree [Q( ,J6, .JIO, -Jl5) : Q] is 4, not 8 (see Exercise 
6. 14). 
(a) Certainly . [Q(.J2) :  Q] = 2. 
(b) If -J3 ¥. Q( .J2), then [Q( .J2, ,.;3) : Q( .J2)] = 2. So suppose ,J3 E Q( .J2), 
implying that 

p, q E Q 

We argue asin Example 6.5. Squaring, 

so 

pq = 0 

If p = 0, then 2q2 
= 3, which is impossible by Exercise 1 .3. If q = 0, then p2 

= 3 ,  
which is  impossible for the same reason. Therefore, ,J3 ¥. Q( .J2), and [Q( .J2, ,.;3) : 
Q(.J2)] = z. 
(c) Finally, we claim that v'5 ¥. Q(.J2, -J3). Here we need a new idea. Suppose 

p,  q ,  r, ·s E Q 

Squaring: 

5 = p2 + 2q2 + 3r2 + 6s2 + (2pq + 6rs).J2 + (2pr + 4qs).J3 + (2ps + 2qr),J6 

whence 

p2 + 2q2 + 3r2 + 6s2 
= 5 , 

pq + 3rs = 0 
pr + 2qs = 0 
ps qr = 0 

(6. 1 )  
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The new idea is to observe that if (p, q , r, s) satisfies ( 6. 1 ), then so do (p, q , -r, -s ) , 
(p, -q, r, -s), and (p, -q, -r, s). Therefore, 

p + qh + rJ3 + s.J6 = vis 
p qh - rJ3 - s.J6 = ±Js 

p - qh + rJ3 - s.J6 = ±vis 
p - qh - rJ3 + s.J6 = ±Js 

Adding the first two equations, we get p + q v'2 = 0 or p + q v'2 = -/5, each of 
which implies that p = q = 0. Adding the first and third, r.J3 = 0 or r.../3 = ,JS, 
so r = 0. Finally, s = 0 since sv'6 � -/5 is impos�ible by Exercise 1 .3 .  

Having proved the cl�im, we immediately deduce that 

[Q(vtz, ,J3, vis) : Q(-/2, J3)] = 2 

which implies that [Q( ,J2, .../3, -J'5) : Q] = 8. 
Linear algebra is at its most powerful when dealing with finite-dimensional vector 

spaces. Accordingly we concentrate on field extensions that give rise to such vector 
spaces. 

DEFINITION 6.9 A finite extension is one 
'
whose degree is finite. 

Proposition 6.7 implies that any simple algebraic extension is finite . .  The converse 
is not true, but certain partial results are (see Exercise 6 . 16). In order to state what is 
true we need: 

DEFINITION6.10 An extension L : K is algebraic ifevery elementofL is algebraic 
over K. 

Algebraic extensions need not be finite (see Exercise ,6. 1 2), but every finite exten
sion is algebraic. More generally: 

LEMMA 6.11 

L : K is a finite extension if and only if L is algebraic over K and there exist finitely 
many elements et1 , . . . , Cts E L such that L = K(et1 , • • •  , Cts). 

PROOF Induction using Theorem 6.4.and Proposition 6.7 shows that any alg�braic 
extension K (et 1 ,  . . .  , Cts ) : K is finite. Conversely, let L : K be a finite extension. 
Then there is a basis {ai , . . . , ets } for L over K, whence L = K(ett , . . . , as) . It 
remains to show that L : K is algebraic. Let x be any element of L and let n = [ L : K] . 
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The set { 1 ,  x ,  . . . , xn } contains n + 1 elements, which must therefore be linearly 
dependent over K. Hence 

ko + kt X  + · · · + knxn = 0 

for ko, . . .  , kn E K, and x is algebraic over K. 

Exercises 

6. 1 Find the degrees of the following extensions: 

a. <C :  Q 
b. JR(-/.5) : JR. 

c. Q( a) : Q where a is the real cube root of 2 
d. Q(3, -/5, v'IT) : Q 
e. Q(J6) : Q  
f. Q(o:) : Q where o:7 = 3 

0 

6.2 Show that every element of Q( -/5, -}7) can be expressed uniquely in the form 

p + q� + r-/7 svTs 

where p,  q ,  r, s E Q. Calculate explicitly the inverse of such an element. 

6.3 If [L : K] is a prime number, show that the only fields M such that K c M c L 
are K and L themselves. 

6 .4 If [L : K] = 1, show that K = L .  

6.5 Write out in detail the inductive proof of Corollary 6.6. 

6.6 Prove that [L : K] is finite if and only if L = K(a, . . .  , ar) where r is finite 
and each o:i is algebraic over K. 

6. 7 Let L : K be an extension. Show that multiplication by a fixed element of L is 
a linear transformation of L considered as a vector space over K. When is this 
linear transformation nonsingular? 

6.8 Let L : K be a finite extension, and let p be an irreducible polynomial over K. 
Show that if op and [L : K] are coprime, . then p has no zeros in L .  

6.9 If L : K i s  algebraic and M :  L is algebraic, i s  M :  K algebraic? Note that you 
may" not assume the extensions are finite. 

6. 10 Prove that Q( -/3, -/.5) = Q( .J3 + -/5). Try to generalize your result. 
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6. 1 1  * Prove that the square roots of all prime numbers are linearly independent over 
Q. Deduce that algebraic extensions need not be finite. 

6 . 12  Find a basis for Q(\/(1  + .J3)) over Q and hence find the degree of 
Q( -/( 1  + ,J3")) : Q. (Hint: You will need to prove that 1 + .J3 i s  not a square 
in Q(v'3).) 

6. 1 3  If [L : K] is prime, show that L is a simple extension of K. 

6. 14 Show that [Q(,J6, ./IO, v1.5) : Q] = 4, not 8 .  

6 . 15* Let K be a subfield of CC and let a1 , • • •  , an be elements of K such that any 
product a h · · · a A ,  with distinct indices jz , is not a square in K. Let a j = ,J(ij 
for 1 < j < n .  Prove that [K(a1 , . . .  , an) : K] = 2n . 

If K = Q, how can we verify the hypotheses on the a j by looking at their 
prime factorizations? 

6. 16* Let L : K be an algebraic extension and suppose that K is an infinite field. 
Prove that L : K is simple if and only if there are only finitely many fields M 
such that K c M  c L, as follows .  

a .  Assume only finitely many M exist. Use Lemma 6 . 1 1  to show that L : K 
is finite. 

b. Assume L = K(ah a2). For each f3 E K let Jf3 = K(ai + f3a2) . Only 
finitely many distinct Jf3 can Qfcur; hence show that L = Jr. for some f3 .  

c .  Use induction to prove the general case. 
d. For the converse, let L = K(a) be simple algebraic, with K c M  c L. 

Let m be the minimal polynomial of a over K, and let mM be the mini
mal polynomial of a over M. Show that mM im in L [t] . Prove that mM 
determines M uniquely, and that only finitely many m M  can occur. 

6 . 17  Mark the following true orfalse. 

a. Extensions of the same degree are isomorphic. 
b. Isomorphic extensions have the same degree. 
c. Every algebraic extension is finite. 
d. Every transcendental extension is not finite. 
e. Every element of <C is algebraic over R. 
f. Every extension of R is finite. 
g. Every algebraic extension of Q is finite. 
h. Every vector space is isomorphic to the vector space corresponding to 

some field extension. 
1. Every extension of a finite field is finite. 



Chapter 7 
Ruler-and-Compass Constructions 

Already, we are in a position to see some payoff from our efforts. The degree of 
a field extension is a surprisingly powerful tool. Even before we get into Galois 
theory proper, we can apply the degree to a warm-up problem- indeed, several. The 
problems come from classical Greek geometry, and we will do something much more 
interesting and difficult than solving them. We will prove that no solutions exist. 

According to Plato the only perfect geometrical figures are the straight line and the 
circle. In the most widely known parts of ancient Greek geometry, this belief had the 
effect of restricting the (conceptual) instruments available for performing geometrical 
constructions to two: the ruler and the compasses. (It's like scissors - one gadget for 
drawing circles is a pair of compasses. A compass is a magnetic needle that points 
north.) The ruler, furthermore, was a single unmarked straight edge. 

With these instruments alone it is possible to perform a wide range of constructions, 
as Euclid systematically set out in his Elements somewhere around 300 BC. Line 
segments can be divided into arbitrarily many equal parts, angles can be bisected, 
parallel lines can be drawn. Given any polygon, it is possible to construct a square of 
equal area, or twice the area. And so on. However, there are many geometric problems 
that clearly should have solutions, but for which the tools of ruler and compasses are 
inadequate. There are three famous constructions that the Greeks could not perform 
using these tools: duplicating the cube, trisecting the angle, and squaring the circle. 
These ask, respectively, for a cube twice the volume of a given cube, an angle one 
third the size of a given angle, and a square of area equal to a given circle. 

It is not surprising that the Greeks found these constructions so difficult; they are 
· impossible. But the Greeks had neither the methods to prove the impossibility nor, 
it appears, any clear suspicion that solutions did not exist. However, they were well 
aware that by going outside the Platonic constraints, these problems can be solved. 
Archimedes and others knew that angles can be trisected using a marked ruler, as in 
Figure 7 . 1 .  The ruler has marked on it two points distance r apart. Given LAOB = e 
draw a circle centre 0 with radius r ,  cutting OA at X, OB at Y. Place the ruler with 
its edge through X and one mark on the line OY at D, slide it until the other marked 
point lies on the circle at E. Then LEDO = 6/3 . For a proof, see Exercise 7.3. 

Setting your compasses up against the ruler so that the pivot point and the pen
cil effectively constitute such marks also provides a trisection, but again goes be
yond what we mean by ruler-and-compass construction. (To be pedantic, a ruler-and
compasses construction, but peda�try has to stop somewhere.) Many other uses of 
exotic instruments are catalogued in Dudley ( 1987), which examines the history of 
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Figure 7.1: Trisecting an angle with a marked ruler. 

trisection attempts. Euclid may have limited himself to an unmarked ruler (plus com
passes) because it made his axiomatic treatment more convincing. It is not entirely 
clear what axioms should apply to a marked ruler - the distance between the marks 
causes difficulties. 

The Greeks solved all three problems using conic sections or more recondite curves 
such as the conchoid of Nichomedes or the quadratrix (Klein et al. ,  1 962; Coolidge, 
1963). Archimedes, tackling the problem of squaring the circle in a characteristically 
ingenious manner, proved a result which would now be written 

1 0  1 3 - < 'IT < 3-
7 1  7 

This was a remarkable achievement with the limited techniques available, and refine
ments of his method can approximate 1r to any required degree of precision. 

Such extensions of the apparatus solve the �ractical problem, but it is the theoretical 
one that holds the most interest. What, precisely, are the limitations on ruler-and
compass constructions? With the machinery now at our disposal it is relatively simple 
to characterize these limitations, and thereby give a complete answer to all three 
problems. We use coordinate geometry to express problems in algebraic terms, and 
apply the theory of field extensions to the algebraic qliestions that arise. 

7.1 Algebraic Formulation 
The first step is to formalize the intuitive idea of a ruler-and-compass construction. 

Assume that a .set Po of points in the Euclidean plane JR2 is given, and consider 
operations of the following two kinds: 

Ruler Through any two points of P0 draw a straight line. 
Compasses Draw a circle, whose centre is a point of Po and whose 

radius is equal to the distance between some pair of points in P0. 

The ancient Greeks preferred a restricted version of the compasses operation; 
namely, draw a circle, centre some point of Po, and pass through some other point 
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of P0. Operation 2 can be performed by a sequence of such operations (see Exercise 
7 . 1 1) ,  so it ultimately makes no difference which version we use. The one' given above 
is more convenient for our purposes. 

DEFINITION 7.1 The points of intersection of any two distinct lines or circles 
drawn using the operations ruler and compasses, are said to be constructible in one 
step from Po. More generally, a point r E JR2 is constructible from P0 if there is a 
finite sequence r1 , • • •  ; rn = r of points of1R2, such that for each j = 1 ,  . . . , n the 
point r j is constructible in one step from the set Po U { r1 ,  . . .  , r j -I }. 

Example 7.2 
We show how the standard construction of the midpoint of a line segment can be 

· realized within our formal framework. Suppose we are given two points p1 ,  p2 E R2 
(Figure 7.2). Let Po = {pi ,  pz} .  

1 .  Draw the line p1pz (ruler). 

2. Draw the circle centre p1 of radius p1pz (compasses). 

3 .  Draw the circle centre P2 of radius PIP2 (compasses). · 

4. Let r1 and r2 be the points of intersection of these circles. 

5. Draw the line r1r2 (ruler). 

. 6. Let r3 be the intersection of the lines PI P2 and r1 rz . 

Then the sequence of points r1 , r2 , r3 determines a construction of the midpoint of 
the line PlP2 · 

Because a line is always specified by two distinct points lying on it, and a circle by 
its centre and a point on its circumference, all the traditional geometrical constructions 
of Euclidean geometry fall within the scope of our formal definition. 

The key idea for understanding the limitations of ruler-and-compass constructions 
is to relate them to field extensions. There is a natural way to do this. To each stage 

Figure 7.2: Bisecting. a  line segment with ruler and compasses. 
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in the construction we associate the subfield of C generated by the coordinates of 
the points constructed, which of course is actually a subfield of JR. Thus let Ko be 
the subfield of JR. generated by the x- and y-coordinates of the points in Po. If r1 has 
coordinates (x 1 ,  y 1 ) , then inductively we define K 1 to be the field obtained from K J-1 
by adjoining x 1 and y 1 ,  that is, 

K1 = Kr-�1 (x 1 , YJ) 

The notation here may be confusing. We are not adjoining the point (x 1 ,  y 1 ) to K 1-1 
(which makes no sense); we are adjoining the set {x 1 ,  y 1 }  formed by the two coordi
nates of that point. 

Clearly, there is a tower of subfields 

Ko Kt c · · · c Kn JR. 

and we use this tower to derive a criterion for constructibility. The crucial result is 
relatively straightforward. 

LEMMA 7.3 
With the above notation, x1 and YJ are zeros in K1 of quadratic polynomials over 
KJ-1 · 

PROOF � There are three cas�s to consider: line meets line, line meets circle, and 
circle meets circle. Each case is handled by coordinate geometry; as an example, we 
take the case line meets circle, Figure 7.3. 

Let A, B,  C be points whose coordinates (p, q), (r, s) , (t , u) liein KJ-1 · Draw the 
line AB and the circle centre C, radius w, where w2 E K 1 _1 as in Figure 7.3. We know 
that w2 lies in K1_1 , since w is the distance between two points whose coordinates 
are in K1_1 , and we can use Pythagoras. The equation of the line AB is 

and the equation of the circle is 

x - p  y - q 
r - p  s - q 

(x - t)2 + (y - u)2 = w2 

Figure 7.3: Line meets circle. 

(7. 1) 

(7.2) 
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Solving Equations (7 . 1 )  and (7 .2) we obtain 

( (s - q) ) 2  
(x - ti + (x - p) + q - u = w2 

(r - p) 
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so the x-coordinates of the intersection points X and Y are zeros of a quadratic 
polynomial over K J - I ·  The same holds for the y-coordinates. . 0 

If a subfield of C is extended by adjoining the zeros of a quadratic polynomial, 
then the extension has degree 1 or 2. A geometric construction repeats this process 
several times. So we have an algebraic consequence of the existence of a construction 
for a given point. 

THEOREM 7.4 

If r = (x , y) is constructible from a subset Po of R2, and Ko is the subfield of R 
generated by the coordinates of the points of P0, then the degrees 

are powers of2. 

[Ko(x) : Ko] and [Ko(y) : Ko] 

PROOF We use the notation that we have been accumulating. By Lemma 7.3 and 
Proposition 6.7, 

The value 2 occurs if the quadratic polynomial over Kj-I having Xj as a zero is 
irreducible, otherwise the value is 1 .  Similarly, 

Therefore, by the short tower law, 

[Kj- l (Xj , YJ) : Kj-d = [Kj-I (Xj , YJ) : Kj-l (Xj )][Kj-t (Xj ) : Kj-d 
= 1 ,  2, or 4 

Actually, the value 4 never arises (see Exercise 7 . 12). This observation is not 
required for our argument, however, because either way [Kj : KI-d is a power of 2. 
By the tower law, [Kn : Ko] is a power of 2. But since 

[Kn : Ko(x)] [Ko(x) : Ko] = [Kn : Ko] 

[Ko(x) : Ko] is a power of 2. Similarly, [Ko(y) : Ko] is a power of 2. · o  
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0 A 
Figure 7.4: Close, but no banana. 

7.2 Impossibility Proofs 

c F D 

We now apply the above theory to prove that there do not exist ruler-and-compass 
constructions that solve the three classical problems mentioned in the introduction to 
this chapter. For the technical drawing expert we emphasize that we are discussing 
exact constructions. There are many approximate constructions for trisecting the 
angle, for instance; bnt no exact methods. Dudley ( 1987) is a fascinating collection 
of approximate methods that were thought by their inventors to be exact. Here's one 
(Figure 7.4). To trisect angle BOA, draw line BE parallel to OA. Mark off AC and 
CD equal to OA, draw arc DE with cen�e C and radius CD. Drop a perpendicular 
EF to OD and draw arc FT centre 0 radius OF to meet BE at T. Then angle AOT 
approximately trisects angle BOA (see Exercise 7 . 10). 

The simplest problem to resolve is duplitating the cube. Its impossibility was first 
demonstrated by Gauss's student Pierre Wantzel in 1 837. 

THEOREM 7.5 (Wantzel) 
The cube cannot be duplicated using ruler-and-compass constructions. 

PROOF We are given a cube, and hence a side of the cube, which we may take to 
be the unit interval on the x-axis. Therefore, we may assume that Po = {(0, 0), ( 1 ,  0)} 
so that Ko = Q. The other distances between vertices of the cube are then �· 
and ,J3, which are constructible from Po anyway. If we could duplicate the cube, 
then we could construct the point (a., 0) where a.3 = 2. Therefore, by Theorem 7 .4, 
[Q(a.) : Q] would be a power of 2. But a is a zero of the polynomial t3 - 2 over Q, 
and this is irreducible over Q by Eisenstein's criterion. Hence t3 - 2 is the minimal 
polynomial of a over Q, and by Proposition 6.7, [Q(a.) : Q] = 3 .  Since 3 is not a 
power of 2, this is a contradiction. Therefore, the cube cannot be duplicated. 0 

In the same 1 837 paper, Wantzel also proved that trisection of the angle is demol
ished by a similar argument. Of course, some angles can be trisected ( 1T and 1T /2 are 
examples), but not all. In particular: 
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a 1 
Figure 7.5: Trisecting 'IT/3 .  

THEOREM 7.6 (Wantzel) 
The angle 'IT /3 cannot be trisected using ruler-and-compass constructions. 

PROOF It is easy to construct the angle 'IT /3 starting from (0, 0) and (1 , 0). There
fore, to trisect 'IT /3 is equivalent to starting from (0, 0) and (1 , 0), and constructing 
the point (a, 0), where a = cos( 'IT /9) (see Figure 7 .5). From this we can construct 
((3, 0) where (3 = 2 cos( 'IT /9). From elementary trigonometry, recall the formula 

cos 38 = 4 cos3 e - 3 cos e 

If we put e = 'IT/9, then cos 38 = ! ,  and (3 satisfies the cubic 

f33 
- 3(3  - 1 = 0 

Now f(t) = t3 - 3t - 1 is irreducible over Q, since 

f(t + 1 )  = t3 + 3t2 - 3 

is irreducible by Eisenstein's criterion. As in the previous theorem, [Q((3) : Q] = 3, 
a contradiction. 0 

This is the place for a word of warning to would-be trisectors, who are often 
aware of Wantzel's impossibility proof but somehow imagine that they can succeed 
despite it (Dudley, 1 987). If you claim a trisection of a general angle using ruler 
and compasses according to our standing conventions (such as unmarked ruler), then 
you are in particular claiming a trisection of 'IT /3 using those instruments. The above 
proof shows that you are, therefore, claiming that 3 is a power of 2; in particular, since 
3 :f. 1 ,  you are claiming that 3 is an even number. 

Do you really want to go down in history as believing you have proved this? 
The final problem of antiquity is more difficult: 

c THEOREM 7.7 

The circle cannot be squared using ruler-and-compass constructions. 
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PROOF Such a construction is equivalent to contructing the point (0, _.,fiT) from 
the initial set of points Po = {(0, 0), ( 1, 0)} .  From this we can easily construct (0, 'IT). 
So if such a construction exists, then [ Q( '1T) : Q] is a power of 2 and, in particular, 1T 
is algebraic over Q. On the other hand, a famous theorem of Ferdinand Lindemann 
asserts that 1T is not algebraic over Q. The theorem follows. 0 

We prove Lindemann's theorem in Chapter 24. The proof involves ideas off the 
main track of the book and has, therefore, been placed in the final chapter. The reader 
who is willing to take the result on trust cart skip the proof; the results are not used 
anywhere else in the book. 

Exercises 

7 . 1  Express in the language of this chapter methods of constructing, by ruler and 
compasses: 

a. The perpendicular bisector of a line 
b. The points trisecting a line 
c .  Division of a line into n equal parts 
d. The tangent to a circle at a given point 
e. Common tangents to two circles 

7.2 Estimate the degrees of the field exte�sions corresponding to the constructions 
in Exercise 7 . 1  by giving reasonably good �pper bounds. 

7.3 Prove using Euclidean geometry that the marked ruler construction of Figure 
7 . 1  does indeed trisect the given angle AOB .  

7 .4 Can the angle 21T /5 be trisected using ruler and compasses? 

7.5 Show that it is impossible to construct a regular 9-gon using ruler and com
passes . 

7.6 By considering a formula for cos 56 find a construction for the regular pentagon. 

, 7. 7 Prove that the angle e can be trisected by ruler and compasses if and only if the 
polynomial 

4t3 - 3t - cos e 

is reducible over Q(cos 6). 
7.8 Discuss the quinquisection (division into five equal parts) of angles. 
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Figure 7.6: Srinivasa Rainanujan' s  approximate squaring of the circle . 
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. 7.9 Verify the following approximate construction for 7r due to Ramanujan ( 1962, 
p. 35) (see Figure 7 .6). Let AB be the diameter of a circle centre 0. Bisect AO 
at M, trisect OB at T. Draw TP perpendicular to AB, meeting the circle at P. 
Draw BQ = PT, and join AQ. Draw OS, TR parallel to BQ. Draw AD = AS, 
and AC = RS tangential to the circle at A. Join BC, BD, CD. Make BE = BM. 
Draw EX parallel to CD. Then the square on BX has approximately the same 
area as the circle. 

(You will need to know that 7r is approximately �i�. This approximation is 
first found in the works of the Chinese astronomer Tsu Ch'ung Ching in about 
450 AD.) 

7 . 10  Prove that the construction in Figure 7 .4 is correct if and only if the identity 

. e sin e 
sm 

3 2 + cos e 

holds. Disprove the identity and estimate the error in the .construction. 

7 . 1 1  Show that the compasses operation can be replaced by draw a circle centre Po 
and pass through some other point of Po without altering the set of constructible 
points. 

7 . 12  In the proof of Theorem 7.4, show that in fact [K1_1 (xj , y1 ) :  K1_I ] is 1 or 2. 
(Hint: Show that XJ and YJ belong to the same quadratic extension of K1-t .) 

7 . 1 3  Show that �e regular heptagon (7-sided polygon) cannot be constructed with 
ruler and compasses . . Hint: To construct the regular 7 -gon is equivalent to 

· solving the polynomial equation 
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X D 

Figure 7. 7: Duplicating the cube using a marked ruler. 

whose roots include cos 2; + i sin 2; . Substitute u = t + f to get a cubic. Prove 
that this cubic is irreducible. 

Alternatively, prove that f is irreducible. 

7. 14  A race of alien creatures living in n-dimensional hyperspace IP£.n wishes to 
duplicate the hypercube by ruler-and-compass construction. For which n can 
they succeed? 

7 . 15  Figure 7.7 shows a regular hexagon and some related lines. If XY = 1 ,  show 
that YB = ..:/2. Deduce that the cube can be duplicated using a marked ruler. 

7. 16  Since the angles e,  e + 2; , e + 4; are all equal, it can be argued that every 
angle has three distinct trisections. Show that Archimedes ' s  construction with 
a marked ruler (Figure 7 . 1 )  can find them all. 

7 . 17  Mark the following true or false. 

a. There exist ruler-and-comp��s constructions trisecting the angle to an 
arbitrary degree of approximation. 

b. Such constructions are sufficient for practical purposes but insufficient 
for mathematical ones. 

c. The coordinates of a constructible point lie in a subfield of JP£. whose 
degree over the sub field generated by the coordinates of the given points 
is a power of 2. 

d. The angle 'IT cannot be trisected using ruler and compasses. 
e. A line of length 1T cannot be constructed from { (0, 0) , ( 1 ,  0)} using ruler 

and compasses. 
f. It is impossible to triplicate the cube by ruler and compasses. 
g. The real number 'IT is transcendental over CQ. 
h. The real number 1T is transcendental over R. 
i .  If (O, 'a) cannot be constructed from {(0, 0), ( 1 , 0)} by ruler and com

passes, then a is transcendental over Q. 
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The .Idea Behind Galois Theory 

Having satisfied ourselves that field extensions are good for something, we can return 
to the main theme: the elusive quintic and Galois's deep insights into the solubility of 
equations by radicals. We start by outlining the main theorem that we wish to prove, 
and the steps required to prove it. And, more importantly, we explain where it came 
from. 

We have already associated a vector space to each field extension. For some prob
lems this is too coarse an instrument; it measures the size, but not the shape, so to 
speak. Galois went deeper into the structure. To any polynomial p E <C[t] , he as
sociated a group of permutations, now called the Galois group of p in his honour. 
Complicated questions about the polynomial can sometimes be reduced to much sim
pler questions about the group, especially when it comes to solution by radicals. What 
makes his work so astonishing is that at the time the group concept existed only in 
rudimentary form. Galois was the first to recognize its importance. 

We introduce the main ideas in a very simple context: a quartic polynomial equation 
whose roots are obvious. We show that the reason for the roots being obvious can be 
stated in terms of the symmetries of the polynomial - in an appropriate sense - and 
that any polynomial equation with those symmetries will also have obvious roots. 

With a little extra effort, we then subvert the entire reason for the existence of this 
book by proving that the general polynomial equation of the nth degree cannot be 
solved �y radicals of a particular, special kind when n > 5. This is a spectacular 
application of the Galois group, but in a very limited context; it corresponds roughly 
.to what Ruffini proved (or came close to proving) in 1 813 .  By stealing one further 
idea from Abel, we can even remove Ruffini' s assumption, and prove that there is no 
general radical expression in the coefficients of a quintic, or any polynomial of degree 
>5, that determines a zero. 

We could stop there. But Galois went much further; his methods are not only 
more elegant, they give much stronger results. The material in this chapter provides 
a springboard from which we <?an launch into the full beauty of the theory. 

8.1 A First Look at Galois Theory 
Galois theory is a fascinating mixture of classical and modem mathematics, and 

it takes a certain amount of effort to get used to its thought patterns. This section is 
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intended to give a quick survey of the basic principles of the subject, and explain how 
the abstract treatment has developed from Galois's original ideas. 

The aim of Galois theory is to study the solutions of polynomial equations 

and, in particular, to distinguish those that can be solved by a formula from those 
that cannot. By a formula we mean a radical expression, anything that can be built 
up from the coefficients a j by the operations of addition, subtraction; multiplication, 
and division, and also - the essential ingredient - by nth roots, n = 2, 3 ,  4, . . . .  

The central objective of the book is a proof that, unlike quadratic, cubic, and quartic 
equations, the quintic equation cannot, in general, be solved by such a formula. Along 
the way we also find out why quadratics, cubics, and quartics can be solved using 
radicals. 

In modem terms, Galois 's main idea is to look at the syrnrnetries of the polynomial 
f (t ). These form a group, its Galois group, and the solution of the polynomial equation 
is reflected in various properties of the Galois group. 

8.2 Galois Groups According to Galois . . .  
Galois had to invent the concept of a group, quite aside from sorting out how 

it relates to the solution of equations. Not surprisingly, his approach was relatively 
concrete by today's standards, but by those of his time, it was highly abstract. Indeed, 
Galois is one of the founders of modem abs1;fact algebra. So to understand the modem 
approach, it helps to take a look at something rather closer to what Galois had in mind. 

As an example, consider the polynomial equat�on 

f(t) = t4 - 4t2 - 5 = 0 

which we encountered in Chapter 4. As we saw, this factorizes as 

(t2 + l )(P - 5) = o 

so there are four roots t = i ,  -i ,  ,JS, -0. Thes� form two natural pairs: i and -i 
go together, and so do 0 and -0. Indeed, it is impossible to distinguish i from 
-i ,  or 0 from -.JS, by algebraic means, in the following sense. Write down any 
polynomial equation with rational coefficients that is satisfied by some selection from 
the four roots. If we let 

a =  i J3 = -i 0 = -v'S 

then such equations include 

a + J3 = 0  o2 - 5 = 0 
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and so on. There are infinitely many valid equations of this kind. On the other hand, 
infinitely many other algebraic equations, such as a -y = 0, are manifestly false. 

Experiment suggests that if we take any valid equation connecting a, (3, -y, �and 
3, and interchange a and (3, we again get a valid equation. The same is true if we 
interchange -y and o. For example, the above equations lead by this process to 

(32 + 1 = 0 (3 + a = 0 -y2 - 5 = 0 3 + -y = 0 

(3-y - aB = 0 ao - (3-y = 0 (3o - a-y = 0 

and all of these are valid. In contrast, if we interchange a and -y, we obtain equations 
such as 

which are false. 
The operations that we are using here are permutations of the zeros a, (3, -y, o. In 

fact, in the usual permutation notation, the interchange of a and (3 is 

R = ( a (3 -y 3 ) 
(3 a -y 3 

and that of -y and o is 

( a (3 -y o ) S =  
a (3 3 · -y 

These are elements of the symmetric group §4 on four symbols, which includes all 
24 possible permutations of a, (3, -y, 3. 

If these two permutations turn valid equations into valid equations, then so must 
the permutation obtained by performing them both in turn, which is 

Are there any other permutations that preserve all the valid equations? Yes, of course, 
the identity 

l = ( a (3 -y 3 ) 
a (3 -y o 

It can be checked that only these four permutations preserve valid equations; the other 
20 all turn some valid equation into a false one . .  

It is a general fact, and an easy one to prove, that the invertible transformations of a . 
mathematical object that preserve some feature of its structure always form a group. 
We call this the symmetry group of the object. This terminology is especially common 
when the object is a geometrical figure and the transformations are rigid motions, but 
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the same idea applies more widely. And indeed, these four permutations do form a 
group, which we denote by G. 

What Galois realized i s  that the structure of this group to some extent controls how 
we should set about solving the equation. 

He did not use today's notation for permutations, and this led to potential confusion. 
To him, a permutation of, say, { 1 ,  2, 3 ,  4, 5 } ,  was an ordered list, such as 25413 .  Given 
a second list, say 32154, he then considered the substitution that changes 25413  to 
32154; that is, the· map 2 �--?>- 3 ,  5 1-+ 2, 4 �--?>- 1 ,  1 �---+ 5 ,  3 1-+ 4. Nowadays we would 
write this as 

or, reordering the top row, 

1 3 ) 
5 4 

( 1 2 3 4 5 ) 
5 3 4 1 2 

but Galois did not even have the 1-+ notation or associated concepts, so he had to 
write the substitution as 53412. His use of similar notation for both permutations and 
substitutions takes some getting used to, and probably did not make life easier for the 
people asked to referee his papers. Today's definition of function or map dates from 
about 1950; it certainly helps to clarify the ideas. 

To see why permutations/substitutions of the roots matter, consider the subgroup 
H = {/, R }  of G. Certain expressions in a, �' 'Y, 8 are fixed by the permutations in this 
group. For example, if we apply R to a2 + �2 - 5'Y82, then we obtain �2 + a2 - 5'Y82, 
which is clearly the same. In fact, an expression is fixed by R if and only if it is 
symmetric in a and � · 

It is not hard to show that any polynomial in a, �' 'Y, 8 that is symmetric in a and 
� can be rewritten as a polynomial in a � � a:�, 'Y' and 8. For example, the above 
expression can be written as (a.+ �  )2 - 2a.� - 5'Y82 • But we know that a = i ,  � = -i ,  
so that a. + � = 0 and a�  = 1 .  Hence the expression reduces to -2  - 5'Y82 • Now a. 
and � have been eliminated altogether. 

8.3 . . .  And How to Use Them 
Pretend for a moment that we don't know the explicit zeros i ,  -i ,  --/5, ---/5, but 

that we do know the Galois group G. In fact, consider any quartic polynomial g(t) 
with the same Galois group as our example f (t) above; that way we cannot possibly 
know the zeros explicitly. Let them be a., �. 'Y, 8. Consider three subfields of <C related 
to a., �. 'Y, 8, namely, 

Q c Q('Y , 8) Q(a., �. 'Y· 8) 
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Let H = {I ,  R }  G .  Assume that we also know the following two facts: 

1 .  The numbers fixed by H are precisely those in Q('y, 8) . 

2. The numbers fixed by G are precisely those in Q. 

Then we can work out how to solve the quartic equation g(t) = 0, as follows. 
The numbers a. + !) and a.!) are obviously both fixed by H.  By fact ( 1 )  they lie in 

Q('Y, 8). But since 

(t - a)(t - (3) = t2 - (a. + f3)t + a.f3 

this means that a and f3 satisfy a quadratic equation whose coefficients are in Q( 'Y; 8). 
That is, we can use the formula for solving a quadratic to express a., f3 in terms of 
rational functions of 'Y and 8, together with nothing worse than square roots. Thus we 
obtain a and f3 as radical expressions in 'Y and 8. 

But we can repeat the trick to find 'Y and B. The numbers 'Y + B and 'Y8 are fixed 
by the whole of G;  they are clearly fixed by R, and also by S, and these generate G. 
Therefore, 'Y + ·a and 'Y8 belong to Q by fact (2) above. Therefore, 'Y and 8 satisfy 
a quadratic equation over Q, so they are given by radical expressions in rational 
numbers. Plugging these into the formulas for a and 'Y we find that all four zeros are 
radical expressions in· rational numbers. 

We have not found the formulas explicitly, but we have shown that certain in
formation about the Galois group necessarily implies that they exist. Given more 
information, we can finish the job completely. 

This example illustrates that the subgroup structure of the Galois group G is closely 
related to the possibility of solving the equation g(t) = 0. Galois discovered that this 
relationship is very deep and detailed. For example, his proof that an equation of the 
fifth degree cannot be solved by a formula boils down to this: the quintic has the 
wrong sort of Galois group. We present a simplified version of this argument, in a 
restricted setting, in Section 8 .7 .  In Section 8 .8 we remove this technical restriction 
using Abel's classical methods. 

8.4 The Abstract Setting 
The modem approach follows Galois closely in principle, but differs in several 

respects in practice. The permutations of a., (3, 'Y,  B that preserve all algebraic relations 
between them turn out to be the symmetry group of the subfield Q(a., (3 ,  "J, 8) of C 
generated by the zeros of g, or more precisely its automorphism group, which is a 
fancy name for the same thing. 

Moreover, we wish to consider polynomials not just with integer or rational coef
ficients, but coefficients that lie in a subfield K of C (or, later, any field). The zeros of 
a polynomial f(t) with coefficients in K determine another field L which contains K, 
but may well be larger. Thus, the primary object of consideration is a pair of fields 
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K c L, or in a slight generalization, a field extension L : K. Thus, when Galois talks 
of polynomials, the modem approach talks of field extensions. And the Galois group 
of the polynomial becomes the group of K-automorphisms of L, that is, of maps 
a : L -+ L such that for all x,  y E L and k E K 

S(x + y) = S(x) + S (y) 

S(xy) = S(x )S(y) 

S (k) = k 

Thus, the bulk of the theory is described in terms of field extensions and their groups 
of K-automorphisms. This point of view was introduced in 1 894 by Dedekind, who 
also gave axiomatic definitions of subrings and subfields of <C. 

The method used above to solve g(t) = 0 relies crucially on knowing ( 1 )  and (2). 
But can we lay our hands on that kind of information if we do not already know the 

. zeros of g? The answer is that we can - though not easily - provided we make a 
general study of the automorphism groups of field extensions, their subgroups, and 
the subfields fixed by those subgroups. This study leads to the Galois correspondence 
between subgroups of the Galois group and subfields M of L thatcontainK. Chapters 9 
to 1 1  set up the Galois correspondence and prove its key properties, and the main 
theorem is stated and proved in Chapter 12 .  Chapter 13  studies one example in detail 
to drive the ideas home. Chapters 1 5  and 1 8  derive the spectacular consequences for 
the quintic. Then, starting in Chapter 16, we generalize the Galois correspondence to 
arbitrary fields, and develop the resulting th�ory in several directions. 

8.5 Polynomials and Extensions 
In this section we define the Galois group of a field extension L : K.  We begin by 

defining a special kind of automorphism. 

DEFINITION 8.1 Let L : K be a field extension, so that K is a subjield of the 
subfield L of <C. A K-automorphism of L is an automorRhism a of L such that 

.\ 
a(k) = k for all k E K 

We say that a fixes k E K if(8.1) holds. 

(8. 1) 

Effectively, condition (8 . 1 )  makes a an automorphism of the extension L :  K, 
rather than an automorphism of the large field L alone. The idea of considering 
automorphisms of a mathematical object relative to a subobject is a useful general 
method; it falls within the scope of the famous 1 872 Erlangen Programme of Felix 
Klein. Klein's idea was to consider every geometry as the theory of invariants of an 
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associated transformation group. Thus, Euclidean geometry is the study of invariants 
of the group of distance-preserving transformations of the plane, projective geometry 
arises if we allow projective transformations, and topology comes from the group 
of all continuous maps possessing continuous in verses (called homeomorphisms or 
topological transformations). According to this interpretation any field extension is a 
geometry, and we are simply studying the geometrical figures. 

The pivot upon which the whole theory turns is a result that is not in itself hard to 
prove. As Lewis Carroll said in The Hunting of the Snark, it is a "maxim tremendous 
but trite." 

THEOREM 8.2 

lfL : K is a field extension, then the set of all K-automorphisms of Lforms a group 
under composition of maps. 

PROOF Suppose that a and f3 are K-automorphisms of L .  Then af3 is clearly an au
tomorphism; further, if k E K, then afj(k) = a(k) = k so that af3 is a K-automorphism. 
The identity map on L is obviously a K-automorphism. Finally, u-1 is an automor-
phism of L, and for any k E K we have · 

so that u-1 is a K-automorphism. Composition of maps is associative, so the set of 
all K-q.utomorphisms of L is a group. 0 

DEFINITION 8.3 The Galois group f(L : K) of a field extension L : K is the group 
of all K-automorphisms ofL under the operation of composition of maps. 

Example 8.4 

1 .  The extension <C : JR. Suppose that a is an JR.,.automorphism of C. Let j � a(i) 
where i = .J=T. Then 

since a(r) = r for all r E JR. Hence, either j = i or j = -i . Now, for any x,  
y E JR 

a(x + iy) = a(x) + a(i)a(y) = x + jy 

Thus we have two candidates for R-automorphisms: 

Ut : X + iy 1-7 X + iy 

U2 : X + iy 1-7 X - iy 
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Obviously, a1 is the identity, and thus is an JR-automorphism of C. The map az is 
complex conjugation, and is an automorphism by Example 1.4( 1) .  Moreover, 

az(x + Oi) = x - Oi = x 

so az is an R-automorphism. Obviously, a� = at , so the Galois group r(C : R) is 
a cyclic group of order 2. 

2. Let c be the real cube root of 2, and consider Q( c) : Q. If a is a Q-automorphism 
of Q( c), then 

Since Q( c) c R we must have a( c) = c. Hence a is the identity map, and 
r(Q(c) : Q) has order 1 .  

3 .  Let the field extension be Q(  ,.Ji, v'3, .J5) : Q as in Example 8 .  The analysis pre
sented in that example shows that t2 - 5 is irreducible over Q( ,.Ji, vJ). Similarly, 
t2 - 2 is irreducible over Q( VJ, .J5) and t2 - 3 is irreducible over Q( ,.Ji, .J5). 
Thus, there are three Q-automorphisms of Q( ,.Ji, VJ, .J5) defined by 

P2 : ,.Ji 1-+ -J2 v'3 1-+ v'3 ,J5 1-+ .J5 
P3 : h t-+ ,J2 y'3 t-+ -y'3 ,.j5 t-+ .J5 
Ps : ,J2 t-+ ,.Ji y'3 �--+ y'3 .J5 r.+ -,.j5 

It is easy to see that these maps commute, and hence generate the group Z2 x 
Zz x Z2. Moreover, any Q-automorphism of Q(..Ji, VJ, .J5) must map ,.Ji 1-+ 
±,.Ji, V3 1-+ ±-/3, and .J5 1-+ ±.JS by considering minimal polynomials. All 
combinations of signs occur in the group Z2 x Z2 x Z2, so this must be the Galois 
group. 

8.6 The Galois Correspondence 
Although it is easy to prove that the set of all K-automorphisms of a field extension 

L : K forms a group, that fact alone does not significantly advance the subject. To be 
of any use, the Galois group must reflect aspects of'�the structure of L : K.  Galois 
made the discovery (which he expressed in terms of polynomials) that, under certain 
extra hypotheses, there is a one-to-one correspondence between: 

1 .  Subgroups of the Galois group of L : K 

2. Subfields M of L such that K M 

As it happens, this correspondence reverses inclusion relations: larger subfields cor
respond to smaller groups. First, we explain how the correspondence is set up. 
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If L : K is a field extension, we call any field M such that K c M c L is an interme
diate field. To each intermediate field M we associate the group M* = r(L : M) of all 
M -automorphisms of L .  Thus K* is the whole Galois group, and L * = 1 (the group 
consisting of just the identity map on L). Clearly, if M c N, then M* N* because 
any automorphism of L that fixes the elements of N certainly fixes the elements of 
M. This is what we mean by reverses inclusions. 

Conversely, to each subgroup H of r(L : K) we associate the set Ht of all elements 
x E L such that a(x) = x for all a E H. In fact, this set is an intermediate field. 

LEMMA 8.5 
If H is a subgroup ofr(L : K), then Ht is a subfield of L containing K. 

PROOF Let x ,  y E  Ht,  and a E H. Then 

a(x + y) = a(x) + a(y) = x + y 

so x y E Ht . Similarly, Ht is closed under subtraction, multiplication, and division 
(bynonzero elements), so Ht is a subfield ofL. Since a E r(L : K) wehave a(k) = k  
for all k E K, so K c Ht. . 0 

DEFINITION 8.6 With the above notation, H t is the fixed field of H. 

It is easy to see that like *• the map t reverses inclusions: if H c G, then Ht ::) ot . 
It is also easy to verify that if M is an intermediate field and H is a subgroup of the 
Galois group, then 

(8 .2) 

Indeed, every element of M is fixed by every automorphism that fixes all of M, and 
every element of H fixes those elements that are fixed by all of H. Example 8.4(2) 
shows that these inclusions are not always equalities, for there 

If we let :F denote the set of intermediate fields, and Q the set of subgroups of the 
Galois group, then we have defined two maps 

* :  :F ---+ g 
t : Q ---+ :F 

which reverse inclusions and satisfy equation (8.2). These two maps constitute the 
Galois correspondence between :F andQ. Galois 's results can be interpreted as giving 
conditions under which * and t are mutual inverses, setting up a bijection between :F 
and g.  The extra conditions needed are called separability (which is automatic over 
<C) and normality. They are discussed in Chapter 9. 
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Example 8.7 
The polynomial equation 

was discussed in Section 8.2. Its roots are a. = i ,  J3 = -i ,  'Y = .JS, o = -.JS. 
The associated field extension is L : Q where L = Q(i , .J5), which we discussed 
in Example 4.8. There are four Q-automorphisms of L ,  namely, I, R ,  S, T where 
I is the identity, and in cycle notation R = (af3), S = (-yo), and T = (af3)(-yo). 
Recall that a cycle (a1 . . .  ak)  E §n is the permutation a such that a( a j) = a  j+I when 
1 < j < k - 1 ,  a(ak)  = a1 , and a(a) = a when a fj. {a1 , . . .  , ak} .  Every element 
of §n is a product of disjoint cycles, which commute, and this expression is unique 
except for the order in which the cycles are composed. 

In fact, I ,  R ,  S, T are all possible Q-automorphisms of L ,  because any Q-automorphism 
must send i to ±i and .J5 to ±.JS. Therefore, the Galois group is 

G = {I ,  R, S, T} 

The proper subgroups of G are 

1 {I ,  R} {I ,  S} {I ,  T }  

where 1 = { / } .  It i s  easy to check that the corresponding fixed fields are, respectively, 

L Q(i) 

Extensive but routine calculations (Exercise 7. 1 )  show that these, together with K, are 
the only subfields of L .  So, in this case, the Galois correspondence is bijective. 

