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Next, in the potato, we have the scarcely innocent underground
stem of one of a tribe set aside for evil; having the deadly night-
shade for its queen, and including the henbane, the witch’s
mandrake, and the worst natural curse of modern civilization -
tobacco ... Examine the purple and yellow bloom of the com-
mon hedge nightshade; you will find it constructed exactly like
some of the forms of the cyclamen; and getting this clue, you
will find at last the whole poisonous and terrible group to be —
sisters of the primulas!
John Ruskin
The Queen of the Air
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PREFACE

Our aim in this text is to provide biologists and others with an
introduction to those mathematical techniques useful in taxonomy.
We hope that the text will be suitable both for undergraduates
following courses in mathematical biology and for research workers
whose interests include classification of particular organisms. The
mathematical level demanded for understanding the text has been
kept deliberately low, involving only a passing knowledge of matrix
algebra and elementary statistics.

There are already a number of books available dealing with the
topics of numerical and mathematical taxonomy, notably those of
Sneath & Sokal, and Jardine & Sibson. This text, however, is
specifically designed as an introduction to the area, and does not
claim to be as comprehensive as those just mentioned. It should,
however, serve as useful preparation for those two works.

Our thanks are due to Dr David Hand for many useful comments
on the text, and to Mrs Bertha Lakey for her careful typing of the
manuscript. Finally we would like to thank all of our colleagues at
the Institute of Psychiatry for providing a stimulating working
environment, and almost constant entertainment during the prepara-
tion of this book.

B. S. Everitt
G. Dunn
Institute of Psychiatry
London, November 1980






An introduction to the philosophy
and aims of numerical taxonomy

1.1 Introduction

Classification of organisms has been a preoccupation of
biologists since the very first biological investigations. Aristotle, for
example, built up an elaborate system for classifying the species of
the animal kingdom, which began by dividing animals into two main
groups; those having red blood, corresponding roughly to our own
vertebrates, and those lacking it, the invertebrates. He further
subdivided these two groups according to the way in which the young
are produced, whether alive, in eggs, as pupae and so on. Such
classification has always been an essential component of man’s
knowledge of the living world. If nothing else, early man must have
been able to realize that many individual objects (whether or not they
would now be classified as ‘living’) shared certain properties such as
being edible, or poisonous, or ferocious, and so on. A modern
biologist might be tempted to remark that the earliest methods of
classifying animals and plants by biologists were, like those of
prehistoric man, based upon what may now be considered super-
ficially similar features, and that although the resulting classifications
could have been useful, for example for communication, they did not
in general imply any ‘natural’ or ‘real’ affinity. However, one might
then be tempted to ask what are ‘superficially similar features’ and
what are ‘real’ or ‘natural’ classifications? Such questions and the
attempts to answer them will be discussed in later parts of this
chapter.

1.2 Systematics, classification and taxonomy

Before proceeding further it is necessary to introduce a
number of terms which will be met frequently throughout the rest
of the book. The definitions given here are intentionally brief; the
full extent of the meaning of each term will become apparent during
the remaining chapters.
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Systematics—the scientific study of the kinds and diversity of
organisms and of any and all relationships among them (Simpson,
1961).

Classification — the ordering of organisms into groups on the basis
of their relationships. The relationships may be genetic, evolutionary
(phylogenetic) or may simply refer to similarities of phenotype
(phenetic).

Taxonomy —the theory and practice of classifying organisms (Mayr,
1969). (In the last two definitions it is important to distinguish
classification, meaning the construction of classificatory systems,
from the process of placing an individual into a given group, or the
act of classifying, which is more properly referred to as identification;
see Chapter 7.)

Once an ordering of organisms has been achieved one of course
needs a means of referring to the classified groups; that is, one needs
a convenient and informative method of nomenclature. The last word
to be defined here is taxon. When one speaks of robins, lions, orchids
or yeasts one is referring to the members of distinct groups of
organisms, called taxa. A taxon is a taxonomic group of any rank
that is sufficiently distinct to be worthy of being assigned to a definite
category (Mayr, 1969). This definition implies that the delimitation
of a taxon against other taxa of the same rank is virtually always
subject to the judgement of the taxonomist.

13 The construction of taxonomic hierarchies by traditional

and numerical taxonomy : comparison of methods

In order to summarize and make sense of the diversity of
organisms the taxonomist customarily constructs a taxonomic
hierarchy in which a taxon occupies a position in a nested scheme
such as that given in Table 1.1, involving the classification of wolves,
honeybees and common wasps. The hierarchy is intended toillustrate
that different species within a given genus are more similar to one
another than to species of other genera. Similarly, genera of one
family are more similar to one another than they are to those of
different families, and so on. Wolves are clearly not very similar to
bees and wasps, but they are all classified as being members of the
animal kingdom (Animalia), implying that they share some properties
that are not characteristic of, say, members of the plant kingdom
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Table 1.1. A simple hierarchical classification

Ranks Taxa

Wolf Honeybee Wasp
Kingdom Animalia Animalia Animalia
Phylum Chordata Arthropoda Arthropoda
Class Mammalia Insecta Insecta
Order Carnivora Hymenoptera Hymenoptera
Family Canidae Apidae Vespidae
Genus Canis Apis Vespula
Species lupus mellifera vulgaris

(Plantae). In addition, wasps and bees share properties not character-
istic of wolves; that is, they are both Hymenoptera (‘having mem-
branous wings’).

Taxonomy as a quantitative sgience is concerned with the problems
of constructing such (usually) hierarchical structures, and in opera-
tion consists of essentially four separate stages. First one has to
decide on what one wishes to classify. On the assumption that one
is able to distinguish living from inanimate material (by studying
the history of science one can see that the distinction is by no means.
trivial), one could select, for example, deoxyribonucleic acid (DNA)
sequences, proteins, organisms, species, or some more complex
groups. In order to do this one has to have previous knowledge, or
a previous system of classification, or else one would not be able to
distinguish animate from inanimate objects, animals from plants, or
daisies from orchids. No modern classification occurs in the absence
of such previously formed classifications; one’s knowledge is always
built on previous experience, whether one ultimately rejects the
previous ideas or merely adds to them.

Next one decides on the choice of characters on which to base
comparisons between the taxonomic units (referred to as operational
taxonomic units, OTUs, by numerical taxonomists). Now, despite
the fact that numerical taxonomists sometimes claim that they
choose as many characters as possible (Sokal & Sneath, 1963), this
clearly cannot be true. Both the traditional taxonomist and the
numerical taxonomist are forced to make subjective decisions on
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what sort of characters to select for comparison, but while there
may, in practice, be differences in the way they choose “these
characters, the real difference between the two approaches lies in what
they then do with the resulting observations; that is, in the assessment
of similarity between units and in the use made of these similarities to
construct the final classification.

The traditional taxonomist makes intuitive or subjective decisions
concerning similarity, which, he claims, are based upon experience,
skill and perhaps insight. The numerical taxonomist, on the other
hand, bases his comparisons on an estimate of a defined measure of
similarity (see Chapter 3), which is objective in the sense that the
measure can be re-estimated by a second taxonomist using a different
set of observations; such a procedure has a further advantage in being
open to criticism in a way that an intuitive, subjective decision cannot
be.

The final stage of the four is to make decisions concerning the
classification of units on the basis of their previously assessed
similarities. Again the traditional taxonomist will base such decisions
on intuition, experience, and skill (he hopes!), whilst the numerical
taxonomist resorts to a defined set of rules within one of the many
cluster analysis techniques available (see Chapter 6). Which is the
better method ? A4 priori one cannot tell. However, there are situations
where one can quite easily decide which is the easier, or more
economical in terms of intellectual effort. For example, how does
one effectively judge similarity between amino acid sequences of
proteins without referring to a set of rules? Again, how does one
assess a gradient or gradients of properties of characters across, for
example, the British Isles, without resorting to some sort of defined
quantitative measurements? It is in such situations and in many
others that we feel that the methods of numerical taxonomy will be
more applicable or more useful than the traditional approaches
associated with the names of Linnaeus, Darwin or Mayr.

14 The philosophy of taxonomy

Consider a hypothetical situation in which one is asked to
classify individuals within each of the following groups: warblers,
hawkweeds, enteric bacteria, viruses, neolithic ceramics and rocks.
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Are the methods of classifying rocks and ceramics applicable to the
classification of living organisms? Are the methods of classifying
warblers applicable to bacteria? Most biologists would answer ‘no’
to the first question, and many would give the same answer to the
second. Why? Why do biologists often regard the classification of
living material to be something special, needing its own particular
logic or philosophy? It is not the purpose of this book to give final
answers to these questions, but some discussion is needed since the
numerical taxonomist explicitly denies that there are, or should be,
any particular methodologies specifically applicable to the classifi-
cation of the living world.

One does not have to read many textbooks on taxonomy to realize
that there is no single underlying philosophy for this field, and one
is tempted to conclude that ‘anything goes’ (Feyerabend, 1975).
Much of the controversy appears to centre around the biologist’s
concept of a species. The typical view of a ‘traditional’ taxonomist
(Simpson, 1961; Mayr, 1969) is that species (and often genera and
higher taxa) are real entities that have to be discovered or revealed
by the methods of classification. ‘... individuals do not belong in the
same taxon because they are similar, but they are similar because
they belong to the same taxon’ (Simpson, 1961). The implication of
such a view is that a particular classification is equivalent to a
scientific theory, and so could be shown to be wrong. One particular
difficulty of this belief is the necessity of producing a definition of
species which is applicable to animals, plants and micro-organisms.
Most of the traditional views concerning the definition of a species
are irrelevant when one considers bacteria and viruses. Surely, even
if one accepts the view that classification of organisms is, or should
be, different from the classification of rocks, one needs to have a
philosophy of taxonomy that will apply to all of the living world,
and not just to, say, animals.

An alternative view is that

Nature produces individuals and nothing more...species

have no actual existence in nature. They are mental concepts

and nothing more. .. species have been invented in order that

we may refer to great numbers of individuals collectively.
" (Bessey, 1908)
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Gilmour (1940) has summarized this alternative view of classifi-
cation as follows: '

The classifier experiences a vast number of sense data which
he clips together into classes...thus a class of blue things
may be made for sense data exhibiting a certain range .of
colour, and so on. .. the important point to emphasize is that
the construction of these classes is an activity of reason, and
hence, provided they are based on experienced data, such
classes can be manipulated at will to serve the purpose of the
classifier... The classification of animals and plants...is
essentially similar in principle to the classification of in-
animate objects.

This is the philosophy of the numerical taxonomist. The implica-
tion of the numerical taxonomist’s approach is that the resulting
classification can be neither right nor wrong. It is not a theory, but
merely a way of summarizing information in an intelligible form.
One assesses its value by consideration of its usefulness to other
biologists. If one accepts this view one can quite easily accept that
traditional (evolutionary) and numerical (phenetic) taxonomies can
exist side by side. One does not judge the classificatory method on
the a priori beliefs of the taxonomist, but on the usefulness of the
results, a view endorsed by Ruse (1973):

A classification is a division based on a set of rules and, for
this reason, is neither true nor false (which is what a theory
is). This is not to deny that if, for example, evolutionary
taxonomists can show that phenetic taxonomy is inferior to
evolutionary taxonomy in its ability to enable taxonomists
to summarize material or to predict things, then in this
respect phenetic taxonomy is fair game. The proof of the
pudding is in the eating, and if phenetic taxonomists cannot
deliver what they claim to be able to deliver, then they are
rightly open to criticism.

When assessing the utility of a particular approach to classification,
one always has to bear in mind the reasons for which the classification
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was made. The first important role of any system of classification is
as an aid to memory, particularly if the classification is hierarchic.
Knowing where a particular taxon comes in a hierarchical scheme
enables one to remember many of its characteristics (particularly if
the characteristics are those which were originally used to construct
the taxon concerned). The second role, very closely associated with
the first, is as an aid to prediction of properties that have not been
used to make the original classification. If, for example, one knows
that orchids have a characteristic association with saprophytic fungi
(a characteristic unlikely to have been used in the construction of
the taxon Orchidaceae), it can be predicted with reasonable confi-
dence that a plant identified as an orchid from its flower structure
will also be growing in association with a fungus. Finally, an
important function of any classification of the living world is its
explanatory power, particularly with respect to the pathways of
evolution. (This will be dealt with in greater detail in the next
section.)

One argument for classifications produced by a numerical taxo-
nomist, which fulfil these three roles at least as efficiently as those
produced using traditional methods, lies in the amount of information
utilized by each approach, the numerical taxonomist tending to use
more, and more diverse, characters on which to base his classification.
(This argument will be developed in the next chapter; see section 2.2.)

1.5 Classification and inferences concerning patterns of

evolution

Virtually all present-day biologists believe in two funda-
mental concepts pertaining to the scientific study of the living world.
The first is that of evolution through natural selection. The second
is that of a universal genetic code; that is, the concept that all of the
information required for the development of an organism is con-
tained in coded sequences of nucleotide bases in deoxyribonucleic
acid (DNA), or occasionally, as in some viruses, in ribonucleic acid
(RNA). Evolution can be thought of as either the evolution of
populations of organisms or of populations of nucleotide sequences,
or both. Individuals clearly do not evolve in the above sense since
they do not survive for more than a few years, at the most. What
can the results of taxonomy tell one about the patterns of evolution?
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Attempting to produce answers to this question is, intellectually, one
of the most interesting uses to which a classification can be put, and
it is here, perhaps, that one assesses the value of any particular
method of classification.

It is vital that the student of evolution distinguishes phenetic
relationships, which are based on the properties of organisms as they
are observed now, from phylogenetic relationships, which describe
the evolutionary pathways that have given rise to these organisms
and their properties. The most important phylogenetic relationship
is that expressed by a genealogy, and this is called a cladistic
relationship. One can also define a genomic relationship between
organisms based on the similarity of their DNA (or RNA) sequences.
Now, one can use the methods of numerical taxonomy to classify
organisms either on the basis of their phenetic relationships, or on
the basis of their genomic relationships (or both). The latter can be
obtained by the study of nucleotide sequences, or indirectly from
the amino acid sequences of proteins. Finally, one hopes to infer
phylogenetic or cladistic relationships from the resulting classifi-
cation. It makes no difference to the argument whether the phylogen-
etic relationships are inferred from the classification itself or from
the original distances or similarities; what is important is the fact
that they are always inferred from phenetic or genomic relationships.
Details of how this is done will be discussed later.

But how do the views of a zoologist such as Simpson differ from
this? He claims that, since one knows that populations have evolved
through a process of natural selection, one should assess one’s system
of classification from what is known about the past pathways of
evolution, these being inferred from the study of, say, fossil evidence.
The following statement taken from Simpson (1961) summarizes this
point of view:

It is preferable to consider evolutionary classification not as
expressing phylogeny, not even as based on it (although ina
sufficiently broad sense that is true), but as consistent with it.
A consistent evolutionary classification is one whose impli-
cations, drawn according to stated criteria of such classifi-
cation, do not contradict the classifier’s view as to the
phylogeny of the group.
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Hence the term ‘evolutionary taxonomist’. The difficulty of this
approach is the problem of assessing phylogeny independently of a
system of classification, and the argument has been rejected by
numerical taxonomists as circular (Sokal & Sneath, 1963). How
does one use fossil evidence to infer pathways of evolution without
first classifying the fossils and in some way assessing their similarity
to living organisms?

1.6 Summary
In this chapter we have discussed the general concepts of
taxonomy and the different approaches that might be considered
for constructing classificatory systems. But the reader might still ask
why classify or, perhaps more realistically, why bother to reclassify
when our interests should be directed towards much more ‘exciting’
fields such as molecular biology, developmental genetics or ecology?
Why have biologists bothered to ‘revise’ the earlier classifications of
Aristotle, Linnaeus or Darwin? We would answer that classification
is an activity essential to all scientific work, and as the needs and
knowledge of the scientist change so must the system of classification.
Molecular biologists are just as dependent on an effective method
of classification as was Mendel or Lamarck. Lack of knowledge of
properties and groupings of organisms may have serious conse-
quences for progress in particular areas, for example ecology and
microbiology, where it has been estimated that perhaps half of the
bacterial colonies on an agar plate inoculated with river water cannot
be identified to species level, even by experts (see Sneath, 1978b).
The aim of this text is to introduce certain numerical or mathe-
matical methods that have been used to help classify the biological
world. The aim of this numerical approach is to rid taxonomy of
its traditionally subjective nature and to provide objective and stable
classifications. Objective in the sense that the analysis of the same
set of organisms by the same sequence of numerical methods will
produce the same classification; stable in that the classification
remains the same under a wide variety of additions of organisms or
of new characters. Whether these criteria are always met by the
numerical methods will be the subject of discussion in later chapters,
but we hope that the examples to be discussed in the remainder of
the book will convince the reader that there are fields of taxonomy
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where numerical methods offer many advantages over the traditional
approaches. If numerical methods enable the taxonomist to explore
his data more easily, or if they can be used in situations where the
traditional methods appear to be inapplicable or inefficient (for
example in microbiology), why not use them?
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Taxonomic characters

2.1 Introduction

Any taxonomic exercise begins with the choice of OTUs to
be classified (usually organisms, but they could be, for example,
populations or possibly even proteins), and a selection of characters,
the states or forms of which are used to describe them. A character
in this context may be defined to be any property that can vary
between taxonomic units, and the possible values that it can be given
are called the states of that character. Thus, for example, ‘containing

Table 2.1. Characters for classifying micro-organisms (Sneath, 1978b)

Class of character Examples
Morphological Number of flagella

Shape of spores
Physiological Ability to grow anaerobically
Biochemical Oxidase activity

Chemical constituents
Cultural

Nutritional

Drug sensitivities
Serological

Genetic

Acid production from galactose

Presence of lysine in the cell wall

Usual appearance of colonies on a defined
medium

Ability to grow on acetate as sole carbon
source

Requirement for thiamine

Sensitivity to benzyl penicillin
Agglutination by an antiserum to a reference
culture

Presence of a specific precipitin band in a
gel filtration experiment

Percentage of GC in DNA

Ability to be transduced by a given
bacteriophage preparation

Extent of pairing with a reference sample
of DNA
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a spore’ is a character, with states ‘yes’ and ‘no’. Similarly ‘seed
length’ is a character, and ‘2.0 mm’ is one of its states. As a further
example, Table 2.1 shows the most commonly used classes of
characters in the classification of micro-organisms (see Sneath,
1978b). The choice of OTUs is a reasonably straightforward step
and usually not controversial; the choice of characters, however, is
often subject to much controversy and involves a number of difficult
problems. It is these problems that will be of central concern in the
remainder of this chapter.

22 Number of characters

Any living organism, no matter how apparently simple,
possesses a theoretically limitless number of characters which could
be used to produce a classification. In practice, of course, one is
limited in the number of characters that may be examined, simply
because of temporal or economic considerations. It therefore be-
comes of practical importance to consider how many, and what type
of characters to study. With micro-organisms, for example, it would
be considered sensible to select characters from as many of the classes
shown in Table 2.1 as possible. It is frequently suggested that at

Table 2.2. List of characters and character states used in comparisons
of populations of the red campion (Silene dioica) (Prentice, 1980)

Character Character states

1* Pedicel length
2* Calyx length

3 Calyx shape Cylindrical/constricted-cylindrical/
conical/spherical/oval
4 Calyx nerves (anastomosis) Anastomosing/not anastomosing
5 Red calyx pigment Present/absent
6 Calyx glandular hairs Absent or very sparse/present
7 Calyx hairs (straightness)  Straight/flexuous/crispate
8 Calyx hairs (stiffness) Soft
9 Calyx-tooth shape Acute/subacute/obtuse
10* Corolla diameter
11 Corolla colour 18 colour-depth categories ranging from
white to deep magenta
12 Petal dissection Indented to less than half-way/indented

to half-way or more
13 Additional petal lobes Present/absent
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14 Coronal scale colour As petals, pink/not as petals, pink/not as
petals, white

15* Petal-claw length

16* Capsule length

17 Capsule shape Globose/ovoid/pyriform/long-pyriform

18 Capsule-tooth orientation  Erect/ascending/deflexed/curled back

19 Pedicel orientation® Erect®

20* Seed length

21* Seed length/breadth ratio

22 Seed-back shape Convex/flat/concave/rounded

23* Seed-back width

24 Seed-face type Very convex/convex/flat/concave-
convex/concave

25 Seed colour From colour chart

26 Tubercle-tip colour Black/dark brown/brown/ginger/
chestnut/grey

27* Seed-plate length
28* Seed-plate length/breadth

ratio
29* Number of suture points per
plate
30* Tubercle length
31 Hylar-zone type Prominent/level/recessed
32 Seed-surface granulation Coarse/medium/fine/absent
33 Suture width Very narrow/narrow/medium/wide
34 Suture outline Sinuous/sharply-sinuous/serrate/lobate/
stellate/digitate
35 Tubercle type Prominent/level/recessed
36* Plant height
37 Stem glandular hairs Absent or very sparse/scattered/dense
38 Stem clothing* Shortly hairy/with long hairs

39 Stem-hairs (straightness)®  Straight/flexuous/crispate

40 Stem-hairs (orientation) Patent/deflexed

41 Stem-hairs (softness) Rather stiff/soft

42* Number of internodes below
inflorescence?

43* Length of lowest cauline leaf

44 Shape of lowest cauline leaf Lanceolate/ovate-acute/ovate-obtuse/

rounded

45 Leaf glandular hairs (above) Absent or very sparse/present

46 Leaf glandular hairs (below) Absent or very sparse/present

47 Proportion of shoot with  Less than half/half or more/nearly all
flowers

" Treated as quantitative.

?Invariant in present data set.

®When capsule ripe.

‘On internode in mid-stem.

¢From the ground to the lowest side-shoot bearing visible flower-buds.
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least 50, but preferably 100 or more, characters should be used to
produce a fairly stable and useful classification. However, such
recommendations appear to be based on intuition, rather than on
empirical evidence, and it might be possible in some circumstances
to achieve a stable classification using fewer characters. Certainly
the number of characters used in taxonomic studies varies widely,
as can be seen in Tables 2.2 and 2.3. The first of these shows a set
of characters that have been used to compare populations of red
campion (Silene dioica L. Clairv.) by Prentice (1980). Table 2.3 shows
a set of characters used to study variation of winged aphids (Jeffers,
1967). Possible drawbacks of selecting such a limited range of,
essentially, morphological characters as those shown in Tables 2.2
and 2.3 will be discussed later; here it is sufficient to note that they
correspond to only one of the categories of characters appearing in
Table 2.1.

23 Type of characters and coding of character states

23.1  Qualitative characters

Qualitative characters may be simple two-state, presence or
absence, features such as 4, 5, 6 and 13 of Table 2.2. For convenience
one of these states is coded as 1 and the other as O (it does not

Table 2.3. Characters selected for the study of variation of winged
aphids (Jeffers, 1967)

Charac- Description Charac- Description
ter ter
1 Body length 12 Leg length, tarsus III
2 Body width 13 Leg length, tibia III
3 Fore-wing length 14 Leg length, femur III
4 Hind-wing length 15 Rostrum (+/-)
5 Number of spiracles 16 Ovipositor (+/—)
6 Length of antennal segment I 17 Number of ovipositor
7 Length of antennal segment II spines
8 Length of antennal segment III 18 Anal fold (+/-)
9 Length of antennal segment IV 19 Number of hind-wing
10 Length of antennal segment V hooks
11 Number of antennal

spines
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matter which). There may be multistate qualitative characters, such
as coronal scale colour (character 14, Table 2.2) which is seen to
have three possible states. Again, for convenience, these may be
labelled 1, 2 and 3, but it should be remembered that the numbers
have no quantitative significance, and therefore no arithmetical
operations such as addition or multiplication, etc., ought to be
performed on them. As an alternative to the labels 1, 2 and 3, one
might wish to code the states of such a character in binary form,
perhaps along the following lines:

Coronal scale colour Binary characters
As petals, pink 1 0 0
Not as petals, pink 0 1 0
Not as petals, white 0 0 1

Suppose such a coding scheme is adopted for this character. Should
two plants coded by 100 now be regarded as having three character
states the same, or only one ? This problem will be taken up in the next
chapter, but it is interesting to note that in the present example, if one
did not distinguish between character matches on 1s and Os, then the
three-state character, ‘coronal scale colour’, would be given three
times the ‘weight’ of a simple two-state character such as ‘red calyx
pigment’ (character 5 of Table 2.2).

