
Lecture Notes in Computer Science 3298
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sheila A. McIlraith Dimitris Plexousakis
Frank van Harmelen (Eds.)

The Semantic Web –
ISWC 2004

Third International Semantic Web Conference
Hiroshima, Japan, November 7-11, 2004
Proceedings

13

Volume Editors

Sheila A. McIlraith
University of Toronto
Dept. of Computer Science
6 King’s College Road, Toronto, Ontario M5S 3H5, Canada
E-mail: sheila@cs.toronto.edu

Dimitris Plexousakis
University of Crete
and Foundation for Research and Technology (FORTH)
Institute of Computer Science
711 10 Heraklion, Crete, Greece
E-mail: dp@ics.forth.gr

Frank van Harmelen
Vrije Universiteit Amsterdam
Dept. of Computer Science
De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands
E-mail: frank.van.harmelen@cs.vu.nl

Library of Congress Control Number: 2004114602

CR Subject Classification (1998): H.4, H.3, C.2, H.5, F.3, I.2, K.4

ISSN 0302-9743
ISBN 3-540-23798-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11344568 06/3142 5 4 3 2 1 0

Preface

The 3rd International Semantic Web Conference (ISWC 2004) was held Novem-
ber 7–11, 2004 in Hiroshima, Japan. If it is true what the proverb says: “Once
by accident, twice by habit, three times by tradition,” then this third ISWC
did indeed firmly establish a tradition. After the overwhelming interest in last
year’s conference at Sanibel Island, Florida, this year’s conference showed that
the Semantic Web is not just a one-day wonder, but has established itself firmly
on the research agenda. At a time when special interest meetings with a Seman-
tic Web theme are springing up at major conferences in numerous areas (ACL,
VLDB, ECAI, AAAI, ECML, WWW, to name but a few), the ISWC series has
established itself as the primary venue for Semantic Web research.

Response to the call for papers for the conference continued to be strong.
We solicited submissions to three tracks of the conference: the research track,
the industrial track, and the poster track. The research track, the premier venue
for basic research on the Semantic Web, received 205 submissions, of which 48
were accepted for publication. Each submission was evaluated by three pro-
gram committee members whose reviews were coordinated by members of the
senior program committee. Final decisions were made by the program co-chairs
in consultation with the conference chair and the senior program committee.
The industrial track, soliciting papers describing industrial research on the Se-
mantic Web, received 22 submissions, of which 7 were accepted for publication.
These papers were reviewed by three members of the industrial track program
committee, and final decisions were made by the industrial track co-chairs. Fi-
nally, the poster track, designed for late-breaking results and work in progress,
received 68 submissions, of which 47 were accepted, following two reviews of
poster summaries by the conference program committee. Final decisions were
made by the poster track chair. Results of the poster track are reproduced in a
separate volume.

One of the Chairs’ prerogatives is to make some sense out of these submis-
sion statistics. First of all, ISWC 2004 was a truly international forum, with
accepted contributions from over 20 countries worldwide. It is also instructive to
look at the distribution of papers across different areas. The chart on the next
page shows the number of papers submitted and accepted in the different areas.
(NB: most papers were classified in multiple areas.) We see that two of the more
“traditional” Semantic Web topics continue to dominate the conference: lan-
guages/tools/methodologies and ontologies. Other core topics are also strongly
represented: interoperability, Web services, middleware and searching/querying.
Together, these six core topics already account for 60% of the accepted papers.
Some topics, although central to the Semantic Web, are surprisingly small in
number, for example database technologies (5%) and inference/rules (4%). Some
other topics are already “hot” in smaller workshops, but apparently haven’t

VI Preface

made it to the big conference scene yet, such as peer-to-peer and trust (each at
a modest 2%).

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19

Areas

No. submitted No. accepted

Areas:

1 Languages, tools and methodologies for Semantic Web data
2 Ontologies (creation, merging, linking and reconciliation)
3 Semantic integration and interoperability
4 Semantic Web services (description, discovery, invocation, composition)
5 Semantic Web middleware
6 Searching, querying and viewing the Semantic Web
7 User interfaces
8 Visualization and modelling
9 Data semantics
10 Database technologies for the Semantic Web
11 Semantic Web inference schemes/rules
12 Tools and methodologies for Web agents
13 Large-scale knowledge management
14 Peer-to-peer systems
15 Semantic Web mining
16 Semantic Web trust, privacy, security and intellectual property rights
17 Semantic brokering
18 Semantic Web for e-business and e-learning
19 Knowledge portals

As with any conference, the quality of the accepted papers and the integrity
of the review process reflect the hard work of the program committee. We thank

Preface VII

our senior program committee, members of both program committees, and our
auxiliary reviewers for the tremendous effort they put into the task of evaluating
submissions to the conference. Most importantly, we thank industrial track co-
chairs Dean Allemang and Jun-Ichi Akahani, and poster track chair, Jeremy
Carroll for the superb job they did, organizing and coordinating their tracks of
the conference.

Invited talks constitute an integral part of the scientific program of an in-
ternational conference. We were fortunate to have three excellent and diverse
distinguished lectures as part of the ISWC 2004 technical program. Edward
Feigenbaum, Kumagai Professor of Computer Science and Director Emeritus,
Knowledge Systems Laboratory, Stanford University, communicated his views
on the status and progress of Semantic Web research by speaking on “The Se-
mantic Web Story – It’s already 2004. Where are we?”. Wolfgang Nejdl, Director
of the Learning Lab Lower Saxony at the University of Hannover elaborated on
the research issues involved in distributed search on the Semantic Web with his
presentation entitled “How to Build Google2Google – An (Incomplete) Recipe
–.” Marie-Christine Rousset, head of the Artificial Intelligence and Inference
Systems Group in the Laboratory of Computer Science at the University of
Paris-Sud, renewed an old knowledge representation theme by addressing the
expressiveness/tractability trade-off in her talk entitled “Small Can be Beauti-
ful in the Semantic Web.” This volume includes papers by Nejdl and Rousset
that are associated with their lectures.

In addition to the paper and poster tracks, ISWC 2004 included 8 work-
shops, 6 tutorials, a demonstration session with 45 registered demonstrators,
the Semantic Web Challenge with 18 participants, and an exhibition featur-
ing industrial demonstrations. Large participation in these events reflects the
broad interest in the Semantic Web, and how active the field is. Once again, we
thank all the chairs for their dedicated efforts towards making the conference a
success. The local organization of ISWC 2004 went smoothly through the ex-
traordinary care and attention of those on the organizing committee. We are
greatly indebted to Riichiro Mizoguchi, the local arrangements chair, for doing
a meticulous job. His attention to detail, and the beautiful venue he selected for
the conference contributed tremendously to the overall experience of the confer-
ence. John Mylopoulos and Katia Sycara, ISWC 2003 program co-chairs, also
deserve our special thanks for their guidance and for sharing their experience
with last year’s conference.

Electronic submission of papers and reviews was driven by the Confious
Conference Management system, developed at ICS FORTH by Manos Papagge-
lis. This was the first time Confious was used, and the system ran remarkably
smoothly. We thank Manos for his around-the-clock support during the many
months preceding the conference. We also owe a debt of gratitude to Akiko In-
aba for her diligence and aesthetic sense in developing and supporting the ISWC
2004 Web page. Finally, we extend tremendous thanks to Jorge Baier for the fine
job he did in preparing these proceedings.

VIII Preface

We hope that the attendees found the conference both stimulating and en-
joyable.

November, 2004 Sheila McIlraith and Dimitris Plexousakis
Program Co-Chairs

Frank van Harmelen
Conference Chair

Organizing Committee

General Chair Frank van Harmelen (Vrije Universiteit,
The Netherlands)

Program Co-Chairs Sheila McIlraith (University of Toronto, Canada)
Dimitris Plexousakis (ICS FORTH and
Univ. of Crete, Greece)

Local Arrangements Chair Riichiro Mizoguchi (Osaka University, Japan)
Industrial Track Co-chairs Dean Allemang (TopQuadrant Inc., USA)

Jun-ichi Akahani (NTT Corporation, Japan)
Poster Track Chair Jeremy Carroll (Hewlett-Packard Labs, UK)
Demos Chair Stefan Decker (DERI, Ireland)
SW Challenge Co-chairs Michel Klein (Vrije Universiteit, The Netherlands)

Ubbo Visser (University of Bremen, Germany)
Tutorials Co-chairs Vipul Kashyap (Partners HealthCare Systems Inc.,

USA)
Takahira Yamaguchi (Keio University, Japan)

Workshops Chair Natasha Noy (Stanford University, USA)
Exhibition Chair Hiroshi Tsuda (Fujitsu Ltd., Japan)
Metadata Chair Steffen Staab (University of Karlsruhe, Germany)
Publicity Chair Akiko Inaba (Osaka University, Japan)
Sponsorship Co-chairs Akira Maeda (Hitachi Ltd., Japan)

Massimo Paolucci (Carnegie Mellon University,
USA)
York Sure (University of Karlsruhe, Germany)

Senior Program Committee

Hamish Cunningham (University of Sheffield, UK)
Oren Etzioni (University of Washington, USA)
Jérôme Euzenat (INRIA Rhône-Alpes, France)
Tim Finin (University of Maryland, Baltimore County, USA)
Carole Goble (University of Manchester, UK)
Benjamin Grosof (MIT, USA)
Alon Halevy (University of Washington, USA)
Ian Horrocks (University of Manchester, UK)
Toru Ishida (Kyoto University, Japan)
Boris Katz (MIT, USA)
Craig Knoblock (University of Southern California, USA)
Nicholas Kushmerick (University College Dublin, Ireland)
Deborah McGuinness (Stanford University, USA)
John Mylopoulos (University of Toronto, Canada)
Wolfgang Nejdl (L3S and University of Hannover, Germany)

X Organization

Zbigniew Ras (University of North Carolina, Charlotte, USA)
Michel Scholl (CNAM, France)
Guus Schreiber (Vrije Universiteit, The Netherlands)
Rudi Studer (University of Karlsruhe, Germany)
Katia Sycara (Carnegie Mellon University, USA)
Hideaki Takeda (National Institute of Informatics, Japan)

Program Committee

Karl Aberer (EPFL, Switzerland)
Bernd Amann (CNAM, France)
Jose Luis Ambite (ISI, University of Southern California, USA)
Grigoris Antoniou (ICS FORTH, Greece)
Jean-François Baget (INRIA Alpes, France)
Sean Bechhofer (University of Manchester, UK)
Zohra Bellahsene (Université de Montpellier II, France)
Abraham Bernstein (University of Zurich, Switzerland)
Kalina Bontcheva (University of Sheffield, UK)
Paolo Bouquet (University of Trento, Italy)
Jeffrey M. Bradshaw (Institute for Human and Machine Cognition, USA)
François Bry (Institute for Informatics, University of Munich, Germany)
Mark Burstein (BBN, USA)
Diego Calvanese (Free University of Bolzano, Italy)
Jeremy Carroll (Hewlett-Packard, UK)
Pierre-Antoine Champin (Université de Lyon I, France)
Vinay Chaudhri (SRI International, USA)
Gregory Cobena (Xyleme, France)
Nigel Collier (National Institute of Informatics, Japan)
Oscar Corcho (Intelligent Software Components, Spain)
Isabel Cruz (University of Illinois, Chicago, USA)
Hasan Davulcu (Arizona State University, USA)
Mike Dean (BBN, USA)
Stefan Decker (DERI, Ireland)
Thierry Declerck (Saarland University and DFKI GmbH, Germany)
Grit Denker (SRI International, USA)
Ian Dickinson (Hewlett-Packard, UK)
Ying Ding (University of Innsbruck, Austria)
An Hai Doan (University of Illinois, Urbana-Champaign, USA)
John Domingue (Knowledge Media Institute, Open University, UK)
Andreas Eberhart (University of Karlsruhe, Germany)
Boi Faltings (EPFL, Switzerland)
Richard Fikes (Stanford University, USA)
Dana Florescu (BEA, USA)
Aldo Gangemi (CNR, Italy)
Yolanda Gil (ISI, University of Southern California, USA)

Organization XI

Fausto Giunchiglia (University of Trento, Italy)
Asun Gomez-Perez (Universidad Politécnica de Madrid, Spain)
Marko Grobelnik (J. Stefan Institute, Slovenia)
Michael Gruninger (NIST, USA)
Nicola Guarino (ISTC-CNR, Italy)
Ramanathan Guha (IBM Research, USA)
Mohand Said Hacid (Université de Lyon I, France)
Wendy Hall (University of Southampton, UK)
Jeff Heflin (Lehigh University, USA)
Masahiro Hori (Kansai University, Japan)
Herman ter Horst (Philips Research, The Netherlands)
Michael Huhns (University of South Carolina, USA)
Rick Hull (Bell Labs, USA)
Jane Hunter (DSTC, University of Queensland, Australia)
Zack Ives (University of Pennsylvania, USA)
Anupam Joshi (University of Maryland, Baltimore County, USA)
Subbarao Kambhampati (Arizona State University, USA)
Roger (Buzz) King (University of Colorado, USA)
David Kinny (Agentis Software, USA)
Atanas Kiryakov (Ontotext Lab, Sirma, Bulgaria)
Yasuhiko Kitamura (Kwansei Gakuin University, Japan)
Matthias Klusch (DFKI GmbH, Germany)
Manolis Koubarakis (Technical University of Crete, Greece)
Yannis Labrou (Fujitsu Labs, USA)
Georg Lausen (University of Freiburg, Germany)
Thibaud Latour (CRP Henri Tudor, Luxembourg)
Chen Li (University of California, Irvine, USA)
Robert MacGregor (ISI, University of Southern California, USA)
David Martin (SRI International, USA)
Mihhail Matskin (KTH, Sweden)
Masaki Matsudaira (OKI, Japan)
Diana Maynard (University of Sheffield, UK)
Brian McBride (Hewlett-Packard, UK)
Frank McCabe (Fujitsu Labs, USA)
Drew McDermott (Yale University, USA)
Luke McDowell (University of Washington, USA)
Sergey Melnik (Microsoft Research, USA)
Pavlos Moraitis (University of Cyprus, Cyprus)
Mark Musen (Stanford University, USA)
Tim Oates (University of Maryland, Baltimore County, USA)
Massimo Paolucci (Carnegie Mellon University, USA)
Bijan Parsia (University of Maryland, USA)
Peter Patel-Schneider (Bell Labs, USA)
Terry Payne (University of Southampton, UK)
Paulo Pinheiro da Silva (Stanford University, USA)

XII Organization

Alan Rector (University of Manchester, UK)
Chantal Reynaud (Université d’Orsay, France)
Mark Roantree (Dublin City University, Ireland)
Marie-Christine Rousset (Université d’Orsay, France)
Henryk Rybinski (Warsaw University of Technology, Poland)
Norman Sadeh (Carnegie Mellon University, USA)
Fereidoon Sadri (University of North Carolina, Greensboro, USA)
Ulrike Sattler (University of Manchester, UK)
Nigel Shadbolt (University of Southampton, UK)
Wolf Siberski (University of Hannover, Germany)
Michael Sintek (DFKI, Germany)
Andrzej Skowron (Warsaw University, Poland)
Steffen Staab (University of Karlsruhe, Germany)
Lynn Andrea Stein (Olin College, USA)
Heiner Stuckenschmidt (Vrije Universiteit, The Netherlands)
Gerd Stumme (University of Kassel, Germany)
Said Tabet (Nisus Inc., USA)
Val Tannen (University of Pennsylvania, USA)
Yannis Tzitzikas (University of Namur, Belgium)
Andrzej Uszok (Institute for Human and Machine Cognition, USA)
Dan Vodislav (CNAM-CEDRIC, Paris, France)
Christopher Welty (IBM Watson Research Center, USA)
Kevin Wilkinson (HP Labs, USA)
Steve Willmott (Universitat Politècnica de Catalunya, Spain)
Michael Wooldridge (University of Liverpool, UK)
Guizhen Yang (SRI International, USA)
Yiyu Yao (University of Regina, Canada)
Ning Zhong (Maebashi Institute of Technology, Japan)
Djamel Zighed (Université de Lyon, France)

Industrial Track Program Committee

Bill Andersen (Ontology Works, USA)
Jürgen Angele (Ontoprise, Germany)
Ken Baclawski (Semantx Life Sciences, Div. of Jarg Corporation, USA)
Richard Benjamins (iSOCO and UPM, Spain)
Jack Berkowitz (Network Inference, USA)
Andy Crapo (GE, USA)
John Davies (British Telecom, UK)
Michael Denny (Concurrent Technologies Corporation, USA)
Lars M. Garshol (Ontopia, Norway)
Richard Huffine (EPA, USA)
Thomas Kamps (Fraunhofer Institute, Germany)
Takahiro Kawamura (Toshiba Corporation, Japan)
Paul Keller (NASA Ames Research Center, USA)

Organization XIII

Shoji Kurakake (NTT DoCoMo, Japan)
Jae Kyu Lee (KAIST, South Korea)
Kyu-Chul Lee (Chungnam National University, Korea)
Alain Leger (France Telecom, France)
Ryusuke Masuoka (Fujitsu Laboratories of America Inc., USA)
Alexander Morgan (General Motors Research, USA)
Holger Rath (Empolis, Germany)
Amit Sheth (Semagix, UK)
Satish Thatte (Microsoft, USA)
Mike Uschold (Boeing, USA)
Richard Watts (Lawrence Livermore National Labs, USA)
John Zimmerman (NNSA Kansas City Plant, USA)

Local Organizing Committee

Jun-ichi Akahani (NTT Communication Science Laboratories, Japan)
Kazuo Asakawa (Information Technology Media Labs., Fujitsu Labs., Japan)
Nigel Collier (National Institute of Informatics, Japan)
Kiyoshi Hara (Nihon Unisys Software, Japan)
Koiti Hasida (AIST, Japan)
Tsukasa Hirashima (Hiroshima University, Japan)
Masahiro Hori (Kansai University, Japan)
Mitsuru Ikeda (Japan Advanced Institute of Science and Technology, Japan)
Toru Ishida (Kyoto University, Japan)
Noriaki Izumi (AIST, Japan)
Akifumi Kambara (INTAP, Japan)
Yasuhiko Kitamura (Kwansei Gakuin University, Japan)
Yoshinobu Kitamura (Osaka University, Japan)
Kiyoshi Kogure (ATR Intelligent Robotics and Communication Labs., Japan)
Ken Kuriyama (Gakken, Japan)
Akira Maeda (Systems Development Laboratory, Hitachi Ltd., Japan)
Katashi Nagao (Nagoya University, Japan)
Yukio Osawa (Tsukuba University, Japan)
Nobuo Saitoh (Keio University, Japan)
Hideo Shimazu (NEC Corporation, Japan)
Kazuo Sumita (Corporate Research and Development Center, Toshiba, Japan)
Hideaki Takeda (National Institute of Informatics, Japan)
Shinichiro Tanaka (Toyota Motor Corporation (Auditor), Japan)
Hiroshi Tsuda (Information Technology Media Labs., Fujitsu Labs., Japan)
Jun-ichi Tsujii (University of Tokyo, Japan)
Takahira Yamaguchi (Keio University, Japan)
Toshio Yokoi (Tokyo Institute of Technology, Japan)
Ning Zhong (Maebashi Institute of Technology, Japan)

XIV Organization

Additional Reviewers

Harith Alani (University of Southampton, UK)
Anupriya Ankolekar (HCI Institute, Carnegie Mellon University, USA)
Donovan Artz (ISI, University of Southern California, USA)
Ronald Ashri (University of Southampton, UK)
Roxana Belecheanu (University of Southampton, UK)
Stephan Blohdorn (University of Karlsruhe, Germany)
Alex Borgida (Rutgers University, USA)
Liliana Cabral (Knowledge Media Institute, Open University, UK)
Philippe Cudre-Mauroux (EPFL, Switzerland)
Bernardo Cuenca Grau (Universidad de Valencia, Spain)
Jose Manuel de Bruijn (DERI, Austria)
Jianchun Fan (Arizona State University, USA)
Tim Furche (Institute of Informatics, University of Munich, Germany)
Nicholas Gibbins (University of Southampton, UK)
Steve Harris (University of Southampton, UK)
Thomas Hernandez (Arizona State University, USA)
Bo Hu (University of Southampton, UK)
Liang Jin (University of California, Irvine, USA)
Yannis Kalfoglou (University of Southampton, UK)
Uwe Keller (DERI, Austria)
Francis Kwong (University of Manchester, UK)
Ruben Lara (DERI, Austria)
Holger Lausen (DERI, Austria)
Jia Li (University of California, Irvine, USA)
José Manuel López-Cobo (Intelligent Software Components, Spain)
Sameer Maggon (ISI, University of Southern California, USA)
Martin Michalowski (ISI, University of Southern California, USA)
Christopher Murphy (Olin College, USA)
Ullas Nambiar (Arizona State University, USA)
Axel Polleres (DERI, Austria)
Varun Ratnakar (ISI, University of Southern California, USA)
Roman Schmidt (EPFL, Switzerland)
Matteo Scoz (University of Trento, Italy)
Imen Sebei (CNAM-CEDRIC, Paris, France)
Marc Spraragen (ISI, University of Southern California, USA)
Naveen Srinivasan (Robotics Institute, Carnegie Mellon University, USA)
Martin Szomszor (University of Southampton, UK)
Raphael Troncy (INA, France)
Jie Wu (EPFL, Switzerland)
Baoshi Yang (ISI, University of Southern California, USA)
Weiwen Yang (University of California, Irvine, USA)
Stefano Zanobini (University of Trento, Italy)

Organization XV

Sponsors

Gold

XVI Organization

Silver

Table of Contents

Invited Papers

How to Build Google2Google – An (Incomplete) Recipe – 1
Wolfgang Nejdl

Small Can Be Beautiful in the Semantic Web . 6
Marie-Christine Rousset

Data Semantics

A Method for Converting Thesauri to RDF/OWL . 17
Mark van Assem, Maarten R. Menken, Guus Schreiber,
Jan Wielemaker, Bob Wielinga

Contexts for the Semantic Web . 32
Ramanathan Guha, Rob McCool, Richard Fikes

Bipartite Graphs as Intermediate Model for RDF . 47
Jonathan Hayes, Claudio Gutierrez

A Model Theoretic Semantics for Ontology Versioning 62
Jeff Heflin, Zhengxiang Pan

Extending the RDFS Entailment Lemma . 77
Herman J. ter Horst

Using Semantic Web Technologies
for Representing E-science Provenance . 92

Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens,
Dennis Quan, Mark Greenwood

P2P Systems

GridVine: Building Internet-Scale Semantic Overlay Networks 107
Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth,
Tim Van Pelt

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 122
Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken,
Peter Mika, Mariusz Olko, Michal Plechawski, Pawel Pyszlak,
Björn Schnizler, Ronny Siebes, Steffen Staab, Christoph Tempich

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 137
Wolfgang Nejdl, Wolf Siberski, Uwe Thaden, Wolf-Tilo Balke

XVIII Table of Contents

Semantic Web Mining

Learning Meta-descriptions of the FOAF Network . 152
Gunnar AAstrand Grimnes, Pete Edwards, Alun Preece

From Tables to Frames . 166
Aleksander Pivk, Philipp Cimiano, York Sure

Tools and Methodologies for Web Agents

The Specification of Agent Behavior by Ordinary People:
A Case Study . 182

Luke McDowell, Oren Etzioni, Alon Halevy

User Interfaces and Visualization

Visual Modeling of OWL DL Ontologies Using UML 198
Sara Brockmans, Raphael Volz, Andreas Eberhart, Peter Löffler

What Would It Mean to Blog on the Semantic Web? 214
David R. Karger, Dennis Quan

The Protégé OWL Plugin: An Open Development Environment
for Semantic Web Applications . 229

Holger Knublauch, Ray W. Fergerson, Natalya F. Noy,
Mark A. Musen

OntoTrack: Combining Browsing and Editing
with Reasoning and Explaining for OWL Lite Ontologies 244

Thorsten Liebig, Olaf Noppens

Tracking Changes During Ontology Evolution . 259
Natalya F. Noy, Sandhya Kunnatur, Michel Klein,
Mark A. Musen

Large Scale Knowledge Management

An Evaluation of Knowledge Base Systems for Large OWL Datasets 274
Yuanbo Guo, Zhengxiang Pan, Jeff Heflin

Structure-Based Partitioning of Large Concept Hierarchies 289
Heiner Stuckenschmidt, Michel Klein

Semantic Web Services

Semantic Web Service Interaction Protocols:
An Ontological Approach . 304

Ronald Ashri, Grit Denker, Darren Marvin, Mike Surridge,
Terry Payne

Table of Contents XIX

ASSAM: A Tool for Semi-automatically Annotating
Semantic Web Services . 320

Andreas Heß, Eddie Johnston, Nicholas Kushmerick

Information Gathering During Planning for Web Service Composition . . . 335
Ugur Kuter, Evren Sirin, Dana Nau, Bijan Parsia,
James Hendler

Applying Semantic Web Services to Bioinformatics:
Experiences Gained, Lessons Learnt . 350

Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz,
Damian Gessler, Duncan Hull, Carole Goble, Lincoln Stein

Automating Scientific Experiments on the Semantic Grid 365
Shalil Majithia, David W. Walker, W. Alex Gray

Automated Composition of Semantic Web Services
into Executable Processes . 380

Paolo Traverso, Marco Pistore

A Conceptual Architecture for Semantic Web Services 395
Chris Preist

From Software APIs to Web Service Ontologies:
A Semi-automatic Extraction Method . 410

Marta Sabou

Applying KAoS Services to Ensure Policy Compliance
for Semantic Web Services Workflow Composition and Enactment 425

Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Austin Tate,
Jeff Dalton

Inference

Knowledge-Intensive Induction of Terminologies from Metadata 441
Floriana Esposito, Nicola Fanizzi, Luigi Iannone,
Ignazio Palmisano, Giovanni Semeraro

Inferring Data Transformation Rules
to Integrate Semantic Web Services . 456

Bruce Spencer, Sandy Liu

Using Vampire to Reason with OWL . 471
Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer,
Ian Horrocks

XX Table of Contents

Searching and Querying

Generating On the Fly Queries for the Semantic Web:
The ICS-FORTH Graphical RQL Interface (GRQL) 486

Nikos Athanasis, Vassilis Christophides, Dimitris Kotzinos

A Comparison of RDF Query Languages . 502
Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael Volz

Information Retrieval Support for Ontology Construction and Use 518
Willem Robert van Hage, Maarten de Rijke, Maarten Marx

Rules-By-Example – A Novel Approach
to Semantic Indexing and Querying of Images . 534

Suzanne Little, Jane Hunter

Query Answering for OWL-DL with Rules . 549
Boris Motik, Ulrike Sattler, Rudi Studer

Semantic Web Middleware

A Semantic Web Resource Protocol: XPointer and HTTP 564
Kendall Clark, Bijan Parsia, Bryan Thompson, Bradley Bebee

On the Emergent Semantic Web and Overlooked Issues 576
Yannis Kalfoglou, Harith Alani, Marco Schorlemmer,
Chris Walton

Metadata-Driven Personal Knowledge Publishing . 591
Ikki Ohmukai, Hideaki Takeda, Masahiro Hamasaki,
Kosuke Numa, Shin Adachi

Integration and Interoperability

An Extensible Directory
Enabling Efficient Semantic Web Service Integration 605

Ion Constantinescu, Walter Binder, Boi Faltings

Working with Multiple Ontologies on the Semantic Web 620
Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin

Opening Up Magpie via Semantic Services . 635
Martin Dzbor, Enrico Motta, John Domingue

Ontologies

Towards a Symptom Ontology for Semantic Web Applications 650
Kenneth Baclawski, Christopher J. Matheus,
Mieczyslaw M. Kokar, Jerzy Letkowski, Paul A. Kogut

Table of Contents XXI

Patching Syntax in OWL Ontologies . 668
Sean Bechhofer, Raphael Volz

QOM – Quick Ontology Mapping . 683
Marc Ehrig, Steffen Staab

An API for Ontology Alignment . 698
Jérôme Euzenat

Specifying Ontology Views by Traversal . 713
Natalya F. Noy, Mark A. Musen

Automatic Generation of Ontology for Scholarly Semantic Web 726
Thanh Tho Quan, Siu Cheung Hui, A.C.M. Fong, Tru Hoang Cao

Industrial Track

Querying Real World Services Through the Semantic Web 741
Kaoru Hiramatsu, Jun-ichi Akahani, Tetsuji Satoh

Public Deployment of Semantic Service Matchmaker
with UDDI Business Registry . 752

Takahiro Kawamura, Jacques-Albert De Blasio, Tetsuo Hasegawa,
Massimo Paolucci, Katia Sycara

SemanticOrganizer: A Customizable Semantic Repository
for Distributed NASA Project Teams . 767

Richard M. Keller, Daniel C. Berrios, Robert E. Carvalho,
David R. Hall, Stephen J. Rich, Ian B. Sturken,
Keith J. Swanson, Shawn R. Wolfe

SWS for Financial Overdrawn Alerting . 782
José Manuel López-Cobo, Silvestre Losada, Oscar Corcho,
Richard Benjamins, Marcos Niño, Jesús Contreras

OntoViews – A Tool for Creating Semantic Web Portals 797
Eetu Mäkelä, Eero Hyvönen, Samppa Saarela, Kim Viljanen

Applying Semantic Web Technology to the Life Cycle Support
of Complex Engineering Assets . 812

David Price, Rob Bodington

ORIENT: Integrate Ontology Engineering
into Industry Tooling Environment . 823

Lei Zhang, Yong Yu, Jing Lu, ChenXi Lin, KeWei Tu,
MingChuan Guo, Zhuo Zhang, GuoTong Xie, Zhong Su, Yue Pan

Author Index . 839

How to Build Google2Google
– An (Incomplete) Recipe –

Wolfgang Nejdl

L3S and University of Hannover, Germany
nejdl@l3s.de

Abstract. This talk explores aspects relevant for peer-to-peer search infrastruc-
tures, which we think are better suited to semantic web search than centralized
approaches. It does so in the form of an (incomplete) cookbook recipe, listing
necessary ingredients for putting together a distributed search infrastructure. The
reader has to be aware, though, that many of these ingredients are research ques-
tions rather than solutions, and that it needs quite a few more research papers on
these aspects before we can really cook and serve the final infrastructure. We’ll
include appropriate references as examples for the aspects discussed (with some
bias to our own work at L3S), though a complete literature overview would go
well beyond cookbook recipe length limits.

1 Introduction

Why should we even think about building more powerful peer-to-peer search infrastruc-
tures? Isn’t Google sufficient for every purpose we can imagine? Well, there are some
areas where a centralized search engine cannot or might not want to go, for example the
hidden web or community-driven search.

The hidden web requires replication of data usually stored in databases in
a central search engine which seems like a bad idea, even though Froogle
(http://froogle.google.com/) attempts to do this for a limited domain / purpose (shopping,
of course). A central data warehouse just does not seem an appropriate infrastructure
for the world wide web, even though replicating much of the surface web on the Google
cluster is (still) doable.

The main characteristic of a community-driven search infrastructure is its strong
search bias on specific topics / results. While the last two years have seen techniques
emerging for biasing and personalizing search [1,2,3], catering for a lot of small and
specific search communities in a centralized search engine neither seems easy to accom-
plish nor particularily useful to implement for a search engine company which has to
target the average user, not specialized communities.

Besides covering these new areas, another advantage of a distributed search in-
frastructure is the potential for faster updates of indices, because we can exploit local
knowledge about new and updated content directly at the site which provides it, without
necessarily crawling all of its content again. Last, but not least, decentralized search
services might also appeal to those who would rather opt for a more “democratic” and
decentralized search service infrastructure instead of centralized services provided by a
(beneficial) monopolist or a few oligopolists.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 1–5, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 W. Nejdl

In this talk, we will discuss some necessary ingredients for a Google2Google recipe,
which have to be mixed together to provide a general decentralized search service in-
frastructure. Please be aware, that a well-tasting solution is still a few years away, and
cooking it all together is not as simple as it might seem at the first moment.

2 Distributed Search Engine Peers

As the first ingredient, we need a large set of distributed Google2Google search peers.
These are not just distributed crawlers such as the peers in the distributed search engine
project Grub (http://grub.org/), but rather provide crawling, indexing, ranking and (peer-
to-peer) query answering and forwarding functionalities.

Each Google2Google search peer will be responsible for a small partition of the web
graph, with some overlaps to achieve redundancy, but without centralized schedulers. As
the web graph is block structured, with inter-block links much sparser than links within
blocks, search peers have to orient themselves on this structure [4,5].

Obviously, it will be important how we connect these peers.A super peer architecture
[6,7] might be a good choice because it allows us to include task specific indexing and
route optimization capabilities in these super peers. As for the exact topology, we will
have a range of options, most probably building upon one of the P2P topologies derived
from Cayley graphs [8] used in DHT and other P2P networks [9,10,11,12].

Typical search engine users will rely on simple text string searches, though for
more sophisticated applications we certainly want to provide more sophisticated query
capabilities as they are available for example in the Edutella network [13]. For certain
applications we might opt for publish/subscribe infrastructures instead [14], which can
re-use many of the ingredients mentioned in this talk.

3 Distributed Ranking Algorithms

One of the main reasons Google quickly replaced older search engines was its ability to
rank results based on the implicit recommendations of Web page writers expressed in
the link structure of the web. So we definitively have to throw in a ranking algorithm to
provide Google2Google with comparable functionalities.

Unfortunately, two main ingredients of Google’s ranking algorithm (TF/IDF and
PageRank) rely on collection wide document properties (IDF) and central computation
(PageRank). There is hope, however, that we are able to solve these problems in the
future: IDF values in many cases do not change much when new documents are added
[15], and distributed algorithms for computing pagerank and personalized pagerank have
been proposed [16,3].

Furthermore, pagerank variants more suited to decentralized computation have re-
cently been investigated [17,18], and promise to decrease communication costs in a
Google2Google setting. These algorithms compute PageRank-like values in two sepa-
rate steps, first doing local computation within a site, then computation between sites
(without taking specific pages into account). Additional analysis is needed on how they
compare to PageRank and how sites with a lot of non-related pages (e.g. mass hosters

How to Build Google2Google – An (Incomplete) Recipe – 3

like Geocities) can be handled. Google2Google search peers will probably have to rely
on blocks within these sites or group the pages of such sites in community-oriented
clusters.

4 Top-k Retrieval and Optimization

Obviously, ranking algorithms are not enough, we also have to use them to prune
Google2Google answers to the best k ones. Imagine shipping hundred thousand an-
swers and more to the user, who only wants to look at the top ten or top twenty answers
in most cases anyway.

Recent work on top-k query processing and optimization in peer-to-peer networks
has addressed these issues, and has shown how (meta) data on query statistics and
ranking methods can be used to retrieve only the k best resources [19,20]. Ranking
in this context is used to score the results that come from distributed sources, reduce
the number of answers, enable partial matches to avoid empty result sets and optimize
query forwarding and answering. Briefly, these algorithms assume a super-peer network
connected using for example a hypercube-derived topology [12], and implement three
intertwined functionalities (more details are presented in another presentation [19]):

– Ranking: Each peer locally ranks its resources with respect to the query and returns
the local top-k results to its super-peer.

– Merging: At the super-peers results from the assigned peers are ranked again and
merged into one top-k list. These answers are returned through the super-peer back-
bone to the querying peers, with merges at all super-peers involved.

– Routing: Super-peer indices store information from which directions the top-k an-
swers were sent for each query. When a known query arrives at a super-peer these
indices are used to forward the query to the most promising (super-) peers only. A
small percentage of queries - depending on the volatility of the network - has to be
forwarded to other peers as well, to update the indices in a query-driven way.

5 Trust and Security

Finally, trust and security play a role even more important in our decentralized
Google2Google infrastructure than in more centralized settings. Topics here range from
the issue of decentralized trust establishment and policy-based access control for dis-
tributed resources [21,22] to distributed computations of trust values meant to achieve
the same benefits as trust networks in social settings [16,23]. The presentations at the
1st Workshop on Trust, Security and Reputation on the Semantic Web [24] covered a
large set of topics in this area and initiated a lot of fruitful discussions.

In our Google2Google setting, malicious peers could for example try to subvert
information they provide, an issue especially critical for ranking information. Recent
analysis of attack scenarios in a distributed PageRank setting [16,3], have been encour-
aging, though, and have shown that with suitable additional modifications of the dis-
tributed algorithm, PageRank computation becomes quite un-susceptible to malicious
peers even in a decentralized setting. Personalized PageRank variants can be made even
more resiliant if we bias them towards trusted sites / peers [25,26].

4 W. Nejdl

6 Conclusion

Even though a decentralized infrastructure makes seemingly simple things surprisingly
difficult (for example how to implement the “Did you mean xx” functionality in Google,
which relies on (global) query and answer statistics), our short search for available
ingredients for a Google2Google infrastructure already turned out rather successful. It
will still take quite a few more research papers (plus an appropriate business / incentive
model for a distributed search engine infrastructure) until we will be able to finalize our
Google2Google recipe. But once we are finished we will have most certainly realized
quite a few new opportunities for searching and accessing data on the (semantic) web.

Acknowledgements. Regarding the title of the paper as well as the initial idea, let
me thank my friend and colleague Karl Aberer for inventing and using the term
Google2Google as a nice catch phrase for distributed web search engines, on occasion
of the panel he organized at the 2nd International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing [27]. This workshop took place in Toronto on
August 29 and 30, in the context of VLDB’04. Regarding the results and ideas described
in this paper, I gratefully acknowledge all my collaborators at L3S and elsewhere for
their valuable contributions on the issues discussed in this talk and mentioned in the
reference list in the next section. Without their help, my cookbook recipe would not
have been written.

References

1. Haveliwala, T.: Topic-sensitive pagerank. In: Proceedings of the 11th International World
Wide Web Conference, Honolulu, Hawaii. (2002)

2. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International
World Wide Web Conference, Honolulu, Hawaii, USA (2003)

3. Chirita, P., Nejdl, W., Scurtu, O.: Knowing where to search: Personalized search strategies for
peers in P2P networks. In: SIGIR Workshop on Peer-to-Peer Information Retrieval, Sheffield,
UK (2004)

4. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the Semantic Web Workshop,
11th International World Wide Web Conference, Honolulu, Hawaii, USA (2002)

5. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block structure
of the web for computing pagerank. In: Proceedings of the 12th Intl. World Wide Web
Conference, Budapest, Hungary (2003)

6. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of the 19th
Internatonal Conference on Data Engineering, Bangalore, India (2003)

7. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Loser, A.:
Super-peer-based routing and clustering strategies for RDF-based peer-to-peer networks. In:
Proceedings of the 12th InternationalWorldWideWeb Conference, Budapest, Hungary (2003)

8. Nejdl, W., Qu, C., Kriesell, M.: Cayley DHTs: A group-theoretic framework for analysing
DHTs based on cayley graphs. Technical report, University of Hannover (2004) submitted
for publication.

9. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable
network. In: Proceedings of the 2001 Conference on applications, technologies, architectures,
and protocols for computer communications, ACM Press New York, NY, USA (2001)

How to Build Google2Google – An (Incomplete) Recipe – 5

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Proceedings of the 2001 Conference on
applications, technologies, architectures, and protocols for computer communications, ACM
Press New York, NY, USA (2001)

11. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: A framework for semantic gossiping. SIG-
MOD Record 31 (2002) http://www.p-grid.org/Papers/SIGMOD2002.pdf.

12. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP—Hypercubes, Ontologies and
Efficient Search on P2P Networks. In: International Workshop on Agents and Peer-to-Peer
Computing, Bologna, Italy (2002)

13. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: EDUTELLA: a P2P Networking Infrastructure based on RDF. In: Pro-
ceedings of the 11th International World Wide Web Conference, Hawaii, USA (2002)
http://edutella.jxta.org/reports/edutella-whitepaper.pdf.

14. Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/subscribe for RDF-based P2P
networks. In: Proceedings of the 1st European Semantic Web Symposium, Heraklion, Crete
(2004)

15. Viles, C., French, J.: On the update of term weights in dynamic information retrieval sys-
tems. In: Proceedings of the Fourth International Conference on Information and Knowledge
Management, Baltimore, Maryland, USA (1995)

16. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for reputation man-
agement in P2P networks. In: Proceedings of the 12th International World Wide Web Con-
ference. (2003)

17. Wang, DeWitt: Computing pagerank in a distributed internet search system. In: Proceedings
of the 30th International Conference on Very Large Databases, Toronto (2004)

18. Wu, J., Aberer, K.: Using siterank for decentralized computation of web document ranking.
In: Proceedings of the 3rd Intl. Conference onAdaptive Hypermedia andAdaptive Web-Based
Systems, Eindhoven, Netherlands (2004)

19. Nejdl, W., Siberski, W., Thaden, U., Balke, W.T.: Top-k query evaluation for schema-based
peer-to-peer networks. In: Proceedings of the 3rd International Semantic Web Conference,
Hiroshima, Japan (2004)

20. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k retrieval in
peer-to-peer networks. submitted for publication (2004)

21. Yu, T., Winslett, M., Seamons, K.: Supporting Structured Credentials and Sensitive Policies
through Interoperable Strategies in Automated Trust Negotiation. ACM Transactions on
Information and System Security 6 (2003)

22. Gavriloaie, R., Nejdl, W., Olmedilla, D., Seamons, K., Winslett, M.: No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. In: Proceedings of the 1st First European Semantic Web Symposium, Heraklion, Greece
(2004)

23. Ziegler, C., Lausen, G.: Spreading activation models for trust propagation. In: Proceedings
of the IEEE International Conference on e-Technology, e-Commerce, and e-Service. (2004)

24. Bonatti, P., Golbeck, J., Nejdl, W., Winslett, M.: ISWC’04 workshop on trust, security, and
reputation on the semantic web. http://trust.mindswap.org/trustWorkshop (2004) Hiroshima,
Japan.

25. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In:
Proceedings of the 30th International Conference on Very Large Databases, Toronto (2004)

26. Chirita, P., Nejdl, W., Schlosser, M., Scurtu, O.: Personalized reputation management in P2P
networks. Technical report, University of Hannover (2004)

27. Ooi, B.C., Ouksel, A., Sartori, C.: The 2nd intl. workshop on databases, information systems
and peer-to-peer computing. http://horizonless.ddns.comp.nus.edu.sg/dbisp2p04/ (2004) co-
located with VLDB’04, Toronto, Canada.

Small Can Be Beautiful in the Semantic Web

Marie-Christine Rousset

LRI, CNRS – Université Paris Sud XI – INRIA Futurs,
Bâtiment 490, Université Paris Sud XI, 91405 Orsay cedex, France

Abstract. In 1984, Peter Patel-Schneider published a paper [1] entitled Small can
be Beautiful in Knowledge Representation in which he advocated for limiting the
expressive power of knowledge representation formalisms in order to guarantee
good computational properties and thus make knowledge-based systems usable
as part of larger systems. In this paper, I aim at showing that the same argument
holds for the Semantic Web: if we want to give a chance for the Semantic Web
to scale up and to be broadly used, we have to limit the expressive power of the
ontologies serving as semantic marking up of resources. In addition, due to the
scale of the Web and the disparity of its users, it is unavoidable to have to deal
with distributed heterogeneous ontologies. In this paper, I will argue that a peer-to-
peer infrastructure enriched with simple distributed ontologies (e.g., taxonomies)
reconciled through mappings is appropriate and scalable for supporting the future
Semantic Web.

1 Introduction

The Semantic Web [2] envisions a world-wide distributed architecture where data and
computational resources will easily inter-operate based on semantic marking up of web
resources using ontologies. Ontologies are a formalization of the semantics of appli-
cation domains (e.g., tourism, biology, medecine) through the definition of classes and
relations modeling the domain objects and properties that are considered as meaningful
for the application. Building ontologies is a hard and time-consuming task for which
there exists only some very general principles to guide the ontology designers [3,4,5]
who still have to face with many modeling choices. Even for a same domain, different
modeling choices can lead to very different ontologies. In particular, the choice of the
basic classes and relations for modeling the basic domain vocabulary is subject to many
variations depending on the ontology designers. The appropriate level of detail of the
ontology descriptions is not easy to determine either and mainly depends on the purpose
of the ontology construction.

Several important issues remain open concerning the building and usage of ontolo-
gies in the setting of the Semantic Web. In this talk, I will discuss some of them and I
will explain my vision of the kind of infrastructure that I consider as scalable for sup-
porting the future Semantic Web. An instance of that infrastructure is implemented in
the Somewhere [6] system that I will present briefly.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 6–16, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Small Can Be Beautiful in the Semantic Web 7

2 Simple Versus Complex Ontologies

A first question concerns the choice of the right expressive power for an adequate mod-
eling of the ontologies needed in the Semantic Web. The current tendancy promoted by
the knowledge representation community is to consider that formal languages with high
expressive power are required because they enable a fine-grained description of domain
ontologies. Such a choice is questionable for several reasons. The main argument that
I would oppose against this choice is algorithmic: well-known complexity results show
that exploiting ontologies modeled using expressive formal languages (e.g., OWL [7])
cannot scale up to complex or large ontologies. Another argument is that formal lan-
guages with high expressive power are difficult to handle for users having to model an
application domain. In the Semantic Web setting, the purpose of ontologies is to serve
as a semantic markup for web resources and as a support for querying in order to obtain
more efficient and precise search engines. Therefore, they must be simple to be cor-
rectly understood and rightly exploited by humans (users or experts), and they must be
expressible in a formal language for which the algorithmic complexity of reasoning is
reasonable to make them really machine processable. Taxonomies of atomic classes are
examples of simple ontologies that I envision as good candidates for serving as marking
up resources at the Web scale. They are easy to understand for users and practitioners.
They may even be automatically constructed by data or text mining. They are conform
to the W3C recommandation being a subset of OWL-DL that we could call OWL-PL
since they can be encoded in propositional logic. As a result, query answering becomes
feasible at a large scale, which is the goal to reach eventually if we want the Semantic
Web to become a reality.

3 Personalized and Distributed Versus Standardized Ontologies

Another question deals with the possibility of building consensual domain ontologies
that would be broadly shared by users over theWeb for marking up their data or resources.
Building a universal ontology (or using an existing one, e.g., CYC [8]) that could serve
as a reference set of semantic tags for labelling the data and documents of the Web is,
at worst an utopia, at best an enormous enterprise which may eventually turn out to be
useless in practice for the Semantic Web. The current tendency (e.g., [9,10,11]) consists
in building standardized ontologies per domain. So far, it is an open question whether
such an approach is likely to scale up to the Web because it cannot be taken as granted
that users will appropriate those ontologies. The risk is that ontology designers spend
a lot of time building an expected consensual ontology which will not be eventually
broadly used because end users will prefer to use their own ontologies. In the same
way as we have our own view of the nesting and the names of the different folders for
structuring our personal file systems, mail files or bookmarks, it is likely that people
will prefer using their own ontology to mark up the data or resources they agree to make
available through the Semantic Web. There is a little chance that they will accept to use
an external ontology which they are not used to for re-labelling the resources that they
have already marked-up.

8 M.-C. Rousset

However, if the ontologies are simple (e.g., taxonomies of terms) users may be ready
to establish mappings between their own ontology and ontologies of some users with
whom they share some topics of interest.

Consider for instance a user Bob found of music who has already stored plenty of
music files in three folders that he has named Classic, Jazz and Rock to distinguish
pieces of classical music, jazz and rock respectively. Suppose now that by searching new
music files on the web, he discovers a user Tom making available on his web page music
files but marked up by the name of the composers. Establishing a mapping saying that
what Tom marks as Mozart (pieces of music) is a specialization of his own view of
Classic (pieces of music) is straighforward for Bob. This mapping will make possible
for any user querying the web using Bob’s ontology to get Mozart files stored at the
Tom’s web page as an answer to his search for classical pieces of music.

In this vision of the Semantic Web introduced in [12], no user imposes to others his
own ontology but logical mappings between ontologies make possible the creation of a
web of people in which personalized semantic marking up of data cohabits nicely with
a collaborative exchange of data. In this view, the Web is a huge Peer Data Management
System based on simple distributed ontologies and mappings.

4 Peer Data Management Systems

Peer data management systems (PDMS) have been proposed recently [13,14,15,16] to
generalize the centralized approach of information integration systems based on single
mediators, in which heterogeneous data sources are reconciled through logical mappings
between each source schema or ontology and a single mediated schema or ontology. A
centralized vision of mediation is appropriate for building semantic portals dedicated to
a given domain but is too rigid to scale up to the Semantic Web for which PDMSs based
on distributed mediation are more adapted. In a PDMS, there is no central mediator:
each peer has its own ontology and data or services, and can mediate with some other
peers to ask and answer queries. The existing PDMSs vary according to (a) the expressive
power of their underlying data model and (b) the way the different peers are semantically
connected. Both characteristics have impact on the allowed queries and their distributed
processing.

In Edutella [17], each peer stores locally data (educational resources) that are de-
scribed in RDF relatively to some reference ontologies (e.g., dmoz [9]). For instance,
a peer can declare that it has data corresponding to the concept of the dmoz taxonomy
corresponding to the path Computers/Programming/Languages/Java, and that for such
data it can export the author and the date properties. The overlay network underlying
Edutella is a hypercub of super-peers to which peers are directly connected. Each super-
peer is a mediator over the data of the peers connected to it. When it is asked, its first
task is to check if the query matches with its schema: if that is the case, it transmits
the query to the peers connected to it, which are likely to store the data answering the
query ; otherwise, it routes the query to some of its neighbour super-peers according to
a strategy exploiting the hypercub topology for guaranteeing a worst-case logarithmic
time for reaching the relevant super-peer.

Small Can Be Beautiful in the Semantic Web 9

In contrast with Edutella, Piazza [13,18] does not consider that the data distributed
over the different peers must be described relatively to some existing reference schemas.
In Piazza, each peer has its own data and schema and can mediate with some other peers
by declaring mappings between its schema and the schemas of those peers. The topology
of the network is not fixed (as the super-peers hypercub in Edutella) but accounts for the
existence of mappings between peers: two peers are logically connected if there exists a
mapping between their two schemas. The underlying data model considered in the first
version of Piazza [13] is relational and the mappings between relational peer schemas
are inclusion or equivalence statements between conjunctive queries. Such a mapping
formalism encompasses the local-as-views and the global-as-views formalisms used in
information integration based on centralized single mediators for stating the mappings
between the schemas of the data sources to be integrated and the mediated schema.
The price to pay is that query answering is undecidable except if some restrictions
are imposed on the mappings or on the topology of the network ([13]). The currently
implemented version of Piazza [18] relies on a tree-based data model: the data is in XML
and the mappings are equivalence and inclusion statements between XML queries. Query
answering is implemented based on practical (not complete) algorithms for XML query
containment and rewritings. The scalability of Piazza so far does not go up to more
than about eighty peers in the published experiments and relies on a wide range of
optimizations (mappings composition [19], paths pruning [20]), made possible by the
centralized storage of all the schemas and mappings in a global server.

In Somewhere [6], we have made the choice of being fully distributed: there are
neither super-peers (as in Edutella) nor a central server having the global view of the
overlay network as in Piazza. In addition, we aim at scaling up to thousands of peers. For
making it possible, we have chosen a simple class-based data model in which the data is a
set of resource identifiers (URIs or URLs), the schemas are (simple) definitions of classes
possibly constrained by inclusion, disjunction or equivalence statements, and mappings
are inclusion, disjunction or equivalence statements between classes of different peer
schemas. That data model is in accordance with the W3C recommandations since it is
captured by the propositional fragment of the OWL ontology language.

5 Overview of the Somewhere PDMS

This section reports a joint work [6] with Philippe Adjiman, Philippe Chatalic, Francois
Goasdoué and Laurent Simon.

5.1 Data Model

In Somewhere a new peer joins the network through some peers that it knows (its
acquaintances) by declaring mappings between its own ontology and the ontologies of
its acquaintances. Queries are posed to a given peer using its local ontology. The answers
that are expected are not only instances of local classes but possibly instances of classes
of peers distant from the queried peer if it can be infered from the peer ontologies and
the mappings that they satisfy the query. Local ontologies, storage descriptions and
mappings are defined using a fragment of OWL DL which is the description logics

10 M.-C. Rousset

fragment of the Ontology Web Language recommended by W3C. We call OWL-PL the
fragment of OWL-DL that we consider in Somewhere, where PL stands for propositional
logic. OWL PL is the fragment of OWL DL reduced to the union (�), intersection (�)
and complement (¬) constructors for building class descriptions.

Peer ontologies: Each peer ontology is made of a set of axioms of class (partial or com-
plete) definitions that associate class identifiers with class descriptions, and disjointness,
equivalence or inclusion statements between class descriptions. Class identifiers are
unique to each peer: we use the notation P :CI for a class identifier CI of the ontology
of a peer P .

Peer storage descriptions: The specification of the data that is stored locally in a peer
P is done through assertional statements relating data identifiers (e.g., URLs or URIs)
to class identifiers of the ontology of the peer P . The class identifiers of P involved in
such statements are called the extensional classes of P and their extensions are the sets
of data identifiers associated with them.

Mappings: Mappings are disjointness, equivalence or inclusion statements involving
classes of different peers. They express the semantic correspondence that may exist
between the ontologies of different peers.

Schema of a Somewhere peer-to-peer network: In a Somewhere network, the schema is
not centralized but distributed through the union of the different peer ontologies and the
mappings. The important point is that each peer has a partial knowledge of the schema:
it just knows its own data and local ontology, and mappings with its acquaintances.

Let P be a Somewhere peer-to-peer network made of a collection of peers
{Pi}i∈[1..n]. For each peer Pi, let Oi and Mi be respectively the local ontology of
Pi and the set of mappings stated at Pi between classes of Oi and classes of the ontolo-
gies of the acquaintances of Pi. The schema S of P is the union

⋃
i∈[1..n] Oi ∪Mi of

the ontologies and of the sets of mappings of all the peers composing P .

Semantics: The semantics is a standard logical formal semantics defined in terms of
interpretations. An interpretation I is a pair (ΔI , .I) where Δ is a non-empty set, called
the domain of interpretation, and .I is an interpretation function which assigns a subset
of ΔI to every class identifier and an element of ΔI to every data identifier.

An interpretation I is a model of the distributed schema of a Somewhere peer-to-peer
network P = {Pi}i∈[1..n] iff each axiom in

⋃
i∈[1..n] Oi ∪Mi is satisfied by I .

Interpretations of axioms rely on interpretations of class descriptions which are
inductively defined as follows:

– (C1 � C2)I = CI
1 ∪ CI

2

– (C1 � C2)I = CI
1 ∩ CI

2

– (¬C)I = ΔI\CI

Axioms are satisfied if the following holds:

Small Can Be Beautiful in the Semantic Web 11

– C � D is satisfied in I iff CI ⊆ DI

– C ≡ D is satisfied in I iff CI = DI

– C � D ≡ ⊥ is satisfied in I iff CI ∩ DI = ∅
– C(a) is satisfied in I iff aI ∈ CI

A Somewhere peer-to-peer network is satisfiable iff its (distributed) schema has a
model.

Given a Somewhere peer-to-peer network P = {Pi}i∈[1..n], a class description C
subsumes a class description D iff in each model I of the schema of P , DI ⊆ CI .

5.2 Illustrative Example of the Somewhere Data Model

Let us consider four personsAnn, Bob, Chris and Dora, each of them bookmarking URLs
about restaurants they know or like. Each has his/her own taxonomy for categorizing
restaurants. In addition, they have to describe their stored available data, i.e., the sets of
URLs that they accept to make available to the PDMS. They do it by declaring some
extensional classes (denoted P :V iewX) as subclasses of some classes (P :X) of their
ontology and by assigning to them the set of corresponding URLs as their instances.

Ann, who is working as a restaurant critics, organizes its restaurant URLs according
to the following classes:

– the class Ann:G of restaurants considered as offering a "good" cooking, among
which she distinguishes the subclass Ann:R of those which are rated:
Ann:R � Ann:G.

– the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2, Ann:S3
corresponding respectively to the restaurants rated with 1, 2 or 3 stars:
Ann:R ≡ Ann:S1 �Ann:S2 �Ann:S3
Ann:S1 �Ann:S2 ≡ ⊥ Ann:S1 �Ann:S3 ≡ ⊥ Ann:S2 �Ann:S3 ≡ ⊥

– the classes Ann:I and Ann:O, respectively corresponding to Indian and Oriental
restaurants,

– the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O denoting
Chinese, Taı̈ and Vietnamese restaurants respectively:
Ann:C � Ann:O , Ann:T � Ann:O , Ann:V � Ann:O

Suppose that the data stored by Ann she accepts to make available are data on
restaurants of various specialties, but that among the rated restaurants she stores and
makes available those rated with 2 stars. The extensional classes declared by Ann are
then:

Ann:V iewS2 � Ann:S2 , Ann:V iewC � Ann:C
Ann:V iewV � Ann:V , Ann:V iewT � Ann:T
Ann:V iewI � Ann:I

Bob, who is found of Asian cooking and likes high quality, organizes his restaurant
URLs according to the following classes:

– the class Bob:A of Asian restaurants,
– the class Bob:Q of restaurants of high quality that he knows.

12 M.-C. Rousset

Suppose that he wants to make available every data that he has stored. The extensional
classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses of Bob:A and
Bob:Q):

Bob:V iewA � Bob:A , Bob:V iewQ � Bob:Q

Chris is more found of fish restaurants but recently discovered some places serving a
very nice cantonese cuisine. He organizes its data with respect to the following classes:

– the class Chris:F of fish restaurants,
– the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and
Chris:V iewCA as subclasses of Chris:F and Chris:CA respectively:

Chris:V iewF � Chris:F , Chris:V iewCA � Chris:CA

Finally, Dora organizes her restaurants URLs around the class Dora:DP of her
preferred restaurants, among which she distinguishes the subclass Dora:P of pizzerias
and the subclass Dora:SF of seafood restaurants.

Suppose that the only URLs that she stores concerns pizzerias: the only extensional
class that she has to declare is Dora:V iewP , as a subclass of Dora:P :

Dora:V iewP � Dora:P

Ann, Bob, Chris and Dora are modelled as four peers. Each of them is able to express
what he/she knows about others using mappings stating properties of class inclusion or
equivalence.

Ann is very confident in Bob’s taste and agrees to include Bob’selection as good restau-
rants by stating Bob:Q � Ann:G. Finally, she thinks that Bob’s Asian restaurants
encompass her concept of Oriental restaurant : Ann:O � Bob:A.

Bob: Bob knows that what he callsAsian cooking corresponds exactly to whatAnn clas-
sifies as Oriental cooking. This may be expressed using the equivalence statement :
Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann regarding the
mappings between Bob:A and Ann:O).

Chris: Chris considers that what he calls fish specialties is a particular case of what
Dora calls seafood specialties : Chris:F � Dora:SF

Dora: Dora counts on both Ann and Bob to obtain good Asian restaurants :
Bob:A � Ann:G � Dora:DP

Figure 1 describes the peer network induced by the mappings. In order to alleviate
the notations, we omit the local peer name prefix except for the mappings. Edges are
labeled with the class identifiers that are shared through the mappings between peers.

5.3 Query Answering

Queries and answers: Queries are combinations of classes of a given peer ontology. The
corresponding answer sets are expressed in intention in terms of the combinations of
extensional classes that are rewritings of the query. The point is that extensional classes

Small Can Be Beautiful in the Semantic Web 13

Fig. 1. The restaurants PDMS

of distant peers can participate to the rewritings and thus their instances to the answer
set of a query posed to a given peer.

Given a Somewhere peer-to-peer network P = {Pi}i∈[1..n], a logical combination
Qe of extensional classes is a rewriting of a query Q iff Q subsumes Qe. Qe is a maximal
rewriting if there does not exist another rewriting Q′

e of Q subsuming it.
In the Somewhere setting, query rewriting can be equivalently reduced to distributed

reasoning over logical propositional theories by a straighforward propositional encod-
ing of the distributed ontologies and mappings composing the distributed schema of a
Somewhere peer-to-peer network.

Propositional encoding: The propositional encoding concerns the schema of a Some-
where peer-to-peer network and the queries. It consists in transforming each query and
schema statement into a propositional formula using class identifiers as propositional

14 M.-C. Rousset

variables. The propositional encoding of a class description D, and thus of a query, is
the propositional formula Prop(D) obtained inductively as follows:

– Prop(A) = A, if A is a class identifier
– Prop(D1 �D2) = Prop(D1) ∧ Prop(D2)
– Prop(D1 �D2) = Prop(D1) ∨ Prop(D2)
– Prop(¬D) = ¬(Prop(D))

The propositional encoding of the schema S of a Somewhere peer-to-peer network
P is the distributed propositional theory Prop(S) made of the formulas obtained induc-
tively from the axioms in S as follows:

– Prop(C � D) = Prop(C) ⇒ Prop(D)
– Prop(C ≡ D) = Prop(C) ⇔ Prop(D)
– Prop(C �D ≡ ⊥)= ¬Prop(C) ∨ ¬Prop(D)

That propositional encoding transfers satisfiability and maps (maximal) conjunctive
rewritings of a query Q to clausal proper (prime) implicates of the propositional formula
¬Prop(Q).

Therefore, we can use the message passing algorithm presented in [21] for query
rewriting in Somewhere. That algorithm is the first consequence finding algorithm in
a peer-to-peer setting: it is anytime and computes consequences gradually from the
solicited peer to peers that are more and more distant.

We illustrate the distributed resulting query processing on the example in Section 5.2.
Consider that a user queries the restaurants PDMS through the Dora peer by asking the
query Dora:DP , meaning that he is interested in getting as answers the set of favourite
restaurants of Dora:

– He will get as a first rewriting Dora:V iewP corresponding to the extensional class
of the URLs of pizzerias stored locally by Dora.

– Then, the mapping Chris:F �Dora:SF leads to a new rewriting, Chris:V iewF ,
meaning that a way to get restaurants liked by Dora is to obtain the Fish restaurants
stored by Chris.

– Finally, the mapping Bob:A�Ann:G�Dora:DP leads to the splitting of Bob:A�
Ann:G into the two subqueries Bob:A and Ann:G; they are transmitted respectively
to the peers Bob and Ann, which process them independently:

• Bob:V iewA is a local rewriting of Bob:A, which is transmitted back to the Dora
peer, where it is queued for a future combination with rewritings of the other
subquery Ann:G. In addition, guided by the mapping Ann:O≡Bob:A, the Bob
peer transmits to the Ann peer the query Ann:O; the Ann peer processes that
query locally and transmits back to the Bob peer the rewriting: Ann:V iewC�
Ann:V iewT�Ann:V iewV , which in turn is transmitted back to the Dora peer
as an additional rewriting for the subquery Bob:A and queued there,

• Ann:V iewS2 is a local rewriting of Ann:G, which is transmitted back to
the Dora peer, and combined there with the two queued rewritings of Bob:A
(Bob:V iewA and Ann:V iewC� Ann:V iewT� Ann:V iewV).

Small Can Be Beautiful in the Semantic Web 15

As a result, two rewrirings are sent back to the user:
- Ann:V iewS2� Bob:V iewA, meaning that a way to obtain restaurants liked
by Dora is to find restautants that are both stored by Ann as rated with 2 stars
and by Bob as Asian restaurants,
- Ann:V iewS2� (V iewC� Ann:V iewT� Ann:V iewV), meaning that an-
other way to obtain restaurants liked by Dora is to find restautants stored by
Ann as restaurants rated with 2 stars and also as Chinese, Thai or Vietnamese
restaurants. Note that this rewriting, which is obtained after several splitting and
re-combining turns out to be composed of extensional classes of the same peer
(Ann).

• Because of the mapping Bob:Q � Ann:G, Ann transmits the query Bob:Q to
Bob, which transmits back to Ann Bob:V iewQ as a rewriting of Bob:Q and
then of Ann:G. Ann then transmits Bob:V iewQ back to Dora as a rewriting of
Ann:G. At Dora’s side, Bob:V iewQ is now combined with the queued rewrit-
ings of Bob:A (Bob:V iewA and Ann:V iewC�Ann:V iewT�Ann:V iewV).
As a result, two new rewrirings are sent back to the user:
- Bob:V iewQ�Bob:V iewA, meaning that to obtain restaurants liked by Dora
you can take the restaurants that Bob stores as high quality restaurants and also
as Asian restaurants,
- Bob:V iewQ� (Ann:V iewC� Ann:V iewT� Ann:V iewV), providing a
new way of getting restaurants liked by Dora (restaurants that are both con-
sidered as high quality restaurants by Bob and stored as Chinese, Thai or Viet-
namese restaurants).

A peer-to-peer architecture implementing this distributed query rewriting algorithm
has been developed and the first experimental results of its scalability are promising [6].
This architecture is used in a joint project with France Télécom, which aims at enriching
peer-to-peer web applications with semantics in the form of taxonomies (e.g., Someone
[12]).

6 Conclusion

Most of the concepts, tools and techniques deployed so far by the Semantic Web com-
munity correspond to the "big is beautiful" idea that high expressivity is needed for
describing domain ontologies. As a result, when they are applied, the so-called Seman-
tic Web technologies are mostly used for building thematic portals but do not scale up
to the Web.

In this paper, I have argued in favour of a "simple-is-beautiful" vision of the Semantic
Web consisting in progressing step by step from the current web towards a more semantic
web. The first challenging step (which is far being reached) should be to do best than
Google for searching through the whole Web. My vision of a "Semantic Google" would
be to replace the use of words for annotating web documents by terms of a taxonomy.
Though terms of a taxonomy are words, the (big) difference is that the taxonomy provides
a kind of context of interpretation for those terms which is most of the time sufficient
in practice to desambiguate their meaning. Therefore, it is important that taxonomies

16 M.-C. Rousset

whose terms are used for annotating web resources are attached to those web resources.
In this vision, any user is allowed to annotate freely web resources with terms of the
taxonomies of his choice but he must attach those taxonomies to the web resources he
has annotated. The glue of such a semantic web would be provided by mappings between
taxonomies, and the infrastructure implementing it would be a peer-to-peer one.

References

1. Patel-Schneider, P.: Small can be beautiful in knowledge representation. In: IEEE Workshop
on Principles of Knowledge-Based Systems. (1984)

2. Berners-Lee, T., Hendler, J., O.Lassila: The semantic web. Scientific American, 279 (2001)
3. Sure, Y., Staab, S., Studer, R.: Methodology for development and employment of ontology

based knowledge management applications. SIGMOD Record 34 (2002) 8–24
4. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: Principles and methods. Data

and Knowledge Engineering 25 (1998) 161–197
5. Fernandez-Lopez, M., Gomez-Perez,A.: Overview and analysis of methodologies for building

ontologies. Knowledge Engineering Review 17 (2002) 129–156
6. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Somewhere in the semantic

web. Technical report, http://www.lri.fr/∼goasdoue/biblio/ACGRS-TR-SW.pdf (2004)
7. W3C: Owl web ontology language semantics and abstract syntax (2004)
8. Lenat, D.: Cyc: A large-scale investment in knowledge infrastructure. Communication of the

ACM 38 (1995) 32–38
9. Dmoz: The open directory project (http://dmoz.org/)

10. OTA: Open travel alliance (http://www.opentravel.org/)
11. IEEE: Ieee learning object metadata (http://ltsc.ieee.org/wg12)
12. Plu, M., Bellec, P., Agosto, L., van de Velde, W.: The web of people: A dual view on the

WWW. In: Int. World Wide Web Conf. (2003)
13. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data management

systems. In: ICDE’03. (2003)
14. Ooi, B., Shu, Y., Tan, K.L.: Relational data sharing in peer data management systems. 23

(2003)
15. Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R., Mylopoulos, J.: The

hyperion project: From data integration to data coordination. (2003)
16. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihraheu, I.:

Data management for peer-to-peer computing: A vision. In: WebDB Workshop. (2002)
17. Nedjl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer, M., Risch,

T.: Edutella: a p2p networking infrastructure based on rdf. In: WWW’02. (2002)
18. Halevy, A., Ives, Z., Tatarinov, I., Mork, P.: Piazza: data management infrastructure for

semantic web applications. In: WWW’03. (2003)
19. Madhavan, J., Halevy, A.: Composing mappings among data sources. In: VLDB 03. (2003)
20. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management systems. In:

SIGMOD 04. (2004)
21. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in a

peer-to-peer setting. In: ECAI 04. (2004)

A Method for Converting Thesauri to
RDF/OWL

Mark van Assem1, Maarten R. Menken1, Guus Schreiber1, Jan Wielemaker2,
and Bob Wielinga2

1 Vrije Universiteit Amsterdam, Department of Computer Science
{mark,mrmenken,schreiber}@cs.vu.nl

2 University of Amsterdam, Social Science Informatics (SWI)
{wielemaker,wielinga}@swi.psy.uva.nl

Abstract. This paper describes a method for converting existing the-
sauri and related resources from their native format to RDF(S) and
OWL. The method identifies four steps in the conversion process. In
each step, decisions have to be taken with respect to the syntax or se-
mantics of the resulting representation. Each step is supported through
a number of guidelines. The method is illustrated through conversions of
two large thesauri: MeSH and WordNet.

1 Introduction

Thesauri are controlled vocabularies of terms in a particular domain with hi-
erarchical, associative and equivalence relations between terms. Thesauri such
as NLM’s Medical Subject Headings (MeSH) are mainly used for indexing
and retrieval of articles in large databases (in the case of MeSH the MED-
LINE/PubMed database containing over 14 million citations1). Other resources,
such as the lexical database WordNet, have been used as background knowl-
edge in several analysis and semantic integration tasks [2]. However, their native
format, often a proprietary XML, ASCII or relational schema, is not compati-
ble with the Semantic Web’s standard format, RDF(S). This paper describes a
method for converting thesauri to RDF/OWL and illustrates it with conversions
of MeSH and WordNet.

The main objective of converting existing resources to the RDF data model
is that these can then be used in Semantic Web applications for annotations.
Thesauri provide a hierarchically structured set of terms about which a commu-
nity has reached consensus. This is precisely the type of background knowledge
required in Semantic Web applications. One insight from the submissions to the
Semantic Web challenge at ISWC’032 was that these applications typically used
simple thesauri instead of complex ontologies.

Although conversions of thesauri have been performed, currently no accepted
methodology exists to support these efforts. This paper presents a method that
1 http://www.ncbi.nlm.nih.gov/entrez/
2 http://www-agki.tzi.de/swc/swc2003submissions.html

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 17–31, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

18 M. van Assem et al.

can serve as the starting point for such a methodology. The method and guide-
lines are based on the authors’ experience in converting various thesauri. This
paper is organized as follows. Section 2 provides introductory information on
thesauri and their structure. In Sect. 3 we describe our method and the ratio-
nale behind its steps and guidelines. Sections 4 and 5 each discuss a case study
in which the conversion method is applied to MeSH and WordNet, respectively.
Additional guidelines that were developed during the case studies, or are more
conveniently explained with a specific example, are introduced in these sections.
Related research can be found in Sect. 6. Finally, Sect. 7 offers a discussion.

2 Structure of Thesauri

Many thesauri are historically based on the ISO 2788 and ANSI/NISO Z39.19
standards [3,1]. The main structuring concepts are terms and three relations
between terms: Broader Term (BT), Narrower Term (NT) and Related Term
(RT). Preferred terms should be used for indexing, while non-preferred terms
are included for use in searching. Preferred terms (also known as descriptors)
are related to non-preferred terms with Use For (UF); USE is the inverse of this
relation. Only preferred terms are allowed to have BT, NT and RT relations. The
Scope Note (SN) relation is used to provide a definition of a term (see Fig. 1).

Fig. 1. The basic thesaurus relations. Scope note is not shown.

Two other constructs are qualifiers and node labels. Homonymous terms should
be supplemented with a qualifier to distinguish them, for example “BEAMS
(radiation)” and “BEAMS (structures)”. A node label is a term that is not
meant for indexing, but for structuring the hierarchy, for example “KNIVES By
Form”. Node labels are also used for organizing the hierarchy in either fields
or facets. The former divides terms into areas of interest such as “injuries” and
“diseases”, the latter into more abstract categories such as “living” and “non-
living” [3].

The standards advocate a term-based approach, in which terms are related
directly to one another. In the concept-based approach [7], concepts are inter-
related, while a term is only related to the concept for which it stands; i.e. a
lexicalization of a concept [12]. The concept-based approach may have advan-
tages such as improved clarity and easier maintenance [6].

A Method for Converting Thesauri to RDF/OWL 19

3 Method Description

The method is divided into four steps: (0) a preparatory step, (1) a syntactic
conversion step, (2) a semantic conversion step, and (3) a standardization step.
The division of the method into four steps is an extension of previous work [15].

3.1 Step 0: Preparation

To perform this step (and therefore also the subsequent steps) correctly, it is
essential to contact the original thesaurus authors when the documentation is
unclear or ambiguous. An analysis of the thesaurus contains the following:

– Conceptual model (the model behind the thesaurus is used as background
knowledge in creating a sanctioned conversion);

– Relation between conceptual and digital model;
– Relation to standards (aids in understanding the conceptual and digital

model);
– Identification of multilinguality issues.

Although we recognize that multilinguality is an important and complicating
factor in thesaurus conversion (see also [8]), it is not treated in this paper.

3.2 Step 1: Syntactic Conversion

In this step the emphasis lies on the syntactic aspects of the conversion pro-
cess from the source representation to RDF(S). Typical source representations
are (1) a proprietary text format, (2) a relational database and (3) an XML
representation. This step can be further divided into two substeps.

Step 1a: structure-preserving translation. In Step 1a, a structure-
preserving translation between the source format and RDF format is performed,
meaning that the translation should reflect the source structure as closely as pos-
sible. The translation should be complete, meaning that all semantically relevant
elements in the source are translated into RDF.

Guideline 1: Use a basic set of RDF(S) constructs for the structure-
preserving translation. Only use constructs for defining classes, sub-
classes, properties (with domains and ranges), human-readable rdfs:labels
for class and property names, and XML datatypes. These are the basic build-
ing blocks for defining an RDF representation of the conceptual model. The
remaining RDF(S) and OWL constructs are used in Step 2 for a semantically
oriented conversion. However, one might argue that the application of some
constructs (e.g. domains and ranges) also belongs to semantic conversion.

20 M. van Assem et al.

Guideline 2: Use XML support for datatyping. Simple built-in XML Schema
datatypes such as xsd:date and xsd:integer are useful to supply schemas
with information on property ranges. Using user-defined XML Schema
datatypes is still problematic3; hopefully this problem will be solved in the
near future.

Guideline 3: Preserve original naming as much as possible. Preserving the
original naming of entities results in more clear and traceable conversions.
Prefix duplicate property names with the name of the source entity to make
them unique. The meaning of a class or property can be explicated by
adding an rdfs:comment, preferably containing a definition from the orig-
inal documentation. If documentation is available online, rdfs:seeAlso or
rdfs:isDefinedBy statements can be used to link to the original documen-
tation and/or definition.

Guideline 4: Translate relations of arity three or more into structures
with blank nodes. Relations of arity three or more cannot be translated
directly into RDF properties. If the relation’s arguments are independent
of each other, a structure can be used consisting of a property (with the
same name as the original relation) linking the source entity to a blank node
(representing the relation), and the relation’s arguments linked to the blank
node with an additional property per argument (see examples in Sect. 4).

Guideline 5: Do not translate semantically irrelevant ordering infor-
mation. Source representations often contain sequential information, e.g.
ordering of a list of terms. These may be irrelevant from a semantic point of
view, in which case they can be left out of the conversion.

Guideline 6: Avoid redundant information. Redundant information creates
representations which are less clear and harder to maintain. An example on
how to avoid this: if the Unique Identifier (UI) of a resource is recorded in
the rdf:ID, then do not include a property that also records the UI.

Guideline 7: Avoid interpretation. Interpretations of the meaning of infor-
mation in the original source (i.e., meaning that cannot be traced back to
the original source or documentation) should be approached with caution, as
wrong interpretations result in inconsistent and/or inaccurate conversions.
The approach of this method is to postpone interpretation (see Step 2b).

Instead of developing a new schema (i.e., thesaurus metamodel), one can also use
an existing thesaurus schema, such as the SKOS (see Sect. 3.4), which already
defines “Concept”, “broader”, etc. This may be a simpler approach than to
first develop a new schema and later map this onto the SKOS. However, this
3 http://www.w3.org/2001/sw/WebOnt/webont-issues.html#I4.3-Structured-

Datatypes

A Method for Converting Thesauri to RDF/OWL 21

is only a valid approach if the metamodel of the source and of SKOS match.
A drawback is that the naming of the original metamodel is lost (e.g. “BT”
instead of “broader”). For thesauri with a (slightly) different metamodel, it is
recommended to develop a schema from scratch, so as not to lose the original
semantics, and map this schema onto SKOS in Step 3.

Step 1b: explication of syntax. Step 1b concerns the explication of informa-
tion that is implicit in the source format, but intended by the conceptual model.
The same set of RDF(S) constructs is used as in Step 1a. For example, the AAT
thesaurus [11] uses node labels (called “Guide Terms” in AAT), but in the AAT
source data these are only distinguished from normal terms by enclosing the
term name in angle brackets (e.g. <KNIVES by Form>). This information can
be made explicit by creating a class GuideTerm, which is an rdfs:subClassOf
the class AATTerm, and assigning this class to all terms with angle brackets.
Other examples are described in Sects. 4 and 5.

3.3 Step 2: Semantic Conversion

In this step the class and property definitions are augmented with additional
RDFS and OWL constraints. Its two substeps are aimed at explication (Step
2a) and interpretation (Step 2b). After completion of Step 2a the thesaurus is
ready for publication on the Web as an “as-is” RDF/OWL representation.

Step 2a: explication of semantics. This step is similar to Step 1b, but
now more expressive RDFS and OWL constructs may be used. For example, a
broaderTerm property can be defined as an owl:TransitiveProperty and a
relatedTerm property as an owl:SymmetricProperty.

A technique that is used in this step is to define certain properties as special-
izations of predefined RDFS properties, e.g. rdfs:label and rdfs:comment. For
example, if a property nameOf is clearly intended to denote a human-readable
label for a resource, it makes sense to define this property as a subproperty
of rdfs:label. RDFS-aware tools will now be able to interpret nameOf in the
intended way.

Step 2b: interpretations. In Step 2b specific interpretations are introduced
that are strictly speaking not sanctioned by the original model or documen-
tation. A common motivation is some application-specific requirement, e.g. an
application wants to treat a broaderTerm hierarchy as a class hierarchy. This
can be stated as follows: broaderTerm rdfs:subPropertyOf rdfs:subClassOf.
Semantic Web applications using thesauri will often want to do this, even if not
all hierarchical links satisfy the subclass criteria. This introduces the notion of
metamodeling. It is not surprising that the schema of a thesaurus is typically a
metamodel: its instances are categories for describing some domain of interest.

Guideline 8: Consider treating the thesaurus schema as a metamodel. The
instances of a thesaurus schema are often general terms or concepts, that oc-
cur as classes in other places. RDFS allows one to treat instances as a classes:

22 M. van Assem et al.

simply add the statement that the class of those instances is a subclass of
rdfs:Class. For example, an instance i is of class C; class C is declared
to be an rdfs:subClassOf rdfs:Class. Because instance i is now also an
instance of rdfs:Class, it can be treated as a class.
The above example of treating broader term as a subclass relation is similar
in nature.
A schema which uses these constructions is outside the scope of OWL DL.
Application developers will have to make their own expressivity vs. tractabil-
ity trade-off here.

The output of this step should be used in applications as a specific interpretation
of the thesaurus, not as a standard conversion.

3.4 Step 3: Standardization

Several proposals exist for a standard schema for thesauri.4 Such a schema may
enable the development of infrastructure that can interpret and interchange
thesaurus data. Therefore, it may be useful to map a thesaurus onto a stan-
dard schema. This optional step can be made both after Step 2a (the result
may be published on the web) and Step 2b (the result may only be used in an
application-specific context). Unfortunately, a standard schema has not yet been
agreed upon. As illustration, the schema of the W3C Semantic Web Advanced
Development for Europe (SWAD-E) project5 is mapped to MeSH in Sect. 4.

The so-called “SKOS” schema of SWAD-E is concept-based, with class
Concept and relations narrower, broader and related between Concepts. A
Concept can have a prefLabel (preferred term) and altLabels (non-preferred
terms). Also provided is a TopConcept class, which can be used to arrange a
hierarchy under special concepts (such as fields and facets, see Sect. 2). TopCon-
cept is a subclass of Concept. Note that because SKOS is concept-based, it may
be problematic to map term-based thesauri.

4 Case One: MeSH

This section describes how the method has been applied to MeSH (version
20046). The main source consists of two XML files: one containing so-called
descriptors (228 MB), and one containing qualifiers (449 Kb). Each has an as-
sociated DTD. A file describing additional information on descriptors was not
converted. The conversion program (written in XSLT) plus links to the original
source and output files of each step can be found at http://thesauri.cs.vu.nl/.
The conversion took two persons approximately three weeks to complete.

4 http://www.w3.org/2001/sw/Europe/reports/thes/thes links.html
5 http://www.w3.org/2001/sw/Europe/reports/thes/1.0/guide/
6 http://www.nlm.nih.gov/mesh/filelist.html

A Method for Converting Thesauri to RDF/OWL 23

4.1 Analysis of MeSH

The conceptual model of MeSH is centered around Descriptors, which contain
Concepts [9]. In turn, Concepts consist of a set of Terms. Exactly one Concept
is the preferred Concept of a Descriptor, and exactly one Term is the preferred
Term of a Concept. Each Descriptor can have Qualifiers, which are used to
indicate aspects of a particular Descriptor, e.g. “ABDOMEN” has the Qualifiers
“pathology” and “abnormalities”. Descriptors are related in a polyhierarchy,
and are meant to represent broader/narrower document retrieval sets (i.e., not a
subclass relation). Each Descriptor belongs to one (or more) of fifteen Categories,
such as “Anatomy” and “Diseases” [10]. The Concepts contained within one
Descriptor are also hierarchically related to each other.

This model is inconsistent with the ISO and ANSI standards, for several
reasons. Firstly, the model is concept-based. Secondly, Descriptors contain a set
of Concepts, while in the standards a Descriptor is simply a preferred term.
Thirdly, Qualifiers are not used to disambiguate homonyms.

4.2 Converting MeSH

Step 1a: structure-preserving translation. In the XML version of MeSH,
Descriptors, Concepts, Terms and Qualifiers each have a Unique Identifier (UI).
Each Descriptor also has a TreeNumber (see [1]). This is used to indicate a
position in a polyhierarchical structure (a Descriptor can have more than one
TreeNumber), but this is implicit only. Relations between XML elements are
made by referring to the UI of the relation’s target (e.g. <SeeRelatedDescriptor>
contains the UI of another Descriptor). In Step 1a, this is converted into in-
stances of the property hasRelatedDescriptor. The explication of TreeNum-
bers is postponed until Step 1b.

Most decisions in Step 1a concern which XML elements should be translated
into classes, and which into properties. The choice to create classes for Descrip-
tor, Concept and Term are clear-cut: these are complex, interrelated structures.
A so-called <EntryCombination> relates a Descriptor-Qualifier pair to another
Descriptor-Qualifier pair. Following Guideline 4, two blank nodes are created
(each representing one pair) and related to an instance of the class EntryCombi-
nation. As already mentioned, relations between elements in XML MeSH are
made by referring to the UI of the target. However, each such relation also in-
cludes the name of the target. As this is redundant information, the name can
be safely disregarded.

Guideline 9: Give preference to the relation-as-arc approach over the
relation-as-node approach. In the relation-as-arc approach, relations are
modeled as arcs between entities (RDF uses “properties” to model arcs).
In the relation-as-node approach, a node represents the relation, with one
arc relating the source entity to the relation node, and one arc relating the
relation node to the destination entity [7]. The relation-as-arc approach is
more natural to the RDF model, and also allows for definition of property
semantics (symmetry, inverseness, etc.) in OWL.

24 M. van Assem et al.

It is not always possible to follow Guideline 9, e.g. in the case of MeSH
<ConceptRelation>. Although the straightforward choice is to create a prop-
erty that relates two Concepts, this is not possible as each ConceptRelation
has an additional attribute (see Guideline 4). Again, a blank node is used (the
relation-as-node approach).

Guideline 10: Create proxy classes for references to external resources
if they are not available in RDF. Each Concept has an associated Seman-
ticType, which originates in the UMLS Semantic Network7. This external
resource is not available in RDF, but might be converted in the near fu-
ture. In MeSH, only the UI and name of the SemanticType is recorded. One
could either use a datatype property to relate the UI to a Concept (again,
the redundant name is ignored), or create SemanticType instances (empty
proxies for the actual types). We have opted for the latter, as this simplifies
future integration with UMLS. In this scenario, either new properties can be
added to the proxies, or the existing proxies can be declared owl:sameAs to
SemanticType instances of a converted UMLS.

Guideline 11: Only create rdf:IDs based on identifiers in the original
source. A practical problem in the syntactical translation is what value
to assign the rdf:ID attribute. If the original source does not provide a
unique identifier for an entity, one should translate it into blank nodes, as
opposed to generating new identifiers. A related point is that if the UI is
recorded using rdf:ID, additional properties to record an entity’s UI would
introduce redundancy, and therefore shouldn’t be used.

Guideline 12: Use the simplest solution that preserves the intended se-
mantics. In XML MeSH, only one Term linked to a Concept is the preferred
term. Some terms are permutations of the term name (indicated with the
attribute isPermutedTermYN), but unfortunately have the same UI as the
Term from which they are generated. A separate instance cannot be created
for this permuted term, as this would introduce a duplicate rdf:ID. Two
obvious solutions remain: create a blank node or relate the permuted term
with a datatype property permutedTerm to Term. In the first solution, one
would also need to relate the node to its non-permuted parent, and copy
all information present in the parent term to the permuted term node (thus
introducing redundancy). The second solution is simpler and preserves the
intended semantics.

Step 1b: explication of syntax. In Step 1b, three explications are made.
Firstly, the TreeNumbers are used to create a hierarchy of Descriptors with
a [Descriptor] subTreeOf [Descriptor] property. Secondly, the TreeNum-
ber starts with a capital letter which stands for one of fifteen Categories. The
7 http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html

A Method for Converting Thesauri to RDF/OWL 25

class Category and property [Descriptor] inCategory [Category] are intro-
duced to relate Descriptors to their Catogories. Thirdly, the ConceptRelations
are translated into three properties, brd, nrw and rel, thus converting from a
relation-as-node to a relation-as-arc approach (see Guidelines 12 and 9). This
requires two observations: (a) the values NRW, BRD and REL of the attribute
relationName correspond to narrower, broader and related Concepts; and (b)
the relationAttribute is not used in the actual XML, and can be removed.
Without the removal of the relationAttribute, the arity of the relation would
have prevented us from using object properties.

Some elements are not explicated, although they are clear candidates. These
are XML elements which contain text, but also implicit information that can be
used to link instances. For example, a Descriptor’s <RelatedRegistryNumber>
contains the ID of another Descriptor, but also other textual information. Split-
ting this information into two or more properties changes the original semantics,
so we have chosen to create a datatype property for this element and copy the
text as a literal value.

Step 2a: explication of semantics. In Step 2a, the following statements are
added (a selection):

– The properties brd and nrw are each other’s inverse, and are both transitive,
while rel is symmetric;

– A Concept’s scopeNote is an rdfs:subPropertyOf the property
rdfs:comment;

– All properties describing a resource’s name (e.g. descriptorName) are de-
clared an rdfs:subPropertyOf the property rdfs:label;

– Each of these name properties is also an owl:InverseFunctionalProperty,
as the names are unique in the XML file. Note that this may not hold for
future versions of MeSH;

– All properties recording a date are an owl:FunctionalProperty;
– The XML DTD defines that some elements occur either zero or once in the

data. The corresponding RDF properties can also be declared functional;
– As a Term belongs to exactly one Concept, and a Concept to exactly one De-

scriptor, [Concept] hasTerm [Term] as well as [Descriptor] hasConcept
[Concept] is an owl:InverseFunctionalProperty;

Unfortunately, the relation represented by class EntryCombination cannot be
supplied with additional semantics, e.g. that it is an owl:SymmetricProperty
(see Guideline 9).

Step 2b: interpretations. In Step 2b, the following interpretations are made,
following Guideline 8. Note that these are examples, as we have no specific
application in mind.

– brd is an rdfs:subPropertyOf rdfs:subClassOf;
– Descriptor and Concept are declared rdfs:subClassOf rdfs:Class.

26 M. van Assem et al.

Step 3: standardization. In Step 3, a mapping is created between the MeSH
schema and the SKOS schema. The following constructs can be mapped (using
rdfs:subPropertyOf and rdfs:subClassOf):

– mesh:subTreeOf onto skos:broader;
– mesh:Descriptor onto skos:Concept;
– mesh:hasRelatedDescriptor onto skos:related;
– mesh:descriptorName onto skos:prefLabel.

There is considerable mismatch between the schemas. Descriptors are the cen-
tral concepts between which hierarchical relations exist, but it is unclear how
MeSH Concepts and Terms can be dealt with. SKOS defines datatype proper-
ties with which terms can be recorded as labels of Concepts, but this cannot
be mapped meaningfully onto MeSH’ Concept and Term classes. For example,
mesh:conceptName cannot be mapped onto skos:prefLabel, as the former’s do-
main is mesh:Concept, while the latter’s domain is skos:Concept (skos:Concept
is already mapped onto mesh:Descriptor). Furthermore, the mesh:Category can-
not be mapped onto skos:TopCategory, because TopCategory is a subclass of
skos:Concept, while mesh:Category is not a subclass of mesh:Descriptor.

5 Case Two: WordNet

This section describes how the method has been applied to WordNet release
2.0. The original source consists of 18 Prolog files (23 MB in total). The con-
version programs (written in Prolog) plus links to the original source as well as
the output files of each step can be found at http://thesauri.cs.vu.nl/. The
conversion took two persons approximately three weeks to complete. Note that
Step 3 for WordNet is not discussed here for reasons of space, but is available at
the forementioned website.

5.1 Analysis of WordNet

WordNet [2] is a concept-based thesaurus for the English language. The concepts
are called “synsets” which have their own identifier. Each synset is associated
with a set of lexical representations, i.e. its set of synonyms. The synset concept
is divided into four categories, i.e. nouns, verbs, adverbs and adjectives. Most
WordNet relations are defined between synsets. Example relations are hyponymy
and meronymy.

There have been a number of translations of WordNet to RDF and OWL
formats. Dan Brickley8 translated the noun/hyponym hierarchy directly into
RDFS classes and subclasses. This is different from the method we propose,
because it does not preserve the original source structure. Decker and Melnik9

have created a partial RDF representation, which does preserve the original
8 http://lists.w3.org/Archives/Public/www-rdf-interest/1999Dec/0002.html
9 http://www.semanticweb.org/library/

A Method for Converting Thesauri to RDF/OWL 27

structure. The conversion of the KID Group at the University of Neuchatel10

constitutes an extension of representation both in scope and in description of
semantics (by adding OWL axioms). We follow mainly this latter conversion and
relate it to the steps in our conversion method. In the process we changed and
extended the WordNet schema slightly (and thus also the resulting conversion).

5.2 Converting WordNet

Step 1a: structure-preserving translation. In this step the baseline classes
and properties are created to map the source representation as precisely as pos-
sible to an RDF representation:

– Classes: SynSet, Noun, Verb, Adverb, Adjective (subclasses of SynSet),
AdjectiveSatellite (subclass of Adjective);

– Properties: wordForm, glossaryEntry, hyponymOf, entails, similarTo,
memberMeronymOf, substanceMeronymOf, partMeronymOf, derivation,
causedBy, verbGroup, attribute, antonymOf, seeAlso, participleOf,
pertainsTo.

Note that the original WordNet naming is not very informative (e.g. “s” repre-
sents synset). For readability, here we use the rdfs:labels that have been added
in the RDF version. All properties except for the last four have a synset as their
domain. The range of these properties is also a synset, except for wordForm and
glossaryEntry. Some properties have a subclass of SynSet as their domain
and/or range, e.g. entails holds between Verbs.

The main decision that needs to be taken in this step concerns the following
two interrelated representational issues:

1. Each synset is associated with a set of synonym “words”. For example,
the synset 100002560 has two associated synonyms, namely nonentity and
nothing. Decker and Melnik represent these labels by defining the (multi-
valued) property wordForm with a literal value as its range (i.e. as an OWL
datatype property). The Neuchatel approach is to define a word as a class
in its own right (WordObject). The main disadvantage of this is that one
needs to introduce an identifier for each WordObject as it does not exist in
the source representation, and words are not unique (homonymy).

2. The last four properties in the list above (antonymOf, etc.) do not represent
relations between synsets but instead between particular words in a synset.
This also provides the rationale for the introduction of the class WordObject
in the Neuchatel representation: antonymOf can now simply defined as a
property between WordObjects.

We prefer to represents words as literal values, thus avoiding the identifier prob-
lem (see Guideline 11). For handling properties like antonymOf we defined a
helper class SynSetWord with properties linking it to a synset and a word. For
each subclass of SynSet, an equivalent subclass of SynSetWord is introduced (e.g.
SynSetVerb). A sample representation of an antonym looks like this:
10 http://taurus.unine.ch/GroupHome/knowler/wordnet.html

28 M. van Assem et al.

<SynSetWord>
<inSynSet rdf:resource="#100017087"/>
<relevantWord>natural_object</relevantWord>
<antonymOf>
<SynSetWord>
<inSynSet rdf:resource="#100019244"/>
<relevantWord>artifact</relevantWord>

</SynSetWord>
</antonymOf>

</SynSetWord>

In this example, the word natural object in synset 100017087 is an antonym
of the word artifact in synset 100019244.

Step 1b: explication of syntax. The source representation of WordNet does
not contain many implicit elements. The only things that need to be added
here are the notions of hypernymy and holonymy (three variants). Both are
only mentioned in the text and are apparently the inverse11 of respectively the
hyponym relation and the three meronym variants. Consequently, these four
properties were added to the schema.

Step 2a: explication of semantics. In this step additional OWL axioms can
be introduced to explicate the intended semantics of the WordNet classes and
properties. A selection:

– Noun, Verb, Adverb, and Adjective together form disjoint and complete
subclasses of SynSet;

– hyponymOf and hypernymOf are transitive properties;
– hyponymOf only holds between nouns or verbs;12

– hyponymOf/hypernymOf and the three variants of meronymOf/holonymOf are
inverse properties;

– verbGroup and antonymOf are symmetric properties.

In addition, we defined the properties wordForm and glossaryEntry as sub-
properties of respectively rdfs:label and rdfs:comment.

From the WordNet documentation it is clear that these properties have this
type of intended semantics. The alternative for defining these as subproperties
would have been to use rdfs:label and rdfs:comment directly in the RDF
representation, thus dropping the original names. This makes the traceability of
the conversion less clear.
11 The WordNet documentation uses the term “reflexive”, but it is clear that inverse-

ness is meant.
12 In the Neuchatel representation an intermediate class NounsAndVerbs is introduced

to express these constraints. This is not needed, as OWL supports local property re-
strictions which allow one, for example, to state that the value range of the hyponymOf
property for Noun must be Noun.

A Method for Converting Thesauri to RDF/OWL 29

Step 2b: interpretations. We have used WordNet heavily in semantic anno-
tation of images (see e.g. [5]). In that application we used the WordNet hierarchy
as an RDFS subclass tree by adding the following two metastatements:

– wn:SynSet rdfs:subClassOf rdfs:Class;
– wn:hyponymOf rdfs:subPropertyOf rdfs:subClassOf

Tools such as Triple2013 will now be able to visualize the synset tree as a sub-
class tree. The repercussions of this type of metamodeling for RDF storage and
retrieval are discussed in [14].

6 Related Research

Soualmia et al. [13] describe a migration of a specialized, French version of MeSH
to an OWL DL representation. Their goal is to improve search in a database
of medical resources. We mention a few of their modeling principles. Firstly,
they “clean” the taxonomy by distinguishing between part-of and is-a relation-
ships (the former type are translated into a partOf property, the latter into
rdfs:subClassOf). Secondly, qualifiers are translated into properties, and their
domains are restricted to the union of the descriptors on which they may be
applied. The properties are hierarchically organized using rdfs:subPropertyOf
according to the qualifier hierarchy.

Wroe et al. [16] describe a methodology to migrate the Gene Ontology (GO)
from XML to DAML+OIL. Their goal is to “support validation, extension and
multiple classification” of the GO. In each step, the converted ontology is en-
riched further. For example, three new part of relations are introduced. Also,
new classes are added to group part of instances under their parent compo-
nents, which enables visualization of the hierarchy. MeSH and the KEGG en-
zyme database are used to enrich class definitions so a new classification for
Gene enzyme functions can be made by a reasoner. Additional modeling of class
restrictions allowed the same reasoner to infer 17 is-a relationships that were
omitted in the original source.

Goldbeck et al. [4] describe a conversion of the NCI (National Cancer In-
stitute) Thesaurus from its native XML format to OWL Lite. Their goal is to
“make the knowledge in the Thesaurus more useful and accessible to the pub-
lic”. A mapping of XML tags onto OWL classes and properties is defined, based
on an analysis of the underlying conceptual model and NCI’s thesaurus develop-
ment process. rdf:IDs are created using a transformation of the original concept
names (spaces removed, illegal characters substituted). This is a reasonable ap-
proach, under the assumption that names are indeed and will remain unique (see
Guideline 11).

There are two main differences with our work. Firstly, the forementioned
projects do not separate between “as-is” conversion and enrichment steps, as
our method does. Therefore, the conversions may only be usable for the project’s
13 http://www.swi-prolog.org/packages/Triple20/

30 M. van Assem et al.

own goals. Secondly, we try to generalize over specific conversions and aim to
define a more general conversion process.

In the SWAD-Europe project a schema is being developed to encode RDF
thesauri. Additionally, work is in progress to produce a guideline document on
converting multilingual thesauri [8]. The development of a standard schema in-
fluences our standardization step, and guidelines on converting multilingual the-
sauri may be incorporated to broaden the scope of our method.

7 Discussion

This paper has presented a method to convert existing thesauri to RDF(S) and
OWL, in a manner that is sanctioned by the original documentation and format.
Only in a separate step may interpretations be made for application-specific
purposes.

Two additional aims of converting existing resources to the RDF model may
be identified. Firstly, the quality of a thesaurus may be improved using the
semantics of RDF(S), as some thesauri use relations with weak or unclear se-
mantics, or apply them in an ambiguous way [12]. Secondly, converted thesauri
can be checked using standard reasoners, identifying e.g. missing subsumption
and inverse relations (e.g. BT/NT).

Recently the W3C has installed the Semantic Web Best Practices and De-
ployment (SWBPD) Working Group14, which aims to provide guidelines for
application developers on how to deploy Semantic Web technology. This method
may serve as input for and might be extended by this Working Group.

Several issues remain as future research in developing a methodology. Firstly,
translating between the source model and the RDF model is a complex task with
many alternative mappings, especially for thesauri that do not conform to or
define extensions of the ISO and ANSI standards. Secondly, more guidelines are
required on how to convert multilingual thesauri. Thirdly, a standard thesaurus
schema is required to perform step three of our method. It is clear that the
current SWAD-E proposal does not completely cover complex thesauri such as
MeSH. An open question is whether the proposal might be extended or that this
type of thesaurus is simply outside the scope, as MeSH deviates from the ISO
and ANSI standards.

Acknowledgements. This work was partly supported by the IST project IST-
2002-507967 “HOPS” and the CHIME project, part of the NWO ToKeN2000
programme. The authors are grateful for the useful discussions with and feedback
of their colleagues.

References

1. ANSI/NISO. Guidelines for the construction, format, and management of mono-
lingual thesauri. Ansi/niso z39.19-2003, 2003.

14 http://www.w3.org/2001/sw/BestPractices/

A Method for Converting Thesauri to RDF/OWL 31

2. Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

3. International Organization for Standardization. Documentation - guidelines for
the establishment and development of monolingual thesauri. Iso 2788-1986, 1986.

4. Jennifer Goldbeck, Gilberto Fragoso, Frank Hartel, James Hendler, Bijan Parsia,
and Jim Oberthaler. The National Cancer Institute’s Thesaurus and Ontology.
Journal of Web Semantics, 1(1), Dec 2003. URL:
http://www.mindswap.org/papers/WebSemantics-NCI.pdf.

5. L. Hollink, A. Th. Schreiber, J. Wielemaker, and B. J. Wielinga. Semantic annota-
tion of image collections. In S. Handschuh, M. Koivunen, R. Dieng, and S. Staab,
editors, Knowledge Capture 2003 – Proceedings Knowledge Markup and Semantic
Annotation Workshop, pages 41–48, 2003.

6. Douglas Johnston, Stuart J. Nelson, Jacque-Lynne A. Schulman, Allan G. Sav-
age, and Tammy P. Powell. Redefining a thesaurus: Term-centric no more. In
Proceedings of the 1998 AMIA Annual Symposium, 1998.

7. Alistair Miles and Brian Matthews. Review of RDF thesaurus work. Deliverable
8.2, version 0.1, SWAD-Europe, 2004. URL:
http://www.w3c.rl.ac.uk/SWAD/deliverables/8.2.html.

8. Alistair Miles, Brian Matthews, and Michael Wilson. RDF encoding of multilingual
thesauri. Deliverable 8.3, version 0.1, SWAD-Europe, 2004. URL:
http://www.w3c.rl.ac.uk/SWAD/deliverables/8.3.html.

9. U.S. National Library of Medicine. Introduction to MeSH in XML format, Novem-
ber 2001. URL: http://www.nlm.nih.gov/mesh/xmlmesh.html.

10. U.S. National Library of Medicine. MeSH tree structures, May 2004. URL:
http://www.nlm.nih.gov/mesh/intro trees.html.

11. T. Peterson. Introduction to the Art and Architecture Thesaurus. Oxford University
Press, 1994. See also: http://www.getty.edu/research/tools/vocabulary/aat/.

12. Dagobert Soergel, Boris Lauser, Anita Liang, Frehiwot Fisseha, Johannes Keizer,
and Stephen Katz. Reengineering thesauri for new applications: the AGROVOC
example. Journal of Digital Information, 4(4), March 2004.

13. L.F. Soualmia, C. Goldbreich, and S.J. Darmoni. Representing the mesh in owl: To-
wards a semi-automatic migration. In Proceedings of the First International Work-
shop on Formal Biomedical Knowledge Representation (KR-MED 2004), pages 81–
87, Whistler, Canada, June 2004.

14. J. Wielemaker, A. Th. Schreiber, and B. J. Wielinga. Prolog-based infrastructure
for rdf: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, volume
2870 of LNCS, pages 644–658, Berlin/Heidelberg, October 2003. Springer Verlag.

15. Bob Wielinga, Jan Wielemaker, Guus Schreiber, and Mark van Assem. Methods
for porting resources to the semantic web. In C. Bussler, J. Davies, D. Fensel, and
R. Studer, editors, Proceedings of the First European Semantic Web Symposium
(ESWS2004), number 3053 in LNCS, pages 299–311, Heraklion, Greece, May 2004.
Springer-Verlag.

16. C.J. Wroe, R. Stevens, C.A. Goble, and M. Ashburner. A methodology to mi-
grate the Gene ontology to a description logic environment using DAML+OIL.
In Proceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003), pages
624–635, Lihue, Hawaii, USA, January 2003.

Contexts for the Semantic Web

Ramanathan Guha2, Rob McCool1, and Richard Fikes1

1 Artificial Intelligence Laboratory, Stanford University, USA
2 IBM Research, USA

Abstract. A central theme of the Semantic Web is that programs
should be able to easily aggregate data from different sources. Unfor-
tunately, even if two sites provide their data using the same data model
and vocabulary, subtle differences in their use of terms and in the as-
sumptions they make pose challenges for aggregation. Experiences with
the TAP project reveal some of the phenomena that pose obstacles to a
simplistic model of aggregation. Similar experiences have been reported
by AI projects such as Cyc, which has led to the development and use
of various context mechanisms. In this paper we report on some of the
problems with aggregating independently published data and propose a
context mechanism to handle some of these problems. We briefly survey
the context mechanisms developed in AI and contrast them with the re-
quirements of a context mechanism for the Semantic Web. Finally, we
present a context mechanism for the Semantic Web that is adequate to
handle the aggregation tasks, yet simple from both computational and
model theoretic perspectives.

1 Introduction

The ease with which web sites could link to each other doubtless contributed to
the rapid adoption of the World Wide Web. It is hoped that as the Semantic Web
becomes more prevalent, programs will be able to similarly weave together data
from diverse sites. Indeed, the data model behind RDF was significantly moti-
vated by the fact that directed labeled graphs provided a simple, but effective
model for aggregating data from different sources.

Unfortunately, while the languages of the Semantic Web (RDF, RDFS, OWL,
etc) provide a method for aggregation at the data model level, higher level differ-
ences between data sources sometimes make it inappropriate to directly merge
data from them. Just as with the human readable web, Semantic Web publish-
ers make assumptions and use the same term in subtly different ways. On the
human readable web, the human consumers of web pages are able to use their
common sense to reconcile these differences. On the Semantic Web, we need to
develop the mechanisms that allow us to explicitly represent and reason with
these assumptions and differences. This will enable the programs that consume
data from the Semantic Web to reconcile these differences, or at least avoid the
problems that arise by applying an overly simple aggregation model to such data
sources.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 32–46, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Contexts for the Semantic Web 33

In the past, AI researchers have encountered similar issues when aggregating
structured knowledge from different people or even the same person at different
times. To handle these issues, mechanisms such as contexts and micro-theories
have been proposed and implemented in projects such as Cyc [17]. While the
kind of phenomena encountered in those projects are substantially more intri-
cate and unlikely to be encountered in the near future on the Semantic Web, the
scale and federated nature of the Semantic Web pose a new set of challenges.
We believe that a context mechanism that is similar in spirit to the earlier con-
text mechanisms will be not only useful, but required to achieve the Semantic
Web vision. However, the differences between AI systems and the Semantic Web
also mean that a context mechanism for the Semantic Web will have substantial
differences from the AI context mechanisms. In this paper, we discuss the mo-
tivation for some of the basic requirements and present some possibilities for a
context mechanism for the Semantic Web.

We begin by recounting some of the problems in aggregating data from dif-
ferent sources that were encountered on the TAP [20] project. These examples
provide the motivation for the capabilities required of a context mechanism for
the Semantic Web. We then present a simple context mechanism for handling
these problems. After that, we discuss the model theory extensions required
to incorporate this mechanism into RDF. Finally, we discuss related work and
Semantic Web issues and constructs related to contexts.

2 Overview of TAP

The TAP project [20], [18] has over the last three years attempted to create
platforms for publishing to and consuming data from the Semantic Web. Using
this platform, we have built a number of applications [19] both to validate our
assumptions and to help bootstrap the Semantic Web.

Building anything more than the simplest toy applications requires a sub-
stantial amount of data. Unfortunately, the Semantic Web, in its current stage,
has little to offer in this regard. On the other hand, we do have a very large
body of unstructured knowledge in the human readable World Wide Web. So,
both to solve our problem and to bootstrap the Semantic Web, we have cre-
ated a large scale knowledge extraction and aggregation system called onTAP.
onTAP includes 207 HTML page templates which are able to read and extract
knowledge from 38 different high quality web sites. The HTML template system
has currently read over 150,000 pages, discovering over 1.6 million entities and
asserting over 6 million triples about these entities. The system that aggregates
this data can run in either a dynamic mode, in response to a query from an
application, or in a batch mode. In batch mode, this aggregator is used to create
a classification index for keyword-based queries and for scanning of documents
for referenced entities.

onTAP also includes a system to read political news articles from Yahoo!
News. The articles in this news feed are matched against natural language pat-
terns to extract entities, attributes of and relationships between these entities.

34 R. Guha, R. McCool, and R. Fikes

Work is currently underway to expand this system to read more news sources.
This system has read 46,113 articles to discover 6,052 unique entities and 137,082
triples about them.

Most of the content of TAP is obtained via these templates that draw on
HTML pages that are targeted at humans. However, we believe that obser-
vations regarding the contextual phenomena associated with this data can be
extrapolated to the case where the data is directly published by the sites in
a structured form. Most of the sites that TAP uses do have their content in
a structured form in a database. Front end processors query the database and
format the data into HTML. When a site such as Amazon makes its data avail-
able in a structured form, they publish the same data. That is, the format and
markup language used are different, but the assumptions, approximations and
other contextual phenomena that are in their HTML pages are also present in
the structured data that they publish.

3 Contextual Phenomena

In this section we discuss some of the contextual phenomena that we observed
in the process of building the TAP knowledge base that cause problems in data
aggregation. The examples of contextual phenomena we observed can be classi-
fied into a small number of varieties of contexts. Here we describe each of these
varieties along with some examples that we encountered. We also discuss how
we would like to handle each of these cases during aggregation.

Class Differences. Different sites often use a particular class in slightly differ-
ent ways. Sites may differ on the meaning of seemingly unambiguous concepts
such as Person. For example, the site Who2 classifies C3PO (the robot in
Star Wars) as a person, whereas most other sites classify it as a robot. During
aggregation, we should map Who2’s use of Person to something more gen-
eral. Alternately, we can believe what Who2 has to say about some resource,
unless what it says contradicts what some other site says.

Propositional Attitude. A related phenomenon is that of a site having an
implicit propositional attitude. For example, many sites providing reviews of
television shows specify that Josiah Bartlet (a character who plays the role of
the President of the US in the television series ‘West Wing’) is the President
of the United States. During aggregation, the propositional attitude of these
statements should be made explicit.

Property Type Differences. A common source of differences between sites
is that property types such as capacity and price are used differently. An
example is the capacity of nuclear power plants. These plants have two dif-
ferent kinds of capacities: a design capacity and an actual capacity. Some
sites specify the design capacity while others specify the actual capacity,
but in most cases they just refer to it as the capacity. When aggregating,
we need to either create a generalization of the two capacities or determine
which capacity a particular site is referring to and map the capacity on that
site to the appropriate version of capacity in the aggregate.

Contexts for the Semantic Web 35

Point of View. More substantial differences occur when there are conflicting
points of view. Is Taiwan a country of its own, or a province of China? The
answer depends very strongly on which site is queried. Similarly, different
sites classify Hamas as a terrorist organization, a freedom fighting organiza-
tion and a humanitarian organization. This kind of subjective data is often
mixed in with more objective data (like the head of Hamas or the capital
of Taiwan). When aggregating data from these sites, we would like to either
make the subjectivity explicit (through the use of propositional attitudes)
or only selectively import those facts that are not contentious.

Implicit Time. Sites often publish a piece of data that is true at the time
of publication, with the temporal qualification being left implicit. Equally
often, this data does not get updated when it no longer holds. There are a
number of sites that list Bill Clinton as the President of the US, that refer
to Yugoslavia as a country, etc. Unfortunately, such implicitly temporally
qualified data is often mixed in with data that is not temporally qualified.
For example, it is still true that Bill Clinton graduated from Yale and the
latitude and longitude of Sarajevo have not changed. When aggregating data
from these sites, we would like to either make the time explicit or only
selectively import those facts that are not likely to have changed.
A similar phenomenon is that of a site leaving the unit of measure associated
with an attribute value implicit. So, instead of specifying the price as US$40,
they might simply say 40. In such cases, we need to either make the unit of
measure explicit or perform the appropriate conversion.

Approximations. Approximations are another source of differences between
sites. For example, the CIA World Factbook provides approximate values
for the population, area, etc. of all countries. More accurate numbers are
typically available from the governments of each of these countries, only
some of which are online. We like to be able to combine data from the CIA
World Factbook and data from the governments, preferring the government
data when it is available.

We recognize that these differences could be because the TAP data was
obtained by extracting structured data from HTML pages that were intended
for human consumption. However, these phenomena are not an artifact of the
information being published in an unstructured format. Most of the information
on these sites is drawn from structured databases and these phenomena
manifest themselves in these databases as well. Consequently, we believe that
these problems will persist even when the data is made available in a machine
readable form.

These kinds of differences between sites pose problems when data from these
sites is aggregated. The problem is not that some of these sites are not trust-
worthy or that all of their data is bad. In fact, sources of data such as the CIA
Factbook and Who2 are rich and useful repositories that should be part of the
Semantic Web. What we need is a mechanism to factor the kinds of differences
listed above as part of the data aggregation process. Various formalizations of
context mechanisms have been proposed in the AI literature to handle this pro-

36 R. Guha, R. McCool, and R. Fikes

cess of factoring differences in representations between knowledge bases. In the
next section we first briefly review some of the context-related concepts from
AI, note the differences between those and our requirements for the Semantic
Web and then, in the following section, propose a simplified version to solve our
problem for the Semantic Web.

4 Contexts in AI

Contexts as first class objects in knowledge representation systems have been
the subject of much study in AI. KR systems as early as KRL [2] incorporated a
notion of contexts. The first steps towards introducing contexts as formal objects
were taken by McCarthy ([14], [15]) and Guha [10] in the early 1990s. This was
followed by a number of alternate formulations and improvements by Buvac [6]
[4], Fikes [5], Giunchiglia [8], Nayak [16] and others. Contexts/Microtheories
are an important part of many current KR systems such as Cyc [17]. Contexts
remain an active area of research in AI and Philosophy.

Contexts have been used in AI to handle a wide range of phenomena, a cate-
gorization of which can be found in [9]. They have been used in natural language
understanding to model indexicals and other issues that arise at the semantic
and pragmatic processing layers. They have found extensive use in common-
sense reasoning systems where they are used to circumscribe the scope of naive
theories. These systems use nested contexts, with the system being able to tran-
scend the outermost context to create a new outer context. Both common sense
and natural language systems also have a class of contexts that are ephemeral,
that might correspond to a particular utterance or to a particular problem solv-
ing task. The ability to easily introduce a new context and infer attributes of
that context adds substantial complexity to these context mechanisms. Contexts
have also been used in model based reasoning [16] to partition models at different
levels of abstraction.

The scope and complexity of the AI problems that contexts have been em-
ployed for is substantially more than anything we expect to encounter on the
Semantic Web. The primary role for contexts on the Semantic Web is to factor
the differences (like the ones described earlier) between data sources when aggre-
gating data from them. Consequently, we do not need nested contexts, ephemeral
contexts and the ability to transcend contexts.

On the other hand, the expected scale and highly distributed nature of the
Semantic Web is in contrast to AI systems, most of which are much smaller and
centralized. So, while we don’t need the level of functionality provided by the AI
formulations of contexts, we do place stronger constraints on the computational
complexity and ease of use of the context mechanism.

In the next section, we develop a context mechanism for the Semantic Web.
In the following section, we discuss the model theory extensions required for this
mechanism.

Contexts for the Semantic Web 37

5 Contexts for the SW

We present our context mechanism in the following setting. We have Semantic
Web content (in RDFS or one of the OWL dialects) from a number of different
URLs. The content from each URL is assumed to be uniform, but there may be
differences like the ones described earlier between the content from the different
URLs. We would like to create an internally consistent aggregate of the data
from these different sites. The aggregate should be maximal in the sense that it
should incorporate as much of the data from the different URLs as possible.

Each data source (or collection of data sources) is abstracted into a context.
Contexts are first class resources that are instances of the class Context3. We
define a PropertyType (contextURL) whose domain is Context that specifies the
location(s) of the data source(s) corresponding to the context. The contents of
the data source(s) are said to be true in that context. For the sake of keeping the
description simple, for the remainder of this paper, unless otherwise specified,
we will assume that the context has a single data source and that the URL of the
context is that of the data source. So, for example, if a chunk of RDF is available
at the URL tap.stanford.edu/People.rdf, we can have a context corresponding to
this URL and the contents of this URL are said to be true in that context. Since
the context is a resource, like any other resource on the Semantic Web, other
chunks of RDFS/OWL can refer to it.

We are interested in defining contexts that aggregate data from other con-
texts. In keeping with the spirit of the Semantic Web, we would like to do this by
declaratively specifying these new Aggregate Contexts. The different mechanisms
that may be used in specifying these aggregate contexts define our design space.
We start by examining the very general mechanism used in [10], [15] which has
been followed by others in the AI community. We then present a much simpler,
though less expressive variant that might be adequate for the semantic web.

Guha [10] and McCarthy [15] introduced a special symbol ist and the nota-
tion ist(ci, ϕ) to state that a proposition ϕ is true in the context ci. Further,
these statements can be nested, so that statements like ist(ci, ist(cj , ϕ)) can be
used to contextualize the interpretation of contexts themselves. The system is
always in some context. The system can enter and exit contexts. At any point in
time, there is an outermost context, which can be transcended by creating a new
outer context. A symbol can denote different objects in different contexts and
the domains associated with different contexts can be different. Since contexts
are first class objects in the domain, one can quantify over them, have functions
whose range is a context, etc. All this allows one to write very expressive formu-
lae that lift axioms from one context to another. While this is very convenient, it
also makes it quite difficult to provide an adequate model theory and extremely
difficult to compute with.

Nayak [16], Buvac [3] and others have tried to simplify this general formu-
lation by introducing restrictions. Nayak considers the case where no nesting is
3 We will drop namespace qualifiers, etc. for the sake of readability. Terms in this font

refer to RDF resources.

38 R. Guha, R. McCool, and R. Fikes

allowed, contexts may only appear as the first argument to ist and are not first
class objects (i.e., cannot be quantified over, etc.). Under these constraints, a
classical modal logic like S5 can be used to provide a model theory for contexts.
Buvac considers the case where a symbol is restricted to denote the same object
in all contexts. For the purposes of the Semantic Web, Nayak’s restrictions seem
rather severe, but Buvac’s may be acceptable. Both assume the Barcan formula:

∀(x)ist(c, ϕ(x)) ↔ ist(c,∀(x)ϕ(x)) (1)

While these restrictions allow them to define a clean model theory, they are not
enough to give us computational tractability. In fact, it is easy to show that all
of these logics are not even semi-decidable.

Giunchiglia [8] and other researchers at Trento have used the notion of a
bridge rule to formalize contexts. Much of their work is in the propositional
realm and hence not directly relevant to the Semantic Web.

A general theme behind all these approaches is the introduction of the single
interpreted symbol ist. ist is the only new symbol for which the underlying
logic provides an interpretation. This is in contrast with RDF, RDFS, etc. in
which a number of symbols (e.g., Class, PropertyType, subClassOf , ...) are all
interpreted by the logic. We now extend this approach to handle contexts.

An aggregate context is a context whose contents (i.e., the statements that
are true in that context) are lifted from other contexts. That is, they are im-
ported into the aggregate context from other contexts after appropriate normal-
ization/factoring. We now introduce a number of vocabulary elements that can
be used to specify this lifting. This list is not exhaustive, but is adequate to cover
the most common types of contextual differences that we discussed in section 3.
We give informal descriptions and axiomatic definitions of these terms here and
in the next section, outline the approach for defining the model theory for these
constructs. We will use ist as a predicate in the meta-theory for the axiomatic
definitions, even though it is not part of the base language.

– AggregateContext: This subclass of contexts corresponds to aggregate
contexts. Since the Semantic Web allows anyone to make statements about
any resource, there can be complications when different sites provide differ-
ent definitions for a particular aggregate context. More specifically, allowing
other contexts to specify what should be imported into a context, while safe
in simple languages like RDF/S, opens the doors to paradoxes in more ex-
pressive languages like OWL. Even with RDF/S, it is important that the lift-
ing process be simple to execute. To achieve this, we constrain the URL of an
aggregate context to contain the full specification of what it imports. In other
words, a lifting rule for importing into a particular context is true only in
that context. We will later consider a semantic constraint for enforcing this.

– importsFrom: This is a property type whose domain is AggregateContext
and whose range is Context. If c1 importsFrom c2, then everything that is
true in c2 is also true in c1. The defining axiom for importsFrom is as follows.

ist(c2, p) ∧ ist(c1, importsFrom(c1, c2)) → ist(c1, p) (2)

Contexts for the Semantic Web 39

We do not allow cycles in the graph defined by importsFrom. importsFrom
is the simplest form of lifting and corresponds to the inclusion of one context
into another. The more sophisticated forms of lifting require us to create a
resource for the lifting rule.

– LiftingRule: This class has all the lifting rules as its instances. Each
LiftingRule must have a single AggregateContext as the value for
targetContext and single Context for sourceContext. We have subclasses
of LiftingRule for the different kinds of lifting we would like to perform.
An AggregateContext may have any number of lifting rules that lift into it.
Lifting rules generally ignore some of the triples in the source context,
import some of the triples without any modification, transform and then
import some other set of triples and optionally add some new set of triples
into the aggregate context. The specification of a lifting rule involves
specifying which triples to import or which triples to add and how to
perform the necessary transformations. Some lifting rules may also specify
a preference for one source over another for some class of triples. Our goal
here is not to specify an exhaustive set of transformations, but to cover
some of the important ones and provide a flavor for the general approach.
An important factor that impacts the representation of these LiftingRules
is whether the aggregation process is restricted to be monotonic. If the
process is allowed to be non-monotonic, the addition of a new LiftingRule
to an aggregate context may cause certain triples to no longer hold. Non-
monotonic lifting rules have the ability to say that everything not explicitly
specified to be ignored or modified is to be imported. Consequently, they
are easier to write, but do have the disadvantages of non-monotonicity. We
describe the monotonic version and then suggest how it might be made
more terse by introducing a non-monotonic construct.

– Selective Importing: These lifting rules explicitly specify the triples that
should be directly imported from the source to the destination. Each triple
may be specified by the property type or the first argument or the second
argument. Optionally, these importing rules can specify the constraints on
the first/second argument or combinations of property type and constraints
on first/second argument etc. Examples: import capitalCity and area from
the CIA Factbook. Import everything for instances of Book and AudioCD
from Amazon. Import manufacturer for instances of ElectronicsProduct
from Amazon. The defining axiom for Selective Importing Rules is as follows:

ist(ci, targetContext(lr, ci) ∧ sourceContext(lr, cj) ∧ sourceF ilter(lr, sc)∧
targetF ilter(lr, tc) ∧ propF ilter(lr, p)∧
type(lr, SelectiveImportLiftingRule))∧

ist(cj , type(x, sc) ∧ type(y, tc) ∧ p(x, y)) →
ist(ci, p(x, y))

(3)

– Preference Rules: In many cases, a number of sources have sparse data
about a set of entities i.e., each of them might be missing some of the

40 R. Guha, R. McCool, and R. Fikes

attributes for some of the entities they refer to and we might want to
mitigate this sparcity by combining the data from the different sources.
However, we might have a preference for one source over another, if the
preferred source has the data. A preference rule can either specify a total
preference ordering on list of sources or simply that one particular source is
preferred over another. As with Selective Importing lifting rules, a preference
rule can be constrained to apply to only a particular category of triples.
Example: Who2 has more detailed information about more celebrities than
IMDB, but IMDB’s data is more accurate. This class of lifting rule allows
us to combine Who2 with IMDB, preferring IMDB over Who2 if both have
values for a particular property type for the same individual.
A more sophisticated (but substantially more computationally complex)
version of preference lifting rules is in terms of consistency, i.e., if an
inconsistency is detected in the target context, then triples from the less
preferred context are to be eliminated first (to try and restore consistency).
Preference Lifting rules are non-monotonic across contexts in the sense that
the addition of a new triple in one of the source contexts can cause another
triple in the target context to be removed. However, they do not induce
non-monotonicity within a context. The defining axiom for Preference
Lifting Rules is as follows:

ist(ci, targetContext(lr, ci)∧sourceContext(lr, cj)∧sourceContext(lr, ck)∧
propF ilter(lr, p) ∧ sourceF ilter(lr, sc) ∧ targetF ilter(lr, tc)∧
preferred(lr, ck) ∧ type(lr, PreferenceLiftingRule))∧
ist(cj , p(x, y) ∧ type(x, sc) ∧ type(y, tc))∧
¬ist(ck, (∃(z)p(x, z) ∧ type(x, sc) ∧ type(z, tc) ∧ (z �= x)) →

ist(ci, p(x, y))
(4)

– Mapping Constants: One of the most common transformations required
is to distinguish between slightly different uses of the same term or to
normalize the use of different terms for the same concept. These lifting rules
specify the source term and the target term. As with selective importing
lifting rules, we can constrain the application of these mappings to specific
categories of triples. Example: Many different sites use the term price, some
referring to price with tax, some to price with tax and shipping, etc. This
class of lifting rules can be used to distinguish between them in the aggregate
context. The earlier example of nuclear power plant capacity also falls into
this category. The defining axiom of Term Mapping rules is as follows:

ist(ci, targetContext(lr, ci) ∧ sourceContext(lr, cj)∧
propMapTo(lr, p2) ∧ sourceF ilter(lr, sc) ∧ targetF ilter(lr, tc)∧
propMapFrom(lr, p1) ∧ type(lr, T ermMappingLiftingRule))∧

ist(cj , p1(x, y) ∧ type(x, sc) ∧ type(y, tc)) → ist(ci, p2(x, y))
(5)

Contexts for the Semantic Web 41

– Mapping more complex graph patterns: All the above lifting rules
deal with cases where the target graph is isomorphic to (portions of) the
source graph. Sometimes, this constraint cannot be satisfied. For example,
if the source leaves time implicit and the target has an explicit model of
time, the source and target graphs are not likely to be isomorphic.
Assuming we don’t use an explicit ist in the base language, we can
introduce a special construct for each phenomenon, such as making implicit
time explicit. With this approach, we would introduce a property type
(contextTemporalModel) to specify the model of time used by a context
(implicit, Situation Calculus, Histories, etc.). In the case where the context
used implicit time, we use another property type (contextImplicitT ime) to
specify the implicit time. Using a reified version of the Situation Calculus
to represent time, the following axiom defines these property types.

ist(ci, contextTemporalModel(ci, ImplicitStaticT ime)∧
contextImplicitT ime(ci, ti))∧

ist(cj, targetF ilter(lr, tc) ∧ contextTemporalModel(cj , SitCatModel)∧
type(lr, SitCalLiftingRule)∧propF ilter(lr, p)∧sourceF ilter(lr, sc))∧
targetContext(lr, ci) ∧ sourceContext(lr, cj)∧

ist(cj , type(x, sc) ∧ type(y, tc) ∧ p(x, y)) →
ist(ci, (∃z)type(z, SitProp) ∧ time(z, ti)∧
sitProp(z, p) ∧ sitSource(z, x) ∧ sitTarget(z, y))

(6)

A more general solution is to identify common transformation patterns (as
opposed to particular phenomenon) and introduce vocabulary to handle
these. For example, a common pattern involves reifying a particular triple
to make something explicit. Examples of this include making time and
propositional attitudes. Another common pattern involves transforming a
literal into a resource. A common example of this is to make the unit of
measure or language explicit.

– Default Lifting: The constructs described above are monotonic. In practice,
it is often convenient to be able to say that all of the contents of one context
should be included in the aggregate context without any modification unless
one of the other lifting rules applies. To do this, we introduce a property type
analogous to importsFrom, called defaultImportsFrom that specifies this.

While not exhaustive, we believe this vocabulary and associated set of lifting
rules are sufficient to solve many issues that arise in data aggregation on the
Semantic Web. More importantly, this functionality can be incorporated into the
Semantic Web with fairly small and simple additions to the existing standards.

6 Model Theory

In the last section we discussed some potential alternatives for introducing con-
texts into the Semantic Web. In this section, we discuss issues related to contexts

42 R. Guha, R. McCool, and R. Fikes

and the model theory of the Semantic Web representation languages. Of course,
the particular alternative used has significant impact on the model theory. But
there are some basic changes that are required, independent of the approach
used. We discuss these first and then consider the impact on the model theory
corresponding to the different approaches.

We restrict our attention to the model theory for RDFS. We expect it will be
possible to provide a similar treatment for at least the simpler versions of OWL.

The most basic change introduced by the addition of contexts is that the
denotation of a resource is not just a function of the term and the interpretation
(or structure), but also of the context in which that term occurs. We will as-
sume that the denotation of literals is not affected by the context. This context
dependence can be incorporated as follows. The definitions of interpretation and
satisfaction (as given in the RDF Model Theory [11]) are changed as follows.