8 .. 7 Diet Galois 
To provide further motivation, we now pursue a modernized version ofLagrange's 

train of thought in his memoir of 1 770-177 1 ,  which paved the way for Galois. Indeed, 
we will follow a line of argument that is very close to the Work of Ruffini and Abel, 
and prove that the general quintic is not soluble by radicals. Why, then, does the rest 
of this book exist? Because "general" has . a, paradoxically special meaning in this 
context, and we have to place a very strong restriction on the kind of radical that is 
permitted. A major feature of Galois theory is that it does not assume this restriction. 
However, quadratics, cubics, and quartics are soluble by these restricted types of 
radical, so the discussion here does have some intrinsic merit. It could profitably be 
included as an application in a first course of group theory, or a digression in a course 
on rings and fields. 

We have already encountered the symmetric group §n , which comprises all permu..: 
tations of the set { 1 ,  2, . . .  , n } .  It has a subgroup of index 2, the alternating group An , 
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which consists of all products of an even number of transpositions (ab). The elements 
of An are the even pennutations. The group An is a normal subgroup of §n . It is well 
known that An is generated by all 3-cycles (abc) (see Exercise 8.6). The group As 
holds the secret of the quintic, as we now explain. 

Let t1 , • • •  , tn be independent complex variables, and consider the polynomial 

F(t)  = (t - li ) · · · (t - tn) 

whose zeros are t1 , . . . , tn . Expanding and using induction, we see that 

where the s 1 are the elementary symmetric polynomials 

Define 

St - t1 + · · · + tn 

Sz t1 t2 + t1 t3 · · · + tn- l tn 

(8.3) 

which is the set of all rational functions of the t 1. The symmetric group §n acts as 
symmetries of L :  

<J' f(tt , · · · ,  tn) = f(to-(1) •  · · · , fo-(n)) 

for f E L .  The fixed field K of §n consists, by definition, of all symmetric rational 
functions in the t 1 ,  which is known to be generated by the n elementary symmetric 
polynomials in the t1 . That is, K = <C(s1 , • . •  , sn). Moreover, the s 1 satisfy no non
trivial polynomial relation; they are independent. There is a classical proof of these 
facts based on induction, using symmetrized monomials 

tf1 t�2 • • • t�n + all permutations thereof 

and the lexicographic ordering of the list of exponents ab . . .  , an (see Exercise 8.2). 
A more modern but less constructive proof is given in Chapter 18 .  

Assuming that the s1 generate the fixed field, we consider the extension 

We know that in L the polynomial F(t) in (8.3) factorizes completely as F(t) = 

(t - ft )  . .  · (t - tn) .  
Since the s1 are independent indeterminates, F(t) i s  traditionally called the general 

polynomial of degree n .  The reason for this name is that this polynomial has a universal 
property. If we can solve F (t) = 0 by radicals, then we can solve any specific complex 
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polynomial equation of degree n by radicals. Just substitute specific numbers for the 
coefficients s 1 .  The converse, however, is not obvious. We might be able to solve every 
specific complex polynomial equation of degree n by radicals, but using a different 
formula each time. Then we would not be able to deduce a radical expression to solve 
F(t) = 0. So the adjective "general" is somewhat misleading; "generic" would be 
better, and is sometimes used. 

The next definition is not standard, but its name is justified because it reflects the 
assumptions made by Ruffini in his attempted proof that the quintic is insoluble. 

DEFINITION 8.8 The general polynomial equation F(t) = 0 is soluble by Ruffini 
radicals if there· exists a finite tower of subfields 

K = Ko c K1 c · · · Kr = L 

such that for j = 0, . . . , r - 1, 

and for 

(8.4) 

n1 > 2, n1 E N  

Ruffini tacitly assumed that if F(t) = 0 is soluble by radicals, then those radicals 
are all expressible as rational functions of the roots t1 , • . •  , tn . Indeed, this was the 
situation studied by his predecessor Lagrange in his deep but inconclusive research on 
the quintic . .  So Lagrange and Ruffini considered only solubility by Ruffini radicals. 
However, this is a strong assumption. It is entirely conceivable that a solution by 
radicals might exist for which the a1 constructed along the way do not lie in L, but 
in some extension of L.  For example, � might be useful. (It is useful to solve 
t5 - s1 = 0, for instance, but the solutions of this equation do not belong to L.) 
However, the more we think about this possibility, the less likely it  seems. Abel 
thought about it very hard and proved that if F(t) = 0 is soluble by radicals, then 
those radicals are all expressible as rational functions of the roots - they are Ruffini 
radicals after all. This step, historically called Abel's theorem, is more commonly 
referred to as the Theorem on Natural Irrationalities. From today's perspective, it is 
the main difficulty in the impossibility proof. So, following Lagrange and Ruffini, 
we start by defining the main difficulty away. As compensation, we gain excellent 
motivation for the remainder of this book. 

For completeness, we prove the Theorem on Natural Irrationalities in Section 8.8 
using classical (pre-Galois) methods. As preparation for all of the above, we need the 
following: 

PROPOSITION 8.9 
If there is a finite towerofsubfields (8.4), then it can be refined (if necessary increasing 
its length) to make all n 1 prime. 

PROOF For fixed j ,  write n i = p 1 • . .  Pk where the Pl are prime. Let �� � aj1 · • •  Pt • 

Then �ni1 E K1(�t), and the rest is easy. D 
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For the remainder of this chapter we assume that this refinement has been per
formed, and write p j for n j as a reminder. With this preliminary step completed, we 
will prove Theorem 8. 10: 

THEOREM 8.10 
The general polynomial equation F(t) = 0 is insoluble by Ruffini radicals ifn > 5. 

All we need is a simple group-theoretic lemma. 

LEMMA 8.11 
1 .  The symmetric group §n has a cyclic quotient group of prime order p if and only if 
p = 2 and n > 2, in which case the kernel is the alternating group An. 
2. The alternating group An has a cyclic quotient group of prime order p if and only 
ifp = 3 and n = 3 ,  4. 

PROOF ( 1 )  We may assume n > 3 because there is nothing to prove when n = 1 ,  2. 
Suppose that N is a normal subgroup of §n and §n/N ""' Zp. Then §n/N is abelian, 
so N contains every commutator g hg - I h-I for g ,  h E §n . To see why, let g denote the 
image of g E §n in the quotient group §n IN. Since §n / N is abelian, g li g - r ii -l = I 
in §n! N;  that is, ghg-I h- 1 E N. 

Let g,  h be 2-cycles of the form g = (ab), h = (ac) where a ,  b ,  c are distinct 
Then 

is a 3-cycle, and all possible 3-cycles can be obtained in this way. Therefore, N 
contains all 3-cycles. But the 3-cycles generate An , so N c An . Therefore, p = 2 
since l§n/An ! = 2. 

, 

(2) Suppose that N is a nohnal subgroup of An and An/ N Zp. Again, N contains 
every commutator. If n = 2, then An is trivial. When n = 3 we know that An ""' Z3 . 

Supposefirst thatn = 4. Considerthecommutatorghg-1h-1 where g = (abc), h = 

(abd) for a ,  b ,  c ,  d dil)tinct. Computation shows that 

so N must contain ( 12)(34), ( 1 3)(24), and ( 14)(23). It also contains the identity. But 
these four elements form a group V. Thus, V _ N. Since V is a normal subgroup of 
� and A4(V'::::. Z3, we are done. 

The symbol V comes from Klein's term Vierergruppe, or "fours-group." Nowadays 
it is usually called the Kleinfour-group . 

. Finally, assume that n > 5 .  The same argument shows that N contains all permuta
tions of the form (ab)(cd). If a ,  b, c, d ,  e are all distinct (which is why the case n = 4 
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is special), then 

(ab)(cd) · (ab)(ce) = (ced) 

so N contains all 3-cycles. But the 3-cycles generate An, so this case cannot occur. 
As our final preparatory step, we recall the expression 

n 
8 = ITct1 - tk) j<k 

It is not a symmetric polynomial in the t1 , but its square � = 82 is, because 
n 

6 = ( -l )n(n-1)/2 11 (tj - tk) 
j:f::k 

The expression 6, mentioned in passing in Section 1 .4, is called the discriminant of 
F(t). If a E §n , then the action of a sends 8 to ±8. The even permutations (those in 
An) fix 8, and the odd ones map 8 to -8. Indeed, this is a standard way to define odd 
and even permutations. 

We are now ready for the proof: D 

PROOF OF THEOREM 10 Assume that F(t) = 0 is soluble by Ruffini radicals, 
with a tower (8.4) of subfields K 1 in which all n 1 = p 1 ru;e prime. Consider the first 
step in the tower, 

where Kt = K(a1 ), af E K, a1 � K, and p = PI is prime. 
Sin,ce a 1 E L we can act on it by §n , and since every a E§n fixes K we have 

,� ; 

Therefore, a(u1) = 'i(<T)a1 , for ' a primitive pth root of unity and j(a) an integer 
between 0 and p - 1 .  The set of all pth roots of unity in C is a group under multipli
cation, and this group is cyclic, isomorphic to Z P . Indeed, 'a 'b , = {a+b where a + b 
is taken modulo p .  

Clearly, the map 

j : §n -+ Zp 

a r+ j(a) 

is a group homomorphism. Since a1 � K, some a(a1 )  � K, so j is nontrivial. Since 
Zp has prime order, hence no nontrivial proper subgroups, j must be onto. Therefore, 
§n has a homomorphic image that is cyclic of order p. By Lemma 1 1 ,  p = 2 and the 
kernel is An . Therefore, a 1 is fixed by An . 
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We claim that this implies that a.1 E K(o). If h(t1 , . . .  , tn) E L  and cr E §n , we 
define ha by 

Suppose that h is fixed by An ,  and let cr = (12) be a transposition which lies in §n \An ·  
Write h = he h0 where 

Then he is fixed by An and cr, which generate §n , so he E K. Clearly, h0 is mapped 
to -h0 by cr and fixed by An .  Therefore, oh0 is fixed by cr and An ,  so is fixed by §n , 
so oh0 E K. Therefore, h0 E K(o). Finally, h = he + h0  E K + K(o) = K(o). Now 
apply this result with h = a.r . 

If n = 2 we are finished. Otherwise consider the second step in the tower 

K(o) c Kz = K(o)(a.z) 

By a similar argument, a.2 defines a group homomorphism j : An � Zp , which again 
must be onto. By Lemma 1 1 ,  p = 3 and n = 3 ,  4. In particular, no tower of Ruffini 
radicals exists when n > 5 .  0 

It is plausible that any tower of radicals that leads from K to a sub field containing 
L must give rise to a tower of Ruffini radicals .  However, it is not at all clear how to 
prove this and, in fact, this is where the main difficulty of the problem really lies, 
once the role of permutations is understood. Ruffini appeared not to notice that this 
needed proof. Abel tackled the obstacle head on. Galois worked his way round it by 
way of the Galois group - an extremely elegant solution. 

His method also went much further; it applies not just to the general polynomial 
F(t), but to any polynomial whatsqever. And it provides necessary and sufficient 
conditions for solutions by radicals to exist. 

Exercises 8.8 to 8 . 10 provide enough hints for you to show that when n = 2, 3, 4 
the equation <J>(t) = 0 can be solved by Ruffini radicals. Therefore, despite the special 
nature ofRuffini radicals, we see that the quintic equation differs (radically) from the 
quadratic, cubic, and quartic equations. We also appreciate the significant role of 
group theory and symmetries of the roots of a polynomial for the existence, or not, of 
a solution by radicals. This will serve us in good stead when the going gets tougher. 

8.8 Natural Irrationalities 
With a little more effort we can go the whole hog. A bel's proof contains one 

further idea that lets us delete the word Ruffini from Theorem 8 . 10. This section is an 
optional extra, and nothing later depends on it. We continue to work with the general 
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polynomial, so throughout this section L = CC(t1 , . . .  , tn) and K = CC(s1 , • • .  , Sn ), 
where the s 1 are the elementary symmetric polynomials in the t 1 . The essential point . 
is Theorem 8 . 12. 

THEOREM 8.12 
If the general polynomial equation F(t) = 0 can be solved by radicals, then it can 
be solved by Ruffini radicals. 

COROLLARY 8.13 

The general polynomial equation F(t) = 0 is insoluble by radicals ifn 2: 5. 

To prove the above, all we need is the so-called Theorem on Natural Irrationalities, · 

which states that extraneous radicals like .ysi cannot help in the solution of F (t) = 0. 
More precisely; 

THEOREM 8.14 (Natural Irrationalities) 
If L contains an element x that lies in some radical extension R of K, then there exists 
a radical extension R' of K with x E R' and R' L .  

Once we have proved Theorem 8. 14, any solution of F(t)  = 0 by radicals can 
be converted into one by Ruffini radicals. Theorem 8 . 12  and Corollary 8. 1 3  are then 
immediate. 

It remains to prove Theorem 8 . 14. A proof using Galois theory is straightforward 
(see Exercise 15 . 14) .  With what we know at the moment, we have to work a little 
harder - but, following Abel's strategic insights, not much harder. We need several 
leiill1las and a technical definition. 

DEFINITION 8.15 Let R :  K be a radical extension. The height of R :  K is 
the smallest integer h such that there exist elements a 1 , . . .  , ah E R and primes 
PI , . . . , Ph such that R = K(n1 , . . .  , ah) and 

Pj aj E K(a.J , . . .  , O.J-d 1 < j < h 

where when j = 1 we interpret K(a1 , . . .  , a.1_t )  as K. 

Proposition 8.9 shows that every radical extension-has finite height. 
We prove Theorem 8. 14 by induction on the height of a radical extension R that 

contains v . The key step is extensions of height 1 ,  and this is where all the work is put in. 

LEMMA 8.16 

Let M be a subfield of L such that K c M, and let a E M, where a is not a pth 
power in M. Then 

1. ak is not a pth power in M for k = 1 ,  2, . . .  , p. 

2. The polynomial m(t) = tP - a is irreducible over M. 
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PROOF 
(I) Since k is prime to p there exist integers q ,  l such that kp + ql = 1 .  If ak = bP 
with b E  M, then 

contrary to a not being a pth power in M. 
(2) It would be easy to prove that tP - a is irreducible if we could write it as a product 
of linear factors, but that option is not open to us at this stage in the book. The proof 
is, therefore, less direct. 

Suppose that P(t) is a monic irreducible factor of m(t) = tP - a  over M. For 
0 < j < p - I let P1(t) = P(�i t), where � E CC c K c M is a primitive pth root 
of unity. Then Po = P, and Pj is irreducible for all j ,  for if P(�i t) = g(t)h(t) then 
P(t) = g(�-i t)h(�-h). Moreover, m(�i t) = (�i t)P a = tP - a = m(t), so P1 
divides m for all j = 0, . . .  , p - 1 by Lemma 5.6. 

We claim that P and P1 are coprime whenever 0 < j < k < p - 1 .  If not, by 
irreducibility 

P1(t) = cP(t) c E M  

Let 

P(t) = PO + Pl t + · · · + Pr-l ir- l + tr 

where r < p. By irreducibility, Po =I 0. Then 

Pj (t) = Po + PI �j t + · · · + Pr-1 �j(r- I)tr- I  + �jrtr 

Pk(t) = PO + Pl �kt + . . .  + Pr-l �k(r- l)tr-1 + �krtr 

so c = �(J-k)r from the coefficient of tr . But then po = �(J-k)r po . Since Po =I 0, we 
must have �U-k)r = 1 ,  so r = p .  But this implies that op = am, so m is irreducible 
over M. 

Thus we may assume that the P1 are pairwise coprime. We know that P1 I m for all 
j ,  so 

PoPt . . .  Pp-1 ! m 

When a p = r ,  it follows that pr < p, so r = 1 .  Thus P is linear, so there exists b E M 
such that (t - b) Jm(t) . But this implies that bP = a, contradicting the assumption that 
a is not a pth root. Thus tP - a  is irreducible. 0 

Now suppose that R is a radical extension of height 1 over M. Then R = M (a) 
where aP E M, a fj M. . 

(To avoid cheating you here, we must explain what is meant by M(n) when a fj L. 
We mean M[t] modulo the polynomial m. As in Section 5 .3 ,  all the usual laws of 
algebra hold for M[t] modulo m,  because m is irreducible. If we had developed 
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everything for general fields instead of subfields of C(t1 , . . .  , tn ), the explanation 
would not be required. There is a price to pay for staying concrete.) 

Therefore, every x E R \ M is uniquely expressible as 

(8.5) 

where the xi E M. This follows since [M( a) : M] � p by irreducibility of m.  We 
want to put x into a more convenient form by changing a to some other · element � 
of M( a) and, therefore, changing a to b = �P. In this new form, x1 = 1 .  The precise 
statement is: 

LEMMA 8.17  
For a given x E R, there exist � E M(a) and b E M  with b = �P, such that b is not 
the pth power of an element of M, and 

x = Yo + � Yz�2 + · · · Yp-l �p-l 

where the Yj E M. 

PROOF We know thatx fj. M, so in (8.5) some Xs # 0 for 1 < s < p - 1 .  Let 
l3 = X8<X8 , and let b = f3P .  Then b = xfa8P = xfa

8
, and if b is a pth power of an 

element of M then a8 is a pth power of an element of M, contrary to Lemma 8.16(2). 
Therefore, b is not the pth power of an element of M. 

Now s i s  prime to p, and the additive group 'llp i s  cyclic of prime order p,  so s 
generates 7l P . Therefore, the powers l3j of f3 run through the powers of a precisely 
once as j runs from O to p - 1 .  Since �0 = 1 ,  {31 = a8 , we have 

X = Yo � Yzf32 + · · · + Yp-l f3p-l 

for suitable Yj E M, where in fact Yo = xo. 

LEMMA 8.18 

0 

Let q E L. Then the minimal polynomial of q over K splits inio linear factors over L .  

PROOF The element q i s  a rational expression q(t1 , . . . , tn ) E C(t1 , . . .  , tn ) .  The 
polynomial 

fq(t) = IT (t - q (tO'(l ) :  . . . , tO'(n))) 
0'€§ 

has q as a zero. Symmetry under §n implies that fq(t) E K [t]. The minimal polyno
mial mq of q over K divides /q , and fq is a product of linear factors; therefore, mq is 
the product of some subset of those linear factors. 0 

We are now ready for the climax of Diet Galois. 
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PROOF OF THEOREM 8.14 We prove the theorem by induction on the height 
h of R. 

If h = 0, then the theorem is obvious. 
Suppose. that h > 1 .  Then R = Rt (a) where R1 is a radical extension of K of 

height h - 1 ,  and aP E R1 , a fj. R1 , with p prime. Let aP = a  E R1 . 
By Lemma 8 . 17  we ·may assume without loss of generality that 

where the x j E R 1 . (Replace a. by J3 as in the lemma, and then change notation 
back to a..) The minimum polynomial m(t)  of x over K splits into linear factors in 
L by Lemma 8 . 1 8 . In particular, x is a zero of m(t), while all zeros of m(t) lie in L .  
Therefore, a ,  xo , xz , . . .  Xp-1  E L. 

Also, a, xo , x2 , . . .  x p - I  E R 1 ·  The height of R 1 is h - 1 ,  so by induction, each of 
these elements lies in some radical extension of K that is contained in L. The subfield 
J generated by all of these elements is clearly radical (Exercise 8 .6), and contains 
aF , x0 , xz , . . . Xp- 1 · Then x E J(cx) c L ,  and J(a) is radical. This completes the 
induction step, and with it, the proof. 

· 0 
So much for the general quintic. We have used virtually everything that led up to 

Galois theory, but instead of thinking of a group of automorphisms of a field extension, 
we have used a group of permutations of the roots of a polynomial. Indeed, we have 
used only the group §n, which permutes the roots tj of the general polynomial F(t). 
It would be possible to stop here, with a splendid application of group theory to the 
insolubility of the general quintic. But for Galois, and for us, there is much more to 
do. The general quintic is not general enough, and it would be nice to find out why 
the various tricks used above actually work. At the moment, they seem to be fortunate 
accidents. In fact, they conceal an elegant theory (which, in particular, makes the 
Theorem on Natural Irrationalities entirely obvious; so much so that we can ignore 
it altogether). That theory is, of course, Galois theory. Motivated up the the hilt, we 
can start to develop it in earnest. 

,Exercises 

8 . 1  Show that the only subfields of Q(i , -J:S) are Q, Q(i), Q(.J5), Q(i-.J5), and 
Q(i , .J5) � 

8.2 Express the following in terms of elementary symmetric polynomials of a, J3, 'Y. 

a. a2 + J32 + 'Yz 

b. a2J3 + a2-y + J32cx + J32'Y + -y2a + 'Y2J3 
c. a3 + J33 "/3 

d. (ex _ J3)2 + (J3 _ -y)2 + (-y _ a)2 
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8.3 Prove that every symmetric polynomial p(x ,  y) E Q[x ,  y] can be written as 
a polynomial in xy and x + y as follows. If p contains a term axi yi ,  with 
i # j E N and a E Q, show that it must also contain the term axi yi . Use this 
to write p as a sum of terms of the form a(xi yl xlyi ) or axi yi . Observe that 

xiyl xi/ = xi /(xl-i + yf-i) if i < j 
xi/ = (xy)i 

(xi /)  = (x + y)(xi-1 /-1 ) xy(xi-2 + yf-2) .  

Hence show that p is a sum of terms that are polynomials in x + y,  xy . 

8 .4* This exercise generalizes Exercise 2. 12  to n variables. , Suppose that 
p(t1 , . . .  , tn) E K [t1 , . . . , tn] is symmetric and let the si be the elementary 
symmetric polynomials in the t i .  Define the rank of a monomial tf1 t�2 • • •  t�n to 
be a1 + 2a2 

+ 
· · · nan . Define the rank of p to be the maximum of the ranks of 

all monomials that occur in p, and let its part of highest rank be the sum of the 
terms whose ranks attain this maximum value. Find a polynomial q composed 
of terms of the form ks�1 s�2 • • •  s�n , where k E K, such that the part of q of 
highest rank equals that of p. Observe that p - q has smaller rank than p,  and 
use induction on the rank to prove that p is a polynomial in the Si . 

8.5 Suppose that f (t) = an tn + · · · + a0 E K [t ] ,  and suppose that in some subfield 
L of C such that K L we can factorize f as 

Define 

Prove Newton 's identities 

j . 
'A i = a1 + 

· · · 
+ a� 

an-1 + a�tAl 0 
\ 

2an-2 
+ an-1}\.I + an'Az 0 

Show how to use these identities inductively to obtain formulas for the Aj . 

8.6 Prove that the alternating group An is generated by 3-cycles. 

8.7 Prove that every element of As is the product of two 5-cycles. Deduce that As 
is simple. 
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8 .8 Solve the general quadratic by Ruffini radicals. (Hint: If the roots are cq , <Yz, 
show that (a1 - azP is a Ruffini radical.) 

8 .9 Solve the general cubic by Ruffini radicals. (Hint: If the roots are a I ,  a2 , a3 , 
show that a1 + wa2 + w2a3 and a1 + w2a2 + wa3 are Ruffini radicals.} 

8 . 10  Solve the general quartic by Ruffini radicals. (Hint: If the roots are <XI , <Yz, a3 , 0'.4, 
show that a1 + ika2 + i 2ka3 + +i3ka4 is a Ruffini radical for 0 < k < 3.) 

8. 1 1  Suppose that I c J are subfields of C(t1 , • • .  , tn ) (that is, subsets closed under 
the operations +, - ,  x ,  +), and J is generated by J1 ,  . . .  , lr where I Ji c J 
for each j and Ji : I is radical. By induction on r, prove that J : I is radicaL 

8. 1 2  Mark the following true or false. 

a. The K-automorphisms of a field extension L : K form a subfield of C. 

b. The K-automorphisms of a field extension L : K form a group. 
c. The fixed field of the Galois group of L : K contains K. 
d. The fixed field of the Galois group of L : K equals K. 
e. The alternating group As has a normal subgroup H with quotient isomor

phic to Zs . 
f. The alternating group As has a normal subgroup H with quotient isomor

phic to z3 . 

g. The alternating group A5 has a normal subgroup H with quotient isomor
phic to Zz . 

h. The general quintic equation can be solved using radicals, but it cannot 
be solved using Ruffini radicals. 





Chapter 9 

Normality and Separability 

In this chapter we define the important concepts of nonnality and separability and 
develop some key properties. 

Suppose thatK is a subfield ofC .  Often a polynomial p(t) E K[t]  has no zeros in K. 
But it must have zeros in CC, by the Fundmental Theorem of Algebra. Therefore, it may 
have some zeros, at least, in some given extension field L of K. For example, t2 + 1 E 
JR [t] has no zeros in JR, but has zeros ±i E C. We shall study this phenomenon in 
detail, showing that every polynomial can be resolved into a product of linear factors 
(and hence has its full complement of zeros) if the ground field K is extended to a 
suitable splitting field N. An extension N : K is normal if any irreducible polynomial 
over K with at least one zero in N splits into linear factors in N.  We show that an 
extension is normal if and only if it is a splitting field. 

Separability is a complementary property to normality. An irreducible polynomial 
is separable if its zeros in its splitting field are simple. It turns out that over C this 
property is automatic. We make it explicit because it is not automatic for more general 
fields, see Chapter 16 .  

9.1 Splitting Fields 
The most tractable polynomials are products of linear ones, so we are led to single 

this property out 

DEFINITION 9.1 If K is a subfield of C and f is a polynomial over K, then f 
splits over K if it can be expressed as a product of linear factors 

f(t) = k(t - <Xt)  • • • (t - <Xn) 

where k, <XI ,  • • •  , <Xn E K. 

If this i s  the case, then the zeros off inK are precisely ex 1 ,  . . •  , <Xn . The Fundamental 
Theorem of Algebra implies that f .  splits over K if and only if all of its zeros in CC 
actually lie in 'K. Equivalently, K contains the subfield generated by all the zeros 
of f.  
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Example 9.2 

1 .  The polynomial f(t) = t3 - 1 E Q[t] splits over <C, because it can be written as 

f(t) = (t - l)(t - w)(t - w2) 

where w = exp(21Ti /3) E C. Similarly, f splits over the subfield Q(i, .J3) since 
w E  Q(i ,  .J3), and indeed f splits over Q(w), the smallest subfield of C with that 
property. 

2. The polynomial f(t) = t4 - 4t2 - 5 splits over Q(i, ,JS), because 

f(t) = (t - i )(t i )(t - v'S)(t + vfs) 
However, over Q(i) the best we can do is factorize it as 

(t - i)(t i )(t2 - 5) 

with an irreducible factor t2 - 5 of degree greater than 1 .  (It is easy to show that 
5 is not a square in Q(i).) 

So over Q(i), the polynomial f does not split. This shows that even if a poly
nomial f(t) has some linear factors in an extension field L, it need not split 
over L.  

If f i s  a polynomial over K and L i s  an extension field of K, then f i s  also a 
polynomial over L. It therefore makes sense to talk of f splitting over L,  meaning 
that it is a product of linear factors with coefficients in L .  We show that given K 
and f we can always construct an extension :E of K such that f splits over :E.  It is 
convenient to require in addition that f does not split over any smaller field, so that 
:E is as economical as possible. 

DEFINITION 9.3 A subfield 'E ofC is a splitting field/or the polynomial f over 
the subfield K ofC if K c 'E and 

1. f splits over E. 

2. If K c E' c 'E and f splits over E', then 'E' = E. 

The second condition is clearly equivalent to: 

2.' :E = K(rrJ , . . . , rrn) where rr1 , . . . , O'n are the zeros of f in E .  
Clearly, every polynomial over a subfield K of C h'as a splitting field. 

THEOREM 9.4 
If K is any subfield ofC and f is any polynomial over K, then there exists a unique 
splitting field E for f over K. Moreover, [E : K] is finite. 
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PROOF We can take :E = K ( 0"1 , . . . , an), where the a j are the zeros of f in C .  
In fact, this is the only possibility, so :E i s  unique. The degree [:E : K] i s  finite since 
K ( 0"1 ,  . . .  , an) is finitely generated and algebraic, so Lemma 6. 1 1  applies. " 0  

Isomorphic sub fields of <C have isomorphic splitting fields, in the following strong 
sense. 

LEMMA 9.5 
Suppose that L : K � K' is an isomorphism of subfields of <C. Let f be a polynomial 
over K and let :E :) K be the splittingfieldfor f. Let L be any extension field of K' 
such that L(/) splits over L. Then there exists a monomorphism j : :E � L such that 
j iK = L. 

. 

PROOF We have the following situation: 

K � :E 
L ,J_. ,J_. j 
K' � L 

where j has yet to be found. We construct j using induction on aj. As a polynomial 
over :E ,  

f(t) = k(t - 0"1)  · • · (t - O"n) 

The minimal polynomial m of 0"1 over K is an irreducible factor of f. Now L(m) 
divides L(/) which splits over L,  so that over L 

L(m) = (t - a!) · · · (t - a�) 

where a 1 , • • •  , ar E L. Since L(m) is irreducible over K', it must be the minimal 
polynomial of a 1  over K' .  So by Theorem 16 there is an isomorphism 

such that h I K = L and i1 ( 0"1 ) = a 1 · Now :E is a splitting field over K ( a1 )  of the 
polynomial g = f/(t - a1) .  By induction there exists a monomorphism j : :E � L 
such that i iK(o-1) = ii · But then i lK = L and we are finished. 0 

This, enables us to prove the uniqueness theorem. 

THEOREM 9.6 
Let L :  K � K' be an isomorphism. Let :E be the splittingjieldfor f over K, and let 
:E' be the splitting field for L(/) over K'. Then there is an isomorphism j :  :E � :E' 
such that j IK  = L. In other words, the extensions :E : K and :E' : K' are isomorphic. 



1 10 Normality and Separability 

PROOF We start with the following diagram: 

K -+ :E 
L ,J_. ,J_. j 
K' -+ :E' 

We must find j to make the diagram commute, given the rest of the diagram. By 
Lemma 9.5 there is a monomorphism j :  :E -+ :E' such that j lx = L • .  But j(:E) is 
clearly the splitting field for t.(f) over K' , and is contained in :E' . Since :E' is also the 
splitting field for t.(f) over K', we have j(:E) = :E', so that j is onto. Hence j is an 
isomorphism, and the theorem follows. 0 

Example 9.7 

1 .  Let f(t)  = (t2 - 3)(t3 + 1)  over Q. We can construct a splitting field for f as 
follows: over C the polynomial f splits into linear factors 

r:; r:; 1 )  (t - 1 
2
i,J3) (t -: 

1 -
2
iv'3) f(t )  = (t V 3)(t - V 3)(t -

so there exists a splitting field in <C, namely, 

Q (�. 1 +;�) 
This is clearly the same as Q( ,J3, i ) .  

2. Let f(t) = (t2 - 2t - 2)(t2 + 1 )  over Q. The zeros of f in <C are 1 ± -J3, ±i, 
so a splitting field is afforded by Q(l ,J3, i) which equals Q( ,J3, i ). This is the 
same field as in the previous example, although the two polynomials involved are 
different. 

3. It is even possible to have two distinct irreducible polynomials with the same 
splitting field. For example, t2 - 3 and t2 - 2t - 2 are both irreducible over Q, 
and both have Q( -J3) as their splitting field over Q. 

9.2 Normality 
The idea of a normal extension was explicitly recognized by Galois (but, as always, 
in terms of_polynomials over <C). In the modemtreatment it takes the following form. 

DEFINITION 9.8 Afield extension L : K is normal if every irreducible polynomial 
f over K that has at least one zero in L splits in L. 
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For example, C :  IR is normal since every polynomial (irreducible or not) splits in 
C.  On the other hand, we can find extensions that are not normal. Let a be the real 
cube root of 2 and consider IQ( a) : Q. The irreducible polynomial t3 2 has a zero, 
namely, a, in Q(a), but it does not split in Q(a). If it did, then there would be thiee 
real cube roots of 2, not all equal. This is absurd. 

· Compare with the examples of Galois groups given in Chapter 8 .  The normal 
extension C : IR has a well-behaved Galois group, in the sense that the Galois cor
respondence is a bijection. The same goes for Q( ,.fi, ../3, .J5) : Q. In contrast, the 
non-normal extension Q(a) : Q has a badly behaved Galois group. Although this is 
not the whole story, it illustrates the importance of normality. 

There is a close connection between normal extensions and splitting fields which 
provides a wide range of normal extensions. 

THEOREM 9.9 
Afield extension L :  K is normal and finite if and only if L is a splittingfieldfor some 
polynomial over K. 

PRO.OF Suppose L : K is normal and finite. By Lemma 6. 1 1 , L = K (a 1 , . . . , Cts) 
for certain a j algebraic over K. Let m j be the minimal polynomial of a j over K and let 
f = m1 . . •  ms. Each m j is irreducible over K and has a zero a j E L, so by normality 
each m j splits over L. Hence f splits over L.  Since L is generated by K and the zeros 
of f, it is. the splitting field for f over K. 0 

To prove the converse, suppose that L is the splitting field for some polynomial g 
over K. The extension L : K is then obviously finite; we must show it is normal. To 
do this we must take an irreducible polynomial f over K with a zero in L and show 
that it splits in L.  Let M :::::> L be a splitting field for fg over K. Suppose that e1 and 
e2 are zeros of f in M. By irreducibility, f is the minimal polynomial of e 1 and e2 
over K. 

We claim that 

This is proved by an interesting trick. We look at several subfields of M, namely, 
K, L ,  K(et) ,  L(e 1 ) , K(e2) ,  L(e2). There are two towers 

K c K(et ) c L(e i )  c M 

K c K(e2) c L(e2) c M  

Furthermore, K K(e1 )  and L L(ej )  for j = 1 ,  2, and K L M. The claim 
will follow from a simple computation of degrees. For j = 1 or 2, 

[L(ej ) : L][L : K] = [L(ej ) : K]  = [L(ej ) : K(ej )] [K(ej ) : K]  (9 . 1 )  

By Proposition 6.7, [K(e 1 )  : K] = [K(e2) :  K]. Clearly, L(ej ) i s  the splitting field 
for g over K(ej), and by Corollary 5 . 1 3  K(e1 )  is isomorphic to K(e2). Therefore, by 



1 12 Normality and Separability 

Theorem 9.6 the extensions L(Gj ) : K(6j) are isomorphic for j = 1 ,  2, and hence 
have the same degree. Substituting in (8 . 1 )  and cancelling, 

as claimed. From this point on, the rest is easy. If e1  E L, then [£(81)  : L] = 1 ,  so 
[£(62) :  L] = 1 and 62 E L  also. Hence L :  K is normal. 

9.3 Separability 
Galois did not explicitly recognize the concept of separability, because he worked 

only with the complex field, where, as we shall see, separability is automatic. However, 
the concept is implicit in several of his proofs, and must be invoked when studying 
more general fields. 

DEFINITION 9.10 An irreducible polynpmial f over a subfield K ofC is separable 
over K if it has simple zeros in C, or equivalently, simple zeros in its splitting field. 

This means that over its splitting field, or over C, f takes the form 

/(t) = k(t - er1 ) · · · (t - ern) 

where the er i are all different. 

Example 9.11 
The polynomial t4 + t3 + t2 + t + 1 is separable over Q, for its zeros in C are 
exp(2'1Ti /5), exp(4'1Ti /5), exp(6'1Ti /5), exp(8'1Ti /5), which are all different. 

For polynomials over lR there is a standard �ethod for detecting multiple zeros by 
differentiation. To obtain maximum generality/later, we redefine the derivative in a 
purely formal manner. 

DEFINITION 9.12 Suppose that K is a subfield ofC, and let 

f(t) = ao + a1 t  + · · · + an tn E K [t] 

Then the formal derivative off is the polynomial 

DJ = a 1 + 2azt + · · · + nantn- l E K [t] 

For K = lR (and indeed for K = C) this is the usual derivative. There is in general 
no point in trying to think of D f as a rate of change of f, but certain:of the more 
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useful properties of the derivative carry over to D. In particular, simple computations 
(Exercise 9.3) show that for all polynomials f and g over K, 

D(f + g) = Df + Dg 
D(fg) = (Df)g f(Dg) 

Also, if A. E K then D(A.) = 0, so 

D('Af) = 'A(Df) 

These properties of D let us state a criterion for the existence of multiple zeros 
without knowing what the zeros are. 

LEMMA 9.13 

Let f =/= 0 be a polynomial over a subfield K of<C, and let 'E be its splitting field. Then 
f has a multiple zero (in <C or 'E) if and only if f and Df have a common factor of 
degree > 1 in 'E [t]. 

PROOF Suppose f has a repeated zero in 'E ,  so that over 'E 

f(t) = (t - ex)2 g(t) 

where ex E E .  Then 

Df = (t - ex)[(t - ex)Dg + 2g] 

so f and D f have a common factor (t - ex) in E [t] . Hence f and D f have a common 
factor in K[t] , namely, the minimal polynomial of ex over K. 

Now suppose that f has no repeated zeros. We show by induction on a f that f 
and Df are coprime in E [t], hence also coprime in K[t] . If 8f = 1 ,  this is obvious. 
Otherwise f(t) = (t - a)g(t) where (t - a)fg(t). Then 

D f = (t - ex)Dg + g 

If an irreducible factor of g divides D f, then it must also divide D g, since it is not 
t - ex. But by induction g and Dg are coprime. Hence f and Df are coprime, as 
required. D 

We now prove that separability of an irreducible polynomial is automatic over <C. 

PROPOSITION 9.14 

If K is a subfield of<C, then every irreducible polynomial over K is separable. 

An irreducible polynomial f over K is inseparable if and only if f and 
· D f have a common factor of degree > 1 .  If so, then since f is irreducible the common 
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factor must be f, but D f has smaller degree than f, and the only multiple off having 
smaller degree is 0, so D f = 0. Thus if 

then this is equivalent to nan = 0 for all integers n > 0. For subfields of C, this is 
equivalent to an = 0 for all n .  0 

Exercises 

9. 1 Determine splitting fields over Q for the polynomials t3 - 1 , t4 5t2 +6, t6 8 ,  
in the form Q(n1 ,  . . .  , ak) for explicit Uj . 

9.2 Find the degrees of these fields as extensions of Q. 

9.3 Prove that the formal derivative D has the following properties: 

a. D(f g) = D f + Dg 
b. D(fg) = (Df)g + f(Dg) 
c .  If /(t) = tn , then Df(t) = ntn-l 

9.4 Show that we can extend the definition of the formal derivative to K(t) by 
defining 

D(f/g) = (Df · g - f · Dg)fg2 

when g ::f. 0.  Verify the relevant properties of D .  

9.5 Which of the following extensions are normal? 

a. Q(t) : Q 
b. Q( J-3) : Q 
c. Q( a.) : Q, where a. is the real seventh root of 5 
d. Q( -JS, u) : Q(a.), where a is as in (c) 
e. IR( ,.;:::7) : R 

9.6 Show that every extension in C, of degree 2, is normal. Is this true if the degree 
is greater than 2? 

9.7 If 2: is the splitting field for f over K and K L c 2: ,  show that 2: is the 
splitting field for f over L .  

9.8* Let f be a polynomial of degree n over K, and let 2: be the splitting field for 
f over K. Show that [2: : K] divides n !  (Hint: Use induction on n .  Consider 
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separately the cases when f is reducible or irreducible. Note that a !b ! divides 
(a + b) ! (why?).) 

9.9 Mark the following true or false. 

a. Every polynomial over Q splits over some subfield of CC. 

b. Splitting fields in CC are unique. 
c. Every finite extension is normal. 
d. Q( .JI9) : Q is a normal extension. 
e. Q(�) : Q is a normal extension. 
f. Q( �) : Q( .JI9) is a normal extension. 
g .  A normal extension of a normal extension is a normal extension. 





Chapter 10 
Counting Principles 

When proving the Fundamental Theorem of Galois theory in Chapter 1 2, we will need 
to show that if H is a subgroup of the Galois group of a finite normal extension L : K, 
then Ht* = H. Here the maps * and t are as defined in Section 8.6. Our method 
will be to show that H and Ht* are finite groups and have the same order. Since we 
already know that H c Ht*, the two groups must be equal. This is an archetypal 
application of a counting principle: showing that two finite sets, one contained in the 
other, are identical by counting how many elements they have, and showing that the 
two numbers are the same. 

It is largely for this reason that we need to restrict attention to finite extensions and 
finite groups. If an infinite set is contained in another of the same cardinality, they 
need not be equal; for example, Z c rQ and both sets are countable, but Z =f. rQ. So 
counting principles may fail for infinite sets. 

The object of this chapter is to perform part of the calculation of the order of Ht* .  
Namely, we find the degree [Ht : K] in terms of the order of H. In Chapter 1 1  we 
find the order of Ht* in terms of this degree; putting the pieces together will give the 
desired result. 

10.1 Linear Independence of Monomorphisms 
We begin with a theorem ofDedekind, who was the first to make a systematic study 

of field monomorphisms. 
To motivate the theorem and its proof, we consider a special case. Suppose that K · 

and L are sub:fields of C., and let i\. and f.L be monomorphisms K --+ L. We claim that 
i\. cannot be a constant multiple of 1-.L unless i\. = 1-.L· By "constant" here we mean an 
element of L .  Suppose that there exists a E L such that 

J.L(x) = ai\.(x) 

for all x E K.  Replace x by yx, where y E K, to get 

J.L(yx) = ai\.(yx) 

Since i\. and 1-.L are monomorphisms, this implies that 

J.L(Y )J.L(X) = ai\.(y )i\.(x) 
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But we also have 

X.(�)J.L(x) = aA(y)A.(x) 

Comparing the two, we see that A(y) = J.L(Y) for all y;  that is, A = J.L. 
In other words, if A and J.L are distinct monomorphisms K ---? L, they must be 

linearly independent over L .  
Now suppose that A 1 , A2 , A.3 are three distinct monomorphisms K ---? L ,  and assume 

that they are linearly dependent over L.  That is, 

a1 A1 + azAz + a3A3 = 0 

for a j E L .  In more detail, 

( 10 . 1 )  

for all x E K. If some a j = 0 ,  then we reduce to the previous case, so we may assume 
all a j =j:. 0. 

Substitute yx for x in Equation ( 10. 1 )  to get 

(10 .2) 

That is, 

( 10.3) 

Relations ( 10. 1 )  and ( 10.3) are independent unless A.I (Y) = A.2(y) = A3 (y), and we 
. can choose y to prevent this. Therefore, we may eliminate one of the A j to deduce a 
linear relation between at most two of them, contrary to the previous case. Specifically, 
there exists y E K such that A1 (y) =j:. A3(y). Multiply Equation (10 . 1 )  by A3 (y) and 
subtract from Equation ( 10.3) to get · 

[ai At (Y) - a1 A3(y)]Al (x) + [azAz(y) - a2X.3 (y)]A2(x) = 0 

Then the coefficient of }q (x) is a1  (X.1 (y) - A.3 (y)) =!- 0, a contradiction. 
Dedekind realised that this approach can be used inductively to prove: 

LEMMA 10�1 (Dedekind) 
If K and L are subfields of<C, then every set of distinctmonomorphisms K ---? £ is 
linearly independent over L. 

PROOF Let X.1 , • • •  , An be distinct monomorphisms K ---? L. To say these are 
linearly independent over L is to say that there do not exist elements a1 , • • •  , an E L  
such that 

( 10.4) 

for all x E K, unless all the a j are 0. 
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Assume the contrary, so that Equation ( 10.4) holds. At least one of the ai is nonzero. 
Among all the valid equations of the form Equation ( 10.4) with all ai =j:. 0, there must 
be at least one for which the number n of nonzero terms is least. Since all Aj� are 
nonzero, n =j:. L We choose notation so that Equation ( 10.4) is such an expression. 
Hence we may assume that there does not exist an equation like Equation (10.4) with 
fewer than n terms. We shall then deduce a contradiction. 

Since A.1 =j:. An , there exists y E  K such that A.1 (y) f::. An(y). Therefore, y =!= 0. Now 
Equation ( 10.4) holds with yx in place of x ,  so 

for all x E K,  whence 

(10 .5) 

forallx E K. Multiply Equation ( 10.4) by A. 1 (y) and subtract Equation ( 10.5) to obtain 

The coefficient of An (x) is an [A. 1 (y) - An (y)] =!= 0, so we have an equation of the 
form Equation (9 . 1 )  with fewer terms. Deleting any zero terms does not alter this 
statement This contradicts the italicized assumption above. 