If, for some reason, data for a particular character are not available,
or if one wishes to prevent comparison of particular states, a code
is introduced to signify ‘no comparison’. Here ‘NC’ will be used. As
an example, consider the following binary coding for distinguishing
bacterial colonies:

smooth colonies 1 0 0
rough colonies 0 1 0
mucoid colonies 0 0 1

and an alternative
smooth colonies 1 0 0
. rough colonies NC 1 0
mucoid colonies NC NC 1
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On the assumption that two matching Os are not recorded as
indicating identical character states, and are ignored by whichever
measure of similarity is to be used (see Chapter 3), two clones with the
same colony morphology will be recorded as having one similar
character state by each of these coding methods, and none that are
different. However, clones that have different colony morphologies
will be recorded as having no similar character states and two
different ones by the first method of coding. On the other hand, the
second method will indicate no similar character states, and only a
single different one, and for this reason it might be preferred.

As a final example of the coding of qualitative character states
consider the hypothetical data presented in Table 2.4, to be used to
classify ten bacterial clones. How does one code these data sensibly?
This problem is complicated by the fact that the spore and sporangial
properties are only applicable if the bacterium sporulates. They are
secondary, rather than primary characteristics. Should they therefore
be given less ‘weight’? Again, should the character ‘colony texture’
be given more or less weight than ‘presence of spore’?

First consider ‘colony texture’ and ‘presence of spore’. These will
be coded initially as shown in Table 2.5. This seems to be quite
reasonable as long as matching Os are not counted as indicating

Table 2.4. Phenotypic characteristics of ten hypothetical bacterial
clones

Colony Presence Spore Spore Sporangial
texture of spore shape position shape
(rough/smooth/ (yes/no) (round/ (central/ (swollen/
mucoid) oval) terminal) normal)
Clone 1 Rough No NC NC NC
Clone 2 Smooth No NC NC NC
Clone 3 Smooth Yes Round  Central Swollen
Clone 4 Rough Yes Oval Terminal Swollen
Clone 5 Smooth Yes Oval Terminal Normal
Clone 6 Rough Yes Round  Central Swollen
Clone 7 Rough Yes Round  Central Normal
Clone 8 Mucoid Yes Oval Terminal Normal
Clone 9 Smooth Yes Oval Terminal Swollen

Clone 10 Mucoid No NC NC NC
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similarities. But what about the secondary characters? One might
be tempted to use the coding presented in Table 2.6. But one now
wishes to record matching Os as similarities! One way round this
problem is to split each secondary character into two binary
characters. For example:

Spore shape Binary characters
round 1 0
oval NC 1

Finally, one could, if required, weight the character ‘presence of

Table 2.5. Binary for colony texture and presence of spore

Colony texture Presence of spore
Clone 1 1 0 0 0
Clone 2 NC 1 0 0
Clone 3 NC 1 0 1
Clone 4 1 0 0 1
Clone 5 NC 1 0 1
Clone 6 1 0 0 1
Clone 7 1 0 0 1
Clone 8 NC NC 1 1
Clone 9 NC 1 0 1
Clone 10 NC NC 1 0

Table 2.6. Binary coding for morphological properties of spores and
sporangia

Spore shape Spore position  Sporangial shape

Clone 1 NC NC NC
Clone 2 NC NC NC
Clone 3 1 1 1
Clone 4 0 0 1
Clone 5 0 0 0
Clone 6 1 1 1
Clone 7 1 1 0
Clone 8 0 0 0
Clone 9 0 0 1
Clone 10 NC NC NC
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Table 2.7. Binary coding for the phenotypic characteristics listed in
Table 2.4

Spor-
Colony Presence of Spore Spore angial
texture spore shape position  shape
Clone 1 1 00 0 0 0 0 NCNC NCNC NCNC
Clone 2 NC1 0 0 0 0 0 NCNC NCNC NCNC
Clone 3 NCi1 0 1 1 1 1 1 0 1 0 1 0
Clone 4 1 00 1 11 1 NCI1 NC1 1 0
Clone 5 NC1 0 1 1 1 .1 NCI1 NC1 NC1
Clone 6 1 00 1111 10 1 0 10
Clone 7 1 00 1111 10 10 NC1
Clone 8 NCNC1 1 1 1 1 NC1 NC1 NC1
Clone 9 NCi1 0 1 1 1 1 NCI1 NC1 10
Clone 10 NCNC1 0 0 0 0 NCNC NCNC NCNC

spore’. One simple, if crude, way of doing this is by listing the
character more than once. It is listed four times in Table 2.7, which
shows the complete coding for the ten clones. It is clear that there
has now been a priori weighting of these characters. The coding
scheme has been devised deliberately to give more weight to the
character ‘presence of spore’. This might be justified with respect to.
the secondary, sporulation-associated, characters, but is rather
difficult to justify in comparison with ‘colony texture’. Many micro-
biologists, however, might be quite happy with this type of weighting,
even if they disagreed with the size of the actual weight given.
Perhaps the most important point that this example illustrates,
however, is how easy it might be for the unsuspecting taxonomist
inadvertently to give too much weight to multistate or secondary
characters. (This difficult question of character weighting will be
returned to in section 2.4.)

2.3.2  Quantitative characters

A quantitative character is one that varies from one OTU
to another in a way which may be counted or measured on an
interval scale. Examples from Table 2.2 are characters 1, 2, 10, 15,
16, and so on. Most of those in Table 2.3 are quantitative. Such
variables could be converted simply to binary characters. For
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example, consider measurements of mean bacterial cell length:

Cell lengths Binary characters
less than 0.5 um 0 0 0
0.5-14ym 0 0 1
1.5-3.0 ym 0 1 1
more than 3.0 um 1 1 1

The number of columns used is one less than the number of
increments decided upon. One will usually use a measure of similarity
that includes matched Os, and one should be aware that, as before,
this method of coding implies that this character is receiving more
weight than a simple two-state qualitative one. The increments need
not be of equal size, so, for example, if one were recording level of
resistance to drugs, exponentially increasing increments could be
used.

However, such recoding of quantitative characters as binary means
a great deal of lost information, and it is now considered preferable
to deal with the quantitative measurements directly, although one
might wish to transform the data in some way rather than use the
raw measurements themselves. For example, the continuous measure
of drug resistance, equivalent to the exponentially increasing incre-
ment mentioned above, would be the logarithm of the inhibitory
drug concentration. In many cases one might wish to standardize
quantitative measurements before using them to assess similarity,
etc. One method is ranging (see Gower, 1971), where the raw
measurement x is converted to x’ as follows:

X' = (% = Xgin)/(Xmax — Xiuin) 2.1)
where x_, and x_,, are the minimum and maximum measure-
ments obtained from the sample for the character in question.
This allows a sensible comparison of organisms when characters
differing widely in absolute value are being used. Fow example, it
would give approximately equal ‘weights’ to measurements of body
length and length of antennal segment I for the aphids whose
characters are listed in Table 2.3. The reader should be aware that this
is also a form of a priori weighting, as is the choice of units of
measurement for these quantitative characters (on the assumption
that they are not subsequently standardized).
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A further form of standardization which might be very useful in
particular situations is to adjust measurements, say length of limbs,
etc., by dividing by a measure of overall size of the organism. After
such a transformation most of the measurements will then be giving
information concerning, essentially, the shape of the organism. A
similar form of standardization for metabolic rates in micro-organ-
isms could be made. Here the measurements are adjusted with respect
to the growth rate of the culture under specified conditions so that
the resulting measurements will then contain information concerning
the pattern of metabolic processes for a particular clone.

This account should, we hope, have made the reader aware of the
problems and potential pitfalls of even the relatively simple exercise
of coding the data ready for subsequent analysis. Many of the
decisions that have to be made are perhaps just as subjective as
those made by a ‘traditional’ taxonomist. (The discussion of coding
methods here is by no means exhaustive and readers interested in
further aspects of the area are referred to Lockhart (1970) and Sneath
& Sokal (1973).)

24 Weighting of characters

The issue of character weighting has already been introduced
in an intuitive way in the previous section. Here we intend to extend
the discussion of this, at times, controversial topic.

To weight a character means to give it greater or lesser importance
than other characters when using these to produce a classification.
There are several types of character weighting, some obviously
necessary and consequently not controversial, others which cause
much discussion and often disagreement amongst taxonomists. The
first, often implicit, type of weighting occurs when one decides either
to include or to reject a character from the analysis. Since there are, in
theory, a virtually unlimited number of characters to choose from,
one has to select a subset of these on which to base the classification,
even when using a computer. The choice here is usually made on
criteria such as ease of observation, availability of material, and
experience. This type of weighting is called selection weighting. At the
same time one may decide to reject other potential characters because
they are logically correlated to previously selected characters (for
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example, the diameter of a plant stem when the circumference has
already been selected) or because they appear to be invariant, and so
on.

Apart from the inevitable procedures of selection or rejection there
are two other forms of weighting—a priori and a posteriori. The
former means that amongst the selected characters, some are
considered more important than others; for example, it might be
suggested that more reliance be placed on characters known to be
good diagnostic features in other groups, or those assumed to be
good indicators of phylogenetic relationships. This approach was
criticized by Adanson in the eighteenth century, and again in the
twentieth century by numerical taxonomists such as Sneath and
Sokal, because it presupposes a knowledge of the classification one
wants to produce before the analysis of the data. Most numerical
taxonomists argue for an equal a priori weighting of characters,
although a form of ‘statistical weighting’ of characters is sometimes
considered acceptable (see Chapter 6). However, as was seen in the
preceding section, the taxonomist using numerical methods needs
to be aware that different approaches to coding character states,
and the use of a particular similarity or distance measure (see Chapter
3), often imply subtle differences in character weighting. The real
problem with a priori weighting is perhaps not that it is logically
invalid, but that it is often very difficult to decide how to weight the
characters in practice.

After a classification has been arrived at, one may wish to be able
to identify new individuals using a diagnostic key or some form of
discriminant function analysis (see Chapter 7). Here some characters
will almost certainly be more useful than others, and so one uses a
posteriori weighting of characters in the construction of such keys.
This, however, is the last stage of the procedure, and should not
influence the formation of the taxa concerned.

2.5 Homology of characters

When one makes a decision to compare the character states
of different organisms or groups of organisms, one has to decide
whether it is valid to compare a particular feature of organism A
with a similar feature of organism B; that is, whether the two features
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or characters are homologous. Simpson (1961) has defined homology
to be ‘resemblance due to inheritance from a common ancestry’.
One would not, for example, consider the leg of a cat and the leg
of a beetle to be homologous, and the same would apply to the wing
of a bat and the wing of a butterfly. One would, however, treat the
arm of a man, the wing of a bird, and the front leg of a cat as
homologous characters. Homology is often contrasted with analogy,
resemblance due to common function. The wings of birds and
butterflies are analogous since they are both used for flying, but are
not homologous since they do not share any common ancestry.

The definition of homology given above has been the subject of
considerable dispute. For example, Jardine & Sibson (1971) make
the point that the definition is logically circular (since we can only
infer phylogeny from the classification made after the comparison
of characters) and that it also fails to provide any practical criterion
for the determination of homologies. Sneath & Sokal (1973) are also
critical of the usual definition of homology and prefer to use the
term operational homology which implies resemblance between parts
with respect to some set of properties. This leads to the idea of the
classification of characters, or primary classification, as opposed to
the classification of organisms, which may be called secondary
classification (Jardine, 1967). One decides that two characters are
homologous on the basis of resemblance measured according to
some predetermined set of rules. An example used by Sneath &
Sokal (1973) indicates how simple these rules might be in practice.
Consider two species of insect that are both black, while others in
the same genus are red. If one had no way of distinguishing the
blackness of these two species, one considers them to have the same
character state — black. Similarly, one would consider ‘red’ and ‘black’
to be states of the same character — body colour. If, however, it was
found that the colouration of these insects could be due to both
pigments and optical interference (such as iridescence), one would
subdivide this character (body colour) into two: pigmental body
colour and interference body colour.

The idea of a set of rules for indicating homology is well illustrated
by the methods of comparing amino acid or nucleotide base
sequences. Consider a hypothetical RNA fragment (where U, G, C
and A represent uracil, guanine, cytosine and adenine, respectively):
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(@) UCAGCAAUCCGU
and a second fragment:
(b) UCAGCAAUCCGUAAA

How does one decide whether these two sequences are homologous?
One possible method is the following:

1. One considers the whole sequence to be a complex character,
comprising several unit characters (the individual nuc-
leotides) which can have states U, C, A or G.

2. One aligns the sequences in all possible ways. For example:

UCAGCAAUCCGU

UCAGCAAUCCGUAAA
or
UCAGCAAUCCGU

UCAGCAAUCCGUAAA
or
UCAGCAAUCCGU
UCAGCAAUCCGUAAA
and so on.

3. For each possible alignment one counts the number of unit
characters that match in the two aligned fragments. So, for
the three alignments given above, the number of matches are
one, three and twelve, respectively.

4. One selects the alignment that maximizes the match between
sequences. If the number of matches is greater than a pre-
assigned value one decides that the sequences are
homologous.

5. Homologous unit characters (nucleotide bases) are those
opposing each other during optimum alignment.

In practice, this particular algorithm might not be adequate, es-
pecially in situations where it is thought that there might have been,
for example, internal additions or deletions of nucleotides during
the evolution of the sequences. The reader interested in a more
detailed discussion of this problem is referred to Fitch (1970).

2.6 Summary
_The important and difficult issues of the choice of characters,
the weighting of characters, and homology have been described only
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relatively briefly in this chapter. Much fuller discussions are available
in Sneath & Sokal (1973) and Jardine & Sibson (1971). However,
we will now assume that the organisms to be classified and the
characters to describe them have been selected, and that numerical
methods are required first to quantify their similarity, then to
construct the classification, and finally to produce a diagnostic key;
techniques for each of these procedures will be covered in the
remaining chapters of this text.
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The measurement of similarity

3.1 Introduction

Having recorded and coded the character states of the
operational taxonomic units (OTUs) to be investigated, the taxo-
nomist next proceeds to estimate their similarity; that is, their phenetic
relationship, resemblance, or affinity. The measure of similarity used
will depend on the types of character studied, and on the way in
which the information has been coded. The complement of the
similarity of two taxonomic units is their dissimilarity and in many
cases it will be this measure that is determined from the data. The
purpose of the present chapter is to introduce the commonly used
measures of similarity or dissimilarity and indicate in which
situations particular measures are applicable. (The term proximity
will often be used in subsequent chapters to refer to both similarity
and dissimilarity measures.)

3.2 Similarity measures for binary characters

Probably the simplest, and certainly the most common, type
of character used by taxonomists is one that can occur as one of
only two states, here designated as 1 and 0. As illustrated in Chapter
2, 1 might indicate the presence of a feature, and 0 its absence, or
1 and 0 may merely label two alternative forms of a character, such
as ‘red’ or ‘white’. If one considers any two OTUs, i and j, data for
all of the character states recorded (assuming that they are all binary
characters) can be summarized in a 2 x 2 table of counts having the
following form:

OTU i
1
1 a b a+b
OTU j
0 c d c+d
a+c b+d | p=a+b+c+d
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where p is the total number of binary characters studied, a is the
number of characters where both OTUs have the code 1, b is the
number of characters where OTU i is coded 0 and j 1, and so on. The
number of matches is a + d, and the number of mismatches is b + c.
This 2 x 2 table as used in numerical taxonomy is primarily a
convenient arrangement of the data and should not be confused
with conventional 2 x 2 tables which arise as the subject for a test
of independence (see Sokal & Sneath, 1963, Chapter 6).

Many similarity coefficients have been proposed for binary data
of this kind (see Sneath & Sokal, 1973; and Clifford & Stephenson,
1975, for extensive lists), but only two have been commonly used in
numerical taxonomy, these being the simple matching coefficient
and Jaccard’s coefficient.

3.21  The simple matching coefficient

This coefficient appears to have been introduced into
numerical taxonomy by Sokal & Michener (1958). It is defined as
follows:

a+d
p

In words, it is the ratio of the total number of matches to the total
number of characters. It ranges in value between zero, when the two
OTUs fail to match on any of the p characters, to unity, when they
match on every character. Since this coefficient involves only the
total number of matches (whether they are 1s or 0s), it is particularly
useful when it is considered that a match for Os conveys the same
amount of information as a match for 1s, as, for example, when the
1s and Os are used merely as convenient labels for two alternative
states of a character such as red and white. However, if a 1 is used
to indicate the presence of some feature and O its absence, it may
be necessary to consider alternative measures, such as Jaccard’s
coefficient, which exclude negative matches.

S,-j =

3.1)

322 Jaccard’s coefficient

This coefficient was introduced into taxonomy by Jaccard
(1908). It differs from the simple matching coefficient by excluding
the number of ‘negative’ matches but like the latter it ranges in value
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from zero to unity. The coefficient is defined as follows:

s o8
Y a+b+c

In words, it is the ratio of the number of positive matches to the total
number of characters minus the number of negative matches. The
decision to include or exclude the number of matched Os, that is d,
is a difficult and, at times, a contentious one. In some situations it
would be improper to neglect conjoint absences when estimating
similarity, in others it would seem ridiculous to regard two taxa as
similar largely on the basis of their both lacking some feature.
(However, even if it were clearly justified to exclude some of the
negative matches, it might be rather difficult to justify excluding
them all; in part this can be overcome by the way the individual
characters are coded by the taxonomist ; see Chapter 2.) The following
example from Sokal & Sneath (1963) illustrates some of the difficulties
over the appropriate way to deal with negative matches when
estimating similarity.

(32)

The absence of wings, when observed among a group of
distantly related organisms (such as a camel, louse and
nematode), would surely be an absurd indication of affinity.
Yet a positive character such as the presence of wings (or
flying organs defined without qualifications as to kind of
wing) could mislead equally when considered for a similarly
heterogeneous assemblage (for example, bat, heron and
dragonfly). Neither can we argue that absence of a character
may be due to a multitude of causes and that matched
absence in a pair of OTUs is therefore not ‘true resemblance’,
for, after all, we know little more about the origins of
matched positive characters.

Such comments imply that each particular application must be
considered on its merits and that no absolute statement can be made
on whether or not to include ‘negative’ matches, although Sokal &
Sneath (1963) suggest that a reasonable and logically defensible
position appears to be the inclusion of positive and negative matches
for those characters which vary within the group under study.
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Table 3.1. Hypothetical data set for four
OTUs on five binary characters

Character
1 2 3 4 5

OTU

W=
(=
OO
OO0
[l = = =]
——O

To assist readers to familiarize themselves with these coefficients
generally and to illustrate differences between the simple matching
coefficient and Jaccard’s coefficient, the two coefficients will be
calculated for the data shown in Table 3.1 which represents four
OTUs scored on each of five binary characters. By calculating a
particular coefficient for each pair of OTUs shown in this table we
arrive at the similarity matrix for the set of OTUs. Each entry in
such a matrix shows the similarity between one pair of OTUs. The
similarity matrices for the simple matching coefficient and for
Jaccard’s coefficient calculated on these data are given in Table 3.2.
(Two points to note about these similarity matrices are, first, that
self-similarities are unity, and secondly, that the matrices are
symmetric since the similarity between OTUs i and j is the same as
the similarity between j and i).

Examination of the entries in the two matrices indicates that the
two similarity coefficients can take quite different values for the same

Table 3.2. Similarity coefficients obtained from data in Table 3.1

Simple matching coefficient Jaccard’s coefficient
similarity matrix similarity matrix
oTU 1 2 3 4 OTU 1 2 3 4
1 1.0 1 1.0
2 06 1.0 2 0.33 1.0
3 08 04 10 3 0.75 0.25 1.0
4 04 04 02 10 4 0.25 0.0 02 10
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pair of OTUs. This would be relatively unimportant if the coefficients
were jointly monotonic, in the sense that if all OTU pairs for one of
the coefficients were ordered so that their similarity values formed
a monotonic series (that is, a series that either increases or decreases
over the whole of its length), then those for the other coefficient also
formed such a series. (Such joint monotonicity is a useful property
since it would ensure that identical classifications of the OTUs would
be obtained from either coefficient when certain clustering methods
were used; see Chapter 6.) However, joint monotonicity is the
exception rather than the rule for similarity coefficients and this can
be illustrated with the similarities calculated above. Ordering the
simple matching coefficient values to form a monotonically increas-
ing series we have:

OTU pair 34 24 14 23 1,2 1,3
Simple matching coefficient 0.2 04 04 04 06 0.8

but taking Jaccard’s coefficient for the same pairs gives:

Jaccard’s coefficient 0.2 0.0 0.250.250.330.75

which is not monotonically increasing. The lack of this property for
many similarity coefficients again implies that careful consideration
must be given to the choice of coefficient to be used in any application,
since different coefficients will in many cases lead to different final
classifications. (Sneath & Sokal (1973) do, however, indicate the
possible argument that different coefficients should lead to different
taxonomic structures, for it can be shown that different coefficients
estimate different aspects of the taxonomic relationship.)

33 Similarity measures for qualitative characters having more
than two states
The measurement of similarity for data involving qualitative
characters with more than two states can be handled by extending
in an obvious way the coefficients for binary characters described
in the previous section. For example, suppose two OTUs are scored
on five characters each of which can take on four states 4, B, C, D,
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with the following results:

Character

1 2 3 4 5
OTU1 A B C€C D C
OTU2 A C D D B

The simple matching coefficient for these two OTUs would be given,
as before, by (number of matches)/(number of characters), so taking
the value 0.4. :

However, with this approach no allowance is made for the
possibility that a match in a four-state character is less likely than
in a two-state character. A more elaborate treatment of qualitative
characters with more than two states which considers the probability
of a given match taking place is given by Smirnov (1960, 1969). He
suggests that the similarity based upon any one character is weighted
as a function of the probability of the simultaneous occurrence of
such a character state in two separate OTUs; if these OTUs share
a rare character state, this is given large weight; if, however, they
share a commonly occurring state, then this is given lower weight.
Although this idea of weighting characters on the basis of their
rareness of occurrence has a certain attraction, it has been criticised
on various grounds by Sneath & Sokal (1973) and they do not
recommend Smirnov’s coefficient for use in numerical taxonomy.
An alternative, and perhaps more straightforward, way of solving
this problem is to code the data as several binary characters (see
Chapter 2).

34 Similarity measures for quantitative characters

Quantitative characters such as length or diameter could
be dealt with by simply converting them to binary characters. For
example, one could take length ‘less than 2 cm’ as one state, and
length ‘greater than 2 cmy’, as the other. Such a procedure obviously
entails a loss of information and one might perhaps prefer to consider
similarity measures not requiring this conversion. One such measure
which has been widely used is equivalent in form to Pearson’s product
moment correlation coefficient; however, its use in the context of
numerical taxonomy is far more contentious than its relatively
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non-controversial role in assessing the linear relationship between
pairs of variables such as height and weight. When used as a measure
of similarity for two OTUs its calculation involves averaging over
the states of different quantitative characters to produce an ‘average
character state’ for each OTU. Jardine & Sibson (1971) remark that
such a procedure is ‘absurd’.