A simple interpretation I of a vocabulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of I. C is a
subset of IR corresponding contexts.

2. A set IP, called the set of properties of I.
3. A mapping IEXT from IP into the cross product of IR x IR i.e. the set of

pairs < x, y > with x and y in IR .
4. A non-empty set CURI ⊂ (URI ∩ V) used to denote contexts. A mapping

IS from the cross product (URI ∩ V) x CURI into (IR ∪ IP). (URI ∩ V)
corresponds to the URIs used to refer to resources. The cross product (URI∩
V) x CURI corresponds to resource-context pairs. We impose the constraint
IS(CURI, CURI) ∈ C so that CURIs denote contexts.4 So, under this
modified definition, IS maps resources to objects in the domain in a context.
This is the primary substantial change.

5. A mapping IL from typed literals in V into IR.
6. A distinguished subset LV of IR, called the set of literal values, which con-

tains all the plain literals in V

The denotation of a ground graph is now with respect to the context it occurs
in, which manifests itself as the second URI in the argument to IS in (4) above.
We update and extend the definition of satisfaction so that instead of defining
satisfaction for a graph, we define it for a set of graphs, each in a context. The
updated definition of satisfaction is as follows:

1. if E is a plain literal ”aaa” occurring in c in V then I(E,c) = aaa
2. if E is a plain literal ”aaa”@ttt in V occurring in c then I(E,c) = < aaa, ttt >
3. if E is a typed literal in V occurring in c then I(E,c) = IL(E)
4. if E is a URI reference in V occurring in the context c, then I(E,c) = IS(E,c)
5. If E is a ground triple s p o in the context c then I(E,c) = true if c, s, p and

o are in V, IS(p,c) is in IP and < IS(s, c), IS(o, c) > is in IEXT(IS(p,c)).
Otherwise I(E,c)= false.

4 If we want a flat context space wherein a CURI denotes the same context irrespective
of where it occurs, we impose the additional constraint that IS(CURIa, CURIj) =
IS(CURIa, CURIi) for all i, j.

Contexts for the Semantic Web 43

6. if E is a ground RDF graph in the context c then I(E,c) = false if I(E’,c) =
false for some triple E’ in E, otherwise I(E,c) =true.

7. if < Ei, ci > are a set of ground graphs occuring each occurring in the
corresponding context, then I(< Ei, ci >) = false if I(Ei, ci) = false for some
grap Ei associated with the context ci, otherwise I(< Ei, ci >) = true.

Finally, the definition of entailment is updated so that a ground graph G1 in
a context C1 is entailed by a set of graph-context pairs < Gi, Ci > if < G1, C1 >
is true under every interpretation under which (< Gi, Ci >) is true.

It is easy to see that the primary substantial change in the model theory is
the addition of the context argument to the interpretation. The change in the
definition of satisfaction is that we can no longer simply merge graphs without
regard to where they occur. This is, of course, the point of this whole exercise.

Additional changes to the model theory depend on whether we have a predi-
cate/modal like ist in the vocabulary, the constraints we impose on quantifying
over contexts and into contexts, whether we want the Barcan formula, etc. Since
this approach has been discussed quite exhaustively in the literature ([3], [16],
Giunchiglia [8], [7]) and since the use of an explicit ist is not very appropriate
for the Semantic Web, we will not go into the details of that approach here.

The less expressive approach which eschews the use of an explicit symbol like
ist in favour of a suite of specialized interpreted symbols (such as importsFrom)
appears to require a less substantial, though more cumbersome additions to the
model theory. Following the pattern of sections 3 and 4 of [11], interpretations
can be provided for the different context-specific vocabulary items introduced in
the last section. For example, the interpretation for the term importsFrom is:
if I(c1 importsFrom c2, c1) is true and I(E,c2) is true then I(E, c1) is true. The
interpretations for the other vocabulary terms, though more verbose, are still
straightforward model theoretic equivalents of the axiomatic definitions given
earlier.

Finally, we need to add a semantic constraint so that a LiftingRule for
specifying what to lift into a particular context is true only in that context. So,
if I(c1, c2) �= I(c2, c2) then I(c2 targetContext lr, c1) is false.

It is important to note that all the theorems and lemmas of [11] continue to
hold. Overall, it appears that a restricted context mechanism that does not use
an explicit ist can be accommodated into the model theory without substantial
perturbations.

7 Related Work and Discussion

The issue of contextuality and contexts as first class objects has been a topic of
much discussion since the early days of RDF. In this section, we first discuss the
relation between the context mechanism presented in this paper and reification
(and related proposals). We then discuss the issue of non-monotonicity that is
raised by contexts.

44 R. Guha, R. McCool, and R. Fikes

7.1 Reification

RDF provides reification as a mechanism for making statements about state-
ments. There are significant differences between reification and contexts both
in what they are intended for and in their structure. Reification is intended to
enable statements about potential statements (which may or may not be true).
For example, they can be useful for making statements about provenance. Since
they have no coupling with the truth of the triple that has been reified, they
cannot be used to relate the truth of a triple in one graph to its truth in another
graph. Consequently, it is difficult to see how reification can be used to mediate
aggregation.

In contrast, the primary goal of the context mechanism presented here is to
enable the aggregation while factoring in the differences between the data sources
being aggregated. It is only incidental that the context mechanism may be used
to make other kinds of statements about graphs. Since the goal is to aggregate
triples that are true in the graphs being aggregated, contexts and truth are very
closely related. Contexts and reification are also very different in their structure
and in where they appear in the model theory. Because of the close coupling
between truth and contexts, they cannot be a posteriori introduced at the RDF
Vocabulary level. They appear in the guts of the model theory, in the definition
of an interpretation. This is in contrast to the reification which does not play
any significant role in the model theory.

In addition to the reification mechanism in RDF, the system/language
CWM/N3 supports a construct called contexts. As far as we can determine,
this notion of context is not substantially different from reification.

The shortcomings of reification have lead to numerous alternative proposals,
the most substantial of which are those by Klyne [13], [12]. Indeed some of the
constructs presented there, drawn from earlier work by Guha [10] and McCarthy
[15], are very similar in spirit to those presented here. The extension to the
model theory presented here is simpler. Unlike that work we avoid the use of
an ist construct and significantly reduce the complexity. Further, our focus in
this paper is on data aggregation, not on introducing contexts as a general
piece of functionality into the Semantic Web. The general problem of contextual
dependence is much too complex to tackle head-on (at least for the Semantic
Web). We believe that we need to be driven by concrete tasks such as data
aggregation to achieve progress.

7.2 Non-monotonicity

The context mechanism discussed in this paper leads to non-monotonic aggrega-
tion in the following sense. A graph G1 might imply ϕ, but because of selective
lifting, preferential lifting or transformation during lifting, the aggregation of this
graph with zero or more other graphs might not imply ϕ. It has been argued [1]
that the Semantic Web should be based purely on classical monotonic logics for
reasons of scalability. While monotonicity might be desirable at the local level,
it is neither desirable nor feasible at the level of the Semantic Web as a whole.

Contexts for the Semantic Web 45

Further, the computational intractability associated with non-monotonic logics
in AI are not because of non-monotonicity itself, but because of the particular
mechanisms used to introduce it.

What we need is the ability to say that a particular theory T1 implies ϕ
without the fear that additions to T1 cause ϕ to no longer be true. However,
T1, when aggregated with other theories T2, T3, ... might lead to a superior
theory which does not imply ϕ. The examples given in section 3, especially
the example of the CIA Factbook combined with census data from particular
countries is a good example of why this is desirable. The issue is not that of the
CIA Factbook not being trustworthy. It has a lot of good data that we would
like to be able to use. It would be undesirable if we had to choose between it and
data from the census bureaus. In the past, lacking a proper context mechanism,
we have been unable to associate a granularity with the monotonicity. With the
context mechanism, we are able to control the points of non-monotonicity and we
are able to distinguish between non-monotonicity within a context versus non-
monotonicity across contexts. For example, one could remain monotonic within
contexts, but can be non-monotonic across contexts.

8 Conclusions

As shown by the experience with TAP and in many other projects that aggregate
independently created data, differences in assumptions, use of terms, etc. lead
to problems during aggregation. In this paper, we present an adaptation of the
context mechanism from AI to solve these problems. We avoid the general ist
construct and the associated complexity but provide enough support to solve the
contextual problems that typically arise in aggregation on the Semantic Web.

References

1. Tim Berners-Lee. Semantic web architecture.
http://www.w3.org/DesignIssues/Rules.html.

2. Daniel G. Bobrow and Terry Winograd. On overview of krl, a knowledge repre-
sentation language. Cognitive Science, 1:3–46, 1997.

3. Sasa Buvač. Quantificational logic of context. In Howard Shrobe and Ted Senator,
editors, AAAI 1996, pages 600–606, Menlo Park, California, 1996. AAAI Press.

4. Saša Buvač, Vanja Buvač, and Ian Mason. Metamathematics of con-
texts. Fundamenta Mathematicae, 23(3), 1995. Available from http://www-
formal.stanford.edu/buvac.

5. Saša Buvač and Richard Fikes. A declarative formalization of knowledge trans-
lation. In Proceedings of the ACM CIKM: the Fourth International Conference
in Information and Knowledge Management, 1995. Available from http://www-
formal.stanford.edu/buvac.

6. Saša Buvač and Ian Mason. Propositional logic of context. In AAAI, pages 412–
419, 1993.

7. Valeria de Paiva. Natural deduction and context as (constructive) modality. In
CONTEXT 2003, pages 116–129, 2003.

46 R. Guha, R. McCool, and R. Fikes

8. Fausto Giunchiglia and Chiara Ghidini. Local models semantics, or contextual
reasoning = locality+ compatibility. In Anthony G. Cohn, Lenhart Schubert, and
Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Representation and
Reasoning, pages 282–289. Morgan Kaufmann, San Francisco, California, 1998.

9. R. Guha and John McCarthy. Varieties of contexts. In CONTEXT 2003, pages
164–177, 2003.

10. Ramanathan V. Guha. Contexts: a formalization and some applications. Technical
Report STAN-CS-91-1399, Stanford CS Dept., Stanford, CA, 1991.

11. Pat Hayes. Rdf semantics. http://www.w3.org/TR/rdf-mt/.
12. Graham Klyne. Contexts and the semantic web.

http://public.research.mimesweeper.com/RDF/RDFContexts.html.
13. Graham Klyne. Contexts for the semantic web.

http://www.ninebynine.org/RDFNotes/UsingContextsWithRDF.html.
14. John McCarthy. Generality in artificial intelligence. In Vladimir Lifschitz, editor,

Formalizing Common Sense: Papers by John McCarthy, pages 226–236. Ablex
Publishing Corporation, Norwood, New Jersey, 1990.

15. John McCarthy. Notes on formalizing contexts. In Ruzena Bajcsy, editor, Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 555–560, San Mateo, California, 1993. Morgan Kaufmann.

16. P. Pandurang Nayak. Representing multiple theories. In B. Hayes-Roth and
R. Korf, editors, AAAI-94, pages 1154–1160, Menlo Park, CA, 1994.

17. R.Guha and D. Lenat. Context dependence of representations in cyc. In Colloque
ICO, 1993.

18. R.Guha and R. McCool. Tap: A semantic web platform. Computer Networks,
42:557 – 577, 2003.

19. R.Guha, R. McCool, and E. Miller. Semantic search. In WWW 2004, Budapest,
Hungary, 2003.

20. R.Guha and Rob McCool. Tap: Towards a web of data.
http://tap.stanford.edu/.

Bipartite Graphs as Intermediate Model for
RDF�

Jonathan Hayes1,2 and Claudio Gutierrez1

1 Center for Web Research, Dept. of Computer Science, Universidad de Chile
cgutierr@dcc.uchile.cl

2 Dept. of Computer Science, Technische Universität Darmstadt, Germany
jonathan.hayes@gmx.de

Abstract. RDF Graphs are sets of assertions in the form of subject-
predicate-object triples of information resources. Although for simple
examples they can be understood intuitively as directed labeled graphs,
this representation does not scale well for more complex cases, particu-
larly regarding the central notion of connectivity of resources.
We argue in this paper that there is need for an intermediate repre-
sentation of RDF to enable the application of well-established methods
from graph theory. We introduce the concept of RDF Bipartite Graph
and show its advantages as intermediate model between the abstract
triple syntax and data structures used by applications. In the light of
this model we explore the issues of transformation costs, data/schema-
structure, and the notion of RDF connectivity.

Keywords: RDF Model, RDF Graph, RDF Databases, Bipartite Graph.

1 Introduction

The World Wide Web was originally built for human consumption, and although
everything on it is machine-readable, the data is not machine-understandable [1].
The Resource Description Framework, RDF [2], is a language to express meta-
data about information resources on the Web proposed by the WWW Consor-
tium (W3C). It is intended that this information is suitable for processing by
applications and thus is the foundation of the Semantic Web [3]. RDF statements
are triples consisting of a subject (the resource being described), a predicate (the
property), and an object (the property value). A set of RDF triples is called an
RDF Graph, a term formally introduced by the RDF specification [4] and moti-
vated by the underlying graph data model.

The graph-like nature of RDF is indeed intuitively appealing, but a naive
formalization of this notion presents problems. Currently, the RDF specification
does not distinguish clearly among the term “RDF Graph”, the mathematical
� The first author was supported by Millennium Nucleus, Center for Web Rese-

arch (P01-029-F), Mideplan. The second author was supported by FONDECYT
No 1030810.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 47–61, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

48 J. Hayes and C. Gutierrez

�� ��
�� �	Property

�� ��
�� �	last name

type

��

range

��

domain ���� ��
�� �	Artist

type

������������
�� ��
�� �	creates

type

��

domain
��

range
���� ��
�� �	Artifact
type

������������
�� ��
�� �	has style
range

��

domain��

type

		

�� ��
�� �	Class

�� ��
�� �	Literal

type

��

�� ��
�� �	Painter

type

subClassOf

��

�� ��
�� �	paints

type

��

subProperty

��

domain�� range ���� ��
�� �	Painting

type

subClassOf

��

�� ��
�� �	Style

type

��

�� ��
�� �	“Rivera”

type

��

�� ��
�� �	rivera

last name�� paints ��

type

��

�� ��
�� �	zapata

type

��

�� ��
�� �	“Picasso”

type

��

�� ��
�� �	picassolast name��

type

��

paints ���� ��
�� �	guernica

type

��

has style ���� ��
�� �	Cubism

type

��

Fig. 1. The museum example. A non-standard graph where edge labels and nodes can
represent the same object. For example, paints occurs as a node as well as arbitrarily
often in the role of edge labels.

concept of graph, and the graph-like visualization of RDF data. An RDF Graph
is a set of triples and therefore, by itself, not a graph in the classic sense. RDF
Concepts and Abstract Syntax [4] presents “node and directed-arc diagrams” (or,
as referred to in [1], directed labeled graphs) as a visualization scheme for RDF
by representing a triple <a b c> by a

b−→ c. However, the document leaves
open how to deal with a statement property (an edge label) which occurs as the
subject or object of another statement: one could either duplicate resources as
nodes and as edge labels (as shown in figure 1), or allow edges to connect not
only to nodes, but also to other edges.

Both approaches are inconvenient from several points of view: allowing mul-
tiple occurrences of resources as labels jeopardizes one of the most important
aspects of graph visualization, which is the implicit assumption that the complete
information regarding a node in a graph is obtained by its place in the drawing
and its incident edges. On the other hand, the essential drawback of the second
approach is the fact that the resulting construct is not a graph in the standard
sense to which we could apply well-established techniques from graph theory.
However, this is a principal reason for representing RDF by graphs: when rea-
soning formally over RDF data, e.g., as described in RDF Semantics [5], one has
to operate with sets of triples. Although well-defined formally, a set of triples

Bipartite Graphs as Intermediate Model for RDF 49

is a model that due to multiple occurrences of the same resource in the data
structure leads to undesirable redundancies and does not capture the graph-like
nature of RDF data, particularly regarding the connectivity of resources.

We propose to model RDF Graphs as bipartite graphs. RDF Graphs can
be represented naturally by hypergraphs, and hypergraphs can be represented
naturally by bipartite graphs. (Bipartite) graphs are well-known mathematical
objects which, as formal representation, have several advantages over the triple or
directed labeled graph representation discussed above. Among these advantages
are: algorithms for the visualization of data for humans [6,7], a formal frame-
work to prove properties and specify algorithms, the availability of libraries with
generic implementations of graph algorithms, and of course, techniques and re-
sults of graph theory. Representing RDF data by (standard) graphs allows to
reduce application demands to well-studied problems of graphs. A few exam-
ples at hand: Difference between RDF Graphs: When are two RDF Graphs the
same? [8,9] Entailment: Determining entailment between RDF Graphs can be
reduced to graph mappings: Is graph A isomorphic to a subgraph of graph B? [5].
Minimization: Finding a minimal representation of an RDF Graph is important
for compact storage and update in databases [10]. Semantic relations between
information resources: metrics and algorithms for semantic distance in graphs
[11,12]. Clustering [13,14] and graph pattern mining algorithms [15] to reveal
regularities in RDF data.

Contributions. In this paper we provide a formal graph-based intermediate
model of RDF, which intends to be more concrete than the abstract RDF model
to allow the exploit of results from graph theory, but still general enough to allow
specific implementations. The contributions are the following: (1) We present a
class of RDF bipartite graphs as an alternate graph representation for RDF. (2)
We study properties of this class of graphs and the transformation of RDF data
into it. (3) We provide an approach to stratify an RDF Graph into data and
schema layers. (4) We explore the notion of RDF connectivity and how it is
conveyed by the graph model.

Related Work. There is little work on formalization of the RDF graph model
besides the guidelines given in the official documents of the W3C, particularly
RDF Concepts and Abstract Syntax [4] and RDF Semantics [5]. There are works
about algorithms on different problems on RDF Graphs, among them T. Berners-
Lee’s discussion of the Diff problem [8] and J. Carroll’s study of the RDF graph
matching problem [9]. Although not directly related to graph issues, there is
work on the formalization of the RDF model itself that touches our topic: a
logical approach that gives identities to statements and so incorporates them to
the universe [16], a study oriented to querying that gives a formal typing to the
model [17] and results on normalization of RDF Graphs [10].

In the thesis [18] there is an extended discussion of the model to be presented
in this paper, containing all the proofs and further investigations on RDF maps
and applications to RDF storage and querying.

50 J. Hayes and C. Gutierrez

2 Preliminaries

RDF. The atomic structure of the RDF language is the statement. It is a
triple, consisting of a subject, a predicate and an object. These elements of
a triple can be URIs (Uniform Resource Identifiers), representing information
resources; literals, used to represent values of some datatype; and blank nodes,
which represent anonymous resources. There are restrictions on the subject and
predicate of a triple: the subject cannot be a literal, and the predicate must be
a URI resource. Resources, blanks and literals are referred to together as values.

An RDF Graph is a set of RDF triples. Let T be an RDF Graph. Then
univ(T), the set of all values occurring in all triples of T , is called the universe
of T ; and vocab(T), the vocabulary of T , is the set of all values of the universe
that are not blank nodes. The size of T is the number of statements it contains
and is denoted by |T |. With subj(T) (respectively pred(T), obj(T)) we designate
all values which occur as subject (respectively predicate, object) of T .

Let V be a set of URIs and literal values. We define RDFG(V) := {T | T is
RDF Graph and vocab(T) ⊆ V }, i.e. the set of all RDF Graphs with a vocabulary
included in V . There is a distinguished vocabulary, RDF Schema [19] that may
be used to describe properties like attributes of resources (traditional attribute-
value pairs), and to represent relationships between resources. It is expressive
enough to defines classes and properties that may be used for describing groups
of related resources and relationships between resources.

Example RDF Graph 1 The prefix:suffix notation abbreviates URIs. The
wor prefix identifies a “Web of Researchers” vocabulary (rdfs is RDF Schema)
1: <wor:Ullman> <wor:coauthor> <wor:Aho>
2: <wor:Greibach> <wor:coauthor> <wor:Hopcroft>
3: <wor:coauthor> <rdfs:subPropertyOf> <wor:collaborates>
4: <wor:Greibach> <wor:researches> <wor:topics/formalLanguages>
5: <wor:Valiant> <wor:researches> <wor:topics/formalLanguages>
6: <wor:Erdös> <wor:researches> <wor:topics/graphTheory>
7: <wor:Aho> <wor:collaborates> <wor:Kernighan>
8: <wor:Hopcroft> <wor:coauthor> <wor:Ullman>

Graphs. A graph is a pair G = (N, E), where N is a set whose elements are
called nodes, and E is a set of unordered pairs {u, v} of nodes u, v ∈ N , the edges
of the graph. A node v and an edge e are incident if v ∈ e; two edges e1 and e2
are adjacent if they both are incident to a node v. Observe that the definition
implies that the sets N and E are disjoint.

A graph G is a multigraph if multiple edges between two nodes are permitted.
A graph G = (N, E) is said to be bipartite if N = U ∪ V, U ∩ V = ∅ and for
all {u, v} ∈ E it holds that u ∈ U and v ∈ V . A directed graph is a graph
where the elements of E are ordered, i.e. there are functions from : E → N and
to : E → N which yield the source and the target of each edge. In order to
express more information, a graph can be labeled. A graph (N, E), together with

Bipartite Graphs as Intermediate Model for RDF 51

�� ��
�� �	col

�� ���� �	coa

sP

��

�� ��
�� �	Gre

res

��

coa ���� ��
�� �	Hop coa ���� ���� �	Ull

coa ���� ��
�� �	Aho

col

���� ��
�� �	GT

�� ��
�� �	FLT

�� ��
�� �	Ker

�� ��
�� �	Erd

res

��

�� ��
�� �	Val

res

��

Fig. 2. Example RDF Graph 1 represented by a directed labeled graph. URI pre-
fixes have been omitted, and labels have been abbreviated as follows: collaborates,
subPropertyOf, coauthor, Graph Theory, researches, Erdős, Greibach, Formal
Language Theory, Valiant, Hopcroft, Ullman, Aho, Kernighan.

a set of labels LE and an edge labeling function lE : E → LE is an edge-labeled
graph. A graph is said to be node-labeled when there is a node label set and a
node labeling function, as above. We will write (N, E, lN , lE) for a node- and
edge-labeled graph.

The notions of path and connectivity will be important in what follows. A
path is a sequence of edges e1, . . . , en where each edge ei is adjacent to ei−1, for
i ∈ [2, n]. The label of the path is lE(e1) · lE(e2)· . . . ·lE(en) Two nodes x, y are
connected if there exists a path e1, . . . , en with x ∈ e1 and y ∈ en. The length of
a path is the number of edges it consists of.

RDF as Directed Labeled Graphs. Now we can formalize the directed labeled
graph representing an RDF Graph, as outlined in [4]. Let T be an RDF Graph.
Then define δ(T) = (N, E, lN , lE) as the node- and edge-labeled multigraph with
N = {nx : x ∈ subj(T) ∪ obj(T)} with lN (nx) = x and E = { es,p,o : (s, p, o) ∈
T } with from(es,p,o) = ns, to(es,p,o) = no, and lE(es,p,o) = p.

Figures 1 and 2 presents examples of such a graph. This definition yields a
standard graph, but observe that node and edge label sets might not be disjoint
(in figure 2, the resource coa appears at the same time as edge label and as
node). This leads to problems as described in the introduction.

Hypergraphs. Informally, hypergraphs are systems of sets which extend the
notion of graphs allowing edges to connect any number of nodes. For background
see [20]. Formally, let V = {v1, . . . , vn} be a finite set, the nodes. A hypergraph
on V is a pair H = (V, E), where E is a family {Ei}i∈I of subsets of V . The
members of E are called edges. A hypergraph is simple if all edges are distinct.
A hypergraph is said to be r-uniform if all edges have the cardinality r. An
r-uniform hypergraph is said to be ordered if the occurrence of nodes in every
edge is numbered from 1 to r.

52 J. Hayes and C. Gutierrez

E = { { coauthor, subPropertyOf, col-
laborates }, { Ullman, coauthor, Aho },{
Greibach, coauthor, Hopcroft } }

V= { collaborates, coauthor, subProper-
tyOf, Aho, Greibach, Hopcroft, Ullman }

E1

E2

E3

Ull

coa

Aho

Gre

Hop

sP

col

Fig. 3. Example of a simple 3-uniform hypergraph. This hypergraph represents the
first three statements of the example RDF Graph 1.

Hypergraphs can be described by binary edge-node incidence matrices. In
this matrix rows correspond to edges, columns to nodes: entry mi,j equals 1 or
0, depending on whether Ei contains node nj or not. To the incidence matrix
of a hypergraph H = (V, E) corresponds a bipartite incidence graph B = (NV ∪
NE , E), which is defined as follows. Let NV be the set of node names of H which
labeled the columns of the matrix, and NE the set of edge names labeling its rows.
Then E contains an edge {ei, vj} for each ei ∈ NE , vj ∈ NV where the matrix
entry mi,j is 1. The obtained graph B can be read to have an edge {e, v} exactly
when the hypergraph node represented by v is member of the hypergraph edge
represented by e. It is evident that B is bipartite. Figure 4 shows the incidence
matrix of a hypergraph and the bipartite incidence graph derived from it.

E1

E2

E3

1

1

1

1

1

1

1

1

1

U
ll

co
a

A
ho

G
re

H
op

sPco
l col •

coa •
sP •

Aho •
Gre •
Hop •
Ull •

E1•
E2•
E3•

��������
����������������

��������

��������

��������

�
�

�
�

�
�

�
�

Fig. 4. Incidence matrix representing the hypergraph of Example 3 and the corre-
sponding incidence graph. In the case of an ordered hypergraph, matrix entries will
indicate the position of the occurrence of the node in the edge.

Bipartite Graphs as Intermediate Model for RDF 53

3 RDF Bipartite Graphs

Deriving Bipartite Graphs from Hypergraphs. One of the major prob-
lems encountered in trying to model RDF Graphs as classical graphs is the fact
that an edge or labeled edge cannot represent the ternary relation given by an
RDF triple. Therefore it is natural to turn the attention to graphs with 3-node-
connecting edges instead of classical 2-node edges, that is, hypergraphs.

Proposition 1. Any RDF Graph can be represented by a simple ordered 3-
uniform hypergraph: every RDF triple corresponds to a hypergraph edge, the
nodes being the subject, predicate and object in this order. The node set of the
hypergraph is the union of all the edges. (Trivial)

The converse of the proposition also holds when imposing constraints on the
occurrences of blank nodes and literals: blank nodes may not be predicates and
literals may not serve as subjects or predicates.

As stated in the preliminaries section, hypergraphs can be represented by
incidence matrices where membership of a node in an edge is marked with a
‘1’. In the case of the hypergraph representing an RDF Graph, the nodes of
an edge are ordered and we label them by S, P, or O to represent the role
(subject, predicate, or object) of the information resource. Hence, when deriving
the bipartite incidence graph of this incidence matrix, an edge will be added
for every S, P, O entry of the matrix, and this edge will be labeled with the
corresponding character. Thus, the only difference between the graph derived
from the incidence matrix of any hypergraph and an RDF Graph hypergraph is
the fact that each edge has one of three labels.

Mapping RDF to RDF Bipartite Graphs. This section presents a map of
RDF Graphs to bipartite graphs. Let B be the set of bipartite labeled graphs

�� ��
�� �	sP

������

S
��

��
��

P

O ���
���

�� ���� �	res �� ���� �	coa �� ��
�� �	col

������

S
��

��
��

P
������

O

������

S

P

O ��
��

��

������

S ��
��

��

P

������

O

������

S

P
������

O ���
���

������

S

P

O 		
		

		

������

S

P

������

O 		
		

		

������

S

P

O ��
��

��

�� ��
�� �	Erd

�� ��
�� �	GT

�� ��
�� �	Val

�� ��
�� �	FLT

�� ��
�� �	Gre

�� ��
�� �	Hop �� ��

�� �	Ull
�� ��
�� �	Aho

�� ��
�� �	Ker

Fig. 5. The RDF bipartite graph of the example RDF Graph 1. Statement nodes are
represented by circles; edge labels S, P, O indicate their subject, predicate and object.

54 J. Hayes and C. Gutierrez

�� ��
�� �	subject

�� ��
�� �	predicate

�� ��
�� �	object

������

S

��

P

��
O

�������������

Fig. 6. A statement as RDF bipartite graph.

G = (V ∪ St, E, nl, el), V ∩ St = ∅, where each edge in E connects a node in V
with a node in St, and el : E → EL and nl : V → NL are labeling functions. The
elements of V are called the value nodes and those of St the statement nodes.

Definition 1 (RDF Bipartite Graph). Let V be a vocabulary and T an RDF
Graph. Then we define a map β : RDFG(V) → B as follows: β(T) = (V ∪
St, E, nl, el) ∈ B is the RDF bipartite graph representing T , with V = {vx : x ∈
univ(T)}; St = {stt : t ∈ T}; and the set of edges E is built as follows: for each
triple t = (x, y, z) ∈ T add the edges {stt, vx} with label S, {stt, vy} with label
P , and {stt, vz} with label O. The labeling of the nodes is given by:

nl(vx) :=

{
(x, dx) if x is literal (dx is the datatype identifier of x)
x else

Note that β(T) is a 3-regular bipartite graph, because the degree of each node
in St is 3. This representation incorporates explicitly the statements as nodes
into the graph.

Example 1. Figure 6 illustrates how a single statement is represented as RDF
bipartite graph. Figure 5 shows the RDF bipartite graph representation of the
Web Of Scientists example. The drawing convention is as follows: unlabeled
circles represent statement nodes, boxes with rounded corners value nodes. Edge
labels S, P, and O indicate the subject, predicate, and object of a statement.

The model is well-defined and one can go back and forth between T and β(T):

Proposition 2. For each RDF Graph T there is a uniquely defined RDF bi-
partite graph β(T) representing it. Moreover, a function β−1 : β (RDFG(V)) →
RDFG(V) exists satisfying β−1(β(T)) = T .

The graph created from T has reasonable size, and can be obtained efficiently1:

Proposition 3. Let T be an RDF Graph and β(T) = (V ∪St, E, nl, el). Then:

1. β(T) can be computed in time O(|T | lg |T |).
2. The graph β(T) is bounded as follows: |St| = |T |, |V | = |univ(T)| and
|E| = 3 |T |.

Bipartite Graphs as Intermediate Model for RDF 55

PrAsRi ri Za piPi Gu Cu PgLi St Af Py Cl

pahN sChS cr

dosP ra ty

Fig. 7. RDF bipartite graph of the museum example. Edge labels have been omitted
for clarity. Drawing levels indicate the order of the values nodes. At the bottom level
are values which never occur as predicates: class instances like (bold letters indicate the
abbreviations) the literal “Rivera”, rivera (resource), Zapata, classes such as Painting,
Artifact, Artist, Painter, Property, and the meta-class Class. Simple properties in-
clude has Name and paints, and properties of properties are subProperty, domain,
range and type. Declarations with property “type” are shown in figure 10.

4 The Structure of RDF Graphs

RDF Graphs consist of values and statements. A first coarse-grained division of
the statements is the following: those that define a schema, and those that are
data structured under this schema (see figure 1—the dotted line represents this
division). Although RDF does not distinguish between schema-defining and data
statements, this distinction is natural when considering storage [21] and querying
[17] in databases. Unfortunately, a plain discrimination between the data and
schema parts of an RDF specification is not always possible. Moreover, features
like extensibility of specifications and reification make this divide difficult to
grasp formally. In the following we present two approaches to this issue.

Definition 2. A data subgraph of an RDF Graph T is a maximal subgraph T ′

satisfying (subj(T ′) ∪ obj(T ′)) ∩ pred(T ′) = ∅. The schema subgraph associated
to T ′ is T \ T ′.

The terms of data and schema subgraph correspond to the description base
and description schema in the wording of [22]. By the definition, note that an
RDF Graph T does not have a uniquely defined data subgraph, e.g. consider
{(a, b, c), (b, d, e)} where each statement alone is a data subgraph. Moreover,
an RDF Graph could have exponentially many different ones (proposition 13
in [18]).
1 The proofs of all propositions can be found in [18].

56 J. Hayes and C. Gutierrez

������

S

PO
�������

������

S

��������
P O
������

S

P

O

�� ��
�� �	class

�� ��
�� �	range �� ��

�� �	domain
�� ��
�� �	Property

�� ��
�� �	type

�� ��
�� �	Property

Fig. 8. Unstratified RDF Graphs, both examples are part of the RDF axiomatic triples.

An alternate approach is to decompose the RDF Graph T into strata. This is
grounded on the idea that a property describing basic-level entities is a predicate,
and a property describing predicates is a predicate of higher order.

Definition 3 (Stratification). Let T be an RDF Graph. Define Vi(T) and
Stj(T) by mutual recursion as follows: V0(T) is the set of values of T that are
not predicates, Vn(T) is the set of values of T that are predicates of statements
in Stn(T), and Stn+1(T) is the set of statements of T whose subject and object
are elements of

⋃
j≤n Vj(T).

The order of T is the maximum n such that Vn−1 is not empty.

T is stratified if univ(T) =
⋃

j≥0 Vj(T).

Example 2 (Stratification).
– T = {(a, a, b)} cannot be stratified: V0(T) = {b} and Vj(T) = ∅ for j > 0.

(e.g., <rdf:type rdf:type rdf:Property> is an RDF axiomatic triple [5]—
see figure 8.)

– The reification of a triple <a b c> is stratified (see figure 9).
– The museum example (figure 1) can be partitioned into 3 levels (see figure 7).

Proposition 4 (Unstratifiedness). T is not stratified if and only if there is
a cycle from a value node in β(T) with label in [(O|S)P]+.

�� ��
�� �	predicate V2

������

S

P

O

S2

�� ��
�� �	y �� ��

�� �	subject �� ��
�� �	b

�� ��
�� �	object

�� ��
�� �	type V1

������

S

P

O

���������������
������
S

��������

P

O

������

S

���������

P

O

��������
������
S

��������

P

O

������

S

������������������

P

O

S1

�� ���� �	x �� ���� �	a �� ��
�� �	:1 �� ���� �	c �� ��

�� �	Statement V0

Fig. 9. Stratified drawing of a reification. A resource x makes a proposition y about
the statement <a b c>.

Bipartite Graphs as Intermediate Model for RDF 57

PrAsRi ri Za piPi Gu Cu PgLi St Af Py Cl

pahN sChS cr

dosP ra ty

Fig. 10. Type declarations of the RDF bipartite graph in figure 7.

Although the complete axiomatic specification of RDF is not stratified (see
figure 8), most RDF data currently found in practice is stratified—if RDF ax-
iomatic triples are not considered—and has small order (no bigger than 3). Also,
if T is stratified, the graph obtained by reifying each of its triples is stratified.
However, the union of two stratified RDF Graphs is not necessarily stratified.

Both approaches embrace RDF’s extensibility in that they do not rely on the
rdfs namespace prefix. The proposition of an alternate RDF Schema RDFS(FA)
by Pan and Horrock [23,24] is based on similar considerations and also provides
a potentially unbounded stratification.

5 Connectivity of RDF Data

An RDF Graph conveys more meaning than the sum of its statements considered
individually. For example, Greibach is a coauthor of Hopcroft, who is a coauthor
of Ullman (figure 2). We can deduce that Greibach and Ullman are related
by a “transitive co-authorship”, although this is not stated explicitly by a single
statement. In the museum example—consider the fragment in figure 11—Picasso
and Rodin are related in that they both paint. Complex relationships between
resources are called semantic associations in [25,11]; for storage and querying
the importance of considering the connectedness of resources has been argued
in [21,26,27,28]. Guha et al. distinguish between a logical and a physical model
for querying and inferencing RDF [26]. Such a logical model would have to truly
represent the graph nature of RDF in contrast to a concrete serialization syntax
(the “physical model”) such as RDF/XML or triple storage in databases.

This section introduces the concept of connectivity for RDF by means of
paths and relates these terms to their counterparts from graph theory.

58 J. Hayes and C. Gutierrez

Fig. 11. Fragment of the museum example, presented first as a directed labeled graph,
and below as RDF bipartite graph.

Definition 4 (Triple Path). Let T be an RDF Graph. A path in an RDF
Graph—or triple path—P is a sequence of RDF triples (t1, t2, . . . , tn) with tk =
(sk, pk, ok) ∈ T , for which it holds that

for all i < n, {si, pi, oi} ∩ {si+1, pi+1, oi+1} �= ∅.

From this notion the concept of RDF Connectedness naturally follows:
A triple path (t1, t2, . . . , tn) is said to be connecting resources x and y if it
holds that x ∈ {s1, p1, o1}, x /∈ {si, pi, oi : 1 < i ≤ n} and y ∈ {sn, pn, on},
y /∈ {si, pi, oi : 1 ≤ i < n}. The concepts “triple path” and “RDF connect-
edness” stress the anchoring in the RDF model and are independent of the
graph representation (e.g., RDF bipartite graph or directed labeled graph) or
serialization syntax.

RDF connectivity corresponds to the well-established notion of connectedness
in classical graphs:

Proposition 5. Let T be an RDF Graph. The resources x, y are connected in
T if and only if there exists a path in β(T) between the corresponding nodes vx

and vy.

Example 3 (Paths in RDF Bipartite Graphs). The lower part of figure 11 shows
the RDF bipartite graph version of the directed labeled graph depicted above.
All paths of the former also exist in the latter, but not vice versa: the resources
picasso and rivera now appear connected (via the property paints, or hasName),
although the directed labeled graph version does not show this. In the sense of
the definition of RDF Graph connectivity given above, these resources are indeed
related, and the directed labeled graph version fails to represent that.

The example shows that not all paths which exist in an RDF Graph are
present in its directed labeled graph. The following definition describes those
paths which are represented:

Bipartite Graphs as Intermediate Model for RDF 59

Definition 5 (Horizontal Path). A horizontal (triple) path P in an RDF
Graph T is a sequence of RDF triples (t1, t2, . . . , tn), tk = (sk, pk, ok) ∈ T , for
which it holds that for all i < n, {si, oi} ∩ {si+1, oi+1} �= ∅.

A horizontal path is said to be oriented if oi = si+1 for all i < n.

Proposition 6. For every oriented horizontal path P in an RDF Graph T there
exists a corresponding path δ(P) in its directed labeled graph δ(T), and vice versa.

Note that the non-horizontal paths are sequences of triples t1, . . . , tn where
for some j, tj and tj+1 are linked via a predicate. Examples are the relation
of Picasso and Rivera via paints presented at the beginning of the section,
reifications, and statements about a predicate. If we make a parallel to relational
databases, the notion of horizontal path corresponds roughly to values of tuples
linked via joins; on the other hand, “vertical” paths are paths passing through
the schema of the database. Vertical paths are also relevant for RDF querying
when sub-class and sub-property semantics are incorporated (e.g., RQL [29]).
Other examples for the use of vertical connectedness arise from the various types
of “semantic associations” presented in [25]: similar paths are horizontal paths
where the properties are sub-properties of a common ancestor property.

6 Conclusions

We introduced a representation of RDF Graphs in terms of classical bipartite
graphs as an intermediate model between the abstract RDF triple syntax and
concrete implementations. We presented preliminary results about the struc-
ture and lines of development of the model. We argued the advantages of the
model compared to the triple representation and to the directed labeled graph
representation used currently by default.

One of the main advantages of our model from a developer point of view is
the possibility to directly use standard graph libraries. We are using the model
to approach diverse algorithmic problems of RDF databases, particularly graph-
like notions in querying and storage. Future work includes refinement of the RDF
bipartite graph model and aspects of visualization.

References

1. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syn-
tax Specification. W3C Recommendation. World Wide Web,
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, (1999)

2. Miller, E., Swick, R., Brickley, D.: Resource Description Framework (RDF) / W3C
Semantic Web Activity. World Wide Web, http://www.w3.org/RDF/ (2004)

3. Berners-Lee, T.: Semantic Web Road Map. World Wide Web,
http://www.w3.org/DesignIssues/Semantic.html (September 1998)

4. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation. World Wide Web,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (10 February 2004)

60 J. Hayes and C. Gutierrez

5. Hayes, P.: RDF Semantics. W3C Recommendation.
World Wide Web, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ (10
February 2004)

6. di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for Drawing
Graphs: An Annotated Bibliography. Comput. Geom. Theory Appl. 4 (1994) 235–
282 http://www.cs.brown.edu/people/rt/gd-biblio.html.

7. Mäkinen, E.: How to Draw a Hypergraph. Intern. J. Computer Math. 34 (1990)
177–185

8. Berners-Lee, T., Connolly, D.: Delta: an Ontology for the Distribution of Differ-
ences between RDF Graphs. World Wide Web,
http://www.w3.org/DesignIssues/Diff (2004)

9. Carroll, J.J.: Matching RDF Graphs. Technical Report HPL-2001-293, Digital
Media Systems Laboratory, HP Laboratories, Bristol,
http://www.hpl.hp.com/techreports/2001/HPL-2001-293.html (2001)

10. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web
Databases. In: Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), June 14-16, 2004, Paris,
France, ACM (2004)

11. Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.P.: Context-Aware Se-
mantic Association Ranking. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R.,
eds.: Proceedings of SWDB’03. (2003)

12. Rodŕıguez, A., Egenhofer, M.: Determining Semantic Similarity Among Entity
Classes from Different Ontologies. IEEE Transactions on Knowledge and Data
Engineering 15(2) (2003) 442–456

13. Carrasco, J.J.M., Fain, D., Lang, K., Zhukov, L.: Clustering of Bipartite
Advertiser-Keyword Graph. IEEE Computer Society (2003)

14. Zha, H., He, X., Ding, C.H.Q., Gu, M., Simon, H.D.: Bipartite Graph Partitioning
and Data Clustering. In: Proceedings of the 2001 ACM CIKM, Atlanta, USA,
ACM (2001) 25–32

15. Vanetik, N., Gudes, E., Shimony, S.E.: Computing Frequent Graph Patterns from
Semistructured Data. In: Proceedings of ICDM 2002, Maebashi City, Japan, IEEE
Computer Society (2002)

16. Yang, G., Kifer, M.: On the Semantics of Anonymous Identity and Reification. In
Meersman, R., Tari, Z., eds.: On the Move to Meaningful Internet Systems, 2002 -
DOA/CoopIS/ODBASE, Irvine, USA, Proceedings. Volume 2519 of Lecture Notes
in Computer Science., Springer (2002)

17. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proceedings of 2002 WWW
Conference, ACM Press (2002) 592–603

18. Hayes, J.: A Graph Model for RDF. Diploma thesis, Technische Universität Darm-
stadt, Department of Computer Science, Germany,
http://purl.org/net/jhayes/rdfgraphmodel.html (2004)

19. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation. World Wide Web,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ (10 February 2004)

20. Duchet, P.: Hypergraphs. In Graham, R., Grötschel, M., Lovász, L., eds.: Hand-
book of Combinatorics. Elsevier Science B.V., Amsterdam (1995) 381–432

21. Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: An Indexing Scheme for
RDF and RDF Schema based on Suffix Arrays. In Cruz, I.F., Kashyap, V., Decker,
S., Eckstein, R., eds.: Proceedings of SWDB’03. (2003) 151–168

Bipartite Graphs as Intermediate Model for RDF 61

22. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,
D., Scholl, M., Tolle, K.: RQL: A Functional Query Language for RDF. In Gray,
P., Kerschberg, L., King, P., Poulovassilis, A., eds.: The Functional Approach to
Data Management. Springer-Verlag (2004)

23. Pan, J., Horrocks, I.: Metamodeling Architecture of Web Ontology Languages.
In Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L., eds.: Proceedings of
SWWS’01, The first Semantic Web Working Symposium, Stanford University, Cal-
ifornia, USA, July 30 - August 1, 2001. LNCS, Springer-Verlag (2001)

24. Pan, J., Horrocks, I.: RDFS(FA) and RDF MT: Two Semantics for RDFS. In
Fensel, D., Sycara, K., Mylopoulos, J., eds.: Proc. of the 2003 International Se-
mantic Web Conference (ISWC 2003). Number 2870 in Lecture Notes in Computer
Science, Springer (2003) 30–46

25. Anyanwu, K., Sheth, A.: ρ-Queries: Enabling Querying for Semantic Associations
on the Semantic Web. In: Proceedings of the Twelfth International World Wide
Web Conference, ACM Press (2003) 690–699

26. Guha, R., Lassila, O., Miller, E., Brickley, D.: Enabling Inferencing. World Wide
Web, http://www.w3.org/TandS/QL/QL98/pp/enabling.html (1998)

27. Karvounarakis, G., Christophides, V., Plexousakis, D.: Querying Semistructured
(Meta)Data and Schemas on the Web: The case of RDF and RDFS. Technical
Report 269, FORTH Institute of Computer Science (2000)

28. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query
Languages. World Wide Web,
http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf (2004)

29. FORTH Institute of Computer Science
http://139.91.183.30:9090/RDF/RQL/Manual.html: RQL v2.1 User Manual.
(2003)

A Model Theoretic Semantics for Ontology Versioning

Jeff Heflin and Zhengxiang Pan

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{heflin,zhp2}@cse.lehigh.edu

Abstract. We show that the Semantic Web needs a formal semantics for the var-
ious kinds of links between ontologies and other documents. We provide a model
theoretic semantics that takes into account ontology extension and ontology ver-
sioning. Since the Web is the product of a diverse community, as opposed to a
single agent, this semantics accommodates different viewpoints by having differ-
ent entailment relations for different ontology perspectives. We discuss how this
theory can be practically applied to RDF and OWL and provide a theorem that
shows how to compute perspective-based entailment using existing logical reason-
ers. We illustrate these concepts using examples and conclude with a discussion
of future work.

1 Introduction

The Semantic Web (Berners-Lee, Hendler, and Lassila 2001)[1] has been proposed as
the key to unlocking the Web’s potential. The basic idea is that information is given
explicit meaning, so that machines can process it more intelligently. Instead of just
creating standard terms for concepts as is done in XML, the Semantic Web also allows
users to provide formal definitions for the standard terms they create. Machines can then
use inference algorithms to reason about the terms and to perform translations between
different sets of terms. It is envisioned that the Semantic Web will enable more intelligent
search, electronic personal assistants, more efficient e-commerce, and coordination of
heterogeneous embedded systems.

Unfortunately, the Semantic Web currently lacks a strong underlying theory that
considers its distributed aspects. To date, the semantics for semantic web languages
have looked little different from the traditional semantics of knowledge representation
languages. Traditional knowledge bases assume a single consistent point-of-view, but
the knowledge of the Semantic Web will be the product of millions of autonomous
parties and may represent many different viewpoints. We argue that the Semantic Web
is not just AI knowledge representation using an XML syntax, but actually changes
the way we should think about knowledge representation. Semantic web knowledge
bases must deal with an additional level of abstraction, that of the document or resource
that contains assertions and formulas. Furthermore, the semantics of the knowledge base
must explicitly account for the different types of links that can exist between documents.
Although languages such as RDF and OWL currently give a definitive account of the
meaning of any single document, things become more ambiguous when you consider
how documents should be combined. In this respect, semantic web systems are in a state

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 62–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Model Theoretic Semantics for Ontology Versioning 63

analogous to the early days of semantic nets. A quote from Brachman [3] about links
between concepts in early semantic nets seems just as appropriate for “links” between
semantic web documents today:

. . . the meaning of the link was often relegated to “what the code does with it”
- neither an appropriate notion of semantics nor a useful guide for figuring out
what the link, in fact means.

Without a better understanding of inter-document links on the Semantic Web, we
will have serious interoperability problems. This paper will examine the relationship
between different types of inter-document links and propose an unambiguous semantics
for them. In particular we focus on links that indicate that one document is a revision of
another.

2 Ontology Versioning

Ontologies have come to be seen as a critical component of the Semantic Web. An
ontology provides a common vocabulary to support the sharing and reuse of knowledge.
When two parties agree to use the same ontology, they agree on the meanings for all
terms from that ontology and their information can be combined easily. Unfortunately,
there is no widely accepted definition of an ontology. We prefer this definition from
Guarino [4]: “An ontology is a logical theory accounting for the intended meaning of a
formal vocabulary.”

The first author [7] initially described the problems of ontology versioning in dis-
tributed environments such as the Web. The Web is a dynamic place, where anyone can
instantaneously publish and update information. It is important that this ability is not
lost when it is described by a Semantic Web language. People must be able to publish
semantic web ontologies as easily as other documents, and they must be allowed to
revise these ontologies as well. Ontologies may be changed in order to correct errors, to
model new phenomenon, or simply to represent the world in a different way.

When we decide to change an ontology, then we must consider that in a distributed
ontology framework such as the one needed by the Semantic Web, there will often be
information resources that depend on it. Since the owner of the resource may find these
changes undesirable, we should not actually update the original ontology but intstead
create a new file that represents the new version.

However, this can lead to problems. Consider the example in Fig.1. The original
version of the ontology incorrectly states that all Dolphins are Fish. There is another
web page that states that Flipper is a Dolphin. Later, the ontology is corrected to say
all Dolphins are Mammals. In RDF and OWL, there are no semantics associated with
versioning, so we have to attempt to approximate them using existing language con-
structs. On the left of Fig.1, we could consider making each version2 class be a subclass
of a corresponding version1 class. This means version2 Dolphin will not be version2
Fish, but also means that Flipper will not be a member of any version2 classes. In other
words, version1 data is lost in version2. Alternatively, on the right of Fig. 1, we could
consider making each version1 class be a subclass of a corresponding version2 class,
this means Flipper will be a version2 Dolphin and a version2 Mammal, but will also

64 J. Heflin and Z. Pan

Fig. 1. Ontology revision example. On the left: version 2 classes are subclasses of version 1 classes.
On the right: version 1 classes are subclasses of version 2 classes.

be a version2 Fish. If the Fish and Mammal classes are disjoint, this will lead to an
inconsistent ontology.

An additional complexity deals with the intended meanings of the ontology. Consider
the case that in version 1, “Dolphin” actually meant “Dolphin Fish.” Perhaps because
this term was confusing users, we decide to change it to mean a kind of porpoise, which
is the more common usage. The resulting ontology would be indistinguishable from the
one described in the preceding paragraph. Yet, the implications are very different. In the
first case, we were correcting an error in our definitions and would like to retroactively
apply this correction to existing information resources. In the second case, we have
decided to change our concept of “Dolphin”, and consequently changed our definition
to correspond to the new meaning. In this case, it would be a mistake to retroactively
apply the new definitions to old resources. That is no instance of version1 Dolphin should
be considered instance of version2 Dolphin. Note that there is no syntactic distinction
between these two cases.

The first author [6] has shown how to resolve such problems by allowing ontology
authors to specify backwards-compatibility. Essentially an ontology version is backward
compatible with a prior version if it contains all of the terms from the earlier ontology
and the terms are supposed to mean the same thing in both ontologies.

Since backwards-compatibility depends on knowledge of the intended models of
an ontology, it cannot be computed automatically, instead it must be specified by an
ontology’s author. This is driven by the fact that ontologies only specify a theory partially,
and that the intended meaning of a term may change even though the ontology’s theory
remains the same. Since the ontology can only restrict unintended models, there is no
way to formally describe the intended models of an ontology. Furthermore, we suggest
that an ontology may not correctly describe the real world, thus it may be missing models
that were intended, may include models that are undesirable.

A Model Theoretic Semantics for Ontology Versioning 65

In fact, OWL has already taken ontology versioning into account. For example,
owl:backwardCompatibleWith and owl:incompatibleWith are dedicated to specifying the
compatibility. However, the Web Ontology Group felt that versioning was not understood
well enough to provide semantics for those features when the language was designed.As-
sociating formal semantics to those language constructs can help OWL support ontology
versioning.

This paper builds on the first author’s previous work and provides a model theoretic
semantics for ontology versioning, particularly the concept of backward compatibility.
Meanwhile, these inter-document links on the Semantic Web are established: exten-
sion, prior Version, backward compatible version and commitment to an ontology by a
resource.

3 Preliminary Definitions

We now provide formal definitions to describe our model of the Semantic Web. We need
to have structured representations of the data associated with information resources, and
these resources must be able to commit to ontologies which provide formal definitions
of terms. We will describe this by defining ontologies and resources using a a logi-
cal language and by providing a model theoretic semantics for these structures. These
definitions improve upon those given by the first author [6].

Let D be the domain of discourse, i.e., the set of objects that will be described. Let R
be a subset of D that is the set of information resources, such as web pages, databases,
and sensors.

There are many candidate representation languages for an ontology. In order to
maintain the generality of this theory, we will use first-order logic as the representation
language. Due to the expressivity of FOL, this theory will still apply to the languages
commonly used for semantic web systems, such as description logics, as well as proposed
Horn logic extensions. We will assume that we have a first-order language LS with a
set of non-logical symbols S. The predicate symbols of S are SP ⊂ S, the variable
symbols are SX ⊂ S, and the constant symbols are SC ⊂ S. For simplicity, we will not
discuss function symbols, since an n-ary function symbol can be represented by a n+1-
ary predicate. The well-formed formulas of LS are defined in the usual recursive way.
We will use L(V) to refer to the infinite set of well-formed first-order logic formulas
that can be constructed using only the non-logical symbols V . We define interpretation
and satisfaction in the standard way.

Now, we define the concept of semantic web space, which is a collection of ontologies
and information resources.

Definition 1. A semantic web space W is two-tuple 〈O, R〉, where O is a set of on-
tologies and R is a set of resources. We assume that W is based on a logical language
LS .

In the next two subsections, we formally define ontology and resource.

66 J. Heflin and Z. Pan

3.1 Ontology Definitions

We begin by formally defining an ontology that supports versioning.

Definition 2. Given a logical language LS , an ontology O in O is a five-tuple
〈V, A, E, P, B〉, where

1. V ⊆ S (the vocabulary V is a subset of the non-logical symbols of LS)
2. V ⊃ SX and V ⊃ SC (V contains all of the variable and constant symbols of LS)
3. A ⊆ L(S) (the axioms A are a subset of the well-formed formulas of LS .
4. E ⊂ O is the set of ontologies extended by O.
5. P ⊂ O is the set of prior versions of the ontology, such that for all Oi ∈ P with

Oi = 〈Vi, Ai, Ei, Pi, Bi〉, P ⊃ Pi.
6. B ⊂ P is the set of ontologies that O is backwards compatible with. For each

Bi ∈ B, V ⊇ Vi.

As a result of this definition, an ontology defines a logical language that is a subset
of the language LS , and defines a core set of axioms for this language. Note, the second
condition is for convenience in defining well-formed formulas below.

There are three basic kinds of “links” between ontologies. An ontology can extend
another, which means that it adds new vocabulary and or axioms. The set E is the set of
ontologies extended by O. Ontologies also have a set P of prior ontologies and set B
of prior ontologies that they are backward compatible with. Note that the prior versions
P of an ontology need only be a superset of the prior versions of those ontologies in P .
Thus, versioning need not be a total order.

It is important to note that this definition requires that an ontology include the vocab-
ulary of any ontology with which it is backward compatible. This is in order to guarantee
that formulas that were well-formed with respect to one version are also well-formed
with respect to the backward-compatible version.

Note that backwards-compatibility does not require that the revision contains a su-
perset of the axioms specified by the original version. This allows us to remove axioms
that are no longer correct or that would be better expressed in another ontology.

For convenience, we define the concept of an ancestor ontology. An ancestor of an
ontology is an ontology extended either directly or indirectly by it.1. If O2 is an ancestor
of O1, we write O2 ∈ anc(O1). The formal definition of an ancestor is:

Definition 3 (Ancestor function). Given two ontologies O1 = 〈V1, A1, E1, P1, B1〉
and O2 = 〈V2, A2, E2, P2, B2〉, O2 ∈ anc(O1) iff O2 ∈ E1 or there exists an Oi =
〈Vi, Ai, Ei, Pi, Bi〉 such that Oi ∈ E1 and O2 ∈ anc(Oi).

Since the ontology defines a language, we can talk about well-formed formulas with
respect to an ontology. Essentially, a formula is well-formed with respect to an ontology
if it is a well-formed formula of the logic that only uses the ontology’s vocabulary. First,
we must identify the vocabulary accessible to an ontology. Ancestor ontologies play a
role in this. Since an ontology should have access to all symbols defined in its ancestors, a
formula of that ontology should still be well-formed if it uses symbols from the ancestor
ontologies.

1 Extension is sometimes referred to as inclusion or importing. The semantics of our usage are
clarified in Definition 7

A Model Theoretic Semantics for Ontology Versioning 67

Definition 4. The vocabulary closure of an ontology is given by a function vclose :
O → P(S)2 such that for each ontology O = 〈V, A, E, P, B〉, vclose(O) = V ∪⋃

{j|Oj∈anc(O)} Vj (where Oj = 〈Vj , Aj , Ej , Pj , Bj〉).

Using the vocabulary closure, we can define well-formedness.

Definition 5. A formula φ is well-formed with respect to an ontology O iff φ ∈
L(vclose(O)).

We also need the definition of a well-formed ontology. We must consider two factors.
First, we must consider whether or not a well-formed ontology can extend itself, either
directly or indirectly. We will remain agnostic on the issue and not place any restrictions
on cycles for the extension relation here. We only insist that all of an ontology’s ancestor
ontologies be well-formed. Second, we must ensure that no resource or ontology can
commit to (or extend) two different versions of the same ontology.

Definition 6. An ontology O = 〈V, A, E, P, B〉 is well-formed iff:

1. A is well-formed with respect to O
2. for each Oi ∈ anc(O), Oi is well-formed
3. there does not exist any ontology Oi ∈ anc(O), where Oi = 〈Vi, Ai, Ei, Pi, Bi〉,

such that there is an Oj ∈ anc(O) and Oj ∈ Pi.

We will now provide meaning for ontologies by defining models of ontologies.
Recall that in logic, a model of a theory is an interpretation that satisfies every formula
in the theory. Thus, we must first determine the structure of our interpretations. One
possibility is to use interpretations of LV , the language formed using only the non-
logical symbols in V . However, this will limit our ability to compare interpretations
of different ontologies, so we will instead use interpretations for LS . As such, each
interpretation contains mappings for any predicate symbol in any ontology, and thus a
single interpretation could be a model of two ontologies with distinct vocabularies.

For ontology extension to have its intuitive meaning, all models of an ontology should
also be models of every ontology extended by it.

Definition 7. Let O = 〈V, A, E, P, B〉 be an ontology and I be an interpretation of
LS . Then I is a model of O iff I satisfies every formula in A and I is a model of every
ontology in E.

Thus an ontology attempts to describe a set of possibilities by using axioms to limit
its models. Some subset of these models are those intended by the ontology, and are
called the intended models of the ontology. Note that unlike a first-order logic theory,
an ontology can have many intended models because it can be used to describe many
different states of affairs [4]. The axioms of an ontology limit its models by restricting
the relations that directly or indirectly correspond to predicates in its vocabulary, while
allowing models that provide for any possibility for predicate symbols in other domains.

2 We use P to refer to the powerset.

68 J. Heflin and Z. Pan

3.2 Resource Definitions

Definition 8 (Knowledge Function). Let K : R→P(L(S)) be a function that maps
each information resource into a set of well-formed formulas.

We call K the knowledge function because it provides a set of formulas for a resource.
For example, this could be the first order logic expressions that correspond to the RDF
syntax of the resource.

Now we need to associate an ontology with each resource.

Definition 9 (Commitment Function). Let R be the set of information resources and
O be the set of ontologies. The commitment function C : R → O maps resources to
ontologies.

We call this the commitment function because it returns the ontology that a particular
resource commits to. When a resource commits to an ontology, it agrees to the meanings
ascribed to the symbols by that ontology.

The vocabulary that a well-formed resource may use is limited by the ontology to
which it commits.

Definition 10. An information resource r ∈ R is well-formed iff

1. there exists an O ∈ O such that C(r) = O
2. O is well-formed
3. K(r) is well-formed with respect to O.

We now wish to define the semantics of a resource. When a resource commits to an
ontology, it has agreed to the terminology and definitions of the ontology. Thus every
interpretation that is a model of resource must also be a model of the ontology for that
resource.

Definition 11. Let r be a resource where C(r) = O and I be an interpretation of LS .
I is a model of r iff I is a model of O and I satisfies every formula in K(r).

A possible limitation imposed by the commitment function is that it only allows each
resource to commit to a single ontology. However, a virtual ontology can be created that
represents multiple ontologies committed to by a single resource. If we assume that com-
mitting to two ontologies means that the vocabulary from the resource can come from
either ontology and that its models must be models of both ontologies, then committing
to two ontologies O1 = 〈V1, A1, E1, P1, B1〉 and O2 = 〈V2, A2, E2, P2, B2〉 is equiv-
alent to committing to the ontology Ounion = 〈∅, ∅, {O1, O2}, ∅, ∅〉. The well-formed
formulas of Ounion are equivalent to well-formed formulas of the union of O1 and O2,
and the models of Ounion are precisely the intersection of the models of O1 and O2.

In section 4, we will provide a semantics for ontology extension and versioning in
terms of ontology perspectives.

3.3 Relationship to RDF(S) and OWL

Since OWL is essentially a description logic, all OWL axioms can be expressed in LS .
Unfortunately, OWL does not distinguish between resources and ontologies; instead
all OWL documents are ontologies.3 We reconcile this situation by introducing a rule:

3 This decision was not endorsed by all members of the working group that created OWL

A Model Theoretic Semantics for Ontology Versioning 69

any OWL document that contains a description of a class or a property is an ontology;
otherwise, the document is a resource.

After having made this distinction, some language constructs can be associated to
the ontology definition (Definition 2). From an OWL DL ontology, we can construct an
ontology O=〈V, A, E, P, B〉

1. for each symbol s in rdf:ID, rdf:about and rdf:resource, s ∈ V
2. for each axiom a in class axioms and property axioms, a ∈ A
3. for each Oi in triple 〈O owl : imports Oi〉, Oi ∈ E
4. for each Oi in triple 〈O owl : priorVersion Oi〉, Oi ∈ P
5. for each Oi in triple 〈O owl : backwardCompatibleWith Oi〉, Oi ∈ P and Oi ∈

B.

Note if the subject of owl:imports is a resource document in our definition, then
〈r owl : imports O〉 → C(r) = O. In the case that a resource document imports
multiple ontologies, C(r) = Ounion. Ounion is a virtual ontology where

Ounion = 〈∅, ∅, {Oi|Oi ∈ 〈r owl : imports Oi〉}, ∅, ∅〉.
RDF and RDFS have a model theoretic semantics [5], but do not have any explicit

support for versioning, nor do they have explicit semantics for inter-document links.
One possible way to assign such a semantics is to treat each RDF schema as an ontology
and each reference to a namespace as an implicit commitment or extension relationship.

4 Ontology Perspectives

Now that we have defined models of individual resources and ontologies, we need to
return our attention to a set of distributed information resources, as is the case with
a semantic web space. What does it mean to be a model of multiple resources? The
first author [6] has suggested that there should not be a universal model of all the
resources and ontologies on the Web. In fact, it is extremely unlikely that one could
even exist. Instead, we must allow for different viewpoints and contexts, which are
supported by different ontologies. He defines perspectives which then allow the same
set of resources to be viewed from different contexts, using different assumptions and
background information. However, This definition of perspectives was somewhat ad-hoc,
and did not have a solid theoretical basis. Here we present a model theoretic description
of perspectives.

Each perspective will be based on an ontology, hereafter called the basis ontology
or base of the perspective. By providing a set of terms and a standard set of axioms, an
ontology provides a shared context. Thus, resources that commit to the same ontology
have implicitly agreed to share a context. When it makes sense, we also want to maximize
integration by including resources that commit to different ontologies. This includes re-
sources that commit to ancestor ontologies and resources that commit to earlier versions
of ontologies that the current ontology is backward compatible with.

Given these guidelines, we can define an ontology perspective model of a set of
resources that incorporates backward-compatibility. This model cannot be based solely
on the models of some subset of the resources. Since one of the problems we want to be
able to solve is to correct an ontology that has incorrectly specified its models, we need

70 J. Heflin and Z. Pan

to be able to substitute the models for a new version of an ontology where the models of
the older version sufficed before. We will start with a supporting definition that allows us
to define the model of a resource assuming the ontology it commits to has been replaced
with a newer, backward-compatible one.

Definition 12. Let r be an information resource, O be an ontology such that C(r) = O,
O′ = 〈V ′, A′, E′, P ′, B′〉 be an ontology such that O ∈ B′. An O′-updated model of r
is an interpretation I such that I is a model of O′ and I satisfies every formula in K(r).

We can now define an ontology perspective model of a semantic web space. Any
perspective model must also be an updated model of those resources that commit to
ontologies with which the basis ontology is backwards-compatible, and updated models
of those resources that commit to ontologies that the base’s ancestor ontologies are
backwards-compatible with. In essence the following definitions define the semantics
of the document links we have discussed by determining the logical consequences of a
semantic web space based on the extensions, backward-compatibilities and commitment
relations. Note, prior versions play no role, and thus are essentially "semantic-free".

Definition 13 (Ontology Perspective Model). An interpretation I is an ontology per-
spective model of a semantic web space W = 〈O, R〉 based on O = 〈V, A, E, P, B〉
(written I|=OW) iff:

1. I is a model of O
2. for each r ∈ R such that C(r) = O or C(r) ∈ anc(O) then I is a model of r.
3. for each r ∈ R such that C(r) ∈ B then I is an O-updated model of r
4. for each r ∈ R such that ∃Oi, Oi = 〈Vi, Ai, Ei, Pi, Bi〉 ∈ anc(O) ∧ C(r) ∈ Bi,

then I is an Oi-updated model of r

Note the first part of the definition is needed because there may be no resources in R that
commit to O, and without this condition, O would not have any impact on the models
of the perspective.

We now turn our attention to how one can reason with ontology perspectives.

Definition 14 (Ontology Perspective Entailment). Let W = 〈O, R〉 be a semantic
web space and O be an ontology. A formula φ is a logical consequence of the ontology
perspective of W based on O (written W|=Oφ) iff for every interpretation I such that
I|=OW , I|=φ.

It would also be useful if we can define a first order logic theory that is equivalent
to the definition above.

Definition 15 (Ontology Perspective Theory). Let W = 〈O, R〉 be a semantic web
space where O = {O1, O2, . . ., On} and Oi = 〈Vi, Ai, Ei, Pi, Bi〉. An ontology per-
spective theory forW based on Oi is:

Φ = Ai ∪
⋃

{j|Oj∈anc(Oi)}
Aj ∪

⋃
{r∈R|C(r)∈Bi}

K(r)

∪
⋃

{r∈R|C(r)=Oi ∨ C(r)∈anc(Oi)}
K(r)

∪
⋃

{r∈R|∃j,Oj∈anc(Oi) ∧ C(r)∈Bj}
K(r)

A Model Theoretic Semantics for Ontology Versioning 71

These theories describe a perspective based on a selected ontology. Each theory
contains the axioms of its basis ontology, the axioms of its ancestors, the assertions of
all resources that commit to the basis ontology or one of its ancestors, and the assertions
of all resources that commit to an ontology with which the basis ontology is backward
compatible, or one of its ancestors is backward compatible.

Theorem 1. Let W = 〈O, R〉 be a semantic web space, O = 〈V, A, E, P, B〉 be an
ontology, and Φ be a ontology perspective theory for W based on O. Then Φ |= φ iff
W|=Oφ.

PROOF. (Sketch) We can show that the sets of models are equivalent. The models of
Definition 13, part 1 are exactly the models of Ai∪

⋃
{j|Oj∈anc(Oi)} Aj (from Definition

7). From Definition 11 we can conclude that the models of both part 1 and 2 are exactly
the models of Ai ∪

⋃
{j|Oj∈anc(Oi)} Aj ∪

⋃
{r∈R|C(r)=Oi ∨ C(r)∈anc(Oi)} K(r)

From Definition 12 we can conclude that models of part 3 are Ai ∪⋃
{r∈R|C(r)∈Bi} K(r). Finally, from the same definition, we can conclude

that the models of part 4 are exactly the models of
⋃

{j|Oj∈anc(Oi)} Aj ∪⋃
{r∈R|∃j,Oj∈anc(Oi) ∧ C(r)∈Bj} K(r). The union of these axioms corresponds to the

conjunction of the conditions, and when simplified is equivalent to the theory specified
in Definition 15.

The implication of Definition 15 is that we do not need special purpose reasoners to
perform ontology perspective reasoning. Since the entailments of an ontology perspec-
tive theory are equivalent to ontology perspective entailment (by Theorem 1), you can
create the corresponding FOL theory and use an FOL theorem prover to reasoner about
ontology perspective entailments. Furthermore, if we restrict the logic used in defining
the resources and ontologies, then we should be able to use the more efficient reasoners
that correspond to these restricted logics.

5 Example

We will reconsider the “Dolphin” example from Figure 1 using our definitions. In Fig-
ure 2, Ontology OA is the original ontology which contains an incorrect axiom. Ontology
O′

A is a backward compatible revision of OA (as indicated by the fifth element in the
tuple) that replaces the offending axiom with a correct one.

What are the logical consequences of r in Figure 2? That depends on what perspective
we choose. The ontology perspective theory ofW based on OA is simply

ΦOA
= {Dolphin(flipper), Dolphin(x) → Fish(x)}

It is clear that ΦOA
|= Fish(flipper), and thus W|=OA

Fish(flipper). On the other
hand, the perspective theory ofW based on O′

A is:
ΦO′

A
= {Dolphin(flipper), Dolphin(x) → Mammal(x)}

Consequently,W|=O′
A
Mammal(flipper).

As shown here, semantic web spaces essentially have multiple consequence relations,
where each corresponds to the perspective of a particular ontology or version of an
ontology. This allows users to decide whether or not they want to reason in terms of the
old version of the ontology or the newer version.

72 J. Heflin and Z. Pan

OA = 〈{Fish, Mammal, Dolphin},
{Dolphin(x) → Fish(x)},
∅,
∅,
∅〉

O′
A = 〈{Fish, Mammal, Dolphin},

{Dolphin(x) → Mammal(x)},
∅,
{OA},
{OA}〉

K(r) = {Dolphin(flipper)}
C(r) = OA

W = 〈{OA, O′
A}, {r}〉

Fig. 2. Ontology revision using the formal model.

Furthermore, the effects are limited to relevant resources. Consider the example
where in OA, Dolphin actually means “dolphin fish”, but in O′

A it is decided to give
it the new meaning “a kind of porpoise.” In this case, O′

A is not backward-compatible
with OA because it has different intended interpretations. This is expressed by changing
the last element of the O′

A tuple to ∅. In this case, ΦOA
is as above, but ΦO′

A
is:

Φ′
OA

= {Dolphin(x) → Mammal(x)}
Note, that in this case Dolphin(flipper) /∈ ΦO′

A
because of the definition of ontology

perspective models. Consequently,W�|=O′
A
Mammal(flipper)

Now we turn to a more complex example that combines the extension and versioning
(Figure 3 and 4).

The Semantic Web can be used to locate documents for people or to answer specific
questions based on the content of the Web. These uses represent the document retrieval
and knowledge base views of the Web. The knowledge base view uses the logical def-
inition of queries: a query is a formula with existentially quantified variables, whose
answers are a set of bindings for the variables that make the formula true with respect
to the knowledge base. But what is a knowledge base in the context of the Semantic
Web? In order to resolve a number of problems faced by the Semantic Web we have
extensively discussed means of subdividing it. Theoretically, each of these perspectives
represents a single model of the world, and could be considered a knowledge base. Thus,
the answer to a semantic web query must be relative to a specific perspective.

Consider the set of ontologies and resources presented in Figure 4. There are four
ontology perspective theories generated from this semantic web space: ΦOC

, ΦO′
C

, ΦOV

and ΦO′
V

. Based on Definition 15, different ontologies and resources appear in each
perspective theory. As shown in Fig. 5, ΦOC

includes the axioms from OC and the
knowledge from r1. ΦOV

includes the axioms from OV , and because OC is an ancestor
of OV , those of OC . It also includes the resources r1 and r3, which commit to these
ontologies. On the other hand, ΦO′

C
includes axioms only from O′

C , and the resources r1
and r2. Note that ΦO′

C
does not include axioms in OC , because the theory in Definition

A Model Theoretic Semantics for Ontology Versioning 73

Fig. 3. Ontology extension and revision example.

OC = 〈{Car, Convertible},
{Convertible(x) → Car(x)},
∅,
∅,
∅〉

O′
C = 〈{Car, Convertible, SUV },

{Convertible(x) → Car(x),
SUV (x) → Car(x)},
∅,
{OC},
{OC}〉

OV = 〈{V ehicle, Motorcycle},
{Motorcycle(x) → V ehicle(x)
OC : Car(x) → V ehicle(x)},
{OC},
∅,
∅〉

O′
V = 〈{V ehicle, Motorcycle, Automobile},

{Motorcycle(x) → V ehicle(x),
Automobile(x) → V ehicle(x),
Automobile(x) ↔ O′

C : Car(x)},
{O′

C},
{OV },
{OV }〉

C(r1) = OC

K(r1) = {Car(beetle), Convertible(mustang)}
C(r2) = O′

C

K(r2) = {Car(jetta), Convertible(z3), SUV (yukon)}
C(r3) = OV

K(r3) = {V ehicle(humvee), Motorcycle(yamaha)}
C(r4) = O′

V

K(r4) = {V ehicle(bradley), Motorcycle(harley), Automobile(s600)}

Fig. 4. Example ontologies and resources.

74 J. Heflin and Z. Pan

Perspective
Theories ΦOC ΦO′

C
ΦOV ΦO′

V

Axioms AOC AO′
C

AOC , AOV AO′
C

, AO′
V

Knowledge K(r1) K(r1), K(r2) K(r1), K(r3) K(r1), K(r2), K(3), K(r4)

Fig. 5. Theories based on different perspectives.

15 does not contain the prior version’s axioms. ΦO′
V

includes axioms from O′
V and O′

C ,
and the resources r1, r2, r3 and r4.

As a result, the answer to any particular query depends on which perspective it is
issued against. For example, the answers to Car(x) based on OC’s perspective will be
{beetle, mustang}. The answers to same query based on O′

C’s perspective will be {jetta,
z3, yukon, beetle, mustang}. The answers to Vehicle(x) based on OV ’s perspective will
be {humvee, yamaha, beetle, mustang}, while the answers to that query based on O′

V ’s
perspective will be {bradley, harley, s600, humvee, yamaha, jetta, z3, yukon, beetle,
mustang}.

6 Related Work

Prior to the concept of the Semantic Web, there was little work related to ontology
versioning. Perhaps this is because most ontology systems were centralized, and in
such cases versioning is less of an issue. One exception is CONCORDIA [10], which
provides a model of change with applications in medical taxonomies. However, this
model is limited to simple taxonomic ontologies and does not have a formal semantics.

Klein and Fensel [8] were the first to compare ontology versioning to database
schema versioning [11]. They proposed that both prospective use (viewing data from the
point of view of a newer ontology) and retrospective use (viewing data from the point
of view of an older ontology) of data should be considered. However, Klein and Fensel
do not describe a formal semantics.

Stuckenschmidt and Klein [12] provide a formal definition for modular ontologies
and consider the impact of change in it. However, their approach involves physical
inclusion of extended ontologies and requires that changes be propagated through the
network. This approach is unlikely to scale in large, distributed systems. Furthermore,
they do not allow for resources to be reasoned with using different perspectives, as is
described here.

Bouquet et al. [2] have also argued that it often does not make sense to have a global
interpretation of a set of on semantic web ontologies. Their solution involves creating
local interpretations and providing bridge rules between different contexts. By contrast,
our paper shows that ontologies can provide the benefits of contexts too. Furthermore,
Bouquet et al. do not consider the impact of versioning.

An orthogonal problem to the one described in this paper is how to determine the cor-
respondences and differences between two different versions of an ontology. PROMPT-
DIFF [9] is an example algorithm intended for that purpose.

A Model Theoretic Semantics for Ontology Versioning 75

7 Conclusion

We have discussed the problem of ontology versioning and in particular the need for
a formal semantics of the links that can exist between ontologies. We mathematically
described the components of the Semantic Web and provided a model theoretic semantics
for these components. we also discussed how this semantics relates to RDF(S) and
OWL. We then showed how Heflin’s perspectives [6] could also be defined using model
theoretic semantics. This provided a formal account for three kinds of links between
semantic web documents: commitment to an ontology by a resource, extension of one
ontology by another, and backward-compatibility of an ontology with a prior version. We
described a simple approach for reasoning with perspectives and finally gave examples
to illustrate their utility.

There are a number of directions for future work. First, we intend to look at other
kinds of versioning. For example, we will consider a model theoretic semantic for ret-
rospective as well as prospective use of data. The incompatible prior versions will also
be considered. A possible approch would be introducing deprecation, which is similar
to the retired concept in CONCORDIA [10]. Second, although our theory presents a
good logical account of reasoning with distributed ontologies, it has some practical lim-
itations. Ontology perspectives divide the information resources into subsets that were
likely to have the same viewpoint, but still cannot guarantee consistency. Since per-
spectives could be very large, containing millions of resources, it is a shame if a single
inconsistency trivialized the whole thing. An important problem is to find a theory that
allows useful reasoning in the face of these inconsistencies. Third, we will look at how
a model theoretic approach can be used as a basis for beginning to formalize semantic
notions of trust.

Acknowledgement. This work was supported by the Defense Advanced Research
Projects Agency under a subcontract from ISX Corporation and by the National Sci-
ence Foundation under Grant No. IIS-0346963.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May
2001.

2. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-OWL:
Contextualizing ontologies. In Proc. of the 2003 Int’l Semantic Web Conf. (ISWC 2003),
LNCS 2870, pages 164–179. Springer, 2003.

3. R. Brachman. What IS-A is and isn’t: An analysis of taxonomic links in semantic networks.
IEEE Computer, 16(10):30–36, October 1983.

4. N. Guarino. Formal ontology and information systems. In Proceedings of Formal Ontology
and Information Systems, Trento, Italy, June 1998. IOS Press.

5. P. Hayes. RDF semantics. Proposed Recommendation, December 2003.
http://www.w3.org/TR/2003/PR-rdf-schema-20031215/.

6. J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed
Environment. PhD thesis, University of Maryland, 2001.

76 J. Heflin and Z. Pan

7. Jeff Heflin and James Hendler. Dynamic ontologies on the Web. In Proc. of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), pages 443–449, Menlo Park, CA,
2000. AAAI/MIT Press.

8. M. Klein and D. Fensel. Ontology versioning for the semantic web. In Proc. of the 1st Int’l
Semantic Web Working Symposium (SWWS), pages 75–91, 2001.

9. N. Noy and M. Musen. PROMPTDIFF: A fixed-point algorithm for comparing ontology
versions. In Proc. of the Eighteenth National Conference on Artificial Intelligence (AAAI-
2002), Menlo Park, CA, 2002. AAAI/MIT Press.

10. D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Shortliffe. Representation of change in
controlled medical terminologies. Artificial Intelligence in Medicine, 15(1):53–76, 1999.

11. J. Roddick. A survey of schema versioning issues for database systems. Information and
Software Technology, 37(7):383–393, 1995.

12. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In Proc.
IJCAI’03, Acapulco, Mexico, 2003.

Extending the RDFS Entailment Lemma

Herman J. ter Horst

Philips Research, Eindhoven, The Netherlands
herman.ter.horst@philips.com

Abstract. We complement the RDF semantics specification of the W3C
by proving decidability of RDFS entailment. Furthermore, we show com-
pleteness and decidability of entailment for RDFS extended with data-
types and a property-related subset of OWL.
The RDF semantics specification provides a complete set of entailment
rules for reasoning with RDFS, but does not prove decidability of RDFS
entailment: the closure graphs used in the completeness proof are infinite
for finite RDF graphs. We define partial closure graphs, which can be
taken to be finite for finite RDF graphs, which can be computed in
polynomial time, and which are sufficient to decide RDFS entailment.
We consider the extension of RDFS with datatypes and a property-
related fragment of OWL: FunctionalProperty, InverseFunctional-
Property, sameAs, SymmetricProperty, TransitiveProperty, and
inverseOf. In order to obtain a complete set of simple entailment rules,
the semantics that we use for these extensions is in line with the ‘if-
semantics’ of RDFS, and weaker than the ‘iff-semantics’ defining D-
entailment and OWL (DL or Full) entailment. Classes can be used as
instances, the use of FunctionalProperty and TransitiveProperty is
not restricted to obtain decidability, and a partial closure that is suffi-
cient for deciding entailment can be computed in polynomial time.

1 Introduction

The language RDF (Resource Description Framework) plays a foundational role
in the W3C’s Semantic Web vision. The RDF semantics specification [2] pro-
vides a model-theoretic description of the semantics of RDF and RDFS (RDF
Schema). This specification also contains the RDFS entailment lemma, describ-
ing a complete set of entailment rules, used to implement RDF reasoners. The
RDFS entailment lemma moreover makes clear to people, in syntactic terms,
what RDFS entailment is. This paper extends the RDFS entailment lemma in
three directions: decidability of entailment, reasoning with datatypes, and rea-
soning with property-related vocabulary such as owl:FunctionalProperty.

Decidability of RDFS entailment is a fundamental issue, which has not yet
been settled. The existence of a complete set of entailment rules does not imply
decidability of entailment; compare first-order logic, with Gödel’s completeness
theorem and Church’s theorem showing undecidability. The completeness proof
for RDFS [2] makes use of closure graphs which are infinite for finite graphs,
in view of the container membership properties rdf: i. The proof shows that

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 77–91, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 H.J. ter Horst

in order to decide whether a finite graph H rdfs-entails a finite graph G, it is
sufficient to check whether a finite subgraph of the closure of H simply entails G.
However, since the closure of H is infinite, and therefore the number of candidate
subgraphs is infinite, this is not a finite algorithm. In this paper we define partial
closure graphs, which can be taken to be finite for finite graphs and which can be
computed in polynomial time, and prove that these can be used to decide rdfs-
entailment. Comparing the closure graphs described in [2], to decide whether a
graph H rdfs-entails a graph G, it is allowed to omit the addition to H of the
axiomatic triples for the URIs rdf: i that do not appear in either H or G, as
long as these axiomatic triples are added to H for at least one URI rdf: i.

The RDF semantics specification [2] defines a notion of reasoning with data-
types, called D-entailment, for which no completeness or decidability result is
known. We show that a completeness and decidability result can be obtained
for a somewhat weaker semantics of datatypes, by making a relatively small
modification to the entailment rules: rule rdf2 is replaced by a rule rdf2-D, with
the same effect not only for the datatype XMLLiteral but for all datatypes in
a datatype map D. This result requires a mild assumption, that datatype maps
are ‘discriminating’, as will be explained below.

For OWL (Web Ontology Language) [5] no complete set of entailment rules is
known. OWL Full entailment is known to be undecidable. For OWL DL, restric-
tions were imposed on the use of the language to obtain decidability. OWL DL
entailment and OWL Lite entailment are known to be in NEXPTIME and EXPTIME,
respectively [3]. Several people have stated that owl:FunctionalProperty is
the single most useful element of the OWL vocabulary. We consider reasoning
with RDFS extended with this and other property-related vocabulary: Inverse-
FunctionalProperty, sameAs, SymmetricProperty, TransitiveProperty, and
inverseOf. We show that 12 simple entailment rules, in combination with the
18 entailment rules for RDFS, form a complete set. Just like for the notion of
datatype reasoning that we use, the semantics considered is in line with the
‘if-semantics’ of RDFS, rather than the stronger ‘iff-semantics’ underlying D-
entailment and OWL (DL or Full) entailment. In a similar way as for RDFS, we
prove that entailment can be decided with a partial closure graph which can be
computed in polynomial time, and that the problem to decide whether a finite
graph H entails a finite graph G is in NP, and in P when G has no blank nodes.
No restrictions are imposed: for example, classes can be used as instances, and
FunctionalProperty and TransitiveProperty can be freely combined.

In this paper, the descriptions of the proofs are largely restricted to places
where the finiteness of a partial closure or the considered semantic extensions of
RDFS lead to a difference with the proof of the RDFS entailment lemma.1

2 RDF Graphs and Simple Entailment

This section summarizes terminology, introduces notations, and recalls the in-
terpolation lemma which characterizes simple entailment [2] [4].
1 A version of this paper with complete proofs is available on request.

Extending the RDFS Entailment Lemma 79

2.1 URI references, blank nodes, literals. Let U denote the set of URI
references and B the set of blank nodes, which is assumed to be infinite. Let L
be the set of literals; L is the union of the set Lp of plain literals and the set Lt
of typed literals. A typed literal l consists of a lexical form s and a datatype URI
t: we shall write l as a pair, l = (s, t). The sets U , B, Lp and Lt are pairwise
disjoint. A name is an element of U ∪ L, and a vocabulary is a subset of U ∪ L.
RDF has a special datatype URI, called rdf:XMLLiteral, which will also be
written as X. An XML literal is a typed literal of the form (s, X).

2.2 RDF graphs. An (RDF) graph G is defined to be a subset of the set

U ∪B × U × U ∪B ∪ L . (1)

The elements (s, p, o) of an RDF graph are called RDF triples, which consist of
a subject, a predicate (or property), and an object, respectively. We shall write
triples as s p o and introduce one-letter abbreviations for several standard URI
references (see Tables 1 and 4), to obtain a shortening of definitions and proofs.
The notation can be viewed as an abbreviation of the N-Triples notation [1].2

Denoting the projection mappings on the three factor sets of the product set
given in (1) by πi, the set of nodes of an RDF graph G is

nd(G) = π1(G) ∪ π3(G),

which is a subset of U ∪B ∪ L. The set of blank nodes of G is denoted by

bl(G) = nd(G) ∩B.

The vocabulary of a graph G, which will be denoted by V (G), is the set of
names that occur as subject, predicate or object of a triple in G.

Two RDF graphs G and G′ are equivalent if there is a bijection f : nd(G) →
nd(G′) such that f(bl(G)) ⊂ bl(G′), such that f(v) = v for each v ∈ nd(G) ∩
(U ∪ L), and such that s p o ∈ G if and only if f(s) p f(o) ∈ G′.

A subgraph of an RDF graph is a subset of the graph.
A graph is ground if it has no blank nodes.
Given a partial function h : B ⇀ U ∪ B ∪ L, an instance of a graph G is a

graph obtained from G by replacing some (or all) blank nodes v in G by h(v).
Given a set S of graphs, a merge of S is a graph that is obtained by replacing

the graphs G in S by equivalent graphs G′ that do not share blank nodes, and by
taking the union of these graphs G′. The merge of a set of graphs S is uniquely
defined up to equivalence. A merge of S will be denoted by M(S).

2.3 Simple interpretations. A simple interpretation I of a vocabulary V
is a 6-tuple I = (RI , PI , EI , SI , LI , LVI), where RI is a nonempty set, called the
set of resources, PI is the set of properties, LVI is the set of literal values, which
is a subset of RI that contains at least all plain literals in V , and where EI , SI ,
and LI are functions:

EI : PI → P(RI ×RI),
2 As in the expression s p o ∈ G, where G is an RDF graph, the context will always

make clear what the triple is.

80 H.J. ter Horst

SI : V ∩ U → RI ∪ PI ,

LI : V ∩ Lt → RI .

Here P(X) denotes the power set of the set X, that is, the set of all subsets
of X. The function EI defines the extension of a property as a set of pairs of
resources. The functions SI and LI define the interpretation of URI references
and typed literals, respectively.

If I is a simple interpretation of a vocabulary V , then I also denotes a
function with domain V , in the following way. For plain literals l ∈ Lp ∩ V ,
we have I(l) = l ∈ LVI . For typed literals l ∈ Lt ∩ V , I(l) = LI(l). For URI
references a ∈ U ∩ V , I(a) = SI(a).

If E = s p o is a ground triple, then a simple interpretation I of a vocabulary
V is said to satisfy E if s, p, o ∈ V, I(p) ∈ PI , and (I(s), I(o)) ∈ EI(I(p)). If G
is a ground RDF graph, then I satisfies G if I satisfies each triple E ∈ G.

Given a simple interpretation I and a partial function A : B ⇀ RI , a function
IA is defined that extends I by using A to give an interpretation of blank nodes
in the domain of A. If A(v) is defined for v ∈ B, then IA(v) = A(v). If G is
any RDF graph, then I satisfies G if IA satisfies G for some partial function
A : B ⇀ RI , that is, if

(IA(s), IA(o)) ∈ EI(I(p))

for each triple s p o ∈ G. If I is a simple interpretation and S a set of graphs,
then I satisfies S if I satisfies G for each G in S; it is not difficult to see that I
satisfies S if and only if I satisfies M(S).

2.4 Simple entailment. A set S of graphs simply entails a graph G if each
simple interpretation that satisfies S also satisfies G. In this case we shall write

S |= G.

2.5 Interpolation lemma. If S is a set of RDF graphs and G is an RDF
graph, then S |= G if and only if a subgraph of M(S) is an instance of G.

This lemma is proved in [2]. It shows that the simple entailment relation
S |= G between finite sets S of finite RDF graphs and finite RDF graphs G is
decidable. It also shows that this problem is in NP: guess and check an instance
function h. It is clear that this problem is in P when G is assumed to be ground.
According to [2], this problem (without restrictive assumptions) is NP-complete.

3 RDFS Interpretations and D* Interpretations

As preparation for the proof of decidability of entailment for RDFS, possibly
extended with datatypes, this section defines D* interpretations, a generalization
of RDFS interpretations extending the semantics of XMLLiteral to all datatypes
in a datatype map. We first consider RDFS interpretations.

3.1 RDFS interpretations. The RDF and RDFS vocabulary, rdfV ∪rdfsV ,
is a set of URI references listed with one-letter abbreviations in Table 1, plus 18
other URI references [2] (which play a smaller role in the semantics).

Extending the RDFS Entailment Lemma 81

Table 1. Abbreviated notation for standard URI references

t rdf:type L rdfs:Literal
P rdf:Property D rdfs:Datatype
X rdf:XMLLiteral C rdfs:Class
ri rdf: i sC rdfs:subClassOf
d rdfs:domain sP rdfs:subPropertyOf
r rdfs:range m rdfs:member
R rdfs:Resource γ rdfs:ContainerMembershipProperty

Let V be a vocabulary and I a simple interpretation of V ∪ {t, C} such that
I(t) ∈ PI , so that EI(I(t)) is defined. In this case, the set CI of classes of I is
defined to be

CI = {a ∈ RI : (a, I(C)) ∈ EI(I(t))},

and the class extension function CEI : CI → P(RI) of I is defined by

CEI(a) = {b ∈ RI : (b, a) ∈ EI(I(t))} (a ∈ CI).

An rdfs-interpretation of a vocabulary V is a simple interpretation I of V ∪
rdfV ∪ rdfsV that satisfies the following conditions:

– I satisfies all triples in Table 2, plus 32 other ground triples [2]. These triples
are together called the RDF and RDFS axiomatic triples.

– a ∈ PI if and only if (a, I(P)) ∈ EI(I(t))
– a ∈ RI if and only if (a, I(R)) ∈ EI(I(t))
– a ∈ LVI if and only if (a, I(L)) ∈ EI(I(t))
– If (a, b) ∈ EI(I(d)) and a ∈ PI and b ∈ CI and (e, f) ∈ EI(a), then e ∈

CEI(b) 3

– If (a, b) ∈ EI(I(r)) and a ∈ PI and b ∈ CI and (e, f) ∈ EI(a), then f ∈
CEI(b)

– EI(I(sP)) is transitive and reflexive on PI

– If (a, b) ∈ EI(I(sP)) then a ∈ PI and b ∈ PI and EI(a) ⊂ EI(b)
– If a ∈ CI then (a, I(R)) ∈ EI(I(sC))
– If (a, b) ∈ EI(I(sC)) then a ∈ CI and b ∈ CI and CEI(a) ⊂ CEI(b)
– EI(I(sC)) is transitive and reflexive on CI

– If a ∈ CEI(I(γ)) then (a, I(m)) ∈ EI(I(sP))
– If a ∈ CEI(I(D)) then (a, I(L)) ∈ EI(I(sC))
– If l = (s, X) ∈ V is a well-typed XML literal, then LI(l) = xml(l) ∈ LVI

and (LI(l), I(X)) ∈ EI(I(t))
– If l = (s, X) ∈ V is an XML literal that is not well-typed, then LI(l) /∈ LVI

and (LI(l), I(X)) /∈ EI(I(t))

3 This condition and the next condition have been slightly reformulated, to make clear
that the definition uses the functions EI and CEI inside their domains, as required.
See the explanation following the definition. Lemma 3.2 below shows that exactly
the same class of rdfs-interpretations is defined as in [2].

82 H.J. ter Horst

Table 2. RDF and RDFS axiomatic triples

t t P sP d P r r C X sC L
ri t P sC d C sP r P D sC C
t d R m d R sC r C ri t γ
d d P t r C γ sC P ri d R
r d P d r C X t D ri r R (i = 1, 2, ...)

Here the function xml assigns to each well-typed XML literal its value [4].
Note that the first axiomatic triple t t P shows that for each rdfs-interpretation
I, I(t) ∈ PI , so that EI(I(t)), CI , and CEI are defined, as is used in the
statement of the remaining conditions. By using the functions EI and CEI ,
the definition assumes, implicitly, that certain values of I, such as I(d) and
I(r), are in PI , and that other values of I, such as I(D), are in CI . That this
is allowed is demonstrated in the next lemma. This lemma also justifies some
other conclusions that can be stated for each rdfs-interpretation, and that are
constantly used in the manipulation of rdfs-interpretations.

3.2 Lemma. The first condition in the definition of rdfs-interpretations en-
sures that each invocation of the functions EI and CEI in this definition is
allowed. If I is an rdfs-interpretation of a vocabulary V , then

– I(t), I(d), I(r), I(sC), I(sP), and I(m) are in PI and PI ⊂ RI

– I(P), I(R), I(C), I(L), I(D), I(X), and I(γ) are in CI

– PI = CEI(I(P)), CI = CEI(I(C)), RI = CEI(I(R)), and LVI =
CEI(I(L))

– if (a, b) is in EI(I(d)) or EI(I(r)), then a ∈ PI and b ∈ CI

– if (a, b) ∈ EI(I(t)), then b ∈ CI and a ∈ CEI(b)
– if (a, b) ∈ EI(I(d)) and (e, f) ∈ EI(a), then e ∈ CEI(b)
– if (a, b) ∈ EI(I(r)) and (e, f) ∈ EI(a), then f ∈ CEI(b)

3.3 Datatype maps. Before defining D* interpretations, we summarize
some terminology and introduce some notation related to datatype maps [4]
[2]. A datatype d is defined by a nonempty set of strings L(d), the lexical space,
a nonempty set V (d), the value space, and a mapping L2V (d) : L(d) → V (d),
the lexical-to-value mapping. A datatype map is a partial function D from the
set U of URI references to the class of datatypes. Each datatype map is required
[2] to contain the pair (X, x), where X is rdf:XMLLiteral and x is the built-in
XML literal datatype, defined by L(x) = {s : (s, X) ∈ L+

X}, V (x) = XV , and
L2V (x)(s) = xml((s, X)) for each (s, X) ∈ L+

X . Here L+
X is the set of well-typed

XML literals [4].
Suppose that a datatype map D is given. The D-vocabulary is the domain

dom(D) of D, i.e., the set of URI references a ∈ U such that (a, d) ∈ D for some
datatype d. The range of D, i.e., the set of datatypes d such that (a, d) ∈ D
for some a ∈ U , is denoted by ran(D). The set of D-literals is the set of typed
literals (s, a) ∈ Lt with a ∈ dom(D). The set of all well-typed literals with type
in D, i.e., the set of all well-typed D-literals, is denoted by L+

D:

L+
D = {(s, a) ∈ Lt : a ∈ dom(D), s ∈ L(D(a))}.

Extending the RDFS Entailment Lemma 83

The function valD is defined to map each well-typed D-literal to its value:

valD : L+
D →

⋃
d∈ran(D)

V (d) ,

valD((s, a)) = L2V (D(a))(s) (a ∈ dom(D), s ∈ L(D(a))) .

Injective datatype maps whose value spaces are disjoint and whose literal-
to-value mappings are injective are of special importance in this paper; such
datatype maps will be called discriminating. The assumption that a datatype
map is discriminating is satisfied, for example, when it consists only of the four
datatypes rdf:XMLLiteral, xsd:string, xsd:integer, and xsd:boolean.

3.4 Definition (D* interpretations). If D is a datatype map, a D* in-
terpretation of a vocabulary V is an rdfs-interpretation I of V ∪ dom(D) that
satisfies the following conditions for each pair (a, d) ∈ D:

– I(a) = d
– I satisfies the following triples: a t D and a sC L
– if l = (s, a′) ∈ Lt ∩V and I(a′) = d and s ∈ L(d), then LI(l) = L2V (d)(s) ∈

LVI and (LI(l), d) ∈ EI(I(t))
– if l = (s, a′) ∈ Lt ∩ V and I(a′) = d and s /∈ L(d), then LI(l) /∈ LVI and

(LI(l), d) /∈ EI(I(t))

If D is a datatype map, the triples a t D and a sC L appearing in this definition
are combined for a ∈ dom(D) to form the D-axiomatic triples. It should be
noted that D* interpretations generalize the XMLLiteral-related conditions on
rdfs-interpretations.4

4 RDFS Entailment and D* Entailment

4.1 Definition (D* entailment). Given a datatype map D, a set S of graphs
D* entails a graph G if each D* interpretation I that satisfies S also satisfies G.

RDFS entailment coincides with D* entailment when the datatype map D is
assumed to consist of only the type rdf:XMLLiteral. We shall use the notation

S |=s G

for D* entailment (and also for the special case of RDFS entailment).
4 This correspondence with the XMLLiteral-related conditions would be exact when

the phrase “if l = (s, a′) ∈ Lt ∩ V and I(a′) = d ” starting the last two conditions
on D* interpretations would in both cases be simplified to “if l = (s, a) ∈ Lt ∩ V ”.
In fact, this change can be made without leading to a change in entailments, as
can be seen by checking the proof of the D* entailment lemma described below;
only minor changes to the proof are needed. With the definition chosen, D* inter-
pretations can be related in a simple way to the D-interpretations of [2]: If I is an
rdfs-interpretation of a vocabulary V , then I is a D-interpretation of V if and only
if I is a D* interpretation of V that satisfies CEI(d) = V (d) for each d ∈ ran(D).

84 H.J. ter Horst

Table 3. D* entailment rules

If G contains where then add to G

lg v p l l ∈ L v p bl

gl v p bl v p l
rdf1 v p w p t P
rdf2-D v p l l = (s, a) ∈ L+

D bl t a
rdfs1 v p l l ∈ Lp bl t L
rdfs2 p d u v p w v t u
rdfs3 p r u v p w w ∈ U ∪ B w t u
rdfs4a v p w v t R
rdfs4b v p w w ∈ U ∪ B w t R
rdfs5 v sP w w sP u v sP u
rdfs6 v t P v sP v
rdfs7 p sP q v p w q ∈ U v q w
rdfs8 v t C v sC R
rdfs9 v sC w u t v u t w
rdfs10 v t C v sC v
rdfs11 v sC w w sC u v sC u
rdfs12 v t γ v sP m
rdfs13 v t D v sC L

4.2 Definition (D* entailment rules). Given a datatype map D, the D*
entailment rules are defined in Table 3. They consist of exactly the 18 rules
defined in [2] for RDFS, the only difference being that rule rdf2 is replaced by
the more general rule rdf2-D. In words, the first rule lg (‘literal generalization’)
says that if G contains v p l, where l is a literal, then add v p bl to G, where
bl is a blank node allocated to l by this rule. Here allocated to means that the
blank node bl has been created by an application of rule lg on the same literal
l, or if there is no such blank node, in which case it must be a new node which
is not yet in the graph. In rule rdfs1, bl is a blank node that is allocated by
rule lg to the plain literal l ∈ Lp. In rule rdf2-D, bl is a blank node that is
allocated by rule lg to the well-typed D-literal l ∈ L+

D. Note that rule rdf2-D
is a direct generalization of entailment rule rdf2 from [2], which has the same
effect only for well-typed XML literals l ∈ L+

X . If D contains only the datatype
rdf:XMLLiteral, then rule rdf2-D becomes exactly rule rdf2.

The notion of XML clash from [2] is generalized in a straightforward way to
any datatype map.

4.3 Definition (D-clash). Given a datatype map D, a D-clash is a triple
b t L, where b is a blank node allocated by rule lg to an ill-typed D-literal.

We turn to completeness and decidability. As was also done in earlier ver-
sions of [2], we extract from the completeness proof the notions of closure and
Herbrand interpretation, as well as a satisfaction lemma. In view of the finiteness
of a partial closure, the closure notion is of practical interest and is no longer
just an ‘abstraction in the proof’. The Herbrand construction of [2] will need to
be refined, to deal with the finiteness of a partial closure and with datatypes.

Extending the RDFS Entailment Lemma 85

4.4 Definition (partial and full RDFS and D* closures). Suppose
that G is an RDF graph and D a datatype map. In the definitions that fol-
low, the axiomatic triples containing the URI references ri (i.e., the four triples
ri t P , ri t γ, ri dR, and ri r R) are treated in a special way. Suppose that K is
a nonempty subset of the positive integers {1, 2, ...} chosen in such a way that
for each ri ∈ V (G) we have i ∈ K. The partial D* closure Gs,K of G is defined
in the following way. In the first step, all RDF and RDFS axiomatic triples and
D-axiomatic triples are added to G, except for the axiomatic triples including
ri such that i /∈ K. In the next step, rule lg is applied to each triple containing
a literal. Then, rules rdf2-D and rdfs1 are applied to each triple containing a
well-typed D-literal or a plain literal, respectively. Finally, the remaining D* en-
tailment rules are applied until the graph is unchanged. In addition to the partial
D* closure Gs,K obtained in this way, the full D* closure Gs of G is defined by
taking Gs = Gs,K where K is the full set {1, 2, ...}. When the datatype map D
consists of only the datatype rdf:XMLLiteral, a partial and a full D* closure of
an RDF graph G are called a partial and a full RDFS closure of G, respectively.
With respect to a partial (or full) D* closure Gs,K and a literal l ∈ V (G) ∩ L,
the unique blank node allocated by rule lg to l is denoted by bl.

4.5 Lemma. Let D be a finite datatype map. If G is a finite RDF graph,
then each partial D* closure Gs,K of G is finite for K finite, and a partial D*
closure of G can be computed in polynomial time.

Proof. The graph obtained from a finite graph G in the first step of the
definition of partial closure is clearly finite when K is finite. Then, rule lg adds
only finitely many new triples, leading to a finite graph G′ containing G. In the
remaining steps, no new names or blank nodes are added to G′, so it follows that
there exist finite sets U0 ⊂ U , B0 ⊂ B, and L0 ⊂ L such that

Gs,K ⊂ U0 ∪B0 × U0 × U0 ∪B0 ∪ L0 . (2)

Hence Gs,K is a finite graph.
To prove that a partial D* closure can be computed in polynomial time,

choose a finite, nonempty set K ⊂ {1, 2, ...} such that i ∈ K for each ri ∈ V (G).
Let g = |G|, d = |D|, and k = |K|. We prove that Gs,K can be computed in time
polynomial in g, d, and k. It will follow that a partial D* closure can be computed
in time polynomial in g, since k can clearly be taken to be 3g + 1, and d can be
viewed as a bounded parameter. The first step of the closure construction process
adds 48 + 4k RDF and RDFS axiomatic triples and 2d D-axiomatic triples. In
the next step, rule lg adds at most g triples. It follows that the graph G′ resulting
from these steps has at most 2g + 2d + 4k + 48 triples, so that the sets U0, B0,
and L0 in (2) can be chosen to satisfy |U0 ∪ B0 ∪ L0| ≤ 3(2g + 2d + 4k + 48),
and |Gs,K | ≤ 27(2g + 2d + 4k + 48)3. Therefore, in the remaining steps at most
27(2g + 2d + 4k + 48)3 rule applications can add a new triple to the partial
closure graph under construction. For each of the entailment rules used, it can
be determined whether a successful rule application exists in at most linear
or quadratic time as a function of the size of the partial closure graph under
construction (cf. Table 3). For example, for rule rdf1 linear time is sufficient, and

86 H.J. ter Horst

for rule rdfs2 quadratic time is sufficient. It follows that Gs,K can be computed
in time polynomial in g, d, and k.

4.6 Definition (D* Herbrand interpretation). Suppose that D is a dis-
criminating datatype map. A D* Herbrand interpretation of a graph G is a
simple interpretation SK(G) of V (Gs) defined as follows. K is a nonempty sub-
set of {1, 2, ...} chosen such that for each ri ∈ V (G) we have i ∈ K. RI is defined
as the union of four pairwise disjoint sets:

valD(V (Gs) ∩ L+
D)

V (Gs) ∩ (L− L+
D)

V (Gs) ∩ (U ∪B − dom(D))

ran(D)

The remainder of the definition makes use of the function

sur : RI → nd(Gs,K) ∩ (U ∪B)

(‘surrogate’), which replaces the elements of RI by non-literal nodes in Gs,K .
The function sur is defined as follows, using the assumption on D:

– If l ∈ V (Gs) ∩ L+
D, then sur(valD(l)) = bl.

– If l ∈ V (Gs) ∩ (L− L+
D), then sur(l) = bl.

– If v ∈ V (Gs) ∩ (U ∪B − (dom(D) ∪ {ri : i /∈ K})), then sur(v) = v.
– If i /∈ K, then sur(ri) = rn, where n ∈ K is fixed.
– If (a, d) ∈ D, then sur(d) = a.

The other parts of the SK(G) are defined in the following way:

LVI = {x ∈ RI : sur(x) t L ∈ Gs,K}

PI = {x ∈ RI : sur(x) t P ∈ Gs,K}
SI(v) = v (v ∈ V (Gs) ∩ U − dom(D))

SI(a) = D(a) (a ∈ V (Gs) ∩ dom(D))

LI(v) = v (v ∈ V (Gs) ∩ Lt − L+
D)

LI(l) = valD(l) (l ∈ V (Gs) ∩ L+
D)

EI(p) = {(s, o) : s ∈ RI , o ∈ RI , sur(s) sur(p) sur(o) ∈ Gs,K} (p ∈ PI)

Note that for each v ∈ V (Gs)∩(U−{ri : i /∈ K}), we have sur(I(v)) = v, and
that sur(I(ri)) = rn for i /∈ K. Moreover, if l ∈ V (Gs) ∩ L, then sur(I(l)) = bl.

4.7 D* satisfaction lemma. Let G be an RDF graph and D a discrim-
inating datatype map. If the partial D* closure Gs,K of G does not contain a
D-clash, then SK(G) is a D* interpretation that satisfies Gs,K .

Proof. In the proof the D* Herbrand interpretation SK(G) of G is denoted by
I. Define the function A : bl(Gs,K) → RI by A(bl) = valD(l) if l ∈ L+

D, A(bl) = l
if l ∈ L−L+

D, and by A(b) = b for other blank nodes b. Rule rdf1 shows that for

Extending the RDFS Entailment Lemma 87

each triple v p w in Gs,K , Gs,K contains the triple p t P = sur(I(p)) t P , so that
I(p) ∈ PI . In order to prove that IA satisfies v p w, i.e. that (IA(v), IA(w)) ∈
EI(I(p)), it is sufficient to prove that sur(IA(v)) p sur(IA(w)) ∈ Gs,K , since
sur(I(p)) = p. In order to prove that this triple is indeed in Gs,K , note first that

sur(IA(v)) = v (v ∈ nd(Gs,K)− L).

Namely, as is easy to see, this holds in each of the following cases where v ∈
nd(Gs,K)−L: v ∈ U , v ∈ B allocated to a literal in L+

D or in L−L+
D, other blank

nodes v. Moreover, we have sur(IA(l)) = bl for each l ∈ nd(Gs,K) ∩ L, as was
already noted. It follows that if v p w ∈ Gs,K , then sur(IA(v)) p sur(IA(w)) ∈
Gs,K , as desired: the only case that needs checking is where w ∈ L. In this case
rule lg shows that v p bw ∈ Gs,K , as required: there is no entailment rule that
can be applied with a literal in object position but that cannot be applied with
a blank node in object position, so rule applications used to derive v p w can be
followed in parallel with other rule applications to provide a derivation of v p bw.

Note that SK(G) satisfies all axiomatic triples, even though Gs,K may not
contain all of them: if i /∈ K then sur(ri) = rn, and the axiomatic triples
including ri are also satisfied. For example, the triple ri t P is satisfied because
sur(ri) t P = rn t P ∈ Gs,K .

We turn to the assumptions on D* interpretations. Suppose that (a, d) ∈ D.
If l = (s, a′) ∈ V (Gs) ∩ Lt and I(a′) = d, then the assumption on D shows
that a = a′. Suppose therefore that l = (s, a) is a well-typed D-literal in V (Gs).
Then I(l) = valD(l) = L2V (d)(s) = A(bl). In order to prove that I(l) ∈ LVI ,
we need to prove that sur(I(l)) t L = bl t L ∈ Gs,K . Rule rdf2-D shows that the
triple bl t a is in Gs,K . With the axiomatic triple a sC L and rule rdfs9 it follows
that bl t L ∈ Gs,K . We also have (LI(l), d) = (IA(bl), IA(a)) ∈ EI(I(t)), since
sur(IA(bl)) t sur(IA(a)) = bl t a ∈ Gs,K .

Suppose that (a, d) ∈ D and that l = (s, a) ∈ V (Gs) is a D-literal that
is not well-typed. Then A(bl) = l. Suppose that (LI(l), d) ∈ EI(I(t)); then
bl t a = sur(LI(l)) t sur(d) ∈ Gs,K , so that with the axiomatic triple a sC L and
rule rdfs9 it follows that bl t L ∈ Gs,K : Gs,K contains a D-clash. Suppose that
LI(l) ∈ LVI ; then, again, bl t L = sur(LI(l)) t L ∈ Gs,K : Gs,K contains a D-clash.

We show that a ∈ RI if and only if (a, R) ∈ EI(t). If (a, I(R)) ∈ EI(t), then
clearly a ∈ RI . Suppose that a ∈ RI . It is sufficient to prove that sur(a) t R ∈
Gs,K . If a = valD(l), l ∈ V (Gs) ∩ L+

D, then sur(a) = bl and Gs,K contains
triples v p l and v p bl. Rule rdfs4b shows that sur(a) t R = bl t R ∈ Gs,K . If
a = l ∈ V (Gs) ∩ (L − L+

D), then sur(l) = bl and Gs,K contains triples v p l and
v p bl. Again, rule rdfs4b shows that sur(l) t R = bl t R ∈ Gs,K . If a ∈ V (Gs) ∩
(U ∪B − (dom(D) ∪ {ri : i /∈ K})), then sur(a) = a and Gs,K contains, by rule
rdf1, a triple of the form a p v or v p a, so that by rule rdfs4a or rdfs4b, we have
sur(a) t R = a t R ∈ Gs,K . If a = ri and i /∈ K, then sur(ri) t R = rn t R ∈ Gs,K
in view of rn t P ∈ Gs,K and rule rdfs4a. If a = d ∈ ran(D), then D contains a
pair (a′, d) and Gs,K contains the axiomatic triple a′ t D. Rule rdfs4a shows that
Gs,K contains the triple sur(d) t R = a′ t R.

4.8 D* entailment lemma. Let D be a discriminating datatype map, S a
set of RDF graphs, and G an RDF graph. Then, S |=s G if and only if there

88 H.J. ter Horst

is a graph H that can be derived from M(S) combined with RDF and RDFS
axiomatic triples and D-axiomatic triples, by application of the D* entailment
rules, and that either simply entails G or contains a D-clash.

The next statement gives a more precise version of this lemma.
4.9 D* entailment lemma (alternative statement). Let D be a discrim-

inating datatype map, S a set of RDF graphs, and G an RDF graph. Let H be a
partial D* closure M(S)s,K of M(S) and suppose that i ∈ K for each ri ∈ V (G).
Then, S |=s G if and only if either H simply entails G or H contains a D-clash.

4.10 Corollary. Let D be a finite discriminating datatype map. The D*
entailment relation S |=s G between finite sets S of finite RDF graphs and finite
RDF graphs G is decidable. This problem is in NP, and in P when G is ground.

Proof of corollary. Take a partial D* closure H = M(S)s,K of M(S) such
that K is finite and i ∈ K for each ri ∈ V (G), and check whether this graph
contains a D-clash or whether this graph simply entails G. By Lemma 4.5, H
can be computed in time polynomial in |M(S)|+ |G|. The proof is concluded by
using the remarks following the interpolation lemma (see 2.5).

Proof of D* entailment lemma (completeness part). Let H = M(S)s,K be a
partial D* closure of M(S) such that i ∈ K for each ri ∈ V (G), and let I be
the associated D* Herbrand interpretation SK(M(S)). If H does not contain
a D-clash, then I is a D* interpretation which satisfies H, so I satisfies S. By
S |=s G, I satisfies G. Choose A : bl(G) → RI such that IA satisfies G. It
follows that for each triple s p o ∈ G, EI(I(p)) contains the pair (IA(s), IA(o)).
Therefore, for each triple s p o ∈ G, H contains the triple

sur(IA(s)) sur(I(p)) sur(IA(o)).

The assumption that i ∈ K for each ri ∈ V (G) implies that if v ∈ V (G) ∩ U ,
then sur(I(v)) = v. Moreover, if l ∈ nd(G) ∩ L then sur(I(l)) = bl. Define the
mapping h : bl(G) → nd(H) to be h = sur ◦A, and extend h to all of nd(G) by
h(v) = v for each v ∈ nd(G)− bl(G). It follows that

– if s p o ∈ G and o is not in L, then h(s) p h(o) ∈ H
– if l ∈ L and s p l ∈ G, then h(s) p bl ∈ H.

In the second of these two cases, it also follows that h(s) p h(l) = h(s) p l ∈ H,
in view of rule gl. Hence there is a subgraph of H that is an instance of G, with
respect to the instance mapping h. It follows that H simply entails G.

5 pD* Interpretations and pD* Entailment

In this section, we extend the above results on RDFS entailment and D* entail-
ment to a subset of OWL related to properties (see Table 4). We do not obtain
the full power of the ‘iff-semantics’ of the W3C’s OWL semantics specification
[5]. We consider a weaker semantics, in line with the ‘if-semantics’ of RDFS.
This leads to simple and useful entailment rules, which can be used to extend
RDF reasoners. This weaker semantics, which is computationally less complex,
seems to be sufficient for many applications of this subset of OWL.

Extending the RDFS Entailment Lemma 89

Table 4. Abbreviations of property-related vocabulary

F FunctionalProperty S SymmetricProperty
F ′ InverseFunctionalProperty T TransitiveProperty
s sameAs i inverseOf

Table 5. P-axiomatic triples

F sC P S sC P s t P i d P
F ′ sC P T sC P i t P i r P

5.1 Definition (pD* interpretations). The P-vocabulary, denoted by
propV , is a set of URI references listed in Table 4, together with one-letter
abbreviations.

Let D be a datatype map. A pD* interpretation of a vocabulary V is a D*
interpretation I of V ∪ propV that satisfies the following conditions:

– I satisfies the triples in Table 5, which are called the P-axiomatic triples.
– If p ∈ CEI(I(F)) and (a, b), (a, c) ∈ EI(p) then (b, c) ∈ EI(I(s))
– If p ∈ CEI(I(F ′)) and (a, c), (b, c) ∈ EI(p) then (a, b) ∈ EI(I(s))
– If p ∈ CEI(I(S)) and (a, b) ∈ EI(p) then (b, a) ∈ EI(p)
– If p ∈ CEI(I(T)) and (a, b), (b, c) ∈ EI(p) then (a, c) ∈ EI(p)
– EI(I(s)) is an equivalence relation on RI

– If (p, q) ∈ EI(I(i)) then (a, b) ∈ EI(p) if and only if (b, a) ∈ EI(q)
– If a ∈ CI and (a, b) ∈ EI(I(s)) then (a, b) ∈ EI(I(sC))
– If p ∈ PI and (p, q) ∈ EI(I(s)) then (p, q) ∈ EI(I(sP))

5.2 Lemma. The first condition in the definition of pD* interpretations
ensures that each invocation of the functions EI and CEI in this definition is
allowed. If I is a pD* interpretation of a vocabulary V , then I(s) and I(i) are
in PI , and I(F), I(F ′), I(S), and I(T) are in CI .

5.3 Definition (pD* entailment). Given a datatype map D, a set S of
RDF graphs pD* entails an RDF graph G if each pD* interpretation I that
satisfies S also satisfies G. In this case, we shall write

S |=p G.

It is clear that each OWL interpretation [5] is a pD* interpretation, so that
if S |=p G, then S OWL Full entails G.

5.4 Definition (P-entailment rules). See Table 6.
5.5 Definition (partial and full pD* closures). Suppose that G is an

RDF graph and D a datatype map. The partial pD* closure Gp,K of G, and the
full pD* closure Gp of G, are defined in a way similar to the definition of the
partial and full D* closures Gs,K and Gs of G (see 4.4). The only differences are
in the first and last steps. In the first step, the 8 P-axiomatic triples are also
added to G. In the last step, the P-entailment rules are used as well.

90 H.J. ter Horst

Table 6. P-entailment rules

If G contains where then add to G

rdfp1 p t F u p v u p w v ∈ U ∪ B v s w
rdfp2 p t F ′ u p w v p w u s v
rdfp3 p t S v p w w ∈ U ∪ B w p v
rdfp4 p t T u p v v p w u p w
rdfp5a v p w v s v
rdfp5b v p w w ∈ U ∪ B w s w
rdfp6 v s w w ∈ U ∪ B w s v
rdfp7 u s v v s w u s w
rdfp8a p i q v p w w ∈ U ∪ B and q ∈ U w q v
rdfp8b p i q v q w w ∈ U ∪ B and q ∈ U w p v
rdfp9 v t C v s w v sC w
rdfp10 p t P p s q p sP q

5.6 Lemma. Let D be a finite datatype map. If G is a finite RDF graph,
then each partial pD* closure Gp,K of G is finite for K finite, and a partial pD*
closure of G can be computed in polynomial time.

Proof. This is proved as for partial D* closures (see 4.5). For the last part of
the proof, note that for rules rdfp1, rdfp2 and rdfp4, the existence of a successful
rule application can be detected in time O(|G′′|3), where G′′ is the partial closure
graph under construction. The other P-entailment rules can be handled in linear
or quadratic time, just like the D* entailment rules.

5.7 Definition (pD* Herbrand interpretation). Given a discriminating
datatype map D and an RDF graph G, a pD* Herbrand interpretation PK(G) is
defined in a similar way as a D* Herbrand interpretation SK(G) (see 4.6). The
only differences are that Gs is replaced by Gp and Gs,K by Gp,K .

5.8 pD* satisfaction lemma. Let G be an RDF graph and D a discrim-
inating datatype map. If the partial pD* closure Gp,K of G does not contain a
D-clash, then PK(G) is a pD* interpretation that satisfies Gp,K .

Proof. We consider here only the most complicated addition to be made to
the proof of the D* satisfaction lemma (see 4.7), which is reflexivity. To prove
reflexivity of EI(I(s)) on RI , where I = PK(G), the four parts of the definition of
RI need to be considered separately. Suppose first that l ∈ V (Gp)∩L+

D. Then by
rule rdfp5b, Gp,K contains the triple bl s bl = sur(valD(l)) s sur(valD(l)), so that
(valD(l), valD(l)) ∈ EI(s), as desired. Suppose next that l ∈ V (Gp)∩ (L−L+

D).
Again by rule rdfp5b, Gp,K contains the triple bl s bl = sur(l) s sur(l), so that
(l, l) ∈ EI(I(s)), as desired. Suppose next that a ∈ V (Gp)∩ (U ∪B− (dom(D)∪
{ri : i /∈ K})). Then, sur(a) = a and Gp,K contains, by rule rdf1, a triple of
the form a p v or v p a, so that by rules rdfp5a and rdfp5b, it follows that Gp,K

contains the triple a s a = sur(a) s sur(a), so that (a, a) ∈ EI(I(s)). If i /∈ K,
then sur(ri) = rn and Gp,K contains the axiomatic triple rn t P , so that by rule
rdfp5a, sur(ri) s sur(ri) = rn s rn ∈ Gp,K and (ri, ri) ∈ EI(I(s)). If d ∈ ran(D),
then D contains a pair (a, d) and Gp,K contains the axiomatic triple a t D. In view

Extending the RDFS Entailment Lemma 91

of rule rdfp5a, it follows that Gp,K contains the triple a s a = sur(d) s sur(d), so
that (d, d) ∈ EI(I(s)).

5.9 pD* entailment lemma. Let D be a discriminating datatype map, S
a set of RDF graphs, and G an RDF graph. Then, S |=p G if and only if there
is a graph H that can be derived from M(S) combined with RDF and RDFS
axiomatic triples and D-axiomatic triples and P-axiomatic triples, by application
of D* entailment rules and P-entailment rules, and that either simply entails G
or contains a D-clash.

5.10 pD* entailment lemma (alternative statement). Let D be a dis-
criminating datatype map, S a set of RDF graphs, and G an RDF graph. Let
H be a partial pD* closure M(S)p,K of M(S) and suppose that i ∈ K for each
ri ∈ V (G). Then, S |=p G if and only if either H |= G or H contains a D-clash.

5.11 Corollary. Let D be a finite discriminating datatype map. The pD*
entailment relation S |=p G between finite sets S of finite RDF graphs and finite
RDF graphs G is decidable. This problem is in NP, and in P when G is ground.

Proof. Most of the work to be added to the proof for D* entailment involves
the validity of the P-entailment rules, and this does not present problems.

6 Conclusion

In this paper we proved that rdfs-entailment is decidable, by using partial closure
graphs that are finite for finite RDF graphs. It was also proved that these partial
closure graphs can be computed in polynomial time, and that the problem
‘ H rdfs-entails G ’, with H and G finite RDF graphs, is in NP, and in P when G
is assumed to have no blank nodes. Results on RDFS completeness, decidability,
and complexity were extended to include reasoning with datatypes and a
property-related subset of OWL.

Acknowledgment. I would like to thank Warner ten Kate, Jan Korst, and the
anonymous referees for comments that helped to improve the manuscript.

References

1. J. Grant, D. Beckett (Eds.), RDF Test Cases, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

2. P. Hayes (Ed.), RDF Semantics, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

3. I. Horrocks, P.F. Patel-Schneider, Reducing OWL Entailment to Description Logic
Satisfiability, Proceedings of the 2nd International Semantic Web Conference,
Springer-Verlag LNCS 2870, 2003, pp. 17-29.

4. G. Klyne, J. Carroll (Eds.), Resource Description Framework (RDF): Concepts
and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

5. P.F. Patel-Schneider, P. Hayes, I. Horrocks (Eds.), OWL Web Ontology Language
Semantics and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

Using Semantic Web Technologies for
Representing E-science Provenance

Jun Zhao1, Chris Wroe1, Carole Goble1, Robert Stevens1, Dennis Quan2, and
Mark Greenwood1

1 Department of Computer Science
University of Manchester
Oxford Road Manchester

United Kingdom M13 9PL
{zhaoj,carole,robert.stevens,cwroe}@cs.man.ac.uk

2 IBM T. J. Watson Research Center
1 Rogers Street Cambridge

MA 02142 USA
dennisq@us.ibm.com

Abstract. Life science researchers increasingly rely on the web as a pri-
mary source of data, forcing them to apply the same rigor to its use
as to an experiment in the laboratory. The myGrid project is develop-
ing the use of workflows to explicitly capture web-based procedures, and
provenance to describe how and why results were produced. Experience
within myGrid has shown that this provenance metadata is formed from
a complex web of heterogenous resources that impact on the production
of a result. Therefore we have explored the use of Semantic Web tech-
nologies such as RDF, and ontologies to support its representation and
used existing initiatives such as Jena and LSID, to generate and store
such material. The effective presentation of complex RDF graphs is chal-
lenging. Haystack has been used to provide multiple views of provenance
metadata that can be further annotated. This work therefore forms a case
study showing how existing Semantic Web tools can effectively support
the emerging requirements of life science research.

1 Introduction

Life science researchers have made early and heavy use of Web technologies to
access large datasets and applications [1]. Initiatives such as the Human Genome
Project [2] have meant that rather than sequencing human genes in the labora-
tory, it is possible to download sequences from the Web. As well as data, tools
are also available on the Web, and data are moved between tools to perform
analyses [1]. The greater reliance on these resources as primary sources of data
means ad hoc web browsing is giving way to a more systematic approach em-
bodied by the term e-Science within the UK research community [3]. By analogy
to the laboratory, web-based procedures to analyze or integrate data are called
in silico experiments.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 92–106, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Using Semantic Web Technologies for Representing E-science Provenance 93

19747251AC 005089.3 831
Homo sapi ens BAC clone CTA-315H 11 from 7, compl ete seq uence
15145617AC 073846.6 815
Homo sapi ens BAC clone R P11- 622P13 fr om 7, complete sequence
15384807AL365366.20 46.1
Human D NA seq uence from c lone R P11-553N 16 on chromosome 1, compl ete seq uenc
7717376AL163282.2 44.1
Homo sapi ens chromosome 21 seg ment H S21C082
16304790AL133523.5 44.1
Human chromosome 14 DN A sequence BAC R-775G15 of li brar y R PCI-11 fr om chr omosome 14 of
Homo sapi ens (Human), complete sequence
34367431BX648272.1 44.1
Homo sapi ens mRN A; cD NA DKFZp686G08119 (from cl one D KFZp686G08119)
5629923AC007298.17 44.1
Homo sapi ens 12q22 BAC R PCI11-256L6 (Roswell Par k C ancer Institute H uman BAC Libr ary) compl ete
sequence
34533695AK126986.1 44.1
Homo sapi ens cDN A FLJ45040 fis, c lone BRAWH 3020486
20377057AC 069363.10 44.1
Homo sapi ens chromosome 17, c lone R P11-104J23, complete seq uence
4191263AL031674.1 44.1
Human D NA seq uence from c lone R P4- 715N 11 on chromosome 20q13.1- 13.2 C ontains two putati ve
novel g enes, ESTs, STSs and GSSs, compl ete seq uence
17977487AC 093690.5 44.1
Homo sapi ens BAC clone R P11- 731I19 from 2, compl ete seq uence
17048246AC 012568.7 44.1
Homo sapi ens chromosome 15, c lone R P11-342M21, compl ete sequence
14485328AL355339.7 44.1
Human D NA seq uence from c lone R P11-461K13 on chromosome 10, compl ete sequenc
5757554AC007074.2 44.1
Homo sapi ens PAC clone R P3-368G6 fr om X, complete seq uence
4176355AC005509.1 44.1
Homo sapi ens chromosome 4 clone B200N 5 map 4q25, compl ete sequence
2829108AF042090.1 44.1
Homo sapi ens chromosome 21q22.3 PAC 171F15, compl ete seq uenc

>gi|19747251|gb|AC005089.3| Homo sapiens
BAC clone CTA-315H11 from 7, complete
sequence AAGCTTTTCTGGCACTGTTTCCT
TCTTCCTGATAACCAGAGAAGGAAAAGAT
CTCCATTTTACAGATGAGGAAACAGGCTC
AGAGAGGTCAAGGCTCTGGCTCAAGGTC
ACACAGCCTGGGAACGGCAAAGCTGATA
TTCAAACCCAAGCATCTTGGCTCCAAAGC
CCTGGTTTCTGTTCCCACTACTGTCAGTG
ACCTTGGCAAGCCCTGTCCTCCTCCGGGC
TTCACTCTGCACACCTGTAACCTGGGGTT
AAATGGGCTCACCTGGACTGT
TGAGCG

urn:lsid:taverna:datathing:13

urn:lsid:taverna:datathing:15

urn:ncbiBlastInvocation1

urn:Hannah urn:WBSGroup

urn:serviceDescription1 urn:experiment1

urn:experimentDesign1

urn:WBSProject

input

output

created_by

invoked_by

defined_by

part_of

part_of

part_of

part_of

part_ofdesigned_by

derived_from

Nucleotide_sequence

masked_sequence_of

Blast_report

similar_sequence_to

Fig. 1. An example e-Science provenance log.