Consequently, no equation of the form Equation (9 . 1 )  exists, so the monomorphisms 
are linearly independent. · 0 

Example 10.2 
Let K = Q(a) where a = � E JR. There are three monomorphisms K -+ . C, 
namely, 

/ q  (p + qa + ra2) = p + qa + ra2 

A.z(p + qa ra2) = p + qwa + rw2a2 

A.3(p + qa  + ra2) = p qw2a + rwa2 

where p, q ,  r E Q and w is a. primitive cube root of unity. We prove by "bare 
hands" methods that the A j are linearly indpendent. Suppose that a1 "-1 (x) + azA.z (x) + 
a3A.3(x) = 0 for all x E K.  Setting x = 1 ,  a, cx2, respectively, we get 

at az + a3 = 0 
a1 waz + w2a3 = 0 
a1 + w2a2 + wa3 = 0 

The only solution of this system of linear equations is a1 = az = a3 = 0. 
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For our next result we need two lemmas. The first is a standard theorem of linear 
algebra, which we quote without proof. 

LEMMA 10.3 
If n > m, then a system of m homogeneous linear equations 

in n unknowns x1 , . . .  , Xn, with complex coefficients aii• has a solution in. which the 
Xt are not all zero. 

This theorem is proved in most first-year undergraduate linear algebra courses and 
can be found in any text of linear algebra, for example, Anton ( 1987). 

The second lemma states a useful general principle. 

LEMMA 10.4 
If G is a group whose distinct elements are g1 , . . .  , gm and if g E G, then as j varies 
from 1 to n the elements ggi run through the whole ofG, each element ofG occurring 
precisely once. 

PROOF If h E  G, then g-1h = gj for some j and h = ggi . If ggi = ggi , th�n 
gi = g-1ggi = g-1 ggi = gi . Thus the map gi r-+ ggi is a bijection G -+  G, and 
the result follows. 0 

We also recall some standard notation. We denote the cardinality of a set S is by 
I S I . Thus if G is a group, then I G l  is the order of G. For example, l§n I = n !  and 
!An i =  n !/2. 

We now come to the main theorem of this chapter, whose proof is similar to that 
of Lemma 10. 1 ,  and which can be motivated in a similar manner. 

THEOREM 10.5 
Let G be a finite subgroup of the group of automorphisms of a field K, and let Ko be 
thefixedfield of G. Then [K : Ko] = I G I . 

PROOF Let n = !G j ,  and suppose that the elements of G are g1 , . . .  , gn , where 
gl = 1 .  
1 .  Suppose that [K : Ko] = m < n .  Let {x1 ,  . . .  , Xm } be a basis for K over Ko. By 
Lemma 10.3 there exist YI , . . .  , Yn E K,  not all zero, such that 

Ylgl (Xj ) + • · · + Yngn(Xj ) = 0 

for j = 1 ,  . . .  , m .  Let x be any element of K. Then 

(10.6) 
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where a1 , . . . , <Xm E Ko. Hence 

y1g 1  (x) + · · · + y.g.(x) = y1 g1 ( � O<fXt) + · · · + y.g. ( � azXt} 
= L az [y1gr (xz) + · · · + Yngn(Xt)] 

l 
= 0  
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using Equation ( 10.6). Hence the distinct nionomorphisms g1 , . . .  , gn are linearly 
, dependent, contrary to Lemma 1 .  Therefore, m > n .  
2 .  Next, suppose for a contradiction that [K : Ko] > n .  Then there exists a set of n + 1 
elements of K that are linearly independent over Ko; let such a set be {x1 , . . .  , Xn+I } .  
By  Lemma 10.3 there exist Yl ,  . . .  , Yn+ 1 E K, not all zero, such that for j = 1 ,  . . .  , n 

(10.7) 

We shall subject this equation to a combinatorial attack, similar to that used in prov
ing Lemma 10. 1 .  Choose y1 , • • •  , Yn+l so that as few as possible are nonzero, and 
renumber so that 

YI , · · · '  Yr =/= 0, Yr+l • · · · ' Yn+1 = 0 

Equation ( 10.7) now becomes 
I 
\\; 

Let g E G,  and operate on ( 1  0.8) with g. This gives a system of equations 

By Lemma 4, as j varies, this system of equations is equivalent to the system 

(10.8) 

( 10.9) 

Multiply Equation ( 10.8) by g(y1 ) and Equation ( 10.9) by Yt and subtract, to get 

This is a system of equations like Equation ( 10.8) but with fewer terms, which gives 
a contradiction unless all the coefficients 

are zero. If this happens, then 

-1 ( -1 ) Yi YI = g YiYl  
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for all g E G, so that YiY!1 E Ko. Thus there exist Z t . • • •  , Zr E Ko and an element 
k E K such that Yi = kzi for all i .  Then Equation ( 10.8), with j = 1 ,  becomes 

and since k =f. 0 we may divide by k ,  which shows that the xi are linearly dependent 
over K0 • This is a contradiction. 

Therefore, [K : Ko] is not greater than n ,  so by the first part of the proof, [K : 
Ko] = n = IG I as required. 0 

COROLLARY 10.6  
If G is the Galois group of the finite extension L : K ,  and H is a finite subgroup of 
G, then 

[Ht : K ]  = [L : K]/IH I  

PROOF B y  the tower law, [L : K ]  = [L : Ht] [Ht : K] ,  so [Ht : K] = [L : K]/ 
[L : Ht] .  But this equals [L : K]/ IH I  by Theorem 10.5. 0 

Example 10. 7  
We illustrate Theorem 10.5 by two examples, one simple, the other more intricate. 

1 .  Let G be the group of automorphisms of <C consisting of the identity and 
complex conjugation. The fixed field of G is JR., for if x -i y = x + i y (x, y E R) 
then y = 0, and conversely. Hence [CC : JR.] = l G I = 2, a conclusion which is 
manifestly correct. 

2. Let K = Q(t) where t = exp(27ri /5) E CC. Now t5 = 1 and Q(t) consists of all 
elements 

(10. 10) 

where p ,  q ,  r, s ,  t E Q. The Galois group of Q(t) : Q is easy to find, for if a is 
a Q-automorphisni of Q( t) then 

(a(t)i = a(t5) = a(l )  = 1 ,  

so that a(t) = t , t2 , t3 , or t4 • This gives four candidates for Q-automorphisms: 

a1 : P + qt + rt2 + st3 tt4 i-+ p + qt + rt2 + st3 + tt4 

a2 : r+ p + st + qt2 + tt3 + rt4 

a3 : H- p + rt + te + qt3 + st4 

a4 : r+ p + tt st2 + rt3 + qt4 

It is easy to check that all of these are Q-automorphisms. The only point to bear in 
mind is that 1 ,  t, t2 , t3 , t4 are not linearly independent over Q. However, their linear 
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relations are generated by just one: ' +  '2 + '3 + '4 = - 1 ,  and this relation is preserved 
by all of the candidate Q-automorphisms. 

Alternatively, observe that ' '  '2 , '3 , '4 all have the same minimal polynomial t4 + 
t3 + t2 + t + 1 and use Corollary 5 . 1 3 .  

We deduce that the Galois group of Q(') : Q has order 4 .  It is easy to find the fixed 
field of this group: it turns out to be Q. Therefore, by Theorem 5 ,  [Q(') : Q] = 4. 
At first sight this might seem wrong, for Equation ( 10. 10) expresses each element in 
terms of five basic elements; the degree should be 5. In support of this contention, ' is 
a zero of t5 - 1 .  The astute reader will already have seen the source of this dilemma: 

· t5 - 1 is not the minimal polynomial of ' over Q, since it is reducible. The minimal 
polynomial is, as we have seen, t4 + t3 + t2 + t + 1 ,  which has degree 4. Equation 
(1 0. 1 0) holds, but the elements of the supposed basis are linearly dependent. Every 
element of Q(') can be expressed uniquely in the form 

where p ,  q ,  r, s E Q. We did not use this expression because it lacks symmetry and 
makes the computations formless, and therefore harder. 

Exercises 

10. 1 Check Theorem 5 for the extensions C(tt , . . .  , tn) : C(si , . . . , sn) of Section 
8.7. 

10.2 Find the fixed field of the subgroup {at , a4 } for Example 1 0.7(2). Check that 
Theorem 5 holds. 

1 0.3 Parallel the argument of Example 10.7(2) when ' = exp(2'Tri/7). 

1 0.4 Find all monomorphisms Q � <C:: 

1 0.5 Mark the following true or false. 

a. If S c T is a finite set and JS I  = JT I ,  then S = T .  
· b. The same i s  true of infinite sets. 
c. There is only one monomorphism Q � Q. 
d. If K and L are subfields of C, then there exists at least one monomorphism 

K � L. 
e. Distinct automorphisms of a field K are linearly independent over K. 
f. Linearly independent monomorphisms are distinct. 
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Field Automorphisms 

The theme of this chapter is the construction of automorphisms to given specifications. 
We begin with a generalization of a K-automorphism, known as a K-monomorphism. 
For normal extensions we shall use K-monomorphisms to build up K-automorphisms. 
Using this technique, we can calculate the order of the Galois group of any finite 
normal extension, which combines with the result of Chapter 1 0  to give a crucial part 
of the fundamental theorem of Chapter 12. 

We also introduce the concept of a normal closure of a finite extension. This useful 
device enables us to steer around some of the technical obstructions caused by non
normal extensions. 

11.1 K-Monotllorphisms 

We begin by generalizing the concept of a K-automorphism of a subfield L of CC 
by relaxing the condition that the map should be onto. We continue to require it to be 
one-to-one. 

DEFINITION 11.1 Suppose that K is a subfield of each of the subfields M and L 
of CC. Then a K-monomorphism of M into L is a field monomorphism <f> : M -+ L 
such that <f>(k) = k for every k E K. 

Example 11.2 

Suppose that K = Q, M = Q(a) where a is a real cube root of 2, and L = CC. 
We can define a K-monomorphism <f> :  M -+  L by insisting that <f>(a) = wa, where 
w = exp(2rrri /3). In more detail, every element of M is of the form p + qa ra.2 
where p, .q ,  r E  Q, and 

<f>(p + qa + ni) = p + qwa rw2a2 

Since a and wo. have the same minimal polynomial, namely, t3 - 2, Corollary 5 . 13  
implies that <f> i s  a K-monomorphism. 

There are two other K-monomorphisms M -+ L in this case� One is the identity, 
and the other takes a to w2a (see Figure 1 1 . 1  ) . 
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Figure 11.1: Q-monomorphisms of Q@'z) : Q. 

In general, if K c M  c L, then any K-automorphism of L restricts to a 
K-monomorphism M -+ L .  We are particularly interested in when this process 
can be reversed. 

THEOREM 11.3 
Suppose that L : K is a finite normal extension and K C M C L .  Let T be any 
K-monomorphism M -+ L .  Then there exists a K-automorphism cr of L such that 
cr!M = rr. 

PROOF By Theorem 9 .9, L is the splitting field over K of some polynomial f over 
K. Hence it is simultaneously the splitting field over M for f and over rr(M) for f. 
But rr! K is the identity, so rr(f) = f. We have the diagram 

M -+ L 
'T ..J,. ..J,. (J' 

T(M) -+ L 

with cr yet to be found. By Theorem 9.6, there is an isomorphism cr :  L -+ L such that 
cri M = rr. Therefore, cr is an automorphism of L, and since cr iK  = TlK is the identity, 
cr is a K-automorphism of L .  

This result can be used to construct K-automorphisms. 0 

PROPOSITION 11.4 
Suppose that L : K is a finite normal extension, and a, (3 are zeros in L of the irre
ducible polynomial p over K .  Then there exists a K-automorphism cr of L such that 
cr(a) = (3. 

PROOF By Corollary 5 . 1 3  there is  an isomorphism T :  K(a) -+ K((3) such that 
rr !K is the identity and rr(a) = (3. By Theorem 1 1 .3 , T extends to a K-automorphism 
cr of L .  D 
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11.2 Normal Closures 
When extensions are not normal, we can try to recover normality by making the 

extensions larger. 

DEFINITION 11.5 Let L be a finite extension of K.  A normal closure of L : K is 
an extension N of L such that 

1. N :  K is normal. 

2. If L c M c N and M : K is normal, then M = N. 

Thus N is the smallest extension of L that is normal over K. 

The next theorem assures us of a sufficient supply of normal closures, and shows 
that (working inside C) they are unique. 

THEOREM 11.6 

If L : K is a finite extension in C, then there exists a unique normal closure N c C 
of L : K, which is a finite extension of K. 

PROOF · Let x1 , . . .  , x, be a basis for L over K, and let m 1 be the minimal polynomial 
of x J over K.  Let N be the splitting field for f = m 1 mz . . . m, over L .  Then N is 
also the splitting field for f over K, so N :  K is normal and finite by Theorem 9.9. 
Suppose fn�.t L c P N where P : K is normal. Each polynomial m 1 has a zero 
x J E P,  so by normality f splits in P. Since N is the splitting field for f, we have 
P = N. Therefore, N is a normal closure. 

Now suppose that M and N are both normal closures. The above polynomial f 
splits in M and in N, so each of M and N contain the splitting field for f over K.  
This splitting field contains L and i s  normal over K, so it must be equal to both M 
and N.  0 

Example 11.7 

Consider Q( c) : Q where c is the real cube root of 2. This extension is not normal, as 
we have seen. If we let K be the splitting field for t3 - 2 over Q, contained in C, then 
K = Q( c ,  c w ,  c oi) where w = ( - 1  + i ,J3) /2 is a complex cube root of unity. This 
is the same as Q(c, w) . Now K is the normal closure for Q(c) : Q. So here we obtain 
the normal closure by adjoining all the missing zeros. 

Normal closures enable us to place restrictions on the image of a monomorphism. 

LEMMA 11.8 
Suppose that K L c N c M where L : K is finite and N is the normal closure of 
L : K .  Let 'T be any K-monomorphism L -+ M. Then -r(L) N. 
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PROOF Let a E L .  Let m be the minimal polynomial of et over K. Then m( et) = 0 
so T(m(a)) = 0. But T(m(a)) = m('T(a)) since 'i is a K-monomorphism, so m ('r(et)) = 
0 and 'i(et) is a zero of m.  Therefore, T(et) lies in N since N : · K is normal. Therefore, 
T(L) C: N. 

This result often allows us to restrict our attention to the normal closure of a given 
extension when discussing monomorphlsms. The next theorem provides a sort of 
converse. 0 

THEOREM 11.9 
For a finite extension L : K the following are equivalent: 

1. L : K is normal. 

2. There exists a finite normal extension N of K containing L such that every 
K-monomorphism 'i : L --+ N is a K-automorphism of L. 

3.  For every finite extension M of K containing L, every K-monomorphism 
'i : L --+ M is a K-automorphism of L. 

PROOF We show that ( 1 )  (3) � (2) � ( 1 ) .  
( 1 )  � (3). If L : K i s  normal, then L is the normal closure of L : K, so by Lemma 8, 

T(L) c L .  But 'i is a K-linear map defined on the finite-dimensional vector space L 
over K, and is a monomorphism. Therefore, 'i( L)  has the same dimension as L, whence 
T(L) = L and 'i is a K-automorphism of L .  

(3) (2). Let N be the normal closure for L : K. Then N exists by Theorem 1 1 .6, 
and has the requisite properties by (3) . 

(2) � ( 1) .  Suppose that f is any irreducible polynomial over K with a zero 
a. E L .  Then f splits over N by normality, and if f3 is any zero of f in N, then 
by Proposition 1 1 .4 there exists an automorphlsm a- ofN such that o-(a.) = (3. By 
hypothesis, a- is a K-automorphlsm of L, so f3 = a-(a) E o-(L) = L. Therefore, f 
splits over L and L · :  K is normal. 0 

Our next result is of a more computational nature. 

THEOREM 11.10 

Suppose that L :  K is a finite extension of degree n. Then there are precisely n distinct 
K-monomorphisms of L into the normal closure N of L : K, and hence into any given 
normal extension M of K containing L. 

PROOF We use induction on [L : K]. If [L : K] = 1, then the result is clear. 
Suppose that [L : K] = k > 1 .  Let a. E L\K with minimal polynomial m over K.  
Then 

8m = [K (a) : K] = r > J .  
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Now m is an irreducible polynomial over a subfield of C with one zero in the normal 
extension N, so m splits in N and its zeros a.1 , . • •  , <Xr are distinct. By induction 
there are precisely s distinct K(a.)-monomorphisms PI , . . .  , Ps : L -+ N, where 
s = [L : K(a.)] = kjr. By Proposition 1 1 .4, there are r distinct K-automorplrisms 
TI , . . . , 'Tr of N such that Ti (a.) = a.i . The maps 

give rs = k distinct K-monomorphisms L -+ N. We show that these exhaust the 
K-monomorphisms L -+ N.  

Let T : L -+ N be a K-monomorphism. Then T(a.) i s  a zero of m in N , so T(u) = a.i 
for some i .  The map <P = T j 1 T is a K (a.)-monomorphism L -+ N, so by induction 
<P = p j for some j. Hence T = 'Ti p j = <Pij and the theorem is proved. 0 

We can now calculate the order of the Galois group of a finite normal extension, a 
result of fundamental importance. 

COROLLARY 11.11 
If L : K is a finite normal extension inside C, then there are precisely [L : K] distinct 
K-automorphisms of L. That is, 

l f(L : K) l  = [L : K]  

PROOE Use Theorems 1 1 .9 and 1 1 . 10. 
From this we easily deduce the important Theorem 1 1 . 12. D 

THEOREM 11.12 
Let L :  K be a finite extension with Galois group G. If L : K is normal, then K is the 
fixedfield of G. 

PROOF Let K0 be the fixed field of G, and let [L : K] = n. Corollary 1 1  implies 
that I G I  = n .  By Theorem 10.5, [L : Ko] = n .  Since K c Ko we must have 
K = Ko. D 

There is a converse to this result, which shows why we must consider normal 
extensions in order to make the Galois correspondence a bijection. Before we can 
prove the converse, we need a theorem whose statement and proof closely resemble 
those of Theorem 1 1 . 10. 

THEOREM 11.13 
Suppose that K c L  c M  and M :  K is finite. Then the number of distinct K
monomorphisms L -+ M is at most [L : K]. 
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PROOF Let N be a normal closure of M : K.  Then N : K is finite by Theorem 1 1 .6, 
and every K-monomorphism L -+ M is also a K-monomorphism L -+  N. Hence 
we may assume that M is a normal extension of K by replacing M by N .  We now 
argue by induction on [L : K] as in the proof of Theorem 1 1 . 10  except that we can 
now deduce only that there are s' K(a)-monomorphisms L -+ N, where s' < s 
(by induction) and there are r' distinct K-automorphisms of N, where r' < r (since 
the zeros of m in N need not be distinct). The rest of the argument goes through as 
��- 0 

THEOREM 11.14 
If L : K is a finite extension with Galois group G, such that K is the fixed field ofG, 
then L :  K is normal. 

PROOF By Theorem 10.5, [L : K]  = I G I  = n, say. There are exactly n distinct 
K-monomorphisms L -+ L, namely, the elements of the Galois group. 

We prove normality using Theorem 1 1 .9. Thus let N be an extension of K con
taining L, and let 7 be a K-monomorphism L -+ N. Since every element of the 
Galois group of L : K defines a K-monomorphism L -+ N, the Galois group provides 
n K-monomorphisms L -+ N, and these are automorphisms of L .  But by Theo
rem 1 1 . 13 there are at most n distinct K-monomorphisms 7, so 7 must be one of these 
monomorphisms. Hence 7 is an automorphism of L .  Finally, by Theorem 1 1 .9, L : K is 
�al. 0 

If the Galois correspondence is a bijection, then K must be the fixed field of the 
Galois group of L : K ,  so by the above L : K must be normal. That these hypotheses 
are also sufficient to make the Galois correspondence bijective (for subfields of C) 
will be proved in Chapter 1 2. For general fields we need the additional concept of 
separability (see Chapter 17). 

Exercises 

1 1 . 1  Suppose that L : K is finite. Show that every K-monomorphism L -+ L is an 
automorphism. Does this result hold if the extension is not finite? 

1 1 .2 Construct the normal closure N for the following extensions . 

a .  Q( a) : Q where a is the real fifth root of 3 
b. Q(�) : Q where � is the real seventh root of 2 
c .  Q(-J2, .J3) :  Q 
d. Q( a, -J2) : Q where a is the real cu� root of 2 
e. Q('Y) : Q where 'Y is a zero of t3 - 3t2 + 3 
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1 1 .3 Find the Galois groups of the extensions (a), (b), (c), (d) in Exercise 1 1 .2. 

1 1 .4 Find the Galois groups of the extensions N : Q for their normal closure� N. 

1 1 .5 Show that Lemma 1 1 .8 fails if we do not assume that N : K is normal, but is 
true for any extension N of L such that N : K is normal, rather than just for a 
normal closure. 

1 1 .6 Use Corollary 1 1 . 1 1  to find the order of the Galois group of the extension 
Q( ,J3, �' -/7) : Q. (Hint: Argue as in Example 6.8.) 

1 1 .7 Mark the following true or false. 

a. Every K-monomorphism is a K-automorphism. 
b. Every finite extension has a normal closure. 
c. If K L and a is a K-automorphism of L ,  then the restriction aiK is a 

K-automorphism of K. 
d. An extension having Galois group of order 1 is normal. 
e. A finite normal extension has finite Galois group. 
f. Every Galois group is abelian (commutative) .  
g .  The Galois correspondence fails for non-normal extensions. 
h. A finite normal extension inside C, of degree n,  has a Galois group of 

order n.  

1.  The Galois group of a normal extension is cyclic. 





Chapter 12 
The Galois Correspondence 

We are at last in a position to establish the fundamental properties of the Galois 
correspondence between a field extension and its Galois group. Most of the work has 
already been done, and all that remains is to put the pieces together. 

12.1 The Fundamental Theorem 
Let us recall a few points of notation ·from Chapter 8 .  Let L : K be a field extension 

in C with Galois group G, which consists of all K-automorphisms of L .  Let F be the 
set of intermediate fields, that is; subfields M such that K c M c L, and let g be 
the set of all subgroups H of G. We have defined two maps 

* : F -Y Q 
t : Q -Y F 

as follows: if M E F, then M* is the group of all M -automorphisms of L .  If H E g, 
then nt is the fixed field of H. We have observed that the maps * and t reverse 
inclusions, that is, M c M*t and H c H*t . 

THEOREM 12.1 (Fundamental Theorem of Galois Theory) 
If L : /(. is a finite normal field extension inside CC, with Galois group G, and if :F, g ,  * , t 
are defined as above, then: 

J. The Galois group G has order [L : K]. 

2. The maps * q.nd t are mutual inverses, and set up an order-reversing one-to-one 
corresponaence between :F and g. 

3. If M is an intermediate field, then 

[L : M] = IM* I [M : K] = I G I / IM* I 

4. An intermediate field M is a normal extension of Kif and only if M* is a normal 
subgroup of G. 

5. If an intermediate field M is a normal extension of K, then the Galois group of 
M : K is isomorphic to the quotient group G I M*. 
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PROOF The first part is a restatement of Corollary 1 L 1 1 .  For the second part, 
Theorem 9.9 implies that L : M is normal. Now Theorem 1 1 . 12 implies that M is 
the fixed field of M* , so 

( 12 . 1 )  

Now consider H E Q. We know that H c Ht* .  Therefore, Ht*t = (Ht)*t = Ht 
by ( 12� 1) .  By Theorem 10.5, !H I  = [L : Ht] .  Therefore, I H I  = [L : Ht*t] ,  and by 
Theorem 10.5 again, [L : Ht*t] = I Ht* l so that I H I  = I Ht* l . Since H and Ht* are 
finite groups and H c Ht* ,  wemusthave H = Ht* .  The secondpart ofTheorem 1 2. 1  
follows at once. 

For the third part, we again note that L : M is normal. Corollary 1 1 . 1 1  states that 
[ L : M] = I M* I ,  and the other equality follows immediately. , 0 

To prove the last two parts of Theorem 12 . 1  we require a lemma. 

LEMMA 12.2 
Suppose that L : K is a field extension, M is an intermediate field, and T is a K
automorphism of L .  Then T(M)* = TM*T-1 . 

PROOF Let M' = T(M), and take "Y E M*, x1 E M'. Then x1 = T(x) for some 
x E M. Compute: 

so TM*T-1 c M'* . Similarly, T-1M'*T _ M*, so rrM*rr-1 _ M'* ,  and the lemma is 
proved. 0 

We now prove the fourth part ofTheorem l 2. l . If M : K is normal, let T E G.  Then 
T IM is a K··monomorphism M -+ L,  so is a K-automorphism of M by Theorem 1 1.9. 
Hence T(M) = M. By Lemma 12.2, rrM*rr-1 = M*, so M* is a normal subgroup 
of G. 

Conversely, suppose that M* is  a normal subgroup of G. Let cr be any K
monomorphism M -+ L .  By Theorem 1 1 .3 ,  there is a K-automorphism T of L 
such that rriM = cr. Now TM*rr-1 = M* since M* is a normal subgroup of G, so 
by Lemma 12.2, T(M)* = M*. By part 2 of Theorem 12. 1 ,  T(M)" = M. Hence 
u(M) = M and u is a K-automorphism of M. By Theorem. 1 1 .9, M : K is normal. 

Now we prove the final part of the theorem. Let G' be the Galois group of M : K. 
We can define a map <f> : G -+ G' by 

T E  G 

This is clearly a group homomorphism G -+ G', for by Theorem 1 1 .9 T IM  is a 
K-automorphism of M. By Theorem 1 1 .3 ,  <f> is onto. The kernel of <f> is obviously M*, 
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so by standard group theory 

G' = im( <!>) "'-' G lker( <!>) = G I M* 

where im is the image and ker the kernel. 
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Note how Theorem 10.5 is used in the proof of part 2 of Theorem 12. 1 ;  its use is 
crucial. Many of the most beautiful results in mathematics hang by equally slender 
threads. 

Parts (4) and (5) of Theorem 12. 1 can be generalized (see Exercise 12.2). Note that 
the proof of part 5 provides an explicit isomorphism between f(M : K) and G I M*, 
namely, restriction to M. 

The impor_t:ance of the Fundamental Theorem of Galois Theory derives from its 
potential as a tool rather than its intrinsic merit. It enables us to apply group theory 
to otherwi�e intractable problems about polynomials over C and associated subfields 
of C, and we spend most of the remaining chapters exploiting such applications. But 
before venturing further we consolidate our position by illustrating the whole theory 
for a particular field extension and its Galois group. Chapter 1 3  is devoted to this end. 

Exercises 

1 2. 1  Work out the details of the Galois correspondence for the extension 

Q(i , v'S) : Q 
whose Galois group is G = {I, R ,  S, T}  as in Chapter 8. 

12.2 Let L : K be a finite normal extension in C with Galois group G. Suppose that 
M, N are intermediate fields with M c N. Prove that N : M is normal if and 
only if N* is a normal subgroup of M*. In this case prove that the Galois group 

, of N : M is isomorphic to M* IN* . 

12.3* Let 'Y = -/2 + ./2. Show that Q(-y) : Q is normal, with cyclic Galois group. 
Show that Q(-y, i )  = Q(<!>) where 4>4 

= i .  

12.4* Find the G�lois group of t6 - 7  over Q. 

12.5* Find the Galois group of t6 - 2t3 1 over Q. 

12.6 Mark the following true or false. 

a. If L : K is a finite normal extension inside C, then the order of the Galois 
group of L : K is equal to the dimension of L considered as a vector 
space over K. 

b. If M is any intermediate field of a finite normal extension inside C, then 
Mt* = M. 
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c. If M is any intermediate field of a finite normal extension inside CC, then 
M*t = M. 

d. If M is any intermediate field of a finite normal extension L : K inside 
CC, then the Galois group of M : K is a subgroup of the Galois group of · 

L :  K.  
e .  If M is any intermediate field of a finite normal extension L : K inside CC, 

then the Galois group of L : M is a quotient of the Galois group of L : K. 
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A Worked Example 

The Fundamental Theorem of Galois theory is quite a lot to take in at one go, so it is 
worth spending some time thinking it through. We, therefore, analyse how the Galois 
correspondence works out on an extended example. 

The extension that we discuss is a favourite with writers on Galois theory, because 
of its archetypal quality. A simpler example would be too small to illustrate the theory 
adequately, and anything more complicated would be unwieldy. The example is the 
Galois group of the splitting field of t4 - 2 over Q. 

The discussion is cut into small pieces to make it more easily digestible. 

1 .  Let f(t) = t4 - 2 over Q, and let K be a splitting field for f such that K C. 
We can factorize f as follows: 

f(t) = (t - �)(t + �)(t - ii;)(t i�) 

where � = ,.y2 is real and positive. Therefore, K = Q(�, i ) . Since K is a 
splitting field, K : Q is finite and normal. We are working in C, so separability 
is automatic. 

2. We find the degree of K :  Q. By the tower law, 

[K : Q] = [Q(�. i )  : Q(i;))[Q(�) : Q] 

The minimal polynomial of i over Q(£) is t2 + 1 ,  since i 2 + 1 = 0 but 
. i f}: R � Q(£). So [Q(�, i )  : Q(�)] = 2. 

Now i; is a zero of f over Q, and f is irreducible by Eisenstein's Criterion, 
Theorem 3 . 1 9. Hence f is the minimal polynomial of� over Q, and [Q( �) : Q] = 
4. Therefore, 

[K : Q] = 2.4 = 8 

3 .  We shall find the elements of the Galois group of K : Q. By a direct check, or 
by Corollary 5 . 1 3, there is a Q-automorphism a of K such that 

cr(i) = i 0"(�) = i �  

and another, T, such that 

T(i) = -i 
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Products of these yield eight distinct Q-automorphisms of K ,  as follows: 

Automorphism . Effect on � Effect on i 
1 t l 
(J' it  l 

(J'2 -t l 
(J'3 -it l 
'T t - l  

(J''T it - l  
(J'2'T -t -'- l  
(J'3'T -:-it - l  

Other products do not give new automorphisms, since (J'4 = 1 ,  T2 = 1 ,  ;'T(J' = 
(J'3T, 'T(J'2 = alT, T(J'3 = (J''T. (The last two relations follow from the first three.) 

Now any Q-automorphlsm of K sends i to some zero of t2 + 1 ,  so i 1-+ 
±i ; similarly, t is mapped to t, it, -t, or - it . All possible combinations of 
these (eight in number) appear in the above list, so these are precisely the 
Q-automorphlsms of K .  

4 .  The abstract structure of the Galois group G can be found. The generator
relation presentation 

shows that G is the dihedral group of order 8, which we write as ID>8 . 
The group ID>8 has a geometric interpretation as the symmetry group of a 

square. In fact, we can label the four vertices of a square with the zeros of t4 -2, 
in such a way that the geometric symmetries are precisely the permutations of 
the zeros that occur in the Galois group (Figure 1 3 . 1 ). 

Figure 13.1: The Galois group ID>a interpreted as the symmetry group of a square. 
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5 .  It is an easy exercise to find the subgroups of G. If as usual we let Zn denote 
the cyclic grm,1p of order n and x the direct product, then the subgroups are as 
follows: 

Order 8: G 
Order 4: { 1, cr, cr2 , cr3 } 

{ 1 ,  0'2 , 'T, 0'2 , 'T} 
· { 1 , cr2 , crrr, cr\ ,. } 

Order 2: { 1 ,  cr2} 
{ 1 ,  'T} 
{ 1 ,  crrr} 
{ 1 ,  0'2'T} 
{ 1 ,  0'3'T} 

Order 1 :  { 1 } 

G IDs 
s ""  z4 
T "' Zz x Zz 
U Zz x Zz 
A ""  Z2 
B "' Zz 
C "' Zz 
D Zz 
E "' Zz 
1 "' 1  

6. The inclusion relations between the subgroups of G can be summed up by the 
lattice diagram of Figure 1 3.2. In such diagrams, X c Y if there is a sequence 
of upward-sloping lines from X to Y.  

7 .  Under the Galois correspondence we obtain the intermediate fields. Since 
the correspondence reverses inclusions, we obtain the lattice diagram in 
Figure 1 3.3 . 

G 
/ I �  

T S U / 1 � 1 / 1 �  
D B A C E 

� � �  
Figure 13.2: Lattice of subgroups. 

Figure 13.3: Lattice of subfie1ds. 

I 
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8. We now describe the elements of these intermediate fields. There are three 
obvious subfields of K of degree 2 over Q, namely, Q(i), Q(-J2), Q(i-J'2). 
These are clearly the fixed fields st , rt ,  and ut, respectively. The other fixed 
fields are less obvious. To illustrate a possible approach we shall find et . Any 
element of K can be expressed uniquely in the form 

x = ao + a1 � az�2 + a3�3 + a4i + asi�  + a6i �2 a7i�3 

where oo, . . .  , a1 E Q. Then 

uT(x) = ao + o1 i � - oz�2 - a3ie o4i as ( -i)i � - a6i (i �)2 - a1i (i�)3 

= ao + as� - Oze 07e - 04i + a t i �  + a6ie - a3i �3 

· The element x is fixed by O"T (and hence by C) if and only if 

ao = oo a1 = as az = -az 
04 = -04 . as = a1 06 = 06 

Therefore, ao and a6 are arbitrary, while 

It follows that 

which shows that 

et = Q((t + t)�) 

Similarly, 

At = Q(i, -/2) nt = Q(�) vt = Q(i�) Et = Q((l - i)�) 

It is now easy to verify the inclusion relations specified by the lattice diagram 
in Figure 1 3 .3 . 

9. It is possible, but tedious, to check by hand that these are the only intermediate 
fields. 

10. The normal subgroups of G are G, S, T, U, A ,  I .  By the Fundamental Theo
rem of Galois theory, Gt,  st, rt ,  ut,  At ,  1t should be the only normal exten
sions of Q that are contained in K.  Since these are all splitting fields over Q, 
for the polynomials t, t2 + 1 ,  t2 - 2, t2 + 2, t4 - t2 - 2, t4 - 2 (respectively), 
they are normal extensions of Q. On the other hand, nt : Q is not normal, since 
t4 - 2 has a zero, namely, �� in st but does not split in st . Similarly, et , Dt , Et 
are not normal extensions of Q. 
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1 1 . According to the Fundamental Theorem of Galois theory, the Galois group 
of At : Q is isomorphic to G I A. Now G I A is isomorphic to z2 X z2. We 
calculate directly the Galois group of At : !Q. Since At = Q (i, Vi) the�e are 
four Q-automorphisms: 

Automorpbism Effect on i Effect on .J2 
1 l Vi 
0'. l -Vi 
Jj - l  V2 

a.J3 - l -Vi 

and since 0'.2 = Jj2 = 1 and a(j = Jja, this group is Z2 X Z2 as expected. 

1 2. Note that the lattice diagrams for :F and g do not look the same unless one 
is turned upside-down. Hence there does not exist a correspondence like the 
Galois correspondence but preserving inclusion relations. It may seem a little 
odd at first that the Galois correspondence reverses inclusions, but in fact it is 
entirely natural, and quite as useful a property as preservation of inclusions. 

It is in general a difficult problem to compute the Galois group of a given field 
extension, particularly when there is no explicit representation for the elements of the 
large field (see Chapter 22). 

Exercises 

1 3 . 1  Find the Galois groups of the following extensions: 

a. Q( Vi, vfs) : !Q 
b. IQ( a) : Q where a =  exp(2'1Ti 13) 
c. K : Q where K is the splitting field over !Q for t4 - 3t2 + 4. 

13 .2 Find all subgroups of these Galois groups. 

1 3.3 Find the corresponding fixed fields. 

1 3 .4 Find all normal subgroups of the above Galois groups. 

1 3.5 Check that the corresponding extensions are normal. 

1 3 .6 Verify that the Galois groups of these normal extensions are the relevant quotient 
groups. 

1 3 .7* Consider the Galois group of t6 - 7 over Q found in Exercise 12.4. Use the 
Galois correspondence to find all intermediate fields . 
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1 3 .8* Consider the Galois group of t6 - 2t3 - 1 over Q found in Exercise 12.5. Use 
the Galois correspondence to find all intermediate fields. 

1 3.9 Find the Galois group of t8 - i over Q(i). 

1 3 . 10 Find the Galois group of t8 + t4 + 1 over Q(i). 

3 . 1 1  Use the Galois group z2 X Zz X Zz of Q( ,Ji, ,J3, ,f5) : Q to find all interme
diate fields. Which of these are normal over Q? 

13 . 12  Mark the following true or false. 

a. A 3 x 3 square has exactly 9 distinct symmetries. 
b. The symmetry group of a square is isomorphic to Zs . 
c. The symmetry group of a square is isomorphic to §8 . 
d. The symmetry group · of a square is isomorphic to a subgroup of Ss . 
e. The group ]]])8 has 10 distinct subgroups. 
f. The Galois correspondence preserves inclusion relations. 
g. The Galois correspondence reverses inclusion relations. 
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Solubility and Simplicity 

In order to apply the Galois correspondence, we need to have at our fingertips a num
ber of group-theoretical concepts and theorems. We have already assumed familiarity 
with elementary group theory: subgroups, normal subgroups, quotient groups, con
jugates, permutations (up to cycle decomposition); to these we now add the standard 
isomorphism theorems. The relevant theory, along with most of the material in this 
chapter, can be found in any good textbook of group theory, for example, Fraleigh 
( 1989), Humphreys ( 1996), or Neumann, Stoy, and Thompson ( 1994). 

We start by defining soluble groups and provi�g some basic properties. These. 
groups are of cardinal importance for the theory of the solution of equations by 
radicals. Next, we discuss simple groups ,  the main target being a proof of the simplicity 
of the alternating group of degree 5 or more. We end by proving Cauchy's Theorem: if 
a prime p divides the order of a finite group, then the group has an element of order p. 

14.1 Soluble Groups 
Soluble groups were first defined and studied (though not in the current abstract 

way) by Galois in his work on the solution of equations by radicals. They have since 
proved extremely important in many branches of mathematics. 

In the following definition and thereafter, the notation H <J G will mean that H is 
a normal subgroup of the group G. Recall that an abelian (or commutative) group is 
one in which gh = hg for all elements g, h .  

DEFINITION 14.1 A group G is soluble (in the U.S. :  solvable) if it has a finite 
series of subgroups 

1 = Go c G 1  c · · · c Gn = G ( 14. 1 )  

such that 

1. Gi <l  Gi+l for i = 0, . . .  , n - 1 .  

2. Gi+ I /Gi is abelianfor i = 0 ,  . . .  , n - 1 .  

Condition (1) does not imply that Gi <J G, since Gi <J Gt+l <J Gt+2 does not imply 
Gi <J Gi+2 (see Exercise 14.11). 
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Example 14.2 

1 .  Every abelian group G is soluble, with series 1 <J G.  

2. The symmetric group §3 of degree 3 i s  soluble, since i t  has a cyclic normal subgroup 
of order 3 generated by the cycle ( 123) whose quotient is cyclic of order 2. All 
cyclic groups are abelian. 

· 

3.  The dihedral group J.D)8 of order 8 is soluble. In the notation of Chapter 13 ,  it has 
a normal subgroup S of order 4 whose quotient has order 2, and S is abelian. 

4. The symmetric group §4 of degree 4 is soluble, having a series 

where A4 is the alternating group of order 1 2, and V is the Klein four-group, which 
we recall consists of the permutations 1 ,  ( 12)(34),(13)(24), ( 14)(23) and hence is 
a direct product of two cyclic groups of order 2. The quotient groups are 

v;1 � v  

A4/V � /£3 
§4/A4 � z2 

abelian of order 4 

abelian of order 3 

abelian of order 2 

5 .  The symmetric group §5 of degree 5 is not soluble. This follows from Lemma 8. 1 1  
with a bit of extra work. See Corollary 14.8. 

We recall the following isomorphism theorems. 

LEMMA 14.3 
Let G, H, and A be groups. 

(1) If H<J G and A c G, then H n A<J A and 

A ,....., HA 

H n A  H 

(2) If H <J G, and H c A <J  G then H <J A ,  A/  H <J G/ H and 

GjH 
� 

G 
-

A/H A 

Parts ( 1 )  and (2) are, respectively, the First and Second Isomorphism Theorems. 
They are the translation into normal subgroup language of two straightforward facts: 
restricting a homomorphism to a subgroup yields a homomorphism, and composing 
two homomorphisms yields a homomorphism (see Exercise 14. 12) . 

Judicious use of these isomorphism theorems lets us prove that soluble groups 
persist in being soluble even when subjected to quite drastic treatment. 
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THEOREM 14.4 
Let G be a group, H a  subgroup ofG, and N a normal subgroup of G.  

1. If G is soluble, then H is soluble. 

2. If G is soluble, then GIN is soluble. 

3. If N and GIN are soluble, then G is soluble. 

PROOF 

l. Let 

1 = Go<l G1  <l · · · <l Gr = G 

145 

be a series for G with abelian quotients Gt+l iGi . Let Hi =  Gi n  H. Then H has 
a senes 

1 + Ho<l · · · <l Hr = H 

We show the quotients are abelian. Now 

Gt+1 n H ,..__, Gi(Gt+I n H) 

Gt n (Gt+I n H) . Gi 

by the first isomorphism theorem. But this latter group is a subgroup of G i+ I f G i 
which is abelian. Hence Ht+l l Ht is abelian for all i ,  and H is soluble. 

2. Define G i as before. Then GIN has a series 

A typical quotient is 

which by the second isomorphism theorem is isomorphic to 

Gt+l (Gt N) "' Gi+I 
G; N Gi+l n (Gi N) 

which is a quotient of the abelian group G; + 1 /  G i , and so is abelian. Therefore, 
GIN is soluble. 

3 .  There exist two series 

1 = No<l N1 <l · · · <l Nr = N 

N /N = Go/N<l G t fN<J · . .  <l Gs/N = G/N 
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with abelian quotients. Consider the series of G given by combining them: 

1 = No<J N1 <J · · · <J Nr = N = Go<J Gt  <J · · · <J Gs = G 

The quotients are either Ni+l I Ni (which is abelian) or Gi+I I Gi , which is isomor
phic to 

and again is abelian. Therefore, G is soluble. D 
Let us say that a group G is an extension of a group A by a group B if G has a 

normal subgroup N isomorphic to A such that G/ N is isomorphic to B. Then we 
may sum up the three properties of the above theorem by saying that the class of 
soluble groups is closed under taking subgroups, quotients, and extensions. The class 
of abelian groups is closed under subgroups and quotients ,  but not extensions; and it 
is largely for this reason that Galois was led to define soluble groups. 

14.2 Simple Groups 
We turn to groups that are, in a sense, the opposite of soluble. 

DEFINITION 14.5 A group G is simple if its only normal subgroups are]  and G. 

Every cyclic group Zp of prime order is simple, since it has no subgroups other 
than 1 and Z P , hence in particular no other normal subgroups. These groups are also 
abelian, hence soluble. They are in fact the only soluble simple groups. 

THEOREM 14.6 
A soluble group is simple if and only if it is cyclic of prime order. 

PROOF Since G is soluble group, it has a series 

1 = Go<J Gt  <J · · · <J Gn = G 

where by deleting repeats we may assume G i + 1 ::j::. G i .  Then G n-t is a proper normal 
subgroup of G. However, G is simple, so Gn-1 = 1 and G = Gn/ Gn-1 , which is 
abelian. Since every subgroup of an abelian group is normal, and every element of G 
generates a cyclic subgroup, G must be cyclic with no nontrivial proper subgroups .  
Hence G has prime order. 

The converse is trivial. D 
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Simple groups play an important role in finite group theory. They are in a sense the 
fundamental units from which all finite groups are made. Indeed the Jordan-Holder 
theorem, which we do not prove, states that every finite group has a series of subgroups 
like Equation ( 14. 1 )  whose quotients are simple, and these simple groups depend only 
on the group and not on the series chosen. 

We do not need to know much about simple groups, intriguing as they are. We 
require just one result. 

THEOREM 14. 7 

If n > 5, then the alternating group An of degree n is simple. 

PROOF We use much the s·ame strategy as in Lemma 8. 1 1 , but we are proving a 
rather stronger property, so we have to work a bit harder. 

Suppose that 1 ::j:. N <J An . Our strategy will be as follows :  first, observe that if N 
contains a 3-cycle then it contains all 3-cycles, and since the 3-cycles generate An , 
we must have N = An . Second, prove that N must contain a 3 -cycle. It is here that 
we need n :::: 5 .  

Suppose then that N contains a 3-cycle; without loss of generality N contains 
( 123). Now for any k > 3 the cycle (32k) is an even permutation, so lies in An and, 
therefore, 

(32k)- 1 ( 123)(32k) = ( lk2) 

lies in N.  Hence N contains ( lk2)2 = ( 12k) forall k > 3 .  WeclaimthatAn is generated 
by al1 3-cycles of the form ( 12k). Ifn = 3 ,  then we are done. If n > 3, then for all 
a ,  b > 2 the permutation ( la)( lb) is even, so lies in An, and then An contains 

((la)( lb))- 1 ( 12k)(la)(lb) = (abk) 

if k ::j:. a ,  b. Since An is generated by all 3-cycles (Exercise 8 .7), it follows that 
N = .An . 

It remains to show that N must contain at least one 3-cycle. We do this by an 
analysis into cases. 