It has often been suggested that the correlation coefficient will be
a useful measure of similarity in those situations where absolute size
alone is regarded as less important than shape. Thus, in classifying
plants and animals, the absolute sizes of the organisms or their parts
are often of less importance than their shapes, and in such cases the
investigator requires a similarity coefficient which will take the value
unity whenever the set of character-state values describing two OTUs
are parallel, irrespective of how far apart they are; for example, the
following sets of scores are parallel in this sense:

OTU1 10 5 15 3 20
OTU2 15 10 20 8 25
OTU3 30 25 35 23 40

The correlation coefficient meets this requirement (it takes the value
unity for each pair of OTUs in the above example); unfortunately,
the converse is not true since the correlation may take the value one
even when the two sets of values are not parallel. All that is required
for perfect correlation is that one set of scores be linearly related to
the second set (see Fleiss & Zubin, 1969, for an example).

Because of these points, and others made by Eades (1965) and
Minkoff (1965), the correlation coefficient used as a measure of
similarity must be regarded as unsatisfactory.

35 Measures of dissimilarity and distance

As mentioned in the introduction of this chapter, similarity
and dissimilarity are mutually dependent terms. Given any similarity
measure, s, the corresponding dissimilarity might simply be defined
as 1 —s, so that identical OTUs would have similarity unity and
dissimilarity zero. A number of dissimilarity measures arise, however,
that have no direct counterpart in the similarity measures discussed
in the previous sections, and these will be described here. A number



32 Measurement of similarity

of these satisfy a set of mathematical properties which make. them
particularly attractive. Designating the dissimilarity between OTU
i and OTU j as d,;, these properties are as follows:

(a) Symmetry:
d;j=d;20 3.3)

That is, the dissimilarity between i and j is independent of
the direction in which it is measured, and must be positive
provided the two OTUs are not coincident.

(b) Distinguishability of non-identicals:
if d;j# 0 theni#j 34

That is, d;; will take some non-zero value if i and j are not
the same OTU.

(c) Indistinguishability of identicals: Given two identical OTUs i
and j, the dissimilarity d;; is zero; in particular

d;=0 (3.5)

@ ﬁiarigular inequality: Given three OTUs i, j and k, the
dissimilarities between them satisfy the inequality

dy <d;+d, (3.6)

The triangular inequality is also known as the metric inequality, and
dissimilarity coefficients satisfying the above properties are known
as metrics and generally referred to as distances rather than
dissimilarities.

The most familiar metric is, of course, Euclidean; it is familiar
because we live in a locally Euclidean universe and this tends to
give it advantages in numerical taxonomy, where it is very widely
used, because our daily experience gives us an intuitive grasp of
Euclidean distances and thereby enables us to grasp their properties
without difficulty. For a simple, two-character example, consider
Figure 3.1(a). From Pythagoras’ theorem it is clear that the Euclidean
distance between OTU i and OTU j is given by the following
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expression: 4
du = [(xja —x)% + (e — xib)z] (3.7

This expression is easily generalised to the situation where there
are p characters observed on each OTU:

p s
dj;= [kzl (e — xjk)z] (38)
Such an expression arises from assuming that the p characters are
represented by p orthogonal axes (i.e. axes at right angles to.each
other). However, in practice, because of the correlation of character
states, this assumption will not be justified and the Euclidean distance
will be a poor measure of the actual distance between OTUs i and
j- (See Figure 3.1(b) for a two-dimensional example.) This problem
can be overcome either by using oblique coordinate axes and a
measure such as Mahalanobis’ generalised distance (see later) or by
transforming to principal component axes (see Chapter 4).

Since d;; increases with the number of characters some authors
recommend computing an average distance obtained from

d; = /(d%/p) (39)
For binary characters this average Euclidean distance is simply
(1—sf where s is the simple matching coefficient described in
section 3.2. For quantitative characters, Euclidean distance cal-
culated directly on the raw data may make little sense where the
characters have different scales. For example, suppose that three
OTU:s A, B and C have each been measured on the two characters,
weight (in pounds) and height (in feet), with the following results:

Weight (Ib) Height (ft)
A 60 3.0
B 65 3.5
C 63 40

The squared Euclidean distances are as follows:
d3p = (60 — 65)* + (3.0 — 3.5)* = 25.25
d%c = (60 — 63) + (3.0 — 4.0)> = 10.00
| do = (65— 632 +(3.5—40) = 425
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However, if height had been measured in inches these squared
distances become
di, =61 di. =153 di. =40

OTU A4 is now closer to OTU B than to C. Therefore, even when
all the characters are uniquely determined except for scale changes,
Euclidean distance will not even preserve distance rankings. Because
of this, and despite other problems with such transformations (see
Fleiss & Zubin, 1969), characters should be standardized before
calculating Euclidean distances. By this is meant expressing each
state in standard deviation units. For example, in the data used

Figure 3.1. Examples of (a) the appropriate use of. Euclidean
distance, i.e. orthogonal axes, and (b) the inappropriate use of
Euclidean distance, i.e. non-orthogonal axes.
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above the Euclidean distances would be _calculated not from the raw
data but from the values

Standardized weight Standardized height

A : 2381 6.0
B 25.79 7.0
C 25.00 8.0

calculated by dividing each column of values by the standard
deviation of the three character values.

Penrose (1954) has suggested dividing the Euclidean distance
coefficient into two parts, a coefficient of ‘size’ and a coefficient of
‘shape’, using the following relationship

;= (p—1)C% + pC} (3.10)

where d, is the square of the Euclidean distance between OTUs i and
j» CZ is the proposed ‘shape’ coefficient given by

1 p 1 p 2
C% =— Z (i — xjk)z - -1 [,‘gl (e — xjk)]

p—1,=4
(3.11)
and the proposed size coefficient C2 is simply
2 l < 2
Co= —z[ % Oop— x,k)] (3.12)
P"Li=1

The shape coefficient, C2, looks formidable but is essentially nothing
more than the variance of the differences in the character states of
the OTUs being compared. It is likely to be large when considerable
discrepancy in the magnitude of the differences occurs, including a
mixture of positive, negative and negligible terms.

The size coefficient, Cg, will be large when the character states
of the two OTUs are quite different in magnitude, and the differences
are largely in one direction. For example, a large C3 value would
arise if one OTU was very similar to another but much larger along
most of the character scales. (Sneath (1968) has introduced a similar
coefficient to allow for differing growth rates of microbial cultures
during the measurement of metabolic rates.)

In many studies in numerical taxonomy this partition into size
and shape coefficients may not be of great importance, but it may
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be useful in a minority of investigations which involve comparing
organisms of widely different sizes. However, it should be mentioned
that in such situations Rohlf & Sokal (1965) have found Pearson’s
product moment correlation coefficient (see section 3.4) a more
satisfactory measure of the similarity in shape of two OTUs.

Although Euclidean distance has been the dissimilarity measure
most widely used in numerical taxonomy, as we shall illustrate by
examples given in later chapters, a number of other measures have
been employed in particular applications. One such measure is the
absolute or city-block metric given by

P
d;= Zx Pea — Xl (3.13)
k=

(When divided by the number of characters this measure is also
known as the mean character difference; see Cain & Harrison (1958).)
This has been used in anthropology by Czekanowski (1909, 1932),
and by Haltenorth (1937) in a study of eight species of the large cats.
Carmichael & Sneath (1969) also prefer this coefficient to Euclidean
distance in their TAXMAP clustering procedure.

The rationale given by these authors for the use of this metric is
that when, for example, two OTUs are specified by two characters
whose scale units are of equal value they should be regarded as
being the same distance apart whether (a) they are two units apart
on each variable or (b) they are one unit apart on one variable and
three units apart on the other. The use of the city-block metric
satisfies this requirement, although one might argue that the require-
ment in many situations is not particularly convincing (but see
below). The city-block metric certainly has the advantage of sim-
plicity when compared with the Euclidean distance, although this
is of little consequence when computers are used to calculate the
dissimilarity or distance matrix. It has disadvantages when compared
with Euclidean distance, the main one being its lack of invariance
under rotations of the character space. This has serious implications
for the interpretation of the results of ordination, as will be seen in
the next chapter.

For an example of a situation where the city-block metric is the
obvious measure of distance to use, consider the comparison of
amino acid sequences in homologous proteins. Given below are the
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sequences of the last eight amino acids of cytochrome ¢ from man,
dog, and chicken:

Man Tyr Leu Lys Lys Ala Thr Asn Glu
Dog Tyr Leu Lys Lys Ala Thr Lys Glu
Chicken Tyr Leu Lys Asp Ala Thr Ser Lys

One way of measuring the distance between any two sequences is
simply to count the number of non-matching amino acids. The
distances calculated in this way for these three sequences are given
in Table 3.4(a). Remembering that each amino acid is coded by a
nucleotide triplet, one can calculate a mutation distance between two
sequences, defined as the minimal number of nucleotides that would
need to be altered in order for the gene for one sequence to code
for the other (Fitch & Margoliash, 1967). The distances for the above

Table 3.3. Mutation values for amino acid pairs

ACEFGHILMNOPQ

Asparticacid (A) 02221 213
Cysteine (C) 02 323
Threonine (E) 0
Phenylalanine (F)
Glutamic acid (G)
Histidine (H)
Lysine (I)

Alanine (L)
Methionine (M)
Asparagine (N)
Tyrosine (O)
Proline (P)
Glutamine (Q)
Arginine (R)
Serine (S)
Tryptophan (T)
Leucine (U)
Valine (V)
Isoleucine (W)
Glycine (Y)

[ 8]
[ 8]

ON =

3
2
3
0

SN NNN =
O N = W=
O NN = N =
ON = WN N =
O NN =t N N = N
O WRNN =N =N ==
CONNN=N=NDN=N
O NN === W W
O NN === |
O N = == NN === |
O = NNNWNNNWRONNE=W |-
O == =N~ =ND=NDNON (&
(=R SESESESESNSESE S N SN SR SN S N B
O = WENWRN == RDNNWE==NDN 2
CRNRNFEEERNNNNNESRON=NN ==

Each value is the number of nucleotides that would need to be changed in
order to convert a codon for one amino acid into a codon for another. The
table is symmetrical about the diagonal of zeros. Letters across the top
represent the amino acids in the same order as in the first column. From Fitch
& Margoliash (1967).
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Table 3.4. Distance measurements between man, dog and chicken,
based on the sequence of the last eight amino acids of cytochrome c

(a) City-block metric, based on distances of unity between differing
homologous amino acids

Man Dog Chicken

Man 0 1 3
Dog 1 0 3
Chicken 3 3 0

(b) City-block matric, based on minimum mutation values (see Table 3.3)
between differing homologous amino acids

Man Dog Chicken

Man 0 1 4
Dog 1 0 5
Chicken 4 5 0

(c) Euclidean distance, based on the simple matching coefficient
Man Dog Chicken

Man 0 Vi V3
Dog Jiooo Vi
Chicken V3 V3 0

Note that (c) is jointly monotonic with (), and that it would be with (b) if one
were comparing nucleotide, rather than amino acid, sequences.

three sequences are given in Table 3.4(b). For each pair of amino acids
a mutation value is taken from Table 3.3 which gives the minimum
number of nucleotide changes required to convert the coding from
one amino acid to the other. So, for example, if one wishes to
determine the mutation value for glutamic acid and lysine, one notes
that the codons for glutamic acid are GAA and GAG and those for
lysine are AAA and AAG. The minimum number of nucleotide
changes required to convert the codon from one to the other is 1; that
is, one can either change from GAA to AAA or from GAG to AAG (or
vice versa). If one were comparing nucleotide sequences in DNA, the
mutation distance between any two sequences would be the number
of non-matching nucleotides. If one considers each amino acid (or
nucleotide) position as a separate character, it is not difficult to see
why the above measurements of distance are logically equivalent to
the city block metric. It is also intuitively satisfying to equate a
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mutation value of, say, 2 at one position with values of 1 at two other
positions.

Further distance measures might be derived from the similarity
measures described in section 3.2, The simple transformation, 1 — s,
has already been mentioned, but there are others that would be
considered more attractive because of their metric properties. Gower
(1966), for example, has shown that (1 —s,)! and (1 —sj)*, where
s,, is the simple matching coefficient and s; is Jaccard’s coefficient,
are both Euclidean distances. See Table 3.4(c) for the distances
between the above amino acid sequences, calculated using the simple
matching coefficient.

3.6 Gower’s similarity coefficient

 In many applications of numerical taxonomy the OTUs will
be described by a mixture of binary characters, qualitative characters
with more than two states, and quantitative characters. In such cases
a particularly useful measure of similarity is that proposed by Gower
(1971) which is defined as follows:

P P
Sy= 2 Sin / Wijk (3.19)
k=1 k=1
The weight w,;, is set equal to 1 or 0 depending on whether the
comparison of OTUs i and j is considered valid for character k and,
except for the case of dichotomous characters, this weight can only
be zero when character k is unknown for one or both OTUs. With
dichotomous variables w;;, is also set to zero when character k is
known to be absent from both OTUs. Whenever w;;, = 0, then s,
is set equal to zero, and if w;; = 0 for all characters, s;; is undefined.

(@) Binary or dichotomous characters. The scores and weights for
this type of data are as follows:

Individual i + + - -
Individual j + - + -
Score s, 1 0 0 0
Weight w,;, 1 1 1 0

~ If all characters were of this type, Gower’s coefficient is
simply Jaccard’s coefficient as described in section 3.2.
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(b) Qualitative characters with more than two states. In this case

s;x = 1 if the two individuals i and j are the same for the kth
character and zero if they differ. The number of states in the
character is not taken into account, and for this type of data
Gower’s coefficient is equivalent to the simple matching
coefficient discussed earlier.

(¢) Quantitative data. In this case

Sijp = 1 — Ixg — xpl/Ry (3.15)

where x,, is the value for OTU i on character k, and R,is the
range of the character values obtained either from a know-
ledge of the total range of the character in the relevant
population, or as observed in the sample of OTUs under
investigation. Here s;; will equal one when the character
states of the two OTUs are identical and will be zero when
these span the extremes of the range of character k. If all
characters were of this type Gower’s coefficient would
essentially be equivalent to the complement of the absolute
distance measure discussed in the previous section.

To illustrate the calculation of Gower’s similarity coefficient, data
from four hypothetical bacterial clones (See Table 3.5) will be
analysed. First consider the similarity between clones 1 and 2. Taking
the characters in the order that they appear in the table:

_ 14+(1-0.3/0.5)+(1—-13/40)+0+0
- 1+14+14+1+1

S12

=041

Table 3.5. Phenotypic properties of four hypothetical bacterial clones

Presence of Meancell GCin Colony Colony

spores diameter DNA (%) morphology colour
(um)
Clone 1 + 1.0 57 smooth brown
Clone 2 + 0.7 70 rough white
Clone 3 - 0.5 30 mucoid yellow
Clone 4 - 0.7 40 smooth yellow
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Now consider clones 3 and 4:

S34

_0+(1—02/0.5)+ (1 — 10/40) + 0 + 1
- O+1+1+1+1

=0.59

The full similarity matrix is as follows:

Clone
1 2 3 4

Clone

3.7

measurement of similarity and distance between individuals, whether

S W -

1 041 0.07 040
0.41 1 0.12 0.25
0.07 0.12 1 059
040 025 059 1

Similarity and distance between populations
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Until now the discussion has been concerned with the

organisms or macromolecular sequences. When one moves on to
consider the comparison of groups the problems become more

difficult. Some of the problems can be summarized by the following

headings:

(@) The choice of a summary statistic for each character to describe

a group or population. This might be a proportion(s)
(qualitative characters) or mean value (quantitative

characters).

(b) Measurement of within-group variation.

(c) Construction of a measure of similarity or distance based on

First similarity and distance measures for qualitative characters
will be introduced, and then those for quantitative characters.

371

(a), and perhaps making allowance for (b). Making allowance
for within-group variation might be particularly tricky if this
is not constant from one group to another, and there is no

reason to believe that it should be.

Qualitative characters

A distance measure that geneticists have used when describ-
ing populations in terms of gene frequencies has the following form.
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The genetic distance, d 5, between populations 4 and B is:

d,z=(1—cos)! (3.16)

where
cos6 =Y. (PisPis)* (3.17)

Cos 0 is a measure of genetic similarity between the two populations,
A and B, p,, and p,, being the gene frequencies for the ith allele at
a given locus in the two populations. The angular transformation
for the proportions has a variance-stabilizing role, and the distance,
d g, in geometrical terms is the chord subtended by the angle 6§ on
a hypersphere of unit radius (see Edwards & Cavalli-Sforza, 1964;
and Cavalli-Sforza & Bodmer, 1971, Chapter 11). When several
genetic loci are considered the chord lengths for each locus, i.e., the
d . values, are added together. This is equivalent to the construction
of a city-block metric.

This approach to measuring distances between populations can
be generalized to include data used by numerical taxonomists in the
following way. One merely has to replace the word ‘locus’ in the
above definition by ‘character’, and ‘allele’ by ‘character state’. If
there are p qualitative characters there will then be p d, g values

Table 3.6. Characteristics of two hypothetical populations of red
campion

Character state Proportion
Population A Population B

Corolla colour

pink 0.95 0.80

white 0.05 0.20
Coronal scale colour

as petals, pink 0.85 0.75

not as petals, pink 0.01 0.15

not as petals, white 0.14 0.10
Red calyx pigment

present 0.80 0.60

absent 0.20 0.40
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which can then be added together (in a city-block metric) or squared
and then added (to give the square of Euclidean metric). For example,
consider the set of proportions from two hypothetical populations
of red campion shown in Table 3.6 (cf Table 2.2).

For corolla colour:

d 5 =[1—(0.95 x 0.80)! —(0.05 x 0.20)' 1
=017
For coronal scalecolour:

d,5 = [1—(0.85 x 0.75) — (0.01x 0.15) — (0.14 x 0.10}]
=021
For red calyx pigment:

d,p = [1 - (0.80 x 0.60)* — (020 x 0.40)*T
=016

The total distance between the two populations is merely the sum
of the three distances for the characters taken separately; that is,

dy=017+0.21+0.16=0.54

3.7.2  Quantitative characters

Perhaps the simplest way to construct a measure of distance
between groups is to use their character mean values, and then use
a Euclidean or city-block metric. For example, if the two groups
had means x,,X,,...,X, and y,,¥,,...,, respectively, for their p
characters, we might simply calculate the distance between them as:

P 5
dxy = ( Z (’_‘u - 5’:;)2) (3-18)
k=1
or
p -
dx; = Z lx_k _ykl (3'19)
k=1

However, it might be more appropriate to consider measures which
incorporate, in one way or another, knowledge of intra-OTU
variation. One such measure which is being used increasingly in
taxonomic studies (see, for example, Fisher, 1969) is Mahalanobis’



4 Measurement of similarity

D? given by

DP=(x-§)W l(x—¥) (3.20)
where X and y are the vectors of means of the two groups; that is,
X' =(X},%5,...,%,), ¥ =(V1,¥25.--, ), and W is a p x p matrix of
pooled within-group dispersions for the two groups, i.e.
W =W, +W,, where W, and W, are the usual (p x p) matrices of
character sums-of-squares and cross-products for the two groups.
When correlations between characters are slight, D? will be similar
to the squared Euclidean distance computed on the standardized
data. The use of D? implies that the investigator is willing to assume
that the character dispersions are at least approximately the same
in the two groups. When this is not so D? is inappropriate, and in
such a case a possible alternative is Jardine and Sibson’s Normal
Information Radius (see Jardine & Sibson, 1971).

A number of other possibilities exist for between-group distance
or similarity measures. For example, the distance between two groups
could be defined as the distance between their closest members, one
in each group. This is sometimes known as nearest-neighbour distance
and is the basis of the clustering technique known as single linkage,
which will be discussed in Chapter 6. A further possibility is the
exact antithesis of nearest-neighbour distance, in that the distance
between groups is now defined as that between the most remote pair
of individuals, one in each group. This is known as furthest-neighbour
distance and is associated with the complete linkage cluster method,
also to be described in Chapter 6. Another inter-group measure may
be obtained by taking the average of all the inter-individual measures
of those pairs of individuals where the members of the pairs are in
different groups. This measure is used in group average clustering
(see Chapter 6). Lance & Williams (1967) point out that the concept
of an average for similarity coefficients is not always acceptable and
suggest that, where it is unacceptable, a more satisfactory inter-group
similarity measure will be obtained from

1 -1
$6,6,=cos| —— ) cos”'s; (321)
nn; G,
JjeG 2

where s ¢, is the similarity of groups G, and G,, n, and n, are
the number of individuals in these groups, and s;; represents a single
inter-individual measure.
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38 Summary

Questions which arise in the measurement of similarity and
dissimilarity are numerous and have been discussed only relatively
briefly in this chapter. (The issues are more fully discussed in Williams
& Dale, 1965; D.G. Morrison, 1967; Sneath & Sokal, 1973;
Anderberg, 1973; and Clifford & Stephenson, 1975.) However, the
main difficulty for taxonomists is clear: which similarity measure
should be used, since different measures may lead to different final
classifications? Unfortunately and despite a number of comparative
studies (see Cheetham & Hazel, 1969; Boyce, 1969; and Williams,
Lambert & Lance, 1966), we are still unable to answer this question
in any absolute sense and the choice of coefficient will have to be
guided primarily by the type of characters being used and the
intuition of the investigator. However, one recommendation made
by Sneath & Sokal (1973) which we endorse is to choose the simplest
coefficient from those applicable to one’s data, since this will generally
ease the, at times, difficult task of interpretation of final results.
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Principal components analysis

41 Introduction

In the construction of a measure such as Euclidean distance
it is assumed that the p characters observed on each OTU may be
represented sensibly by p orthogonal axes; however, such an
assumption is very rarely true because many of the characters will be
correlated. For example, Rohlf (1967) describes a study of 40 species of
North American mosquitoes in which 74 characters, based on the
external morphology of pupae, were used. The characters were
mostly counts of the number of branches of various setae in each
abdominal segment and lengths of a few setae, and might be expected
to be highly correlated. With such data it is frequently useful to
attempt to find uncorrelated composite measures by the method of
principal components before attempting any analyses such as cluster-
ing, etc., since it is often found that the data may be expressed in terms
of far fewer than p of the composite measures without any significant
loss of information.

The technique of principal components analysis consists of trans-
forming the set of observed characters, x;,x,,...,X,, to a new set,
Y1>¥2---»¥p Which has the following properties:

(a) Each y is a linear combination of the xs; that is,
'yl = allxl + a12X2 +...+ alpxp
yP= p1x1+a‘,2x2+...+a’ P

(b) The coefficients defining each linear transformation are
such that the sum of their squares is unity; that is,

P
Yai=1i=1..,p
j=1

(c) Of all the possible transformations of this type, y, has
greatest variance.
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(d) Of all possible transformations of this type which are
uncorrelated with y,, y, has the greatest variance. Similarly
5 has the greatest variance amongst linear transformations
uncorrelated with y, and y,, and so on, until the complete
set of p transformed variables has been defined.

Principal components analysis thus leads to a set of p composite
characters that are uncorrelated and are arranged in order of
decreasing variance. If it is found that the first few principal
components (i.e. the y variables) account for most of the variation,
it might be possible to use only these in subsequent analyses and
thus achieve a considerable simplification.

The next two sections will consider this method of analysis in
more detail, beginning in section 4.2 with a geometrical interpretation
of the procedure, followed in section 4.3 by a brief mathematical
account.