The results of an in silico experiment are of reduced value if the materials,
methods, goals, hypotheses and conclusions of an experiment are not recorded.
Traditionally, in the lab, a scientist records such information in a lab-book and
uses these records of where, how and why results were generated in the pro-
cess of analysing, validating and publishing scientific findings. These records are
the provenance of an experiment. Provenance data are also needed for e-Science
in silico experiments, in order to help e-Scientists to verify results, draw con-
clusions and test hypotheses. In e-Science provenance logs, each piece of data
used in an in silico experiment; the tools used to analyse those data; the results
generated; and the associations and derivations of these data and tools need to
be recorded. Part of such a provenance log for an e-Science experiment is shown
in Fig 1. The recording, indexing, organisation and use of these provenance data
are a key aspect of e-Science.

myGrid 1, as a pilot e-Science project in the U.K., aims to provide middleware
services not only to automate the execution of in silico experiments as workflows
in a Grid environment, but also to manage and use results from experiments [4].
Currently this project is being developed using several molecular biological sce-
narios. This paper uses the collaboration with biologists and bioinformaticians
at Manchester University, researching the genetic basis of Williams-Beuren Syn-
drome [5]. Williams-Beuren Syndrome is a congenital disorder associated with
the deletion of a small region of Human Chromosome 7. There is significant in-
terest in characterising the genes in this region, in order to gain an insight into
how an apparently small number of genes can lead to a complex set of cognitive
and physical phenotypes.

1 http://www.mygrid.org.uk.

94 J. Zhao et al.

Despite the release of a draft of the Human Genome, there are gaps in the
known DNA sequence for this region. Therefore, a regular task for the biologists
is to search the genome databases for new submissions of DNA sequence which
fill in these gaps. If a relevant sequence is found, it is subjected to a barrage
of web-based analysis tools to discover possible genes encoded within the DNA,
and the nature of any cellular proteins produced by those genes. The nature of
the task means that at each stage the number of resources and data fragments
under consideration is amplified. One search can lead to many candidate DNA
sequences. These DNA sequences can contain many possible genes. Those genes
may produce many different proteins. Therefore, when done by hand, the pro-
cess can take days interacting with web page based analysis tools, and following
hyperlinks in result pages to gather further information. This personal web that
the scientist selectively navigates around is transitory. No complete record re-
mains to explain the origin of the final results. Also, the mundane nature of
the task often means not all possible avenues are explored, because the scientist
either misses possible routes or discards apparently uninteresting results.

myGrid was used to automate this process, and so each web-based analy-
sis tool and data resource were wrapped as a web service. Workflows were de-
signed to automatically orchestrate the access to these resources and data flow
between them. Figure 2 shows a graphical representation of one workflow from
this project, which uses two main bioinformatics applications RepeatMasker and
NCBI BLAST, in order to discover new DNA sequences in the gap region for
this disease. The previously transient relationships between resources have been
captured as a web of provenance information, part of which is shown in Fig 1.
Often discarded intermediate results are assigned identifiers and published lo-
cally, so that they become first class resources of this personal web of science [6].
In order to build this personal web, Life Science Identifiers (LSIDs) [7] are used
to provide location-independent access to these resource data and metadata.
The Resource Description Framework (RDF) is used to represent the web of
relationships between resources by associating semantic information with these
resources and their relationships, creating a Semantic Web of Provenance data.
Haystack, a Semantic Web browser [8], is used to deliver these provenance webs
to the end user.

If provenance information is to be shared, we need to overcome their hetero-
geneiety and agree on a common understanding (or semantics) as to what the
contents of each data item and service represents and the relationships we pro-
vide between resources. Semantic Web ontology languages such as DAML+OIL
and its successor OWL have been used to capture this semantic information [9].

As with previous web technologies, there is much interest in the life science
community in the potential uses of the Semantic Web. Key organisations such
as Affymetrix are publishing data in RDF format [10] and mailing lists such
as the WWW Semantic Web Life Sciences mailing list are discussing how best
to embrace the new technology2. By using existing Semantic Web technology
and software such as RDF repositories, ontologies, Haystack and Life Science

2 Archives at http://lists.w3.org/Archives/Public/public-semweb-lifesci/

Using Semantic Web Technologies for Representing E-science Provenance 95

Fig. 2. An example workflow from the Williams-Beuren Syndrome scenario.

Identifiers, this work acts as a case study describing what is already possible in
supporting life scientists with a Semantic Web. In this paper Sect 2 describes
scientists’ requirements for provenance and the implications of the information
recorded. Section 3 describes why Semantic Web technologies are well suited to
supporting our requirements. Section 4 describes the implementation of prove-
nance recording and visualization.

2 Provenance Requirements and Design

Provenance has a very broad scope within e-Science. At its simplest, it describes
from where something has arisen. But many different parties may have a variety

96 J. Zhao et al.

of interests in which experiments have been performed and these interests will
vary over time.

Scientists in the immediate term require low level information, exploring
the provenance web in a bottom up manner, focusing on individual results for
a number of purposes: (i) Debugging. Experiments may not produce the desired
results. The scientist requires a log of events recording what services were ac-
cessed and with which data; (ii) Validity checking. If the scientist is presented
with a novel result, he/she may wish to perform expensive laboratory-based
experiments based on these results. Although sure that the workflow design is
valid, she may still want to check how this data has been derived to ensure it
is worthy of further investigation; (iii) Updating. If a service or dataset used in
the production of a result has changed, the scientist will need to know what
implications that change has on those results.

Supervisors and laboratory heads in contrast will take a top down ap-
proach to browsing this web, to summarise information about progress made
in gathering information and to aggregate provenance webs from all their re-
searchers.

Service providers are keen to know how well their services are performing
and their patterns of use so that they can better tailor them to changing demand.
They are less interested in specific results and should not have access to them
but focus more on aggregated, process-centric information about service access.

Research groups from other organisations and regulatory authorities may
have less trust in the validity of results. They therefore would like access to
as complete a record of the in silico experiment as possible so that they can
replicate it in their local environment and rigorously check the validity of its
design and performance. A detailed recipe of how an experiment is executed
should be supplied for reproducing an experiment.

These different requirements lead to a design of provenance pyramid em-
bracing many different types of resources and relationships between them, as
illustrated in Fig 3. Four types of provenance logs, including process, data, organ-
isation and knowledge provenance, have been designed, providing four different
views over this provenance web and supporting a personalised web of provenance
data for these different user requirements.

The process provenance, which is similar to traditional event logs, recording
the order of services called and data parameters used for these services, with
all the time-stamps of service invocations and workflow executions. The data
derivation provenance, builds a graph of data objects in a workflow run, in-
cluding inputs to a workflow, data parameters for services, intermediate results
from services and final results of a workflow. Data are linked to the services
that used them, to other data they were generated from, to the source they
came from with a version snapshot. Contextual information are provided for
most if not all the provenance resources, to state the user of the data or service,
the experiment design of this run, the project this experiment belongs to, the
hypothesis this experiment or project is based on, etc. This contextual infor-
mation not only provides additional materials for organising and exploring re-

Using Semantic Web Technologies for Representing E-science Provenance 97

sources, but also provides another means by which we can integrate provenance
logs, based on a common user, a common hypothesis, or a common design.

Organisation

 Level Process Level

Data Level

Logging

Knowledge mining

Knowledge

 Level

Integrating

Fig. 3. Provenance design in myGrid.

The organisation provenance re-
cords who, when and where these
contextual information was created
and how they evolved during exper-
iments. The fourth type of prove-
nance presents domain specific
links between experiment resour-
ces, e.g. a BLAST service input
which is a nucleotide sequence is a
similar sequence to the output of
this BLAST service. As shown in
Fig 3, associations between experi-
ment objects are built when attach-
ing organisation provenance to data and building knowledge linking between
experiment resources. Similarly, associations are made to record derivations of
these objects through process and data provenance. Direct data linking is the
focus of data provenance, which is partly inferred from process provenance. A
personalised web of provenance logs is supported by their associated organisation
and annotated knowledge level information.

Based on this core design of provenance, logs are automatically recorded dur-
ing and after the workflow execution process in myGrid. Inter-related resources
are identified and linked in a personal web, with an opportunity for users or
third parties to annotate these logs either in free text or controlled vocabularies.
Bioinformaticians, however, find it difficult to find information from a highly
inter-linked provenance web. A higher level integration over this personal web is
therefore required. By navigating and querying this web of provenance, scientists
are able to verify results by tracing how they are produced, to test hypotheses
and draw their conclusions supported by the historical record in provenance logs.

3 Semantic Web Technologies

In this section we present the Semantic Web technologies used in this project,
which includes RDF, LSIDs and ontologies, in order to represent provenance logs
and build a Semantic Web of these resources.

3.1 RDF

RDF was chosen as a representation model for provenance because: (i) it pro-
vides a more flexible graph based model with which to relate resources than for
example the tree model of XML; (ii) it provides an explicit identification system
(Universal Resource Identifiers (URIs)) for resources that allows metadata about
a resource to be merged from several sources; (iii) and it provides a well-defined,
but not overly constraining association with an ontology. This guides what can

98 J. Zhao et al.

be said about a resource, but does not limit description to this schema. Also
from a practical standpoint several mature open source RDF repositories are
available and straightforward to use.

3.2 LSIDs

Web standards, including RDF, make use of a family of identifiers collectively
known as Universal Resource Identifiers (URIs). Members of this family include
Unique Resource Name (URNs) and Universal Resource Locators (URLs). The
latter is used for both specifying the identity and location of a resource. We
are implementing a distributed system and so we must have a mechanism for
retrieving both data and metadata for a distant resource from its identifier. URLs
are therefore an obvious candidate. However, the myGrid project has chosen to
use a type of URN called LSIDs.

LSIDs promise to uniquely and consistently identify data resources in life
science, and provide a resolution protocol for the retrieval of that data and any
associated metadata [7]. They have been initially developed under the umbrella
of the I3C3 and are now undergoing formal standardisation by OMG4.

Every LSID is made up of five parts: the Network Identifier (NID); the root
domain name system (DNS) name of the issuing authority; the namespace chosen
by the issuing authority; the object id unique in that namespace; and finally an
optional revision id for storing versioning information [7]. The structure of an
LSID is shown as below:

urn:lsid:AuthorityID:NamespaceID:ObjectId[:RevisionID]

The resolution process of an LSID guarantees the persistence and uniqueness
of the data object identified by the LSID, independent of the location of the
data source. When resolving LSIDs, two software components are necessary, an
LSID server and an LSID client. An LSID server is operated by the authority
who publishes informatics data and assigns LSIDs to the data. An LSID client
communicates to the server over the network by the LSID protocol to retrieve
data or metadata identified by the LSID. Given an LSID, the AuthorityID is first
resolved to identify the location of the LSID resolution service for that Authority
by querying the Internet DNS. Once the Authority is identified, its IP address
or hostname and TCP/IP port number are returned and used to construct an
HTTP/SOAP endpoint URL of the following form:

http://hostname:80/authority

The LSID is then used as a parameter when querying the endpoint. A Web
Service Description Language (WSDL) [11] description is returned, providing
the means to retrieve the data or metadata object identified by the LSID. This
WSDL document details all the functionalities available for that LSID supported
3 Interoperable Informatics Infrastructure Consortium http://www.i3c.org
4 Object Management Group http://www.omg.org

Using Semantic Web Technologies for Representing E-science Provenance 99

by the Authority. A wide variety of protocols can be indicated using this mech-
anism, including HTTP, FTP, file system and SOAP methods. Though the per-
sistence of data identified by the LSID is guaranteed in the resolution process,
the metadata associated with an LSID can change over time.

The perceived benefits of LSIDs to myGrid are:

1. A clean separation of data and metadata: there is no convention to define
what the client receives when it resolves a URL. A document that is obtained
can represent metadata, data or more likely a combination of both. The most
accepted model on the web is to incorporate some RDF metadata inline into
a document. However this is not applicable in myGrid:
a) We are dealing with raw data rather than published documents. The

workflow system needs to pass raw data between services without any
metadata annotations ;

b) Data and metadata can reside in different locations;
c) Metadata may be attached to resources for which we have no control

(3rd party metadata);
2. An explicit social commitment to maintaining immutable and permanent

data. Provenance becomes worthless if we can allow the data resolved by
a URL to change. However provenance becomes more valuable the more
metadata is attached and updated.

3. A potential to apply compatible standards: we could have implemented a
convention for how to retrieve metadata and data from a URL but that
would have been myGrid-specific. LSIDs provided us with a ready built pro-
tocol that is undergone a standardisation procedure. By using this standard,
we ensure that this RDF-based web of provenance can be merged with other
Semantic Webs of information, such as protein structure metadata in the
Protein Data Bank. Trial LSID authorities currently exist for the Protein
Data Bank, GenBank (a genomic database) and PubMed (a life science lit-
erature database). Again, from a practical point of view, developers at IBM
have supported the LSID standard by providing client and server implemen-
tations in Java, C++ and Perl, together with a demonstration user client
called LSID Launchpad that forms a plug-in to Internet Explorer5.

3.3 Ontologies

If information is to be integrated and shared across a large community, there
must be an agreement on the domain semantics of that information. This is
true, even for a single user. We must be able to specify semantics at two levels:
first, we need a high level schema describing the classes of resource that can be
linked together such as data item and service invocation and the relation-
ships that can hold between them such as output; second, one needs a large
domain vocabulary that further classifies types of resource such as data type
(e.g. BLAST report), service type (e.g. sequence alignment service), and topic
of interest (Williams-Beuren Syndrome). Such a shared understanding of the
domain greatly facilitates querying by increasing recall and precision.
5 http://www-124.ibm.com/developerworks/oss/lsid/

100 J. Zhao et al.

Fig. 4. Architecture for provenance generation and visualization in myGrid

4 Implementation

Having chosen RDF to describe our resources, LSIDs to identify them and ontolo-
gies to deliver a common semantic view of those data, provenance support has
to be delivered within an environment for performing in silico experiments. Fig-
ure 4 shows the architecture of the provenance providing components in myGrid
and how provenance data are drawn together. First the user starts a workflow
using the Taverna workflow workbench6. The workbench holds organisation in-
formation such as user identity, which is passed to the workflow enactor together
with input data and workflow specification. As the workflow is run, the enactor
stores data (using the mySQL RDBMS), and metadata (in a Jena RDF repos-
itory7) corresponding to our four views of provenance. Each resource (including
person, organisation, data and service) is assigned an LSID and made available
via an LSID authority implemented using an open source framework8. Client ap-
plications can then visualize both metadata and data using the LSID protocol.

4.1 Supporting Provenance Recording with Ontologies

Section 3 described the benefits gained from committing to formally specified
common semantics. Therefore, before generating any provenance, we must spec-
6 Taverna and FreeFluo are both open source projects available from
http://taverna.sourceforge.net and http://freefluo.sourceforge.net

7 Jena is an open source Semantic Web framework for Java including an RDF reposi-
tory http://jena.sourceforge.net/

8 An LSID Java server stack available for download at:
http://www-124.ibm.com/developerworks/projects/lsid

Using Semantic Web Technologies for Representing E-science Provenance 101

ify the schema by which it will be generated and the vocabulary of concepts
used to classify, at a domain level, the resources involved. myGrid used the
DAML+OIL ontology language because much of the work predated the later
development and release of the OWL specification. We are currently migrating
to OWL.

The schema ontology is relatively small in size (<30 classes, <20 properties)
and specifies (at a domain independent level) each class of resource and the
properties that can be held between them for the four views of provenance that
we record.

1. To describe the in silico experiment execution process, we have modelled
classes such as service invocation describing the web service process,
invocation event describing specific sub-events of an often multifaceted
process and data item identifying the data flow in and out of the web ser-
vice process. The property created by relates data items to the service
invocation that created them.

2. The data derivation view (at a domain independent level) is currently simple
and uses a single property derived from to link web service outputs with
their associated inputs. Any more specific relationships are domain depen-
dent and go to form the knowledge view of the provenance web.

3. Domain dependent relationships between data are specific to an individual
service and may even be specific to the context of a particular workflow.
For example, the output of a BLAST service is a similar sequence to the
input. Therefore the author of the workflow is responsible for determining
exactly which properties are used. He/she chooses appropriate properties
that go to form a statement template.

4. The experimental organisation view relates the specific workflow run with
the person, project and organisation for which it was run and a simple de-
scription of the scientific motivation.

The larger domain specific ontologies9 (yet still small in biomedical infor-
matics terms) contain ∼600 classes and ∼50 properties. As many concepts have
multiple parents (a feature hard to maintain by hand), each concept is assigned a
single parent manually together with a formal concept definition in DAML+OIL.
A description logic reasoner then uses the formal concept definitions to check
consistency and infer additional subsumption relationships. A detailed descrip-
tion of this is beyond the scope of this paper. More information can be found
in [12]. To be effective, the uses of the ontology must pervade the system:

1. The schema acts as a specification for the Taverna/FreeFluo workflow en-
actor of how to encode the provenance information. The enactor automat-
ically generates RDF statements relating to information it has about what
services were called, with what parameters, how long the service took to
process the request, any sub events that occurred and the outcome in terms

9 myGrid ontology available from http://www.mygrid.org.uk/ in the ontology com-
ponent section

102 J. Zhao et al.

of either result data or failure. All properties are sourced from the ontology,
and all resources are typed with ontology concepts. LSIDs are generated
corresponding to the workflow run, each service invocation, and sub-events.
The relevant RDF statements are then published as the metadata of these
resources. The enactor also relates this process-based view to a data deriva-
tion view. It directly links data items by first assigning each data item a
unique LSID, and then generating RDF statements linking items together.
As above, these statements form the metadata for the data items. The Tav-
erna workflow workbench holds organisation information about the identity
of the experiment, person, project,and organisation under which this work-
flow is run. Each is also identified by LSID, so RDF statements linking these
to the specific workflow run can be published as additional metadata of these
resources. Given the example workflow in Fig 2, users can semantically trace
through its provenance logs: From where the protein sequence output of the
workflow is derived, which service created this protein output, who is the
owner of this protein sequence, etc. When integrating provenance logs from
different runs, users are able to group all the logs that generate a protein
sequence as outputs that were, for example, either created by a particular
user or those that contain sequences that are similar to this protein output.
Figure 1 shows the provenance graph generated by the workflow in Fig 2.
The data graph is an inversion of the workflow graph, but further extended
to co-ordinate with the process provenance.

2. The domain specific ontologies are used by the workflow enactor to classify
at a domain level the data items produced or used by the workflow.

3. The domain specific ontologies provide properties that the scientist can use
to relate inputs and outputs of a service to provide the knowledge view
described above.

4. Both schema and domain specific ontologies are used by Haystack to aid
visualization as described in the next section.

4.2 Visualizing RDF Based Provenance

Having generated these provenance data, we need to enable a scientist to perform
the kind of provenance-based tasks described in Sect 2. Analysis and validation
will often be based upon browsing. Yet this browsing needs to be done along
many axes and from many viewpoints, according to the goal of the task. This
means we need a generic, flexible basis for the scientist to interact with the
provenance data.

By using the LSID protocol for retrieval of both data and metadata, we have
been able to cleanly separate visualization components from those generating
and storing provenance information, so much so that we have been able to reuse
existing externally developed software with pre-existing LSID client function-
ality. The first such client we have used is the LSID Launchpad that renders
RDF metadata associated with an LSID in the browser. Entering an LSID into
Internet Explorer results in the LSID client finding the relevant LSID authority,
and retrieving the associated metadata for that resource. As is common when

Using Semantic Web Technologies for Representing E-science Provenance 103

retrieving web documents, client applications can be registered to deal with par-
ticular MIME types so that when the data itself is retrieved it is displayed in
the appropriate way.

Although a useful demonstration of LSID infrastructure, this style of RDF
metadata visualization is intentionally naive. Users only see a restricted area of
the graph one relationship wide. A few richer tools do exist to deliver Semantic
Web technology to the user. One such Semantic Web browser, Haystack, from
MIT, enables developers to provide customised views over RDF metadata [8]. To
rapidly obtain a high level view of how resources interrelate, the user can view
the provenance RDF as a labelled directed graph in Haystack, as with many
other Semantic Web visualization tools.

Figure 5 shows an extract of such a graph, giving an example of how Haystack
helps to visualize the semantic linking between these semantically enriched
provenance resources for the experiment in Figure 2. In fact, we have found
that the network of relationships is so dense that a complete rendering of the
graph becomes difficult to interpret. We therefore filter out all but a small set of
semantic relationships relevant to the user and task. In the case of Fig 5, only
13 RDF properties are being displayed: showing the relationship between data
item (derived from), the data flow between services (input, output), some or-
ganisation information of resources (e.g. created by, design, group, project, etc),
and some knowledge linking between data from different provenance logs (simi-
lar sequence to). By making use of Haystack’s ability we can also separate these
semantic links into four levels according to our provenance pyramid, which can
be chosen from the view panel in Haystack, as shown in Fig 5.

However, we expect this graph based view of the whole provenance log will
not provide a complete solution for the end user. The traditional web is itself
a graph of documents related by hyperlinks, yet it is rarely rendered as such.
Therefore, much more of our attention has been focused on providing a web
browser metaphor for users to browse the provenance web. Haystack provides
an application framework that allows the developer to render complex RDF
subgraphs into user interface screens that behave like the much more familiar
frames of web pages. Each class of resource can be associated with one or more
of what Haystack terms “views”. This is a specification, written in a novel high
level programming language, Adenine, of how the metadata associated with that
resource should be interpreted in order to construct a web page like interface for
that resource. For more information see Quan et al. [13] and [8].

Our experience in using Haystack is promising. It has provided a rapid pro-
totyping environment in which we can explore with our users the most effective
way of interacting with RDF-based provenance information. By providing an ap-
plication framework in which we can build up provenance views, it has enabled
us to bypass the considerable effort needed to code core application and user in-
terface components. When showing RDF-encoded provenance in Haystack to our
collaborating bioinformaticians, they are satisfied that semantic relationships are
made explicit when browsing these RDF logs in Haystack. By navigating and
clicking, they can follow the hyperlinks between resources, directed by underlying

104 J. Zhao et al.

Fig. 5. Haystack screenshot of visualizing example provenance log.

semantic relationships. Also, when facing large amounts of data from provenance
logs, users can choose different sets of predicates, in order to conceptually group
provenance data in multiple ways according to the task at hand. For example, as
introduced in Sect 2, when scientists at the stage of “debugging” experiment re-
sults, they could be interested in viewing provenance logs from a process aspect,
to trace how experiments are executed. During the stage of “validity checking”,
a data view can be more supportive for scientists to track the data derivation
path in an experiment.

Haystack’s reliance on ontologies to drive the presentation of metadata fits
well with the core role of ontologies in our provenance. Ontology classes asso-
ciated with resources during provenance generation in the Taverna application
have a direct impact on how those resources are displayed to the user in Haystack.

Haystacks LSID client functionality has also been of benefit. The user can
enter an LSID of a provenance resource in Haystack and the metadata will be
retrieved from the myGrid LSID metadata resolver and displayed appropriately.

However, within myGrid we have come across several issues with the Haystack
and LSID approach. Haystack is a large desktop application requiring significant
resources. This contrasts with bioinformaticians preference for light-weight web-
based applications. Also using the architecture shown in Fig 4 we must rely
on retrieving provenance metadata via the LSID protocol. As the protocol only
allows for retrieval one resource at a time, to provide a high level expansive

Using Semantic Web Technologies for Representing E-science Provenance 105

view covering many resources we must enter into a piecemeal repetitive retrieval
process and slowly build up the complete picture in the local Haystack RDF
repository.

5 Discussion

The capture of in silico experiments as workflows and their outputs form a nat-
ural web of data. These can be described and identified by RDF and LSIDs
respectively. In the myGrid project, these provenance data are recorded along
four views: process, data derivation, organisation and knowledge. The knowl-
edge or semantic component is needed in order to offer a common view over
the heterogeneous semantic types within the provenance data and allows the
provenance-based tasks to be accomplished.

Our implementation automatically traces the process and data derivation
provenance and attaches the necessary organisational provenance to an exper-
iment’s data. The Taverna workflow environment offers the facility to attach
knowledge level provenance through its template mechanism, supported by the
myGrid ontology of bioinformatics services. This machinery also automatically
provides RDF descriptions linked to the data through LSIDs. These provenance
data can then be browsed by a scientist through the Haystack tool.

This success has, however, revealed several issues. As suggested in Sect 4.2,
there is an issue of how these provenance data are presented to users — is a graph
or a familiar web form appropriate? There is also a wider issue of usability, from
the micro-scale of button and link labels, keystrokes and speed, to a macro-
scale of effectiveness, efficiency and satisfaction in its support for provenance-
based tasks in in silico experiments. Our current implementation and experience
has offered no clues about the scalability of our handling and presentation of
provenance data. As many users run many experiments, vast quantities of highly
linked and annotated data will be generated. There is an issue about whether
both the presentation and computational handling of all these data are scalable.

Given our addition of a semantic description of these data, we fully expect to
be able to add machine processing of these data to the current human emphasis
of our work. By fully implementing and managing an ontology for provenance
data, such semantically supported processing over these data could be enabled
by reasoning over the semantics associated with data resources. This would allow
semantic querying of these logs, provide trust information about data based on
logs, etc.

In our description of the use of provenance, we have presented a scenario
where all users can browse all provenance data and even make annotations on
other people’s data. Obviously there are profound security and authorisation is-
sues in such a scenario. Biologists are, as are other people, very security conscious
about new data and associated discoveries etc. Many levels of authorisation need
to be incorporated into the RDF paradigm in order to support access to sub-
graphs within an experiment repository.

106 J. Zhao et al.

These points do not contradict, but build upon the success of our demonstra-
tion of a Semantic Web of provenance for in silico experiments. The provision of
such support for provenance is vital for the performance of in silico experiment
and offers a rich test-bed for the concepts and technology of the Semantic Web.

Acknowledgements. The myGrid project, grant number GR/R67743, is
funded under the UK e-Science programme by the EPSRC. The authors would
like to acknowledge the other members of the myGrid team for their contribu-
tions.

References

1. Karp, P.: A Strategy for Database Interoperation. Journal of Computational
Biology 2 (1995) 573–586

2. Program, H.G.: Genomics and its impact on science and society: A 2003 primer.
Technical report, U.S. Department of Energy (2003)

3. Fox, G., Walker, D.: e-Science Gap Analysis. Technical report, Indiana University
and Cardiff University, UK e-Science Center (2003)

4. Stevens, R., Robinson, A., Goble, C.: myGrid: Personalised Bioinformatics on the
Information Grid. In: International Conference on Intelligent Systems in Molecular
Biology. (2003)

5. Preus, M.: The Williams Syndrome: Objective Definition and Diagnosis. Clinical
Genetics 25 (1984) 422–428

6. Hendler, J.: Communication: Enhanced Science and the Semantic Web. Science
299 (2003) 520–521

7. Martin, S., Senger, M., Niemi, M.: Life Sciences Identifiers second revised submis-
sion. Technical report, I3C (2003)

8. Quan, D., Karger, D.R.: How to make a semantic web browser. In: Proc. of the
Thirteenth International World Wide Web Conference (WWW2004), ACM (2004)
255–265

9. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1 (2003)
7–26

10. Cline, M., Shigeta, R., Wheeler, R., Siani-Rose, M., Kulp, D., Loraine, A.: The
effects of alternative splicing on transmembrane proteins in the mouse genome. In:
Pacific Symposium on Biocomputing. Volume 9. (2004) 17–28

11. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001) W3C Note.

12. Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. the
International Journal of Cooperative Information Systems 12 (2003) 597–624

13. Quan, D., Huynh, D., Karger, D.R.: Haystack: A platform for authoring end user
semantic web applications. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: Proc.
of the 2003 International Semantic Web Conference (ISWC 2003). Number 2870
in Lecture Notes in Computer Science, Springer (2003) 738–753

GridVine: Building Internet-Scale
Semantic Overlay Networks�

Karl Aberer1, Philippe Cudré-Mauroux1, Manfred Hauswirth1, and
Tim Van Pelt2

1 School of Computer and Communication Sciences
Swiss Federal Institute of Technology (EPFL), Switzerland

{karl.aberer, manfred.hauswirth, philippe.cudre-mauroux}@epfl.ch
2 Department of Computer and Information Science

Linköpings Universitet, Sweden
tim@vanpelt.com

Abstract. This paper addresses the problem of building scalable seman-
tic overlay networks. Our approach follows the principle of data indepen-
dence by separating a logical layer, the semantic overlay for managing
and mapping data and metadata schemas, from a physical layer con-
sisting of a structured peer-to-peer overlay network for efficient routing
of messages. The physical layer is used to implement various functions
at the logical layer, including attribute-based search, schema manage-
ment and schema mapping management. The separation of a physical
from a logical layer allows us to process logical operations in the seman-
tic overlay using different physical execution strategies. In particular we
identify iterative and recursive strategies for the traversal of semantic
overlay networks as two important alternatives. At the logical layer we
support semantic interoperability through schema inheritance and Se-
mantic Gossiping. Thus our system provides a complete solution to the
implementation of semantic overlay networks supporting both scalability
and interoperability.

1 Introduction

Research on semantic overlay networks has recently received a lot of attention
in the emerging area of peer-to-peer data management [10,6,15,17]. All of these
approaches are based on a generalization of the concept of federated databases,
where peers store data or (content) metadata according to their local schemas
and freely define mappings (translations, views) from their schemas to those of

� The work presented in this paper was (partly) carried out in the framework of the
EPFL Center for Global Computing and was supported by the National Competence
Center in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science Foundation under grant
number 5005-67322 and in part and by the Swiss National Funding Agency OFES
as part of the European project KnowlegeWeb No 507482.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 107–121, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

108 K. Aberer et al.

other peers. Thus a network is constructed where peers are logically intercon-
nected through schema mappings and where queries can be propagated to other
peers using different schemas, even over multiple hops. The main concern of
these works is on the problem of consistent query answering and reconciliation
of different mappings occurring in the semantic overlay network [8,22].

In parallel, structured overlay networks, e.g., Chord [21] or P-Grid [2], have
been developed as new infrastructures for routing requests for resources that are
distributed over large populations of peers using application-specific keys in an
efficient manner. Naturally, such networks can be employed in order to efficiently
respond to simple keyword-based queries. Structured overlay networks clearly
also have the potential to support the efficient operation of a semantic overlay
network. However, research on how to take advantage of this potential is in its
infancy.

In this paper, we introduce an architecture and implementation leveraging
on the potential for scalability offered by structured overlay networks in the
realization of interoperable, large-scale semantic overlay networks. A key aspect
of the approach we take is to apply the principle of data independence [13] by
separating a logical from a physical layer. This principle is well-known from the
database area and has largely contributed to the success of modern database
systems. At the logical layer, we support various operations to maintain the
semantic overlay network and to support semantic interoperability, including
attribute-based search, schema management, schema inheritance and schema
mapping. We also provide support for a specific schema reconciliation technique,
i.e., Semantic Gossiping, that we have introduced earlier [3]. We provide these
mechanisms within the standard syntactic framework of RDF/OWL. At the
physical layer, we provide efficient realizations of the operations exploiting a
structured overlay network, namely P-Grid. This requires mappings of operations
and data to the physical layer. Important aspects of this mapping are:

– The mapping of data and metadata to routable keys.
– The introduction of a specific namespace for resources present in the peer

space, such that the infrastructure can resolve resource requests.
– The implementation of traversals of the semantic network taking advantage

of intermediate schema mappings. An interesting aspect is the possibility to
use different strategies to implement such traversals at the structured overlay
network layer, in ways that are substantially different from naive solutions.
We analyze two types of processing strategies, iterative and recursive. As in
standard database query processing, the data independence principle thus
opens up the possibility of optimization using different query processing
strategies.

We have developed a first implementation following the architectural prin-
ciples outlined above building on the existing implementation of the P-Grid
structured overlay network. We report on initial experiments showing the effect
of using different query processing strategies for semantic network traversal.

The rest of this paper is structured as follows: We start with an overview
of our approach in Section 2. Our architecture and implementation use P-Grid

GridVine: Building Internet-Scale Semantic Overlay Networks 109

as a physical layer, which is briefly described in Section 3. Section 4 presents
the mechanisms used to index metadata and schemas and to resolve queries.
Section 5 describes semantic interoperability while Section 6 is dedicated to
GridVine, the implementation of our approach. Finally, we discuss related work
in Section 7 and conclude.

2 Overview of Our Approach

2.1 Data Independence

Following the principle of data independence enounced above, our approach re-
volves around a two-layer model: a physical layer based on the P-Grid access
structure underpinning GridVine, a logical semantic overlay layer (see Fig. 1).
P-Grid (Section 3) is an efficient, self-organizing and fully decentralized access
structure based on a distributed hash table (DHT). GridVine uses two of P-
Grid’s basic functionalities: the Insert(key, value) primitive for storing data
items based on a key identifier and the Retrieve(key) primitive for retrieving
data items given their key.

Fig. 1. The two-layer model

Taking advantage of these two rather limited primitives, we build a full-
fledged semantic overlay network on top of P-Grid. The system exposes a new
set of primitives (depicted on top of Fig. 1) allowing end-users to insert metadata,
schemas and schema translations as well as retrieve semantic information using
expressive query languages. Capitalizing on recent developments, we chose the
RDF / RDFS pair as languages to encode metadata and vocabulary definitions in
GridVine. These two languages represent the fundamental building blocks of the
emerging Semantic Web [23] and are predestined to become de facto standards
for encoding metadata as well as their corresponding schematic information.

The exact mechanisms we choose for inserting metadata into the P-Grid
are naturally of utmost importance, since they directly influence the query ca-
pabilities of the overall system, and are extensively discussed in the following
(Section 4). In order to support the processing of schema-specific information,
we introduce a meta-schema specifying common characteristics for all custom
schemas derived by the users. Also, we introduce new addressing spaces, i.e.,
URI schemes, to identify resources both in the physical (P-Grid data items) and
logical (semantic information) layers.

110 K. Aberer et al.

2.2 Decentralized Semantics

Classification of resources and definition of vocabularies are essential for leverag-
ing metadata creation and fostering semantic interoperability through reuse of
conceptualizations. Legacy information sharing systems typically support static
sets of centrally imposed, predefined schemas. We consider such a monolithic
approach as far too rigid for adequately capturing information sources in a net-
work of autonomous and heterogeneous parties. Not only is this not desirable
from an ideological perspective, it also misses out on the power of P2P. Seeing
users as experts of the information they share, they themselves are most fit to
come up with a proper schema to describe their data. However desirable it may
be to let users come up with their own schemas in a bottom-up manner, it also
severely endangers global semantic interoperability and search capabilities: How
could one ensure optimal precision and recall when searching for data items that
might be referred to by a large variety of terms? Our answer to this question if
twofold, including both schema inheritance and Semantic Gossiping mechanisms.

Schema inheritance provides GridVine with basic schema reusability and
interoperability capabilities. As for other social networks [7], we expect the pop-
ularity of schemas in GridVine to follow scale-free preferential attachment laws,
such that a small subset of schemas gain unparalleled popularity while the oth-
ers remain mainly confidential. By allowing users to derive new schemas from
well-known base schemas, we implicitly foster interoperability by reusing sets of
conceptualizations belonging to the base schemas.

Semantic Gossiping [3,4] is a semantic reconciliation method that can be ap-
plied to foster semantic interoperability in decentralized settings. The method
aims at establishing global forms of agreement starting from a graph of purely
local mappings among schemas. Following this approach, we allow peers in Grid-
Vine to create, and possibly index, translation links mapping one schema onto
another. These links can then be used to propagate queries in such a way that
relevant data items annotated according to different schemas can also be re-
trieved. Query forwarding can be implemented using several approaches. In the
following, we identify two radically different strategies for forwarding queries:
iterative forwarding, where peers process series of translation links repeatedly,
and recursive forwarding, where peers delegate the forwarding to other peers.
Schema inheritance and Semantic Gossiping are further described in Section 5.

3 The P-Grid P2P System

GridVine uses our P-Grid [2] P2P system as its physical layer. P-Grid is based
on the principles of distributed hash tables (DHT) [18]. As any DHT approach,
P-Grid associates peers with data keys from a key space, i.e., partitions of the
underlying distributed data structure. Each peer is responsible for some part of
the overall key space and maintains additional (routing) information to forward
queries and requests. Without constraining general applicability, we use binary
keys in the following. P-Grid peers refer to a common underlying tree structure
in order to organize their routing tables. In the following, we assume that the

GridVine: Building Internet-Scale Semantic Overlay Networks 111

tree is binary. This is not a fundamental limitation as a generalization of P-Grid
to k-ary structures has been introduced in [5], but will simplify the presentation.

Each peer p ∈ P is associated with a leaf of the binary tree. Each leaf
corresponds to a binary string π ∈ Π. Thus each peer p is associated with a
path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of length l
a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of
the tree the peer has references to some other peers that do not pertain to the
peer’s subtree at that level, which enables the implementation of prefix routing
for efficient search. The cost for storing the references (in routing tables) and the
associated maintenance cost are scalable as they are proportional to the depth
of the underlying binary tree.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key key(d)
is calculated using an order-preserving hash function. key(d) has π(p) as prefix
but we do not exclude that temporarily also other data items are stored at a
peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can be a
proper subset of δ(p). In addition, peers also maintain references σ(p) to peers
having the same path, i.e., their replicas.

P-Grid supports two basic operations: Retrieve(key) for searching a certain
key and retrieving the associated data item and Insert(key, value) for storing
new data items. Since P-Grid uses a binary tree, Retrieve(key) intuitively is ef-
ficient, i.e., O(log(|Π|)), measured in terms of messages required for resolving a
search request, in a balanced tree. For skewed data distributions we show in [1]
that due to the probabilistic nature of the P-Grid approach, the expected search
cost measured by the number of messages required to perform the search remains
logarithmic, independently how the P-Grid is structured. This is important as
it allows us to apply simple order-preserving hashing functions to metadata an-
notations, which may lead to non-uniformly distributed key distributions. As
P-Grid uses an order-preserving hash function to compute keys and define their
association with peers, it processes prefix and range queries of arbitrary granu-
larity efficiently, i.e., O(log(|Π|) + |{p|κ is prefix of π(p)}|. Prefix queries will
be an important constituent in the generic implementation of metadata queries.
Insert(key, value) is based on P-Grid’s more general update functionality [11]
which provides probabilistic guarantees for consistency and is efficient even in
highly unreliable, replicated environments, i.e., O(log(|Π|)+replication factor).

4 Semantic Support

In the following, we elaborate on how GridVine handles the creation and indexing
of RDF triples (Section 4.1) and schemas (Section 4.2). Section 4.3 discusses then
query resolution mechanisms.

4.1 Metadata Storage

In GridVine, statements are stored as RDF triples and refer to data items shared
in the P-Grid infrastructure. A structured overlay network allows to implement

112 K. Aberer et al.

an application specific addressing space. In our case, we introduce a specific URI
schemes pgrid : // for resources, and pgrids : //, for schema-elements. This does
not exclude the use of other URI schemes in conjunction with P-Grid’s specific
ones, as long as the infrastructure ensures that all the identifiers can be resolved.

In the case were all resources are identified by P-Grid URIs, a typical sit-
uation would be a statement where the subject is identified by a P-Grid key,
i.e., a binary string such as 11110101, whereas the predicate and object refer
to P-Grid’s specific RDF schemas (or literals). This allows us to constrain the
applicability of the schema constructs. An example of such a statement would
be the P-Grid resource 11110101 (subject) is entitled (predicate) Rain, Steam
and Speed (object), which, translated into the XML syntax of RDF, would result
in a file like the one transcribed in Fig. 2.

�

�

�

�

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="pgrid://11110101">
<Title xmlns="pgrids://01001101:bmp#">Rain, Steam and Speed</Title>

</rdf:Description>
</rdf:RDF>

Fig. 2. An RDF statement encoded in XML

Since most RDF query languages [19] are based on constraint searches on the
triples’ subject, predicate or object, we reference each individual triple three times,
generating separate keys based on their subject, predicate and object values.
Thus, the insertion operation of a triple t ∈ T is performed as follows:

Insert(t) ≡ Insert(tsubject, t), Insert(Hash(tpredicate), t), Insert(Hash(tobject), t).

Prefix searches, e.g., on the beginning of a string representing an object value,
are inherently supported by P-Grid’s routing mechanisms. Supporting substring
searches imposes to index all the suffixes of a generated key as well. Thus, if we
introduce l as the average length of the strings representing subjects, objects or
predicates, 3l Insert() operations incur on average when indexing an RDF triple
in GridVine.

4.2 Schema Definition and Storage

We encode category descriptions using RDF Schema (RDFS). RDFS is an exten-
sion of RDF providing mechanisms for describing groups of resources and their
relationships. Among other capabilities, it allows to define classes of resources
(classes) and predicates (properties) and to specify constraints on the subject
(domain) or the object (range) of a given class of predicates.

GridVine schemas allow to declare new categories to describe application
specific resources. The categories are all derived by subclassing from a generic
RDF class called P − GridDataItem representing any P-Grid addressable re-
source. Properties referring to this class as domain allow to declare application-
specific vocabularies (i.e., metadata attributes) with arbitrary values as ranges.

GridVine: Building Internet-Scale Semantic Overlay Networks 113

Schema Schema concept

rdfs:subPropertyOfrdfs:subClassOf

rdfs:domain

P-Grid Data Item
P-Grid Data Item

Property
rdfs:domain

P-Grid Meta Schema

Fig. 3. Relations of a P-Grid custom schema to the P-Grid meta schema

All properties derive from a generic P − GridDataItemProperty property. P-
Grid meta-schema and its relation to user-defined RDF schemas are summarized
in Fig. 3.

We create distinct RDFS files for every category, grouping the definition of
a subclass as well as all its affiliated properties. We create a unique identifer for
the category by concatenating the path π(p) of the peer creating a category to
the category itself. We then insert it into P-Grid as any other file:

Insert(rdf schema) ≡ Insert(Hash(π(p) : class name), rdf schema).

Note that due to the possibility of performing substring searches, schemas can
also be searched by their category name only.

4.3 Resolving Queries in GridVine

The simplest query one may pose against the system consists in a triple pattern
with only one bound variable, i.e., a query retrieving (parts of) a set of triples
given the value of their subject, predicate or object. For example, the following
RDQL [20] query: SELECT ?y WHERE (<pgrid://01101000>, ?y,?z) returns
all the predicates used to annotate data item 01101000. In GridVine, we call
such a query a native query. Native queries are resolved routing one message
through the P-Grid infrastructure. In our case, a message containing the above
query and the address of the peer p from which the query originates is routed as
explained in Section 3 to the peer(s) q responsible for storing data item d with
key(d) = 01101000. Upon reception of the query, q checks its local database
and sends back to p the set of data items δ(q) matching the query, which in
turn parses the answer and displays the result. The whole process still generates
O(log(|Π|)) messages: O(log(|Π|)) messages to resolve the P-Grid entry plus one
message for the answer. Native queries on literals (e.g., searches on the value of a
property) are resolved exactly in the same way, but start beforehand by hashing
the literal in order to get its corresponding key.

Variables can be introduced as subject, predicate or object of a triple pat-
tern. GridVine resolves triple patterns differently depending on the number of
unbound variables they contain:

Three unbound variables triple patterns would retrieve all the triples stored in the system, im-
plying O(|Π|log(|Π|)) messages. They are not allowed in GridVine.

Two unbound variables triple patterns are standard native queries, and may as such be resolved
using the method described above.

114 K. Aberer et al.

One unbound variable triple patterns can be resolved by issuing a native query; The predicate
of the query may either be the first or the second bound expression of the triple patterns. The
query issued must include both predicates in order for the query destination to filter out the
triples correctly.

Zero unbound variable triple patterns are constant and require no further resolution.

The cost of resolving triple patterns grows logarithmically with the number of
peers, making GridVine scale gracefully in the large. Triple patterns are power-
ful primitives that can be used to support more expressive query languages as
well. GridVine supports RDQL query resolution through simple triple pattern
combinations, following strategies similar to the ones presented in [10].

5 Semantic Interoperability

As previously mentioned, we believe that semantic heterogeneity is a critical
threat for large-scale semantic networks. We detail below the mechanisms we
take advantage of in order to foster semantic interoperability in GridVine.

5.1 Schema Inheritance

We let users derive new categories from the existing ones. However, we impose
that the new class representing the subcategory subclasses the base category
class. RDFS enforces monotonic inheritance of properties through class hierar-
chies; In our case, the subcategory automatically inherits the properties defined
in the base category through the domain definitions. Additionally, subcategories
may introduce sets of new properties specific to the subclass. Fig. 4 below pro-
vides an example where a category for annotating JPEG files is derived from a
more generic category of image files.

The process can of course be applied recursively in the sense that a subcat-
egory may in turn serve as a super-category for a new derivation, creating com-
plex hierarchies of categories and classes from the most popular base schemas.
Since subcategories subsume their base categories, subcategories of a given cat-
egory may be used indifferently as instances of the base category. In particular,
searches on a property belonging to a base category automatically affect sub-
category instances as well (least-derived property indexation). Thus, we create

Fig. 4. A simple example of category inheritance

GridVine: Building Internet-Scale Semantic Overlay Networks 115

sets of semantically interoperable schemas through properties inherited by all
descendants of a (potentially very popular) base schema.

5.2 Semantic Gossiping

In [3,4], we introduced Semantic Gossiping as a new semantic reconciliation
method. Semantic gossiping aims at establishing global forms of agreement start-
ing from a graph of purely local mappings among schemas. Peers that have an-
notated their data according to the same schema are said to belong to the same
semantic neighbourhood. Each peer has the possibility to create (either manu-
ally or automatically) a mapping between two schemas, in effect creating a link
between two semantic neighbourhoods. The network as such can be seen as a
directed graph of translations.

This translation graph exhibits two interesting properties: First, using local
translations and with the possibility to learn about other existing translations
in the system, transitivity allows for the forwarding of queries to semantic do-
mains for which there is no direct translation link (transitive closure). A second
observation is that the graph has cycles. One of the fundamental assumptions
that underlies the approach is that the translations between different semantic
domains may be partially or totally incorrect. Analysis of composite cycles and
returned results makes it possible to check the quality of translations and to
determine the degree of semantic agreement in a community, as described in [3].

Following this approach, we allow peers in GridVine to create translation
links mapping one schema onto another. Translations are used to propagate
queries from one semantic domain to another (see Section 6.1). Since RDFS
does not support schema mapping, we encode translations using OWL [23].
Translation links consist of series of owl:equivalentProperty statements which
characterize the correspondences between the two categories at the property
level. Fig. 5 below is an example of translation. Individual property equivalence
statements are reified in order to account for partially-overlapping properties:
Peers can thus refer to the various equivalence statements and qualify the indi-
vidual mappings with a semantic similarity value as introduced in our Semantic
Gossiping papers [3,4].

�

�

�

�

<?xml version="1.0"?> <?xml version="1.0" encoding="ISO-8859-1" ?>
<rdf:RDF xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Image_Description xmlns="pgrids://10000101:exif#">

<owl:equivalentProperty rdf:ID="m1" rdf:resource="pgrids://01001101:bmp#Title"/>
</Image_Description>
<Exif_Image_Width xmlns="pgrids://10000101:exif#">

<owl:equivalentProperty rdf:ID="m2" rdf:resource="pgrids://01001101:bmp#Width"/>
</Exif_Image_Width>

</rdf:RDF>

Fig. 5. An example of translation

To forward queries properly, we need to retrieve all the translation links relating
a given schema to other schemas. Thus, we index the translations based on their
source schemas (e.g., pgrids://10000101:exif in Fig. 5):

116 K. Aberer et al.

Insert(owl file)≡Insert(Hash(π(psource) : source class name), owl file).

Forwarding a query is then logically handled using gossiping as described in [3,
4]: Starting from a given semantic domain, the query gets transformed and it-
eratively traverses other semantic domains following translations links until it
is considered as being too different (either from a syntactic or a semantic point
of view) from the original query. A new query is issued after each translation
step. In the following section, we show that different physical implementations
of Semantic Gossiping can be realized using the P-Grid overlay network.

6 Implementation

6.1 Architectural Overview

GridVine was implemented by extending our existing Java-based P-Grid library
which is available upon request. Fig. 6 shows the architecture of the implemen-
tation as a UML class diagram. The left side shows the P-Grid library with the
Gridella GUI and the right side shows GridVine’s semantic extensions. The ar-
rows in the figure denote “uses” relationships. The Gridella component provides
a GUI and uses the P-Grid component to issue queries; the Semantics compo-
nent uses the P-Grid component to issue and receive queries and uses the RDF,
RDFS, and OWL components to handle incoming requests. The RDF compo-
nent is responsible for creating and managing RDF based metadata and provides
the gossiping functionality. The Extractors subcomponent facilitates automatic
metadata extraction to leverage the burden of manual annotation (e.g., auto-
matic extraction of EXIF information from images). Functionalities related to
schemas are provided by the RDFS component, while the OWL component han-
dles all issues regarding translations. The P-Grid, Semantics, RDF, RDFS, and
OWL components are implemented as Singletons, i.e., only a single instance of
each of these classes exists at runtime and handles all requests.

P-Grid

Network

Gridella

Core

Semantics

RDF OWL RDFS
Gossip

Extractors

uses

uses

uses

uses

uses

uses

Fig. 6. The GridVine component model

GridVine: Building Internet-Scale Semantic Overlay Networks 117

Gridella

search(type, query)

The user enters a
new query

P-Grid

search(query)

Core

binaryKey(query)

Network

Maps the ASCII
query string to a
binary value

startSearch(query)

checkResponsibility(key)

Checks if this peer is
responsible for this
query

[not responsible]
remoteQuery(peer, query)

System
border
(Internet)

sendMessage(peer, query)

(a) Initiating a query

Network

newMessage(query)

A new query is
received.

Core DataItem
Manager

DataTypeH
andler

getTypeHandler(queryType)

Looks for a data
type handler for
this query type

[handler found]
localSearch(query)

checkResponsibility(key)

Checks if this peer is
responsible for this
query

[responsible]
localSearch(query)

localSearch(query)

Find local
matches for
the query

PGrid

newQuery(host, query)

newLocalResult(result)

(b) Handling an incoming query

Fig. 7. GridVine queries

Querying. Fig. 7(a) shows the initiator’s side of a query in P-Grid which Grid-
Vine uses to provide its semantic search capabilities.

The user initiates a query via the Gridella GUI which hands it over to the
P-Grid component to perform the actual search. The parameter type defines the
type of data to search for (GUID, File, RDF, RDFS, OWL) and is implicitly
assigned by the system (and encoded in the query). The query is then routed to
other peers which are “closer” to the required result as described in Section 3.

If a peer receives a query, it checks whether it can answer the query, i.e.,
wether it is responsible for the partition of the key space the query belongs to,
otherwise the query will be forwarded as shown in Fig. 7(a). If the peer can
answer the query, as shown in Fig. 7(b), it checks the type of the query (GUID,
File, RDF, RDFS, OWL) and hands it over to the corresponding datatype han-
dler which processes the query according to its type. Datatype handlers are
defined and registered with the P-Grid library by the users of the library, i.e.,
the Gridella and Semantics components.

Semantic Gossiping. The introduction of RDF type queries enables Semantic
Gossiping which is explicitly activated by the issuer of a query through a special
flag in the query. Fig. 8 sketches how gossiping is implemented. In the figure,

118 K. Aberer et al.

Gossip

Query(RDFType, query)

new Query(OWLType, predicate)

System
border
(Internet)

QueryReply(results)

[iterative gossiping]
new Query(OWLType, predicate’)

query’ = transformQuery()

Transforms the
original query to
another semantic
domain

new Query(RDFType, query’)

QueryReply(results)

return(results)

Fig. 8. Gossiping mechanism

we just show the relevant part and omit the preceding flow of control (incoming
message – P-Grid – Datatype handler (Semantics)) for simplicity.

In resolving translation links we support two approaches: iterative and re-
cursive. In iterative resolution, the peer issuing the RDF query tries to find and
process all the translations links by itself; It first issues a query to retrieve the
translation links capable of transforming the category used in the original query;
Upon finding a translation, it translates the original query into a transformed
query (Query’) and issues a search for the transformed query. Furthermore, the
gossiping peer issues a query for a translation of the translation (Predicate’).
This continues until no more translation is available or the transformed query is
considered as being too different from the original query following syntactic and
semantic similarity measures [4].

In recursive resolution, the issuing peer tries to resolve the translation by
delegating it rather than doing it itself: First, it looks for translations of the
predicates used in the query and translates the query upon finding a translation.
The transformed query is issued and results for the query are returned to the
issuer of the query. The receiver of the transformed query follows the same
procedure recursively.

6.2 Experimental Evaluation

We briefly discuss below an initial performance evaluation of the two Semantic
Gossiping techniques GridVine implements. The tests were performed using the
current implementation on a Fast Ethernet network of 60 SUN Ultra10 stations
(Solaris 8). We first created 15 different semantic domains (i.e., 15 different cat-
egories C0 to C15) related to each other through 15 translation links as depicted
in Fig. 9(a). We chose to organize the translations in a very regular way (i.e., a
tree) in order to get a better grasp on the results obtained; Note however that

GridVine: Building Internet-Scale Semantic Overlay Networks 119

our approach and implementation work equally well on more complex translation
graphs (see also [3,4]).

We launched 15 peers, each on a separate computer and each locally storing a
triple related to a different category. By issuing a query from the peer using C0,
we could retrieve all the 15 triples from the 15 semantic domains by forwarding
the query through the translation link hierarchy. A second setting was created by
replicating this first setting four times, running 60 peers using the same category
setting (i.e., we had 4 peers per category each storing one triple locally).

(a) Evaluation setup (b) Semantic Gossiping, 15/60 peers

Fig. 9. Semantic gossiping evaluation, 15/60 peers, 15 translation links

The results, time elapsed versus quantity of results (up to 15/60 results)
received by the peer issuing the query, for both settings and for iterative and
recursive forwarding are displayed on Fig. 9(b). As expected, iterative forwarding
works in a fairly linear manner. Also, note the initial delay incurred by letting
one peer process and send all the queries for iterative forwarding with 60 peers.
Our recursive approach proceeds more in stages, as it delegates the whole process
of query forwarding to intermediary peers. This second approach proves to be
particularly scalable with the number of peers: Results are rather independent
of the number of peers or results returned, since the number of peers processing
and forwarding the query increases with the network size.

7 Related Work

Hyperion [9] is an on-going project which proposes an architecture and outlines a
set of challenges for decentralized data management in P2P systems. SWAP [12]
is an approach combining P2P and Semantic Web techniques. It relies on an
RDF(S) model and on structure extraction for handling queries in a P2P setting.
Edutella [15] employs a super-peer topology and facilitates the clustering of
data based on ontology, rule, or query. In PeerDB [17], each peer holds a set
of locally available metadata (Local Dictionary) and a set of metadata that can
be accessed by other nodes in the network (Export Dictionary). Metadata can

120 K. Aberer et al.

be added through an SQL query facility. The system if based on BestPeer [16]
which employs mobile agents to satisfy queries. No global schema is imposed but
the process is not fully automated, as the user has to decide which mappings
are actually meaningful. The Piazza peer data management project [22] takes an
approach to semantic heterogeneity that is similar to Semantic Gossiping. Unlike
our approach, Piazza does not provide any measures to judge the (in)correctness
of mappings. The indexing is centralized and thus the scalability of the system
is limited.

All the above approaches address semantic interoperability but offer limited
scalability. Other approaches address scalability but do not deal with seman-
tic interoperability. For example, Peer-to-Peer Information Exchange Retrieval
(PIER) [14] is a database-style query engine built on top of a DHT. Its main
focus is to provide database query processing facilities to widely distributed envi-
ronments. One of PIER’s restrictions is that it imposes global, standard schemas
following the rational that some schemas will become de facto standards. RDF-
Peers [10] builds on the Multi-Attribute Addressable Network (MAAN), which
extends Chord, to efficiently answer multi-attribute and range queries on RDF
triples. RDFPeers is a scalable RDF store, but does not provide any schematic
support (e.g., to handle user-defined schemas or to address semantic interoper-
ability issues).

8 Conclusions

To the best of our knowledge, GridVine is the first semantic overlay network
based on an scalable, efficient and totally decentralized access structure sup-
porting the creation of local schemas while fostering global semantic interop-
erability. Following the principle of data independence, our approach separates
the logical and physical aspects such that it can be generalized to any physical
infrastructure that provides functionalities similar to our P-Grid P2P system.

References

1. K. Aberer. Efficient Search in Unbalanced, Randomized Peer-To-Peer Search Trees.
Technical Report IC/2002/79, Swiss Federal Institute of Technology, Lausanne
(EPFL), 2002. http://www.p-grid.org/Papers/TR-IC-2002-79.pdf.

2. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: A self-organizing structured p2p system.
ACM SIGMOD Record, 32(3), 2003.

3. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The Chatty
Web approach for global semantic agreements. Journal of Web Semantics, 1(1),
2003.

4. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. In International World Wide Web Conference
(WWW), 2003.

5. K. Aberer and M. Punceva. Efficient Search in Structured Peer-to-Peer Systems:
Binary v.s. k-ary Unbalanced Tree Structures. In International Workshop On
Databases, Information Systems and Peer-to-Peer Computing, 2003.

GridVine: Building Internet-Scale Semantic Overlay Networks 121

6. K. Aberer (ed.). Special issue on peer to peer data management. ACM SIGMOD
Record, 32(3), 2003.

7. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews
of Modern Physics, 74(47), 2002.

8. A. Anaby-Tavor, A. Ga, and A. Trombetta. Evaluating matching Algorithms: the
Monotonicity Principle. In IJCAI Workshop on Information Integration on the
Web, 2003.

9. M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-
lopoulos. The Hyperion Project: From Data Integration to Data Coordination.
SIGMOD Record, 32(3), 2003.

10. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based on
A Structured Peer-to-Peer Network. In International World Wide Web Conference
(WWW), 2004.

11. A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated
Peer-to-Peer Systems. In International Conference on Distributed Computing Sys-
tems (ICDCS), 2003.

12. M. Ehrig, P. Haase, R. Siebes, S. Staab, H. Stuckenschmidt, R. Studer, and C. Tem-
pich. The SWAP Data and Metadata Model for Semantics-Based Peer-to-Peer
Systems. In Multiagent System Technologies (MATES), 2003.

13. J. M. Hellerstein. Toward network data indepence. ACM SIGMOD Record, 32(3),
2003.

14. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Sto-
ica. Querying the Internet with PIER. In Conference On Very Large Data Bases
(VLDB), 2003.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In
International World Wide Web Conference (WWW), 2002.

16. W. S. Ng, B. C. Ooi, and K. L. Tan. BestPeer: A self-configurable peer-to-peer
system. In International Conference on Data Engineering (ICDE), 2003.

17. B. C. Ooi, Y. Shu, and K.-L. Tan. Relational Data Sharing in Peer-based Data
Management Systems . ACM SIGMOD Record, 32(3), 2003.

18. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distributed Environment. In Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 1997.

19. E. Prud’hommeaux and B. Grosof. Rdf query and rules: A framework and survey.
http://www.w3.org/2001/11/13-RDF-Query-Rules/.

20. A. Seaborne. Rdql - a query language for rdf.
http://www.w3.org/Submission/RDQL/.

21. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applications. In ACM SIGCOMM
Conference, 2001.

22. I. Tatarinov, Z. Ives, J. Madhavan amd A. Halevy, D. Suciu, N. Dalvi, X. Dong,
Y. Kadiyaska, G. Miklau, and P. Mork. The Piazza Peer Data Management
Project. ACM SIGMOD Record, 32(3), 2003.

23. World Wide Web Consortium. Semantic web activity at the w3c.
http://www.w3.org/2001/sw/.

Bibster – A Semantics-Based Bibliographic
Peer-to-Peer System

Peter Haase1, Jeen Broekstra3, Marc Ehrig1, Maarten Menken2, Peter Mika2,
Mariusz Olko4, Michal Plechawski4, Pawel Pyszlak4, Björn Schnizler1,

Ronny Siebes2, Steffen Staab1, and Christoph Tempich1

1 Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
{ehrig, haase, staab, tempich}@aifb.uni-karlsruhe.de, schnizler@iw.uka.de

2 Vrije Universiteit Amsterdam, The Netherlands
{mrmenken, pmika, ronny}@cs.vu.nl

3 Aduna, Amersfoort, The Netherlands jeen@aduna.biz
4 Empolis, Warsaw, Poland {pap, mpl}@empolis.pl

Abstract. This paper describes the design and implementation of Bib-
ster, a Peer-to-Peer system for exchanging bibliographic data among re-
searchers. Bibster exploits ontologies in data storage, query formulation,
query routing and answer presentation: When bibliographic entries are
made available for use in Bibster, they are structured and classified ac-
cording to two different ontologies. This ontological structure is then
exploited to help users formulate their queries. Subsequently, the ontolo-
gies are used to improve query routing across the Peer-to-Peer network.
Finally, the ontologies are used to post-process the returned answers
in order to do duplicate detection. The paper describes each of these
ontology-based aspects of Bibster. Bibster is a fully implemented open
source solution built on top of the JXTA platform.

1 Introduction

The advantages of Peer-to-Peer architectures over centralized approaches have
been well advertised, and to some extent realized in existing applications: no cen-
tralized server (thus avoiding a bottleneck for both computational performance
and information update), robustness against failure of any single component,
scalability both in data volumes and the number of connected parties. However,
besides being the solution to many problems, the large degree of distribution
of Peer-to-Peer systems is also the cause of a number of new problems: The
lack of a single coherent schema for organizing information sources across the
Peer-to-Peer network hampers the formulation of search queries, duplication of
information across the network results in many duplicate answers to a single
query, and answers to a single query often require the integration of informa-
tion residing at different, independent and uncoordinated peers.Finally, query
routing and network topology (which peers to connect to, and which peers to
send/forward queries to) are significant problems.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 122–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 123

The research community has recently turned to the use of semantics in Peer-
to-Peer networks to alleviate these problems [1], [2], [3]. The use of semantic
descriptions of datasources stored by peers and indeed of semantic descriptions
of peers themselves helps in formulating queries such that they can be understood
by other peers, in merging the answers received from other peers, and in routing
queries across the network. In particular, the use of ontologies and of Semantic
Web technologies has been identified as promising for Peer-to-Peer systems.

The scenario that we have envisioned is that researchers share bibliographic
metadata in a community with a Peer-to-Peer system. The data may have been
obtained from local BibTeX files or from bibliography servers like the DBLP
database1 or CiteSeer2. As one may easily recognize, this scenario (like some
others that we do not elaborate upon in this paper) exhibits two characteristics
that strongly require a semantics-based Peer-to-Peer system.

First, a centralized solution does not exist and cannot exist, because of the
multitude of informal workshops that researchers refer to, but that do not show
up in centralized resources such as DBLP. Any such centralized resource will
only cover a limited scientific community. For example, DBLP covers a lot of
Artificial Intelligence, but almost no Knowledge Management, whereas a lot of
work is being done in the overlap of these two fields. At the same time, many
individual researchers are willing to share their resources, provided they do not
have to invest work in doing so.

Second, the use of Semantic Web technology is crucial in this setting. Al-
though a small common-core ontology of bibliographic information exists (title,
author/editor, etc), much of this information is very volatile and users define
arbitrary add-ons, for example to include URLs or abstracts of publications.

In this paper we will describe the design of the Bibster system and empha-
size the semantic components and their use: semantic extraction of bibliographic
metadata in section 4, semantic querying in section 5, peer selection using se-
mantic topologies in section 6, and semantic duplicate detection in section 7.
Furthermore, Bibster has been fully implemented and we present evaluation re-
sults from a field experiment in section 8.

2 Major Bibster Use Cases

Bibster is aimed at researchers that share bibliographic metadata. Requirements
for Bibster must include capabilities that support their daily work. Researchers
may want to:

1. query a single specific peer (e.g. their own computer, because it is sometimes
hard to find the right entry there), a specific set of peers (e.g. all colleagues
at an institute) or the entire network of peers (to obtain the maximal recall
at the price of low precision).

1 http://dblp.uni-trier.de/
2 http://citeseer.org/

124 P. Haase et al.

Fig. 1. Searching for publications about database management authored by Codd

2. search for bibliographic entries using simple keyword searches, but also more
advanced, semantic searches, e.g. for publications of a special type, with
specific attribute values, or about a certain topic.

3. integrate results of a query into a local knowledge base for future use. Such
data may in turn be used to answer queries by other peers. They may also be
interested in updating items that are already locally stored with additional
information about these items obtained from other peers.

The screenshot in figure 1 partially indicates how these use cases are realized
in Bibster. The Scope widget allows for defining the targeted peers, the Search
and Search Details widgets allow for keyword and semantic search; Results Table
and BibtexView widgets allow for browsing and re-using query results. The query
results are visualized in a list grouped by duplicates. They may be integrated
into the local repository or exported in formats such as BibTeX and HTML.

3 Design of Bibster

3.1 Ontologies in Bibster

Ontologies are crucial throughout the usage of Bibster, viz. for importing data,
formulating queries, routing queries, and processing answers.

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 125

Firstly, the system enables users to import their own bibliographic metadata
into a local repository. Bibliographic entries made available to Bibster by a user
(cf. section 4) are automatically aligned to two common ontologies: The first
ontology (SWRC3) describes different generic aspects of bibliographic metadata
(and would be valid across many different research domains), the second ontol-
ogy (ACM Topic Hierarchy4) describes specific categories of literature for the
Computer Science domain.

Secondly, queries are formulated in terms of the two ontologies: Queries may
concern fields like author, publication type, etc. (using terms from the SWRC
ontology) or queries may concern specific Computer Science terms (using the
ACM Topic Hierarchy).

Thirdly, queries are routed through the network depending on the expertise
models of the peers describing which concepts from the ACM ontology a peer
can answer queries on. A matching function determines how closely the semantic
content of a query matches the expertise model of a peer. Routing is then done
on the basis of this semantic ranking.

Finally, answers are returned for a query. Due to the distributed nature and
potentially large size of the Peer-to-Peer network, this answer set might be very
large, and contain many duplicate answers. Because of the semistructured nature
of bibliographic metadata, such duplicates are often not exactly identical copies.
Ontologies help to measure the semantic similarity between the different answers
and to remove apparent duplicates as identified by the similarity function.

3.2 Bibster Architecture and Modules

The Bibster system has been implemented as an instance of the SWAP System
architecture as introduced in [1]. Figure 2 shows a high-level design of the archi-
tecture of a single node in the Peer-to-Peer system. We will now briefly present
the individual components as instantiated for the Bibster system.
Communication Adapter: This component is responsible for the network
communication between peers. It serves as a transport layer for other parts of the
system, for sending and forwarding queries. It hides and encapsulates all low-level
communication details from the rest of the system. In the specific implementation
of the Bibster system we use JXTA as the communication platform.
Knowledge Sources: The knowledge sources in the Bibster system are sources
of bibliographic metadata, such as BibTeX files stored locally in the file system
of the user.
Knowledge Source Integrator: The Knowledge Source Integrator is responsi-
ble for the extraction and integration of internal and external knowledge sources
into the Local Node Repository. In section 4 we describe the process of semantic
extraction from BibTeX files. In section 7 we explain how the knowledge of local
and remote sources can be merged, i.e. how duplicate query results are detected.

3 http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml
4 http://www.acm.org/class/1998/

126 P. Haase et al.

Fig. 2. SWAP System Architecture

Local Node Repository: In order to manage its information models and views
as well as information acquired from the network, each peer maintains a Lo-
cal Node Repository providing the following functionality: (1) Mediate between
views and stored information, (2) support query formulation and processing,
(3) specify the peer’s interface to the network, and (4) provide the basis for
peer ranking and selection. In the Bibster system, the Local Node Repository is
based on the RDF-S Repository Sesame [4]. The query language SeRQL is used
to formulate semantic queries against the Local Node Repository, as described
in section 5.
Informer: The task of the Informer is to proactively advertise the available
knowledge of a peer in the Peer-to-Peer network and to discover peers with
knowledge that may be relevant for answering the user’s queries. This is realized
by sending advertisements about the expertise of a peer. In the Bibster system,
these expertise descriptions contain a set of topics that the peer is an expert
in. Peers may accept – i.e. remember – these advertisements, thus creating a
semantic link to the other peer. These semantic links form a semantic topology,
which is the basis for intelligent query routing (cf. section 6 for details).
Query Replier: The Query Replier is the coordinating component controlling
the process of distributing queries. It receives queries from the User Interface or
from other peers. Either way it tries to answer the query or distribute it further
according to the content of the query. The decision to which peers a query should
be sent is based on the knowledge about the expertise of other peers.
User Interface: The User Interface (Figure 1) allows the user to import, create
and edit bibliographic metadata as well as to easily formulate queries.

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 127

4 Semantic Extraction of Bibliographic Metadata

Many researchers have accumulated extensive collections of BibTeX files for their
bibliographic references. However, these files are semi-structured and thus single
attributes may be missing or may not be interpreted correctly. For interchanging
bibliographic data in a semantically based Peer-to-Peer network it has to be
represented in a structured and formal way. BibToOnto is a component of Bibster
for extracting explicit knowledge of bibliographic items. Plain BibTeX files are
transformed into an ontology based knowledge representation.

The target ontology is the Semantic Web Research Community Ontology
(SWRC), which models among others a research community, its researchers,
topics, publications, tools, and properties between them. The SWRC ontology
defines a shared and common domain theory which helps users and machines to
communicate concisely and supports the exchange of semantics.

BibToOnto automatically classifies bibliographic entries according to the
ACM topic hierarchy. Additionally, it is possible to reclassify the entries man-
ually in the user interface of Bibster. The ACM topic hierarchy is a standard
schema for describing and categorizing computer science literature. It covers 1287
topics of the computer science domain. In addition to the sub- and supertopic
relations, it also provides information about related topics.

The following example shows a transformation of a BibTeX entry to a SWRC
ontology based item. The result5 is represented as an RDF graph in figure 3.

Example 1. @ARTICLE{codd70relational
author = "Edgar F. Codd",
year = "1970",
title = "A relational model for large shared data banks",
journal = "Communications of ACM",
volume = "13",
number = "6",
pages = "377--387"}

5 Semantic Querying

Each peer node in the Bibster system manages a local RDF repository with
bibliographic data extracted by BibToOnto or integrated from other peers. The
query language interface to the local RDF repository is SeRQL [5].

SeRQL (Sesame RDF Query Language) is an RDF/RDF-S query language
that was developed in the context of the SWAP project to address practical
requirements that were not sufficiently met by other query languages.
SeRQL Design Principles. Several characteristics are urgently required in the
context of Bibster (but also of many other systems) for an RDF/RDF-S query
language like SeRQL. In particular, it must:
5 For better readability we used a concatenation of the author name and the title of

the publication as a URI in this example. In the Bibster system however we calculate
hash codes over all attribute values to guarantee the uniqueness of URIs.

128 P. Haase et al.

Fig. 3. SWRC Sample Metadata

1. be functional such that each query returns a RDF graph, which may be
integrated into the local repository or queried again,

2. be aware of the (optional) schema,
3. let the user formulate path expressions for navigating the RDF graph, e.g.

the combination of SWRC and ACM topic hierarchy,
4. be able to deal with optional values, e.g. a publisher field may be given or

not.

Without showing all capabilities of SeRQL in full detail6, we briefly show
how SeRQL queries are composed, and how tasks in the Bibster system are
performed using SeRQL.

(1) SeRQL uses a select-from-where or construct-from-where filter,
where the select or construct clauses specify projections, the from clause
specifies a graph match template (by means of path expressions), and the where
clause allows the definition of additional boolean constraints on matched values
in the path expressions.

(2) SeRQL takes the RDF schema into account by mapping from the given
graph to its formal model.

(3) When navigating the RDF graph, SeRQL exploits the formal semantics
of path labels. For example, <rdfs:subClassOf> is interpreted as a reflexive
transitive relation and upward inheritance of instances is interpreted (through
the <rdf:type> relation (cf. [5] for full details).

(4) Bibtex entries may be incomplete. SeRQL allows to distinguish between
optional and required elements in the query and, hence, is flexible enough to
deal with these circumstances.
A Querying Scenario. In our running example, a researcher is querying for
journal articles written by the author Codd about database management. Inter-
nally, this request is formulated as a SeRQL query that looks as follows:
6 See http://www.openrdf.org/doc/SeRQLmanual.html for a complete overview.

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 129

Example 2.
construct distinct

{s} prop {val};
<rdf:type> {t};
<swrc:author> {x} <rdf:type> {<rdf:Seq>};

<rdfs:member> {author} prop_author {val_author}
from

{s} <serql:directType> {t};
<rdf:type> {<swrc:Article>};
prop {val};
<swrc:isAbout> {<acm:ACMTopic/Information_Systems/Database_Management>};
<swrc:author> {x} <rdfs:member> {} <swrc:lastName> {lname},
[{x} <rdfs:member> {author} prop_author {val_author}]

where prop != <rdf:type> and lname like "Codd"
using namespace

swrc = <!http://www.semanticweb.org/ontologies/swrc-onto-2001-12-11.daml#>,
acm = <!http://daml.umbc.edu/ontologies/classification#>

Compare the structure of the from-clause to the representation of the RDF
graph given in figure 3. The from-clause retrieves not only the identifier for the
particular journal entry (”codd 70 relational”, matched by s), but also the graph
structure surrounding it, which essentially gives the entry its meaning: the name
of the author, the type of publication, the year it was published, the number of
pages, etc. Also, if the first and middle names of an author are known, the query
retrieves those (but it does not fail if these are not known).

The use of schema-awareness is evident in the use of typing information on s:
s need not only be of type swrc:Article, we also retrieve its specific (or direct)
type. Being functional plays a role as well: A graph transformation is used to
create a query result that can be easily processed to be given back to the user
through the GUI.

6 Expertise Based Peer Selection

The scalability of a Peer-to-Peer network is essentially determined by the way
how queries are propagated in the network. Peer-to-Peer networks that broadcast
all queries to all peers do not scale – intelligent query routing and network
topologies are required to be able to route queries to a relevant subset of peers
that are able to answer the queries.

Modern routing protocols like Chord [6] and CAN [7] allow for sophisticated
query routing based on distributed indices. More recently, in the Semantic Web
context, schema based Peer-to-Peer networks such as the one described in [8] have
emerged based on complex, extensible semantic descriptions of resources. They
allow for complex queries against these metadata instead of simple keyword-
based queries. Another semantic-based approach is pSearch [9], a decentralized
non-flooding Peer-to-Peer information retrieval system. pSearch distributes doc-
ument indices through the Peer-to-Peer network based on document semantics
generated by Latent Semantic Indexing (LSI). The search cost (in terms of nodes
searched and data transmitted) for a given query is thereby reduced, since the
indices of semantically related documents are likely to be co-located in the net-
work. Here we give an overview of the model of expertise based peer selection

130 P. Haase et al.

as proposed in [10] and how it is used in the Bibster system. In this model,
peers use a shared ontology to advertise semantic descriptions of their expertise
in the Peer-to-Peer network. The knowledge about the expertise of other peers
forms a semantic topology, independent of the underlying network topology. If
the peer receives a query, it can decide to forward it to peers about which it
knows that their expertise is similar to the subject of the query. The advantage
of this approach is that queries will not be forwarded to all or a random set of
known peers, but only to the ones that have a good chance of answering it.

Semantic Description of Expertise
Peers. The Peer-to-Peer network consists of a set of peers P . Every peer p ∈ P
has a Local Node Repository, which stores the bibliographic metadata.
Common Ontology. The peers share an ontology O, which is used for describ-
ing the expertise of peers and the subject of queries. In our case, O is the ACM
topic hierarchy that contains a set of topics T .
Expertise. An expertise description is an abstract, semantic description of the
Local Node Repository of a peer based on the shared ontology O. The expertise
E of a peer is thus defined as E ⊆ 2T , where each e ∈ E denotes a set of ACM
topics, for which a peer provides classified instances.
Advertisements. Advertisements A ⊆ P ×E are used to promote descriptions
of the expertise of peers in the network. An advertisement a ∈ A associates a
peer p with an expertise e. Peers decide autonomously, without central control,
whom to promote advertisements to and which advertisements to accept. This
decision is based on the semantic similarity between expertise descriptions.

Matching and Peer Selection
Queries. Queries q ∈ Q are posed by a user and are evaluated against the local
node repositories of the peers. First a peer evaluates the query against its local
node repository and then decides which peers the query should be forwarded to.
Subjects. A subject is an abstraction of a given query q expressed in terms of
the common ontology. The subject specifies the required expertise to answer the
query. In our scenario, the subjects of queries are defined as S ⊆ 2T , each s is the
set of ACM topics that are referenced in the query. E.g., the extracted subject of
the query in example 2 would be Information Systems/Database Management.
Similarity Function. The similarity function Sim : S × E �→ [0, 1] yields the
semantic similarity between a subject s ∈ S and an expertise description e ∈ E.
An increasing value indicates increasing similarity. If the value is 0, s and e are
not similar at all, if the value is 1, they match exactly. Sim is used for deter-
mining to which peers a query should be forwarded. In Bibster, the similarity
function SimTopics is based on the idea that topics which are close according
to their positions in the topic hierarchy are more similar than topics that have
a larger distance. For example, an expert on the ACM topic Information Sys-
tems/Information Storage and Retrieval has a higher chance of giving a correct
answer on a query about Information Systems/Database Management than an
expert on a less similar topic like Hardware/Memory Structures.

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 131

To be able to define the similarity of a peer’s expertise and a query subject,
which are both represented as a set of topics, we first define the similarity for in-
dividual topics. [11] have compared different similarity measures and have shown
that for measuring the similarity between concepts in a hierarchical structured
semantic network, like the ACM topic hierarchy, the following similarity measure
yields the best results:

simTopic(t1, t2) =

{
e−αl · eβh−e−βh

eβh+e−βh if t1 �= t2,

1 otherwise

Here l is the length of the shortest path between topic t1 and t2 in the
graph spanned by the SubTopic relation. h is the level in the tree of the direct
common subsumer from t1 and t2. α ≥ 0 and β ≥ 0 are parameters scaling the
contribution of shortest path length l and depth h, respectively. Based on their
benchmark data set, the optimal values are: α = 0.2, β = 0.6.
Peer Selection Algorithm. The peer selection algorithm returns a ranked set
of peers, where the rank value is equal to the similarity value provided by the
similarity function. Therefore, peers that have an expertise more similar to that
of the subject of the query will have a higher rank. From this set of ranked
peers one can, for example, select the best n peers, or all peers whose rank value
is above a certain threshold. In the Bibster system we select the best n peers
that have not yet received the query along the message path, where n can be
specified. A maximum number of hops (set to 4 for the field experiment) further
limits the forwarding of queries.

Semantic Topology
The knowledge of the peers about the expertise of other peers is the basis for a
semantic topology. Here it is important to state that this semantic topology is
independent of the underlying network topology. At this point, we do not make
any assumptions about the properties of the topology on the network layer.
The semantic topology can be described by the following relation:

Knows ⊆ P×P , where Knows(p1, p2) means that p1 knows about the expertise
of p2.

The relation Knows is established by the selection of which peers a peer sends
its advertisements to. Furthermore peers can decide to accept an advertisement,
e.g. to include it in their registries, or to discard the advertisement. The semantic
topology in combination with the expertise based peer selection is the basis for
intelligent query routing.

7 Semantic Duplicate Detection

When querying the Bibster network one receives a large number of results with
an often high number of duplicates. This is due to the fact that we do not

132 P. Haase et al.

have a centralized but many distributed local repositories. Furthermore, the
representation of the metadata is very heterogeneous and possibly even contra-
dicting. To enable an efficient and easily usable system Bibster presents query
results grouping duplicates together. Duplicates in Bibster are bibliographic en-
tries which refer to the same publication, person, or organization in the real
world, but are modelled as different resources. Bibster uses specific similarity
functions to recognize two resources as being duplicates.
Similarity Function. A similarity function for RDF resources R of the local
node repository is a function sim : R×R → [0..1].

For each resource type (publication, person, organization), we have compiled
a set of specific features used to assess the similarity between two of its in-
stances. For instance, publications are assessed based on their titles, publication
types, authors, years, ACM topics, etc. For each of the features we use different
individual similarity functions, which are grouped as follows:

The data value level focuses on comparisons of data values, which in RDF
are represented as typed literals. For example, to determine the similarity of
data values of type string (e.g. to compare the last names of persons) we use the
syntactic similarity of [12]. At the graph structure level we check how resources
are related to each other. For example, a publication resource is linked to person
resources, e.g. authors. Thus we can compare two publications on the basis of
the similarity of the sets of authors. This feature alone is not deciding, but it
supports the hypothesis of having duplicate entries.

Similarity measures at the ontology level extend the ones at the graph struc-
ture level by ontology specific characteristics. To determine the similarity of two
publications based on their topics we make use of the ACM topic hierarchy. We
apply the hierarchical similarity function as presented earlier in this paper [13].

Applying background knowledge about a specific domain, we can define more
appropriate similarity functions. For example, in the SWRC domain ontology
there are many subconcepts of publications: articles, books, and technical reports
to just name a few. Unknown publication types are often provided as Misc. We
can thus define a function that returns a value of 1 if the publication type is
identical, a value of e.g. 0.75 if Misc is one of it, and 0 otherwise.

From the variety of individual similarity functions, an overall value is ob-
tained with an aggregated similarity function, using a weighted average over
the individual functions. For Bibster, the weights have been assigned based on
experiments with sample data. More precisely, several duplicates were detected
manually. From these training duplicates the weights were adjusted to achieve a
maximal f-measure (combination of precision and recall) value.
The Duplicate Relation. As duplicates we consider those pairs of resources
whose similarity is larger than a certain threshold

t ∈ [0..1] : Dt := {(x, y)|sim(x, y) ≥ t}

If we assume that the duplicate relation is transitive, we can define the transitive
closure as:

TC(Dt) := {(x, z)|(x, y) ∈ Dt ∧ (y, z) ∈ Dt}

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 133

This transitive closure essentially represents clusters of semantically similar re-
sources.
Resource Merging. Instead of presenting all individual resources of the query
result, duplicates are visualized as one, merged, resource. The merged resources
comprise the union of statements of the individuals identified as duplicates. In
the case of conflicting property values, we apply heuristics for the merging of
resources (e.g. for booktitles to select the most detailed value with the least
abbreviations).

8 Results

The Bibster system that implements the methods presented in this paper has
been evaluated by means of a public field experiment. The user actions and
system events are continuously logged and analyzed to evaluate the user behavior
and system performance. We have analyzed the results for a period of two months
(June and July 2004) and have obtained the following interesting results: A
total of 146 peers from various organizations spread mainly over Europe and
North America used the Bibster system. The users shared more than 70000
bibliographic entries. While seventeen peers shared more than 1000 items each,
accounting for 84% of the total content, a lot of peers provided only little content
or were “free-riding”.

The users performed a total of 1782 queries. The SWRC ontology was used
for about half of all queries, mainly for the purpose to search for special types
of publications (e.g. only for articles) or for publications of a given author. In
348 queries the users asked for topics of the ACM topic hierarchy. Thereby it
is obvious that the users are accepting the ontology based searching capabilities
and that there is a benefit for them in using these ontologies.

With respect to query routing, with the expertise based peer selection we were
able to reduce the number of query messages by about 50 percent, while retaining
the same recall of documents compared with a naive broadcasting approach.
Figure 4 shows the number of forwarded query messages sent per query and the
precision of the peer selection (the percentage of the reached peers that actually
provided answers to a given query). Although we have shown an improvement in
the performance, the results also show that with a network of the size as in the
field experiment, a naive approach is also acceptable. On the other hand, with a
growing number of peers, query routing and peer selection becomes critical: In
simulation experiments with larger peer networks with thousands of peers, we
have shown improvements in the order of one magnitude in terms of recall of
documents and relevant peers [10].

Lessons Learned

This section summarizes some experiences we have gained from the development
and application of Bibster.

Bibster – A Semantics-Based Bibliographic Peer-to-Peer System 135

ports distributed search over all the connected metadata repositories. This sce-
nario which is similar to our bibliographic Peer-to-Peer scenario, however, their
system has not been implemented up to this point.

P-Grid [15] is a structured, yet fully-decentralized Peer-to-Peer system based
on a virtual distributed search tree. It aims at providing load-balancing and fault-
tolerance, assuming that peers fail frequently and are online with low probability.
P-Grid also considers updates with an update algorithm based rumor spreading.

The DFN Science-to-Science (S2S) [16] system enhances content based
searching by using peer-to-peer technology to make locally generated indexes
accessible in an ad hoc manner. Whereas Bibster is fully distributed, S2S uses a
kind of super peers (Search Hubs) to route queries and cache information.

Various systems address the issue of heterogeneity in Peer-to-Peer systems on
the schema level, such as the Piazza peer data management system [17], which
allows for information sharing with different schemas relying on local mappings
between schemas.

10 Conclusion

In this paper, we have described the design and implementation of Bibster, a
semantics-based Peer-to-Peer system for the exchange of bibliographic metadata
between researchers. For this purpose, Bibster exploits lightweight ontologies,
expressed in RDF Schema in all its crucial aspects: data-organisation, query
formulation, query routing and duplicate detection. To our knowledge, Bibster
now constitutes the first ontology-based Peer-to-Peer systems ready for fielded
deployment.

In general, there are interesting alternatives for each of the different aspects
(e.g., [2] for querying or [15] for query routing) and, actually, we are still exploring
multiple approaches to optimize the overall system (e.g., [18] for query routing).
In practice, however, it constitutes a major challenge to integrate these different
components into a coherent system like Bibster.

The next steps in the development of Bibster are, (i) its optimization (e.g.,
manual query optimization), (ii) its spreading to further user groups and, (iii)
the extension of Bibster to better account for personalized semantic structures,
based on the two common core ontologies, e.g. peer-local extensions of the ACM
topic hierarchy.

The reader may find further reading material on Bibster, its under-
lying technologies and related material in the open available project
deliverable documentation at http://swap.semanticweb.org/ and
http://bibster.semanticweb.org/.

Acknowledgments. Research reported in this paper has been partially fi-
nanced by the EU in the IST projects SWAP (IST-2001-34103) and SEKT
(IST-2003-506826). We would like to thank our colleagues for fruitful discus-
sions.

136 P. Haase et al.

References

1. Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Kampman, A., Sabou, M.,
Siebes, R., Staab, S., Stuckenschmidt, H., Tempich, C.: A metadata model for
semantics-based peer-to-peer systems. In: Proceedings of the WWW’03 Workshop
on Semantics in Peer-to-Peer and Grid Computing. (2003)

2. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: Edutella: A P2P networking infrastructure based on rdf. In: Pro-
ceedings to the Eleventh International World Wide Web Conference. (2002)

3. Castano, A., Ferrara, S., Montanelli, S., Pagani, E., Rossi, G.: Ontology-
addressable contents in p2p networks. In: Proceedings of the WWW’03 Workshop
on Semantics in Peer-to-Peer and Grid Computing. (2003)

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing
and querying rdf data and schema information (2001)

5. Broekstra, J., Kampman, A.: Serql: An rdf query and transformation language
(2004) Submitted to the International Semantic Web Conference, ISWC 2004.

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for Internet applications. In: Proceedings of
the ACM SIGCOMM ’01. (2001)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. of ACM SIGCOMM ’01. (2001)

8. Nejdl, W., et al.: Super-peer-based routing and clustering strategies for rdf-based
peer-to-peer networks. In: Proceedings of the Twelfth International World Wide
Web Conference (WWW 2003), Budapest, Hungary (2003)

9. Tang, C., Xu, Z., Mahalingam, M.: pSearch: Information retrieval in structured
overlays. In: ACM HotNets-I. (2002)

10. Haase, P., Siebes, R., van Harmelen, F.: Peer selection in peer-to-peer networks
with semantic topologies. In: International Conference on Semantics of a Networked
World: Semantics for Grid Databases, June 2004, Paris. (2004)

11. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity
between words using multiple information sources. Transactions on Knowledge
and Data Engineering 15 (2003) 871–882

12. Maedche, A., Staab, S.: Comparing ontologies - similarity measures and a com-
parison study. In: Proc. of EKAW-2002. (2002)

13. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. In: IEEE Transactions on Systems, Man and Cybernetics.
(1989) 17–30

14. Ahlborn, B., Nejdl, W., Siberski, W.: OAI-P2P: A peer-to-peer network for open
archives. In: Workshop on Distributed Computing Architectures for Digital Li-
braries - ICPP2002. (2002)

15. Aberer, K., Mauroux, P.C., Datta, A., Despotovic, Z., Hauswirth, M., Punceva,
M., Schmidt, R.: P-Grid: a self-organizing structured p2p system. ACM SIGMOD
Record 32 (2003) 29–33

16. Wertlen, R.: Dfn science-to-science: Peer-to-peer scientific research. In: Proceedings
of the Terena Networking Conference (TNC 2003), Zagreb, Croatia (2003)

17. Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.,
Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project.
SIGMOD Record 32 (2003)

18. Tempich, C., Staab, S., Wranik, A.: REMINDIN’: Semantic query routing in peer-
to-peer networks based on social metaphors. In: Proc. of the 13th Int. World Wide
Web Conference, WWW 2004. (2004)

Top-k Query Evaluation
for Schema-Based Peer-to-Peer Networks

Wolfgang Nejdl1, Wolf Siberski1, Uwe Thaden1, and Wolf-Tilo Balke2

1 L3S and University of Hannover, Hannover
{nejdl,siberski,thaden}@l3s.de

2 EECS, University of California, Berkeley
balke@eecs.berkeley.edu

Abstract. Increasing the number of peers in a peer-to-peer network usually
increases the number of answers to a given query as well. While having more
answers is nice in principle, users are not interested in arbitrarily large and
unordered answer sets, but rather in a small set of “best” answers. Inspired by the
success of ranking algorithms in Web search engine and top-k query evaluation
algorithms in databases, we propose a decentralized top-k query evaluation
algorithm for peer-to-peer networks which makes use of local rankings, rank
merging and optimized routing based on peer ranks, and minimizes both
answer set size and network traffic among peers. As our algorithm is based on
dynamically collected query statistics only, no continuous index update processes
are necessary, allowing it to scale easily to large numbers of peers.

Keywords: Top-k retrieval, peer-to-peer query processing, ranking.

1 Introduction

Meaningful querying for information, whether on the Web or in information systems
and databases, often retrieves answers together with an indication of how well the re-
sults match the query. Various kinds of metadata available through the Semantic Web
offer additional semantic information which may be integrated into the retrieval pro-
cess. However, this generally comes at the price of large result set sizes that are often
unmanageable for the individual user. Since users are usually only interested in a few
most relevant answers to their query, the goal in top-k retrieval techniques is to return
manageable result sets consisting of these most relevant answers.

This paper is concerned with querying peer-to-peer networks, which in recent years
turned out to be a good basis for distributed information storage and exchange infras-
tructures. We will focus on schema-based peer-to-peer networks like Edutella [1], which
is a peer-to-peer infrastructure for storing and retrieving RDF metadata in a distributed
environment.

Let us consider a sample scenario, where the need for restricting the number of
answers to a given query becomes apparent. Suppose that a student, John, prepares for
an exam in logic programming and looks for appropriate exercises. We can assume that
the educational ontology he uses allows him to specify his request for exercises, and his
topic ontology ACM-CCS1 lets him specify ’Logic Programming’ as topic. As this is a

1 ACM Computing Classification System, http://www.acm.org/class/1998/

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 137–151, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 W. Nejdl et al.

fairly common area, we’ll expect him to get a large list of matches more or less matching
the query (e.g. some exercises specifically on logic programming, some exercises that
contain logic programming questions among others and a number of exercises discussing
just a few aspects of the topic). With current peer-to-peer infrastructures (including
Edutella) there is no way for John to retrieve a list where all exercises are ordered by
relevance, and only the best ones are presented in the first step, to be expanded whenever
needed. John might also try to be more restrictive in subsequent queries until a sufficiently
small result set is retrieved, but without knowing exactly which data are available this is
a quite tedious process.

The situation gets even worse if we allow approximate keyword search. Suppose
John looks specifically for Prolog programming exercises, but the corresponding entry
is not part of the used topic ontology. A good solution would be to allow a combined
schema-based and keyword search. John could then add the keyword ’Prolog’ to his
query. Again, keyword searches which return unordered lists of matching documents are
not particularly useful. Similar to internet search engines, the success of any keyword
search depends on its ability to identify a limited set of the most relevant documents.

Ranking scores each resource that matches a query using a certain set of criteria
and then returns it as part of a ranked list. Additionally, we need to restrict the number
of results, to make it easier for the user to use the results, and to minimize traffic in a
peer-to-peer environment. John then gets a manageable number of results which includes
those answers that are the most relevant for his query. This approach is referred to as
top-k retrieval in database query processing, where only the k best matching resources
are returned to the user.

In this paper we present a distributed top-k algorithm for peer-to-peer infrastructures.
Our algorithm retrieves the k most relevant results in a peer-to-peer network without
having to rely on any centralized or global knowledge and without need for a complete
distributed index. Furthermore, our top-k algorithm does not only deliver more relevant
results, it also allows us to optimize query distribution and routing. Based on statis-
tics gathered at super-peers, queries are distributed only to the most promising peers.
Compared to current approaches like PlanetP [2], because we do not need to maintain a
complete distributed index, we avoid continuous updates whenever peers join or leave
the network. Instead we show how information can be gathered dynamically based on
the queries posed to the network, enabling advanced routing and top-k answers based
on previous query statistics.

2 Peer-to-Peer Infrastructures and Ranking for Top-k Routing

2.1 Schema-Based Peer-to-Peer Networks

Schema based querying. Let us first start with the necessary background on peer-to-
peer infrastructures for our algorithm. In previous papers, we have described the RDF-
based peer-to-peer infrastructure Edutella [1,3] which is an example of a more advanced
approach to peer-to-peer networks called schema-based peer-to-peer networks. Schema-
based peer-to-peer networks have a number of advantages compared to simpler peer-
to-peer networks such as Napster or Gnutella. Instead of prescribing one global schema

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 139

to describe content, they support arbitrary metadata schemas and ontologies, which is
crucial for the SemanticWeb, and thus have been investigated heavily during the last years
[4,5,6,7]. These systems allow complex and extensible descriptions of resources, and
provide more complex query capabilities than simple keyword-based search. Edutella
uses RDF and RDFS for resource and schema description. The distributed nature of RDF
is a perfect match to the distributed nature of peer-to-peer networks, and the flexibility
and extensibility of RDFS allows us to combine arbitrary schema elements for resource
description as well as for query formulation.

Semantic Routing. If we have additional semantic information about the data available in
the network, we can use this information to optimize query routing. [8] uses this approach
for an unstructured peer-to-peer network and evaluates different kinds of routing indices
used to forward requests in the right direction. Other peer-to-peer approaches which
support routing based on semantic characteristics are P-Grid [9,4] and Piazza [5].

Edutella uses a super-peer topology, where super-peers form the network backbone
and take care of routing queries through the network [3]. Only a small percentage of nodes
are super-peers, but these are assumed to be highly available nodes with high computing
capacity. In the Edutella network they are arranged in the HyperCuP topology [10].
The HyperCuP algorithm is capable of organizing peers into a recursive graph structure
from the family of Cayley graphs, out of which the hypercube is the most well-known
topology. This topology allows for log2 N path length and log2 N number of neighbors,
where N is the total number of nodes in the network (i.e. the number of super-peers in
our case). The algorithm works as follows: All edges are tagged with their dimension in
the hypercube. A node invoking a request sends the message to all its neighbors, tagging
it with the edge label on which the message was sent. Nodes receiving the message
forward it only via edges tagged with higher edge labels (see [10] for details).

The super-peers employ routing indices which explicitly take schema information
into account. Queries are analyzed regarding the schema elements used, and only peers
which actively use these are considered when distributing the query.

2.2 Ranking Results

The second ingredient for our algorithm is ranking. Ranking allows us to reduce the
overall number of answers in the result set and also to return close matches to avoid
empty result sets in case no exact matches are found. Answers returned are ordered
using a score value computed for each resource. We will use this score to limit the
number of answers and return only the k best matching results. Let us describe two
particularly useful ranking-methods, which we will then use in our algorithm presented
in 3.2.

Topic-distances in Taxonomies. In the context of the Semantic Web, the use of ontologies
and taxonomies to classify resources is very common. Given such a taxonomy, resources
are associated with topics/concepts in the hierarchy using appropriate metadata anno-
tations, and we can use methods as discussed in [11] to measure how similar and thus
how relevant a resource is with respect to a query.

140 W. Nejdl et al.

TFxIDF. TFxIDF stands for Term Frequency and Inverse Document Frequency and is a
content-based ranking method. It calculates the relevance of a document, based on how
often a search term appears in a document (term frequency TF), and how often the term
exists in the whole document collection (inverse document frequency IDF). The more
search terms are found in a document, the more important the document is, taking into
account how often the search term is found in the collection, i.e. weighting rare terms in
documents higher. A detailed introduction can be found in [12]. For a term ti from a set
of keywords and a document dj from a document collection Tr TFxIDF is defined as

TFxIDF (ti, dj) = n(ti, dj)︸ ︷︷ ︸
TF

· log
|Tr|
n(ti)︸ ︷︷ ︸

IDF

(1)

where n(ti, dj) denotes the number of occurrences of the term ti in the document dj

and n(ti) is the number of documents that contain the term ti.

3 Top-k Query Answering and Routing

3.1 Challenges

Top-k ranking in peer-to-peer networks has to address four challenges:

Mismatch in scoring techniques and input data used by the different peers can have a
strong impact on getting the correct overall top-scored objects. Since we want to mini-
mize network traffic, but nevertheless integrate the top-scored objects from all different
peers (and super-peers) within each super-peer, each super-peer has to decide how to
score answers to a given query. In this paper we will assume that every peer throughout
the network uses the same methods to score documents with respect to a query, though
input data to compute these scores may be different.

Using only distributed knowledge and thus different input data to score answers com-
plicates top-k retrieval, because many scoring measures that take global characteristics
into account simply cannot be evaluated correctly with limited local knowledge. For
our TFxIDF measure we can calculate term frequency locally for each document, but
inverted document frequency depends on all documents in the peer network and thus can
only be determined globally. Joining and leaving peers influences the calculation further.
When we calculate IDF based on the local knowledge of each peer only, monotonicity
of local rankings will not be preserved at the super-peer (who has more complete input
to calculate IDF) and thus the overall top score list at the super-peer may miss relevant
results. In the following we therefore will distinguish between two different kinds of
measures: those that can be evaluated locally, i.e. that rely on the characteristics/content
of the resources in a peer’s local collection only (possibly in connection with some
network-wide constants), and those that incorporate collection wide information, that
depends on the resources in the (global) collection of all peers.

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 141

Minimizing network data transfer means that we should strive to only exchange the
minimal amount of information necessary between peers and super-peers. A good ex-
ample for limiting network data transfer is semantic-based routing. Queries and results
are only routed through those (super-)peers that are associated with resources relevant
to the query. This is also relevant for merging result sets in super-peers, where we want
to minimize incoming data yet still produce a complete top-k answer list.

No continuous index updates. In peer-to-peer networks peers join and leave the network
at unpredictable intervals. Top-k retrieval and routing has to take this into account without
requiring continuous index updates limiting scalability of the algorithm. As a tradeoff
we are willing to accept a certain degree of non-optimality in our top-k results as long as
changes in the network are reflected “fast enough” in our results. Obviously, volatility
of the peers cannot be arbitrarily high, as no kind of statistics would be meaningful then.

Taking this considerations into account, we will describe a top-k answering and
routing algorithm, which is based on local rankings at each peer, aggregated during
routing of answers for a given query at the super-peers involved in the query answering
process. Each peer computes local rankings for a given query, results are merged and
ranked again at the super-peers and routed back to the query originator. On this way back,
each involved super-peer again merges results from local peers and from neighboring
super-peers and forwards only the best results, until the aggregated top k results reach
the peer that issued the corresponding query. While results are routed through the super-
peers, we maintain statistics which peers / super-peers returned the best results. This
information is subsequently used to directly route queries that were answered before
mainly to those peers able to provide top answers. Additionally, a small percentage of
queries will additionally be forwarded randomly to enable lazy update of these indices
to adapt to changes in the peer-to-peer network. The more volatile the network is, the
higher the percentage routed to random peers has to be in order to adapt to changing
data allocations.

The following sections describe the different parts of the algorithm, starting with
local ranking, then covering the merging of the results at the super-peers, and then
finally showing how we can improve routing based on query / answer statistics.

3.2 Ranking at Single Peers

When a super-peer receives a query, it asks its peers to rank their resources locally. The
results are top-k ranked variable bindings from each peer, which are sent back to the
super-peer, along with score information for merging at the super-peer. To simplify the
presentation we describe the algorithm taking the view of a user who wants to retrieve
URIs of the best matching RDF-resources. Thus, we will only refer to the resource
instead of complete variable bindings.

In the context of this paper, we restrict ourselves to queries which allow conjunctive
triple matching with constraints. Current Semantic Web query languages like RDQL [13]
allow only ’hard’ constraints, i.e. only resources for which all constraints are fulfilled
match the query. On the other hand, for SQL additional language constructs for spec-
ification of ’weak’ constraints, weighting of constraints and specification of the max
number of results have already been defined in previous work [14].

142 W. Nejdl et al.

Here we do not propose a language extension, but use a formal notation for our
queries instead. A query Q is a tuple Q = (AtomsQ, k) where AtomsQ = {(q, wq)}
define the constraints of the query together with a weight wq which is used to specify
how important the different atoms are for the query-result-rankings. Constraints have
the form q = (propq, opq, cq) where prop is an RDF property , op is an operator and c
is a constant RDF literal or resource.

Using this notation our scenario query from section 1 (find all ’lom-
edu:Exercise’s with a subject-classification in the ACM CCS most similar to ’acm-
ccs:LogicProgramming’ and where the content of the property ’dc:description’ is most
relevant with respect to the keyword ’prolog’) looks as follows:

Q = ({(q1, 0), (q2, 0.7), (q3, 0.3)} , 12) with
q1 = (rdf : type, =, lomedu: Exercise)
q2 = (dc : subject, ≈, acmccs: LogicProgramming)
q3 = (dc : description, �, ′prolog′).

The operators that can be used in queries are distinguished into ’hard’ and ’soft’
operators: OPhard = {=, <, >} and OPsoft = {≈, }: OP = OPhard ∪ OPweak.
In our example the hard operator = specifies that the results must be of the type lom-
edu:Exercise. Our soft operators are a similarity operator (’≈’) and a keyword search
operator(’ ’) (’≈’ measures similarities between topics in a taxonomy and ’ ’ triggers
a measurement based on keyword search in text).

In general our approach can build upon any kind of similarity measures. In this paper
we focus on two methods as examples: a measurement for distances in taxonomies and
TFxIDF for plain text searches. In contrast to the taxonomy distance calculation, TFxIDF
also needs non-local information.

Li et al. have developed and compared several measures for topic similarity in tax-
onomies [11]. We chose the following measure which yielded the best results in their
study. The similarity of two topics in a taxonomy is defined as

simp(r, prop, c) =

{
e−αl · eβh−e−βh

eβh+e−βh : if value(r, prop) �= c

1 : otherwise
(2)

where l is the shortest path between the topics in the taxonomy tree and h is the depth
level of the direct common subsumer. α and β are parameters to optimize the similarity
measurement (best setting is usually α = 0.2 and β = 0.6). We might sometimes get
different results on different peers due to different property values for the same resource.
This can be caused either by annotation errors or if the property value is user-dependent,
e.g. user ratings.

Centralized IR system use a global index containing term and inverse document
frequencies. In a distributed context this approach is not feasible. PlanetP solves this
problem by maintaining a replicated network-wide index which is updated using gos-
siping within the network [2]. In contrast, our approach does not build a complete index
in advance at all, but rather retrieves the necessary non-local information as soon as it
is needed for the evaluation of a query. For TFxIDF, this is the inverse document fre-
quency, and idf denotes the non-local value. In section 3.3 we describe how this value
is calculated and distributed to the peers. Corresponding to equation 1 we define tfidf

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 143

for a peer p and a resource r as

tfidfp(r, prop, c) = tfp(r, prop, c) · idf(prop, c) (3)

where tfp(r, prop, c) is the term frequency (= number of occurrences) of constant c
in property prop of resource r and idf(prop, c) is the network-wide inverse occurrence
frequency of c in property prop.

We use the index ’p’ to specify that a function or set is related to the context of peer p.
In this section we restrict ourselves to simple peers; in 3.3 we will also take super-peers
into account.

Depending on the type of property and constant used in the atom the appropriate
measure is selected.

scorep(q, r) =
{

tfidfp(r, propq, cq) : opq =
simp(r, propq, cq) : opq =≈ ∧(cq is a topic) (4)

Using the weights from the atoms we can calculate the overall score of a resource
with respect to a complex query.

scorep(Q, r) =

{
0 :∃q score(q, r) = 0 ∧ opq ∈ OPhard∑

q∈AtomsQ

wq · scorep(q, r) : otherwise

(5)

3.3 Query Distribution and Result Merging

In order to use the peer scores from single peers to determine the top k resources within
the network, peers do not only return the scores, but will need to provide some additional
information that will be used at the super-peer to do a ranking over the top k results from
the peers.

Let us first extend the single-peer measures discussed in the last section to take super-
peers into account. P denotes the set of all peers and SP the set of all super-peers. For
the set of all peers connected to a super-peer p we use the notation Pp and the notation
SPp(Q) for the set of super-peers a query has to be forwarded to from super-peer p2.

Score aggregation. Aggregation of taxonomy scores is straightforward, because this
measure is independent of the originating peer’s context. We use the maximum score of
a resource as consolidated score3:

simp(r, prop, c) =
{

Maxo∈Pp∪SPp(Q)(simo(r, prop, c)) : p ∈ SP
same as for simple peer : p ∈ P

(6)

2 We could introduce this set formally as well, but give only an informal sketch here, because the
HyperCuP topology is not our main focus in this paper. In HyperCuP, each super-peer can be
represented as a vector with binary entries, which describe the location regarding the dimension
in the graph. A super-peer will only forward queries to other super-peers that are one dimension
higher. To know which super-peers will send results for a query to the current super-peer we use
a difference-function on the vectors. This gives us a list of vectors representing the super-peers
that will return results.

3 In this and all following equations o and p always represent peers, r and s resources.

144 W. Nejdl et al.

Aggregating the TFxIDFs from the peers means we have to compute an overall TFx-
IDF measurement for all results delivered from the peers. We calculate the aggregation
of the occurrences of a constant in a text property (=TF) together with the number of
all resources at the peers related to the number of all matching resources at the peers
(=IDF). To cope with different TF values for one resource in different peers we will
always use the maximum value. The extended TFxIDF functions are defined as

df(prop, c) =
∑

o∈P

dfo(prop, c)

R(prop) = Rp(prop) =
⋃

o∈P

Ro(prop)

idf(prop, c) = log |R(prop)|
df(prop, c)

(7)

where Ro(prop) is the set of all resources of peer o having the property prop and
dfo(prop, c) = |{r | r ∈ Ro ∧ tfo(r, prop, c) > 0}| which is the same weighting as
used in equation 1.

As mentioned in the previous section, we do not build an index over idf values in
advance, but calculate the necessary values on demand. Already calculated values are
cached in an index, so repeated evaluations of the same query can reuse them. If a query
is not yet in this index, we have to distribute it twice. In the first round the peers deliver
only their local document count and document frequency. This information is merged
according to equation 7, and added to the super-peer index. In the second round, the
necessary idf values are added to the query message, so that the aggregated information
becomes available to all peers and super-peers. The other super-peers also add these
values to their indices. The peers can calculate resource scores now, and return them as
well as their current local document count and document frequency. That way an idf
value is updated during each evaluation of a query which contains the corresponding
query atom. No additional messages are necessary to maintain the index.

Investigating distributed information retrieval techniques over document collections
in the Web, Viles and French [15] propose to use statistical averages that are updated
only once in a while. They show that the effectiveness of retrieval is usually only slightly
affected by this simplification, because changes in the collections usually tend to com-
pensate each other on average and major changes generally need some time to develop.
Thus relying on slightly outdated information based on a previous query evaluation will
only lead to deterioration in extremely volatile P2P networks4.

Query driven update of indices is possible because queries are not posed randomly but
usually follow a Zipf distribution, where few queries make up the majority of requests.
Zipf distributions are ubiquitous in content networks, the Internet and other collections.
The distribution was first discovered by the Harvard linguistic professor G. K. Zipf,
and has become one of the most empirically validated laws in the domain of linguistic
quantities. If we count the number of times each word appears in a text (called frequency)
and assign each word a rank based on its frequency (i. e. rank=1 is the word that appears
the most), we can see that the product frequency · rank for each word is roughly equal
to a constant. In a more general context, this corresponds to the observation that the
frequency of occurrence of an event as a function of the rank is a power-law function.

4 To improve the precision further, we can re-evaluate the query if the difference of an idf value
stored in the index and the value updated from the responses exceeds a certain threshold.

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 145

Recent research has discovered this distribution as a typical distribution of informa-
tion on the Internet [16,17,18,19]. In P2P networks typical consumers are interested in
only subsets of all available content and content categories [20]. Documents are also
distributed following Zipf’s law, i.e. many consumers are interested in resources which
are held by a few providers.

This makes it safe to assume that also the occurrence frequency of query atoms
rsp. of the property/constant pairs they contain will also follow a Zipf distribution., and
therefore, for most queries posed to the network, the necessary idf values will already
be in the index, and we only seldom have to distribute a query twice.

tfp(r, prop, c) =
{

Maxo∈Pp∪SPp(Q)(tfo(r, prop, c)) : p ∈ SP
same as for simple peer : p ∈ P

(8)

These definitions as well as the following are recursive; the calculation terminates
at the super-peers which do not need to forward the query to other super-peers.

Merging. Having defined the scores for peers and super-peers we can now use equations
4 and 5 to calculate an aggregated query score for each resource at the super-peer.

Simply collecting all top k resources from each peer and merging these sets would
cause more network traffic than necessary. A simple top-2 examples illustrates this: In
order to get the overall top scored resource in the super-peer we only need the maximum-
scored resource of all its local peers and super-peers along the spanning tree starting at
the query originator. Having chosen the maximum resource from any of the peers, we
can select the top-2 of this set and exclude all peers which didn’t get their top-1 resource
placed in the selection. All the other peers still offer their top-scored resources. So
for determining the overall second best resource for our merged top 2 result set, we
only additionally need to ask the two best peers that already delivered our top-scored
resources. For higher numbers of query results this process can be repeated inductively
until all top k resources are delivered, as we show below.

Since the best objects are determined one by one, the merging super-peer can imme-
diately deliver each result resource to the super-peer directly up the super-peer backbone,
enabling it in turn to also return its merged results at the earliest point in time. This suc-
cessive query result delivery behavior not only optimizes bandwidth use, but also helps
to improve the psychologically felt response time for the user by offering correct result
objects for consideration already at an early stage.

To formalize this approach let us first define some sets in each peer for bookkeeping:
For a resource r ∈ M the set BetterThan(Q, r, M) contains all resources s ∈ M

with a better score than r with respect to query Q:

BetterThanp(Q, r, M) = {s ∈M | scorep(Q, s) > scorep(Q, r)} (9)

Topp(i, Q, M) is the subset of the i best scoring resources in a set M :

Topp(i, Q, M) = {r ∈M | |BetterThanp(Q, r, M)| < i} (10)

For a peer p we define the resource(s)5 with the i-th most score as

ResAtp(1, Q) = Topp(1, Q, Rp)
ResAtp(i, Q) = Topp(i, Q, Rp) \ Topp(i− 1, Q, Rp)

(11)

5 This can be more than one resource, if there are several resources with the same score.

146 W. Nejdl et al.

where Rp is the set of all resources at peer p. For super-peers, we define ResAt at the
end of this section (16).

We define the following sets for a super-peer sp doing the merge:
ConsideredPeerssp(Q, i) is the set of all peers, which have to be asked (are
considered) for resources in the i-th iteration to guarantee a correct result set.
TopResCandidatessp(Q, i) is an intermediate set of resources which could be in the
top k set for the i-th iteration, i.e. the current best scored resources from all contributing
peers, where peers that already contributed to the merged result delivered their respec-
tive next best resources. TopRessp(Q, i) is a set of cardinality k of top resources after i
iterations. Since we always get a guaranteed overall i-th best resource by choosing the
maximum resource from TopResCandidatessp(Q, i) we can also guarantee that the
top i resources of TopRessp(Q, i) are already correct, while our current (i + 1)...k-th
resources may still be replaced with better ones (as shown at the end of this section).

In the first iteration we have to consider all connected peers. In the i-th iteration we
can consider only those peers from which at least one resource made it into TopRes
during the i−1-th iteration, because all other peers still offer their current best resources:

ConsideredPeerssp(Q, 1) = Psp ∪ SPsp(Q)
ConsideredPeerssp(Q, i) = {p | TopRessp(Q, i− 1) ∩ResAtp(i− 1, Q) �= ∅}

(12)
For a super-peer AllResAt is the union of all ResAt-sets of connected peers

AllResAtsp(i, Q) =
⋃

o∈ConsideredPeers(Q,i)

ResAto(i, Q) (13)

To determine the TopRes(Q, i), we first merge TopRes(Q, i − 1) with the new re-
sources delivered from the considered peers (AllResAtsp(i, Q)), and then select the top
i resources from this union.

TopResCandidatessp(Q, 1) = AllResAtsp(1, Q)
TopResCandidatessp(Q, i) = AllResAtsp(i, Q) ∪ TopRessp(Q, i− 1) (14)

TopRessp(Q, i) = Topsp(k, Q, TopResCandidatessp(Q, i)) (15)

Example. The following top-4 example shows how our algorithm works. We assume
that super-peer sp is connected to peers p1, p2 and p3. We denote resources with numbers
and assume that the resource number is equal to its score for query Q.
Rp1 = {r11, r12, r13} with score(Q, r11) = 0.9, score(Q, r12) = 0.8, score(Q, r13) = 0.1
Rp2 = {r21, r22, r23} with score(Q, r21) = 0.7, score(Q, r22) = 0.3, score(Q, r23) = 0.1
Rp3 = {r31, r22, r33} with score(Q, r31) = 0.6, score(Q, r32) = 0.5, score(Q, r33) = 0.4

Then we get:
ConsideredPeerssp(Q, 1) = {p1, p2, p3}, AllResAtsp(Q, 1) = {r11, r21, r31},

TopRessp(Q, 1) = {r11, r21, r31}
ConsideredPeerssp(Q, 2) = {p1, p2, p3}, AllResAtsp(Q, 2) = {r12, r22, r32},

TopRessp(Q, 2) = {r11, r12, r21, r31}
ConsideredPeerssp(Q, 3) = {p1}, AllResAtsp(Q, 3) = {r13},

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 147

TopRessp(Q, 3) = {r11, r12, r21, r31}
ConsideredPeerssp(Q, 4) = ∅

We can stop here, because no more resources have to be considered.
Our final result is TopRessp(Q, k), but in step i we can already identify (and forward)

the i-th most scored resource (set). The ResAt definition extended for the super-peer
case is:

ResAtsp(1, Q) = TopRessp(Q, 1)
ResAtsp(i, Q) = TopRessp(Q, i) \ TopRessp(Q, i− 1) (16)

We can stop the iteration as soon as ConsideredPeerssp(Q, i) = ∅, because in this
case TopRessp(Q, i) = TopRessp(Q, i− 1)) :
TopRessp(Q, i)

= Topsp(k, Q, TopResCandidatessp(Q, i))
= Topsp(k, Q, AllResAtsp(i, Q) ∪ TopRessp(Q, i − 1))
= Topsp(k, Q,

⋃

o∈ConsideredPeers(Q,i)
ResAto(i, Q) ∪ TopRessp(Q, i − 1))

= Topsp(k, Q,
⋃

o∈∅
ResAto(i, Q) ∪ TopRessp(Q, i − 1))

= Topsp(k, Q, ∅ ∪ TopRessp(Q, i − 1))
= Topsp(k, Q, TopRessp(Q, i − 1))
= TopRessp(Q, i − 1))

Now we only have to show that TopRessp(Q, i) contains the i resources with the
highest score. We do this by induction. Be ri the resource with network-wide rank i,
rp,i the resource with rank i at peer p. For case 1 the assertion is obviously correct:
∃p r1 = rp,1 ⇒ r1 ∈ AllresAtsp(1, Q) ⇒ r1 ∈ TopRessp(Q, 1).

Assume that ri−1 ∈ TopRes(Q, i − 1). If ri ∈ TopRessp(Q, i − 1), then
obviously ri ∈ TopRessp(Q, i). In the case ri−1 /∈ TopRessp(Q, i − 1) we have
to show that ri ∈ AllResAtsp(i, Q) which we can do by showing that ∃p ri = rp,i.
We know ∃p, j ri = rp,j . Both i > j and i < j can’t be true: If ∃j j > i ∧ ri = rp,j

⇒ scorep(rp,i) > scorep(ri)⇒ |BetterThanp(Q, ri, Rp)| ≥ i which contradicts our
assumption that ri is at rank i.

On the other hand, if ∃j j < i ∧ ri = rp,j ⇒ ∃j j > i ∧ ri ∈ AllResAtsp(j, Q).
Also, ∀l : 1 ≤ l ≤ j − 1 rp,l ∈ TopRes(Q, l) ⇒ ∀l : 1 ≤ l ≤ j − 1
p ∈ ConsideredPeerssp(Q, l)⇒ ri ∈ TopRessp(Q, j)⇒ ri ∈ TopRessp(Q, i− 1)
which contradicts our initial assumption. Therefore, ri = rp,i ⇒ ri ∈ ResAtp(Q, i)
⇒ ri ∈ AllResAtsp(Q, i)⇒ ri ∈ TopRessp(Q, i). �

So the iteration terminates after at most k steps, delivering the top k resources.

3.4 Routing Optimization

We can use the query answering information collected at the super-peers to optimize
routing. Let us define the set of peers at super-peer p, which have contributed to the top
k resources, as

TopPeerp(Q) = {o ∈ Pp ∪ SP p | ∃r ∈ Ro ∧ r ∈ TopResp(Q)} (17)

148 W. Nejdl et al.

Routing can be optimized significantly if each super-peer sends a query Q to the
(super-)peers in TopPeerp(Q) only. To achieve this goal, the super-peer has to store
this set for each query it evaluates. The routing index created in this way is a map of
(Q, TopPeerp(Q)) pairs.

Every time a super-peer receives a query, it checks whether the query is already in
its index or if it is a new query. If the query matches a previous query then the super-
peer will use the associated TopPeer(Q) set to determine the direction in which the
query should be forwarded to retrieve the top k. To find the matching index entry for
a new query, we use the query containment algorithm introduced in [21]. Note that for
the application in top k retrieval the number k of objects that have to be returned is an
integral part of the query. It is easy to see that if a local routing index contains a query
Q, every query Q′ also matches Q, if Q′ contains exactly the same predicates as Q, but
the value k′ of requested results in Q′ is smaller than the value k in Q.

As we already remarked before, in a peer-to-peer network peers may join and leave
at any time and the content at peers may change. Since we do not have (and do not
want to have) any kind of notification of those changes, the routing of the queries must
adapt to such changes automatically. To achieve this, super-peers send the query to other
arbitrary (super-)peers as well, with a specific probability, depending on the volatility of
the network, to capture the network dynamics. This also updates the idf values stored in
the indices for these queries.

For a peer-to-peer network there are three typical distributions that we consider.
Under an arbitrary distribution resources at one peer are not related. For this case, our
hypothesis is that the more arbitrarily the resources are distributed among peers, the less
optimization will be achieved by our routing indices. In contrast we have a clustered
distribution when the resources provided by each peer are highly related. In this case
our index/routing algorithm will result in much reduced message forwarding.

4 Related Work

In the context of peer-to-peer networks, only very few authors have explored retrieval
algorithms taking rankings into account. The idea of PeerSearch [22] is comparable to
our approach, since they are also creating an aggregation of the top k results from the
peers. In contrast to our ranking-algorithm they do not use any broadcast-topology, but
use CAN [23] in combination with the vector space model (VSM) and latent semantic
indexing (LSI) to create an index which is stored in CAN using the vector representations
as coordinates.

PlanetP [2] concentrates on peer-to-peer communities in unstructured peer-to-peer
networks with sizes up to ten thousand peers. They introduce two data structures for
searching and ranking which create a replicated global index, using gossiping. Each
peer maintains an inverted index of its document and spreads the term-to-peer index.
Based on this replicated index a TFxIDF-ranking algorithm is implemented.

Aberer and Wu provide a good theoretical background in [24] where they present
a ranking algebra as a formal framework for ranking computation. They show that not
only one global ranking should be taken into account, but several rankings must be seen

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 149

in different contexts. Their ranking algebra allows aggregating the local rankings into
global rankings.

[25] discusses the combination of distributed information retrieval and unstructured
peer-to-peer networks. The basic idea is to filter results while they are routed back to the
query originator. Each peer maintains a list of neighbors. These lists change over time
to keep the better neighbors (i.e. the ones giving better results, which is defined as the
peers which can offer more results).

In the context of databases Agrawal et al. [26] propose several approaches to rank
database query results, under the assumption that there is only one table, and only
conjunctive queries are used. Instead of returning only complete matches, a similarity
value (similarity between query and table row) is calculated. If a condition is matched by
the row data, the frequency factor (analogous to inverse document frequency) is added
to the similarity value. They present similarity-measures for numerical data and range
conditions.

Bruno et al. [27] use a similar formalisation like we do, but discuss the characteristics
of retrieval in web databases, when several web accessible databases are used to create
a top-k list, where each atom maybe answered from a different database.

5 Conclusion

Large peer-to-peer networks with semantically meaningful cooperative query answering
capabilities may lead to vast result sets, which makes it necessary to investigate how to
rank answers and return only the best ones in such a distributed environment. Inspired by
the success of ranking algorithms in Web search engines and top-k retrieval algorithms
in databases, this paper provides a solution to this problem by presenting a decentralized
top-k retrieval and routing algorithm for peer-to-peer networks. The algorithm makes
use of local rankings, rank merging and optimized routing based on peer ranks, and
does not have to maintain a central index or locally replicated copies of such an index.
The algorithm guarantees a manageable result set size and at the same time minimizes
network traffic among peers. While we do assume a super-peer network, no specific
network topology is required. In contrast to other approaches, our top-k indices need
only to be updated during query answering, and therefore do not involve further update
traffic in addition to query forwarding. We also showed two examples of how to integrate
different ranking methods into our algorithm.

We are currently simulating our algorithm in the Edutella/HyperCuP environment,
using different assumptions about data and query distribution, to further quantify the
effects and advantages of our approach for different distributions.

Acknowledgements. We especially want to thank Kevin Chang from the DAIS group at
Urbana-Champaign for giving valuable input to an earlier draft of this report as well as
for providing several very useful references on top-k query answering and information
retrieval.

150 W. Nejdl et al.

References

1. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M.,
Risch, T.: EDUTELLA: a P2P networking infrastructure based on RDF. In: Proceedings of
the Eleventh International World Wide Web Conference (WWW2002), Hawaii, USA (2002)

2. Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: PlanetP: Using gossiping to
build content addressable peer-to-peer information sharing communities. In: Twelfth IEEE
International Symposium on High Performance Distributed Computing (HPDC-12), IEEE
Press (2003)

3. Nejdl, W., Wolpers, M., Siberski, W., Löser, A., Bruckhorst, I., Schlosser, M., Schmitz, C.:
Super-peer-based routing and clustering strategies for RDF-based peer-to-peer networks.
In: Proceedings of the Twelfth International World Wide Web Conference (WWW2003),
Budapest, Hungary (2003)

4. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: Emergent semantics through
gossiping. In: Proceedings of the Twelfth International World Wide Web Conference, New
York, USA, ACM Press (2003) 197–206

5. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: Data management infrastructure for
semantic web applications. In: Proceedings of the Twelfth International World Wide Web
Conference (WWW2003), Budapest, Hungary (2003)

6. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihrayeu,
I.: Data management for peer-to-peer computing: A vision. In: Proceedings of the Fifth
International Workshop on the Web and Databases, Madison, Wisconsin (2002)

7. Nejdl, W., Siberski, W., Sintek, M.: Design issues and challenges for RDF- and schema-based
peer-to-peer systems. SIGMOD Records (2003)

8. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proceedings
International Conference on Distributed Computing Systems. (2002)

9. Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems. In:
In Proceedings of the Sixth International Conference on Cooperative Information Systems
(CoopIS), Trento, Italy (2001)

10. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP—Hypercubes, ontologies and
efficient search on P2P networks. In: International Workshop on Agents and Peer-to-Peer
Computing, Bologna, Italy (2002)

11. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between
words using multiple information sources. IEEE Transactions on Knwoledge and Data En-
gineering 15 (2003)

12. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes. Morgan Kaufman, Heidelberg (1999)
13. Hewlett Packard Research Labs: RDQL - RDF data query language (2004)

http://www.hpl.hp.com/semweb/rdql.html.
14. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational

databases. In: Proceedings of the 29th International Conference on Very Large Databases,
Berlin, Germany (2003) 754–765

15. Viles, C.L., French, J.C.: On the update of term weights in dynamic information retrieval
systems. In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM ’95), Baltimore, MD, USA, ACM (1995) 167–174

16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topol-
ogy. In: ACM SIGCOMM Computer Communication Review, Vol 29(4). (1999)

17. Chen, Q.: The origin of power laws in internet topologies revisited. In: 21st Annual Joint
Conference of the IEEE Computer and Communications Societies. (2002)

18. Medina, A., Matta, I., Byers, J.: On the origin of power laws in internet topologies. ACM
SIGCOMM Computer Communication Review 30(2) (2000)

Top-k Query Evaluation for Schema-Based Peer-to-Peer Networks 151

19. Adamic, L.A., Huberman, B.A.: Zipf’s law and the internet. Glottometrics 3 (2002)
20. Crespo, A., Molina, H.G.: Semantic overlay networks for P2P systems. Technical report,

Stanford University (2003)
21. Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/subscribe for RDF-based P2P

networks. In: In Proceedings of the 1st European Semantic Web Symposium. (2004)
22. Tang, C., Xu, Z., Mahalingam, M.: Peersearch: Efficient information retrieval in peer-to-peer

networks. Technical Report HPL-2002-198, Hewlett-Packard Labs (2002)
23. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable

network. In: Proceedings of the 2001 Conference on applications, technologies, architectures,
and protocols for computer communications. (2001)

24. Aberer, K., Wu, J.: A framework for decentralized ranking in web information retrieval. In:
Proceedings of the fifth Asia Pacific Web Conference (APWeb2003). (2003)

25. Yu, B., Liu, J., Ong, C.S.: Scalable P2P information retrieval via hierarchical result merging.
Technical report, Dep. of CS, University at Urbana-Champaign (2003)

26. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database query results.
In: Proceedings of the Second Conference on Innovative Data Systems Research. (2003)

27. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases.
In: Proceedings of the 18th International Conference on Data Engineering, San Jose, CA,
USA, IEEE Computer Society (2002)

Learning Meta-descriptions of the FOAF Network

Gunnar AAstrand Grimnes, Pete Edwards, and Alun Preece

Computing Science Dept.
King’s College

University of Aberdeen
AB24 3UE Scotland

{ggrimnes,pedwards,apreece}@csd.abdn.ac.uk
www.csd.abdn.ac.uk/research/agentsgroup

Abstract. We argue that in a distributed context, such as the Semantic Web,
ontology engineers and data creators often cannot control (or even imagine) the
possible uses their data or ontologies might have. Therefore ontologies are unlikely
to identify every useful or interesting classification possible in a problem domain,
for example these might be of a personalised nature and only appropriate for
a certain user in a certain context, or they might be of a different granularity
than the initial scope of the ontology. We argue that machine learning techniques
will be essential within the Semantic Web context to allow these unspecified
classifications to be identified. In this paper we explore the application of machine
learning methods to FOAF, highlighting the challenges posed by the characteristics
of such data. Specifically, we use clustering to identify classes of people and
inductive logic programming (ILP) to learn descriptions of these groups. We argue
that these descriptions constitute re-usable, first class knowledge that is neither
explicitly stated nor deducible from the input data. These new descriptions can be
represented as simple OWL class restrictions or more sophisticated descriptions
using SWRL. These are then suitable either for incorporation into future versions
of ontologies or for on-the-fly use for personalisation tasks.