1 .  Suppose that N contains an element x = a be . . .  , where a ,  b, c, . . . are disjoint 
cycles and 

a = (at . . .  am ) (m > 4) 

Let t = (a1a2a3) .  Then N contains t- 1 xt .  Since t commutes with b, c ,  . . .  

(disjointness of cycles) it follows that 

so that N contains 

which is a 3-cycle. 

t- 1 xt = (t- 1at)bc . . .  = z (say) 
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2. Now suppose N contains an element involving at least two 3-cycles. Without 
loss of generality N contains 

X = ( 123)(456)y 

· where y is a permutation fixing 1 ,  2, 3, 4, 5, 6. Let t = (234) . Then N contains 

(t- 1xt)x-1 = (12436) 

Then by case ( 1 )  N contains a 3-cycle. 

3 .  Now suppose that N contains an element x of the form (ijk)p, where p is a 
product of 2-cycles disjoint from each other and from (ijk). Then N contains 
x2 = (ikj), which is a 3-cycle. 

4. There remains the case when every element of N is a product of disjoint 2-
cycles. (This actually occurs when n = 4, giving the four-group V.) But as 
n > 5, we can assume that N contains 

X =  ( 12)(34)p 

where p fixes 1 ,  2, 3, 4. If we let t = (234), then N contains 

(t-1 xt)x- 1 = ( 14)(23) 

and if u = ( 145), N contains 

u-l (t-1 xtx- 1 )u = (45)(23) 

so that N contains 

(45)(23)(14)(23) = ( 145) 

contradicting the assumption that every element of N is a product of disjoint 
2-cycles. 

Hence An is simple if n > 5. 0 
In fact, A5 is the smallest non-abelian simple group, a result that was first proved 

by Galois. 
From this theorem we deduce Corollary 14.8. 

COROLLARY 14.8 
The symmetric group §n of degree n is not soluble ifn > 5 .  

PROOF If§n were soluble, then An would be soluble by Theorem 14.4, and simple 
by Theorem 14.7, hence of prime order by Theorem 14.6. But IAn I = � (n ! )  is not 
prime if n > 5 .  0 



14.3 Cauchy 's Theorem 149 

14.3 Cauchy's Theorem 
We next prove Cauchy's Theorem: if a prime p divides the order of a finite group, 

then the group has an element of order p. We begin by recalling several ideas from 
group theory. 

DEFINITION 14.9 Elements a and b of a group G are conjugate in G if there 
exists g E G such that a =  g-1bg. 

Conjugacy is an equivalence relation; the equivalence classes are the conjugacy 
classes of G. 

If the conjugacy classes of G are C 1 , . • .  , Cr , then one of them, say C 1 , contains 
only the identity element of G .  Therefore, I C 1 ! = 1 .  Since the conjugacy classes form 
a partition of G we have 

( 14.2) 

which is the class equation for G. 

DEFINITION 14.10 IfG is a group and x E G, then the centralizer Ca(x) ofx in 
G is the set of all g E G for which xg = gx. It is always a subgroup of G. 

There is a useful connection between centralizers and conjugacy classes. 

LEMMA 14.11 
If G is a group and x E G, then the number of elements in the conjugacy class of x 
is the index ofCa(x) in G. 

PROOF The equation g-1xg = h-1xh holds ifand only ifhg-1x = xhg-1 , which 
means that hg-1 E Ca(x), that is, h and g lie in the same coset of Ca(x) in G. The 
number of these cosets is the index of Ca(x) in G ,  so the lemma 'is proved. 0 

COROLLARY 14.12 
The number of elements in any conjugacy class of a finite group G divides the order 
of G. 

DEFINITION 14.13 The centre Z(G) of a group G is the set of all elements x E G 
such that xg = gx for all g E G. 

The centre of G is a normal subgroup of G. Many groups have a trivial centre, for 
example, Z (§3) = 1 .  Abelian groups go to the other extreme and have Z (G) = G. 
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LEMMA 14.14 
If A is a finite abelian group whose order is divisible by a prime p, then A has an 
element of order p .  

PROOF We use induction on I A 1 .  If I A I i s  prime the result follows. Otherwise 
take a proper subgroup M of A whose order m is maximal. If p divides m, we are 
home by induction, so we may assume that p does not divide m.  Let b be in A but 
not in M, and let B be the cyclic subgroup generated by b. Then M B is a subgroup 
of A, larger than M, so by maximality A = M B.  From the First Isomorphism 
Theorem 

!MB I = I M! I B I/ !M n B ! 

so that p divides the order r of B. Since B is cyclic, the element br I P has order p.  
The lemma follows. D 

From this result we can derive a more general theorem of Cauchy. 

THEOREM 14.15 (Cauchy's Theorem) 

If a prime p divides the order of a finite group G, then G has an . element of order p .  

PROOF We prove the theorem by induction on the order I G 1 .  The first few cases 
I G I = 1 ,  2, 3 are obvious. For the induction step, start with the class equation 

Since p J I G I , we must have pfJC1 1 for somej > 2. Ifx E CJ . it follows that p ! !Ca(x)J ,  
since I C1 I = l G I / I Ca (x) ! .  

If Ca(x) f. G ,  then by induction Ca(x) contains an element of order p ,  and this 
element also belongs to G.  

Otherwise, Ca(x) = G,  which implies that x E Z(G), and by choice x f. 1 ,  so 
Z(G) f. 1 .  

Either pi I Z (G) l or pfl Z (G) 1 . In the first case the proof reduces to !he abelian case, 
Lemma 14. 14. In the second case, by induction there exists x E G such that the 
image x E G/Z(G) has order p. That is, xP E Z(G) but x f/ Z(G). Let X be the 
cyclic group generated by x .  Now XZ(G) is abelian and has order divisible by p, so 
by Lemma 14. 14 it has an element of order p, and again this element also belongs 
to G. 

This completes the induction step, and'with it the proof. D 
Cauchy' s Theorem does not work for composite divisors of I G I (see Exercise 14.6). 
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Exercises 

14. 1 Show that the general dihedral group 

Dzn = {a , b : an 
= b2 = 1 ,  b-1ab = a-1 ) 

1 5 1  

i s  a soluble group. Here a, b are generators and the equalities are relations 
between them. 

14.2 Prove that §n is not soluble for n > 5, using only the simplicity of As . 

14.3 Prove that a normal subgroup of a group is a union of conjugacy classes. Find 
the conjugacy classes of As, using the cycle type of the permutations, and hence 
show that A5 is simple. 

· 

14.4 Prove that §n is generated by the 2-cycles (12) ,  . . . , ( ln) .  

14.5 If the point (a, f3) is constructible by ruler · and compasses from (0: 0)  and 
( 1 ,  0), show that the Galois groups of Q(a) : Q and Q(f3) : Q are soluble. 

14.6 Show that As has no subgroup of order 15,  even though 15  divides its order. 

14.7 Show that §n has a trivial centre if n > 3 .  
• 

14.8 Find the conjugacy classes of the dihedral group II:»2n defined in Exercise 14. 1 .  
Work out the centralizers of selected elements, one from each conjugacy class, 
and check Lemma 14. 1 1 . 

14.9 If G is a group and x ,  g E G, show that C0(g-1xg) = g-1c0(x)g. 

14.10 Show that the relation "normal subgroup of' is not transitive. (Hint: Consider 
the subgroup G V c §4 generated by the element (12)(34).) 

14. 1 1  There are (at least) two distinct ways to think about a group homomorphism. 
One is the definition as a structure-preserving mapping, the other is in terms 
of a quotient group by a normal subgroup. The relation between these is as 
follows. If <P : G � H is a homomorphism, then 

ker( <P )<l G and G /ker( <P) ""' im( <P) 

If N <l G, then there is a natural surjective homomorphism 

<P : G -+ GIN with ker( <P) = N 

Show that the first and second isomorphism theorems are the translations into 
quotient group language of two facts that are trivial in structure-preserving 
mapping language: 
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a. · The restriction of a homomorphism to a subgroup is a homomorphism. 
b. The composition of two homomorphisms is a homomorphism. 

14. 12* By counting the sizes of conjugacy classes, prove that the group of rotational 
symmetries of a regular icosahedron is simple. Show that it is isomorphic to 
As . 

14. 13  Mark the following true or false. 
a. The direct product of two soluble groups is soluble. 
b. Every simple soluble group is cyclic. 
c. Every cyclic group is simple. 
d. The symmetric group §n is simple if n > 5 .  

e .  Every conjugacy class of a group G i s  a subgroup of G.  



Chapter 15 
Solution by Radicals 

The historical aspects of the problem of solving polynomial equations by radicals 
were discussed in the introduction. The objective of this chapter is to use the Galois 
correspondence to derive a condition that must be satisfied by any polynomial equation 

·· . that is soluble by radicals, namely: the associated Galois group m1;1st be a soluble 
group. We then construct a quintic polynomial equation whose Galois group is not 
soluble, namely, the disarmingly straightforward-looking t5 - 6t + 3 = 0, which 
shows that the quintic equation cannot be solved by radicals. 

Solubility of the Galois group is also a sufficient condition for an equation to be 
soluble by radicals, but we defer this result to Chapter 1 8. 

15.1 Radical Extensions 
Some care is needed in formalizing the idea of solubility by radicals. We begin 

from the point of view of field extensions. 
Informally, a radical extension is obtained by a sequence of adjunctions of nth 

roots, for various n .  For example, the following expression is radical: 

( 15 . 1 )  

To find an extension of Q that contains this element we may adjoin, in  turn, elements 

'Y = i/(7 + (3)/2 

This suggests the following definition. 

· DEFINITION 15.1 An extension L :K in C. is radical ifL = K(cxt . . . . , CXm) where 
for each j = 1 ,  . . .  , m there exists an integer n 1 such that 

(j > 2) 

The elements cx1 form a radical sequence for L :  K. The radical degree of the radical 
cx1 is n 1 . 
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Figure 15.1:  Galois thought he had solved the quintic . . .  but changed his mind. 

For example, the expression ( 15. 1 )  is contained in a radical extension of the form 
Q(o:, (3, -y, o, c) of Q, where o:3 = 1 1 , (32 = 3 ,  -y5 = (7 + (3)/2, o3 = 4, e4 = 1 + o. 

It is clear that any radical expression, in the sense of the introduction, is contained 
in some radical extension. 

A polynomial should be considered soluble by radicals provided all of its zeros are 
radical expressions over the ground field. 

DEFINITION 15.2 Let f be a polynomial over a subfield K ofC, and let :E be the 
splitting field for f over K. We say that f is soluble by radicals if there exists a field 
M containing :E such that M : K is a radical extension. 

We emphasize that in the definition we do not require the splitting field extension 
:E : K to be radical. There is a good reason for this .  We want everything in the splitting 
field :E to be expressible by radicals, but it is pointless to expect everything expressible 
by the same radicals to be inside the splitting field. If M : K is radical and L is an 
intermediate field, then L :  K need not be radical (see Exercise 1 5 .7). 

Note also that we require all zeros of f to be expressible by radicals. It is possible 
for some zeros to be expressible by radicals, while others are not; simply take a 
product of two polynomials, one soluble by radicals and one not. However, if an 
irreducible polynomial f has one zero expressible by radicals, then all the zeros must 
be so expressible, by a simple argument based on Corollary 5 . 13 .  

The main theorem of this chapter is Theorem 1 5.3 .  
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THEOREM 15.3 
lfK is a subfield ofC and K c L c M c C  where M :  K is a radical extension, then 
the Galois group of L : K is soluble. 

The otherwise curious word "soluble" for groups arises in this context: a soluble 
. (by radicals) polynomial has a soluble Galois group (of its splitting field over the base 
field). 

The proof of this result is not entirely straightforward, and we must spend some 
time on preliminaries . 

. LEMMA 15.4 
If L : K is a radical extension in C and M is the normal closure of L : K, then M : K 
is radical. 

PROOF Let L = K(a1 , . . .  , c:xr) with a7i E K(c:x 1 , . . .  , at- 1 ). Let fi be the minimal 
. polynomial of C:Xt over K. Then M � L is clearly the splitting field of fi;=l fi . For 
every zero �iJ of ft in M there exists an isomorphism rr :  K(c:xi) ----+ K(�ij)  by 
Corollary 5 . 1 3. By Proposition 1 1 .4, rr extends to a K-automorphism 'T : M ----+ M. 
Since C:X t  is radical over K, so is �iJ ,  and therefore so is M. 0 

The next two lemmas show that -certain Galois groups are abelian. 

LEMMA IS.S 
Let K be a subfield ofC and let L be the splitting field for tP 1 over K, where p is 
prime. Then the Galois group of L : K is abelian. 

\. We can say more: it is cyclic of order p - 1 (see Section 21 .6). 

PROOF The derivative oftP - 1  is ptp-l , which is prime to tP - 1 , so by Lemma9. 1 3  
the polynomial has no multiple zeros in L .  Clearly, its zeros form a group under 
multiplication; this group has prime order p since the zeros are distinct, so it is cyclic. 
Let e be a generator of this group. Then L = K(e) so that any K-automorphism of 
L is determined by its effect on e. Further, K-automorphisms permute the zeros of 
tP - 1 .  Hence any K-automorphism of L is of the form 

and is uniquely determined by this condition. But then c:xiaJ and a1ai both map e to 
f:iJ , so the Galois group is abelian. 0 

LEMMA 15.6  
Let K be a subfield ojC in which tn - 1 splits. Let a E K, and let L be  a splitting field 
for tn - a over K. Then the Galois group of L : K is abelian. 
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PROOF Let a be any zero of tn - a .  Since tn - 1 splits in K, the general zero of 
tn - a is ea where e is a zero of tn - 1 in K. Since L = K (a), any K-automorphism 
of L is determined by its effect on a. Given two K-automorphisms 

where £ and 'l E K, then 

As before, the Galois group is abelian. D 
Again, we can say more: the Galois group is cyclic of order p (see Section 21 .6). 
The main work in proving Theorem 15 .3 is done in the next lemma. 

LEMMA 15. 7 
If K is a subfield of ofC and L :  K is normal and radical, then r(L : K) is soluble. 

PROOF Suppose that L = K(at , . . .  , an) with a�1 E K(a1 , . . .  , <Xj-t). By Propo
sition 8 .9 we may assume that n j is prime for all j. In particular there is a prime p 
such that af E K. 

We prove the result by induction on n, using the additional hypothesis that all n i 
are prime. The case n = 0 is trivial, which gets the induction started. 

If a1 E K, then L = K(az , . . .  , an) and f(L : K) is soluble by induction. 
We may, therefore, assume that a1 rf:. K.  Let f be the minimal polynomial of a1 

over K. Since L : K is normal, f splits in L because K C, f has no repeated zeros. 
Since a 1 rf:. K,  the degree of f is at least 2. Let [3 be a zero of f different from a 1 ,  and 
put € = aif[3. Then e:P = 1 and € i= 1 .  Thus € has order p in the multiplicative group 
of L,  so the elements 1 ,  €, €2 , • • •  , e:P-l are distinct pth roots of unity in L.  Therefore, 
tP - 1 splits .in L.  

Let M c L be  the splitting field for tP - 1 over K, that is, let M = K(£). Consider . 
the chain of subfields K c M c M(a1 )  c L.  The strategy of the remainder of the 
proof is illustrated in the following diagram: 

L 

+--- r(L : M( at)) soluble by induction 

M( at )  

+--- r(M (a I ) : M) abelian· by  Lemma 6 

M 

+--- r(M : K) abelian by Lemma 5 

K 
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Observe that L : K is finite. and normal, hence so is L : M; therefore, Theorem 12. 1  
applies to L :  K and to L :  M. 

Since tP - 1  splits in M and af E M, the proof of Lemma 15 .6 implies that M(a1)  
is a splitting field for t P - af over M.  Thus M (a 1 )  : M is normal, and by Lemma 15 .6 
f'(M(a1)  : M) is abelian. Apply Theorem 12 . 1  to L : M  to deduce that 

Now 

so that L : M(a1 ) is a normal radical extension. By induction, f'(L : M(a1 )) is soluble. 
HenGe by Theorem 14.4(3), f'(L : M) is soluble. 

Since M is the splitting field for tP - 1 over K, the extension M :  K is normal. By 
Lemma 1 5.5, f'(M : K) is abelian. Theorem 12. 1  applied to L : K yields 

f'(M : K) r-v f'(L : K)/ f'(L : M) 

Now Theorem 15 .4(3) shows that f'(L : Ko) is soluble, completing the induction 
��. 0 

We can now complete the proof of the main result. 

PROOF OF THEOREM 15.3 Let K0 be the fixed field of f'(L : K), and let N : M 
be the normal closure of M : K0• Then 

K c Ko c L  c M  c N 

Since M : Ko is radical, Lemma 15 .4 implies that N : Ko is a normal radical extension. 
By Lemma 15 .7, f'(N : K0) is soluble. 

By Theorem 1 1 . 14, the extension L : Ko is normal. By Theorem 12 . 1  

f'(L : Ko) r-v f'(N : K0)/ f'(N : L) 

Theorem 15 .4(2) implies that f'(L : Ko) is  soluble. But f'(L : K) = f'(L : K0), so 
f'(L : K) is soluble. 0 

The idea of this proof is simple: a radical extension is a series of extensions by nth 
roots. Such extensions have abelian Galois groups,  so the Galois group of a radical 
extension is made up by fitting together a sequence of abelian groups. Unfortunately, 
there are technical problems in carrying out the proof; we need to throw in roots of 
unity, and we have to make various extensions normal before the Galois correspon
dence can be used. These obstacles are similar to those · encountered by Abel and 
overcome by his Theorem on Natural Irrationalities in Section 8.8. 

Now we translate back from fields to polynomials, and in doing so revert to Galois's 
original viewpoint 
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DEFINITION 15.8 Let f be a polynomial over a subfield K of <C, with splitting 
field b over K. The Galois group off over K is the Galois group f(b : K). 

Let G be the Galois group of a polynomial f over K and let 8f = n.  If a E b is a 
zero of f, then f(a) = 0, so for any g E G 

f(g(a)) = g(f(a)) = 0 

Hence each element g E G induces a permutation g' of the set of zeros of f in b.  
Distinct elements of G induce distinct permutations, since b i s  generated by the zeros 
of f.  It follows easily that the map g � g' is a group monomorphism of G into the 
group §n of all permutations of the zeros of f .  In other words, we can think of G as 
a group of permutations on the zeros of f. This, in effect, was how Galois thought 
of the Galois group, and for many years afterward the only groups considered by 
mathematicians were permutation gr<�mps and groups of transformations of variables. 
Arthur Cayley was the first to propose a definition for an abstract group, although it 
seems that the earliest satisfactory axiom system for groups was given by Leopold 
Kronecker in 1 870 (Huntingdon, 1 905). 

We may restate Theorem 1 5.3 as: 

THEOREM 15.9 
Letfbe a polynomial over a subfield K of<C. lffis soluble by radicals, then the Galois 
group off over K is soluble. 

The converse also holds (see Theorem 1 8 . 1 9). 
Thus, to find a polynomial not soluble by radicals, it suffices to find one whose 

Galois group is not soluble. There are two main ways of doing this. One is to look 
at the general polynomial of degree n,  which we introduced in Section 8.7, but this 
approach has the disadvantage of not showing that there are specific polynomials with 
rational coefficients that are insoluble by radicals. The alternative approach, which 
we now pursue, is to exhibit a specific polynomial with rational coefficients whose 
Galois group is not soluble. Since Galois groups are hard to calculate, a little low 
cunning is necessary, together with some knowledge of the symmetric group. 

15.2 An Insoluble Quintic 
Watch carefully, there is nothing up my sleeve . . .  

LEMMA 15.10 
Let p be a prime, and let f be an irreducible polynomial of degree p over Q. Suppose 
that f has precisely two nonreal zeros in <C. Then the Galois group off over Q is 
isomorphic to the symmetric group § p· 
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PROOF By the Fundamental Theorem of Algebra, C contains the splitting field 
E of f. Let G be the Galois group of f over Q, considered as a permutation group 
on the zeros of f. These are distinct by Proposition 9 . 14, so G is (isomorphic to) a 
subgroup of §p· When we construct the splitting field of f we first adjoin an element 
of degree p, so [:E : Q] is divisible by p .  By Theorem 12. 1 (1) ,  p divides the order of 
G .  By Cauchy's Theorem 14. 15,  G has an element of order p.  But the only elements 
of §p having order p are the p-cycles. Therefore, G contains a p-cycle. 

Complex conjugation is a Q-automorphism of C and, therefore, induces a Q
automorphism of E .  This leaves the p - 2 real zeros of f fixed, while transposing 
the two nonreal zeros. Therefore, G contains a 2-cycle. 

By choice of notation for the zeros and, if necessary, taking a power of the p-cycle, 
we may assume that G contains the 2-cycle ( 12) and the p-cycle ( 12  . . .  p). We claim 
that these generate the whole of § P , which will complete the proof. To prove the 

. claim, let c = ( 12  . . .  p), t = ( 12), and let G be the group generated by c and t .  Then 
G contains c-1 tc = (23), hence c-

1 (23)c = (34), . . .  and hence all transpositions 
(m, m +  1) .  Then G contains 

( 12)(23)( 12) = (13)  ( 13)(34)(13) = ( 14) 

and so on and, therefore, contains all transpositions ( 1m). Finally, G contains all 
products ( lm)( lr)(1m) = (mr) .  But every element of§n is a product of transpositions, 
w G = �. D 

We can now exhibit a specific quintic ·polynomial over Q that is not soluble by 
radicals. 

THEOREM 15.11 
The polynomial t5 - 6t + 3 over Q is not soluble by radicals. 

PROOF Let f(t) = t5 - 6t + 3. By Eisenstein's Criterion, f is irreducible over 
Q. We shall show that f has precisely three real zeros, each with multiplicity 1 ,  and 
hence has two nonreal zeros. Since 5 is prime, by Lemma 15. 10 the Galois group of 
f over Q is §s. B y  Corollary 14.8, Ss is not soluble. By Theorem. 15.9, f(t) = 0 is 
not soluble by radicals . .  

It remains to show that f has exactly three real zeros, each of multiplicity 1 .  Now 
f(-2) = - 17, f(- 1 )  = 8, f(O) = 3,  f(l)  = -2, and f(2) = 23. A rough sketch 
of the graph of y = f(x) looks like Figure 15 .2. This certainly appears to give only 
three real zeros, but we must be rigorous. By Rolle's theorem, the zeros of f are 
separated by zeros of D f. Moreover, D f = 5t4 - 6, which has two zeros at ±�. 
Clearly, f and D f are coprime, so f has no repeated zeros (this also follows by 
irreducibility) so f has at most three real zeros. But certainly f has at least three 
real zeros, since a continuous function defined on the real line cannot change sign 
except by passing through 0. Therefore, f has precisely three real zeros, and the result 
follows .  D 
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Figure 15.2: A quintic with three real zeros. 

15.3 Other Methods 
Of course, this is not the end of the story. There are more ways of killing a quintic 

than choking it with radicals. Having established the inadequacy of radicals for solving 
the problem, it is natural to look further afield. 

First, some quintics are soluble by radicals. See Chapter 1 and Berndt, Spearman 
and Williams (2002). What of the others, though? 

On a mundane level, numerical methods can be used to find the zeros . (real or 
complex) to any required degree of accuracy. In 1 303 (see Joseph, 2000) the Chinese 
mathematician Chu Shih-chieh wrote about what was later called Horner's method in 
the West; there it was long credited to the otherwise unremarkable William George 
Homer, who discovered it in 1 8 19 .  For hand calculations it is a useful practical method, 
but there are many others. The mathematical theory of such numerical methods can 
be far from mundane - but from the algebraic point of view it is nonilluminating. 

Another way of solving the problem is to say, in effect, "What's so special about 
radicals?" Suppose · for any real number a we define the ultraradical of a to be the 
real zero of t5 + t - a. It was shown by G.B. Jerrard (see Kollros, 1 949, p.  1 9) that 
the quintic equation can be solved by the use of radicals and ultraradicals (see King, 
1 996). 

Instead of inventing new tools we can refashion existing ones. Charles Hermite 
made the remarkable discovery that the quintic equation can be solved in terms 
of "elliptic modular functions," special functions of classical mathematics which 
arose in a quite different context, the integration of algebraic functions .  The method 
is analogous to the trigonometric solution of the cubic equation (Exercise 1 .6). In 
a triumph of mathematical unification, Klein ( 191 3) succeeded in connecting the 
quintic equation, elliptic functions,  and the rotation group of the regular icosahedron. 
The latter is isomorphic to the alternating group A5, which we have seen plays a 
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key part in the theory of the quintic. Klein's work helped to explain the unexpected 
appearance of elliptic functions in the theory of polynomial equations; these ideas 
were subsequently generalized by Henri Poincare to cover polynomials of arbitrary 
degree. 

Exercises 

15 . 1  Find radical extensions of Q containing the following elements of <C, by 
exhibiting suitable radical sequences (see Definition 15 . 1 ) :  

a. (� - �)/� 
b. (-/6 + 245")/)4 
c. c245 - 4)/ V,--1 +

-
v'99
-=9=9 

15 .2 What is the Galois group of tP - 1 over Q for prime p? 

1 5.3 Show that the polynomials t5 - 4t + 2, t5 4t2 + 2, t5 - 6t2 3 ,  and 
t7 - 10t5 + 15t + 5 over Q are not soluble by radicals. 

15 .4 Solve the sextic equation 

t6 - t5 + t4 t3 + t2 - t + 1 = 0 

satisfied by a primitive 14th root of unity, in terms of radicals. (Hint: Put 
u = t + 1 /t .) 

15 .5 Solve the sextic equation 

t6 + 2t5 - 5t4 9t3 - 5t2 + 2t + 1 = 0 

by radicals. (Hint: Put u = t + 1/t . )  

15 .6 If L : K i s  a radical extension in C and M i s  an intermediate field, show that 
M : K need not be radical. 

1 5.7 If p is an irreducible polynomial over K c C and at least one zero of p is 
expressible by radicals, prove that every zero of p is expressible by radicals. 

1 5.8* If K _ C and a2 = a E K, 132 = b E K, and none of a, b, ab are squares in 
K, prove that K(a,  13) : K has Galois group z2 X z2 . 

1 5  .9* Show that if N is an integer such that N > 1 ,  and p is prime, then the quintic 
equation 

x5 - Npx + p = 0  

cannot be solved by radicals. 
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15 . 10* Suppose that a quintic equation f(t)  = 0 over Q is irreducible; and has one 
real root and two complex conjugate pairs. Does an argument similar to that 
of Lemma 15 . 10 prove that the Galois group contains A5 ? If so, why? If not, 
why not? 

15 . 1 1  Prove the Theorem on Natural Irrationalities using the Galois correspondence. 

15 . 12  Mark the following true or false. 

a. Every quartic equation over a subfield of <C can be solved by radicals. 
b. Every radical extension is finite. 
c. Every finite extension is radicaL 
d. The order of the Galois group of a polynomial of degree n divides n !  

e. Any reducible quintic polynomial can be solved by radicals .. 
f. There exist quartics with Galois group §4. 
g. An irreducible polynomial of degree 11  with exactly two nonreal zeros 

has Galois group §I I · 
h. The normal closure of a radical extension is radicaL 
1. As has 50 elements. 



Chapter 16 

Abstract Rings and Fields 

Having seen how Galois Theory works in the context assumed by its inventor, we can 
generalize everything to a much broader context. Instead of subfields of<C, we can con
sider arbitrary fields. This step goes back to Weber in 1 895, but first achieved promi
nence in the work of Emil Artin in lectures of 1926, later published as Artin ( 1948). 
With the increased generality, new phenomena arise, and these must be dealt with. 

One such phenomenon relates to the Fundamental Theorem of Algebra, which does 
not hold in an arbitrary field. We could get round this by constructing an analogue, 
the algebraic closure of a field in which every polynomial splits into linear factors. 
However, . the machinery needed to prove the existence of an algebraic closure is 
powerful enough to make the concept of an algebraic closure irrelevant anyway. So 
we concentrate on developing that machinery, which centres on the abstract properties 
of field extensions, especially finite ones. 

A more significant problem is that a general field K need not contain Q as a sub field. 
The reason is that sums 1 + 1 + · · · 1 can behave in novel ways. In particular, such 
a sum may be zero. If it is, then the number of summands must be a prime, and K 
contains a subfield isomorphic to Zp, the integers modulo p.  Such fields are said to 
have characteristic p,  and they introduce significant complications into the theory. The 
most important complication is that irreducible polynomials need not be separable; 
that is, they may have multiple zeros. Separability is automatic for subfields of C, so 
ithas not been seen to play a major role up to this point. However, behind the scenes 
· it has been one of the two significant constraints that make Galois theory work, the 
other being normality. From now on, separability has to be taken a lot more seriously, 
and it has a substantial effect. 

Rethinking the old results in the new context provides good revision and reinforce
ment, an"- it explains where the general concepts come from. Nonetheless, if you 
seriously work through the material and do not just accept that everything works, you 
will come to appreciate that Bourbaki had a point. 

16.1 Rings and Fields 
Today's concepts of "ring" and "field" are · the brainchildren of Dedekind, who 

introduced them as a way of systematizing algebraic number theory; their influence 
then spread and was reinforced by the growth of abstract algebra under the influence of 
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Weber, Hilbert, Emmy Noether, and Bartel Leenert van der Waerden. These concepts 
are motivated by the observation that the classical number systems Z, Q, R, and C 
enjoy a long list of useful algebraic properties. Specifically, Z is a ring and the others 
are fields. 

The formal definition of a ring is: 

DEFINITION 16.1 A ring R is a set equipped with two operations of addition 
(denoted a + b) and multiplication (denoted ab) satisfying the following axioms: 

(Al) a + b = b + a  for all a ,  b E R. 

(A2) (a + b) + c = a + (b + c)for all a ,  b, c E R. 

(A3) There exists 0 E R such that 0 + a = a for all a E R. 

(A4) Given a E R, there exists -a E R such that a +  (-a) = 0. 

(Ml) ab = bafor all a ,  b E  R. 

(M2) (ab)c = a(bc)for all a, b ,  c E R. 

(M3) There exists 1 E R, with 1 i= 0, such that la = a for all a E R. 

(D) a(b + c) =  ab + acfor all a ,  b, c E R. 

When we say that addition and multiplication are operations on R, we automat
ically imply that if a ,  b E R,  then a + b,  ab E R,  so R is closed under each of 
these operations. Some axiom systems for rings include these conditions as explicit 
ax10ms. 

Axioms (Al )  and (Ml )  are the commutative laws for addition and multiplication, 
respectively. Axioms (A2) and (M2) are the associative laws for addition and multi
plication, respectively. Axiom (D) is the distributive law. The element 0 is called the 
additive identity or zero element; the element 1 is called the multiplicative identity 
or unity element. The element -a is the additive inverse or negative of a .  The word 
"the" is justified here because 0 is unique, and for any given a E F the inverse -a is 
unique. The condition 1 i= 0 in (M3) excludes the trivial ring with one element. 

The modem convention is that axioms (Ml )  and (M3) are optional for rings. Any 
ring that satisfies (Ml )  is said to be commutative, and any ring that satisfies (M3) is a 
ring with 1 .  However, in this book the phrase "commutative ring with 1"  is shortened 
to "ring," because we do not require greater generality. 

Example 16.2 

1 .  The classical number systems Z, Q, R, C are all rings. 

2. The set of natural numbers N is not a ring, because axiom (A4) fails .  

3 .  The set Z[i ]  of all complex numbers of the form a + bi , with a ,  b E Z,  i s  a ring. 
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4. The set of polynomials Z[t] over Z is a ring, as the usual name "ring of polyno
mials" indicates. 

5. The set of polynomials Z[t1 , • • •  , tn ] in n indeterminates over Z is a ring. 

6. If n is any integer, the set Zn of integers modulo n is a ring. 

If R is a ring, then we can define subtraction by 
' ' 

a - b = a + (-b) a , b E R  

The axioms ensure that all of the usual algebraic rules of manipulation, except those 
for division, hold in any ring. 

One extra axiom is required for a field. 

DEFINITION 16.3 A field is a ring F satisfying the extra axiom. 

(M4) Given a E F, with a =I= 0, there exists a-1 E F such that aa-1 = 1 .  

We call a -I the multiplicative inverse of a =1= 0. This inverse i s  also unique. If F is 
a field, then we can define division by 

ajb = ab-1 a ,  b E F, b =/= 0 

The axioms ensure that all the usual algebraic rules of manipulation, including those 
for division, hold in any field. 

Example 16.4 

· 1 .  'The classical number systems Q, JR, C are all fields. 

2. The set of integers Z is not a field, because axiom (M4) fails. 

3. The set Q[i ]  of all complex numbers of the form a + bl, with a ,  b E Q, is a field. 

4. The set of polynomials Q[t] over Q is not a field, because axiom (M4) fails. 

5. The set of rational functions Q[t] over Q is a field. 

6. The set of rational functions Q(t1 , . . • , tn ) in n indeterminates over Q is a field. 

7. The set Z2 of integers modulo 2 is a field. The multiplicative inverses of the only 
nonzero element 1 is 1 - 1 = 1 .  In this field, 1 1 = 0 .  So 1 + 1 =I= 0 does not 
count as one of the usual laws of algebra. Note that it involves an inequality; the 
statement 1 + 1 = 2 is true in z2. What is not true is that 2 =I= 0. 

8. The set Z6 of integers modulo 6 is not a field, because axiom (M4) fails .  In fact, the 
elements 2, 3 ,  4 do not have multiplicative inverses. Indeed, 2.3 = 0 but 2, 3 =I= 0, 
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a phenomenon that cannot occur in a field: if F is a field, and a ,  b # 0 in F but 
ab = 0, then a =  abb-l = ob-1 = 0, a contradiction. 

9. The set .Zs of integers modulo 5 is a field. The multiplicative inverses of the nonzero 
elements are 1 - 1 = 1 ,  2-1 = 3, 3-I = 2, 4-1 = 4. In this field, 1 + 1 + 1 + 1 1 = 0. 

10. The set .Z1 of integers modulo 1 is not a field. It consists of the single element 0, 
and so violates (M3) which states that 1 # 0. This is a sensible convention since 
1 is not prime. 

The fields .Z2 and .Zs , or more generally .Zp where p is prime (see Theorem 7 
below), are prototypes for an entirely new kind of field, with unusual properties. 
For example, the formula for solving quadratic equations fails spectacularly over .Z2• 
Suppose that we want to solve 

where a ,  b E .Z2. Completing the square involves rewriting the equation in terms of 
(t + a/2). But a/2 = ajO makes no sense. The standard quadratic formula involves 
division by 2 and also makes no sense. Nevertheless, many ,choices of a ,  b here lead 
to soluble equations: 

t2 = 0 has solution t = 0 
t2 + 1 = 0 has solution t = 1 

t2 + t = 0 has solutions t = 0, 1 
t2 t + 1 = 0 has no solution 

16.2 General Properties of Rings and Fields 
We briefly develop some of the basic properties of rings and fields, with emphasis 

on structural features that will allow us to construct examples of fields. Among these 
features are the presence or absence of "divisors of zero" (like 2, 3 E .Z6), leading 
to the concept of an integral domain, and the notion of an ideal in a ring, leading to 
quotient rings and a general construction for interesting fields. Most readers will have 
encountered these ideas before; if not, it may be a good idea to find an introductory 
textbook and work through the first two or three chapters. For example, Fraleigh 
( 1989) and Sharpe ( 1987) cover the relevant material. 

DEFINITION 16.5 

1. A subring of a ring R is a nonempty subset S of R such that if a ,  b E S, then 
a + b E S, a - b E S, and ab E S. 
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2. A subfield of afield F is a subset S ofF containing the elements 0 and 1 , such 
that if a ,  b E S, then a +  b,  a - b, ab E S, and further if a =f:. 0, then a-1 E S. 

·' 

3. An ideal of a ring R is a subring I such that ifi E I and r E R, then ir  and ri  
lie in I .  

'Thus Z i s  a subring of Q, and R is a subfield of C, while the set 2Z of even integers 
is an ideal of z. 

If R ,  S are rings, then a ring homomorphism <f> : R -+ S is a map that satifies two 
conditions: 

<f>(r + s) = <f>(r) + <f>(s)  <f>(r s )  = <f>(r )<f>(s) for all r E R, s E S 

The kernel ker<f> of 4> is {r : <f>(r) = 0} .  It is an ideal of R. An isomorphism is a 
homomorphism that is one-to-one and onto; a monomorphism is a homomorphism 
that is one-to-one. A homomorphism is a monomorphism if and only if its kernel is 
zero. 

The most important property of an ideal is the possibility of working modulo that 
ideal or, more abstractly, constructing the quotient ring by that ideal. Specifically, if 
I.  is an ideal of the ring R, then the quotient ring RI I consists of the cosets I + s of 
I in R (considering R as a group under addition). The operations in the quotient ring 
are: 

(I + r) + (I +  s)  = I +  (r s )  

(I + r)(l + s) = I +  (rs) 

where r, s E R  and I +  r is the coset {i + r : i E I} .  

1 .  Let nZ be the set of integers divisible by a fixed integer n. This is  an ideal of Z, 
· and the quotient ring Zn = ZlnZ is the ring of integers modulo n, that is, Zn . 

2. Let R = K[t] where K is a subfield of C, and let m(t)  be an irreducible polynomial 
over K. Define I = {m(t)) to be the set of all multiples of m(t). Then I is an ideal, 
and RI I is what we previously denoted by K [t]l (m) in Chapter 5 .  This quotient 
is a field. 

We can perform the same construction as in Example 1 6.6(2) above, without taking 
m to be irreducible. We still get a quotient ring, but if m is reducible the quotient 
is no longer a field. 

There is a natural ring homomorphism <f> : R -+ RI I ,  defined by <f>(r) = I r .  
Its kernel i s  R.  

We shall need the following property of  Zn , which explains the differences we 
found among Z2 , Zs , and Z6. 
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THEOREM 16. 7  
The ring Zn is a field if and only if n is a prime number. 

PROOF First suppose that n is not prime. If n = 1 ,  then Zn = Z/Z, which has 
only one element and so cannot be a field. If n > 1 ,  then n = r s where r and s are 
integers less than n. Putting I = nZ, 

(I + r )(I + s) = I + r s = I 

But I is · the zero element of Z/ I ,  while I +  r and I +  s are nonzero. Since in a field 
the product of two nonzero elements is nonzero, Zj I cannot be a field. 

Now suppose that n is prime. Let I + r be a nonzero element of Zj I .  Since r and 
n are coprime, then by standard properties of Z there exist integers a and b such that 
ar + bn = 1 .  Therefore, 

and similarly, 

(I + a )(I r) = (I + 1) - (I + n )(I b) = I + 1 

(I + r )(I a) = I + 1 
Since I +  1 is the identity element of Z/ I,  we have found a multiplicative inverse for 
the given element I + r .  Thus every nonzero element of Z I I has an inverse, so that 
Zn = Zj I is a field. 0 

From now on when dealing with Zn, we revert to the usual convention and write 
the elements as 0, 1 ,  2, . . . , n - 1 rather than I, I + 1 � I + 2, . . . , I + n - 1 .  

16.3 Polynomials Over General Rings 
We now introduce polynomials with coefficients in a given ring. The main point to 

bear in mind is thatidentifying polynomials with functions, as we cheerfully did for 
coefficients in <C, is no longer a good idea. 

Why not? Consider the ring Z2• Suppose that f(t) = t2 + 1 ,  g(t) = t4 + 1 .  There 
are numerous reasons to want these to be different polynomials, the most obvious 
being that they have different coefficients. But if we interpret them as functions from 
Zz to itself, we find that f(O) = 1 = g(O) and f(l)  = 0 = g(l) .  As functions, f and 
g are equal. 

It turns out that a problem arises here because the ring is finite. Since finite rings 
(especially finite fields) are important, we need a definition of polynomials that does 
not rely on interpreting them as functions. 

Let R be a ring. We define a polynomial over R in the indeterminate t to be an 
expressiOn 
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where r0 , • • .  , rn E R,  0 < n E Z, and t is undefined. Again, for set-theoretic purity 
we can replace such an expression by the sequence (ro , . . .  , rn) ,  as in Exercise 2.2. 
The elements ro , . . .  , r n are the coefficients of the polynomial. 

Two polynomials are defined to be equal if and only if the corresponding coefficients 
are equal (with the understanding that powers of t not occurring in the polynomial 
may be taken to have zero coefficient). The sum and the product of two polynomials 
are defined using the same formulas as in Section 2. 1 ,  but now the ri belong to a 
general ring. It is straightforward to check that the set of all polynomials over R in the 
indeterminate t is a ring - the ring of polynomials over R in the indeterminate t . As 
before, we denote this by the symbol R[t] . We can also define polynomials in several . 
indeterminates t1 , t2 , . . .  and obtain the polynomial ring R [t1 , t2 , . . .  ] .  Again, each 
polynomial f E R [t ]  defines a function from R to R. We use the same symbol, f, to 
denote this function. If f(t) = 2: nti , then f(rx) = 2: ricxi , for ex E R. We reiterate 
that two distinct polynomials over R may give rise to the same function on R.  

Proposition 2 .3 is  still true when R = R, Q, or Z, because the proof uses only 
properties of the integers 0, 1 ,  . . .  , n .  And the definition of "degree" applies without 
change, as does the proof of Proposition 2.2. 

16.4 The Characteristic of a Field 
In Proposition 4.4 we observed that every subfield of C must contain Q. The main 

step in the proof was that the sub field contains all elements 1 + 1 + · · · 1 ;  that is, 
it contains N, hence Z, hence Q. 

The same idea nearly works for any field. However, a finite field such ·as Zs cannot 
contain Q, or even anything isomorphic to Q, because Q is infinite. How does the 
proof fail? As we have already seen, in Zs the equation 1 + 1 + 1 + 1 + 1 = 0 holds. 
So we can build up a unique smallest subfield just as before - but now it need not 
be·isomorphic to Q. 

Pursuing this line of thought leads to: 

DEFINITION 16.8 The prime sub field of a field K is the intersection of all subfields 
ofK.  

It is easy to see that the intersection of any collection of subfields of K i s  a subfield 
(the intersection is not empty since every subfield contains 0 and 1 )  and, therefore, 
the prime subfield of K is the unique smallest subfield of K. The fields Q and Z P 
(p prime) have no proper subfields, so are equal to their prime subfields. The next 
theorem shows that these are the only fields that can occur as prime subfields. 

THEOREM 16.9 
Every prime sub field is isomorphic either to the field Q of rationals or the field Z P of 
integers modulo a prime number p. 
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PROOF Let K be a field, with P its prime subfield. Then P contains 0 and 1 and, 
therefore, contains the elements n* (n E Z) defined by { 1 + 1 + · · · + 1 (n times) if n > 0 

n* = 0 if n = 0 
-(-n)* if n < 0 

A short calculation using the distributive law (D) and induction shows that the map 
* : Z -+- P so defined is a ring homomorphism. Two distinct cases arise. 

Case 1. n*  = 0 for some n # 0. Since also ( -n)* = 0, there exists a smallest 
positive integer p such that p* = 0. If p is composite, say p = r s where r and s are 
smaller positive integers, then r* s *  = p* = 0, so either r* = 0 or s* = 0, contrary 
to the definition of p. Therefore, p is prime. The elements n*form a ring isomorphic 
to Z P , which is a field by Theorem 16.7. This must be the whole of P ,  since P is the 
smallest subfield of K.  

Case 2. n* # 0 if n # 0. Then P must contain all the elements m* In*  where m, 
n are integers and n # 0. These form a subfield isomorphic to Q (by the map which 
sends m* jn* to mjn) which is necessarily the whole of P.  0 

The distinction among possible prime subfields is summed up by: 

DEFINITION 16.10 The characteristic of afield K is 0 ifthe prime subfield of K 
is isomorphic to Q, and p if the prime subfield of K is isomorphic to Zp. 

For example, the fields Q, R, <C all have characteristic zero, since in each case the 
prime subfield is Q. The field Zp (p prime) has characteristic p .  We 'shall see later 
that there are other fields of characteristic p ;  for an example, see Exercise 16.2. 

The elements n* defined in the proof of Theorem 16.9 are of considerable impor
tance in what follows. It is conventional to omit the asterisk and write n instead of n * .  
This abuse of notation will cause no confusion as long as it is understood that n may 
be zero in the field without being zero as an integer. Thus, in Z5 , we have 1 0  = 0 and 
2 = 7 = -3. This difficulty does not arise in fields of characteristic zero. 

With this convention, a product nk(n E Z, k E K) makes sense, and 

nk ....:. ±(k + · · · + k) 

LEMMA 16.11 

If K is a subfield of L, then K and L have the same characteristic. 

PROOF In fact, K and L have the same prime subfield. 

LEMMA 16.12 

D .  