42 Principal components analysis — geometrical interpretation
Consider the following hypothetical set of data consisting
of pairs of measurements on the flowers from four buttercups:

mean petal length (mm) 8 10 20 30
mean petal width (mm) 4 9 11 18

A plot of these data is shown in Figure 4.1, and clearly the pairs of
measurements are highly correlated. If one wished to express the
variation in these two characters on a single axis or dimension, what
would be the ‘best’ axis to choose? One intuitively sensible answer
to this question would be to choose the axis which maximizes the
variance of the projections of the four points onto itself, since this
will provide the maximum discrimination between the four butter-
cups. It is easy to show that such an axis is given by the line of best
fit, in the least-squares sense, to the points; that is, the line that
minimizes the sum of squares of the distances between the points
and itself. This line is equivalent to the first principal component
and is shown in Figure 4.1 for the buttercup data. Projecting the
four points onto this line as shown (Figure 4.1(b)) gives the following
first principal component scores for each buttercup:

9 13 23 35
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A line drawn at right angles to the best-fitting line is equivalent to
the second principal component axis and the corresponding scores
for the four buttercups on this second component are

1 —-15 0.5 0

Note that the values for the first principal component are all positive
and are clearly related to the size of the buttercup flowers. Those
of the second component, however, can have either positive or
negative values and may give information about the variation in the
shape of the flowers (see section 4.4).

In general, if one has measurements on p variables, the first
principal component is.the best-fitting straight line in this p-dimen-
sional character space. Similarly, the first two principal components
describe the best-fitting plane in this space, and so on. So the best

Figure 4.1. (a) Plot of mean petal length against mean petal width
for four hypothetical buttercups.
(b) Plot of first principal component score derived from measure-
ments of petal length and width.
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fit in r dimensions (r being less than p) is obtained by projecting the
observations into the subspace defined by the first r principal
components. How well this r-dimensional configuration of the n
taxonomic units describes the configuration in the original p-dimen-
sional space may be measured by the proportion of the variance in
the data accounted for by the first r principal components (see next
section). To summarize, one may say that a principal components
analysis refers the original data to a new set of orthogonal axes.
When only the first few principal components axes are used to
represent the data, the relative positions of the points in the new
character space are an approximation to the relative positions of
the OTUs in the original character space, and the Euclidean distance
between two points in the principal components space is an
approximation to the Euclidean distance between the corresponding
points in the original space.

43 A brief mathematical account of principal components
analysis
The first principal component of the observations is that
linear combination y,, of the original variables,

Vi=a;,x; +a,,x,+...+a,,x, 4.1)

whose sample variance is greatest for all coefficients, a,,,...,q,,
(which we may write as the vector a,). Since the variance of y, could
be increased without limit simply by increasing the values a,, a
restriction must be placed on these coefficients, and so it is usually
required that the sum of squares of the coefficients, i.e. aja,, should
be set at a value of unity. (The reason for this choice will be indicated
later.)

But how useful is this artificial variate constructed from the
observed characters? To answer this question one would first need
to know the proportion of the total variance attributable to it. If
87% of the variation in an investigation involving six characters
could be accounted for by a simple weighted average of the character
values, it would appear that almost all of the variation could be
expressed along a single continuum rather than in six-dimensional
space. This would provide a highly parsimonious summary of the
data, which could be useful in later analyses.
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The second principal component is that linear combination
V2=82;%; + a3, +...+a5,x, 4.2
ie. y,=a3x
which has greatest variance subject to the two conditions
aja, =1 (for the reasons indicated previously)

aja, =0 (this condition ensures that y, and y, are
uncorrelated)

Similarly, the jth principal component is that linear combination

yj=ax 4.3)
which has the greatest variance subject to

aja; =1

aja, =0 i#j

It can be shown that the coefficient vectors a,,a,,...,a, are the
latent vectors of the covariance matrix of the original characters, and
that when these are normalized or scaled so that the sum of their
squares is unity, the latent roots of this matrix, ,,4,,...,4,, are
interpretable as the sampling variances of y,,...,y,, respectively (see
D. F. Morrison, 1967). Consequently, we have

Al +Az+...+lp=8“ +322+...+spp

where s;;,i=1,...,p are the diagonal elements of S (the covariance
matrix). This may be written more concisely as

™M~

A; = trace(S) 449

i=1

If the first » components explain a large amount of the total
variance as indicated by )7_, 4,/trace(S), then scores on each of
these components for each OTU may be used in later analyses in
place of the original characters. The component scores of the ith

OTU are given simply by
Yu= ax;
Yo = % 3
where x; is the vector of character scores for OTU i.
It should be noted that the method of principal components is



4.4 Examples S1

not independent of the scale(s) of the original measurements.
Multiplying one of the variables by a constant (for example, by
altering the scale from metres to centimetres) will change the
covariance matrix and produce a different set of principal compo-
nents. It should also be remembered that where the original
characters are measured in widely different units, linear combinations
of them will have no sensible physical dimensions. Consequently,
the analysis is often carried out on standardized measurements and
the components extracted from the correlation rather than the
covariance matrix. Examples of situations where no standardization
is needed, however, include those where all measurements are
proportions (for example gene frequencies) or where they are all
logarithms of lengths. The effect of the logarithmic transformation in
the latter case is to give measurements with the same proportional
variability the same variance, so that measurements that are relatively
more variable will have a higher variance and will be given more
weight in the subsequent analysis.

44 Examples

To try to clarify the ideas covered so far a simple example
taken from Jolicoeur & Mosimann (1960), which has been previously
discussed by D. F. Morrison (1967), will be described. This investi-
gation concerned the measurement of carapace length, width and
height in painted turtles. The covariance matrix of these measure-

Table4.1. Thefirst three principal components obtained from carapace
measurements of painted turtles

Character Components (latent vectors of S)
1 2 3

Length 0.8126 —0.5454 —0.2054
Width 0.4955 0.8321 ~0.2491
Height 0.3068 0.1006 0.9465
Variance (latent

roots of S) 680.40 6.50 2.86
Percentage of

total variance 98.64 0.94 0.41
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ments for 24 female turtles was as follows:

451.39
S=1271.17 171.73
268.70  103.29 o 66.65

The coefficients and variances of the three principal components
extracted from this matrix are shown in Table 4.1. Note that the
sum of squares of the coefficients in each component is unity and
that the sum of the latent roots is equal to the sum of the diagonal
elements in S.

The first principal component accounts for nearly all of the
variance in the three characters. It is a form of weighted mean of
the carapace measurements

y, = 0.81(length) + 0.50(width) + 0.31(height)

The size of the turtle shells could be characterized by this single
variable with little loss of information since it alone accounts for
some 989 of the variation of the three measurements length, width
and height. However, it is of some interest to examine the remaining
two components

¥, = —0.54(length) + 0.83(width) + 0.10(height)
and y, = —0.20(length) — 0.25(width) + 0.94(height)

both of which appear to be measures of carapace ‘shape’, being
comparisons of length versus width and height, and height versus
length and width, respectively. The first principal component often
has the characteristic of a measurement of size. Jolicoeur & Mosi-
mann (1960) emphasize that for this interpretation to be justified all
coefficients must have the same sign, whereas those of the other
components must generally have mixed signs. Rao (1964) gives a
mathematical argument for this interpretation, and the interested
reader is referred to Blackith & Reyment (1971) for a fuller discussion
of this point.

As a second example, a set of data described by Jeffers (1967) of
40 individual winged aphids will be considered. Measurements on
19 morphological variables were obtained (see Table 2.3), and the
correlations between these measurements are shown in Table 4.2.
The high degree of correlation between almost all of the variables
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Table 4.3. The latent roots for the first four principal components
obtained from the aphid data (T able 4.2)

Component Latent root Percentage of variability
Component Cumulative .

1 13.86 73.0 73.0

2 237 12.5 85.5

3 0.75 39 89.4

4 0.50 2.6 92.0

Table 4.4. Latent vectors for first four components of winged aphid
variables (Jeffers, 1967)

Variable Latent vectors for component
1 2 3 4

Length 0.96 —0.06 0.03 -0.12
Width 0.98 -0.12 0.01 -0.16
Fore-wing 0.99 —0.06 —0.06 -0.11
Hind-wing 098 -0.16 0.03 —0.00
Spiracles 0.61 0.74 -0.20 1.00
Antennal segment I 091 033 0.04 0.02
Antennal segment II 0.96 0.30 0.00 —-0.04
Antennal segment IIT 0.88 -043 0.06 -0.18
Antennal segment IV 0.90 -0.08 0.18 -0.01
Antennal segment V 094 0.05 0.11 0.03
Antennal spines ' —0.49 0.37 1.00 0.27
Tarsus III 0.99 -0.02 0.03 -0.29
Tibia III 1.00 —0.05 0.09 -0.31
Femur III 0.99 -0.12 0.12 -0.31
Rostrum 0.96 0.02 0.08 —0.06
Ovipositor 0.76 0.73 —0.03 -0.09
Ovipositor spines 041 1.00 —0.16 -0.06
Fold -0.71 0.64 0.04 -0.80
Hooks 0.76 -0.52 0.06 0.72

indicates that most of the variation might be explained by only a
few principal components, and this view is confirmed by the results
in Table 4.3.The coefficients for the first four principal components
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are given in Table 4.4. Note that the latent vectors have been rescaled
by Jeffers after the analysis, so that the maximum -coefficient
(weighting) in each column is +1. This scaling is arbitrary and is
only useful if it helps the reader to assess the relative importance of
each of the original measurements in the composition of the
calculated orthogonal components. In this example the first compo-
nent is again clearly a measure of the overall size of the aphids. Jeffers
(1967) interpreted the second component as a measure of the number
of ovipositor spines, the third as a measure of the number of antennal
spines and the fourth as a measure of the number of spiraclés.

45 Principal components plots
The principal components scores that can be obtained for
each OTU might be useful in replacing the original character values
before the computation of an inter-OTU proximity matrix and in
subsequent analyses such as clustering, etc. (see Chapter 6). However,
the scores may also be used in a more immediate fashion by making
principal component scatter plots, thus enabling a direct visual
examination of the relationships between the OTUs to be made. Of
course, with data involving only two character values for each OTU,
such as the buttercup data in section 4.2, it is possible to obtain a
visual representation simply by a plot of the raw data; however, if
the data are more complex (as they generally are!), it is impossible
to visualize a p-dimensional scatter plot of the original measurements,
and so plotting the points along the first principal component, or
plotting the first component score for each OTU against the second,
may be very informative, particularly when these first components
account for a large proportion of the variance. An example of such
a plot for the aphid data appears in Figure 4.2. Here four fairly
distinct groups or clusters of aphids can be seen. When it is thought
that the first two components are inadequate for representing the
structure in the data, a further component score can be accommo-
dated by making a three-dimensional ‘ball and wire’ model or by
constructing stereographic plots (see Rohlf, 1968, for examples). (A
number of other simple methods which enable more than two scores
to be plotted on a two-dimensional diagram are described in Everitt
(1978).) .
In many taxonomic studies it is variation in shape rather than
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Figure 4.2. First two principal component scores for winged
aphids (Taken with permission from Jeffers, 1967.)

variation in size which is of interest; consequently, if it is thought
that the first principal component is a measure of size, as in the
cases of the turtles and aphids discussed previously, then more
information about the relevant structure amongst the OTUs might
be obtained by plotting the second principal component against the
third, rather than a plot of components one and two. For example,
Temple (1968) found that such a plot (see Figure 4.3) clearly revealed
the presence of two forms in the Silurian brachiopod, Toxorthis. (Of
course, a three-dimensional model constructed from components
one, two and three would equally have revealed this heterogeneity.)

Although principal components analysis is essentially intended
for use with measurements made on a continuous scale, Gower (1966)
shows that it may also legitimately be employed on binary data,
although the interpretation may be difficult. In particular, the
principal components plots arising from such data often suffer from
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Figure 4.3. Second two principal component scores for the two
morphs of Toxorthis proteus (Redrawn from Temple, 1968.)

what is generally termed the horseshoe effect (see Kendall, 1971,
1975). This effect has been noted in ecological data by Swann (1970),
Austin (1972) and others. It refers to the tendency of the points in
the plot to lie on a horseshoe-shaped curve, rather than indicate any
real structure in the data. The effect arises because presence—absence
data occupy some of the apices of a hypercube. A possible method
for overcoming this problem is described by Williamson (1978).

It should be remembered that in principal components plots the
Euclidean distance between two points representing two OTUs acts
as an approximation to the Euclidean distance between these OTUs
in the original p-dimensional character space. This implies that such
plots are only likely to be useful when the appropriate metric for
the OTUs is considered to be Euclidean. In other cases one of the
methods to be considered in the next chapter might be more suitable
for obtaining informative visual representations of the data.

4.6 Factor analysis

It would be inappropriate to end this chapter without some
mention of the term factor analysis, since this does occasionally arise
in numerical taxonomic exercises (see, for example, Fisher, 1968).
Essentially, factor analysis, like principal components analysis, is a
technique for data reduction. However, whereas the latter is simply
the transformation of the coordinate axes of a multivariate system
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to new orientations through the natural shape of the scatter swarm
of the observations, factor analysis proposes a fundamental model
for the covariance structure of the observations. In essence, under
the factor model each observed variable is postulated to be a linear
function of a small number of unobservable common-factor variates
and a single latent specific variate. The common factors generate the
covariances among the observed variables, while the specific terms
contribute only to the variances of their particular variables. Such
models are widely used in the behavioural sciences where they have
largely overcome their ‘black sheep’ image, obtained during the
1930s. However, in biological work in general and numerical
taxonomy in particular there appears to be little to recommend
factor analysis over the alternatives such as principal components
analysis and the methods to be discussed in Chapter 5. Consequently,
no details of the method will be given here and the interested reader
is referred to the book by Bennett & Bowers (1976).

4.7 Summary

Principal components analysis has been used widely in
numerical taxonomic studies. It can be very useful for displaying the
relationships between the OTUs in a low-dimensional space, thus
enabling direct visual examination of the relative positions of the
OTUs. It is, however, only suitable for this purpose when a Euclidean
metric is considered suitable for the observations. In other cases
there are more appropriate techniques which can be applied to obtain
informative low-dimensional plots, and these will be the subject of
the next chapter.
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Multidimensional scaling

5.1 Introduction

Having calculated a matrix of similarities or dissimilarities
between the OTUs, the numerical taxonomist has two main possibi-
lities for its analysis. The first is to apply some form of cluster analysis,
this being a generic term for methods which seek to determine
homogeneous subsets of OTUs and therefore produce a classifi-
cation of these directly. The second is to use some type of multidimen-
sional scaling or ordination technique which represents the OTUs as
points in some, one hopes, low-dimensional space, in which Euclidean
distances between points will reflect the relationship between the
corresponding OTUs as indicated in the observed proximity matrix.
(Note that multidimensional scaling can just as easily be used for
populations, given an appropriate distance measure, as for individual
organisms.) When a satisfactory representation is obtained in a space
of two or three dimensions, diagrams and models may be constructed
which allow a visual assessment of the relationships between the
OTUs and the informal examination of their structure, although no
classification as such is produced. It is these techniques that will be
the subject of this chapter; clustering methods will be discussed in
Chapter 6.

5.2 Classical multidimensional scaling

One example of an ordination technique has already been
described in the previous chapter. The plotting of a few components
can give a low-dimensional representation of the data in which the
Euclidean distance between two points acts as an approximation to
the Euclidean distance between the corresponding OTUs in the
original character space. Multidimensional scaling in general is
concerned with the problem of constructing a configuration of points
in Euclidean space which reflects, in some sense, the relationships
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between a set of OTUs as implied by their observed proximities
whether these are Euclidean or not. The classical solution to this
problem which operates directly on the observed proximity matrix
is commonly known as principal co-ordinates analysis. (In the case
where the observed proximities are Euclidean distances the results
are equivalent to those obtained from a principal components
analysis.)

Consider, for example, the results given in Table 3.4(b). Here the
distances between the three cytochrome ¢ peptide sequences might
be best represented by the city-block metric based upon minimum
mutation values. If one wished to illustrate these distances graphi-
cally, one could easily use a pair of compasses to produce a diagram
like that in Figure 5.1. Note that the city-block distances in
eight-dimensional space (only eight amino-acid positions are being

Figure 5.1. Euclidean representation of the city-block distances

given in Table 3.4 (b)
6
Sk
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considered) are perfectly represented by the Euclidean distances of
the two-dimensional plot. This is because only three OTUs are being
considered, and they are bound to be coplanar. If, however, there
had been results for several OTUs, there would inevitably have been
some distortions in the two-dimensional representation. The aim of
principal coordinates analysis is to produce a Euclidean represent-.
ation of the observed distances that minimizes this distortion; that
is, to produce a pattern of points that best represents the pattern in
the original multidimensional character space.

5.2.1  Principal coordinates analysis—technical details

Let A be a symmetric (n x n) matrix with latent roots
Ays4,,...,4, and associated (n x 1) latent vectors c,,c,,...,c, as
shown in Table S.1. Suppose we now regard the elements of the ith
row of this table as the coordinates of a point in n-dimensional
space. The squared Euclidean distance, d?, between two points i
and j in this space is, consequently,

d,.zj= Z (ci,‘—cj,‘)2 (5.1)
k=1
=Y i+ ¥ k-2 Y caci
k=1 k=1 k=1

If the latent vectors are normalised so that the sums of squares of
their elements are equal to their corresponding latent roots; that is,

Table 5.1. Latent roots and vectors of the symmetric matrix A

Latent vectors

c, c, .o c,

Cyy’ Ci2 . e Cin
€2y C22 I Can
Cn1 Cn2 Cnn

Latent roots: Ay Az o A
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so that

.;1 = (52)

then it is well known that
A=c.c; +c65+...+¢,c, (5.3
and therefore that

n

=3 ¢2 =

a;= )Y ci and a;= Y cuc,
k=1 k=1

Consequently

d}=a;+a;—2a; (5.4)
Therefore, if A is a similarity matrix with self-similarities taking the
value unity, then taking the elements of the latent vectors of A,
suitably scaled, as defining coordinate values in n-dimensional space,
leads to a representation of the OTUs in which the Euclidean
distance, d;, between points i and j representing OTUs i and j, having
similarity s;;, takes the value

d; =201 -s,)]* (5:5)
Consequently, OTUs with high similarity values will be represented
by points close together in the n-dimensional space and vice versa,
which is obviously what we require. However, the method has, as
yet, only led to an n-dimensional representation for which there is a
sensible relationship between inter-OTU similarities and inter-point
distances. What we would like is a corresponding representation in
far fewer dimensions. Gower (1966) shows that this may be obtained
simply by referring these n-dimensional coordinates to their prin-
cipal axes (cf. principal components analysis) and using the projected
coordinates to display the relationships between the OTUs as implied
by their similarities.

Returning for the moment to (5.4), let us now consider what would

happen if A was a dissimilarity matrix with elements J;; and diagonal
entries of zero. Formula (5.4) now becomes

d’=—-25; (5.6)
Consequently the principal coordinates procedure applied directly
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to a dissimilarity matrix would not produce sensible results! How-
ever, if A contained values a; =0 and a;;= — 457, then (54) becomes

=8 G.7)

and principal coordinates analysis leads to a set of coordinates
with Euclidean distances equal to the observed dissimilarities. Again
the n-dimensional coordinates may be referred to their principal
axes to obtain a representation in fewer dimensions. (When the
observed dissimilarities are Euclidean distances principal coordi-
nates analysis and principal components analysis are equivalent.)
Gower (1966) shows that a given similarity or dissimilarity measure
may be represented in a Euclidean space in this way only if the
matrix « with the following elements has no negative latent roots:

%;=a;—a —a;+a. (5.8)
l n
where 4, =- Y a,
_y
1 n
aj==Y a,
"1§1 i
_ 1 n n
and A==y Y a;

However, a useful approximate representation may still be obtained
in cases where there are a small number of small negative roots. A
measure of the adequacy of fit given by principal coordinates
analysis is based on the latent roots of the matrix «. For the first r
principal coordinates this is given by

T= i i / trace () (5.9)
i=1

3

where the y; are the latent roots of the matrix « arranged in descending
order of magnitude. (When « has a number of negative latent roots
Mardia, Kent & Bibby (1979) suggest taking as a goodness of fit
measure }7_;y,/Y 7= 7il)

This has been only a brief account of the method of principal
coordinates; fuller accounts are given by Gower (1966), Blakith &
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Reyment (1971), and Mardia et al. (1979); here we move on to
illustrate the use of the method in taxonomy with an example.

5.2.2  Principal coordinates analysis—an example
Since the results. of a principal coordinates analysis often
look superficially similar to those of a principal components analysis,
it would add little to this discussion to describe an example
whose interpretation was quite straightforward. Instead, an example
illustrating potential pitfalls will be introduced. The most common
of these occurs with data that cannot be summarized adequately in
terms of the positions of the OTUs in a two- or three-dimensional
space; that is, the first two or three latent roots obtained from a
principal coordinates analysis or a principal components analysis
do not explain most of the variation in the original character space.
This might be the case where one had selected, by accident or by
design, a set of characters whose states were all more or less
uncorrelated. In this situation, one would be liable to make unjusti-
fied inferences from inspection of a two- or three-dimensional princi-
pal coordinates (or principal components) plot.
The following example, from Baum (1977), illustrates some of the
problems caused by this situation. The dissimilarity matrix shown

Table 5.3. Latent roots computed from the dissimilarity matrix of
Table 5.2 (Baum, 1977)

Dimension Latent root Dimension Latent root
1 1.217 16 15 0.268 666
2 0.942 037 16 0.254 098
3 0.722 454 17 0.238 131
4 0.598 507 18 0.234 938
5 0.558 098 19 0.215 687
6 0.538 583 20 0.208 695
7 0.460.580 21 0.204 331
8 0.422 575 22 0.179 981
9 0.401011 23 0.165 221

10 0.386 413 24 0.159 988

11 0.360 360 25 0.150 528

12 0.318 351 26 0.133 011

13 0.301 592 27 0.118 174

14 : 0.277315
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in Table 5.2 is from a study of 28 wheat varieties. Unfortunately,
the author did not state what, or how many, characters had been
used in this study, or how the dissimilarity matrix had been
constructed. For the present argument, however, these points are
relatively unimportant. This matrix, when subjected to a principal
coordinates analysis, yields latent roots that only gradually decrease
in size (Table 5.3). The first three latent roots account for roughly
28%; of the total variation, and so a plot of the points in the space
of the first two or three principal coordinate axes might be expected
to distort greatly the relationships between the OTUs, as implied
by the observed dissimilarities. For example, consider Figure 5.2(a).
Here are plotted the coordinates of the first two principal axes
(explaining 21.47% of the total variation). The OTUs appear to be
clustered into perhaps four groups, but the possible inadequacies of
a two-dimensional representation for these data should lead us to
question whether these clusters are ‘real’ or simply artefacts. Baum’s
further analyses suggest the latter.

To overcome this problem Baum suggested transforming the
original dissimilarities in such a way as to maximize the proportion
of the total variation explained by the first two or three latent roots
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in any subsequent principal coordinates analysis. He found that the
transformation

8, =4, (5.10)

was promising, where the §,; are the original dissimilarities, the §;;
the transformed values, and ¢t was chosen empirically to take the
value 6. (A summary of the results that led to this choice for ¢ appear
in Table 5.4.) A two-dimensional principal coordinates plot obtained
after taking this transformation is shown in Figure 5.2(b). Here the
first two latent roots explain 72.849, of the total variation in the
transformed dissimilarity matrix. In this figure there appears to be
no obvious clustering of the OTUs, suggesting that the distinct
groups indicated by Figure 5.2(a) might indeed be artefacts produced
by an inadequate analysis.

It might be felt that it is difficult to justify a transformation of the
above type even though it might produce informative results. An
alternative approach is to consider only the rank of the original
dissimilarities rather than the dissimilarities or transformed dissimi-
larities. (The transformation described above is rank preserving.)
One can also use different criteria to measure the distortion produced

Figure 5.2. (a) Principal coordinates of raw wheat data.

(b) Principal coordinates of transformed wheat data (Taken with
permission from Baum, 1977.)

(c) Non-metric multidimensional scaling of raw wheat data.