1 Introduction

If a Semantic Web as set in out [1] becomes reality one might imagine that machine learn-
ing will no longer be required, as by manipulation of logical statements about semantic
resources and their descriptions anything can be inferred and understood. However, we
believe that no matter how wide-spread and extensive the Semantic Web becomes, every
little fact is still unlikely to be explicitly stated, and in addition agents will need to know
personalised facts, that although not generally true may be true in a certain context for
a certain user. The fundamental organising structure of the Semantic Web is that of a
set of inter-related classes; individual resources are members of one or more classes. A
large part of the challenge in defining RDF Schemas [2] and OWL [3] ontologies is to
identify a sufficiently rich set of classes to capture the various kinds of resources that
exist. Inevitably, in any such effort, some potentially interesting and useful classes will
be left unidentified. In some cases, they may be alternative ways of viewing an existing
conceptualisation (for example, dividing people into subsets according to the kind of

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 152–165, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Learning Meta-descriptions of the FOAF Network 153

Fig. 1. Schematic Illustration of Semantic Forests and Semantic Webs.

work they do, instead of by their gender). In some cases, these may reflect conceptuali-
sations that are true only locally, in a particular context for a specific user (for example,
the class of all restaurants liked by a particular individual).

We believe that machine learning techniques have enormous potential to discover
such unspecified classes. In some cases, the designers of schemas and ontologies may
be prompted to add the new classes into future versions of their conceptualisations. In
other cases, the discovered classes may be created on-the-fly in order to derive some
inference or perform some task.

For our discussion of learning from the Semantic Web, we assume it is using the
standard RDF representation based on (subject, object, predicate) triples [4]. We identify
two types of Semantic Web data:

– “Semantic forests” - these consist of many small, disconnected, shallow resource
trees. The structure of such a forest is isomorphic to that of an XML document. Real
world examples of such semantic forests include meta-data using Dublin Core1, or
the use of RDF Site Summary (RSS)2. See Figure 1(left).

– “Semantic webs” - consist of a large graph of resources linking to each other, with no
clear distinction where one resource description ends and another begins. Such data
cannot easily be expressed in pure XML, and a richer representational language,
like RDF, is really needed. The only significant real-world example we are aware of
to date is Friend of a Friend (FOAF)3. See Figure 1(right).

Currently semantic forest data is pre-dominant. The number of true semantic webs
should increase as the Semantic Web develops, however we do not expect semantic
forests to disappear altogether. These different types of data present us with a challenge:

1 http://dublincore.org
2 http://web.resource.org/rss/1.0/
3 http://www.foaf-project.org

154 G.A. Grimnes, P. Edwards, and A. Preece

How should Semantic Web learners deal with them? How can the different structures
be exploited to improve learner performance? How should the learning outcome be
represented to be as useful as possible in both the original context (where it was learned)
as well as being portable to other scenarios?

In this paper we describe our experiences with aggregating, pre-processing and learn-
ing from FOAF data. Details on our experiments with semantic forest data can be found
in [5]. We present experiments conducted using a hierarchical agglomerative cluster-
ing [6] algorithm to identify groups of people, followed by the application of the ILP
systemAleph [7] to learn descriptions of these clusters. We evaluate some sample learned
descriptions to see if they “make sense” as newly-discovered classes of individuals (ei-
ther in a local or global context). Finally we discuss related work in this area and conclude
with a summary of what we have achieved to date and our future plans.

2 Friend of a Friend

The Friend of a Friend (FOAF)4 project aims to create a Web of machine-readable home-
pages describing people, the links between individuals and the things they create and
do. The FOAF ontology is described using the Ontology Web Language (OWL) [3]. To
join the FOAF world all one has to do is generate a FOAF profile describing oneself
and publish it on the Web. The profile must adhere to the ontology and could either be
generated by hand, or more often, by copy, paste and edit of other people’s FOAF, or
by semi-automated tools such as FOAF-a-matic5. Part of an example profile is shown in
Figure 2 6. This example illustrates several important things about FOAF:

– The foaf:knows property points to other people known by this person, creating a
networked community.

– People in the FOAF world don’t need URIs, they are identified through their
foaf:mbox (or foaf:mbox sha1sum), i.e. the email address. In the FOAF ontology
these are identified as owl:inverseFunctionalProperty, meaning they uniquely iden-
tify a person.

– foaf:knows properties do not take the value of the URI of other people’s FOAF,
instead they point to an anonymous RDF node of type foaf:Person, which contains
the foaf:mbox of the other person. Whether two anonymous nodes represent the same
person can then be decided based on the foaf:mbox values; merging these nodes is
known as “smushing”7.

– foaf:mbox sha1sum is used to disguise email-addresses for privacy reasons. The use
of a checksum rather than just omitting the value allows people to confirm that the
address actually does belong to a person.

– Other FOAF files are linked through rdfs:seeAlso, allowing Semantic Web bots to
crawl through FOAF space.

4 http://www.foaf-project.org/
5 http://www.ldodds.com/foaf/foaf-a-matic.html
6 The full example can be found at: http://www.csd.abdn.ac.uk/∼ggrimnes/foaf.rdf
7 http://rdfweb.org/topic/Smushing

Learning Meta-descriptions of the FOAF Network 155

<foaf:Person>

<foaf:mbox rdf:resource=“mailto:ggrimnes@csd.abdn.ac.uk” />
<foaf:name>Gunnar AAstrand Grimnes</foaf:name>
<foaf:homepage rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes” />
<foaf:workplaceHomepage rdf:resource=“http://www.csd.abdn.ac.uk”/>
<foaf:projectHomepage rdf:resource=“http://www.csd.abdn.ac.uk/research/agentcities”/>
<foaf:groupHomepage rdf:resource=“http://www.csd.abdn.ac.uk/research/agentsgroup” />
<foaf:phone rdf:resource=“tel:+441224272835” />

<foaf:depiction rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes/gfx/me.jpg” />

<foaf:interest rdf:resource=“http://www.w3.org/2001/sw/” />
<foaf:interest rdf:resource=“http://www.agentcities.net” />

<foaf:made rdf:resource=“http://www.csd.abdn.ac.uk/research/AgentCities/GraniteNights” />

<contact:nearestAirport>
<airport:Airport rdf:about=‘http://www.daml.org/cgi-bin/airport?ABZ’ />

</contact:nearestAirport>

<foaf:knows><foaf:Person>
<foaf:mbox rdf:resource=“mailto:maym@foobar.lu” />
<rdfs:seeAlso rdf:resource=“http://martinmay.net/foaf.rdf”/>

</foaf:Person></foaf:knows>
<foaf:knows><foaf:Person>

<foaf:mbox rdf:resource=“mailto:apreece@csd.abdn.ac.uk” />
</foaf:Person></foaf:knows>

<foaf:knows><foaf:Person>
<foaf:mbox rdf:resource=“mailto:pedwards@csd.abdn.ac.uk” />

</foaf:Person></foaf:knows>
<foaf:knows>
<foaf:Person foaf:name=“Sonja A Schramm”>

<foaf:mbox sha1sum>
83276f91273f2900cf0b6657b3708b736276ef81

</foaf:mbox sha1sum></foaf:Person>
</foaf:knows>

<rdfs:seeAlso rdf:resource=“http://www.csd.abdn.ac.uk/∼ggrimnes/codepict.rdf” />
<rdfs:seeAlso rdf:resource=“http://www.csd.abdn.ac.uk/research/agentsgroup/foaf.rdf” />

</foaf:Person>

<rdf:Description rdf:about=“”>
<wot:assurance rdf:resource=“foaf.rdf.asc” />

</rdf:Description>

Fig. 2. Parts of Example FOAF File.

– The wot:assurance property at the bottom of the file points to a signature of this file,
signed with the person’s PGP key, providing a secure way to know who made these
statements. This provides a basis for the trust layer of the Semantic Web architecture.

2.1 Topology

The FOAF project began around 1999, but only gained significant momentum in the
past two years, due to the increased awareness of the Semantic Web and the existence
of FOAF visualisation tools such as Foafnaut8 and the FOAF co-depiction project9. The

8 http://jibbering.com/foaf/foafnaut.svg
9 http://swordfish.rdfweb.org/discovery/2001/08/codepict/

156 G.A. Grimnes, P. Edwards, and A. Preece

Fig. 3. FOAF Group with Narrow Connection to FOAF World.

co-depiction project allows searches to be made for pictures depicting multiple people,
effectively proving their foaf:knows relationship, in addition is allows one to visually
document the link from oneself to famous people, for example Bill Clinton or Frank
Sinatra, increasing the fun-factor and “instant-gratification” of creating a FOAF profile.

For our experiments we used a FOAF crawl from September 200310, which contains
9097 nodes of type person. When smushed, this is equivalent to 8908 people, of which
1980 people know at least one other person, i.e. they are not leaf-nodes of the FOAF
knows-graph. The data consists of 147527 triples, using 201 different namespaces, and
1066 distinct properties (compared to 49 in the FOAF ontology). Many of these properties
are not widely used, only 116 are used more than 100 times.

Within the FOAF graph one can typically identify groups of people that are very
“close” in real-life. For example, the people within a single research group. In such a
group there are many interconnecting foaf:knows links, and the level of detail about
each person is similar since their profiles are often generated by copy and pasting one
person’s FOAF, or because they are all generated by the same person or from a database.
A group often has only a very narrow connection to the rest of the FOAF graph, or in
certain cases no connection at all. In the Aberdeen Computing Science FOAF graph for
example most people know each other, but as shown in Figure 3, the only link to the rest
of the FOAF network is through a single person node.

2.2 Problems

While the heterogeneity and distributed nature of FOAF is clearly a good thing and
makes a data-set based on FOAF very realistic, it does introduce a number of problems
when one attempts to reason with or learn from the data. These are summarised below:

– Human errors. The majority of FOAF content is manually generated using a text
editor, causing several types of human error:
• Simple typing mistakes, i.e. foaf:knosw.
• Using properties with the wrong namespace, e.g. rdf:seeAlso vs. rdfs:seeAlso.
• Misunderstanding or misinterpretation of the FOAF ontology, e.g. using

foaf:mbox with the email address as a literal string as opposed to an
rdf:resource with a mailto: link.

10 http://jibbering.com/foaf/dumps/

Learning Meta-descriptions of the FOAF Network 157

– Weaknesses and/or inconsistencies of the FOAF ontology:

• foaf:mbox vs foaf:mbox sha1sum. Both properties are declared as
owl:inverseFunctionalProperty as detailed above. However, nowhere is it for-
mally declared that foaf:mbox sha1sum is the Secure Hash Algorithm11 check-
sum of the foaf:mbox property. The intention is of course that a node with a
foaf:mbox sha1sum matching the checksum of another’s foaf:mbox should be
smushed together. At the moment this must be hard-coded in an application
specific manner.

• No standard way of expressing interest. foaf:interest has range foaf:Document,
and most commonly points to the URL of a page about the concept. Again,
the use of literals vs. rdf:resource is inconsistent, but the main problem is that
people use different URLs for the same concept. For example:
http://www.w3.org/RDF/, http://rdfweb.org, http://rdfweb.org/, http://www.rdfweb.org/.

– Level of detail varies greatly. Our initial experiments with learning from FOAF
returned several rules based simply on the presence of an attribute, such as
foaf:groupHomepage, rather than the value of the attribute.

2.3 Enriching FOAF

The Advanced Knowledge Technologies (AKT) project12 aims to tackle a number of
challenges of knowledge management, and as a show-case has created an ontology for
representing academic researchers and their organisations. An RDF dataset conforming
to this ontology has been created by “screen-scraping” the Web pages of UK based
research institutions. The lack of detail in the FOAF data could be addressed by enriching
it using the information available in the AKT RDF repository. However, this would
involve further complicating the learning task by including yet another ontology. We
therefore decided to map the instances from theAKT ontology to FOAF, as the ontologies
have very similar domains; the majority of the mappings were straightforward, such as :

[akt:has-email-address⇒ foaf:mbox]

Others were more complicated, for instance:

[rdf:type akt:Professor-In-Academia⇒
(rdf:type foaf:Person & foaf:title ‘Professor’)].

For the sake of re-usability these mappings were represented in OWL using
owl:equivalentProperty for the trivial mappings and our own RDF mapping of RuleML13

(this work predates the SWRL effort) for the more sophisticated rules, like the rule shown
in Figure 4.

11 http://www.w3.org/PICS/DSig/SHA1 1 0.html
12 http://www.aktors.org
13 http://www.csd.abdn.ac.uk/∼qhuo/program/generaltool sources/ruleml.rdfs

158 G.A. Grimnes, P. Edwards, and A. Preece

rdf type(A, ‘akt Professor-In-Academia’):-
rdf type(A,’foaf Person’),
foaf title(A, ‘Dr’).

Fig. 4. Ontology Mapping Excerpts.

rdf type(‘genid:002’, ‘foaf type’).
foaf name(‘genid:002’, ‘Gunnar AAstrand Grimnes’).
foaf mbox(‘genid:002’, ‘ggrimnes@csd.abdn.ac.uk’).
foaf knows(‘genid:002’, ‘genid:003’).
foaf mbox(‘genid:003’, ‘apreece@csd.abdn.ac.uk’).
. . .

Fig. 5. FOAF Fragment Converted to Prolog.

3 RDF and ILP

Encouraged by our earlier experiences with learning from semantic forests using ILP [5],
the next step was to explore the application of these techniques to FOAF data. The
mapping of RDF to Prolog is straightforward. Figure 5 illustrates a fragment of the FOAF
profile in Figure 2 converted to Prolog. Some things to note about the representation are:

– Namespace handling. Namespaces of properties were converted to prefixes in Pro-
log, with namespace predicates giving the mapping from prefixes to actual names-
paces. For example foaf:mbox becomes:

foaf mbox(A, ‘mailto:ggrimnescsd.abdn.ac.uk’).
namespace(‘foaf’, ‘http://xmlns.com/foaf/0.1/’).

– RDF types. For each class in the ontology Prolog rules are created to determine if
a resource is a member of the specific class, or any sub-class thereof. This allows
RDF types to be mapped to ILP internal types, used for limiting which predicates
may be applied to a given resource, reducing the search-space dramatically. Figure 6
contains an example.

– Normalisation and inference over interests. In our initial experiments with the FOAF
data we attempted to fix the inconsistent foaf:interest problem by “smushing” nodes
that represented the same concept, for example http://rdfweb.org/foaf/ and
http://www.foaf-project.org/. In addition super/sub-concept links were created be-
tween concepts such as http://www.debian.org/ and http://www.linux.org/, and some
general nodes that did not appear in the original data, e.g. #ProgrammingLanguages
were added. Our preliminary experiments demonstrated that the ILP learner did not
use these generalisations, probably due to the low number of foaf:interest links ac-
tually appearing in the data. As a result, these extra rules were not included in our
full experiments.

An additional advantage of using ILP with RDF is that converting the learned results
back into RDF is trivial, given some way of representing Horn clause rules in RDF, e.g.
the Semantic Web Rule Language (SWRL) [8].

Learning Meta-descriptions of the FOAF Network 159

foaf Person(A):-
instanceOf(A,‘http://xmlns.com/foaf/0.1/Person’).

foaf Document(A):-
instanceOf(A,‘http://xmlns.com/foaf/0.1/Document’).

instanceOf(A,B):-rdf type(A,B).
instanceOf(A,B):-rdf subClassOf(B,C),instanceOf(A,C).
instanceOf(A,unknown):-nonvar(A).

castAsfoaf Person(A,A):-foaf Person(A).

:-modeb(*,foaf interest(+foaf Person, -foaf Document)).
:-modeb(1,castAsfoaf Person(+resource,-foaf Person)).
:-modeb(1,castAsResource(+foaf Person,-resource)).

Fig. 6. RDF Type Inference in Prolog.

4 Learning from FOAF

For our experiments with FOAF data we used Aleph [7]. Before attempting to learn
from the FOAF data it was pre-processed by first smushing it, and then removing any
duplicate properties resulting from this merger. Aleph was initially configured to use
any of the predicates appearing in the input data when constructing a hypothesis, only
restricted by the RDF typing as detailed above. However, as there were 1066 predicates
in the full dataset, this was too much for Aleph to deal with and we moved to only
using a subset based on the most frequent occurring predicates. The 15 most frequently
predicates are shown in Figure 7, and the preliminary experiments were done with these,
excluding rdf:type as it is applied to every person node. However, this did not give very
good results and we moved instead to using the 100 most frequent predicates; for space
reasons that list is not re-produced here.

Initial exploratory experiments withAleph highlighted problems with the scale of the
FOAF dataset. Even with a very small subset of the full data (less than 10% of the people
in the full crawl), the search-space was still far too large, and Aleph was unable to make
any generalisations over the data. To reduce the size of the search space the problem was
broken into sub-problems by first applying a clustering algorithm and then feeding each

Frequency Property
1244 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
1120 http://jibbering.com/foaf/jim.rdf#isKnownBy
1119 http://xmlns.com/foaf/0.1/knows
908 http://xmlns.com/foaf/0.1/mbox sha1sum
906 http://xmlns.com/foaf/0.1/name
846 http://www.w3.org/2000/01/rdf-schema#seeAlso
419 http://xmlns.com/foaf/0.1/depiction
392 http://xmlns.com/foaf/0.1/surname
344 http://xmlns.com/foaf/0.1/firstName
327 http://purl.org/dc/elements/1.1/title
273 http://xmlns.com/foaf/0.1/codepiction
266 http://xmlns.com/foaf/0.1/mbox
246 http://xmlns.com/foaf/0.1/nick
236 http://xmlns.com/foaf/0.1/homepage
230 http://purl.org/dc/elements/1.1/description

Fig. 7. 15 Most Frequent Predicates in FOAF.

160 G.A. Grimnes, P. Edwards, and A. Preece

cluster to Aleph separately. Such an operation does make sense in the context of FOAF,
as there are often clusters of people, reflecting real-life groups, e.g. research groupings,
where the group membership may not be explicitly stated. To perform the clustering step
a hierarchical agglomerative clustering algorithm (HAC) [6] has been employed. HAC
is a greedy bottom-up clusterer which works by initially creating one cluster for each
individual, then repeatedly merging the two closest clusters until there is only one left
or some threshold for similarity is reached. Our version of HAC computes the distance
between two clusters as the average distance between each of the individuals in the two
clusters.

Initially, a modified version of Hamming distance [9] is used as similarity metric;
modifications were as follows: each RDF property appears as an attribute of the instance,
as does each (property, value) pair. All properties and values are treated as nominal,
including anonymous nodes. Although there could have been some scope for treating
datatyped properties as ordinal, few of the properties used in FOAF are typed, so dealing
with extra complexity was unlikely to pay off. The intention behind this similarity metric
is that two people that both have a certain property, say foaf:interest, are more similar
than two people who do not share any attributes, but less similar than two people who
have the same value for foaf:interest. Initial clustering experiments with this similarity
metric were unsuccessful, manual inspection of the clusters showed that they did not in
any way re-produce groups of people a human might have identified. It was clear that
considering only direct attributes of the Person node was flawed. A similarity metric is
needed that can take into account the FOAF graph immediately around a person, and
her position in the bigger graph, not just the immediate attributes. We are not aware of
any work to date on the subject of similarity metrics for RDF data. However, in [10]
a similarity metric for conceptual graphs is presented. Conceptual graphs are a data-
structure commonly used for natural language processing. They consist of a network
of concept nodes, representing entities, attributes, or events and relation nodes between
them. A simple conceptual graph representing John loves Mary is as follows:

[John]⇐ (subj)⇐ [love]⇒ (obj)⇒ [Mary]

The similarity metric developed is based on the idea of the Dice coefficient [11], but
incorporating a combination of two complementary sources of similarity: the conceptual
similarity and the relational similarity, i.e. the overlap of nodes and the overlap of edges
within the two graphs. Full details of the similarity metric can be found in [10].

Conceptual graphs and RDF instances are sufficiently similar that the same similarity
metric should be appropriate in both cases. The similarity metric is designed to work
on separate graphs, and in order to apply it to RDF we had to modify the algorithm to
extract a sub-graph around each person. The RDF graph is traversed in either direction
from the person node, i.e. triples were considered where the node in question is either the
subject or the object. To limit the size of the sub-graph the number of triples traversed is
limited. Trial and error showed that the optimal sub-graphs for clustering were obtained if
traversal was allowed two triples forwards and one backwards. Note that these traversals
may not be in any order, and backward-traversals are only permitted from the initial
node. Consider for instance Figure 8, the subgraph for the person “Gunnar Grimnes”
would include one backwards traversal, i.e. the “Comp. Sci. Dept” node, but not the

Learning Meta-descriptions of the FOAF Network 161

Fig. 8. Example of Extracting Person Subgraph.

“University of Aberdeen” node. It would also include two forward traversals, to both the
anonymous node and the literal title node.

Clustering with this similarity metric gave acceptable results. For example the algo-
rithm was able to discover clusters of people from different research-groups atAberdeen.
Aleph was then applied to the generated clusters (as detailed above), to learn a concise
description of each cluster.

5 Results

The descriptions presented here were learned using the method detailed above on a
subset of 869 of the total FOAF people.

Initially experiments were conducted using the 100 most frequent predicates for
both clustering and rule learning; these included foaf:knows and its generated inverse
predicate. With these settings 219 clusters had rules generated by Aleph, out of the total
825 clusters generated. Most of the learned rules were of the type:

member(A) :-
jibbering isKnownBy(A,’http://norman.walsh.name/knows/who#norman-

walsh’). (This rule covered all the 216 people in the cluster it described.)

Specifically, out of the 219 rulesets 177 used either foaf:knows or its inverse. It was
apparent that the foaf:knows relation was so predominant in the FOAF data that it over-
shadowed everything else. Rules using foaf:knows are not very re-usable, and do not
really express general classifications of the data. Therefore, the next experiments were
conducted using the same 100 predicates, but removing foaf:knows and its inverse. The
results for these experiments were much more interesting, as the lack of foaf:knows
forced Aleph to generate rules using the other predicates. In addition, clustering and
learning from the FOAF data excluding foaf:knows was much more efficient, the clus-
tering step alone took only a third of the time when done without foaf:knows.

For space reasons we will not present all the learned descriptions here, but only
discuss a selection of rules describing interesting clusters. Figure 9 shows for each rule
the following: the size of the cluster; a recall measure (the number of instances covered
by the rule); the false negatives (the members of the cluster not covered by this rule);
and the false positives (people covered by this rule who are not a member of the cluster).

162 G.A. Grimnes, P. Edwards, and A. Preece

Rule Cluster Size Recall False Neg. False Pos.
1 member(A) :- trust trustsHighly(B,A). 8 8 0 0
2 member(A) :- foaf groupHomepage(A,’http://www.aktors.org’). 13 13 0 0
3 member(A) :- pim nearestAirport(A,

’http://www.daml.org/cgi-bin/airport?ABZ’). 12 12 0 2
4 member(A) :- dc creator(B,A),

dc format(B, ’application/postscript’). 17 15 2 0
5 member(A) :- dc creator(B,A),

dc title(B, ’Managing Reference: Ensuring Referential
Integrity of Ontologies for the Semantic Web’). 8 8 0 0

Fig. 9. Selected FOAF Cluster Description Rules.

Rule 1 appears interesting as it characterises people who are highly trusted by some-
one. The trust:trustedHighly predicate comes from the namespace
http://www.mindswap.org/∼golbeck/web/trust.daml#, and is part of an effort to extend
the FOAF network with the concept of trust; one application being email filtering [12].
Although the rule at first sight looks meaningful it becomes apparent that there are very
few people in (our subset of) the FOAF world that use this particular predicate. The
rule has no false positives, so the 8 people in this cluster represent all the uses of this
predicate in our data, and in fact 7 of them are trusted by the primary author of the paper
cited above. If the use of FOAF for enabling a Web of trust becomes more popular in
the future such a rule would indeed be interesting. However, the question that must be
raised is whether such a rule is too general to be useful, or if it is sufficient to know that
a person is highly trusted by someone. In a local context this might be significant, but
in a global context such knowledge is unlikely to have any great utility.

Rule 2 describes the Advanced Knowledge Technologies group at Aberdeen; these
people were originally described using the AKT ontology, but the descriptions were
converted to FOAF as described earlier. Based on the subset of data used for our ex-
periments this rule perfectly describes the AKT group of people. However, in the real
world there are other AKT groups at other institutions, and although this rule describes
a meaningful group of people, namely the group of all members of the AKT project, it
is not specific to the local Aberdeen group.

Rule 3 describes the Aberdeen Agents research group (Agents@Aberdeen), the air-
port referenced in the rule being Aberdeen airport, Dyce (ABZ). Although the people in
the AKT research group are also situated in Aberdeen, the AKT ontology has no infor-
mation regarding location, and so the FOAF description is lacking this information. A
better description of the agent group might have been :

member(A) :- foaf groupHomepage(A,
‘http://www.csd.abdn.ac.uk/research/agentsgroup/’).

However, as there is one person who is a member of both the AKT and the Agents
research group, and in this experiment was inserted into the AKT cluster, this rule would
have had an additional false positive, and rule 3 was chosen in its place.

Rule 4 describes a cluster of people who have all created a postscript document.
There are 4 postscript documents in our dataset, and the 15 people covered by this rule
are the authors of these documents; all the people and documents are from the same
UK institution. This is a good example of the bizarre clusters and rules that sometimes

Learning Meta-descriptions of the FOAF Network 163

occur within the FOAF space. Although a human might perhaps identify this rule as
less significant than for instance one using foaf:groupHomepage, Aleph has no way of
making the distinction. This rule also illustrates how RDF created by copy and paste or
from a database can produce artificial clusters, based on the use of certain schemas or
predicates particular to that cluster.

Rule 5 describes a cluster made up of 8 people who co-authored a paper. This is clearly
a meaningful cluster, although quite small and the scope for using it for classification
is limited. This rule is also interesting because the actual publication (Variable B) is
sometimes given a URI, and sometimes just referred to as an anonymous node. Aleph
must therefore use another clause to identify it. This is analogous to the FOAF use of
foaf:mbox to identify people. However, in the FOAF case we can pre-process the data and
smush the nodes because foaf:mbox is declared to be inverse functional in the ontology;
this illustrates how background knowledge in an ontology can facilitate learning.

6 Related Work

Improving learning performance by taking advantage of the structure that is inherit in
data that is marked up using XML is discussed in [13]. XML documents are represented
as ordered and labeled trees and the authors present an algorithm called XMiner to
extract the most frequent sub-trees for a given class; these are then converted into rules
for classifying new instances. The authors demonstrate that their classifier out-performs
information retrieval or association rule classifiers when learning from XML data.

Exploiting structure and semantics for learning is also discussed in [14], where
ontologies are used to enrich plain text and do feature selection and aggregation. The
aim being to improve clustering results. The authors also use semantic meta-data about
Web pages to perform web-mining; a user’s navigational path through a site becomes
a path through semantic concepts, which might be more comprehensible than the raw
access-log. The paper also includes a brief discussion of applying ILP to Semantic Web
data, highlighting the challenge of solving the scalability problems of ILP to make it
usable on the Semantic Web.

Alani et al [15] uses ontologies to detect Communities of Practice (COP) that are
only implicitly expressed. For instance, two people might not have a direct relation, but
they might have written a paper together. The detection is based on analysis of the graph
of people and properties and allows weights to be attached to possible relations. For
example, it is more significant that two people have written a paper together, than the
fact that they subscribe to the same journal. Experiments are performed using the same
AKT ontology used for the work described in this paper. In [16], the COP detection
mechanism is combined with ontologies to generate an initial user-profile for a hybrid-
recommender system called Quickstep. Analysis of a user’s publications taken from her
homepage are used to determine interest weights for concepts in the ontology, the user
is then matched with similar users in the COP and their combined profiles are in turn
matched with the concept weights of research papers to recommend papers of interest,
even to new users of the system. Middleton et al also present experiments comparing
ontology supported recommendations to those made without ontological inference. This

164 G.A. Grimnes, P. Edwards, and A. Preece

work is continued further in [17], where a new system called Foxtrot which includes
profile visualisation, email notification and user feedback.

The European Elena project14 aims to demonstrate the feasibility of smart spaces for
education, and is using Semantic Web technology to achieve this. In [18] RDF meta-data
for educational resources is combined with an RDF profile to provide a personalised and
adaptive view of a hypermedia learning-space.

7 Conclusion

In this paper we have shown how clustering and inductive logic programming can be
used to learn descriptions of groups of people from FOAF data. We believe that the type
of descriptions that have been shown in this paper identify interesting classifications
in the data that were not initially specified in the RDF schemas or OWL ontologies.
Additionally, these new classes could be integrated back into the original ontologies
or instance data, for example by expressing them either as OWL descriptions (using
restrictions on property values) or using the Semantic Web Rule Language [8].

Evaluating the information value of the newly-learned descriptions must ultimately
be done by a human, since the semantics can never truly be understood by a machine.
However, some steps can be taken to filter out the less useful descriptions. We have shown
that removal of the foaf:knows relation eliminated the generation of very specific clusters
surrounding a particular person. These clusters were less useful as it appears in general
very hard to generalise a foaf:knows relationship any further. Moreover, rules without
literal values have less information content than rules specifying a value. Although to an
ILP algorithm the presence of a predicate looks significant, we must consider the open
world assumption of RDF, in that other FOAF profiles outside our current dataset may
also make use of the predicate, which might render classification by this rule incorrect.

We are planning to extend this work by conducting experiments in which we integrate
the learned knowledge into the original data, and then re-run the clustering and learning
steps, effectively creating a form of feedback learning. Our hope is that by using the
additional descriptors it should be possible to learn even richer and more interesting
classifications.

Any attempt to apply machine learning techniques to the Semantic Web will have
the problem of scale, and even in the limited domain of FOAF we had to restrict our
experimental study to a relatively small dataset to gain acceptable performance from the
clustering and ILP steps. We will conduct further research into how the scalability of
the learning algorithms can be improved to a level where we can at least learn from the
whole FOAF crawl. However, for a global Semantic Web of interconnected information,
like FOAF, the scalability challenge is huge.

14 http://www.elena-project.org/

Learning Meta-descriptions of the FOAF Network 165

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
28–37

2. Brickley, D., Guha, R.V.: Resource Description Framework (RDF) Schema Specification.
W3c recommendation, World Wide Web Consortium (2000)

3. McGuinness, D.L., van Harmelen, F.: Web Ontology Language (OWL): Overview. W3c
recommendation, World Wide Web Consortium (2003)

4. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Spec-
ification . W3c recommendation, World Wide Web Consortium (1999)

5. Grimnes, G.A., Edwards, P., Preece, A.: Learning from Semantic Flora and Fauna. In:
Semantic Web Personalization Workshop, AAAI, San Jose, USA. (2004)

6. Vorhees, E.: Implementing agglomerative hierarchical clustering algorithms for use in docu-
ment retrieval. In: Information Processing & Management. Volume 22. (1986) 465–476

7. Srinivasan, A.: The Aleph Manual. (2001)
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

8. Horrocks, I., Patel-Scheider, P., Boley, H., Tabet, S., Groshof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. DARPA DAML Program.
(2003)

9. Hamming, R.: Error Detecting and Error Correcting Codes. Bell System Techincal Journal
29 (1950) 147–160

10. Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of Conceptual Graphs.
In: Lecture Notes in Artificial Intelligence. Volume 1793. Springer Verlag (2000) 548–556

11. Rasmussen, E.: Clustering Algorithms. In Frakes, W., Baeza-Yates, R., eds.: Information
Retrieval: Data structures & Algorithms, Prentice Hall (1992)

12. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In: Proceedings of
Cooperative Intelligent Agents 2003, Helsinki, Finland (2003)

13. Zaki, M.J., Aggarwal, C.C.: XRules: An Effective Structural Classifier for XML Data. In:
9th International Conference on Knowledge Discovery and Data-mining. (2003) 316–325

14. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: International
Semantic Web Conference. (2002) 264 – 278

15. Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying Communities of Practice
through Ontology Network Analysis. In: IEEE IS. IEEE (2003) 18–25

16. Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting Synergy Between Ontolo-
gies and Recommender Systems. In: 11th International WWW Conference, Semantic Web
Workshop. (2002) 41–50

17. Middleton, S., Shadbolt, N., Roure, D.D.: Ontological User Profiling in Recommender Sys-
tems. In: ACM Transactions on Information Systems. Volume 22(1). (2004) 54–88

18. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Towards the Adaptive Semantic Web. In: 1st
Workshop on Principles and Practice of Semantic Web Reasoning. (2003) 51–68

From Tables to Frames

Aleksander Pivk1,2, Philipp Cimiano2, and York Sure2

1 Josef Stefan Institute, Department of Intelligent Systems, Ljubljana, Slovenia
http://ai.ijs.si/

aleksander.pivk@ijs.si
2 Institute AIFB, University of Karlsruhe, Karlsruhe, Germany

http://www.aifb.uni-karlsruhe.de/WBS/
{pivk,cimiano,sure}@aifb.uni-karlsruhe.de

Abstract. Turning the current Web into a Semantic Web requires automatic ap-
proaches for annotation of existing data since manual approaches will not scale in
general. We here present an approach for automatic generation of F-Logic frames
out of tables which subsequently supports the automatic population of ontologies
from table-like structures. The approach consists of a methodology, an accom-
panying implementation and a thorough evaluation. It is based on a grounded
cognitive table model which is stepwise instantiated by our methodology.

1 Introduction

Turning the current Web into a Semantic Web requires automatic approaches for anno-
tation of existing data since manual annotation approaches such as presented in [6] will
not scale in general. More scalable (semi-)automatic approaches known from ontology
learning (cf. [11]) deal with extraction of ontologies from natural language texts. How-
ever, a large amount of data is stored in tables which require additional efforts.
We here present an approach for automatic generation of F-Logic frames [9] out of ta-
bles which subsequently supports the automatic population of ontologies from table-like
structures. The approach consists of a methodology, an accompanying implementation
and a thorough evaluation. It is based on a grounded cognitive table model which is
stepwise instantiated by our methodology. In practice it is hard to cover every existing
type of a table. We identified a couple of most relevant table types which were used in
the experimental setting during the evaluation of our approach.
The paper is structured as follows. In the next Section 2 we first introduce the grounding
table model which forms the base for our stepwise approach to generate frames out of
tables. Subsequently we explain each step in detail and show relevant substeps. In Sec-
tion 3 we present a thorough evaluation of the accompanying implementation. Before
concluding and giving future directions, we present related work.

2 Methodological Approach

Linguistic models traditionally describe natural language in terms of syntax, semantics
and pragmatics. There also exist models to describe tables in similar ways (cf. [7,8])

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 166–181, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

From Tables to Frames 167

Table 1. Example of a possible table, found in [1]

Tour Code DP9LAX01AB
Valid 01.05. - 30.09.04

Class/Extension Economic Extended
Single Room 35,450 2,510

Adult P Double Room 32,500 1,430
R Extra Bed 30,550 720
I Occupation 25,800 1,430

Child C No occupation 23,850 720
E Extra Bed 22,900 360

where tables are analyzed along the following dimensions: (i) Graphical – the image
level description of the pixels, lines and text or other content areas, (ii) Physical – the
description of inter-cell relative location, (iii) Structural – the organization of cells as
an indicator of their navigational relationship, (iv) Functional – the purpose of areas of
the tables in terms of data access, and (v) Semantic – the meaning of text in the table
and the relationship between the interpretation of cell content, the meaning of structure
in the table and the meaning of its reading.
Our approach builds on the model described above. However, we will not consider the
graphical dimension as no image processing will be necessary. Regarding the physical
dimension, we process the tables encoded in HTML format in order to get a physical
model of the table. In principle it can be seen as a graph describing the cells being
connected together. In order to capture the structural dimension of the table, further
processing is necessary (i) to determine the orientation of the table, i.e. top to down or
left to right, and, (ii) to discover groups of cells building logical units. When talking
about the function of a table, Hurst [8] distinguishes between two functional cell types
access and data. Cells of type data are the ones we are interested when reading a table
and which contain the actual information, while cells of type access determine the path to
follow in the table in order to find the data cell of interest. Further, he distinguishes local
(looking for one specific data cell) from global (comparing the value of different data
cells) search in a table. In our approach we describe the functional dimension of a table
in order to support local search. Such a functional description requires (i) finding all the
data cells in a table as well as (ii) all the access cells to reach a given data cell of interest.
In terms of database terminology, we need to find the keys for a certain field in the table.
In our approach we distinguish between two functional types of cells: A(ttribute)-cells
and I(nstance)-cells. A-cells describe the conceptual nature of the instances in a column
or row. I-cells represent instances of the concepts represented by a certain A-cell. I-
cells can have the two functional roles described by Hurst, i.e. they can play the role of
data or access cells. Regarding the semantic description we follow a different paradigm
as Hurst. Instead of adopting the relational model [2], we describe the semantics of a
table in terms of F-Logic frames [9]. F-Logic combines the intuitiveness of modeling
with frames with the expressive power of logic. Furthermore, existing F-Logic inference
engines such as Ontobroker [4] allow later on e.g. for processing and query answering.
Therefore it was our primary choice as representation language.

168 A. Pivk, P. Cimiano, and Y. Sure

Fig. 1. Building blocks of the methodology

We briefly introduce our running example. As input we use Table 1 which is taken from
the tourism domain and is (roughly speaking) about room prices. The ideal description
in terms of an F-Logic frame of this table, i.e. the output after applying our approach,
could look as follows:

Tour[TourCode => ALPHANUMERIC
Validity => DATE
EconomicPrice(PersonType,RoomType) => LARGE NUMBER
ExtendedPrice(PersonType,RoomType) => LARGE NUMBER]

By resorting to F-Logic we are thus able to describe the semantics of tables in a model-
theoretic way. Furthermore, as required by Hurst, the frame makes explicit (i) the mean-
ing of cell contents (ii) the functional dimension of the table, and (iii) the meaning of the
table abstracting from its particular structure. In this line, different tables with different
structures but identical meaning would be described by one and the same frame. In what
follows we describe how we process the table in order to yield intermediate descriptions
of a table along the dimensions described above as well as how as a last step the table is
translated into a F-Logic frame.
As depicted in Figure 1 our methodology consists of four main steps. For each building
block of the table model there exists a corresponding methodological step to create this
part of the table model. In the following subsections we will describe all steps in detail.

2.1 Cleaning and Normalization

Web documents are often very noisy in a sense that their syntactic structure is incorrect.
Web browsers (i.e. Opera) are capable of dealing with such poorly structured, inconsis-
tent, and incomplete documents. In order to remove this noise we perform the following
two steps: a) syntactic correction/cleaning, and b) normalization.
First, we assume that documents are represented with the dom1 (Document Object
Model). A dom tree is an ordered tree, where each node is either an element or a text
node. An element node includes an ordered list of zero to many child nodes, and contains
a string-valued tag (such as table, h1 or title) and zero to many string-valued attributes
(such as href or src). A text node normally contains a single text string and has no child
nodes.
In the two substeps we construct an initial table model out of an updated dom tree. In or-
der to clean the code and make it syntactically correct, we employ the CyberNeko html

1 http://www.w3.org/DOM/

From Tables to Frames 169

Table 2. Table 1 after cleaning and normalization step

Tour Code Tour Code Tour Code DP9LAX01AB DP9LAX01AB
Valid Valid Valid 01.05 - 30.09.04 01.05 - 30.09.04

Class/Ext. Class/Ext. Class/Ext. Economic Extended
Adult PRICE Single Room 35,450 2,510
Adult PRICE Double Room 32,500 1,430
Adult PRICE Extra Bed 30,550 720
Child PRICE Occupation 25,800 1,430
Child PRICE No occupation 23,850 720
Child PRICE Extra Bed 22,900 360

Parser2. The normalization step of the rendered ‘table’ element node in the dom tree
is only necessary, when an explicit child node’s attribute, such as rowspan or colspan,
indicates multiple row or column spanning cells, where the actual total number of rows
or columns is lower than the attribute value. In both steps our system updates the corre-
sponding dom subtrees accordingly.
Table 2 shows the final reformulation of the example in Table 1, where cleaning has been
performed and copies of cells with rowspan and rowspan attributes have been properly
inserted into the matrix structure.

2.2 Structure Detection

Assignment of functional types and probabilities to cells. In the initial pass over
the table element node (of the dom tree), we convert a sub-tree into a matrix structure,
which is populated by cells according to its layout information. During this step the text
of each cell is tokenized, and each token is assigned a token type according to the tree
(leaves) presented in Figure 2. At the same time, we assign each cell in the rendered
table a functional type and a probability of the type. By default, a cell is assigned no
functional type (probability value equals zero), or I-cell type in case the cell includes
only/mostly tokens, recognized as dates, currencies, or numerical values. Its probability
is then calculated based on the distribution of cell’s token types. Finally, we assume that
the cell in the lower-right corner is always an I-cell, and the cell in the upper-left corner
is an A-cell. Therefore we assign those two cells the types, regardless of their content,
with probability one.

Detecting table orientation. One problem related to the interpretation of a table is that
its logical orientation is a priori not clear. In fact, when performing a local search on a
table, the data of interest can be either ordered in a top-to-down (vertical orientation)
or left-to-right manner (horizontal orientation). For example, in figure 1 the relationship
“Tour Code, DP9LAX01AB” reads left-to-right, but price values of an attribute “Eco-
nomic Class” appear top-to-down. When trying to determine the table orientation we
rely on the similarity of cells. The intuition here is that, if rows are similar to each other,

2 http://www.apache.org/andyc/neko/doc/html

170 A. Pivk, P. Cimiano, and Y. Sure

then orientation is vertical and on the contrary, if columns are similar, then interpretation
is horizontal.
In order to calculate the differences among rows and columns of the table, we need first
to define how to calculate the difference between two cells. For this we represent a cell
as a vector c of token types of all the tokens in the cell. Henceforth, ci will denote the
i-th component of the vector c, corresponding to the token type of the i-th token in the
cell. Furthermore, |c| will denote the size of the vector. The token types we consider are
given in Figure 2. They are ordered hierarchically thus allowing to measure the distance
δ between two different types as the edges between them. This representation is flexible
and can be extended to include domain specific information. For example, the numeric
type is divided into categories that include range information about the number, i.e.
large num (≥ 10.000), med num (100 ≤ n < 10.000), small num (< 100), and
currency, which can be treated as a domain specific information.
Now when comparing the vectors of two cells, we compare the token types with same
indices in case the vectors have equal length; otherwise, we calculate the distance for the
left-side tokens (tokens aligned at the head) and for the right-side tokens (tokens aligned
at the tail). The distance is in both cases also normalized.

δcells(cP , cQ) :=

⎧⎪⎨
⎪⎩

v
2∗u

⎧⎩∑u
i=1 δ(cPi

, cQi
) +

∑v
i=w δ(cPi

, cQi
)
⎫⎭ if u �= v

1
u

∑u
i=1 δ(cPi , cQi) if u = v

(1)

where u = min(|cP |, |cQ|), v = max(|cP |, |cQ|) and w = v−u+1. Now given a table
with r rows and s columns, the total distance (Δcols) between columns is calculated by
summing up the distance between the last column and each of the preceding m − 1
columns, where m = min(r, s), i.e.

Δcols =
m−1∑
i=1

δcols(cols−i, cols) (2)

δcols(colp, colq) =
s∑

i=m

δcells(ci,p, ci,q) (3)

where cx,y is the cell in row x and column y.
The total distance (Δrows) between rows is by analogy calculated by summing up the
distance between the last row and each of the m− 1 preceding rows:

Δrows =
m−1∑
i=1

δrows(rowr−i, rowr) (4)

δrows(rowp, rowq) =
r∑

i=m

δcells(cp,i, cq,i) (5)

Here we only compare equal number of rows and columns, starting at the lower-right
corner, thus optimizing the number of comparisons (not all the rows and columns to
the top of the table need to be compared). Finally, to determine the orientation of the

From Tables to Frames 171

Fig. 2. Hierarchy of token types

table, we compare both results. If the distance between columns is greater than among
rows (Δcols > Δrows), orientation is set to vertical (top-to-down). On the other hand,
if the distance between columns is lower than among rows (Δcols < Δrows), then
orientation is set to horizontal (left-to-right). In the last case, where the two results are
equal, orientation is assigned the default, i.e. vertical.

Discovery of regions

Definition 1 (Logical unit). A logical unit is a part of a table produced by a horizontal
split in case of vertical orientation or by a vertical split in case of horizontal orientation.

Definition 2 (Region). A region is a rectangular area of a table consisting of cells with
the same functional type. Regions cannot extend over multiple logical units and can
therefore only appear within one logical unit.

Here we will present a step-by-step algorithm for discovery of regions in tables.
Pseudocode of the algorithm is given in Table 3.

1. Initialize logical units and regions. First, the system splits a table into logical units.
In particular, when table orientation is column-wise (vertical), the horizontal split is
done at every row containing cells spanning multiple columns, or when dealing with
row-wise (horizontal) orientation, vertical split is done at every column containing
cells spanning multiple rows. Consecutive logical units may then be merged if their
layout structure is equal. Over-spanning cells of type I-cell also represent a sign for
a split. Note that a table itself is by definition one logical unit.

Table 3. Algorithm for discovery of regions

1. Initialize logical units and regions
2. Learn string patterns of regions
for all logical units

do while (logical unit is not uniform)
3. Choose the best coherent region
4. Normalize logical unit

172 A. Pivk, P. Cimiano, and Y. Sure

For example, Table 1 has three logical units. The first logical unit is extending over
the first two rows, the second one over the third row, and the third one over the rest
of the table. The first two rows have an over-spanning cell with functional type I-cell
and are grouped into one logical unit because their layout structure is equal. A third
row has a cell spanning multiple columns, and the rest is grouped into one logical
unit.
Once splitting is over, the region initialization step begins. The system starts at a
lower-right corner and moves according to its orientation towards upper-left corner
over all logical units, thus generating all distinct initial regions. The cell cN is added
to a region r if the following conditions apply (otherwise a new region is created):
a) the cell cN is within the same logical unit as other cells
b) its size is equal to the size of cells already in the region, and
c) it keeps the distance among cells in r within a treshold value:

δcells(cN , c1(r)) ≤ 2 (6)

where the value of 2 reflects a significant token type change according to the
hierarchy in figure 2.

2. Learn string patterns for regions. For each region r we learn a set Pr of significant
patterns, which are sequences of token types and tokens, describing the content
of a significant number of cells. The patterns are of two types: the first represents
the content of cells from left-to-right (forward) and the second from right-to-left
(backward). The pattern ‘FIRST UPPER Room’ for example covers the cells ‘Sin-
gle Room’ and ‘Double Room’. For the purpose of pattern construction we have
implemented the DATAPROG algorithm, which is described in [10] together with
a detailed pattern learning process. In case there are not enough examples (less
than 20) to statistically choose the most significant patterns, only the most specific
(having their coverage over the treshold value) are chosen.
Before entering the loop (compare table 3), the system checks the uniformity of
every logical unit. In our case, a logical unit is uniform when it consists of logical
sub-units and each sub-unit includes only regions of the same size and orientation.
Only the units that are not uniform are further processed within the following steps
of the loop.

3. Choose the best coherent region. If a logical unit is not uniform, the system chooses
its best region, which is used to normalize neighboring regions and consequently
the logical unit itself. The best region rmax is chosen according to the formula
Φrmax = maxr in lφr,l, which is calculated by the following equation:

φr,l :=
⎧⎩ |r|

|l| + 1
|r|

∑
c in r P (c) + 1

2∗|r|∗|Pr|
∑

p∈Pr
covers(p, r)

⎫⎭ (7)

where l denotes a logical unit, r denotes a region in the unit, c denotes cells in the
region, and Pr is the set of significant string (forward and backward) patterns for
the region as described above. The function covers(p, r) returns a number of cells
covered by pattern p in region r. According to the above formula, the selected region
maximizes the sum of averaged region size (1st operand of the sum), averaged cell
probabilities (2nd operand) and averaged pattern coverage over a particular region
(3rd operand).

From Tables to Frames 173

4. Normalize neighboring regions of the best region. The intuition here is to use the
best region as a propagator for other regions in their normalization process. First,
the system selects (based on the orientation) all neighboring regions, i.e. those that
appear in the same rows (left/right) for column-wise orientation, or in same columns
(up/down) for row-wise orientation. Now, two possibilities exist: (a) neighboring
regions within a common column/row (orientation dependent) do not extend over the
boundaries of the best region. In this case, the solution is straightforward, because
the ‘new’ region is extended in a way to cover all common column/row regions. (b)
neighboring regions within a common column/row do extend over the boundaries
of the best region. In this case, the best region is extended accordingly, and this step
repeated.
The logical unit is being processed within the loop as long as the system is not
able to divide it into logical sub-units, where each sub-unit includes only regions
of the same size and orientation (uniformity condition). Note that string patterns,
probabilities and functional types of normalized regions are also updated in every
iteration. Finally, in this way all logical units are being normalized and prepared for
further processing.

2.3 Building of a Functional Table Model

The key step of translating a table into a frame is building a model of the functional
dimension of the table. This model is called Functional Table Model (FTM) and essen-
tially arranges regions of the table in a tree, whereby the leaves of the tree are all the
regions consisting exclusively of I-cells. Most importantly, in the FTM these leaves are
assigned their functional role, i.e. access or data, and semantic labels as described in
Section 2.4.
The construction of the FTM proceeds bottom up: we start with the lowest logical unit
in the table and proceed with further logical units towards the top. For each logical unit
in question we first determine its type. There are three possibilities: (a) the logical unit
consists only of A-cells, in which case all its regions will be turned into inner nodes
of the tree and thus connected to some other nodes in the tree, (b) it consists only of
I-cells, in which case they will constitute leaves and will be connected to appropriate
inner nodes, and (c) it consists of I-cells and A-cells, in which case we determine the
logical separation between them by taking the uniformity condition into account.
In some cases a special connection node (see Figure 3) needs to be inserted into the tree.
This occurs when we encounter a logical unit that reflects a split in the table, in particular
when a previous logical unit contained only A-cells, but the present logical unit again
contains I-cells. In such cases, we check (described later in this paragraph) if reading
orientation of the present logical unit is different from the previous one and needs to be
changed. If this is true, the logical unit needs to be recalculated, as described in Section
2.2. For example, the first logical unit (first two rows) in Table 1 has four regions (each
‘logical’ cell) and there is no logical unit on top of it. So, if the orientation was vertical
(i.e. like in lower logical unit), there would be no inner node (consisting of A-cells) to
connect the I-cells to. Thus orientation has to be changed from vertical to horizontal for
this logical unit.

174 A. Pivk, P. Cimiano, and Y. Sure

Fig. 3. A functional table model (FTM) of the running example (Table 1) with square components
representing I-cells and rounded components representing A-cells.

As already mentioned above, each region in a leaf position is assigned its corresponding
functional role. The role access is assigned to all consecutive regions (starting at the
left subnodes of a subtree) together forming a unique identifier or key in the database
terminology. The rest of the leaf nodes in the subtree get assigned the role data.
When all logical units have been processed, we connect the remaining unconnected
nodes to a root node. For example, the FTM constructed out of our running example
is depicted in Figure 3. After the FTM is constructed, we examine if there are any
multi-level (at least two levels of inner A-cell nodes) subtrees that might be merged.
The candidate subtrees for merging must have the same tree structure (same number of
levels and nodes on each level) and at least one level of matching A-cells. If there are
any candidates that fulfill the requirements, we perform a process called recapitulation,
where we merge the nodes at same positions in both subtrees. As we only require one
level of matching A-cells, there might be some A-cells that do not match. For every such
case, the following steps are taken: (a) find a semantic label of a ‘merged’ A-cell node
(described in Section 2.4), (b) connect the ‘merged’ A-cell to a new leaf node, which
is populated by the A-cell contents of merged nodes, and (c) assign the functional role
of the new leaf node to access. In this way we check and merge all possible multi-level
subtrees of a FTM and finalize the construction process.

2.4 Semantic Enriching of the Functional Table Model

Discovery of semantic labels. In order to find semantic labels for each table region
(node), we resort to the WordNet lexical ontology [5] to find an appropriate hypernym
covering all tokens in the cells contained in the region. Furthermore, we also make use
of the GoogleSets3 service to find synonyms for certain tokens. For example, the first
region in Table 2 consists of the tokens adult and child, for which WordNet suggests the
hypernym person. However, the tokens are not always so ‘pure’, therefore we stepwise
remove words in the cells by the following transformations and consult WordNet after
each step to yield a suitable hypernym:

3 http://labs.google.com/sets

From Tables to Frames 175

1. punctuation removal
2. stopword removal
3. compute the IDF measure (where the documents are cells in our case) for each word

and filter out the ones with value lower than the threshold
4. select words that appear at the end of the cells as they are more significant4

5. query GoogleSets with the remaining words in order to filter words which are not
mutually similar

Map Functional Table Models into Frames. In order to define how to transform a
FTM into a frame, we first give a formal definition of a method and a frame:

Definition 3 (Method). A method is a tuple M := (nameM , rangeM , PM), where (i)
nameM is the name of the method, (ii) rangeM is a string describing the range of the
method and (iii) PM is a set of strings describing the parameters of the method.

The method Price(PersonType, RoomType) ⇒ NUMBER would for example be
formally represented as the tuple (Price,NUMBER,{PersonType,RoomType}). Further,
a frame is defined as follows:

Definition 4 (Frame). A Frame F is a pair F:=(nameF , MF) where nameF is the
name of the frame and MF is a set of methods as described above.

Now when generating a frame, we create one method m for every region with functional
role data with all the regions of type access as parameters of this method. This parameters
must either be located on the same level within the same subtree or on a parent path to
the root node. Here it is crucial to find appropriate names for the method (nameM) and
parameter identifiers p ∈ PM . The semantic label for each identifier is a combination
of a region label (described in procedure above) and parent A-cell node labels. For
better understanding, compare the FTM tree depicted in Figure 3 and the example of the
generated frame given below. Further, we also set the range rangeM of the method m to
the syntactic token type of the region with functional role data for which the method was
generated. Finally, the frame for the running example, generated by the system, looks
as follows:

Tour [Code => ALPHANUMERIC
DateValid => DATE
EconomicExtension (PersonClass, RoomClass) => LARGE NUMBER
ExtendedExtension (PersonClass, RoomClass) => LARGE NUMBER]

3 Evaluation

In order to evaluate our approach, we compare the automatically generated frames with
frames manually created by two different subjects in terms of Precision, Recall and F-
Measure. In particular, we considered 21 different tables in our experiment and asked 14

4 The intuition here is that for nominal compounds the nominal head is at the end.

176 A. Pivk, P. Cimiano, and Y. Sure

Fig. 4. Examples of Tables

subjects to manually create a frame for three different tables such that each table in our
dataset was annotated by two different subjects with the appropriate frame (14 × 3 =
21×2 = 42). In what follows we first describe the dataset used in the experiments. Then
we describe the evaluation methodology and present the actual results of the experiment.
The definition of the task as well as the instructions for the annotators can be found at
http://www.aifb.uni-karlsruhe.de/WBS/pci/FromTables2Frames.ps

Table Classes. We have identified three major table classes according to their layout
that appear frequently on the web: 1-Dimensional (1D), 2-Dimensional (2D), and
Complex tables. The first two classes are more simple and also appear more often
compared to the last class. A similar classification into classes has also been introduced
in [16].

1-Dimensional tables: this class of tables has at least one row of A-cells above
the rows of I-cells. If there are more than one row of A-cells then we assume that they
are hierarchically connected. The content of the I-cells in different columns represent
instances of the A-cells above. An example of this type is given in Figure 4 (a).

2-Dimensional tables: this class has a rectangular area of I-cells appearing within
columns. This class has at least one row ofA-cells above the rectangular area, and at least
one column of A-cells on the left side of the rectangular area. Discovering and handling
of this class is hard as it is difficult for a system (without any other knowledge) to decide if
the first column consists of A-cells or I-cells. Our solution here is to interpret the leading
column as A-cells only if its first row cell is a non-spanning cell with an empty label or
a label containing a character ‘/’.An example for this type of table is given in Figure 4 (b).

Complex tables: this class of tables shows a great variety in layout structure.
Therefore a table might have the following features:

– Partition data labels: Special over-spanning data labels between the data and/or
attribute labels can make several partitions of the table. Each partition shares the

From Tables to Frames 177

same attributes, such as in Figure 4 (c). In this case the relation among attribute and
data value cannot be obtained directly.

– Over-expanded labels: some entries might expand over multiple cells. There are
two options: (a) data values span over multiple rows in the same column or (b) an
attribute label spans over multiple columns. An example of this class is the part of
Table 1 consisting in the lower seven rows.

– Combination: large tables might consist of several smaller, simpler ones. For ex-
ample, Table 1 consists of two structurally ‘independent’ tables.

In our experiment, we have gathered 21 tables, each belonging to at least one class.
Since the first two classes are a bit less interesting, we used only three different tables
for each class, but for each complex subclass we used five different tables. All tables
were gathered from two distinctive sources: one from tourist domain and another from
a source dealing with food research. Domains were quite different, and also tables were
selected from different sources in a way that their distribution over classes is uniform.

Evaluation Methodology. We evaluated our approach by considering the well-known
information retrieval measures Precision, Recall and F-Measure. In particular, for each
table we evaluated the frame automatically generated for it by the system with respect
to the two frames manually created by two different subjects along the following lines:
Syntactic Correctness, Strict Comparison, Soft Comparison, Conceptual Comparison.
In order to assess how similar two strings are, we will introduce a string comparison
operator σ : String × String → [0..1].
In particular, in our evaluation we use a string comparison operator based on a com-
bination of a TFIDF weighting scheme with the Jaro-Winkler string-distance scheme.
Cohen et al. [3] showed that the operator produces good results in such tasks. The Syn-
tactic Correctness measures how well the frame captures the syntactic structure of the
table, i.e. to what extent the number of arguments matches the number of parameters as
specified by the human annotator for a given method. In what follows we define three
functions Syntactic giving the syntactic correctness between two methods as well as a
method and a frame, respectively.

SyntacticM×M (m1, m2) :=

⎧⎪⎨
⎪⎩

|Pm1 |
|Pm2 | if |Pm2 | > 0

1 if |Pm1 | = |Pm2 | = 0
0 otherwise

SyntacticM×F (m, f) = SyntacticM×M (m, m′),

where m′ is that method in fM which maximizes σ′(m, m′) ∗SyntacticM×M (m, m′).
Note that the above measures are directed; they will be used in one direction to obtain
the Precision and in the other direction to obtain the recall of the system.
Strict Evaluation then checks if the identifier for the method name, the range and the
parameters are identical. We also define a corresponding functions Strict again defined
on two methods and a method and a frame, respectively:

StrictM×M (m1, m2) :=
{

1 if namem1 = namem2

0 otherwise

178 A. Pivk, P. Cimiano, and Y. Sure

StrictM×F (m, f) = maxm′∈Mf
StrictM×M (m, m′)

The Soft Evaluation also measures in how far the identifiers for the method name, the
range and the parameters match, but makes use of the string comparison operator defined
above:

SoftM×M (m1, m2) = σ(namem1 , namem2)

SoftM×F (m, f) = maxm′∈Mf
SoftM×M (m, m′)

Further, we have a modified string comparison σ which returns 1 if the string to compare
are equivalent from a conceptual point of view and σ otherwise, i.e.

σ′(s1, s2) :=
{

1 if s1 and s2 are conceptually equivalent
σ(s1, s2) otherwise

The Conceptual measure was introduced to check in how far the system was able to learn
the frame for a table from a conceptual point of view. In order to assess this, two of the
authors compared the frames produced by the system and the ones given by the human
subjects and determined which identifiers can be regarded as conceptually equivalent.
In this line RegionType, Region and Location can be regarded as conceptual equivalent.
Here are the formal definitions of the corresponding functions:

ConceptualM×M (m1, m2) = σ′(namem1 , namem2)

ConceptualM×F (m, f) = maxm′∈Mf
ConceptualM×M (m, m′)

For all the above measures we compare two frames as follows:

XF×F (f, f ′) =

∑
m∈fM

XF×F (m, f ′)
|fM |

,

where X stands either for Syntactic, Strict, Soft or Conceptual.
In our evaluation study, we give results for Precision, Recall and F-Measure between
the frame FS produced by the system and the frames F1, ...Fn (in our case n = 2)
produced by the human annotators. In particular, we will consider the above evaluation
functions Syntactic, Strict, Soft and Conceptual in order to calculate the Precision, Re-
call and F-Measure of the system. Thus, in the following formulas, X stands either for

Syntactic, Strict, Soft or Conceptual: PrecAvg,X(FS , {F1, ...Fn}) =
∑

1≤i≤n X(FS ,Fi)
n

And Recall is defined inversely, i.e. RecAvg,X(FS , {F1, ...Fn}) =
∑

1≤i≤n X(Fi,FS)
n .

Obviously, according to the definitions of the measures, the following equations hold:
PrecStrict ≤ PrecSoft ≤ PrecConceptual, RecStrict ≤ RecSoft ≤ RecConceptual.
Furthermore, we also give the value of the precision and recall for the frame which
maximizes these measures, i.e. Precmax,X(FS , {F1, ...Fn}) = maxi X(FS , Fi) And
Recall is defined inversely, i.e. Recmax,X(FS , {F1, ...Fn}) = maxi X(Fi, FS). Obvi-
ously, here the following equations hold: PrecX ≤ Precmax,X , RecX ≤ Recmax,X .
The reason for calculating precision and recall against the frame given by both annota-
tors which maximizes the measures is that some frames given by the annotators were
not modelled correctly according to the intuitions of the authors. Thus, by this we avoid

From Tables to Frames 179

Table 4. Results of the different evaluation measures

Average Maximum
Syntactic Strict Soft Conceptual Syntactic Strict Soft Conceptual

Precision 48.71% 36.78% 44.88% 56.01% 62.85% 48.84% 58.26% 71.02%
Recall 50.53% 38.81% 47.75% 58.50% 67.54% 51.83% 61.95% 77.65%
F-Measure 49.60% 37.77% 46.27% 57.22% 65.11% 50.29% 60.05% 74.18%

to penalize the system for an answer which is actually correct. As a byproduct of calcu-
lating RecallX and Recallmax,X we can also indirectly judge how good the agreement
between human subjects is.
Finally, as is usual we balance Recall and Precision against each other by the F-Measure
given by the formula: FX(PX , RX) = 2PX RX

PX+RX

The system is now evaluated by calculating the above measures for each automatically
generated frames and the corresponding frames given by the human annotator.

Discussion of Results. Table 4 gives the results for the Precision, Recall and F-Measure
as described above. The first interesting observation is that the values for the maximum
evaluation are quite higher than the ones of the average evaluation, which clearly shows
that there was a considerable disagreement between annotators and thus that the task we
are considering is far from being trivial.
The results of the Syntactic comparison are an F-Measure of Favg,Syntactic = 49.60%
for the average evaluation and Fmax,Syntactic = 65.11%. The values show that the
system is interpreting the table to a satisfactory extent from a syntactic point of view,
i.e. it is determining the number of parameters correctly in most of the cases. Regarding
the naming of the methods, their range and their parameters, the results vary consider-
able depending on the measure in question. For the average evaluation the results are:
Favg,Strict = 37.77%, Favg,Soft = 46.27% and Favg,Conceptual = 57.22%. These
results show that the system has indeed problems to find the appropriate name for meth-
ods, their ranges and their parameters. However, as the conceptual evaluation shows,
most of the names given by the system are from a conceptual point of view equiva-
lent to the ones given by the human annotator. For the maximum evaluation we have:
Fmax,Strict = 50.29%, Fmax,Soft = 60.05% and Fmax,Conceptual = 74.18%. Thus,
we can conclude that from a conceptual point of view the system is getting an appropriate
name in almost 75% of the cases and it is getting the totally identical name in more than
50% of the cases. Actually, our system only failed in processing two of the 21 tables,
such that in general we conclude that our results are certainly very promising.

4 Related Work

A very recent systematic overview of related work on table recognition can be found
in [18]. Several conclusions can be drawn from this survey. Firstly, only few table
models have been described explicitly. Apart from the table model of Hurst which we
have applied in our approach [7,8] the most prominent other model is from Wang [17].

180 A. Pivk, P. Cimiano, and Y. Sure

However, the model of Hurst is better suited for our purpose since it is targeted towards
table recognition whereas Wang is targeted towards table generation.

Secondly, it becomes clear that research so far in table recognition focused on re-
covering tables from encoded documents, i.e. Ng et al. [13] applied machine learning
techniques to identify the location of the table (rows and columns) in the text, where
McCallum et al. [12] and Pinto et al. [15] dealt also with row labeling and cell clas-
sification. Chen et al. [1] also worked on table recognition (using heuristic rules), and
interpretation, but only from web documents. Table extraction methods have also been
applied in the context of question answering, such as in [14,16].

In contrast, we assume that tables are already harvested. Furthermore, we provide
a methodology and implementation which completely instantiates a table model and
additionally closes the gap to formal semantics provided by ontologies. Our approach
allows subsequently for using the full potential ontologies offer e.g. for query answering
or knowledge retrieval over a set of tables.

5 Conclusion

We have shown how our methodology stepwise instantiates the underlying table model
which consists of Physical, Structural, Functional and Semantic components. The core
steps of the methodology are (i) Cleaning and Normalization, (ii) Structure Detection,
(iii) Building of the Functional Table Model (FTM) and (iv) Semantic Enriching of the
FTM. We demonstrated and evaluated the successful automatic generation of frames
from HTML tables. Additionally, our experimental results show that from a conceptual
point of view the system is getting appropriate names for frames in almost 75% of the
cases and it is getting the totally identical name in more than 50% of the cases. These
results are certainly very promising.

Acknowledgments. This work has been supported by the IST-projects Dot.Kom and
SEKT, sponsored by the EC as part of the frameworks V and VI, respectively. During his
stay at the AIFB, Aleksander Pivk has been supported by a Marie Curie Fellowship of
the European Community program ‘Host Training Sites’ and by the Slovenian Ministry
of Education, Science and Sport. Thanks to all our colleagues for participating in the
evaluation of the system as well as to the reviewers for useful comments on the paper.

References

1. H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale HTML texts. In Proc. of the
18th Int. Conf. on Computational Linguistics (COLING), pages 166–172, 2000.

2. E.A. Codd. A relational model for large shared databanks. Communications of the ACM,
13(6):377–387, 1970.

3. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance metrics for name-
matching tasks. In Proceedings of the IIWeb Workshop at the IJCAI 2003 conference, 2003.

4. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access
to Distributed and Semi-Structured Information. In R. Meersman et al., editors, Database
Semantics: Semantic Issues in Multimedia Systems, pages 351–369. Kluwer, 1999.

From Tables to Frames 181

5. C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.
6. S. Handschuh and S. Staab, editors. Annotation in the Semantic Web. IOS Press, 2003.
7. M. Hurst. Layout and language: Beyond simple text for information interaction - modelling

the table. In Proc. of the 2nd Int. Conf. on Multimodal Interfaces, Hong Kong, 1999.
8. M. Hurst. The Interpretation of Tables in Texts. PhD thesis, University of Edinburgh, 2000.
9. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based

languages. Journal of the ACM, 42:741–843, 1995.
10. K. Lerman, S. Minton, and C. Knoblock. Wrapper maintenance:A machine learning approach.

J. of Artificial Intelligence Research, 18:149–181, 2003.
11. A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic Publishers, 2002.
12. A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for information

extraction and segmentation. In Proceedings of the ICML 2000, pages 591—-598, 2000.
13. H. T. Ng, C.Y. Kim, and J. L. T. Koo. Learning to recognize tables in free text. In Proceedings

of the 37th Annual Meeting of the Association for Computational Linguistics, pages 443—-
450, 1999.

14. D. Pinto, W. Croft, M. Branstein, R. Coleman, M. King, W. Li, and X. Wei. Quasm: A system
for question answering using semi-structured data. In Proceedings of the Joint Conference
on Digital Libraries (JCDL) 2002, pages 46–55, 2002.

15. D. Pinto, A. McCallum, X. Wei, and W.B. Croft. Table extraction using conditional random
fields. In Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, pages 235–242. ACM Press, 2003.

16. H. L. Wang, S. H. Wu, I. C. Wang, C. L. Sung, W. L. Hsu, and W. K. Shih. Semantic Search
on Internet Tabular Information Extraction for Answering Queries. In Proc. of the Ninth Int.
Conf. on Information and Knowledge Management, Washington DC, pages 243–249, 2000.

17. X. Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, U. of Waterloo, 1996.
18. R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition: Models, observations,

transformations, and inferences. International Journal of Document Analysis and Recogni-
tion, to appear.

The Specification of Agent Behavior by Ordinary
People: A Case Study

Luke McDowell, Oren Etzioni, and Alon Halevy

University of Washington, Department of Computer Science and Engineering
Seattle, WA 98195 USA

{lucasm,etzioni,alon}@cs.washington.edu,
http://www.cs.washington.edu/research/semweb/email

Abstract. The development of intelligent agents is a key part of the Semantic
Web vision, but how does an ordinary person tell an agent what to do? One ap-
proach to this problem is to use RDF templates that are authored once but then
instantiated many times by ordinary users. This approach, however, raises a num-
ber of challenges. For instance, how can templates concisely represent a broad
range of potential uses, yet ensure that each possible instantiation will function
properly? And how does the agent explain its actions to the humans involved?
This paper addresses these challenges in the context of a case study carried out
on our fully-deployed system1 for semantic email agents. We describe how high-
level features of our template language enable the concise specification of flexible
goals. In response to the first question, we show that it is possible to verify, in
polynomial time, that a given template will always produce a valid instantiation.
Second, we show how to automatically generate explanations for the agent’s ac-
tions, and identify cases where explanations can be computed in polynomial time.
These results both improve the usefulness of semantic email and suggest general
issues and techniques that may be applicable in other Semantic Web systems.

1 Introduction

The vision of the Semantic Web has always encompassed not only the declarative rep-
resentation of data but also the development of intelligent agents that can consume this
data and act upon their owner’s behalf. For instance, agents have been proposed to
perform tasks like appointment scheduling [2], meeting coordination [26], and travel
planning [22]. A significant difficulty with this vision, however, is the need to translate
the real-world goals of untrained users into a formal specification suitable for agent
execution [31,30]. In short, how can an ordinary person tell an agent what to do?

One approach to this problem is to encapsulate classes of common behaviors into
reusable templates (cf., program schemas [7,10] and generic procedures [22]). Templates
address the specification problem by allowing a domain-specific template to be authored
once but then instantiated many times by untrained users. In addition, specifying such
templates declaratively opens the door to automated reasoning with and composition
of templates. Furthermore, the resulting declarative specifications can be much more
concise than with a procedural approach (see Table 1).

1 See http://www.cs.washington.edu/research/semweb/email for a publicly accessible
server (no installation required); source code is also available from the authors.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 182–197, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Specification of Agent Behavior by Ordinary People: A Case Study 183

Table 1. Comparison of the size of an E-Agent specification in our original procedural prototype [9]
(using Java/HTML) vs. in the declarative format described in this paper (using RDF). Overall, the
declarative approach is about 80-90% more concise.

Procedural approach Declarative approach Size Reduction
E-Agent name (number of lines) (number of lines) for Declarative
Balanced Potluck 1680 170 90%
First-come, First-served 536 99 82%
Meeting Coordination 743 82 89%
Request Approval 1058 109 90%
Auction 503 98 81%

However, specifying agent behavior via templates presents a number of challenges:
• Generality: How can a template concisely represent a broad range of potential

uses?
• Safety: Templates are written with a certain set of assumptions — how can we

ensure that any (perhaps unexpected) instantiation of that template by a naive user
will function properly (e.g., do no harm [32], generate no errors)?

• Understandability:When executing a template, how can an agent explain its actions
to the humans (or other agents) that are involved?

This paper investigates these challenges via a case study that leverages our deployed
system for semantic email agents (E-Agents).2 E-Agents provide a good testbed for ex-
amining the agent specification problem because they offer the potential for managing
complex goals and yet are intended to be used by a wide range of untrained people.
For instance, consider the process of scheduling a meeting with numerous people sub-
ject to certain timing and participation constraints. E-Agents support the common task
where an originator wants to ask a set of participants some questions, collect their re-
sponses, and ensure that the results satisfy some set of constraints. In order to satisfy
these constraints, an E-Agent may utilize a number of interventions such as rejecting a
participant’s response or suggesting an alternative response.

Our contributions are as follows. First, we identify the three key challenges for
template-based agents described above. We then examine specific solutions to each
challenge in the context of our fully-deployed system for semantic email. For gener-
ality, we describe the essential features of our template language that enable authors
to easily express complex constraints without compromising important computational
properties. The sufficiency of these features is demonstrated by our implementation of
a small but diverse set of E-Agents. For safety, we show how to verify, in polynomial
time, that a given template will always produce a valid instantiation. Finally, for under-
standability, we examine how to automatically generate explanations of why a particular
response could not be accepted and what responses would be more acceptable. We also
identify suitable restrictions where such constraint-based explanations can be generated
in polynomial time. These results both greatly increase the usefulness of semantic email
as well as highlight important issues for a broad range of Semantic Web systems.

2 Our prior work [19] referred to semantic email processes; in this work we call them E-Agents
to be more consistent with standard agent terminology.

184 L. McDowell, O. Etzioni, and A. Halevy

Fig. 1. The creation of a Semantic Email Agent (E-Agent). Initially, an “Author” authors an E-
Agent template and this template is used to generate an associated web form. Later, this web form
is used by the “Originator” to instantiate the template. Typically, a template is authored once and
then instantiated many times.

The next section gives a brief overview of E-Agents while Section 3 discusses the
salient features of our template language with an extended example. Sections 4 and
5 examine the problems of instantiation safety and explanation generation that were
discussed above. Finally, Section 6 considers related work and Section 7 concludes with
implications of our results for both email-based and non-email-based agents.

2 Overview of Semantic Email Agents

We illustrate E-Agents with the running example of a “balanced potluck, ” which operates
as follows. The E-Agent originator initially creates a message announcing a “potluck-
style” event — in this case, the message asks each participant whether they are bringing
an Appetizer, Entree, or Dessert (or Not-Coming). The originator also expresses
a set of constraints for the potluck, e.g., that the difference in the number of appetizers,
entrees, or desserts should be at most two (to ensure “balance”).

Figure 1 demonstrates how a template is used to create a new E-Agent. Initially,
someone who is assumed to have some knowledge of RDF and semantic email authors
a new template using an editor (most likely by modifying an existing template). We call
this person the E-Agent author. The template is written in RDF based on an ontology
that describes the possible questions, constraints, and notifications for an E-Agent. For
instance, the potluck template defines some general balance constraints, but has place-
holders for parameters such as the participants’ addresses, the specific choices to offer,
and how much imbalance to permit. Associated with each template is a simple web form
that describes each needed parameter; Section 4 describes a tool to automatically gen-
erate such forms. An untrained originator finds an appropriate web form from a public
library and fills it out with values for each parameter, causing the corresponding tem-
plate to be instantiated into an E-Agent declaration. The semantic email server executes
the declaration directly, using appropriate algorithms to direct the E-Agent outcome via
message rejections and suggestions.

In our implementation, E-Agents are executed by a central server. When invoked,
this server sends initial messages to the participants that contain a human-readable an-
nouncement along with a corresponding RDF component. These messages also contain
a simple text form that can be handled by a human with any mail client, or by another
agent based on an associated RDQL query. Participants fill out the form and reply via

The Specification of Agent Behavior by Ordinary People: A Case Study 185

mail directly to the server, rather than to the originator, and the originator receives status
messages from the server when appropriate.

3 Concise and Tractable Representation of Templates

Our first challenge is to ensure that a template can concisely represent many possible uses
while still ensuring the tractability of E-Agent reasoning (e.g., to check the acceptability
of a participant’s response). This section first describes our template language via an
extended example and then discusses how the language meets this challenge.

3.1 Template Example

An E-Agent template is a (parameterized) RDF document that specifies
• a set of participants,
• questions to ask the participants,
• constraints to enforce on the participants’ responses, and
• notifications to send to the originator and/or participants at appropriate times.

We illustrate the latter three parts below with a balanced potluck template. In these
declarations (shown in N3 format), variables in bold such as $Choices$ are parameters
provided by the originator; other variables such as x are computed during execution.

Questions: The set of questions to ask each participant. For instance, a potluck E-Agent
might ask everyone for the food items and number of guests that they are bringing:

[a :StringQuestion;
:name "Bring";
:enumeration "$Choices$";]

[a :IntegerQuestion;
:guard "$AskForNumGuests$";
:name "NumGuests";
:minInclusive "0";]

The enumeration and minInclusive properties constrain the legal responses to these
questions. In addition, the latter question is “guarded” so that it applies only if the
parameter AskForNumGuests is true. Because a question defines data that may be ac-
cessed in multiple other locations in the template, it is important to be able to reason
about whether its guard might evaluate to false (see Section 4). Finally, each question
item also specifies a RDQL query (not shown) that defines the semantic meaning of the
requested information and is used to map the participant’s textual response to RDF [19].

Constraints: The originator’s goals for the E-Agent’s outcome. Each goal may be
expressed either as a constraint that must be satisfied at every point in time (a
MustConstraint) or as a constraint that should, if possible, be ultimately satisfied
by the final outcome (a PossiblyConstraint). Section 5 defines the behavior of these
constraints more precisely. Our simple example uses a quantified MustConstraint to
require balance among the counts of the different choices:

[a :MustConstraint;
:forAll ([:name "x"; :range "$Choices$-$OptOut$"]

186 L. McDowell, O. Etzioni, and A. Halevy

[:name "y"; :range "$Choices$-$OptOut$"]);
:suchThat "x != y";
:enforce "abs($Bring.{$x$}.count()$ - $Bring.{$y$}.count()$)

<= $MaxImbalance$";
:message "Sorry, we can’t accept a $Bring.last()$ now.";]

The constraint applies to every possible combination (x,y) from the set (Choices -
OptOut); OptOut is for choices such as “Not Coming” that should be excluded from the
constraints. The message property is an optional message to send to a participant in case
this constraint causes their message to be rejected. This particular message is not very
helpful, but specifying messages with enough detail to entice the desired cooperation
from the participants can be a challenge for the E-Agent author. Section 5 discusses
techniques for automatically constructing more informative messages.

Notifications: A set of email messages to send when some condition is satisfied, e.g.,
to notify the originator when the total number of guests reaches GuestThreshold:

[a :OnConditionSatisfied;
:guard "$GuestThreshold$ > 0";
:define [:name "TotalGuests";

:value "[SELECT SUM(NumGuests) FROM CURR_STATE]"];
:condition "$TotalGuests$ >= $GuestThreshold$";
:notify :Originator;
:message "Currently, $TotalGuests$ guests are expected.";]

3.2 Discussion

The example above illustrates two different ways for accessing the data collected by
the E-Agent: via a pre-defined variable (e.g., Bring.last(),Bring.x.count())
or, less commonly, by utilizing an explicit SQL query over a virtual table constructed
from the RDF (e.g., as with TotalGuests). The former method is more convenient and
allows the author to easily specify decisions based on a variety of views of the underlying
data. More importantly, if the constraints refer to response data only through such pre-
defined variables, then they are guaranteed to be bounded, because they enable the agent
to summarize all of the responses that have been received with a set of counters, where
the number of counters is independent of the number of participants. For this type of
constraints (which still enables many useful E-Agents), the optimal decision of whether
to accept a message can always be computed in polynomial time [19]. Thus, the language
enables more complex data access mechanisms as necessary but helps authors to write
E-Agents that are computationally tractable.

This example also highlights additional key features of our language, including:
• Guards (e.g., with $AskForNumGuests$)
• Sets, membership testing, and set manipulation (e.g., $Choices$-$OptOut$)
• Universal quantification (e.g.. forAll x... enforce this constraint)
• Question types/restrictions (e.g., IntegerQuestion, minInclusive)
• Multiple constraint types (e.g., MustConstraint vs. PossiblyConstraint)
• Math. functions and comparisons (e.g., abs(x-y) <= $MaxImbalance$)
• Pre-defined queries over the supporting data set (e.g., $Bring.last()$)

The Specification of Agent Behavior by Ordinary People: A Case Study 187

Among other advantages, guards, sets, and universal quantification enable a single,
concise E-Agent template to be instantiated with many different choices and configura-
tions. Likewise, question types and restrictions reduce template complexity by ensuring
that responses are well-formed. Finally, multiple constraint/notification types, mathe-
matical functions, and pre-defined queries simplify the process of making decisions
based on the responses that are received. Overall, these features make it substantially
easier to author useful agents with potentially complex functionality.

Using this template language, we have authored and deployed a number of E-Agents
for simple tasks such as collecting RSVPs, giving tickets away (first-come, first-served),
scheduling meetings, and balancing a potluck. Our experience has demonstrated that
this language is sufficient for specifying a wide range of useful E-Agents (see Table 1).

4 Template Instantiation and Verification

The second major challenge for template-based specifications is to ensure that origina-
tors can easily and safely instantiate a template into an E-Agent declaration that will
accomplish their goals. This section first briefly describes how to acquire and validate
instantiation parameters from the originator. We then examine in more detail the problem
of ensuring that a template cannot be instantiated into an invalid declaration.

Each E-Agent template must be accompanied by a web form that enables originators
to provide the parameters needed to instantiate the template into a declaration. To auto-
mate this process, our implementation provides a tool that generates such a web form
from a simple RDF parameter description:

Definition 1. (parameter description) A parameter description φ for a template τ is a
set {R1, ..., RM} where each Ri provides, for each parameter Pi in τ , a name, prompt,
type, and any restrictions on the legal values of Pi. Types may be simple (Boolean,
Integer, Double, String, Email address) or complex (i.e., a set of simple types). Possible
restrictions are: (for simple types) enumeration, minimal or maximal value, and (for
sets) non-empty, or a subset relationship to another set parameter.

For instance, the following (partial) parameter description relates to asking participants
about the number of guests that they will bring to the potluck:

[a :TypeBoolean;
:name "AskForNumGuests";
:enumeration (
[:value :True; :prompt "Yes, ask for the number of guests";]
[:value :False; :prompt "No, don’t ask about guests";])]

[a :TypeInteger;
:name "GuestThreshold";
:prompt "Notify me when # of guests reaches (ignored if 0):";
:minInclusive "0";]

The form generator takes a parameter description and template as input and outputs
a form for the originator to fill out and submit. If the submitted variables comply with
all parameter restrictions, the template is instantiated with the corresponding values and
the resulting declaration is forwarded to the server for execution. Otherwise, the tool
redisplays the form with errors indicated and asks the originator to try again.

188 L. McDowell, O. Etzioni, and A. Halevy

4.1 Instantiation Safety

Unfortunately, not every instantiated template is guaranteed to be executable. For in-
stance, consider instantiating the template of Section 3 with the following parameters:

AskForNumGuests = False
GuestThreshold = 50

In this case the notification given in Section 3 is invalid, since it refers to a question
symbol NumGuests that does not exist because the parameter AskForNumGuests is
false. Thus, the declaration is not executable and must be refused by the server. This
particular problem could be addressed either in the template (by adding an additional
guard on the notification) or in the parameter description (by adding a restriction on
GuestThreshold). However, this leaves open the general problem of ensuring that
every instantiation results in a valid declaration:

Definition 2. (valid declaration) An instantiated template δ is a valid declaration if:

1. Basic checks: δ must validate without errors against the E-Agent ontology, and
every expression e ∈ δ must evaluate to a valid numerical or set result.

2. Enabled symbols: For every expression e ∈ δ that is enabled (i.e., does not have
an unsatisfied guard), every symbol in e is defined once by some enabled node.

3. Non-empty enumerations: For every enabled enumeration property p ∈ δ, the
object of p must evaluate to a non-empty set.

Definition 3. (instantiation safety) Let τ be a template and φ a parameter description
for τ . τ is instantiation safe w.r.t. φ if, for all parameter sets ξ that satisfy the restrictions
in φ, instantiating τ with ξ yields a valid declaration δ.

Instantiation safety is of significant practical interest for two reasons. First, if er-
rors are detected in the declaration, any error message is likely to be very confusing to
the originator (who knows only of the web form, not the declaration). Thus, an auto-
mated tool is desirable to ensure that a deployed template is instantiation safe. Second,
constructing instantiation-safe templates can be very onerous for authors, since it may
require considering a large number of possibilities. Even when this is not too difficult,
having an automated tool to ensure that a template remains instantiation safe after a
modification would be very useful.

Some parts of verifying instantiation safety are easy to perform. For instance, check-
ing that every declaration will validate against the E-Agent ontology can be performed
by checking the template against the ontology, and other checks (e.g., for valid numerical
results) are similar to static compiler analyses. However, other parts (e.g., ensuring that a
symbol will always be enabled when it is used) are substantially more complex because
of the need to consider all possible instantiations permitted by the parameter description
φ. Consequently, in general verifying instantiation safety is difficult:

Theorem 1. Given τ , an arbitrary E-Agent template, and φ, a parameter description
for τ , then determining instantiation safety is co-NP-complete in the size of φ.

The Specification of Agent Behavior by Ordinary People: A Case Study 189

This theorem is proved by a reduction from SAT . Intuitively, given a specific counter-
example it is easy to demonstrate that a template is not instantiation-safe, but proving
that a template is safe potentially requires considering an exponential number of pa-
rameter combinations. In practice, φ may be small enough that the problem is feasible.
Furthermore, in certain cases this problem is computationally tractable:

Theorem 2. Let τ be an E-Agent template and φ a parameter description for τ . Deter-
mining instantiation safety is polynomial time in the size of τ and φ if:
• each forAll and enumeration statement in τ consists of at most some constant

J set parameters combined with any set operator, and
• each guard consists of conjunctions and disjunctions of up to J terms (which are

boolean parameters, or compare a non-set parameter with a constant/parameter).

These restrictions are quite reasonable and still enable us to specify all of the E-Agents
described in this paper (using J ≤ 4). Note that they do not restrict the total number of
parameters, but rather the number that may appear in any one of the identified statements.
The restrictions ensure that only a polynomial number of cases need to be considered for
each constraint/notification item, and the proof relies on a careful analysis to show that
each such item can be checked independently while considering at most one question at
a time.3

4.2 Discussion

In our implementation, we provide a tool that approximates instantiation safety testing via
limited model checking. The tool operates by instantiating τ with all possible parameters
in φ that are boolean or enumerated (these most often correspond to general configuration
parameters). For each possibility, the tool chooses random values that satisfy φ for the
remaining parameters. If any instantiation is found to be invalid, then τ is known to be
not instantiation safe. Extending this approximate, non-guaranteed algorithm to perform
the exact, polynomial-time (but more complex) testing of Theorem 2 is future work.

Clearly nothing in our analysis relied upon the fact that our agents are email-based.
Instead, similar issues will arise whenever 1.) an author is creating a template that is
designed to be used by other people (especially untrained people), and 2.) for flexibility,
this template may contain a variety of configuration options. A large number of agents,
such as the RCal meeting scheduler [26], Berners-Lee et al.’s appointment coordina-
tor [2], and McIlraith et al.’s travel planner [22], have the need for such flexibility and
could be profitably implemented with templates. This flexibility, however, can lead to
unexpected or invalid agents, and thus produces the need to verify various safety proper-
ties such as “doing no harm” [32] or the instantiation safety discussed above. Our results
highlight the need to carefully design the template language and appropriate restrictions
so that such safety properties can be verified in polynomial time.

3 See McDowell [18] for details on the proofs of this paper’s theorems.

190 L. McDowell, O. Etzioni, and A. Halevy

5 Automatic Explanation Generation

While executing, an E-Agent utilizes rejections or suggestions to influence the eventual
outcome. However, the success of these interventions depends on the extent to which
they are understood by the participants. For instance, the rejection “Sorry, the only dates
left are May 7 and May 14” is much more likely to elicit cooperation from a participant in
a seminar scheduling E-Agent than the simpler rejection “Sorry, try again.” The E-Agent
author can manually encode such explanations into the template, but this task can be
difficult or even impossible when constraints interact or depend on considering possible
future responses. Thus, below we consider techniques for simplifying the task of the
E-Agent author by automatically generating explanations based on what responses are
acceptable now and why the participant’s original response was not acceptable.

We begin by defining more precisely a number of relevant terms. Given an E-Agent,
the supporting data set is an RDF data store that holds responses from the participants
to the questions posed by the E-Agent. The current state D is the state of this data set
given all of the responses that have been received so far. We assume that the number of
participants is known and that each will eventually respond.

A constraint is an arbitrary boolean expression over constants, parameters, and vari-
ables.Variables may be arbitrary expressions over constants, parameters, other variables,
and queries that select or aggregate values for some question in the data set. Constraint
satisfaction may be defined in two different ways. First,

Definition 4. (MustConstraint) A MustConstraint C is a constraint that is satisfied
in state D iff evaluating C over D yields True.

If a response would lead to a state that does not satisfy a MustConstraint C, it is
rejected. For example, for the potluck we would not accept a dessert response if that
would lead to having 3 more desserts than entrees or appetizers. In many cases, however,
such a conservative strategy will be overly restrictive. For instance, we may want to
continue accepting desserts so long as it is still possible to achieve a balanced final
outcome. Furthermore, a MustConstraint is usable only when the constraints are
initially satisfied, even before any responses are received, and thus greatly limits the
types of goals that can be expressed. Hence, we also define a second constraint type:

Definition 5. (PossiblyConstraint) A PossiblyConstraint C is a constraint that is
ultimately satisfiable in state D if there exists a sequence of responses from the remaining
participants that leads to a state D′ so that evaluating C over D′ yields True.

This approach permits more flexibility with the constraints and with the sequence of
responses, though computing satisfaction for such constraints is more challenging.

For simplicity, we assume that the constraints CD are either all MustConstraints
or all PossiblyConstraints, though our results for PossiblyConstraints also
hold when CD contains both types. In addition, some results below mention bounded
constraints (see Section 3.2), a restricted type that still supports a wide range of agents
(including all those discussed in this paper). Recall that a sufficient condition for being
bounded is for the constraints to access data only via “pre-defined” variables.

The Specification of Agent Behavior by Ordinary People: A Case Study 191

5.1 Acceptable Responses

Often the most practical information to provide to a participant whose response led to
an intervention is the set of responses that would be “acceptable” (e.g., “An Appetizer or
Dessert would be welcome” or “Sorry, I can only accept requests for 2 tickets or fewer
now”). This section briefly considers how to calculate this acceptable set.

Definition 6. (acceptable set) Let Λ be an E-Agent with current state D and constraints
CD on D. Then, the acceptable set A of Λ is the set of legal responses r such that D
would still be satisfiable w.r.t. CD after accepting r.

For a MustConstraint, this satisfiability testing is easy to do and we can com-
pute the acceptable set by testing a small set of representative responses. For a
PossiblyConstraint, the situation is more complex:

Theorem 3. Given an E-Agent Λ with N participants and current state D, if the con-
straints CD are bounded, then the acceptable set A of Λ can be computed in time
polynomial in N , |A|, and |CD|. Otherwise, this problem is NP-hard in N .

In this case we can again compute the acceptable set by testing satisfiability over a
small set of values; this testing is polynomial if CD is bounded [19]. In addition, if
CD is bounded then either |A| is small or A can be concisely represented via ranges of
acceptable values, in which case the total time is polynomial in only N and |CD|.

5.2 Explaining Interventions

In some cases, the acceptable set alone may not be enough to construct a useful explana-
tion. For instance, suppose an E-Agent invites 4 professors and 20 students to a meeting
that at least 3 professors and a quorum of 10 persons (professors or students) must at-
tend. When requesting a change from a professor, explaining why the change is needed
(e.g., “We need you to reach the required 3 professors”) is much more effective than
simply informing them what response is desired (e.g., “Please change to Yes”). A clear
explanation both motivates the request and rules out alternative reasons for the request
(e.g., “We need your help reaching quorum”) that may be less persuasive (e.g., because
many students could also help reach quorum). This section discusses how to generate
explanations for an intervention based on identifying the constraint(s) that led to the
intervention. We do not discuss the additional problem of translating these constraints
into a natural language suitable for sending to a participant, but note that even fairly
simple explanations (e.g., “Too many Appetizers (10) vs. Desserts (3)”) are much better
than no explanation.

Conceptually, an E-Agent decides to reject a response based on constructing a proof
tree that shows that some response r would prevent constraint satisfaction. However,
this proof tree may be much too large and complex to serve as an explanation for
a participant. This problem has been investigated before for expert systems [24,29],
constraint programming [14], description logic reasoning [20], and more recently in
the context of the Semantic Web [21]. These systems assumed proof trees of arbitrary
complexity and handled a wide variety of possible deduction steps. To generate useful

192 L. McDowell, O. Etzioni, and A. Halevy

Fig. 2. Examples of proof trees for rejecting response r. Each node is a possible state of the data
set, and node labels are constraints that are not satisfied in that state. In both cases, response r
must be rejected because every leaf node (shaded above) does not satisfy some constraint.

explanations, key techniques included abstracting multiple steps into one using rewrite
rules [20,21], describing how general principles were applied in specific situations [29],
and customizing explanations based on previous utterances [4].

In our context, the proof trees have a much simpler structure that we can exploit. In
particular, proofs are based only on constraint satisfiability (over one state or all possible
future states), and each child node adds one additional response to the parent’s state in
a very regular way. Consequently, we will be able to summarize the proof tree with a
very simple type of explanation. These proof trees are defined as follows:

Definition 7. (proof tree) Given an E-Agent Λ, current state D, constraints CD, and a
response r, we say that P is a proof tree for rejecting r on D iff:
• P is a tree where the root is the initial state D.
• The root has exactly one child Dr, representing the state of D after adding r.
• If CD is all MustConstraints, then Dr is the only non-root node.
• If CD is all PossiblyConstraints, then for every node n that is Dr or one of its

descendants, n has all children that can be formed by adding a single additional
response to the state of n. Thus, the leaf nodes are only and all those possible final
states (e.g., where every participant has responded) reachable from Dr.

• For every leaf node l, evaluating CD over the state of l yields False.

Figure 2A illustrates a proof tree for MustConstraints. Because accepting r leads
to a state where some constraint (e.g., cT) is not satisfied, r must be rejected. Likewise,
Figure 2B shows a proof tree for PossiblyConstraints, where CP and CQ represent
the professor and quorum constraints from the example described above. Since we are
trying to prove that there is no way for the constraints to be ultimately satisfied (by any
outcome), this tree must be fully expanded. For this tree, every leaf (final outcome) does
not satisfy some constraint, so r must be rejected.

We now define a simpler explanation based upon the proof tree:

Definition 8. (sufficient explanation) Given an E-Agent Λ, current state D, constraints
CD, and a response r such that a proof tree P exists for rejecting r on D, then we say
that E is a sufficient explanation for rejecting r iff,

The Specification of Agent Behavior by Ordinary People: A Case Study 193

• E is a conjunction of constraints that appear in CD, and
• for every leaf node n in P , evaluating E over the state of n yields False.

Intuitively, a sufficient explanation E justifies rejecting r because E covers every
leaf node in the proof tree, and thus precludes ever satisfying CD. Note that while the
proof tree for rejecting r is unique (modulo the ordering of child nodes), an explanation
is not. For instance, an explanation based on Figure 2A could be CS , CT , or CS ∧ CT .
Likewise, a valid explanation for Figure 2B is CP ∧ CQ (e.g., no way satisfy both the
professor and quorum constraints) but a more precise explanation is just CP (e.g., no way
to satisfy the professor constraint). The smaller explanation is often more compelling,
as we argued for the meeting example, and thus to be preferred [6]. In general, we wish
to find the explanation of minimum size (i.e., with the fewest conjuncts):

Theorem 4. Given an E-Agent Λ with N participants, current state D, constraints
CD, and a response r, if CD consists of MustConstraints, then finding a minimum
sufficient explanation E for rejecting r is polynomial time in N and |CD|. If CD consists
of PossiblyConstraints, then this problem is NP-hard in N and |CD|.

Thus, computing a minimum explanation is feasible for MustConstraints but
likely to be intractable for PossiblyConstraints. For the latter, the difficulty arises
from two sources. First, checking if any particular E is a sufficient explanation is NP-hard
in N (based on a reduction from ultimate satisfiability [19]); this makes scaling E-Agents
to large numbers of participants difficult. Second, finding a minimum such explanation
is NP-hard in the number of constraints (by reduction from SET-COVER [12]). Note that
this number can be significant because we treat each forAll quantification as a separate
constraint; otherwise, the sample potluck described in Section 3 would always produce
the same (complex) constraint for an explanation. Fortunately, in many common cases
we can achieve a polynomial time solution:

Theorem 5. Given an E-Agent Λ with N participants, current state D, constraints CD,
and a response r, if CD is bounded and the size of a minimum explanation is no more
than some constant J , then computing a minimum explanation E is polynomial time in
N and |CD|.

This theorem holds because a candidate explanation E can be checked in polynomial
time when the constraints are bounded, and restricting E to at most size J means that
the total number of explanations that must be considered is polynomial in the number
of constraints. Both of these restrictions are quite reasonable. As previously mentioned,
bounded constraints arise naturally when using our template language and permit a wide
range of functionality. Likewise, E-Agent explanations are most useful to the participants
when they contain only a small number of constraints, and this is adequate for many E-
Agents (as in the meeting example above). If no sufficient explanation of size J exists,
the system could either choose the best explanation of size J (to maintain a simple
explanation), approximate the minimum explanation with a greedy algorithm, or fall
back on just providing the participant with the acceptable set described in the previous
section.

Many different types of agents can describe their goals in terms of a set of con-
straints [17,23], and often need to explain their actions to users. Our results show that

194 L. McDowell, O. Etzioni, and A. Halevy

while generating such explanations can be intractable in general, the combination of sim-
ple explanations and modest restrictions on the constraint system can enable explanation
generation in polynomial time.

6 Related Work

McDowell et al. [19] describe work related to the general notion of semantic email,
including its relation to existing workflow and collaboration systems. Here we focus on
research relevant to the agent specification problem.

Other projects have considered how to simplify the authoring of Semantic Web appli-
cations, e.g., with Haystack’s Adenine programming language [27]. Adenine resembles
our template language in that it can be compiled into RDF for portability and contains
a number of high-level primitives, though Adenine incorporates many more imperative
features and does not support the types of declarative reasoning that we describe. Lan-
guages such as DAML-S and OWL-S [5] enable the description of an application as
a Semantic Web service. These languages, however, focus on providing details needed
to discover and invoke a relevant service, and model every participant as another web
service. Our work instead concisely specifies an E-Agent in enough detail so that it can
be directly executed in contexts involving untrained end users.

More generally, E-Agent templates could be viewed as an instance of program
schemas [7,10] that encapsulate a general class of behavior, e.g., for automated program
synthesis [10] or software reuse [7,1]. Similarly, McIlraith et al. [22] propose the use
of generic procedures that can be instantiated to produce different compositions of web
services. Concepts similar to our definition of instantiation safety naturally arise in this
setting; proposals for ensuring this safety have included manually-generated proofs [7],
automatically-generated proofs [10], and language modification [1]. Our work focuses
on the need for such schemas to be safely usable by ordinary people and demonstrates
that the required safety properties can be verified in polynomial time.

Recent work on the Inference Web [21] has focused on the need to explain a Semantic
Web system’s conclusions in terms of base data and reasoning procedures. In contrast, we
deal with explaining the agent’s actions in terms of existing responses and the expected
impact on the E-Agent’s constraints. In this sense our work is similar to prior research
that sought to explain decision-theoretic advice (cf., Horvitz et al. [11]). For instance,
Klein and Shortliffe [16] describe the VIRTUS system that can present users with an
explanation for why one action is provided over another. Note that this work focuses
on explaining the relative impact of multiple factors on the choice of some action,
whereas we seek the simplest possible reason why some action could not be chosen (i.e.,
accepted). Other relevant work includes Druzdzel [8], which addresses the problem of
translating uncertain reasoning into qualitative verbal explanations.

For constraint satisfaction problems (CSPs), a nogood [28] is a reason that no cur-
rent variable assignment can satisfy all constraints. In contrast, our explanation for a
PossiblyConstraint is a reason that no future assignment can satisfy the constraints,
given the set of possible future responses. Potentially, our problem could be reduced to
nogood calculation, though a direct conversion would produce a problem that might take
time that is exponential in N , the number of participants. However, for bounded con-

The Specification of Agent Behavior by Ordinary People: A Case Study 195

straints, we could create a CSP with variables based on the aggregates of the responses,
rather than their specific values [19]. Using this simpler CSP, we could then exploit
existing, efficient nogood-based solvers (e.g., [15,13]) to find candidate explanations in
time polynomial in N . Note though that most applications of nogoods have focused on
their use for developing improved constraint solving algorithms [28,15] or for debugging
constraint programs [25], rather than on creating explanations for average users. One
exception is Jussien and Ouis [14], who describe how to generate user-friendly nogood
explanations, though they require that a designer explicitly model a user’s perception of
the problem as nodes in some constraint hierarchy.

7 Conclusions and Implications for Agents

This paper has examined how to specify agent behavior. We adopted a template-based
approach that shifts most of the complexity of agent specification from untrained orig-
inators onto a much smaller set of trained authors. We then examined the three key
challenges of generality, safety, and understandability that arise in this approach. For
E-Agents, we discussed how high-level features of our template language enable the
concise specification of complex agent behavior. We also demonstrated that it is possi-
ble to verify the instantiation-safety of a template in polynomial time, and showed how
to generate explanations for the agent’s actions in polynomial time. Together, these tech-
niques both simplify the task of the E-Agent author and improve the overall execution
quality for the originator and the participants of an E-Agent. In addition, our polyno-
mial time results ensure that these features can scale to E-Agents with large numbers of
participants, choices, and constraints.

While we focused on the context of semantic email, our results are relevant to many
other agent systems. For instance, almost any agent needs some ability to explain its
behavior, and many such agents react to the world based on constraints. We showed that
generating explanations can be NP-hard in general, but that the combination of simple
explanations and modest constraint restrictions may enable explanation generation in
polynomial time. Likewise, an agent template should support a wide range of functional-
ity, yet ensure the safety of each possible use. There are several different types of safety to
consider, including that of doing no harm [32], minimizing unnecessary side-effects [32],
and accurately reflecting the originator’s preferences [3]. We motivated the need for in-
stantiation safety, a type that has been previously examined to some extent [10,1], but is
particularly challenging when the instantiators are non-technical users. Our results also
highlight the need to carefully design template languages that balance flexibility with
the ability to efficiently verify such safety properties.

Thus, many agents could benefit from a high-level, declarative template language
with automatic safety testing and explanation generation. Collectively, these features
would simplify the creation of an agent, broaden its applicability, enhance its interaction
with the originator and other participants, and increase the likelihood of satisfying the
originator’s goals. Future work will consider additional ways to make agent authoring
and instantiation easier with the goal of bringing the Semantic Web vision closer to
practical implementation.

196 L. McDowell, O. Etzioni, and A. Halevy

Acknowledgements. This research was supported in part by NSF grant DARPA contract
NBCHD030010, IIS-0312988, and ONR grant N00014-02-1-0324 for Oren Etzioni;
NSF CAREER grant IIS-9985114 and ITR grant IIS-0205635 for Alon Halevy; and by
NSF Graduate Research and Microsoft Endowed Fellowships for Luke McDowell. Jeff
Lin assisted with the implementation. Thanks to Gerome Miklau, Natasha Noy, Stani
Vlasseva, and the anonymous reviewers for their helpful comments on improving this
work.

References

1. E. E. Allen. A First-Class Approach to Genericity. PhD thesis, Rice University, Houston,
TX, 2003.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May
2001.

3. C. Boutilier. A POMDP formulation of preference elicitation problems. In AAAI-02, pages
239–246, 2002.

4. G. Carenini and J. D. Moore. Generating explanations in context. In Intelligent User Inter-
faces, pages 175–182, 1993.

5. DAML Services Coalition. DAML-S and OWL-S. http://www.daml.org/services.
6. M. G. de la Banda, P. J. Stuckey, and J. Wazny. Finding all minimal unsatisfiable subsets. In

Proceedings of the 5th ACM SIGPLAN international conference on Principles and practice
of declarative programming, pages 32–43. ACM Press, 2003.

7. N. Dershowitz. Program abstraction and instantiation. ACM Trans. Programming. Language
Systems, 7(3):446–477, 1985.

8. M. Druzdzel. Qualitative verbal explanations in bayesian belief networks. Artificial Intelli-
gence and Simulation of Behaviour Quarterly, 94:43–54, 1996.

9. O. Etzioni, A. Halevy, H. Levy, and L. McDowell. Semantic email: Adding lightweight data
manipulation capabilities to the email habitat. In WebDB, 2003.

10. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of correct
schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–127, July 2000.

11. E. J. Horvitz, J. S. Breese, and M. Henrion. Decision theory in expert systems and artificial
intelligence. International Journal of Approximate Reasoning, 2:247–302, 1988.

12. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

13. U. Junker. QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algo-
rithms. In IJCAI’01 Workshop on Modelling and Solving problems with constraints, 2001.

14. N. Jussien and S. Ouis. User-friendly explanations for constraint programming. In ICLP 11th
Workshop on Logic Programming Environments, Paphos, Cyprus, Dec. 2001.

15. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in csp search. In Principles
and Practice of Constraint Programming, October 2003.

16. D. A. Klein and E. H. Shortliffe. A framework for explaining decision-theoretic advice.
Artificial Intelligence, 67(2):201–243, 1994.

17. A. K. Mackworth. Constraint-based agents: The ABC’s of CBA’s. In Constraint Program-
ming, pages 1–10, 2000.

18. L. McDowell. Meaning for the Masses: Theory and Applications for Semantic Web and
Semantic Email Systems. PhD thesis, University of Washington, Seattle, WA, 2004.

19. L. McDowell, O. Etzioni, A. Halevey, and H. Levy. Semantic email. In Proc. of the Thirteenth
Int. WWW Conference, 2004.

The Specification of Agent Behavior by Ordinary People: A Case Study 197

20. D. L. McGuinness and A. Borgida. Explaining subsumption in description logics. In IJCAI
(1), pages 816–821, 1995.

21. D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations. In Second
International Semantic Web Conference, October 2003.

22. S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems. Special
Issue on the Semantic Web, 16(2):46–53, March/April 2001.

23. A. Nareyek. Constraint-Based Agents, volume 2062 of Lecture Notes in Computer Science.
Springer, 2001.

24. R. Neches, W. R. Swartout, and J. D. Moore. Explainable (and maintainable) expert systems.
In IJCAI, pages 382–389, 1985.

25. S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint programming.
In FLAIRS’03, St. Augustine, Florida, USA, May 2003. AAAI press.

26. T. Payne, R. Singh, and K. Sycara. Calendar agents on the semantic web. IEEE Intelligent
Systems, 17(3):84–86, 2002.

27. D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring end user semantic
web applications. In Second International Semantic Web Conference, October 2003.

28. T. Schiex and G. Verfaillie. Nogood Recording fot Static and Dynamic Constraint Satisfaction
Problems. International Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

29. W. Swartout, C. Paris, and J. Moore. Design for explainable expert systems. IEEE Expert,
6(3):58–647, 1991.

30. L. G. Terveen and L. T. Murray. Helping users program their personal agents. In CHI, pages
355–361, 1996.

31. R. Tuchinda and C. A. Knoblock. Agent wizard: building information agents by answering
questions. In Intelligent User Interfaces, pages 340–342, 2004.

32. D. Weld and O. Etzioni. The first law of robotics (a call to arms). In Proc. of AAAI, 1994.

Visual Modeling of OWL DL Ontologies Using
UML

Sara Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler

Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe
{brockmans, volz, eberhart, loeffler}@aifb.uni-karlsruhe.de

http://www.aifb.uni-karlsruhe.de/WBS/

Abstract. This paper introduces a visual, UML-based notation for
OWL ontologies. We provide a standard MOF2 compliant metamodel
which captures the language primitives offered by OWL DL. Similarly,
we invent a UML profile, which allows to visually model OWL ontologies
in a notation that is close to the UML notation. This allows to develop
ontologies using UML tools. Throughout the paper, the significant dif-
ferences to some earlier proposals for a visual, UML-based notation for
ontologies are discussed.

1 Introduction

An ontology defines a common set of concepts and terms that are used to describe
and represent a domain of knowledge. Recently, several standardization commit-
tees have taken up research results form the AI community and defined standard
ontology languages. For example, the Word Wide Web Consortium (W3C) has
recently finished its work on the Web Ontology Language (OWL) [5].

The utility of a visual syntax for modelling languages has been shown in
practice and visual modelling paradigms such as the Entity Relationship (ER)
model or the Unified Modelling Language (UML) are used frequently for the
purpose of conceptual modeling. Consequently the necessity of a visual syntax
for knowledge representation (KR) languages has been argued frequently in the
past [7,14]. Particular KR formalisms such as conceptual graphs [19] or Topic
Maps [1] are based on well-defined graphical notations.

Description logic based ontology languages such as OWL, however, are usu-
ally defined in terms of an abstract (text-based) syntax and most care is spent
on the formal semantics. The absence of a visual syntax1 has lead to several
proposals. [7] proposed a particular visual notation for the CLASSIC description
logic. Newer developments have abandoned the idea of a proprietary syntax and
proposed to rely on UML class diagrams. [4] suggested to directly use UML
as an ontology language, whereas [2] proposed to predefine several stereotypes
such that a more detailed mapping from UML to the primitives offered by the
DAML+OIL description logic can be achieved. [2] further argue that the UML
1 Which can be seen as a direct result of the criticisms about the semantics of early

diagrammatic semantic networks [21,3].

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 198–213, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Visual Modeling of OWL DL Ontologies Using UML 199

metamodel should be extended with elements such as property and restriction
such that UML is more compatible with KR languages such as OWL.

A metamodel for the purpose of defining ontologies, called Ontology Defi-
nition Metamodel (ODM), has recently been requested by the OMG [18], with
specific focus on the OWL DL language. In answer to this request four proposals
were submitted. [12] defines stereotypes for representing the new aspects intro-
duced by ontologies in UML. In our opinion, the proposal has several weaknesses.
For example, OWL properties are visually modelled as UML classes instead of
mapping them to UML associations. Similarly, the different kind of class con-
structors found in OWL are reflected by associations, while we believe that an
appropriate specialization of UML classes is more appropriate. Obviously there
are no strict metrics for intuitiveness and clarity. Consequently, in this paper
we argue by showing head to head comparisons of the different representations.
Ultimately, the choice is up to the reader.

[8] follows the RDF serialization of OWL documents and represents the ontol-
ogy in a graph-like notation that is close to the actual RDF serialization. Also
various kinds of OWL properties are modeled as a hierarchy of UML classes.
Complex OWL class definitions, i.e. using union and other operators, are mod-
eled as comments associated to a class.

[13] departs from the OMG request and introduces a metamodel for the
Open Knowledge Base Connectivity (OKBC) standard. [6] suggests the OWL
Full language, but neither provides a visual syntax nor introduces a metamodel.

At the moment [12,6,8,13] are merged into one proposal. While this is work
in progress, a first presentation [10] suggests that the proposal will be based
on OWL Full and is being extended to capture further KR languages such as
Simple Common Logic (SCL). Obviously the scope of this merged proposal is
quite extensive.

The benefit from this design decision is that different ontology formats such
as KIF, Description Logics, or Topic Maps can be mapped into one very general
and expressive metamodel. Also, a single mapping to the visual UML profile in
which actual ontologies are defined suffices.

However, these advantages do not come for free. By encompassing many
paradigms, the resulting ODM and the mappings become quite complex. We
believe that, for the sake of readability and usability, several separate metamod-
els should be introduced for each KR, e.g. OWL DL. In order to map between
the individual KRs the requested metamodel mapping facilities [17] can be used.
While this results in a higher number of mappings, the individual mappings will
be a lot more lightweight and easier to specify.

Therefore this paper defines an ODM for OWL DL. Our goals are to achieve
an intuitive notation, both for users of UML and OWL DL. Naturally, the pro-
posed metamodel has a one-to-one mapping to the abstract syntax of OWL DL
and thereby to the formal semantics of OWL.

The remainder of this paper is organized as follows: Section 2 introduces
the Meta Object Facility (MOF). Section 3 introduces our Ontology Definition
Metamodel for OWL DL. Section 4 introduces a UML Profile for ontology mod-

200 S. Brockmans et al.

eling and explains the major design choices taken in order to make the notation
readable for both users with UML and users with OWL background. We con-
clude by summarizing our work and listing points for future work.

2 UML-MOF

This section introduces the essential ideas of the Meta Object Facility (MOF)
of UML 2.0 and shows how an Ontology Definition Metamodel (ODM) fits into
the overall picture. The need for a dedicated ontology modeling language stems
from the observation that an ontology cannot be sufficiently represented in UML
[11]. Both representations share a set of core functionalities such as the ability
to define classes, class relationships, and relationship cardinalities. Despite this
overlap, there are many features which can only be expressed in an ontology
language. Examples for this disjointness are transitive and symmetric properties
in OWL or methods in UML.

UML methodology, tools and technology, however, seem to be a feasible
approach for supporting the development and maintenance of ontologies. Con-
sequently, the OMG issued a request for proposals for an Ontology Definition
Metamodel (ODM) [9]. The following key requirements were given:

1. As shown in Figure 1, an ODM has to be grounded in the Meta Object Fa-
cility (MOF2), which is explained in the following section. This requirement
is common for any other metamodel, e.g. UML.

2. A UML profile defining a visual notation for ontologies must be provided.
Furthermore, partial mappings in both directions between the metamodel
and this profile need to be established.

3. From the ODM, one must be able to generate an ontology representation in
a language such as OWL DL. Figure 1 shows this process. In particular a
mapping to OWL DL was requested.

4. An XMI serialization and exchange syntax for ODM must be provided. This
XMI format allows exchanging an ODM metamodel between tools.

We target the first two requirements in this paper, since the remaining two
requirements directly follow from a good ODM.

2.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in a
platform independent manner. The aim is to provide a framework that supports
any kind of metadata, and that allows new kinds to be added as required. MOF
plays a crucial role in OMG’s four-layer metadata architecture shown in Figure
2. The bottom layer of this architecture encompasses the raw information to
be described. For example, Figure 2 contains information about a person called
Pete and a car with the license plate ABC-1234. The model layer contains the

Visual Modeling of OWL DL Ontologies Using UML 201

Fig. 1. A partial ontology to UML mapping allows existing tools to operate on com-
patible aspects of ontologies.

MOF - Meta meta model
MetaClass, MetaAttr, ...

Meta model:
MetaClass(“Record“), MetaClass(“Field“), ...

Model:
Record(“Car“), Record(“Person “), ...

Information:
Person: Pete, Car: Car with license plate ABC-1234

Fig. 2. OMG Four Layer Metadata Architecture.

definition of the required structures. Our domain might use records for grouping
information. Consequently, the records car and person are defined. If these are
combined, they describe the model for the given domain. The metamodel defines
the terms in which the model is expressed. In our example, we would state that
models are expressed with records and fields by instantiating the respective meta
classes. Finally, the MOF lies at the top. This layer is called the meta meta
model layer. Note that MOF is hard wired, while the other layers are flexible
and allow to express various metamodels such as the UML metamodel.

We provide the ODM for OWL DL in the following section using the core
modeling features provided by MOF. We primarily use classes, attributes and
associations, the notation of which is well-known from UML. Additionally, our
metamodel is augmented with OCL constraints which specify invariants that
have to be fulfilled by all models that instantiate the ODM. Such models are
visually encoded using the UML profile introduced in Section 4.

202 S. Brockmans et al.

3 Ontology Definition Metamodel

3.1 Design Considerations

A metamodel for a language that allows the definition of ontologies naturally
follows from the modelling primitives offered by the ontology language. OWL
ontologies themselves are RDF documents. They instantiate the RDF data
model, and use URIs to name entities. The formal semantics of OWL is derived
from Description Logics (DL), an extensively researched KR formalism. Hence,
most primitives offered by OWL can also be found in a Description Logic. Three
species of OWL have been defined. One variant called OWL Full can represent
arbitrary RDF components inside of OWL documents. This allows, for example,
to combine the OWL language with arbitrary other representation languages.
From a conceptual perspective a metamodel for OWL Full necessarily has to
include elements for the representation of RDF.

Another variant called OWL DL states syntactic conditions on OWL docu-
ments, which ensure that only the primitives defined within the OWL language
itself can be used. OWL DL closely corresponds to the SHOIN(D) descrip-
tion logic and all language features can be reduced2 to the primitives of the
SHOIN(D) logic. Naturally, a metamodel for OWL DL is smaller and less com-
plex than a metamodel for OWL Full. Similarly, a OWL DL metamodel can
be built in a way such that all elements can be easily understood by people
familiar with description logics. A third variant called OWL Lite disallows some
constructors of OWL DL, specifically number restrictions are limited to cardi-
nalities 0 and 1. Furthermore, the oneOf class constructor is missing. Other
constructors such as class complement, which are syntactically disallowed in
OWL Lite, can nevertheless be represented via the combination of syntactically
allowed constructors [20][Corollary 3.4.1]. Hence, a metamodel for OWL DL
necessarily includes OWL Lite.

3.2 An ODM for OWL DL

The rest of this section will provide a summary of the OWL language whilst in-
troducing our metamodel. Interested readers may refer to the specifications [16]
for a full account of OWL. The metamodel is augmented with several OCL
constraints. Some important constraints are given here in footnotes.

3.2.1 Ontologies. URIs are used to identify all objects in OWL. In order
to provide an efficient notation, we replicate the namespace concept of XML
and introduce a separate Namespace metaclass which manages the abbreviation
(name) that is assigned to a certain URI (cf. Figure 3). Every element of an
ontology is a NamedElement and hence a member of a Namespace. All elements
of an Ontology are specializations of OntologyElement3 which is itself derived
2 Some language primitives are shortcuts for combinations of primitives in the logic.
3 member->forAll(ocllsKindOf(OntologyElement))

Visual Modeling of OWL DL Ontologies Using UML 203

Fig. 3. Ontologies and Namespaces

Fig. 4. Properties and property axioms

from NamedElement. Anonymous elements of the ontology belong to a dedicated
anonymous namespace4. The qualifiedName attribute is the global name of an
element and can be derived5 from the local name attribute and the Namespace
name.

3.2.2 Properties. Properties represent named binary associations in the
modeled knowledge domain. OWL distinguishes two kinds of properties, so
called object properties and datatype properties. Both are generalized by the

4 allInstances()->size(name->isEmpty())) <=1
5 name->notEmpty() and namespace.name->notEmpty() implies qualifiedName =
namespace.name.concat(":").concat(name).

204 S. Brockmans et al.

Fig. 5. Annotations

abstract metaclass Property. Properties can be functional, i.e. their range may
contain at most one element. Their domain is always a class. Object properties
may additionally be inverse functional, transitive, symmetric or inverse to an-
other property. Their range is a class6, while the range of datatype properties
is a datatype.

Users can relate properties by using two axioms. Property subsumption
(subPropertyOf)7 specifies that the extension of a property is a subset of the
related property. Similarly, property equivalence (equivalentProperty) defines
extensional equivalence. OWL DL disallows that object and datatype properties
are related via axioms.

3.2.3 Ontology properties. Ontologies themselves can have properties,
which are represented via the OntologyProperty metaclass. For example, the
ontology property owl:imports allows to logically include the elements of one
ontology in another ontology. OWL DL predefines several ontology properties
and allows users to define further ontology properties. A concrete instance of
an ontology property is represented through OntologyPropertyValue, which
instantiates a certain type of OntologyProperty and is a reference between two
ontologies.

3.2.4 Annotation properties. Given elements of an OWL ontology
can be annotated with metadata. Several annotation properties, e.g.
owl:versionInfo, are predefined and users can define further annotation prop-
erties. We treat annotation properties similarly to ontology properties. How-
ever, the subject of an AnnotationPropertyValue is an AnnotateableElement

6 OWL DL mandates that no complex role may be transitive:
complex=functional or inverseFunctional or NumberRestriction.
allInstances()->exists(onProperty=self) or inverseOf->exists(complex)
or subPropertyOf->exists(complex) and complex implies not transitive.

7 This association is transitive:
Property.allInstances()-> forAll(r,s,t|(r.subPropertyOf->includes(s)
and s.subPropertyOf->includes(t) implies r.subPropertyOf->includes(t))).

Visual Modeling of OWL DL Ontologies Using UML 205

Fig. 6. Class constructors and axioms

Fig. 7. OWL Restrictions

and the object is a Annotation, which can be either a DataValue, a URI or an
Individual (cf. Figure 5).

3.2.5 Class Constructors. In comparison to UML, OWL DL does not only
allow to define simple named classes. Instead, classes can be formed with several
class constructors (cf. Figure 6). One can conceptually distinguish the boolean
combination of classes, restrictions and enumerated classes. EnumeratedClass is
only available in OWL DL and is defined through a direct enumeration of named8

individuals. Boolean combinations of classes are provided through Complement9,
Intersection and Union.

Restrictions are class constructors that restrict the range of a property
for the context of the class (cf. Figure 7). Restrictions can be stated on
datatype and object properties, as indicated by toClass and toDatatype.

8 oneOf->forAll(name.notEmpty())
9 combinationOf->size()=1

206 S. Brockmans et al.

Accordingly they limit the value to a certain datatype or class extension10.
UniversalRestriction provides a form of universal quantification that restricts
the range of a class to the extension of a certain class or datatype11.

We introduce an abstract metaclass QualifiedNumberRestriction to re-
late unqualified cardinality restrictions (which are available in OWL) and
existential restrictions. Obviously the minimum cardinality is by default 0
and may not be negative12 while the maximum cardinality should not be
smaller than the minimum cardinality13. Unqualified number restrictions
(NumberRestriction) are available in OWL and define how many elements the
range of the given property has to have while not restricting the type of the
range14. (ExistentialRestriction) can logically and semantically be seen as
a special type of qualified number restrictions where the cardinality is fixed15.
OWL also provides HasValue, which is a special type of existential restriction
where the qualifying class is an enumeration containing a single individual16.

Figure 6 shows that classes can be related with each other using
class axioms, such as class subsumption (subClassOf), class equivalence
(equivalentClass)17 and class disjointness (disjointWith). These relations
between classes are naturally modelled as associations.

3.2.6 Datatypes. The datatype system of OWL is provided by XML Schema,
which provides a predefined set of named datatypes (PrimitiveType), e.g.
strings xsd:string. Additionally, users may specify enumerated datatypes
(EnumeratedDatatype) which consist of several data value of items (DataValue).

3.2.7 Knowledge Base. OWL does not follow the clear conceptual sep-
aration between terminology (T-Box) and knowledge base (A-box) that is
present in most description logics and in MOF, which distinguishes between
model and information. The knowledge base elements (cf. Figure 8) are
10 1. toClass->size()=1 xor toDatatype->size()=1

2. onProperty.ocllsKindOf(DatatypeProperty) implies toDatatype->size()=1
11 The reader may note that this is logically not understood as a constraint but as an

entailment rule.
12 minCardinality>=0
13 Even though OWL allows this by making the class definition become inconsistent.

We disallow this situation through the constraint:
maxCardinality>=minCardinality.

14 toClass=owl::Thing or toDatatype=rdfs::Literal
15 minCardinality=1 and maxCardinality=*
16 toClass.oclssTypeOf(EnumeratedClass) and

toClass.oclAsType(EnumeratedClass).oneOf->size()=1)
or (toDatatype.ocllsTypeOf(EnumeratedDatatype) and
toDatatype.oclsAsType(EnumeratedDatatype).oneOf->size()=1)

17 Every equivalent class is trivially a superclass:
subClassOf->includesAll(equivalentClass).

Visual Modeling of OWL DL Ontologies Using UML 207

Fig. 8. Knowledge Base Items and Axioms

Fig. 9. owl:imports

part of an ontology. An Individual is an instantiation of a Class and is
the subject of a PropertyValue, which instantiates a Property. Naturally,
an ObjectPropertyValue relates its subject with another Individual whilst
a DatatypePropertyValue relates its subject with a DataValue, which is an
instance of a primitive datatype.

Individuals can be related via three axioms. The sameAs association allows
users to state that two individuals (with different names) are equivalent. The
differentFrom association specifies that two individuals are not the same18.
AllDifferent is a simpler notation for the pairwise difference of several indi-
viduals.

4 A UML-Profile for Ontologies

This section describes a UML profile which supports reusing UML notation for
ontology definition. Since the UML profile mechanism supports a restricted form
of metamodeling, our proposal contains a set of extensions and constraints to the
UML metamodel. This tailors UML such that models instantiating the ODM
can be defined. We heavily rely on the custom stereotypes, which usually carry
the name of the corresponding OWL language element.

4.1 Ontologies

Figure 9 shows that a Namespace is represented by packages, while a stereo-
type indicates an Ontology. Ontology properties correspond to appropriately
stereotyped UML dependencies. The deprecation of a given element, e.g. the
deprecated class JugWine in Figure 10, is achieved using a stereotype.
18 The reader may note that OWL does not take the unique names assumption.

208 S. Brockmans et al.

Fig. 10. owl:DeprecatedClass Fig. 11. owl:EquivalentClass

(a) normal notation (b) alternative notation

Fig. 12. owl:intersectionOf

4.2 Classes

Atomic classes are depicted in the most trivial way, namely as UML classes. The
reader may note, that we only use the first segment of the UML class notation,
which contains the name of the class, stereotypes, and keyword-value pairs. The
second segment specifies concrete properties, while the third segment is missing,
since OWL does not contain methods. Class inclusion is depicted using the
UML generalization symbol, which is the most natural way.

Class equivalence could be expressed by two class inclusions. As a simpler
notation for two generalization arrows in the opposite direction next to each
other, the bi-directional generalization arrow is introduced. An example of this
notation is shown in Figure 11. Dependencies could also be used but are not
intuitive. [12,10] propose to use stereotyped UML associations to state class
axioms, which does not translate well to the UML object level. For this reason,
Class disjointness is depicted as a bi-directional, stereotyped dependency.

For the representations of OWL class constructors, we use individual stereo-
types and the UML class notation. Dependencies to the classes which form the
complement, part of the union or part of the intersection of a class are depicted
as UML dependencies. We suggest specific pictograms to be used instead of
dependencies as allowed in UML. Figure 12 depicts alternative graphical nota-
tions for an intersection of classes. An EnumeratedClass is connected to the
enumerated individuals by dependencies (cf. Figure 13). Alternatively, we allow
a more compact string-based notation. The reader may note that UML associa-
tions can only be used between classes, an EnumeratedClass can therefore not
be consistently represented with associations, if the UML notation for objects is
used for individuals.

In general, a restriction is depicted by a class with a corresponding stereo-
type. If the property which participates in the restriction is an object property,

Visual Modeling of OWL DL Ontologies Using UML 209

(a) normal notation (b) compact notation

Fig. 13. owl:oneOf

Fig. 14. owl:cardinality

(a) Our notation (b) [10,12] notation

Fig. 15. owl:someValuesFrom

we depict it as an association to the participating class. Otherwise, in case of
a datatype property, it is depicted as an attribute. Figure 14 shows that car-
dinalities involved in restrictions are depicted in the standard UML notation,
viz. next to the attribute’s association. We mentioned that OWL has only un-
qualified cardinality restrictions. Thus, the class participating in a cardinality
restriction is always owl:Thing and attribute types are rdfs::Literal, which means
that they can have every data value.