If k is a nonzero element of the field K, and if n is an integer such that nk = 0, then n 
is a multiple of the characteristic of K. 
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PROOF We must have n = 0 in K ,  that is, in old notation, n*  0 .  If the 
characteristic is 0, then this implies that n = 0 is an integer. If the characteristic is 
p > 0, then it implies that n is a multiple of p. 0 

16.5 Integral Domains 
The ring Z has an important property, which is shared by many of the other rings 

that we shall be studying: if mn = 0 where m, n are integers, then m = 0 or n = 0. 
We abstract this property as: 

DEFINITION 16.13 A ring R is an integral domain ifrs = O,for r, s E R, implies 
that r = 0 or s = 0. 

We often express this condition as "D has no zero-divisors," where a zero-divisor 
is a nonzero element a E D for which there exists a nonzero element b E D such that 
ab = 0 . 

Example 16.14 

1 .  The integers Z form an integral domain. 

2. Any field is an integral domain. Suppose K is a field and r s = 0. Then either 
s = 0, or r = r ss -I = Os - l = 0. 

3 .  The ring Z6 is not an integral domain. As observed earlier, in this ring 2.3 = 0 but 
2, 3 i= 0. 

4. The polynomial ring Z[t] is an integral domain. If f (t )g(t)  = 0 as polynomials, but 
f(t), g(t) :j:. 0, then we can find an element x E Z such that f(x) 0, g(x)  # 0. 
(Just choose x different from the finite set of zeros of f together with zeros of g.) 
But then f(x)g(x) :j:. 0, a contradiction. 

It turns out that a ring is an integral domain if and only if it is (isomorphic to) 
a subring of some field. To understand how this comes about, we analyse when it 
is possible to embed a ring R in a field - that is, find a field containing a subring 
isomorphic to R .  Thus Z can be embedded in Q. This particular example has the 
property that every element of Q is a fraction whose numerator and denominator lie 
in .Z. We wish to generalize this situation. 

DEFINITION 16.15 A field of fractions of the ring R is a field K containing a 
subring R' isomorphic to R, such that every element of K can be expressed in the 
form r / s for r, s E R', where s :j:. 0. 
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To see how to construct a field of fractions for R, we analyse how Z is embedded in 
Q. We can think of a rational number, written as a fraction r Is, as an ordered pair (r, s) 
of integers. However, the same rational number corresponds to many distinct fractions: 
for instance, � = � = �� and so on. Therefore, the pairs (2, 3), (4, 6), and ( 10, 15) 
must be treated as if they are the same. The way to achieve this is to define an equiv
alence relation that makes them equivalent to each other. In general, (r, s )  represents 
the same rational as (t , u) if arid only if rjs = tju ; that is, ru = st .  In this form the 
condition involves only the arithmetic of Z. By generalizing these ideas we obtain: 

THEOREM 16.16 
Every integral domain possesses a field of fractions. 

PROOF Let R be an integral domain, and let S be the set of all ordered pairs (r, s)  
where r and s lie in R and s =j:. 0.  Define a relation "' on S by 

(r, s )  f"'V (t , u) ru = st 

It is easy to verify that "' is an equivalence relation; we denote the equivalence class 
of (r, s) by [r, s ] .  The set F of equivalence classes will provide the required field of 
fractions. First we define the operations on F by 

[r, s] + [t, u] = [ru + ts, su] 

[r, s ] [t ,  u] = [rt , su] 

Then we perform a long series of computations to show that F has all the required 
properties. Since these computations are routine we shall not perform them here, but 
if you've never seen them, you should check them for yourself (see Exercise 1 6.3). 
What you have to prove is: 

I. The operations are well defined. That is to say, if (r, s) "' (r' , s') and (t , u) "' 
(t' , u'), then 

[r, s ]  + [t , u] = [r' , s'] + [t' , u'] 

[r, s] [t , u]  = [r' , s'] [t' , u'] 

2. They are operations on F (this is where we need to know that R is an integral 
domain). 

3 .  F i s  a field. 

4. The map R -+  F that sends r -+  [r, 1 ]  is a monomorphism. 

5. [r, s] = [r, 1 ]/ [s ,  1 ] .  

D 
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It can be shown (Exercise 16.4) that for a given integral domain R, all fields of 
fractions are isomorphic. We can, therefore, refer to the field constructed above as the 
field of fractions of R. It is customary to identify an element r E R with its image 
[r, 1 ]  in F, whereupon [r, s ]  = rjs . 

A short calculation reveals a useful property: whenever R is an integral domain, 
so is R [t] . 

LEMMA 16.17 
If R is an integral domain and t is an indeterminate, then R [t] is an integral domain. 

PROOF Suppose that 

f = fo + fit + · · · + fntn 

where fn =/= 0 =/= gm and all the coefficients lie in R .  The coefficient of tm+n in f g is 
fngm , which is nonzero since R is an integral domain. Thus if f, g are nonzero, then 
fg is nonzero. This implies that R[t] is an integral domain, as claimed. 0 
COROLLARY 16.18 

If F is afield, then the polynomial ring F[tt , . . .  , tn] in n indeterminates is an integral 
domain for any n. 

PROOF Write F[h , . . . , tn] = F[td[t2 , . . .  , tn] and use induction. 

Proposition 2.2 applies to polynomials over any integral domain. 

D 

Theorem 16 . 16 implies that when R is an integral domain, R[t] has a field of 
fractions. We call this the field of rational expressions in t over R and denote it by 
. R(t). Its elements are of the form p(t)/q(t) where p and q are polynomials and q is 
not the zero polynomial. Similarly, R [t1 , . . .  , tn] has a field of fractions R(tt , . . .  , tn) . 
Ratioi}al expressions can be considered as fractions p(t)/q(t), where p,  q E R[t] and 
q is not the zero polynomial. If we add two such fractions together, or multiply them, 
the result is another such fraction. In fact, by the usual rules of algebra, 

p(t) r (t) 
- - = 
q(t) s (t) 

p(t)r(t) 
q (t)s(t) 

p(t) 
+ 

r(t) 
= 

p(t)s(t) + q (t)r (t) 
q (t) s(t) q(t)s(t) 

We can also divide and subtract such expressions: 

p(t)/r (t) 
= 

p(t)s(t) 
q(t) s (t) q(t)r(t) 
p(t) r (t) p(t)s(t) - q (t)r(t) 

- -
q(t) s (t) q (t)s(t) 

where in the first equation, we assume r(t) is not the zero polynomial. 
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The Division Algorithm and the Euclidean Algorithm work for polynomials over 
any field, without change. Therefore, the entire theory of factorization of polynomials, 
including irr�ducibles, works for polynomials in K [t] whose coefficients lie in any 
field K.  

Exercises 

16. 1 Show that 1 5Z is an ideal of 5Z, and that 5Z/15Z is isomorphic to Z3 • 

16.2 Are the rings Z and 2Z isomorphic? 

16.3 Write out addition and multiplication tables for Z6, Z7 , and Z8 • Which of these 
rings are integral domains? Which are fields? 

16.4 Define a prime field to be a field with no proper subfields. Show that the prime 
fields (up to isomorphism) are precisely Q and Zp (p prime). 

1 6.5 Find the prime subfield of Q, R, CC, Q(t), R(t), C(t), Z5(t), Z17(t1 , t2). 

16.6 Show that the following tables define a field. 

+ 0 1 a 13 0 1 a 13 
0 0 1 a 13 0 0 0 0 0 
1 1 0 J3 a 1 0 1 a 13 
a a 13 0 1 .  a 0 a 13 1 
13 13 a 1 0 13 0 13 1 a 

Find its prime subfield P.  

16.7 Prove properties 1 to 5 asserted above in the construction of the field of fractions 
of an integral domain in Theorem 16 . 16. 

16.8 Let D be an integral domain with a field of fractions F.  Let K be any field. 
Prove that any monomorphism <f> : D -+ K has a unique extension to a 
monomorphism \fJ : F -+ K defined by 

\fi(ajb) = <f>(a)/<f>(b) 

for a, b E D. By considering the case where K is another field of fractions 
for D and <f> is the inclusion map show that fields of fractions are unique up to 
isomorphism. 
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1 6.9 Let K = Zz. Describe the subfields of K(t) of the form: .  

a .  K(t2) 
b. K(t 1 )  
c .  K(t5) 
d. K(t2 + 1 )  

16. 10  Does the condition &(f g) < max(&f, &g) hold for polynomials f, g over a 
general ring? 

By considering the polynomials 3t and 2t over Z6 show that the equality 
& (f g) = a f + a g fails for polynomials over a general ring R. What if R is an 
integral domain? 

16. 1 1  Mark the following true or false: .  

a . Every integral domain is a field. 
b. Every field is an integral domain. 
c. If F is a field, then F[t]  is a field. 
d. If F is a field, then F(t) is a field. 
e. Z(t) is a field. 





Chapter 1 7  
Abstract Field Extensions 

We have now sorted out what we mean by a field, and equipped ourselves with several 
theoretical ways to construct fields starting from rings. We now attack the general 
structure of an abstract field extension. Our previous work with subfields of <C paves 
the way, and most of our effort goes into making minor changes to the terminology 
and checking carefully that the underlying ideas generalize in the obvious manner. 

We begin by extending the classification of simple extensions to general fields. 
Having done that, we assure ourselves that the theory of normal extensions, including 
their relation to splitting fields, carries over to the general case. We deal with the new 
issue of separability. Our main result is that the Galois correspondence can be set up 
for any finite separable normal extension and then has exactly the same properties 
that we have already proved over <C. 

Convention on Generalizations. Quite a lot of this chapter consists of routine 
. verification that theorems previously stated and proved for subfields or subrings of <C 
remain valid for general rings and fields - and have essentially the same proofs. As a 
standing convention, we refer to "Lemma X. Y (generalizedY' to mean the generaliza
tion to an arbitrary ring or field of Lemma X. Y; usually we do not restate Lemma X. Y 
in its new form. In cases where the proof requires a new method or extra hypotheses, 
we will be more specific. Moreover, some of the most important theorems will be 
restated explicitly. 

17.1 Minimal Polynomials 

DEFINITION 17.1 A field extension is a monomorphism L : K -+ L, where K, L 
are fields. 

Usually we identify K with its image t.(K), and in thi� case K becomes a subfield 
ofL. 

We write L : K for an extension where K · is a sub field of L. 

We can define the degree [L : K] of the extension L : K exactly as in Chapter 6. 
Namely, consider L as a vector space over K and take its dimension. The Tower Law 
remains valid and has exactly the same proof. 
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In Chapter 1 6  we observed that all of the usual properties of factorization of poly
nomials over C carry over, without change, to general polynomials. (Even Gauss's 
Lemma and Eisenstein's Criterion can be generalized to polynomials over suitable 
rings, but we do not discuss such generalizations here.) Specifically, the definitions of 
reducible and irreducible polynomials, uniqueness of factorization into irreducibles ,  , . 
and the concept of an hcf carry over to the general case. Moreover, if K is a field 
and h E K [t] is an hcf of f, g E K [t], then there exist a ,  b E K [t] such that 
h = af + bg. As before, we say that a polynomial is manic if its term of highest 
degree has coefficient 1 .  

If L : K i s  a field extension and a E L ,  the same dichotomy arises: either a i s  a 
zero of some polynomial f E K [t] , or it is not. In the first case, a is algebraic over 
K; in the second case, a is transcendental over K.  

An element a E L that is algebraic over K has a well-defined minimal polynomial 
m(t) E K [t] ; this is the unique manic polynomial over K of smallest degree such 
that m( a) = 0. 

17�2 Simple Algebraic Extensions 
As before, we can define the subfield of L generated by a subset X c L together 

with some subfield K, and we employ the same notation K(X) for this field. We say 
that it is obtained by adjoining X to K.  The terms finitely generated extension and 
simple extension generalize without change. 

We mimic the classification of simple extensions in C of Chapter 5 .  Simple tran
scendental extensions are easy to analyse, and we obtain the same result: every simple 
transcendental extension of a field K is isomorphic to K(t) : K ,  where K(t) is the 
field of rational expressions over K.  As before, it is trivial to prove that any simple 
transcendental extension K (a) of K is isomorphic to K (t) : K, the field of rational 
expressions in one indeterminate t .  Moreover, there is an isomorphism that carries 
t to a. 

The algebraic case is slightly trickier; again, the key is irreducible polynomials. 
The result that opens up the whole area is: 

THEOREM 17.2 

Let K be afield and suppose that m E K[t] is irreducible and nionic. Let I be the 
ideal of K [t] consisting of all multiples of m. Then K [t]/ I is a field, and there is a 
natural monomorphism L :  K -+  K[t]/ I such that t(k) = I + k. 

PROOF First, observe that I really is an ideal (Exercise 17  . 1 ) .  We know on general 
nonsense grounds that K[t]/ I is a ring. So suppose that I +  f E K[t]/ I is not the 
zero element, which in this case means that f tf. I . Then f is not a multiple of m, 
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. and since m is irreducible, the hcf of f and m is 1 .  Therefore, there exist a, b E K[t] 
such that af + bm = 1 .  We claim that the multiplicative inverse of I + f is I a .  
To prove this, compute: 

(I + f)(! a) = I +  fa = I +  ( 1 - bm) = I + 1 

since bm E I by definition. But I + 1 is the multiplicative identity of K [t ]/I .  
Therefore, K [t]j I is a field. 

Define L : K --+ K [t]j I by t(k) = I + k. It is easy to check that L is a homo
morphism. We show that it is one-to-one. Suppose that t(a) =. t(b) for a ,  b E K .  
Therefore, t(a - b) = I + 0 .  If a =fi b, then 1 = (a - b)(a - b)-1 • Then t(1 )  = 

t(a - b)t((a - b)-1 = I + 0. But t(l )  = I + 1 and 1 r:f. I ,  so t(1 )  =fi I +  0. This 
contradiction shows that a =!= b, so L is a monomorphism. . 0 

This proof can be made more elegant and more general (see Exercise 17 .2). We 
can (and do) identify K with its image t(K), so now K c K [t]/ I .  It is easy to see 
that the minimal polynomial of I + t E K[t]j I over K is m(t). Indeed, m(! + t) = 
I +  m (t) = I +  0. (This is the only place we use the fact that m is monic. But if 
m is irreducible and not monic, then some multiple km, with k E K, is irreducible 
and monic; moreover, m and km determine the same ideal I .) We can now prove a 
classification theorem for simple algebraic extensions. 

THEOREM 1 7.3 

Let K (a) : K be a simple algebraic extension, where a. has minimal polynomial m 
over K. Then K(a.) : K is isomorphic to K [t]j I : K, where I is the ideal of K [t] 
consisting of all multiples of m. Moreover, there is a natural isomorphism in which 
a �--+ the cos et I + t. 

PROOF Define a map <P : K [t] --+ K(a) by <f>(f(t)) = f(a.). This is clearly a ring 
homomorphism. Its image is the whole of K (a), and its kernel consists of all multiples 
ofm(t) by L�mma 5.6 (generalized). Now K(u) = im(<f>) rv K[t]j ker(<f>) = K[t]jl, 
as required. · . 0 

We can now prove a preliminary version of the result that K and m between them 
determine the extension K(a.). 

THEOREM 17.4 
Suppose K(u) : K and K(�) : K are simple algebraic extensions, such that a. and � 
have the same minimal polynomial m over K. Then the two extensions are isomorphic, 

· and the isomorphism of the large fields can be taken to map u to �· 
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In Chapter 1 6  we observed that all of the usual properties of factorization of poly
nomials over <C carry over, without change, to general polynomials. (Even Gauss's 
Lemma and Eisenstein's Criterion can be generalized to polynomials over suitable 
rings, but we do not discuss such generalizations here.) Specifically, the definitions of 
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and the concept of an hcf carry over to the general case. Moreover, if K is a field 
and h E K[t] is an hcf of f, g E K[t] , then there exist a,  b E K[t] such that 
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that m( a) = 0. 
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and since m is irreducible, the hcf of f and m is 1 .  Therefore, there exista ,  b E K[t] 
such that af + bm = 1 . We claim that the multiplicative inverse of I f is I +  a. 
To prove this, compute: 

(I + f)(l + a) = I + fa = I + ( 1  - bm) = I + 1 

since bm E I by definition. But I + 1 is the multiplicative identity of K[t]j I .  
Therefore, K[t]/ I is a field. 

Define L : K -+ K[t]/ I by L(k) = I + k .  It is easy to check that L is a homo
morphism. We show that it is one-to-one. Suppose that t.(a) =. t.(b) for a ,  b E K.  
Therefore, L(a - b) = I 0 .  If a f:: b ,  then 1 = (a - b)(a - b)-1 • Then L(l )  = 

t(a - b)L((a - b)-1 
= I +  0. But L(l )  = I + 1 and 1 f/. I ,  so L(l )  i= I + 0. This 

contradiction shows that a f:: b, so t. is a monomorphism. 0 
This proof can be made more elegant and more general (see Exercise 17 .2). We 

can (and do) identify K with its image L(K), so now K c K[t]/ I .  It is easy to see 
that the minimal polynomial of I + t E K[t]/ I over K is m(t). Indeed, m(l + t) = 

I m(t) = I + 0. (This is the only place we use the fact that m is monic. But if 
m is irreducible and not monic, then some multiple km, with k E K, is irreducible 
and monic; moreover, m and km determine the same ideal · I.) We can now prove a 
classification theorem for simple algebraic extensions. 

THEOREM 17.3 
Let K (a) : K be a simple algebraic extension, where a has minimal polynomial m 
over K. Then K(a.) : K is isomorphic to K[t]j I : K, where I is the ideal of K [t] 
consisting of all multiples of m. Moreover, there is a natural isomorphism in which 
a r+ the coset I +  t. 

PROOF Define a map <f> : K[t] -+ K(a.) by <f>(f(t)) = f(a). This is clearly a ring 
homomorphism. Its image is the whole of K (a), and its kernel consists of all multiples 
ofm(t) by Lemma 5 .6 (generalized). Now K(a.) = im(<f>) "' K[t]/ ker(<f>) = K[t]ji, 
as required. . 0 

We can now prove a preliminary version of the result that K and m between them 
determine the extension K(a.). 

THEOREM 17.4 

Suppose K(a.) : K and K(�) : K are simple algebraic extensions, such that a and � 
have the same minimal polynomial m over K. Then the two extensions are isomorphic, 
and the isomorphism of the large fields can be taken to map a to �· 
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PROOF By Lemma 5.9 (generalized) every element x E K(a) is uniquely ex
pressible in the form 

where n = am - 1 .  pefine a map 4> :  K(a) -+ K(J3) by 

<f>(x) = Xo + XI J3 + · · · + Xnf3n 

By Lemma 5.9 (generalized) 4> is onto and one-to-one. Obviously, 

<f>(x + y) = <f>(x) + <f>(y) 

We shall show that <f>(xy) = <f>(x)<f>(y) ,  for any x ,  y E K(a). Let x = . f(a), y = 
g(a), xy = h(a), where f, g, h are polynomials over K of degree < am. Then 

f(a)g(a) - h(a) = xy - xy = 0 

By Lemma 5.6 (generalized) m divides fg - h, so there exists a polynomial q over 
K such that fg = mq h.  Since ah < am, it follows that h is the remainder on 
dividing f g by m .  By the same reasoning, j(J3)g(J3) = h(J3). Thus 

<f>(xy) = h(J3) = f(J3)g(J3) = <f>(x)<f>(y) 

so <P is an isomorphism. Since <P is the identity on K, the two extensions are isomor
phic; clearly, <f>(a) = (3. 0 

17.3 Splitting Fields 
In Chapter 9 we defined the term splitting field: a polynomial f E K [t] splits in 

L if it can be expressed as a product of linear factors over L .  There, we appealed 
to the Fundamental Theorem of Algebra to construct the splitting field for a given 
complex polynomial. In the general case, the Fundamental Theorem of Algebra is 
not available to us. (There is a version of it (Exercise 17.3) but in order to prove that 
version, we must be able to construct splitting fields without appealing to that version 
of the Fundamental Theorem of Algebra.) And, there is no longer a unique splitting 
field - though splitting fields are unique up to isomorphism. 

We start by generalizing Definitions 9 . 1  and 9.3 . 

DEFINITION 17.5 If K is afield and f is a polynomial over K, then f splits over 
K if it can be expressed as a product of linear factors 

f(t) = k(t - a1 ) . . .  (t - an) 

where k, a1 , . . .  , an E K. 
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DEFINITION 17.6 Let K be afield and let l: be an extension of K .  Then l: is a 
splitting field for the polynomial f over K if 

I .  f splits over E.  

2 .  If K C E' c E and f splits over E', then E' = E . 

. Our aim is to show that for any field K, any polynomial over K has a splitting field 
E ,  and this splitting field is unique up to isomorphism of extensions. 

The work that we have already done allows us to construct, in the abstract, any 
simple extension of a field K.  Specifically, any simple transcendental extension K (a) 
of K is isomorphic to the field K (t) of rational expressions in t over K. And if 
m E K [t] is irreducible andmonic, and I is the ideal of K[t] consisting of all multiples 
of m, then K[t]/ I is a simple algebraic extension K(a) of K where a = I +  t has 
minimal polynomial m over K.  Moreover, all simple algebraic extensions of K arise 
(up to isomorphism) by this construction. 

DEFINITION 17. 7  We refer to these constructions as adjoining a to K. 

When we were working with subfields K of C, we could assume that the element( s) 
being adjoined were in <C, so all we had to do was take the field they generate, together 
with K.  Now we do not have a big field in which to work, so we have to create the 
fields along with the elements that we need . .  

We construct a splitting field by adjoining to K elements that are to be thought of 
as the zeros of f .  We already know how to do this for irreducible polynomials, see 
Theorem 5 .  7 (generalized), so we split f into irreducible factors and work on these 
separately. 

THEOREM 17.8  
If K i� any field and f is any polynomial over K, then there exists a splitting field for 
f over K. 

PROOF Use induction on the degree 8f. If 8f = 1 there is nothing to prove, for 
f splits over K: If f does not split over K, then it has an irreducible factor /1 of 
degree > 1 .  Using Theorem 5.7 (generalized) we adjoin 0'1 to K, where ft (O'I) = 0. 
Then in K(O'I) [t] we have f . . (t - O'J )g where 8g = 8f - 1 .  By induction, there is . 
a splitting field E for g over K ( 0'1 ). But then E is clearly a splitting field for f over 
K. ' D 

It would appear at first sight that we might construct different splitting fields for 
f by varying the choice of irreducible factors .  In fact, splitting fields (for given f 
and K) are unique up to isomorphism. The statements and proofs are exactly as in 
Lemma 9.5 and Theorem 9.6, and we do not repeat them here. 
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17.4 Normality · 

Just as in our previous work, the properties that drive the Galois correspondence 
are normality and separability. We discuss normality in this s�ction, and separability 
in the next. 

Because we suppressed explicit use of over C from our earlier definition, it remains 
seemingly unchanged: 

DEFINITION 17.9 Afield extension L : K is normal if every irreducible polyno
mial f over K that has at least one zero in L splits in L. 

So does the proof of the main result about normality and splitting fields. 

THEOREM 17.10 
Afield extension L : K is normal and finite if and only if L is a splitting field for some 
polynomial over K. 

PROOF The same as Theorem 9. 9, except that the splitting field becomes a splitting 
field. 0 

17.5 Separability 
We generalize Definition 9. 10: 

DEFINITION 17.11 An irreducible polynomial f over afield K is separable over 
K if it has no multiple zeros in a splitting field. 

Since the splitting field is unique up to isomorphism, it is irrelevant which splitting 
field we use to check this property. 

Example 17.12 
Consider f(t) = t2 + t + 1 over Z2• This time we cannot use C, so we must go 
back to the basic construction for a splitting field. The field Z2 has two elements, 0 
and 1 .  We note that f is irreducible, so we may adjoin an element t such that t has 
minimal polynomial f over Zz. Then t2 ' + 1 = 0 so that '2 = 1 + ' (remember, 
the characteristic is 2) and the elements 0, 1 ,  , ,  1 + ' form a field. This follows from 
Lemma .5.9 (generalized). It can also be verified directly by working out addition and 
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multiplication tables: 

+ 0 1 t 1 t 
0 0 1 t 1 + t  
1 1 0 1 + t  t 
' ' 1 + t  0 1 

1 + t  1 + t  ' 1 0 

0 1 ' 1 + t 
0 0 0 0 0 
1 0 1 ' 1 + t  
' 0 ' 1 ' 1 

1 + t  0 1 + t 1 ' 
The sort of calculation needed in the second table runs like this: 

Therefore, Z2(t) is a field with four elements. Now f splits over Z2(t): 

but over no smaller field. Hence Z2(t) is a splitting field for f over Z2. 

DEFINITION 17.13 An irreducible polynomial over afield K is inseparable over 
K if it is not separable over K. 

LEMMA 17.14 . 
Let K be a field of characteristic p > 0. Then the map <f.> : K -r K defined by 
<f.>(k) = kP (k E K) is ·afield monomorphism. If K is finite, then <f.> is an automorphism. 

PROOF Let x ,  y E K .  Then 

Also, 

<f>(x + y) = (x + y)P = xP + pxP-1y + ( � )xP-2y' + . . .  + pxyp-! + yP 

( 17. 1 ) 
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by the binomial theorem. We claim that the binomial coefficient 

is divisible by p if 1 < r < p - 1 .  To prove this ,  observe that the binomial coefficient 
is an integer, and 

= -· (p - r) !  (p ) P ' 
r r !  

The factor p in the numerator cannot cancel unless r = 0, p. 
Hence the sum in ( 17 . 1 )  reduces to its first and last terms, so 

<f>(x + y) ::;:: xP yP = <f>(x) + <f>(y) 

Therefore, <P is a homomorphism. We prove that <P is one-to-one. If <f>(x) = <f>(y ) , then 
<f>(x -y) = O. lfx #- y, then <f>(1 )  = <f>((x -y)(x -y)-1 ) = <f>(x -y)<f>((x -y)-1 ) = 0. 
But <f>(l )  = 1 #- 0, a contradiction. Therefore, <P is a monomorphism. 

If K is finite, then any monomorphism K --+ K is automatically onto by counting 
elements, so <P is an automorphism in this case. 0 

DEFINITION 17.15 If K is afield of characteristic p > 0, then the map <P :  K --+  
K defined by <f>(k) = kP (k E K) is the Frobenius monomorphism or Frobenius map 
of K. When K is finite, <P is called the Frobenius automorphism of K. 

If you try this on the field Z5, it turns out that <P is the identity map, which is not 
very inspiring. The same goes for Zp for any prime p.  But for the field of Example 
7.12 we have <f>(O) = 0, <f>( 1 )  = 1 ,  <f>(t) = 1 + t, <f>(l + t) = t, so that <P is not 
always the identity. 

Example 17.16 
We use the Frobenius map to give an example of an inseparable polynomial. Let 
K0 = Zp for prime p.  Let K = Ko(u) where u is transcendental over Ko, and let 

f(t) = tP - u E K[t] 

Let � be a splitting field for f over K, and let 'T be a zero of f in � .  Then 'TP = u.  
Now use the Frobenius map: 

(t - 'T)P = tP - 'Tp = tP - U = f(t) 

Thus if uP - u = 0, then (a - 'T)P = 0 so that a = 'T; all the zeros of f in � are 
equal. 

It remains to show that f is irreducible over K .  Suppose that f = gh where 
g, h E K[t], and g and h have lower degree than f. We must have g(t) = (t - T)S 
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where 0 < s < p by uniqueness of factorization. Hence the constant coefficient ,-2 
of g lies in K.  This implies that T E K, for there exist integers a and b such that 
as + bp =  1 ,  and since �s+bp E K it follows that T E K. Then T - v(u)fw(u) where 

)v, w E K0[u] ,  so 

v(u)P - u(w(u))P = 0 

But the terms of highest degree cannot canceL Hence f is irreducible. 

The formal derivative D f of a polynomial f can be defined for any underlying 
field K. 

DEFINITION 17.17 Suppose that K is afield, and let 

f(t) = ao + a1 t + · · · + antn E K [t] 

Then the formal derivative off is the polynomial 

DJ = a1 + 2a2t + · · · + nantn-l 

Note that here the elements 2, . . .  , n belong to K, not Z. In fact they are what we 
briefly wrote as 2* , . . . , n* .  

Lemma 9. 1 3  states that a polynomial f =I= 0 has a multiple zero in a splitting field 
if and only if f and D f have a common factor of degree > 1 .  This lemma remains 
valid over any field, and has the same proof. Using the formal derivative, we can 
characterize inseparable irreducible polynomials: 

PROPOSITION 17.18 
If K is afield of characteristic 0, then every irreducible polynomial over K is separable 
over K. 

If K has characteristic p > 0, then an irreducible polynomial f over K is insep
arable if and only if 

where ko , . . .  , kr E K. 

PROOF By Lemma 9 . 1 3  (generalized), an irreducible polynomial f over K is 
inseparable if and only if f and D f have a common factor of degree > 1 .  If so, then 
since f is irreducible and D f has smaller degree than f, we must have D f = 0. 
Thus if 

f(t) = ao · · · + amtm 

then nan = 0 for all integers n > 0. For characteristic 0 this is equivalent to an = 0 
for all n .  For characteristic p > 0 it is equivalent to an = 0 if p does not divide n. 
Let ki = aip • and the result follows .  0 
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The condition on f for inseparability over fields of characteristic p can be expressed 
by saying that only powers of t that are multiples of p occur. That is, f(t) = g(tP) 
for some polynomial g over K. 

We now define three more uses of the word separable. 

DEFINITION 1 7.19 An arbitrary polynomial over afield K is separable over K 
if all its irreducible factors are separable over K. 

If L : K is an extension, then an algebraic element ex E L is separable over K if 
its minimal polynomial over K is separable over K. 

An algebraic extension L : K is a separable extension if every ex E L is separable 
over K. 

For algebraic extensions, separability carries over to intermediate fields. 

LEMMA 17.20 
Let L : K be a separable algebraic extension and let M be an intermediate field. 
Then M : K and L : M are separable. 

PROOF Clearly, M : K is separable. Let ex E L ,  and let m K and m M be its minimal 
polynomials over K, M, respectively. Now mMlmK in M[t] . But ex is separable over 
K so m K is separable over K, hence m M is separable over M. Therefore, L : M is a 
separable extension. 

· 0 
We end this section by proving that an extension generated by the zeros of a 

separable polynomial is separable. To prove this, we first prove: 

LEMMA 17.21 
Let L : K be an extension of fields of characteristic p, and let ex E L be algebraic 
over K. Then ex is separable o11er K if  and only if K(exP) = K(ex). 

PROOF Since ex is a zero of tP - exP E K(exP) [t] , which equals (t - ex)P by the 
Frobenius map, the minimal polynomial of ex over K(exP) must divide (t - ex)P and 
hence be (t - exY for some s < p.  

If ex i s  separable over K, then it i s  separable over K(exP). Therefore, (t - ex)s has 
simple zeros, so s = 1 .  Therefore, ex E K(c:xP) ,  so K(c:xP) = K(ex). 

For the converse, suppose that c:x is inseparable over K. Then its minimal polynomial 
over K has the form g(tP) for some g E K[t]. Thus c:x has degree pog over K. I:p. 
contrast, c:xP is a zero of g, which has smaller degree ag. Thus K(c:xP) and K(c:x) have 
different degrees over K,  so cannot be equaL 0 

THEOREM 17.22 
If L : K is a field extension such that L is generated over K by a set of separable 
algebraic elements, then L : K is separable. 
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PROOF We may assume that K has characteristic p. It is sufficient to prove that the 
set of elements of L that are separable over K is closed under addition, subtraction, 
multiplication, and division. (Indeed, subtraction and division are enough.) We give 
the proof for addition; the othe� cases are similar. 

Suppose that a, 13 E L are separable over K .  Observe that 

( 17.2) 

using Lemma 1 7.21  for the middle equality. Now consider the towers 

K c K(a. + 13) c K(a. + 13, 13) 

K c K(a.P + 13P) c K(a.P + 13P , 13P) 

and consider the corresponding degrees. Using the Frobenius map it is easy to see 
that 

and 

However, 

[K(a.P I3P , I3P) : K(o.P + 13P )) < [K(a. +· f3 ,  f3) : K(a. f3)] 

[K(a.P + f3P) : K] < [K(a + f3) : K] 

[K (a.P + JiP ,  I3P) : K] = [K(a. + l3, f3) : K] 

by ( 17  .2). Now the tower law implies that the above inequalities of degrees must 
actually be equalities. The result follows. 

· 0 

17.6 Galois Theory for Abstract Fields 
Finally, we can set up the Galois correspondence as in Chapter 12. Everything 

works provided that we work with a normal separable field extension rather than just 
a normal one. As we remarked in that context, separability is automatic for subfields 
of C. So there should be no difficulty in reworking the theory in the more general 
context. 

Note in particular that Theorem 1 1 . 14 (generalized) requires separability for fields 
of prime characteristic. 

Because of its importance, we restate the Fundamental Theorem of Galois Theory: 

THEOREM17.23 (Fundamental Theorem, General Case) 
If L : K is a finite separable nonnal field extension, with Galois group G, and if 
:F, Q ,  * , t are defined as before, then: 
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I. The Galois group G has order [L : K]. 

2. The maps * and t are mutual inverses, and set up an order-reversing one-to-one 
correspondence between :F and Q. 

3. If M is an intermediate field, then 

[L : M] = !M* I [M : K] = !G I / I.M* I 

4. An intermediate field M is a normal extension of K if and only if M* is a normal 
subgroup of G. 

5. If an intermediate field M is a normal extension of K, then the Galois group 
of M : K is isomorphic to the quotient group G I M* . 

PROOF Mimic the proof of Theorem 12 . 1 and look out for steps that require 
separability. . 0 

Another thing to look out for is the uniqueness of the splitting field of a polynomial; 
now it is unique only up to isomorphism. For example, we defined the Galois group of 
a polynomial f over K to be the Galois group of :E : K:, where :E is the splitting field 
of f. When K is a subfield of C, the subfield :E is unique. In general, it is unique up to 
isomorphism, so the Galois group off is unique up to isomorphism. That suits us fine. 

What about radical extensions? In characteristic p, inseparability raises its ugly 
head, and its effect is serious. For example, tP - 1 = (t - 1)P by the Frobenius map, 
so the only pth root of unity is 1 .  The definition of "radical extensionn has to be 
changed in characteristic p, and we shall not go into the details. However, everything 
carries through unchanged to fields with characteristic 0. 

We have now reworkedthe entire theory established in previous chapters, gener
alizing from subfields of C to arbitrary fields. Now we can pick up the thread again, 
but from now on, the abstract formalism is there if we need it. 

Exercises 

17. 1 Let K be a field, and let f(t) E K[t]. Prove that the set of all multiples of f is 
an ideal of K[t]. 

17 .2 Let <f> : K -+ R be a ring homomorphism, where K is a field and R is a ring. 
Prove that <f> is one-to-one. (Note that in this book rings have identity elements 
1 and homomorphisms preserve such elements. )  

17  .3* Prove by transfinite induction that every field can be embedded in an alge
braically closed field, its algebraic closure. (Hint: Keep adjoining zeros of 
irreducible polynomials until there are none left.) 
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17 .4* Prove that algebraic closures are unique up to isomorphism. More strongly, if 
K� is any field, and A ,  B are algebraic closures of K, show that the extensions 
A : K and B : K are isomorphic. 

1 7.5 Let A denote the set of all complex numbers that are algebraic over Q. The 
elements of A are called algebraic numbers. Show that A is a field, as follows. 

a. Prove that a complex number a E A  if and only if [Q(a) :Q] < oo. 
b. Let a., � E A. Use theTower Law to show that [Q(a., �) : Q] < oo. 
c. Use the Tower Law to show that [Q(a + �) : Q] < oo, [Q( -a) : Q] 

< oo, [Q(a�) : Q] < oo, and if a =1= 0, then [Q(a-1 ) : Q] < oo. 
d. · Therefore, A is a field. 

1 7.6 Prove that lR [ t] 1 ( t2 + 1 )  is isomorphic to C. 

17 .7 Of the extensions defined in Exercise 4.3, which are simple algebraic? Which 
are simple transcendental? 

1 7.8 Find the minimal polynomials over the small field of the following elements in 
the following extensions: 

a. a in K : P where K is the field of Exercise 16.6 and P is its prime 
subfield. 

b. a in Z3(t)(a) : Z3(t) where t is indeterminate and a2 = t 1 .  

1 7.9 For which of the following values of m ( t )  do there exist extensions K (a) of K 
for which a. has minimal polynomial m(t)? 

a. m(t)  = t2 + 1 ,  K = Z3 
b. m(t)  = t2 + 1 ,  K = Zs 
c. m (t) = t7 - 3t6 + �t3 - t - 1 ,  K = R 

17. 10 Show that for fields for characteristic 2 there exist quadratic equations that 
cannot be solved by adjoining square roots of elements in the field. (Hint: �ry 
z2.) 

1 7. 1 1  Show that we can solve quadratic equations over a field of characteristic 2 if, 
as well as square roots, we adjoin elements .;fk defined to be solutions of the 
equation 

17 . 12 Show that the two zeros of t2 + t - k = 0 in the previous question are .;fk and 
1 + .ylk, 

17 . 1 3  Let K = Z3 . Find all irreducible quadratics over K, and construct all possible 
extensions of K by an element with quadratic minimal polynomial. Into how 
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many isomorphism classes do these extensions fall? How many elements do 
they have? 

17 . 14 Mark the following true or false. 

a. Every minimal polynomial is irreducible. 
b. Every irreducible polynomial over a field K can be the minimal poly

nomial of some element a in a simple algebraic extension of K. 
c. A transcendental element does not have a minimal polynomial. 
d. Any field has infinitely many non-isomorphic simple transcendental 

extensions. 
e. Splitting fields for a given polynomial are unique. 
f. Splitting fields for a given polynomial are unique up to isomorphism. 
g. The polynomial t6 - t3 + 1 is separable over Z3 • 



Chapter 18 

The General Polynomial 

As we saw in Chapter 8, the so-called general polynomial is in fact very special. It is 
a polynomial whose coefficients do not satisfy any algebraic relations . This property 
makes it in some respects simpler to work with than, say, a polynomial over Q, and 
in particular it is easier to calculate its Galois group. As a result, we can show that 
the general quintic polynomial is not soluble by radicals without assuming as much 
group theory as we did in Chapter 15, and without having to prove the Theorem on 
Natural Irrationalities, Theorem 8. 14. 

Chapter 15 makes it clear that the Galois group of the general polynomial of degree 
n should be the whole symmetric group §n, and we will show that this contention is 
correct. This immediately leads to the insolubility of the general quintic. Moreover, 
our know ledge of the structure of §2, §3 , and §4 can be used to find a unified method to 
solve the general quadratic, cubic, and quartic equations. Further work, not described 
here, leads to a method for solving any quintic that is soluble by radicals, and finding 
out whether this is the case (see Berndt, Spearman, and Williams, 2002)� 

18.1 Transcendence Degrees 
Until now we have not had to deal much with transcendental extensions; indeed, 

the assumption of finiteness of the extensions has been central to the theory. We now 
need to consider a wider class of extensions, which still have a flavour of finiteness. 

DEFINITION 18.1 An extension L : K is finitely generated if L = K(rx1 , . . .  , cxn) 
where n is finite. 

Here the ex j may be either algebraic or transcendental over K. 

DEFINITION 18.2 If t1 , . . .  , tn are transcendental elements over a field K, all 
lying inside some extension L of K, then they are independent if there is no nontrivial 
polynomial p over K (in n indeterminates) such that p(t1 , • • •  , tn ) = 0 in L. 

Thus, for example, if t is transcendental over K and u is transcendental over K(t), 
then K (t, u) is a finitely generated extension of K, and t ,  u are independent. On the 



1 92 The General Polynomial 

other hand, t and u = t2 + 1 are both transcendental over K, but are connected by the 
polynomial equation t2 1 - u = 0, so are not independent. 

The next result describes the structure of a finitely generated extension. 

LEMMA 18.3 
If L : K is finitely generated, then there exists an intermediate field M such that 

1 .  M = K (a 1 ,  . • .  , ar) where the ai are independent transcendental elements 
over K. 

2. L : M is a finite extension. 

PROOF We know that L = K (f3t , . . . , f3n) . If all the f3 1 are algebraic over K, then 
L : K is finite by Lemma 6. 1 1  (generalized) and we may take M = K. Otherwise, 
some f3t is transcendental over K. Call this a1 . If L : K(a1) is not finite, there 
exists some f3k transcendental over K(a1 ). Call this a2. We may continue this process 
until M = K (a 1 ,  . . .  , ar) is such that L : M is. finite. By construction, the a 1 are 
independent transcendental elements over K. D 

A result due to Emst Steinitz says that the integer r that gives the number of 
independent transcendental elements does not depend on the choice of M. 

LEMMA 18.4 (Steinitz Exchange Lemma) 
With the notation of Lemma 18.3, if there is another intermediate field N = K (f3 I , . . .  , 
f3s) such that f3t ,  . . .  , f3s are independent transcendental elements over K and L : N 
is finite, then r = s. 

PROOF Since [L M] is finite, f3 is algebraic over M. Therefore, there is a 
polynomial equation 

Some aj , without loss of generality ah actually occurs in this equation. Then a1  is 
algebraic over K(f3 1 ,  a2 , . . .  , ar) and L : K(f31 , a2 , . . .  , ar) is finite. Inductively we 
can replace successive a 1 by f3 1 ,  so that ' 

is finite. If s > r; then f3r+l must be algebraic over K (f31 , • • •  , f3r ) , a contradiction. 
Therefore, s < r .  Similarly, r ::=:: s .  The lemma is proved. D 

DEFINITION 18.5 The integer r defined in Lemma 18.3 is the transcendence 
degree of L : K. By Lemma 4, the value of r is well defined. 
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For example, consider K (t, a, u) : K ,  where t is transcendental over K, a2 = t ,  and 
u is transcendental over K(t ,  a). Then M =  K(t, u) where t and u are independent 
transcendental elements over K, and 

K(t, a, u) : M =  M(a) : M 

is finite. The transcendence degree is 2. 
It is straightfor�ard to show that an extension K(a1 , . . .  , ar) : K by independent 

transcendental elements ai is isomorphic to K(t1 , . . .  , tr) : K where K(tt , . . .  , tr) is 
the field of rational expressions in the indeterminates ti . Thus we have: 

PROPOSITION 18.6 . 
A finitely generated extension L : K has transcendence degr_ee r if and only if there is 
an intermediate field M such that L is a finite extension of M and M : K is isomorphic 
to K(tJ , . . . , tr) : K. 

18 .. 2 Elementary Symmetric Polynomials 
· Usually we are given a polynomial and wish to find its zeros. But it is also possible 

to work in the· opposite direction; given the zeros and their multiplicities, reconstruct 
the polynomial. This is a far easier problem which has a complete general solution, 
as we saw in Section 8 .7 for complex polynomials. We recap the main ideas. 

Consider a polynomial of degree n having its full quota of n zeros (counting 
multiplicities) . It is, therefore, a product of n linear factors 

f(t) = k(t .- ai ) . . .  (t - an) 

where k E K and the aj are the zeros in K (not necessarily distinct) . Suppose that 

If we expand the first product and equate coefficients with the second expression, we 
get the expected result: 

an = k 
an-1 = -k(al + . . . + Cin) 
an-2 = k(a1a2 + CitCi3 + · · · + Cin-ICin) 

The expression in a1 , . • .  , an on the right (neglecting factors ±k) is the elementary 
symmetric polynomials of Chapter 8, but now interpreted as elements of K (t1 , . . .  , tn) 
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where K can be any field. Moreover, the elementary symmetric polynomials here are 
evaluated as fj = aj , for 1 < j < n ,  a minor technical distinction but one worth 
remarking. 

The elementary symmetric polynomials are symmetric in the sense that they are 
unchanged by permuting the indeterminates tj . This property suggests: 

DEFINITION 18.7 A polynomial q E K(tJ , . . .  , tn) is symmetric if 

q (tcr(l) •  · • · , fcr(n) ) = q(tt , · · · , tn ) 

for all permutations cr E Sn . 

There are other symmetric polynomials apart from the elementary ones, for exam
ple, tt + · · · + i/;, but they can all be expressed in terms of elementary symmetric 
polynomials: 

THEOREM 18.8 
Over a field K, any symmetric polynomial in t1 , • • •  , tn can be expressed as a polyno
mial of smaller or equal degree in the elementary symmetric polynomials Sr (t1 , . . .  , tn) 
(r = 0, . . .  , n). 

PROOF See Exercise 8 .2 (generalized to any field). D 
A slightly weaker version of this result is proved in Corollary 18 . 10. We need 

Theorem 18 .8 to prove that "lT is transcendental (Chapter 24). The quickest proof of 
Theorem 18 .8  is by induction, and full details can be found in any of the older algebra 
texts (Salmon, 1885, p. 57, van der Waerden, 1953, p. 8 1). 

18.3 The General Polynomial 
Let K be any field, and let t1 , • . .  , tn be independent transcendental elements over 

K. The symmetric group §n can be made to act as a group of K-automorphisms of 
K(tt , . . .  , tn ) by defining 

cr(ti ) = fcr(i) 
for all cr E §n , and extending any rational expressions <P by defining 

cr(<f>(tb . . .  ' tn)) = <f> (tu(l) •  . . . ' fu(n)) 
It is easy to prove that cr, extended in this way, is a K-automorphism. 