(c)
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Table 5.4. Effect of transformation of distance measures on the results
of principal coordinates analysis of wheat data (Baum, 1977)

Transformation First three Cumulative percentage
latent roots of total variation
X? 1.48226 19.54
1.066 69 33.60
0.77173 43.77
X3 1.54122 26.28
1.06210 4439
0.75215 - 5721
X4 1.498 40 3251
1.00542 54.32
0.69629 69.43
X3 1.408 80 38.34
093338 63.74
0.624 90 80.74
X6 1.30090 43.85
0.86013 72.84
0.55078 91.41

by any reduction in dimensionality. Non-metric multidimensional
scaling (to be discussed in detail in the next section) is an alternative
to principal coordinates analysis which utilizes only the rank order
of the dissimilarities. The result of an analysis of this type on the
current example is given in Figure 5.2(c). Note that the result,
although not identical, is very close to that obtained from a principal
coordinates analysis on the transformed data. This supports the
view that non-metric multidimensional scaling might be the most
informative and convenient of the two methods of ordination.

53 Other methods of multidimensional scaling

The central motivating concept of multidimensional scaling
is that the distances between the points representing the OTUs
should correspond in some sensible way to the observed proximities.
(In principal coordinates analysis, for example, we have that
distance = dissimilarity.) With this in mind, various authors, for
example, Shepard (1962), Kruskal (1964a) and Sammon (1969), have
approached the problem by defining an objective function which
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measures in some way the discrepancy between the observed
proximities and the fitted distances, and then attempted to recover
the configuration in a particular number of dimensions which
minimizes this function using one of the many optimization algor-
ithms now available. For example, let us suppose that the proximity
matrix under investigation contains a measure of dissimilarity for
each pair of OTUs. We require a set of r-dimensional coordinates
(where we hope that r is of the order 2 or 3), with associated Euclidean
distances, d,;, which match in some way the observed dissimilarities.
To assess the agreement between distances and dissimilarities we
need to define some function that takes the value zero if the pattern
of the distances fits that for the dissimilarities perfectly in some sense,
and increases in value as the fit becomes less good. An intuitively
obvious candidate is the sum of squares criterion, SS, given by

$s=Y Y (6;—d) (5.11)
i=1j=i+1
Since the distances d;; are a function of the n r-dimensional
coordinate values, so also is SS, and by changing the coordinate
values we change the value of SS. Since goodness-of-fit increases
with decreasing values of SS, we would now seek to determine that
set of r-dimensional coordinates that minimizes SS. Various optimi-
zation algorithms, such as steepest descent (see Kruskal, 1964b),
might be considered, but the details of these need not concern us here.
For various reasons, the simple sum of squares criterion given in
(5.11) is rarely used directly as a measure of goodness-of-fit of a set
of coordinates, but is first ‘weighted’ or otherwise altered before
being minimized. For example, Sammon (1969) uses the function

- 1 (5u - dlj)2
Y 6,0 Oy

i<j

S

(5.12)

Since OTUs with high dissimilarities contribute little to S,, they
may be represented by points having distances which are a very
poor match for the observed dissimilarity. On the other hand, OTUs
with low dissimilarities should be well fitted in the final configuration.
Consequently, S, tends to preserve local structure. (This should be
contrasted with the results of a classical technique such as principal
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components analysis, which are characterized by a good represent-
ation of large distances, but are poor at representing distances
between close neighbours; see Rohlf (1968).)

Of particular interest in numerical taxonomy, where an observed
proximity might only be regarded as an indication of the relative
similarity or dissimilarity between two OTUs, with its actual
numerical value being of little interest, is non-metric multidimensional
scaling. This is used in an increasing number of taxonomic investi-
gations, as we shall see in section 5.3.2 after a brief technical
description of the method.

53.1  Non-metric multidimensional scaling — technical details

To introduce this method let us consider a situation where
we have four OTUSs and six observed values of dissimilarity for the
six possible pairs. Now suppose that the following rank ordering
holds for these six dissimilarity values:

033 <015 <034<013<0,4<0y4 (5.13)

In other words, the second and third OTUs are judged to be least
dissimilar (or most similar), the first and second OTUs next least
dissimilar, and so on, with OTUs 1 and 4 ranked as most dissimilar
(or least similar). Now let the OTUs be represented as points in a
Euclidean space of a specified dimensionality with an associated set
of distances, d,,,d,3,d,4,d,3,d34,d3,. In non-metric multi-
dimensional scaling these distances are considered to match the
observed dissimilarities perfectly if they satisfy the following
relationship:

d23.<_d12 Sd34$d135 d24sdl4 (5.14)

That is, the order relationship among the inter-point distances in
the Euclidean representation of the OTUs is in exact concordance
with the observed relationship among the observed dissimilarities.
In other words, the distances are monotonic with the dissimilarities.

Such a perfect match may, of course, not hold in a particular
Euclidean representation and so a measure to evaluate the fit of any
given configuration to the monotonicity requirement is needed. For
this purpose Kruskal (1964a) defines a function called stress given by

stress = [ Y Y- a,.,.)z/z Zd,zj]i (5.15)
i i
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Again this measure is essentially a sum of squares; it is a function
of the coordinates of the points used to represent the OTUs (since
the distances, d;;, depend on these coordinate values). In this formula
the 3,., are a set of numbers known to be monotonic with the
dissimilarities. They are not distances; there is no configuration
whose inter-point distances are d;,. They are merely a set of numbers
monotonic with the §;;, used to reference the departure from
monotonicity of the fitted distances, d,;. Stress therefore measures
the extent to which those distances are monotonic with the observed
dissimilarities, low values of stress indicating a high degree of
concordance of the rank orderings of dissimilarities and distances.

Having defined a suitable goodness-of-fit measure for the required
criterion of fit, it now only remains to find that set of coordinates
in a specified number of dimensions minimizing the measure. Again
this may be done with a variety of optimization algorithms (for
details, see Kruskal, 1964b; and Kruskal & Wish, 1978). The most
important thing to note with this approach to multidimensional
scaling is that the actual numerical values of the dissimilarities are
not used; only their rank order is of importance and so the method
would give the same results under any monotonic transformation of
the dissimilarity values.

5.3.2  Non-metric multidimensional scaling — examples

In this section two examples are described which illustrate
the type of information that may be gained from an inspection of
two-dimensional scatter plots. The plots are the results of non-metric
multidimensional scaling, using the method described by Sibson
(1972), but the discussion is also applicable to the interpretation of
the results of other types of ordination.

The first example (Figure 5.3) shows variation between 97 Euro-
pean populations of white campion (Silene alba (Miller)
E. H. L. Krause) and red campion (Silene dioica L. Clairv.). The
second (Figure 5.4) shows variation between 29 Scottish populations
of red campion. They are taken from a study of the taxonomy of
the genus Silene by Prentice (1979, 1980), the original dissimilarity
matrices being constructed using Jardine and Sibson’s information
radius (or K-dissimilarity).

Consider Figure 5.3. The 57 white campion populations are clearly
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distinct from the 40 of the red campion, indicating, at least, that the
primary classification of these populations into two species is
reasonably sensible! One can also clearly see from this scatter plot
that the white campion is much more variable than the red campion.
Now consider Figure 54. Here the shape of the symbols indicates
the geographical location of the OTUs, and the accompanying

Figure 5.3. Multidimensional scaling of 97 S. alba and S. dioica
populations (seed, flower and capsule characters). Most of the 40 S.
dioica populations were positioned within a dense cluster, indicated
by the black region. (Taken with permission from Prentice, 1979.)
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Figure 5.4. Multidimensional scaling of 29 Scottish populations of
S. dioica. Symbols indicate geographic areas: closed squares,
S. Scotland; closed triangles, W. Ross; closed circles, Skye; open
squares, Shetland; open triangles, N. Scotland; open circles,
C./E. Scotland. Numbers indicate habitat types: 1, woodland; 2,
hedgerow or roadside bank; 3, coastal cliff; 4, saltmarsh. (Taken
with permission from Prentice, 1980.)
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numbers their habitat. There appears to be no obvious clustering
within this subset of red campion populations, but there is evidence
of geographical differentiation. These two scatter plots show clearly
how ordination can be used as a powerful method for summarizing
a large amount of data. They can be used to suggest ideas, and to
indicate whether the results of a cluster analysis, to be described in
the next chapter, are likely to be sensible.

54 Minimum spanning trees

The usefulness of the techniques discussed in the previous
sections must be judged by how well the inherent structure in the
data is preserved by the ordination procedure. Essentially this will
depend on how well the original proximities are preserved by the
mapping process, and in part this may be judged by the goodness-of-
fit criteria already mentioned in connection with particular tech-
niques. However, other methods are available for comparing two sets
of distances which are often very useful. For example, Sokal & Rohlf
(1962) and Kruskal & Carroll(1969) suggest correlating the
n(n — 1)/2 distance pairs, (d,.j,d;j), where the d;;s are the original
distances between the OTUs and the d:,s are the distances between
points representing the OTUs and resulting from some particular
ordination process. This correlation coefficient is generally known as
the cophenetic correlation, and will be discussed in detail in the next
chapter.

A method which is particularly suitable for assessing how well the
original proximities are preserved by a two-dimensional mapping
uses the minimum spanning tree of a proximity matrix. This may be
defined as follows:

Suppose n points are given (possibly in many dimensions); the
tree spanning these points, i.e. a spanning tree, is any set of
straight-line segments joining pairs of points such that

(a) No closed loops occur

(b) Each point is visited by at least one line

(c) The tree is connected; that is, it has paths between any pair
of points.

If a weight is assigned to each segment in the tree then its length is
defined to be the sum of these weights. The minimum spanning tree
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of the n points is then defined as the spanning tree of minimum
length. These concepts are illustrated in Figures 5.5(a) and 5.5(b).

The links of the minimum spanning tree of the original proximity
matrix may be plotted onto the two-dimensional representation
obtained from a particular ordination technique, and the resulting
diagram may, as the example below illustrates, help to highlight
distortions produced by the mapping process. (Algorithms to find
the minimum spanning tree are described by Prim (1957), Gower &
Ross (1969) and Farris (1970); see Chapter 8.)

To illustrate the use of the minimum spanning tree for indicating
‘inadequacies’ in two-dimensional representations of higher dimen-
sional data we shall use the example described by Gower & Ross
(1969). This involved ten skull measurements of white-toothed shrews
from the Scilly and Channel Islands. A distance matrix between ten
island races of such shrews was derived, based upon the ten skull
measurements. This was then represented in two dimensions by
means of a canonical variate analysis (see Chapter 7), with the result

Figure 5.5. Two spanning trees for a set of six points: (@) minimum
spanning tree of length 20.6; (b) spanning tree of length 27.8.
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shown in Figure 5.6(a). This two-dimensional representation ac-
counts for 899 of the variance, but that there is still some distortion
is readily apparent from examining Figure 5.6(b), which shows the
minimum spanning tree of the original distance matrix superimposed
upon the two-dimensional mapping. In Figure 5.6(a), the Jersey and
Sark races appear to be well separated from those of the other

Figure 5.6. (a) Canonical variate plot of shrew data.
(b) Canonical variate plot with minimum spanning tree super-
imposed. (Taken with permission from Gower and Ross, 1969.)
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Channel Islands and also from the Scilly Island races. However,
Figure 5.6(b) indicates that the Jersey and Sark races are closer to the
Tresco race than to each other (otherwise the Jersey—Sark join would
be a link in a shorter tree), so that the separation from those of the
Scilly Islands is illusory. The tree also shows that the Bryher race is
closer to that of Tresco than to those of St Mary’s and St Agnes, so
that the Scilly Island cluster is more compact than it appears in Figure
5.6(a).

5.5 Summary .

The techniques described in this chapter make it possible
to represent the relationships between a set of OTUs, as indicated
by their observed proximities, by the Euclidean distances between
a set of points in some specified number of dimensions. When an
adequate fit is obtained in two or three dimensions diagrams and
models may be constructed which allow a visual examination of
these relationships and these may be extremely valuable in taxonomic
investigations. In general, the choice of a particular method from
amongst those discussed in this chapter will be governed by many
factors, for example, the type of characters observed, the number of
OTUs involved, the complexity of the structure expected, and so on.
No convincing case can be made for the use of one specific method
in all situations; indeed it may not be unreasonable to use more
than one of the techniques in many cases. For many sets of data
the different methods may all give very similar results. However,
since in general fewer dimensions will be needed to reproduce ordinal
information than to reproduce metric information, non-metric
multidimensional scaling techniques are perhaps more likely to give
useful and informative low-dimensional representations of the data
than other methods, particularly when any structure is of a complex
non-linear variety, for example, points scattered around a curve in
p dimensions.

The techniques discussed in this chapter do not produce a
classification of the OTUs per se, although they may be very
suggestive of the appropriate groupings. In the next chapter methods
which are designed to construct classifications directly will be
described.
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Cluster analysis

6.1 Introduction
The ordination or scaling techniques described in the last

two chapters may be very useful for indicating the taxonomic
structure in a collection of organisms. However, they do not lead
to an explicit separation of the organisms into groups and so neither
do they produce a classification per se. For this the numerical
taxonomist turns to one of the many available methods of cluster
analysis. Such techniques have developed rapidly over the last two
decades and there is now a vast body of literature associated with
them. In a single chapter, in an introductory text such as this, it will
be possible to deal with only a small number of the methods that
have been suggested, concentrating on those that are widely used
in taxonomic studies in biology. More detailed accounts of the area
are to be found in the texts of Sneath & Sokal (1973), Jardine &
Sibson (1971) and Everitt (1980); in addition a useful critique is
provided in the excellent review by Cormack (1971).

First the hierarchical techniques which are particularly popular in
biological studies will be introduced.

6.2 Hierarchical clustering techniques

Hierarchical clustering techniques may be subdivided into
agglomerative methods, which proceed by a series of successive
fusions of the n OTUs into groups, and divisive methods, which
separate the set of n OTUs successively into finer groupings. In this
section we shall be concerned only with the former.

Agglomerative hierarchical techniques operate on an inter-OTU
proximity matrix with, initially, each OTU being considered to be a
separate, single-member ‘cluster’. The two OTUs having the highest
similarity (or smallest distance) are then grouped together and
proximities between each of the remaining OTUs and this two-
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member cluster calculated according to one of the methods described
in Chapter 3 (see section 3.7). This process continues with, at each
stage, the number of groups being reduced by one, until the final point
is reached where all the OTUs are combined into a single cluster. The
techniques available differ in the method they use to calculate the
proximity between a single OTU and a group containing several
OTUs, or between two groups of OTUs. The simplest and perhaps
best known of these methods is single-linkage clustering; con-
sequently, a more detailed description of this particular procedure
“will now be given. (Readers should note that up to now no attempt
has been made to define the term cluster; some comments about the
problems involved in achieving a satisfactory definition will be made
in a later section; here the term will be used in an essentially intuitive
fashion.)

6.2.1  Single-linkage clustering
This method defines the similarity (dissimilarity) between

two clusters of OTUs as that of their most similar (least dissimilar)
pair, where only pairs consisting of one OTU from each group are
considered. This measure of inter-group distance is illustrated in
Figure 6.1.

As an example of the operation of agglomerative hierarchical
techniques in general and single linkage in particular, the method
will be applied to the following dissimilarity matrix

OoTU 1 2 3 4 5

00
20 00
D, = 60 50 00

100 90 40 00
90 80 50 30 00

WV AW -

Figure 6.1. Single-linkage inter-group distance measure.

o
o

o0 o0—mo0 0 o
° o



6.2 Hierarchical clustering techniques 79

The smallest entry in the matrix is that for OTUs 1 and 2;
consequently, these are joined to form a two-membered cluster, and
dissimilarities between this group and the other three OTUs obtained
as follows:

di3)3 = min {d, 3,d,3} =dy3 =50
d(lz“ = min {d14’d24} = d24 = 9.0
d(lZ)S = min {dIS’dZS} = dzs = 8.0

A new matrix may now be formed whose entries are inter-OTU

dissimilarities and cluster-OTU values.

OTU (12) 3 4 5
(12) [o00

D,= 3 |50 00
4 |90 40 00
5 |80 50 30 00

The smallest entry in this matrix is that for OTUs 4 and 5 and
so these are now formed into a second two-membered cluster, and
a new set of dissimilarities found as follows:

dy;)3 = 5.0 (as before)
di12yas) = Min {d; 4,d;5,d;4,d3s} =dy5 = 8.0
disys = min {dy4,dss} = dy, =40
These may be arranged in a matrix, D,:

OTU (12) 3 (45)

12 [oo
Ds="3" |50 o0
@5 [80 40 00

The smallest entry is now ds)3, and so OTU 3 is added to the
cluster containing individuals 4 and 5. Finally the groups containing
OTUs (1,2) and (3,4, 5) are combined into a single cluster. A useful
way of displaying the results of this type of procedure is by means
of a diagram such as Figure 6.2, known as a dendrogram.

An important point to note about the results is that the clusterings
proceed hierarchically, each being obtained by the merger of clusters
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from the previous level. For example, if at the third stage of the
procedure we had clusters (1,2,4) and (3, 5), we would not have had
a hierarchical system since neither of these clusters are obtainable
by the merger of clusters present at the preceding stage.

6.22  Complete-linkage clustering

Complete-linkage clustering is the exact antithesis of smgle-
linkage clustering, with similarity (dissimilarity) between groups now
being defined as that of the least similar (most dissimilar) pair, one
from each group. Using this technique on the matrix D, of the
previous section, we begin again by merging OTUs 1 and 2. The
dissimilarities between this group and the three remaining OTUs
now become

d(12)3 = max {dl 3 dza} = d13 =6.0
d(12)4 = max {d14s d24} = d14 =10.0
d(12)5 = max {dISsdzs} = d] 5= 9.0

The final dendrogram obtained by applying complete linkage to D, is
shown in Figure 6.3.

Figure 6.2. Single-linkage dendrogram.
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Figure 6.3. Complete-linkage dendrogram.

5

100 8.0 60 40 20 0
Distance (d)

Group-average clustering

This method defines the proximity between two clusters as
the average of the proximities between all pairs of OTUs that are
made up of one OTU from each group. Such a measure is illustrated

in Figure 6.4.

Applying the method to the matrix D, given in section 6.2.1, one
begins, as with single and complete linkage, by forming a cluster

81

from OTUs 1 and 2. A new set of dissimilarities is now defined as
follows:

dyys = 4d;3+dy3) =55
duge = $Hdia+d2) =95
dugys = 3dys+dy5) =85

Figure 6.4. Group-average inter-group distance measure.
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Arranging these in the matrix D, we have

OTU (12) 3 4 5
12 [00

D,= 3 |55 00
4 |95 40 00
5 |85 50 30 00

The smallest entry is d,s and so a second cluster is formed from
OTUs 4 and 5. The group average distance between the two
two-membered clusters is given by

dioyasy =4d1s+dis+dyu+dy5) =90

and the procedure would continue as described in section 6.2.1.

The three methods described above operate directly on the
proximity matrix and do not need access to the original character
values for the OTUs. A method which does require the original data
is centroid clustering.

6.24  Centroid clustering
With this method groups once formed are replaced by their
mean vectors, and inter-group distance is defined as the distance
between these means (see Chapter 3 and Figure 6.5). (The use of
mean character values implies that we have interval scale data.) -
To illustrate how this method operates it will be applied to the
following set of bivariate data.

OTU Character
1 2
1 1.0 1.0
2 10 2.0
3 6.0 3.0
4 8.0 20
5 8.0 0.0

Figure 6.5. Centroid inter-group distance measure.

o o

o
X

X
o

o
[e) o



6.2 Hierarchical clustering techniques 83

First we calculate the matrix of Euclidean distances between each
pair of OTUs to give

OTU 1 2 3 4 5

0.0
1.0 00
D, = 539 510 00

707 7.00 224 00
707 728 361 20 00

WV Hh W=

The first stage of the procedure consists of fusing the two OTUs
that are closest. Examination of D, shows that d,, is the smallest
entry and so OTUs 1 and 2 are fused to form a group, and the
coordinates of its mean vector calculated. A distance matrix D, is
now computed from the following reduced data set:

OTU Character
1 2
(12) 1.0 1.5
3 6.0 3.0
4 8.0 20
5 8.0 0.0
and we have

OTU (12) 3 4 5
(12) [00

3 522 00

4 702 224 00

5 716 361 20 00

Dz=

The smallest entry in D, is that between OTUs 4 and 5, which are
now fused to form a second group, and the OTUs replaced by the
coordinates of the group mean

OTU Character
1 2
- (12) 1.0 1.5
3 6.0 30

(45) 8.0 1.0
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and a new distance matrix D, is computed

OTU (12) 3 (45

12) [oo0
D,= 3 522 00
45) L[702 283 00

Now the smallest entry is that for OTU 3 and the group comprising
OTUs 4 and 5, and so these are fused to form a three-membered
group. The final stage consists of the fusion of the two remaining
groups into one. The dendrogram for this example appears in
Figure 6.6.

Several other agglomerative hierarchical clustering techniques are
available (for details, see Everitt, 1980). A point to note here is that
the clusters given at any level of the dendrogram produce a partition
of the OTUs, that is, each OTU belongs to only a single cluster, and
that the groups together contain all the OTUs. In biological
applications it is often the whole of the dendrogram which is of
interest. In other disciplines, however, it is sometimes required to
choose a ‘best’ set of clusters that describe the data, and the question

Figure 6.6. Centroid clustering dendrogram.
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of the appropriate number of clusters becomes important. This
question will be considered in section 6.4.3. Here we move on to
consider briefly some of the properties of the hierarchical techniques
discussed above.

6.3 Properties of hierarchical techniques

The agglomerative techniques discussed in the previous
sections are polythetic; that is, they produce classifications based
upon the complete set of recorded characters rather than on the
presence or absence of a single character —a monothetic classification
(see section 6.7 for a description of methods which produce such a
classification). Both single linkage and complete linkage have the
desirable property of giving results that are invariant under monotone
transformations of the proximity matrix (cf. non-metric multidimen-
sional scaling, Chapter 5). Consequently, when applied to different
proximity matrices which have entries that are jointly monotonic
(see Chapter 3), single-linkage and complete-linkage clustering will
give the same results for each proximity measure. (They will not
necessarily, however, give the same classifications as each other.)
This property is not shared by group-average or by centroid
clustering.

Single linkage has frequently been regarded as an undesirable
clustering method because of a property known as chaining. This
refers to the tendency of the technique to cluster together at a
relatively low level in the dendrogram distinct groups of OTUs
linked by a ‘chain’ of OTUs lying between the groups. This property
is illustrated in Figure 6.7; because of it the method may fail to
resolve relatively distinct groups if a number of intermediate OTUs
are present.

Figure 6.7. An example of ‘chaining’. The first six single-linkage
fusions are indicated.
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For single-linkage, complete-linkage and group-average clustering
the fusion levels in the dendrogram are monotonic; that is, the fusion
level at stage i—1 is less than that at stage i. For centroid clustering
this is not necessarily so and ‘reversals’ of fusion levels may occur,
particularly with some proximity measures, and these can be
extremely troublesome (see Williams, Lambert & Lance, 1966). .