ExistentialQuantification can and ValueRestriction has to be indi-
cated by a DEDICATED stereotype. Figure 15 demostrates the notation for an
existentially quantified restriction. The reader can compare our notation with
the notation proposed by [12,10] (cf. Figure 15). Clearly, our presentation is
more compact and elegantly uses the available features of UML.

When modeling HasValue, no separate notation is introduced. If properties
are represented as associations, the endpoints have to be classes. Under these
circumstances, combining existence restriction and enumeration is the most com-
pact notation conforming to the UML-metamodel. One could think to model it
more directly from the class which has the restriction, but an association can-
not be built between a class and an individual. Although our solution looks

210 S. Brockmans et al.

Fig. 16. owl:hasValue

Fig. 17. An ObjectProperty with domain and range

quite complex, it keeps the consistency with restrictions. Figure 16 shows our
notation.

4.3 Properties

Object properties are represented as UML n-ary associations19, while datatype
properties are represented as UML attributes. Since properties can have mul-
tiple domains and ranges, several associations with the same name are needed,
therefore our proposal uses an association class which is connected to the associ-
ation itself. If the domain is itself a restriction, we end up with two associations
and it would be unclear which one counts for the restriction and which one
for the domain of the property. In this case, we provide a extended graphical
representation (cf. Figure 17).

Analogous to classes, specific properties are assigned a respective stereotype.
Figure 18 demonstrates the functionality and inverse functionality stereotype.
Naturally, Deprecation, transitivity and symmetry are represented in the same
way. Figure 18 also shows how a property is connected to its inverse using a
bi-directional UML dependency.

Similar to classes, Property inclusion is depicted with a generalization arrow,
and property equality with a bi-directional generalization arrow.

4.4 Data Types

Data types are represented in the form of a stereotyped UML class. An
EnumeratedDatatype is depicted similar to the enumeration of individuals, viz.
a stereotyped UML class is connected to the enumerated data values through
dependencies and we provide a text-based shorthand notation (cf. Figure 19).
19 This notation of associations is in fact provided by UML although rarely seen in

practice.

Visual Modeling of OWL DL Ontologies Using UML 211

Fig. 18. Property characteristics

(a) Our nota-
tion

(b) [12] notation

Fig. 19. Enumerated Datatypes

Figure 19 also shows the proposed notation by [12], which uses associations
and additional stereotyped classes. Sticking to the RDF-notation makes the rep-
resentation unnecessarily complex since there is no order in data enumerations.

4.5 Individuals

Individuals are depicted in the object notation of UML, viz. in the form
’Object : Class’. [12] proposes to use a Class Thing for individuals, but this does
not clearly show the difference between the object and model level, which is pur-
sued in UML. We represent axioms specifying the equivalence or difference of
individuals through stereotyped associations between individuals. We conclude
with Figure 20, which shows our notation for AllDifferent. Here, associations
lead from an anonymous instance of owl::AllDifferent to those individuals which
are defined to be different.

5 Conclusion

We have presented an Ontology Definition Metamodel for the DL variant of
OWL. Unlike previous proposals, our metamodel directly corresponds to the

212 S. Brockmans et al.

Fig. 20. owl:AllDifferent

language primitives available in OWL DL. The validity of instances of this meta-
model is ensured through various OCL constraints, some of which were given
here (cf. [15] for a full account). We additionally provided a UML profile, of
which we believe that it is cognitively more adequate for folks familiar with
UML and OWL. Our profile utilizes the maximal intersection of UML features
and OWL features. Hence, classes are depicted as classes, properties as n-ary
associations and individuals as UML objects.

We believe that leveraging UML for the development and maintenance of on-
tologies is a very promising approach. It is a first step to bring the W3C vision
of a Semantic Web technology and the OMG vision of a Model Driven Architec-
ture together. We can now use a large array of industrial strength tools that is
available for UML and other related OMG standards for the purpose of ontol-
ogy development. Besides graphical editors, other kinds of utilities offer further
benefit. For example, we can utilize the Eclipse Modeling Framework (EMF)
to derive a Java API for OWL directly from the ODM. Ontologies can benefit
from UML based system development, but in turn ontologies can also contribute
to system development. One of the prime application areas is the management
of policies and the enforcement of regulatory compliance in logistics, the finan-
cial sector, or other industries. These very advantages and application areas
prompted OMG’s call for proposals for an ontology definition model.

Acknowledgments. Research for this paper has been partially funded by the
EU in the IST projects KnowledgeWeb (IST-2004- 507482) and Sekt (IST-2003-
506826), as well as by the Graduate School IME - University Karlsruhe. We
would like to thank our colleagues for discussion as well as the reviewers for the
ISWC conference for valuable comments on our paper.

References

1. Topic Maps: Information Technology – Document Description and Markup Lan-
guages. ISO/IEC standard 13250:2000, December 1999.

2. K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and
M. Aronson. Extending UML to Support Ontology Engineering for the Semantic
Web. In 4th Int. Conf. on UML (UML 2001), Toronto, Canada, October 2001.

3. R.J. Brachman. On the Epistemological Status of Semantic Nets. In N.V. Findler,
editor, Associative Networks: Representation and Use of Knowledge by Computers,
pages 3–50, 1979.

Visual Modeling of OWL DL Ontologies Using UML 213

4. S. Cranefield and M. Purvis. UML as an Ontology Modelling Language. In Proceed-
ings of the Workshop on Intelligent Information Integration, volume 23 of CEUR
Workshop Proceedings, Stockholm, Sweden, July 1999.

5. M. Dean and G. Schreiber. Web Ontology Language (OWL) Reference Version
1.0. Technical report, World Wide Web Consortium (W3C), 2003.

6. DSTC. Ontology Definition MetaModel Initial Submission.
http://www.omg.org/docs/ad/03-08-01.pdf, August 2003.

7. B. R. Gaines. An Interactive Visual Language for Term Subsumption Languages.
In J. Mylopoulos and R. Reiter, editors, Proc. of 12th Int. Joint Conf. on Art.
Int., pages 817–823, Sydney, Australia, August 1991. Morgan Kaufmann.

8. Gentleware. Ontology Definition Meta-Model.
http://www.omg.org/docs/ad/03-08-09.pdf, August 2003.

9. Object Management Group. Ontology Definition Metamodel - Request For Pro-
posal, March 2003.

10. L. Hart, P. Emery, B. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall,
and M. Dutra. Usage Scenarios and Goals For Ontology Definition Metamodel.
http://www.omg.org/docs/ontology/04-01-01.pdf, January 2004.

11. L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
and M. Dutra E. Kendall. OWL Full and UML 2.0 Compared, March 2004.

12. IBM. Ontology Definition Metamodel (ODM) Proposal.
http://www.omg.org/docs/ad/03-07-02.pdf, August 2003.

13. Sandpiper Software Inc. and Stanford University Knowledge Systems Labora-
tory. UML for Knowledge Representation. A Layered, Component-Based Approach
to Ontology Development. http://www.omg.org/docs/ad/03-08-06.pdf, March
2003.

14. R. Kremer. Visual Languages for Knowledge Representation. In Proc. of 11th
Workshop on Knowledge Acquisition, Modeling and Management (KAW’98), Voy-
ager Inn, Banff, Alberta, Canada, April 1998. Morgan Kaufmann.

15. P. Loeffler. UML zur Visuellen Modellierung von OWL DL. Master’s thesis,
University of Karlsruhe (TH), June 2004.

16. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C), August 2003. Internet:
http://www.w3.org/TR/owl-features/.

17. Object Management Group. MOF 2.0 Query / Views / Transformations - Request
for Proposal. http://www.omg.org/docs/ad/02-04-10.pdf, 2002.

18. Object Management Group. Ontology Definition Metamodel - Request for Pro-
posal. http://www.omg.org/docs/ontology/03-03-01.rtf, 2003.

19. J. F. Sowa. Conceptual Graphs Summary. In P. Eklund, T. Nagle, J. Nagle, and
L. Gerholz, editors, Conceptual Structures: Current Research and Practice, pages
3–52, 1992.

20. R. Volz. Web Ontology Reasoning with Logic Databases. Phd thesis, University of
Karlsruhe (TH), Karlsruhe, Germany,
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2004/wiwi/2,
February 2004.

21. W.A. Woods. What’s in a Link: Foundations for Semantic Networks. In D.G.
Bobrow and A.M. Collins, editors, Representation and Understanding: Studies in
Cognitive Science, pages 35–82, 1975.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 214–228, 2004.
© Springer-Verlag Berlin Heidelberg 2004

What Would It Mean to Blog on the Semantic Web?

David R. Karger1 and Dennis Quan2

1 MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street

Cambridge, MA 02139 USA
karger@mit.edu

2 IBM T. J. Watson Research Laboratory
1 Rogers Street

Cambridge, MA 02142 USA
dennisq@us.ibm.com

Abstract. The phenomenon known as Web logging (“blogging”) has helped re-
alize an initial goal of the Web: to turn Web content consumers (i.e., end users)
into Web content producers. As the Semantic Web unfolds, we feel there are
two questions worth posing: (1) do blog entries have semantic structure that can
be usefully captured and exploited? (2) is blogging a natural way to encourage
growth of the Semantic Web? We explore empirical evidence for answering
these questions in the affirmative and propose means to bring blogging into the
mainstream of the Semantic Web, including ontologies that extend the RSS 1.0
specification and an XSL transform for handling RSS 0.9x/2.0 files. To demon-
strate the validity of our approach we have constructed a semantic blogging en-
vironment based on Haystack. We argue that with tools such as Haystack, se-
mantic blogging will be an important paradigm by which metadata authoring
will occur in the future.

1 Introduction

The Web is arguably the most successful open information distribution mechanism in
existence. Despite its success, a few issues were not worked out initially, such as easy
publication and machine-readable metadata. Web logs (“blogs”) have emerged as a
potential solution to the publication problem. The idea is based on the premise that
publication occurs incrementally in discrete units—blog entries—and that users man-
age their own content (as opposed to newsgroups). A number of different software
packages have grown around this simplified abstraction. Separately, the problem of
machine-readable content is being attacked by the Semantic Web. Here the idea is
that Web sites would host content in a language such as RDF, mostly devoid of hu-
man-readable artifacts such as prose, instead opting for more precise machine-
readable specifications [7].

On the surface, these efforts seem to have little to do with each other, besides being
both based on the Web. However, we argue that they are actually bound to converge
at a common destination—a metadata-rich version of today’s Web. Even today, there
is a lot of family resemblance between blogs and the Semantic Web model. Blogs
enable the average user to talk about—i.e., annotate—resources on the Web and pub-

What Would It Mean to Blog on the Semantic Web? 215

lish these annotations for others to see. A large portion of these blogs already have
machine-readable “table of contents” files encoded in an XML format called RSS.
Furthermore, blog entries themselves are first class—blog entries can be searched
over, replied to, and referred to in other blogs.

In this paper we wish to examine two questions. First, if blogs could take full ad-
vantage of the RDF representation, what benefits would be realized? Second, do blogs
form the basis of a nascent Semantic Web? In pursuit of answers to these questions,
we characterize the notion of semantic blogging—the publication of RDF-encoded
Web logs. Furthermore, to explore the practical benefits of semantic blogging, we
have constructed a prototype semantic blogging tool on top of Haystack, our Semantic
Web metadata exploration, visualization, and authoring tool [1, 8].

1.1 Approach

Our approach to semantic blogging focuses on adding unobtrusive extensions to the
current blog creation interface paradigm—one of the key elements of the success of
blogging—while producing machine-readable content for the benefit of blog content
consumers. We argue that there is no added user effort involved in creating a semantic
blog versus a conventional one, because the real work is done by the software in cap-
turing semantics that are already being provided by the user. For example, when the
user clicks on the “blog this” button on the Google toolbar in the Web browser to blog
about the current page [19], instead of just recording a hyperlink, the system can
record the fact that the current Web page is the topic of the blog entry. (Furthermore,
one is not bound to using Google’s blogging service.) In addition to these and other
semantics inherent to blogs today, we also provide a mechanism for more advanced
users to embed arbitrary RDF in a blog using a forms mechanism similar to that seen
in Annotea [6].

In either case, the consumers of blog content benefit from having information from
multiple blogs and the rest of the Semantic Web being integrated together and dis-
played in a variety of ways. Instead of being restricted to viewing one blog at a time,
users can view cross-blog reply graphs to track the flow of a conversation, without
requiring that publication be controlled by a central authority, as with a newsgroup.
When browsing Web or Semantic Web content, one can see opinions, instructions, or
descriptions from blogs alongside the content itself, as is done in tools such as the
Haystack Semantic Web browser and Annotea [6]. Possibilities for automation are
also created from the precise recording of semantics such as movie or product ratings,
interest levels, and statistics such as sports scores.

1.2 Outline of the Paper

The paper is organized as follows. First, we first explore how blogs are written and
used today and compare and contrast the blog paradigm with other Web publication
paradigms. Based on these observations, we propose ontologies that extend the RSS
1.0 specification [12] and enable one to capture the semantics of blog entries in RDF.
Afterwards, we describe our prototype semantic blogging environment, which allows
users to both read existing blogs and to maintain their own blogs. We describe an
XSL transform that translates existing RSS 0.9x/2.0 feeds [13, 14] into RDF, allowing

216 D.R. Karger and D. Quan

us to take advantage of both existing and new RDF-enabled blogs. Finally, we put the
pieces together and outline a scenario of how semantic blogging can enable more
powerful forms of information retrieval and automation across blogs and other Se-
mantic Web content.

2 The Essence of Blogging

At its core, blogging incorporates three distinct, key concepts, and analyzing blogging
with respect to these concepts helps to clarify how blogging (and by extension seman-
tic blogging) compares with other approaches. The first concept is of enabling users
to publish information in small, discrete notes, as opposed to large, carefully-
organized Web sites. Blogger remarks that “blog posts are like instant messages to the
web” [9]. This analogy is borne out by the observation that interfaces for popular
blogging tools including Blogger, Moveable Type [29], and Radio Userland [10]
resemble those used by Web-based e-mail systems such as Hotmail [28]. Looking
purely from this perspective, one might also note that the same kinds of brief, subjec-
tive comments can be found in the feedback bulletin boards of Web sites such as
Amazon.com, Epinions.com, and Slashdot.org. Similarly, systems such as Annotea,
which allows users to attach RDF-encoded “sticky note” annotations to text on Web
pages [6], accumulate content one note at a time. Of course, blogs are not restricted to
being lists of comments and criticisms; a wide variety of content exists in blogs today
[24].

The second key concept is decentralized, per-user publication. Blog entries very
often take the form of annotations to pages or critiques of products, but blog entries
are primarily kept together based on common authorship, not common subject. In
other words, the content author is the one who controls publication, and the feeling of
“ownership” is part of the blogging experience. Bloggers write on a variety of topics
and categorize their content as they choose, in contrast to a discussion site or a news-
group, where deviation from predefined topics is often frowned upon and can result in
censorship. Additionally, bloggers have control over the structure of individual blog
entries. In a discussion group or with an annotation server, users are sometimes forced
to conform to preset rating schemes or other attribute sets.

Furthermore, blogs generally exist independent of a centralized server. In this
sense, maintaining a blog is conceptually similar to maintaining a single-user version
of Annotea that has been reformulated to publish a table of contents of recent annota-
tions to selected Web sites. However, the lack of a central point of aggregation has its
disadvantages. With the Annotea model, where annotations are stored on a centralized
server, it is easy to determine what other annotations exist for a resource of interest.
Similarly, with the Internet newsgroup model, it is a simple task to trace reply chains
because messages are grouped by thread. Later in the paper, we discuss ways in
which semantic blogging can be used to overcome these limitations.

The last key concept—exposing machine-readable listings—is a property that
many blogs possess in order to allow individual blog entries to be aggregated to-
gether. A family of XML-based standards for describing the contents of a blog
loosely affiliated by the acronym “RSS” plays an important role in the thesis of this
paper. The Really Simple Syndication 0.92 [14] (and its related standards hereafter
referred to as RSS 0.9x) and 2.0 standards originated by Dave Winer [13] are not

What Would It Mean to Blog on the Semantic Web? 217

based on RDF but are by far the most widely adopted. The RDF Site Summary 1.0
standard [12] encodes essentially the same information and is based on RDF, but
relatively few sites produce RSS files to this specification. There are other specifica-
tions for XML-based blog listing formats, such as Atom [17], which contain similar
information. What is agreed upon is the basic notion of producing a machine-
processable listing of blog entries in an XML format, and we build upon these XML
formats in this paper.

Machine-readable listings are often used by blog readers, such as SharpReader [21]
and NetNewsWire [20], as well as those built into blogging tools such as Radio User-
land mentioned earlier. Like newsgroup readers and e-mail clients, blog readers typi-
cally offer users the ability to view lists of blog entries sorted by date, name, and
other attributes—even lists that span multiple blogs. In order to emulate the threaded
message displays found in other messaging tools, blog readers such as SharpReader
find embedded hyperlinks in common between different blog entries and use them as
the basis for determining threading. With semantic blogging we attempt to find
cleaner ways to support the already-extant notion of inter-blog threading.

3 Bringing Out the Hidden Semantics in Blogs

Superficially, the existence of machine-readable listings is the strongest link between
blogging and the Semantic Web. The connection, however, runs deeper. The discrete
units being published in bulletin boards, in blogs, and with Annotea often have con-
siderable internal structure: e-mails, instant messages, annotations, and bulletin board
posts have a from field, a send date, and sometimes more specific information such as
the product or other object being reviewed, a rating, etc. Put another way, the process
of blogging inherently emphasizes metadata creation more than traditional Web pub-
lishing methodologies (e.g., direct HTML composition). The success of blogging
points to its role as a socially viable means for encouraging users to publish certain
forms of metadata. In this section, we elaborate on three specific forms of metadata
that are inherent to the process of blogging. We also discuss possible benefits that
would be realized from more precise, machine-readable metadata records.

3.1 Blogs as Annotations

Bloggers are free to write about anything they want in their blogs, from what they ate
for breakfast that morning to the traffic problems on the commute home. Despite this
freedom, bloggers frequently comment on things that exist on the Web. More specifi-
cally, bloggers spend much of their time creating focused annotations of Web re-
sources. This observation is of interest to us to the extent to which these annotations
can be modeled by taxonomies and ontologies.

Blog entries that talk about Web resources can be classified into a number of dif-
ferent types, and different annotation types can be modeled by differing levels of
structure. For example, it may be useful to model criticism annotations using a nu-
merical rating. At the moment, blog entries that embody criticisms may contain a
numerical rating but that rating is rarely recorded in a machine-readable form, al-
though there have been proposals based on non-RDF formats such as structured blog-

218 D.R. Karger and D. Quan

ging [25] or Review Module for RSS 2.0 [23]. Using an ontology to model such anno-
tations would make it easier to do automated filtering and analyses, such as finding
the average rating for a given resource; such analyses are already done by specialized
data mining sites such as blogosphere.us [26], but they usually do not track anything
more semantic than just the frequency with which specific sites are hyperlinked to.
Also, because blogs are managed on a per-user basis, users have the flexibility to
adopt such ontologies to mark up their annotations.

Additionally, in moving blogging to the Semantic Web, an obvious extension is al-
lowing blogs to talk about arbitrary Semantic Web resources. This extension not only
broadens the set of available topics but also allows resources that previously had to go
unnamed (e.g., “teddy bear model #22321”) to be identified more precisely, improv-
ing search capabilities.

3.2 Blogs as Message Chains

Emphasizing a point from Section 2, blogs act as logs of messages, usually written to
a general audience but at times focused towards specific parties. This phenomenon is
most evident when an event of interest occurs, such as a product release. A flood of
blog posts appear coincidentally, and the debate that ensues results in blogs contain-
ing entries that comment on other blog entries [5]. This structure is reminiscent of e-
mail or newsgroups: a blog entry has a sender, a set of (sometimes targeted) recipi-
ents, a subject line, and often one reply-to entry (or more, although today notating that
a blog entry is in reply to another blog entry may need to be done with human-
readable prose and a hyperlink, depending on the blogging system in use).

3.3 Blogs as Ad Hoc Tables of Contents

Many blogs are devoted to a specific topic; alternatively, many bloggers intentionally
divide their content into topics. The collections of commentary presented in these
blogs often end up serving as a useful introduction to some esoteric subject. In other
words, blogs can act as tables of contents for some field of interest. This combination
of intentionally-recorded domain knowledge and a machine-readable listing format
creates a number of possibilities for enhancing information retrieval. The main prob-
lem with a blog serving as a permanent archive of introductory material is that RSS
listings produced by blog servers typically only include the n most recently published
blog entries. One way of overcoming this problem would be to have blog servers also
produce archival “back-issue” RSS files. We discuss alternative ways of dealing with
this issue throughout the paper.

4 Ontologies for Enabling Semantic Blogging

Having identified the core semantics imparted by blog entries, we proceed to use
Semantic Web tools, including RDF and OWL, to find ways to capture these seman-
tics in a standard fashion. In this section we describe various ontologies and strategies
for recording blog entries in RDF. We refer to blogs that have been represented in this

What Would It Mean to Blog on the Semantic Web? 219

fashion as “semantic” blogs to highlight that important elements of blog entries that
were once recorded in prose are now being described with machine-readable meta-
data.

4.1 Building on RSS 1.0

There are many benefits to using RDF as the basis for recording machine-readable
blog listings. Most important of these is that the notion of resource identity is built
into RDF: resources are always referred to by their URIs. This provision simplifies
processes such as notating what resource is being annotated or what blog entry is
being replied to. Also, there is a well-defined mechanism for adding custom proper-
ties or attributes to blog entries. Furthermore, there are well-defined semantics for
merging multiple RDF files. As a result, one can accumulate the RSS files generated
by a blog over time and keep a historical record of the blog easily.

As noted earlier, RSS 1.0 is an already-extant RDF-based mechanism for publish-
ing machine-readable blog listings. While RSS 0.9x/2.0 is the predominant format,
many blogs also provide listings in RSS 1.0 format. Furthermore, most of the con-
cepts in RSS 0.9x/2.0 map directly onto the RSS 1.0 ontology. In Section 5.1 we
discuss an XSL transform for converting RSS 0.9x/2.0 files into RDF. These observa-
tions make RSS 1.0 a natural standard to build on.

4.2 Categorization

More and more, bloggers have begun to categorize their individual blog entries. Cate-
gorization allows a single blogger to distinguish multiple trains of thought or topic
areas in a single blog. The RSS 0.92 and 2.0 standards support categorization, but
apart from a URI naming a taxonomy, category labels themselves are just strings. The
RSS 1.0 standard does not include any explicit support for categorization.

The Haystack ontology, developed for the Semantic Web Browser project dis-
cussed later [1], defines a class called hs:Collection, and one of the roles of a collec-
tion is to act as a category for classification purposes. A single predicate, hs:member,
binds a collection to its members, regardless of type. In this way, collections named
by URIs are used as the basis for category labeling and can hence be shared by multi-
ple blogs. Universal naming also avoids name collisions between blogs that have
coincidentally named categories (e.g., “Jaguar” in a zoologist’s blog and “Jaguar” in
an operating system researcher’s blog are likely to mean different things) and facili-
tates the construction of mappings between different categorization schemes.

4.3 Message Ontology

Blog entries, as discussed earlier, have a lot in common with other forms of electronic
messages, such as e-mails and instant messages. A previous paper on modeling mes-
sages in RDF [3] proposed an ontology for messaging, and we have reused the por-
tions of this ontology that are applicable to blogging. At the heart of this ontology is
the msg:Message class, which is the base class for all messages. We define rss:item
from the RSS 1.0 ontology as deriving from msg:Message. This allows us to reuse

220 D.R. Karger and D. Quan

the msg:inReplyTo predicate, which declares one message to be in reply to another
message. (msg:inReplyTo is simply a sub-property of ann:annotation, which is used
to indicate the resource being annotated by a message.)

An argument that was presented in the earlier paper on messaging was that conver-
sations are often spread across multiple messaging channels, such as e-mail, instant
messaging, and chat. Blogging has a similar phenomenon: not only do users send e-
mails to bloggers in response to their blog entries or use the comment bulletin board
feature attached to many blogs, but they also respond to others’ blog entries in their
own blogs. E-mails, bulletin board messages, and blog entries are all acting as mes-
sages within a greater conversation, and using a general messaging ontology enables
us to capture these semantics in a uniform fashion across an entire conversation. More
specifically, predicates such as msg:to and msg:from are used to characterize e-mails
and instant messages, and in the case of a blog posting, we use a “blog audience”
resource associated with the blog for the recipient (i.e., value of the msg:to property).

4.4 Encoding Custom Semantics

Our messaging ontology defines a msg:body predicate, which is used to associate a
message with textual content. However, the value of the msg:body property need not
be human-readable. By allowing an RDF file to serve as the body of a blog, we can
enable arbitrary Semantic Web content to be included. While we do not see this sort
of “pure” semantic blogging taking off immediately, we feel that this provision pro-
vides space for semantic blogging to progress in the future.

Haystack supports a form-based mechanism for allowing users to input a variety of
different kinds of RDF metadata. Forms for entering specific kinds of semantics are
likely to be generated in accordance with specific RDF Schemas or ontologies. Hay-
stack includes support for schema-based form generation, similar to those found in
Annotea [6] and Protégé [16]. Our forms mechanism is described in previous work
[15].

5 A Semantic Blog Client

To demonstrate the benefits of semantic blogging, we constructed a semantic blog
client built into Haystack that incorporates publishing, aggregation, and browsing
capabilities. Haystack’s paradigm is similar to that of a Web browser; users navigate
to resources by typing in their URIs or by clicking on hyperlinks, and the toolbar
exposes the familiar back, forward, refresh, and home buttons for ease of navigation.
However, unlike a Web browser, which simply renders the HTML content of a re-
source, Haystack contains user interface templates called views that are used to trans-
form machine-readable RDF metadata relating to the current resource into a human-
readable, hyperlinked, on-screen presentation. We have extended Haystack with spe-
cialized views and user interface commands called operations that enable blogging
functionality within Haystack. The technical details of how views and operations are
defined are described in previous papers on Haystack [1, 8]. In this section we charac-
terize these views and operations and show how they contribute to the end user ex-
perience.

What Would It Mean to Blog on the Semantic Web? 221

5.1 Subscribing to Blogs

Most blogs are published as Web sites, allowing users with a normal Web browser to
view and search them. Haystack includes a Web browser view, meaning that when a
user browses to a Web resource (i.e., a Web page named by an HTTP URL), Hay-
stack’s functionality reduces to that of a traditional Web browser. As a result, users
can browse the HTML versions of blogs from within Haystack. In addition, most
blogs also provide an RSS file that can be used to subscribe to a blog, as noted earlier.
By convention, an “RSS” or an “XML” button is placed on the blog’s home page to
signify the availability of an RSS file, and when the user clicks on the button, the
browser navigates to the RSS file. When the user browses to an RSS file, Haystack
detects that it is an RSS file and allows the user to subscribe to it using the Subscribe
to RSS Feed operation. After the user subscribes to the blog, Haystack will automati-
cally download the RSS file on a regular basis. Over time, Haystack accumulates a
historical record of a blog, which can be useful when a blog contains helpful reference
material that may want to be looked up later.

Today, relatively few blogs are encoded in RDF, and since Haystack deals primar-
ily with RDF-encoded metadata, RSS 0.9x/2.0 files need to be converted into RDF
before they can be subscribed to. The mechanism we have elected to use in handling
the various forms of RSS currently extant on the Web today is to transform RSS
0.9x/2.0 files into RDF files based on RSS 1.0 and our extension ontologies discussed
earlier. Being able to convert RSS 0.9x/2.0 files into RDF enables a number of power-
ful Semantic Web capabilities to be used over a large, pre-existing corpus of blogs,
such as search, semantic exploration, etc.

The XSL Transformations language (XSLT) is a standard means for transforming
one XML format into another, and we have implemented our translation process in
XSLT. The complete source for our XSLT can be found on our Web site1. The major-
ity of the XSLT converter is straightforward and simply converts RSS 0.9x/2.0 syntax
into well-formed RDF. The primary challenge is coming up with a URI for blogs and
blog entries. Fortunately, the permalink feature of RSS 0.9x/2.0 allows a blogger to
assign a permanent URL name to a blog entry, but its use is optional. When it exists,
our XSLT uses it as the blog entry’s URI; otherwise, it defaults to the value of the
link element. Many features of semantic blogging are missing from RSS 0.9x/2.0, but
it is possible to use techniques such as scraping for hyperlinks as to fill in the list of
resources being annotated or replied to as an approximation.

5.2 Viewing Blogs

Once a user has subscribed to a blog, it appears on the news home page in Haystack.
This screen is like the front page of a newspaper in that it shows the recent news arti-
cles from all of the subscribed feeds. By using the preview pane controls on the tool-
bar, the user can introspect individual articles: when the user clicks on a link on the
news pane, the associated article appears in the pane on the right.

In addition, individual blogs can be viewed separately. The list of entries in a blog
(sometimes known as a channel) maps onto Haystack’s collection concept introduced
earlier. There are a number of collection views built into Haystack, and as a result,

1 http://haystack.lcs.mit.edu/rss.xslt

222 D.R. Karger and D. Quan

blogs can be visualized in many different ways, including as a list, a calendar, or a
multi-column table. In addition, some specialized views, such as the Explore relation-
ships between collection members view, are provided to aid in certain forms of in-
formation exploration. In this case, the Explore relationships between collection
members view displays a labeled directed graph, drawing the members of the collec-
tion (in this case, the articles in the blog) as nodes and allowing the user to select
which arcs (i.e., predicates) to show between the articles. The built-in Reply graph arc
set is selected in Fig. 2 and shows the msg:inReplyTo relationships between the mes-
sages in the display.

5.3 Organizing Blog Content of Interest

In Section 4.2 we discussed the use of collections as a categorization mechanism for
bloggers. These collections are first class resources and browseable in their own right
from within Haystack. In addition, a user reading a blog can also create his or her own
collections and use them to file blog entries of interest. Looking at an article, the user
can invoke the File away operation on the left hand pane. This operation reveals a
customizable list of collections on the right hand pane into which the article can be
filed. Each collection has a checkbox next to it, making it easy to file an article into
multiple collections at once [11]. Collections can also be hierarchical; adding a new
collection can be accomplished by right-clicking on the parent collection and select-
ing Add new item/Create a collection from the context menu.

5.4 Creating a Semantic Blog

We have implemented support for allowing users to blog from within Haystack. As
noted earlier, blogging tools expose forms that resemble an e-mail editor for creating
new blog entries. In Haystack, we have adapted the existing mail composition and
transmission functionality to be able to post messages to servers (including possibly a
local server built into Haystack, as in the case described below) that speak protocols
like the Blogger XML-RPC protocol [30].

To implement our enhanced semantic capabilities, we have extended the Blojsom
Open Source blog server, which runs on a standard Java Servlet-compliant Web
server such as Apache Tomcat. Blojsom stores blog entries in text files on the file
system. (One benefit of the file system approach is that a user can work on a local
copy of the blog and use CVS to synchronize it with a blog server; Haystack includes
built-in support for CVS.) These files contain a header that includes a one-line title for
the blog entry and a series of metadata declarations. We have introduced five meta-
data tags, meta-inReplyTo, meta-annotates, meta-fileInto, meta-rdfBody, and meta-
uri2 in order to support our semantics, and have written a new Haystack messaging
driver that allows Haystack to serialize blog entries in this form.

2 This declaration permits the file to state the URI to be assigned to the blog entry and allows,

in theory, for a blog entry to be posted to multiple blogs but retain the same URI. The rss:link
property, which provides the URL of the content for the blog entry, can be specific to the
blog server without disrupting this scheme.

What Would It Mean to Blog on the Semantic Web? 223

Users gain access to blogging functionality through a combination of views and
operations. First, a user clicks on the Blogging link in Starting Points. Haystack then
shows a list of the user’s existing blogs. To connect to an existing blog server via
XML-RPC or to create a new semantic blog, the user can choose either the Connect to
Blog Server or Create New Semantic Blog operations from the left hand pane, respec-
tively. After filling in the appropriate configuration parameters, the user is taken to a
screen that shows the blog entries that exist for that blog. Creating a new blog entry is
accomplished by selecting the New text blog entry operation from the left hand pane.

The key benefits of blogging in Haystack versus current blogging tools (or even an
e-mail client) are twofold. First, Haystack can produce specialized forms that capture
various levels of semantics. At one end of the spectrum are simple message editors
such as those seen in today’s blogging tools and Web-based e-mail products. At the
other extreme are specialized forms, such as those proposed by structured blogging
[25] or used by Annotea [6], which can be derived from RDF Schemas automatically
by Haystack.

The other benefit is that the semantics surrounding the reason for a blog entry’s
creation can be captured immediately. When the user is viewing a Web page, a Se-
mantic Web resource of interest, or even another blog entry, and wishes to blog about
it, he or she can click on semantically-specialized operations such as “Blog a reply” or
“Blog a complaint”. In contrast, those semantics are often lost in the transition be-
tween the program the annotated resource is being viewed in (e.g., the Web browser)
and the blogging tool.

6 A Scenario

To concretize the benefits of our approach, consider the following fictitious scenario.
John Doe is a bioinformatician who is thinking about whether to attend the Semantic
Bio 2005 conference. He goes to the conference Web site and sees an overwhelming
20 page listing of all of the papers to be presented. Like many futuristic (and ficti-
tious) conference sites, this site also offers an RDF version of the program. Using
Haystack, John downloads the program and uses Haystack to browse it.

John takes a look at the multi-day Inference Track category to see just those pa-
pers. One in particular catches his eye—one called “Using the COOL Algorithm for
Protein Folding Analysis”. Clicking on the article, he sees the paper’s abstract and
references. John, like many people, has friends who are avid bloggers and maintain
blogs that review the latest findings in their particular fields. These friends have al-
ready seen this paper and blogged about it; their blog entries appear alongside the
article. Refer to Fig. 1.

Glancing through the subject lines, it isn’t clear which blog entry came first and
which came last. John clicks Extract Relevant Discussion, selects the Explore Rela-
tionships between Collection Members view, and selects the Message Reply Graph
arrow set. This allows him to see which blog entries are in response to which others.

Some of the blog entries appear emptier than others. He clicks on one of them and
finds it is a blog article from the initial author. He clicks on the RSS link on the page
and subscribes to the entire blog. When he goes back to the relationship diagram, the
missing nodes are filled in. (This process might be automated in the future.) See
Fig. 2.

224 D.R. Karger and D. Quan

Fig. 1. Screen integrating information about a conference paper and annotations from semantic
blogs (boxed area).

Furthermore, he can tell at a glance that two of the initial blog entries are commen-

dations while the other is a criticism; however, looking down the line of conversation,
he can see that the critic was eventually convinced and issued a commendation. See-
ing all three of his friends in agreement is unique, and John decides to invest some
time in reading through the articles. He creates a bookmark collection on the right
hand docking pane and drags and drops some of the more interesting blog entries into
it.

John decides to delve deeper into the approach. Scanning through the references in
the paper, he finds a reference to the author’s ontology. He browses to it in Haystack
and clicks on one of the terms labeled “Analysis Engine”. Just looking at the proper-
ties it supports does not give John a clear enough picture. However, the author has
written a blog entry about it; by clicking on it, John is taken to the entire blog. A
quick glance through the blog reveals that the author had been bombarded with re-
quests for more explanation about his ontology, and he responded by blogging about

What Would It Mean to Blog on the Semantic Web? 225

Fig. 2. Messages from multiple blogs displayed together as a reply graph.

various parts of the ontology over time, resulting in what is in essence a tutorial of
how to use the ontology. John then browses through the blog, clicking on links to
ontology elements embedded within the blog from time to time. In the end, John is
himself convinced of the benefits of the approach and makes an entry in his own blog
in concurrence, commenting on its applicability to his own research. In particular, he
points out the one important argument that was critical to convincing him by dragging
that blog entry from the bookmark collection he created earlier and dropping it in the
In regards to field, making his blog entry an annotation for that argument.

7 Discussion

In the above scenario, we presented several examples of potential benefits for the
integration of blogging and the Semantic Web. From the Semantic Web’s perspective,
blogging can be seen as a user-friendly metaphor for encouraging semantic annota-
tion. Blogs already provide reviews, commentary, and human-readable instructions
for many domains, and when directed towards Semantic Web resources, such blogs
may be useful for documenting how to best make use of Semantic Web ontologies,
schemas, and services. The contents of semantic blogs’ annotations may also contain
machine-readable metadata, such as numerical ratings, that could be consumed by
Semantic Web agents to automatically determine aggregate ratings or other summary
information.

226 D.R. Karger and D. Quan

In the future, there may be blogs that end up being completely semantically en-
coded. For example, one can imagine a semantic blog that notifies people of seminars,
meetings, or other events run by an activities coordinator. Similarly, blogs that pro-
vide reviews (of movies, products, etc.) or that record statistics (e.g., scores from
sports games) may someday be primarily encoded in RDF. Haystack enables users to
input and publish such information using our extended version of RSS 1.0. Already,
one sees evidence of desire for such support in sites such as Ripe Tomatoes [27].

From the blogger’s perspective, certain semantics can be more cleanly recorded.
The reply-to chains, which are usually embedded in prose, can be more explicitly
specified as metadata, and bloggers would benefit from the same discussion visualiza-
tion approaches that e-mail users have had for years. Also, our approach to displaying
message threads does not rely on blog servers keeping in sync with each other via
protocols such as TrackBack [18]; because the client creates the visualization, seman-
tic blogs do not need to keep a record of what replies have been made to them.

Categories can be more easily shared not only between specific blogs, as could be
the case if multiple bloggers worked in the same domain, but also among blogs in
general. Simple category or type indications, such as commendation or complaint, are
examples of more universally-shared categories that can be used by blog readers.
Such categories could be exposed as visual cues (e.g., a thumbs up or thumbs down
icon), which would improve the user experience during a quick visual scan through a
set of blogs.

Also, the semantic annotation of blogs can be used to improve the user experience
when dealing with various forms of information. A system such as Haystack can take
advantage of these annotations in order to help users make sense of their information.
For example, Haystack can help not only in bringing together the content from differ-
ent blogs but also in integrating blog content with other information sources, such as
conference programs. In this sense, blogs are acting as editorial “glue” that helps the
reader to make sense of large bodies of information. Related scenarios can be made
involving e-commerce product catalogs, online taxonomies, travel accommodation
directories, etc.

Furthermore, Haystack allows blogs to be viewed in different ways, depending on
the task at hand. Standard blogging tools allow users to view the articles in blogs and
to group articles together in various ways. Less explored are the benefits of making
use of the relationships between blogs. The example we cited earlier is Haystack’s
Explore relationships between collection members view, which allows the user to see
the flow of a conversation even if it spans multiple blogs. One major consequence is
that a group of people that wants to publish a conversation needs not do so through a
single blog or a centralized mechanism, such as a newsgroup. Because URIs are used
to name the blog entries, the various blogs can be aggregated by the blog reader and
displayed together, while individual users are allowed to maintain the identities of and
control over their own blogs—one of the key social motivational factors underlying
blogging.

Acknowledgements. The authors would like to thank Kushal Dave for his helpful
comments on the state of the art in blogging and Martin Wattenberg for useful point-
ers to relevant blogging literature.

What Would It Mean to Blog on the Semantic Web? 227

Prefixes Used in This Paper

hs: http://haystack.lcs.mit.edu/schemata/haystack#
ann: http://haystack.lcs.mit.edu/schemata/annotation#
msg: http://haystack.lcs.mit.edu/schemata/mail#
rss: http://purl.org/rss/1.0/

References

1. Quan, D. and Karger, D. How to Make a Semantic Web Browser. Proceedings of WWW
2004.

2. Karger, D. and Quan, D. Collections: Flexible, Essential Tools for Information Manage-
ment. Proceedings of CHI 2004.

3. Quan, D., Bakshi, K., and Karger, D. A Unified Abstraction for Messaging on the Seman-
tic Web. Proceedings of WWW 2003.

4. Karger, D., Katz, B., Lin, J., and Quan, D. Sticky Notes for the Semantic Web. Proceed-
ings of IUI 2003.

5. Kumar, R., Novak, J., Raghavan, P., and Tomkins, A. On the Bursty Evolution of Blog-
space. Proceedings of WWW 2003.

6. Kahan, J. and Koivunen, M. Annotea: an open RDF infrastructure for shared web annota-
tions. Proceedings of WWW10.

7. Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific American, May
2001.

8. Quan, D., Huynh, D., and Karger, D. Haystack: A Platform for Authoring End User Se-
mantic Web Applications. Proceedings of ISWC 2003.

9. Blogger. http://www.blogger.com/.
10. Radio Userland. http://radio.userland.com/.
11. Quan, D., Bakshi, K., Huynh, D., and Karger, D. User Interfaces for Supporting Multiple

Categorization. Proceedings of INTERACT 2003.
12. RDF Site Summary 1.0 Specification. http://web.resource.org/rss/1.0/spec.
13. RSS 2.0 Specification. http://blogs.law.harvard.edu/tech/rss.
14. RSS 0.92 Specification. http://backend.userland.com/rss092.
15. Quan, D., Karger, D., and Huynh, D. RDF Authoring Environments for End Users. Pro-

ceedings of the International Workshop on Semantic Web Foundations and Application
Technologies 2003.

16. Noy, N., Sintek, M., Decker, S., Crubezy, M., Ferguson, R., and Musen, M. Creating
Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16 (2), 2001, pp. 60-
71.

17. The Atom Syndication Format 0.3.
http://www.atomenabled.org/developers/syndication/atom-format-spec.php.

18. TrackBack Technical Specification. http://www.movabletype.org/docs/mttrackback.html.
19. Google Toolbar. http://toolbar.google.com/.
20. NetNewsWire. http://ranchero.com/netnewswire/.
21. SharpReader. http://www.sharpreader.net/.
22. Technorati. http://www.technorati.com/.
23. Review (RVW) Module for RSS 2.0. http://www.pmbrowser.info/rvw/0.1/.
24. Nardi, B., Schiano, D., Gumbrecht, M., and Swartz, L. “I’m Blogging This”: A Closer

Look at Why People Blog. Submitted to Communications of the ACM.
http://www.ics.uci.edu/%7Ejpd/classes/ics234cw04/nardi.pdf.

228 D.R. Karger and D. Quan

25. Paquet, S. Towards Structured Blogging.
http://radio.weblogs.com/0110772/stories/2003/03/13/towardsStructuredBlogging.html.

26. blogosphere.us. http://www.blogosphere.us/trends.php.
27. Rotten Tomatoes. http://www.rottentomatoes.com/vine/register.php.
28. Hotmail. http://www.hotmail.com/.
29. Moveable Type. http://www.movabletype.org/.
30. Blogger API. http://www.blogger.com/developers/api/.

The Protégé OWL Plugin:
An Open Development Environment

for Semantic Web Applications

Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen

Stanford Medical Informatics, Stanford School of Medicine
251 Campus Drive, Stanford, CA 94305-5479

holger@smi.stanford.edu

Abstract. We introduce the OWL Plugin, a Semantic Web extension of the
Protégé ontology development platform. The OWL Plugin can be used to edit
ontologies in the Web Ontology Language (OWL), to access description logic rea-
soners, and to acquire instances for semantic markup. In many of these features, the
OWL Plugin has created and facilitated new practices for building Semantic Web
contents, often driven by the needs of and feedback from our users. Furthermore,
Protégé’s flexible open-source platform means that it is easy to integrate custom-
tailored components to build real-world applications. This document describes the
architecture of the OWL Plugin, walks through its most important features, and
discusses some of our design decisions.

1 Introduction

Efficient development tools are a prerequisite for the wide adoption of a new technology.
For example, visual Web design tools like DreamWeaver have significantly reduced the
development costs of Internet content, and have brought Web technology to the fingertips
of people who are not familiar with the details of HTML. The concept of the Semantic
Web [3] is often regarded as the next “big” technology leap for the Internet. Now that the
Web Ontology Language (OWL) [16] has been officially standardized, it is the task of
tool builders to explore and provide suitable infrastructures that help make the Semantic
Web vision a reality. This document reports on our work and results in the construction
of such a tool.

Our goal was to build an extensible tool with support for the most commonly needed
features for the development of Semantic Web applications. Ontologies play a central
role in the Semantic Web: They provide formal models of domain knowledge that can
be exploited by intelligent agents. As a result, a development tool for Semantic Web
applications should provide services to access, visualize, edit, and use ontologies. Fur-
thermore, since ontologies may be notoriously hard to build [13], a tool should provide
intelligent assistance in ontology construction and evolution. Finally, since the Semantic
Web is open to so many potential application areas, a tool should be customizable and
extensible.

We have developed the OWL Plugin, an extension of Protégé. Protégé [4,8] is an
open platform for ontology modeling and knowledge acquisition. The OWL Plugin can

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 229–243, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

230 H. Knublauch et al.

be used to edit OWL ontologies, to access description logic (DL) reasoners, and to
acquire instances for semantic markup. As an extension of Protégé, the OWL Plugin
profits from the benefits of a large user community, a library of reusable components,
and a flexible architecture. The OWL Plugin therefore has the potential to become a
standard infrastructure for building ontology-based Semantic Web applications.

This document describes the main features of the Protégé OWL Plugin and illustrates
how it can be used and customized to build real-world Semantic Web applications.
Section 2 lists requirements and design goals that motivated the development of the
OWL Plugin. Section 3 provides background on the Protégé platform and architecture.
Section 4 describes how Protégé has been extended with support for OWL, and how
other components can be built on top of it. Section 5 shows how the OWL Plugin can be
used to edit OWL classes and properties. Section 6 describes features that help evolve,
test and maintain ontologies, including intelligent reasoning based on description logics.
Section 7 shows how Protégé can serve as an editor of Semantic Web contents (e.g., OWL
individuals). Section 8 discusses our results and points at ongoing and future work. This
paper assumes that the reader is familiar with OWL, but not necessarily with Protégé.

2 Requirements and Design Goals

The nature of the Semantic Web and its languages has implications for tool builders. A
rather well-known aspect is that the cryptic and error-prone RDF syntax of OWL [16]
makes it extremely hard to build valid OWL ontologies manually. Graphical ontology
editing tools with a simple syntax and built-in validation mechanisms could significantly
improve this situation.

A more critical aspect is that the Semantic Web is based on ontologies, and ontologies
are notoriously difficult to build [13]. One reason for this difficulty is that ontologies
are formal models of human domain knowledge. While human knowledge is often tacit
and hard to describe in formal models, there is also no single correct mapping of knowl-
edge into discrete structures. Although some rules of thumb exist that facilitate selected
ontology-design tasks (e.g., [13,15]), there are hardly any comprehensive ontology de-
velopment methods in routine use. As an alternative to systematic and comprehensive
guidelines, development tools should at least support rapid turn-around times to en-
courage ontology evolution and iteration. User interfaces should simplify and accelerate
common tasks and at the same time encourage best practices and design patterns. Fur-
thermore, tools should expose somewhat intelligent assistance for ontology builders,
and point out obvious modeling errors. Another important criteria is that ontologies can
become very large, so that tools need to be scalable, and should support the coordination
of efforts among multiple people.

A final issue for Semantic Web development tools is that they should be open. First,
they should be open-source so that interested people can more easily try and understand
them. Second, tools should also be open to project-specific customizations and exten-
sions. Nobody knows where the Semantic Web will be in the future, and it may offer
boundless opportunities for innovative services, methods, and applications. An open tool
that allows for the integration of these future components more easily may significantly
reduce development costs. For example, developers of OWL reasoners could integrate

The Protégé OWL Plugin 231

their reasoning component into an OWL editor so that they can much easier experi-
ment with different ontologies. Also, developers of Web services could reuse the tool’s
infrastructure without having to write their own base platform first.

3 Protégé

Protégé is an open-source tool developed at Stanford Medical Informatics. It has a
community of thousands of users. Although the development of Protégé has historically
been mainly driven by biomedical applications [4], the system is domain-independent
and has been successfully used for many other application areas as well.

Like most other modeling tools, the architecture of Protégé is cleanly separated
into a “model” part and a “view” part. Protégé’s model is the internal representation
mechanism for ontologies and knowledge bases. Protégé’s view components provide a
user interface to display and manipulate the underlying model.

Protégé’s model is based on a simple yet flexible metamodel [11], which is compa-
rable to object-oriented and frame-based systems. It basically can represent ontologies
consisting of classes, properties (slots), property characteristics (facets and constraints),
and instances. Protégé provides an open Java API to query and manipulate models. An
important strength of Protégé is that the Protégé metamodel itself is a Protégé ontol-
ogy, with classes that represent classes, properties, and so on. For example, the default
class in the Protégé base system is called :STANDARD-CLASS, and has properties such
as :NAME and :DIRECT-SUPERCLASSES. This structure of the metamodel enables easy
extension and adaption to other representations [12]. For example, we have extended
this metamodel to handle UML and OWL.

Using the views of Protégé’s user interface, ontology designers basically create
classes, assign properties to the classes, and then restrict the properties’ facets at cer-
tain classes. Using the resulting ontologies, Protégé is able to automatically generate
user interfaces that support the creation of individuals (instances). For each class in
the ontology, the system creates one form with editing components (widgets) for each
property of the class. For example, for properties that can take single string values, the
system would by default provide a text field widget. The generated forms can be further
customized with Protégé’s form editor, where users can select alternative user interface
widgets for their project. In addition to the predefined library of user interface widgets,
Protégé has a flexible architecture that enables programmers to develop custom-tailored
widgets, which can then be plugged into the core system. Another type of plugin sup-
ports full-size user interface panels (tabs) that can contain arbitrary other components.
In addition to the collection of standard tabs for editing classes, properties, forms and
instances, a library of other tabs exists that perform queries, access data repositories,
visualize ontologies graphically, and manage ontology versions.

Protégé currently can be used to load, edit and save ontologies in various formats,
including CLIPS, RDF, XML, UML and relational databases. Recently, we have added
support for OWL. Our decision to build our system on top of Protégé was driven by vari-
ous factors. Since ontologies play such an important role in Semantic Web applications, it
was straight-forward to take an existing ontology development environment as a starting
point. Extensions to Protégé can benefit from the generic services provided by the core

232 H. Knublauch et al.

platform, such as an event mechanism, undo capabilities, and a plugin mechanism. By
basing the OWL Plugin on top of Protégé, we could also reuse Protégé’s client-server-
based multi-user mode that allows multiple people to edit the same ontology at the same
time. Protégé also provides a highly scalable database back-end, allowing users to create
ontologies with hundreds of thousands of classes. Also, there is already a considerable
library of plugins which can be either directly used for OWL or adapted to OWL with
little effort. Furthermore, the fact that Protégé is open-source also encourages plugin
development. Last but not least, Protégé is backed by a large community of active users
and developers, and the feedback from this community proved to be invaluable for the
development of the OWL Plugin.

Our decision to base the OWL Plugin on Protégé also had some risks. In order to
be able to reuse as much of the existing Protégé features as possible, we had to create a
careful mapping between the Protégé metamodel and OWL that maintains the traditional
Protégé semantics where possible. Furthermore, none of the generic Protégé widgets and
tabs is optimized for OWL, and not all of the editing metaphors for frame-based systems
are appropriate for OWL. In particular, OWL’s rich description logics features such as
logical class definitions required special attention. The following sections will show how
we have addressed these issues.

4 The Architecture of the OWL Plugin

The OWL Plugin is a complex Protégé extension that can be used to edit OWL files and
databases. The OWL Plugin includes a collection of custom-tailored tabs and widgets for
OWL, and provides access to OWL-related services such as classification, consistency
checking, and ontology testing.

4.1 OWL Plugin Metamodel

As illustrated in Figure 1, the OWL Plugin extends the Protégé model and its API with
classes to represent the OWL specification. The OWL Plugin supports RDF(S), OWL
Lite, OWL DL (except for anonymous global class axioms, which need to be given a
name by the user) and significant parts of OWL Full (including metaclasses).

In order to better understand this extension mechanism, we need to look at the differ-
ences between the Protégé metamodel and OWL. OWL is an extension of RDF(S) [7].
RDF has a very simple triple-based model that is often too verbose to be edited directly
in a tool. Fortunately, RDF Schema extends RDF with metamodel classes and properties
which can be mapped into the Protégé metamodel. As a result, the extensions that OWL
adds to RDF(S) can be reflected by extensions of the Protégé metamodel.

Although this extension has been successfully implemented for the OWL Plugin,
not all aspects of the metamodels could be mapped trivially. It was straight-forward to
represent those aspects of OWL that just extend the Protégé metamodel. For example,
in order to represent disjoint class relationships, it was sufficient to add a new property
:OWL-DISJOINT-CLASSES to Protégé’s owl:Class metaclass. It was also relatively
easy to represent OWL’s complex class constructors that can build class descriptions
out of logical statements. For example, OWL classes can be defined as the complement

The Protégé OWL Plugin 233

Fig. 1. The OWL Plugin is an extension of the Protégé core system.

of other classes, using the owl:complementOf constructor. In the OWL Plugin, com-
plements are represented by instances of a metaclass :OWL-COMPLEMENT-CLASS that
inherits from other Protégé system classes. As illustrated in Figure 2, the other types
of OWL class constructors such as restrictions and enumerated classes, and the various
kinds of properties are mapped into similar metaclasses.

Other aspects of OWL required some work to maintain a maximum of backward
compatibility with traditional Protégé applications. There is a semantic difference be-
tween Protégé and OWL if multiple restrictions are defined at the same time. In particular,
Protégé properties with multiple classes as their range can take as values instances of all
classes (union semantics), whereas OWL properties with multiple classes in their range
can only take values that are instances of all classes at the same time (intersection seman-
tics). In order to solve this mismatch, the OWL Plugin uses an internal owl:unionOf
class if the user has defined more than one range class. The same applies to a property’s
domain. Another difference is that OWL does not have the notion of facets, which in
Protégé are used to store property restrictions at a class. While a maximum cardinality
restriction at a class in Protégé is represented by a single quadruple (class, property,
facet, value), the same is stored as an anonymous superclass in OWL. OWL even sup-
ports attaching annotation property values to such anonymous classes, and therefore it
would be insufficient to map OWL restrictions into facets only. We have implemented a
mechanism that automatically synchronizes facet values with restriction classes, so that
the traditional semantics of Protégé are maintained while using the syntax of OWL.

234 H. Knublauch et al.

Fig. 2. The OWL metaclasses are implemented as subclasses of the Protégé system classes. As
shown here, they can be browsed with Protégé as well.

4.2 OWL Plugin API

Reflecting the Protégé metamodel extensions, the OWL Plugin also provides an extended
JavaAPI to access and manipulate OWL ontologies. While the coreAPI already provides
access to ontology classes, properties, and instances, the OWL Plugin extends this API
with custom-tailored Java classes for the various OWL class types. This API basically
encapsulates the internal mapping and thus shields the user from error-prone low-level
access. It is possible to further extend this API to define custom-tailored classes for
OWL extensions like OWL-S and the Semantic Web Rule Language (SWRL) [6]. For
example, individuals of the SWRL class AtomList could be represented by instances of
a corresponding Java class such as AtomListInstance. Algorithms for SWRL could
then operate on more convenient objects than with the generic classes, while non-SWRL-
aware Protégé components would handle these objects as normal Instances. We are
currently working such a SWRL library.

The OWL Plugin provides a comprehensive mapping between its extended API and
the standard OWL parsing library Jena 1. After an ontology has been loaded into a Jena
model, the OWL Plugin generates the corresponding Protégé objects. It then keeps the
Jena model in memory at all times, and synchronizes it with all changes performed by
the user. Thus, if the user creates a new Protégé class, a new Jena class with the same
name is created as well. The presence of a secondary representation of the ontology in

1 http://jena.sourceforge.net

The Protégé OWL Plugin 235

Fig. 3. A screenshot of the classes tab in the OWL Plugin (displaying the OWL-S ontology). The
screenshot shows the logical definition of the selected class CompositeProcess, its properties,
disjoints and annotations.

terms of Jena objects means that the user is able to invoke arbitrary Jena-based services
such as interfaces to classifiers, query languages, or visualization tools permanently. The
mapping into Jena also makes it much easier to embed existing and future Semantic Web
services into the OWL Plugin. Also, when the ontology is saved, it is sufficient to call
the corresponding Jena API method to serialize the Jena objects to a file. The immediate
Jena mapping is not available in the OWL Plugin’s database or multi-user modes, where
it is replaced with a conventional, monolithic translation.

4.3 OWL Plugin User Interface

Based on the above mentioned metamodel andAPI extensions, the OWL Plugin provides
several custom-tailored graphical user interface components for OWL. When started, the
system displays the five tabs shown in Figure 3. Most ontology designers will focus on
the OWL classes and Properties tabs which are described in sections 5 and 6. The Forms
and Individuals tabs are mostly geared for the acquisition of Semantic Web contents
(instance data, detailed in Section 7), while the Metadata tab allows users to specify
global ontology settings such as imports and namespaces.

Note that the generic architecture of Protégé and the OWL-specific extensions make
it relatively easy to add custom-tailored components. For example, optimized editors for

236 H. Knublauch et al.

SWRL or OWL-S could be added to the system. Likewise, description-logic reasoners
could be directly implemented on top of the Protégé OWL API or Jena. In fact, several
developers from around the world have already developed extensions of the OWL Plugin,
some of them even without interacting with us. In the remainder of this document, we
will focus on the standard set of user interface components and features of the OWL
Plugin. Since all of these components are available as open-source, it is possible to
extend and customize them.

5 Editing OWL Ontologies

In this section we will walk through some of the forms and tabs for editing classes and
properties. Further details on the user interface (including a comparison with similar
tools such as OilEd) can be found in complementary publications [10,9].

A screenshot of the OWL classes tab is shown in Figure 3. The main class hierarchy
is shown on the left, and the details of the currently selected class are shown in a form
on the right. The upper section of the class form displays class metadata such as names
and annotations. Annotation properties are ignored by OWL DL reasoners. Instead, they
are very suitable to manage metadata about a class, such as versioning information,
comments, relationships to other external resources, and labels in multiple languages.

5.1 Displaying and Editing OWL Expressions

A key question for developers of an OWL tool is how to represent and edit logical class
descriptions in a way that makes them easy to read and, at the same time, efficient
to enter. With OWL’s RDF-based syntax [16], expressions quickly become extremely
verbose and hard to read. The OWL Abstract Syntax [17] is much more user-friendly,
but still quite verbose. Although Protégé also has some support for the Abstract Syntax,
we chose to develop an expression syntax based on standard DL symbols [1] such as
∀ and � as the primary display format. These symbols (Table 1) allow the system to
display complex nested expressions in a single row.

This notation is used consistently throughout the user interface and is supported by
a comfortable expression editor. Using this editor, users can rapidly enter OWL class
expressions either with mouse or keyboard. The special characters are mapped onto keys
known from languages such as Java (e.g., owl:intersectionOf is entered with the &
key). To simplify editing, keyboard users can exploit a syntax completion mechanism
known from programming environments, which semi-automatically completes partial
names after the user has pressed tab. For very complex expressions, users can open a
multi-line editor in an extra window, which displays the expression using indentation.

The OWL Plugin helps new users to get acquainted with the expression syntax.
English prose text is shown as a “tool tip” when the mouse is moved over the expression.
For example, “∃ hasPet Cat” is displayed as “Any object which has a cat as its pet”.

5.2 Editing Class Descriptions

Traditional Protégé users are accustomed to an object-centered view to the interface that
has required some effort to adapt to OWL. In the Protégé metamodel, classes are typically

The Protégé OWL Plugin 237

Table 1. Protégé uses traditional description logic symbols to display OWL expressions. In this
table, property names such as hasChildren appear in italics. A common naming convention is to
use uppercase names such as Parent to represent classes, while individuals like yellow should
be written in lower case.

OWL element Symbol Key Example expression in Protégé

owl:allValuesFrom ∀ * ∀ hasChildren Female
owl:someValuesFrom ∃ ? ∃ hasHabitat University
owl:hasValue � $ hasGender � male
owl:minCardinality ≥ > hasChildren ≥ 1 (at least one value)
owl:maxCardinality ≤ < hasDegree ≤ 5 (at most five values)
owl:cardinality = = hasGender = 1 (exactly one value)
owl:intersectionOf � & Student � Parent
owl:unionOf � | Male � Female
owl:complementOf ¬ ! ¬Parent
owl:oneOf { ... } { } {yellow green red}

only related through simple superclass/subclass relationships, and therefore a simple tree
view was enough to edit classes. OWL on the other hand not only distinguishes between
necessary conditions (superclasses) and necessary and sufficient conditions (equivalent
classes), but furthermore allows users to relate classes with arbitrary class expressions.
As shown in Figure 3, the OWL Plugin’s class editor addresses this complexity by
means of a list of conditions, which is organized into blocks of necessary & sufficient,
necessary, and inherited conditions. Each of the necessary & sufficient blocks represents
a single equivalent intersection class, and only those inherited conditions are listed that
have not been further restricted higher up in the hierarchy. In addition to the list of
conditions, there is also a custom-tailored widget for entering disjoint classes, which
has special support for typical design patterns such as making all siblings disjoint. This
rather object-centered design of the OWL classes tab makes it possible to maintain the
whole class definition on a single screen.

5.3 Editing Properties

The class form provides a listing of all properties for which instances of the selected class
can take values. This includes those properties which have the class in their domain, and
those that don’t have any domain restrictions. The details of the properties are edited
by means of a separate form. Similar to the class form, the upper part of the property
form displays name and annotation properties. The lower part contains widgets for the
property’s domain, range, and characteristics such as whether a property is transitive or
symmetric.

Note that Protégé and OWL support user-defined metaclasses that extend the standard
system classes. For example, ontologies can define a subclass of owl:ObjectProperty
and then add other properties to it. This allows users to specify additional property char-
acteristics such as hasUnit . The system automatically creates widgets for the additional
properties of the metaclass.

238 H. Knublauch et al.

6 Ontology Maintenance and Evolution

As mentioned in Section 2, ontology design is a highly evolutionary process. Ontology
developers almost certainly will need to explore various iterations before an ontology
can be considered to be complete. A development tool should assist in ontology evo-
lution, and (where appropriate) help the user to prevent or circumnavigate common
design mistakes. In the OWL Plugin, we are exploring some promising approaches for
ontology maintenance, partly comparable to modern tools for programming languages.
With programming tools, developers can get instant feedback using the compile button.
Compiler errors are listed below the source code and enable the programmer to quickly
navigate to the affected area. Another very efficient means of detecting programming
errors is using so-called test cases, which have become popular in conjunction with agile
development approaches such as Extreme Programming [2]. A test case is a small piece
of code that simulates a certain scenario and then tests whether the program behaves
as expected. It is a good programming style to maintain a library of test cases together
with the source code, and to execute all test cases from time to time to verify that none
of the recent changes has broken existing functionality. To a certain extent, the idea of
test cases is related to the formal class definitions in description logics such as OWL
DL. For example, by formally stating that a Parent is the intersection of Person and
a minimum cardinality restriction on the hasChildren property we ensure that future
statements about Parents don’t contradict the original developer’s intention. This is
especially important in an open-world scenario such as the Semantic Web. Thus, DL
reasoners can help build and maintain sharable ontologies by revealing inconsistencies,
hidden dependencies, redundancies, and misclassifications [14]. How the OWL Plugin
integrates such reasoners is illustrated in Section 6.1. In addition to reasoners, the OWL
Plugin also adopts the notions of test cases and compile buttons with an “ontology
testing” feature, which is described in Section 6.2.

6.1 Reasoning Based on Description Logics

The OWL Plugin provides direct access to DL reasoners such as Racer [5]. The current
user interface supports two types of DL reasoning: Consistency checking and classifi-
cation (subsumption). Support for other types of reasoning, such as instance checking,
is work in progress.

Consistency checking (i.e., the test whether a class could have instances) can be
invoked either for all classes with a single mouse click, or for selected classes only.
Inconsistent classes are marked with a red bordered icon.

Classification (i.e., inferring a new subsumption tree from the asserted definitions)
can be invoked with the classify button on a one-shot basis. When the classify button
is pressed, the system determines the OWL species, because some reasoners are unable
to handle OWL Full ontologies. This is done using the validation service from the Jena
library. If the ontology is in OWL Full (e.g., because metaclasses are used) the system
attempts to convert the ontology temporarily into OWL DL. The OWL Plugin supports
editing some features of OWL Full (e.g., assigning ranges to annotation properties,
and creating metaclasses). These are easily detected and can be removed before the
data are sent to the classifier. Once the ontology has been converted into OWL DL, a

The Protégé OWL Plugin 239

Fig. 4. The OWL Plugin can be used to invoke a classifier and to visualize classification results in
support of ontology maintenance. The asserted and the inferred hierarchy are shown side by side.

full consistency check is performed, because inconsistent classes cannot be classified
correctly. Finally, the classification results are stored until the next invocation of the
classifier, and can be browsed separately. Classification can be invoked either for the
whole ontology, or for selected subtrees only. In the latter case, the transitive closure of
all accessible classes is sent to the classifier. This may return an incomplete classification
because it does not take incoming edges into account, but in many cases it provides a
reasonable approximation without having to process the whole ontology.

OWL files store only the subsumptions that have been asserted by the user. However,
experience has shown that, in order to edit and correct their ontologies, users need to
distinguish between what they have asserted and what the classifier has inferred. Many
users may find it more natural to navigate the inferred hierarchy, because it displays the
semantically correct position of all the classes.

The OWL Plugin addresses this need by displaying both hierarchies and making
available extensive information on the inferences made during classification. As illus-
trated in Figure 4, after classification the OWL Plugin displays an inferred classification
hierarchy beside the original asserted hierarchy. The classes that have changed their su-
perclasses are highlighted in blue, and moving the mouse over them explains the changes.
Furthermore, a complete list of all changes suggested by the classifier is shown in the
upper right area, similar to a list of compiler messages. A click on an entry navigates
to the affected class. Also, the conditions widget can be switched between asserted and
inferred conditions. All this allows the users to analyze the changes quickly.

240 H. Knublauch et al.

Fig. 5. The OWL Plugin displays violations of test conditions at the bottom.

6.2 Ontology Testing

The OWL Plugin provides a mechanism to execute small test cases. Users can press an
ontology test button, and the system will execute a configurable list of tests. These tests
are small Java programs that basically take a class, property, individual, or ontology
as its input, verify arbitrary conditions on them, and in case of failure, return an error
message. For example, one of the predefined tests ensures the invariant that the inverse
of a transitive property should also be transitive. As illustrated in Figure 5, if a property
in the ontology violates this conditions, then the system displays a warning. In some
cases it even provides a “repair” button, which attempts to remove the source of the
violation automatically.

The OWL Plugin provides a standard set of ontology tests for various best ontology
design practices. It also contains tests against OWL DL compliance (e.g., to warn the
user when OWL Full features such as metaclasses have been used). The ontology test
mechanism has also been exploited to implement a simple but powerful “to-do-list”
feature. For example, if a class has the value “TODO: Add German label” as its value of
the owl:versionInfo annotation property, then the ontology test button will display a
corresponding to-do item in the list of warnings. This simple mechanism helps coordinate
shared ontology design efforts.

The list of standard ontology tests can be easily extended by programmers, so that
the system will execute additional user-defined tests uniformly. These additional tests
could for example ensure the application of project-specific design patterns, naming
conventions, or other best practices.

The Protégé OWL Plugin 241

7 Editing Semantic Web Contents

Ontologies provide Semantic Web agents with background knowledge about domain
concepts and their relationships. This knowledge can be exploited in various ways, for
example to drive context-sensitive search functions. Ontologies can also be instantiated
to create individuals that describe Semantic Web resources or real-world entities. For
example, individuals of an ontology for travel agents could represent specific holiday
destinations or activities. In such a scenario, a Semantic Web repository would provide
instance data about these individuals, and agents can use their ontological knowledge to
match user requests with available offers.

Protégé provides out-of-the-box support for editing individuals. The OWL Plugin’s
Individuals tab can be used to instantiate classes from the ontology, and to edit the
characteristics of the individuals with comfortable forms. Users could import an ontology
into their project, create instances for its classes, and then store the instances into separate
files. These files can then be distributed on the Web, so that intelligent agents could find
them.

In another application scenario, Protégé could be used to associate existing Web
resources such as images to ontological concepts. In the context of another Protégé
plugin, we have implemented a convenient drag-and-drop mechanism that allows users
to drag a Web link or image from their Web browser into Protégé, and thus establish a
relationship between the external Web resource and the selected object in the ontology.
These relationships could be exploited by arbitrary Web Services. Thus, Protégé is not
only limited to being used as an ontology authoring tool, but also as a platform for
arbitrary other services that use the ontologies.

8 Discussion

While real Semantic Web applications are still in their infancy, there is a clear demand
for tools that assist in application development. The intention of the Protégé OWL Plugin
is to make Semantic Web technology available to a broad group of developers and users,
and to promote best practices and design patterns.

One of the major benefits of using Protégé is its open architecture. The system pro-
vides various mechanisms to hook custom-tailored extensions into it, so that external
components like reasoners and Web services can be integrated easily. Since the source
code is open and freely available as well, existing base components can be used as tem-
plates for customized solutions. Projects don’t need to spend time developing their own
base infrastructure with standard features such as loading and managing OWL ontolo-
gies. Instead, they can start with the OWL Plugin as it comes out-of-the-box and then
gradually adapt or remove the features that don’t completely match their requirements.

Since its first beta versions in late 2003, the OWL Plugin has been widely embraced
by OWL users around the world. Although we don’t have exact numbers and statis-
tics about our users, we know that Protégé has more than 20,000 registered users. Of
these, a significant portion is very interested in OWL and many use it routinely. The
protege-owl@smi.stanford.edu discussion list currently has more than 650 sub-
scribed members. The traffic on this list is very large and provides useful critiques for

242 H. Knublauch et al.

the developers, as well as encouraging feedback and success stories. There is already
a considerable number of external plugins for the OWL Plugin, demonstrating that the
open architecture of Protégé provides a suitable platform for custom extensions. Also,
many existing Protégé Plugins either directly work in OWL mode, or are being optimized
for OWL.

The decision to implement the OWL Plugin as an extension to Protégé did not have
only advantages though. In particular, the Protégé core metamodel andAPI support some
functionality that does not have a default mapping into OWL, such as numeric range
restrictions, assigning duplicate values to a property, or stating that a class is abstract
(i.e., cannot have any instances). As a result, some existing widgets could not be used in
the OWL mode, and programmers should not use all low-level API functions. We have
made some efforts to simulate some Protégé-specific language elements with OWL. For
example, if users want to state that a class is abstract, then the system fills a pre-defined
annotation property. Furthermore, invalid API calls are rejected whenever possible. We
believe that the many advantages of reusing the functionality and components of the
Protégé platform clearly outweigh these inconveniences.

Another point to keep in mind is that the existing collection of user interface compo-
nents in the OWL Plugin should only be regarded as a core configuration. For example,
many users may be put off by the symbolic notation used to edit class expressions.
These users often don’t require the advanced description logic features of OWL but
simply want to define classes and properties similar to the conventional Protégé user
interface or object-oriented tools. These users may find it helpful to simplify their user
interface. This would allow them to use the advanced features later, once they are ac-
customed to the basics of OWL. We have recently added an alternative default mode of
the OWL Classes tab (called “Properties View”), which shows properties together with
their restrictions instead of the generic conditions widget. This view is closer to the view
that traditional Protégé users are accustomed to, but has some limitations on the full
expressivity of OWL.

The focus of our work on the OWL Plugin until now has been to provide a complete,
scalable and stable editor for most of the features of OWL (Full). Ongoing and future
work addresses the question of how to make ontology design more accessible to people
with limited formal training in description logics. In this context, we collaborate with the
University of Manchester to explore more intuitive visual editing components, wizards,
and debugging aids. We will also support additional design patterns, improve reasoning
capabilities, and build editors and APIs for OWL extensions such as SWRL.

Acknowledgements. This work has been funded by a contract from the US National
Cancer Institute and by grant P41LM007885 from the National Library of Medicine.
Additional support for this work came from the UK Joint Information Services Com-
mittee under the CO-ODE grant. Our partners from Alan Rector’s team and the OilEd
developers at the University of Manchester have made very valuable contributions.

The Protégé OWL Plugin 243

References

1. F. Baader, D. Calvanese, D. McGuineness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

2. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

284(5):34–43, 2001.
4. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and S. Tu.

The evolution of Protégé-2000: An environment for knowledge-based systems development.
International Journal of Human-Computer Studies, 58(1):89–123, 2003.

5. V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic Web. In 2nd
International Workshop on Evaluation of Ontology-based Tools (EON-2003), Sanibel Island,
FL, 2003.

6. I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language. In Proc. of the
Thirteenth International World Wide Web Conference (WWW 2004), New York City, NY.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics, 1(1), 2003.

8. H. Knublauch. An AI tool for the real world: Knowledge modeling with Protégé. JavaWorld,
June 20, 2003.

9. H. Knublauch, O. Dameron, and M. A. Musen. Weaving the biomedical semantic web with
the Protégé OWL plugin. In International Workshop on Formal Biomedical Knowledge
Representation, Whistler, BC, Canada, 2004.

10. H. Knublauch, M. A. Musen, and A. L. Rector. Editing description logics ontologies with
the Protégé OWL plugin. In International Workshop on Description Logics, Whistler, BC,
Canada, 2004.

11. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000: Combining
interoperability and flexibility. In 2nd International Conference on Knowledge Engineering
and Knowledge Management (EKAW’2000), Juan-les-Pins, France, 2000.

12. N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, and M. Musen. Creating Semantic
Web contents with Protégé-2000. IEEE Intelligent Systems, 2(16):60–71, 2001.

13. N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Technical Report SMI-2001-0880, Stanford Medical Informatics, 2001.

14. A. L. Rector. Description logics in medical informatics. Chapter in [1].
15. A. L. Rector. Modularisation of domain ontologies implemented in description logics and re-

lated formalisms including OWL. In Second International Conference on Knowledge Capture
(K-CAP), Sanibel Island, FL, 2003.

16. World Wide Web Consortium. OWL Web Ontology Language Reference. W3C Recommen-
dation 10 Feb, 2004.

17. World Wide Web Consortium. OWL Web Ontology Language Semantics andAbstract Syntax.
W3C Recommendation 10 Feb, 2004.

OntoTrack: Combining Browsing and Editing
with Reasoning and Explaining for OWL Lite

Ontologies

Thorsten Liebig and Olaf Noppens

Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm
{liebig|noppens}@informatik.uni-ulm.de

Abstract. OntoTrack is a new browsing and editing “in-one-view”
ontology authoring tool that combines a hierarchical graphical layout
and instant reasoning feedback for (the most rational fraction of) OWL
Lite. OntoTrack provides an animated and zoomable view with con-
text sensitive features like click-able miniature branches or selective de-
tail views together with drag-and-drop editing. Each editing step is in-
stantly synchronized with an external reasoner in order to provide ap-
propriate graphical feedback about relevant modeling consequences. The
most recent feature of OntoTrack is an on demand textual explanation
for subsumption and equivalence between or unsatisfiability of classes.
This paper describes the key features of the current implementation and
discusses future work as well as some development issues.

1 Introduction

High quality ontologies are crucial for the Semantic Web [1]. Unfortunately, the
task of building and maintaining mature ontologies turned out to be difficult even
for KR experts. The analysis of three different efforts of formalizing knowledge
for a given domain within the Halo project [2] may serve as a prime example
here. This evaluation showed, that up to 75 % of the system failures were caused
by modeling problems which in most cases were concerned with the act of writing
down non-conflicting axioms [3]. In order to avoid those modeling problems the
authors suggest to enforce development of convenient and interactive tools for
building, maintaining and evaluating ontologies.

However, many ontology authoring tools currently use functionally disjunct
interfaces for either editing, browsing, or reasoning with ontologies. Editing in-
terfaces commonly use list-based representations for selection of classes or prop-
erties together with predefined forms and pop-up windows for manipulation in
an additional display area. From a usability perspective, those interfaces inher-
ently have substantial drawbacks concerning search and navigation speed as well
as user orientation and editing efficiency in our opinion [4]. First, the number of
visible classes is limited by the screen height requiring scrolling even for middle

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 244–258, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

OntoTrack 245

sized ontologies. Second, because of the tree centered representation, multiple
inheritance needs to be approximated with help of “cloned” classes appearing
in the list of descendants of every superclass. Third, accessing or selecting other
classes during editing temporally requires additional expand and contract style
selection lists for a class hierarchy already on screen.

In order to compensate some of those deficits most editors include additional
browsing interfaces based on layout techniques like nested interchangeable views
[5], venn diagrams [6], spring embedding [7], or hyperbolic trees [8], [9]. How-
ever, the majority of those interfaces do not allow for substantial editing and
are designed as view-only plugins in most cases. Furthermore, hyperbolic tree
visualization is based on a mapping of euclidian to hyperbolic geometry typi-
cally resulting in translocation of nodes after each focus change [10]. In addition,
hyperbolic trees have the disadvantage of “fisheye distortion” which makes it dif-
ficult to read off-center labels for example. Other visualization techniques like
tree maps or venn diagrams heavily exploit nested graphical structurings over-
lapped with edges, obscuring the greater structure of ontologies in most cases.
In our opinion, none of these layout techniques are well suited for typical ontol-
ogy browsing tasks like comparison of different expansion paths concerning level
depth or common ancestors.

OntoTrack implements a novel approach using one integrated view for
straightforward browsing, manipulating, and understanding even large OWL
Lite schemas (also called TBoxes in Description Logics). Within this view ontolo-
gies are layouted as directed root graphs according to their primary structuring
relation, the subsumption relationship. OntoTrack provides animated expan-
sion and de-expansion of class descendants, continuous zooming, panning and
uses elaborated layout techniques like click-able miniature branches or selective
detail views. At the same time OntoTrack allows for quite a number of editing
features like mouse-over anchor buttons and graphical selections without switch-
ing into a special editing layout. In addition, every single editing step is send to
an external reasoner in order to make implicit modeling consequences explicitly
available for graphical feedback. OntoTrack is currently enhanced with an
on demand component for textual explanation of subsumption and equivalence
between or unsatisfiability of classes.

The remainder of this paper is organized as follows. The next section contains
a detailed description of the ontology authoring tool OntoTrack. In section
3 we discuss some implementation issues and describe the system architecture
as well as work in progress. We will end with an outlook about possible future
extensions.

2 OntoTrack: A New Graphical Authoring Tool for OWL
Lite−

OntoTrack is a multi-platform Java application combining authoring of on-
tologies with reasoning about ontologies. As a consequence, running Onto-
Track requires to have access to an appropriate reasoning system. Currently,

246 T. Liebig and O. Noppens

OntoTrack is adapted to the RACER server [11] via its TCP-based client
interface.

The next subsection specifies the OWL language constructs OntoTrack is
currently able to handle. For sake of broad usability and a clear and concise
graphical representation we restrict this language to a sensible fraction of OWL
Lite. This is followed by a more detailed explanation of OntoTracks browsing,
editing, reasoning as well as explaining abilities.

2.1 OWL Lite−: A Sensible Fraction of OWL Lite

OntoTrack is designed to be an authoring tool for ontology languages with an
expressivity almost comparable to that of OWL Lite. The expressivity of OWL
Lite is about that of the DL language SHIF(D) [12]. OWL Lite is a fraction
of OWL DL aiming to provide a useful subset of language features, that are
easier to present to naive users and relatively straightforward for tool developers
to support [13]. In particular, OWL Lite excludes syntax constructs for unions,
complements, and individuals in descriptions or class axioms. In addition, it lim-
its cardinalities to either 0 or 1 and nested descriptions to concept identifiers.
However, these restrictions come with relatively little loss in expressive power.
With help of indirection and syntactical “tricks” all of OWL DL can be captured
in OWL Lite except those descriptions containing either individuals or cardinal-
ities greater than 1 [12]. Atomic negation for example, is easily simulated via
complementary cardinality restrictions (e. g. A ≡ (≥ 1 r) and negA ≡ (≤ 0 r),
where r is a new property). A general concept inclusion (GCI) is expressible by
introducing two new classes with one complete and one partial definition for each
class (e. g. C � D together with two complete class descriptions for C and D).
A disjunction of two (or more) classes A and B can be simulated by negating
the conjunction of the negation of A and B (following the laws of deMorgan and
double negation). E. g. the expression (A�B) is semantically equivalent to negD
where negD ≡ (≤ 0 q) and D ≡ (negA � negB) ≡ (≥ 1 q).

Simulating GCIs or disjunction in OWL Lite with help of multiple definitions
for a single class identifier is kind of obscure and obviously conflicts with the
design goal of OWL Lite. Very likely most of the above will rarely occur in real
world OWL Lite ontologies. Instead, users will presumably use OWL DL when
it comes to disjunction or GCIs for a certain application domain. Beyond that,
there is no intuitive and unambiguous way for rendering classes with multiple,
possibly mixed partial and complete, definitions. We therefore decided to restrict
the usage of OWL Lite in a way we believe it was originally intended by the
language designers itself (called OWL Lite− in the following). In particular, we
restrict classes to be defined only once in a way that could be equally expressed
by one single owl:equivalentClass or rdfs:subClassOf statement over the
conjunction of the collection of superclasses and restrictions (i. e. the definition
of a class A is A � D or A ≡ D where A is an atomic name and has no other
definition). In terms of the normative abstract syntax and semantic of OWL Lite
[14] this prohibits the use of the EquivalentClasses axiom. As a result, GCIs and
disjunction are not expressible within OWL Lite−.

OntoTrack 247

Within this context, it is worth mentioning that different analyses of online
available ontologies (e. g. [15] or [16]) showed, that most users only exploit a
very limited set of the available language constructs. More concrete, only a very
small fraction of those ontologies would be outside the scope of the OWL Lite
subset processable with OntoTrack.

2.2 Browsing

The primary structuring element of ontologies is the subsumption relationship
between classes and properties. Consequently, OntoTrack layouts an ontol-
ogy as a directed acyclic graph with either classes or properties as nodes and
the subsumption relationship as directed edges either in top-down, left-right,
bottom-up, or right-left orientation. The drawn hierarchy may vary from the ex-
plicitly given subclass statements of the loaded ontology source document. This
is due to OntoTracks most important layout principle aiming to visualize the
most relevant ontological commitments only. As a consequence, OntoTrack
will only show direct subsumption relationships while hiding all those which are
redundant due to the transitivity of this relationship. Furthermore, by taking
modeling consequences explicitly into account, OntoTrack is sensitive not only
to syntactically given but also to semantically implied subsumption relationships.

Figure 1 shows the OntoTrack application window. It solely consists of
a menu bar, a search bar, and a combined browsing and manipulation area.

Fig. 1. Upper fraction of the OpenCyc ontology with triangle and miniature sub-
branches. Anchor buttons for SolidTangibleThing show up because of mouse over action.

248 T. Liebig and O. Noppens

OntoTrack can handle multiple ontologies in parallel, which are accessible
via corresponding tabs at the bottom of the application window. The ontology
displayed in Figure 1 is a fraction of the OpenCyc knowledge base (version
0.7) in top-down orientation. Note, that the subsumption path of the currently
selected class (ComputationalThing) up to the OWL root class (Thing) is outlined
by a darker node background and thicker edges in order to provide an optimal
overview concerning depth and branching.

As an option, not expanded sub-branches of classes are rendered as triangles
of varying length, width, and shading, approximating the depth, branching and
number of subclasses (see class SomethingExisting in Figure 1 for an example).
Depending on the number of descendants, a not expanded sub-branch will alter-
natively be symbolized as a miniature graph in order to give an overview about
the structure of the sub-branch (see SpatialThing-Localized in Figure 1). The
icons of miniature graphs are expandable on mouse click and show their class
names via mouse-over tool tip. In addition, the whole ontology layout can con-
tinously be zoomed or panned simply by right button mouse-down movements.

The direct descendants of a class are expanded resp. de-expanded in an an-
imated fashion on left mouse button click. OntoTracks ontology layout is
driven by the expansion direction of the user. The layout strategy aims at “clus-
tering” the descendants of a selected class (locally simulating an ordinary tree
representation). This means that an ontology with multiple inheritance may
end up with a different layout for exactly the same set of expanded classes –
depending on the users expansion order.

OntoTrack always shows all (even implicit) direct subsumption relation-
ships between classes. However, when dealing with classes having multiple an-
cestors it might be the case that some ancestors are not visible (because they are
in not expanded branches). Those ancestors are drawn as clickable thumbnail
classes in order to show the semantically correct hierarchy while minimizing the
number of expanded classes at the same time. The class names of all thumbnail
classes are accessible via tool tips. As an example, Figure 2 shows two thumbnail
ancestors of class SpaceRegion appearing after expansion of class SpatialThing.
OntoTrack will not expand them by default because of the assumption, that

Fig. 2. Ancestor thumbnails of class SpaceRegion after expansion of class SpatialThing.

OntoTrack 249

the user is much more interested in the descendants of SpatialThing (the user
actually asked for) instead of their ancestors.

An auxiliary navigation feature of OntoTrack is the radar view, which will
appear in the upper left corner of the workspace only if the ontology will exceed
the available rendering area at its current scale factor. The radar view consists
of a miniaturized graph of the current ontology expansion and an overlayed
rectangle representing the current rendering area. The latter can be moved via
mouse which will result in a corresponding relocation of the original view. Figure
9 shows a larger ontology together with a radar view.

OntoTrack also implements a string matching search with graphical high-
lighting based on the principles of the dynamic query approach [17]. Each modifi-
cation of the search string directly results in an updated highlighting of matching
parts of the ontology (expanded or not). Figure 3 shows the sub-string matches

Fig. 3. Match highlighting for sub-string search for “ang” within class names.

for the search string “ang” within class identifiers. Note, that even thumbnails
or triangle sub-branches are highlighted. Optionally, the user can fan out the
ontology resulting in an expansion of all matching classes via one click.

2.3 Editing

Browsing and editing in OntoTrack is done within one single view. This al-
lows to re-use already available navigation principles for the task of building
and manipulating ontology definitions. A new sub- or superclass can easily be
added by using OntoTracks anchor mode for example. Here, clickable triangle
buttons appear when moving with the mouse pointer over a class node (see class
SolidTangibleThing in Figure 1). These anchor buttons allow for specifying an
additional superclass or new subclass via mouse click and are sensible with re-
spect to the layout orientation. An existing subclass relationship can be changed
via mouse drag-and-drop or deleted by selection and “Del”-key usage as long as
this relationship is not implied by other logical axioms of the ontology.

250 T. Liebig and O. Noppens

In addition, OntoTrack offers further editing functions while in its “de-
tailed view” mode. The detailed view mode is activated or deactivated for each
class separately using the mouse-wheel down- resp. up-wards while being over
the class with the mouse pointer (alternatively PgDown/PgUp). When activated,
OntoTrack uses an UML-style class diagram showing the list of defined prop-
erty restrictions for this class in abstract DL syntax in its bottom compartment.
OntoTrack currently supports all OWL Lite restrictions: unqualified cardi-
nality restrictions (≤, ≥, = with cardinality 0 or 1) as well as existential and
universal (∃, ∀) quantifications. A restriction can be deleted by clicking on the
round (red) button at the right hand side of the corresponding row and a new
restriction will be added by clicking on the round (green) button at the bottom
of the class box. At present, properties as well as classes within those restrictions
are chosen with help of selection lists. In future versions, properties as well as
classes may be selectable by mouse click. The example in Figure 4 shows some
restrictions for the class TemporalThing.

Fig. 4. Detailed view mode for classes Individual and TemporalThing with restrictions
resp. specification of an universal quantification.

Semantically, a class is equivalent to (if complete) or subclass of (if partial)
the conjunction of the collection of superclasses and restrictions in OntoTrack.

Additional editing features like class deletion or switching between complete
and partial definitions are accessible via a right mouse button context menu. In
order to visually distinguish between a complete and a partial class definition1

we adopt the UML notation of derived types for complete class definitions. In
concrete, a complete class definition is characterized by a slanted line in the
upper left corner of the class box (see Figure 8 for examples).

In addition to the class hierarchy view, OntoTrack also provides an anal-
ogous graphical representation for properties. Here, different detailed property
views allow for manipulation of global domain and range restrictions, global car-

1 In OWL Lite− we allow for exactly one definition per class identifier (see subsection
2.1).

OntoTrack 251

dinality constraints as well as logical characteristics of the property with help of
selection lists or checkboxes as exemplarily shown in Figure 5.

Fig. 5. Property hierarchy with examples of different detailed view modes.

As an extra feature, the property representation can be rendered as a read-
only transparent layer onto the class representation and vice versa. The trans-
parency rate of the secondary layer is freely adjustable.

2.4 Reasoning

As mentioned before, OntoTrack is equipped with an interface for interac-
tion with an external OWL reasoner, namely RACER. All changes after each
editing step (e. g. list selection, subclass manipulation) are immediately send
to RACER. This reasoner will then make all modeling consequences explicitly
available. OntoTrack will hand over relevant consequences to the user by pro-
viding appropriate graphical feedback. Relevant consequences currently cover
subsumption and equivalence between as well as unsatisfiability of classes. For
example, adding an existential restriction (minimal or exact cardinality restric-
tion with 1 or existential quantification) on a property with a domain restriction
will result in a subsumption relationship between the edited class and the prop-
erty domain. Those updates are also animated in order not to confuse the user
with a new hierarchy layout in one step.

As an example, in Figure 6 we have a contradiction between a restriction
in class Individual and a restriction in class TemporalThing. The latter requires
exactly one filler for the property duration. The restriction in class Individual
however demands for exactly zero fillers. As a consequence, TemporalThing and
all subclasses thereof are unsatisfiable and therefore outlined in red.

Note, that the last edited class is not necessarily the (only) one which poten-
tially will become inconsistent. OntoTrack will therefore query its reasoner
for conflicting or equivalent definitions in any part of the ontology after each

252 T. Liebig and O. Noppens

Fig. 6. Contradicting restrictions cause TemporalThing (and at least all its descendants)
to be unsatisfiable.

editing step. Concerning the example shown in Figure 6 one may notice that
there is at least one unsatisfiable descendant of PartiallyIntangibleIndiv (its sub-
branch triangle is colored red). This user triggered query strategy also applies
for implicit subsumption relationships between classes.

2.5 Explaining

Providing feedback about the logical consequences of recent user changes help
users to check for imprecise, redundant or faulty modeling. Important conse-
quences with respect to an ontology authoring tool are subsumption, equivalence
and unsatisfiability. Those consequences often depend on logical interrelations
of nested definitions, which itself may depend on other definitions. As a result,
most consequences are not easily traceable or intuitive to non-experienced users.
Current reasoning systems provide no or only limited support for explanation
of logical consequences.2 OntoTracks most recent extention is a prototypical
facility for an on demand explanation of subsumption, equivalence and unsat-
isfiability. This component is based on the work of Borgida et. al. [19] about a
sequent calculus for ALC. In [19] the authors sketch an extended DL tableaux
algorithm for the generation of sequent proof steps needed for explanation. How-
ever, currently available tableaux reasoners potentially capable of handling OWL
are either not avaliable as source code or based on highly optimized algorithms
not easily extensible for explanation generation. We therefore implemented our
own tableaux based explanation generator for OntoTrack.

Currently, this component is able to generate explanations within unfoldable
ALEN ontologies, i. e. ontologies with unique acyclic definitions (negation and
disjunction comes implicit due to the refutation strategy of the tableaux proofs).
The actual prototype uses a naive tableaux implementation with lazy unfolding.
It will generate a quasi natural language explanation compiled of text patterns
which correspond to applied rules of the underlying tableaux proof. Note, that
this explanation facility does not aim to replace RACER as core reasoning com-
ponent and will only be activated on user request.

2 The Classic system is a notable exception here [18].

OntoTrack 253

Explanation for A � B:

It holds that A is subsumed by B:

A � B

which is equivalent to the unfolded subsumption problem:

(∃ r E) � (∀ r C) � (∃ r D)

In order to check that (∃ r E) and (∀ r C) is subsumed by (∃ r D)
we need to check whether the conjunction of E and C is sub-
sumed by D:

E � C � D

which is equivalent to the unfolded subsumption problem:

E � (∃ q E) � (≥ 1 q)

In order to check that (∃ q E) is subsumed by (≥ 1 q) we need to
check whether E is subsumed by Thing:

E � Thing

By definition everything is subsumed by Thing.

Fig. 7. Explanation of a subsumption relationship of an example ontology shown in
Figure 8.

Figure 7 displays a textual explanation of the subsumption relationship be-
tween the two classes A and B which would appear in a separate window.

Figure 8 shows the relevant definitions and their graphical representation in
OntoTrack of the appertaining ontology within this small explanation example
of Figure 7 (which has been adapted from an example in [19]).

ObjectProperty(r)
ObjectProperty(q)
Class(E partial)
Class(A complete

restriction(r someValuesFrom(E))
restriction(r allValuesFrom(C)))

Class(C complete
restriction(q someValuesFrom(E)))

Class(B complete
restriction(r someValuesFrom(D)))

Class(D complete
restriction(q minCardinality(1)))

Fig. 8. Example ontology for subsumption explanation in OWL abstract syntax as well
as in OntoTrack (relevant definitions are shown in detailed view mode).

254 T. Liebig and O. Noppens

3 Implementation Issues and Current Work

A recent analysis of online available ontologies [15] showed, that most ontologies
contain more than hundred classes. Upcoming ontologies very likely will consist
of several hundreds of classes presumably referencing dozen of other ontologies.
Obviously, performance and scalability of ontology authoring tools are key for
user acceptance and wide adoption of Semantic Web techniques. We therefore
have chosen Piccolo [20] as our graphical library for OntoTrack, which has
proven to be sufficiently fast and reliable even for large numbers of graphical
objects. Piccolo is a Java2D interface toolkit supporting animation, zooming,
multiple cameras, layers, etc. Our implementation of OntoTracks visualization
components also adopts the linked tree diagram approach of SpaceTree [10]
which itself uses the Piccolo toolkit. SpaceTree makes use of elaborated layout
techniques to dynamically zoom and layout tree branches in an animated fashion.
Figure 9 shows, that OntoTracks layout technique is even suitable to depict
the greater structure of ontologies with more than 60 classes.

Fig. 9. A modified fraction of the IEEE SUMO ontology [21] with more than 60 classes
expanded and radar view in the upper left corner.

For importing and exporting of ontologies we use the Jena 2.1 [22] RDF API
and parser functionality. OntoTracks core ontology model is also based on
Jena which we enriched with a high-level event notification mechanism needed

OntoTrack 255

for propagating changes from the core model to their corresponding graphical or
external reasoner representations resp. vice versa.

The RACER server is used to provide reasoning feedback about logical im-
plied consequences. However, implementing this feedback functionality turned
out to become difficult for some reasons. For example, in order to become aware
of a new subsumption relationship due to a just added property restriction, On-
toTrack needs to query the reasoner about direct superclasses for almost all
classes of the ontology in turn.3 Instead of querying for all possible changes with
respect to a specific consequence for each editing step we would like to have
an event-triggered publish-subscribe mechanism on reasoner side [23]. Another
problem is concerned with incremental reasoning and retraction of definitions.
Because of lack of algorithms for appropriately handling incremental additions
to a knowledge base [24] complete reclassification after each user interaction is
necessary.

A current extension is concerned with the handling of direct and follow-
up consequences of user changes. E. g. a user manipulation may result in one
unsatisfiable class (not necessarily the one which has been changed) or even
many unsatisfiable classes in worst case. Depending on this outcome the editor
should inform or even warn the user about the impact of his action in order to
identify faulty modeling as early as possible.

OntoTracks prototypical explanation facility is currently implemented in
CommonLisp as an external component in parallel to RACER. In order to avoid
redundant computation, it is desired to combine reasoning and explaining within
one system component in the future. Beyond that, we plan to enhance the expla-
nation presentation with additional mouse-enabled features and different levels
of detail information.

Current work also focuses on further editing features. Comments, labels as
well as ontology header information are imported as well as exported correctly
but are not editable in OntoTrack at the moment. We also work on the in-
tegration of further editing and searching functionality like undo operations or
regular expression search. Because of user demand we also plan to add a view-
only mode for OWL DL ontologies with a detail view showing OWL abstract
syntax. Actual graphical extensions cover the optional visualization of entailed
disjointness between classes.

4 Summary and Outlook

The broad adoption of Semantic Web technology strongly depends on the avail-
ability of convenient and flexible tools for browsing, editing, and evaluation of
ontologies. A clear presentation, intuitive editing abilities, and subsidiary rea-
soning services are key properties of ontology editors suitable even for users
3 One could of course narrow this set to those classes that also have an explicit or

inherited restriction on that particular property or a subproperty thereof. But this
requires to have explicit knowledge about inherited restrictions or subproperties,
which in turn may result in additional queries.

256 T. Liebig and O. Noppens

without much logical background. Traditional expand and contract style inter-
faces, template based editing forms, or tree-centered visualizations inherently
have substantial drawbacks in this respect. To our knowledge, there is currently
no appropriate tool for displaying the greater structure of more than 60 directly
editable classes together with additional information about unsatisfiable classes,
selective detail information and search results, as it is shown in Figure 9.

Our new ontology authoring tool OntoTrack combines navigation and di-
rect manipulation in one single hierarchical view together with instant reasoning
feedback and rudiments of an explanation component. We see OntoTrack as
a first step towards an easy-to-use interactive ontology editor even for non ex-
perienced users and large ontologies.

Future work will be concerned with the visualization and manipulation of
individuals in OntoTrack, either with help of an additional visualization com-
ponent optimized for this purpose (e. g. like in [25]) or embedded within our
current hierarchy-based layout.

Support for cross ontology references between different definitions is also a
point of further investigations and are still under discussion within the Web On-
tology Working Group [26]. In a first naive approach our plan was to draw a
superclass from a different ontology as a thumbnail ancestor using a dashed sub-
sumption link (in order to distinguish between local and external ancestors). In
case of selecting such an ancestor the corresponding ontology should be loaded
and expanded up to the referred class in a new tab of OntoTrack. Unfortu-
nately, this functionality bears some problems regarding import statements and
referencing mechanisms of OWL/RDF. E. g. OWL allows to distribute a class
specification across multiple definitions at various RDF documents. It is even
possible to define a class bearing a virtual URI not related to any of the defining
documents. Now, when referring to this class from elsewhere its corresponding
definition cannot be found at the URI implied by the class ID. In other words,
we can’t infer the location of a definition from its URI reference. Beyond that,
the meaning of the referenced description can only be taken into account when
importing those documents which contain RDF triples about the description.
Furthermore, the notion of an ontology is an additional but optional structuring
concept within OWL. In fact, the relationship between class/property descrip-
tions and an ontology definition is unclear. More complex, even it is optional
or may appear more than once in a document, an ontology header is the only
way to import other documents. This means that a serious OWL authoring tool
needs to carefully distinguish between documents, ontologies and references.

Another serious issue of general future research is concerned with debugging
of ontologies not developed from scratch within OntoTrack. Here standard
inference services provide only little help to resolve inconsistencies in logical in-
coherent ontologies. In [27] a new reasoning service for pinpointing logical con-
tradictions within ALC ontologies has been introduced. A likewise methodology
would obviously be helpful within OntoTrack.

Other novel inference services intended to support building an ontology have
been developed (see sec. 6.3 in [28] for a summary). One interesting service

OntoTrack 257

consists of matching of class patterns against class descriptions in order to find
already defined classes with a similar structure. Another approach tries to create
class definitions by generalizing one or more user given ABox assertions. Other
non-standard inference services like least common subsumer (e. g. like in [29]) or
most specific concept are also relevant during authoring of ontologies.

We also see OntoTrack as a platform for further tasks like cooperative
ontology construction, ontology merging and alignment, or ontology evaluation.

This contribution tries to inspire the Semantic Web community in two ways.
Concerning research we hope to stimulate the development of non-standard in-
ference services and incremental reasoning systems. On user side we aim to
motivate even non experienced domain experts to build, understand and use
ontologies more widely in order to push the Semantic Web from academia to
industry.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description Logics as Ontology Languages for
the Semantic Web. In Hutter, D., Stephan, W., eds.: Festschrift in honor of Jörg
Siekmann. Lecture Notes in Artificial Intelligence, Springer (2003) To appear.

2. Project-Website: Project Halo. http://www.projecthalo.com/ (2004)
3. Fiedland, N.S., Allen, P.G., Witbrock, M., Matthews, G., Salay, N., Miraglia, P.,

Angele, J., Stab, S., Israel, D., Chaudhri, V., Porter, B., Barker, K., Clark, P.:
Towards a Quantitative, Plattform-Independent Analysis of Knowledge Systems.
In: Proc. of the Ninth International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Whistler, BC, Canada, AAAI Press (2004) 507–514

4. Liebig, T., Noppens, O.: OntoTrack: Fast Browsing and Easy Editing of Large
Ontologies. In: Proc. of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), Sanibel Island, USA (2003)

5. Storey, M.A., Musen, M., Silvia, J., Best, C., Ernst, N., Fergerson, Noy, N.: Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge ac-
quisition in Protégé. In: Proc. of the Workshop on Interactive Tools for Knowledge
Capture (K-CAP 2001), Victoria B.C., Canada (2001)

6. Kalyanpur, A.: Venn diagram approach for visualizing OWL in SVG. University
of Maryland, http://www.mindswap.org/˜aditkal/svg owl.shtml (2003)

7. Mutton, P., Golbeck, J.: Visualization of Semantic Metadata and Ontologies. In:
Proc. of Information Visualization 2003 (IV03), London, UK (2003)

8. Eklund, P., Green, S., Roberts, N.: OntoRama: Browsing RDF Ontologies Using
a Hyperbolic Browser. In: Proc. of the 1st International Symposium on Cyber
Worlds (CW2002), Tokyo, Japan (2001)

9. Hu, B., Shadbolt, N.: Visualising a DL Knowledge Base with DeLogViz. In: Proc.
of the International Workshop on Description Logics (DL2003), Rome, Italy (2003)

10. Plaisant, C., Grosjean, J., Bederson, B.B.: SpaceTree: Supporting Exploration in
Large Node Link Tree, Design Evolution and Empirical Evaluation. In: Proc. of
the IEEE Symposium on Information Visualization (INFOVIS 2002), Boston, USA
(2002) 57 – 64

11. Haarslev, V., Möller, R.: RACER System Description. In: Proc. of the International
Joint Conference on Automated Reasoning (IJCAR’2001), Siena, Italy, Springer
Verlag (2001) 701–705

258 T. Liebig and O. Noppens

12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1 (2003)
7–26

13. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Rec-
ommendation (2004)

14. Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. W3C Recommendation (2004)

15. Tempich, C., Volz, R.: Towards a benchmark for Semantic Web reasoners – an
analysis of the DAML ontology library. In: Proc. of the 2nd International Workshop
on Evaluation of Ontology-based Tools (EON2003), Sanibel Island, USA (2003)

16. van Harmelen, F.: The Complexity of the Web Ontology Language. IEEE Intelli-
gent Systems 17 (2002) 71 – 72

17. Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Software
11 (1994) 70–77

18. McGuinness, D.L., Borgida, A.: Explaining Subsumption in Description Logics.
Technical Report LCSR-TR-228, Dept. of Computer Sciences, Rutgers University
(1994)

19. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.: Ex-
plaining ALC subsumption. In: Proc. of the International Workshop on Description
Logics (DL1999). (1999) 37–40

20. Bederson, B., Grosjean, J., Meyer, J.: Toolkit Design for Interactive Structured
Graphics. Technical Report CS-TR-4432, University of Maryland (2002)

21. Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Proc. of the 2nd
International Conference on Formal Ontology in Information Systems (FOIS-2001),
Ogunquit, Maine (2001)

22. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. In: Proc. of the 13th
International World Wide Web Conference (WWW2004), New York, NY, USA
(2004) 74–83

23. Liebig, T., Pfeifer, H., von Henke, F.: Reasoning Services for an OWL Authoring
Tool: An Experience Report. In: Proc. of the 2004 International Workshop on
Description Logics (DL2004), Whistler, BC, Canada (2004) 79–82

24. Möller, R., Haarslev, V.: Description Logics Systems. In: The Description Logic
Handbook. Cambridge University Press (2003)

25. Fluit, C., Sabou, M., van Harmelen, F.: Supporting User Tasks through Visual-
isation of Light-weight Ontologies. In: Handbook on Ontologies in Information
Systems. Springer Verlag (2004) 414–432

26. Mail-Archives: Web Ontology Working Group. http://lists.w3.org/Archives/
Public/www-webont-wg/ (2004)

27. Schlobach, S., Cornet, R.: Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. In: Proc. of the Belgian-Dutch Conference on AI
(BNAI03), Nijmegen, The Netherlands (2003)

28. Baader, F., Küsters, R., Wolter, F.: Extensions to Description Logics. In: The
Description Logic Handbook. Cambridge University Press (2003)

29. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the Least Common Subsumer
w.r.t. a Background Terminology. In: Proc. of the 2004 International Workshop
on Description Logics (DL2004), Whistler, BC, Canada (2004) 11–20

Tracking Changes During Ontology Evolution

Natalya F. Noy1, Sandhya Kunnatur1, Michel Klein2, and Mark A. Musen1

1 Stanford Medical Informatics, Stanford University,
251 Campus Drive, x-215, Stanford, CA 94305, USA
{noy, kunnatur, musen}@smi.stanford.edu

2 Vrije University Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Michel.Klein@cs.vu.nl

Abstract. As ontology development becomes a collaborative process, develop-
ers face the problem of maintaining versions of ontologies akin to maintaining
versions of software code or versions of documents in large projects. Traditional
versioning systems enable users to compare versions, examine changes, and ac-
cept or reject changes. However, while versioning systems usually treat software
code and text documents as text files, a versioning system for ontologies must
compare and present structural changes rather than changes in text representa-
tion of ontologies. In this paper, we present the PromptDiff ontology-versioning
environment, which address these challenges. PromptDiff includes an efficient
version-comparison algorithm that produces a structural diff between ontologies.
The results are presented to the users through an intuitive user interface for ana-
lyzing the changes that enables users to view concepts and groups of concepts that
were added, deleted, and moved, distinguished by their appearance and with direct
access to additional information characterizing the change. The users can then act
on the changes, accepting or rejecting them. We present results of a pilot user
study that demonstrate the effectiveness of the tool for change management. We
discuss design principles for an end-to-end ontology-versioning environment and
position ontology versioning as a component in a general ontology-management
framework.

1 Need for Ontology Versioning

Ontologies constitute an integral and important part of the Semantic Web. For the Se-
mantic Web to succeed, it will require the development and integration of numerous
ontologies, from general top-level ontologies, to domain-specific and task-specific on-
tologies. For this development to happen on the scale that the Semantic Web success
requires, ontology development will have to move from the purview of knowledge engi-
neers with artificial intelligence training to the purview of web developers and domain
experts. The WYSIWYG HTML editors are in large part responsible for the pervasive-
ness of today’s web, enabling people without formal hypertext training to create web
pages and put them on the web. In the same vein, easy-to-use graphical ontology editors
that use simple visual metaphors and hide many of the syntactic and semantic complexity
behind intuitive interfaces will be an essential component of the success of the Semantic
Web.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 259–273, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

260 N.F. Noy et al.

As ontology development becomes a more ubiquitous and collaborative process,
support for ontology versioning becomes necessary and essential. This support must
enable users to compare versions of ontologies and analyze differences between them.

Furthermore, as ontologies become larger, collaborative development of ontologies
becomes more and more common. Ontology designers working in parallel on the same
ontology need to maintain and compare different versions, to examine the changes that
others have performed, and to accept or reject the changes. In fact, this process is exactly
how authors collaborate on editing software code and text documents.

Change tracking in Microsoft Word, while far from perfect, has significantly facili-
tated collaborative editing of Word documents. Users can easily see the changes between
document versions, determine which text was added or deleted, and accept or reject the
changes. Intuitive interfaces and tool support must make ontologies just as easy to main-
tain and evolve as Word documents. Rather than reinvent the wheel, we can build on
the successes of tried and tested technologies, adapt them to the wold of ontologies and
in fact improve on these technologies using the additional structural knowledge that we
have in ontology definitions.

In an ontology-versioning environment, given two versions of an ontology, users
must be able to: (1) examine the changes between versions visually; (2) understand the
potential effects of changes on applications; and (3) accept or reject changes (when an
ontology is being developed in a collaborative setting).

The fields of software evolution and collaborative document processing have faced
these challenges for many years. There is one crucial difference however: In the case of
software code and documents, what is usually compared—with only a few exceptions—
are text files. For ontologies, we must compare the structure and semantics of the on-
tologies and not their textual serialization. Two ontologies can be exactly the same
conceptually, but have very different text representations. For example, their storage
syntax may be different. The order in which definitions appear in the text file may be
different. A representation language may have several mechanisms for expressing the
same semantic structure. Thus, text-file comparison is largely useless for ontologies.

We have developed the PromptDiff ontology-versioning tool to address these is-
sues. PromptDiff automatically performs structural comparison of ontology versions,
identifies both simple and complex changes (such as moving classes, or adding or delet-
ing a tree of classes), presents the comparison results to the user in an intuitive way, and
enables the user to accept or reject the changes between versions, both at the level of
individual changes and groups of changes.

PromptDiff is a component in the larger Prompt ontology-management framework
[13] and serves an important role in maintaining ontology views or mappings between
ontologies [3]. PromptDiff provides an ontology-comparison API that other applica-
tions can use to determine for example if the mapping needs to be updated when new
versions of mapped ontologies appear.

In this paper, we present our general ontology-versioning architecture, describe the
user interface for presenting ontology changes; the mechanism for accepting and reject-
ing changes and ways to custom-tailor this mechanism. We then present the results of our
pilot user study aimed at evaluating the usability of our ontology-versioning tools and
discuss how PromptDiff is integrated in the general ontology-management framework.

Tracking Changes During Ontology Evolution 261

Fig. 1. Displaying changes in PromptDiff. (a) Class hierarchy changes. Different styles represent
different types of changes: added classes are underlined and in blue; deleted classes are crossed
out and in red; moved classes are grayed out in their old positions and appear in bold in their new
ones; tooltips provide additional information. (b) Individual class changes

2 Scenario: Tracking Changes in an Ontology

Consider a project where multiple authors are working on the same ontology.1 The lead
ontology editor receives a new version of the ontology from one of the authors and has
the responsibility of examining the changes and accepting or rejecting them. He starts
by opening the new ontology version in the Protégé ontology editor [16] and fires up
the PromptDiff engine to compare the new ontology version to the baseline. He then
examines the results in the PromptDiff interface, a snapshot of which is shown in Figure
1. This figure presents the differences between the two class hierarchies. The editor can
see the classes that were added, deleted, moved, and changed.

He starts by focusing in on the subtree for the Concept class, which has a number of
changes. The color and the font of the class names correspond to the types of the changes.
He can see, for example, that SNOMED CT is a new class (its class name is in blue and

1 The ontology versions that we use in this section and in Section 6 are the actual on-
tology versions from a large collaborative project in our laboratory, the SAGE project
(http://www.sageproject.net/). The goal of the project is to provide an infrastructure
that will enable encoding and dissemination of computable medical knowledge.

262 N.F. Noy et al.

underlined). Its subclass was moved to this position from another location in the class
hierarchy (it appears in blue and in boldface). In fact, the editor can see the class grayed
out in its old location, as a direct subclass of Concept. The class qualifier concept
was deleted (its name is in red and crossed-out). Tooltips provide additional information,
such as a new location for the moved class Pharmaceutical Preparations.

In addition to changes to individual classes, the editor can see operation on class
subtrees. The status of a subtree is conveyed by the icon that is overlaid with the traditional
class icon (). For instance, when the class qualifier concept was deleted, all of its
subclasses were deleted as well (the class icon has on overlaid delete icon). The warning
icon indicates whether or not the subtree rooted at a class has any changes in it. So, the
editor knows that there are additional changes in the subtree of the NDF -RT class. At
the same time, no special icons on the roots of other subtrees indicate that those subtree
or individual classes in the subtrees have not changed at all and the editor does not need
to look there.

Having examined the changes, the editor can now accept or reject them. He agrees
with all the changes in the Concept subtree, except for the addition of the class
compelling, a subclass of Relationship qualifier. He starts by selecting the class
compelling and presses the “reject” button (). The class is removed from the new ver-
sion of the ontology. He then selects the Concept class and presses the “accept subtree”
button () to accept the rest of the changes in the Concept subtree. Once he completes
the work on this subtree, he uses the “next” button to move to the next change (in this
case, the change to the V MR class).

After examining class-hierarchy changes, the editor starts examining changes to
specific classes. Figure 1b shows the individual changes for the class Display.
The editor can see that two properties were added to the class, display data and
clinical expression model. These properties are also in blue and underlined, just like
the added classes in the hierarchy. He can see changes to class-level properties, such as
constraints in the table at the bottom of the class definition. When he selects a line in
the table, the corresponding property is highlighted. Again, the editor has the option of
accepting or rejecting all changes individually or for the entire class.

In fact, if the editor received the new ontology version from the author that he trusts
completely, he can simply select the root of the class hierarchy, and accept all the changes
in the entire hierarchy tree with one “accept tree” button.

After the editor examines and acts upon all the changes he can save the result of his
work as the new baseline version.

3 Design Principles

The scenario illustrates design principles for an ontology-versioning environment. We
collected this set of requirements and design principles through our interaction with
users of the Protégé ontology-development environment. These are the capabilities the
users asked for in mailing lists and in private communications.

Automatic comparison of versions. Given two versions of the same ontology, we must
identify what has changed from one version to the next. This identification should be
performed at conceptual level, that is, it should be expressed in terms of changes to

Tracking Changes During Ontology Evolution 263

ontology concepts, such as classes, instances, their properties, and property constraints
and values.

Identification of complex changes. The higher the granularity of changes presented to
the user, the easier it is for the user to analyze. For example, if a class was moved to a
different place in the class tree, we would like to present this change as a move rather
than a sequence of an add and delete operation. Similarly, if a whole subtree of classes
was deleted from the ontology, we would like to identify it as a subtree delete rather
than a sequence of deletes for all classes in the subtree (and constraints and restrictions
associated with them).

Contextual presentation of changes. If the user needs to understand or assess a change
in an ontology (for example, a deleted class), he should be able not only to see the change
itself, but also to see its context. For example, if a class was deleted, the user may want
to know where in the class tree was the class located, whether it had any subclasses or
instances, what were its properties, and so on.

Navigation among changes. Changes often occur in different and unrelated places in an
ontology. Having examined one of the changes, the user must be able to navigate easily
to the next change, even if it is in a “remote” part of the ontology.

Access to old and new values. Understanding and assessing changes is impossible
without ready access to both old and new values. Just knowing that the class name has
changed and its new name is “foo” is not enough: when examining the change, we would
like to know what the old value was.

Mechanism for accepting and rejecting changes. There are many scenarios when users
need not only to understand the change but also to make a decision on whether or not
the change was correct and to be able to accept or reject the change. Collaborative on-
tology development is probably the best example of such use. In one use case that we
considered—the development of the NCI Thesaurus [4]—managers delegate develop-
ment of particular portions of the ontology to respective editors. The managers then
assemble the new edits, verify them, and have the final word on whether the new edits
were correct and should go in the production version.

Different levels of granularity for accepting and rejecting changes. When accepting or
rejecting changes, users often do not want to go through each change and mark it for
acceptance or rejection. For example, a user may want to say that all the changes in a
particular subtree are correct and must be accepted or to reject one of the changes in the
subtree and accept all the others.

We tried to follow these design principles in implementing the PromptDiff ontology-
versioning environment described in Sections 4 and 5.

4 Presenting Ontology Diff

Figure 2 shows the overall architecture of the PromptDiff ontology-versioning system.
Two versions of an ontology, V1 and V2, are inputs to the system. The heuristic-based
algorithm for comparing ontology versions (the PromptDiff algorithm), which we de-
scribe in detail elsewhere [11] and briefly in Section 4.2, analyzes the two versions and

264 N.F. Noy et al.

Fig. 2. The architecture of the PromptDiff ontology-versioning system

automatically produces a diff between V1 and V2 (we call it a structural diff and we
define it below). The post-processing module uses the diff to identify complex changes.
The results are presented to the user through the intuitive interface (Section 4.3). The
user then has the option of accepting or rejecting changes and these actions are reflected
in the updated diff (Section 5). We implemented PromptDiff as a Protégé plugin [16].

In this work, we mainly consider ontologies expressed in RDF Schema and therefore
consisting of classes, their properties, constraints on properties, property values, and
instances [18]. All these elements are also present in other representation formalisms
such as OWL and we have used PromptDiff with ontologies specified in OKBC, RDFS,
and OWL.

4.1 Structural Diff

We will now introduce the definition of diff between ontology versions. Suppose that
we are developing an ontology of wines. In the first version (Figure 3a), there is a
class Wine with three subclasses, Red wine, White wine, and Blush wine. The
class Wine has a property maker whose values are instances of Winery. The class
Red wine has two subclasses, Chianti and Merlot. Figure 3b shows a later version
of the same ontology fragment. Note the changes: we changed the name of the maker
property to produced by and the name of the Blush wine class to Rosé wine; we added
a tannin level property to Red wine; and we discovered that Merlot can be white and
added another superclass to the Merlot class. Figure 3c shows the differences between
the two versions in a table produced automatically by PromptDiff.2 The columns in the
table are pairs of matching frames from the two ontologies. Given two versions of an
ontology O, V1 and V2, two frames F1 fromV1 and F2 fromV2 match if F1 became F2.

Similar to a diff between text files, the table in Figure 3c presents a structural diff
between ontology versions.

Definition 1 (Structural diff). Given two versions of an ontology O, V1 and V2, a
structural diff between V1 and V2, D(V1, V2), is a set of concept pairs 〈C1, C2〉 where:

2 PromptDiff puts additional information in the table, such as the level of changes, and specific
types of changes between a frame and its image [13]

Tracking Changes During Ontology Evolution 265

Fig. 3. Two versions of a wine ontology (a and b). Several things have changed: the property name
for the Wine class, the name of the Blush wine class, a new property was added to the Red wine
class, the Merlot class has another superclass. (c) The PromptDiff table showing the difference
between the versions

– C1 ∈ V1 or C1 = null; C2 ∈ V2 or C2 = null
– C2 is an image of C1 (matches C1), that is, C1 became C2. If C1 or C2 is null,

then we say that C2 or C1 respectively does not have a match.
– Each frame from V1 and V2 appears in at least one pair.
– For any frame C1, if there is at least one pair containing C1, where C2 �= null, then

there is no pair containing C1 where C2 = null (if we found at least one match for
C1, we do not have a pair that says that C1 is unmatched). The same is true for C2.

4.2 The PromptDiff Algorithm

The PromptDiff algorithm for comparing ontology versions consists of two parts: (1)
an extensible set of heuristic matchers and (2) a fixed-point algorithm to combine the
results of the matchers to produce a structural diff between two versions. Each matcher
employs a small number of structural properties of the ontologies to produce matches.
The fixed-point step invokes the matchers repeatedly, feeding the results of one matcher
into the others, until they produce no more changes in the diff.

Our approach to automating the comparison is based on two observations: (1) When
we compare two versions of the same ontology, a large fraction of concepts remains
unchanged (in fact, in our experiments, 97.9% of concepts remained unchanged) and
(2) If two concepts have the same type (i.e., they are both classes, both properties, etc.)
and have the same or very similar name, one is almost certainly an image of the other.

After identifying the concepts that have not changed, PromptDiff invokes a set of
heuristic matchers to match the remaining concepts. One matcher for example looks
for unmatched classes where all siblings of the class have been matched. If multiple
siblings are unmatched, but their sets of properties differ, another matcher will pick up
this case and try to match these classes to unmatched subclasses of the parent’s image.
Another matcher looks for unmatched properties of a class when all other properties of
that class have been matched. There are matchers that look for lexical properties such as
all unmatched siblings of a class acquiring the same suffix or prefix. The architecture is
easily extensible to add new matchers. With the introduction of OWL, for example, we
implemented additional matchers that compared anonymous classes.

266 N.F. Noy et al.

Fig. 4. Comparing text in Microsoft Word: a new document is presented with parts from the old
document crossed out and new parts highlighted.

We describe all matchers that we used in detail elsewhere [13]. We have also shown
that our algorithm is extremely accurate: it identifies 96% of matches in large ontologies
and 93% of the matches that it identifies are correct [11].

The post-processing step enriches the structural diff with the following information:
(1) complex changes, such as class moves and tree-level operations; and (2) diffs between
individual matching frames

We combine the information in the structural diff with the hierarchical information
to identify complex changes. To identify tree-level changes, we recursively traverse
the class hierarchy to determine whether all classes in the tree have the same change
operation associated with them. To identify class moves, we look for parents of the class
and its image to see if they are images of each other. If they are not, then the class was
moved.

Since we need this information only when the user views the corresponding part of
the ontology, in practice, for efficiency reasons, the post-processing step is intertwined
with the visualization step: we find the complex operations only for the trees and classes
that the user has displayed on the screen.

4.3 Visualizing Structural Diff

Our user interface for tracking changes between ontology versions was inspired by the
interface that Microsoft Word uses to present changes. Figure 4 shows how Microsoft
Word presents the result of comparing two versions of a document. The text that was
deleted is crossed out and the added text is underlined. There is also color coding for these
two types of changes. Note however, that Word does not identify complex operations,
such as move. For example, the phrase “examine changes” in the first sentence was
moved to a new location. However, Word shows the phrase as being deleted in one place
and added in another.

Visual metaphors. We have described many of the visual metaphors we use in Prompt-
Diff in Section 2. To summarize, we visualize two types of changes in the class hierarchy:
(1) class-level changes and (2) tree-level changes.

For class-level changes, the class-name appearance indicates whether the class was
added, deleted, moved to a new location, moved from an old location, or its name or

Tracking Changes During Ontology Evolution 267

definition was changed. The variations in class-name appearance include color, font
(bold or regular), names that are underlined or crossed-out.

We say that there is a tree-level change if all classes in a subtree have changed in
the same way: they were all added or all deleted, for example. The changed icon at the
subtree root indicates a tree-level operation. In addition, a warning icon indicates that
the subtree rooted at the class has undergone some changes.

We use the same visual metaphors to indicate changes in properties in individual
class definitions. For changes in property values, we use a table that shows both the old
and the new values for the properties (Figure 1b). When a user selects a line in the table,
the corresponding property is highlighted.

Semantics of Parent–Child Relationship in the PromptDiff Tree. Most ontology
editors use the indented-tree display to present a class hierarchy to the user. In the tree,
children of a tree node representing a class C are subclasses of C. The PromptDiff
tree shows two versions of a class hierarchy in a single tree. Consequently, the exact
semantics of the parent–child relationship in a tree is different.

Let Vold be an old version of the ontology O and Vnew be a new version of the
ontology O. In a PromptDiff tree, if a tree node N represents a class Cnew from Vnew,
then its children in the PromptDiff tree are:

1. all subclasses of Cnew in Vnew; and
2. all subclasses subCold of source(Cnew) in Vold such that image(subCold) is not a

subclass of Cnew.

As a result, the node N representing Cnew will have children for all subclasses of Cnew

and for all subclasses of its source that were deleted or moved away from the tree.
If a tree node N represents a class Cold from Vold (this class will necessarily be a

deleted or a moved class), then its children in the PromptDiff are determined as follows.
For each subclass subCold of Cold in Vold:

1. if there is an image of subCold in Vnew, then image(subCold) is a child of the node
N (it will be shown as moved, i.e., in grey).

2. if there is no image of subCold in Vnew, then subCold is a child of the node N (it
will be shown as deleted).

5 Accepting and Rejecting Changes

When a user examines changes in the new version Vnew of the ontology compared to a
baseline (old) version Vold, he may have the need and the authority to accept or reject the
changes. In rejecting a change, the user will be effectively changing Vnew. For instance,
if Vnew contains a new class C and the user decides to reject the class addition, the
rejection will have the effect of deleting C from Vnew.

Accepting a change technically has no implication on the state of Vnew. It does change
the state of the visualization of the diff between Vold and Vnew, since the accepted change
should no longer show as a change. For instance, if a user decides to accept the addition

268 N.F. Noy et al.

of the class C in the example above, the class should no longer show as added (it will
now be shown in plain font and without the underline).

As we have shown in the example in Section 2, PromptDiff allows users to accept
and reject changes between versions at several levels of granularity:

1. individual changes to property values and definitions
2. all changes in a definition of a class
3. all changes in class definitions and class-hierarchy positions in a subtree rooted at a

particular concept

While determining the effects of accepting or rejecting individual operations is rel-
atively straightforward, matters become more complicated as we move from individual
changes in properties to class-level changes. Consider for example one of the added
classes in the earlier example in Figure 1a, such as Clinical DataSet. When we ac-
cept the addition of the class, do we automatically accept the addition of all of its
instances? The same problem arises for an action of rejecting a class delete (such as
qualifier concept). Rejecting a class delete means putting the class back into the new
version. Should its instances be reinstated as well? If we reject the addition of the
Clinical DataSet Entity class from Figure 1a, should we also reject the addition of
its subclasses and their instances, automatically removing them from the new version?

These issues are similar to the issues discussed by Stojanovic and colleagues [17]
in the context of supporting ontology evolution in KAON. When a user deletes a class
for example, should its subclasses and instances be deleted as well, or should they
become direct subclasses and instances of the parent of the removed class? In the KAON
framework, the solution is to enable users to specify evolution strategies to define what
happens in each case. However, in the setting of accepting and rejecting changes, the
number of strategies to consider is much larger. The examples above show that we must
consider not only the status of a single class (added, deleted, moved, etc.) but also various
combinations of the class status with the statuses of its subclasses and superclasses.

Our long-term solution to the problem is to classify these strategies and allow users
to custom-tailor them. In our current implementation, we implement what we consider
to be the most common strategies based on our experience with the users. In our user
study (Section 6), all subjects said that the result of accepting and rejecting changes fully
met their expectations (all of them gave this question the highest rank of 5). However,
since some users may want to custom-tailor this behavior, we are currently working
on classifying and identifying the strategies to provide the users with the interface to
custom-tailor them.

6 Usability Evaluation

We performed initial user studies to assess the usability of PromptDiff and the ability
of users to analyze and verify changes in versions of an ontology. We evaluated both the
visualization itself and the mechanism for accepting and rejecting changes. We asked a
group of users to compare two versions of an ontology and to accept or reject changes
based on a set of rules that we provided.

Tracking Changes During Ontology Evolution 269

6.1 Experiment Setup

For the experiment, we presented the subjects with two versions of an ontology describing
clinical guidelines and asked them to examine the changes based on a set of provided
rules.

Source ontology. We used the actual versions of the clinical-guideline ontology that were
recorded in the course of the SAGE project.3 The ontology contains approximately 400
classes and 300 properties. Between the two versions that we used in the experiment,
3 classes were removed, 2 classes were added, 5 new properties were added and 15
class definitions were changed. In all, there were 47 changes to 20 classes. The changes
included moves in the class hierarchy, class name changes, addition of values for class
properties, addition of new properties and restrictions.

Rules. We have generated a set of rules for the users to follow in accepting and reject-
ing changes. The rules covered all the changes that the two ontology versions in the
experiment had. Therefore, the experiment was designed to have all users come to the
same final version in the end. We made an effort to provide the rules that are formulated
around the state of the final version—what should and should not be included—and not
in terms of what should be accepted or rejected. Here are some examples of the rules
that we gave the users:

– All spelling corrections are ok
– All additions of documentation are ok
– The class qualifier concept should not be in the new version
– The role property of Supplemental Material class should have the following

allowed values: source, consent from, illustration, comment, evidence

Users. There were 4 users in the study.All of them were experienced users of Protégé and
therefore were familiar with knowledge modeling. None of them has used PromptDiff
before. Also, none of them was familiar with the SAGE ontology before the experiment.