For example, if n = 4 and cr is the permutation 
(1234) 

243 1 



18.3 The General Polynomial 1 95 

Clearly, distinct elements of §n give rise to distinct K-automorphisms. 
The fixed field F of §n obviously contains all the symmetric polynomials in the 

ti and, in particular, the elementary symmetric polynomials Sr = sr (t1 , . . .  , tn) . We 
show that these generate F. 

LEMMA 18.9 
With the above notation, F = K (s1 , . . . , sn). 

PROOF First we show that 

by induction on n. Consider the double extension 

Now f(tn) = 0, where 

so that 

If we let s} , . . .  , s�_1 be the elementary symmetric polynomials in t1 ,  . . .  , tn-1 , and 
define s0 = 1 ,  then 

and, therefore, 

By induction 

[K(tJ , . . .  , tn ) : K(s ,  . . .  , Sn , tn )] 
= [K(tn)(tt , . . .  , tn- I ) : K(tn)(si ,  . . . , S�-1 )] < (n - 1 ) !  

so by the Tower Law (generalized) the induction step goes through. 0 
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Now K (s1 , . . .  , sn) is clearly contained in the fixed field F of §n . By Theorem 10.5 
(generalized) 

so by the above F = K (si ,  . . .  , sn ). 

COROLLARY 18.10 
Every symmetric polynomial in lt , . . . , tn over K can be written as a rational expres
swn zn St , . . .  , Sn · 

PROOF Symmetric polynomials lie inside the fixed field F. 

Compare this result with Theorem 18 .8. 

·LEMMA 18.11 

0 

"Mllth the above notation, St , . . .  , Sn are independent transcendental elements over K. 

PROOF Here K (tl , . . . , tn ) is a finite extension of K (s1 , . . .  , sn) and hence they 
both have the same transcendence degree over K, namely, n. Therefore, the s j are 
independent, for otherwise the transcendence degree of K (s1 , • • •  , sn ) : K would be 
smaller than n .  , 0 

DEFINITION 18.12 Let K be afield and let s1 , . . .  , sn be independent transcenden
tal elements over K. The general polynomial of degree n "over" K is the polynomial 

n tn-1 + n-2 + ( 1 )n t - St S2t - · · · - Sn 

over the field K(s1 , . . .  , sn). 

The quotation marks are used because the polynomial is really over the field 
K(st , . . .  , sn) , not K. 

THEOREM 18.13 
For any field K let g be the general polynomial of degree n "over" K, and let I; be a 
splitting field for g over K (st , . . .  , sn). Then the zeros tt , . . .  , tn of g in I; are inde
pendent transcendental elements over K, and the Galois group of I; : K(s1 , . . . , sn ) 
is the symmetric group §n· 

PROOF The extension I; : K(s1 , . . .  , sn) is finite by Theorem 9.9, so the tran
scendence degree of I; : K is equal to that of K (s1 , • • •  , sn ) : K, namely, n .  Since 
I; = K(t1 , • • .  , , tn), the tj are independent transcendental elements over K, since any 
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algebraic relation between them would lower the transcendence degree. The s j are 
now the elementary symmetric polynomials in t1 , . . .  , tn by Theorem 1 8.8. As above, 
§n acts as a group of automorphisms of :E = K(t1 , . . .  , tn), and by Lemma 1 8.9 the 
fixed field is K (si ,  . . .  , sn) ·  By Theorem 1 1 . 14, :E : K (si ,  . . .  , sn ) is separable and 
normal (normality also follows from the definition of :E as a splitting field), and by 
Theorem 10.5 its degree is l §n l = n ! .  Then by Theorem 17.23(1)  the Galois groue_ 
has order n l , and contains §n , so it equals §n . U 

From Theorem 15 .9 and Corollary 14.8 we deduce: 

THEOREM 18.14 
If K is afield of characteristic zero and n > 5, then the general polynomial of degree 
n uover" K is not soluble by radicals. 

18.4 Cyclic Extensions 
Because this polynomial "over" K is actually a polynomial over the extension field 

'{((s1 , . • .  , sn ), with n independent transcendental elements sb Theorem 1 8. 14 does 
not imply that any particular polynomial over K of degree n > 5 is not soluble by 
radicals . For example, the theorem does not rule out the possibility that every quintic 
might be soluble by radicals, but that the formula involved varies so much from case to 
case that no general formula holds. However, when the general polynomial of degree 
n "over" K can be solved by radicals, it is easy to deduce a solution by radicals of 
any polynomial of degree n over K, by substituting elements of K for s1 , • • •  , sn in the 
solution. This is the source of the generality of the general polynomial. From Theo
rem 18 . 14, the best that we can hope for using radicals is a solution of polynomials 
of degree < 4. We fulfill this hope by analysing the structure of §n for n < 4, and ap
pealing to a converse to Theorem 1 5.9. This converse is proved by showing that cyclic 
extensions - extensions with cyclic Galois group - are closely linked to radicals. 

DEFINITION 18.15 Let L :  K be a finite normal extension with Galois group G. 
The norm of an element a E L is 

N(a) = 'TJ (a)'Tz(a) . . . 'Tn(a) 

where 'TJ ,  . . .  , 'Tn are the elements of G. 

Clearly, N(a) lies in the fixed field of G (use Lemma 10.4) so if the extension is 
also separable, then N (a) E K .  

The next result is traditionally referred to as Hilbert's Theorem 90 from its appear
ance in his 1 893 report on algebraic numbers. 
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THEOREM 18.16 (Hilbert's Theorem 90) 
Let L : K be a finite normal extension with cyclic Galois group G generated by an 
element T. Then a E L  has norm N(a) = 1 if and only if 

a =  b/7(b) 

for some b E L, where b =f.: 0. 

PROOF Let I G I  = n .  If a =  b/7(b) and b # 0, then 

N(a) = a7(a)T2(a) . . .  7n-I (a) 

b 7(b) 72 (b) �-1 (b) 
= 

7(b) T2(b) 73 (b) .
. .  

'Tn (b) 
= 1 

since � = 1 .  
Conversely, suppose that N(a) = 1 .  Let c E L, and define 

for 0 < j < n - 1 .  Then 

Further, 

Define 

do ac 
d1 (a7(a))7(c) 

(0 < j < n - 2) 

b = do +  d1 · · · + dn-l 

We choose c to make b =f=. 0. Suppose on the contrary that b = 0 for all choices of c .  
Then for any c E L 

· 

A.oT0(c) + A.I7(c) + · · · + "-n-1 Tn- I (c) = 0 

where 

belongs to L. Hence the distinct automorphisms 7j are linearly dependent over L, 
contrary to Lemma 10. 1 .  
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Therefore, we can choose c so that b =j:: 0. But now 

rr(b) = rr(do) + · · · + rr(dn-d 
= ( 1 /a)(dl + · · · + dn-1 ) + Tn(c) 

= (1/a)(do + · · · + dn-1 ) 

= bja 

Thus a =  bjrr(b) as claimed. 

THEOREM 18.17 
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Suppose that L : K is a finite separable normal extension whose Galois group G is 
cyclic of prime order p, generated by T. Assume that the characteristic of K is 0 or 
is prime to p, and that tP - 1 splits in K. Then L = K(a), where a is a zero of an 
irreducible polynomial tP - a over Kfor some a E K. 

PROOF The p zeros of tP - 1 from a group of order p, which must, therefore, 
be cyclic since any group of prime order is cyclic. Because a cyclic group consists of 
powers of a single element, the zeros of t P - 1 are the powers of some £ E K where 
£P = 1 .  But then 

N(e) = £ . . .  £ = 1 

since e E K so that ,-i (e) = £ for all i. By Theorem 18 . 16 ,  € = af'r(a) for some 
a E L. Therefore, 

and a = aP is fixed by G, so lies in K. Now K(a) is a splitting field for tP a over 
/(. The K-automorphisms 1 ,  T ,  . . .  , 'Tp-l map a to distinct elements, so they give p 
distinct K-automorphisms of K (a). By Theorem 17 .23(1)  the degree [K (a) : K] > p. 
But [L : K] = IG I  = p, so L = K(a). Hence tP - a  is the minimal polynomial of 
a over K, otherwise we would have [K(a) : K]  < p. Being a minimal polynomial, 
t P ..:.. a is irreducible over K. 0 

We can now prove the promised converse to Theorem 1 5.9. Compare with 
Lemma 8 . 16(2). 

THEOREM 18.18 
Let K be a field of characteristic 0 and let L : K be a finite nonnal extension with 
soluble Galois group G. Then there exists an extension R of L such that R : K is 
radical. 

PROOF All extensions are separable since the characteristic is 0. We use induction 
on I G 1 .  The result is clear when I G l = 1 .  If I G l =j:: 1 we take a maximal proper normal 
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subgroup H of G, which exists since G is a finite group. Then G j H is simple, since 
H is maximal, and is also soluble by Theorem 14.4(2). By Theorem 14.6, Gj H is 
cyclic of prime order p. Let N be a splitting field over L of t P - 1 .  Then N : K is 
normal, for by Theorem 9.9 L is a splitting field over K of some polynomial f, so 
N is a splitting field over L of (tP - l)f, which implies that N : K is normal by 
Theorem 9.9. 

The Galois group of N : L is abelian by Lemma 15.6, and by Theorem 17 .23(5) 
!(L : K) is isomorphic to !(N : K)j !(N : L). By Theorem 14.4(3) (generalized), 
!(N : K) is soluble. Let M be the subfield of N generated by K and the zeros of 
tP - 1 .  Then N : M is normal. Now M : K is clearly radical, and since L N the 
desired result will follow provided we can find an extension R of N such that R : M is 
radical. 

We claim that the Galois group of N : M is isomorphic to a subgroup of G.  Let us 
map any M-automorphism ,. of N into its restriction 'T IL ·  Since L : K is normal, 'TlL 
is a K-automorphism of L, and there is a group homomorphism 

<f> : !(N : M) -+ !(L : K) 

If ,.  E ker (<f>), then 'T fixes all elements of M and L ,  which generate N. Therefore, 
,. = 1 ,  so <P is a monomorphism, which implies that f(N : M) is isomorphic to a 
subgroup J of f(L : K). 

If J = <f>(!(N : M)) is a proper subgroup of G, then by induction there is an 
extension R of N such that R : M is radical. 

The remaining possibility is that J = G. Then we can find a subgroup I <J !(N : 
M) of index p, namely, I =  <P-1 (H). Let P be the fixed field It . Then [P : M] = p 
by Theorem 17.23(3), P : M  is normal by Theorem 17 .23(4), and tP - 1  splits in M. 
By Theorem 1 8. 17 (generalized), P = M(a) where aP = a  E M. But N : P is a 
normal extension with soluble Galois group of order smaller than I G I ,  so by induction 
there exists an extension R of N such that R : P is radicaL But then R : M is radical, 
and the theorem is proved. D 

To deal with field of characteristic p > 0 we must define radical extensions differ
ently. As well as adjoining elements a such that an lies in the given field we must also 
allow adjunction of elements a such that aP - a lies in the given field (where p is 
the same as the characteristic). It is then true that a polynomial is soluble by radicals 
if and only if its Galois group is soluble. The proof differs in considering exten
sions of degree p over fields of characteristic p ,  when Theorem 18 . 17  (generalized) 
breaks down, and extensions of the second type above come in. If we do not mod
ify the definition of solubility by radicals, then although every soluble polynomial 
has soluble group, the converse need not hold - indeed, some quadratic polyno
mials, having abelian Galois group, will not be soluble by radicals (see Exercises 
18 . 12  and 1 8. 1 3). 

Since a splitting field is always a normal extension, we have: 
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THEOREM 18.19 
Over a field of characteristic zero, a polynomial is soluble by radicals if and only if 
it has a soluble Galois group. 

PROOF Use Theorems 15 .9 and 18 . 1 8. 

18.5 Solving Quartic Equations 

D 

The general polynomial of degree n has Galois group Sn , and we know that for 
n < 4 this is soluble (Chapter 14). Theorem 18 . 1 9, therefore, implies that for a field K 
of characteristic zero, the general polynomial of degree < 4 can be solved by radicals. 
We already know this from the classical tricks in Chapter 1 ,  but now we can use the 
structure of the symmetric group to explain, in a unified way, why those tricks work. 

18.5.1 Linear Equations 

t - SI  

Trivially, ft = s1  is a zero. 
The Galois group here is trivial, and adds little to the discussion except to confirm 

that the zero must lie in K. 

18.5.2 Quadratic Equations 

Let the zeros be t1 and t2 • The Galois group Sz consists of the identity and a map 
interchanging t1 and tz . Hence 

is fixed by Sz , so lies in K (s1 ,  sz). By explicit calculation 

Ctt - tz)2 = sf - 4sz 

Hence 

t1 tz = ±Vs? - 4sz 
t1 + tz = s1 
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and we have the familiar formula 

18.5.3 Cubic Equations 

3 2 3 t - St t + Szt - S3 

Let the zeros be t1 , t2 , t3 • The Galois group �h has a series 

with abelian quotients. Adjoin an element w '::? 1 such that w3 = 1 .  Consider 

y = t1 + wt2 w2t3 

The elements of A3 permute ft , t2 , and t3 cyclically and, therefore, multiply y by a 
power of w. Hence y3 is fixed by A3 • Similarly, if 

z = ft + w2tz + wt3 

then z3 is fixed by A3 . Now any odd permutation in §3 interchanges y3 and z3 , so 
that y3 + z3 and y3z3 are fixed by the whole of§3 , hence lie in K (s1 , s2 , s3). (Explicit 
formulas are given in the final section of this chapter.) Hence y3 and z3 are zeros of 
a quadratic over K(st ,  sz , s3) that can be solved as in part (b). Taking cube roots we 
know y and z .  But since 

it follows that 
1 

t1 = 3 (si y + z) 

1 2 t2 = 3 (s1 + w y + wz) 

1 t3 = 3Cs1 + wy w2z) 

18.5.4 Quartic Equations 

Let the zeros be t1 , tz , t3 , t4 . The Galois group §4 has a series 



18.5 Solving Quartic Equations 

with abelian quotients, where 

V =  { 1 ,  ( 12)(34) , ( 13)(24), ( 14)(23)} 

is the Klein four-group. It is , therefore, natural to consider the three expressions 

YI = (tl t2)(t3 + t4) 

Y2 = (t1 t3 )(t2 + t4) 

Y3 = (tt + t4)(t2 + t3 ) 
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These are permuted among themselves by any permutation in §4, so that all the ele
mentary symmetric polynomials in Y1 , Y2 , y3 lie in K (s1 , s2 , s3 , s4) .  (Explicit formulas 
are indicated below.) Then Yl , y2 , Y3 are the zeros of a certain cubic polynomial over 
K(st , s2 , s3 , s4) called the resolvent cubic. Since 

we can find three quadratic polynomials whose zeros are t1 + t2 and t3 t4, t1 + t3 
and t2 + t4, t1 t4 and t2 t3 . From these it is easy to find tt , t2 , t3 , t4 . 

18.5.5 Explicit Formulas 

For completeness, we now state the explicit formulas whose existence is alluded 
to above. For details of the calculations, see van der Waerden ( 1953, pp. 1 77-182). 
Compare with Section 1 .4. 

Cubic. By the Tschirnhaus transformation 

1 
U = t - -SI 

3 

the general cubic polynomial takes the form 

u 3 + pu + q 

If we can find the zeros of this it is an easy matter to find them for the general cubic. 
The above procedure for this polynomial leads to 

y3 z3 = -27q 

Y3Z3 = -27p3 

implying that y3 and z3 are the zeros of the quadratic polynomial 

t2 + 27qt - 27p3 

This yields Cardano's formula ( 1 .7). 
Quartic. The relevant Tschirnhaus transformation is now 

1 
U = t - -SI 

4 
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which reduces the quartic to the form 

In the above procedure, we therefore have 

Yt + Y2 + Y3 = 2p 

YI Y2 + Yt Y3 Y2Y3 = p2 - 4r 

The resolvent cubic takes the form 

2 YI Y2Y3 = -q 

Figure 18.1 : Cardano, the first person to publish solutions of cubic and quartic 
equations. 
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(which is a thinly,disguised form of ( 1 . 1 1) with t = -2u) . Its zeros are YI , Y2 , y3 , 

and 
1 

ft = 2 ( v'-Y1 + .J=Y2 + v'=YJ) 
1 

t2 = 2 ( v'-Y1 - .J=Y2 - v'=YJ) 
1 

t3 = 2 ( -v'-Y1 + .J=Y2 - v'=YJ) 
1 

t4 = 2 (- v'-Y1 - .J=Y2 + v'=YJ) 
the square roots being chosen so that 

Exercises 

1 8. 1  If K is a countable field and L : K is finitely generated, show that L is countable. 
Hence show that R : Q and C : Q are not finitely generated. 

1 8.2 Calculate the transcendence degrees of the following extensions: 

a. Q(t, u ,  v ,  w) : Q where t ,  u ,  v ,  w are independenttranscendental elements 
over Q 

b. Q(t , u ,  v, w) : Q where t2 = 2,  u is transcendental over Q(t ) , v3 = t + 5 ,  
and w i s  transcendental over Q(t , u ,  v) 

c .  Q(t , u, v) : Q where t2 = u3 = v4 = 7 

1 8 .3 Show that in Lemma 18 .3 the degree [L : M] is not independent of the choice 
of M. (Hint: Consider K(t2) as a subfield of K(t).) 

1 8.4 Suppose that K c L c M, and each of M :  K, L : K is finitely generated. 
Show that M : K and L : K have the same transcendence degree if and only if 
M : L is finite. 

1 8.5* For any field K show that t3 - 3 t  + 1 is either irreducible or splits in K. (Hint: 
Show that any zero is a rational expression in any other zero.) 

1 8.6 Let K be a field of characteristic zero, and suppose that L : K is finite and 
normal with Galois group G. For any a E L define the trace 

T(a) = 7I (a) + · · · + 7n (a) 
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where ,-1 , . . . , ,. n are the distinct elements of G.  Show that T (a) E K and that 
T is a smjective map L --+ K.  

1 8 .7 If in the previous exercise G i s  cyclic with generator T ,  show that T(a) = 0 if 
and only if a =  b - 7(b) for some b E L. 

1 8.8 Solve by radicals the following polynomial equations over Q: 

a. t3 - 7t + 5 = 0 

b. t3 - 7 t + 6 = 0 

c. t4 + 5t3 - 2t - 1 = 0 

d. t4 + 4t + 2 = 0 

1 8.9 Show that a finitely generated algebraic extension is finite, and hence find an 
algebraic extension that is not finitely generated. 

1 8. 1  0* Let e have minimal polynomial 

t3 at2 + bt + c 

over Q. Find necessary and sufficient conditions in terms of a ,  b, c such that 
e = 4>2 where 4> E Q(B). (Hint: Consider the minimal polynomial of cp.) Hence 
or otherwise express �- 3 as a square in Q( 4'28), and -Y5 - � as a square 
in Q(-YS, ..Ji) (see Ramanujan, 1 962, p. 329). 

1 8. 1 1 * Let r be a finite group of automorphisms of K with fixed field K0• Let t be 
transcendental over K. For each cr E r show there is a unique automorphism 
cr' of K(t) such that 

cr'(k) = cr(k) (k E K) 

cr'(t) = t 

Show that the cr' form a group r' isomorphic to r, with fixed field Ko(t) .  

1 8. 12 Let K be a field of characteristic p.  Suppose that f(t) = tP - t - a E K [t] .  If 
J3 is a zero of f, show that the zeros of f are J3 + k where k = 0 ,  1 ,  . . . , p - 1 . 
Deduce that either f is irreducible over K or f splits in K. 

1 8 . 13*  If f in Exercise 18 . 12  is irreducible over K, show that the Galois group of f 
is cyclic. State and prove a characterization of finite extensions with soluble 
Galois group - radical extensions - in characteristic p. 

1 8 . 14 Mark the following true or false. 

a. Every finite extension is finitely generated. 
b. Every finitely generated extension is algebraic. 
c. The transcendence degree of a finitely generated extension is invariant 

under isomorphism. 
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d. If tr ,  . . .  , tn are independent transcendental elements, then their elemen
tary symmetric polynomials are also independent transcendental 
elements. 

e. The Galois group of the general polynomial of degree n is soluble for all 
n .  

f. The general quintic polynomial i s  soluble by radicals. 
g. The only proper subgroups of §3 are 1 and A3 . 
h. The transcendence degree of Q(t) : Q is 1 .  

i. The transcendence degree of Q(t2) : Q is 2. 





Chapter 19 

Regular Polygons 

We return with more sophisticated weapons to the time-honoured problem of ruler
and-compass construction. We shall consider the following question: for which values 
of n can the regular n-sided polygon be constructed by ruler and compasses? 

The ancient Greeks knew of constructions for 3-, 5-, and 15-gons; they also knew 
how to construct a 2n-gon given an n-gon, by the obvious method of bisecting the 
angles. We describe these constructions in Section 19  . 1 .  For about 2000 years little 
progress was made beyond the Greeks. If you answered Example 7. 1 3, then you 
will have got further than they did. It seemed obvious that the Greeks had found 
all the constructible regular polygons . . . Then, on 30 March 1796, Gauss made the 
remarkable discovery that the regular 17-gon can be constructed (Figure 19. 1 ). He 
was 19  years old at the time. So pleased was he with this discovery that he resolved 
to dedicate the rest of his life to mathematics, having until then been unable to decide 
between that and the study of languages. In his Disquisitiones Arithmeticae, reprinted 
as Gauss ( 1966), he stated necessary and sufficient conditions for constructibility of 
the regular n-gon, and proved their sufficiency; he claimed to have a proof of necessity 
although he never published it. Doubtless he did; Gauss knew a proof when he saw 
one. 

19.1 What Euclid Knew 
Euclid's Elements gets down to business straight away. The first regular polygon 

constructed there is the equilateral triangle, in Book 1 Proposition 1 .  Figure 19.2 
makes the construction fairly clear. 

The square also makes its appearance in Book 1 :  

PROPOSITION 19.1 (Euclid) 

On a given straight line to describe a square. 
In the proof, which we give in detail to illustrate Euclid's style, notation such as 

[1,31] refers to Proposition 31 of Book 1 of the Elements. The proof is taken from 
Heath (1956), the classic edition of Euclid's Elements. Refer to Figure 19.3 for the 
lettering. 
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Figure 19.1:  The first entry in Gauss's notebook records his construction of the 
regular 17-gon. 

D E 

Figure 19.2: Euclid's construction of an equilateral triangle. 
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c 

n�---------.E 

A 
Figure 19.3: Euclid's construction of a square. 

B 

21 1 

PROOF Let AB be the given straight line; thus it is required to describe a square 
on the straight line AB. 

Let AC be drawn at right angles to the straight line AB from the point A on it [ 1 ,  
1 1 ] , and let AD be made equal to AB; through the point D let DE be drawn parallel 
to AB, and through the point B let BE be drawn parallel to AD [ 1 , 3 1 ] .  

Therefore, ADEB is  a parallelogram; therefore, AB i s  equal to DE, and AD to BE 
[ 1 ,  34] . But AB is equal to AD; therefore, the four straight lines BA, AD, DE, EB are 
equal to one another; therefore, the parallelogram ADEB is equilateral. 

I say next that it is also right-angled. For, since the straight line AD falls upon the 
parallels AB, DE, the angles BAD, ADE are equal to two right angles [ 1 ,  29]. 

But the angle BAD is also right; therefore, the angle ADE is also right. 
And in parallelogrammic areas the opposite sides and angles are equal to one an

other [ 1 ,  34] ; therefore, each of the opposite angles ABE, BED is also right. Therefore, 
ADEB is right-angled. And it was also proved equilateral. Therefore, it is a square; 
and it is described on the straight line AB. Q.E.E 0 

Here Q.E.F. (quod erat faciendum - that which was to be done) replaces the 
familiar Q.E.D. (quod erat demonstrandum - that which was to be proved) because 
this is not a theorem but a construction. In any case, the Latin arises in later translations; 
Euclid wrote in Greek. Now imagine you are a Victorian schoolboy - it always was 
a schoolboy in those days - trying to learn Euclid's proof by heart, including the 
exact choice of letters in the diagrams. 

The construction of the regular pentagon has to wait until Book 4 Proposition 1 1 , 
because it depends on some quite sophisticated ideas, notably Proposition 10  of Book 
4: To construct an isosceles triangle having each of the angles at the base double of the 
remaining one. In modem terms, construct a triangle with angles 47T /5, 47T /5, 27T /5. 
Euclid's method for doing this is shown in Figure 1 9.4. Given AB, find C so that 
AB x BC = CA 2 • To do that, see Book 2 Proposition 1 1 , which is itself quite 
complicated - the construction here is essentially the famous "golden section," a 
name that seems to have been introduced in 1 835 by Martin Ohm (Herz-Fischler, 1 998; 
Livio, 2002). Euclid's method is given in Exercise 1 9. 10. Next, draw the circle centre 
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Figure 19.4:  Euclid's construction of an isosceles triangle with base angles 47r /5. 

A 

Figure 19.5: Euclid's construction of a regular pentagon. Make ACD similar to 
triangle ABD in Figure 19.4, and proceed from there. 

A radius AB, and find D such that BD = AC. Then triangle ABD is the one required. 
With this triangle shape under his belt, Euclid then constructs the regular pentagon. 

Figure 19 .5 makes his method clear. 
The hexagon occurs in Book 4 Proposition 15 ,  the 15-gon in Book 4 Proposition 

16. Bisection of any angle, Book 1 Proposition 9, effectively completes the Euclidean 
catalogue of constructible regular polygons. · 

19.2 Which Constructions are Possible? 
That, however, was not the end of the story. 
In order to obtain necessary and sufficient conditions for the existence of a ruler

and-compass construction. we must prove a more detailed theorem than Theorem 4. 
This requires a careful examination of which constructions are possible. 
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LEMMA 19.2 
If P is a subset ofR2 containing the points (0, 0) and ( 1 ,  0), then the point (x , y) can 
be constructed from P whenever x and y lie in the subfield of lR generated by the 
coordinates of points in P.  

PROOF Given any point (xo , Yo) it is obvious how to construct (0, xo) and (0, Yo) .  
From (0, 0)  and ( 1 ,  0)  we can construct the coordinate axes, and then proceed as in 
Figure 1 9.6. 

If we are given (0, xo) and (0, Yo), then the same construction in reverse gives 
(x0 , y0). Thus to prove the lemma it is sufficient to show that given (0, x) and (0, y) 
we can construct (0, x + y), (0, x - y),  (0, xy), and (0, xfy) when y # 0. The first 
two are obvious. If we swing arcs of radius y centre (0, x ), they cut the y-axis at 
(0, x + y) and (0, x - y ) . For the other two points we proceed as follows. Join ( 1 ,  0) to 
(0, y) and draw a line parallel to this through (0, x) (see Exercise 19. 1) .  This line cuts 
the x-axis at (u , 0) . By similar triangles ufx = 1/y,  so that u = xfy.  Taking x = 1 
(the point (0, 1 )  is clearly constructible) we can construct ( 1 /y ,  0), hence (0, 1 /y); by 
taking 1 /y instead of y ,  we get (xy , 0). From these we can find (0, xy) and (0, xjy). 
See Figure 19.7. D 

(0 ·Yo) 

Figure 19.6: Constructing (0, xo) and (0, Yo) from (xo ,  Yo). 

(O,x) 

(O,y) 

Figure 19.7: Constructing u = xjy .  

(1 ,0) (u,O) 
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(1 ,0) 
Figure 19.8: Constructing ,Jk. 

LEMMA 19.3 

Regular Polygons 

(0,0) (k,O) 

Suppose that K(a) : K is an extension of degree 2 such that K(a) c R. Then any 
point (z, w) ofR2 whose coordinates z ,  w lie in K (a) can be constructed from some 
suitable finite set of points whose coordinates lie in K.  

PROOF We have a2 + pa + q = 0, where p, q E K.  Hence 

-p ± ylp2 - 4q 
a =------

2 

and since K(a) c R then p2 - 4q must be positive. Using Lemma 2 the result 
will follow if we can construct (0, ,Jk) for any positive k E K from finitely many 
points (xn Yr) where Xr , Yr E K.  To do this, construct (- 1 ,  0) and (k , 0). Draw the 
semicircle with these points as the ends of a diameter, meeting the y-axis at (0, v ) . 
By the intersecting chords theorem, v2 = 1 · k so that v = ,Jk (see Figure 19 .8). 0 

THEOREM 19.4 

Suppose that K is a subfield ofR generated by the coordinates of points in a subset 
P c R2 . Let a, (3 lie in an extension L of K, contained in R, such that there exists a 
finite series of subfields 

K = Ko c K1 c · · · c Kr = L 

such that [Kj+I : Kj] = 2for j = 0, . . . , r - 1 . Then thepoint (a, (3) is constructible 
from P.  

PROOF Use induction on r. The case r = 0 i s  covered by Lemma 1 9.2. Other
wise, (a, (3) is constructible from finitely many points whose coordinates lie in Kr-l 
by Lemma 1 9.3 .  By induction, these points are constructible from P, so (a, (3) is 
constructible from P. 0 

From the proof of Theorem 1 9.4, the existence of such fields Ki is also a necessary 
condition for (a, (3) to be constructible from P.  
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There i s  a more useful, but weaker, version of Theorem 1 9.4. To prove it, we first 
need: 

LEMMA 19.5 
lfG is a finite group and I G I  = 2r , then Z(G) contains an element of order 2. 

PROOF Use the class equation ( 14.2). We have 

1 + Cz + · · · + Ck = 2r 

so some Cj is odd. By Corollary 14. 1 2  this Cj also divides 2r, so we must have 
I Ci ! = 1 .  Hence Z(G) ::j=. 1 .  Now apply Lemma 14. 14. 0 

COROLLARY 19.6 
If G is a finite group and I G I = 2r , then there exists a series of normal subgroups 

1 = Go · · · c Gr = G 

such that ! G  i I = 2i for 0 ::::; j < r. 

PROOF Use Lemma 19.5 and induction. 

Now we can state and prove the promised modification of Theorem 19.4. 

PROPOSITION 19. 7 

D 

If K is a subfield oflR, generated by the coordinates of points in a subset P c JR2, 
and if a. and 13 lie in a normal extension L of K such that L c JR and [L : K] = 2r 
for some integer r, then (a., 13) is constructiblefrom P.  

PROOF L : K i s  separable since the characteristic is  zero. Let G be the Galois 
group of L : K. By Theorem 12. 1 ( 1 )  I G I  = 2r , so G is a 2-group. By Corollary 19.6, 
G has a series of normal subgroups 

1 = Go c G 1  _ · · · c Gr = G 

such that I Gi l = 2i . Let Kj be the fixed field G!_i . Then by Theorem 1 2. 1 (3) 
[Kj+l : Kj] = 2 for all j .  By Theorem 19 .4, (a., 13) is constructible from P. 0 

19.3 Regular Polygons 
We shall use a mixture of algebraic and geometric ideas to find those values of n 

for which the regular n-gon is constructible. To save breath, let us make the following 
(nonstandard): 
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DEFINITION 19.8 The positive integer n is constructive if the regular n�gon is 
constructible by ruler and compasses. 

The first step is to reduce the problem to prime-power values of n .  

LEMMA 19.9 
lfn is constructive and m divides n, then m is constructive. If m and n are coprime 
and constructive, then mn is constructive. 

PROOF If m divides n,  then we can construct a regular m-gon by joining every 
dth vertex of a regular n-gon, where d = nlm. 

If m and n are coprime, then there exist integers a ,  b such that am + bn = 1 .  
Therefore, 

1 1 1 
- = a - + b
mn n m 

Hence from angles 27r I m and 27r In we can construct 27r I mn, and from this we obtain 
a regular mn-gon. 0 

COROLLARY 19.10 

Suppose that n = p� 1 • • •  p�' where p1 , • • •  , Pr are distinct primes. Then n is con
structive if and only if each p? is constructive. 

Another obvious result: 

LEMMA 19.11 
For any positive integer a, the number 2a is constructive. 

PROOF The angle can be bisected by ruler and compasses, and the result follows 
by induction on a. 0 

This reduces the problem of constructing regular polygons to the case when the 
number of sides is an odd prime power. Now we bring in the algebra. In the complex 
plane, the set of nth roots of unity forms the vertices of a regular n-gon. Further, these 
roots of unity are the zeros in C of the polynomial 

tn - 1 = (t - 1)(tn-l + tn-2 + · · · + t + 1 )  

We concentrate on the second factor on the right-hand side. 

LEMMA 19.12 
Let p be a prime such that pn is constructive. Let ' be a primitive pn th root of unity 
in C. Then the degree of the minimal polynomial of' over Q is a power of2. 
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PROOF Take � = exp(27ri / pn). Since pn is constructive we can construct the 
point (a, 13) where a = cos(27r/pn ) and 13 = sin(27r/pn ) by projecting a vertex of 
the regular pn -gon on to the coordinate axes. Hence by Theorem 19.4 

[Q(a, 13) : Q] = 2r 

for some integer r. Therefore, 

[Q(o., J3, i )  : Q] = 2r+l 

But Q(o., (3 ,  i )  contains a +  if3  = �. so that [Q(t) :  Q] is a power of 2, since Q(�) c 
Q( o., (3, i ). Hence the degree of the minimal polynomial of t over Q is a power of 2. 

The next step is to calculate the relevant minimal polynomials to find their degrees. 
It turns out to be sufficient to consider p and p2 only. The analysis explains the result 
we obtained in (3.3) by direct computation. D 

LEMMA 19.13 
If p is a prime and � is a primitive pth root of unity in CC, then the minimal polynomial 
of� over Q is 

f(t) = 1 + t + . . . + tp-l 

PROOF Note that f(t) = (tP - 1)/(t - 1) .  We know that f(�) = 0 since �P - 1  = 0 
and � =/::. 1 .  We are home if we can show that f (t) is irreducible. Put t = 1 + u where 
u is a new indeterminate. Then f(t) is irreducible over Q if and only if f(l u) is 
irreducible. But 

f(l 
(1  + u)P - 1  

u) = ---

u 
= up- l + ph(u) 

where h is a polynomial in u over Z with constant term 1 , by the usual remark about 
binomial coefficients. By Eisenstein's Criterion, f(l + u) is irreducible over Q. D 

LEMMA 19.14 
If p is a prime and� is a primitive p2th root of unity in C, then the minimal polynomial 
oft over Q is 

g(t) = 1 + tP + · · · + tp(p-l) 

2 2 PROOF Note that g(t) = (tP - 1)/(tP - 1) .  Now �P - 1 = 0 but tP - 1 =/::. 0 so 
g(t) = 0. It suffices to show that g(t) is irreducible over Q. As before, we make the 
substitution t = 1 + u . Then 

( 1  ) 
( 1  + u)P2 - 1 

g + u  = ----

( 1  + u)P - 1 
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and modulo p this is 

Therefore, g(l + u) = uP<P-0 + pk(u) where k is a polynomial in u over Z. From 
the alternative expression 

g(l + U) = 1 + ( 1  + U )P + · · · + ( 1  + U )p(p- l) 

it follows that k has constant term 1 .  By Eisenstein 's Criterion, g( 1 u) is irreducible 
over Q. 

We now come to the main result. 0 

THEOREM 19.15 (Gauss) 
The regular n-gon is constructible by ruler and compasses if and only if 

where r and s are integers > 0, and PI , . . . , Ps are odd primes of the form 

for positive integers r1 . 

PROOF Let n be constructive. Then n 2r pr1 • • •  p�s where PI , . . .  , Ps are 
distinct odd primes. By Corollary 19 . 1 0, each P? is constructive. If cx1 > 2, then PJ 
is constructive by Theorem 19.4. Hence the degree of the minimal polynomial of a 
primitive p]th root of unity over Q is a power of 2 by Lemma 19  . 12. By Lemma 19  . 14, 
p j (P j - 1 )  is a power of 2, which cannot happen since p j is odd. Therefore ex j = 1 
for all j .  Therefore, p j is constructive. By Lemma 19 . 1 3  

for suitable s j .  Suppose that s j has an odd divisor a > 1 ,  so that s 1 = ab. Then 

which is divisible by 2b + 1 since 

ta + 1 = (t + l )(ta-l - ta-2 + · · · + 1 )  

when a i s  odd. So p 1 cannot be prime. Hence s 1 has no odd factors, so 

for some r1 > 0. 

2r · Sj = . J 
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This establishes the necessity of the given form of n.  Now we prove sufficiency. By 
Corollary 19. 10  we need consider only prime-power factors of n. By Lemma 19. 1 1 ,  
2r is constructive. We must show that each p j is constructive. Let t be a primitive 
p j th root of unity. Then 

for some a by Lemma 19 . 13 .  Now Q(t) is a splitting field for f(t) = 1 + · · · + tP- l 
over Q, so that Q(t) : Q is normal. It is also separable since the characteristic is zero. 
By Lemma 15.6, the Galois group r(Q(t) ;Q) is abelian. Let K = 1R n Q(t) . Then 

Now Q(t) : K has degree 2, so by Theorem 12. 1 r(Q(t) : K) is a subgroup of 
G = r(Q(t) : Q) of order 2 .  Further, it is a normal subgroup, since G is abelian. 
Therefore, K : Q is a normal extension of degree 2a-l . By Proposition 19.7, the 
point ( cos(27r j pi), 0) is constructible. Hence p j is constructive, and the proof is 
complete. 

. 0 

19.4 Fermat Numbers 
The problem now reduces to number theory. In 1640 Pierre de Fermat wondered 

when 2k + 1 is prime, and proved that a necessary condition is for k to be a power of 
2. Thus we are led to: 

DEFINITION 19.16 The nth Fermat number is Fn = 22" + 1 .  

The question becomes: when is Fn prime? 
Fermat noticed that F0 = 3 , F1 = 5 ,  F2 = 17, F3 = 257, and F4 = 65537 

are all prime. He conjectured that Fn is prime for all n ,  but this was disproved by 
Euler in 1732, who proved that F5 is divisible by 641 (Exercise 19.5). Knowledge of 
factors of Fermat numbers is changing almost daily, thanks to the prevalence of 
fast computers and special algorithms for primality testing of Fermat numbers (see 
Internet References). At the time of writing, the largest known composite Fermat 
number was F382449, with a factor 3 .2382447 + 1 ,  and 210 Fermat numbers were known 
to be composite. 

The only known Fermat primes are still those found by Fermat himself: 

PROPOSITION 19.17 
lfp is a prime, then the regular p-gmi is constructiblefor p = 2, 3 , 5 ,  17, 257, 65537. 
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19.5 How to Draw a Regular 17-Gon 
Many constructions for the regular 17  -gon have been devised, the earliest published 

being that of Huguenin (see Klein, 1913) in 1 803. For several of these constructions 
there are proofs of their correctness which use only synthetic geometry (ordinary 
Euclidean geometry without coordinates) .  A series of papers giving a construction 
for the regular 257-gon was published by F.J. Richelot ( 1832) under one of the longest 
titles I have ever seen. Bell ( 1965) tells of an overly zealous research student being 
sent away to find a construction for the 65537-gon, and reappearing with one 20 
years later. This story, though apocryphal, is not far from the truth; Professor Hermes 
of Lingen spent 10  years on the problem, and his manuscripts are still preserved at 
Gottingen. 

One way to construct a regular 17 -gon is to follow faithfully the above theory, which 
in fact provides a perfectly definite construction after a little extra calculation. With 
ingenuity it is possible to shorten the work. The construction that we now describe is 
taken from Hardy and Wright ( 1962) . 

Our immediate object is to find radical expressions for the zeros of the polynomial 

over <C. Let 

t 17 - 1 
--- = t 16 + . . . + t + 1 
t - 1 

0 = 2TI/ 17 
c:k=ekie = cos ke + i sin ke 

The zeros of equation ( 19. 1 )  in <C are then c1 , . • • , c16 . · 

The powers of 3 reduced mod 1 7  are: 

m 0 1 2 3 4 5 6 7 8 9 10 
3m 1 3 9 10  1 3  5 15 1 1  16  14  8 

Define 

1 1  
7 

X1 = Cl + £9 + €13 + €15 + CJ6 + eg + €4 

12 
4 

cz 
xz = c3 + E10 + es cu + €14 + €7 + c12 + t6 
Yl = c1 + €13 + €16 + €4 

Yz = €9 + c1s + cs + ez 

Y3 = €3 + Es + c14 + c12 
Y4 = cw + en + €7 + E6 

Now 

ck + t17-k = 2 cos kO 

( 19 . 1 )  

13  14  15  
12 2 6 

(19 .2) 
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for k = 1 ,  . . .  , 16 ,  so 

XI = 2(cos e + cos Se cos 4e + cos 2e) 

X2 = 2(cos 38 + COS 78 + COS Se + COS 6e) 

YI = 2(cos 8 + cos 4(:)) 
Y2 = 2( cos se + cos 2e) 

Y3 = 2(cos 38 + cos . 5e) 

Y4 = 2(cos 78 + cos 68) 

Equation ( 19 . 1 )  implies that 

x1 + xz = - 1  

Now ( 1 9.3) and the identity 

2 cos me  cos ne = cos(m + n)e + cos(m - n)6 

imply that 

X1X2 = 4(XI + X2) = -4 

using ( 19  .2). Hence x1 and x2 are zeros of the quadratic polynomial 
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( 19.3) 

p + t - 4 (19 .4) 

Further, x1 > 0 so that x1 > x2 . By further trigonometric expansions, 

Yl + Y2 = XI YtY2 = - 1  

and YI ,  Y2 are the zeros of 

Further, Yt > yz. Similarly, Y3 and Y4 are the zeros of 

and Y3 > Y4 · Now 

so 

2 cos e + 2 cos 46 = Yt 
4 cos e cos 46 = 2cos Se + 2cos 36 = Y3 

ZI = 2 COS 8 Z2 = 2 cos 46 

( 1 9.S) 

( 19 .6) 
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are the zeros of 

and Z t > Z2 · 

Regular Polygons 

2 t - Y1 t  + Y3 ( 19.7) 

Solving the series of quadratics ( 1 9.4 to 19 .7) and using the inequalities to decide 
which zero is which, we obtain 

cos 9 = 1
1
6 ( - 1  + m + v'34 - 2

.Ji7 

J 68 + 1 2
.Ji7 

- l6v' 34 + 2
.Ji7 

- 2(1 - ffi)v' 34 - 2
ffi

) 

where the square roots are the positive ones. 
From this we can deduce a geometric construction for the 17  -gon by constructing the 

relevant square roots. By using greater ingenuity it is possible to obtain an aesthetically 
more satisfying construction. The following method (Figure 19 .9) is due to Richmond 
( 1893). 

Let <1> be the smallest positive acute angle such that tan 4<1> = 4. Then <j>, 2<!>, and 
4<1> are all acute. Expression ( 1 9  .4) can be written 

whose zeros are 

Hence 

t2 + 4t cot 4<!> - 4 

2 tan 2<1> -2 cot 2<1> 

Xt = 2 tan 2<1> xz = -2 cot 2<!> 

B 

N5 F 0 E N3 

Figure 19.9: Construction for a regular 17-gon. 

A 



Exercises 223 

From this it follows that 

Y1 = tan ( 4> + :) Y3 = tan <J:> Y4 = - cot <J:> 

Then 

2(cos 36 + cos 56) = tan <P 

4 cos 3e cos 5 e  = tan ( 4> - :) (19.8) 

Now (Figure 19.9) let OA, OB be two perpendicular radii of a circle. Make OI = �OB 
and L OIE = i L OIA. Find F on AO produced to make LEIF = � .  Let the circle 
on AF as diameter cut OB in K, and let the circle centre E through K cut OA in N3 
and Ns as shown. Draw N3P3 and NsP5 perpendicular to OA. Then LOIA = 4<j:> and 
LOIE = <j:>. Also, 

and 

ON3 - ONs 2(cos LAOP3 + cos LAOPs) = OA 
OE OB 

= 4 - + - = tan <J:> 
OA OI 

ON3 x ONs 4 cos LAOP3 cos LAOPs = -4 ----0A x OA 
OK

2 
= -4-0A

2 

= _4 oF 
OA 

= -�� = tan ( 4> - :) 
Comparing these with Equation ( 19.8) we see that 

LAOP3 = 36 LAOPs = 56 

Hence A, P3 , Ps are the zeroth, third, and fifth vertices of a regular 17-gon inscribed 
in the given circle. The other vertices are now easily found. 

Exercises 

19. 1  Using only the operations ruler and compasses, show how to draw a parallel to 
a given line through a given point. 
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19.2 Verify the following approximate constructions for regular n-gons found by 
Oldroyd ( 1 955): 

a. 7-gon. Construct cos-1 
4'if 

giving an angle of approximately 2TI/7. 

b. 9-gon. Construct cos-1 5-v(o-1 . 
c.  1 1-gon. Construct cos-1 � and cos-1 � and take their difference� 

d. 13-gon. Construct tan-1 1 and tan-1 
4if 

and take their difference. 