In the late 1960s the first attempts at constructing a theoretical
framework within which to study the properties of hierarchical
techniques were made. Johnson (1967) showed that hierarchical
clusters correspond to a distance measure that satisfies the ultrametric
inequality; that is, if we consider the distance between two OTUs
to be the fusion level of the dendrogram at which they first become
members of the same cluster, then these distances satisfy the following
inequality

d(x,y) < max {d(x, z),d(y, 2)} 6.1)

Since the input similarities or distances are not generally ultra-
metric (and only occasionally satisfy the weaker metric inequality),
Jardine & Sibson (1968) suggest that a cluster method which
transforms a proximity matrix into a hierarchic dendrogram should
therefore be regarded as a method whereby the ultrametric inequality
is imposed on the proximity measure. They then specify a number
of criteria which they argue it is reasonable for any such transforma-
tion to satisfy, and prove that single linkage is the only method
satisfying them all, the implication apparently being that it is
therefore the only acceptable method. This conclusion has led to a
certain amount of controversy. For example, Williams, Lance, Dale
& Clifford (1971) question the need for cluster methods to satisfy all
of Jardine and Sibson’s proposed criteria and adopt a more pragmatic
approach to clustering, insisting that in practice single linkage did
not provide solutions that investigators found useful. Again, Gower
(1975) feels that Jardine and Sibson’s rejection of all but single linkage
is too extreme and questions whether their criteria are too stringent.
He concludes that some of the criteria are unnecessary. It must be
said that the approach taken by Jardine and Sibson appears to have
had little impact on the majority of the users of cluster analysis;
single linkage is not particularly popular and the alternative
mathematically acceptable method provided by these authors is
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applicable only to small data sets and the solutions given are
extremely difficult to interpret. (A brief description of the method is
given in section 6.7.)

An alternative and very promising approach to understanding
and evaluating the variety of hierarchical techniques available is to
compare the effectiveness of different methods across a variety of
data sets generated to have a particular structure. In this way the
solutions obtained by a particular technique may be compared with
the generated structure. Several studies of this type have been
undertaken, for example, by Cunningham & Ogilvie (1972), Kuiper
& Fisher (1975) and Blashfield (1976). In general the results of such
studies indicate that

(a) no single method is best in every situation

(b) the mathematically respectable single linkage is, in most
cases, the least successful for the data used, and

(c) group average clustering and a method due to Ward (1963)
(see section 6.4.2), do fairly well, overall

Such empirical studies can, of course, never provide a complete
evaluation of clustering methods, but the results obtained appear to
indicate that Williams, Lance and co-workers (1971) are correct in
the pragmatic approach they take and there are more useful clustering
methods than the mathematically acceptable single linkage.

6.4 Other clustering methods

The agglomerative hierarchical techniques described earlier
in this chapter are of particular interest in biological taxonomy.
Nevertheless, they represent only a tiny fraction of the vast collection
of clustering methods now available, and in this section a number
of these other techniques will be described.

64.1  Monothetic divisive clustering

Monothetic clustering methods are generally used in cases
involving binary characters. A division of the data set is then made
initially into those OTUs that possess and those that lack one
particular character. If only divisions of this simple type are
considered then, given data for which p binary characteristics are
recorded, there are p potential divisions of the initial data, p—1
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potential divisions of each of the two clusters thus produced, and
so on. The particular character chosen to generate the division is
that which maximizes some dissimilarity criterion between the two
groups. In general these criteria are based upon some type of
chi-squared statistic; details are given in Lambert & Williams
(1962, 1966), MacNaughton-Smith (1965) and Everitt (1980).

6.4.2  Minimization of trace (W)

A method of cluster analysis which is very widely used is
one that attempts to find the partition of the OTUs into a specified
number of groups, say k, which minimizes the sum of the within-
cluster sum of squares of each character. That is, it seeks the partition
of the n OTUs into k groups which has the lowest value of trace
(W), where W is the (p x p) matrix obtained by summing the
within-cluster sum of squares and product matrices over all k clusters;
that is,

W=W,+W,+...+W, 6.2)

In theory, finding this partition is straightforward; we simply
consider the value of trace (W) for every partition of the OTUs into
k groups. In practice, of course, problems arise because of the
enormous number of possible partitions; for example, for n =19
and k = 8§, there are 1,709,751,000,480 possible partitions. Consequent-
ly, complete enumeration is out of the question even with the fastest
computers, and hill-climbing algorithms are used which seek to obtain
a k-group partition with a lower value of trace (W) than an existing
partition, by reassignment of OTUs to clusters. By iterating from
some given starting partition, the algorithm seeks successively
improved solutions until some convergence criterion is satisfied. Such
a procedure cannot guarantee finding the global minimum of trace
(W), only a local minimum (see Everitt, 1980, for more details).

With this technique solutions are usually obtained for a variety of
values of k,-and some method is adopted for deciding on the ‘best’
or most appropriate value (see, for example, Englemann & Hartigan,
1969; and Hartigan, 1975). The solutions obtained by this method
are not necessarily hierarchical, but a hierarchical procedure based
upon the trace (W) criterion is available (see Ward, 1963).
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6.4.3. A multivariate mixture model for cluster analysis

A statistical model of clustering’ which takes account of
variation amongst the OTUs within the same cluster has been
suggested by Wolfe (1970); the assumption is made that the within-
cluster distribution of character values is Gaussian with a particular
vector of mean values and a particular variance—covariance matrix.
Such an assumption implies that the distribution of character values
in a population composed of, say, k such clusters is given by f(x)
where

fx) = Z Ao (X1, By (6.3)

where x is a p-dlmensmnal random variable (a realization of which
is the p character values for an individual), the A,,i = 1,...,k are the
proportions of each of the k clusters in the population and are subject
to the constraints 0 < 4, < 1and } ¥_, 4, = 1; the functions «,(X; ;, ;)
represent multivariate normal densities with mean vector, y;, and
variance—covariance matrix, X,, that is,

(X, E) = (2n) " P2 E,|

x exp —(x — ) 7 (x — p;) (6.4)

From our sample of n OTUs supposedly taken from a population
described by f(x), it is possible to estimate the parameters A,, u; and
T, for i=1,...,k by maximum likelihood methods; subsequently,
OTUs may be associated with the particular cluster to which they
have greatest posterior probability of belonging. This probability,
P(s|x,), is estimated by

zsas(xi ’ﬁs’ :‘:s)
f(x)

More details of this method are given in Everitt (1980) and Everitt
& Hand (1981).

P(slx;) = (6.5)

6.44  Jardine and Sibson’s K-dend clustering method

Sibson (1970) shows that axioms of stability, optimal cluster
preservation and invariance under relabelling or any monotonic
transformation of the proximity matrix lead uniquely to a system,
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Table 6.1. Hypothetical similarity matrix
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Figure 6.8. Illustration of the formation of Jardine & Sibson
overlapping clusters. (@) Maximal complete subgraphs for different
values of H. (b) Cluster formation for K = 1. (These are single-
linkage clusters.) (c) Cluster formation for K = 2. (Clusters may
overlap to the extent of one OTU.) (d) Cluster formation for K = 3.
(Clusters may overlap to the extent of two OTUs.) (Taken with
permission from Jardine and Sibson, 1968.)
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first described by Jardine & Sibson (1968), which generates a series
of overlapping clusters. Essentially this method consists of represent-
ing each OTU by a node on a graph and connecting all pairs of
nodes which correspond to OTUs having a similarity value above
some specified threshold value, H. Next, a search is made for the
largest subsets of OTUs for which all pairs of nodes are connected
(these are known as maximal complete subgraphs). Now all pairs of
maximal complete subgraphs which intersect in at least a particular
number of nodes, say K, are further connected. When no more
connections can be found the Jardine—Sibson overlapping classifi-
cation for this value of H and K has been obtained. When K =1
no overlaps occur and the procedure becomes single-linkage cluster-
ing; in general the clusters found by this method may overlap to
the extent of having K-1 points in common. The procedure is
illustrated in Figure 6.8 for the similarity matrix shown in Table 6.1.
An algorithm given by Jardine & Sibson (1968) for implementing
the method has been considerably improved by Cole & Wishart
(1970).

6.5 An example
Consider Table 6.2. This contains a matrix of distances
(presumed to be Euclidean) for eleven forms of the bee Hoplites

Table 6.2. Matrix of distance coefficient (based on standardized data)
Jor the forms of the Hoplites producta complex (Michener, 1970)

1 2 3 4 5 6 7 8 9 10 11

0

0.940 0

1.229 0.791 0

1.266 0.847 0.303 0

1.507 1.331 1.070 1.026 0

1.609 1.306 0.778 0.573 1.175 0

1.450 1.266 1.475 1.506 1.829 1.876 0

1.239 1.286 1.510 1.540 1.908 1.832 1.655 0

1.493 1.160 0.848 0.792 0.965 0.978 1.847 1.761 0

1494 1.396 1.497 1.528 1.724 1.687 1.954 1.733 1.721 0
1.348 1.238 1.352 1.385 1.724 1.559 1.844 1.608 1.596 0.645 0

OV NAWNEWNM-
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The names of the forms of Hoplites are 1, Hoplites gracilis; 2, subgracilis; 3,
interior; 4, bernardina; 5, panamintana; 6, producta; 7, colei; 8, elongata; 9,
uvularis; 10, grinelli; 11, septentrionalis.
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producta, so similar that a total of only 23 characters were found to
vary among the members of the group (Michener, 1970). Since this
distance matrix is rather difficult to interpret as it stands, one needs
a way or ways of summarizing the data. First consider the results
of two different methods of ordination. Figure 6.9(a) gives a three-
dimensional representation of the character space, produced by the
method of principal co-ordinates analysis (Michener, 1970). Broken
lines show the minimum spanning tree for these taxa. Following the
broken lines, and using a distance of over 1.0 as a criterion of a gap

Figure 6.9. (a) Plot of first three principal coordinates for eleven
species of Hoplites with superimposed minimum spanning tree.
(Taken with permission from Michener, 1970.)

(b) Multidimensional scaling of the same eleven species of Hoplites.
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or discontinuity, one comes to the following conclusions. OTUs 1
to 6 and 9 form a single elongate cluster, OTU 7 and OTU 8 seem
to be well isolated from the rest of the group and from each other
and, finally, OTUs 10 and 11 form an isolated cluster. Figure 6.9(b)
shows a two-dimensional representation of the same data, produced
by non-metric multidimensional scaling (analysis by the present
authors). The configuration of the eleven points corresponds, more
or less, to that produced by principal coordinates analysis, and the
conclusions that one can draw from the results are the same.

Now consider Figure 6.10(a). This is a dendrogram, based on the
distances given in Table 6.1, produced by group-average clustering
(see section 6.2.3). If one produces a partition of the eleven OTUs,
by drawing a vertical line through this dendrogram at a distance of
about 1.4, it is clear that the resulting classification is the same as

Figure 6.10. (@) Group average clustering of eleven species of
Hoplites using Euclidean distances.

(b) Group average clustering of eleven species of Hoplites using
correlation coefficient. (Taken with permission from Michener,

1970)
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that produced from the ordinations. However, it is also clear that
OTUs 1 and 2 form a distinct subcluster of the larger cluster.
Examination of the original distance matrix does not suggest that
OTUs 1 and 2 are, for example, isolated from OTU 3, and neither
does either of the ordinations. The dendrogram appears to have
produced a subcluster that is an artefact of the analysis. To illustrate
how easy such changes are to produce, Figure 6.10(b) shows a
dendrogram produced by the same clustering algorithm, but in this
case based on the use of correlations as measures of proximity of
the same eleven OTUs (Michener, 1970). Similar changes could have
been produced quite readily by changing the clustering algorithm
rather than the measure of proximity (see, for example, Moss, 1967).
It must be stressed to the reader that, with the ready availability of
clustering and ordination algorithms, it is the evaluation of the results
(along with the initial choice of characters and a proximity measure)
that is vital for the success of a taxonomic exercise that involves the
use of numerical methods. Some suggestions that may be useful in
such evaluation are discussed in the following section.

6.6 The evaluation of results and other problems

Since clustering techniques will generate a set of clusters
even when applied to random, unclustered data, the question of
validating and evaluating solutions becomes of great importance.
Essentially this means that we wish to address the question: are the
clusters and structures generated by a clustering method or algorithm
‘significant’ enough to provide evidence for hypotheses about the
phenomena being studied? Now in some cases, for example when
one has a great deal of experience with a particular clustering method
and some prior information about the data being clustered, interpret-
ing the results of clustering methods becomes a personal matter in
which intuition and insight are dominant. However, the user of a
clustering algorithm is often unsure about the data and has little
experience with a particular type of data or a particular clustering
method. Indeed lack of information about the data is often the
motivation for clustering the data in the first place, and in such cases
the user searches for objective meaning and needs quantitative
measures of significance for evaluating clustering procedures. A
considerable amount of work has been undertaken in this area, and
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an excellent review is provided by Dubes & Jain (1979). The proposed
methods may be categorized by the questions they attempt to answer,
although the questions are clearly not mutually exclusive.

(a) Is the data matrix random? Unless some evidence exists that
the data tend to cluster, there is little basis for imposing any
cluster structure on it.

(b) How well does a hierarchy fit a proximity matrix? A high
degree of global fit between dendrogram and proximity
matrix is necessary if all the clusters are to be meaningful.

(c) Is a partition obtained from one level of a hierarchy valid?

(d) Which individual clusters appearing in a hierarchy are valid ?

Let us now briefly consider the methods which have been proposed
to deal with each of these questions. For a more detailed account
the reader is again referred to the paper by Dubes & Jain (1979).

6.6.1  Measuring clustering tendency

Attempts to deal with the first of the four questions above
have centred on deciding on an appropriate null hypothesis of ‘no
clustering’. Two possibilities which have been considered are the
random graph hypothesis and the random pattern hypothesis. The first
is applicable in studies involving symmetric proximity matrices
whose entries are rank orderings; that is, the most similar pair of
OTUs have rank one, and the least similar rank n(n— 1)/2. The
random graph hypothesis is that all [n(n — 1)/2]! such matrices are
equally likely. The random position hypothesis views the np-
dimensional observations as independent samples from some p-
dimensional distribution which would imply lack of any cluster
structure, such as uniform, or unimodal Gaussian.

Ling (1972) and Ling & Killough (1976) have considered the
random graph hypothesis and produced suitable probability distri-
butions; details, however, are outside the scope of this text. Strauss
(1975) and Saunders & Funk (1977) have considered the random
position hypothesis and derive a statistic based on the number of
inter-point distances that are less than some threshold value; under
the hypothesis of a uniform distribution for the data, this statistic
can be shown to have a Poisson distribution.
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6.6.2  Global fit of hierarchy
Hierarchical clustering techniques impose a hlerarchlcal
structure on data and we need to consider whether this is merited
or whether it introduces unacceptable distortions of the original
relationships between the OTUs as implied by their observed
proximities. The most common method for evaluating the match
between the dendrogram and the proximity matrix is the cophenetic
correlation coefficient. This is simply the product moment correla-
tions of the n(n—1)/2 entries in the lower half of the measured
proximity matrix, with the n(n — 1)/2 entries in the cophenetic matrix
C, where c;; is defined as the first level in the dendrogram at which
OTUs i and j occur in the same cluster. Since these values satisfy
the ultrametric inequality (see section 6.3), the match between data
and dendrogram cannot be perfect unless the entries in the proximity
matrix are also ultrametric, a situation which seldom occurs in
practice.
To illustrate the use of the cophenetic correlation coefficient we
may use the data given in section 6.2.1. The elements of D and C
to be correlated are as follows:

d;:20 60 50 100 90 40 90 80 50 30
c;:20 50 50 50 50 40 50 50 40 30

The cophenetic correlation takes the value 0.82. Rohlf & Fisher
(1968) studied the distribution of the cophenetic correlation under
the hypothesis that the OTUs are randomly chosen from a single
multivariate Gaussian distribution. They found that the average
value of the coefficient tended to decrease with n and to be almost
independent of the number of characters recorded, and that a value
above 0.8 was usually sufficient to reject the null hypothesis.
However, in a later paper, Rohlf (1970) warns that ‘even a cophenetic
correlation near 0.9 does not guarantee that the dendrogram serves
as a sufficiently good summary of the phenetic relationships’.

6.6.3  Partitions from a hierarchy

In hierarchical clustering, partitions are achieved by cutting
a dendrogram or selecting one of the solutions in the nested sequence
of clusterings that comprise the hierarchy. In particular applications
it may be of interest to try and determine which of all the possible
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partitions provides the best fit to the data; essentially, this means
that we have to decide on the appropriate number of clusters for
the data. One informal method which is often used for this purpose
is to examine the difference between fusion levels in the dendrogram.
Large differences are taken to imply a particular number of clusters.
For example, consider the dendrogram shown in Figure 6.11. This
shows a large difference in the level between two groups and the
final stage at which all OTUs are in a single group. This would be
taken as evidence for the two-group solution.

A more formal approach to this problem is described by Mojena
(1977), who describes two possible ‘stopping rules’. From empirical
studies described in the paper, one of these rules does appear worthy
of further consideration as a pragmatic means of objectively assessing
the selection of a particular partition from a hierarchical clustering.

Apart from techniques designed to deal with the specific questions
outlined above much can be learnt about solutions informally with
various graphical displays, for example the result of an ordination
technique and superimposed minimum spanning tree as discussed
in the previous chapter. A number of other graphical methods are
available which can be useful in particular cases. One of these involves
simple displays of various distances, which can be useful for studying
tightness of and separations amongst the clusters. For example,
suppose there are only two variables and five OTUs, and the
application of a clustering algorithm has produced three clusters,
A,B and C. In Figure 6.12(a) the distance of each OTU to each
cluster mean is plotted. For example, the first column shows the
distances of all five OTUs (labelled by their cluster membership as
determined by the clustering algorithm) to the mean of cluster A.
The focus in this plot is on the isolation and tightness of each cluster.
Cluster A, for instance, is isolated from the other two and is a fairly
‘tight’ cluster. In Figure 6.12(b) the same distances are plotted in a
different way. Now the focus is on OTUSs and the strength of their
classification into clusters; this plot shows how far away each cluster
centroid is from each OTU. For example, although OTU A, clearly
belongs to cluster A, OTU B, which belongs to cluster B is also
relatively close to cluster C.

Some other simple plots of distances which can be useful are
described in Gnanadesikan, Kettenring & Landwehr (1977).
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Figure 6.11. Dendrogram indicating the presence of twa distinct
clusters. )

nal

Figure 6.12. Plots of OTU-to-cluster distances. 4, and 4, from
cluster A, B, and B, cluster B, and C is a single-member cluster.
(Taken with permission from Gnanadesikan, Kettenring and
Landwehr, 1977.)
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A further graphical aid which is sometimes useful in interpreting
the results of a cluster analysis is that originally proposed by Andrews
(1972). The essential idea is that a p-dimensional observation may
be mapped into a function of the following form:

= xl/\/Z + x,sint + x3c08t + x,8in 2t + x5c082t + ...

and then this function is plotted for — n <t <=#. Each observation
is thus represented as a line on such a plot. The particular function
used is especially useful since points that are close together in the
original p dimensions (as judged by their Euclidean distance) will
be represented by lines that remain close together for all values of
t. Consequently, the plots might be useful for identifying clusters of
observations from the original data, or for displaying the results of
a cluster analysis by plotting cluster means. Figure 6.13 shows the
Andrews plots of 30 five-dimensional observations. The figure clearly
indicates the presence of three clusters of observations.

In addition to the difficulties involved in interpreting solutions,
the taxonomist also faces other problems. If different measures of
proximity produce different classifications when, for example, using
a common method of clustering, which proximity measure should
one choose? A similar choice has to be made with respect to the
clustering algorithm to be used. Different sets of characters, or
samples of OTUs, will inevitably produce data that indicate different
classifications, although they might be reasonably close. For example,
if one were to classify plants on the basis of vegetative characteristics
one might produce a classification differing quite widely from one
produced from measurements of seed characters. Does this matter?
Michener (1970) has suggested that

it is increasingly evident that a major value of numerical
phenetics is the possibility of preparing a variety of classifi-
cations using different methods or different sets of characters
for comparative purposes. For example, it may be very useful
to prepare separate classifications for larvae and for adults.
The classification most useful for predictive purposes for
larval characters will probably be that based upon other
_larval characters... Once the data are collected and coded
for numerical phenetic use, additional manipulation of them
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Figure 6.13. Andrews’ plots for a set of 30 five-dimensional observations generated to contain three clusters.
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can be made so rapidly by computer that there is little reason
for not trying out all possibly interesting procedures.

One might wish, however, to corroborate the results of one study
by examination of a second character set. If, for example, a
dendrogram or scatter plot has been produced from an analysis .of
morphological character states, one might wish to test the usefulness
of the results by repeating the work on biochemical characters such
as amino acid sequences or antigenic similarities. In order to assess
the results one would clearly need some quantitative measure of
congruence between classifications. However, this is beyond the scope
of the present text and the interested reader is referred to Sneath &
Sokal (1973) or Jardine & Sibson (1971) for a fuller discussion.

6.7 What is a cluster ?

Throughout the earlier parts of this chapter the terms cluster
and group have been used in an essentially intuitive manner, without
any attempt at formal definitions. However, this problem needs to
be tackled at this point in order to clarify the way in which the
different cluster analysis algorithms have been developed to search
for particular types of grouping. When a set of OTUs have been
partitioned or classified in some way the taxonomist wishes to be
able to describe how the members of a group are similar, and how
these members differ from those of other groups. For example, when
considering what is meant by a biological species, a zoologist such
as Mayr (1969) uses the ability to interbreed as a criterion of
membership. Reproductive barriers are seen as the natural ‘gaps’
between species. However, numerical taxonomists have rejected the
biological species concept (see section 1.4) and therefore need other
ideas with which to work. Here the obvious choice is to use
measurements of similarity or distance to indicate relationships
within and between groups.

Consider Figure 6.14 which is a representation of the positions of
60 hypothetical OTUs in a two-dimensional character space. It is
intuitively clear that there are two distinct clusters, but how could
one produce a clustering algorithm to detect them? Since an
algorithm usually follows from a precise definition of what is required,
this is a problem of cluster definition. First note that the clusters
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are of different size (in terms of space covered) and shape, and,
although many clustering algorithms are written on the assumption
that clusters might be of similar size and shape, there is no a priori
reason why this should be so. Now, if one inspects group A, and
assumes that the Euclidean distance between OTUs is a sensible
measure of proximity or relatedness, it is clear that all members of
this group are within 0.8 of any of the others. In terms of graph
theory (see, for example, Ore, 1963), if one defines two OTUs to be
connected (or related) if the distance between them is less than or
equal to 0.8, group A is clearly represented by a maximally connected
graph; that is, there are direct connections between every pair of

Figures 6.14. Positions of 60 hypothetical OTUs in a two-
dimensional character space.
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OTUs. This leads naturally to one possible definition of a cluster
as a maximally connected set. One produces these sets using the
complete linkage clustering algorithm. Now, if one also uses the
same criterion for connectivity for group B, these OTUs form a
graph that is not maximally connected. In order for this to appear
as a maximally connected set one would have to redefine what is
meant by ‘connected’. If one now defines two OTUs to be connected
if the distance between them is less than or equal to 3.6 (the
approximate distance between OTUs 1 and 3), group B will form a
maximally connected set. But so will all the OTUs taken together!
If one were to define connectivity by an intermediate distance
artefactual clusters would be produced by the complete-linkage
clustering method. Redefining a cluster as a group of OTUs that
were minimally connected, that is, by only one direct or indirect path
between every pair of OTUs, and searching for them using the
single-linkage clustering algorithm, one might recover the true
structure of the data. However, the possibility of chaining (see
section 6.3) might again lead one astray. Perhaps one might wish to
define a cluster to be intermediate between a maximally and
minimally connected set in an attempt to avoid the above problems.

It should be clear from the above discussion that no one definition
of a cluster will be suitable for all sets of data (this is an alternative
way of expressing the conclusions of section 6.3), and that the
definition chosen should be dependent on the results of, for example,
ordination. Instead of thinking in terms of graph theory, one might
wish to consider areas of relatively high density of OTUs as clusters.
One might also wish to consider the idea of a gap or moat that
surrounds a distinct cluster. This is, perhaps, what one is intuitively
looking for when visually examining scatter plots such as Figure 6.14.
Michener (1970) has suggested that more importance should be given
to these discontinuities by phenetic taxonomists, since these gaps
are often of great biological significance due to the historical and
ecological factors that have led to them.