Training. Prior to the experiment we asked users to follow a brief online tutorial that
explained the features of PromptDiff and gave several examples of its use

6.2 Results and Discussion

After we received the resulting ontologies from the users, we compared them with the
benchmark ontology that we have prepared. We used PromptDiff to find the changes
between the ontologies that the users produced and the benchmark. Our results showed
that the users correctly accepted or rejected a change in 93% of the cases. In their
comments, users indicated that sometimes they were not sure they were interpreting the
change rules correctly and therefore the fact that they did not do what we expected them
to do in the remaining 7% of the cases could be partially attributed to that.

On the usability of the tool, the user’s satisfaction level was fairly high. We asked the
users to rank their answers to a number of usability questions on a scale of 1 to 5 (5 being
the highest). Table 1 shows the summary of their responses. In free text comment, users
indicated that the navigation through changes (using the next and previous buttons) had
bugs in the implementation.

3 http://www.sageproject.net/

270 N.F. Noy et al.

Table 1. Results of the user study. The numbers in the second column are the average value for
the users’ responses. We asked the users to rank their agreement on a scale of 1 to 5, with 5 being
the highest.

Was Prompt easy to use? 4
Was the presentation of changes intuitive? 4.25
Was it easy to navigate through changes 3.75
When you performed accept/reject, did the result meet your expectations 5
Was the granularity provided for accepting/rejecting changes satisfactory? 4.5

These results demonstrate that the users in general had high marks for the usability
of the tool. The study has also provided us with many useful suggestions that we plan
to implement in the future versions of the tool.

7 Ontology Versioning as Part of Ontology-Management
Framework

We treat ontology-versioning as one of the tasks in the set of ontology-management tasks.
The domain of multiple-ontology management includes not only versioning, but also
creating and maintaining mappings between ontologies; merging ontologies; translating
between them; creating views of ontologies; and other tasks [12].

Currently, most researchers treat these tasks as completely independent ones and
the corresponding tools are independent from one another. There are tools for ontology
merging (e.g., Chimaera [8]) and they have no relation to tools for ontology mapping
(e.g., ONION [9]) or ontology versioning (e.g., OntoView [6]). Researchers working on
developing formalisms for specifying transformation rules from one version of ontology
to another, do not apply these rules to related ontologies that are not versions of each
other.

However, many of the tasks in management of multiple ontologies are closely inter-
related and have common elements and subtasks. Tools for supporting some of the tasks
can benefit greatly from their integration with others. For example, the methods that we
develop to help users find overlap between ontologies for the tasks of ontology merging
can be used successfully in finding differences between ontology versions [11]. In both
cases, we have two overlapping ontologies and we need to determine a mapping between
their elements. When we compare ontologies from different sources, we concentrate on
similarities, whereas in version comparison we need to highlight the differences, which
can be a complementary process. In a previous study, we used heuristics that are sim-
ilar to the ones we present in this paper to provide suggestions in interactive ontology
merging [10].

Looking at the issue from another angle, PromptDiff proved extremely useful in
maintaining declarative ontology mappings and views. Consider for example any def-
inition D of a mapping between two ontologies, O1 and O2 that explicitly refers to
concepts in O1 and O2. Suppose we now have a new version of O1. We must deter-
mine if our old mapping is “dirty” and requires re-definition. We say that a declarative
mapping between O1 and O2 is “dirty” if it explicitly refers to the concepts in O1 and

Tracking Changes During Ontology Evolution 271

O2 that were changed. Note however that even if the mapping is not “dirty” after a new
version of an ontology is introduced, it may still be incomplete or incorrect given the
new information.

We use the PromptDiff API to compare the old and the new version of O1. Prompt-
Diff informs the user not only whether the mapping is “dirty,” but also points him to
the part of the mapping that refers to the changed concepts and indicates how much the
concept has changed.

8 Related Work

Researchers have proposed several directions in supporting ontology versioning (al-
though the field is still fairly nascent). One direction is based on specifying and using
explicit logs of changes. For example, Oliver and colleagues [15] specified a set of
changes in controlled vocabularies and described mechanisms for synchronizing differ-
ent versions (with user’s input) based on the change logs.

Stojanovich and colleagues [17], in the context of the KAON suite of tools for
ontology management, introduce the notion of an evolution strategy: allowing developers
to specify complex effects of changes. For example, when a class is deleted from an
ontology, whether its subclasses are deleted or become subclasses of its superclass, are
two different evolution strategy. KAON uses logs of changes at the granularity of single
knowledge-base operations as versioning information.

Ognyanov and Kiryakov [14] propose a formal model for tracking changes in RDF
repositories. RDF statements are the pieces of knowledge on which they operate. The
granularity level of RDF statements is significantly lower however than the level of class
and property changes that we consider here.

All of these approaches however rely on using logs or something similar to trace
changes between versions. However, both in the context of de-centralized ontology
development on the Semantic Web and in the context of collaborative development of
ontologies, logs may not be available or do not contain the necessary change information.
While many ontology development tools now provide logs of changes, there is no uniform
mechanism for publishing the changes along with ontologies. But even if we do have
an agreed-upon ontology of changes [7], many versions of ontologies are likely to exist
without explicit change information being made public. Thus, we need tools that compare
ontology versions themselves to produce the information about changes at the structural
level.

The OntoView tool [6] performs a pairwise comparison of the sets of RDF statements
that form the old and new version of the class- and property-definitions in an ontology. In
this way, changes in syntax and specific representations of RDF are ignored. OntoView
focuses on finding and representing changes between concepts in different versions.
For example, a concept in the new version may become more general than it was in
the old version. These types of changes are complementary to the ones we explore in
PromptDiff.

The database community has addressed similar problems in the area change-tracking
in hierarchical databases and XML documents. In both of these cases researchers must
compare tree-like structures, which is part of the ontology-comparison as well. However,

272 N.F. Noy et al.

most formulations of a tree diff problem are NP-hard [19]. Mainly, this result applies
to finding a minimal edit script—the minimal set of changes to transform one tree to
another. Therefore, researchers addressed variations of this problem, using heuristics
and trading some of the minimality for good performance result [1,2]. The approach res-
onates with our PromptDiff algorithm described in Section 4: while we cannot provably
find the minimal set of changes between ontology versions, our heuristic approach finds
the changes efficiently and our experimental results show that in practice it also finds the
minimal set of changes [11]. In ontology comparison, however, we can and do also use
domain knowledge (e.g., class properties, their domains and ranges) to compare hierar-
chical class structures—the luxury not directly available in database or XML context.

On the visualization side, visualization of changes in XML trees is the work closest
to ours. IBM’s XML Diff and Merge Tool [5] is a representative example of these
tools. After comparing two XML trees, the tool shows the user the nodes that were
added, deleted, or changed. It does not however, identify the moves, or highlight specific
changes to a node (It just indicates that a node has been changed and it is up to the user
to find what the changes are).

9 Conclusions and Future Work

We have presented a system for tracking changes between ontology versions. Our eval-
uation demonstrated that PromptDiff is effective in helping users analyze and verify
changes.

In order to support fully collaborative ontology development, we need to integrate
systems such as PromptDiff with version-control systems, such as CVS, which sup-
port other components of the versioning process—tracking versions, checking in and
checking out of versions, user profiles, and so on. Other ontology-development sup-
port for versioning should include tracking changes directly during edits (rather than
determining what the changes are by comparing two versions), enabling users to add
design rationale during edits, and allowing users to custom-tailor effects of accepting
and rejecting complex changes.

PromptDiff can be downloaded at http://protege.stanford.edu/plugins/
prompt/prompt.html.

Acknowledgments. This work was supported in part by a contract from the US National
Cancer Institute This work was conducted using the Protégé resource, which is supported
by grant LM007885 from the United States National Library of Medicine.

References

1. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured data. In ACM
SIGMOD Int Conf on Management of Data. ACM Press, 1997.

2. G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents. In IEEE
International Conference on Data Engineering, ICDE, San Jose, CA, 2002.

3. M. Crubézy, Z. Pincus, and M. Musen. Mediating knowledge between application compo-
nents. In Workshop on Semantic Integration at ISWC-2003, FL, 2003.

Tracking Changes During Ontology Evolution 273

4. J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler. The NCI’s thesaurus
and ontology. Journal of Web Semantics, 1(1), 2003.

5. IBM. XML diff and merge tool, 2004.
6. M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel. Ontology versioning and change detec-

tion on the web. In 13th Int Conf on Knowledge Engineering and Management (EKAW02),
Sigüenza, Spain, 2002.

7. M. Klein and N. F. Noy. A component-based framework for ontology evolution. In Workshop
on Ontologies and Distributed Systems at IJCAI-03, Mexico, 2003.

8. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and test-
ing large ontologies. In Principles of Knowledge Representation and Reasoning (KR2000).
Morgan Kaufmann, San Francisco, CA, 2000.

9. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation of ontology
interdependencies. In Conf on Extending Database Technology (EDBT’2000), Germany,
2000.

10. N. Noy and M. Musen. PROMPT: Algorithm and tool for automated ontology merging and
alignment. In 17th Nat Conf on Artificial Intelligence (AAAI-2000), Austin, TX, 2000.

11. N. F. Noy and M. A. Musen. PromptDiff: A fixed-point algorithm for comparing ontology
versions. In 18th Nat Conf on Artificial Intelligence (AAAI-2002), Edmonton, Alberta, 2002.

12. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontology merging and
mapping. Int Journal of Human-Computer Studies, 59(6), 2003.

13. N. F. Noy and M. A. Musen. Ontology versioning in an ontology-management framework.
IEEE Intelligent Systems, page in press, 2004.

14. D. Ognyanov and A. Kiryakov. Tracking changes in RDF(S) repositories. In 13th Int Conf
on Knowledge Engineering and Management, EKAW 2002, Spain, 2002.

15. D. E. Oliver, Y. Shahar, E. H. Shortliffe, and M. A. Musen. Representation of change in
controlled medical terminologies. AI in Medicine, 15:53–76, 1999.

16. Protege. The Protégé project, http://protege.stanford.edu, 2002.
17. L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven ontology evolution

management. In 13th International Conference on Engineering and Knowledge Management
(EKAW02), Sigüenza, Spain, 002.

18. W3C. Resource description framework (RDF), 2000.
19. K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undirected acyclic

graphs and related problems. In 6th Annual Symposium on Combinatorial Pattern Matching,
pages 395–407, 1995.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 274–288, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Evaluation of Knowledge Base Systems for Large
OWL Datasets

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin

Computer Science and Engineering Department, Lehigh University, Bethlehem, PA18015,
USA

{yug2, zhp2, Heflin}@cse.lehigh.edu

Abstract. In this paper, we present an evaluation of four knowledge base
systems (KBS) with respect to use in large OWL applications. To our
knowledge, no experiment has been done with the scale of data used here. The
smallest dataset used consists of 15 OWL files totaling 8MB, while the largest
dataset consists of 999 files totaling 583MB. We evaluated two memory-based
systems (OWLJessKB and memory-based Sesame) and two systems with
persistent storage (database-based Sesame and DLDB-OWL). We describe how
we have performed the evaluation and what factors we have considered in it.
We show the results of the experiment and discuss the performance of each
system. In particular, we have concluded that existing systems need to place a
greater emphasis on scalability.

1 Introduction

Various knowledge base systems (KBS) have been developed for processing Semantic
Web information. They vary in a number of important ways. Many KBSs are main
memory-based while others use secondary storage to provide persistence. Another key
difference is the degree of reasoning provided by the KBS. Many systems are
incomplete with respect to OWL [2], but still useful because they scale better or
respond to queries quickly.

In this paper, we consider the issue of how to choose an appropriate KBS for a
large OWL application. Here, we consider a large application to be one that requires
the processing of megabytes of data. Generally, there are two basic requirements for
such systems. First, the enormous amount of data means that scalability and efficiency
become crucial issues. Second, the system must provide sufficient reasoning
capabilities to support the semantic requirements of the application. However,
increased reasoning capability usually means an increase in query response time as
well. An important question is how well existing systems support these conflicting
requirements. Furthermore, different applications may place emphasis on different
requirements.

It is difficult to evaluate KBSs with respect to these requirements, particularly in
terms of scalability. The main reason for this is that there are few Semantic Web data
sets that are of large size and commit to semantically rich ontologies. The Lehigh

An Evaluation of Knowledge Base Systems for Large OWL Datasets 275

University Benchmark [12] is our first step in order to fill this gap. In this work, we
have made a further step: by making use of the benchmark, we have evaluated four
KBSs for the Semantic Web from several different aspects. We have evaluated two
memory-based systems (OWLJessKB and memory-based Sesame) and two systems
with persistent storage (database-based Sesame and DLDB-OWL). We present our
experiment, discuss the performance of each system, and show some interesting
observations. Based on that, we highlight some issues with respect to the development
and improvement of the same kind of systems, and suggest some potential ways in
using and developing those systems. We also discuss some issues related to the
evaluation of Semantic Web KBSs.

The outline of the paper is as follows: Section 2 briefly introduces the
aforementioned Lehigh University Benchmark. Section 3 describes the target systems.
Section 4 discusses the results. Section 5 talks about some related work. Section 6
concludes.

2 Lehigh University Benchmark for OWL

The Lehigh University Benchmark [12] was originally developed to evaluate the
performance of Semantic Web repositories with respect to extensional queries over a
large DAML+OIL [9] data set that commits to a single realistic ontology. For this
paper, we extended the benchmark to provide support for OWL ontologies and
datasets. The benchmark suite for OWL consists of the following:
− A plausible OWL ontology named univ-bench1 for the university domain.
− Repeatable synthetic OWL data sets that can be scaled to an arbitrary size. Both the

univ-bench ontology and the data are in the OWL Lite sublanguage.
− Fourteen test queries that cover a range of types in terms of properties including

input size, selectivity, complexity, assumed hierarchy information, and assumed
inference, etc. (Refer to the appendix for a list of them).

− A set of performance metrics including data loading time, repository size, query
response time, and query answer completeness and soundness. With the exception
of completeness, they are all standard database benchmarking metrics [3, 4, 8, 25].
Completeness is described in Section 3.2.

− The test module.
In addition to the language change, the major differences from the original

benchmark include: one more query (Query 14); more individuals in the data sets to
be classified; more RDFS vocabulary used in the ontology (e.g., rdfs:domain); and
some domain constraint changes to allow emphasis on description logic subsumption.

Using this benchmark, we have conducted an experiment on the aforementioned
systems. We describe it in next section. The benchmark suite is accessible at
http://www.lehigh.edu/~yug2/Research/SemanticWeb/LUBM/LUBM.htm.

1 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

276 Y. Guo, Z. Pan, and J. Heflin

3 The Experiment

3.1 Target Systems

In this experiment, we wanted to evaluate the scalability and support for OWL Lite in
various systems. We believe a practical KBS must be able to read OWL files, support
incremental data loading, and provide programming APIs for loading data and issuing
queries. As a result, we have settled on four different knowledge base systems,
including two implementations of Sesame, OWLJessKB, and DLDB-OWL. We
briefly describe each system below.

Sesame [6] is a repository and querying facility based on RDF and RDF Schema
[27]. It features a generic architecture that separates the actual storage of RDF,
functional modules offering operation on this RDF, and communication with these
functional modules from outside the system. Sesame supports RDF/RDF Schema
inference, but is an incomplete reasoner for OWL Lite. It can evaluate queries in
SeRQL, RQL and RDQL. We evaluate two implementations of Sesame, main
memory-based and database-based.

OWLJessKB [22] is a memory-based reasoning tool for description logic
languages, particularly OWL. It uses the Java Expert System Shell (Jess) [19], a
production system, as its underlying reasoner. Current functionality of OWLJessKB is
close to OWL Lite plus some. We evaluate it as a system that supports most OWL
entailments.

The fourth system, DLDB-OWL [23], is a repository for processing, storing, and
querying large amounts of OWL data. Its major feature is the extension of a relational
database system with description logic inference capabilities. Specifically, DLDB-
OWL uses Microsoft Access® as the DBMS and FaCT [16] as the OWL reasoner. It
uses the reasoner to precompute subsumption and employs relational views to answer
extensional queries based on the implicit hierarchy that is inferred.

Originally, we had targeted four other systems. The first is Jena [18], a Java
framework for building Semantic Web applications. Jena currently supports both
RDF/RDFS and OWL. We have done some preliminary tests on Jena (v2.1) (both
memory-based and database-based) with our smallest data set. Compared to Sesame,
the most similar system to Jena here, Jena with RDFS reasoning was much slower in
answering nearly all the queries. Some of the queries did not terminate even after
being allowed to run for several hours. The situation was similar when Jena’s OWL
reasoning was turned on. For this reason, and also due to space constraints, we have
decided not to include Jena in this paper. Those who are interested in more details are
referred to [13] instead. The second is KAON [20], an ontology management
infrastructure. KAON provides an API for manipulating RDF models, however, it
does not directly support OWL or RDFS in its framework. We had also considered
TRIPLE [24] and Racer. TRIPLE is an RDF query, inference, and transformation
language and architecture. Instead of having a built-in semantics for RDF Schema,
TRIPLE allows the semantics of languages on top of RDF to be defined with rules.
For languages where this is not easily possible, TRIPLE also provides access to
external programs like description logic classifiers. We were unable to test TRIPLE

An Evaluation of Knowledge Base Systems for Large OWL Datasets 277

because it does not support incremental file loading and it does not provide a
programming API either. Racer [15] is a description logic inference engine currently
supporting RDF, DAML+OIL and OWL. Running as a server, Racer provides
inference services via HTTP or TCP protocol to client applications. Racer’s query
interface predefines some queries and query patterns, but these are insufficient for the
test queries in the benchmark. Furthermore, there is no API in Racer for importing
customized queries. Thus we were unable to test Racer either.

3.2 Experiment Methodology

System Setup
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and
OWLJessKB (04-02-23 release). As noted, we test both the main memory-based and
database-based implementations of Sesame. For brevity, we hereafter refer to them as
Sesame-Memory and Sesame-DB respectively. For both of them, we use the
implementation with RDFS inference capabilities. For the later, we use MySQL
(v4.0.16) as the underlying DBMS since it is reported that Sesame performs best with
it. The DBMS used in DLDB-OWL is MS Access® 2002. We have created a wrapper
over each target system as an interface to the benchmark’s test module.

Data Sets and Loading
To identify the data set, we use LUBM(N, S) in the subsequent description to denote
the data set that contains N universities beginning at University0 and is generated by
the benchmark tool using a seed value of S. (Readers are referred to [12] for details
about synthetic data generation in the benchmark.)

We have created 5 sets of test data: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0),
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50
universities respectively, the largest one having over 6,800,000 triples in total. To our
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000
statements. We have easily exceeded that by virtue of the benchmark supporting tool.

In the test data, every university contains 15 to 25 departments, each described by a
separate OWL file. These files are loaded to the target system in an incremental
fashion. We measure the elapsed time for loading each data set, and also the
consequent database sizes for Sesame-DB and DLDB-OWL. We do not measure the
occupied memory sizes for Sesame-Memory and OWLJessKB because it is difficult to
accurately calculate them. However, since we evaluate all systems on a platform with
a fixed memory size, the largest data set that can be handled by a system measures its
memory efficiency.

Query Test
For query testing, the 14 benchmark queries are expressed in RQL [21], Jess, and a
KIF[11]-like language (see the appendix) and issued to Sesame, OWLJessKB, and
DLDB-OWL respectively. We do not use a common language in the test to eliminate
affect of query translation to the query response time.

Query response time is collected in the way defined by the benchmark, which is
based on the process used in database benchmarks [3, 4, 8, 25]. To account for

278 Y. Guo, Z. Pan, and J. Heflin

caching, each of the fourtheen queries is executed for ten times consecutively and the
average time is computed.

We also examine query answer completeness of each system. In logic, an inference
procedure is complete if it can find a proof for any sentence that is entailed by the
knowledge base. With respect to queries, we say a system is complete if it generates
all answers that are entailed by the knowledge base, where each answer is a binding of
the query variables that results in an entailed sentence. However, on the Semantic
Web, partial answers will often be acceptable. So it is important not to measure
completeness with such a coarse distinction. Instead, we measure the degree of
completeness of each query answer as the percentage of the entailed answers that are
returned by the system. Note that we request that the result set contains unique
answers.

In addition, as we will show in next section, we have realized in this evaluation that
query soundness is also worthy of examination. With similar argument to the above,
we in this evaluation measure the degree of soundness of each query answer as the
percentage of the answers returned by the system that are actually entailed.

Test Environment
We have done the test on a desktop computer. The environment is as follows:
− 1.80GHz Pentium 4 CPU; 256MB of RAM; 80GB of hard disk
− Windows XP Professional OS; Java SDK 1.4.1; 512MB of max heap size

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly.
With the standard setting for max heap size in Java, the system failed to load the one-
university data set due to out of memory errors. As a workaround, we increased the
maximum heap size to 1GB, which requests large amount of virtual memory from
operating system. This change allowed OWLJessKB to properly load the dataset.

4 Results and Discussions

4.1 Data Loading

Table 1 shows the data loading time for all systems and the on-disk repository sizes of
DLDB-OWL and Sesame-DB. Fig. 1 depicts how the data loading time grows as the
data set size increases and compares the repository sizes of the two database-based
systems.

The test results have reinforced scalability as an important issue and challenge for
Semantic Web knowledge base systems. One of the first issues is how large of a data
set each system can handle. As expected, the memory-based systems did not perform
as well as the persistent storage systems in this regard. OWLJessKB, could only load
the 1-university data set, and took over 20 times longer than any other system to do so.
On the other hand, we were surprised to see that Sesame-Memory could load up to 10
universities, and was able to do it in 5% of the time of the next fastest system.
However, for 20 or more universities, Sesame-Memory also succumbed to memory
limitations.

An Evaluation of Knowledge Base Systems for Large OWL Datasets 279

Table 1. Load Time and Repository Sizes

 Data Set Instance Num Load Time (hh:mm:ss) Repository Size (KB)

DLDB-OWL 00:05:43 16,318
Sesame-DB 00:09:02 48,333

Sesame-Memory 00:00:13 -

OWLJessKB

LUBM
(1, 0)

103,074

03:16:12 -
DLDB-OWL 00:51:57 91,292
Sesame-DB 03:00:11 283,967

Sesame-Memory 00:01:53 -
OWLJessKB

LUBM
(5, 0)

645,649

- -
DLDB-OWL 01:54:41 184,680
Sesame-DB 12:27:50 574,554

Sesame-Memory 00:05:40 -
OWLJessKB

LUBM
(10, 0)

1,316,322

- -
DLDB-OWL 04:22:53 388,202
Sesame-DB 46:35:53 1,209,827

Sesame-Memory - -
OWLJessKB

LUBM
(20, 0)

2,781,322

- -
DLDB-OWL 12:37:57 958,956
Sesame-DB - -

Sesame-Memory - -
OWLJessKB

LUBM
(50, 0)

6,888,642

- -

Fig. 1. Load Time and Repository Sizes. The left hand figure shows the load time. The right
hand figure shows the repository sizes of the database-based systems.

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale data sets than what has been reported so far. The result reveals an
apparent problem for Sesame-DB: it does not scale in data loading, as can be seen
from Fig. 2. As an example, it took over 300 times longer to load the 20-university
data set than the 1-university data set, although the former set contains only about 25
times more instances than the later. We extrapolate that it will take Sesame-DB over 3
weeks to finish up loading the 50-university data set. Therefore, we have decided not
to do that unrealistic test.

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the
different performance of the two systems is caused by the following two reasons. First,
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

Instances # (10K)

L
o

ad
 T

im
e

(1
00

0S
)

DLDB Sesame-DB
Sesame-Memory DAMLJessKB

0

200

400

600

800

1,000

1,200

1,400

0 100 200 300 400 500 600 700 800

Instances # (10K)

R
ep

os
ito

ry
 S

iz
e

(M
B

)

DLDB Sesame-DB

280 Y. Guo, Z. Pan, and J. Heflin

in a table. When a resource is encountered during the data loading, they will look up
that table to determine if it has not been seen before and need to be assigned a new ID.
As mentioned in [23], querying the ID table every time is very likely to slow down the
data loading as the data size grows. In its implementation, Sesame also assigns every
literal an ID, while DLDB-OWL stores literals directly in the destination tables, which
means Sesame has to spend even more time on ID lookup. Moreover, in order to im-
prove performance, DLDB-OWL caches resource-ID pairs during current loading.

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support
statement deletions it uses a truth maintenance system to track all deductive depend-
encies between statements. As [5] shows, this appears to affect the performance sig-
nificantly if there are many inferred statements or the data set is fairly large. We
should note that this scalability problem was not as noticeable in our previous study
involving a DAML+OIL benchmark [14]. We believe this is because the prior ex-
periment used daml:domain (as opposed to rdfs:domain) in its ontology, which does
not trigger inferences in Sesame.

4.2 Query Response Time

Table 2 is a complete list of the query test results, including the query response time,
number of answers, and their completeness. Note that what are displayed in each an-
swer row are only the numbers of correct answers (Refer to Section 4.3). Fig. 2 com-
pares by graphs the query response time of the systems except OWLJessKB.

In terms of query, the results also lead to some scalability and efficiency concerns.
Although compared to the performance of its predecessor DAMLJessKB [22] in [14],
OWLJessKB improves its query time greatly at the sacrifice of much longer loading
time, it is still the slowest in answering thirteen of the queries. Sesame-DB was also
very slow in answering some queries (even for one university), including Queries 2, 8,
and 9. As for DLDB-OWL, it is the only system that has been tested with the largest
data set. One concern is that when it comes to the larger data sets especially the 50-
university set, DLDB-OWL’s query time no longer grows linearly for some queries,
i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer Query 2 on the 50-
univeristy data set after MS Access ran out of temporary space. Compared to other
systems, Sesame-Memory, is the fastest in answering all of the queries. It is also the
fastest in data loading. This suggests that it might be the best choice for data of small
scale if persistent storage and OWL inference is not required.

We have observed that those queries for which Sesame-DB’s performance goes
down dramatically are common in that they do not contain a specific URI as a subject
or object in the statements. On the other hand, Sesame-DB shows a nice property in
answering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional
increase in the response time as the data size grows. We have also noticed a common
feature of these queries, i.e., they have constant number of results over the test data
sets. Whether these are the causes or coincidences is a subject for future work.

It is beyond the scope of this paper to analyze in depth the query evaluation and op-
timization mechanism in each system. Instead, we propose some topics for future in-
vestigation. One is to explore the potential relationship between query types and the

An Evaluation of Knowledge Base Systems for Large OWL Datasets 281

Table 2. Query Test Results. (* correct answers only, refer to Table 3)

LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0)
LUBM
(50,0)

Q
ue

ry

 Repository
 & Data

 Set

 Metrics D
L

D
B

-O
W

L

Se
s-

am
e-

D
B

am

e-
M

em
-

O
W

L

Je
ss

K
B

D
L

D
B

-O
W

L

Se
s-

am
e-

D
B

Se

s
am

e-
M

em
-

D
L

D
B

-O
W

L

Se
s-

am
e-

D
B

Se

s-
am

e-
M

em
-

or
y

D
L

D
B

-O
W

L

Se
s-

am
e-

D
B

D
L

D
B

-O
W

L

Time(ms) 59 46 15 9203 226 43 37 412 40 106 887 96 2211

Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 181 51878 87 116297 2320 368423 495 14556 711678 1068 392392 1474664 failed

Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 -

Time(ms) 218 40 0 13990 2545 53 1 5540 59 0 11956 56 36160

Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 506 768 6 211514 2498 823 4 5615 762 4 14856 881 10115

Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 617 2945 17 5929 4642 3039 17 11511 3214 17 27756 3150 135055

Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 481 253 48 1271 4365 1517 251 11158 3539 543 28448 12717 151904

Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

Time(ms) 478 603 3 128115 2639 606 4 7028 634 4 18073 657 121673

Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100

Time(ms) 765 105026 273 164106 3004 108384 262 5937 108851 264 13582 103779 39845

Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

Time(ms) 634 34034 89 87475 7751 256770 534 19971 460267 1123 57046 1013951 323579

Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639 9

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100

Time(ms) 98 20 1 141 1051 36 0 2339 40 0 5539 50 15831

Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100

Time(ms) 48 65 1 1592 51 73 1 61 84 3 78 82 143

Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 62 4484 12 11266 78 4659 14 123 4703 12 310 4886 745

Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 200 4 1 90 2389 9 1 5173 12 1 11906 21 34854

Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 187 218 42 811 2937 1398 257 7870 14021 515 19424 11175 106764

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 393730 14

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

282 Y. Guo, Z. Pan, and J. Heflin

performance of a certain system and its characteristics. Of course how to categorize
queries is yet another issue. As another, Sesame-DB implements the main bulk of the
evaluation in its RQL query engine while its query engine for another query language

Query 1

0

100

200

300

400

500

600

700

800

900

1,000

0 50 100 150 200 250 300
Instances # (10K)

Q
u

er
y

T
im

e
(m

s)

DLDB Sesame-DB Sesame-Memory

Query 2

0

200

400

600

800

1,000

1,200

1,400

1,600

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 3

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 5

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 4

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 6

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 7

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 8

0

20

40

60

80

100

120

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 9

0

200

400

600

800

1,000

1,200

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 11

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300
Instances # (10K)

Q
u

er
y

T
im

e
(m

s)

DLDB Sesame-DB Sesame-Memory

Query 10

0

1

2

3

4

5

6

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 12

0

1

2

3

4

5

6

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 13

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 14

0

5

10

15

20

25

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Fig. 2. Query time of DLDB-OWL, Sesame-DB, and Sesame-Memory (up to 20 universities)

An Evaluation of Knowledge Base Systems for Large OWL Datasets 283

SeRQL pushes a lot of the work down to the underlying DBMS. As for DLDB-OWL,
it directly translates as much of the query for the database. Further work should be
done to investigate how these design differences as well as the underlying DBMS used
impact performance.

4.3 Query Completeness and Soundness

As described in [12], we have chosen the benchmark test queries according to several
criteria. In fact, another effort we have made in defining these queries is to make them
as realistic as possible. In other words, we want these queries to represent, to some ex-
tent, those in the real world. We are very interested in seeing what queries can be an-
swered by each system.

As mentioned before, Sesame is able to address RDF/RDFS semantics while
DLDB-OWL and OWLJessKB integrate extra OWL inference capability. As the re-
sults turned out, all systems could answer Queries 1 through 5 and Query 14 com-
pletely. As we expected, DLDB-OWL was able to find all the answers for Queries 6 to
10, which requires subsumption inference in order to get complete results, while Ses-
ame could only find partial or no answers for them. It is interesting to notice that
DLDB-OWL and Sesame found complete answers for Query 5 in different ways:
DLDB-OWL made use of subsumption, while Sesame, although not able to figure out
the subsumption, used an rdfs:domain restriction to determine the types of the indi-
viduals in the data set and thus achieved the same result. OWLJessKB could find all
the answers for every query, and was the only system to answer Queries 11 and 13
completely, which assume owl:TransitiveProperty and owl:inverseOf inference re-
spectively. Nevertheless, we have discovered that OWLJessKB made unsound infer-
ences with respect to some queries. Specifically, it returned incorrect answers to Que-
ries 4, 6, 8, and 12 because it incorrectly inferred that Lecturer is a Professor,
Employee a Student, and Student a Chair. We list in Table 3 the completeness and
soundness of OWLJessKB for each query.

Table 3. Query Soundness of OWLJessKB.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Total/
Correct answers

4/4 0/0 6/6 41/34 719/719
8330/
7790

67/67
8330/
7790

208/208 4/4 224/224 540/15 1/1 5916/5916

Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100

4.4 A Combined Metric

As the previous section shows, the target systems in this evaluation differ a lot in their
inference capability. We feel it is insufficient to evaluate the query response time and
answer completeness and soundness in isolation. We need a metric to measure them in
combination so as to better appreciate the overall performance of a system and the po-
tential tradeoff between the query response time and inference capability. At the same
time, we have realized that this is a challenging issue. We introduce here our initial at-
tempt to address this issue.

284 Y. Guo, Z. Pan, and J. Heflin

First, we use the F-Measure metric to compute the tradeoff between query complete-
ness and soundness, since essentially they are analogous to recall and precision in In-
formation Retrieval. In the formula below, Cq and Sq (∈[0, 1]) are the answer com-
pleteness and soundness for query q. b determines the weighting of Cq and Sq. We set
it to 1 here, which means we equally weight completeness and soundness.

qq

qq
q

SCb

SCb
F

+
=

*

**2
2

Then, we define a composite metric CM of query response time and answer complete-
ness and soundness as the following, which is also inspired by F-Measure:

= +
= M

q
qq

qq

FP

FP

M
CM

1 2 *

**21

α
α

In the above, M is the total number of test queries; Pq ∈ [0, 1] is defined as

Pq = max (1 –
N

Tq
,)

Tq is the response time (ms) for query q and N is the total number of instances in the
data set concerned. We have used a timeout value to eliminate undue affect of those
query response time that is extremely far away from others in the test results: if to a
certain query q, a system’s response time per instance is greater than 1- , where is a
very small positive value, we will use for Pq instead. We use of 0.0001 in this
evaluation. has the same role as b in Fq and is also set to 1.

Generally speaking, the CM metric will reward those systems that can answer que-
ries faster, more completely and more soundly. We calculate the metric value of each
target system with respect to each data set. Fig. 3 shows the results. We find that these
numerical results are very helpful for us to appreciate the overall performance of each
system. DLDB-OWL achieves higher scores across all the data sets than the others.
This helps us believe that its extra inference capability is not counterproductive. On
the contrary, OWLJessKB receives the lowest value, emphasizing the need of per-
formance improvement in it. And the higher CM values Sesame-Memory gets than
Sesame-DB again suggest that it is a reasonable choice for small scale application if
persistent storage is not required, particularly if completeness is not significant.

Fig. 3. CM values with weights b=1 and =1

0.78 0.78 0.78 0.78
0.71

0.59
0.64 0.65 0.65

0.69 0.69 0.69

0.58

LUMB(1, 0) LUMB(5, 0) LUMB(10, 0) LUMB(20, 0) LUMB(50, 0)

DLDB

Sesame-DB

Sesame-Memory

OWLJessKB

An Evaluation of Knowledge Base Systems for Large OWL Datasets 285

5 Related Work

To the best of our knowledge, the Lehigh University Benchmark we used in the
evaluation is the first one for Semantic Web systems. [1] has developed some bench-
mark queries for RDF, however, these are mostly intensional queries, while we are
concerned with extensional queries for OWL. Some attempts have been done to
benchmark description logic systems [10, 17]. The emphasis of this work is to evalu-
ate the reasoning algorithms in terms of the tradeoff between expressiveness and trac-
tability in description logic. Our benchmark is not a description logic benchmark. We
are more concerned about the issue of storing and querying large amount of data that
are created for realistic Semantic Web systems. Detailed discussion on related work to
the benchmark can be found in [12].

The Web Ontology Working Group provides a set of OWL test cases [7]. They are
intended to provide examples for, and clarification of, the normative definition of
OWL and focus on the completeness and soundness with respect to individual
features. Different from our benchmark suite, they are not suitable for the evaluation
of scalability.

Tempich and Volz [26] have done some preliminary work towards a benchmark for
Semantic Web reasoners. They also point out that the response time as well as the
correctness and completeness should be taken into account when formulating
benchmark metrics. Though their benchmark is still under construction, they analyze
the publicly available ontologies and report them to be clustered into three categories.
According to the characteristics of each category, our univ-bench ontology happens to
be a synthetic "description logic-style” ontology, which has a moderate number of
classes but several restrictions and properties per class. Therefore we argue that our
evaluation represents at least a considerable portion of the real word situations. The
other two categories are terminological ontologies and database schema-like
ontologies. We plan to extend our benchmark suite to those two categories in the
future.

6 Conclusions

We presented an evaluation of four knowledge base systems (KBS) with respect to use
in large OWL applications, including two memory–based systems (OWLJessKB and
memory-based Sesame) and two systems with persistent storage (database-based
Sesame and DLDB-OWL). The experiment was conducted in a systematic and
standard way by using the Lehigh University Benchmark. We tested those systems
with 5 sets of benchmark data and 14 extensional queries. To our knowledge, no
experiment has been done with the scale of data used here. The smallest data size used
consists of 15 OWL files totaling 8MB, while the largest data size consists of 999 files
totaling 583MB.

It is clear that a number of factors must be considered when evaluating a KBS.
From our analysis, of the systems tested: DLDB is the best for large data sets where an
equal emphasis is placed on query response time and completeness. Sesame-Memory

286 Y. Guo, Z. Pan, and J. Heflin

is the best when the size is relatively small (e.g., 1 million triples) and only RDFS
inference is required; while for a larger data set (e.g., between 1 and 3 million triples),
Sesame-DB may be a good alternative. OWLJessKB is the best for small datasets
when OWL Lite reasoning is essential, but only after its unsoundness has been
corrected.

It should be pointed out that we believe that the performance of any given system
will vary depending on the structure of the ontology and data used to evaluate it. Thus
the Lehigh University Benchmark does not provide the final say on what KBS to use
for an application. However, we believe that is appropriate for a large class of
applications. Furthermore, the basic methodology can be used to generate ontologies
and datasets for other classes of applications.

Acknowledgements. Some of the material in this paper is based upon work supported
by the Air Force Research Laboratory, Contract Number F30602-00-C-0188 and by
the National Science Foundation (NSF) under Grant No. IIS-0346963. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air Force or
NSF.

References

1. Alexaki, S. et al. On Storing Voluminous RDF Description: The case of Web Portal
Catalogs. In Proc. of the 4th International Workshop on the Web and Databases. 2001.

2. M. Dean and G. Schreiber ed. OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/

3. Bitton, D., DeWitt, D., and Turbyfill, C. Benchmarking Database Systems, a Systematic
Approach. In Proc. of the 9th International Conference on Very Large Data Bases. 1983

4. Bitton, D. and Turbyfill, C. A Retrospective on the Wisconsin Benchmark. In Readings in
Database Systems, Second Edition. 1994.

5. Broekstra, J. and Kampman, A. Inferencing and Truth Maintenance in RDF Schema:
exploring a naive practical approach. In Workshop on Practical and Scalable Semantic
Systems (PSSS). 2003.

6. Broekstra, J. and Kampman, A. Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Proc. of ISWC2002.

7. Carroll, J.J. and Roo, J.D. ed. OWL Web Ontology Test Cases.
http://www.w3.org/TR/2004/REC-owl-test-20040210/

8. Cattell, R.G.G. An Engineering Database Benchmark. In Readings in Database Systems,
Second Edition. 1994.

9. Connolly, D. et al. DAML+OIL (March 2001) Reference Description.
http://www.w3.org/TR/daml+oil-reference

10. Elhaik, Q, Rousset, M-C, and Ycart, B. Generating Random Benchmarks for Description
Logics. In Proc. of DL’98.

11. Gensereth, M. and Fikes, R. Knowledge Interchange Format. Stanford Logic Report
Logic-92-1, Stanford Univ. http://logic.standford.edu/kif/kif.html

12. Guo, Y., Heflin, J., and Pan, Z. Benchmarking DAML+OIL Repositories. In Proc. of
ISWC2003.

An Evaluation of Knowledge Base Systems for Large OWL Datasets 287

13. Guo, Y., Heflin, J., and Pan, Z. An Evaluation of Knowledge Base Systems for Large
OWL Datasets. Technical report, CSE department, Lehigh University. 2004. To appear.

14. Guo, Y., Pan, Z. and Heflin, J. Choosing the Best Knowledge Base System for Large
Semantic Web Applications. Poster paper at WWW2004.

15. Haarslev, V. and Moller, R. Racer: A Core Inference Engine for the Semantic Web. In
Workshop on Evaluation on Ontology-based Tools, ISWC2003.

16. Horrocks, I. The FaCT System. In Automated Reasoning with Analytic Tableaux and
Related Methods International Conference (Tableaux’98).

17. Horrocks, I. and Patel-Schneider, P. DL Systems Comparison. In Proc. of DL’ 98.
18. Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/
19. Jess: the Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess
20. KAON: The KArlsruhe ONtology and Semantic Web tool suite.

http://kaon.semanticweb.org/
21. Karvounarakis, G. et al. Querying Community Web Portals.

http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf
22. Kopena, J.B. and Regli, W.C. DAMLJessKB: A Tool for Reasoning with the Semantic

Web. In Proc. of ISWC2003.
23. Pan, Z. and Heflin, J. DLDB: Extending Relational Databases to Support Semantic Web

Queries. In Workshop on Practical and Scalable Semantic Systems, ISWC2003.
24. Sintek, M. and Decker, S. TRIPLE – A Query, Inference, and Transformation Language

for the Semantic Web. In Proc. of ISWC2002.
25. Stonebraker, M. et al. The SEQUIOA 2000 Storage Benchmark. In Readings in Database

Systems, Second Edition. 1994.
26. Tempich, C. and Volz, R. Towards a benchmark for Semantic Web reasoners–an analysis

of the DAML ontology library. In Workshop on Evaluation on Ontology-based Tools,
ISWC2003.

27. W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/

Appendix: Test Queries

We herein describe each query in a KIF like language, in which a query is written as a
conjunction of atoms. Following that we describe the characteristics of the query.

Query1
(type GraduateStudent ?X)
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query bears large input and high selectivity. It queries about just one class and one
property and does not assume any hierarchy information or inference.

Query2
(type GraduateStudent ?X) (type University ?Y) (type Department ?Z)

(memberOf ?X ?Z) (subOrganizationOf ?Z ?Y) (undergraduateDegreeFrom ?X ?Y)
This query increases in complexity: 3 classes and 3 properties are involved. Additionally,

there is a triangular pattern of relationships between the objects involved.
Query3

(type Publication ?X)
(publicationAuthor ?X http://www.Department0.University0.edu/AssistantProfessor0)

This query is similar to Query 1 but class Publication has a wide hierarchy.
Query4

(type Professor ?X) (worksFor ?X http://www.Department0.University0.edu)
(name ?X ?Y1) (emailAddress ?X ?Y2) (telephone ?X ?Y3)

This query has small input and high selectivity. It assumes subClassOf relationship between
Professor and its subclasses. Class Professor has a wide hierarchy. Another feature is that it
queries about multiple properties of a single class.

288 Y. Guo, Z. Pan, and J. Heflin

Query5
(type Person ?X) (memberOf ?X http://www.Department0.University0.edu)

This query assumes subClassOf relationship between Person and its subclasses and
subPropertyOf relationship between memberOf and its subproperties. Moreover, class Person
features a deep and wide hierarchy.

Query6
(type Student ?X)

This query queries about only one class. But it assumes both the explicit subClassOf
relationship between UndergraduateStudent and Student and the implicit one between
GraduateStudent and Student. In addition, it has large input and low selectivity.

Query7
(type Student ?X) (type Course ?Y)
(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y)(takesCourse ?X
?Y)

This query is similar to Query 6 in terms of class Student but it increases in the number of
classes and properties and its selectivity is high.

Query8
(type Student ?X) (type Department ?Y) (memberOf ?X ?Y)
(subOrganizationOf ?Y http://www.University0.edu) (emailAddress ?X ?Z)

This query is further more complex than Query 7 by including one more property.
Query9

(type Student ?X) (type Faculty ?Y) (type Course ?Z)
(advisor ?X ?Y) (takesCourse ?X ?Z) (teacherOf ?Y ?Z)

Besides the aforementioned features of class Student and the wide hierarchy of class
Faculty, this query is characterized by the most classes and properties in the query set. Like
Query 2, there is a triangular pattern of relationships.

Query10
(type Student ?X) (takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) subClassOf
relationship between GraduateStudent and Student, i.e., subClassOf relationship between
UndergraduateStudent and Student does not add to the results.

Query11
(type ResearchGroup ?X) (subOrganizationOf ?X http://www.University0.edu)

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning
capabilities in the system. In this query, property subOrganizationOf is defined as transitive.
Since in the benchmark data, instances of ResearchGroup are stated as a sub-organization of a
Department individual and the later suborganization of a University individual, inference about
the subOrgnizationOf relationship between instances of ResearchGroup and University is
required to answer this query. Additionally, its input is small.

Query12
(type Chair ?X) (type Department ?Y)
(worksFor ?X ?Y) (subOrganizationOf ?Y http://www.University0.edu)

The benchmark data do not produce any instances of class Chair. Instead, each Department
individual is linked to the chair professor of that department by property headOf. Hence this
query requires realization, i.e., inference that that professor is an instance of class Chair
because he or she is the head of a department. Input of this query is small as well.

Query13
(type Person ?X) (hasAlumnus http://www.University0.edu ?X)

Property hasAlumnus is defined in the benchmark ontology as the inverse of property
degreeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDegreeFrom,
and doctoralDegreeFrom. The benchmark data state a person as an alumnus of a university
using one of these three subproperties instead of hasAlumnus. Therefore, this query assumes
subPropertyOf relationships between degreeFrom and its subproperties, and also requires
inference about inverseOf.

Query14
(@everyInstance UndergraduateStudent ?X)

This query is the simplest in the test set. This query represents those with large input and
low selectivity and does not assume any hierarchy information or inference.

Structure-Based Partitioning of
Large Concept Hierarchies

Heiner Stuckenschmidt and Michel Klein

Vrije Universiteit Amsterdam
de Boelelaan 1081a, 1081HV Amsterdam

{heiner, mcaklein}@cs.vu.nl

Abstract. The increasing awareness of the benefits of ontologies for information
processing has lead to the creation of a number of large ontologies about real-
world domains. The size of these ontologies and their monolithic character cause
serious problems in handling them. In other areas, e.g. software engineering, these
problems are tackled by partitioning monolithic entities into sets of meaningful
and mostly self-contained modules. In this paper, we suggest a similar approach for
ontologies. We propose a method for automatically partitioning large ontologies
into smaller modules based on the structure of the class hierarchy. We show that the
structure-based method performs surprisingly well on real-world ontologies. We
support this claim by experiments carried out on real-world ontologies including
SUMO and the NCI cancer ontology. The results of these experiments are available
online at http://swserver.cs.vu.nl/partitioning/.

1 Motivation

The increasing awareness of the benefits of ontologies for information processing in
open and weakly structured environments has lead to the creation of a number of such
ontologies for real-world domains. In complex domains such as medicine these ontolo-
gies can contain thousands of concepts. Examples of such large ontologies are the NCI
cancer ontology [5] with about 27.500 and the Gene ontology [8] with about 22.000
concepts. Other examples can be found in the area of e-commerce where product clas-
sification such as the UNSPSC or the NAICS contain thousands of product categories.
While being useful for many applications, the size and the monolithic nature of these
ontologies cause new problems that affect different steps of the ontology life cycle.

Maintenance: Ontologies that contain thousands of concepts cannot be created and
maintained by a single person. The broad coverage of such large ontologies normally
requires a team of experts. In many cases these experts will be located in different
organizations and will work on the same ontology in parallel. An example for such a
situation is the gene ontology that is maintained by a consortium of experts.

Publication: Large ontologies are mostly created to provide a standard model of a do-
main to be used by developers of individual solutions within that domain. While existing
large ontologies often try cover a complete domain, the providers of individual solutions

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 289–303, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

290 H. Stuckenschmidt and M. Klein

are often only interested in a specific part of the overall domain. The UNSPSC classifi-
cation, for example, contains categories for all kinds of products and services while the
developers of an online computer shop will only be interested in those categories related
to computer hardware and software.

Validation: The nature of ontologies as reference models for a domain requires a high
degree of quality of the respective model. Representing a consensus model, it is also
important to have proposed models validated by different experts. In the case of large
ontologies it is often difficult—if not impossible—to understand the model as a whole
due to cognitive limits. What is missing is an abstracted view on the overall model and
its structure as well as the possibility to focus the inspection on a specific aspect.

Processing: On a technical level, very large ontologies cause serious scalability
problems. The complexity of reasoning about ontologies is well known to be critical
even for smaller ontologies. In the presence of ontologies like the NCI cancer ontology,
not only reasoning engines but also modelling and visualization tools reach their limits.
Currently, there is no OWL-based modelling tool that can provide convenient modelling
support for ontologies of the size of the NCI ontology.

All these problems are a result of the fact that the ontology as a whole is too large to
handle. Most problems would disappear if the overall model consists of a set of coherent
modules about a certain subtopic that can be used independently of the other modules,
while still containing information about its relation to these other modules.

– In distributed development, experts could be responsible for an single module and
maintain it independently of other modules thus reducing revision problems.

– Users of an ontology could use a subset of the overall ontology by selecting a set of
relevant modules. While only having to deal with this relevant part, the relations to
other parts of the model are still available through the global structure.

– Validation of a large ontologies could be done based on single modules that are
easier to understand. Being related to a certain subtopic, it will be easier to judge the
completeness and consistency of the model. Validated modules could be published
early while other parts of the ontology are still under development.

– The existence of modules will enable the use of software tools that are not able
to handle the complete ontology. In the case of modelling and visualization tools,
the different modules could be loaded one by one and processed individually. For
reasoning tasks we could make use of parallel architectures where reasoners work
on single modules and exchange partial results.

Recently, some proposals concerning the representation of modules and their con-
nections have been made [9,3,7]. These papers propose languages and discuss issues
like the organization of modules and dependencies between them. A problem that has
not been addressed yet concerns the creation of modules from existing ontologies. This
problem which we call partitioning or modularization is discussed in the remainder of
this paper.

Structure-Based Partitioning of Large Concept Hierarchies 291

2 Structure-Based Partitioning

The key question connected to modularization is about suitable criteria for determining
the assignment of concepts to modules. This requires a good intuition about the nature
of a module as well as of the purpose of the modularization. As we have seen above,
there are many different use cases that come with different requirements for criteria for
determining modules. Further distinctions have to be made with respect to the nature
of the ontologies addressed by the method. On the semantic web, we find all kinds of
ontologies starting from simple class hierarchies to complex description logic models
encoded in OWL.As an attempt to develop a method that works equally well for all kinds
of ontologies is likely to fail, we focus on a particular type of ontology and a certain use
of the resulting partitioning.

Contribution: We propose a method for partitioning large light-weight ontolo-
gies that mainly consists of a class hierarchy into disjoint and covering sets of
concepts for the purpose of easier browsing and exploring the hierarchy.

Note that the method we propose can be applied to any kind of ontology that contains
some kind of hierarchy. In cases where concepts are further described by their features
or logical axioms, however, our method is likely to produce sub-optimal results as the
information in the definitions is not taken into account. Our method is sensitive to the
intended use of the resulting model, as other purposes can require partially overlapping
modules or the partitioning into sets of axioms rather than concepts.

2.1 Intuition and Assumptions

Intuitively, we can say that a module should contain information about a coherent
subtopic that can stand for itself. This requires that the concepts within a module are
semantically connected to each other and do not have strong dependencies with informa-
tion outside the module. These considerations imply the need for a notion of dependency
between concepts that needs to be taken into account. There are many different ways
in which concepts can be related explicitly or implicitly. At this point we abstract from
specific kinds of dependencies and choose a general notion of dependency between
concepts. The resulting model is the one of a weighted graph O = 〈C, D, w〉 where
nodes C represent concepts and links D between concepts represent different kinds of
dependencies that can be weighted according to the strength of the dependency. These
dependencies can be reflected in the definitions of the ontology or can be implied by
the intuitive understanding of concepts and background knowledge about the respective
domain. Looking for an automatic partitioning method, we are only interested in such
kinds of dependencies that can be derived from the ontology itself. This leads us to the
central assumption underlying our approach:

Assumption: Dependencies between concepts can be derived from the structure
of the ontology.

Depending on the representation language, different structures can be used as indi-
cators of dependencies. These structures can be subclass relations between classes, other

292 H. Stuckenschmidt and M. Klein

relations linked to classes by the range and domain restrictions or the appearance of a
class name in the definition of another class. It can be argued that a method purely based
on the structure of the ontology is not able to capture important dependencies that could
be found by analyzing the names of classes and the logical definitions of concepts. Our
motivation for ignoring these additional aspects is of a practical nature: we want our
method to scale up to large ontologies that contain hundreds of thousands of concepts.
A semantical investigation of the dependencies of such ontologies would suffer from the
same scalability problems we hope to solve with out partitioning method. Therefore, the
question addressed in this paper is not so much about an optimal method for determining
modules but about how far we can get with a rather simple and scalable method based
on the structure of the ontology.

2.2 Partitioning Steps

Our method consists of two tasks that are executed in five independent steps. The first
task is the creation of a weighted graph from an ontology definition. This is done in
two steps: extraction of the dependency structure and determination of the weight of the
dependency. The second task concerns the identification of modules from the dependency
graph. The first step in this task is the detection of strongly related sets of concepts. In
the following we discuss the techniques currently used in these steps.

Step 1: Create Dependency Graph: In the first step a dependency graph is extracted
from an ontology source file. We implemented a PROLOG-based tool that reads
OWL and RDF schema files using the SWI semantic web library [10] and outputs
a graph format used by the networks analysis tool Pajek [2] that we use for
detecting related sets of nodes. The tool can be configured to use different kinds of
dependencies. Currently it can extract dependencies corresponding to the subclass
hierarchy and dependencies created by the domain and range restrictions in property
definitions.

Step 2: Determine strength of Dependencies: In the second step the strength of the
dependencies between the concepts has to be determined. Following the basic as-
sumption of our approach, we use the structure of the dependency graph to determine
the weights of dependencies. In particular we use results from social network the-
ory by computing the proportional strength network for the dependency graph. The
strength of the dependency of a connection between a node ci and cj is determined
to be the proportional strengths of the connection. The proportional strength de-
scribes the importance of a link from one node to the other based on the number of
connections a node has. In general it is computed by dividing the sum of the weights
of all connections between ci and cj by the sum of the weights of all connections ci

has to other nodes (compare [4], page 54ff):

w(ci, cj) =
aij + aji∑

k

aik + aki

Here aij is the weight preassigned to the link between ci and cj - in the experiments
reported below this will always be one. As a consequence, the proportional strength

Structure-Based Partitioning of Large Concept Hierarchies 293

used in the experiments is one divided by the number of nodes ci is connected to.
The intuition behind it is that individual social contacts become more important
if there are only few of them. In our setting, this measure is useful because we
want to prevent that classes that are only related to a low number of other classes
get separated from them. This would be against the intuition that classes in a
module should be related. We use node d in Figure 1 to illustrate the calculation

Fig. 1. An Example Graph with proportional strength dependencies

of weights using the proportional strength. The node has four direct neighbors,
this means that the proportional strength of the relation to these neighbors is
0.25 (one divided by four). Different levels of dependency between d and its
neighbors now arise from the relative dependencies of the neighbors with d (the
proportional strength is non-symmetric). We see that e and f hoaving no other
neighbors completely depend on d. The corresponding value of the dependency
is 1. Further, the strength of the dependency between g and d is 0.5, because g
has two neighbors and the dependency between b and d is 0.33 as b has 3 neighbors.

Step 3: Determine Modules: The proportional strength network provides us with a
foundation for detecting sets of strongly related concepts. For this purpose, we
make use of an algorithm that computes all maximal line islands of a given size in
a graph [1].

Definition 1 (Line Island). A set of vertices I ⊆ C is a line island in a dependency
graph G = (C, D, w) if and only if

– I induces a connected subgraph of G
– There is a weighted graph T = (VT , ET , wT) such that:

• T is embedded in G
• T is an maximal spanning tree with respect to I
• the following equation holds:

max
{(v,v′)∈D|(v∈I∧v′ �∈I)∨(v′∈I∧v �∈I)}

w(v, v′) < min
(u,u′)∈ET

w(u, u′)

Note that for the determination of the maximal spanning tree the direction of edges
is not considered.

294 H. Stuckenschmidt and M. Klein

This criterion exactly coincides with our intuition about the nature of modules
given in the introduction, because it determines sets of concepts that are stronger
internally connected than to any other concept not in the set. The algorithm requires
an upper and a lower bound on the size of the detected set as input and assigns an
island number to each node in the dependency graph. We denote the island number
assigned to a concept c as α(c). The assignment α(c) = 0 means that c could not
be assigned to an island.

We use different sets of nodes in the graph in Figure 1 to illustrate the concept of
a line island. Let us first consider the set {a, ..., f}. It forms a connected subgraph.

The maximal spanning tree of this set consists of the edges a 1.0−→ c, b 1.0−→ c,

c 0.33−→ d, e 1.0−→ d, and f 1.0−→ d. We can see however, that this node set is not an
island, because the minimal weight of an edge in the spanning tree is 0.33 and there

is an incoming edge with strength 0.5 (g 0.5→ d). If we look at the remaining set of
nodes {g,h}, we see that it fulfills the conditions of an island: it forms a connected

subgraph, the maximal spanning tree consists of the edge h 1.0→ g and the maximal

value of in- or outgoing links is 0.5 (g 0.5→ d). This set, however, is not what we are
looking for because it is not maximal: it is included in the set {d, ...,h}. This set is a

line island with the maximal spanning tree consisting of the edges e 1.0−→ d, f 1.0−→ d,

g 0.5−→ d and h 1.0−→ g where the minimal weight (0.5) is higher than the maximal

weight of any external link which is c 0.33−→ d. Another reason for preferring this
island is that the remaining node set {a,b, c} also forms a line island with maximal

spanning tree a 1.0−→ c, b 1.0−→ c and the weaker external link c 0.33−→ d.

Using these steps as a starting point we carried out a number of experiments in order
to test our hypothesis that the structure of the ontology can actually be used to create
a sensible partitioning of large ontologies. The most relevant of these experiments are
reported in the following.

3 Experiments I: Iterative Partitioning

The different steps described above lead us to a partitioning of the input ontology
into modules that satisfy the formal conditions mentioned in the previous section. We
applied the steps to a number of ontologies available in OWL or RDF schema, including
the SUMO [6] the NCI cancer ontology [5] as well as DICE, a large medical ontology
used in one of our projects. Due to lack of space, we do not discuss the results of these
initial experiments in details, but concentrate on the problems we identified. The com-
plete results of all experiments can be found at the website that accompanies this article.1

One of the main problems with the approach as described above is the fact that we
have to determine the size of modules that we want to be generated. The reason is that
the optimal size of modules heavily depends on the size and the nature of the ontology.

1 See http://swserver.cs.vu.nl/partitioning/.

Structure-Based Partitioning of Large Concept Hierarchies 295

In some preliminary experiments we found a module size of one to ten per percent of
the size of the complete ontology works quite well for some example ontologies that
had between 1000 and 2000 concepts. This heuristic, however, did not work for larger or
more fragmented ontologies. In some cases a bad choice of the upper and lower bound
for the size of modules also led to an extremely high number of unassigned nodes, i.e.
nodes that were not part of any ’island’. In order to avoid these problems, we defined
an iterative partitioning strategy that avoids some of the problems mentioned above. In
the following, we present the iterative partitioning strategy and summarize the results of
applying this strategy to real world ontologies.

3.1 Iterative Partitioning

The idea of the iterative assignment algorithm is to not prescribe the size of modules to be
generated but to let them be determined solely by the island criterion given in the last sec-
tion. A way of doing this is to set the lower bound to 1 and the upper bound to s−1 where
s is the size of the complete ontology. Reducing the limit by one forces the algorithm to
split up the ontology in some way as the complete model exceeds the upper size limit for
an island. Choosing a limit that is just one below the size of the complete ontology does
not further restrict the selection of islands. This way we get the most natural grouping
of concepts into strongly dependent sets. Even in this case where we do not restrict the
size of island it can still happen, that nodes cannot be assigned to islands. Therefore we
have to perform the expansion step afterwards in order to assign these nodes to a module.

Step 4: Assign Isolated Concepts: Our experiments showed that leftover nodes can
occur at different places in the graph and are not necessarily related. Therefore we
chose to assign them to existing modules. The assignment is based on the strength
of the relations to nodes already assigned to a module. In particular leftover nodes
are assigned to the island of the neighboring node they have the strongest relation
to. In cases where all neighboring nodes are unassigned as well, these nodes are
assigned first.

As a result of this strategy the islands found by the algorithm can significantly differ
in size. In particular, we often get large islands that cover most of the ontology. In order
to get modules of a reasonable size, we iteratively apply the algorithm to islands that
are too large to be useful modules. Often this applies only for a single large island, but
there are also cases especially in the case of very large ontologies where the algorithm
has to be applied recursively on different parts of the ontology. Nodes in islands that
are small enough get a unique number assigned and form a module of the ontology.

Algorithm 1 shows the corresponding labelling algorithm that takes a graph and
labels the nodes of the graph with numbers that correspond to a partitioning assignment.
The algorithm also needs the upper limit of the size of a module as input in order to
determine when to stop the iterating. The counter is used in the recursive calls to make
sure that modules have unique numbers. When starting the iteration, the counter has to
be set to zero.

296 H. Stuckenschmidt and M. Klein

Algorithm 1 Partition
Require: limit: integer
Require: ontology: graph
Require: counter:integer

current := ontology
if |current| > limit then

min := 1
max := |current| − 1
candidates := islands(min,max,current)
for all module ∈ candidates do

Expand(module,current)
Partition(limit,module,counter)

end for
else

counter := counter + 1
for all c ∈ current do

α(c) := counter
end for
return counter

end if

3.2 Evaluation of Partitions

Looking at the result of the example application we get a first idea about the strengths
and weaknesses of the algorithm. We can see that the algorithm generates some modules
that meet our intuition about the nature of a module quite well. In some cases subtrees
that could be considered to form one module are further split even if the complete
subtree does not exceed the upper size limit. This can be explained by an unbalanced
modelling of the ontology as subtrees tend to be split up at concepts with a high number
of direct subclasses compared to its sibling classes. This phenomenon often reflect
a special importance of the respective concept in the ontology that also justifies the
decision to create a separate model for this concept. The iterative strategy frees us from
determining a lower bound for the size of modules. As a result, however, the algorithm
sometimes create rather small modules. This normally happens when the root concept
of a small subtree is linked to a concept that has many direct subclasses. For the result
of the partitioning method these subsets are often pathological because a coherent topic
is split up into a number of small modules that do not really constitute a sensible model
on their own.

When inspecting the dependencies in the relevant parts of the hierarchy, we dis-
covered that most of the problematic modules have very strong internal dependencies.
In order to distinguish such cases, we need a measure for the strength of the internal
dependency. The measure that we use is called the ‘height’ of an island. It uses the
minimal spanning tree T used to identify the module: the overall strength of the internal
dependency equals the strength of the weakest link in the spanning tree.

height(I) = min
(u,u′)∈ET

w(u, u′)

Structure-Based Partitioning of Large Concept Hierarchies 297

We can again illustrate the the concept of height using the example from figure 1.
WE identifies two islands, namely {a,b, c} and {d, ...,h}. As the maximal spanning

tree of the first island consists of the two edges a 1.0−→ c, b 1.0−→ c, the height of this

island is 1.0. In the maximal spanning tree of the second island the edge g 0.5→ d is the
weakest link that therefore sets the height of the island to 0.5.

Fig. 2. Sizes and heights of partitions in the SUMO ontology

We found many cases where generated modules that do not make sense had
an internal dependency of strength one. In a post-processing step this allows us to
automatically detect critical modules. While for the case of an internal strength of one
we almost never found the corresponding module useful in the context of the original
ontology, it is not clear where to draw the line between a level of internal dependency
that still defines sensible modules and a level that overrules important dependencies
to concepts outside the module. In our experiments we made the experience that a
threshold of 0.5 leads to good results in most cases.2

Figures 2 and 3 show the results of comparing the size and the height of computed
islands. The plots clearly show a correlation between these properties. We also see that—
except for one case—islands with a height of one are quite small.3 The results of these
experiments provided us with sufficient evidence that the height of an island is a useful
criterion for judging the quality of a module. In successive experiments reported below
we used this result to improve the partitions created by the iterative strategy. The results
of these experiments are reported below.

2 Note that due to the calculation of the dependency value, the internal strength is always of the
form 1

n
.

3 The exception is a part of the NCI ontology that lists all countries of the world and therefore
contains 1 class with more than 200 subclasses

298 H. Stuckenschmidt and M. Klein

Fig. 3. Sizes and heights of partitions in the NCI ontology

4 Experiments II: Manual Post-processing

As described above, on of the findings in the first experiments was the strong correlation
between size of modules and the degree of internal dependency. Further, we found out
that small modules were unnatural in most cases. In a second experiment, we wanted
to find out whether this result can be used to ’repair’ the result of the straightforward
partitioning.

Step 5: Merging: All modules with a height of 1.0 or 0.5 are merged into adjacent
modules with a lower height. In many cases, there is only one adjacent module to
merge with. In cases where more than one adjacent module exist, we decided for
the most natural choice. In principle, the strength of the dependencies between the
modules can be used to also determine a candidate for merging automatically.

The merging process was done manually using the functionality of the Pajek tool and
some supporting scripts. In the following, we present and discuss the results of this
experiment for the SUMO and the NCI administration ontology.

4.1 The SUMO Ontology

The partitioning of the SUMO ontology resulted into 38 partitions of which 17 had
a height of lower than 0.5 (see complete results at http://swserver.cs.vu.nl/
partitioning/). These 17 partitions and their sizes after the merging process are
listed in table 1. We see that the topics of the modules—which we derived from the top
concept of the respective module—represent sensible subtopics of the overall ontology,
which are not too close to each other. The average size of the modules is 37 concepts.
Comparing this list to the modules created in the first experiment, we see that the use
of the height criterion for merging enabled us to get rid of most of the problems that
had occurred. An example is a high number of small modules for different kinds of
measures that were created by the partitioning algorithm and that are now contained in

Structure-Based Partitioning of Large Concept Hierarchies 299

Table 1. Modules Generated for the SUMO Ontology

Topic Size

1 Text 14
2 Biological Attribute 12
3 Substance 38
4 Intentional Process 33
5 Linguistic Communication 36
6 Declaration 21
7 Making 111
8 Artifact 20

9 Real Number 14
10 Self-Connected Object 24
11 Language 23
12 Proposition 11
13 Relation 51
14 Constant Quantity 77
15 Agent 40
16 Entity (Top-Level) 51
17 Corpuscular Object 54

the module ’Constant Quantity’. The only problematic modules are the ones concerned
with actions. The module ’making’ is quite large and contains different types of actions
that a human knowledge engineer would not necessarily put in the same module.
Looking at the original graph we see that this part of the hierarchy is quite tangled
which makes it difficult to find split points.

More striking than the pure list of concepts, however, is the module graph created
in the second experiment. The graph shown in Figure 4 provides a very useful overview
over the different topics covered by SUMO. We think that this representation is more
useful for getting an overview of the content of SUMO than any visualization based on
the individual concepts.

4.2 The NCI Cancer Ontology

In a second experiment, we took the partitioning created for the administrative part of
the NCI Cancer ontology and removed partitions with a height of 1 or 0.5 by merging
them with partitions of a lower height. The initial partitioning contained 108 modules
many of which were quite small (compare Figure 3. Often, clearly related parts of the
hierarchy had been cut up into a number of small modules. A good examples are cell
lines. The initial partitioning distinguished between six different cell lines in addition
to the general module about cell lines. Each of these cell line modules contained less
than ten concepts. A similar situation could be observed in connection to medical
occupations like different kinds of surgeons and nurses. The manual merging process
based on the height of the partitions created a single cell line partition. For the case of
surgeons the result is less optimal as different kinds of occupations had to be merged
into a single module when using the height criterion.

Only 38 of the modules had a height of lower than 0.5. Table 2 lists these 38 modules
and their respective sizes after the merging process. The average size of a module is 57
which higher than for SUMO but still a reasonable value. We have to notice, however
that the variance is much higher as we find module sizes between 4 and 268. Most of

300 H. Stuckenschmidt and M. Klein

Fig. 4. Module Graph of the SUMO Ontology after Merging

the extreme cases can be explained by the special structure of the ontology. The concept
conceptual entity for example has about 100 direct subconcepts that create a rather large
module. The same holds for the concept country. More problematic are the modules
’clinical sciences’ and occupation or discipline’ that are rather large and heterogenous.
In future work, we will have to analyze these modules in detail and determine a strategy
for avoiding these problems by adjusting the dependency measure or the merging process.

5 Discussion

In this paper we describe a method for structure-based ontology partitioning that
is practically applicable to very large ontologies. We show that a modularization
based on structural properties of the ontology only already results in modules that
intuitively make sense. Because modularizing an ontology essentially is a mod-
elling activity, there is no “golden standard” to compare our results with. To come
up with a more validated assessment of the quality of our modules, we need to do
an experiment in which we compare the result of human modularization with our result4.

An advantage of the method described in this paper is that there are no arbitrary
choices – apart from the maximum size of a module which in many cases can be
derived from the limitations of the technology used – that have to be made in advance
(e.g. the number of modules required). However, there are several choices we made

4 Creating a human modularization might be difficult in practice, as one of the major reasons for
partitioning is that a human is not able to overlook the ontology as a whole.

Structure-Based Partitioning of Large Concept Hierarchies 301

Table 2. Modules Created for the NCI Administration Ontology

Topic Size

1 Biology 48
2 Pharmacology 20
3 Epidemiology 30
4 Clinical sciences 189
5 Medicine 85
6 Public Health 24
7 Occupation or Discipline 193
8 Social Sciences 25
9 Medical Economics 14

10 Technology 50
11 Information Science 27
12 NCI Administrative Concept 4
13 Training and Education 15
14 Board Certification 12
15 Information and Media 16
16 Database 15
17 Media / Document Type 111
18 Business Rule 61
19 Patient or Public Education 20

20 Nursing 46
21 Funding 130
22 Funding Categories 30
23 Research Career Programs 24
24 Costs 9
25 Professional Organization 56
26 Component of the NCI 75
27 NCI Boards and Groups 32
28 Population Group 71
29 Social Concept 66
30 Conceptual Entity 170
31 Sites of Care Delivery 268
32 Cancer Science 4
33 Model System 42
34 Miscellaneous Terms 23
35 Cancer Biology 17
36 Carciogenesis Mechanism 17
37 Specimen 26
38 Cell Line 101

when designing the method that need to be discussed in the light of the experiments.
The first one is the choice of using the ontology structure as a basis for determining
modules. We think that the experiments reported here show that we can achieve good
results even with a minimal approach that uses the concept hierarchy only. It remains
to be investigated whether the use of more structural information than the hierarchy
and produces better results. We plan to investigate the performance of our method on
graphs that include dependencies resulting from user defined relations and from the use
of concepts in definitions and axioms.

Another direction for future research is the dependency measure. Currently, we use
the proportional strengths, a measure adopted from social network theory that is only
based on the direct connections of a node giving each connection an equal importance.
It is possible that the development of dependency measures specifically for ontologies
could improve our results. There are two directions in which such measures can be
developed.

– Context-aware measures: dependency measures that do not only use the direct
relations of a node but also look at relations further away and the “importance”
of nodes. Measures of this type could vary in the depth in which they take other
relations into account, the weight that is given to them, and the way in which the
importance of nodes is calculated.

– Semantics-based measures: measures that use the semantics of relations for de-
termining the dependency. Possible measures of this type are ones that give “isa”

302 H. Stuckenschmidt and M. Klein

Fig. 5. Module Graph of the NCI Administration Ontology after Merging

relations a higher weight than other relations and measures that give a higher initial
value to subrelations than their superrelations.

Experiments with other dependency measures should tell us whether such measures
results in better modules than the ones that result from the basic measure that we used.

Another choice involves the level of abstraction at which we create the partitioning,
i.e. the number of modules produced and their respective size. There are two parameters
that control the abstraction level:

1. the termination point of the partitioning process, and
2. the criteria for merging modules.

In our current approach, we use the size of the module as termination criterium. This
criterium can be seen as subjective; however, often the simple fact that the size of
an ontology exceeds a certain threshold is the major motive to start modularizing an
ontology. Using the size of the modules as termination criterium therefore is defendable.
For the merging process, we currently use the coherence as criterium. For both
parameters, we could experiment with the other measures than the one currently used.
Further research is necessary to tell what measures perform well in which situations
and what are useful threshold values for specific ontologies.

Structure-Based Partitioning of Large Concept Hierarchies 303

Besides experimenting with the different factors discussed above, we plan to work
on automating the partitioning process as a whole. Ideally, this would result in tool that
partitions an ontology and allows to adapt the abstraction level on the fly. For this to
happen, we first need to do more work on the merging process and create a method that
precisely describes how to perform the merging.

References

1. V. Batagelj. Analysis of large networks - islands. Presented at Dagstuhl seminar 03361:
Algorithmic Aspects of Large and Complex Networks, August/September 2003.

2. V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large networks. In M. Jünger
and P. Mutzel, editors, Graph Drawing Software, pages 77–103. Springer, 2003.

3. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-owl:
Contextualizing ontologies. In Proceedings of the 2nd International SemanticWeb Conference
ISWC’03, Lecture Notes in Computer Science, pages 164–179, Sanibal Island, Florida, 2003.
Springer Verlag.

4. R.S. Burt. Structural Holes. The Social Structure of Competition. Harvard University Press,
1992.

5. Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim Hendler, Jim Oberthaler, and Bijan
Parsia. The national cancer institute’s thesaurus and ontology. Journal of Web Semantics,
1(1), 2003.

6. I. Niles and A. Pease. Toward a standard upper ontology. In Chris Welty and Barry Smith,
editors, Proceedings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), 2001.

7. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In Proceedings
of the International Joint Conference on Artificial Intelligence - IJCAI’03, pages 900–905,
Acapulco, Mexico, 2003. Morgan Kaufmann.

8. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nature
Genetics, 25:25–29, 2000.

9. R. Volz, A. Maedche, and D. Oberle. Towards a modularized semantic web. In Proceedings
of the ECAI’02 Workshop on Ontologies and Semantic Interoperability, 2002.

10. J. Wielemaker, G. Schreiber, and B. Wielinga. Prolog-based infrastructure for RDF: perfor-
mance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The Semantic Web
- Proceedings ISWC’03, Sanibel Island, Florida, pages 644–658, Berlin, Germany, october
2003. Springer Verlag. LNCS 2870.

Semantic Web Service Interaction Protocols:
An Ontological Approach�

Ronald Ashri1, Grit Denker2, Darren Marvin3, Mike Surridge3, and
Terry Payne1

1 University of Southampton, Southampton, UK
{ra, trp}@ecs.soton.ac.uk

2 SRI International, Menlo Park, California, USA
denker@csl.sri.com

3 IT Innovation, Southampton, UK
{djm, ms}@it-innovation.soton.ac.uk

Abstract. A central requirement for achieving the vision of run-time
discovery and dynamic composition of services is the provision of appro-
priate descriptions of the operation of a service, that is, how the service
interacts with agents or other services. In this paper, we use experience
gained through the development of real-life Grid applications to produce
a set of requirements for such descriptions and then attempt to match
those requirements against the offerings of existing work, such as OWL-
S [1] and IRS-II [2]. Based on this analysis we identify which requirements
are not addressed by current research and, in response, produce a model
for describing the interaction protocol of a service in response. The main
contributions of this model are the ability to describe the interactions
of multiple parties with respect to a single service, distinguish between
interactions initiated by the service itself and interactions that are ini-
tiated by clients or other cooperating services, and capture within the
description service state changes relevant to interacting parties that are
either a result of internal service events or interactions. The aim of the
model is not to replace existing work, since it only focuses on the descrip-
tion of the interaction protocol of a service, but to inform the further
development of such work.

1 Introduction

Recent years have seen a redoubling of effort, both within industry and
academia, to provide appropriate solutions to the problem of run-time discovery
and composition of services [3,4]. Such a capability is central to the needs of
a wide range of application domains and its importance is underlined by a
significant amount of industrial backing in terms of willingness to agree on
underlying standards and to provide tools in support of application develop-
ment. For example, within the context of e-business it is required to support
� Supported by the Defense Advanced Research Projects Agency through the Air

Force Research Laboratory under Contract F30602-00-C-0168 to SRI. Supported by
Engineering and Physical Sciences Research Council Semantic Firewall project (ref.
GR/S45744/01)

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 304–319, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Semantic Web Service Interaction Protocols: An Ontological Approach 305

the dynamic provision of services selected at run-time from an ever-changing
pool of competing service providers based on user preferences, or the creation of
coalitions of service providers working towards a common goal [5,6]. Within the
context of e-science it can enable researchers to better take advantage of Grid
infrastructure to create complex solutions involving the use of computational
resources and highly specialised services across institutional boundaries [7].
The majority of such efforts focus on the use of Web Services (WS) [8] as
the enabling infrastructure, which provides the necessary standardization of
message transportation [9], low-level service description [10], service discovery
(e.g. UDDI [11]) and service composition (e.g. BPEL4WS [12]). However,
WS technologies, on their own, are judged as insufficient to provide effective
solutions to the problem of dynamic discovery and composition, due to the lack
of appropriate semantic descriptions of the services involved and insufficient
support for flexible run-time dynamic binding of services [13,3].

In response to these limitations, a number of solutions have been proposed,
which either attempt to provide an overarching model, which is then linked to
the underlying WS infastructure (top-down approach - e.g. OWL-S [1], IRS-
II [2]), or attempt to embed appropriate solutions within the WS infrastructure
(bottom-up approach - e.g. [13], [14]). The latter approach, although it often
supports rapid progress, has the obvious limitation of being restricted in the
type of solutions it produces by the WS infrastructure it attempts to integrate
with. Furthermore, as the infrastructure itself is evolving the solutions will have
to adapt to newer versions of standards. The former approach allows for the
development of more generalised solutions that can find application outside a WS
context and as the WS standards evolve. It supports a clear distinction between
an abstract model of service description, which can then be used to support
service discovery and composition, and the implementation of that model within
the context of a specific set of enabling technologies, such as WS. Nevertheless,
even these overarching models still have some way to go before they adequately
address the range of issues related to service description.

In this paper we identify some of the shortcomings of current approaches
as they relate to the description of the operational process of a service, or in
other words, its interaction protocol, based on a set of requirements derived
through an analysis of real-life Grid application scenarios implemented using
the GRIA infrastructure [15]. We then propose a model for describing the inter-
action protocol, which furthers the state of the art through the following specific
contributions.

– The ability to describe multi-party interactions with respect to a single ser-
vice, with the different parties distinguished by the roles they occupy within
the service operation. This is a result of the the need to be able to describe,
with respect to a single service, either strict requirements or simply the capa-
bility it has to cooperate with other services and what form that cooperation
can take during operation.

– The ability to describe interactions initiated by the described service as well
as interactions that are initiated by other parties. This provides a more

306 R. Ashri et al.

flexible model than what is currently available and enables the support of
more sophisticated services, which can, for example, notify clients about the
state of progress or call upon other services to perform specific actions.

– The ability to describe the state changes a service goes through that are rele-
vant to the interacting parties, caused either by events internal to the service
or as a result of interactions with outside parties. This enables a client to
distinguish between the results of actions it initiates, and those that depend
on the service itself or other third parties. Furthermore, it enables other par-
ties, such as security devices integrated in the underlying infrastructure [16],
to monitor the progress of interaction with a service, so as to ensure that
the service is not misused.

Our aim while developing this work has not been to provide yet another al-
ternative for service description, but rather to address specific needs that arose
as a result of the demands of real-life grid application that were not addressed
by existing work. As such, we view our work as complementary to existing ap-
proaches and focused on the description of the interaction protocol of the service,
rather than the grounding of such descriptions to WS technologies or generalised
service descriptions, since existing methods can easily be used in coordination
with our work.

The rest of the paper is structured as follows. Section 2 provides a motivat-
ing example that illustrates our requirements for service description. Section 3
discusses existing technologies and their limitations with respect to those re-
quirements. Section 4 presents our service interaction protocol model, using an
ontological approach, and illustrates its use with the help of the example pre-
sented in Section 3. Section 5 offers two examples of the use of the model. The
first discusses how the service description can be used by a semantic web security
device to regulate access to services, while the second discusses how the service
description can be used to infer what dependencies a service has with respect to
other services. Finally, Section 6 indicates the future directions of this work.

2 Motivating Example

Our motivating example is based on a straightforward usage scenario for Grid
applications that is supported by the GRIA (Grid Resources for Industrial Ap-
plications) infrastructure [15]. It involves a client that submits a computation job
to a job service, where the computation job specifies a particular application to
execute, such as a renderer. Furthermore, due to the typically significant amount
of data over which the computation will be run the use of a data staging service
is also required. The data staging service manages the provision of input data
to the job service and provides the results to the client once the computation is
completed. Below, we discuss in more detail the specifics of the implementation
of this scenario within the GRIA infrastructure.

Semantic Web Service Interaction Protocols: An Ontological Approach 307

Computation

Computation Grid ClientData Staging Service Job Service

save(dataHandle)

startJob(jobHandle,dataHandle, application parameters)

notify()

repGetOutputHandle(dataSinkHandle)

save(dataSinkHandle)

read(dataSinkHandle)

getStatus(jobHandle,UID) x N

getOutputRef(jobHandle,UID)

readData(dataHandle)

repGetStatus(jobHandle, status)

Fig. 1. An Example Grid Workflow

2.1 Grid Application Support Through GRIA

The GRIA framework is a Grid infrastructure developed using just the basic
web service specifications, as part of the EC IST GRIA project [17].1 It provides
the necessary infrastructure for exposing computationally intensive applications
across the Grid, with ancillary facilities for data staging and quality of service
negotiation. A Grid service within GRIA can be considered as a contextualised
web service, which exposes its functionality through a well-defined interface.
It is contextualised since the interactions with the web service are based on a
well-defined process, which demands that a context is maintained throughout
the lifetime of the interactions. It is this interaction protocol that we aim to
make explicit by providing an appropriate ontological model that will allow us
to describe it.

In GRIA, a scenario as the one described above actually makes use of a
number of other services and systems, both external and internal. Internal sys-
tems and services include resource schedulers, accounting systems and databases,
while external services include data staging services, certificate authorities, and
so forth. GRIA also provides features such as negotiation over the quality of ser-
vice, long-term accounts with service providers. We do not discuss this issues in
detail here, but the interested reader is referred to [15], in which a more complete
description of the GRIA system is available.

Here we focus on just the interactions between the client, the job service
and the data staging service, which are illustrated in Figure 1. The scenario is
described below.

1 A comparable system to GRIA is the Globus Toolkit 3 reference implementation of
OGSI [18]. However, the OGSI model extends web service standards and explicitly
introduces Grid-related concepts through those extensions. This is something that
GRIA has avoided by adopting only web service standards. WSRF (Web Services
Resource Framework - http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsrf) is closer in nature to GRIA, but has only been released very recently
and has no implementations available.

308 R. Ashri et al.

1. The Grid client saves its data to the data staging service supplying the
dataHandle it obtained, along with a jobHandle, from a previous resource
allocation stage.

2. The Grid client submits a job request to the job service including the
jobHandle, the dataHandle for the source data and any additional applica-
tion parameters.

3. During the lifetime of the computation the Grid client can obtain status
information as to the progress of the computation.

4. At the end of the computation the job service saves the output data to a
data staging service, obtaining a handle to data in response.

5. The job service notifies the client that the computation is complete.2

6. The Grid client retrieves a handle to the output data from the job service.
7. The Grid client reads the output data from the data staging service using

the output data handle.

2.2 Job Service Description Requirements

Given this relatively straightforward example of service usage within a Grid
environment we now turn our attention to identifying what are the necessary
requirements for adequately describing the job service in a manner that will
make clear the allowed sequence of interactions, the different parties involved
and who is the initiator of which interactions. The specific requirements are
discussed below.

Interaction Sequence. The most basic feature that a service description
should cater for is a description of the appropriate sequence of interactions be-
tween the client and the service provider and who is the initiator of those in-
teractions. For example, it should be clear that the client needs to request the
dataSinkHandle from the job service, once the client has been notified that the
computation is complete.

Multiple Parties and Roles. The description needs to clearly identify
the various parties involved in the interactions, and who is the initiator of the
interaction. Note, that while the client’s main goal is to make use of a job service
it cannot achieve that without also interacting with a data staging service. The
use of the job service is dependent on the data staging service. Therefore, the
description of the job service must make clear this dependence and describe the
exact interaction the client and the job service will have with the data staging
service. However, since these descriptions cannot identify specific instances of a
client or a data staging service, as these are bound at runtime, it should identify
the roles the various parties occupy. A role can be considered as identifying a
well defined behaviour in terms of interaction with the service, such as client or
data staging service.

Service State Changes. It is also desirable to be able to describe state
changes that take place due to events that are not related to the interactions
2 GRIA does not at present support notification because firewall policies at client sites

are likely to deny them.

Semantic Web Service Interaction Protocols: An Ontological Approach 309

between services, but may impact on what interactions are allowed following
that state change. For example, once the computation has completed the client
can no longer request the status of the service.

3 Existing Technology and Current Limitations

Given the basic set of requirements identified above, we discuss in this next
section the extent to which they are met by existing models for service description
or related technologies.

3.1 OWL-S

The OWL-S [1] model attempts to provide a comprehensive approach to service
description. The model has found considerable uptake by the Semantic Web
Services community and as such has set a certain bar against which any other
proposals are typically compared. It is used within the context of prototype ap-
plications (e.g. [19,20]) and extensions to the model relating to security have
been suggested (e.g. [21]), as well as extensions in order to provide a more prin-
cipled, theoretically grounded, view of the model [22].

Underpinning OWL-S is a separation of concerns along the lines of a service
profile that describes what the service does, a service process model that describes
how the services operates, and a service grounding that links the service model
to the enabling Web Service infrastructure.

We focus on the descriptive capabilities of the OWL-S process model, since
that is our central concern. The process model allows the specification of the
operation of a service based on the combination of processes using control con-
structs such as sequence, split, split+join, and so forth. Necessary input, outputs,
preconditions and effects can be described for each process, as well as conditional
outputs and effects.

The process model, although well suited to deal with a large range of situa-
tions, does not adequately fulfill the requirements that we identified in Section 2.
The main reason is that there are not constructs to indicate the direction of the
interaction, i.e. whether the client or the service initiate it, or the fact that other
parties may be involved in the interaction. As we discussed, these parties may
be necessary as was the case in our example or may simply represent parties
that could be involved to provide additional support (e.g. the use of a prove-
nance service within the context of a grid application). Finally, there is also no
representation of the state of a service.

The lack of such constructs may simply be a result of the fact that the
underlying bias of the OWL-S model is to accommodate interaction with stateless
web services with no individual thread of control, and as such any control of
dataflow between processes should be handled entirely by the client.

310 R. Ashri et al.

3.2 IRS-II

The Internet Reasoning Service-II(IRS-II) [2] takes a broader view of the entire
task of service discovery and composition, based on the UPML framework [23].
The framework distinguishes between domain models (describing the domain of
application), task models (generic descriptions of the task, including inputs, out-
puts and preconditions), problem solving methods (abstract descriptions of the
reasoning process), and bridges (mappings between different model components
of an application). Individual services are described based on their inputs and
outputs and the preconditions to their invocation. Services can be coupled by
defining problem solving methods that describe their combinations. However,
there is no support for complex interactions between services nor a flexible way
to describe the operation of single services along the lines of the OWL-S process
model. As such, although IRS-II makes a significant contribution towards pro-
viding a comprehensive approach to service discovery and composition based on
an explicit theoretical model, it does not allow for a great deal of flexibility in
describing complex individual services.

3.3 Web Services Choreography

Web Services Choreography [24] represents a relatively recent effort within the
W3C, with the goal of providing a language that describes interactions be-
tween services. The underlying motivation is to provide a language that bet-
ter reflects long-term, complex interactions between stateful services. The WS-
Choreography model supports the definitions of roles, the definitions of mes-
sage exchange based on either a request or a request+response protocol and
the exchange of state information. The language makes use of pi-calculus as a
grounding to formal, conceptual model [25].

In essence, a choreography document describes the interactions between a
number of participants, with each participant occupying specific roles. The chore-
ography is divided into work units, with work units containing activities. A
number of process flow constructors enable the combination of activities. Fi-
nally, choreographies provide for progressively more specific definitions starting
from an abstract definition that does not include an WSDL or SOAP constructs
to portable and finally concrete implementations.

WS-Choreography addresses several of the issues that we aim to address,
such as describing more complex interactions between stateful services through
an abstract model that can then be grounded to specific WS technologies such
as BPEL4WS. However, WS-Choreography does not address the need for de-
scribing individual services so as to then support the automatic composition of
more complex interaction protocols, a goal that we aim to support. Furthermore,
although the need for integration with Semantic Web technologies is stressed by
the WS-Choreography working group it is currently not addressed. As such, our
work can be seen as complementary to this effort, since we focus on descriptions
of individual services and their needs in terms of interaction with a client or
other supporting services. Such description could then be used to facilitate the
composition of choreographies as envisaged by WS-Choreography.

Semantic Web Service Interaction Protocols: An Ontological Approach 311

3.4 BPEL4WS

Business Process Execution Language for Web Services (BPEL4WS) [12] de-
fines a notation for specifying business processes composed of Web services. It
supports the description of both executable process models (i.e. the actual be-
haviour of the web service) and business protocols (i.e. just the mutually visible
message exchange). The language includes constructs for declaring process flow
including iteration and choice as well as provides facilities for failure handling
and compensation. A single process imports and exports functionality through
WSDL interfaces. In this way, the process acts as a Web service itself and can
invoke other Web services as part of the process. BPEL4WS also supports the
declaration of partners and their roles, while state that should be public within
a business process can be exposed through message correlation constructs.

In general, BPEL4WS is a flexible language, with facilities for the addition
of new constructs and attributes to the existing BPEL4WS standard without
rendering existing engines incapable of utilising a BPEL document. However,
BPEL4WS remains a low-level language that is heavily dependent on WSDL
constructs, since it is aimed to tightly integrate within the general framework of
Web Service standards. Furthermore, although semantic annotations could be
added this would again be restricted to annotations of WSDL constructs, rather
than more generalised notions. Our aim, as discussed in Section 1 is to take a
top-down approach so that we are not restricted by low-level standards such as
BPEL4WS and to provide a model that describes the interactions with respect
to a single service.

Nevertheless, we realise that in order for our model to find practical imple-
mentation within a wider setting that includes service composition dependent
on description of individual services, it should be amenable to a grounding to a
BPEL4WS description.

4 Service Description Through Interaction Protocols

As pointed out in Section 2, the desirable features for describing interaction pro-
tocols of services include multi-party interaction, explicit representation of who
initiates the interaction, and representation of the relevant state changes of the
service. Parts of these requirements can be found in some existing approaches as
discussed in Section 3. For example, WS-Choreography defines roles and request
and response protocols. Nevertheless, there exists no approach that captures all
required features that resulted from our requirement analysis for real-world grid
services. Therefore, we propose a new model for service description, basing it
on an initial proposal for the definition of Interaction Protocols in DAML [26]
and extending it with additional concepts such as events to reflect internal state
changes of services, roles, and different types of messages to express direction of
message flow (incoming vs outgoing).

The approach we take is describing the interactions with a service as an
interaction protocol, using a service-centric point of view. The protocol defines

312 R. Ashri et al.

what are the appropriate messages that can be exchanged at any given moment
from any of the parties involved in the interaction, and it is service-centric in the
sense that we focus on just those interactions that include the service we wish to
describe. For example, the service description of the job service need not include
the first and the last interaction in Figure 1 between the client and the data
staging service. That interaction should be described by the service description
of the data staging service, which the client should have access to as well (this
point is discussed further in Section 5). The reason for such a service-centric view
is simply because a service can only define what interaction it can participate in
and should avoid making assumptions about the nature of interactions that it is
not party to.

4.1 Interaction Protocol Model

The proposed interaction protocol model is described in this section. The
model is defined as an OWL ontology (see www.csl.sri.com/users/denker/
sfw/wf/ip.owl) and Figure 2 illustrates the main elements. In the figure, squares
depict classes, arrows depict object properties, and the dashed boxes depict enu-
meration classes of individuals.

The appropriate interactions with a service are described through an inter-
action protocol. This protocol corresponds to a set of states, where each state
has a set of options. Options describe either the messages each party taking part
in the interaction can perform while the interaction protocol is at that state or
what events can take place at that state. Once one of the possible options in
a state is taken our model describes which state follows that option, which in
turn describes the next set of available options and so forth. Each option has
a label to describe that option as either an event or a message.3 In addition to
labels attached to options, we further refine the model to include three types of
options: request, request+response, and internal. A request option corresponds
to the exchange of one message, whereas a request+response option includes two
sequential message exchanges, the first one being the request message and the
second one being the response message. Naturally, request and request+response
options have messages associated with them. An internal option corresponds to
an internal state change and always has an event associated with it.

Each message has a name, a type, a role, and content. The name of the mes-
sage serves to identify the message within the domain of discourse. For example,
if the service use an agent communication language, along the lines of the FIPA
ACL [27], the name would correspond to the performative in question. If the
service message exchanges correspond to lower-level WSDL messages, the name
of the message would correspond to the WSDL operation.4 The message type
specifies whether the message is incoming (In) or outgoing (Out), so that we
3 Restrictions like these are specified in the OWL ontology using appropriate opera-

tors.
4 In this case some type of grounding between the interaction protocol and WSDL

messages is required, similarly to the OWL-S approach.

Semantic Web Service Interaction Protocols: An Ontological Approach 313

InteractionProtocol

State

Option Message

Event

"In"
"Out"

Role
hasOption

followedBy
hasState otype

olabel

"Req"
"ReqAndResp"
"Internal"

mtype

mrole

Fig. 2. Overview: (Partial) Interaction Protocol Ontology

can distinguish between messages that are initiated by the service or by other
parties. The role defines the role of the party sending or receiving the message.
Note that since the interaction protocol is service-centric we always know one
of the parties involved in the interaction, i.e. the service under description, so
the role serves to identify the other party involved. Finally, events are simply
identified by a name.

In the case of the request option, the message may be either ingoing or
outgoing. Similarly, in the request+response option, one message has to be of
type ingoing message and the other of type outgoing, though there is clearly
no restriction on whether the request or the response message are ingoing or
outgoing. This enables the description of two directions of request+response
interactions, one initiated by the service itself, the other initiated by an outside
service.

With request+response we are modeling two subsequent states, with restric-
tions imposed on those states. Each state has only one option and each option
has one message associated with it, to one state. In order to achieve this, in our
ontology we require that a request+response option is followed by exactly one
state. The successor state is in any case a state that has only one option. Thus,
there are two possibilities (modeled using the union operator): (a) The message
associated with the request+response option is an ingoing message, and the suc-
cessor state is a state with one request option that has an outgoing message
associated to it, or (b) the message associated with the request+response option
is an outgoing message, and the successor state is a state with one request option
that has an ingoing message associated with it (see Figure 3 for the definition).

The definition in Figure 3 guarantees the kind of request+response option
that we aim for. In the future we aim to further refine the definition of the
content class, including specification of multiple, typed parameters.

4.2 Applying the Model

The interaction protocol of the job service described in Section 2 is illustrated in
Figure 4 and can be described using our OWL ontology for interaction protocols
(see www.csl.sri.com/users/denker/sfw/wf/ip-ex.owl for OWL specifica-
tion). In the figure states are numbered S1, S2, .., S11, while options are repre-
sented by the arrows that lead from one state to the other. Attached to options
are descriptions of the events or messages concerned. Finally, request+response

314 R. Ashri et al.

<owl:Class rdf:about="#ReqAndRespOption">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#followedBy"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#olabel"/>
 <owl:allValuesFrom rdf:resource="#IngoingMessage"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#followedBy"/>
 <owl:allValuesFrom rdf:resource="#StateWithOneReqOptionWOutgoingMessage"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="#olabel"/>
 <owl:allValuesFrom rdf:resource="#OutgoingMessage"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#followedBy"/>
 <owl:allValuesFrom rdf:resource="#StateWithOneReqOptionWIngoingMessage"/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:unionOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

Fig. 3. Request+Response Definition

options are shown with the intermediate state, as described above, within a
dashed line boundary.

The information contained within the model allows us to identify the par-
ties/roles involved, the direction of the interaction, the allowed sequence of in-
teraction as well as relevant state changes of the service which affect the allowed
interactions. As a result, when a client attempts to use this service and obtains a
description of the service it will reveal that the job service requires a data staging
service, and how the interaction with the data staging service takes place. Fur-
thermore, the client can see that the service will attempt to notify it when the
computation has completed, implying that the client should be able to accept
such messages (we discuss this issue further in Section 5.1). Finally, the client
can also identify that there is an event generated by the service after which it
can no longer request the status. As an example of the use of the ontology, see
Figure 5 specification of the first state transition between states S1 and S2.

5 Use of Models

In this section we discuss how the service description model can be used to enable
reasoning in two crucial cases: first, within the context of providing adaptive

Semantic Web Service Interaction Protocols: An Ontological Approach 315

Req+Resp

Req+Resp

Req+Resp

S1 S2

S4

S 5

Message
Type: In
Name: repReadData
Role: DataStaging
Content: (inv. param.)

Message
Type: In
Name: startJob
Role: Client
Content: (inv. param.)

Message
Type: In
Name: getStatus
Role: Client
Content: (inv. param.)

Message
Type: Out
Name: repGetStatus
Role: Client
Content: (inv. param .)

S6

Event
Name

Req

: ComputationComplete

S7
Message
Type: Out
Name: saveData
Role: DataStaging
Content: (inv. param.)

S8

Message
Type: In
Name: repSaveData
Role: DataStaging
Content: (inv. param.)

S9

Message
Type: Out
Name: notify
Role: Client
Content: (inv. param.)

S10

Message
Type: In
Name: getOutputRef()
Role: Client
Content: (inv. param.)

S11

Message
Type: Out
Name: repGetOutputRef()
Role: Client
Content: (inv. param.)

Internal

Req

Req+Resp

S 3

Message
Type: Out
Name: readData
Role: Data Staging
Content: (inv. param.)

Fig. 4. Job service interaction protocol

security devices that make use of semantic descriptions; and, secondly, within
the context of service composition.

5.1 Securing Services

In a previous paper we outlined the requirements for an adaptive security device
(a semantic firewall), which makes use of semantic descriptions of services to
dynamically control lower-level security devices, such as traditional firewalls, so
as to enable only appropriate interactions [28]. Appropriate interactions are de-
fined as those that are expected given the current context and satisfy any policy
requirements associated with the interactions. In that paper, we indicate that
OWL-S would be considered as a language for providing the required semantic
descriptions of services. However, as discussed earlier some crucial features are
missing that would enable its use.

The service description model described here addresses these limitations and
enables a semantic firewall to establish at runtime which are the appropriate
interactions at each stage of the process. Domains offering services to clients can
ensure that their services are only used as the service developer defined through
the interaction protocol of the service and prevent inappropriate messages from
going through. Furthermore, client domains can establish exactly which interac-
tions are initiated by the service and directed towards the client. This will solve a
significant shortcoming of existing grid systems where clients are typically behind
firewalls that disable any externally initiated messages. Consequently, clients are
currently forced to poll the job service as to whether the computation has been

316 R. Ashri et al.

<!-- Roles for job and client services --> <ip:Role rdf:ID="J"/>
<ip:Role rdf:ID="Client"/>

<ip:Content rdf:ID="ContM1"/>

<ip:Message rdf:ID="M1">
 <ip:mtype rdf:resource="&ip;#In"/>
 <ip:mrole rdf:resource="#Client"/>
 <ip:mname rdf:datatype="&xsd;String">startJob</ip:mname>
 <ip:content rdf:resource="#ContM1"/>
</ip:Message>

<ip:Option rdf:ID="O1">
 <ip:followedBy rdf:resource="#S2"/>
 <ip:otype rdf:resource="&ip;#Req"/>
 <ip:olabel rdf:resource="#M1"/>
</ip:Option>

<ip:State rdf:ID="S1">
 <ip:hasOption rdf:resource="#O1"/>
</ip:State>

<ip:State rdf:ID="S2">
 <ip:hasOption rdf:resource="#O2"/>
</ip:State>

<ip:InteractionProtocol rdf:ID="JobServiceInteractionProtocol">
 <ip:hasState rdf:resource="#S1"/>
 <ip:hasState rdf:resource="#S2"/>
 ...
 <ip:hasState rdf:resource="#S11"/>
</ip:InteractionProtocol>

Fig. 5. Ontology use example for job service description

completed. By deploying semantic firewalls and making use of the interaction
protocol model described to identify when and which incoming messages should
be expected we can overcome this problem.

5.2 Inferring Service Dependencies

Application development using the GRIA infrastructure reveals that services are
often developed with other required services in mind. For example, in our moti-
vating scenario the required service was the data staging service. By describing
such dependencies through our interaction protocol, clients, having identified a
required service, can determine exactly what dependencies the service has on any
other services and use that information to attempt to discover suitable services
to fulfill those requirements. The use of roles to define such required services can
aid the discovery process by indicating classes of services that can conform to
such behaviour.

6 Conclusions and Future Work

In this paper we have present a novel model for describing how a service can
interact with clients and other services. This model was developed in response
to the identification of a set of requirements based on real-life experience with

Semantic Web Service Interaction Protocols: An Ontological Approach 317

Grid application development. Existing approaches for service description, most
significantly OWL-S, do not adequately fulfill those requirements and as such
this work can be seen as informing and furthering the discussion on what is an
appropriate model for describing services. In particular, our model offers three
specific features that are crucial for enabling the types of Grid-based scenarios we
aim to support. Firstly, we are able to describe multi-party interactions, with re-
spect to a single service and the different roles those parties occupy. Secondly, we
can differentiate between interactions initiated by the service and those initiated
by other parties. Finally, we can describe relevant service states that influence
the subsequently allowed interactions. As discussed in Section 5 such a model
can play a crucial role in enabling the development of security devices that take
advantage of semantic web-based descriptions of services [28] as well as more
sophisticated compositions of services. We now aim to develop appropriate rea-
soning engines that can be integrated within GRIA for handling such interaction
protocol descriptions, with the particular aim of using them within a semantic
fireall. In addition, we will investigate the integration of policies within the de-
scription as well as the verification of an interaction protocol against domain-
wide policies. Finally, any high level description techniques adopted to describe
and analyse interaction protocols must eventually be grounded in existing and
emerging security specifications like WS-Security [29], WS-SecurityPolicy [30]
and web service standards such as BPEL4WS [12]) in order to enable their en-
forcement at the message level. In consequence, further research will include
investigation of techniques for mapping high level descriptions on to these Web
service standards.

References

1. Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., Drew Mc-
Dermott, S.A.M., Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.: DAML-S:
Web Service Description for the Semantic Web. In Cruz, I.F., Decker, S., Eu-
zenat, J., McGuinness, D.L., eds.: The First Semantic Web Working Symposium,
Stanford University, California (2001) 411–430

2. Motta, E., Dominique, J., Cabral, L., Gaspari, M.: IRS-II: A Framework and
Infrastructure for Semantic Web Services. In Fensel, D., Sycara, K., Mylopoulos,
J., eds.: The Semantic Web - ISWC03. Volume 2870 of LNAI., Springer (2003)
306–318

3. Sycara, K., Paolucci, M., Ankolenkar, A., Srinivasan, N.: Automated Discovery,
Interaction and Composition of Semantic Web Services. Journal of Web Semantics
1 (2003) 27–46

4. Staab, S., van der Aalst, W.M.P., Benjamins, V.R., Sheth, A.P., Miller, J.A., Bus-
sler, C., Maedche, A., Fensel, D., Gannon, D.: Trends and Controversies: Web
Services: Been There, Done That? IEEE Intelligent Systems 18 (2003) 72–85

5. Oliveira, E., Rocha, A.P.: Agents Advanced Features for Negotiation in Electronic
Commerce and Virtual Organisations Formation Processes. In Dignum, F., Sierra,
C., eds.: Agent Mediated Electronic Commerce, The European AgentLink Perspec-
tive. Volume 1991. Springer (2001) 78–97

318 R. Ashri et al.

6. Anuj K. Jain, Manuel Aparico, M.P.S.: Agents for process coherence in virtual
enterprises. Communications of the ACM 42 (1999) 62–69

7. de Roure, D., Jennings, N.R., Shadbolt, N.: The Semantic Grid: A future e-Science
infrastructure. In Berman, F., Fox, G., Hey, A., eds.: Grid Computing: Making
the Gloab Infrastructure a Reality. Wiley (2003) 437–470

8. W3C: Web Services Activity. (http://www.w3.org/2002/ws/)
9. W3C: Simple Object Access Protocol. (http://www.w3.org/TR/SOAP/)

10. Christensen, E., Curbera, F., meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. Technical report, (W3C)

11. Bellwood, T., Cl’ement, L., von Riegen, C.: UDDI Version 3.0.1- UDDI Spec
Technical Committee Specification. Technical report, OASIS (2003)

12. (Ed.), S.T.: Business Process Execution Language for Web Services Version 1.1.
Technical report, BEA Systems, IBM, Microsoft, SAP, Siebel Systems (2003)

13. Mandell, D.J., McIlraith, S.A.: Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In Fensel, D., Sycara, K.,
Mylopoulos, J., eds.: The Semantic Web - ISWC03. Volume 2870 of LNAI., Springer
(2003) 227–241

14. Verma, K., Akkiraju, R., Goodwin, R., Doshi, P., Lee, J.: On Accommodating Inter
Service Dependencies in Web Process Flow Composition. In Payne, T.R., Decker,
K., Lassila, O., Mcilraith, S., Sycara, K., eds.: First International Semantic Web
Services Symposium (2004 AAAI Spring Symposium Series), AAAI (2004)

15. Taylor, S., Surridge, M., Marvin, D.: Grid Resources for Industrial Applications.
In: 2004 IEEE International Conference on Web Services (ICWS’2004). (2004)

16. Ashri, R., Payne, T., Marvin, D., Surridge, M., Taylor, S.: Towards a Semantic
Web Security Infrastructure. In Payne, T.R., Decker, K., Lassila, O., Mcilraith,
S., Sycara, K., eds.: First International Semantic Web Services Symposium (2004
AAAI Spring Symposium Series), AAAI (2004)

17. GRIA: Grid Resources for Industrial Applications. (http://www.gria.org)
18. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maquire,

T., Sandholm, T., Snelling, D., Vanderbilt, P.: Open Grid Services Infrastructure.
Technical report, Global Grid Forum (GGF)

19. Richards, D., Sabou, M.: Semantic Markup for Semantic Web Tools: A DAML-S
Description of an RDF-Store. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The
SemanticWeb - ISWC 2003. Volume 2870., Springer (2003) 274–289

20. Paolucci, M., Ankolenkar, A., Sinivasan, N., Sycara, K.: The DAML-S Virtual
Machine. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The SemanticWeb -
ISWC 2003. Volume 2870., Springer (2003) 290–305

21. Denker, G., Kagal, L., Finin, T., Paolucci, M., Sycara, K.: Security for DAML
Services: Annotation and Matchmaking. In Fensel, D., Sycara, K., Mylopoulos,
J., eds.: The SemanticWeb - ISWC 2003. Volume 2870 of LNCS., Springer (2003)
335–350

22. Mika, P., Sabou, M., Gangemi, A., Oberle, D.: Foudations for DAML-S: Aligning
DAML-S to DOLCE. In Payne, T.R., Decker, K., Lassila, O., Mcilraith, S., Sycara,
K., eds.: First International Semantic Web Services Symposium (2004 AAAI Spring
Symposium Series), AAAI (2004)

23. Fensel, D., Benjamins, V.R., Motta, E., Wielinga, B.J.: UPML: A Framework
for Knowledge System Reuse. In Dean, T., ed.: Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence, Morgan Kaufmann (1999)
16–23

24. Burdett, D., Kavantzas, N.: Ws choreography model overview. Technical report,
W3C (2004)

Semantic Web Service Interaction Protocols: An Ontological Approach 319

25. Milner, R.: Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press (1999)

26. Toivonen, S., Helin, H.: Representing interaction protocols in DAML. In van
Elst, L., Dignum, V., Abecker, A., eds.: Agent Mediated Knowledge Management,
International Symposium AMKM 2003, Stanford, CA, USA, March 24-26, 2003,
Revised and Invited Papers. Volume 2926 of LNCS., Springer (2004) 310–321

27. FIPA ACL Message Structure Specification. Technical report, Foundation for In-
telligent Physical Agents (2002)

28. Ashri, R., Payne, T., Marvin, D., Surridge, M., Taylor, S.: Towards a Semantic
Web Security Infrastructure. In Payne, T.R., Decker, K., Lassila, O., Mcilraith,
S., Sycara, K., eds.: First International Semantic Web Services Symposium (2004
AAAI Spring Symposium Series), AAAI (2004)

29. Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R.: Web Services Security:
SOAP Message Security 1.0 (WS-Security 2004. Technical report, OASIS (2004)

30. Nadalin, A.: Web services security policy. Technical report, IBM, Microsoft, RSA
Security and Verisign (2002)

ASSAM: A Tool for Semi-automatically
Annotating Semantic Web Services

Andreas Heß, Eddie Johnston, and Nicholas Kushmerick

Computer Science Department, University College Dublin, Ireland
{andreas.hess, eddie.johnston, nick}@ucd.ie

Abstract. The semantic Web Services vision requires that each service
be annotated with semantic metadata. Manually creating such metadata
is tedious and error-prone, and many software engineers, accustomed to
tools that automatically generate WSDL, might not want to invest the
additional effort. We therefore propose ASSAM, a tool that assists a user
in creating semantic metadata for Web Services. ASSAM is intended for
service consumers who want to integrate a number of services and there-
fore must annotate them according to some shared ontology. ASSAM is
also relevant for service producers who have deployed a Web Service and
want to make it compatible with an existing ontology. ASSAM’s capa-
bilities to automatically create semantic metadata are supported by two
machine learning algorithms. First, we have developed an iterative rela-
tional classification algorithm for semantically classifying Web Services,
their operations, and input and output messages. Second, to aggregate
the data returned by multiple semantically related Web Services, we have
developed a schema mapping algorithm that is based on an ensemble of
string distance metrics.

1 Introduction

The vision of semantic Web Services is to provide the means for fully automated
discovery, composition and invocation of loosely coupled software components.
One of the key efforts to address this “semantic gap” is the well-known OWL-S
ontology [1].

However, software engineers who are developing Web Services usually do not
think in terms of ontologies, but rather in terms of their programming tools.
Existing tools for both the Java and .NET environments support the automatic
generation of WSDL. We believe that it would boost the semantic service web if
similar tools existed to (semi-) automatically generate OWL-S or a similar form
of semantic metadata.

In this paper we will present a tool called ASSAM—Automated Semantic
Service Annotation with Machine Learning—that addresses these needs. AS-
SAM consists of two parts, a WSDL annotator application, and OATS, a data
aggregation algorithm.

We describe the WSDL annotator application in Sec. 2. This component of
ASSAM uses machine learning to provide the user with suggestions on how to

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 320–334, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 321

annotate the elements in the WSDL. In Sec. 3 we describe the iterative rela-
tional classification algorithm that provides these suggestions. We evaluate our
algorithms on a set of 164 Web Services.1

Second, in Sec. 4, we will describe OATS, a novel schema mapping algorithm
specifically designed for the Web Services context, and empirically demonstrate
its effectiveness on 52 invokable Web Service operations. OATS addresses the
problem of aggregating the heterogenous data from several Web Services.

2 ASSAM: A Tool for Web Service Annotation

One of the central parts of ASSAM is the WSDL annotator application. The
WSDL annotator is a tool that enables the user to semantically annotate a Web
Service using a point-and-click interface. The key feature of the WSDL annotator
is the ability to suggest which ontological class to use to annotate each element
in the WSDL.

Use Cases. ASSAM is designed primarily for users who want to annotate many
similar services. Typically, these will be end users wanting to integrate several
similar Web Services into his or her business processes. But the annotation task
might also be performed by a centralized semantic Web Service registry.

Our tool could also be useful for programmers who are only interested in
annotating a single Web Service they have created.2 In order to make his or her
service compatible with existing services, a developer might want to annotate it
with the same ontology that has already been used for some other Web Services.
The developer could import the existing Web Services in ASSAM and use them
as training data in order to obtain recommendations on how to annotate his or
her own service.

Functionality. Fig. 1 shows the ASSAM application. Note that our application’s
key novelty—the suggested annotations created automatically by our machine
learning algorithm—are shown in the small pop-up window.

The left column in the main window contains a list of all Web Services
currently and the category ontology. Web Services can be associated with a
category by clicking on a service in a list and then on a node in the category
tree. When the user has selected a service and wants to focus on annotating it
this part of the window can be hidden.

The middle of the window contains a tree view of the WSDL. Port types,
operations, messages and complex XML schema types are parsed from the WSDL
and shown in a tree structure. The original WSDL file is also shown as well as
plain text descriptions from the occasional documentation tags within the WSDL
or a plain text description of the service as a whole, such as often offered by a
UDDI registry or a Web Service indexing web site.
1 All our our experimental data is available in the Repository of Semantic Web Services
http://smi.ucd.ie/RSWS.

2 Thanks to Terry Payne who pointed out this use case.

322 A. Heß, E. Johnston, and N. Kushmerick

Fig. 1. ASSAM uses machine learning techniques to semi-automatically annotate Web
Services with semantic metadata.

When the user clicks on an element in the WSDL tree view, the correspond-
ing ontology is shown in the right column and the user can select an appropriate
class by clicking on an element in the ontology view. Currently different on-
tologies for datatypes and operations are used. At present we allow annotation
for operations, message parts and XML schema types and their elements. Port
types or messages cannot be annotated, because there is no real semantic mean-
ing associated with the port type or the message itself that is not covered by the
annotation of the operations or the message parts.

Once the annotation is done it can be exported in OWL-S. The created
OWL-S consists of a profile, a process model, a grounding and a concept file if
complex types where present in the WSDL. Note that this also includes XSLT
transformations as needed in the OWL-S grounding to map between the tradi-
tional XML Schema representation of the input and output data and the OWL
representation.

Limitations. Because we do not handle composition and workflow in our machine
learning approach, the generated process model consists only of one atomic pro-
cess per operation. The generated profile is a subclass from the assigned category
of the service as a whole – the category ontology services as profile hierarchy.
The concept file contains a representation of the annotated XML schema types
in OWL-S. Note that it is up to the ontology designer to take care that the
datatype ontology makes sense and that it is consistent. No inference checks
are done on the side of our tool. Finally, the a grounding is generated that also
contains the XSLT mappings from XML schema to OWL and vice versa.

For the OWL export, we do not use the annotations for the operations at
the moment, as there is no direct correspondence in OWL-S for the domain of

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 323

an operation. Atomic processes in OWL-S are characterized only through their
inputs, outputs, preconditions and effects; and for the profile our tool uses the
service category.

Related Work. Paolucci et al addressed the problem of creating semantic meta-
data (in the form of OWL-S) from WSDL [2]. However, because WSDL contains
no semantic information, this tool provides just a syntactic transformation. The
key challenge is to map the XML data used by traditional Web Services to classes
in an ontology.

Currently, Patil et al [3] are also working on matching XML schemas to
ontologies in the Web Services domain. They use a combination of lexical and
structural similarity measures. They assume that the user’s intention is not to
annotate similar services with one common ontology, rather they also address
the problem of choosing the right domain ontology among a set of ontologies.

Sabou [4] addresses the problem of creating suitable domain ontologies in
the first place. She uses shallow natural language processing techniques to assist
the user in creating an ontology based on natural language documentation of
software APIs.

3 Iterative Relational Classification

In this section, we will describe the machine learning algorithms behind AS-
SAM’s annotation wizard in greater detail. The OATS algorithm for data aggre-
gation will be explained in the next section.

For our learning approach, we cast the problem of classifying operations and
datatypes in a Web Service as a text classification problem. Our tool learns
from Web Services with existing semantic annotation. Given this training data,
a machine learning algorithm can generalize and predict semantic labels for
previously unseen Web Services.

In a mixed-initiative setting, these predictions do not have to be perfectly
accurate to be helpful. In fact, the classification task is quite hard, because the
domain ontologies can be very large. But for that reason it is already very helpful
for a human annotator if he or she would have to choose only between a small
number of ontological concepts rather than from the full domain ontology. In
previous work [5] we have shown that the category of a services can be reliably
predicted, if we stipulate merely that the correct concept be one of the top few
(e.g., three) suggestions.

Terminology. Before describing our approach in detail, we begin with some ter-
minology. By introducing this terminology we do not advocate a new standard.
Instead we believe that our approach is generic and independent of the actual
format used for the semantic Web Service description.

We use the word category to denote the semantic meaning of the service as
a whole, such as “E-Mail”, “Weather Information” etc. The category ontology
corresponds to a profile hierarchy in OWL-S.

324 A. Heß, E. Johnston, and N. Kushmerick

We use the word domain to denote the semantic meaning of an operation,
such as “Send an email” or “Query weather by ZIP code”. An operation in
WSDL usually maps to an atomic process in OWL-S, but there is no direct
relation of the domain of an operation to OWL-S, as atomic processes are only
characterized through their inputs, outputs, preconditions and effects. One could
think of the domain as describing the semantics of the preconditions and effects,
but we currently do not use the domain annotation for our OWL-S export.

We use the word datatype to denote the semantic type of a single variable,
such as “Receiver’s email address”, “ZIP Code” or “temperature”. This usage
of the word datatype is consistent with how the word is used when describing
a property in an ontology, but should not be confused with low-level syntactic
datatypes such as “integer” or “string”.

For information retrieval or classification tasks the objects that are classi-
fied or searched are usually referred to as documents. When we use the word
document, we mean the Web Service as whole as represented by its WSDL. We
use document part to denote an object within the Web Service that we want
to classify: Operations, input and output messages, XML schema types etc. are
document parts.

Iterative Classification Ensemble. The basic idea behind our approach is to ex-
ploit the fact that there are dependencies between the category of a Web Service,
the domains of its operations and the datatypes of its input and output parame-
ters. In previous work [5], we exploited these dependencies in a Bayesian setting
and evaluated it on Web forms. In this paper, we present an iterative classifica-
tion algorithm similar to the one introduced by Neville and Jensen in [6].

Like any classification system, our algorithm is based on a set of features of
the services, operations and parameters. Following [6], we distinguish between
intrinsic and extrinsic features. The intrinsic features of a document part are
simply its name and other text that is associated with it (e.g., text from the
occasional documentation tags). Extrinsic features derive from the relationship
between different parts of a document. We use the semantic classes of linked
document parts as extrinsic features.

Initially, when no annotations for a service exist, the extrinsic features are
unknown. After the first pass, where classifications are made based on the in-
trinsic features, the values of the extrinsic features are set based on the previous
classifications. Of course, these classifications may be partially incorrect. The
classification process is repeated until a certain termination criterion (e.g. either
convergence or a fixed number of iterations) is met. Fig. 2 shows an illustration
of the classification phase of the algorithm.

Our iterative algorithm differs in some points from Neville’s and Jensen’s
algorithm. In their approach, one single classifier is trained on all (intrinsic and
extrinsic) features. In a variety of tasks, ensembles of several classifiers have
been shown to be more effective (e.g., [7]). For this reason, we train two separate
classifiers, one on the intrinsic features (“A”) and one on the extrinsic features
(“B”), and vote their predictions. Another advantage of combining the evidence
in that way is that the classifier cannot be mislead by missing features in the

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 325

beginning when the extrinsic features are yet unknown, because the classifier
trained on the extrinsic features is simply not used for the first pass.

This split approach, where the A and B classifiers are combined using vot-
ing, works best, when both views would by themselves be sufficient to make a
prediction. However, the fact that a Web Service belongs to a certain category
(e.g. “book selling”) is by itself not sufficient to classify its input parameters,
but the information is still useful. We therefore introduce a second mode for
incorporating the extrinsic features: We train a set of classifiers on the intrinsic
features of the datatypes, but each of them is only on Web Services that belong
to one category3. We denote this set of specialized classifiers as C. To avoid
biasing the algorithm too strongly, we still combine the results of the C classifier
with the A classifier in each iteration. For each level we use either B or the C
classifiers, but not both. We chose the C method for the datatypes and the B
method for the category and the domain.

We did not exploit every possible dynamic extrinsic feature. We used static
extrinsic features on the domain and datatype level by incorporating text from
children nodes: Text associated with messages was added to the text used by the
operations classifier, and text associated with elements of complex types were
added to the text used by the datatype classifier classifying the complex type
itself. In Fig. 2 we denote this as “add”. Note that this appears to contradict
our earlier results [5], where we claimed that simply adding text from child
nodes does not help. In [5], we where classifying the category level only, and
the bag of words for the domain and datatype classifiers consisted of text for all
operations/datatypes in that service. In our present experiment, the classifier for
the operations and datatypes classify one single operation or element only, and
in this case it apparently helps to add more text. The features we used and the
feedback structures for the dynamic features are based on empiric preliminary
tests. We used a fixed number of 5 iterations. Fig. 2 shows the setup that was
eventually used.

In the evaluation section, we report results for this setup. For a more detailed
discussion of the parameters of our algorithm and their effects the reader is
referred to our paper [8] that describes the algorithm in greater detail from a
machine learning point of view.

Evaluation. We evaluated our algorithm using a leave-one-out methodology.
We compared it against a baseline classifier with the same setup for the static
features, but without using the dynamic extrinsic features.

To determine the upper bound of improvement that can be achieved using
the extrinsic features, we tested our algorithm with the correct class labels given
as the extrinsic features. This tests the performance of predicting a class label

3 To avoid an over-specialization, these classifiers are actually not trained on instances
from a single category, but rather on instances from a complete top-level branch of
the hierarchically organized category ontology. Note that this is the only place where
we make use of the fact that the class labels are organized as an ontology, and we
do not do any further inference.

326 A. Heß, E. Johnston, and N. Kushmerick

Service
Category

Messages
Datatypes

C

Operations
Domains

B

B add

add

Fig. 2. Feedback structure and algorithm.

for a document part when not only the intrinsic features but also the dynamic
features, the labels for all other document parts, are known.

We also compared it against a non-ensemble setup, where the extrinsic fea-
tures are not added using a separate classifier but rather are just appended to
the static features. Classification is then done with a single classifier. This setup
closely resembles the original algorithm proposed by Neville and Jensen. Again,
the same set of static features was used.

In the evaluation we ignored all classes with one or two instances, such as
occurred quite frequently on the datatype level. The distributions are still quite
skewed and there is a large number of classes. There are 22 classes on the category
level, 136 classes on the domain level and 312 classes on the datatype level.

Fig. 3 show the accuracy for categories, domains and datatypes. As mentioned
earlier, in mixed-initiative scenario such as our semi-automated ASSAM tool, it
is not necessary to be be perfectly accurate. Rather, we strive only to ensure that
that the correct ontology class is in the top few suggestions. We therefore show
how the accuracy increases when we allow a certain tolerance. For example, if
the accuracy for tolerance 9 is 0.9, then the correct prediction is within the top
10 of the ranked predictions the algorithm made 90% of the time.

We could not achieve good results with the non-ensemble setup. This setup
scored worse than the baseline. For the datatypes, even the ceiling accuracy was
below the baseline.

Note that on the category level incorporating the additional evidence from
the extrinsic features does not help. In fact, for some tolerance values the ceiling
accuracy is even worse than the baseline.

On the datatype level, our algorithm achieves 31.2% accuracy, where as the
baseline scores only at 24.5%. Thus, our algorithm improves performance by al-
most one third. The overall performance might be considered quite low, but due
to the high number of classes it is a very hard classification problem. Given that

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 327

Fig. 3. Accuracy of our algorithm on the three kinds of semantic metadata as a function
of prediction tolerance.

in two of three cases the user has to choose only between 10 class labels rather
than between all 312 labels in the datatype ontology we are still convinced that
this could save a considerable amount of workload. We evaluated the statistical
significance of the performance improvement of our algorithm with a Wilcoxon
Matched-Pairs Signed-Ranks Test. Our algorithm performs significantly better
with a confidence value of over 99.9%. On the domain level, our approach in-
creases the accuracy for exact matches from 26.3% to 28%. This is statistically
significant with a confidence value of 96% according to a Wilcoxon Test. For
both significance tests we performed a 20-fold random split.

Related work. We already mentioned the algorithm by Neville and Jensen [9],
but iterative classification algorithms were also used for link-based hypertext
classification by Lu and Getoor [10]. Relational learning for hypertext classifica-
tion was also explored by Slattery et al., e.g. [11,12]. A difference between their
problem setting and ours is that the links in our dataset are only within one
Web Services, where in the hypertext domain potentially all documents can link
to each other.

4 Aggregating Data from Web Services

ASSAM uses the machine learning technique just described to create semantic
metadata that could assist (among other applications) a data integration sys-
tem that must identify and invoke a set of Web Services operations that can
answer some query. In order to automatically aggregate the resulting hetero-
geneous data into some coherent structure, we are currently developing OATS

328 A. Heß, E. Johnston, and N. Kushmerick

(Operation Aggregation Tool for Web Services), a schema matching algorithm
that is specifically suited to aggregating data from Web Services.

While most schema matching algorithms don’t consider instance data, those
that do take as input whatever data happens to be available. In contrast, OATS
actively probes Web Services with a small set of related queries, which results
in contextually similar data instances and greatly simplifies the matching pro-
cess. Another novelty of OATS is the use of ensembles of distance metrics for
matching instance data to overcome the limitations of any one particular metric.
Furthermore, OATS can exploit training data to discover which distance metrics
are more accurate for each semantic category.

As an example, consider two very simple Web Service operations that return
weather information. The first operation may return data such as

<weather><hi>87</hi><lo>56</lo><gusts>NE, 11 mph</gusts></weather>

while the second operation may return data such as
<fcast><tmax>87</tmax><tmin>57</tmin><wndspd>10 mph (N)</wndspd></fcast>.
The goal of data aggregation is to consolidate this heterogeneous data into a
single coherent structure. This sort of schema matching task is challenging in
many ways. The schemas to be matched are usually created by different people,
so there may be major differences in the structure and the vocabulary used.
Related schemas may well not overlap much – the element set of one schema S
may form only a small subset of the element set of another schema T . Further-
more, mappings between elements may be complex: an element of S may not
match a single element, but some combination of elements in T . Finally, schema
matching is computationally expensive because the number of potential matches
is exponential in the size of the schemas.

In order to aggregate Web Service operation outputs, the semantically related
elements among this heterogeneous XML data must be identified and grouped.
Web Service aggregation can therefore be viewed as an instance of the schema
matching problem. A major difference between traditional schema matching and
our Web Service aggregation task is that we can exert some control over the
instance data. Our OATS algorithm probes each operation with arguments that
correspond to the same real-world entity. For example, to aggregate operation
O1 that maps a ZIP code to its weather forecast, and operation O2 that maps a
latitude/longitude pair to its forecast, OATS could first select a specific location
(e.g., Seattle), and then query O1 with “98125” (a Seattle ZIP code), and query
O2 with “47.45N/122.30W” (Seattle’s geocode). Probing each operation with
the related arguments should ensure that the instance data of related elements
will closely correspond, increasing the chances of identifying matching elements.

As in ILA [13], this probe-based approach is based on the assumption that the
operations overlap, i.e, there exists a set of real-world entities that are covered
by all of the sources to be aggregated. For example, while two weather Web
Service need not over exactly the same locations in order to be aggregated, we
do assume that there exists a set of locations covered by both.

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 329

We assume that the data integration system knows how to invoke the op-
erations being aggregated, i.e that it can map the real-world probe entities to
values for the operations’ input parameters.

The OATS algorithm. The input to the OATS algorithm is a set of Web Ser-
vice operations O = {o1, o2, . . . , on}, a set of probe objects P = {p1, . . . , pm},
sufficient metadata about the operations so that each operation can be invoked
on each probe (V = {v1, . . . , vn}, where vi is a mapping from a probe pk ∈ P
to the input parameters that will invoke oi on pk)4, and a set of string distance
metrics D = {d1, d2, . . .}.

When invoked, an operation oi ∈ O generates data with elements Ei =
{ei

1, e
i
2, . . .}, where E = ∪iEi is the set of all the operations’ elements. The

output of the OATS algorithm is thus a partition of E. The intent is that this
partition should correspond to semantically equivalent sets of elements.