19.3 Show that for n odd the only known constructible n-gons are precisely those 
for which n is a divisor of 232 - 1 = 4294967295. 

19.4 Work out the approximate size of F332449, which is known to be composite. 
Explain why it is no easy task to find factors of Fermat numbers. 

19.5 Use the equations 

641 = 5
4 

+ 2
4 

= 5 .2 7 + 1 

to show that 641 divides Fs . 

19.6 Show that 

Fn+l = 2 + FnFn-1 . . . Fo 

and deduce that if m f. n ,  then Fm and Fn are coprime. Hence show that there 
are infinitely many prime numbers. 

19.7 List the values of n < 100 for which the regular n-gon can be constructed by 
ruler and compasses. 

19 .8 Verify the following construction for the regular pentagon. 
Draw a circle centre 0 with two perpendicular radii OPo, OB. Let D be 

the midpoint of OB, join PoD. Bisect LODPo cutting OPo at N. Draw NP1 
perpendicular to OPo cutting the circle at P1 • Then P0 and P1 are the zeroth and 
first vertices of a regular pentagon inscribed in the circle. 

19.9* Discuss the construction of regular polygons using a ruler, compasses, and an 
angle trisector. (For example, 9-gons or 1 3-gons are then constructi

b
le. Use the 

trigonometric solution of cubic equations.) 

19.JO Euclid's construction for an isosceles triangle with angles 4Tij5 , 47r/5,  2nj5 
depends on constructing the so-called golden section: that is, to construct a 
given straight line so that the rectangle contained by the whole and one of the 
segments is equal to the square on the other segment. The Greek term was 
"extreme and mean ratio." In Book 2 Proposition 1 1  of the Elements Euclid 
solves this problem as in Figure 19. 10 . 
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F G 

c K D 
Figure 19.10: Cutting a line in extreme and mean ratio. 
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Let AB be the given line. Make ABDC a square. Bisect AC at E, and make 
EF = BE. Now find H such that AH = AF. Then the square on AH has the 
same area as the rectangle with sides AB and BH, as required. 

Prove that Euclid was right. 

19. 1 1  Mark the following true or false. 
a. 2n + 1 cannot be prime unless n is a power of 2. 
b. If n is a power of 2, then 2n + 1 is always prime. 
c. The regular 771 -gon is constructible using ruler and compasses. 
d. The regular 768-gon is constructible using ruler and compasses. 
e. The regular 5 1 .:.gon is constructible using ruler and compasses. 
f. The regular 25-gon is constructible using ruler and compasses. 
g. For an odd prime p, the regular p2-gon is never constructible using ruler 

and compasses. 
h. If n is an integer > 0, then a line of length ,.jii can always be constructed 

using ruler and compasses. 
1.  If n is an integer > 0, then a line of length .:fii can always be constructed 

using ruler and compasses. 
J. A point whose coordinates lie in a normal extension of tQ whose degree 

is a power of 2 is constructible using ruler and compasses. 
k. If p is a prime, then tP2 - 1 is irreducible over tQ. 





Chapter 20 
\ ' ' ' 

Finite Fields 

Fields that have finitely many elements play important parts in many branches of 
mathematics : number theory, group theory, p�ojective geometry, and so on. They also 
have practical applications, especially to the coding of digital communications, see 
Lidl and Niederreiter ( 1986) ,  and, especially for the history, Thompson ( 1983). 

The most familiar examples of such fields are the fields Z P for prime p, but these 
are not all. In this chapter we give a complete classification of all finite fields. It turns 
out that a finite field is uniquely determined up to isomorphism by the number of 
elements it contains, this number being a power of a prime, and for every prime p and 
integer n > 0 there exists a field with pn elements. All these facts were discovered 
by Galois, though not in this terminology. 

20.1 Structure of Finite Fields 
We begin by proving the second of these three statements. 

THEOREM 20.1 
If F is a finite field, then F has characteristic p > 0, and the number of elements of 
F is pn where n is the degree ofF over its prime subfield. 

PROOF Let P be the prime subfield of F. Here P is not isomorphic to Q since 
Q is infinite, so P is isomorphic to Zp for some prime p by Theorem 1 6.9, so F has 
characteristic p. By Theorem 16. 1 ,  F is a vector space over P.  This vector space has 
finitely many elements, so must be finite-dimensional. Hence [F : P] = n is finite. 
Let x1 , . . . , Xn be a basis for F over P .  Every element of F is uniquely expressible 
in the form 

where )q , . . . , An E P.  Each Aj may be chosen in p ways since I P l  = p, hence 
there are pn such expressions. Therefore, I F  I = pn . 0 

Thus there do not exist fields with 6, 10, 12 ,  14, 1 8, 20, . . . elements. Notice the 
contrast with group theory, where there exist groups of any given order. 
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However, there exist nonisomorphic groups with equal orders. To show that this 
cannot happen for finite fields, we recall the Frobenius map, Definition 17 . 15 ,  which 
maps x to x P and is an automorphism when the field is finite by Lemma 17 . 14. We use 
the Frobenius automorphism to establish a basic uniqueness theorem for finite fields: 

THEOREM 20.2 
Let p be any prime number and let p = pn where n is any integer :> 0. Afield F has 
q elements if and only if it is a splitting field for f (t) = tq - t over the prime sub field 
P Zp ofF. 

PROOF Suppose that I F I  = q .  The set F\{0} forms a group under multiplication, 
of order q - 1 , so if O =j:. x  E F, then xq-l = 1 . Hence xq - x  = O. Since Oq - 0 = 0, 
every element of F is a zero of tq -'- t ,  so f(t) splits in F. Since the zeros of f exhaust 
F, they certainly generate it, so F is a splitting field for f over P.  D 

Conversely, let Kbe a splitting field for f over Zp. Since Df = - 1, which is prime 
to f, all the zeros of f in K are distinct, so f has exactly q zeros. Suppose x and y 
are zeros of f.  Then xq = xPn = <f>n(x) where <f> is the Frobenius automorphism, so 
<f>n is also an automorphism. Therefore, 

(xy )q - xy = xq yq - xy = xy - xy = 0 
(x + y )q - (x + y) = xq + yq - (x y) = (x + y) - (x + y) = 0 

(x-1 )q - x-1 = x-q - x-1 = x-1 - x-1 = 0 

Hence the set of zeros off in K is a field, which must, therefore, be the whole splitting 
field K. Therefore, I K I = q .  . 

Since splitting fields exist and are unique up to isomorphism, we deduce a complete 
classification of finite fields: 

THEOREM 20.3 
A finite field has q = pn elements where p is a prime number and n is a positive 
integer. For each such q there exists, up to isomorphism, precisely one field with q 
elements, which can be constructed as a splitting field for tq - t over Zr 

DEFINITION 20.4 The Galois Field GJF(q) is the unique field with q elements. 

20.2 The Multiplicative Group 
The above classification of finite fields, although a useful result in itself, does not 

give any detailed information on their deeper structure. There are many questions we 
might ask: What are the subfields? How many are there? What are the Galois groups? 
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We content ourselves with proving one important theorem, which gives the structure 
of the multiplicative group F\ { 0} of any finite field F.  First, we need to know a little 
more about abelian groups. 

DEFINITION 20.5 The exponent e( G) of a .finite group G is the least common 
multiple of the orders of the elements of G. 

Clearly, e( G) divides the order of G.  In general, G need not possess an element of 
order e(G); for example, if G =B3 , then e(G) = 6, but G has no element of order 6. 
Abelian groups are better behaved in this respect: 

LEMMA 20.6 
Any finite abelian group G contains an element of order e( G). 

PROOF Let e = e( G) = p�1 • • •  p�n where the p 1 are distinct primes and a 1 > L 
Then G must possess elements g1 whose orders are divisible by p ;1 from the definition 
of e(G). Then a suitable power a1 of g1 has order p;1 •  Define 

Suppose that gm = 1 where m 2: 1 .  Then 

So if 
CXJ  CXj-1 IXj+l a q = P1 · · · PJ-1 PJ+l · · · Pnn 

then ajq = 1 .  But q is prime to the order of a 1 ,  so p? divides m .  Hence e divides 
m. But, clearly, ge = l . .  Hence g has order e, which is what we want. 0 

COROLLARY 20.7 
If G is a finite abelian group such that e( G) = I G j, then G is cyclic. 

PROOF The element g constructed above generates G. 

We can apply this corollary immediately. 

THEOREM 20.8 

0 

If G is a finife subgroup of the multiplicative group K\ {0} of a field K, then G is 
cyclic. 

PROOF Since multiplication in K is commutative, G is an abelian group. Let 
e = e( G). For any x E G we have xe = 1 ,  so that x is a zero of the polynomial te - 1 
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over K. By Theorem 3 .28 (generalized) there are at most e zeros of this polynomial, 
so I G I  < e. But e < ! G I ,  hence e = I G I ;  by Corollary 20.7, G is cyclic. 0 

COROLLARY 20.9 
The multiplicative group of a finite field is cyclic. 

Therefore,. for any finite field F there is at least one element x such that every 
nonzero element of F is a power of x .  We give two examples. 

Examples 20.10 

1 .  The field <GIF(1 1 ). The powers of 2, in order, are 

1 ,  2, 4, 8 ,  5 ,  10 ,  9, 7, 3 ,  6 ,  1 

so 2 generates the multiplicative group. On the other hand, the powers of 4 are 

1 , 4, 5 , 9 , 3 ,  1 

so 4 does not generate the group. 

2. The field <GIF(25). This can be constructed as a splitting field for t2 - 2 over .Z5 , 
since t2 -2 is irreducible and of degree 2. We can, therefore, represent the elements 
of <GJF(25) in the form a + ba where a2 = 2. There is no harm in writing a = ,JZ. 
By trial and error we are led to consider the element 2 + ,JZ. Successive powers 
of this are 

1 2 + .J2  
4 2.J2 
3 + 4.J2 
1 + 3,J2 

1 + 4.J2 
2 + 3,J2 
4 +  ,J2 
3 + 2,J2 

3 + 3.J2 
1 + .J2 

2 + 2.J2 
4 + 4.J2 

Hence 2 ,J2 generates the multiplicative group. 

2 + 4.J2 2 
4 + 3.J2 A 
3 + .J2  3 
1 + 2.J2 1 

There is no known procedure for finding a generator other than enlightened trial 
and error. Fortunately, the existence of a generator is usually sufficient information. 

20.3 Application to Solitaire 
Finite fields have an unexpected application to the recreational pastime of solitaire 

(de Bruijn, 1 972). Solitaire is played on a board with holes arranged like Figure 20. 1 .  
A peg is placed in each hole except the centre one, and play proceeds by jumping any 
peg horizontally or vertically over an adj acent peg into an empty hole; the peg that 
is jumped over is removed. The player's objective is to remove all pegs except one, 
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0 0 0  
0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

Figure 20.1: The solitaire board 

0 0 0  
0 0 0  

23 1 

which - traditionally -· is the peg that occupies the central hole. Can it be another 
hole? Experiment shows that it can, but suggests that the final peg cannot occupy any 
hole. Which holes are possible? 

De Bruijn's idea is to use the field GJF(4), whose addition and multiplication tables 
are given in Exercise 16 .6, in terms of elements 0, 1 ,  a, � · Consider the holes as 
a subset of the integer lattice 'Z}, with tht< origin (0, 0) at the centre and the axes 
horizontal and vertical as usual. If X is a set of pegs, define 

A(X) = L ax+y 
(x,y)EX 

B(X) = L <Xx-y 
(x,y)EX 

Observe that if a legal move changes X to Y,  then A(Y) = A(X), B (Y) = B(X). This 
follows easily from a2 a + 1 = 0, which in turn follows from the tables. Thus the 
pair (A( X), B (X)) is invariant under any sequence of legal moves. 

The starting position X has A(X) = B(X) = 1 .  Therefore, any position Y that 
arises during the game must satisfy A(Y) _;_ B(Y) = 1 .  If the game ends with a 
single peg on (x , y), then ax+y = o.x-y = 1 .  Now a3 = 1 ,  so x + y ,  x - y ·are 
multiples of 3 ;  therefore, x ,  y are multiples of 3 .  Thus the only possible end positions 
are ( -3 , 0), (0, -3), (0, 0), (0, 3), (3, 0). Experiment (by symmetry, only (0, 0), the 
traditional finish, and (3 , 0) need be attempted; moreover, the same penultimate move 
must lead to both, depending on which peg is moved) shows that all five of these 
positions can be obtained by a series of legal moves. 

Exercises 

20. 1  For which of the following values of n does there exist a field with n elements? 

1 ,  2, 3, 4, 5 ,  6, 17' 24, 3 12, 65536, 
65537, 83521 ,  1 03823 , 213466917 - 1 

(Hint: See "Mersenne primes" under Internet References.) 
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20.2 Construct fields having 8, 9, and 16 elements. 

20.3 Let <P be the Frobenius automorphism of CGJF(pn) .  Find the smallest value of 
m > 0 such that <Pm is the identity map. 

20.4 Show that the subfields of CGJF(pn) are isomorphic to CGJF(pr) where r divides 
n, and there exists a unique sub field for each. such r .  

20.5 Show that the Galois group of CGJF(pn) : G F(p) i s  cyclic of order n, gener
ated by the Frobenius automorphism <f>. Show that for finite fields the Galois 
correspondence is a bijection, and find the Galois groups of . 

whenever m divides n .  

20.6 Are there any composite numbers r that divide all  the binomial coefficients c : )  
for 1 < s < r - 1 ?  

20.7 Find generators for the multiplicative groups of CGJF(n) when n = 8, 9, 1 3 ,  
17 , 1 9, 23 , 29, 3 1 ,  37, 41, �nd 49. 

20.8  Show that the additive group of <GJF(pn) is a direct product of n cyclic groups 
of order p. 

20.9 By considering the field Z2(t), show that the Frobenius monomorphism is not 
always an automorphism. 

20. 10* For which values of n does §n contain an element of order e(§n )? ' . 

(Hint: Use the cycle decomposition to estimate the maximum order of an ele-
ment of§n , and compare this with an estimate of e(§n) .  You may need estimates 
on the size of the nth prime: for example, Bertrand's Postulate, which states 
that the interval [n , 2n] contains a prime for any integer n > 1 .) 

20. 1 1  * Prove that in a finite field every element is a sum of two squares. 

• 20. 12  Mark the following true or false. 
a. There is a finite field with 124 elements. 
b. There is a finite field with 125 elements. 
c. There is a finite field with 126 elements.  
d.  There is a finite field with 127 elements. 
e. There is a finite field with 128 elements.  
f. The multiplicative group of <G1F(19) contains an element of order 3. 
g. CG1F(2401 )  has a subfield isomorphic to CG1F(49) .  

'· 

h. Any monomorphism from a finite field to itself is an automorphism. 
i. The additive group of a finite field is cyclic. 



Chapter 21 
Circle Division 

To halt the story of regular polygons at the stage of ruler-and-compass constructions 
would leave a small but significant gap in our understanding of the solution of poly
nomial equations by radicals. Our definition of radical extension involves a slight 
cheat, which becomes evident if we ask what the expression of a root of unity looks 
like. Specifically, what does the radical expression of the primitive 1 1th root of unity 

look like? 

2'1T 2'1T t n = cos - + i sin -
1 1  1 1  

As the theory stands, the best we can offer is 

(21 . 1) 

which is not terribly satisfactory, because the obvious interpretation of -VI is 1 , not 
�1 1 . Gauss's theory of the 17-gon hints that there might be a· more impressive answer. 
In place of lJi Gauss has a marvellously complicated system of nested square roots: 

2'1T cos 17  = _!_ ( - 1 + -J17 + J 34 - 2
-Jli 

16 

+ V 68 + 12
m 

- 1 6J 34 + 2
m 

- 2(1 - m)J 34 - 2
m) 

with a similar expression for sin �;, and hence an even more impressive formula for 
r 2� · · 2� �:>17 = COS 17 l Sln 11 · 

Can something similar be done for the 1 1 th root of unity? For all roots of unity? The 
answer to both questions is "yes," and we are getting the history back to front, because 
Gauss gave that answer as part of his work on the 17  -gon. Indeed, Vandermonde came 
very close to the same answer 25 years earlier, in 177 1 ,  and in particular he managed 
to find an expression by radicals for �1 1  that is less disappointing than (21 . 1). He, in 
turn, built on the epic investigations of Lagrange. 

The technical term for this area is cyclotomy, from the Greek for circle cutting. In 
particular, pursuing Gauss's and Vandermonde's line of enquiry will lead us to some 
fascinating properties of the cyclotomic polynomial <f>d(t), which is the minimal 
polynomial over <Q of a primitive dth root of unity in C. 
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21.1 Nontrivial Radicals 
Of course, we can solve the entire problem at a stroke if we define -\1I to be the 

primitive nth root of unity 

2'1T 2'1T 
cos - + i sin' -

n n 

instead of defining it to be 1 .  In a sense, this is what Definition 15 .2 does. However, 
there is a better solution, as we shall see. What makes the above interpretation of -\1I 
unsatisfactory? Consider the typical case of �17 = �. The minimal polynomial of 
�17 is not t 17 - 1 ,  as the notation � suggests; instead, it has degree 16, being equal to 

t l6 t l5 + · · · t  1 

It would be reasonable to seek to determine the zeros of this 16th degree equation 
using radicals of degree 16  or less. But a 1 7th root seems rather out of place, especially 
since we know from Gauss that in this case (nested) square roots are enough. 

However, that is a rather special example. What about other nth roots of unity? 
When n = 2, the primitive square root of unity is - 1 .  This lies in Q, so no radicals 

are needed. 
When n 3, the primitive cube roots of unity are solutions of the quadratic 

equation 

t2 + .t + 1 = 0 

and so are of the form w, w2 where 

involving only a square root. 

1 . v'3  w = - - + z -
2 2 

When n = 4, a primitive 4th root of unity is i ,  which again can be represented 
using only a square root, since i = A. 

When n = -5 ,  we have to solve 

(21 .2) 

We know from Chapter 1 8  that any quartic can be solved by radicals ; indeed, only 
square and cube roots are required (in part because ,:(X = y'Tx). But we can do better. 
There is a standard trick that applies to equations of even degree that are palindromic
the list of coefficients is symmetric about the central term. We encountered this trick 
in Exercises 15 .4 and 15 .5 .  Express the equations in terms of a new variable 

1 
u = t + 

t 
(21 .3)  
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Then 

u2 = t2 + 2 + 3_ 
t2 

u3 = t3 + 3t + � + 3_ 
t t3 

and so on. Rewrite (21 .2) by dividing by t2 : 

which in terms of u becomes 

which is quadratic in u . Solving for u :  

-1 ± v'5 u = ---
2 

235 

Now we recover t from u by solving a second quadratic equation. From (21 :3) 

t2 - ut + 1 = 0 

so 

u ± v'u2 - 4  
t = -----

2 

Explicitly, we get four zeros: 

- t  ± vs ±  v - to - zv'S 
t = ----------

4 
(21 .4) 

with independent choices of the signs So we can express primitive 5th roots of 
unity using nothing worse than square roots. 

Continuing in this way, we can find a radical expression for a primitive 6th root of 
unity (it is -w), a primitive 7th root of unity (use the t + 1/ t  trick to reduce to a cubic), 
a primitive 8th root of unity ( 0 is one possibility, � is perhaps better), a primitive 
9th root of unity (�), and a primitive l Oth root of unity ( _,5) .  The first case that 
baffled mathematicians prior to 177 1  was, therefore, the primitive 1 1th root of unity, 
which leads to a quintic if we try the t + 1 /  t trick. But in that year, Vandermonde 
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obtained the explicit radical expression 

{u = H 1¥ ( 89 + 25v"5 - 5} -5 + 2v's + 45} -5 - zfs) 

+1¥ (s9 + 25v"5 + 5} -5 + 2v"5 - 45} -5 - zFs) 

+1¥ (s9 - Z5fs - 5} -5 + zfs - 45} -5 - zFs) 

+1� ( 89 - 25fs + 5} -5 -+ zfs + 45} -5 - zFs) ]  

Vandermonde stated that his method would work for any primitive nth root of unity, 
but he did not give a proof. That was supplied by Gauss in 1796, and it was published 
in 1801 in his Disquisitiones Arithmeticae (with a gap in the proof, see below). It is 
not known whether Gauss was aware of Vandermonde's pioneering work. 

21.2 Fifth Roots Revisited 
Before proving a version of Gauss's theorem on the representability of roots of unity 

by nontrivial radicals, it helps to have an example. We can explain Vandermonde' s 
approach in the simpler case n = 5; whe�e· explicit calculations are not too lengthy. 

As before, we want to solve 

t4 + t3 + t2 + t + 1 = 0 

by radicals .  We know that the zeros are 

�3 

where ' = cos 2; + i sin 2; . The exponents 1 ,  2, 3 , 4 can be considered as elements 
of the multiplicative group of the field Z5 • This group is of order 4, generated by the 
element 2. Indeed, modulo 5 the powers of 2 are 

2° = 1 21 = 2 22 = 4 23 = 3 (2 1 .5) 
Further, we know that 

which we write in this strange order because that is the natural ordering of the powers 
of 2, starting from 2° = 1 .  Consider (rabbit out of hat) the number 

a. I = � + i �2 - '4 - n3 
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and compute its fourth power, We find(suppressing some details) that 

. . so, squanng agam, 

ai = - 15 + 20i 

Therefore we can express o.1 by radicals : 

O'.t = � - 15 + 20i 

We can play a similar game with 

to get 

0'.3 = �- 15 - 20i 

The calculation of o.i also draws attention to 

and shows that o.� = 5, so 

Summarizing: 

o.o = � + '2 + '4 + �3 = - 1  
0'.1 = ' + i,2 - ,4 - i�3 = ,.Y- 15 + 20i 
0'.2 = ' - '2 + '4 - �3 = � 
0.3 = , - n2 - ,4 + i ,3 = � - 15 - zoi 
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T�us we find four linear equations in , , '2 , '3 , '4 . These equations are independent, 
and we can solve them. In particular, 

is equal to 

Therefore, 

t = � ( - 1  - ..rs + V...; - 1s + 20i + V...; - 1s - 20i) 
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This expression is superficially different from (21 .4) but, in fact, the two are equivalent. 
Both use nothing worse than square roots. 

This calculation is too remarkable to be mere coincidence. It must work out nicely 
because of some hidden structure. What lies behind it? 

The general idea behind Vandermonde's calculation, as isolated by Gauss , is the 
following. The multiplicative group Zj is cyclic of order 4, and the number 2 (modulo 
5) is a generator. It has order 4 in Z5. The complex number i is a primitive 4th root 
of unity, so i has order 4 in the multiplicative group of 4th roots of unity, namely, 
1 ,  i ,  - 1 ,  -i . These two facts conspire to make the algebra work. 

To see how, we apply a little Galois theory - a classic case of being wise af
ter the event. The Galois group r of Q(�) : Q has order 4, and comprises the Q
automorphisms generated by the maps 

for k = 1 ,  2, 3 ,  4. The group r is isomorphic to Zs by the map Pk 1-+ k(mod 5). 
Therefore, pz has order 4 in r, hence generates r, and r is cyclic of order 4. 

The extension is normal, since it is a splitting field for an irreducible polynomial, and 
we are working over C so the extension is separable. By the Galois correspondence, 
any rational function of � that is fixed by pz is, in fact, a rational number. 

Consider as a typical case the expression r.x1 above. Write this as 

Then 

since P4(t)4 = t. Therefore, 

so 

Thus c.xj lies in the fixed field of p2 , that is, the fixed field of r, which is Q . . .  
Hold it. 
The idea is right, but the argument has a flaw. The explicit calculation shows that 

r.xj = - 15 + 20i , which lies in Q(i), not Q. What was the mistake? The problem is 
that r.x1 is not an element of Q(t). It belongs to the larger field Q(t)(i) ,  which equals 
Q(i, t). So we have to do the Galois theory for that extension, not Q(t) : Q. 

It is fairly straightforward to do this. Since 4 and 5 are coprime, the product � = i � 
is a primitive 20th root of unity. Moreover, �5 = i , �16 = t. Therefore, Q(i, t) . = 

Q(�). Since 20 is not prime, we do not know that this group is cyclic, so we have to 
work out its structure. In fact, it is the group of units Z20 ·of the ring Z20, which is 
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isomorphic to Z2 x Z4, not Zs . By considering the tower of fields 

Q c Q(i) Q(�) 

and using the structure of Z20, it can be shown that the Galois group of Q(�) : Q(i) is 
the Z4 quotient group of Z20 generated by a Q(i)-�utomorphism ih that sends t to t2 · 

and fixes Q(i ) . We prove a more general theorem in Theorem 2 1 .3 . 
Having made the switch to Q( �), the above calculation shows that aj lies in the fixed 

field of the Galois group r(Q(�) : Q(i )). This field is Q(i), because the extension 
is normal and separable. So without doing the explicit calculations, we can see in 
advance that af must lie in Q(i). The same goes for ai , a� , and (trivially) a6 . 

21.3 Vandermonde Revisited 
Vandermonde was very competent, but a bit of a plodder; he did not follow up 

his idea in full generality, and thereby missed' a major discovery. He could well have 
anticipated Gauss, possibly even Galois, if he had found a proof that his method was 
a completely general way to express roots of unity by nontrivial radicals, instead of 
just asserting that it was. 

As preparation, we now establish Vandermonde's main point about the primitive 
1 1th roots of uriity. Any unproved assertions about Galois groups will be dealt with in 
the general case (see Section 2 1 .4 ). Let ' = t1 1 .  Vandermonde started with the identity 

and played the u = t + 1 /  t trick to reduce the problem to a quintic, but with hindsight 
this step is not necessary and, if anything, makes the idea more obscure. Introduce a 
primitive lOth root of unity a, so that at is a primitive l lOth root of unity. Consider 
the field extension Q(a') : Q, which turns out to be of degree 10, with a cyclic Galois 
group of order 10 thatis isomorphic to Zi 1 . A generator for Zj 1 is readily found and 
turns out to be the number 2, whose successive powers are 

1 ,  2 ,  4, 8 ,  5 ,  10, 9, 7 , 3 ,  6 

Therefore, r = r(Q(a,) : Q(a)) consists of the Q(B)-automorphisms Pb for k = 

1 ,  . . .  , 10, that map 

Let l be any integer, 0 < l < 9, and define 

az = t + ez tz + 82zt4 + . . .  + e9zt6 
= I:�=o eJt tzj (21 .6) 
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Consider the effect of p2 , which sends ' r+ '2 and fixes e . We have 
9 

so 

pz(CXJ) = L ejl 'zi+l = e-:1az 
j=O 

pz ( aJO) = e-IOlaJO = afO 
and aJ0 lies in the fixed field of r,  which is Q(6)). Thus there is some polynomial 
fz(6), of degree ::: 9 over Q, with 

a}0 = fz(6) 

With effort, we can compute fz(6) explicitly. Shortcuts help. At any rate, 

U[ = \f1lji5 (21 .7) 

We already know how to express e by non trivial radicals since it is a primitive 1Oth 
root of unity, so we have expressed az by radicals ; in fact, only square roots and fifth 
roots are needed, since .zy = ifJ and fifth roots of unity require only square roots. 

Finally, the 1 0  equations (21 .6) for the az can be interpreted as a system of 1 0  linear 
equations for the powers , , '2 , . • . , ' 10 over C. These equations are independent, and 
can be solved (explicitly). Indeed, using elementary properties of l Oth roots of unity 
it can be shown that 

In particular, 

' = 1
1
0 (� nz) = �� (� �) 

Thus we have expressed ,1 1  in terms of radicals, using onl� square roots and fifth 
roots. 

Vandermonde's answer also uses only square roots and fifth roots, and can be 
deduced from the above formula. Because he used a variant of the above strategy, his 
answer does not immediately look the same as ours, but it is equivalent. To go beyond 
Vandermonde, we must prove that his method works for all primitive nth roots of 
unity. This we now establish. 

21.4 The General Case 
First, we must define what we mean by a non trivial radical expression. Recall from 

Definition 1 that the radical degree of the radical.yt is n, and define the radical degree of 
a radical expression to be the maximum radical degree of the radicals that appear in it. 
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DEFINITION21.1 A numbera E <C has a nontrivial radical expression ifa belongs 
to a radical extension of Q formed by successive adjunction of kth roots, where k is 
less than or equal to the degree of the minimal polynomial of a over Q. 

This definition rules out -VI as a nontrivial radical expression for t 1 1 , but it permits 
.J=I as a nontrivial radical expression for i ,  and ,{/2 as a nontrivial radical expression 
for - well, ,ifi. 

Our aim is to prove a theorem that was effectively stated by Vandermonde and 
proved in full rigour (and greater generality, but we have to stop somewhere) by 
Gauss .  The name "Vandermonde-Gauss Theorem" is not standard, but it ought to be, 
so we shall use it. 

THEOREM 21.2 (Vandermonde-Gauss Theorem) 
For any n > 1, any nth root of unity has a nontrivial radical expression. 

The aim of this section is to prove the Vandermonde-Gauss Theorem. In fact, we 
prove something distinctly stronger (see Exercise 21 .3). We prove the theorem by 
induction on n. It is easy to see that the induction step reduces to the case where n is 
prime and the nth root of unity concerned is, therefore, primitive because if n = r s 
is composite we can write it as n = pq where p is prime, and ::1 = -\({i· 

. Let n = p be prime and focus attention on a primitive pth root of unity tp,  which 
for simplicit,y we denote by ' ·  In trigonometric terms, 

2'1T 2'1T 
' = cos - + i sin -

p p 

but we do not actually use this formula. 
We already know the minimal polynomial of ' over Q, from Lemma 19. 13 .  It is 

Let 

tP - 1 m(t) = tp-l + tP-2 + · · · + t + 1 = -

t - 1  

2'1T 2'1T a = cos + i sin --

p - 1  p - l  

be a primitive (p - 1 )th root of unity. Since p - 1  is composite (except when p = 2, 3), 
the minimal polynomial of a over Q is not equal to 

tp-l - 1 c(t) = tP-2 + tP-3 + · · · + t + 1 = --

t - 1 

but instead it is some irreducible divisor of c(t). 
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We work not with Q(t) : Q, but with Q(e, t) : Q. Since p, p - 1 are coprime, this 
extension is the same as 

Q(et) : Q 
where et is a primitive p(p - l )th root of unity. A general element of Q(et) can 
be written as a linear combination over Q(e) of the powers t ,  �2 ,  • • •  ;�P-2 .  It is 
convenient to throw in �p- l as well, but now we must always bear in mind the 
relation 1 + ' + �2 + · · . + 'p- I  = 0. 

We base the deduction on the following result, which we prove in Section 2 1 .6 to 
avoid technical distractions . 

THEOREM 21.3 
The Galois group ofQ(et) : Q(e) is cyclic of order p - 1. It comprises the Q(e)
automorphisms of the form PiU = 1 ,  2 ,  . . .  p - I} where 

Pi : t �--* '{,i 

e l--? e 

The main technical issue in proving this theorem is that although we know that 
� . '2 , . . •  , �P-2 are linearly independent over Q, we do not (yet) know that they are 
linearly independent over Q(e). Even Gauss omitted the proof of this fact from his 
discussion in the Disquisitiones Arithmeticae, but that may have beeR because to him 
it was obvious. He never published a proof of this particular fact, though he must 
have known one. So in a sense the first complete proof should probably be credited 
to Galois .  

Assuming Theorem 21 .3 ,  we can follow Vandermonde's method in complete gen
erality, using a few simple facts about roots of unity. 

PROOF OF THE VANDERMONDE-GAUSS THEOREM We prove the theo
rem by induction on n .  The cases n = 1 ,  2 are trivial since the roots of unity concerned 
are 1 ,  - 1 .  As explained above, the induction step reduces to the case wheren is prime 
and the nth root of unity concerned is, therefore, primitive. Throughout the proof it 
helps to bear in mind the above examples when n = 5, 1 1 .  0 

We write n = p to remind us that n is prime. Let � be a primitive pth root of 
unity and let e be a primitive (p - I )th root of unity as above. Then et is a primitive 
p(p - 1 )th root of unity. 

By Theorem 21 .3 , the Galois group of Q(e,) : Q is isomorphic to z;, and is thus 
cyclic of order p - 1 .  It comprises the automorphisms p j for j = 1 ,  . . .  , p - 1 .  Since 
z; is cyclic, there exists a generator a .  That is, every j E z; can be expressed as a 
power j = a1 of a .  Then Pi = p� , so Pa generates r -;- r(Q(9') : Q(e)) . 

By Theorem 21 .3 and Proposition 17. 1 8, Q(e�) :  Q(e) is normal and separable, so 
in particular the fixed field of r is Q(e) by Theorem 12 . 1  (2) .  Since Pa generates r, 
any element of Q(e') that is  fixed by Pa must lie in Q(e). 
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We construct elements fixed by Pa as follows. Define 

Ut = � + (ll �a + E)2l �a2 + . . .  + fJ(p-2)1 �ap-2 

= L;�;:� eP�ai 

for 0 < l < p - 2. Then 

Therefore, 

p-2 

Pa(Uz) = L ejl �ai+i = e-l
U[ 

j=O 

( p-1 ) _ 
(fJ

-l 
)p

-1 _ 
(
CIP-1 )

-l p-1 _ 1 . p-1 _ p-1 Pa u1 - Uz . - v u1 - u1 - u1 

so uf- 1 is fixed by Pa • hence lies in (Q(fJ). Say, 

af-1 = f3z E (Q(fJ) 

Therefore, 

Uz = p� (0 < l < p - 2) 

Recall (Exercise 2 1 .5) the following property of roots of unity: 

Therefore, from (21 .8), 

1 if l = 0 
if 1 < l < p - 2 

C = [ao + Ut + · · · «p-2] 

= 
p
�

I [ P� + P� + · · · + p-�] 

which expresses � by radicals over Q(e). 
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(21 .8) 

(2 1 .9) 

Now, e is a primitive (p 1 )th root of unity, so by induction e is a radical expression 
over Q of maximum radical degree < p - 2. (Actually we can say more: if p > 2, then 
p - 1 is even, so the maximum radical degree is max(2, (p - 1)/2). Note that when 
p = 3 we require a square root, but (p - 1 )  /2 = 1 (see Exercise 2 1 .3.) The same goes 
for each J31 since J31 is a polynomial in e with rational coefficients. Substituting the 
rational expressions in (21 .9) we see that � is a radical expression over Q of maximum 
radical degree < p - 1 .  (Again, we can improve this to max(2, (p - 1 )/2) for p > 2 
(see Exercise 2 1 .3).) 

Therefore, in particular, (21 .9) yields a nontrivial radical expression for � according 
to the definition, and the Vandermonde-Gauss Theorem is proved. 
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21.5 Cyclotomic Polynomials 
In order to fill in the technical gap we first need: 

THEOREM 21.4 

Any two primitive nth roots of unity in <C have the same minimal polynomial over Q. 

Before starting on the proof, some motivation will be useful. Consider the case 
n = 12. Let 

2'1T . . 2'1T 
t = t12 = cos 

12 
z sm 

12 
We can classify the tj according to their 'minimal power d such that td = 1 .  That is, 
we consider when they are primitive dth roots of unity. It is easy to see that in this 
case the primitive dth roots of unity are: 

d = 1  
'd = 2  
d = 3  
d = 4 
d = 6  
d =  1 2  

1 
�6(= - 1) 
,4 , '8 (= w, 002) 
�3 '  t9(= i ,  -i) 
,2 ,  t lO(= -w, _002) 
t. ,s , '7 ' , 1 1  

We can factorize t 12 - 1 by grouping correspOJ:J.ding zeros : 

t 12 - 1 = (t - l )x  
(t t6) x  
(t - t4)(t - t8) x  
(t - t3)(t - '9)x 
(t - t2)(t - tlO) x  
(t - t)(t - '5)(t - t7)(t - t 1 1 )  

which simplifies to 

where 

t 12 - 1 = (t l )(t 1)(t2 t + l )(t2 + l)(t2 - t + l )F(t) 

whose explicit form is not immediately obvious. One way to work out F(t) is to use 
trigonometry (Exercise 2 1 .4). The other is to divide t 1 2  - 1 by all the other factors, 
which leads rapidly to 
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If we let <Pd(t)  be the factor corresponding to primitive dth roots of unity, we have 
proved that 

Our computations show that every factor <P j lies in Z[t] .  In fact, it turns out that the 
factors are all irreducible over Z. This is obvious in some cases, and follows by the 
usual trick with Eisenstein's Criterion in the others (Exercise 21 . 1 1) .  This calculation 
generalizes, as the following proof (eventually) shows. 

PROOF OF THEOREM 4 Let J = ln be the set of all nth roots of unity in <C, 
primitive or not. Define a relation ,....., on J by 

where me(t) is the mimimum polynomial of c over Q!, and similarly for ma(t). It is 
clear that ,....., is an equivalence relation, so it partitions J into equivalence classes. Let 
[ c] denote the equivalence class of c E J. 

Over <C there is a factorization 

and me(t) jtn - 1 and is manic, so we must have 

me(t) = IT (t - 8) 
oEKe 

for some subset Ke c J. 
Over <C, the linear polynomial t - c divides me(t), hence t - 8 divides me(t) for all 

8 "'"' c. Therefore, the equivalence class [c] of c is contained in Ke. In fact, these sets 
must be equal, for if Ke contains any 8 i' e, then both me(t)  and m0(t) are divisible 
by t - 8. Since 8 i' c these polynomials are coprime over Q, because they are distinct 
manic irreducibles over Q!, so there exist a(t), b(t) E Q![t] such that 

a(t)me(t) + b(t)ma(t) = 1 

Then t - 8 divides a(t)me(t) b(t)ma(t) over <C, but this is 1 ,  a contradiction. 
We have, therefore, proved that 

me(t) = IT (t - 8) = m[eJ(!) 
oEKE 

say. Since the equivalence classes partition J, 

tn - 1 = IT m[e:](t) 
[e] 

(21 . 10) 
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where the mre1(t) are monic irreducible polynomials over Q. Thus (21 . 10) is the 
factorization of tn - 1 into monic irreducibles over Q, hence also (by Corollary 3 . 18  
to Gauss's Lemma) the factorization of  tn - 1 into monic irreducibles over Z. In 
particular, each m[eJ (t) lies in Z[t] . 

We claim that if p is any prime that does not divide n ,  and e E J, then e ,....., £P . 
This step, which is not at all obvious, is the heart of the proof. 

We prove the claim by contradiction. If it is false, then m[ePJ (t) :f. m[eJ (t). Define 

k(t) = m[ePJ (tP) E Z[t] 

so 

k(e) = m[eP J (€P) = 0 

Therefore, m [eJ (t) divides k(t) in Z[t], so there exists q (t) EZ[t]  such that 

m[eJ (t)q(t) = k(t) 

Reduce coefficients modulo p as  in Section 3.5. Using bars to denote images modulo 
p, 

since the Frobenius map is a monomorphism in characteristic p by Lemma 17 . 14. 
Therefore, fii[ePJ(t) and m [e](t) have a common zero in some extension field of Z P, so that 

tn - 1 = IT fii[eJ (t) 
[e) 

has a repeated zero in some extension field of Zp. By Lemma 9 . 1 3  (generalized), 
tn - and its formal derivative have a common zero. However, the formal derivative 
of tn - 1 is ;un-l and ii :f. 0 since pfn. Now 

· 

t I 

:;- (iitn-l ) - tn - = l · 
n 

so no such common zero exists (that is, iitn-l and tn - 1 are coprime). This contra
diction shows that £P ,....., e. 

It follows that eu ,....., e for every u = pi . . .  PI where the pi are primes not dividing 
n .  These u are precisely the natural numbers that are prime to n, so modulo n they 
form the group of units z: . 

For each divisor d of n ,  let Jd J be the set of all primitive dth roots of unity. 
Then 

l = U 1d 
din 

where U indicates that the union is disjoint. Clearly, 

Jd = {eu : u E Z�} 
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for any £ E Jd, because p f n implies p f J .  Therefore, if £ is a primitive dth root of 
unity, Jd c [e]. Thus if £, 8 are any two primitive dth roots of unity, then [e] n [8] =!= 
0.  But equivalence classes are either equal or disjoint, so we have a contradiction. 
Therefore, id = [e] for any £ that is a primitive dth root of unity. 

We deduce that 

<�>d(t) = II (t - a-) 
o-E]d 

is the minimal polynomial of any primitive dth root of unity. Therefore, any two 
primitive dth roots of unity have the same minimal polynomial, namely, <Pd(t), as 
��. D 

DEFINITION 21.5 The polynomial <Pd(t) is the dth cyclotomic polynomial over 
c. 

COROLLARY 21.6 

For all d E N, the polynomial <Pd(t) lies in Z[t] and is manic and irreducible. 

21.6 The Technical Lemma 
We can now fill in the technical gap in the proof of the Vandermonde-Gauss 

Theorem in Section 2 1 .4. 

THEOREM 21. 7 
Let K be the splitting field of <Pn (t) over Q. Then the Galois group ofthe extension 
K : Q is isomorphic to the group of units Z� of the ring Zn. 

PROOF The zeros of <Pn(t) in C are powers 'a of a primitive nth root of unity ,, 
where a ranges through the integers modulo n that are prime to n .  

Let o- E f(K : Q). The effect of o- i s  uniquely determine by o-(,), and both ' 
and o-(') must have the same minimal polynomial over Q, namely, <Pn(t). Therefore, 
o-(t) = 'a , where a E Z� . 

Let cr a be the map determined by a given a E Z� . By Proposition 1 1 .4 (generalized), 
o-a is a Q-automorphism of K, hence lies in the Galois group. Therefore, f(K : Q) 
consists of precisely the maps cra for a E Z� . Now 

so the map o-a 1-+ a is an isomorphism between f(K : Q) and z: . D 
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21.7 More on Cyclotomic Polynomials 
It seems a shame to stop without saying a little more about the cyclotomic polyno

mials. 
Theorem 21 .7 shows that the cyclotomic polynomial <I>n (t) is intimately associated 

with the ring Zn and its group of units z:, which we discussed briefly in Chapter 3. 
In particular, the order of this group is 

1z: 1 = <!>(n) 

where <!> is the Euler function, so Q>(n) is the number of integers a ,  with 1 < a < n - 1 ,  
such that a is prime to n .  

The most basic property of the cyclotomic polynomials i s  the identity 

tn - 1 = IT <I>n(t) 
d!n 

(21 . 1 1) 

which is a direct consequence of their definition. We can use this identity recursively 
to compute <I>n(t). Thus 

so 

which implies that 

Similarly, 

and 

<l>1 (t) = t - 1 

t2 - 1 
-- = t + 1  
t - 1. 

and so on. The following table shows the first 15 cyclotomic polynomials computed 
in this manner. A curiosity of the table is that the coefficients of <I>n always seem to 
be 0, 1 ,  or - L Is this always true? See Exercise 2 1 . 1 1 .  



n 

1 t - 1 
2 t + 1 
3 t2 t + 1 
4 t2 + 1 

Exercises 

5 t4 + t3 + t2 + t + 1 
6 t2 - t + 1 
7 t6 + t5 + t4 + t3 t2 t + 1 
8 t4 + 1 
9 t6 + t3 + 1 
10  t4 - t 3  t2 - t + 1 
1 1  t 10 + t9 + t8 + t1 + t6 + t5 t4 + t3 t2 + t + 1  
12 t4 - t2 + 1 
13 t 12 + t 1 1  + t 10 + t9 + t8 + t1 + t6 + t5 + t4 + t3 + t2 + t + 1 
14 t6 - t5 + t4 - t3 + t2 - t + 1 
15 t 8  .;_ t 7 + t5 - t4 + t3 - t + 1 

Exercises 

2 1 . 1  Prove that in the notation of Section 21 .3 ,  

21 .2 Prove that <P24(t) = t8 - t4 + 1 .  

249 

2 1 .3 Show that the zeros of the dth cyclotomic polynomial can be expressed by 
radicals of degree at most max(2, (d - 1)/2). (The 2 occurs because of the case 
d = 3.) 

2 1 .4 Use the trigonometric identities cos A cos B = ! Ccos(A + B) +  cos(A - B)) 
and the like to prove that <P12(t) is irreducible over Q. 

2 1 .5 Prove that if 6 is a (p - 1 )th root of unity, then 

1 at + a2t + . . . + a<p-2)1 = 
{ P - 1 if z = o 

. 0 tl l < l < p - 2  

2 1 .6 Prove that the coefficients of <P p(t) are all 0, 1 when p is prime. 

2 1 .7 Prove that the coefficients of <Ppk (t) are all 0, ±1 when p is prime and k > 1 .  
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21 .8 If m is odd, prove that <P2m(t) = <Pm( -t), and deduce that the coefficients of 
<I>2pk (t) are all 0, ± 1 when p is an odd prime and k > 1 .  