Having decided to use a particular clustering algorithm and having
produced a dendrogram to summarize the results, one needs to
decide on appropriate points at which to cut the dendrogram to
produce sensible partitions of the OTUs into taxa (called phenons
by Sneath & Sokal, 1973). Then, on the assumption that one wishes
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to produce a classification comparable to that of traditional taxono-
mists, one has to decide on the rank of the taxa. These are problems
that are not unique to numerical taxonomy, but it might be argued
by numerical taxonomists that the traditional taxonomies should
not be used as a precedent when deciding how to summarize
information of this type. It has also been argued that the traditional
type of binomial nomenclature is of little use to the modern
systematist. If one merely uses the results of ordination and cluster
analysis as summaries of the data, one can then use one’s experience
and insight as a taxonomist to produce a formal classification that
will best serve the purposes of biologists. It was stated in Chapter 1,
however, that one of the principal aims of numerical taxonomy was
to produce classifications on the basis of objective criteria in the
hope that they would be stable and in some way would be ‘better’
than those produced by traditional taxonomists. One cannot escape
from the conclusion that skill and insight are just as important to
the numerical taxonomist as they are to a worker who does not
use mathematical methods. This view is succinctly summarized by
Michener (1970):

It is clear...that numerical phenetics has not succeeded in
developing a method of producing a single relatively objec-
tive classification, better than others, which could be used as
the formal classification of any group.

... The selection of characters, the coefficients of similarity or
difference to be used, and the methods of clustering are all
determined subjectively, and there are no generally accepted
criteria for deciding which of various classifications is ‘best’.

6.8 Summary

A large number of algorithms for cluster analysis have been
developed and many are available in the form of well-documented
computer packages. Consequently they are easy to use. They are
also, however, easy to misuse and to misinterpret. Both the results
of cluster analyses and those of ordinations have to be examined
carefully by a skilled taxonomist. These methods, in practice, do not
lead to a purely objective and stable classification of OTUs. We
agree with Michener (1970) in concluding that these methods are



6.8 Summary 105

best seen as tools for data exploration, rather than for the production
of a formal classification. With this in mind, it would appear that
the optimism of numerical taxonomists such as, for example, Sokal
& Rohlf (1970) is not really justified. These conclusions, however,
are not to be interpreted as criticisms of numerical methods, but are
merely intended to imply that one cannot replace careful thought
by automatic computerized methods.
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Identification and assignment techniques

7.1 Introduction

Once one has a comprehensive classification of the taxo-
nomic units of interest, the next problem becomes that of assigning
a new unit to a predetermined category or taxon. How does one
identify a freshly collected specimen ? Determination or identification
by an expert is perhaps still regarded as the most reliable of all
identification methods. Here the scientist will use experience, in-
tuition and skill in comparing the new organism with examples,
illustrations and descriptions of the previously constructed taxa.
Often a specimen will be immediately recognized by the experienced
scientist without any specific mental procedure. One cannot always
have recourse to an expert, however, and it therefore becomes
necessary to consider designing methods of identification that might
be used by a beginner and, ideally perhaps, programmed for a
computer. By supplying a precise algorithm for identification de-
cisions will be made objectively, with the same result arising on
repeated consideration of the same evidence.

There are two main approaches to the automatic classification of
specimens. In the first one employs characters in a sequence (as in
a diagnostic key). Here the possible alternatives are successively
eliminated by considering more and more characters until only one
possibility remains. In the second approach one considers all of the
chosen characters simultaneously. Here some sort of matching is
made between the unknown specimen and each of the known taxa
in order to find the best match. As with that of cluster analysis, the
literature for identification or diagnosis is large and widely dispersed
and, consequently, it will not be possible to describe every available
method in a single chapter. Instead this chapter will begin with an
introduction to the construction of diagnostic keys, and will then
concentrate on the more mathematical matching techniques such as
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discriminant function and canonical variate analysis, which are being
used increasingly in biological applications.

7.2 Diagnostic keys

These keys are perhaps the most familiar of identification
methods. A simple example in which the taxa are eleven species of
common British tree is shown in Table 7.1, taken from Payne &
Preece (1980). This key consists of seven numbered sets of contrasting
statements, each set relating to the states of a single character. Each
of the statements is a lead describing a single character state. In
binary or dichotomous keys there are only two leads per set of
statements, and these sets are referred to as couplets. To identify a
specimen from one of the eleven taxa one starts by choosing from
the first set of leads the one that is true for the specimen. The chosen
lead may be followed by a name identifying the appropriate taxon,
or by a number to the right of the lead directing one to a further
set where a decision is made as before, the process continuing until
an identification is made. In summary, the use of a diagnostic key
involves performing a sequence of tests, each of which has a number

Table 7.1. Key to eleven types of common British tree (Payne &
Preece, 1980)

1. Texture of bark smooth 2
Texture of bark rough 4
Texture of bark corky Elder
Texture of bark scored horizontally Rowan
Texture of bark scaling 6

2. Leaves not pinnate or lobed 3
Leaves pinnate Ash

3. Basic shape of leaf pointed oval Beech
Basic shape of leaf heart-shaped Lime

4. Leaves not pinnate or lobed 5
Leaves lobed Oak

S. Basic shape of leaf pointed oval Elm
Basic shape of leaf broad lanceolate Sweet chestnut

6. Leaves not pinnate or lobed Birch
Leaves lobed 7

7. Position of leaves on stem opposite Sycamore

Position of leaves on stem alternate

Plane
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of different possible outcomes or responses. For each of the tests,
the response matching the character state of the unknown specimen
is selected. '

Table 7.1 can be represented diagrammatically by a tree as shown
in Figure 7.1. For such diagrams it is natural to define a branch of
akey as a sequence of tests and responses that result in the assignment
of the unknown specimen to a given taxon, and to consider each
test to be made at a particular point in the key. The depth of a test
is the number of tests preceding it on a branch, and the length of a
branch is similarly the total number of tests leading to a given
identification.

The characters best suited for construction of a diagnostic key
are those that are both easy to observe and convey as much
information as possible about the differences between taxa. They are
characters that have the highest consistency within taxa, but separate
the set of taxa under consideration into approximately equal halves.
There is always a possibility of making one or more mistakes when
using a diagnostic key; the earlier the mistake is made in the sequence
the more serious the consequences. When constructing a key using
a given set of characters one therefore wishes to reduce the probability

Figure 7.1. Diagrammatic representation of the diagnostic key
shown in Table 7.1. Open circles indicate questions and crosses
indicate taxa. (Taken with permission from Payne and Preece,
1980.)

X X
Oak Ash

X X X X

Beech Lime Elm  Sweet chestnut Sycamore Plane
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of making a mistake, and this is done by keeping the mean branch
length of the key as small as possible (although other considerations
may override this—see Pankhurst, (1978)). Figure 7.2 shows two
extreme cases of diagnostic keys to distinguish eight hypothetical
taxa. For key a the mean branch length is

3434+3+34+3+34+3+3
=30
8
For key b it is
1+2+3+4+5+6+7+7’_44

8

The difference between the shortest and longest key is more
marked if many more taxa are being discriminated. For example,
with 64 taxa the shortest and longest length keys have mean branch
lengths of 6 and 32.5 respectively.

Payne & Preece (1977) describe a method for incorporating checks

Figure 7.2. Two diagnostic keys for eight hypothetical taxa. (a)
minimum mean branch length. (b) maximum mean branch length.
Symbols as in Figure 7.1.

(@)

X X X X X X

®)
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against observer error into identification keys. This involves the
assumption that the use of the key will never make more than n
errors and eliminates taxa from a branch only after more than n test
results have differed from those on the branch. An initial or main
key is constructed in the usual way and then, for each of its endpoints,
a check key is constructed to distinguish between the identified taxon
and taxa to which the unknown might have been assigned but for
the occurrence of up to n errors. In a check key, taxa are eliminated
only after n+ 1 test results that differ either in the main key or in
the check key itself. Tests from the main key are re-used if their
results cannot be verified independently. Other methods for dealing
with errors in diagnostic keys are described by Morse (1971) and
Sandvik (1976).

7.2.1  The construction of diagnostic keys

Keys have long been constructed by hand, and a description
of the methods used is given by Pankhurst (1978). With the increasing
use of computers, however, more attention has been focussed on
finding optimal identification keys which have, on average, as few
tests per identification as possible (i.e. a minimum mean branch
length; see above). The logical basis for construction of such optimal
keys is, essentially, the mathematical Theorie des Questionnaires
expounded by Picard (1965), an English version of which has recently
appeared (Picard, 1980). Much of this work is outside the scope of
this text and we shall therefore confine our attention to a brief
account of computer algorithms for constructing keys.

Except for dynamic programming algorithms, which effectively
enumerate all possible keys (Garey, 1972), no exact algorithm is
known for finding optimum keys. Dynamic programming algori-
thms, however, are impracticable for most real data, which may be
concerned with several hundred taxa and, in some cases, of the order
of a hundred characters or more. Several authors, for example,
Pankhurst (1970), Morse (1971), and Payne (1975) present algorithms
giving approximate solutions. They all operate by selecting first the
test that ‘best’ divides the taxa into two sets. Various criteria, some
of which are described below, have been used to define what is meant
by the best test. After the first division, the chosen criterion is used
to select the next test to be used with each subset of taxa, and so
on. Garey & Graham (1974) give examples showing that selecting
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tests in this way, without examining their later consequences, can
lead to inefficient keys, but most authors claim that their algorithms
work well in practice and certainly give keys as good as, if not better
than, those prepared by hand using intuition and experience.

For tests which have equal costs and taxa for which there are no
variable responses, the most common criterion used to choose the
best test is based on the entropy function of Shannon (1948) and is
given by

H;= Z P 108 pys . (7.1)
k=1

where p, is the proportion of taxa with fixed response k to test i
and m;, is the number of levels of test i. At each stage the test with
minimum value of H, is chosen.

For taxa having variable responses, Shwayder (1971, 1974) sugges-
ted that H, be modified to

Hi=H;—(1-r)log(1—r), (7.2)

where r, is the proportion of taxa with variable responses to test i.
A further function, suggested by Brown (1977), is

i= = kz':l Pu(l —pu—1) (7.3)

Gower & Payne (1975) investigated the properties of several such
criteria and in the multiresponse case found the criterion

5= 3 Gu+rlog(ru-+r) (14

to be most suitable.

As an example of the use of these criteria, let us consider H;
applied to a hypothetical data set consisting of five taxa and five
characters (Table 7.2). For these data H; takes the values

H; =0.4l0og0.4 +0.6log0.6 = —0.29
H), =0.610g0.6 +0.210g0.2 — 0.810g 0.8 = 0.90
H; =0.6log0.6 —0.6l0g 0.6 =0.0

H, =0.410g0.4 + 0.210g0.2 + 0.210g 0.2 — 0.8 1og 0.8
© =-036

H; =081l0og0.8 —0.8l0og0.8 = 0.0
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Table 7.2. Characteristics of five hypotheti-

cal taxa
Character Taxa

T, T, T, T. T,
1 1 1 2 2 2
2 \' 2 3 2 2
3 2 \'% \' 2 2
4 A% 1 1 2 3
5 2 2 2 2 A%

The numbers in the table indicate the character
states diagnostic for particular taxa. ‘V’ in-
dicates a variable response.

Consequently, the first character chosen is character 4; this leads
directly to identification as T, for character state 2, and T, for
character state 3; a further character must be chosen to differentiate
between T;, T, and T;. By applying the same procedure this is found
to be character 2. For these data the remaining characters are
unnecessary for identification.

7.3 Probabilistic assignment techniques

If identification with certainty is impossible, either because
too many characters are variable within taxa or because all assess-
ments of character states are subject to error, probabilistic identifica-
tion methods are often used. The question now asked is: which taxon
is most likely to have produced the character states of the specimen
requiring identification?

First consider a single character found to have state a in an
unknown specimen S. What one wishes to determine is the probabil-
ity of S belonging to each of the taxa under consideration. The
specimen may then be assigned to the taxon corresponding to the
maximum of these probabilities. By Bayes’ theorem (see, for example,
Hays, 1973), the probability of a specimen S with character value a,
belonging to taxon T, designated by P(T;|a), may be expressed as
follows:

_ P@lH)AT)

P(Tja) =00

(7.5
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where P(a|T) is the probability of observing character state a in
taxon T;, P(T;)is the prior probability of finding a specimen belonging
to taxon T, and P(a) is the probability of observing character state
a; the latter may be written in terms of conditional probabilities of
observing character state a in each of the n taxa involved, as follows:

P(a) = 'Zl P(a| T)P(T) (7.6)
Both (7.5) and (7.6) still hold if we consider a to be a vector (a) of
character states observed on S. The form of P(T;|a) corresponding
to (7.5) shows that the probability of S belonging to T; is high if a
is a common character set for that taxon, and also high if T; is a
commonly occurring taxon (the corollary of this, of course, is that
the probability of being in taxon T; given a, is low if that taxon is a
Very rare one).
One of the assumptions commonly used for qualitative character
states is that the p characters vary independently so that

P@|T) = H P(a|T) ' (7.7

It is also often assumed that the prior probabilities of the taxa are
equal, either because they are unknown or because they are variable.
With this and the independence assumption, (7.5) for a vector of
character values becomes

P
l__l P(a;| T)

p

Z HP(am

i=1j=

P(T|a) = (7.8)

Now the value of P(T;|a) could be determined for each of the n taxa
and the unknown specimen assigned to the taxon for which this
value is greatest. Here P(T;|a) is equivalent to what Willcox, Lapage
& Holmes (1980) call an identification score. This method has been
used to identify bacteria of medical importance. One merely chooses
the taxon with the highest identification score. Despite the fact that
the method does not take character correlations into account, it has
been shown to be extremely powerful when about 30 characters are
used for discrimination of taxa. If the identification score reaches a
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pre-assigned high level, for example 0.999, the identification is
accepted as a successful one. If it is lower than this the identification is
uncertain. An example from Willcox et al. (1980) is shown in Table 7.3.

If one is dealing with quantitative rather than qualitative charac-
ters, it is more usual to assume that they have a multivariate normal
distribution rather than independence. This leads, for the special
case of two taxa, to the well-known linear discriminant function, first
suggested by Fisher (1936), and described in detail in section 7.3.1.

Returning for the present to a consideration of qualitative charac-
ter states, one can think of a value for P(T;|a) (these are usually
termed posterior probabilities) of, say, 0.95 as providing a boundary
for the taxon T;. One could, for example, calculate a similarity or
distance to the centroid of a taxon (defined appropriately) that
corresponds to this level of probability, and so define a taxon radius.
Any specimen found within this radius is allocated to taxon T;. Any

Table 7.3. Computer identification based on Bayes’ theorem (Willcox
et al.,, 1980)—identified as Pasteurella multocida

Results used in calculation (37 tests done):
(a) (b) (a) (b) (@) (bl)

Motility 37 ~— 1 MacConkey — 25 Simmons Citr —
Motility RT — 1 Catalase + 99 Urease -1
Growth 37 + 99 Oxidase + 50 PPA -1
Growth RT + 75 Hand L Ferm + 50 Glucose PWS + 99
Pigment — 1 Nitrate + 99 Gas Glucose -1
Adonitol PWS — 1 Lactose PWS + 5 Sorbitol PWS + 90
Arabinose PWS — 15 Maltose PWS — 1 Sucrose PWS + 99
Cellobiose PWS — 1 Mannitol PWS + 90 Trehalose PWS — 30
Dulcitol PWS — 15 Raffinose PWS — 5 Xylose PWS - 50
Glycerol PWS — 15 Rhamnose PWS — 1 Starch PWS -1
Inositol PWS  — 1 Salicin PWS -1

MR 37 - 1 VP37 — 1 Indole + 99
MR RT — 1 VPRT -1

Details of calculation:

Group Score

Pasteurella multocida 0.999 847

Pasteurella multocida (Atypical) 0.000 150

Column (a) tells one whether the reaction or test is regarded as positive or
negative; column (b) the proportion (%) of tests that are for the species with
the highest score. The extremes, 1%, and 99%, refer to practically never, or
practically always, positive, respectively.
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specimen found not to lie within the taxon radius of any of the known
taxa is regarded as unidentifiable. If an unknown falls just outside the
taxon radius one would probably consider it to be an abnormal strain
or variety of that taxon; if it were found to lie between two taxa it
would be considered to be an intermediate form (perhaps a hybrid).
One can use non-probabilistic concepts for taxon radius; but these
will not be discussed here and the interested reader is referred to
Sneath & Sokal (1973) and Sneath (1978b), where fuller discussions of
taxon radius models may be found. Here we move on to consider
Fisher’s linear discriminant function.

7.3.1  Fisher’s linear discriminant function

Let us suppose that now we have only two taxa, T, and T,
and we wish to assign a new specimen to one of these on the basis of
its scores p quantitative characters given in the vector x. The
assignment rule based on the posterior probabilities, P(T,|x) and
P(T,|x), is as follows:

P(T,|x)
P(T;|x)
assign the specimen to T, ; otherwise assign it to T;. If we now assume
that the two taxa have equal prior probabilities, i.e. P(T,) = P(T,),
then from Bayes’ theorem, as given in (7.5), we have

P(Ty|x) _ P(x|T})

P(T 10 ~ PITy) (10
If one now assumes that the distribution of x within taxa T, is
multivariate normal with mean vector u; and variance matrix, X
(assumed to be the same in T; and T)), then

if

>1 (1.9)

ﬁ((—’;:—;:—; =exp{—3{(x—p)E ' (x— )
—(x— )T (x — py) 1} (7.11)
Taking logarithms of the above leads to the assignment rule
if —3x— Y7 (x — py) — (X — ) E7Hx — py)] >0

assign the specimen to T,; otherwise assign it to T,. Rearrange-
ment of this expression leads to

X'E7 Ny — pg) >3y +p) 27y — py) (7.12)
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and so the assignment rule becomes of the form

if x'w>0

assign specimen to T, otherwise assign it to T,, where the weight
vector, w=X"'(u, —pu,), and the threshold value, 6 =4(u, +u,)
I !(u, — u,). This rule involves a linear function of the character
values, which is generally known as the discriminant function.

So far it has been assumed that the mean vectors and the
covariance matrix of the two taxa are known exactly. In practice,
of course, this will not be so and they must be estimated from
samples, one from each taxon; consequently, the weight vector and
the threshold value are now estimated by

W=S"1(x, — X, (7.13)
6 =4(x, + x,)S7!(X, — X,) (7.14)

where S is an estimate of the assumed common covariance matrix
of the two taxa, and X, and X, are estimates of g, and pu,.

The weight vector w was originally derived by Fisher in 1936 from
a different starting point. He formulated the problem of discri-
minating between two classes in terms of choosing a linear function
of the observations that has greatest variance between classes relative
to variance within classes. Formulating the problem in this way
enables the technique to be extended in a natural way to the situation
where there are more than two taxa, when it is now known as
canonical variate analysis.

7.3.2  Canonical variate analysis

Canonical variate analysis is similar in certain respects to
principal components analysis. Again, transformed axes are sought
but now the first axis is required to be in the direction of greatest
variability between the means of the different taxa. The second axis
is chosen to be orthogonal to the first and inclined in the direction
of next greatest variability; similarly for the third and subsequent
axes. The axes are termed canonical variates. In technical terms, the
first canonical variate axis is that linear compound of the characters,
w; X, which maximizes

A, =wiBw,/w;Ww, (7.15)

where B is the (p x p) between-taxa matrix of sums of squares and
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cross-products of the variables about their respective means, and W
is the corresponding within-groups matrix. The second canonical
variate is derived from the vector wj, which maximizes

A, = w),Bw, /W, Ww, (7.16)
subject to w; Ww, =0, and so on.

It is easy to show that the coefficient vectors w;,w;,..., etc., are
given by the latent vectors of the matrix BW~!. The number of
vectors which can be extracted is given by the rank of the matrix
and can be shown to be min {p,n — 1}, where p is the number of
characters and n is the number of taxa. When n =2 only a single
canonical variate can be found and this is equivalent to Fisher’s
discriminant function. The latent roots of BW ~! indicate how much
between-taxa, relative to within-taxa, variability is associated with
each canonical variate.

A set of canonical variate means for each taxon may now be
found, and for a specimen requiring identification a set of canonical
variate scores. The Euclidean distance of the specimen from each of
the taxa, based on these scores, might now be determined and the
specimen assigned to the taxon to which it is closest. (Such a
procedure is essentially equivalent to computing the Mahalanobis’
distance, (x — ;)W ~!(x — X,), between the specimen and each taxon
mean.)

A plot of taxon means in canonical variate space is often useful
for displaying the relationships between taxa. Since the variates
account for decreasing amounts of variance, a plot in the space of
the first two or three variates is generally most useful.

7.33  Anexample of canonical variate analysis

The power of canonical variate analysis, especially in dealing
with complex data obtained from chemical analysis of micro-
organisms, will be illustrated by the work of MacFie, Gutteridge &
Norris (1978) on aerobic food spoilage bacteria, and including that
of O’Donnell, MacFie & Norris (1980) on three closely related species
of Bacillus. These authors have generated the data used for identifica-
tion by pyrolysis gas—liquid chromatography (p.g.l.c.). This is a
process in which complex molecules are rapidly and reproducibly
thermally degraded in an inert atmosphere (pyrolysis) and the
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products of this degradation separated and quantified (using gas—
liquid chromatography). The results of p.g.lc. can be plotted as
pyrograms (see Figure 7.3) that can be considered as a characteristic
finger-print’ for a particular strain, provided that growth and
chromatographic conditions are kept constant.

The groups of organisms used by MacFie et al. (1978) are shown
in Table 7.4. These authors chose to measure the height of 24 of the
chromatographic peaks (after standardization, to allow for changes
in sample size; see Figure 7.3) and to treat these measurements as
coordinates for the bacterial strains in a 24-dimensional Euclidean
character space. Twenty-five replicate means were obtained for these
measurements, to allow for variation between different p.g.l.c. runs.
From these data, Mahalanobis’ D? was calculated for every pair of
the bacterial groups and the results are shown in Table 7.5.

Finally, canonical variate analysis was performed on these means,

Table 7.4. Groups and numbers of strains of aerobic food spoilage
bacteria used by MacFie et al., (1978)

Group no. Group name No. of strains
1 Moraxella 5
2 Pseudomonas 7
3 Lactobacillus 5
4 Microbacterium hermosphactum 3
5 Micrococcus 5

Figure 7.3. Pyrogram of a strain of Pseudomonas. (Taken with
permission from MacFie et al., 1978.)

Peak amplitude

Time
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the first canonical variate plotted against the second for each group,
and 95%; confidence regions for the groups indicated (Figure 7.4). (A
description of how these are obtained is given in Maxwell (1977),
Chapter 9.) Clearly the analysis enables easy discrimination between
these five groups of bacteria. These groups could easily have been
differentiated by conventional bacteriological techniques, however,

Table 7.5. Matrix of Mahalanobis D* among the bacterial groups
given in Table 7.4

Group no.  Group name i Group no.

1 Moraxella 0
2 Pseudomonas 8 0
3 Lactobacillus 12 15 0
4 Microbacterium hermosphactum 50 50 58 0O
5 Micrococcus 18 24 17 53 0
Figure 7.4. Plot of the genus canonical variate means. Numbering
asin Table 7.4. Circles indicate 95%; confidence regions. (Taken with
permission from MacFie et al., 1978.)
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and it is of considerable interest to see how this method performs
for more closely related organisms.