One of the distinguishing features of our algorithm is the use of an ensemble of
distance metrics for matching elements. For example, when comparing the gusts
and wndspd instance data above, it makes sense to use a token based matcher
such as TFIDF, but when comparing hi and tmax, an edit-distance based metric
such as Levenshtein is more suitable. The OATS algorithm calculates similari-
ties based on the average similarities of an ensemble of distance metrics. Later,
we describe an extension to OATS which assigns weights to distance metrics
according to how well they correlate with a set of training data.

The OATS algorithm proceeds as follows. Each of the n operations are in-
voked with the appropriate parameters for each of the m probe objects. The
resulting nm XML documents are stored in a three-dimensional table T . The
T [i, ·, ·] entries of this table relate to operation oi ∈ O, and the T [·, ·, k] entries re-
late to probe pk ∈ P . Specifically, T [i, j, k] stores the value returned for element
ei

j ∈ Ei by operation oi for probe pk.
Each element is then compared with every other element. The distance

between an element pair (ei
j , e

i′

j′) ∈ E × E is calculated for each string dis-
tance metric d� ∈ D, and these values are merged to provide an ensemble dis-
tance value for these elements. The similarity between two elements ei

j ∈ Ei

and ei′

j′ ∈ Ei′ is defined as D(ei
j , e

i′

j′) = 1
|D|

∑
�(d̄�(ei

j , e
i′

j′) − m(d̄�))/R(d̄�),

where d̄�(ei
j , e

i′

j′) = 1
m

∑
k d�(T [i, j, k], T [i′, j′, k]), M(d̄�) = max(ei

j
,ei′

j′)
d̄�(ei

j , e
i′

j′),

m(d̄�) = min(ei
j
,ei′

j′)
d̄�(ei

j , e
i′

j′), and R(d̄�) = M(d̄�)−m(d̄�).

By computing the average distance d̄� over m related sets of element pairs,
we are minimizing the impact of any spurious instance data. Before merging
the distance metrics, they are normalized relative to the most similar and least
similar pairs, as different metrics produce results in different scales.

To get the ensemble similarity D(ei
j , e

i′

j′) for any pair we combine the normal-
ized distances for each dj . In the standard OATS algorithm, this combination is

4 In our implementation, the probes are encoded as a table of attribute/value pairs,
and vi is the subset of attributes needed for operation oi.

330 A. Heß, E. Johnston, and N. Kushmerick

simply an unweighted average. We also show below how weights can be adap-
tively tuned for each element-metric pair.

Given the distances between each pair of elements, the final step of the OATS
algorithm is to cluster the elements. This is done using the standard hierarchical
agglomerative clustering (HAC) approach. Initially, each element is assigned to
its own cluster. Next, the closest pair of clusters is found (using the single, com-
plete, or average link clustering methods) and these are merged. The previous
step is repeated until some termination condition is satisfied. At some point in
the clustering, all of the elements which are considered similar by our ensemble
of distance metrics will be merged, and further iterations would only force to-
gether unrelated clusters. It is at this point that we should stop clustering. Our
implementation relies on a user-specified termination threshold.

Learning distance metric weights. Instead of giving an equal weight to each
distance metric for all elements, it would make sense to treat some metrics as
more important than others, depending on the characteristics of the data being
compared. We now show how we can exploit training data to automatically
discover which distance metrics are most informative for which elements. The
key idea is that a good distance metric should have a small value between pairs
of semantically related instances, while at the same time having a large value
between pairs of semantically unrelated instances.

We assume access to a set of training data: a partition of some set of
elements and their instance data. Based on such training data, the good-
ness of metric dj for a non-singleton cluster C is defined as G(dj , C) =
G′(dj , C)/ 1

c

∑
C′ G′(dj , C

′), where c is the number of non-singleton clusters C ′

in the training data,
Dintra(dj , C) is the average intra-cluster distance—i.e., the average distance
between pairs of elements within C, Dinter(dj , C) is the average inter -cluster
distance—i.e., the average distance between an element in C and an element
outside C, and G′(dj , C) = Dinter(dj , C) − Dintra(dj , C). A distance metric dj

will have a score G(dj , C) > 1 if it is “good” (better than average) at separating
data from cluster C from data outside the cluster, while G(dj , C) < 1 suggests
that dj is a bad metric for C.

Given these goodness values, we modify OATS in two ways. The first ap-
proach (which we call “binary”) gives a weight of 1 to metrics with G > 1,
and gives weight 0 to (ie, ignores) metrics with G < 1. The second approach
(“proportional”), assigns weights that are proportional to the goodness values.

Evaluation. We evaluated our Web Service aggregation tool on three groups of
semantically related Web Service operations: 31 operations providing informa-
tion about geographical locations, 8 giving current weather information, and 13
giving current stock information. To enable an objective evaluation, a reference
partition was first created by hand for each of the three groups. The partitions
generated by OATS were compared to these reference partitions. In our evalu-
ation, we used the definition of precision and recall proposed by [5] to measure
the similarity between two partitions.

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 331

address city state fullstate zip areacode lat long icao
110 135th Avenue New York NY New York 11430 718 40.38 -74.75 KJFK
101 Harborside Drive Boston MA Massachusetts 02128 781 42.21 -71.00 KBOS
18740 Pacific Highway South Seattle WA Washington 98188 206 47.44 -122.27 KSEA
9515 New Airport Drive Austin TX Texas 78719 512 30.19 -97.67 KAUS

Fig. 4. The four probe objects for the zip and weather domains.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

Levenstein
TFIDF

Ensemble

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

re
ci

si
on

Recall

Levenstein
TFIDF

Ensemble

Fig. 5. Comparison of ensemble method against Levenshtein and TFIDF: F1 as a
function of the HAC termination threshold (left), and precision/recall curve (right).

We ran a number of tests on each domain. We systematically vary the HAC
termination threshold, from one extreme in which each element is placed in its
own cluster, to the other extreme in which all elements are merged into one large
cluster.

The ensemble of distance metrics was selected from Cohen’s SecondString
library [14]. We chose eight of the most effective metrics, consisting of a variety
of character-based, token-based and hybrid metrics: TFIDF, SlimTFIDF, Jaro,
CharJaccard, Levenstein, SmithWaterman, Level2Jaro and Level2JaroWinkler.

Each probe entity is represented as a set of attribute/value pairs. For exam-
ple, Fig. 4 shows the four probes used for the weather and location information
domains. We hand-crafted rules to match each of an operation’s inputs to an
attribute. To invoke an operation, the probe objects (ie, rows in Fig. 4) are
searched for the required attributes. With semantically annotated Web Services,
attributes could be automatically matched with the input fields of operations.

Results. First, we show that by using an ensemble of different string metrics,
we achieve better results than using the metrics separately. Fig. 5 compares
the ensemble approach to the Levenshtein and TFIDF metrics individually. We
report the average performance over the three domains in two ways: F1 as a
function of the HAC termination threshold, and a precision/recall curve. Note
that, as expected, F1 peaks at an intermediate value of the HAC termination
threshold. The average and maximum F1 is higher for the ensemble of metrics,
meaning that it is much less sensitive to the tuning of the HAC termination
threshold.

332 A. Heß, E. Johnston, and N. Kushmerick

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

F
1

HAC termination threshold

proportional
binary

untrained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

proportional
binary

untrained

Fig. 6. Performance of OATS: F1 as a function of the HAC termination threshold
(left), and precision/recall curve (right).

We now compare the performance of OATS with our two methods (binary
and proportional) for using the learned string metric weights. These results are
based on four probes. We used two-fold cross validation, where the set of op-
erations was split into two equal-sized subsets, Strain and Stest. We used just
two folds due to the relatively small number of operations. Strain was clustered
according to the reference clusters, and weights for each distance metric were
learned. Clustering was then performed on the entire set of elements. Note that
we clustered the training data along with the test data in the learning phase,
but we did not initialize the clustering process with reference clusters for the
training data prior to testing. We measured the performance of the clustering
by calculating precision and recall for just the elements of Stest. Fig. 6 shows F1
as a function of the HAC termination threshold, and the precision/recall curves
for the binary and proportional learners and the original algorithm. Although
neither of the learning methods increase the maximum F1, they usually increase
the average F1, suggesting that learning makes OATS somewhat less sensitive
to the exact setting of the HAC termination threshold.

Finally, we have found that accuracy improves with additional probe queries,
but that performance is beginning to level off after just a few probes. Recall
that we used up to four probe queries. We note that accuracy improved more
between one and two queries, than between three and four. We anticipate that
the performance increase will rapidly slow beyond a relatively small number
of probes. Note that we did not carefully select the probe objects in order to
maximize performance. Indeed, some of the operations returned missing elements
for some probes. Our experiments show that the active invocation approach
means makes OATS robust to even a “bad” choice of probes.

Related Work. The schema matching problem has been studied in various do-
mains since the early 1980’s, and many different approaches have been suggested,
each exploiting various features of the instance data and/or schema. This previ-
ous work can be broadly classified according to whether it is schema vs. instance
based, and whether it is structural or linguistic based. While most prior research
on matching systems has focused on the schema level (e.g. [15,16,17]), the OATS

ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services 333

algorithm demonstrates that instance-based methods are well suited to scenarios
such as Web Service aggregation where instance data can be actively requested.

OATS has been influenced specifically by two prior research efforts: LSD
[18] and ILA [13]. LSD uses similarities computed at both the schema and the
instance level. LSD treats schema matching as a classification task – a number
of trained learner-modules predict labels for each element and these predictions
are combined with a meta learner. In contrast to OATS, a training phase is
obligatory in LSD.

ILA [13] learns models of relational Web information sources, where each
model consists of a number of attributes and values. ILA maps between its
own and the source’s relational schemas by probing the information source with
values from its model, and explaining each field of the resulting string in terms
of its own internal model categories. Like OATS, ILA assumes that there is some
overlap between its objects and the contents of each source.

5 Discussion

In this paper, we have presented ASSAM, a tool for annotating Semantic Web
Services. We have presented the WSDL annotator application, which provides
an easy-to-use interface for manual annotation, as well as machine learning as-
sistance for semi-automatic annotation. Our application is capable of exporting
the annotations as OWL-S.

We have presented a new iterative relational classification algorithm that
combines the idea of existing iterative algorithms with the strengths of ensemble
learning. We have evaluated this algorithm on a set of real Web Services and
have shown that it outperforms a simple classifier and that it is suitable for
semi-automatic annotation.

We have also shown how semantically annotated Web Services could be used
to enhance data aggregation systems, and how Web Service aggregation can
be viewed as an instance of the schema matching problem in which instance
data is particularly important. We have illustrated how actively probing Web
Services with a small number of inputs can result in contextually related instance
data which makes matching easier. Our experiments demonstrate how using an
ensemble of distance metrics performs better than the application of individual
metrics. We also proposed a method for adaptively combining distance metrics
in relation to the characteristics of the data being compared, which although
not always successful, usually increased the average F1. We plan to examine the
use of more sophisticated techniques for aggregating the ensemble matchers.

One of the constraints of our aggregation system is that there must be an
overlap between the sources, i.e all of the sources must “know about” the entity
being queried. Ultimately, we would like our system to learn new objects from
some information sources that could be used to probe other partially overlap-
ping sources. We envisage a tool that, given a set of seed Web Services and probe
queries, could find sets of related Web Services and learn new probe objects to
query them with. Such visions would require the automated discovery, composi-

334 A. Heß, E. Johnston, and N. Kushmerick

tion and invocation of Web Services, but this interoperability requires Services
to be semantically annotated. We believe that the methods we have presented
here are a reasonable first step towards the realization of these goals.

Acknowledgments. This research was supported by grants SFI/01/F.1/C015
from Science Foundation Ireland, and N00014-03-1-0274 from the US Office of
Naval Research. We thank Martina Naughton, Jessica Kenny, Wendy McNulty
and Andrea Rizzini for helping us manually annotating the corpus of semantic
Web Services used in our evaluation. Thanks to Thomas Gottron for a helpful
discussion.

References

1. The DAML Services Coalition: OWL-S 1.0. White Paper (2003)
2. Paolucci, M., Srinivasan, N., Sycara, K., Nishimura, T.: Towards a semantic chore-

ography of web services: From WSDL to DAML-S. In: ISWC. (2003)
3. Patil, A., Oundhakar, S., Sheth, A., Verma, K.: Meteor-s web service annotation

framework. In: 13th Int. WWW Conf., New York, USA (2004)
4. Sabou, M.: From software APIs to web service ontologies: a semi-automatic ex-

traction method. In: ISWC, Hiroshima, Japan (2004)
5. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services.

In: ISWC, Sanibel Island, FL, USA (2003)
6. Neville, J., Jensen, D.: Statistical relational learning: Four claims and a survery.

In: Workshop SRL, Int. Joint. Conf. on AI. (2003)
7. Dietterich, T.G.: Ensemble methods in machine learning. In: Lecture Notes in

Computer Science. (Volume 1857.)
8. Heß, A., Kushmerick, N.: Iterative ensemble classification for relational data: A

case study of semantic web services. In: ECML, Pisa, Italy (2004)
9. Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI Work-

shop SRL. (2000)
10. Lu, Q., Getoor, L.: Link-based classification. In: Int. Conf. on Machine Learning,

Washington, D.C. (2003)
11. Ghani, R., Slattery, S., Yang, Y.: Hypertext categorization using hyperlink patterns

and meta data. In: 18th Int. Conf. on Machine Learning. (2001)
12. Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categoriza-

tion. Journal of Intelligent Information Systems 18 (2002) 219–241
13. Perkowitz, M., Etzioni, O.: Category translation: Learning to understand infor-

mation on the internet. In: Int. Joint Conf. on AI. (1995)
14. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance

metrics for name-matching tasks. In: Int. Joint Conf. on AI, Workshop on Inf.
Integr. on the Web. (2003)

15. Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating web
data. In: VLDB. (2002) 598–609

16. Do, H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: VLDB. (2002)

17. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: VLDB, Rome, Italy (2001)

18. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources:
A multistrategy approach. Machine Learning 50 (2003) 279–301

Information Gathering During Planning for Web
Service Composition

Ugur Kuter1, Evren Sirin1, Dana Nau1, Bijan Parsia2, and James Hendler1

1 Department of Computer Science,
University of Maryland, College Park, MD 20742, USA,

{ukuter,evren,nau,hendler}@cs.umd.edu
2 MIND Lab, University of Maryland,

8400 Baltimore Ave., College Park, MD 20742, USA
bparsia@isr.umd.edu

Abstract. Hierarchical Task-Network (HTN) based planning tech-
niques have been applied to the problem of composing Web Services,
especially when described using the OWL-S service ontologies. Many of
the existing Web Services are either exclusively information providing
or crucially depend on information-providing services. Thus, many in-
teresting service compositions involve collecting information either dur-
ing execution or during the composition process itself. In this paper,
we focus on the latter issue. In particular, we present ENQUIRER, an
HTN-planning algorithm designed for planning domains in which the in-
formation about the initial state of the world may not be complete, but
it is discoverable through plan-time information-gathering queries. We
have shown that ENQUIRER is sound and complete, and derived several
mathematical relationships among the amount of available information,
the likelihood of the planner finding a plan, and the quality of the plan
found. We have performed experimental tests that confirmed our the-
oretical results and that demonstrated how ENQUIRER can be used in
Web Service composition.

1 Introduction

Web Services are Web accessible, loosely coupled chunks of functionality with
an interface described in a machine readable format. Web Services are designed
to be composed, that is, combined in workflows of varying complexity to pro-
vide functionality that none of the component services could provide alone. AI
planning techniques can be used to automate Web Service composition by rep-
resenting services as actions, and treating service composition as a planning
problem. On this model, a service composition is a ground sequence of service
invocations that accomplishes a goal or task.

OWL-S [1] provides a set of ontologies to describe Web Services in a more ex-
pressive way than allowed by the Web Service Description Language (WSDL). In
OWL-S, services can be described as complex or atomic processes with precondi-
tions and effects. This view enables us to translate the process-model constructs

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 335–349, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

336 U. Kuter et al.

directly to HTN methods and operators [2]. Thus, it is possible to use HTN
planners to plan for composing Web Services that are described in OWL-S.

However, using AI planning techniques for Web Services composition intro-
duces some challenges. Traditional planning systems assume that the planner
begins with complete information about the world. However, in service composi-
tion problems, most of the information (if it is available at all) must be acquired
from Web Services, which may work by exposing databases, or may require prior
use of such information-providing services. For example, an appointment making
service might require the planner to determine an available appointment time
first. In many cases, it is not feasible or practical to execute all the information-
gathering services up front to form a complete initial state of the world. In such
cases, it makes sense to gather information during planning.

In this paper, we describe ENQUIRER, an HTN-planning algorithm that can
solve Web Service composition problems that require gathering information dur-
ing the composition process. ENQUIRER is based on the SHOP2 planning system
[3], and designed for planning domains in which the information about the ini-
tial world state may not be complete. In such cases, ENQUIRER issues queries
to obtain the necessary information, it postpones all decisions related to that
information until a response comes in, and it continues examining alternative
branches of the search space. By gathering extra information at plan time, the
planner is able to explore many more branches in the search space than the initial
state ordinarily permits. Since external queries often dominate planning time,
and, being distributed, are strongly parallelizable, ENQUIRER’s non-blocking
strategy is sometimes able to dramatically improve the time to find a plan.

We also provide the sufficient conditions to ensure the soundness and com-
pleteness of ENQUIRER, derive a recurrence relation for the probability of
ENQUIRER finding a plan, and prove theoretical results that give mathemat-
ical relationships among the amount of information available to ENQUIRER and
the probability of finding a plan. These relationships are confirmed by our ex-
perimental evaluations. We describe how the generic ENQUIRER algorithm can
be used to solve the problem of composing Web Services, and test the efficiency
of the algorithm on real-world problems.

2 Motivations

HTN-planning algorithms have proven promising for Web service composition.
Many service-oriented objectives can be naturally described with a hierarchical
structure. HTN-style domains fit in well with the loosely-coupled nature of Web
services: different decompositions of a task are independent so the designer of a
method does not have to have close knowledge of how the further decompositions
will go. Hierarchical modeling is the core of the OWL-S [1] process model to the
point where the OWL-S process model constructs can be directly mapped to
HTN methods and operators. In our previous work [2], we have shown how such
a translation can be done for SHOP2 [3]. In this work, we have kept the basic
SHOP2-language mapping intact, and focused on extending the way SHOP2

Information Gathering During Planning for Web Service Composition 337

deals with plan-time information gathering.1 We call the extended algorithm
ENQUIRER.

We have identified three key features of service-oriented planning:

• The planner’s initial information about the world is incomplete. When the
size and nature of Web is considered, we cannot assume the planner will have
gathered all the information needed to find a plan. As the set of operators
and methods grows very large (i.e., as we start using large repositories of
heterogeneous services) it is likely that trying to complete the initial state
will be wasteful at best and practically impossible in the common case.

• The planning system should gather information during planning. While not
all the information relevant to a problem may have already been gathered,
it will often be the case that it is accessible to the system. The relevance of
possible information can be determined by the possible plans the planner is
considering, so it makes sense to gather that information while planning.

• Web Services may not return needed information quickly, or at all. Executing
Web Services to get the information will typically take longer time than the
planner would spend to generate plans. In some cases, it will not be known
a priori which Web Service gives the necessary information and it will be
required to search a Web Service repository to find such capable services.
It may not be possible at all to find those services. Furthermore, in some
cases the found service cannot be executed because the service requires some
password that the user cannot provide or the service is inaccessible due to
some network failure. The system should not cease planning while waiting for
answers to its queries, but keep planning to look for other plans that do not
depend on answering those specific queries.

ENQUIRER is designed to address all of the issues above. In the subsequent
sections, we first give a brief background on the HTN Planning and the SHOP2
planning system, and then we present the ENQUIRER planning algorithm, as
well as our theoretical and experimental evaluations of it.

3 Background: HTN Planning and SHOP2

The purpose of an HTN planner is to produce a sequence of actions that per-
form some activity or task. The description of a planning domain includes a set
of planning operators and methods, each of which is a prescription for how to
decompose a task into its subtasks (smaller tasks). The description of a plan-
ning problem contains an initial state as in classical planning. Instead of a goal
formula, however, there is a partially-ordered set of tasks to accomplish.

1 In this paper, we focus on information gathering as plan-time execution of Web
Services. Nothing in this work, however, is specific to information-providing Web
Services, and could be immediately adapted to any oracular query-answering mech-
anism, e.g., a user could interactively supply answers to the system.

338 U. Kuter et al.

Planning proceeds by decomposing tasks recursively into smaller and smaller
subtasks, until primitive tasks, which can be performed directly using the plan-
ning operators, are reached. For each task, the planner chooses an applicable
method, instantiates it to decompose the task into subtasks, and then chooses
and instantiates other methods to decompose the subtasks even further. If the
constraints on the subtasks or the interactions among them prevent the plan
from being feasible, the planning system will backtrack and try other methods.

SHOP2 is an HTN planner that generates actions in the order they will be
executed in the world. Its backtracking search considers the methods applicable
to the same task in the order they are specified in the knowledge base given to
the planner. This feature of the planner allows for specifying user preferences
among such methods, and therefore, among the solution that can be generated
using those methods. For example, Figure 1(c) shows a possible user preference
among the three methods for the task of delivering a box from UMD to MIT.

An example is in order. Consider a Delivery Domain, in which the task is
to deliver a box from one location to another. Figure 1(a) shows two SHOP2
methods for this task: delivering by car, and delivering by truck. Delivering by
car involves the subtasks of loading the box to the car, driving the car to the
destination location, and unloading the box at the destination. Note that each
method’s preconditions are used to determine whether or not the method is
applicable: thus in Figure 1(a), the deliver by car method is only applicable if the
delivery is to be a fast one, and the deliver by truck method is only applicable if it
is to be a slow one. Now, consider the task of delivering a box from the University
of Maryland to MIT and suppose we do not care about a fast delivery. Then,
the deliver by car method is not applicable, and we choose the deliver by truck
method. As shown in Figure 1(b), this decomposes the task into the following
subtasks: (1) reserve a truck from the delivery center at Laurel, Maryland to
the center at Cambridge, Massachusetts, (2) deliver the box from the University
of Maryland to Laurel, (3) drive the truck from Laurel to Cambridge, and (4)
deliver the box from Cambridge to MIT. For the two delivery subtasks produced
by this decomposition, we must again consider our delivery methods for further
decomposing them until we do not have any other task to decompose.

During planning, the planner evaluates the preconditions of the operators
and methods with respect to the world state it maintains locally. It is assumed
that planner has all the required information in its local state in order to evaluate
these preconditions. For example, in the delivery example, it is assumed that the
planner knows all the distances between the any initial and final locations so that
it can determine how long a truck will be reserved for a delivery task. Certainly,
it is not realistic to assume that planner will have all this information before the
planning process starts. Considering the amount of information available on the
Web is huge, planner should gather the information as needed by the planning
process. Since gathering information may take some considerable amount of time,
it would be wise to continue planning while the queries are being processed. For
example, the planner can continue planning with the truck delivery method until
the answer to the query about train schedules has been received.

Information Gathering During Planning for Web Service Composition 339

Fig. 1. Delivery planning example.

4 Definitions and Notation

We use the same definitions for logical atoms, states, task symbols, tasks, task
networks, actions, operators, methods, and plans as in SHOP2. The ENQUIRER
planning procedure extends SHOP2 to be able to cope with incomplete informa-
tion about the initial state of the world. The following definitions establish the
framework for the ENQUIRER procedure.

An askable list is a set of logical atoms that are eligible for the planner query
during the planning process. Note that we do not require the atoms in an askable
list to be ground. In many realistic application domains, the planner can only
obtain certain kinds of information, regardless of whether that information is
needed for planning. Intuitively, an askable list specifies the kinds of information
that is guaranteed to be available to the planner during planning, although this
information may not be given the planner at the start of the planning process.

A query is an expression of the form (h p), where h is the unique label of the
query and p is a logical atom. Note that we do not require p to be ground. The
intent of a query is to gather information during planning about the relation p
in the state of the world before planning started (i.e., in the initial state).

Let A be an askable list. We let δ(A) denote the set of all possible instanti-
ations of the atoms in A. Then, a query (h p) is said to be askable with respect
to A if and only if p unifies with an atom in δ(A) – i.e., there exists a variable
substitution Θ such that Θ(p) ∈ δ(A). An answer for an already-asked query
(h p) is an expression of the form (h R) such that R ⊆ δ(A), and for each p′ ∈ R,
there exists a substitution Θ such that Θ(p) = p′.

A complete-information planning problem is a tuple PC = (S, T, D), where S
is a complete initial state, T is a task network, and D is an HTN-domain descrip-
tion that consists of a set of planning operators O and methods M , respectively.
An incomplete-information planning problem is a tuple P I = (J, A, T, D), where
J is a set of ground atoms that are initially known, A is an askable list, T is a

340 U. Kuter et al.

task network, and D is an HTN-domain description. An incomplete-information
planning problem P I is consistent with a complete-information planning prob-
lem PC if only if S is identical with J ∪ δ(A). Note that J ∪ δ(A) denotes the
total amount of information that a planner can possibly obtain while solving P I .

We define a service-composition problem to be a tuple of the form W =
(J, X, C, K), where J is a (possibly incomplete) initial state, X is a set of all
possible information-providing Web Services that are available during the plan-
ning process, C is a (possibly) composite OWL-S process, and K is a collec-
tion of OWL-S process models such that we have C ∈ K. We assume that the
information-gathering services in X return information only about the initial
state, and they do not have any world-altering effects.

An explanation about the set of available services X is in order. When a
query (h p) for a possibly partially ground atom p is asked, Web Service that
answer this query needs to be located. A service whose output or postcondition
specification matches with p is said to be a possible match.2 For example, a
query (find-airports airport(US,?x)) can be answered by a service that is specified
as (:input ?c - country, :output ?x - airport, :postcondition airport(?c, ?x)). Note
that, such a service description can be written in OWL-S 1.1 using the recently
added Result and Expression structures.

Let W = (J, X, C, K) be a service-composition problem. We let τ(X) denote
the total amount of information that can possibly be gathered from the Web
Services in X – i.e., τ(X) denotes the set of all possible ground atoms that are
specified by the outputs or the postconditions of the services in X. Then, we say
that W is equivalent to an incomplete-information problem P I = (J, A, T, D)
if and only if τ(X) = δ(A), where T is the SHOP2 translation for the OWL-S
process C, and D = TRANSLATE(K) is the HTN-domain description generated
by the translation algorithm TRANSLATE of [2].

5 The ENQUIRER Algorithm

ENQUIRER starts with an incomplete initial world state, gathers relevant infor-
mation during planning, and continues to explore alternative possible plans while
waiting for information to come in. The algorithm is shown in Fig.2. The input
is an incomplete-information planning problem (J, A, T, D) as defined above.
ASKED is the set of all queries that have been issued by ENQUIRER and that
have not been answered yet. ANS is the set of all queries for which answers have
been received. The OPEN list is the set of triples of the form (J, T, π), where J
is a (possibly) incomplete state, T is a task list, and π is a plan. Intuitively, the
OPEN list holds the information on the leaf nodes of the search tree generated
during the planning process. Initially, each of these lists is the empty set, except
the OPEN list which is initialized to {(J, T, π)}.

At each iteration of the planning process, we first check if the OPEN list is
empty. If so, then we report failure since this means that every branch in the
2 In this paper, we assumed the existence of matched services. The problem of discov-

ery and location of a matched Web Service is beyond the scope of this paper.

Information Gathering During Planning for Web Service Composition 341

procedure ENQUIRER(J, A, T, D = (O, M))
ASKED ← ∅; ANS ← ∅; π ← ∅; OPEN ← {(J, T, π)}
loop
if OPEN = ∅ then return(failure)
OPEN ← {(J ′, T, π) | (J, T, π) ∈ OPEN, (h p) ∈ ASKED, an answer (h R) has

been received for (h p), and J ′ ← ProcessAnswers(J, R)}
for each query (h p) ∈ ASKED that has been answered recently
remove (h p) from ASKED and insert it into ANS

select a tuple (J, T, π) from OPEN and remove it
if T = ∅ then return(π)
nondeterministically choose a task t ∈ T that has no predecessors
if t is a primitive task then
U ← {(o, Θ) | o ∈ O, and ∃ a substitution Θ such that Θ(t) = Θ(head(o))}
S ← {(J ′, Θ(T − {t}), π ∪ {Θ(o)}) | (o, Θ) ∈ X, Θ(o) is applicable in J, and

J ′ ← ApplyOp(J, Θ(o))}
else
U ← {(m, Θ) | m ∈ M, and ∃ a substitution Θ such that Θ(t) = Θ(head(m))}
S ← {(J, T ′, π)|(m, Θ) ∈ X, Θ(m) is applicable in J, and

T ′ ∈ ApplyMeth(J, T, t, m, Θ)}
OPEN ← OPEN ∪ S
Q ← {(h p) | (u, Θ) ∈ U, p is a precondition of u such that Θ(p) is askable w.r.t. A,

Θ(u) is not applicable in J, and � ∃ a query (h Θ(p)) ∈ ANS}
if Q �= ∅ then

ASKED ← ASKED ∪ {(h p) | (h p) ∈ Q, and (h p) �∈ ASKED}
OPEN ← OPEN ∪ {(J, T, π)}

Fig. 2. The ENQUIRER algorithm.

search space is exhausted without success. Otherwise, we start processing the
answers for our previously-issued queries that have arrived at this point. Let
(h R) be such an answer for the query (h p). Then, for every triple (J, T, π) in
OPEN, we insert a ground atom p′ ∈ R into J if p′ �∈ J and there is no action
a ∈ π that makes p′ false in the world. Note that this condition is necessary
to ensure the correctness of our algorithm since ENQUIRER’s queries provide
information about the initial state of the world: if we insert an atom into J
that is in the delete-list of an action in π, then J becomes inconsistent. In
Fig.2, the subroutine ProcessAnswers is responsible for checking this condition
and updating the states in OPEN accordingly.

After processing the answered queries, the next step is to select a tuple
(J, T, π) from OPEN, and remove it. We then check if the current task network
T is empty or not. If so, we have π as our plan since all of the goal tasks have been
accomplished successfully. Otherwise, we nondeterministically choose a task t in
T that has no predecessors in T . If t is primitive then we decompose it using the
operators in O. Otherwise, the methods in M must be used.

Due to the space limitations, we only describe the case in which t is primitive.
The case in which t is not primitive is very similar. If t is primitive, then we
first select each operator o that matches to the task t — i.e., there exists a

342 U. Kuter et al.

variable substitution Θ such that Θ(t) = Θ(head(o)). The operator instance
Θ(o) is applicable in J , if all of its preconditions are ground and satisfiable in
J . Otherwise, it is not applicable. In the former case, we generate the next state
J ′ and the next task network T ′ by applying Θ(o) in J and by removing t from
T , respectively. We update the current partial plan π by adding Θ(o) to it, and
update the OPEN list with the tuple (J ′, T ′, π ∪ {Θ(o)}).

If the operator instance Θ(o) is not applicable in J then this means that
there is a precondition p of Θ(o) such that either p is not ground, or p is ground
but cannot be satisfied in J . In either case, we cannot immediately come to a
conclusion on whether Θ(o) is applicable in J or not. Instead, we must do the
following. We first check if p is askable with respect to the askable list A; if it
is not then there is no way we can obtain further information about it so we
conclude that it is false. Otherwise, we check if there is a query for p in the ANS
list. If so, then this means that p was queried before and an answer has been
received for it. Then, since we still cannot infer any information about p from
J , p must be false in the world and we cannot apply Θ(o) in J .

If there is no query related to p in ANS, then this means one of the following
conditions holds: we have queried p before but no answer has come yet, or this is
the first time we need to query it. To determine which case we are in, we check
the ASKED list if there is a query for p in it. If so, then the former is the case
and we defer our decision on the applicability of Θ(o) in J . If there is no query
regarding to p in ASKED, then we create a new query for p and insert it into
ASKED. In this case, we again defer our decision on Θ(o).

Note that if the precondition p is unground in Θ(o), there may be additional
information related to p that cannot be inferred in J , even if p is satisfiable in
that state. For example, in the delivery domain, an unground precondition may
be used to get the schedule of all trains for a particular route. In the current
state, there may already be some related information, e.g. results of a previous
queries returned by one Web Service invocation. However, there may still be
other Web Services that will return additional information that could be crucial
for finding a plan. Therefore, in order to ensure completeness, ENQUIRER queries
all the related Web Services about p regardless of what is inferred in J .

The ENQUIRER algorithm also uses two subroutines called ApplyOp and Ap-
plyMeth. ApplyOp takes as input the current state J and the action to be applied
in J , and outputs the successor state that arises from applying that action in J .
The definition for ApplyMeth is more complicated; intuitively, it takes a method
m and a non-primitive task t to be decomposed by m, and it modifies the cur-
rent task network T by removing t and adding its subtasks to T (for the full
definition of this subroutine, see [3]).

6 Formal Properties of ENQUIRER

Due to space limitations, we omit the proofs of our theorems here. They can be
found at [4]. We first establish the soundness and completeness of our algorithm.

Information Gathering During Planning for Web Service Composition 343

AND Branch

OR BranchGoal Task: t1

m11 m12

t21 t22t12t11

m111 m112 m121 m122 m211 m212 m221 m222

…

Fig. 3. The solution tree that ENQUIRER generates for an incomplete-information
planning problem.

Theorem 1. Let W = (J, X, C, K) be a service-composition problem, and P I =
(J, A, T, D) be an incomplete-information planning problem that is equivalent to
W . If ENQUIRER returns a plan for P I , then that plan is a solution for every
complete-information planning problem that is consistent with P I . If ENQUIRER
does not return a plan, then there exists at least one planning problem PC that
is consistent with P I , and PC is unsolvable (i.e., no plans for PC exist).

The following theorem establishes the correctness of our approach.

Theorem 2. Let W = (J, X, C, K) be a service-composition problem, and P I =
(J, A, T, D) be an incomplete-information planning problem that is equivalent to
W . ENQUIRER returns a plan π for P I if and only if π is a composition for W .

Let χ(P I) be the set of all solutions returned by any of the non-deterministic
traces of ENQUIRER on an incomplete-information problem P I . Furthermore, we
let πP I be the shortest solution in χ(P I), and let |πP I | denote the length of that
solution (i.e., plan). We now establish our first informedness theorem:

Theorem 3. Let P I
1 = (J1, A1, T, D) and P I

2 = (J2, A2, T, D) be two incom-
plete-information planning problems. Then χ(P I

1) ⊆ χ(P I
2), if J1 ∪ δ(A1) ⊆ J2

∪ δ(A2).

A corollary immediately follows:

Corollary 1. Let P I
1 = (J1, A1, T, D) and P I

2 = (J2, A2, T, D) be two
incomplete-information planning problems. Then |πP I

2
| ≤ |πP I

1
|, if J1 ∪ δ(A1) ⊆

J2 ∪ δ(A2).

Let P I = (J, A, T, D) be an incomplete-information planning problem. For
the rest of this section, we will assume that there are constants c, p, q, m, k, b,
and d such that c is the probability of a task being composite, p is the probability
of a ground atom a being true, q is the probability of the truth-value of an atom
a being known to ENQUIRER, m is the average number of methods that are
applicable to a composite task, k is the average number of distinct preconditions

344 U. Kuter et al.

for the methods in D, b is the number of successor subtasks, and d is the depth
of the solution tree produced by ENQUIRER.

The solution tree produced by ENQUIRER is an AND-OR tree, in which
the AND branches represent the task decompositions whereas the OR branches
represent different possible methods whose heads match with a particular task.
Without loss of generality, we assume that the solution tree of ENQUIRER is
a complete AND-OR tree as shown in Fig.3. Furthermore, we suppose that T
contains only one task to be accomplished and we have no negated atoms in the
preconditions of the methods in D.

Lemma 1. Given an incomplete-information planning problem P I =(J, A, T, D)
that satisfies the assumption given above, the probability ρ of ENQUIRER finding
a solution for P I is

ρ0 = 1; and
ρd = (1− c) ∗ (p.q)k + c ∗ [1− (1− γd)m],

where γd = (p.q)k × (ρd−1)b.

The following theorem establishes our second informedness result.

Theorem 4. Let P I
1 = (J1, A1, T, D) and P I

2 = (J2, A2, T, D) be two
incomplete-information planning problems satisfying the assumption given ear-
lier. Furthermore, let ρ1 and ρ2 be the probabilities of ENQUIRER finding solu-
tions for P I

1 and P I
2 , respectively. Then, ρ1 ≤ ρ2, if J1 ∪ δ(A1) ⊆ J2 ∪ δ(A2).

7 Experimental Evaluation

For our experiments, we wanted to investigate (1) how well ENQUIRER would
perform in service-composition problems where some of the information was
completely unavailable, and (2) the trade-off between the time performance and
the desirability of the solutions generated by the planner by using different query-
processing strategies. We built a prototype implementation of the ENQUIRER
algorithm that could be run with different query strategies. We also built a
simulation program that would generate random response times for the queries
issued by ENQUIRER. We ran our experiments on a Sun SPARC Ultra1 machine
with 192MB memory running Solaris 8.
Experimental Case 1. In this case, we have investigated how the number
of solutions (i.e., plans) found by the ENQUIRER algorithm is affected by the
amount of the information available during planning. In these experiments, we
used a set of Web Service composition problems on the Delivery domain described
in Section 3. In these problems, a delivery company is trying to arrange the
shipment of a number of packages by coordinating its several local branches. The
company needs to gather information from the branches about the availability of
vehicles (i.e., trucks and planes) and the status of packages. Such information is
provided by Web Services, and the goal is to generate a sequence of confirmation
messages that tells the company that every package is delivered to its destination.

Information Gathering During Planning for Web Service Composition 345

0

20

40

60

80

100

120

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Percentage of Information Available

P
e

rc
e

n
ta

g
e

 o
f

P
ro

b
le

m
s

 S
o

lv
e

d

0

10

20

30

40

50

60

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Problems

A
v
e
ra

g
e
 C

P
U

 T
im

e
s

IWC FIFO FILO ISO

(a) (b)
Fig. 4. Chart (a) shows the percentage of times ENQUIRER could find plans for the
Delivery problems, as a function of the amount of information available during plan-
ning. Chart (b) shows the comparison of the average CPU times (in secs.) of the four
query-processing strategies in ENQUIRER.

In these experiments, we have ENQUIRER run the planner on 100 randomly-
generated problem instances. For each problem instance, we ran ENQUIRER
several times as described below, varying the amount of information available
about the initial state by varying the following quantities: |J |, the number of
atoms of S that were given initially; and |A|, the amount of atoms of S that
were made available in the askable list, where S is the set of all possible ground
atoms in the domain.

We measured the percentage of times that ENQUIRER could find plans, as a
function of the quantity |J∪A|

|S| . The fraction |J∪A|
|S| is the fraction of atoms about

the initial state that are available during planning. We varied |J∪A|
|S| from f = 0%

to 100% in steps of 10% as follows: we first randomly chose a set of atoms for
|S| such the size of this set is equal to the fraction specified by the particular f
value. Then, for each atom in this set, we randomly decided whether the atom
should go in J – the incomplete initial state –, or in A – the askable list. Using
this setup, we performed 100 runs of ENQUIRER for each value of |J∪A|

|S| . The
results, shown in Fig.4(a), show that the success rate for ENQUIRER increased as
we increased |J∪A|

|S| . ENQUIRER was able to solve 100% of the problem instances

even when |J∪A|
|S| was as low as 60%.

Experimental Case 2. We also aimed to investigate the comparison between
the time performance of the non-blocking nature of the search performed by
the ENQUIRER algorithm and the desirability of the plans generated — i.e.,
how much the generated plans conforms to the user preferences encoded in the
domain descriptions given to the algorithm in terms of the ordering among the
methods applicable to the same task.

In this respect, we have implemented three variations of the ENQUIRER algo-
rithm. All of these variations are based on how the planning algorithm maintains

346 U. Kuter et al.

its OPEN list. The original algorithm, shown in Figure 2, always searches for
solutions that can be found regardless of the incompleteness of the information
about the initial state: when ENQUIRER issues a query, it does not wait for an
answer; instead it continues its search for solutions that can be found without
issuing any queries at all. We call this strategy as the Issue-Search-Other (ISO)
strategy. Similar to ISO, all the other three strategies are also based on different
implementations of the OPEN list. The Issue-Wait-Continue (IWC) strategy in-
volves blocking the search until a query, which is issued recently, gets answered.
In the First-In-Last-Out (FILO) strategy, if the planner has asked many queries
during its search and several of them have been answered, then it always returns
to the point in the search space that corresponds to the most recently-issued
query that has been answered. Finally, in FIFO which is a complete symmetric
version of FILO, the planner always considers the answers corresponding to the
least-recent query it has asked. Due to space limitations, we do not give the
details of these strategies; for further information see [4].

In our experiments with these variations of ENQUIRER, we compared their
time performances on the domain used in [2], which is partly based on the sce-
nario described in the Scientific American article about the Semantic Web [5].
This scenario describes two people who are trying to take their mother to a
physician for a series of treatments and follow-up meetings. The planning prob-
lem is to come up with a sequence of appointments that will fit in to everyone’s
schedules, and at the same time, to satisfy everybody’s preferences.

We have created 11 random problems in this domain and we have run all
strategies 10 times in each problem. We have set the maximum response time
for a query asked by ENQUIRER to be 1 seconds. Fig.4(b) reports the average
CPU times required by the four strategies described above.

These results provide several insights regarding the trade-off between time
performance of ENQUIRER and the desirability of the solutions it generates
under incomplete information. From a performance-oriented point of view, they
showed that it is very important for the planner not to wait until its queries get
responded, especially when it takes a very long time to get responses for those
queries. In our experiments, the IWC strategy performed worst than the others
in most of the problems. However, IWC was able to generate the most-desirable
solutions for our problems, since it always considers the methods in ENQUIRER
knowledge base in the order they were specified.

In most of the problems, the FILO strategy was able to find solutions more
quickly than the other strategies; in particular, it was consistently more efficient
than IWC. However, these solutions were usually less-desirable ones with respect
to the user preferences encoded as orderings among the methods in ENQUIRER
knowledge base, since FILO always tends to consider the answers for the most-
recently issued queries, which usually correspond to less-desirable preferences
because of the queries waiting for an answer.

Our experiments also suggest that the ISO strategy can be particularly useful
on planning problems that have few solutions. In particular, the problem p10 of
our experiments is one such problem, and ISO was able to find solutions for

Information Gathering During Planning for Web Service Composition 347

this problem more quickly than others. The reason for this behavior is that
ISO performs a less organized and less structured search compared to other
strategies, enabling the planner to consider different places in the search space.
On the problem p10 which has only 48 solutions compared to the 4248 solutions
of the problem p9, this characteristic enabled ISO to perform better than the
other strategies. However, in most of the problems, the solutions generated by
the planner using ISO were not the desirable ones.

8 Related Work

[6] describes an approach to building agent technology based on the notion
of generic procedures and customizing user constraints. This work extends the
Golog language to enable programs that are generic, customizable and usable in
the context of the Web. Also, the approach augments a ConGolog interpreter
that combines online execution of information-providing services with offline sim-
ulation of world-altering services. Although this approach is similar to our work,
we suspect that a logic-based approach will not be as efficient as a planning
approach. We intend to test this hypothesis empirically in the near future.

In the AI planning literature, there are various approaches to planning with
incomplete-information, designed for gathering information during execution by
inserting sensing actions in the plan during planning time and by generating
conditional plans conditioned on the possible pieces of information that can be
gathered by those actions. [7] presents a planning system that implements these
ideas. [8] presented a planning language called UWL, which is an extension of
the STRIPS language, in order to distinguish between (1) the world-altering and
the observational effects of the actions, and (2) the goals of satisfaction and the
goals of information. [9] describes he XII planner for planning with both complete
and incomplete information, which is an extension of UCPOP [10], and is able
to generate sensing actions for information gathering during execution.

ENQUIRER differs from these approaches in that it does not explicitly plan for
sensing actions to obtain information at execution time. Instead, it is a planning
technique for gathering the necessary information during planning time. As a
result, ENQUIRER can generate simple plans since observational actions are not
included in the plan, and it can interact with external information sources and
clear out the ”unknown”s during planning time as much as possible. In this
respect, it is very suitable for the problem of composing Web Services.

[11] describes a speculative execution method for generating information-
gathering plans in order to retrieve, combine, and manipulate data located in
remote sources. This technique exploits certain hints received during plan exe-
cution to generate speculative information for reasoning about the dependencies
between operators and queries later in the execution. ENQUIRER differs from
this method in two aspects: (1) it searches different branches of the search space
when one branch is blocked with a query execution, and (2) it runs the queries
in planning time, whereas speculative execution was shown to be useful for exe-
cuting plans. Combining speculative execution with our approach would enable

348 U. Kuter et al.

us to run queries down in a blocked branch; however, since the time spent for a
query is lost when speculations about that query are not valid, it is not clear if
combining the two approaches will lead to significant results.

9 Conclusions and Future Work

In our previous work [2], we have shown how a set of OWL-S service descriptions
can be translated to a planning domain description that can be used by SHOP2.
The corresponding planning problem for a service composition problem is to find
a plan for the task that is the translation of a composite process. This approach
differentiates between the information-gathering services, i.e. services that have
only output but no effects, and the world-altering services, i.e. services that
have effects but no outputs. The preconditions of information-gathering services
include an external function to call to execute the service during planning and
add the information to the current state. This can be seen as a specialized
application of the ENQUIRER algorithm, when the queries are explicitly specified
as special primitive tasks that correspond to atomic service executions.

ENQUIRER overcomes the following limitations in our previous work:

• The information providing services do not need to be explicitly specified in the
initial description. The query mechanism can be used to select the appropriate
Web Service on the fly when the information is needed. Note that matching
service description does not need to be an atomic service. A composite service
description matching the request could be recursively fed to the planner, or
an entirely different planner could be used to plan for information gathering.

• The planning process does not need to wait for the information gathering to
finish and can continue planning while the service is still executing.

In this paper, we have assumed that information-providing services cannot
have world-altering effects. Otherwise, the correctness of the plans generated
cannot be guaranteed since the changes done by the information-providing ser-
vice may invalidate some of the steps planner already committed to. However,
this restriction is not necessary when the effects of the information-gathering
services do not interact with the plan being sought for. As an example, consider
a service that charges a small amount of fee for the service. If we are looking for
a plan that has nothing to do with money, then it would be safe to execute this
service and change the state of the world. In general, this safety can be estab-
lished when the original planning problem and information-gathering problem
correspond to two disconnected task networks that can be accomplished with-
out any kind of interaction. Verifying that there is no interaction between two
problems is a challenging task that we will address in our future work.

ENQUIRER is designed for information gathering at plan time; however, it
is important to do so in execution time as well. We hypothesize that it should
possible to extend our framework for this purpose as follows. ENQUIRER’s queries
are about the initial state of a planning problem, to ensure that the planner is
sound and complete. However, in principle, we should be able to issue queries

Information Gathering During Planning for Web Service Composition 349

about any state during planning. This would allow us to insert queries, similar to
sensing actions, in the plan generated by the planner, leading conditional plans
to be generated by the planner based on the possible answers to such queries.
We are currently exploring this possibility and its ramifications on planning.

Acknowledgments. This work was supported in part by the following
grants, contracts, and awards: Air Force Research Laboratory F30602-00-2-0505,
Army Research Laboratory DAAL0197K0135, the Defense Advanced Research
Projects Agency (DARPA), Fujitsu Laboratory of America at College Park,
Lockheed Martin Advanced Technology Laboratories, the National Science Foun-
dation (NSF), the National Institute of Standards and Technology (NIST), and
NTT Corp. The opinions expressed in this paper are those of authors and do
not necessarily reflect the opinions of the funders.

References

1. OWL Services Coalition: OWL-S: Semantic markup for web services (2003) OWL-S
White Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf.

2. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating daml-s web services
composition using SHOP2. In: Proceedings of ISWC-2003, Sanibel Island, Florida
(2003)

3. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20
(2003)

4. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during
planning for web service composition. Technical Report 4616-2004-58, Department
of Computer Science, University of Maryland, College Park (2004)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34–43

6. McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In:
Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning, Toulouse, France (2002)

7. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in nondeterministic
domains under partial observability via symbolic model checking. In: IJCAI 2001.
(2001) 473–478

8. Etzioni, O., Weld, D., Draper, D., Lesh, N., Williamson, M.: An approach to
planning with incomplete information. In: Proceedings of KR-92. (1992)

9. Golden, K., Etzioni, O., Weld., D.: Planning with execution and incomplete infor-
mation. Technical Report TR96-01-09, Department of Computer Science, Univer-
sity of Washington (1996)

10. Penberthy, J.S., Weld, D.: UCPOP: A Sound, Complete, Partial Order Planner
for ADL. In: Proceedings of KR-92. (1992)

11. Barish, G., Knoblock, C.A.: Planning, executing, sensing, and replanning for in-
formation gathering. In: Proceedings of AIPS-2002, Menlo Park, CA, AAAI Press
(2002) 184–193

Applying Semantic Web Services to
Bioinformatics: Experiences Gained, Lessons

Learnt

Phillip Lord1, Sean Bechhofer1, Mark D. Wilkinson2, Gary Schiltz3,
Damian Gessler3, Duncan Hull1, Carole Goble1, and Lincoln Stein4

1 Department of Computer Science, University of Manchester
Oxford Road, Manchester, M13 9PL, UK

2 University of British Columbia, James Hogg iCAPTURE Centre
St. Paul’s Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y3, Canada

3 National Center for Genome Resources
2935 Rodeo Park Drive East, Santa Fe, NM 87505, US

4 Cold Spring Harbor Laboratory
1 Bungtown Road, Cold Spring Harbor, NY 11724, US

Abstract. We have seen an increasing amount of interest in the ap-
plication of Semantic Web technologies to Web services. The aim is to
support automated discovery and composition of the services allowing
seamless and transparent interoperability. In this paper we discuss three
projects that are applying such technologies to bioinformatics: myGrid,
MOBY-Services and Semantic-MOBY. Through an examination of the
differences and similarities between the solutions produced, we highlight
some of the practical difficulties in developing Semantic Web services
and suggest that the experiences with these projects have implications
for the development of Semantic Web services as a whole.

1 Introduction

In the past 10 years, the ability to perform biological in silico experiments has
increased massively, largely due to the advent of high-throughput technologies
that have enabled the industrialisation of data gathering.

There are two principal problems facing biological scientists in their desire
to perform experiments with these data. The first of these is distribution–many
of the data sets have been generated by individual groups around the world,
and they control their data sets in an autonomous fashion. Secondly, biology is
a highly heterogeneous field. There are large numbers of data types and of tools
operating on these data types. Integration of these tools is difficult but vital. [2]

Biology has coped with this in an effective and yet very ad hoc manner. Al-
most all of the databases and tools of bioinformatics have been made available on
the Web; the browser becoming an essential tool of the experimental biologist.
The reasons for this choice of technology are partly chance in that the growth
in genomic technologies happened to occur contemporaneously with the growth

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 350–364, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Applying Semantic Web Services to Bioinformatics 351

of the Web. But many of the key benefits of the Web are also important for bi-
ologists. Publishing is economically cheap, technically straightforward, innately
distributed, decentralised, and resilient to change. Accessing the Web is likewise
simple, requiring no knowledge of specific query languages but enabling “query
by navigation” [6].

While this has worked well in the past, it has obvious problems. Many bioin-
formatics analyses use fragile screen-scraping technologies to access data. Keep-
ing aware of the Web sites on offer is, in itself, a full-time and highly skilled task,
mostly because of the complexity of the domain. The application of Semantic
Web services to bioinformatics seems a sensible idea as Web services provide
a programmatic interface which avoids screen-scraping [14], while semantic de-
scriptions could enable their discovery and composition.

In this paper we describe three architectures, myGrid, MOBY-Services and
Semantic-MOBY, which have been designed to address these problems. All three
are aimed mainly at bioinformatics. All three are based on Web or Web-services
technologies and use an additional specification of their services to describe the
semantics of their operations. All three are high-profile projects in the domain
of bioinformatics and come from groups with previous track records of providing
solutions for problems of interoperability1.

The three solutions are also different from each other and from the “idealised”
Semantic Web services architecture. In examining these differences, we raise a
set of key questions about the applicability of Semantic Web services in practice
and present our (partial) solutions for these difficulties.

2 A Day in the Life: Bioinformatics as It Is

Bioinformatics as a discipline has largely grown directly out of the molecular-
biology laboratories where it was born. In general, each lab investigated a small
region of biology and there are very few labs world-wide working on a single
problem. Many of these labs have made their own data available for use on
the Web. This data is often un- or semi-structured. Much of the data is com-
posed of DNA or protein sequences, but this has generally been accompanied by
large quantities of “annotation”–descriptions (generally in free-text form) of the
sources of the sequences, literature citations and the possible function(s) of the
molecules. In addition to this raw data, many different tools that operate on it
have been developed, most of them with restricted functionality and targeted at
performing highly specific tasks.

This situation is slowly changing, largely due to the appearance of large
service providers, such as the genome-sequencing and -annotating centres.
These centres are now increasing their scopes and often provide many different
types of information. The primary service consumer still remains the small
laboratory. Much of the information remains openly accessible.

1 To our knowledge, at the time of writing these were the only substantial projects
using Semantic Web Services within bioinformatics

352 P. Lord et al.

The primary “integration layer” so far has been expert biologists and bioin-
formaticians. Using their expert knowledge of the domain, they will navigate
through the various Web pages offering data or tool access. Information about
new resources often comes by word of mouth, through Web portals or paper pub-
lications. Data transfer, between applications, is by cut and paste, often with
additional data “massaging” (e.g., small alterations in formatting, selections
of subsets, simple local transformations such as DNA-to-protein translation).
Automation of these processes is achieved largely by bespoke code, often screen-
scraping the same Web pages that the manual process would use, sometimes
using more programmatically amenable forms of access.

From this description we identify the following:-

– Actors
Service Providers. Generally, but not exclusively, from specialised

“genome” centres.
Service Consumers. Generally from smaller laboratories, normally with

smaller, non-specialist resources.
– Requirements for integration

Discovery and Description. Finding the right data or tool resources is a
complex task. Service providers need to be able to describe their services,
and consumers discover services by these descriptions.

Remote Programmatic Access. Current screen-scraping technologies
are fragile. Organised and preferably uniform access is required.

Message Formatting. Bespoke data massaging is complex and difficult to
automate.

3 Semantic Web Services in a Nutshell

The core task of this a generic semantic web architecture is to enable seamless
and inter-operable communication between service providers and service con-
sumers.

It achieves this end with five key components:

Service Interfaces. Service providers publish interfaces to their services using
some form of programmatic access.

Semantic Descriptions. In addition to the interface description, semantic de-
scriptions of services are provided. OWL-S is the most prominent framework
for these descriptions.

A Domain Ontology. Terms from an ontology describing the key concepts in
the domain are used within the semantic descriptions.

Registry/Matchmaker. A matchmaker service searches over the semantic de-
scriptions made available to it. This may be combined with a registry, a
service which advertises the availability of other services.

Messaging. The domain ontology is used as a lingua franca that enables the
service consumer to treat data from different providers in a uniform fashion.

Applying Semantic Web Services to Bioinformatics 353

Probably the best known work on supporting such architectures is OWL-S,
following on from DAML-S [18]. OWL-S is an upper ontology that describes
three key aspects about a service: its profile, which describes what the service
does; its process, which describes how one interacts with the service; and its
grounding, which relates the ontological concepts to the implementation, usually
via a mapping to the WSDL operations.

In this paper we compare the architectures of the three projects with that
of an idealised “Semantic Web Services architecture”. All three of the projects
are attempting to fulfill the requirements specified in Section 2 and are building
components that aim to fulfill the role of the five key components described
above.

From this comparison we draw the following conclusions:

– The importance of fully automated service discovery and composition is an
open question. It is unclear whether it is either possible or desirable, for all
services, in this domain, and is an area of research [22].

– Requiring service providers and consumers to re-structure their data in a
new formalism for external integration is also inappropriate. External for-
malisms that adapt to the existence of legacy structuring is sufficient for
many purposes.

– The service interfaces within bioinformatics are relatively simple. An exten-
sible or constrained interoperability framework is likely to suffice for current
demands: a fully generic framework is currently not necessary.

– If service discovery is to serve the user, descriptions based on users’ own
models of services are needed. Furthermore, contextual, outcome or task-
oriented descriptions are required.

– Semantic services require a domain ontology, but the best way to construct
one is not clear. We present three potential solutions for this problem.

4 The Projects

In this section, we present a brief introduction to the three projects. We then give
a description of how a traditional “Semantic Web Services” architecture might
be applied and explain how this has been implemented in the three projects.

The myGrid project is part of the UK government’s e-Science programme [17].
It is aimed at providing open-source, high-level middleware to support per-
sonalised in silico experiments in biology. Although still at a prototype stage,
myGrid has been used for two case studies. These have operated as focal points
for the technology based around two diseases namely Graves’ Disease [12] and
Williams-Beuren syndrome [15]. The core myGrid “philosophy” has been to
adopt Web services standards wherever possible and build additional middle-
ware to add value to these. The key components described in Section 3 are
realised within myGrid as follows:

Service Interfaces. Services are published as Web services described with
WSDL.

354 P. Lord et al.

Semantic Descriptions. A lightweight RDF data model is used to structure
a service description, with a domain ontology providing a vocabulary. De-
scriptions can be provided by third parties. Previously myGrid used full
DAML+OIL descriptions.

Domain Ontology. The ontology is curated and stored centrally, and gener-
ated by an expert using DAML+OIL.

Registry/Matchmaker. A centralised UDDI registry built over a Jena back
end, augmented to enable semantic discovery [7].

Messaging. Pre-existing domain formats are used.

The Bio-Moby project2 has grown from the “model organism” communities–
those supporting the investigation of biological problems in different organisms.
These communities have evolved standards which are often specific to one com-
munity. However, biologists increasingly wish to ask questions requiring data
gathered from many different organisms, thus creating a severe integration prob-
lem. The Bio-Moby project has a dual development track with different archi-
tectures. The first of these, MOBY-Services (also known as “MOBY-S”), has
“simplicity and familiarity” as its core philosophy. MOBY-Services [21] exists as
a prototype that is in practical use at a number of sites. The key components
are realised within MOBY-Services as follows:

Service Interfaces. Services are simplified compared to WSDL, having single
operations, inputs and outputs.

Semantic Descriptions. A data model is enforced by the API of registry with
a domain ontology providing a vocabulary.

Domain Ontology. The ontology is user curated, stored centrally, generate by
community collaboration, and structure as a Gene Ontology style DAG.

Registry/Matchmaker. A centralised bespoke registry called “MOBY-
Central”, which enables searching by input and output types, augmented
with graph crawling.

Messaging. A thin XML envelope with embedded legacy formats is used.

The second of these, Semantic-MOBY [20] (also known as S-MOBY), has
been heavily influenced by the REST architectural style [3] and makes extensive
use of Semantic Web technology, in particular OWL-DL. It attempts to em-
brace the autonomous nature of the Web wherever possible. Also at a prototype
stage, Semantic-MOBY has extensive publicly available requirements3 and de-
sign4 documentation. The key components are realised within Semantic-MOBY
as follows:

Service Interfaces. Services are simply Web resources accessible by standard
protocols such as HTTP and FTP. For example, via HTTP, a simple GET
returns an RDF graph that defines the underlying service interface.

2 http://www.biomoby.org
3 http://www.biomoby.org/S-MOBY/doc/Requirements/S-MOBY_Requirements.pdf
4 http://www.biomoby.org/S-MOBY/doc/Design/S-MOBY_Design.pdf

Applying Semantic Web Services to Bioinformatics 355

Semantic Descriptions. Service descriptions are expressed in OWL-DL and
conform to a canonical format, or upper ontology. This upper ontology cre-
ates the context for ontological concepts, which are resolvable into OWL-
DL graphs themselves by dereferencing their URIs. Service providers create
service-specific subclasses of the ontology, grounding them with their own
data-type requirements.

Domain Ontology. One, or several, ontologies are developed by the commu-
nity, and distributed across the Web, and written in OWL-DL.

Matchmaker. One or more centralised search engines are provided. Service lo-
cations can be published, or semantic descriptions can be discovered by Web
crawlers. Querying uses the same upper ontology as the semantic descrip-
tions.

Messaging. All communication uses OWL-DL and the same upper ontology.

All three projects therefore share a strong biological focus. They are inter-
ested in easing the difficulty of connecting existing service providers to existing
service consumers within this domain. This is more important than providing a
generic solution.

5 Automated Service Composition

As a domain, bioinformatics has a number of characteristics of relevance to
automated service composition.

Complexity. It is unlikely that any representation of the domain and back-
ground knowledge will come close to matching the knowledge of the expert
bioinformatician.

Fluidity. Key concepts in the domain are open to change. Any codified repre-
sentation of the domain is likely to be out of date.

Diversity. Opinions differ. Bioinformaticians wish to be involved in the selec-
tion of services to ensure that their opinions are reflected.

Automated composition is likely to be useful where transparent seamless
access is the most overriding requirement, such as booking appointments [23].
Here, users will be happy to accept the results, so long as they are reasonable
and they gain the advantage of not having to perform such tasks themselves. It
is not likely to serve the needs of expert, knowledgeable, opinionated scientists
who may invest large quantities of money and time in further experiments based
on the results and who may be required to justify their methodologies under
peer review. In the short term, these scientists are unlikely to trust automated
service invocation and composition, probably with justification, as it is unlikely
to improve on their own selections. We wish to support biologists’ activities,
not replace them. In this way, bioinformatics seems to be following the path
of medical informatics, where early decision-making systems have given way to
later decision-support systems [9].

356 P. Lord et al.

Our requirements analyses showed one exception to this: the selection of one
service from a collection of mirrors. Like most computer users, biologists are
fond of asking for ways to “make it go faster”. However, a set of services that
are mirrors (particularly databases) must have a coordinated update strategy,
probably on a daily basis. This coordination indicates that they are not truly
autonomous. They are also likely to share the same user and service interfaces
(and probably the same code base), so there is no heterogeneity between the
mirrors either. Given this, it seems that semantic descriptions are unlikely to be
useful in choosing between them. The myGrid project is also investigating other
services, for which automated discovery and composition may be useful; these
are described in Section 6.

6 Structured Messages and Middleware

Combined with the complexity of biology, the autonomous nature of bioinfor-
matics has made integration of the different data resources extremely difficult.
Most of the key data types, in bioinformatics, have no standard representation
or many “standard representations”; there are at least 20 different formats for
representing DNA sequences, most of which have no formal specification5. As a
simple two-bit code, a DNA sequence is at its essence one of the simplest bio-
logical data types, and there are many data types which are considerably more
complex.

Where standards do exist, they have often arisen as a result of many years of
collaborative work. Both the service providers and service consumers have a high
degree of buy-in to the formalisms that exist. The service consumers want their
data in legacy formats because their tools can operate over them. While some
of the data types are simple, many, however, are highly complex and internally
structured6

Previous work has highlighted this difficulty with web services from other
domains. Paolucci et al. [11], note that “the [complex] types used in a WSDL
specification [for accessing amazon.com] are totally arbitrary”. This problem is
taken to an extreme in bioinformatics in that complex types are simply not used.
To demonstrate this point, we gathered 30 bioinformatics service descriptions7.
Of these only two defined any complex types at all and one of these was a simple
list type. Bioinformaticians are just not structuring their data in XML schema,
because it provides little value to them. All three projects have accepted that
much of the data that they receive will not be structured in a standard way. The
obvious corollary of this is that without restructuring, the information will be
largely opaque to the service layer.

5 http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Themes/SequenceFormats.html
6 The Swissprot database, for instance, has a 30 pages human readable specification

for their format. Alternatively a regexp grammar designed to parse the database is
about 300 lines long, and it does not fully parse all the implicit structure

7 http://www.ebi.ac.uk/˜tmo/mygrid/webservices/

Applying Semantic Web Services to Bioinformatics 357

The projects have coped with this in different ways. The simplest approach
is that of myGrid. Service providers are largely autonomous and are unlikely to
change their data formats unless there are compelling reasons. myGrid therefore
imposes no additional structuring on the data. While there are problems stem-
ming from the lack of a formal representation of many of the formats, bioin-
formatics has had a long time to solve these problems; there are many good
tools and parsers that are capable of coping with this multitude of formats.
Within the myGrid project, the existence of these formats is described; this then
should enable us to discover services that can translate between these formats,
even though these formats are opaque to the middleware. This process has been
previously described as automatic semantic translation [8]. We describe these
services as “shim services”8. In addition to format translation there are several
other situations where users can be supported in composing services by the dis-
covery of shims. Firstly, identifier dereferencing–bioinformatics makes extensive
use of identifiers, and substituting an identifier for the data it describes is a
common task [16]; and secondly, decomposition–selecting a subset of the data
produced by one service, for use by another.

In these cases, it appears that services can be automatically composed in
a “safe” manner, i.e. that is, they do not change the intended meaning of the
experimental design, but enable it to work.

Both MOBY-Services and Semantic-MOBY do provide additional structur-
ing for their messaging format. MOBY-Services uses a specialised XML schema,
that defines all of its messages, which mostly acts as a thin envelope around the
opaque structuring of the legacy formats. However, having accepted the existence
of a wrapper, MOBY-Services now has a migration path to the increasing struc-
turing of data. Currently it has used this facility to introduce “Cross-References”;
one of the most characteristic features of the bioinformatics data has been the
addition of links to other “related” data encoded mainly as hyperlinks to other
databases. The cross-references provide a similar facility for programmatically
accessed services.

Semantic-MOBY on the other hand uses OWL-DL RDF-XML as a messaging
layer and OWL-DL for content structuring. Ontological concepts are mapped to
XSD data types by providers in the description of their resource. The rich expres-
sivity of OWL means that, over time, concept descriptions can be customized
by extending domain ontologies with new properties, combining concepts across
ontologies, and constraining usage with OWL-DL property restrictions.

In short, while none of the projects assume that providers will automatically
restructure their data into formats defined in XML Schemas, they all provide
migration paths to methodologies that can reduce the problem of syntactic het-
erogeneity.

8 A shim is a small piece of material used to fill gaps to ensure a tight fit or level a
surface

358 P. Lord et al.

7 Service Provision and Service Interfaces

The key sociological problem that any interoperability middleware faces is at-
tempting to gain support from the service providers. They are semi-autonomous
tending to respond well to requests from service consumers. This is unlikely to
happen until the system is usable, but a usable system requires the existence of
many services.

The MOBY-Services project has taken a different approach. It assumes that
service providers are more likely to support MOBY-Services-specific service in-
terfaces if they are easy to generate and require minimal changes to the way the
service providers already work. Within the realm of bioinformatics, most existing
services look somewhat like a command-line application. Each has one input and
one output. There are usually a set of parameters, i.e., values which modify the
way the service works, much like command-line options. We describe this style
of interface in Table 1 as “Document Style”. MOBY-Services therefore uses a
subset of the full Web services functionality, thus limiting service interfaces to
this basic data model. Each service is atomic, stateless and unrelated to other
services.

The myGrid project assumes that various service providers will develop Web
service interfaces for their own purposes and the middleware solutions should
just be able to cope with these. Additionally, it has developed a set of services
of its own with a package called “SOAPLAB” [13]. Interestingly, most of the
available services conform to one of two paradigms. Most of the services have
operations which conform to the simplified model of MOBY-Services: inputs,
outputs, parameters. Many service providers group related, although indepen-
dent, operations into a single service; MOBY-Services services only ever have a
single operation. The second paradigm, described in Table 1 as “Object Style”, is
used by SOAPLAB9. The service operations define an ad hoc object model. This
creates a problem in terms of invocation. Any client that uses these services must
understand the semantics of the operations. Within the myGrid project, this has
been enabled by using an extensible invocation framework within “freefluo”: the
workflow-enactment engine [10]. This approach falls short of a generic solution
in that the framework needs to be extended for different “styles” of Web ser-
vices. But within the constrained domain of bioinformatics, with its relatively
few service providers, it is likely to be sufficient.

The Semantic-MOBY service interface is somewhat different. Following the
REST architecture, each service has an interface based on, for example, HTTP.
The underlying messages provide a richer interface defined by the Semantic-
MOBY upper ontology. Like MOBY-Services, this service interface is atomic,
stateless, and unrelated to other services.

Compared to general WSDL services, the simplified approach that all three
projects have taken to service interfaces has some important consequences.

9 It has been argued that web services are not designed to support such object style
interfaces [19]. This may be true; however if myGrid aims to use services from au-
tonomous providers it needs to cope with them.

Applying Semantic Web Services to Bioinformatics 359

Table 1. Two different service interfaces to BLAST, a widely used bioinformatics tool.
BLAST operates over a biological sequence, has a number of parameters and returns
a single complex BLAST report. The “Document Style” interface has a single method
taking a complex set of parameters, while the “Object Style” interface uses object
identifiers to provide an ad hoc object orientation.

Document Style BlastReport performBlast(Sequence, gap, etc. . .);
Object Style ObjectIdentifier getInstance();

void setSequence(ObjectIdentifier, Sequence);
void setGap(ObjectIdentifier, Gap);
. . .
BlastReport invoke(ObjectIdentifier);

OWL-S defines a grounding ontology, which describes the relationships between
the ontological concepts in the underlying invocation description (e.g., WSDL).
This is not required for any of the projects: Semantic-MOBY because its “service
interface” is defined by its upper ontology; MOBY-Services because its service
interfaces are not heterogeneous; and, myGrid because the enactment engine
deals with the small amount of heterogeneity.

The services are all atomic and not decomposable. As a result, nothing sim-
ilar to the OWL-S process ontology has been used. Only myGrid uses services
that require complex interaction (namely the SOAPLAB services), and this in-
teraction is handled by the enactment engine.

8 User-Centred Service Descriptions

A Semantic Web Services architecture requires a set of semantic service descrip-
tions, which a matchmaker service can then use to discover services.

Within these three projects, all are seeking to enable discovery of services by
the user. All three projects share similar ideas about the questions that users
wish to ask.

Context. The user has a specific piece of data and wishes to know which services
can operate on that type of data.

Outcome. The user wishes to get a specific type of data and wishes to know
which services can produce this kind of data.

Task. The user knows what kind of task, e.g. alignment, retrieval or search., to
perform, and wishes to known how.

The myGrid project has introduced a number of other properties of services,
including one called “uses resource”. Many bioinformatics tools can operate over
different data sources. The underlying data has a critical impact on the use of a
service, but may well not affect the interface it presents.

In a user-centred approach the users’ concepts of “services” do not necessar-
ily confirm to that of the underlying middleware. For example, within myGrid,

360 P. Lord et al.

services are generally a collection of independent, but related, operations. How-
ever, with object-style interfaces, as described in Section 7, the user wishes to
find the whole service; the individual operations are essentially an implementa-
tion detail. With MOBY-Services, this abstraction is directly represented in the
middleware in that each service has only one operation. A second example of
this is the distinction between inputs and parameters10. This distinction can be
understood by analogy to a command line which has a main argument and a set
of options, or switches. In general, users are interested in searching for inputs,
while parameters can be safely ignored until invocation time. As well as serving
the users’ needs, this distinction has the serendipitous effect of greatly reducing
the space over which any technology must search.

The biggest limitation of service descriptions at the moment is their assump-
tion of a single class of user. For example, the myGrid ontology is aimed at
bioinformaticians, as this seemed the main user base. Previous systems, such as
TAMBIS [4], have been more aimed at biologists; hence biological concepts such
as “protein” are modelled and presented instead of bioinformatics concepts such
as “Swissprot ID”.

The three projects have somewhat differing ideas about who will provide
service descriptions. Both MOBY-Services and Semantic-MOBY have systems
based on service providers who describe their own services. Conversely, as with
its approach to service provision, the myGrid project has concluded that service
providers may or may not choose to do so, and that, at least in the short term,
descriptions by third-party members (e.g., those within the myGrid project!) are
essential, and may be desirable even in the long term.

Service descriptions are currently manually generated by all three projects.
The relatively simple and familiar formalism used by MOBY-Services (see Sec-
tion 9) ensures that this process is relatively straightforward. Alternatively,
Semantic-MOBY and myGrid are relying on the provision of good tool sup-
port to ease the process. The myGrid project has made perhaps the most effort
in this area reusing a tool from the PEDRo project11 which presents the user
with a fill in form, and then generates services descriptions from this. Describing
services is still, however, an arduous process–even though the simplified service
interfaces reduce the required complexity of the service descriptions (Section 7).
In addition the use of legacy formats (Section 6), means very little information
can be mined from the WSDL files; tools such as WSDL2DAML-S are rela-
tively ineffective when they have no information to work on. Most information
has been gained from reading associated documentation, guesswork based on
service/operation names and experimental execution of the services followed by
manual inspection of the results12.

It is clear that these approaches are not scalable. It is possible that more
automated techniques [5] may become applicable in the future. Within the re-

10 primary and secondary inputs in MOBY-Services parlance
11 http://pedro.man.ac.uk/
12 That it is so difficult to work out what services actually do, demonstrates clearly

that better service descriptions are genuinely needed!

Applying Semantic Web Services to Bioinformatics 361

stricted domain of bioinformatics, it should be possible to partially automate
experimental service execution. In the short term, however, the authoring of
service descriptions will remain a major bottleneck.

9 Generating an Ontology for a Complex Domain

One fundamental difficulty of any Semantic Web Services architectures is the
requirement for a domain ontology. The ontology must reflect the users’ under-
standing of the domain and enable the description of services by service providers
or helpful third parties, particularly in support of user-oriented service discov-
ery. In a complex and changing domain such as bioinformatics this is no small
undertaking.

Fortunately, within bioinformatics the community is already conversant and
are generally convinced of the value of ontological descriptions. Over the last
four years, the community has developed the Gene Ontology (GO). This is a hi-
erarchically organised controlled vocabulary. The ontology is structurally simple;
having subsumption (is-a) and partonomy (part-of) hierarchies. The ontology
is widely used; it now consists of ∼17,000 terms and has been used to describe
several million database entries. GO is the flagship ontology of a collection of
biological ontologies, called OBO (Open Biological Ontologies), which describe
various aspects of biology.

GO has provided much of the inspiration for the MOBY-Services approach
to ontology development. One of the biggest factors in the success of GO
has been the large level of community involvement in its construction[1]. The
MOBY-Services central registry MOBY-Central therefore contains functionality
for adding new terms and relationships. It has adopted the same representational
formalism as GO as this is already familiar to the community; familiarity is con-
sidered more important than expressivity. Combined with reasonable editorial
guidelines and an active mailing list it is hoped that those using the ontology will
extend it to fulfil their requirements. Additionally, MOBY-Services has already
constructed tools for viewing their ontology; it is essential that finding existing
appropriate concepts is easy, in order to discourage the recreation of existing
concepts. We call this the collaborative community style of ontology building.

myGrid has learnt a different lesson from the GO, namely the importance
of the role of a curator. To this end a large ontology has been already been
constructed by the project. In this case, myGrid chose to use DAML+OIL as
its underlying formalism because of the existence of tooling (e.g., OilEd) and
reasoning capabilities. Wherever possible, existing classifications from the com-
munity were used. By analysing use cases from the other two projects that were
unavailable at the time the ontology was constructed, it is clear that it has
reasonable, but incomplete, coverage of the domain. It is clear that, like MOBY-
Services, methods to encourage feedback from the community are essential. We
call this centralised, curated ontology building.

These two methods are not exclusive, however. MOBY-Services and myGrid
are therefore making significant efforts to align their ontologies. As the largest

362 P. Lord et al.

currently available ontology of bioinformatics services, it is hoped that a view of
the myGrid ontology can be constructed so that it can be used with the MOBY-
Services project. The collaborative community would then be aiding knowledge
capture rather than ontology building per se. This is perhaps closest to the
Gene Ontology process. It still, however, suffers from the problem that the cost
of curating the ontology must be borne centrally rather than distributed through
the community.

Finally, Semantic-MOBY has sought to embrace a distributed, autonomous
style of ontology building, reflecting the nature of bioinformatics. It seems likely
that, over time, the community will build ontologies describing some or all of
the domain. The independent development of the myGrid ontology seems to
prove that this assumption is accurate. The Semantic-MOBY infrastructure has
been designed to cope with a free market of ontology development. However,
ontologies provide interoperability only so far as they are shared by members of
the community. If multiple ontologies are allowed or encouraged yet mechanisms
for interoperability are not embedded, there is a risk that independent “city
states” will develop.

The use of a highly compositional style of ontology development, backed by
a well-defined semantics and inference is critical to avoiding this development.
It is hoped that core concepts can be created with community agreement and
that these concepts can be extended by smaller specialist groups. This approach
is also supported by the existence of the other projects. Any ontology developed
by either or both projects that is reflective of community opinion will be likely
to find favour within Semantic-MOBY’s free market.

Of all the aspects of the three architectures, ontology building is where the
three differ the most. Perhaps this stems from the fundamental difficulty of the
issue.

Given these differences, it is ironic, although heartening, that ontology build-
ing is also the activity where all three projects have shown the highest degree of
collaboration, engaging in active efforts to align semantics, share the knowledge
already represented explicitly, and gather additional knowledge implicit within
the community.

10 Discussion

Semantic Web Services technologies offer the prospect of increased interoper-
ability and of (semi)automated service discovery and invocation. The advent
of high-throughput biological techniques has made the requirement for such a
technology within bioinformatics immediate and pressing.

In this paper we have described three architectures that are applying these
technologies. We have also described some of the large practical problems that
have presented themselves.

Clearly all three projects are aimed at supporting bioinformatics. We feel,
however, that some of the experiences may be relevant to other domains. We
suggest:-

Applying Semantic Web Services to Bioinformatics 363

– The inappropriateness of automated service invocation and composition is
likely to be found in other scientific or highly technical domains.

– The difficulties in providing a domain ontology are likely to be shared by any
domain with complex data types; structuring of data is likely to be difficult
where significant legacy systems exist. We suspect that our solutions may
be practical for use only within a restricted domain.

– Semantic Service Discovery tailored toward the users’ notions of services is
likely to be a useful augmentation to all domains.

At the current time, we are unsure as to the applicability of simple service
interfaces to other domains, although we suspect this may remain relatively
unique to bioinformatics.

Despite these difficulties it seems likely that the development of Semantic
Web Services technologies should ease the difficulty of service discovery and
composition within bioinformatics. Conversely, we believe that bioinformatics
offers good opportunities for testing these technologies in a practical setting.

Acknowledgements. PL and DH are supported by the UK e-Science pro-
gramme EPSRC grant GR/R67743 as part of the myGrid project. SB was sup-
ported by the WonderWeb project (EU grant IST-2001-33052). DG, GS and LS
thank Andrew Farmer, Ardavan Kanani, Fiona Cunningham and Shuly Avra-
ham for their contributions to Semantic-MOBY. Semantic-MOBY is funded by
a National Science Foundation grant 0213512 to L.S. and D.G. The MOBY-
Services project wishes to thank Dr. William Crosby, Mr. Matthew Links, Mr.
Luke McCarthy, and the National Research Council Canada for their advice,
intellectual, and financial contributions. The work on MOBY-Services was sup-
ported by a grant from Genome Canada/Genome Prairie to MDW.

References

1. Michael Bada, Robert Stevens, Carole Goble, Yolanda Gil, Michael Ashburner,
Judith A. Blake4, J. Michael Cherry, Midori Harris, and Suzanna Lewis. A Short
Study on the Success of the Gene Ontology. Accepted for publication in the Journal
of Web Semantics, 2004.

2. Marina Chicurel. Bioinformatics: bringing it all together. Nature, 419:751–757,
2002.

3. Roy T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

4. C.A. Goble, R. Stevens, G. Ng, S. Bechhofer, N.W. Paton, P.G. Baker, M. Peim,
and A. Brass. Transparent Access to Multiple Bioinformatics Information Sources.
IBM Systems Journal Special issue on deep computing for the life sciences,
40(2):532 – 552, 2001.

5. Andreas Heß and Nicholas Kushmerick. Learning to attach semantic metadata
to web services. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

6. P. Karp. A Strategy for Database Interoperation. Journal of Computational Biol-
ogy, 2(4):573–586, 1995.

364 P. Lord et al.

7. Phillip Lord, Chris Wroe, Robert Stevens, Carole Goble, Simon Miles, Luc Moreau,
Keith Decker, Terry Payne, and Juri Papay. Semantic and Personalised Service
Discovery. In W. K. Cheung and Y. Ye, editors, WI/IAT 2003 Workshop on
Knowledge Grid and Grid Intelligence, pages 100–107, Halifax, Canada, October
2003.

8. Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic
Web: The Bottom-Up Approach to Web Service Interoperation. In Proceedings of
2nd International Semantic Web Conference (ISWC2003), Sanibel Island, Florida,
October 2003.

9. R. A. Miller. Medical diagnostic decision support systems–past, present, and fu-
ture: a threaded bibliography and brief commentary. J Am Med Inform Assoc,
1(1):8–27, Jan-Feb 1994.

10. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, A. Wipat,
and P. Li. Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 2004. Accepted for publication.

11. Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Katia Sycara. The
DAML-S Virtual Machine. In Internaional Semantic Web Conference, pages 290
– 305, 2003.

12. Stevens R, K. Glover, C. Greenhalgh, C. Jennings, S. Pearce, P. Li, M. Radenkovic,
and A. Wipat. Performing in silico Experiments on the Grid: A Users’ Perspective.
In Proc UK e-Science programme All Hands Conference, 2003.

13. Martin Senger, Peter Rice, and Tom Oinn. Soaplab – a unified sesame door to
analysis tools. In Proc UK e-Science programme All Hands Conference, 2003.

14. Lincoln Stein. Creating a bioinformatics nation. Nature, 417:119 – 120, 2002.
15. R. Stevens, H.J. Tipney, C. Wroe andT. Oinn, M. Senger, C.A. Goble P. Lord,

A. Brass, and M. Tassabehji. Exploring Williams-Beuren Syndrome using myGrid.
In Proceedings of 12th International Conference on Intelligent Systems in Molecular
Biology, 2004. Accepted for Publication.

16. R.D. Stevens, C.A. Goble, P. Baker, and A. Brass. A Classification of Tasks in
Bioinformatics. Bioinformatics, 17(2):180–188, 2001.

17. Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. myGrid: personalised
bioinformatics on the information grid. Bioinformatics, 19(90001):302i–304, 2003.

18. Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Au-
tomated discovery, interaction and composition of semantic web services. Journal
of Web Semantics, 1(1):27–46, September 2003.

19. Werner Vogels. Web services are not distributed objects. IEEE Internet Comput-
ing, 7(6):59–66, 2003.

20. M. D. Wilkinson, D. Gessler, A. Farmer, and L. Stein. The BioMOBY Project Ex-
plores Open-Source, Simple, Extensible Protocols for Enabling Biological Database
Interoperability. Proc Virt Conf Genom and Bioinf, 3:16–26, 2003.

21. M. D. Wilkinson and M. Links. BioMOBY: an open-source biological web services
proposal. Briefings In Bioinformatics, 3(4):331–341, 2002.

22. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating experiments using semantic data on a bioinformatics grid.
IEEE Intelligent Systems, 19(1):48–55, 2004.

23. Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Automating
DAML-S web services composition using SHOP2. In Proceedings of 2nd Interna-
tional Semantic Web Conference (ISWC2003), Sanibel Island, Florida, October
2003.

Automating Scientific Experiments on the
Semantic Grid

Shalil Majithia, David W. Walker, and W. Alex Gray

Cardiff School of Computer Science, Cardiff University,
Queens Building, Newport Road, Cardiff, UK

{shalil.majithia, david.w.walker, w.a.gray}@cs.cardiff.ac.uk

Abstract. We present a framework to facilitate automated synthesis of
scientific experiment workflows in Semantic Grids based on high-level
goal specification. Our framework has two main features which distin-
guish it from other work in this area. First, we propose a dynamic
and adaptive mechanism for automating the construction of experiment
workflows. Second, we distinguish between different levels of abstraction
of loosely coupled experiment workflows to facilitate reuse and sharing of
experiments. We illustrate our framework using a real world application
scenario in the physics domain involving the detection of gravitational
waves from astrophysical sources.

1 Introduction

Grid computing is emerging as a key enabling infrastructure for “flexible, se-
cure, coordinated resource sharing among dynamic collections of individuals, in-
stitutions, and resources” [38,39]. Scientific communities, including biology and
physics, are embracing Grid technologies to manage and process large datasets,
execute and share scientific experiments and simulations. Additionally, applica-
tions to process data intensive scientific experiments are no longer developed as
monolithic code; instead autonomous services are combined together as required
into a workflow to process the data [3,4]. In this context, service-oriented Grids
can provide significant new capabilities to scientists by facilitating the composi-
tion and execution of experiments from a large pool of available services. Current
manual composition techniques [12,13,14,15] are of limited value in dynamic and
complex service-rich environments like the Grid for several reasons. First, the po-
tential number of suitable services in Grid environments can be extremely large.
It would be unrealistic to expect a user to be able to locate a suitable service.
Second, the user is expected to ensure that the data being passed to services
are semantically and syntactically correct. Finally, it is possible there may be no
single service which can provide the functionality required. To resolve these prob-
lems and facilitate automated composition, mechanisms are needed to specify
and manipulate rich descriptions of available resources. One promising approach
is the Semantic Grid [40,41,42]. The Semantic Grid concept represents the use
of Semantic Web technologies in Grid computing and promises the seamless in-
teroperability of autonomous, heterogeneous, distributed applications across the

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 365–379, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

366 S. Majithia, D.W. Walker, and W.A. Gray

Grid by enabling the automation of many tasks for example discovery, selection,
composition, and execution of workflows. Current automated composition tech-
niques [4,6,17,31,7,8,9,10,11,18,33,34,35,36,37] typically make assumptions that
render them of limited value in complex dynamic environments, for example they
do not address issues like autonomy, adaptation, reuse, and sharing of workflows.
This implies a need for an autonomic approach to workflow composition. In such
an approach, the service composition process should be able to dynamically con-
figure services in a way that can satisfy a service request. Autonomic models are
suited for Grid environments where services are constantly added, modified or
removed. By facilitating autonomic service composition, scientists can:

– Easily and efficiently discover a service that is more suitable to their needs.
– Focus on the conceptual basis of their experiments rather than understand

the low level details of locating services.
– Easily create and share high quality complex workflows with varying levels

of abstraction.

In this paper, we present a novel framework for the autonomic composition
of experiment workflows in Semantic Grids. The framework presented in this
paper has a number of important features. First, we distinguish between different
levels of abstraction of loosely coupled workflow representations. Second, the
framework uses a dynamic fault tolerant composition algorithm which adapts
to the available resources. Third, the framework allows the user to specify and
refine a high level objective. As a consequence, we propose that our framework:

– has a higher probability of successfully generating executable workflows com-
pared to existing automated composition algorithms.

– allows users to share workflows with different levels of granularity.
– allows users to specify and refine high level objectives.
– is domain independent.

The remainder of this paper is structured as follows. First we review related
research in the area of workflow composition in service-oriented architectures
(Section 2). Second, we present an overview of the framework (Section 3). Third,
we examine the main components of the framework (Sections 4 - 7). Fourth, we
present an example application and evaluate our framework (Section 8). Finally,
we conclude by discussing future directions.

2 Background

Workflow composition in Grids and more generally, in Service-Oriented Archi-
tectures has been the focus of much research recently, although the composition
problem has been actively investigated in the database and agent communities
[23-26]. Workflow composition is an active field of research and we review the
major frameworks that are most closely related to our research. Workflow com-
position can be broadly classified into three categories: manual, semi-automated

Automating Scientific Experiments on the Semantic Grid 367

and automated composition. Manual composition frameworks [12, 13, 15, 27]
expect the user to generate workflow scripts either graphically or through a text
editor, which are then submitted to a workflow execution engine. Triana [12,
13] is used in astrophysics community and provides a graphical user interface,
allowing the user to select the service required from a toolbox and “drag-and-
drop” onto a canvas. The services are retrieved from UDDI using a simple key-
word search. Additionally, Triana allows the composition of services with locally
available tools. The composed graph can then be distributed over a P2P or Grid
network for execution. BPWS4J [15] provides an Eclipse plug-in to allow the
user to compose a graph at the XML level. This composed graph, along with
a WSDL document for the composite service, is submitted to the execution en-
gine. Self-Serve [27] allows the user to build the workflow by locating the services
required by using the service builder. The service builder interacts with UDDI
to retrieve service meta-data. The composed graph, an annotated state chart, is
then executed using a P2P based execution model. An interesting feature of this
system is the use of a service container that aggregates services offering the same
functionality. At run time, the service container selects the actual service based
on membership modes and a scoring service. These systems have several draw-
backs. First, the discovery and selection of services is un-scalable as the number
of services increases. Second, they require the user to have low-level knowledge,
e.g. in the case of BPWS4J, the user is expected to set up a workflow at the
XML level. Although Triana provides a graphical drag and drop interface, this
is not feasible for a large workflow. Third, if the service is no longer available,
the execution will fail, although in the case of Self-Serve, the service container
would probably substitute another functionally-equivalent service. Also, recent
research [19] has ’extended’ BPWS4J to allow runtime selection and substitution
of services.

Semi-automated composition techniques [4, 6, 17, 31] are a step forward
in the sense that they make ’semantic suggestions’ for service selection during
the composition process; the user still needs to select the service required from
a shortlist of the appropriate services and link them up in the order desired.
The myGrid project [43] is one of the first Semantic Grid projects and aims to
provide a problem-solving workbench for biologists. Specifically, myGrid allows
scientists to compose, store and execute workflows. The scientist browses a reg-
istry and selects a workflow template. This template is then submitted to an
enactment engine which then either asks the user to select actual instances of
the workflow components or automatically selects services based on user’s per-
sonal preferences. The myGrid project is also investigating other related issues
like provenance. Sirin et. al. [17] propose a system that provides service choices
which are semantically compatible at each stage. The generated workflow is then
executed. Cardoso and Sheth [4] propose a framework which provides assistance
to the user by recommending a service meeting the user’s needs. This is done by
matching the user-specified Service Template (ST) with the Service Object (SO).
Chen et. al. [6] outline a knowledge-based framework which provides advice as
the user constructs a workflow. The system allows the user to store workflows,

368 S. Majithia, D.W. Walker, and W.A. Gray

hence facilitating reuse. Although these systems solve some of the problems of
manual composition frameworks, they are still un-scalable as the user is expected
to browse a registry to select the appropriate template or service. The filtering
process may provide numerous matching services for the user to select from. For
example in the myGrid project, the user is expected to select the actual instance
of the service desired, although an automated workflow harmonization mecha-
nism is envisaged. Additionally, there are few, if any, fault-handling mechanisms
built into these systems. For example in Cardoso and Sheth, if a ST fails to
match an SO, composition will fail. Similarly in Sirin et. al., Chen et. al., and
myGrid project the composed workflow is sent to the enactment engine for ex-
ecution. At this stage, if a service becomes unavailable, workflow execution will
fail. Finally, except for Chen et al., there is no support for generating workflows
of differing levels of granularity.

Automated composition techniques [7-11, 18, 33-37] automate the entire com-
position process by using AI planning or similar technology. McIlraith and Son
[10] address the automated composition problem by proposing an agent-based
Web services composition framework which uses generic procedures and semanti-
cally marked up services to guide composition. The Agent Broker acts as a gate-
way to Web services and is responsible for selecting and invoking the services.
The framework assumes the existence of a generic procedure. In the absence of
one, composition cannot proceed. Additionally, if the Agent Broker cannot match
a service, execution will fail. The SWORD toolkit [11] automates service compo-
sition by using rule-based service descriptions. The user specifies the initial and
final state facts. Based on this, the planner attempts to put together a chain of
services that can satisfy these requirements. The user is expected to be able to
specify the state facts. More importantly, there is no automated service discov-
ery mechanism built in. As a result, composition will fail if the service required
cannot be found. Also, composition is based on specific implementations of ser-
vices; this makes it difficult to share workflows as the service may no longer be
available. An important component of automated composition is the discovery of
the services required. Research in this area has focused on the use of DAML-S to
describe service capabilities. A matchmaker engine then compares the DAML-S
description of the service requested with those of the services advertised [20, 21].
This work is extended by Sycara et. al. [16] to propose a preliminary discovery
and execution framework based on AI planning technology, the DAML-S Match-
maker and the DAML-S Virtual Machine. The framework assumes a composition
plan is available and hence concentrates on identification of suitable services and
execution of the plan. Additionally, the framework does not incorporate the use
of a workflow repository. Hence, a workflow has to be recomputed each time a
request is received. Also, the framework does not distinguish between executable
and non-executable workflows; all workflows are based on implemented services
available. As a result, the workflows are not reusable or cannot be shared as
there is no guarantee that any component service will be available in the future.
Sheshagiri et. al. [8] propose a framework with two key features: use of DAML-S
to describe service capabilities and a planner to generate simple workflow graphs

Automating Scientific Experiments on the Semantic Grid 369

using a backward chaining algorithm. A very similar framework is proposed by
Wu et al., [7] that uses SHOP2, an HTN planning system, to generate workflows.
The Pegasus project [9, 33-37] used to generate workflows in high energy physics
applications proposes two workflow generation systems. The Concrete Workflow
Generator (CWG) maps an abstract workflow onto an executable workflow. The
second system (ACWG) uses AI planning technology to generate workflows in
Grid environments. An interesting feature of this work is the distinction be-
tween abstract and concrete workflows. These frameworks suffer from the same
drawbacks: there is no fault handling mechanism - if a service implementation
is not available, execution will fail. Additionally, the frameworks proposed do
not include a workflow repository which would make it possible to reuse previ-
ously constructed workflows. Further, there is no distinction between abstract
and concrete workflows. This makes it difficult to share workflows. Although the
Pegasus system does make this distinction, it does not provide mechanisms to
expose the abstract and the concrete workflows as services. Finally, Koehler and
Srivastava [29] point out several problems with current AI planning technology
when applied to the service composition problem. Laukkanen and Helin [28] put
forward a model which includes simple fault handling mechanisms. The model
assumes that a workflow already exists in a repository and the user selects the
workflow required. This workflow is then validated to ensure that all the partic-
ipating services are available. If a service is not available, a matchmaker is used
to retrieve similar services. Interestingly, if a single alternative cannot be found,
the composer agent attempts to put together a simple chain of service which
can provide the functionality. The workflow is then rewritten to include these
new services and their network locations and sent to the execution engine. The
drawbacks of this model are as follows: First, the model assumes a workflow is
available. There is no mechanism for the user to create one. This is a severe draw-
back as it completely side-steps the issue of composition. Second, workflows are
stored with the network locations of the services encoded within the workflow.
This means that when a workflow is reused and all the participating services are
available, there is no option for the user to select alternative implementations of
the service based on changed optimization criteria. The IRS-II [18] framework
provides an infrastructure which can be used to publish, compose and execute
Semantic Web services. The system distinguishes between a task (generic de-
scription of the task to be solved) and a Problem Solving Method (an abstract,
implementation-independent description of how to accomplish a task). A task
may correspond to several PSMs. The user selects a task to be performed. A
broker locates an appropriate PSM (which can satisfy the task) and then in-
vokes the corresponding services. Although the system proposes an interesting
distinction between a task and a PSM, this increase in the number of artifacts
required merely enhances the probability that workflow composition will fail.
First, a service developer has to manually associate a PSM to a service. This
becomes un-scalable as the number of PSMs and services increase. Second, com-
position and/or execution will fail if a task, PSM or a service is not available.
There appear to be no fault-handling mechanisms to tackle such a scenario.

370 S. Majithia, D.W. Walker, and W.A. Gray

In this section, we reviewed briefly several service composition frameworks,
some of which are used to generate experiment workflows on the Grid. We iden-
tified gaps in existing systems; lack of an autonomic composition algorithm, and
non-distinction between different abstract levels of workflows.

3 Framework Overview

In this section, we outline the general requirements for the framework and present
the proposed architecture. In order to successfully generate scientific workflows,
an automated workflow composition framework must adhere to certain basic
requirements.

– High degree of fault-tolerance: The framework must be able to handle com-
mon fault scenarios. There is no guarantee in a Grid environment that a
particular service will be available at some particular time. In this case,
there should be intelligent mechanisms to discover and invoke another ser-
vice, or compose services which provide the same functionality. Similarly,
in case a rulebase is not available for a particular objective, there must be
mechanisms to chain services to achieve the objective. We define fault toler-
ance to mean the non-availability of the service and exclude other possible
faults, for e.g. a service returns an invalid response, at this time.

– Workflow granularity: The framework should support mechanisms to allow
users to generate workflows of varying levels of granularity. For example,
abstract and concrete workflows. Abstract workflows specify the workflow
without referring to any specific service implementation. Hence all services
are referred to by their logical names. A concrete workflow specifies the actual
names and network locations of the services participating in the workflow.
An abstract workflow allows users to share workflows without reference to
any specific service implementation. This is particularly useful as there is
no guarantee of the availability of any service in Grids. On the other hand,
a concrete workflow could be useful for provenance purposes. Additionally,
workflows of differing levels of granularity should be loosely coupled, i.e. with
minimum interdependence.

– Specify and refine high-level objectives: The framework should support mech-
anisms to allow users to specify and dynamically refine a high-level objective
which is then translated into a workflow. It should be possible to carry out
“what-if” analysis in an efficient manner with only the changed sub-graphs
being recomposed.

– User-specified optimization criteria: The framework should provide a mech-
anism which allows users to specify the workflow composition/execution op-
timization criteria. For example, the user may want to minimize the total
runtime of the workflow or minimize the use of expensive resources.

– Scalable: The framework should be scalable to a large number of services.
– Domain independent: The framework should be as generic as possible in

order to allow its use within any domain.

Automating Scientific Experiments on the Semantic Grid 371

Fig. 1. The Framework Architecture.

– Other important requirements include security and ability to record and
reason over provenance.

Our proposed framework provides the following:

– Support for dynamic fault-tolerant, adaptive workflow composition mecha-
nism

– Support for generating, storing, and reusing workflows with differing levels
of granularity.

– Support for specification and refinement of high-level user objectives.

The framework architecture is shown in Figure 1. Everything is a service.
Services are described and invoked based on their descriptions. The key boot-
strap operation is the location of the Workflow Manager Service (WFMS). The
WFMS puts together the framework required based on available services and
user-specified preferences. The framework consists of two core and five support-
ing services: Abstract Workflow Composer (AWFC), Concrete Workflow Com-
poser (CWFC), Reasoning Service (RS), Matchmaker Service (MMS), Abstract
Workflow Repository (AWFR), Concrete Workflow Repository (CWFR) and the

372 S. Majithia, D.W. Walker, and W.A. Gray

Rulebase (RB). The WFMS coordinates the entire process and manages the flow
of messages between the components. The AWFC is a service which accepts an
incoming user-specified high-level goal and transforms this into an abstract work-
flow. At this level, all tasks and their inputs and outputs are referred to by their
logical names. The AWFC will typically query the AWFR to ascertain if the
same request has been processed previously. If so, the abstract workflow will be
returned to the Manager Service. If not, a request will be made to the Reasoning
Service to retrieve a process template from the Rulebase which can satisfy the re-
quest. If a process template is not available, an attempt will be made to retrieve
a combination of tasks that provide the same functionality based on the inputs,
outputs, preconditions and effects. The same process will apply to all constituent
services. An abstract workflow is generated and returned to the Manager Ser-
vice. The CWFC Service accepts an abstract workflow and attempts to match
the individual tasks with available instances of actually deployed services. If the
matching process is successful, an executable graph is generated and returned
to the Manager Service. If not, a request will be made to the Reasoning Ser-
vice and the Matchmaker Service to retrieve a combination of services that can
provide the required functionality. The AWFR and CWFR Services are domain
specific services which wrap and provide access to the workflow repositories. The
repositories store abstract and concrete workflows respectively. Sections 4 to 7
describe each of these components in more detail.

4 Abstract Workflow Composition

As introduced above, the AWFC Service generates an abstract workflow from
a high-level objective. The AWFC uses a dynamic adaptable algorithm (Fig. 2)
which tries to build an abstract workflow by using at least three different sources
of information.

– AWF Repository. The AWF Repository stores semantically annotated de-
scriptions of services and workflows. The AWFC queries the AWFR Service
to ascertain if the same workflow has been processed previously. This is done
by semantically matching the workflow name by referring to an ontology. If
a match is found, the AWF is returned.

– Rulebase. If no match is found, the AWFC queries a rule base to retrieve
a rule which can provide the template to achieve this goal. Given this rule,
the AWFC again queries the AWFR, but this time an attempt is made to
semantically match the inputs and outputs required to those of the abstract
workflows in the repository. If an AWF is matched, this is returned. If the
matching does not succeed, the AWFC analyzes and splits the rule into
component rules. This is done recursively until an atomic rule is reached.
The AWFC will then query the AWFR to ascertain if any AWFs match the
rule.

– Chaining Services. The AWFC uses the Reasoning Service (see Section 6) to
create a chain of services that when put together can fulfil the user objective.

Automating Scientific Experiments on the Semantic Grid 373

AWFC(name){
retrieveFromAWFR(name);
if (!found) {

retrieve rule from rulebase;
retrieveFromAWFR(input,output);
if (!found) {

split rule into smallest rule;
for (each rule) {

get rule output;
get rule input;
retrieveFromAWFR(input,output);
if (!found) {

chain services(input,output);
}

concatenate;
}

}
}
return AWF

}

Fig. 2. AWFC algorithm

5 Concrete Workflow Composition

The CWFC uses a dynamic adaptable algorithm to match each services in the
abstract workflow with an instance of an executable service available on the
network at that time. It does this in two different ways:

– Matchmaking: Each abstract service is passed to the Matchmaker Service
(see Section 7) which then attempts to retrieve a semantically matching
service available on the network. Depending on the degree of the match, the
CWFC Service may accept the service. The degree of match may vary from
exact to plug-in.

– Chaining Services: The CWFC uses the Reasoning Service (see Section 6)
to chain together services which can provide the same functionality. It is
possible that a service implementation may not be available. In this case,
the AWFC is invoked through the WFMS, and asked to provide alternative
AWFs for that particular sub-graph. This provides a high degree of fault
tolerance.

Matching is done in two stages. First, a semantic match is made. If this
is successful, the number and the types of the input and output messages are
compared: if they are the same, the match is successful, else an attempt is made
to chain services starting from the output desired.

374 S. Majithia, D.W. Walker, and W.A. Gray

6 Reasoning Service

The Reasoning Service provides support to the two core composer services.
Specifically, this service provides a back-tracking algorithm to produce a chain
of services which can provide the output required using the given input. More
specifically, the following steps are performed:

– For each service available, find a service that matches the output of the
service requested. Let one such service be Sn.

– Ascertain the input of Sn. Find a service that can generate the input for Sn.
Let this service be Sn-1.

– This process is iterated until the input of the service Sn-x matches the input
of the service requested.

– Formulate the workflow which specifies the order of execution of the compo-
nents S1 to Sn.

An interesting feature of our chaining algorithm is that it uses the Match-
making Service to match the inputs and outputs of the services. As a result,
it is not essential that matching be exact; plug-in matches are acceptable. This
makes our chaining algorithm more robust and with a higher rate of success than
similar other algorithms.

7 Matchmaking Service

The Matchmaking Service (MMS) provides an intelligent matchmaking mecha-
nism. Its core functionality is to match two services based on the inputs, outputs,
pre-conditions and effects (IOPEs). The Matchmaking Service is used by the
Reasoning Service to match inputs and outputs of the service that it is chaining.
Additionally, the MMS is used by the CWFC Service to match abstract services
to concrete services. Our algorithm is based on that proposed by Paolucci et.
al. [20]. However, only exact and plug-in matches, as defined by Paolucci et al.,
are calculated as there is no guarantee that a subsumes match would be able
to provide the required functionality. As a consequence, we would expect the
algorithm to be more suitable and efficient for use in automated composition
frameworks.

8 Implementation and Evaluation

In this section, we first describe the implementation of our framework. We then
illustrate our approach by using a scenario from the physics domain and provide
some preliminary results of performance evaluation experiments.

All the main components are implemented as Web services using the Axis
server to expose them. We use existing Semantic Web tools, like RDF, OWLS,
and reasoning mechanisms to provide the basic representation and reasoning

Automating Scientific Experiments on the Semantic Grid 375

<profileHierarchy:SignalProcessing rdf:ID="FFT">
<profile:input>
<profile:ParameterDescription rdf:ID="FFTInput">
<profile:restrictedTo rdf:resource="Concepts.owl#VectorType"/>

</profile:ParameterDescription>
</profile:input>
<profile:output>
<profile:ParameterDescription rdf:ID="FFTOutput">
<profile:restrictedTo rdf:resource="Concepts.owl#ComplexSpectrum"/>

</profile:ParameterDescription>
</profile:output>

</profileHierarchy:SignalProcessing>

Fig. 3. Snippet of OWL-S Profile for FFT

technology. Services are described using OWL-S. The Reasoning and Match-
making Services use DQL/JTP server to carry our subsumption reasoning. The
repositories are currently implemented as flat files containing the OWL-S pro-
files and process models (see figure 3). The WFMS forms the core of the frame-
work. It locates and coordinates all the other components required to form the
framework. The AWFC Service generates an abstract workflow as a DAML-S
Process Model. This abstract workflow is passed to the CWFC Service, which
then matches all the services taking part in the workflow with available imple-
mentations. Finally, a BPEL4WS document containing the network locations
and protocol details of all the tasks is generated and this can now be submitted
to any BPEL4WS engine for execution. To illustrate the main features of our
framework, we present the following scenario.

Compact binary stars orbiting each other in a close orbit are among the most
powerful sources of gravitational waves. As the orbital radius decreases, a char-
acteristic chirp waveform is produced whose amplitude and frequency increase
with time until eventually the two bodies merge together. Laser interferometric
detectors such as GEO600, LIGO, VIRGO should be able to detect the waves
from the last few minutes before collision. Interferometric gravitational wave de-
tectors are inherently broadband, sensitive to radiation coming from almost all
directions in the sky, and output data at rates in excess of several megabytes
per second. Consequently, searching for gravitational wave signals buried in the
detector output and identifying the sources is a challenging task. To analyze
this data, thousands of templates, representing the theoretical knowledge of rel-
ativistic binary systems, are correlated with the signal using fast correlation by a
technique known as matched filtering. This implementation uses approximately
50 separate services connected together to form a workflow. The AWFC gener-
ates a DAML-S Process model referring to the services by their logical names, for
example FFT, Conjugate, Scaler, OneSide, and Wave. These are then matched
to actual implementations available on the network.

376 S. Majithia, D.W. Walker, and W.A. Gray

Fig. 4. Plan Generation Times.

Fig. 5. Plan Generation Success Rates.

The purpose of our experiments is two-fold: to assess plan generation times
and success rates. We present here preliminary results. We ran our experiments
on a Windows machine with a 1.4GHz Intel processor and 512Kb RAM. We
first evaluate the time for generating concrete workflows (see Figure 4). There
is an exponential relationship between the number of services in a plan and the
time required to match and compose an executable graph. We also looked at the
workflow generation success rates(see Figure 5). We compared our framework
with a simple automated back-tracking composition algorithm. We used the
same process ontologies and composition requests for both of these techniques.
Based on 50 requests, the results show that our framework had a success rate
of 80% while the back-tracking algorithm had a success rate of about 60%. This
confirms our expectation that our autonomic framework has a higher probability
of successfully generating workflows. Further experiments are currently being
done to ascertain the range over which this results apply.

Automating Scientific Experiments on the Semantic Grid 377

9 Conclusion

In this paper, we propose a framework to facilitate automated composition of sci-
entific experiment workflows in Semantic Grids made up of a Manager Service
and other supporting services, including an abstract and a concrete workflow
generator. We have described these components in detail and outlined their in-
teractions. We have also described our implementation and its use within the
physics domain. The important features of our approach are: an autonomic work-
flow generation algorithm and distinction between different levels of abstraction
of the workflow in order to allow reuse and sharing. These features ensure that
our framework has a higher possibility of successfully generating workflows com-
pared to other similar algorithms. Future work involves the use our model in
other application domains. We also plan to integrate user-specified optimization
criteria to guide the generation of workflow. Finally, we intend to investigate
the use of user specified policies to guide decisions which need to made when
composing services.

References

1. Casati, F., Shan, M., and Georgakopoulos, D. 2001. E-Services - Guest editorial.
The VLDB Journal. 10(1):1.

2. Tsalgatidou, A and Pilioura, T. 2002. An Overview of Standards and Related
Technology in Web services. Distributed and Parallel Databases. 12(3).

3. Fensel, D., Bussler, C., Ding, Y., and Omelayenko, B. 2002. The Web Service Mod-
eling Framework WSMF. Electronic Commerce Research and Applications.1(2).

4. Cardoso, J. and Sheth, A. 2002. Semantic e-Workflow Composition. Technical Re-
port, LSDIS Lab, Computer Science, University of Georgia.

5. Paolucci, M., Sycara, K., and Takahiro Kawamura. 2003. Delivering Semantic Web
Services. In Proc. Of the Twelfth World Wide Web Conference.

6. Chen, L, Shadbolt, N.R, Goble, C, Tao, F., Cox, S.J., Puleston, C., and Smart,
P. 2003. Towards a Knowledge-based Approach to Semantic Service Composition.
2nd International Semantic Web Conference

7. Wu, D., Sirin, E., Hendler, J., Nau, D., and Parsia, B. 2003. Automatic Web
Services Composition Using SHOP2. Twelfth World Wide Web Conference.

8. Sheshagiri, M., desJardins, M., and Finin, T. 2003. A Planner for Composing Ser-
vice Described in DAML-S. Workshop on Planning for Web Services, International
Conference on Automated Planning and Scheduling.

9. Deelman, E., J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, Cavanaugh, R. and Koranda, S. Mapping Abstract Complex
Workflows onto Grid Environments. Journal of Grid Computing. Vol. 1, 2003

10. McIlraith, S. and Son, T.C. 2002. Adapting golog for composition of semantic web
services. In Proc. of the 8th International Conference on Knowledge Representation
and Reasoning (KR ’02), Toulouse, France.

11. Ponnekanti, S. R., and Fox, A. 2002. SWORD: A Developer Toolkit for Web Service
Composition. In Proc. Of the Eleventh International World Wide Web Conference,
Honolulu.

12. Taylor, I., Shields, M., Wang, I., and Philp, R: Grid Enabling Applications Using
Triana, Workshop on Grid Applications and Programming Tools, June 25, 2003,
Seattle. In conjunction with GGF8

378 S. Majithia, D.W. Walker, and W.A. Gray

13. Taylor, I., Shields, M., Wang, I., and Philp, R: Distributed P2P Computing within
Triana: A Galaxy Visualization Test Case. To be published in the IPDPS 2003
Conference, April 2003

14. Mayer, A., McGough, S., Furmento, N., Lee, W., Newhouse,S., and Darlington, J:
ICENI Dataflow and Workflow: Composition and Scheduling in Space and Time
In UK e-Science All Hands Meeting, p. 627-634, Nottingham, UK, Sep. 2003

15. IBM Alphaworks, BPWS4J,
http://www.alphaworks.ibm.com/tech/bpws4j [12.01.2004]

16. Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N.: Automated Discovery,
Interaction and Composition of Semantic Web Services, Journal of Web Semantics,
Volume 1, Issue 1, December 2003

17. Sirin, E., Hendler, J., and Parsia, B: Semi-automatic composition of web services
using semantic descriptions. In Web Services: Modeling, Architecture and Infras-
tructure Workshop in conjunction with ICEIS 2003

18. Motta, E., Domingue, J., Cabral, L. and Gaspari, M: IRS-II: A Framework and
Infrastructure for Semantic Web Services. 2nd International Semantic Web Con-
ference (ISWC2003) 20-23 October 2003, Sundial Resort, Sanibel Island, Florida,
USA

19. Mandell, D.J., and McIlraith, S.A: A Bottom-Up Approach to Automating Web
Service Discovery, Customization, and Semantic Translation. In The Proceedings
of the Twelfth International World Wide Web Conference Workshop on E-Services
and the Semantic Web (ESSW ’03). Budapest, 2003.

20. Paolucci, M., Kawamura, T., Payne, T., Sycara, K: Semantic Matching of Web Ser-
vices Capabilities. Proceedings of the 1st International Semantic Web Conference
(ISWC), pp. 333-347, 2002.

21. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic
web technology. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 331-339. ACM, 2003.

22. Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web, Scientific American,
May, 2001.

23. Parent, C. and Spaccapietra, S: Issues and Approaches of Database Integration.
Communications of the ACM 41(5): 166-178.

24. Kashyap, V. and A. Sheth: Semantic Heterogeneity in Global Information Systems:
The Role of Metadata, Context and Ontologies, Academic Press.

25. Preece, A.D., K.Y. Hui, Gray, W.A., Marti, P., Bench-Capon, T.J.M., Jones, D.M.,
and Cui, Z: The KRAFT Architecture for Knowledge Fusion and Transformation.
19th SGES International Conference on Knowledge-based Systesm and Applied
Artificial Intelligence (ES’99) , Springer, Berlin

26. Bayardo, R.J., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-
nikrishnan, A. Unruh and D. Woelk: InfoSleuth: Agent-Based Semantic Integration
of Information in Open and Dynamic Environments. Proceedings of the ACM SIG-
MOD International Conference on Management of Data, ACM Press, New York.
pp. 195-206.

27. Benatallah, B., Sheng, Q.Z., and Dumas, M.: The Self-Serv Environment for Web
Services Composition, Jan/Feb, 2003, IEEE Internet Computing. Vol 7 No 1. pp
40-48.

28. Laukkanen, M., and Helin, H: Composing Workflows of Semantic Web Services.In
AAMAS Workshop on Web Services and Agent-Based Engineering, 2003.

Automating Scientific Experiments on the Semantic Grid 379

29. Koehler, J., and Srivastava, B: Web Service Composition: Current Solutions and
Open Problems. ICAPS 2003 Workshop on Planning for Web Services, pages 28 -
35.

30. Medjahed, B., Bouguettaya, A., and Elmagarmid A: Composing Web Services on
the Semantic Web. The VLDB Journal, Special Issue on the Semantic Web, Volume
12, Number 4, November 2003.

31. Stevens, R.D., Robinson, A.J., and Goble, C.A: myGrid: Personalised Bioinfor-
matics on the Information Grid. Bioinformatics Vol. 19 Suppl. 1 2003, (Eleventh
International Conference on Intelligent Systems for Molecular Biology)

32. Business Integration, http://www.bijonline.com/default.asp [12.01.2004]
33. Blythe, J., Deelman, E., Gil, Y., and Kesselman C: Transparent Grid Computing: a

Knowledge-Based Approach. 15th Innovative Applications of Artificial Intelligence
Conference (IAAI 2003), 2003.

34. Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., and
Vahi, K: The Role of Planning in Grid Computing, 13th International Conference
on Automated Planning and Scheduling, 2003.

35. Blythe, J., Deelman, E., and Gil, Y: Planning for workflow construction and main-
tenance on the Grid. ICAPS 2003 Workshop on Planning for Web Services.

36. Deelman, E., Blythe, J., Gil, Y., and Kesselman, C: Pegasus: Planning for Execu-
tion in Grids., GriPhyN technical report 2002-20, 2002

37. Deelman, E., Blythe, J., Gil, Y., Kesselman C., Mehta, G., Vahi, K., Koranda, S.,
Lazzarini, A., Papa, M.A: From Metadata to Execution on the Grid Pegasus and
the Pulsar Search. , GriPhyN technical report 2003-15

38. Foster, I. and Kesselman, C. eds., The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Francisco, 1999.

39. Foster, I. et al., “The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration,” tech. report, Globus Project;

40. De Roure, D., Jenning, N.R., and Shadbolt, N., Research Agenda for the Semantic
Grid: A Future e-Science Infrastructure. http://www.semanticgrid.org

41. The Grid: An Application of the Semantic Web by Carole Goble and David De
Roure, 2002, www.semanticgrid.org

42. Semantic Web and Grid Computing by Carole Goble and David De Roure, 2002,
www.semanticgrid.org

43. Stevens,R., Robinson, A., and Goble, C.A., myGrid: Personalised Bioinformatics
on the Information Grid in proceedings of 11th International Conference on Intelli-
gent Systems in Molecular Biology, 29th June–3rd July 2003, Brisbane, Australia,
published Bioinformatics Vol. 19 Suppl. 1 2003, i302-i304

Automated Composition of Semantic Web Services into
Executable Processes

Paolo Traverso1 and Marco Pistore2

1 ITC-IRST, Trento, Italy
traverso@itc.it

2 University of Trento, Italy
pistore@dit.unitn.it

Abstract. Different planning techniques have been applied to the problem of au-
tomated composition of web services. However, in realistic cases, this planning
problem is far from trivial: the planner needs to deal with the nondeterministic
behavior of web services, the partial observability of their internal status, and
with complex goals expressing temporal conditions and preference requirements.
We propose a planning technique for the automated composition of web services
described in OWL-S process models, which can deal effectively with nondeter-
minism, partial observability, and complex goals. The technique allows for the
synthesis of plans that encode compositions of web services with the usual pro-
gramming constructs, like conditionals and iterations. The generated plans can thus
be translated into executable processes, e.g., BPEL4WS programs. We implement
our solution in a planner and do some preliminary experimental evaluations that
show the potentialities of our approach, and the gain in performance of automating
the composition at the semantic level w.r.t. the automated composition at the level
of executable processes.

1 Introduction

One of the big challenges for the taking up of web services is the provision of automated
support to the composition of service oriented distributed processes, in order to decrease
efforts, time, and costs in their development, integration, and maintenance. Currently,
the problem of the composition of web services is addressed by two orthogonal efforts.
From the one side, most of the major industry players propose low level process model-
ing and execution languages, like BPEL4WS [1]. These languages allow programmers
to implement complex web services as distributed processes and to compose them in
a general way, e.g., by interleaving the partial execution of different services with pro-
gramming control constructs, like if-then-else, while-loops, fork, choice, etc. However,
the definition of new processes that interact with existing ones must be done manually
by programmers, and this is a hard, time consuming, and error prone task. From the
other side, research within the Semantic Web community proposes a top down unam-
biguous description of web services capabilities in standard languages like DAML-S
[2] and OWL-S [10], thus enabling the possibility to reason about web services, and to
automate tasks like discovery and composition. However, the real taking up of Semantic
Web Services for practical applications needs the ability of generating automatically

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 380–394, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automated Composition of Semantic Web Services into Executable Processes 381

composed services that can be directly executed, in the style of BPEL4WS programs,
thus reducing effort, time and errors due to manual composition at the programming
level.

Several works have proposed different automated planning techniques to address the
problem of automated composition (see [17,18,21,23]). However, the planning problem
is far from trivial, and can be hardly addressed by “classical planning” techniques.
In realistic cases, OWL-S process models describe nondeterministic processes, whose
behaviors cannot be predicted prior to of execution (e.g., a flight reservation service
cannot know in advance whether a reservation will be confirmed or canceled). Moreover,
the internal status of a service (e.g., whether there are still seats available in a flight) is
not available to external services, and the planner can only observe services invocations
and responses. Finally, composition goals need to express complex requirements that
are not limited to reachability conditions (like get to a state where both the flight and
the hotel are reserved). Most often, goals need to express temporal conditions (e.g., do
not reserve the hotel until you have reserved the flight), and preferences among different
goals (try to reserve both the flight and the hotel, but if not possible, make sure you
do not reserve any of the two). As a consequence, automated composition needs to
interleave (the partial executions of) available services with the typical programming
language constructs such as conditionals, loops, etc., similarly to composed services
that are programmed by hand, e.g., in BPEL4WS.

In this paper, we propose a technique for the automated composition of web services
described in OWL-S, which allows for the automated generation of executable processes
written in BPEL4WS. Given a set of available services, we translate their OWL-S process
models, i.e., declarative descriptions of web service processes, into nondeterministic and
partially observable state transition systems that describe the dynamic interactions with
external services. Goals for the service to be automatically generated are represented in
the EaGLe language [11], a language with a clear semantics which can express complex
requirements. We can thus exploit the “Planning as Model Checking” approach based on
symbolic model checking techniques [13,9,6,11,5], which provides a practical solution
to the problem of planning with nondeterministic actions, partial observability, and
complex goals, and which has been shown experimentally to scale up to large state
spaces. As a result, the planning algorithm generates plans that are automata and that
can be translated to BPEL4WS code.

We implement the proposed techniques in MBP [4], a planner based on the planning
as model checking approach, and perform an experimental evaluation. Though the re-
sults are still preliminary, and deserve further investigation and evaluation, they provide
a witness of the potentialities of our approach. Moreover, we compare the experimental
results with those obtained by applying the same technique to (state transition systems
generated from) BPEL4WS processes. The comparison shows that automated composi-
tion performed at the high level of OWL-S process models is orders of magnitudes more
efficient than the one applied at the low level of executable processes, thus demonstrating
experimentally a practical advantage of the Semantic Web approach to web services.

The paper is structured as follows. In Section 2, we give an overview of the approach
and introduce an explanatory example that will be used all along the paper. In Section 3,
we explain how OWL-S process models can be translated into state transition systems,

382 P. Traverso and M. Pistore

Σ
W1

Σ
Wn

Σπ G
π such that

W
Executable Process

(e.g., BPEL4WS)

State
Transition
Systems

Σ

M
B

P

P
LA

N
N

E
R

Models
Process
OWL−S

W1

Wn

Composition Goal G

Fig. 1. OWL-S based Automated Composition.

while in Section 4 we describe the goal language. We explain how we do planning for
web service composition in Section 5. We provide a preliminary experimental evaluation
in Section 6, and a comparison with related work in Section 7.

2 Overview of the Approach

By automated composition we mean the task of generating automatically, given a set
of available web services, a new web service that achieves a given goal by interacting
with (some of) the available services. More specifically, we take as our starting point the
OWL-S Process Model ontology [10], i.e., a declarative description of the program that
realizes the service. Given the OWL-S process model description of n available services
(W1, . . . , Wn), we encode each of them in a state transition system (ΣW1 , . . . , ΣWn),
see Fig. 1. State transition systems provide a sort of operational semantics to OWL-S
process models. Each of them describes the corresponding web service as a state-based
dynamic system, that can evolve, i.e., change state, and that can be partially controlled
and observed by external agents. This way, it describes a protocol that defines how
external agents can interact with the service.

From the point of view of the new composed service that has to be generated, say W ,
the state transition systems ΣW1 , . . . , ΣWn

constitute the environment in which W has
to operate, by receiving and sending service requests. They constitute what, in planning
literature, is called a planning domain, i.e., the domain where the planner has to plan
for a goal. In our case, the planning domain is a state transition system Σ that combines
ΣW1 , . . . , ΣWn

. Formally, this combination is a parallel composition, which allows the
n services to evolve independently. Σ represents therefore all the possible behaviors,
evolutions of the planning domain, without any control performed by the service that
will be generated, i.e., W .

The Composition Goal G (see Fig. 1) imposes some requirements on the desired
behavior of the planning domain. Given Σ and G, the planner generates a plan π that
controls the planning domain, i.e., interacts with the external services W1, . . . , Wn in

Automated Composition of Semantic Web Services into Executable Processes 383

ack/nack

ack/nack

request(Size,Loc)

info(Size)

offer(Cost,Delay)

offer(Cost,Delay)

notAvail

notAvail

User

W3

W

Purchase

Ship

(P&S)

W1

Producer

Shipper

W2

&

infoRequest(Product)

request(Product)

request(Product,Loc)

offer(Cost,Delay)

notAvail

ack/nack

Fig. 2. A Simple Example.

a specific way such that the evolutions satisfy the goal G. The plan π encodes the new
service W that has to be generated, which dynamically receives and sends invocations
from/to the external services W1, . . . , Wn, observes their behaviors, and behaves de-
pending on responses received from the external services. The plan π must therefore have
the ability of encoding normal programming constructs, like tests over observations, con-
ditionals, loops, etc. As we will see, π is encoded as an automaton that, depending on
the observations and on its internal state, executes different actions. We can translate π
into process executable languages, like BPEL4WS.

In the rest of the paper, we will describe step by step the automated composition task
introduced above through the following example.

Example 1. Our reference example consists in providing a purchase & delivery service,
say the P&S service, which satisfies some user request. We do so by combining two
separate, independent, and existing services: a producer Producer, and a delivery service
Shipper. The idea is that of combining these two services so that the user may directly
ask the composed service P&S to purchase and deliver a given product at a given place.
To do so, we exploit a description of the expected interaction between the P&S service
and the other actors. In the case of the Producer and of the Shipper the interactions are
defined in terms of the service requests that are accepted by the two actors. In the case of
the User, we describe the interactions in terms of the requests that the user can send to the
P&S. As a consequence, the P&S service should interact with three available services:
Producer, Shipper, and User (see Fig. 2). These are the three available services W1,
W2, and W3, which are described as OWL-S process models and translated to state
transition systems. The problem is to automatically generate the (plan corresponding to
the) P&S service, i.e., W in Fig. 1.

In the following, we describe informally the three available services. Producer
accepts requests for information on a given product and, if the product is available, it
provides this information (e.g., the size). The Producer also accepts requests for buying
a given product, in which case it returns an offer with a cost and production time. This
offer can be accepted or refused by the external service that has invoked the Producer.
The Shipper service receives requests for transporting a product of a given size to a

384 P. Traverso and M. Pistore

given location. If delivery is possible, Shipper provides a shipping offer with a cost
and delivery time, which can be accepted or refused by the external service that has
invoked Shipper. The User sends requests to get a given product at a given location,
and expects either a negative answer if this is not possible, or an offer indicating the cost
and duration of the service. The user may either accept or refuse the offer. Thus, a typical
(nominal) interaction between the user, the combined purchase & delivery service P&S,
the producer, and the shipper would go as follows:

1. the user asks P&S for product p, that he wants to be transported at location l;
2. P&S asks the producer for some data about product p, namely its size, the cost, and

how much time does it take to produce it;
3. P&S asks the delivery service the price and time needed to transport an object of

such a size to l;
4. P&S provides the user an offer which takes into account the overall cost (plus an

added cost for P&S) and time to achieve its goal;
5. the user sends a confirmation of the order, which is dispatched by P&S to the delivery

and producer.

Of course this is only the nominal case, and other interactions should be considered, e.g.,
for the cases the producer and/or delivery services are not able to satisfy the request, or
the user refuses the final offer. At a high level, Fig. 2 describes the data flow amongst
our integrated web service, the two services composing it, and the user. This can be
perceived as (an abstraction of) the WSDL description of the dataflow. �

3 From OWL-S Process Models to State Transition Systems

OWL-S process models [10] are declarative descriptions of the properties of web service
programs. Process models distinguish between atomic processes, i.e., non-decompos-
able processes that are executed by a single call and return a response, and composite
processes, i.e., processes that are composed of other atomic or composite processes
through the use of control constructs such as sequence, if-then-else, while loops, choice,
fork, etc.

Example 2. The OWL-S process model of the Shipper service (see Example 1) is shown
in Fig. 3 (left). The OWL-S model has been slightly simplified for readability purposes,
by removing some (redundant) tags in the description of the processes. The Shipper
service is a composite service consisting of the atomic processes DoShippingRequest,
AcceptShippingOffer, and RefuseShippingOffer. DoShippingRequest receives in
input a description of the Size and of the destination Location of the product to be de-
livered. The conditional output models the fact that the service returns as output an offer
only if the shipping is possible, and returns a NotAvailable message otherwise. The offer
includes the price (Cost) and the duration (Delay) of the transportation. If the transporta-
tion is possible (control construct IfThenElse), the shipper waits for a nondeterministic
external decision (control construct Choice) that either accepts (AcceptShippingOffer)
or refuses (RefuseShippingOffer) the offer.