2 1 .9 If p ,  q are distinct odd primes, find a formula for <I>pq (t) and deduce that the 
coefficients of <I>pq (t) are all 0, 1 .  

2 1 . 10 Relate <Ppa (t) and <f>pka (t) when a ,  p are odd, p is prime, p and a are coprime, 
and k > 1 .  Deduce that if the coefficients of <Ppa(t) are all 0, ± 1 ,  so.are those 
of <P pka (t ) . 

21 . 1 1  Show that the smallest n such that the coefficients of <Pm(t) might not all be 
0, 1 is n = 105 .  If you have access to symbolic algebra software, or have an 
evening to spare, lots of paper, and are willing to be very careful checking your 
arithmetic, compute <PIOs(t) and see if some coefficient is not 0, ± 1 .  

2 1 . 1 2  Mark the following true or false. 

a. Every root of unity in CC has a nontrivial expression by radicals. 
b. A primitive 1 1th root of unity in CC can be expressed in terms of rational 

numbers using only square roots and fifth roots. 
c. Any two primitive roots of unity in <C have the same minimal polynomial 

over Q. 
d. The Galois group of <I>n(t) over Q is cyclic for all n .  

e. The Galois group of <Pn(t) over Q is abelian for all n. 
f. The coefficients of any cyclotomic polynomial are all equal to 0, ± 1 .  



Chapter 22 
Calculating Galois Groups 

In order to apply Galois theory to specific polynomials, it is necessary to compute 
the corresponding Galois group. This is far from being a simple or straightforward 
task, and until now we have strenuously avoided it. Instead, we have either studied 
special equations whose Galois group is relatively easy to find (I did say "relatively"), 
resorted to special tricks, or obtained results that require only partial knowledge of 
the Galois group. The time has now come to squarely face up to the problem. This 
chapter contains relatively complete discussions for cubic and quartic polynomials. It 
also provides a general algorithm for equations of any degree, which is of theoretical 
importance but is too cumbersome to use in practice. More practical methods do exist, 
but they go beyond the scope of this book, see Hulpke (Internet). 

22.1 Transitive Subgroups 
We know that the Galois group r(f) of a polynomial f of degree n is (isomorphic 

to) a subgroup of the symmetric group §n · In classical terminology, r(f) permutes 
the roots of the equation f (t) = 0. Renumbering the roots changes r(f) to some con
jugate subgroup of §n , so we need consider only the conjugacy classes of subgroups. 
However, §n has rather a lot of conjugacy classes of subgroups, even for moderate n 
(say n > 6). So the list of cases rapidly becomes unmanageable. 

However, if f is irreducible (which we may always assume when solving f (t) = 0), 
we can place a fairly stringent restriction on the subgroups that can occur. To state it 
we need: 

DEFINITION 22.1 Let G be a permutation group on { 1 ,  . . .  , n }. Then G is tran
sitive if for all i ,  j < n there exists "' E G such that "f{i) = j. 

Equivalently, it is enough to show that for all i ;S n there exists 'Y E G such 
that "10) = i, because then there also exists () E G such that 8(1) = j, whence 
(?>'Y-l )(i) = j. 
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Example 22.2 

1 .  The Klein four-group V is transitive on { 1 ,  2, 3 ,  4}. The element 1 is mapped to: 
1 by the identity 
2 by ( 12)(34) 
3 by ( 13)(24) 
4 by (14)(23) 

2. The cyclic group generated by a =  ( 1234) is transitive on { 1 ,  2, 3 ,  4} . In fact, ai 
maps 1 to i for i = 1 ,  2, 3 ,  4. 

3 .  The cyclic group generated by (3 = ( 123) is not transitive on { 1 ,  2, 3 ,  4}. There is 
no power of (3 that maps 1 to 4. 

PROPOSITION 22.3 
The Galois group of an irreducible polynomial f is transitive on the set of zeros of 
f. 

PROOF If a and (3 are two zeros off, then they have the same minimal polynomial, 
namely, f. By Theorem 4 and Proposition 4 there exists y in the Galois group such 
that -y( a) = (3 .  · 0 

Listing the (conjugacy classes of) transitive subgroups of §n is not as formida
ble as listing all ( conjugacy classes of) subgroups .  The transitive subgroups, up to 
conjugacy, have been classified for low values of n by Con way, Hulpke, and MacKay 
( 1998). There is only one such subgroup when n = 2, two when n = 3� and five when 
n = 4, 5 .  The magnitude of the task becomes apparent when n = 6; in this case, 
there are 1 6  transitive subgroups up to conjugacy. The number drops to seven when 
n = 7 ;  in general, prime n lead to fewer . conjugacy Classes of transitive �ubgroups 
than composite n of similar size. 

· 

22.2 Bare Hands on The Cubic 
As motivation, we begin with a cubic equation over Q, where the answer can be 

obtained by direct "bare hands" methods. Consider a cubic polynomial 

The coefficient s j are the elementary symmetric polynomials in the zeros a1 , a2 , a3 , 
as in Section 1 8 .2. If f is reducible, then the calculation of its Galois group is easy: it 
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is the trivial group, which we denote by 1 ,  if all zeros are rational, and §2 otherwise. 
Thus we may assume that f is irreducible over Q. 

Let I: be the splitting field of f,  

I: = Q(a1 , az , a3) 

By Proposition 22.3 the Galois group of f is a transitive subgroup of §3 , hence is 
either §3 or A3 . Suppose for argument's sake that it is A3 . What does this imply about 
the zeros a1 , a2 , a3 ? By the Galois correspondence, the fixed field A1 of A3 is Q. 
Now A3 consists of the identity and the two cyclic permutations ( 123) and ( 132). Any 
expression in a1 , a2 , a3 that is invariant under cyclic permutations must, therefore, 
lie in Q. Two obvious expressions of this type are 

and 

Indeed, it can, with a little effort, be shown that 

(see Exercise 22.3). In other .words, the Galois group of f is A3 if and only if <!> and 
� are rational. 

This is useful only if we can calculate <!> and $, which we now do. Because §3 
is generated by A3 together with the transposition ( 12), which interchanges <!> and 
$, it follows that both <!> $ and <!>$ are symmetric polynomials in a1 , az , a3 . By 
Theorem 1 8.8 they are, therefore, polynomials in s 1 , s2 , and s3 . We can compute these 
polynomials explicitly, as follows. We have 

Compare this with 

<!> + 41 = L afaJ 
i=f.j 

s1 s2 = (at +  <Yz + <Y3)(a1<Y2 + a2a3 + a3ai ) = L afaJ + 3<Y1a2a3 
i=f.j 

Since a1 <Yza3 = s3 , we deduce that 

Similarly, 

<!>� = aja2<Y3 + <Yi<Y3<Y1 + <Yja1a2 + <Yfa� + a�a� + a�af + 3<Yia�<Y� 

= S3 ( af + <X� + a�) + 3s; + L a; <X] 
i<j 
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Now 

so that 

Moreover, 

Therefore, 

Calculating Galois Groups 

a.D + 3 L a.fa.J 
i#j 

s� = (a. I a.z + a.2a.3 + a.3a.1 )3 

""' 3 3 3 "' 3 2 6 2 2 2 = L...t ai a.J + L ai a.Ja.k + a.1a.2a.3 
i<j i,j,k 

= L: a�o.] + 3s3 ( L: o.f<>-j) + 6s� 
l <J z#J 

L a.fa� = s� - 3s3 (s1s2 - 3s3) - 6s� 
i<j 

Putting all these together, 

Hence <!> and $ are the roots of the quadratic equation 

t2 - at + b = 0 

where 

a = s 1s2 - 3s3 
b = s3 (sf - 3st Sz + 3s3 ) + s� + 3s� - 3st s2s3 3s� 

By the formula for quadratics, this equation has rational zeros if and only if 
� a2 - 4b E Q. Direct calculation shows that 
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We denote this expression by D. ,  because it turns out to be the discriminant of f . Thus 
we have proved: 

PROPOSITION 22.4 

Let f(t) = t3 - s1 t2 s2t s3 E Q[t] be irreducible over Q. Then its Galois group 
is A3 if 

b:.. = s?si + l 8s 1s2s3 - 27sj - 4srs3 - 4s� 

is a peifect square in Q, and is §3 otherwise. 

Example 22.5 

1 .  Let f(t) = t3 + 3t + 1 .  This is irreducible, and 

SI = 0 S3 = - 1  

We find that b:.. = -27 - 4.27 = -1 35, which is not a square. Hence the Galois 
group is §3 . 

2. Let f(t) = t3 - 3t - 1 .  This is irreducible, and 

S2 = -3 

Now b:.. = 8 1 ,  which is a square. Hence the Galois group is A3 . 

22.3 The Discriminant 
More elaborate versions of the above method can be used to treat quartics or 

quintics, but in this form the calculations are very unstructured (see Exercise 22.6 for 
quartics). In this section we provide an interpretation of the expression b:.. above, and 
show that a generalization of it distinguishes between polynomials of degree n whose 
Galois groups are, or are not, contained in An . 

The definition of the discriminant generalizes to any field: 

DEFINITION 22.6 Suppose that f(t) E K(t) and let its zeros in a splitting field 
be a 1 , • • .  , <Xn. Let 

8 = IJ(a.t ' - Uj) 
i <j 

Then the discriminant D. (f) off is 
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THEOREM 22.7 
Let f E K[t], where char K =I= 2. Then 

1 .  A(/) E K. 

2. A(f) = 0 if and only if f has a multiple zero. 

3 .  A(/) is a perfect square in K if and only if the Galois group off is contained 
in the alternating group An. 

PROOF Let a E §n , acting by permutations of the ex j .  It is easy to check that if a is 
applied to o, then it changes it to ±o, the sign being if a is an even permutation and 
- if a is odd. (Indeed in many algebra texts the sign of a permutation is defined in this 
manner.) Therefore, o E A! . Further, A(/) = 82 is unchanged by any permutation 
in Sn , hence lies in K. This proves ( 1 ) .  

Part (2) follows from the definition of b.(f). 
Let G be the Galois group of f,  considered as a subgroup of §n . If A(/) is a perfect 

square in K, then o E K, so o is fixed by G. Now odd permutations change o to -8, 
and since char(K) -:f:. 2 we have o =I= -8. Therefore, all permutations in G are even; 
that is, G C  An . Conversely, if G C An, then 8 E Gt = K. Therefore, b.(f) is a 
perfect square in K. 0 

In order to apply Theorem 22.7, we must calculate b.(/) explicitly. Because it is 
a symmetric polynomial in the zeros ex j,  it must be given by some polynomial in the 
elementary symmetric polynomials sk . Brute force calculations show that if f is a 
· cubic polynomial, then 

which is precisely the expression A obtained in Proposition 22.4. Proposition 22.4 is 
thus a corollary of Theorem 22.7. 

22.4 General Algorithm · 

We now describe a method which, in principle, will compute the Galois group of 
any polynomial. The practical obstacles involved in carrying it out are considerable 
for equations of even modestly high degree, but it does have the virtue of showing 
that the problem possesses a solution. More efficient algorithms have been invented, 
but to describe them would take us too far afield. Again, see Hulpke (Internet). 

Suppose that 
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is a monic irreducible polynomial over a field K, having distinct zeros ex 1 ,  . . . , an 
in a splitting field � .  That is, we assume f is separable. The sk are the elementary 
symmetric polynomials in the ex j .  The idea is to consider not just how an element 
'Y of the Galois group G of f acts on ex 1 , • • •  , <Xn ,  but how 'Y acts on arbitrary linear 
combinations 

To make this action computable we form polynomials having zeros -y(�) as 'Y runs 
through G. To do so, define 

<Tx(�) = Xo-(l)<Xl  + · · · + Xo-(n)<Xn 

<To_(�) = XI <Xa{l ) • • • + Xn<Xo-(n) 

By rearranging terms, we see that <Ta(�) = <T_;1 (�). 
Since f has distinct zeros, <Tx 03) ;f. Tx(�) if s :f:. T. Define the polynomial 

Q = n (t - <Tx(�)) = n (t - <To_(�)) 

If we use the second expression for Q, expand in powers of t, collect like terms, and 
write all symmetric polynomials in the a j as polynomials in the sb we find that 

where the gi are explicitly computable functions of St , . . .  , sn . In particular, Q E 
K [t, XI , • . • , XnJ. 

Next we split Q into a product of irreducibles, 

in K[t ,  Xt , . . . , Xn] .  In the ring � [t ,  XI , • • •  , Xn]  we can write 

Qj = n (t - <Tx (�)) 
o-ESj 

where §n is the disjoint union of the subsets S j .  We choose the labels so that the 
identity of §n is contained in S1 , and then t -. � divides Qr in � [t,  Xt , . • .  , Xn] .  

If <T E Sn, then 

Hence <Tx permutes the irreducible factors Qj of Q. Define 
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a subgroup of §n . Then we have the following characterization of the Galois group 
of f: 

THEOREM 22.8 
The Galois group G off is isomorphic to the group G. 

PROOF The subset Sr of §n is, in fact, equal to G, because 

Define 

Sr = {rr : t - O" xJ3 divides Q I in :E [t ,  XI , • . •  , Xn]}  

= {rr : t - J3 divides rr;1 Q1 in 'E [t ,  Xt , . • .  , Xn] }  

= {rr : rr;1 Q I = QI } .  
= G  

H = II (t - O"a(J3)) = II (t - D"x (J3)) 
aeG aEG 

Clearly, H E K[t ,  x 1 , • • •  , Xn] .  Now H divides Q in :E [t ,  x 1 , • • •  , Xn] so H divides 
Q in 'E(x1 , . . . , Xn) [t] . Therefore, H divides Q in K(x1 , • • •  , Xn)[t] so that H divides 
Q in K [t ,  Xt , . . .  , Xn ] .  Thus H is a product of some of the irreducible factors Qj of 
Q. Because y - J3 divides H, we know that Q 1 is one of these factors. Therefore, Q 1 
divides H in K[t,  XI , . . .  , Xn ] so G c G .  

Conversely, if -y E G, then 

= 'Ya-1 II (t - O"x (J3)) = ')'a-l (QI ) 
aESl 

Example 22.9 
Suppose that a, J3 are the zeros of a quadratic polynomial t2 - At + B = 0, where 
A =  a +  f3 and B = o.f3. The polynomial Q takes the form 

I 

Q = (t - ax - f3y)(t - o.y - f3x) 
= t2 - t(ax + f3y + ay +  f3x) + [(o.2 + J32)xy + af3(x2 + y2)] 
= t2 - t (Ax + Ay) + [(A2 - 2B)xy + B(x2 + y2)] 

This is either irreducible or has two linear factors. The condition for irreducibility is 
that 
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is not a perfect square. But this is equal to 

which is a perfect square if and only if A 2 - 4 B is a perfect square. Thus the Galois 
group G is trivial if A2 - 4B is a perfect square, and is cyclic of order 2 if A2 - 4B 
is not a perfect square. 

Exercises 

22. 1 Let f E K [t] where char (K) f.= 2. If !l.(f) is not a perfect square in K and G 
. is the Galois group of f, show that G n An has fixed field K (8). 

22.2 Find an expression for the discriminant of a quartic polynomial. 

22.3 In the notation of Proposition 22.4, show that A� = Q(<f>, \fl) .  

22.4 Show that 5 in Definition 22.6 is given by the Vandermonde determinant (see 
Exercise 2.5) 

1 1 1 
al a2 an 
a2 1 . a2 2 a2 n 

· n- 1 al 
n- 1 a2 

n- l an 

Multiply this matrix by its transpose and take the determinant t<? show that 
.6..(/) is equal to 

where "-k = a1 + · · · + a� .  Hence, using Exercise 8.5, compute !l..(f) when f 
is of degree 2, 3 ,  or 4. Check your result is the same as that obtained previously. 

22.5* If f(t) = tn + at +  b, show that 

where f.Ln is 1 if n is a multiple of 4 and is - 1  otherwise. 
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22.6* Show that any transitive subgroup of§4 is one of §4 , A4, ID>s, V, or Z4, defined 
as follows:  

A4 = alternating group of degree 4 
V = { 1 ,  ( 12)(34), ( 1 3)(24), (14)(23)} 

ID>s = group generated by V and ( 12) 
z4 = group generated by ( 1234) 

22.7* Let f be a monic irreducible quartic polynomial over a field K of character
istic =!= 2, 3 with discriminant A.  Let g be its resolvent cubic, defined by the 
same formula that we derived for the general quartic, and let M be a splitting 
field for g. Show that: 

a. r(j) "" §4 if and only if A is not a square in K and g is irreducible over 
K. 

b. r (j) "" � if and only if A is a square in K and g is irreducible over K. 
c. r(j) "" .!0>8 .if and only if A is not a square in K, g splits over K, and f 

is irreducible over M. 
d. r(j) "' V  if and only if A is a square in K and g splits over K. 
e. r(j) :::: Z4 if and only if A is not a square in K ,  g splits over K, and f is 

reducible over M. 

22.8 Prove that { ( 123), (456) , ( 14)} generates a transitive subgroup of §6 . 

22.9 Mark the following true or false. 

a. Every nontrivial normal subgroup of §n is transitive. 
b. Every nontrivial subgroup of §n is transitive. 
c. Every transitive subgroup of §n is normal. 
d. Every transitive subgroup of §n has order divisible by n.  
e .  The Galois group of any irreducible cubic polynomial over a field of 

characteristic zero is isomorphic either to §3 or to A3 . 
f. If K is a field of characteristic zero in which every element is a perfect 

square, then the Galois group of any irreducible cubic polynomial over K 
is isomorphic to A3 . 

g. If K is a field of characteristic zero in which every element is a perfect 
square, then the Galois group of any irreducible nth degree polynomial 
over K is isomorphic to An . 



Chapter 23 
Algebraically Closed Fields 

Back to square one. 
In Chapter 2 we proved the Fundamental Theorem of Algebra using some plausible 

topological facts about winding numbers. It is possible to give an almost algebraic 
proof, in which the only extraneous information required is that every polynomial 
of odd degree over 1R has a real zero. This follows immediately from the continuity 
of polynomials over 1R and the fact that an odd degree polynomial changes sign 
somewhere between -oo and +oo. 

We now give this almost-algebraic proof, which applies to a slight generalization. 
The main property of 1R that we require is that 1R is an ordered field, with a relation 
< that satsfies the usual properties. So we start by defining an ordered field. Then 
we develop some group theory, a far-reaching generalization of Cauchy's Theorem 
due to the Norwegian mathematician Ludwig Sylow, about the existence of certain 
subgroups of prime power order in any finite group. Finally, we combine Sylow's 

, Theorem with the Galois correspondence to prove the main theorem, which we set in 
the general context of an algebraically closed field. 

23.1 Ordered Fields and Their Extensions 
The first proof of the Fundamental Theorem of Algebra was given by Gauss in 

his doctoral dissertation of 1799 under the title (in Latin) A New Proof that Every 
Rational Integral Function of One Variable can be Resolved into Real Factors of 
the First or Second Degree. Gauss was being polite in using the word "new," be
cause his was the first genuine proof. Even his proof, from the modem viewpoint, 
has gaps, but these are topological in nature and not hard to fill. In Gauss's day 
they were not considered to be gaps at all. Gauss's proof can be found in Hardy 
( 1960, p. 492). 

There are other proofs. One of a more recondite nature uses complex variable theory 
(see Titchmarsh, 1960, p. 1 1 8} and is probably the proof most commonly encountered 
in an undergraduate course. There is a proof by Clifford ( 1968, p .  20) that is almost 
entirely algebraic; the idea is to show that any irreducible polynomial over JR is of 
degree 1 or 2. The proof we shall give here is essentially due to Legendre, but his 
original proof had gaps which we fill by using Galois theory. 
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It is unreasonable to ask for a purely algebraic proof of the theorem, as the real 
numbers (and hence the complex numbers) are defined in terms of analytic concepts 
such as Cauchy sequences, Dedekind cuts, or completeness in an ordering. 

We begin by abstracting some properties of the reals. 

DEFINITION 23.1 An ordered field is a field K with a relation < such that: 

1. k < kfor all k E K. 

2. k < l and l < m  implies k < m  for all k, l, m E  K. 

3. k < l and l < k implies k = l for all k, l E  K. 

4. lfk, l E K, then either k < l or  l < k. 

5. lfk, l, m E  K and k < l, then k + m < l + m. 

6. If k, l ,  m E K and k < l and 0 < m, then km < lm. 

The relation < is an ordering on K. The relations < , > , > are defined in the obvious 
way, as are the concepts positive and negative. 

Examples of ordered fields are Q and JR. We need two simple consequences of the 
definition of an ordered field. 

LEMMA 23.2 

Let K be an ordered field. Then for any k E K we have k2 > 0. Further, the charac
teristic of K is zero. 

PROOF If k > 0, then k2 > 0 by (6). So by (3) and (4) we may assume k < 0. If 
now we had -k < 0 it would follow that 

0 = k + (-k) < k + 0 = k 

a contradiction. So -k > 0, whence k2 = ( -k )2 > 0. This proves the first statement. 
We now know that 1 = 12  > 0, so for any finite n the number 

implying that n · 1 f:. 0 and K must have characteristic 0. D 
We quote the following properties of JR. 

LEMMA 23.3 
JR, with the usual ordering, is an ordered field. Every positive element of JR has a 
square root in JR. Eve-ry odd degree polynomial over JR has a zero in JR. 
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These are all proved in any course in analysis and depend on the fact that a poly
nomial function on R is continuous. 

23.2 Sylow's Theorem 
Next, we set up the necessary group theory. Sylow's Theorem is based on the 

concept of a p-group. 

DEFINITION 23.4 Let p be a prime. A finite group G is a p-group if its order is 
a power ofp.  

For example, the dihedral group Ds i s  a 2-group. If n > 3 ,  then the symmetric 
group §n is never a p-group for any prime p.  

The p-groups have many pleasant properties (and many unpleasant ones, but we 
shall not dwell on their Dark Side). One is: 

THEOREM 23.5 
If G =/= 1 is a finite p-group, then G has nontrivial centre. 

PROOF The class equation ( 14.2) of G reads 

and Corollary 14. 12  implies that I C 1 1 = pn i for some n 1 > 0. Now p divides the 
right-hand side of the class equation so that at least p - 1 values of I C 1 I must be equal 
to 1 .  But if x lies in a conjugacy class with only one element, then g-1 xg = x for all 
g E G;  that is, gx = xg. Hence x E Z(G). Therefore, Z(G) =/= 1 .  0 

From this we easily deduce: 

LEMMA 23.6 
If G  is afinite p-group of order pn, then G has a series of normal subgroups 

1 = Go c G1  c . . . c Gn = G 

such that I GJ I = pi for all j = .0 , . . . , n . 

PROOF Use induction on n .  If n = 0, all is clear. If not, let Z = Z(G) 1= 1 by 
Theorem 23.5. Since Z is an abelian group of order pm it has an element of order p.  
The cyclic subgroup K generated by such an element has order p and is normal in 
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G since K Z. Now G/ K is a p-group of order pn-l , and by induction. there is a 
series of normal subgroups 

K/K = GtfK c · · · c Gn/K 

where !G 1 ;  Kl = pi-l . But then I G  J l  = pi and G1 <J G. If we let Go = 1 ,  the result 
��- D 

COROLLARY 23. 7 
Every finite p-group is soluble. 

PROOF The quotients G J+ 1 I G 1 of the series afforded by Lemma 23.6 are of order 
p, and hence are cyclic and, in particular, abelian. 0 

In 1 872 Sylow discovered some fundamental theorems about the existence of p
groups inside given finite groups. We shall need one of his results in this chapter. We 
state all of his results, though we shall prove only the one that we require. 

THEOREM 23.8 (Sylow) 
Let G be a finite group of order par where p is prime and does not divide r. Then 

1. G possesses at least one subgroup of order pa. 

2. All such subgroups are conjugate in G. 

3. Any p-subgroup ofG is contained in one.oforder pa. 

4. The number of subgroups of G of order pa leaves remainder 1 on division by 
p. 

This result motivates :  

DEFINITION 23.9 If G is a finite group of order par where p is prime and does 
not divide r, then a Sylow p-subgroup of G is a subgroup of G of order pa . 

In this terminology, Theorem 8 says that for finite groups Sylow p-subgroups exist 
for all primes p, are all conjugate, .are the maximal p-subgroups of G, and occur in 
numbers restricted by condition (4). 

PROOF OF 8 (PART 1) We use induction on I G 1 .  The theorem is obviously true 
for I G I  = 1 or 2. Let C1 , • • •  , Cs be the conjugacy classes of G, and let CJ = ICJ I ·  
The class equation of G is 

(23 . 1 )  
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Let Z 1 denote the centralizer in G of some element x 1 E C 1 ,  and let n 1 . = I Z 1 1 .  By 
Lemma 14. 1 1  

(23.2) 

Suppose first that some c1 is greater than 1 and not divisible by p. Then by (23.2) 
n 1 < par and is divisible by pa . Hence by induction Z 1 contains a subgroup of order 
pa . Therefore, we may assume that for all j = 1 ,  . . . , s either c 1 = 1 or p le 1 .  Let 
z = l Z (G) 1 .  As in Theorem 23.5, z is the number of values of i such that c 1 = 1 .  So 
par ·= z + kp for some integer k. Hence p divides z, and G has a nontrivial centre 
Z such that p divides IZ I .  By Lemma 14. 14, the group Z has an element of order p, 
which generates a subgroup P of G of order p. Since P c Z it follows that P <1 G. 
By induction GIP contains a subgroup SIP of order pa- I , whence S is a subgroue 
of G of order pa and the theorem is proved. U 

Example 23.10 

Let G = §4 so that I G I = 24. According to Sylow' s theorem, G must have subgroups 
of orders 3 and 8. Subgroups of order 3 are easy to find: any 3-cycle, such as ( 123) 
or ( 1 34) or (234), generates such a group. We shall find a subgroup of order 8. Let 
V be the Klein four-group, which is normal in G. Let 7 be any 2-cycle, generating 
a subgroup T of order 2. Then V n T = 1 ,  and VT is a subgroup of order 8 .  (It is 
isomorphic to [1)8 .) 

• 

Analogues of Sylow's theorem do not work as soon as we go beyond prime powers. 
Exercise 14.6 illustrates this point. 

23.3 The Algebraic Proof 
With Sylow's Theorem under our belt, all that remains is to set up a little more 

Galois-theoretic machinery. 

LEMMA 23.11 
Let K be a field of characteristic zero, such that for some prime p every finite extension 
M of K with M #- K has [M : K]  divisible by p. Then every finite extension of K has 
degree a power of p. 

PROOF Let N be a finite extension of K .  The characteristic is zero, so N :  K is 
separable. By passing to a normal closure we may assume N : K is also normal, so 
that the Galois correspondence is bijective. Let G be the Galois group of N :  K, and let 
P be a Sylow p-subgroup of G .  The fixed field pt has degree [Pt : K] equal to the 
index of P in G (Theorem 12. 1 (3)), but this is prime to p. By hypothesis, pt = K, 
so P =  G.  Then [N : K]  = I G I  = pn for some n .  0 
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THEOREM 23.12 
Let K be an ordered field in which every positive element has a square root and every 
odd-degree polynomial has a zero. Then K(i) is algebraically closed, where i 2 = 1 .  

PROOF K cannot have any extensions of finite odd degree greater than 1 .  For 
suppose [M : K] = r > 1 where r is odd. Let a. E M\K have minimal polynomial 
m.  Then am divides r ,  so is odd. By hypothesis, m has a zero in K ,  and so is reducible, 
contradicting Lemma 6. Hence every finite extension of K has even degree over K.  
The characteristic of K i s  0 by Lemma 23 .2, so by Lemma 23. 1 1  every finite extension 
of K has 2-power degree. 

Let M ::f:. K(i )  be any finite extension of K(i) where i 2 = - 1 .  By taking a normal 
closure we may assume M : K is normal, so the Galois group of M : K is a 2-group. 
Using Lemma 23.6 and the Galois correspondence, we can find an extension N of 
K(i )  of degree [N : K(i )] = 2. By the formula for solving quadratic equations, 
N = K(i)(a.) where a.2 E K(i). But if a ,  b E K,  then it can be shown, by squaring 
the right-hand side, that 

. 
. 

. la + .J a2 + b2 . . /-a + .J a2 +
. 
b2 ..j a + bz = V 2 

+ l V . 2 

where the square root of a2 + b2 is the positive one, and the signs of the other two 
square roots are chosen to make their product equal to b. The square roots exist in K 
because the elements inside them are positive, as is easily checked. 

Therefore, a. E K(i ), so that N = K(i) ,  which contradicts our assumption on N. 
Therefore, M = K(i ), and K(i)  has no finite extensions of degree > 1 .  Hence any 
irreducible polynomial over K (i) has degree 1 ,  otherwise a splitting field would have 
finite degree > 1 over K(i) .  Therefore, K(i) is algebraically closed. 0 

COROLLARY23.13 (Fundamental Theorem of Algebra) 
The field <C of complex numbers is algebraically closed. 

PROOF Put R = K in Theorem 23. 12 and use Lemma 23.3. 

Exercises 

0 

23. 1  Show that a subgroup or a quotient of a p-group is again a p-group. Show that 
an extension of a p-group by a p-group is a p-group. 

23.2 Prove that every group of order p2(with p prime) is abelian. Hence show that 
there are exactly two non-isomorphic groups of order p2 for any prime number 
p . 
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23.3 Show that a field K is algebraically closed if and only if L : K algebraic implies 
L = K. 

23 .4 Show that every algebraic extension of R is isomorphic to R : R or C : JR. 

23.5 Show that <C, with the traditional field operations, cannot be given the structure 
of an ordered field. If we allow different field operations, can the set C be given 
the structure of an ordered field? 

23.6 Prove the theorem whose statement is the title of Gauss's doctoral dissertation 
mentioned at the beginning of the chapter. ("Rational integral function" was 
his term for "polynomial.") 

23.7 Suppose that K :  Q is a finitely generated extension. Prove that there exists 
a Q-monomorphism K -+  C. (Hint: Use cardinality considerations to adjoin 
transcendental elements, and algebraic closure of C to adjoin algebraic ele
ments.) Is the theorem true for R rather than C? 

23.8 Mark the following true or false. 

a. Every soluble group is a p-group. 
b. Every Sylow subgroup of a finite group is soluble. 
c. Every simple p-group is abelian. 
d. The field A of algebraic numbers defined in Example 17.4 is algebraically 

closed. 
e. There is no ordering on C making it into an ordered field. 
f. Every ordered field has characteristic zero. 
g. Every field of characteristic zero can be ordered. 
h. In an ordered field, every square is positive. 
1. In an ordered field, every positive element is a square. 





Chapter 24 

Transcendental Numbers 

One final task awaits attention, and it will take us in a completely new direction. 
To complete the proof of the impossibility of squaring the circle, and so crown 

3000 years of mathematical effort, we must prove that 'iT is transcendental over Q. 
(In this chapter the word "transcendental" will be understood to mean transcendental 
over Q.) The proof we give is analytic, which should not be surprising since '1T is 
best defined analytically. The techniques involve symmetric polynomials integration, 
differentiation, and some manipulation of inequalities, together with a healthy lack 
of respect for apparently complicated expressions. 

It is not at all obvious that transcendental real (or complex) numbers exist. That they 
do was first proved by Liouville in 1 844, by considering the approximation of reals 
by rationals .  It transpires that algebraic numbers cannot be approximated by rationals 
with more than a certain speed (see Exercises 24.5 to 24.7). Finding a transcendental 
number reduces to finding a number that can be approximated more rapidly than the 
known bound for algebraic numbers. Liouville showed that this is the case for the 
real number 

00 

g =  _L lo-nl 
n=l 

but no naturally occurring number was proved transcendental until Charles Hermite, 
in 1 873, proved that e, the "base of natural logarithms," is. Using similar methods, 
Ferdinand Lindemann demonstrated the transcendence of 'iT in 1 882. 

Meanwhile Georg Cantor, in 1 874, had produced a revolutionary proof of the 
existence of transcendental numbers, without actually constructing any. His proof (see 
Exercises 24. 1  to 24.4) used set -theoretic methods, and was one of the earliest triumphs 
of Cantor's theory of infinite cardinals. When it first appeared, the mathematical world 
viewed it with great suspicion, but nowadays it scarcely raises an eyebrow. · 

We shall prove four theorems in this chapter. In each case the proof proceeds by 
contradiction, and the final blow is dealt by the following simple result: 

LEMMA 24.1 
Let f : Z -+ Z be a function such that f(n) -+ 0 as n -+ +oo. Then there exists 
N E Z such that f(n) = Ofor all n > N. 
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PROOF Since f(n) � 0 as n � +oo, there exists N E  Z such that l f(n) - 01 < ! 
whenever n > N for some integer N. Since f(n). is an integer, this implies that 
f(n) = 0 for n > N. 0 

24.1 Irrationality 
Lindemann's proof is ingenious and intricate. To prepare the way we shall first 

prove some simpler theorems of the same general type. These results are not needed 
for Lindemann 's proof, but familiarity with the ideas is. The first theorem was initially 
proved by Johann Heinrich Lambert in 1770 using continued fractions, although it is 
often credited to Legendre. 

THEOREM 24.2 
The real number 'IT is irrational. 

PROOF Consider the integral 

Integrating by parts, 

In = 11 
( 1  - x2t cos(ax) dx -1 

a2 In = 2n(2n - l)In-1 - 4n(n - l )In-2 
if n > 2. By induction on n,  

a2n+l In = n !(P  sin( a) + Q cos( a)) 

(24. 1 )  

(24.2) 

where P and Q are polynomials in a of degree < 2n + 1 with integer coefficients. 
The term n !  comes from the factor 2n(2n - 1 )  of (24. 1 ). 

Assume, for a contradiction, that 'IT is rational, so that 1r = ajb where a ,  b E .Z 
and b =f= O. Let a =  'IT/2 in (24.2). Then 

is an integer. By definition, 

In ...;.. ( 1  - x2)n cos -x dx 
a2n+ I  11 'IT 

.n ! -1 2 

The integrand is >0 for - 1  < x < 1 ,  so In > 0. Hence In =/= 0 for all n .  But 

l a l2n+I 
11 'IT < cos -x dx 

n !  _1 2 

< C la l2n+l / n !  
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where C is a constant. Hence In -+ 0 as n -+ +oo. This contradicts Lemma 24. 1 ,  
so the assumption that 'lT is rational is false. 0 

The next, slightly stronger, result was proved by Legendre in his Elements de 
Geometrie of 1794, which, as we remarked in the Historical Introduction, greatly 
influenced the young Galois. 

THEOREM 24.3 
The real number 'lT2 is irrational. 

PROOF Assume if possible that 'lT2 = a I b where a ,  b E Z and b ::f- 0. Define 

and 

where the superscripts indicate derivatives. We claim that any derivative of f takes 
integer values at 0 and 1 .  Recall Leibniz's rule for differentiating a product: 

dm (m ) dru dm-rv _dx_m_ (uv) - I: 
r 

-
dx

-r _dx_m ___ r 

If both factors xn or ( 1 - x )n are differentiated fewer than n times, then the value 
of the corresponding term is 0 whenever x = 0 or 1 .  If one factor is differentiated n 
or more times, then the denominator n !  is cancelled out. Hence G(O) and G(l )  are 
integers. Now 

! [G'(x) sin('lTx) - 1TG(x}cos(1Tx)] - [G"(x) + 1T2G(x)] sin('lTx) 

- bn�n+2 f(x) Sin(1TX) 

since f(x) is a polynomial in x of degree 2n, so that jC2n+l)(x) 
expression is equal to 

0. And this 

Therefore, 

'TT 11 a• sin('Trx)f(x)dx 
G'(x) sin(1Tx) 

( ) 
)] 1 ----- - G X COS(1TX 

1T 0 
G(O) + G(l) 
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which is an integer. As before, the integral is not zero, But 

which tends to 0 as n tends to +oo. The usual contradiction completes the proof. 0 

24.2 Transcendence of e 
We move on from irrationality to the far more elusive transcendence. Hermite's 

original proof was simplified by Karl Weierstrass, David Hilbert, Adolf Hurwitz, and 
Paul Gordan, and it is the simplified proof that we give here. The same holds for the 
proof of Lindemann's theorem in the next section. 

THEOREM 24.4 (Hermite) 
The real number e is transcendental. 

PROOF Assume that e is not transcendental. Then 

where without loss of generality we may suppo'se that a j E Z for all j and a0 :f. 0. 
Define 

xP-1 (x - l )P (x - 2)P . . .  (x - m)P 
f(x) = 

(p - l) l  
where p is anarbitraryprimenumber. Then f is  a polynomial inx of degreemp+ p-1 .  
Put 

F(x) = f(x)  + f'(x) + · · · + f(mp+p- I)(x) 

and note that t<mp+p)(x) = 0. We calculate: 

d dx [e-x F(x)) = e-x (F' (x )  _: F(x)] = -e-x f(x) 
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Hence for any j 

aj [-e-x F(x)]� 

aj F(O) - aje-i F(j)x 

Multiplying by ei and summing over j = 0, 1 ,  . . . . , m ,  

from the equation supposedly satisfied by e. 

m mp+p-1 

- L L aj t(i)(j) 
j=O i=O 
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(24.3) 

We claim that each J<i) (j)  is an integer, and that this integer is divisible by p unless 
j = 0 and i = p - 1 .  To establish the claim we use I.;eibniz's rule again; the only 
nonzero terms arising when j ::j:. 0 come from the factor (x - j)P being differentiated 
exactly p times. Since p !j(p - l ) l  = p, all such terms are integers divisible by p. In 
the exceptional case j = 0, the first nonzero term occurs when i = p - 1 ,  and then 

f(p- I) (O) = ( - l)P . . . ( -m)P 

Subsequent nonzero terms are all multiples of p. The value of Equation (24.3) is, 
therefore, 

Kp + ao(- l )P . . .  (-m)P 

for some K E Z. If p > max(m , l a0 1), then the integer ao(-l )P . . .  (-m)P is not 
divisible by p. So for sufficiently large primes p the value of Equation (6.3) is an 
�nteger not divisible by p,  hence not zero. 

Now we estimate the integral. If 0 < x < m, then 

· l f(x) l  < mmp+p- l /(p - 1 ) !  

so 

< � l a · ei l m 
· dx 

m 1j mp+p-l 

� J 0 (p - l)l 

which tends to 0 as p tends to +oo. 
This is the usual contradiction. Therefore, e is transcendental. D 
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24.3 Transcendence of 1T 

The proof that 7r is transcendental involves the same sort of trickery as the previous 
results, but is far more elaborate. At several points in the proof we use properties of 
symmetric polynomials from Chapter 1 8 .  

THEOREM 24.5 (Lindemann) 
The real number 7r is transcendental. 

PROOF Suppose for a contradiction that 7r is a zero of some nonzero polynomial 
over Q. Then so is i 'IT, where i = .J=T. Let 6 1  (x) E Q[x] be a polynomial with zeros 
«1 = i'IT, «2, . • .  , cxn . By a famous theorem of Euler, 

so 

(24.4) 

D 
We now construct a polynomial with integer coefficients whose zeros are the ex

ponents <X.i1 + · · · + «jr of e that appear in the expansion of the product in (24.4). For 
example, terms of the form 

give rise to exponents <X.s + <X.t . Taken over all pairs s,  t we get exponents of the 
form cx1 + «2 , • • •  , CXn-1 + cxn . The elementary symmetric polynomials of these are 
symmetric in cx1 , . . •  , «n , so by Theorem 1 8,8  they can be expressed as polynomials 
in the elementary symmetric polynomials of a 1 , • • •  , cxn . These in turn are expressible 
in terms of the coefficients of the polynomial 6 1  whose zeros are cx1 , • • . , «n · Hence 
the pairs «8 + Cit Satisfy a polynomial equation 62(X) = 0 where 62 has rational 
coefficients. Similarly, the sums of k of the a's are zeros of a polynomial ek(x) over 
Q. Then 

is a polynomial over Q whose zeros are the exponents of e in the expansion of Equation 
(24.4). Dividing by a suitable power of x and multiplying by a suitable integer we 
obtain a polynomial 6(x) over Z, whose zeros are the nonzero exponents J31 , • • •  , J3r 
of e in the expansion of Equation (24.4) .  

Now (24.4) takes the form 

e�1 + · · · + e�r + e0 + · · · e0 = 0 
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that is, 

where k E Z. The term 1 · 1 ·  · · 1 occurs in the expansion, so k > 0. 
Suppose that 

e( ) r r-1 + + X = CX CJX • • • Cr 
We know that c r :::f 0 because 0 is not a zero of e. Define 

cs xP- l [e(x)]P f(x)  = 
(p _ l ) !  

where s = r p - 1 and p i s  any prime number. Define also 

F(x) = f(x) + f'(x) + · · · + f(s+p+r-l)(x) 

and note that JCs+p+r)(x) = 0. As before, 

Hence 

e-x F(x) - F(O) = - fox 
e-Y f(y)dy 

Putting y = A.x we get 

F(x) - ex F(O) = -x [ exp[(l - A)x]f(Ax)dA 

Let x range over f3t , . . . , J3r and sum; by (24.5) 
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(24.5) 

t F(�J) + kF(O) = - t �i [ exp[(l - A.)�1] J(A�1)dA (24.6) 

We claim that for all sufficiently large p the left-hand side of (24.6) is a nonzero 
integer. To prove the claim, observe that 

r 
2:::: f(t)(J3 j ) = 0 
j=l 

if 0 < t < p. Each derivative J<t) (J3 j ) with t > p has a factor p, since we must 
differentiate [e(x) ]P  at least p times to obtain a nonzero term. For any such t ,  

r 
2:::: f(t)(J3 j) 
j=l 
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is a symmetric polynomial in the (3j of degree < s.  Thus by Theorem 18 .8 it is a 
polynomial of degree < s in the coefficients ci I c. The factor c8 in the definition of 
f (x) makes this into an integer. So for t > p, 

for suitable kr E Z. 

r 

L t<t)c(3 j )  = pk, 
j=1 

Now we look at F(O) . Computations show that { 0 (t < p - 2) 
f(t)(O) = C8Cf (t = p - 1) 

ltP (t > p) 

for suitable l1  E Z. Consequently, the left-hand side of (24.6) is 

mp + kc8cf 

for some m E Z. Now k f= 0, c #- 0, and er #- 0. If we take 

p > max(k, lc l ,  l cr l )  

then the left-hand side of (24.6) i s  an integer not divisible by p, so  i s  nonzero. 
The last part of the proof'is routine; we estimate the size of the right-hand .side of 

(24.6). Now 

where 

Therefore, 

where 

m(j) = sup !6(A.(3j) l  
O.::;A..::; l 

B = m� {
1 

exp[( 1 - /\)(3j ]dA 
1 lo 

l P i cs l lm(j) j P  B 
(p - 1 ) !  

Thus the expression tends to 0 as p tends to +oo. By the standard contradiction, 1r is 
transcendental. 
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Exercises 

The first four exercises outline Cantor's proof of the existence of transcendental 
numbers, using what are now standard results on infinite cardinals .  

24. 1 Prove that R is uncountable; that is, there is no bijection Z -+ R. 

24.2 Define the height of a polynomial 

to be 

f(t) = ao + · · · + antn E Z[t] 

h(f) = n + lao l  + · · · lan l 

Prove that there are only a finite number of polynomials over Z of given height 
h .  

24.3 Show that any algebraic number satisfies a polynomial equation over Z.  Using 
Exercise 24.2 show that the algebraic numbers form a countable set. 

24.4 Combine Exercises 24. 1 and 24.3  to show that transcendental numbers exist. 
The next three exercises give Liouville' s proof of the existence of transcendental 
numbers. 

24.5* Suppose that x is irrational and that 

f (X) = anXn 
· · · + ao = 0 

where ao , . . .  , an E Z. Show that if p,  q E Z and q =f. 0, and f(p I q )  =f. 0, then 

l f(plq) l > l lqn 

24.6* Now suppose that x - 1 < pI q < x + 1 and pI q is nearer to x than any other 
zero of f. There exists M such that l f'(y) l < M if x - 1 < . y < x l .  Use 
the mean value theorem to show that 

Hence show that for any r > n and K > 0 there exist only finitely many p and 
q such that 

l plq - x l < Kq-r 

24.7 Use this result to prove that I.:�1 10-n !  is transcendental. 

24.8 Prove that z E <C is transcendental if and only if its real part is transcendental 
or its imaginary part is transcendental. 
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24.9 Mark the following true or false. 

a. 7r is irrational. 
b. All irrational numbers are transcendental. 
c. Any rational multiple of 7r is transcendental. 
d. 7r + i VS is transcendental. 
e. e is irrational. 
f. If a and � are real and transcendental, then so is a +  fj. 
g. If a and f3 are real and transcendental, then so is a +  i fj. 
h. Transcendental numbers form a subring of C. 
1 .  The field Q(7r) i s  isomorphic to Q(t) for any indeterminate t .  

j .  Q(7r) and Q(e) are non-isomorphic fields .  
k. Q( 7r) is isomorphic to Q( �). 
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