The second example is from the work of O’Donnell et al. (1980) on
three closely related species of aerobic sporeformers, Bacillus cereus (9
strains), Bacillus mycoides (10 strains) and Bacillus thuringiensis (18
strains). B. cereus and B. mycoides are abundant soil bacteria, the
latter producing distinctive colonies somewhat resembling those of a
fungus. Apart from this property, these two species are so similar that
B. mycoides has often been thought of as a variety of B. cereus (Stanier,
Doudoroff & Adelberg, 1971). B. thuringiensis is an insect pathogen
that produces a toxic protein crystal during sporulation. It is possible,
however, to isolate mutants of B. thuringiensis that still form spores
but have lost the ability to synthesize the toxic protein crystals. These
mutants are no longer insect pathogens and cannot be distinguished
from B. cereus by conventional methods. B. thuringiensis could also,
therefore, be regarded as a variety of B. cereus (Stanier et al., 1971).
Another very closely related bacterium (Bacillus anthracis), not used
by O’Donnell et al. (1980), is the causative organism for anthrax.
Clearly it is of utmost importance to be able to identify these
organisms quickly, efficiently and accurately.

Each strain was grown on nutrient agar until well sporulated and
then subjected to p.g.l.c. Twenty-seven peak heights were measured
from each resulting pyrogram and a canonical variate analysis carried
out on the resulting data matrix (for this purpose replicated p.g.l.c.

Figure 7.5. Plot of species means relative to the first two canonical
variate axes. (1) Mean of 18 strains of B. thuringiensis. (2) Mean of 9
strains of B. mycoides. (3) Mean of 10 strains of B. cereus. Circles
define 95% confidence regions for each species. (Taken with
permission from O’ Donnell et al., 1980.)
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analyses representative of each strain were averaged). Figure 7.5
shows a plot of species means relative to the first two canonical
variate axes. B. cereus and B. mycoides are close, but can easily be
discriminated on the basis of the 27 peak heights. B. thuringiensis is
well separated from the other two. O’Donnell et al. (1980) went on
to investigate how few of these 27 measurements are needed for
successful identification, and found that there were two measure-
ments which could be used on their own to discriminate reasonably
successfully between the three species (a single strain of B. mycoides
being incorrectly assigned to B. cereus).

7.4 Summary

This chapter has been concerned with the identification of
unknown OTUs; that is, the assignment of an unidentified specimen
to a known taxon. There are basically two major approaches to this
problem:

(a) Sequential analysis of character states (for example in
the construction and use of a diagnostic key), and

(b) Simultaneous analysis of the character states (for example,
in the use of a discriminant function or canonical variate
analysis)

Use of methods belonging to the latter category is more likely to
lead to the correct assignment and often requires measurements from
fewer characters. These methods, however, frequently employ data
obtained by the use of extensive or laborious laboratory experiments
and so have been rarely used in practice, except by microbiologists.
For further details of these methods, and for a summary of work
done with other groups of organisms, the reader is referred to Sneath
& Sokal (1973), Blackith & Reyment (1971) and Lachenbruch (1975).
Readers are also referred to the excellent outline of discrimination
techniques in Hand (1981), which presents an extensive survey of
discriminant analysis methods as well as methods from the related
field of pattern recognition.
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The construction of evolutionary
trees

8.1 Introduction

In this, the final chapter, ways in which phenetic information
can be used for inferences concerning possible patterns of evolution
will be introduced. Although these methods are not strictly part of
numerical taxonomy, they are introduced to indicate to the student
how one uses taxonomic data to generate scientific theories; that is,
to show how numerical taxonomy is an integral part of systematics
as a whole. As was stated in the first chapter, a numerical taxonomist
makes inferences about evolution from phenetic data. He also bases
his classifications on the phenetic properties of OTUs rather than
on their supposed genealogies. This contrasts with the methods of
taxonomists such as Mayr (1969) and, in particular, that of Hennig
(1966).

It should also be clear, from what was said in Chapter 1, that the.
numerical taxonomist does not consider a classification to be a
theory that can be tested by further taxonomic work. It is merely a
way of summarizing data that may, or may not, be useful to future
biologists. This does not mean that he cannot revise his classification
after obtaining additional data. When one comes to making infer-
ences about evolution from taxonomic data, however, one is trying
to reconstruct actual historical sequences of events. Here one can
quite easily be mistaken, and one can also try to find other evidence
with which to test one’s ideas. It is vital that the student understands
this point. A dendrogram, for example, is merely a convenient, and
perhaps useful, way of summarizing data, whereas an evolutionary
tree is a summary of a scientific theory to be tested by further research.

8.2 Evolution as a branching process
The model of evolution used for constructing phylogenies
is one of successive branchings, or successive splitting of populations



8.2 Branching evolution 123

into two or more subpopulations in which evolutionary changes
then proceed independently. One need not assume that the rate of
evolutionary change is constant throughout history, but many
models are based on the assumption that, at any one time, the rate

Figure 8.1. The fifteen possible rooted trees for four taxa. (Taken
with permission from Cavalli-Sforza & Bodmer, 1971.)
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of evolution is the same in the different branches of the tree. In a
more detailed model one can also specify the mechanisms responsible
for these genetic changes; for example, mutation, migration, selection
and drift. Various algorithms have been introduced for the construc-
tion of phylogenetic trees. These either produce trees with an apex
(or root) or ones without (unrooted). The main difference between
the two types of algorithm lies in the assumption of constant
evolutionary rates in the different branches. Here examples of only
the simplest methods will be discussed as an introduction to the
subject. For further details the reader is referred to Sneath & Sokal
{1973), Cavalli-Sforza & Edwards (1967) and Farris (1972).
Consider then four populations of OTUs, A4, B,C’ and D. There
are fifteen possible ways in which these OTUs may have arisen
from a single ancestral population by successive dichotomous splits.
These are shown in Figure 8.1. If one ignores the root or apex the
number of different trees is reduced to three, as is shown in Figure
8.2. The number of possible trees increases very rapidly with the

Figure 8.2. The three possible unrooted trees for four taxa.
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number of OTUs being studied. With three OTUs the number of
rooted trees is three, and there is only a single unrooted one. With
five OTUs these numbers are 90 and 15, respectively. Cavalli-Sforza
& Edwards (1967) report that (2t — 3)!/[2'~ (¢t — 2)!] different rooted
trees can be recognized for t OTUs. When ¢t = 10, this equals 34,459,
425 trees. These authors also state that (2t — 5)!/[2'~ 3t —3)1]
different unrooted trees are possible. This equals 2,027,025 when
t =10. The first problem in constructing a phylogenetic tree is the
selection of the most plausible pathway from the very large number
of possible ones. The next is the estimation of the positions of the
branch points (nodes) and hence the lengths of the branches. The
latter may, or may not, involve the reconstruction of the character-
istics of the ancestors (hypothetical taxonomic units, HTUs) represent-
ed by these nodes. Ideally one should be able to postulate a statistical
model for the evolutionary processes that one is studying, and then
compare the likelihoods for all possible trees, given the model and
the observed characteristics of the OTUs. In practice, however, unless
the model is very simple or there are very few OTUs to be studied,
this methods of maximum-likelihood estimation is at present computa-
tionally far too complex, even for high-speed computers (see Cavalli-
Sforza & Edwards, 1967; and Edwards, 1970). The two-stage strategy
given above can be thought of as a compromise that should produce
a tree that is reasonably close to one that would have been generated
by the full maximum-likelihood method.

83 The principle of minimal evolution

An idea that has been considered to be quite important by
many evolutionists when attempting to construct phylogenetic trees
is that of minimum evolution. It is not easy to justify its use, except
that it is consistent with the intuitively satisfying principle of maxi-
mum parsimony, but it produces trees that are quite close to those
constructed using other criteria. Minimum evolution can be thought
of as the minimum number of evolutionary steps (Camin & Sokal,
1965), the minimum number of mutational steps (Fitch & Margo-
liash, 1967), or minimum tree length (Cavalli-Sforza & Edwards,
1967). When using this principle to construct trees one must decide
whether characters should be ordered from evolutionarily primitive
to advanced, and whether reversal of evolutionary processes is
allowed. Here the discussion will be concerned with the construction
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of trees from data in which character states are not ordered.and in
which evolutionary reversals are allowed. Note that the idea of
minimum evolution is also applicable to cases where only similarity
or distance matrices are available, either because one is using
published data which are in this form or because the character states
cannot be recorded. An example of the latter case is where one is
measuring biochemical similarities based on immunology or on
nucleic acid hybridization.

Consider Figure 8.3(a). This shows one of the possible rooted
trees from Figure 8.1 in which the three necessary HTUs have been
added, as well as the lengths of all the branches. The total length is
simply found by adding all of these distances together; that is
u+ v+ x+ y+ w+ z For each of the different trees shown in Figure

Figure 8.3 (a) A rooted evolutionary tree for four OTUs.
(b) An unrooted evolutionary tree for the same four
OTUs.

HTU

()
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8.1 there will be an equivalent algebraic expression for its total length.
The problem of finding the shortest evolutionary tree is then one of
finding the shortest tree of each of the possible types (topologies)
and then choosing the shortest of these. However, if there are more
than a few OTUs being studied this is beyond the capacity of current
computers. However, one can decide not to try to place HTU a and
look for the minimum length unrooted tree (Figure 8.3(b)). It should
be clear that this will have the same length as the minimum length
rooted tree above, but will require much less computing power to
find. But this will, again, be beyond the capabilities of current
computers for all except trivial examples. In practice one uses an
algorithm to produce a tree topology (perhaps with approximate
estimates of the branch lengths) that is reasonably close to what one
would expect from the complete solution, and then estimates the
branch lengths accurately using a second algorithm. This procedure
will yield a tree that is likely to be very close to the optimum solution,
and may in fact be the best solution, but one can never be sure that
a better tree does not exist.

84 The topology of the tree
How does one produce a genealogy that is a reasonable
approximation to the true pathways of descent of the OTUs? If one
assumes that evolution is basically divergent it might be quite sensible
to use a dendrogram as a starting point. One assumes that OTUs
that are similar, and are therefore grouped together by a clustering
algorithm, have evolved from a relatively recent common ancestor.
At this point, however, one has to think very carefully about the
definition of a cluster that one has implicitly used in the construction
of the clustering algorithm. The reader is referred to section 6.7.
When using a dendrogram as the starting point for a phylogenetic
tree, one merely uses the information from the topology of the graph
and ignores the various fusion levels, and so on. One then uses one
or more of the algorithms described in the next section to estimate
the branch lengths of the tree. This produces an ‘optimum’ tree for
a given topology or pattern of branching. One can, of course, try
several different clustering algorithms and pick the resulting tree
that is apparently the best of them all.
There are also other algorithms, differing from those described in
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Chapter 6, that can be used to generate a reasonable topology. Some
of these are discussed in detail by Farris (1970, 1972), and the
interested reader is referred to these papers for a fuller discussion
of the problems involved. Here one method only will be described.
This produces a minimum spanning tree (Prim, 1957; Edwards &
Cavalli-Sforza, 1964; see section 5.4) which may be computed as
follows (Farris, 1970):

1. Pick an OTU, say Q, as a starting point. It does not matter
which OTU is used. Go to 2.

2. Find the OTU thatisclosest to Q. Join it to Q to form a graph
with a single connection. Go to 3.

3. Compute the difference between each unplaced OTU and the
graph. The difference between an OTU, A, and a graph is
defined as the minimum distance between A and the OTUs
connected by the graph. Go to 4.

4. Find the OTU that s closest to the graph. Add it to the graph
by connecting it to the OTU from which it differs least. Go to
5.

5. If any OTUs remain unplaced, go to 3. Otherwise, stop.

8.5 Optimization of trees

Having produced an approximation of the required evol-
utionary tree, either by using a clustering algorithm or some other
tree-producing method, one can then proceed to estimate its branch
lengths using one of a few criteria to assess goodness-of-fit to the
taxonomic data. If one were to produce a sensible statistical model
for the evolutionary process one could then use maximum likelihood
estimation (Cavalli-Sforza & Edwards, 1967). One could also use
minimum tree length as an optimality criterion. Algorithms for
minimum length trees given a particular tree topology are described
by Fitch (1971), Farris (1970, 1972), and Hartigan (1973). These will
not be explained here; instead, a different criterion of optimality will
be introduced.

If one has a reasonable measure of the taxonomic distance between
two independently evolving populations, one can assume that the
measure will increase with time (evolution being essentially diver-
gent). In addition, the distances produced in a given time will simply
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add on to those produced in a previous time interval. Consider
Figure 8.3(b). The patristic distance between two OTUs is defined
as that distance between them which is measured by the appropriate
branch lengths of the evolutionary tree (Farris, 1972). So, for example,
the patristic distance between OTU A4 and OTU Bis x + y, and that
between OTU A and OTU Dis x + t + z. The phenetic distance is that
provided by the taxonomic data matrix. One can construct a
phylogenetic tree in which the patristic distances are as close as
possible to the observed phenetic distances. From Figure 8.3(b) one
has:
d,g =x+y+ ‘error

]

d,c=x+t+w+ ‘error
d,p=x+t+z+ error
dgc =y +t+w+ ‘error’
dgp =y+t+z+‘error
dep =w+z+ ‘error’

where, for example, d;, is the phenetic distance between OTUs A4
and B. The ‘error’ terms represent the differences between the
observed phenetic distances and the computed patristic ones. One
can estimate the terms x, y, z, and so on, by minimizing the sum of the
squared errors—the method of ‘least squares’ (Cavalli-Sforza &
Edwards, 1967). Alternatively, one might wish to minimize the sum of
the absolute values of the errors (Fitch & Margoliash, 1967). Either
statistic can be used as a measure of the goodness-of-fit of the
resulting tree to the taxonomic data.

8.6 Reticulate evolution: the problem of hybrids

The methods that have been described in this chapter are
based on the fundamental assumption that lineages may branch but
never fuse. Fusion of lineages is called reticulate evolution, and it
introduces difficulties for the use of phenetic data in making
inferences about evolutionary trees. Consider Figure 8.4(a) which
shows a hypothetical dendrogram for four OTUs, 4 to D. On the
assumption that there has been no hybridization during the evolution
of these OTUs, one can produce an evolutionary tree with the
topology of Figure 8.4(b). Suppose, however, that one has evidence,
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say, from the cytology of the OTUs, that OTU B has evolved from
a hybrid formed from the recent ancestors of OTU 4 and OTU C.
This would imply that the evolutionary tree in Figure 8.4(b) is of
little use, despite the fact that a classification based on the dendro-
gram in Figure 8.4(a) might be quite satisfactory. Half of the genome
of OTU B will have evolved along a pathway similar to that in
Figure 8.4(b) and the rest by a pathway indicated by Figure 8.4(c).
A realistic evolutionary tree for the four OTUs might have a form
similar to that shown in Figure 8.4(d). (See Sneath (1975) for similar
representations.)

How common is this problem in work on evolutionary biology?
Reticulate evolution is thought to be rare in animals, but in plants
hybridization frequently occurs between different taxa, leading to
persisting and evolving lineages (Davis & Heywood, 1963; Grant,
1971). Hybridization usually occurs via the formation of allopoly-

Figure 8.4. (a) Dendrogram for four hypothetical OTUs.
(b) One possible evolutionary tree for these four OTUs.
(c) An alternative evolutionary tree for the four OTUs.

(d) An evolutionary tree to illustrate the occurrence of
hybridization.
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ploids in sexually reproducing plants, and in some genera there is
a large proportion of species that are thought to have arisen in this
way (Davis & Heywood, 1963). The genus Solanum is a well-known
example, and the reader is referred to the work of Edmonds (1977,
1978) on the numerical taxonomy of OTUs from this genus. There
is also evidence that reticulate evolution is common in micro-
organisms (see Jones & Sneath, 1970, but also section 8.7). Finally,
there is increasing evidence that the eukaryotic cell itself has evolved
from an ancient hybrid derived from several primitive cell lines (see
Schwartz & Dayhoff, 1978, and, again, section 8.7).

8.7 Gene phylogenies

This section will be mainly concerned with inferences that
can be made from the study of amino acid sequences in proteins, or
of nucleotide sequences in nucleic acids. In the second chapter an
operational definition of homology was given, and two nucleotide
sequences were compared as an example of how this definition could
be used. Now an additional complication will be introduced to show
that the simple operational definition of homology is inadequate in
many situations. When considering sequence data it is essential to
distinguish between two kinds of homology. Following a gene
duplication, the two resulting genes may evolve independently,
perhaps developing different functions within the cell, while descend-
ing side by side in the same phyletic lineage. These genes are said
to be paralogous. As an example, consider the genes for myoglobin
and alpha haemoglobin. They are thought to have evolved from a
common ancestral gene that duplicated very early in the evolution of
vertebrates, and they have subsequently evolved independently
within each evolutionary line of animals. Although myoglobin from
a chicken and alpha haemoglobin from man are homologous, it
would be absurd to compare the two sequences in order to gain
information on the relationship between the two taxa. One should
either compare sequences of myoglobin from the two species, or
haemoglobin sequences. One must compare directly only those
sequences whose genes have a lineage that precisely corresponds, in
a one-to-one fashion, to the descent of the species in which they are
found. These genes are called orthologous. There is no simple
operational definition, similar to that given for homology in Chapter
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2, that will distinguish paralogous from orthologous sequences.
So, one can look at patterns of descent by comparison of
orthologous sequences or of paralogous sequences of macromol-
ecules (the latter usually taken from a single taxon). In either case
one can use numerical methods to produce evolutionary trees for
the genes involved, but only the gene phylogenies for the orthologous

Figure 8.5. Globin gene phylogeny. Numbers on segments are
nucleotide replacements required to account for the descent of the
five present-day sequences from a common ancestor. (Taken with
permission from Fitch and Margoliash, 1970.)

Myoglobin Alpha Gamma Beta Delta
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case will yield any information about the descent of the taxa in
which they are found. As an example of the results of analyses of
paralogous globin sequences, consider Figure 8.5. This shows a
history of gene duplications. An ancestral globin gene duplicated;
following this, the product of one of the resulting genes developed
into a muscle oxygen carrier (myoglobin) while the product of the
other became the blood oxygen carrier (haemoglobin). Further gene
duplications in the haemoglobin line led to the evolution of alpha
and beta haemoglobins, so that the tetrameric o,f,-form of
haemoglobin became possible. The gene for the beta chain then
duplicated again to permit the development of the gamma chain
found in foetal haemoglobins, and so on.

If one were to produce a phylogenetic tree for taxa (or a
dendrogram, if one were merely interested in classification) using
sequence data from haemoglobins, would one expect to obtain a
tree very similar to one based on myoglobin sequences? Since
reticulate evolution is not thought to have occurred in vertebrates,
the answer ought to be ‘yes’. Similarly, one would expect these trees
to be fairly close to phylogenies produced by traditional methods.
If one were to study plant or microbial macromolecules, however,
this might not be the case. Bacterial genes can be transferred between
quite distantly related taxonomic groups via phages or plasmids and
this type of transfer may have been quite common during the
evolution of present-day micro-organisms. The complications that
this introduces into bacterial taxonomy have been illustrated by
Jones & Sneath (1970):

If these views are accepted, it can be seen that a strain X of
taxospecies A4, carrying a plasmid P derived from the genome
of taxospecies B, has multiple relationships to species B.
These include genetic relationship (in the wide sense) due to
plasmid transfer. But X and B also have a genomic
relationship (by virtue of the genes on the plasmid), a
phenetic relationship (due to the genes on P), and in addition
a cladistic relationship due to the origin of P. Other strains of
species A have a close relationship to strain X, a relationship
which is at least phenetic (but which may also be assumed to
be also genomic and cladistic). However, they have only a

 distant relationship of any kind to species B, except through
the intermediacy of strain X.
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Recent data on cytochrome ¢ sequences from the Rhodospirillaceae
or purple non-sulphur photosynthetic bacteria has suggested a
classification, and subsequent evolutionary tree, that is not consistent
with classifications produced from traditional taxonomic evidence
(Ambler et al., 1979a,b). It has been suggested that macromolecular
information might be of little use in deciphering bacterial phylogeny
because of widespread transfer of genes and subsequent ‘scrambling’
of the genetic information. One way of testing whether this suggestion
might be correct for the purple photosynthetic bacteria would be to
produce a second classification, based on sequence data from another
macromolecule. Woese, Gibson & Fox (1980) have done this using

Figure 8.6. The relationships among various purple photosyn-
thetic bacteria as determined by (a) 16 S ribosomal RNA sequence

comparisons and (b) cytochrome ¢ sequence comparisons. (Taken
with permission from Woese, Gibson and Fox, 1980).
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the sequences of 16S ribosomal RNA. Their results are shown in
Figure 8.6. The two dendrograms are remarkably similar, suggesting
that gene transfer should not be held responsible for the conflict
between the classifications based on sequence data and those
obtained by traditional means.

An approach which one might wish to use would be to assume that
reticulate evolution has indeed occurred, and to use sequence data as
a probe to find out how and when it might have happened.
Chloroplasts of green plants contain, like prokaryotic cells, 70S
ribosomes that differ from the 80S ribosomes of the eukaryotic
cytoplasm. This, along with other evidence, has led to the hypothesis
that modern chloroplasts are descendants of endosymbiotic pro-
karyotes, similar to cyanobacteria, which, early in evolution, entered
primitive eukaryotic cells (see Schwartz & Dayhoff, 1978). This,and a
similar hypothesis concerning the origin of eukaryotic mitochondria,
can be tested by comparison of sequences of macromolecules from
prokaryotes, eukaryotic organelles and eukaryotic cytoplasms.
Schwartz & Dayhoff (1978) summarize the analysis of sequences of
ferredoxins, ¢ cytochromes and 5S RNAs, which, they claim, support
the theory that eukaryotic organelles are descended from prokaryotic
ancestors. Many of their conclusions, however, have been challenged
(Demoulin, 1979). The sequences of human mitochondrial ribosomal
RNA genes are significantly homologous in some regions to both
eukaryotic (i.e. cytoplasmic) and prokaryotic sequences, but are
distinctive enough to suggest that mitochondria are not descended
from recognizable relatives of present-day organisms (Eperon,
Anderson & Nierlich, 1980). On the other hand, 16 S rRNA from
maize chloroplasts is very similar to that from the bacterium
Escherichia coli, supporting the idea that chloroplasts and prokaryo-
tic cells do, indeed, have a common origin (Schwarz & K dssel, 1980).
This conclusion is supported by the work of Fox et al. (1980), who
have provided a dendrogram to illustrate the similarities between
16 S rRNAs from chloroplasts and cyanobacteria (Figure 8.7).

What else can be learnt from sequence data? Provided that one can
estimate evolutionary rates from fossil evidence, one can calibrate the
speeds of macromolecular evolution and compare them with, say,
evolutionary changes in morphology (Fitch, 1976; Wilson, Carlson &
White, 1977). Are evolutionary rates constant? Are evolutionary rates
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of change for one type of macromolecule the same as for another?
Given their functional importance, do particular sequences within a
macromolecule change at much slower rates than others? These and
many other questions will be answered with the development of
macromolecular taxonomy (relying, almost entirely, on numerical
methods of analysis) and its subsequent incorporation into syste-
matics as a whole,

8.8 Summary

This chapter contains a brief outline of the way in which
numerical methods can be used in the construction of phylogenetic
trees. In addition, it is hoped that the discussion illustrates the way in
which the results of numerical taxonomic studies can be used in a

Figure 8.7. Topology of the provisional phylogenetic tree for
cyanobacteria and chloroplasts. (Taken with permission from Fox
et al., 1980.)
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more general study of diversity (i.e. systematics). Unlike classifi-
cations, inferences concerning patterns of evolution can be wrong,
and the results given in this chapter as examples must be regarded as
tentative. The construction of ‘better’ evolutionary trees will, pre-
sumably, have to await the development of more realistic models of
evolutionary processes, but one would expect that the mathematical
methods used might be similar to the maximum likelihood pro-
cedures of Cavalli-Sforza & Edwards (1967). A more comprehensive
discussion of this problem is given by Thompson (1975).
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