Similarly, we can model the interactions with the producer with a composition of
atomic processes AskProductInfo, DoProductRequest, AcceptProductOffer, and

Automated Composition of Semantic Web Services into Executable Processes 385

<process:CompositeProcess rdf:ID="Shipper">
<process:Sequence>
<process:AtomicProcess rdf:about="#DoShippingRequest"/>
<process:CompositeProcess>
<process:IfThenElse>
<process:ifCondition rdf:resource="#ShippingPossible"/>
<process:then>
<process:CompositeProcess>
<process:Choice>
<process:AtomicProcess rdf:about="#AcceptShippingOffer"/>
<process:AtomicProcess rdf:about="#RefuseShippingOffer"/>

</process:Choice>
</process:CompositeProcess>

</process:then>
</process:IfThenElse>

</process:CompositeProcess>
</process:Sequence>

</process:CompositeProcess>

<process:AtomicProcess rdf:ID="DoShippingRequest">
<process:Input rdf:ID="size">
<process:parameterType rdf:resource="#Size">

</process:Input>
<process:Input rdf:ID="destination">
<process:parameterType rdf:resource="#Location">

</process:Input>
<process:ConditionalOutput rdf:ID="price">
<process:coCondition rdf:resource="#ShippingPossible"/>
<process:parameterType rdf:resource="#Cost">

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID="duration">
<process:coCondition rdf:resource="#ShippingPossible"/>
<process:parameterType rdf:resource="#Delay">

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID="na">
<process:coCondition rdf:resource="#NoShippingPossible"/>
<process:parameterType rdf:resource="#NotAvailable">

</process:ConditionalOutput>
</process:AtomicProcess>

<process:AtomicProcess rdf:ID="AcceptShippingOffer> ...

<process:AtomicProcess rdf:ID="RefuseShippingOffer> ...

 destination: Location)
 (size: Size,

ShippingPossible

ShippingPossible

START

DoShippingRequest

AcceptShippingOffer

AcceptShippingOffer.done

duration: Delay
price: Cost

RefuseShippingOffer

NoShippingPossible

ShippingPossible
RefuseShippingOffer.done

na: NotAvailable DoShippingRequest.done

DoShippingRequest.done

Fig. 3. The OWL-S Process Model and the State Transition System of the Shipper Service.

RefuseProductOffer; and the interaction with the user with the processes DoP&SRe-
quest and EvaluateOffer (with the latter process the user specifies whether an P&S
offer is accepted or not). �

We encode OWL-S process models as state transition systems. These describe dy-
namic systems that can be in one of their possible states (some of which are marked as
initial states) and can evolve to new states as a result of performing some actions. A
transition function describes how (the execution of) an action leads from one state to
possibly many different states. System’s evolutions can be monitored through observa-
tions describing the visible part of the system state. An observation function defines the
observation associated to each state of the domain.

Definition 1 (state transition system). A (nondeterministic, partially observable) state
transition system is a tuple Σ = 〈S,A,O, I, T ,X〉, where:

– S is the set of states, A is the set of actions, and O is the set of observations.
– I ⊆ S is the set of initial states.
– T : S ×A → 2S is the transition function; it associates to each current state s ∈ S

and to each action a ∈ A the set T (s, a) ⊆ S of next states.
– X : S → O is the observation function.

State transition systems are nondeterministic, i.e., an action may result in several different
outcomes. This is modeled by the fact that the transition function returns sets of states.

386 P. Traverso and M. Pistore

Nondeterminism is needed since we do not know a priori which outcome will actually
take place, e.g., whether a given product is available or not when we submit a request.
Moreover, our state transition systems are partially observable, i.e., external agents
can only observe part of the system state. In our case the external communications
can be observed, while the internal status and variables are private to a given service.
Partial observability is modeled by the fact that different states may result in the same
observation (i.e., they are indistinguishable).

We associate a state transition system to each available OWL-S process model de-
scribing a web service. Intuitively, this is done as follows. The states S are used to codify
the different steps of evolution of the service (e.g., what position has been reached inside
the composite process of the Shipper) and the values of the predicates defined internally
to the service (e.g., predicate ShippingPossible of Fig. 3). The actions A are used to
model the invocation of the external atomic processes (e.g., DoShippingRequest). The
observations O are used to model the outputs of the invoked external processes.

Example 3. In the case of the Shipper service process model (see Fig. 3 (right)), the
states model the possible steps of the service: START, which holds initially, and Do-
ShippingRequest.done, AcceptShippingOffer.done, RefuseShippingOffer.done,
associated to the intermediate phases of the composite process. The internal variables
ShippingPossible and NoShippingPossible describe the values of the corresponding
conditions in the OWL-S model. In Fig. 3 (right), we represent explicitly only the in-
formation on the step in the composite process and on the predicates that are true in a
given state. For simplicity, we do not represent the values for the the input and output
parameters of the service invocation. Therefore, a single rounded box in Fig. 3 (right)
corresponds to several states of the actual state transition structure.

The actions correspond to the invocation of the atomic processes DoShippingRe-
quest, AcceptShippingOffer, and RefuseShippingOffer. The most complicated ac-
tion is the first one: it has two parameters specifying the size and the destination location.
Moreover, it has two possible non-deterministic outcomes. The first one, corresponding
to the case the shipper is able to do the delivery, leads to the state where condition Ship-
pingPossible is true. The second outcome, corresponding to the case the shipper is not
able to do the delivery, leads to the state where condition NoShippingPossible is true.

The observations associated to each state define an assignment to the OWL-S condi-
tional outputs. For instance, in the state corresponding to DoShippingRequest.done
and ShippingPossible, values are defined for the output parameters price and duration.

�

The formal definition of the translation of an OWL-S process model into a state
transition system is conceptually simple, but it is complicated by several technical details.
For this reason, and for lack of space, we do not present this definition here. The interested
reader may refer to [19] for a detailed discussion of a translation similar to ours. In that
case, Petri nets are used as target models. The states of our state transition systems can
be seen as the markings in the Petri nets of [19].

Automated Composition of Semantic Web Services into Executable Processes 387

4 Composition Goals

Composition goals express requirements for the service to be automatically generated.
They represent conditions on the evolution of services, and as shown by the next example,
they express requirements of different strengths and at different levels of preference.

Example 4. In our example (see Fig. 2), a reasonable composition goal for the P&S
service is the following:

Goal 1: The service should try to reach the ideal situation where the user has confirmed
his order, and the service has confirmed the associated (sub-)orders to the producer
and shipper services. In this situation, the data associated to the orders have to be
mutually consistent, e.g., the time for building and delivering a product shall be the
sum of the time for building it and that for delivering it.

However, this is an ideal situation that cannot be enforced by the P&S service: the
product may not be available, the shipping may not be possible, the user may not accept
the total cost or the total time needed for production and delivery . . . We would like
the P&S service to behave properly also in these cases, otherwise it is likely to loose
money. More precisely, it has to reach a consistent situation, where the P&S confirms
none of the two services for production and delivering:

Goal 2: The P&S service should absolutely reach a fall-back situation where every
(sub-)order has been canceled. That is, there should be no chance that the service
has committed to some (sub-)order if the user can cancel his order.

Some remarks are in order. First of all, there is a difference in the “strength” in which we
require Goal 1 and Goal 2 to be satisfied. We know that it may be impossible to satisfy
Goal 1: we would like the P&S service to try (do whatever is possible) to satisfy the
goal, but we do not require that the service guarantees to achieve it in all situations. The
case is different for Goal 2: there is always a possibility for the P&S service to cancel the
orders to the producer and shipper, and to inform the user. We can require a guarantee of
satisfaction of this goal, in spite of any behavior of the other services. Moreover, Goal
1 and Goal 2 are not at the same level of desire. Of course we would not like a P&S
service that satisfies always Goal 2 (e.g., by refusing all requests from the user) even
when it would be possible to satisfy Goal 1. We need then to express a strong preference
for Goal 1 w.r.t. Goal 2. Informally, we can therefore describe the composition goal as
follows:

Composition Goal: Try to satisfy Goal 1, upon failure, do satisfy Goal 2. �
As the previous example shows, composition goals need the ability to express conditions
on the whole behavior of a service, conditions of different strengths, and preferences
among different subgoals. The EaGLe language [11] has been designed with the purpose
to satisfy such expressiveness requirements. Let propositional formulas p ∈ Prop define
conditions on the states of a state transition system. Composition goals g ∈ G overProp
are defined as follows:

g := p | g And g | g Then g | g Fail g | Repeat g |
DoReach p | TryReach p | DoMaint p | TryMaint p

388 P. Traverso and M. Pistore

Goal DoReach p specifies that condition p has to be eventually reached in a strong way,
for all possible non-deterministic evolutions of the state transition system. Similarly, goal
DoMaint q specifies that property q should be maintained true despite non-determinism.
Goals TryReach p and TryMaint q are weaker versions of these goals, where the plan is
required to do “everything that is possible” to achieve condition p or maintain condition q,
but failure is accepted if unavoidable. Construct g1 Fail g2 is used to model preferences
among goals and recovery from failure. More precisely, goal g1 is considered first. Only
if the achievement or maintenance of this goal fails, then goal g2 is used as a recovery
or second-choice goal. Consider for instance goal TryReach c Fail DoReach d. The
sub-goal TryReach c requires to find a plan that tries to reach condition c. During the
execution of the plan, a state may be reached from which it is not possible to reach c.
When such a state is reached, goal TryReach c fails and the recovery goal DoReach d
is considered. Goal g1 Then g2 requires to achieve goal g1 first, and then to move to
goal g2. Goal Repeat g specifies that sub-goal g should be achieved cyclically, until
it fails. Finally, goal g1 And g2 requires the achievement of both subgoals g1 and
g2. A formal semantics and a planning algorithm for EaGLe goals in fully observable
nondeterministic domains can be found in [11].

Example 5. The EaGLe formalization of the goal in Example 4 is the following.

TryReach /* Goal 1 */
(AcceptProductOffer.done & AcceptShippingOffer.done &
EvaluateOffer.done & EvaluateOffer.accepted &
DoP&SRequest.price = DoShippingRequest.price + DoProductRequest.price &
DoP&SRequest.duration = DoShippingRequest.duration + DoProductRequest.duration)

Fail
DoReach /* Goal 2 */

(RefuseProductOffer.done & RefuseShippingOffer.done &
EvaluateOffer.done & ¬ EvaluateOffer.accepted)

Propositions like AcceptProductOffer.done are used to describe the states of the plan-
ning domain Σ corresponding to specific states of state transition systems obtained from
the OWL-S processes (process Producer in our case). Propositions like DoShippin-
gRequest.price or EvaluateOffer.accepted refer to the values of the input/output
messages in service invocation. �

5 Automated Composition

The planner has two inputs (see Fig. 1): the composition goal and the planning domain
Σ which represents all the ways in which the existing services can evolve. Formally, this
combination is defined as the parallel composition Σ = ΣW1 × . . .×ΣWn

of the state
transition systems of the existing services. The automated composition task consists in
finding a plan that satisfies the composition goal G over a domain Σ. We are interested
in complex plans, that may encode sequential, conditional and iterative behaviors, and
are thus expressive enough for representing the flow of interactions of the synthesized
composed service with the other services as well as the required observations over the
other services. We therefore model a plan as an automaton.

Automated Composition of Semantic Web Services into Executable Processes 389

Definition 2 (plan). A plan for planning domain Σ = 〈S,A,O, I, T ,X〉 is a tuple
π = 〈C, c0, α, ε〉, where:

– C is the set of plan contexts.
– c0 ∈ C is the initial context.
– α : C × O ⇀ A is the action function; it associates to a plan context c and an

observation o an action a = α(c, o) to be executed.
– ε : C × O ⇀ C is the context evolutions function; it associates to a plan context c

and an observation o a new plan context c′ = ε(c, o).

The contexts are the internal states of the plan; they permit to take into account, e.g.,
the knowledge gathered during the previous execution steps. Actions to be executed,
defined by function α, depend on the observation and on the context. Once an action is
executed, function ε updates the plan context. Functions α and ε are deterministic (we do
not consider nondeterministic plans), and can be partial, since a plan may be undefined
on the context-observation pairs that are never reached during plan execution.

The execution of a plan over a domain can be described in terms of transitions
between configurations, where each configuration (s, c) describes the current state s
of the domain and the current context c of the plan (see [7] for a formal definition).
Due to the nondeterminism in the domain, we may have an infinite number of different
executions of a plan. However, they can be presented in a compact way as an execution
structure, i.e, a state transition system defined by the configurations of the plan and by the
transition among these configurations. In the following, we denote by Σπ the execution
structure that represents the evolutions of the domain Σ controlled by the plan π. In a
planning problem, the execution structure Σπ that must satisfy the composition goal G
(see Fig. 1). If Σπ |= G, we say that π is a valid plan for G on Σ. A formal definition
of Σπ |= G can be found in [11].

However, notice that when executing a plan, the plan executor cannot in general get
to know exactly what is the current state of the domain: the limited available access to
the internal state of each external service inhibits removing the uncertainty present at the
initial execution step, or introduced by executing nondeterministic actions. For instance,
in the case of the Shipper service describe in Fig. 3, the executor has no access to the
values of predicates ShippingPossible and NoShippingPossible, even if it can infer
these values from the observable outcomes of action DoShippingRequest (namely, an
offer or a NoAvailable message).

In presence of partial observability, at each plan execution step, the plan executor
has to consider a set of domain states, each equally plausible given the initial knowledge
and the observed behavior of the domain so far. Such a set of states is called a belief state
(or simply belief) [8,6]. Executing an action a evolves a belief B into another belief
B′ which contains all of the possible states that can be reached through a from some
state of B. The available sensing is exploited initially, and after each action execution: if
observation o holds after executing action a, the resulting belief shall rule out states not
compatible with o. Thus in general, given a belief B, performing an action a (executable
in all the states of B) and taking into account the obtained observation o gets to a new
belief Evolve(B, a, o):

Evolve(B, a, o) = {s′ : ∃s ∈ B.s′ ∈ T (s, a) ∧ X (s′) = o}.

390 P. Traverso and M. Pistore

Planning in this framework consists in searching through the possible evolutions of
initial beliefs, to retrieve a conditional course of actions that leads to beliefs that satisfy
the goal. The search space for a partially observable domain is what is called a belief
space; its nodes are beliefs, connected by edges that describe the above Evolve function.
The search in a partially observable domain can be described as search inside a fully
observable “belief-level” domain ΣK whose states are the beliefs of Σ, and whose
nondeterministic transition function mimics Evolve .

Algorithms for planning under partial observability can be obtained by suitably
recasting the algorithms for full observability on the associated knowledge-level domain.
Actually, the following result holds [7]:

Fact 3. Let Σ be a ground-level domain and g be a knowledge-level goal for Σ (i.e., a
goal expressing conditions on the beliefs reached during plan execution). Let also ΣK

be the knowledge level domain for Σ. Then π is a valid plan for g on Σ if, and only if,
π is a valid plan for g on ΣK .

Thus, given a composition goal and a planning domain, solving the problem implies
using dedicated algorithms for planning under partial observability with EaGLe goals,
or, alternatively, planning for the fully observable associated knowledge level domain.
We pursue this latter approach, so that we can reuse existing EaGLe planning algorithms
under full observability [11]. We generate the knowledge level domain by combining
the state transition systems defined previously. Similarly to what happens for the ground
level domains, this computation consists of a parallel composition. Finally, we plan
on this domain with respect to an EaGLe goal. Fact 3 guarantees that the approach
outlined above for planning under partial observability with EaGLe goals is correct and
complete. A potential problem of this approach is that, in most of the cases, knowledge-
level domains are exponentially larger than ground domains. In [6], efficient heuristic
techniques are defined to avoid generating the whole (knowledge-level) planning domain.
These techniques can be extended to planning with EaGLe goals.

We have therefore the algorithms for generating a valid plan π that satisfies the
composition goal. Since π is an automaton, it can be easily translated to executable
process languages, like BPEL4WS. The generated code is not human-readable, however,
it reflects the contexts defined in the plan (see Definition 2), which in turn reflect the
structure of the goal. This makes it possible to monitor the execution of the BPEL4WS
code and detect, for instance, when the primary goal of a composition (e.g., Goal 1 in
Example 4) fails and a subsidiary goal (e.g., Goal 2) becomes active.

6 Experimental Evaluation

In order to test the effectiveness and the performance of the approach proposed in this
paper, we have conducted some experiments using the MBP planner.

We have run MBP on six variants of the purchase and ship case study, of different
degrees of complexity. In the easiest case, CASE 1, we considered a reduced domain with
only the user and the shipper, and with only one possible value for each type of objects
in the domain (product, location, delay, cost, size). In CASE 2 we have considered all
three protocols, but again only one possible value for each type of object. In CASE 3 we

Automated Composition of Semantic Web Services into Executable Processes 391

With refuse Without refuse
Building K Planning Result Planning Result

CASE 1 0.2 sec. 0.1 sec. YES 0.1 sec. NO
CASE 2 0.3 sec. 0.3 sec. YES 0.3 sec. NO
CASE 3 1.5 sec. 5.1 sec. YES 3.4 sec. NO
CASE 4 3.8 sec. 19.5 sec. YES 17.9 sec. NO
CASE 5 4.1 sec. 65.9 sec. YES 71.5 sec. NO
CASE 6 12.3 sec. 2899 sec. YES 3885 sec. NO

Fig. 4. Results of the Experiments.

have considered the three protocols, with two objects for each type, but removing the
parts of the shipper and producer protocols concerning the size of the product. CASE
4 is the complete example discussed in Section 2. In CASE 5, one more web service is
added to the domain, which provides support for the installation the product, once it has
been delivered. CASE 6, finally, extends CASE 5 by allowing three values for each type
of object. We remark that CASE 1 and CASE 2 are used to test our algorithms, even if
they are admittedly unrealistic, since the process knows, already before the interaction
starts, the product that the user will ask and the cost that will be charged to the user.
In the other cases, a real composition of services is necessary to satisfy the goal. In all
six cases we have experimented also with a variant of the shipper service, which does
not allow for refusing an offer. This variant makes the composition goal unsatisfiable,
since we cannot unroll the contract with the shipper and satisfy the recovery goal (see
Example 5) in case of failure of the primary goal.

The experiments have been executed on an Intel Pentium 4, 1.8 GHz, 512 MB
memory, running Linux 2.4.18. The results, in Fig. 4, report the following information:

– Building K: the time necessary to build the three knowledge-level domains.
– Planning: the time required to find a plan (or to check that no plan exists) starting

from the knowledge-level domains.
– Result: whether a plan is found or not.

The last two results are reported both in the original domains and in the domains without
the possibility of refusing a shipping offer. The experiments show that the planning
algorithm returns the expected results. The performance is satisfactory: also in CASE
5, where the composition involves four external services, the composition is built in
about one minute. The time required to obtain the composition grows considerably if we
increase the number of available values for each object (CASE 6). Indeed, the different
values are encoded into the domain states and have a strong impact on the size of the
search space. A different, more advanced management of data types and variables, not
requiring a direct encoding into the states, would mitigate this effect.

We perform a further set of experiments where we apply the same approach to the
composition of web services at the level of BPEL4WS code. We translate the BPEL4WS
code implementing the three existing services into state transition systems. The trans-
lation is technically different from (but conceptually similar to) the one described for
OWL-S models, and is described in [20]. We perform this translation for the same cases

392 P. Traverso and M. Pistore

With refuse Without refuse
Building K Planning Result Planning Result

CASE 1 2 sec. 6 sec. YES 5 sec. NO
CASE 2 5 sec. 30 sec. YES 13 sec. NO
CASE 3 289 sec. 2008 sec. YES 1642 sec. NO
CASE 4 1058 sec. 16536 sec. YES 13327 sec. NO

Fig. 5. Results of the Experiments with BPEL4WS Domains.

considered in the previous experiment. Then we run the same MBP planning algorithm
on the resulting planning domains. The results are reported in Fig. 5 (in CASE 5 and 6
we have stopped the planner after more than 5 hours of execution time). The comparison
shows that automated composition performed at the level of OWL-S process models is
much more efficient than composition applied at the level of executable processes. For
instance, in CASE 4, both the time needed to generate the planning domain and the time
for planning are three orders of magnitude higher for BPEL4WS domains. The reason
is that OWL-S process models are at a higher level of abstraction w.r.t. BPEL4WS pro-
cess models. Planning with BPEL4WS domains is done at the level of single messages
between processes, while planning with OWL-S models is at the level of atomic web
services. These results are a demonstration of the fact that OWL-S process models shift
the representation at the right level of abstraction for composing web services, and show
a practical advantage of the Semantic Web approach to web services composition.

7 Conclusions, Related and Future Work

In this paper, we have shown how OWL-S process models can be used to generate au-
tomatically new composed services that can be deployed and executed on engines for
modern process modeling and execution languages, like BPEL4WS. This is achieved
by translating OWL-S process models to nondeterministic and partially observable state
transition systems and by generating automatically a plan that can express conditional
and iterative behaviors of the composition. Our preliminary experimental evaluation
shows the potentialities of the approach, and the practical advantage of automated com-
position at the semantic level w.r.t. the one at the level of executable processes.

Different planning techniques have been applied to the composition of web services,
however, to the best of our knowledge, only the approach proposed in this paper is
able to generate BPEL4WS processes that are directly executable. Existing approaches
apply different planning approaches, ranging from HTNs [23] to regression planning
based on extensions of PDDL [12], to STRIPS-like planning for composing services
described in DAML-S [21], but how to deal with nondeterminism, partial observability,
and how to generate conditional and iterative behaviors (in the style of BPEL4WS) in
these frameworks is still an open issue. In [17], web service composition is achieved
with user defined re-usable, customizable, high level procedures expressed in Golog.
The approach is orthogonal to ours: Golog programs can express control constructs for
the generic composition of web service, while we generate automatically plans that en-
code web service composition through control constructs. In [16], Golog programs are

Automated Composition of Semantic Web Services into Executable Processes 393

used to encode complex actions that can represent DAML-S process models. However,
the planning problem is reduced to classical planning and sequential plans are generated
for reachability goals. In [19], the authors propose an approach to the simulation, verifi-
cation, and automated composition of web services based on a translation of DAML-S
to situation calculus and Petri Nets, so that it is possible to reason about, analyze, prove
properties of, and automatically compose web services. However, the automated com-
position is again limited to sequential composition of atomic services for reachability
goals, and does not consider the general case of possible interleavings among processes
and of extended business goals.

Other techniques have been applied to related but somehow orthogonal problems in
the field of web services. The interactive composition of information gathering services
has been tackled in [22] by using CSP techniques. In [14], given a specific query of
the user, an interleaving of planning and execution is used to search for a solution and
to re-plan when the plan turns out to violate some user constraints at run time. In [3]
automated reasoning techniques, based on Description Logic, are used to generate a
composite web service. In that paper, however, the composition is seen as the problem
of coordinating the executions of a given set of available services, and not as the problem
of generating a new web service interacting with them.

The work in [15] is close in spirit to our general objective to bridge the gap between the
semantic web framework and the process modeling and execution languages proposed by
industrial coalitions. However, [15] focuses on a different problem, i.e., that of extending
BPEL4WS with semantic web technology to facilitate web service interoperation, while
the problem of automated composition is not addressed.

In the future, we aim at a solution that avoids the computationally complex power-
set construction of the knowledge level domain, by providing algorithms for natively
planning with extended goals under partial observability. Some preliminary results in
this directions for a different goal language are presented in [7]. Moreover, we plan
to integrate the automated composition task with reasoning techniques for discovery
and selection at the level of OWL-S service profiles. Finally, we intend to test our ap-
proach over realistic case studies in projects for private companies and for the public
administration we are currently involved in.

Acknowledgements. Special thanks to Piergiorgio Bertoli, Loris Penserini and Mark
Carman for the interesting discussions on automated composition of web services. This
work has been partially funded by the FIRB-MIUR project RBNE0195K5, “Knowledge
Level Automated Software Engineering”.

References

1. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business Process Execution Language
for Web Services Version 1.1, 2003.

2. A. Ankolekar. DAML-S: Web Service Description for the Semantic Web. In Proc. 1st Int.
Semantic Web Conference (ISWC’02), 2002.

394 P. Traverso and M. Pistore

3. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic Com-
position of E-services That Export Their Behavior. In Proc. 1st Int. Conf. on Service-Oriented
Computing (ICSOC’03), 2003.

4. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a Model Based Planner.
In Proc. IJCAI’01 Workshop on Planning under Uncertainty and Incomplete Information,
2001.

5. P. Bertoli, A. Cimatti, M. Pistore, and P. Traverso. A Framework for Planning with Extended
Goals under Partial Observability. In Proc. 13th Int. Conf. on Automated Planning and
Scheduling (ICAPS’03), 2003.

6. P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in Nondeterministic Domains
under Partial Observability via Symbolic Model Checking. In Proc. 17th Int. Joint Conference
on Artificial Intelligence (IJCAI’01), 2001.

7. P. Bertoli and M. Pistore. Planning with Extended Goals and Partial Observability. In Proc.
14th Int. Conf. on Automated Planning and Scheduling (ICAPS’04), 2004.

8. B. Bonet and H. Geffner. Planning with Incomplete Information as Heuristic Search in Belief
Space. In Proc. 5th Int. Conf. on Artificial Intelligence Planning and Scheduling (AIPS 2000),
2000.

9. A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Planning
via Symbolic Model Checking. Artificial Intelligence, 147(1-2):35–84, 2003.

10. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services — Technical
White paper (OWL-S version 1.0), 2003.

11. U. Dal Lago, M. Pistore, and P. Traverso. Planning with a Language for Extended Goals. In
Proc. 18tn National Conference on Artificial Intelligence (AAAI’02), 2002.

12. D. Mc Dermott. The Planning Domain Definition Language Manual. Technical Report 1165,
Yale Computer Science University, 1998. CVC Report 98-003.

13. F. Giunchiglia and P. Traverso. Planning as Model Checking. In Proc. 5th European Conf.
on Planning (ECP’99), 1999.

14. A. Lazovik, M. Aiello, and Papazoglou M. Planning and Monitoring the Execution of Web
Service Requests. In Proc. 1st Int. Conf. on Service-Oriented Computing (ICSOC’03), 2003.

15. D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The Bottom-
Up Approach to Web Service Interoperation. In Proc. 2nd Int. Semantic Web Conference
(ISWC’03), 2003.

16. S. McIlraith and R. Fadel. Planning with Complex Actions. In Proc. 9th Int. Workshop on
Non-Monotonic Reasoning (NMR’02), 2002.

17. S. McIlraith and S. Son. Adapting Golog for composition of semantic web Services. In Proc.
8th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’02), 2002.

18. S. McIlraith, S. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
16(2):46–53, 2001.

19. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of Web
Services. In Proc. 11th Int. World Wide Web Conference (WWW’02), 2002.

20. M. Pistore, P. Bertoli, F. Barbon, D. Shaparau, and P. Traverso. Planning and Monitoring
Web Service Composition. In Proc. 11th Int. Conf. on Artificial Intelligence: Methodology,
Systems, Applications — Semantic Web Challenges (AIMSA’04), 2004.

21. M. Sheshagiri, M. desJardins, and T. Finin. A Planner for Composing Services Described
in DAML-S. In Proc. AAMAS’03 Workshop on Web Services and Agent-based Engineering,
2003.

22. S. Thakkar, C. Knoblock, and J.L. Ambite. A View Integration Approach to Dynamic Com-
position of Web Services. In Proc. ICAPS’03 Workshop on Planning for Web Services, 2003.

23. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services
Composition using SHOP2. In Proc. 2nd Int. Semantic Web Conference (ISWC’03), 2003.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 395–409, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Conceptual Architecture for Semantic Web Services

Chris Preist1

HP Labs, Filton Rd, Stoke Gifford, Bristol BS32 8QZ, UK
chris.preist@hp.com

Abstract. In this paper, we present an abstract conceptual architecture for
semantic web services. We define requirements on the architecture by
analyzing a set of case studies developed as part of the EU Semantic Web-
enabled Web Services project. The architecture is developed as a refinement
and extension of the W3C Web Services Architecture. We assess our
architecture against the requirements, and provide an analysis of OWL-S.

1 Motivation

In this paper, we present an abstract conceptual architecture for semantic web
services. The motivation behind this is (i) To provide a conceptual model to aid in the
principled design and implementation of semantic web service applications; (ii) To
allow the principled application of existing semantic web service ontologies such as
OWL-S and WSMO; (iii) To contribute to the evolution of such languages, or the
design of new ones, through the identification of appropriate features such a language
needs; (iv) To motivate the development of appropriate infrastructure to support a
variety of semantic web service applications. The main impetus behind this work has
been provided by the European Union Semantic Web–enabled Web Services project
(SWWS). This project aims to develop appropriate Semantic Web Services
infrastructure to support four case-studies, inspired by the design principles proposed
in the Web Services Modeling Framework [2]. Although these four case studies
provide the primary source of requirements on our architecture, to encourage
generality, we also consider a variety of other applications of SWS described in the
literature.

We take the W3C Web Services Architecture (WSA) [14] as an important input.
This provides a conceptual model for understanding web service technology and its
relationship with other components. In particular, it adopts the view that the semantics
of a service is provided by a contract (agreeing what the service does) between the
service provider and service requestor. Such a contract can be explicit or implicit, and
can be agreed in a variety of ways.

The potential role of contracts in supporting web service interactions is becoming
increasingly recognised. The use of contracts in supporting interactions between
agents in open systems has long been recognised by the agent community (e.g. [5]).

1 The following people have contributed to this work through discussion and/or feedback: The

HP Semantic Web Services team; the EU Semantic Web-enabled Web Services team, Dieter
Fensel, Mark Burstein, Ian Dickinson, Terry Payne, Bijan Parsia and the ISWC reviewers.

396 C. Preist

Proposals have been made to use contracts in semantic web services [3]. The adoption
of contracts as representing semantics in the WSA is further evidence of this trend.

Though the WSA adopts the contractual view, the implications of this are not
explored as fully as is required if the semantics are to be made explicit. Specifically, it
does not make a clear separation between the semantics of a service provider agent
and the semantics of a particular performance of a service. Furthermore, it does not
provide a model to show the activities involved in agreeing the ‘semantics’ of a
particular service interaction (though it does informally discuss this process.) The
conceptual architecture we present builds on the WSA to provide appropriate
separation of concepts and additional constructs.

The WSA presents four different views on the architecture, focused around
different core concepts; message, service, resource and policy. Our focus is primarily
on the service-oriented view. In particular, we do not consider policy, security or
reliability issues and how these are affected by the addition of explicit semantics. To
do so requires additional analysis beyond the scope of this paper.

The paper is structured as follows. Firstly, we discuss the semantics of the word
‘service’, and consider the different ways it can be used. Next, we briefly describe the
SWWS case studies, and refer to additional applications discussed in the literature.
We then present a set of requirements on a semantic web services architecture,
derived from analysis of this set of applications. Next, we briefly summarise the
service oriented model of the WSA, and present our conceptual architecture as an
extension of this. We assess the architecture against our requirements, present an
analysis of OWL-S and conclude.

2 What Is a ‘Service’?

The word ‘service’ can be used in several different ways. If a clear conceptual
architecture is to be developed for semantic web services, we believe that it is
necessary to make these different uses explicit.

1. ‘Service’ as Provision of Value in Some Domain
In the economy nowadays, a great variety of different services are traded; provision of
stock quotes, shipment of crates, translation of documents, provision of a broadband
connection etc. In each case, the customer receives something of value to them in
return for a payment to the supplier. The service received can be described in terms of
the domain of application. Such a description does not need to refer to the way in
which the supplier and customer interact. This is what an economist or businessperson
would refer to as a service.

On the internet, services can be provided which involve a payment, and so
correspond closely to the above perspective. We can broaden this view of service
without losing what is essential. A service can be provided without any payment, and
the value the service provides need only be ‘in the eyes of the requestor’, not
necessarily something with monetary value in the commercial world. For example,
the provision of a specific piece of information from a database or the provision of a
plan to achieve some goal. Hence, a service is the provision of something of value, in
the context of some domain of application, by one party to another.

A Conceptual Architecture for Semantic Web Services 397

We also need to distinguish between a particular provision of value from the
general capability to provide. We refer to the former as a concrete service, and the
latter as an abstract service. Hence an abstract service is defined as the capacity to
perform something of value, in the context of some domain of application.

2. ‘Service’ as a Software Entity Able to Provide Something of Value
This usage is common in the computer science and IT community. Papers often speak
of sending messages to services, receiving results from services, executing services
etc. While this is clearly appropriate in the context of web services and service
oriented architectures, it can cause some confusion when mixing usage of this
definition with the definitions above. For that reason, we believe that it is more
accurate to speak of such an entity as being (part of) a service provider agent (SPA).
We also use the term ‘web service’ to refer to a specific application with a
WSDL/SOAP interface.

3. ‘Service’ as a Means of Interacting Online with a Service Provider
A common example of this usage is ‘negotiation service’; A negotiation service
provides the means to interact (negotiate) with a given actor. This usage is clearly
different from usage 1, in that negotiation in itself does not provide something of
value. However, the outcome of the negotiation may do so (and hence may be a
service in the first sense.) For this reason, we refer to this as the provision of a
negotiation ‘protocol’ or ‘choreography’.2

All three of these aspects of service provision are essential; the ‘value’ in some
domain, the interactions involved, and the implementation of the entity able to deliver
what is needed. However, we believe that for conceptual reasons it is best to make
clear distinctions between them.

3 Example Scenarios

In the interests of space, we present very brief overviews of five of the example
scenarios used. Fuller descriptions are available in an extended version of this paper.
Of these, scenarios 2, 3 and 5 are from case studies in the SWWS project.

Example A: Currency Conversion Quotation3
A simple service provider, providing a currency quotation for the conversion of a
given amount of one currency into another currency, at a given time.

Example B: Design of a SPA to Proactively Manage Virtual ISP Problems
A system designer develops a complex service provider agent for managing faults.
This requires the coordination of several internal applications, including a workforce
management system (to timetable an engineer to fix the problem) and a customer
relationship management system (to inform the customer). These applications have
web service interfaces. The system designer develops a complex process out of these
and ‘wraps’ the resulting system with a service provider agent front-end.

2 A ‘negotiation service’ can exist in the first sense; this is a service where you ‘subcontract’

some negotiation problem to a service provider, and they negotiate on your behalf.
3 By Terry Payne: http://www.daml.ecs.soton.ac.uk/services/SotonCurrencyConverter.html

398 C. Preist

Example C: Discovery, Selection, and Execution of a Customer Notification
Service
A service requestor, OAS, needs to send a message to one of their customers. It does
to by dynamically discovering a set of notification services, interacting with them to
see if they can contact the specific person, selecting one based on functionality and
cost, and interacting with it to send the message and provide payment.

Example D: ‘Smart’ Book Buying from Several Online Book Suppliers
A purchasing agent requiring several books locates several book sale SPAs, and
interacts with them all simultaneously using their ‘shopping cart’ conversations to get
quotes for purchase and delivery. It calculates the best SPA (or possibly set of SPAs)
to use and ‘checks out’ an appropriate set of books, confirming the purchase. It
monitors progress by using an ‘order progress’ conversation with the SPA.

Example E: Provision of a Logistics Supply Chain [1]
A company has a ‘broken link’ in a logistics supply chain and must rapidly locate a
new shipping service between two ports. It makes a complex service request to a
discovery service, and locates possible providers. It negotiates with them about the
exact terms and conditions, and selects one. As the shipment takes place, it is
accompanied by a complex exchange of messages between service provider and
service requestor. This scenario requires two forms of ‘service composition’. Firstly,
the shipment service must ‘slot in’ with the other services in the logistics chain
(arriving at the right time, etc). Secondly, the conversations with the service provider
must be coordinated with conversations with other service providers in the chain.

4 Requirements Analysis

Based on the above case studies (and others) we identify requirements on a
conceptual architecture (CA) for semantic web-enabled web services4:
1. The architecture should define the functionality of service discovery, but should

not constrain the way in which it is enacted.
2. Discovery should be possible either using an explicit description of a required

capability (E) or an implicit description through 'service provider type'.
3. Discovery identifies a set of SPAs which may meet the requestor's need. (C,D)
4. It should be possible to do discovery through informal browsing by a user (B).
5. Discovery should be symmetric; the functionality should not restrict a provider to

advertise and a requestor to actively discover.
6. After the discovery process, there may (D) or may not (A) be a need for a

contract agreement conversation to define the exact service to be provided.
7. The initiator should know prior to contacting them whether a conversation is

necessary with the discovered agents to define the service.
8. A contract agreement conversation may involve negotiation of service

parameters, selection of parameters from a set of possibilities (E), or a
'constructive' process such as the 'shopping trolley' metaphor (D).

9. A CA should enable negotiation to take place, but not place any requirements on
either the structure of the contract agreement conversation required or on the
negotiation strategies any participant may use

4 The letters in brackets give the examples in section 2 which generate the requirement.

A Conceptual Architecture for Semantic Web Services 399

10. At the end of a contract agreement conversation, there will be an explicit contract
which is identifiable as the 'semantics' (at the application level) of the agreed
service. If there is no such conversation, then the discovery process should
provide something identifiable as an explicit contract.

11. A service may be delivered directly as an output of an interaction with a Service
Provider Agent (A), immediately as the effect of an interaction with a SPA (C), or
as a later event or sequence of events after the defining interaction (E).

12. A post-agreement conversation may be directly linked to the execution/delivery
of a service (E) or may simply monitor progress without directly affecting it (D).

13. A conversation about a service may be a simple request-respond pair(A), or may
be a more complex interaction(D).

14. Conversations about a service may be initiated by the requestor(A), by the
provider(E), or by either party (C)

15. A conversation may involve an asynchronous exchange of messages (E)
16. The semantics of a post-agreement conversation should be conceptually different

from the domain-level semantics of the agreed service itself. However, there
should be a means of linking the conversation with its domain level effect (E).

17. A service provider agent may in turn act as a service requestor agent to
'outsource' parts of the functionality it needs to deliver its service (B,C,D,E).

18. Some SPAs may achieve this outsourcing by executing processes of more simple
elements created statically or dynamically using an internal planner (B); other
SPAs may use very different reasoning methods (D).

19. It may be necessary to 'compose' service instances either to enable them connect
in some way (E) or to provide a 'service bundle' that meets some need (D).

20. It may be necessary to 'compose'/coordinate conversations about services, to
allow two services to interact appropriately (E).

21. Parts of the functionality required to support a conversation may themselves be
treated as component services (D).

5 The Conceptual Architecture

In this section, we present a conceptual architecture (CA) which aims to meet the
requirements listed in section 4. We now give a brief overview of the WSA service-
oriented model [14] upon which our CA is based. The concept of a service is core,
which is defined as an abstract resource representing a capability to perform some
coherent set of tasks. The performance of a given task involves some exchange of
messages between the requestor and provider agents. A choreography defines a
pattern of possible message exchanges (i.e. conversations). The WSA associates a
choreography with a task’s performance. The task may also have effects in the virtual
or real world. Such effects may be publicly observable, but will often be private (such
as a database update). The success or otherwise of a given task (from the perspective
of one party) can be assessed by whether some goal state has been achieved. Such a
goal state can be defined formally or informally.

As Sycara et al observe [10], tasks can be defined in three ways. They can be
represented explicitly, using name labels with a well defined semantics in some
ontology of tasks. They can be represented implicitly, using a language of

400 C. Preist

preconditions and effects of a task. Or they can be defined using a combination of
these two approaches. The WSA makes no commitment as to which approach is used.

A service has a description, which specifies its interface and messages in a
machine-processable way. This may also include a description of the service’s
semantics. The semantics specifies (formally, informally or implicitly) the intended
effect of using the service: specifically, the tasks that constitute it. The WSA views
this semantics as ‘a contract between the requestor entity and provider entity
concerning the effects and requirements pertaining to the use of a service.’ We adopt
the majority of this model unchanged. The two changes we make are:
1. Distinction Between Abstract Service, Agreed Service, and Concrete Service
In the WSA, a service has a semantics which can be described, advertised and
discovered by a service requestor. However, the service semantics is defined as the
contract between the provider entity and requestor entity. This creates a problem:
How can something which is defined as an agreement between the two entities be
advertised prior to the two entities communicating? We believe this can be solved by
making a distinction in the model between the abstract service a provider entity offers
and the agreed service which appears within a contract, and assigning semantics to
each. Additionally, (as outlined in section 2) we introduce the concrete service which
is the performance of a specific service at a particular time. We give more complete
definitions and examples of these concepts below. Similarly, we consider abstract
tasks, agreed tasks and concrete tasks.
2. Distinction Between Service and Service Provider Agent
The WSA specifies that a Service Provider Agent realises a service. The word
‘realises’ (and the explanation in WSA) implies that the provider agent is an
embodiment of the service. We believe that this confuses a service as the capability to
provide something of value with the entity or software implementation which has the
capability. For this reason, we say that a provider agent provides an abstract or agreed
service, and performs a concrete service.

We now present our conceptual architecture(CA). Firstly, we present definitions of
the concepts we introduce. Then we present and explain the architecture. For clarity,
we separate it into three diagrams, representing the entities and relationships involved
in discovery, service definition and service execution. We omit the entities and
relationships which appear in the WSA if they remain unchanged in our model and
are not relevant to the discussion of service semantics.

Firstly, we define the concept of a concrete service. This is the core ‘building
block’ with which to define the semantics of more abstract descriptions of services.

Definition: A Concrete Service is an actual or possible performance of a set of tasks
that represent a coherent functionality (and therefore deliver some value) within some
domain of interest to its associated requestor and provider entities.

A concrete service: has a set of one or more concrete tasks; has a set of messages;
has a service provider and service requestor; has one or more post-agreement
choreographies associated with it; has a service provider interface and/or a service
requestor interface which are used by the choreographies; may have a service
description.

A concrete service is effectively a (possible or actual) specific and detailed set of
tasks carried out at a given time, and the messages exchanged in association with this.
The messages are exchanged between a specific provider and requestor, according to

A Conceptual Architecture for Semantic Web Services 401

certain choreographies and using certain interfaces. A service provider, however, does
not offer a specific concrete service. Rather, they are able to provide many different
possible concrete services. Similarly, a requestor is rarely after a specific concrete
service; they are interested in many possible services which meet their needs. For that
reason, we define the concept of abstract service:

Definition: An Abstract Service is some set of concrete services. A concrete service
is said to be a realization of an abstract service if it appears in this set.

Definition: An Abstract Service Description is some machine-processable description
D which has, as its model, an abstract service C. (We write Model(D) = C)

An Abstract Service Description is some specification of a set of services. The
format of this description is not specified as part of this architecture. There are several
possibilities: (1) An extensional listing of concrete services. (2) A label representing
the name of some abstract service in some ontology of services. (3) A template or
formal description in some knowledge representation language.

Option one is the most conceptually straightforward, but in practice will be
infeasible except in the simplest of cases. In option two, the semantics of the label is
defined as the (possibly infinite) set of concrete services which correspond to that
label within the ontology. This correspondence may be well-defined and explicit, with
a service specification or contract template associated with the label. Often, however,
the correspondence will be more informal. For example, a label ‘bookselling’ may
have as its semantics the set containing any possible concrete services where books
(and only books) are being sold. The third option specifies the set of concrete services
by explicitly and formally defining an abstract service using some knowledge
representation (KR) language such as OWL or F-logic. This may involve explicit
descriptions of abstract tasks, possibly including parameters. The set-theoretic
semantics of the KR language then defines the set of concrete services to be those
which formally satisfy the concept description.

A resource representing an abstract service will have an abstract service
description associated with it. In addition, it may be associated with: (i) a contract
agreement choreography (ii) a service provider, and an associated service provider
interface (iii) a service requestor, and an associated service requestor interface.

Whereas a concrete service is always associated with a specific requestor and
provider, an abstract service may have one or both of these undefined. Similarly, an
abstract task may be less completely defined than a concrete task is.

An abstract service, as we shall see below, can be used for advertising or
requesting. However, it is not precise enough to define what a requestor and provider
agree. For that we define the following;

Definition: An Agreed Service is an abstract service agreed between two parties
Hence it is associated with a specific service provider and service requestor, together
with their associated interfaces. It also has specific post-agreement choreographies
associated with it. Its definition is such that: (i) any further decisions necessary to
select a realization will occur as choices made during a post-agreement choreography.
(ii) Any choice made by one party during the post-agreement choreography is such
that the other party is indifferent to how that choice is made. The agreed service forms

402 C. Preist

the core of the service contract between two parties, which defines the semantics of
their interaction:

Definition: A Service Contract is an agreement between a service provider and
requestor that the provider will supply an agreed service to the requestor. The
contract: has a service provider; has a service requestor; has an agreed service
description; has an association between the tasks involved in the agreed service
description and choreographies and message interfaces which will be used to have
conversations about the tasks; may have information about who is responsible and
what compensation may occur in the case that a service is not delivered correctly;
may have additional legal terms and conditions.

Requestor
Agent

Service
requirement
description

Requestor
Agent

Requestor agent

Abstract Service
Requirement

Abstract Service
Provided

Requestor
Agent

Provider agent

Service offer
description

Requestor
Agent

Abstract Service
DescriptionAbstract Service

requires publishes publishes provides

has semantics
Is a Is a

has semantics

Is a

Is a

Fig. 1. Discovery Model of Conceptual Architecture

The agreed service description will be (explicitly or implicitly) in terms of the
tasks to be performed. It may include tasks to be performed by the requestor (e.g.
payment transfer in the case of e-commerce applications.) The task/choreography
association defines how the interaction between the parties can take place during
delivery of the agreed service. This may be done by including the choreographies
explicitly in the contract. This is appropriate where a choreography may vary and
require agreement between two parties. Alternatively, it may be done by referencing a
choreography definition elsewhere. This is appropriate when the service provider
agent offers a specific choreography and is not able or willing to alter it, or provides a
choice between a small number of choreographies, or the parties use some standard
choreography defined elsewhere.

Fig. 1 illustrates the concepts involved in discovery. A requestor agent requires one
of a class of abstract service; to this end, they publish a description of their
requirements. Similarly, a provider agent is able to provide services within a certain
class of abstract service. It publishes a description of the services it can provide.

Ideally, in each case, the description of the abstract service will correspond exactly
to the actual abstract service which is required or offered. However, in practice, this
may not be possible. For this reason, we define correctness and completeness of
descriptions:

A Conceptual Architecture for Semantic Web Services 403

Definition: A description D of an abstract service C is said to be correct if any
element in the model of D also appears in C. i.e. Model(D)⊆ C.

Definition: A description D of an abstract service C is said to be complete if any
element of C also appears in the model of D. i.e. C⊆ Model(D).

Often, it is possible to achieve completeness but not correctness in service

descriptions. For example, a bookseller can state ‘I sell books’ in an advert, but
cannot guarantee that every title is in stock. The role of the discovery process is to
determine if a given service provider may be able to meet the needs of a given service
requestor, and to inform one or both parties of this. As the WSA discusses, discovery
can be achieved in several different ways, including the use of a discovery service.
Note that we say that both the requestor and the provider publish a service
description. Such a publication may be as an entry into some discovery service, as a
query to such a service, or as a local advertisement or request in a peer-to-peer system
[2]. Following requirement 5, we make no commitment as to which party advertises
and which party queries. In general, we would anticipate that providers would
advertise and requestors would query the advertisements; however, there are
exceptions such as when a requestor issues a public Request For Quotes describing
the kind of service it requires.

Assuming that descriptions of service requirements and service offers are complete
but not correct, then the minimal functionality required of the discovery system is to
determine if the two abstract service descriptions intersect [11]. If this is the case, an
agreement between the two parties may be possible. Paolucci et. al. [8] describe a
more sophisticated matchmaker which uses a hierarchy of different definitions of
matching to determine which matches are more likely to be fruitful.

Following discovery, two parties need to determine if they can agree on a service
instance which the provider will supply to the requestor. This is done through the
contract agreement phase. In some cases, this phase will be unnecessary and the
results from the discovery phase will be enough. This is the case if the following
criteria are satisfied; (i) The published service offer description is correct (but not
necessarily complete). (ii) The offer description provides a complete and explicit
service description which includes post-agreement choreographies. (iii) Any aspect of
the offer description which has variability (for example, a parameter which is not
defined) is such that the provider is indifferent with regard to the choice.(iv) The
delivery choreography (see below) is structured such that choices within this
variability (such as a parameter instantiation) can be input through it.

If all four of these criteria hold5, then the contract agreement phase is unnecessary.
The service offer description defines a set of concrete services, and the provider
doesn’t care which is selected. The delivery choreography allows the selection of a
concrete service to be made by inputting parameter values chosen by the requestor.
We call a service which has an abstract service description satisfying these criteria a
basic service.

5 This is phrased assuming the provider advertises and the requestor queries and selects.

However, it is equally possible (though a lot rarer) that the requestor is indifferent, and the
provider makes the selection using the requestor’s delivery choreography.

404 C. Preist

If the published abstract service description does not satisfy the criteria, but the
service provider agent is able to give a abstract service description which does, then
the contract agreement phase becomes a straightforward ‘take-it-or-leave-it’ process.
The contract agreement choreography simply consists of the requestor accessing the
description. It then goes on to execute the delivery choreography if it chooses to use
this service provider, and does nothing otherwise.

Service Task
Post-Agreement
Choreography

Service Contract

Provider Agent Requestor Agent

Agreed Service Concrete Service

performs uses

member ofhas

part ofpart of

pertains to

Fig. 2. Contract Agreement Model of Conceptual Architecture

In general, the contract agreement phase can be more complex than this. Fig. 2
illustrates the concepts it involves. At least one provider and at least one requestor
agent participate in a choreography to agree a contract between them. The
choreography involves discussing some abstract service, and may explicitly involve
the manipulation of a description of it. If the choreography terminates successfully, it
results in a service contract agreed between two parties; this contract contains a
description of an agreed service which specifies the concrete service to be delivered.
The agreed service will be a specialization of the abstract service found during
discovery.

The decision making within the contract agreement phase has three aspects:
Partner selection: Often, one or both parties can choose which partner will
deliver/receive a service. Service selection: One party, usually the requestor, may
need to select and specify certain parameters of a service instance which weren’t
specified during discovery. Negotiation: Often, when a service specification is fully
defined, other contract parameters (e.g. price) will be fixed. However, in some cases,
they may be open to negotiation.

Any given contract agreement phase does not necessarily involve all three of these.
Furthermore, they can take place in any order, and may be interleaved.

Definition: A contract agreement choreography is a choreography between at least
one service requestor and at least one service provider which, on successful
termination, results in the agreement of a service contract between two of the parties.

A Conceptual Architecture for Semantic Web Services 405

Definition: A service contract is an agreement between a service provider and
requestor that the provider will supply a specific service instance to the requestor. A
service contract has (i) a service provider, (ii) a service requestor and (iii) a service
instance with associated service description and resource identifier.

A contract agreement choreography may explicitly involve service selection and/or
negotiation. Service selection protocols can take different forms: A service provider
may offer a list of all contracts they are willing to offer, and the requestor simply
selects one. A requestor may iteratively build a definition of the service they wish to
receive using the ‘shopping trolley’ metaphor, and are given a price quote for it. A
requestor may refine a service template through dialog with the provider about
different options available. Example negotiation protocols include propose/counter-
propose (where each party proposes a contract, and the other party either accepts it or
proposes an alternative) and constraint relaxation (where parties relax constraints on a
contract template until both sets are satisfiable [12]). Many other possible approaches
to negotiation exist ([4], [13]).

The association of a contract agreement choreography to a given set of provider
and requestor agents must take place following discovery. The simplest way to do this
is for the advertising agent to associate a (pointer to) a contract agreement
choreography description with their advert, or to return a contract agreement
choreography when they are first queried directly.

Service Task
Post-Agreement
Choreography

Service Contract

Provider Agent

Agreed Service Concrete Service

part of part of

has

pertains to

member of

performs

Requestor Agent

uses

Fig. 3. Service Delivery Model of Conceptual Architecture

When a contract agreement choreography has terminated successfully, then service

delivery can take place. This may commence immediately on agreement of the
contract, or may be initiated later by a subsequent choreography. Fig. 3 illustrates the
concepts involved in the service delivery phase. A concrete service is supplied by the
provider agent to the requestor agent. This concrete service must be a member of the

406 C. Preist

agreed service (which, recall, is a set of concrete services). The agreed service has an
associated service contract which contains a description of the service agreed together
with a mapping from the agreed tasks within the service to choreographies about these
tasks. To distinguish these choreographies from the contract agreement choreogra-
phies, we refer to them as post agreement choreographies:

Definition: A post-agreement choreography is a protocol for a conversation between
a service requestor and service provider about a contract which has been previously
agreed, or one or more tasks within such a contract.

There are at least three different kinds of post-agreement choreography. A delivery
choreography governs conversations which directly initiate and/or control the
execution of one or more tasks in a contract. A monitoring choreography allows the
requestor to monitor the task’s progress. A cancellation/renegotiation choreography
allows the termination or alteration of a service within a contract in certain
circumstances.

This completes the Semantic Web-enabled Web Services conceptual model (CA).
We now assess the architecture against the requirements of section 4.

6 Assessment of the Conceptual Architecture

Requirements 1, 2, 3 and 5 are straightforwardly satisfied by the structure of the
conceptual architecture applied to the discovery phase as discussed above.
Requirement 4, that discovery can be performed by informal browsing as well as
matching, is not satisfied immediately by the architecture. However, a browser can
easily be implemented within the conceptual framework described above; a set of
service offer descriptions can be filtered, ordered and presented to a user according to
certain parameters specified by a user.

To meet requirement 6, the architecture allows but does not require a contract
agreement choreography between the parties. Furthermore, we characterise services
which do not need such a choreography, and define them as basic services. While this
characterisation is not technically part of the architecture, a discovery service could
use it to determine if a contract agreement choreography will be necessary, satisfying
requirement 7. Requirements 8, 9 and 10 are straightforwardly satisfied by the
structure of the conceptual architecture as applied to the contract agreement phase as
discussed above. In the case of basic services, an explicit contract is provided by the
service offer description which is offered as take-it-or-leave-it and so needs no further
refinement.

The architecture makes a clear separation between the definition of a service,
interactions defining the service, and interactions involved in the delivery of the
service. In particular, the delivery of a service can take place independently of its
definition, satisfying requirement 11 and part of 16. The requirement that there be a
means of linking a conversation with its effect is enabled but not satisfied by the
architecture; use of a language which allows this is necessary. The other requirements
on service delivery choreographies (12, 13, 14, 15) are straightforwardly satisfied by
the structures defined above.

The conceptual architecture, like the WSA, allows ‘outsourcing’ of functionality
(17) as agents can act simultaneously both as service providers and service requestors,

A Conceptual Architecture for Semantic Web Services 407

possibly of several different services. We place no restrictions on the internal
reasoning used to determine how this is done. One option is to use a planner to
determine which service requests to make (18).

By separating out the definition of an agreed service from the choreographies to
define and deliver the service, the architecture allows different kinds of ‘composition’
to take place. In particular, it enables parties to reason over possible service
definitions at the domain level during the contract agreement phase to ensure
coordination between the different services agreed(19). It also enables parties to
reason about, and coordinate, choreographies associated with the agreement and
deployment of different services (20). However, both of these are merely enabled by
the architecture; reasoning strategies to do these must be embodied within specific
requestor/provider agents.

A third form of what could loosely be called ‘composition’ is the application of
some service to enable a choreography between provider and requestor of some other
service (21). For example, a ‘shopping trolley’ choreography to define a book
purchase may be enabled by component services, with functionality such as ‘book
search’ or ‘put in trolley’. The domain of application of these component services is
‘shopping trolley choreography’ as opposed to ‘book delivery’, the domain of the
‘higher level’ service being defined. However, within their domain, they can be
considered as services with associated contractual definitions, and can be located and
reasoned over by an agent which brings about the choreography between requestor
and provider of the book delivery service. Such an arrangement, as opposed to fixed
choreography definitions, would enable more flexible interactions between the two
parties. It is conceivable to imagine a hierarchy of services nested in this way; though
in the end it would bottom-out to fixed choreographies or basic services.

7 Analysis of OWL-S with Respect to the Conceptual
Architecture

OWL-S ([7],[9]) (formerly DAML-S [6]) is an ontology for use in providing semantic
markup for web services, developed by a coalition of researchers as part of the
DARPA Agent Markup Language program. In this section, we compare the
conceptual model implicit in OWL-S with our conceptual architecture.

The OWL-S ontology defines a service in terms of three top-level classes; the
profile, the service model and the grounding. The profile characterises what a service
requires and provides, and is used primarily in the discovery phase. The service model
describes how a service works, primarily in terms of a process model. This defines a
service’s functionality as the execution of a (potentially complex) process of
component web services. The grounding defines how a component web service can be
interacted with, primarily through WSDL/SOAP. These three classes roughly
correspond to our requirement for a service definition at the domain level, a
description of how to interact with a service provider, and an implementation of that
interaction. However, there are some differences which mean that OWL-S would
need to be adapted and augmented if it were applied within our architecture.

In OWL-S, the profile is used almost exclusively as an advertisement/request.
Hence it focuses on the description and categorization of an abstract service, but does

408 C. Preist

not consider what is necessary to refine it to define an agreed service and to use this
as a specification of what interactions accomplish. To do this, the service model
(either within or outside the profile) would need to be augmented to provide complex
structured descriptions of abstract services, and the ability to constrain and instantiate
service parameters. The profile does not make a clear distinction between what a
service does and the way in which one interacts with a service provider to receive the
service. In particular, it is not clear that inputs/outputs should appear in the domain-
level description of an agreed service. (For example, the domain level agreed service
description may state that ‘provider pays £10 by credit card’; the associated
choreography will require a credit card number as its input. Hence the domain level
definition and the choreography to deliver it are kept separate.)

The process model in OWL-S appears to serve two separate functions. Firstly, it
can be used to define the exchange of messages with a service provider about a
service; secondly, it can be used to define how a service provider implements the
functionality of a service as a process of component web services. Both of these are
valid uses, but the conceptual architecture requires that they be separated out.

The required exchange of messages about a service is defined by one or more post
agreement choreographies in our conceptual architecture. The process model could be
used to represent this. Note that the architecture can have several choreographies
associated with a service, each performing different functions. Hence a given service
may need several process models, and links between the process models and the
domain-level service description to define what each does.

The definition of a service’s functionality in terms of a process over component
web services is a particular method of delivering a service. The CA requires that such
a method should not be proscribed and that a provider using such a method should not
be required to make public their method. For this reason, using the process model in
this way would not be compliant. A separate structure defining the internal process
should be used, and the publication of it would be optional. (Such a separation is
being adopted in the nascent WSMO [15])

8 Conclusions and Future Work

We have presented a conceptual architecture developed out of a requirements analysis
of a set of case studies in the SWWS project and example applications from the
literature. The architecture makes a clear separation between the domain-level
definition of a service to be provided, the message exchanges which bring about the
service, and the internal logic which provides the appropriate functionality.
Inevitably, the architecture is at an abstract level; however, it does shed light on the
required characteristics of service ontologies and infrastructure services to realise it.
We are currently working on an extension of the CA to include sub-communities of
service agents which share a problem-solving method (in particular, planning). We
also hope to expand it to cover mediation more effectively.

The conceptual architecture is being used to define, design and implement a
general technical architecture for Semantic Web Services able to demonstrate the four
case studies within the SWWS program. It is also being used as the underlying
conceptual model in the development of WSMO-full [15] and has been submitted for

A Conceptual Architecture for Semantic Web Services 409

consideration by the architecture subcommittee of the Semantic Web Services
Initiative.

References

1. Esplugas-Cuadrado, J., Preist, C. and Williams, S.: Integration of B2B Logistics using
Semantic Web Services. To appear, Proc. Artificial Intelligence: Methodology, Systems,
and Applications, 11th International Conference, (2004)

2. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications, 1 (2002) 113-117

3. Grosof, B. and Poon, T.: SweetDeal: Representing Agent Contracts with Exceptions using
Semantic Web Rules, Ontologies and Process Descriptions. To appear, International
Journal of Electronic Commerce (2004)

4. He, M., Jennings, N.R. and Leung, H: On Agent Mediated Electronic Commerce. IEEE
Transactions on Knowledge and Data Engineering 15(4) (2003) 985-1003

5. Jennings, N.R., Faratin, P.,Johnson,M.J., O’Brien,P. and Wiegand, M.E.: Using Intelligent
Agents to Manage Business Processes. Proceedings of the First Int. Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (1996) 345-360

6. McIlraith, S. and Martin, D.: Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1) (2003) 90-93

7. OWL-S 1.0 Release. http://www.daml.org/services/owl-s/1.0/
8. Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K: Semantic Matching of Web

Service Capabilities. Proc. International Semantic Web Conference (2002) 333-347
9. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet

Computing, (September 2003) 34-41
10. Sycara, K., Paolucci, M., Ankolekar, A. and Srinivasan, N.: Automated Discovery,

Interaction and Composition of Web Services. Journal of Web Semantics 1(1), Elsevier
(2003)

11. Trastour, D., Bartolini, C. and Gonzalez-Castillo,J.: A Semantic Web Approach to Service
Description for Matchmaking of Services. In Proceedings of the Semantic Web Working
Symposium, Stanford, CA, USA, July 30 - August 1, 2001

12. Trastour, D., Bartolini, C. and Preist, C.: Semantic Web Support for the B2B E-commerce
pre-contractual lifecycle. Computer Networks 42(5) (August 2003) 661-673

13. Vulkan, N.: The Economics of E-Commerce. Princetown University Press, Princetown,
New Jersey (2003)

14. W3C. Web Services Architecture. W3C Working Group Note, 11 February 2004.
http://www.w3.org/TR/ws-arch/

15. Web Services Modelling Ontology: http://www.wsmo.org/

From Software APIs to Web Service Ontologies:
A Semi-automatic Extraction Method

Marta Sabou

Dept. of AI, Vrije Universiteit, Amsterdam, The Netherlands, marta@cs.vu.nl

Abstract. Successful employment of semantic web services depends on
the availability of high quality ontologies to describe the domains of
these services. As always, building such ontologies is difficult and costly,
thus hampering web service deployment. Our hypothesis is that since
the functionality offered by a web service is reflected by the underlying
software, domain ontologies could be built by analyzing the documenta-
tion of that software. We verify this hypothesis in the domain of RDF
ontology storage tools. We implemented and fine-tuned a semi-automatic
method to extract domain ontologies from software documentation. The
quality of the extracted ontologies was verified against a high quality
hand-built ontology of the same domain. Despite the low linguistic qual-
ity of the corpus, our method allows extracting a considerable amount
of information for a domain ontology.

1 Introduction

The promise of the emerging Semantic Web Services field is that machine under-
standable semantics augmenting web services will facilitate their discovery and
integration. Several projects used semantic web service descriptions in very differ-
ent application domains (bioinformatics grid[17], Problem Solving Methods[10]).
A common characteristic of these descriptions is that they rely on a generic de-
scription language, such as OWL-S[3], to specify the main elements of the service
(e.g. inputs, outputs) and on a ontology containing knowledge in the domain of
the service such as the type of offered functionality (e.g. TicketBooking, Car-
Rental) or the types of service parameters (e.g. Ticket, Car).

The quality of the domain ontologies used influences the complexity of rea-
soning tasks that can be performed with the semantic descriptions. For many
tasks (e.g. matchmaking) it is preferable that web services are described ac-
cording to the same domain ontology. This implies that the domain ontology
used should be generic enough to be used in many web service descriptions.
Domain ontologies also formally depict the complex relationships that exist be-
tween the domain concepts. Such rich descriptions allow performing complex
reasoning tasks such as flexible matchmaking. We conclude that building qual-
ity (i.e. generic and rich) domain ontologies is at least as important as designing
a generic web service description language such as OWL-S.

The acquisition of semantic web service descriptions is a time consuming and
complex task whose automation is desirable, as signaled by many researchers in

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 410–424, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

From Software APIs to Web Service Ontologies 411

this field, for example [16]. Pioneer in this area is the work reported in [6] which
aims to learn web service descriptions from existing WSDL1 files using machine
learning techniques. They classify these WSDL files in manually built task hier-
archies. Complementary, we address the problem of building such hierarchies, i.e.
domain ontologies of web service functionalities (e.g. TicketBooking). This task
is a real challenge since in many domains only a few web services are available.
These are not sufficient for building generic and rich ontologies.

Our approach to the problem of building quality domain ontologies is mo-
tivated by the observation that, since web services are simply exposures of ex-
isting software to web-accessibility, there is a large overlap (often one-to-one
correspondence) between the functionality offered by a web service and that of
the underlying implementation. Therefore we propose to build domain ontolo-
gies by analyzing application programming interfaces(APIs). We investigate two
research questions:

1. Is it possible and useful to build a domain ontology from software APIs?
2. Can we (semi-)automatically derive (part of) a domain ontology from APIs?

This paper reports on work performed in the domain of RDF based ontology
stores. Section 2 tackles the first question by presenting an ontology which was
manually built from API documentation and reporting on using this ontology
to describe existing web services. To address the second question, we present a
(semi-) automatic method to derive (part of) a domain ontology in Section 3 and
describe experimental results in Section 4. We use the manually built ontology
as a Golden Standard for evaluating the result of the extraction process. We list
related work in Section 5, then conclude and point out future work in Section 6.

2 Constructing a Golden Standard

Tools for storing ontologies are of major importance for any semantic web appli-
cation. While there are many tools offering ontology storage (a major ontology
tool survey [5] reported on the existence of 14 such tools), only very few are
available as web services (two, according to the same survey). Therefore, in this
domain it is problematic to build a good domain ontology by analyzing only the
available web services. Nevertheless, a good domain ontology is clearly a must
since we expect that many of these tools will become web services soon. We at-
tempted to build a domain ontology by analyzing the APIs of three tools (Sesame
[1], Jena [9], KAON RDF API[7]). We report on this ontology2 in Section 2.1
then show that we could use it to describe web services in Section 2.2.

2.1 Manually Building the Domain Ontology

Method hierarchy. We identified overlapping functionalities offered by the
APIs of these tools and modelled it in a hierarchy (see Fig. 2). The class Method
depicts one specific functionality (similar to the OWL-S Profile concept).
1 WSDL is the industry standard for syntactic web service descriptions.
2 Available at http://www.cs.vu.nl/˜marta/apiextraction.

412 M. Sabou

According to our view, there are four
main categories of methods for: adding data
(AddData), removing data (RemoveData), re-
trieving data (RetrieveData) and querying
(QueryMethod). Naturally, several specializa-
tions of these methods exist. For example,
depending on the granularity of the added
data, methods exist for adding a single RDF
statement (AddStatement) or a whole ontol-
ogy (AddOntology). Note, that this hierarchy
reflects our own conceptualization and does
not claim to be unique. Indeed, from another
perspective, one can regard query methods to
be a subtype of data retrieval methods. We
have chosen however to model them as a sepa-
rate class as they require inputs of type Query.
Besides the method hierarchy, we also describe
elements of the RDF Data Model (e.g. State-
ment, Predicate, ReifiedStatement) and their
relationships.

During ontology building we introduced a
main functionality category (a direct subclass
of Method) if at least two APIs offered meth-
ods with such functionality (e.g. querying is
only supported by Sesame and Jena). Func-
tionalities offered just by one API were added Fig. 1. The Method hierarchy.

as more specialized concepts with the goal of putting them in the context of gen-
erally offered functionality (e.g. SeRQL querying is only provided by Sesame).
Ontology richness. We enriched our ontology by identifying knowledge useful
for several reasoning tasks. We enhanced the definition of methods in multiple
ways such as: imposing restrictions on the type and cardinality of their param-
eters, describing their effects and types of special behavior (e.g. idempotent).
We also identified methods which have the same effect, i.e equivalent. Knowl-
edge about equivalent methods is important for tasks such as matchmaking. For
more information on this ontology the reader is referred to [13]. We conclude that
APIs are rich enough to make the building of a rich domain ontology possible.

2.2 Using the Domain Ontology for Web Service Description

We used the domain ontology to describe the web-interface of Sesame. The do-
main ontology offered all required concepts to describe the functionality of the
web service and also indicated how the concepts we have used fit in a larger spec-
trum of possible functionalities. This is a clear advantage in comparison to the
domain ontology3 we have built in a previous project solely for the Sesame web
3 Available at http://www.cs.vu.nl/˜marta/apiextraction.

From Software APIs to Web Service Ontologies 413

service [12]. While that ontology was satisfactory for the goals of that project,
it was qualitatively inferior to the one we have obtained by analyzing the APIs
of multiple tools.

We checked the generality of our domain ontology by using it to describe
a web-interface which was not considered during ontology building. This is the
recent W3C RDF Net API submission4 which proposes a generic interface to be
implemented by any service that wishes to expose RDF to client applications,
therefore making the first step towards a standard RDF based web service inter-
face. The submission distills six functionalities that any RDF engine should offer.
Four of them (query, getStatements, insertStatements, removeStatements) are in-
stances of the QueryMethod, RetrieveGenericStatement, AddStatement and Re-
moveStatement concepts respectively. The other two (putStatements, updateS-
tatements) are complex operations and they correspond to sequences of concepts
(RemoveAll, AddStatement and RemoveStatement, AddStatement respectively).

The manually built ontology is also an integrated part of the KAON Ap-
plication Server, a middleware system which facilitates the interoperability of
semantic web tools (e.g. ontology storages, reasoners). Many middleware tasks
can be enhanced by reasoning with the semantic descriptions of the functional-
ity and implementation details of registered tools [14]. Also, the middleware can
expose the functionality of any registered tool as a web service and generate the
semantic description of the web service from that of the underlying tool.

Summarizing Section 2, we note that by analyzing software APIs we were
able to build a rich domain ontology and successfully employ it to describe (1)
a web service whose API served as material for defining the ontology, (2) an
emerging standard in this domain and (3) RDF storage tools registered with a
semantic middleware. The manually built ontology serves as a Golden Standard
for evaluating the semi-automatic extraction process presented next.

3 Semi-automatically Extracting Concepts

In this section we present our semi-automatic ontology extraction process (Sec-
tion 3.1) and two possible refinements of this method (Sections 3.3 and 3.2).

3.1 The Extraction Process

The goal of the extraction process is to identify, by analyzing software API
documentation, a set of concepts describing generally offered functionalities in
the application domain of that software. It consists of several steps.

Step1 - Tokenise/POS tag the corpus - Automatic. This step pre-
processes the corpus. After tokenisation we use the QTAG probabilistic Part Of
Speech (POS) tagger5 to determine the part of speech of each token.

Step2 - Extract Pairs - Automatic. This step extracts a set of poten-
tially useful verb-noun pairs from the POS tagged documents. We extract all
4 http://www.w3.org/Submission/2003/SUBM-rdf-netapi-20031002/
5 http://web.bham.ac.uk/o.mason/software/tagger/index.html

414 M. Sabou

pairs where the verb is in present tense, past tense or gerund form. Between
the verb and the noun(phrase) we allow any number of determiners(e.g. “the”,
“a”) and/or adjectives. The choice for such a pattern is straightforward since in
javadoc style documentation verbs express the functionality offered by the meth-
ods and the following noun phrase (often their object) usually identifies the data
structure involved in this functionality. We reduce the number of extracted pairs
by lemmatization, so if “removes model” and “remove models” are extracted,
the resulting pair is “remove model”. We define the resulting pairs as distinct.

Step3 - Extract Significant Pairs
- Manual, with some support. This
step identifies all the significant pairs from
the set of previously extracted distinct
pairs. We define a pair to be significant for
our task if it reflects the functionality of
the method from whose description it was
extracted. The ontology engineer has to
decide by himself which of the extracted
pairs are significant. Manually inspecting
these pairs is time consuming, especially
in cases when the set of extracted pairs
contains many pairs of low importance
for the ontology engineer. To solve this
problem we adopted two strategies. First,
we fine-tuned the extraction process so
that the output contains a minimal num-
ber of insignificant pairs (Section 3.2).
Second, we developed a set of ranking
schemes to order the pairs according to
their significance (Section 3.3). We present
these refinement methods in different
subsections due to their complexity, but
we consider them closely related to the
extraction process itself. Fig. 2. The Extraction process.

Step4 - Ontology Building - Manual with support. Finally, the ontology
engineer derives a concept from each significant pair. Often different pairs
represent the same concept. For example, both “load graph” and “add model”
correspond to the AddOntology concept. These concepts are the bases of the
final ontology. Even if arranging them in a hierarchy is still a manual task,
we support the ontology engineer with visual methods in discovering subclass
relationships (Section 4.2). Further, we present the two refinement methods.

3.2 Refining the Extraction by Evaluation

Using a multi-stage evaluation method we aim to fine-tune the extraction process
so that the output contains a minimum number of insignificant pairs. We present
the evaluation metrics here and exemplify their use for fine-tuning in Section 4.3.

From Software APIs to Web Service Ontologies 415

Stage 1 - evaluating pair extraction. At this stage we evaluate the qual-
ity of the first two steps of the ontology extraction process, i.e. the POS tagging
and the pair extraction steps. We denote with allpairs all manually identified
pairs that we wish to extract and with validpairs the subset of these pairs that
are extracted. Extracted pairs that do not fulfill the extraction pattern are de-
noted by invalidpairs. We define two metrics, adapted from the well-known in-
formation retrieval recall and precision.

Recall =
validpairs

allpairs
and Precision =

validpairs

validpairs + invalidpairs

Quality criteria. We consider a pair extraction successful if both metrics have
a high value. High recall testifies that many valid pairs were extracted from the
corpus and high precision shows a low number of invalid pairs.

Stage 2 - evaluating pair significance. Evaluating the extraction process
from the point of view of pair significance targets the improvement of the third
ontology extraction step. For this, we count all pairs that were classified as sig-
nificant during the manual inspection of the corpus (all signpairs), all extracted
significant (signpairs) and all extracted insignificant (insignpairs) pairs. Similar
to the previous stage, we compute recall and precision for the significant pairs
as follows.

SRecall =
signpairs

all signpairs
and SPrecision =

signpairs

signpairs + insignpairs

Quality criteria. An extraction is successful if the ontology builder is pre-
sented with a high ratio of significant pairs from those existent in the corpus
(high SRecall), and if there are only few insignificant pairs (high SPrecision).

Stage 3 - evaluating ontology coverage. At this stage we compare the
extracted ontology with the manually built ontology. There has been little work
in measuring similarity between two ontologies, one of the recent advances being
the work published in [8]. We are interested to know how many of the concepts
contained in the Golden Standard could be extracted, and therefore a simple
lexical overlap measure, as introduced in [2], suffices. Let LO1 be the set of all
extracted concepts and LO2 the set of concepts of the Golden Standard. The
lexical overlap (LO) equals to the ratio of the number of concepts shared by
both ontologies and the number of concepts we wish to extract.

LO(O1, O2) =
|LO1 ∩ LO2 |
|LO2 |

and OI(O1, O2) =
|LO1 \ LO2 |
|LO2 |

Human ontology building is not perfect. We encountered cases when the
extraction process prompted us to introduce new concepts which were overlooked
during the manual process, as illustrated in Section 4.2. We introduce an ontology
improvement (OI) metric which equals to the ratio of new concepts (expressed
as the set difference between extracted and desired concepts) and all concepts of
the manual ontology. As a quality criteria we aim to increase the value of both
metrics.

416 M. Sabou

3.3 Refining the Extraction by Measuring Significance

The previous subsection addressed the problem of decreasing the effort of the
ontology engineer when determining significant pairs (step 3) by evaluating and
fine-tuning the extraction so that the number of extracted insignificant pairs
is minimal. In this section we adopt a different strategy: we use pair ranking
schemes to order the extracted pairs according to their significance. We built
these schemes on pair frequency, term weight and API relevance considerations.

Pair Frequency. Our first intuition was that significant pairs are pairs that
appear often and also in many different method descriptions. Denoting pfpair

the frequency of the pair in the corpus and dfpair the number of documents in
the corpus in which the pair appears, we compute the rank of a pair as:

rankpair = pfpair ∗ dfpair

Term Weight. This weighting scheme considers that the rank of a pair
is directly proportional with the weight of its components. We give the same
importance to the weight of the component verb and noun. Other variations in
which one of these terms is considered more important could be investigated in
the future.

rankpair = wverb ∗ wnoun where the weight of a term in the corpus is:

wi =
∑

k

wdi,k =
∑

k

(tfi,k ∗ dfi) = dfi ∗
∑

k

tfi,k = dfi ∗ cfi

– wdi,k - is the weight of term i in document k. It is defined as wdi,k = tfi,k∗dfi;
– tfi,k - is the frequency of term i in document k;
– dfi - is the number of documents in which term i appears;
– cfi - is the frequency of term i in the whole corpus.

API Relevance. Our final ranking scheme filters the pairs based on the
number of APIs in which they appear. Intuitively, this corresponds to a different
ontology building strategy than the one supported by the previous two schemes.
Before we derived the “union” of all functionalities while here the focus is on
their “intersection”. Accordingly, pairs found in the maximum number of APIs
are given the highest rank. Pairs belonging to the same number of APIs, are
ordered using the Term Weight ranking scheme.

4 Experimental Results

4.1 Experimental Setup

The goal of our experiments is to test the basic extraction process and the en-
hancements achieved with the refinement methods. We conduct three sets of
experiments. First, we apply the basic extraction process and examine the ex-
tracted concepts (4.2). Second, we use the evaluation method (1) to get an insight

From Software APIs to Web Service Ontologies 417

in the internal working of the basic extraction, (2) to suggest improvements for
the extraction method and (3) to evaluate if the enhanced extraction is superior
to the basic one (4.3). Finally, we perform a comparative evaluation of the pair
ranking schemes on the output of the basic extraction process (4.4).

Corpora. We used two distinct corpora6 in our experiments. The first cor-
pus, Corpus 1, contains the documentation of the tools we used to build the
manual ontology (Jena, KAON RDF API, Sesame) and accounts to 112 docu-
ments. The second corpus, Corpus 2, contains 75 documents collected from four
tools: InkLing7, the completely rewritten API of Sesame, the Stanford RDF API8

and the W3C RDF model9. Each document in the corpora contains the javadoc
description of one method. This description consists of a general description of
the method functionality (termed “text”), followed by the description of the pa-
rameters, result type and the exceptions to be thrown (termed “parameters”).
See for example the add method of the Jena API. We exclude the syntax of the
method because it introduces irrelevant technical terms such as java, com, org.

add
Add all the statements returned by an iterator to this model.

Parameters:
iter - An iterator which returns the statements to be added.

Returns:this model
Throws: RDFException - Generic RDF Exception

4.2 Extracting Concepts with the Basic Extraction Process

From Corpus 1 we extracted 180 pairs (80 distinct after lemmatization in Step
2) from which 31 distinct concepts were distilled. The first half of Table 1 lists
these concepts, divided in 18 concepts already identified in the manual ontology
(first column) and 13 new concepts which were ignored during the manual ontol-
ogy building due to several reasons, as follows (second column). First, concepts
that denote implementation related details (transactions, repositories) are tool
specific functionalities and were not interesting for our task to determine RDF
based functionalities. Then, concepts related to the creation of elements were ig-
nored because only Jena offers such methods. “ModifyModel” actually denotes
the effect of many methods that we ignored while modelling.

To check the applicability of our method to data sets that did not influence
its design, we have applied it to Corpus 2. The extraction resulted in 79 pairs
(44 distinct) synthesized in 14 concepts shown in the second half of Table 1. We
conclude that our method worked on a completely new corpus allowing us to
extract concepts for each four main categories identified manually.

The significant pairs identified in the third extraction step are currently only
used to derive a set of concepts, however it is possible to determine their (and the
6 The corpora are available on http://www.cs.vu.nl/˜marta/apiextraction.
7 http://swordfish.rdfweb.org/rdfquery/
8 http://www-db.stanford.edu/ melnik/rdf/api.html
9 http://dev.w3.org/cvsweb/java/classes/org/w3c/rdf/

418 M. Sabou

Table 1. Extracted existing and new concepts from both experimental corpora.

Corpus 1 Corpus 2
Concept New Concept Concept New Concept
AddData AbandonChanges AddData(4) CreateOntology

AddOntology (2) BeginTransaction AddOntology VerifyData
AddStatement(2) CommitTransaction AddStatement

ContainsStatement CreateOntology ContainsTriple
ContainsTriple CreateProperty EvalauteQuery (3)
QueryMethod CreateResource RemoveAll

RDQLQueryMethod CreateStatement (2) RemoveStatement(3)
RQLQueryMethod GetURL RetrieveAllStatements

SerQLMethod GetUsername RetrieveData
RemoveAll ModifyModel RetrieveObject

RemoveOntology RetrieveRepositories RetrieveProperty
RemoveStatement(2) SupportSetOperations RetrieveSubject
RetrieveAllStatements SupportsTransactions

RetrieveData (2)
RetrieveObject(2)

RetrieveOntology(2)
RetrieveProperty
RetrieveResource

corresponding concepts’) hierarchical relationships. We experimented with the
Cluster Map [4] visualization technique, developed by Aduna (www.adnua.biz),
to highlight potential subclass relationships. The Cluster Map was developed to
visualise the instances of a number of classes, organized by their classifications.

Figure 3 displays API methods
(small spheres - playing the role of
instances) grouped according to the
significant pairs that were extracted
from their descriptions (bigger spheres
with an attached label stating the
name of the pair - considered classes
here). Balloon-shaped edges connect
instances to the class(es) they belong
to. We observe that all instances of the
rql, rdql and serql query pairs (i.e. all
methods from which these pairs were

Fig. 3. Hierarchy visualisation.

extracted) are also instances of the query pair, hence intuitively indicating that
the concepts resulting from these pairs are in a subclass relationship, where the
concept derived from the “evaluate query” pair is the most generic concept.

We observe that, in both corpora, the number of distinct pairs (80, 44) is
mush higher than the finally derived concepts (31, 14). To better understand this
behavior of the extraction process we employ the evaluation method defined in
Section 3.2, as described in the next Section.

From Software APIs to Web Service Ontologies 419

4.3 Fine-Tuning the Extraction Process by Evaluation

In this section we describe the fine-tuning of the extraction process by using the
evaluation method. Methodologically, there are three main steps in a fine tuning
process. First (A), we evaluate the performance of the extraction process for the
evaluation metrics defined. Second (B), according to its performance we decide
on several modifications that could enhance the performance. Finally (C), we
evaluate the enhanced process (on the original and a new corpus) to check if the
predicted improvements took place, i.e. if the fine-tuning process was successful.

A) Evaluating the extraction process. The original extraction process was
applied on Corpus 1. We observed that, in this corpus, the text section is gram-
matically more correct than the parameters section. Also, the predominant num-
ber of verbs were in present form, especially those that describe method function-
alities. Accordingly, to verify our observations, we have evaluated the ontology
extraction process in these two different parts of the method description and for
the three different verb forms. A summary of the performance evaluation for the
original extraction is shown in the third column of Table 2. Readers interested
in the detailed evaluation data are referred to [13].

Stage 1 - evaluating pair extraction. We have counted the extracted
valid and invalid pairs and computed the precision and recall of the pair extrac-
tion per verb category. The recall of pairs with present tense verbs is quite low
(0.65) because, in the text area, these verbs appear in an unusual position - the
first word in the sentence - a position usually being attributed to nouns. The
POS tagger often fails in such cases, especially when the verbs can be mistaken
for nouns (e.g. lists). In contrast, the precision of extracting present tense verbs
is high. Both the recall and the precision of the extraction on the corpus as a
whole are low (see Table 2) due to the existence of many present tense verbs
which are often mistaken for nouns (recall) and the past tense verbs (precision).

Stage 2 - evaluating pair significance. Low significance recall (0.64 for
text, 0.69 for parameters, 0.65 globally) shows that a lot of significant pairs are
not extracted from the corpus. This is a direct consequence of the low extraction
recall of pairs in general (e.g. many of the pairs which are not extracted are
significant). The significance precision is almost double in the text (0.59) versus
the parameter (0.28) section. Therefore pairs extracted from the textual part
are much more likely to be significant than pairs extracted from the parameter
part. This heavily affects the precision of the whole corpus (0.5).

Stage 3 - evaluating ontology coverage. The first half of Table 1 shows
all distinct extracted concepts. Eighteen concepts from the manual ontology were
identified yielding in a lexical overlap of LO = 0.5, a very good result given that
a lot of significant pairs were not extracted from the corpus. Besides this, 13 new
concepts were identified resulting in an ontology improvement of OI = 0.36. In
other words, we extracted half of the concepts that we identified manually and
we suggested improvements that could enlarge the ontology with 36%.

B) Conclusions for enhancements. We decided (1) to ignore the parameter
section, because it heavily lowers the SPrecision of the whole corpus. Also, (2)

420 M. Sabou

we will only extract pairs with present tense verbs, because there are only a few
verbs in other forms but they negatively influence the pair retrieval precision of
the corpus. These measures serve the decrease of insignificant pairs extracted
from the corpus in step 2 but do not solve the recall problem. For that we need
to train the POS tagger, a task regarded as future work.

C) Quality increase of the enhanced process. The particularities of Corpus
1 influenced the fine-tuning of the process. Therefore we check the improvement
of the performance on both corpora. Table 2 summarizes the evaluation results
for the original and the enhanced extraction process. The enhanced process uses
a modified linguistic pattern (only extracts present tense verbs) and is only
applied on the textual part of the method descriptions.

Table 2. Comparison of the original and the enhanced extraction for two corpora.

Corpus 1 Corpus 2
Ev.Step Ev. Matrics Original Enhanced Original Enhanced

1 Recall 0.69 0.65 - -
Precision 0.76 0.98 - -

2 SRecall 0.65 0.62 - -
SPrecision 0.5 0.78 0.48 0.67

3 LO 0.5 0.39 0.3 0.25
OI 0.36 0.36 0.05 0.03

For Corpus 1 the precision of the output was highly increased in both eval-
uation stages: 22% for the first stage and 28% for the second. This serves our
goal to reduce the number of insignificant pairs extracted in step 2. Despite
the heavy simplifications the ontological loss was minimal (11%). The enhanced
process only missed 4 concepts because their generating pairs appeared in the
parameter section (QueryMethod) or had verbs in past tense form (RetrieveOb-
ject, RetrieveProperty, RetrieveResource). For Corpus 2, we did not perform any
manual inspection and therefore could only compute the SPrecision and the on-
tology comparison metrics. Similarlly, the pair significance increased (with 20%)
resulting in a small decrease of ontology overlap (with 5%).

4.4 Refining the Extraction by Measuring Significance

Pair ranking schemes order the extracted pairs according to their significance.
We evaluated which of them is the best discriminator for pair significance. To
evaluate the performance of ranking schemes, we have manually determined the
type of all pairs, extracted in the second step of the basic extraction process
from Corpus 1, as: (1) insignificant, (2) significant leading to a new concept and
(3) significant leading to an already identified concept in the manual ontology.
We represented the output of each ranking scheme by plotting the rank position
assigned to pairs against their significance. We drew a linear trendline (and

From Software APIs to Web Service Ontologies 421

computed its equation) to determine the behavior of the scheme. Considering
the highest rank positions the most significant, in the optimal case, the trendline
would have an increasing tendency, assigning high ranks to high significance. A
high slope of the trendline indicates a good performance of the ranking scheme.

Pair Frequency. Fig. 4 shows
the performance of the Pair Fre-
quency ranking scheme. The slope
of the linear trendline has a low
value (0,0044) denoting a suboptimal
behavior. Indeed, several significant
pairs still appear on the lowest
rank positions and then insignificant
pairs predominate until the highest
positions. The very top of the ranked Fig. 4. Pair Frequency Scheme.

set consists indeed of significant pairs. The reason for this behavior is that often
very frequent pairs do not reflect functionality while rare pairs do. Often rare
pairs interrelate a significant verb (e.g. “add”) with a significant noun (e.g.
“model”). This prompted us to consider the weights of the constituent terms,
as in the next scheme.

Term Weight. Observe in Fig.
5 that, comparatively to the previ-
ous scheme, the behavior of the Term
Weight scheme is closer to the desired
one: the slope of the linear trend-
line is higher (0,0137). Also, many in-
significant pairs are identified for low
rank positions and no significant pair
is placed on the lowest 20 position
(bottom quarter). However, there is Fig. 5. Term Weight Scheme.

a mixed amount of significant and insignificant pairs for a large interval of rank
positions. On top positions fewer insignificant and more significant pairs exist.

API Relevance. The API
Relevance ranking performs slightly
better comparatively to the Term
Weight method, having a higher
slope for the linear trendline
(0,0151). The number of shared
pairs within APIs is surprisingly
low. There is a single pair shared by
all three APIs (“add statement”),
and three pairs shared by two of the Fig. 6. API Relevance Scheme.

three APIs (“support transaction”, “remove statement” , “contain statement”).
Note that we only measured the intersection of lexical pairs, however, the
intersection of concepts derived from the lexical pairs would yield in a much
larger set (since different lexical pairs often denote the same concept).

422 M. Sabou

4.5 Discussion

The basic extraction process proved very helpful: it extracted half of the concepts
existent in the manually built ontology and also suggested some new additions
which were ignored during ontology building. We checked the applicability of
the extraction method on a different corpus than the one which served for its
design and obtained concepts from all major categories of functionalities. While
the extracted concepts are already a valuable help in ontology building, early
experiments show that hierarchical information could be derived automatically
as well. However, many of the pairs extracted in the second step were insignificant
causing considerable time delays when filtering out the significant pairs. Also, we
had no insight in the internal working of the process to understand its behavior.
Our refinement methods address these two issues.

The evaluation refinement method allowed us to get a better understanding of
the corpus and the behavior of the extraction process on this corpus. The derived
observations helped us to fine-tune to extraction so that much less insignificant
pairs were extracted in the second step and the loss of ontological information
was minimal. The improvements were verified on the original and a new corpus
as well.

Our experiments show that ranking schemes based on simple frequency mea-
sures can filter some of the significant pairs, making step 3 less time consuming.
The Term Weight based scheme performs better than the Pair Ranking scheme,
and the API relevance achieves the best performance. We experimented with
many more possible schemes, but none of them performed significantly better.
We conclude that there is a limit to the performance of simple frequency based
methods, however additional background knowledge, specifically of synonymy
between terms, could lead to enhanced results. For example knowing which ac-
tions (verbs) and data structures (nouns) are synonyms would help determining
which lexical pairs are conceptually equivalent and allow us to work with con-
cepts rather than lexical pairs. Our intuition is that synonymy between verbs
could be determined from generic knowledge (e.g. WordNet) but more special-
ized domain knowledge is required for the synonymy of data structures.

5 Related Work

The problem of automating the task of web service semantics acquisition was
addressed by the work of two research teams. Heß[6] employs the Naive Bayes
and SVM machine learning algorithms to classify WSDL files (or web forms)
in manually defined task hierarchies. Our work is complementary, since we ad-
dress the acquisition of such hierarchies. Also, our method does not rely on any
manually built training data as the machine learning techniques do. Patil[11]
employ graph similarity techniques to determine a relevant domain for a WSDL
file and to annotate the elements of the WSDL file. Currently they determine
the semantics of the service parameters and plan to concentrate on functionality
semantics in the future. They use existent domain ontologies and acknowledge
that their work was hampered by the lack of these ontologies.

From Software APIs to Web Service Ontologies 423

There has been several efforts in the ontology learning community to learn
concept hierarchies (e.g. [2], [15]), but none of them used sources similar to API
documentation. The work that is methodologically closest to our solution is the
work of Cimiano[2]. They identify a set of verb-noun pairs with the intention
to build a taxonomy by using the Formal Concept Analysis theory. As a result,
their metrics for filtering the best pairs are different from ours. They define and
evaluate three such metrics. Finally, they compare their extracted ontology to a
manually built one. We adopted one of their ontology comparison metrics.

6 Conclusions and Future Work

The hypothesis of the presented work is that, given the similarity in function-
ality between web services and their underlying implementation, functionality
focused domain ontologies could be derived from the underlying software’s docu-
mentation. In this paper we answer two research questions. First, we prove that
it is possible and useful to build domain ontologies from software documenta-
tion, by manually building such an ontology from API documentation and using
it to describe several web services. Second, we investigate the possibility of au-
tomating the ontology extraction process and present a low-investment method
for extracting concepts denoting functionality semantics. Even if these concepts
represent only part of the available information in the APIs, extracting them is
a considerable help for the ontology engineer. We plan to check the applicability
of our method in other domains than that of RDF ontology stores.

We plan several enhancements to our extraction method. First, we wish to
fine-tune the used linguistic tools (POS tagger) to the grammatical character-
istics of our corpus. Second, we want to automate the conceptualization step
possibly using synonymy considerations. Finally, we will investigate automatic
learning of hierarchical relationships. The visualisation techniques we used sug-
gested several good heuristics in determining such relationships and promise to
become intuitive tools for non professional ontology builders.

We are aware of some limitations of our work. First, our corpora are too small
for applying statistical techniques. We plan to enlarge them by adding other
API documentations or including other sources such as internal code comments,
user manuals etc. Also, we consider using extraction methods better suited for
small corpora, for example clustering methods. Second, we ignore all existent
structural information, therefore loosing a lot of semantics. We plan to build
methods which leverage on the structured nature of the javadoc descriptions.
For example, terms appearing in the textual description should have a higher
weight than those appearing in the parameter section. Also, we wish to take into
account the structure of the code (e.g. package/class hierarchies) to determine
the main data structures and their relationships.

We conclude that software APIs are rich sources for ontology building and
even simple statistical methods are able to extract much of the contained knowl-
edge. The promising results published in this paper prompt us to further pursue
our work towards boosting a web of semantic web services.

424 M. Sabou

Acknowledgements. We thank P. Cimiano and J. Tane for their support with
the TextToOnto tool and W. van Atteveldt, F. van Harmelen, P. Mika and H.
Stuckenschmidt for their review and comments on earlier versions of this paper.

References

1. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In I. Horrocks and J. A. Hendler,
editors, Proceedings of the First International Semantic Web Conference, LNCS,
Sardinia, Italy, 2002.

2. P. Cimiano, S. Staab, and J. Tane. Automatic Acquisition of Taxonomies from
Text: FCA meets NLP. In Proceedings of the ECML/PKDD Workshop on Adaptive
Text Extraction and Mining, Cavtat–Dubrovnik, Croatia, 2003.

3. The OWL-S Services Coalition. OWL-S: Semantic Markup for Web Services. White
Paper. http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

4. C. Fluit, M. Sabou, and F. van Harmelen. Handbook on Ontologies in Information
Systems, chapter Supporting User Tasks through Visualisation of Light-weight On-
tologies. International Handbooks on Information Systems. Springer-Verlag, 2003.

5. A. Gomez Perez. A survey on ontology tools. OntoWeb Delieverable 1.3, 2002.
6. A. Heß and N. Kushmerick. Machine Learning for Annotating Semantic Web

Services. In AAAI Spring Symposium on Semantic Web Services, March 2004.
7. A. Maedche, B. Motik, and L. Stojanovic. Managing Multiple and Distributed

Ontologies in the Semantic Web. VLDB Journal, 12(4):286–302, 2003.
8. A. Maedche and S.Staab. Measuring similarity between ontologies. In Proceedings

of EKAW. Springer, 2002.
9. B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6(6):55–59,

November/December 2002.
10. E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A Framework and In-

frastructure for Semantic Web Services. In Proceedings of the Second International
Semantic Web Conference, LNCS. Springer-Verlag, 2003.

11. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web service Anno-
tation Framework. In Proceeding of the World Wide Web Conference, 2004.

12. D. Richards and M. Sabou. Semantic Markup for Semantic Web Tools: A DAML-S
description of an RDF-Store. In Proceedings of the Second International Semantic
Web Conference, LNCS, pages 274–289, Florida, USA, 2003. Springer.

13. M. Sabou. Semi-Automatic Learning of Web Service Ontologies from Software
Documentation. Technical report.
http://www.cs.vu.nl/ marta/papers/techreport/olws.pdf, 2004.

14. M. Sabou, D. Oberle, and D. Richards. Enhancing Application Servers with Se-
mantics. In Proceedings of AWESOS Workshop, Australia, April 2004.

15. C. Sporleder. A Galois Lattice based Approach to Lexical Inheritance Hierarchy
Learning. In Proccedings of the Ontology Learning Workshop, ECAI, 2002.

16. C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne, and
L. Moreau. Automating Experiments Using Semantic Data on a Bioinformatics
Grid. IEEE Intelligent Systems, 19(1):48–55, 2004.

17. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. Jour-
nal of Cooperative Information Science, 2003.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 425–440, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Applying KAoS Services to Ensure Policy Compliance for
Semantic Web Services Workflow Composition and

Enactment

Andrzej Uszok1, Jeffrey M. Bradshaw1, Renia Jeffers1, Austin Tate2, and Jeff Dalton2

1 Institute for Human and Machine Cognition (IHMC),
40 S. Alcaniz, Pensacola, FL 32501, USA

{auszok, jbradshaw, rjeffers}@ihmc.us
2 Artificial Intelligence Applications Institute, University of Edinburgh,

Edinburgh EH8 9LE, UK
{a.tate, j.dalton}@ed.ac.uk

Abstract. In this paper we describe our experience in applying KAoS services
to ensure policy compliance for Semantic Web Services workflow composition
and enactment. We are developing these capabilities within the context of two
applications: Coalition Search and Rescue (CoSAR-TS) and Semantic Firewall
(SFW). We describe how this work has uncovered requirements for increasing
the expressivity of policy beyond what can be done with description logic (e.g.,
role-value-maps), and how we are extending our representation and reasoning
mechanisms in a carefully controlled manner to that end. Since KAoS employs
OWL for policy representation, it fits naturally with the use of OWL-S
workflow descriptions generated by the AIAI I-X planning system in the
CoSAR-TS application. The advanced reasoning mechanisms of KAoS are
based on the JTP inference engine and enable the analysis of classes and
instances of processes from a policy perspective. As the result of analysis,
KAoS concludes whether a particular workflow step is allowed by policy and
whether the performance of this step would incur additional policy-generated
obligations. Issues in the representation of processes within OWL-S are
described. Besides what is done during workflow composition, aspects of
policy compliance can be checked at runtime when a workflow is enacted. We
illustrate these capabilities through two application examples. Finally, we
outline plans for future work.

1 Introduction

Despite rapid advances in Web Services, the demanding requirements of the user
community continue to outstrip currently available technology solutions. To help
close this gap, advocates of Semantic Web Services have begun to define and
implement many new and significant capabilities (http://www.swsi.org/). These new
capabilities are intended to more fully harness the power of Web Services through
explicit representations of the semantics underlying Web resources and the
development of intelligent Web infrastructure capable of fully exploiting them.

426 A. Uszok et al.

Semantic Web Languages such as OWL extend RDF to allow users to specify
ontologies composed of taxonomies of classes and inference rules.

Semantic Web Services can be effectively used not only by people but also by
software agents [10]. Agents will increasingly use the combination of semantic
markup languages and Semantic Web Services to understand and autonomously
manipulate Web content in significant ways. Agents will discover, communicate, and
cooperate with other agents and services and, as described in this paper, will rely on
policy-based management and control mechanisms to ensure that human-imposed
constraints on agent interaction are respected. Policy-based controls of Semantic Web
Services can also be used to govern interaction with traditional (non-agent) clients.

2 Policies and Semantic Web Services

Policies, which constrain the behavior of system components, are becoming an
increasingly popular approach to dynamic adjustability of applications in academia
and industry (http://www.policy-workshop.org/). Elsewhere we have pointed out the
many benefits of policy-based approaches, including reusability, efficiency,
extensibility, context-sensitivity, verifiability, support for both simple and
sophisticated components, protection from poorly-designed, buggy, or malicious
components, and reasoning about their behavior [2]. Policies have important
analogues in animal societies and human cultures [6].

Policy-based network and distributed system management has been the subject of
extensive research over the last decade (http://www-dse.doc.ic.ac.uk/Research/
policies/) [18]. Policies are often applied to automate network administration tasks,
such as configuration, security, recovery, or quality of service (QoS). In the network
management field, policies are expressed as sets of rules governing choices in the
behavior of the network. There are also ongoing standardization efforts toward
common policy information models and frameworks. The Internet Engineering Task
Force, for instance, has been investigating policies as a means for managing IP-
multiservice networks by focusing on the specification of protocols and object-
oriented models for representing policies (http://www.ietf.org/html.charters/policy-
charter.html).

The scope of policy management is increasingly going beyond these traditional
applications in significant ways. New challenges for policy management include:

• Sources and methods protection, digital rights management, information
filtering and transformation, and capability-based access;

• Active networks, agile computing, pervasive and mobile systems;
• Organizational modeling, coalition formation, formalizing cross-organizational

agreements;
• Trust models, trust management, information pedigrees;
• Effective human-machine interaction: interruption and notification manage-

ment, presence management, adjustable autonomy, teamwork facilitation, safe-
ty; and

• Support for humans trying to retrieve, understand, and analyze all policies
relevant to some situation.

Applying KAoS Services to Ensure Policy Compliance 427

Multiple approaches for policy specification have been proposed that range from
formal policy languages that can be processed and interpreted easily and directly by a
computer, to rule-based policy notation using an if-then-else format, to the
representation of policies as entries in a table consisting of multiple attributes.

In the Web Services world, standards for SOAP-based message security1 and XML-
based languages for access control (e.g., XACML2) have begun to appear. However
the immaturity of the current tools along with the limited scope and semantics of the
new languages make them less-than-ideal candidates for the sorts of sophisticated
Web-based applications its visionaries have imagined for the next decade [7; 12].

The use of XML as a standard for policy expression has both advantages and
disadvantages. The major advantage of using XML is its straightforward extensibility
(a feature shared with languages such as RDF and OWL, which are built using XML
as a foundation). The problem with mere XML is that its semantics are mostly
implicit. Meaning is conveyed based on a shared understanding derived from human
consensus. The disadvantage of implicit semantics is that they are rife with ambiguity,
promote fragmentation into incompatible representation variations, and require extra
manual work that could be eliminated by a richer representation. However Semantic
Web-based policy representations, such as those described in this paper, could be
mapped to lower level representations if required by an implementation by applying
contextual information.

In addition to our own work on KAoS (see below), some initial efforts in the use of
Semantic Web representations for basic security applications (authentication, access
control, data integrity, and encryption) of policy have begun to bear fruit. For
example, Denker et al. have integrated a set of ontologies (credentials, security
mechanisms) and security extensions for OWL-S Service profiles with the CMU
Semantic Matchmaker [12] to enable security brokering between agents and services.
Future work will allow security services to be composed with other services. Kagal et
al. [8] are developing Rei, a Semantic Web language-based policy language that is
being used as part of the described above OWL-S Service profiles extension and other
applications.

In another promising direction, Li, Grosof, and Feigenbaum [9] have developed a
logic-based approach to distributed authorization in large-scale, open, distributed
systems.

3 KAoS Policy and Domain Management Services

KAoS is one of the first efforts to represent policy using a Semantic Web language—
in this case OWL3. KAoS services and tools allow for the specification, management,
conflict resolution, and enforcement of policies within the specific contexts
established by complex organizational structures represented as domains [2; 3; 16;
17]. While initially oriented to the dynamic and complex requirements of software

1 e.g., http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
2 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
3 A comparison among two semantically-rich representations of policy (KAoS, Rei) and amore

traditional policy language (Ponder[5]) can be found in [15].

428 A. Uszok et al.

Fig. 1. Graphical interface of the OWL policy editor and administration tool: KPAT.

agent applications, KAoS services have been extended to work equally well with both
agent and traditional clients on a variety of general distributed computing platforms
(e.g., CORBA, Web Services, Grid Computing (Globus GT3)).

3.1 Ontological Representation of KAoS Policies

KAoS uses ontology concepts (encoded in OWL) to build policies. During its
bootstrap, KAoS first loads a KAoS Policy Ontology (KPO) defining concepts used to
describe a generic actors’ environment and policies within this context
(http://ontology.ihmc.us/). Then KAoS loads additional ontology, extending concepts
from the generic ontology, with notions specific to the particular controlled
environment.

The KAoS Policy Service distinguishes between authorizations (i.e., constraints
that permit or forbid some action) and obligations (i.e., constraints that require some
action to be performed when a state- or event-based trigger occurs, or else serve to
waive such a requirement) [4]. Other policy constructs (e.g., delegation, role-based
authorization) are built out of the basic primitives of domains plus these four policy
types.

KAoS policy’s OWL definition of (Fig. 1 shows the tool to define such policies) is
an instance of one of four basic policy classes, that is: PositiveAuthorization,
NegativeAuthorization, PositiveObligation or NegativeObligation. The property
values determine management information for a particular policy (for example, its
priority). The type of policy instance determines the kind of constraint KAoS should

Applying KAoS Services to Ensure Policy Compliance 429

apply to the action, while a policy’s action class is used to determine a policy’s
applicability in a given situation. The action class uses OWL restrictions to narrow
scopes-of-action properties to a particular policy’s needs. Every action contains a
definition of the range of actors performing it. This range can be defined using any
available OWL construct. For example, the range can be an enumeration of actor
instances, a class of actors defining its type, or any description of the actor context
(for instance, the class of actors executed on some host and possessing a given
resource). The same is true for the action class’s other properties but additionally
XML Schema expressions can be used to restrict ranges of datatype properties.
Consequently, policy can contain arbitrarily complex definitions of a situation. So,
KAoS policies represent policies without conditional rules, relying instead on the
context restrictions associated with the action class to determine policy applicability
in a given situation

An action class helps classify action instances that actors intend to take or are
currently undertaking. Components (such as KAoS Guards) that are interested in
checking policy impact on these actions construct RDF descriptions of action
instances. KAoS classifies these instances, relying on the inference capabilities of
Stanford University’s Java Theorem Prover (JTP, www.ksl.stanford.edu/software/
JTP). It then obtains a list of any policies whose action classes are relevant to the
current situation. In the next step, KAoS determines the relative precedence of the
obtained policies and sorts them accordingly in order to find the dominating
authorization policy. If the dominating authorization is positive, KAoS then collects,
in order of precedence, obligations from any triggered obligation policies. KAoS
returns the result to the interested parties—in most cases, these parties are the
enforcement mechanisms that are jointly responsible for blocking forbidden actions
and assuring the performance of obligations.

Representing policies in OWL facilitates reasoning about the controlled
environment, policy relations and disclosure, policy conflict detection, and
harmonization. It also facilitates reasoning about domain structure and concepts
exploiting the description logic subsumption and instance classification algorithms.
KAoS can identify and, if desired, harmonize conflicting policies through algorithms
that we have implemented in JTP.

3.2 Important KAoS Features

We highlight a few important features of KAoS below:
• Homogeneous policy representation. Because all aspects of KAoS policy

representation are encoded purely in OWL, any third-party tool or environment
supporting OWL can perform specialized analyses of the full knowledge base
completely independently of KAoS itself, thus easing integration with an
increasingly sophisticated range of new OWL tools and language
enhancements in the future.

• Maturity. Over the past few years, KAoS has been used in a wide range of
applications and operating environments.

• Comprehensiveness. Unlike many approaches that deal with only simple forms
of access control or authorization, KAoS supports both authorization and

430 A. Uszok et al.

obligation policies. In addition, a complete infrastructure for policy
management has been implemented including a full range of capabilities from
sophisticated user interfaces for policy specification and analysis to a generic
policy disclosure mechanism. Facilities for policy enforcement automation
(i.e., automatic generation of code for enforcers) are under further
development.

• Pluggability. Platform-specific and application-specific ontology is easily
loaded on top of the core concepts. Moreover, the policy enforcement elements
have been straightforwardly adapted to a wide range of computing
environments, both traditional distributed computing platforms (e.g., Web
Services, Grid Computing, CORBA) and various software and robotic agent
platforms (e.g., Nomads, Brahms, SFX, CoABS Grid, Cougaar).

• Scalability and performance. We optimized the policy disclosure methods such
that response to a query from an enforcer is provided on average in less than 1
ms. This performance is due in part to our reliance on efficient and logically
decideable description logic subsumption and classification methods.
Furthermore, queries can be executed concurrently by multiple enforcers,
letting KAoS export multiprocessor machines. In rigorous evaluations in the
DARPA UltraLog program, we’ve found that performance is acceptable even
in large societies of more than a thousand agents, running on a dozen or more
platforms, with hundreds of policies. Here, dynamic policy updates can be
committed, deconflicted, and distributed in a matter of a few seconds. Further
enhancements to underlying reasoners and advances in computer hardware will
continue to improve this performance.

3.3 Beyond Description Logic for Policy Representation

Until recently, KAoS used only OWL-DL (initially DAML) to describe policy-
governed entities and their actions. The semantic richness OWL enables in
comparison to traditional policy languages allowed us much greater expressivity in
specifying policies. However, we found ourselves limited in situations where we
needed to define policies where one element of an action’s context depended on the
value of another part of the context. A simple example is an action of loop
communication, where you must constrain the source and the destination of
communication so that they’re one and the same. A more complex example would be
when we want to constrain the action to return the results of a calculation to only the
parties that provided the data used to perform it (or to the specific entities the data’s
providers authorized). Such an action description might be needed to specify a policy
controlling the distribution of calculation results. All such action descriptions go
beyond what OWL-DL can express.

The required missing aspect of representational semantics has, however, been well
studied under the name of role-value maps [10]. These maps should express equality
or containment of values that has been reached through two chains of instance
properties. The emerging standard for OWL rules, the Semantic Web Rule Language
(SWRL, www.daml.org/2003/11/swrl), allows the use of role-value-map semantics.
However, the required syntax is complex, and we’ve begun to think that an OWL-

Applying KAoS Services to Ensure Policy Compliance 431

based representation expressing this same semantics might be valuable for a broad
range of uses. For instance, the OWL-S developers found the need to express similar
dataflow semantics and developed their own formulation (process:sameValues) that
allowed the representation of such chains, albeit with the limitation that they could
contain only single-chain elements [11].

We have equipped KAoS with mechanisms that will allow adding role-value-map
semantics to defined policy action using the KAoS Policy Administration Tool. For
the interim, we’re basing our syntax for this semantics on the current version of the
SWRL OWL ontology. However, the code that generates this syntax is encapsulated
in a specialized Java class allowing later modification if the SWRL ontology changes
or if an OWL-based syntax eventually emerges. Our classification algorithm can also
use this information to classify action instances. This algorithm verifies if an instance
satisfies the OWL-DL part of the action class and, if so, checks the appropriate role-
value-map constraints. For example, if KAoS needs to determine whether an
intercepted communication is a loop communication, it would determine whether the
current communication source is also one of the values of the property describing the
communication’s destination.

To perform more complex policy analyses relying on role-value-map semantics,
we’ve begun joint exploration with Stanford on extending JTP to allow subsumption
reasoning on role-value-map semantics.

4 Example Application Contexts

In the remainder of the paper, we will discuss how KAoS is being extended to address
two complementary requirements in a Semantic Web Services context:

• Verification for policy compliance for Semantic Web Services workflow
composition (section 5),

• Enforcement of policies during the workflow enactment (section 6).
In this section, we briefly introduce the application contexts that motivate these

investigations.

4.1 Coalition Search and Rescue Scenario

Within the CoSAR-TS1 (Coalition Search and Rescue Task Support) project we are
testing the integration of KAoS and AIAI’s I-X technology with Semantic Web
Services. Search and rescue operations, especially coalition based, by nature require
the kind of rapid dynamic composition of available policy-constrained heterogeneous
resources that make it a good use case to describe them using Semantic Web
technologies. Additionally, military operations usually are conducted according to the
well defined procedure, which however have to be concretized and grounded to the
given situation. This presents a good planning under policy imposed constrained.

1 http://www.aiai.ed.ac.uk/project/cosar-ts/

432 A. Uszok et al.

Other participants in this application include BBN Technologies, SPAWAR, AFRL,
and Carnegie Mellon University.

The fictitious scenario, which is an extension of the well-know collation agent
experiment CoAX2, begins with an event that reports a downed airman between the
coastlines of four fictional nations bordering the Red Sea: Agadez, Binni and Gao (to
the West), and Arabello (to the East). In this initial scenario it is assumed that
excellent location knowledge is available, and that there are no local threats to counter
or avoid in the rescue. The airman reports his own injuries via his suit sensors. Next is
an investigation of the facilities available to rescue the airman. There are different
possibilities: a US ship-borne helicopter; a Gaoan helicopter from a land base in
Binni; a patrol boat from off the Arabello coastline, etc. Finally, there is a process to
establish available medical facilities for the specialized injury reported using the
information provided about the countries in the region.

Selection of these resources is constrained by different policies originated from
different partners of the coalition. If for instance a hospital in Arabello is best placed
to provide the facilities, due to the fact that it has the necessary treatment facilities,
choices of rescues resources are then restricted. There is a coalition policy that no
Gaoan helicopters may be used by coalition members to transport injured airmen.

In addition to IHMC’s KAoS, the CoSAR-TS application relies on a variety of I-X
technologies from AIAI. I-X Process Panels (http://i-x.info; [13; 14]) provide task
support by reasoning about and exchanging with other agents and services any
combination of Issues, Activities, Constraints and Annotations (elements of the <I-N-
C-A> ontology). I-X can therefore provide collaborative task support and exchange of
structured messages related to plans, activity and the results of such activity. These
types of information can be exchanged with other tools via OWL, RDF or other
languages. The system includes a planner that can compose a suitable plan for the
given tasks when provided with a library of standard operating procedures or
processes, and knowledge of other agents or services that it may use.

Figure 2 shows an I-X Process Panel (I-P2) and associated I-X Tools. The I-Space
tool maintains agent relationships. The relationships can be obtained from agent
services such as KAoS. I-X Process Panels can also link to semantic web information
and web services, and can be integrated via “I-Q” adaptors [11] to appear in a natural
way during planning and in plan execution support.

I-X work has concentrated on dynamically determined workflows at execution
time, using knowledge of services, other agent availability, and so on. However, it
also offers a process editor for creating process models (I-DE) to populate the domain
model and an AI planner (I-Plan), which allows for hierarchical plan creation,
precondition achievement, consistent binding of multiple variables, temporal
constraint checking, and so forth.

4.2 Semantic Firewall

Another application area allowing us to validate our approach is the Semantic
Firewall (SFW) project, developed in collaboration with University of Southampton,

2 http://www.aiai.ed.ac.uk/project/coax/

Applying KAoS Services to Ensure Policy Compliance 433

Fig. 2. I-X Process Panel for a Coalition Search and Rescue Task

IT Innovation, and SRI International [1]1. In addition to performing standard policy
management functions, the system will take as an input a desired client workflow of
Grid Services invocations and verify whether the client is authorized to execute such a
workflow in the domain controlled by a given instance of the SFW environment.
Additionally the policy system may generate obligations in the form of grid service
invocations. These obligations have to be executed during the original workflow; for
instance in order to preserving provenance2 of the calculation results. In effect, the
initial workflow can be modified and amended with the policies. The resulting
policies embedded within the contract governing the transaction will be then enforced
by the system as the workflow is enacted.

5 Verification for Policy Compliance in Semantic Web Services
Workflow Composition

As a research topic, automatic composition of feasible workflows from a dynamic set
of available Semantic Web Services is drawing increasing attention [19]. We argue
for applying existing technology and mapping of already developed planners input
and output formats to the emerging Semantic Web Services Process Model standard
(www.daml.org/services/owl-s/1.0). To this end, we are extending our implementa-
tions of I-X and KAoS.

1 See http://ontology.ihmc.us/SemanticServices/S-F/Example/index.html for an example

scenario with policies encoded using the KAoS Policy syntax.
2 http://www.pasoa.org/index.html

Process Panel
Domain Editor

Messenger I-Space

Map Tool

434 A. Uszok et al.

5.1 I-K-C Tool

In the context of CoSAR-TS, we’ve integrated KAoS and I-X to let I-X obtain
information about the role relationships among human and software actors (peers,
subordinates, and superiors, for example) represented in domains and stored in KAoS
as ontological concepts. I-X can also use the KAoS policy disclosure interface to
learn about policy impact on its planned actions. This is the first step toward mutual
integration of the planning and policy verification components.

Fig. 3. Cooperation between I-X and KAoS in the process of semantic workflow composition

The new I-K-C tool goes beyond the initial integration of I-X and KAoS to enable
Semantic Web Services workflow composition consistent with policies that govern
composition and enactment (see Figure 3). This approach lets I-X import services
described in OWL-S into the planner, augmenting any predefined processes already in
the process library. KAoS verifies constructed partial plans for policy compliance. We
can export the final plan, represented in OWL-S ontology form, and use it in various
enactment systems or to guide the dynamic reactive execution of those plans in I-P2.

5.2 Mapping the OWL-S Representation of Process to the KAoS Concept of
Action

The OWL-S concept of Process maps semantically to the KAoS concept of Action1.
Unfortunately, OWL-S made a dramatic change in representing workflow processes
in the transitioning from the earlier ontology called DAML-S. In DAML-S, processes
were represented as classes whose instances were process executions and whose input
and output parameters were defined as properties of those classes. Parameter
restrictions were represented as range constraints on those parameter properties. In

1 http://ontology.ihmc.us/Action.owl

Applying KAoS Services to Ensure Policy Compliance 435

contrast, OWL-S represents processes as instances, and parameters are defined as
instances of the class Parameter or its subclasses Input and Output, with their
corresponding parameter restrictions defined by the value of the
process:parameterType property for each parameter. This significant change does not
allow for a straightforward mapping between OWL-S and KAoS concepts using
owl:equivalentClass and owl:equivalentProperty as it had been previously possible in
the case of DAML-S. OWL-S will define process executions as instances of a
ProcessInstance class that refers to its process type. This approach is similar to that
taken in the Process Specification Language (PSL) [20].

In order to use KAoS reasoning capabilities it is now necessary to create an OWL
class based on the OWL-S process definition instance. This is done by changing the
process:parameterType mentioned above to represent the appropriate restrictions. We
are using OWL-S API2 to load OWL-S process workflows, to find all processes
within a workflow, and then to get detailed definitions in order to build, using Jena1,
the corresponding OWL class which is a subclass of the KAoS Action class.

The change in the representation of the process from DAML-S to OWL-S has other
consequences:

• You can’t build process hierarchies at different abstraction levels using
rdfs:subClassOf, while you can in the KAoS ontology of actions.

• You can’t represent an actual instance of a process—a very concrete
realization of the process. Again, in KAoS we use the instance of an action to
describe the currently enacted event and then to find whether policies exist that
apply to this situation. The envisioned process control ontology, announced as
part of OWL-S’s future release, will clearly need methods to represent actual
events and their relation to processes.

• The process instance doesn’t represent the actual event anymore, so the fact
that the process in OWL-S is a subclass of time-entry:IntervalEvent carried
over from DAML-S is a self-contradiction. (OWL-S’s developers have
promised to resolve this issue in the near future.)

In short, the change of representation of processes between DAML-S and OWL-S
was motivated by difficulties related to usage of classes of processes in collections
and other issues. However, addressing this problem has created the challenges in the
representation of policies in KAoS mentioned above. We hope that the promised
improvements in future versions of OWL-S will help to address these issues.

5.3 KAoS Capabilities for Analyzing Action Classes

After KAoS extracts a particular action from the workflow and converts it to a
corresponding action class, we examine the action to determine its compliance with
the relevant policies in force. The process of workflow policy compliance checking
differs from that of checking authorization and obligations of an action instance in
policy enforcement that we described earlier. In workflow policy compliance
checking, we’re not dealing with an action instance but an action class. So, we must

2 http://www.mindswap.org/2004/owl-s/api/
1 http://jena.sourceforge.net/

436 A. Uszok et al.

use subsumption reasoning instead of classification reasoning - KAoS must find
relations between the current action class and action classes associated with policies.
Fortunately, we use this kind of reasoning to perform policy analyses such as policy
deconfliction.8 These analyses also involve discovering relations (subsumption or
disjointness, for example) between action classes associated with policies.

Such analyses will often lead to deterministic conclusions - for example, that a
given process will be authorized or forbidden or that it will definitely generate an
obligation. Results will always be deterministic if the given action class representing
the investigated process is a subclass of either a single policy action class or a union
of some policy action classes, respectively representing either authorization or
obligation policies.

Sometimes, however, the analyses can be nondeterministic—that is, we might be
able to conclude only that a given process instance could possibly be authorized or
that it might generate obligations. This kind of result will occur if the given action
class, representing the process in question, is neither fully subsumed nor fully disjoint,
with a single policy action class or their unions respectively representing either
authorization or obligation policies. In this case, KAoS can build a representation of
the action class (either the class that corresponds to the portion of the action class in
the authorization request or the one that generates a given obligation) by computing
the difference between the current action class and the relevant policy action class.
The algorithm is identical to the one we have previously described [3] for policy
harmonization. However, we’re still working out how to generically translate that new
class to an OWL-S process instance representation.

We’ve developed a first cut of additional KAoS ontology components, enabling
workflow annotation with the results of the policy analyses we described. The
appropriate markup was added to the original OWL-S workflow using the OWL-S
API and sent back from KAoS to the I-X planner.

5.4 Example: Planning Rescue Operation Under Coalition Policy Constraints

The CoSAR-TS scenario described in section 4 is being used to test the capabilities
just described. Each time a new search and rescue situation is undertaken; the SAR
coordinator gathers available information about the accident and constructs an
appropriate goal for the planner. The goal could, for instance, contain information
about the kind of injuries sustained and the approximate location of the victim. The
planner begins with the selection of an initial plan template that is best for the given
situation. It then builds OWL-S profiles for each of the necessary services and queries
the Coalition Matchmaker to learn about OWL-S descriptions of registered search and
rescue resources. This results in the first approximation of the plan expressed as the
OWL-S Process Model. For instance, if the downed pilot has serious burn injuries, the
planner will ask the Matchmaker about which services are offered by the burn injuries
treatment unit in each medical care center. Subsequently it will ask for available
rescue resources, which can pick-up pilot from the sea and deliver it to the chosen
hospital (i.e., Arabello). The best result is selected and the OWL-S Process Model is
submitted for verification. During workflow analysis, KAoS determines that there is
an obligation policy requiring notification of the coalition commander when the

Applying KAoS Services to Ensure Policy Compliance 437

downed pilot is successfully recovered. The appropriate process invoking the
Notification Service available in the environment as the Web service is inserted into
the model and returned to the planner.

6 Enforcement of Policies During Workflow Enactment

Not every aspect of policy compliance can be checked at planning time. Moreover,
sometimes the possibility of buggy or malicious code requires runtime checking of
compliance. Thus we have designed KAoS so that the policy service can
independently enforce policies during workflow execution. The policies governing
both authorization and obligation of clients and servers are stored in KAoS and
checked by authorized parties. Whereas other approaches to securing Semantic Web
Services are limited to either marking service advertisement with requirements for
authentication and communication and enforcing compliance with these requirements
[5] or by attaching conditions to inputs, outputs and effects of services, KAoS can
automatically enforce any sort of policy through integration of Semantic Web
Services with KAoS enforcers. These enforcers intercept requests to a service and
consult KAoS about relevant authorizations and obligatiosn. KAoS is able to reason
about the entire action performed by the services, not just about security credentials
attached to the request. Additionally, KAoS is used to generate obligations created
during use of the services, not just up front during initial service invocation.

6.1 Matchmaker Policy Enforcement – CoSAR-TS Scenario

While annotation of the Semantic Matchmaker service profiles allows registered
service providers to describe required security profiles [5], it does not allow owners of
infrastructure resources (e.g., computers, networks), client organizations (coalition
organizations, national interest groups), or individuals to specify or enforce policy
from their unique perspectives. For example, the policy that coalition members cannot
use Gaoan transports is not something that can always be anticipated and specified
within the Matchmaker service profile. Neither would Matchmaker service profile
annotations be an adequate implementation for a US policy obligating encryption,
prioritizing the allocation of network bandwidth, or requiring the logging of certain
sorts of messages.

Moreover, the semantics of these policies cannot currently be expressed in terms of
the current OWL-S specification of conditional constraints. Even if they were
expressible, organizations and individuals may prefer to keep policy stores, reasoners,
and enforcement capabilities within their private enclaves. This may be motivated by
both the desire to maintain secure control over sensitive components as well as to
keep other coalition members from becoming aware of private policies. For example,
coalition members may not want Gao to be aware that the offer of their helicopters to
rescue the downed airman will be automatically filtered out by policy.

438 A. Uszok et al.

6.2 Generic Semantic Web Service Enforcer

We have defined enforcers that intercept SOAP messages from the Matchmaker and
filter results consistent with coalition policies. In our CoSAR-TS demonstration, these
policies prevent the use of Gaoan resources.

Our implementation of a SOAP-enabled enforcer is capable of understanding
arbitrary Semantic Web Service invocations so it can apply appropriate authorization
policies to them. Additionally, it is equipped with a mechanism to perform obligation
policies, which will be in the form of other Web Service invocations. For instance, an
obligation policy may require the recording of certain kinds of service transactions
through a logging service.

7 Conclusions

KAoS provides necessary capabilities to verify and enforce user-defined policy in the
automatic process of planning and executing workflows of semantically described
processes in the area of processes building such workflows. Future work will
investigate how to take a context surrounding the process (i.e., processes and control
constructs) in a given workflow into account.
Currently, KAoS is able to analyze OWL-S encoded workflows, however it can be
extended to understand other form of descriptions (e.g., WSMO (Web Service
Modeling Ontology)1) that share similar concepts of basic process and workflow
composition abstractions.

Acknowledgements. This material is based on research sponsored by the Defense
Advanced Research Projects Agency (DARPA) CoABS, DAML, and Ultra*Log
programs the US Air Force Research Laboratory under agreement numbers F30602-
00-2-0577 and F30602-03-2-0014, by NASA IS and X-Enterprise grants, by ONR,
and the Army Research Labs. The U.S. Government, IHMC, and the University of
Edinburgh are authorized to reproduce and distribute reprints and on-line copies for
their purposes notwithstanding any copyright annotation hereon. Thanks to the other
members of the KAoS project team: Maggie Breedy, Larry Bunch, Matthew Johnson,
Hyuckchul Jung, Shri Kulkarni, James Lott, William Taysom, and Gianluca Tonti.
We are also grateful for the contributions of Mark Burstein, Pat Hayes, Luc Moreau,
Grit Denker, Darren Marvin, Mike Surridge, Ron Ashri, Terry Payne, Katia Sycara,
Massimo Paolucci, Naveen Srinivasan, Niranjan Suri, Paul Feltovich, Richard Fikes,
Jessica Jenkins, Bill Millar, Deborah McGuinness, Rich Feiertag, Timothy Redmond,
Rebecca Montanari, Sue Rho, Ken Ford, Mark Greaves, Jack Hansen, James Allen,
Lars Olson, and Robert Hoffman.

1 http://www.wsmo.org/

Applying KAoS Services to Ensure Policy Compliance 439

References

[1] Ashri, R., Payne, T. R., & Surridge, M. (2004). Towards a Semantic Web Security
Infrastructure. AAAI Spring Symposium on Semantic Web Services. Stanford University,

[2] Bradshaw, J. M., Beautement, M. Breedy, L. Bunch, S. Drakunov, P. Feltovich, P., Raj,
A., Johnson, M., Kulkarni, S., Suri, N. & A. Uszok (2004). Making agents acceptable to
people. In N. Zhong & J. Liu (Ed.), Intelligent Technologies for Information Analysis:
Advances in Agents, Data Mining, and Statistical Learning. (pp. 361-400). Berlin:
Springer Verlag.

[3] Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti,
A., Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott,
J., Sierhuis, M., & Van Hoof, R. (2003). Representation and reasoning for DAML-based
policy and domain services in KAoS and Nomads. Proceedings of the Autonomous
Agents and Multi-Agent Systems Conference (AAMAS 2003). Melbourne, Australia, New
York, NY: ACM Press,

[4] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2000). Ponder: A Language for
Specifying Security and Management Policies for Distributed Systems, Version 2.3.
Imperial College of Science, Technology and Medicine, Department of Computing, 20
October 2000.

[5] Denker, G., Kagal, L., Finin, T., Paolucci, M., & Sycara, K. (2003). Security for DAML
Web Services: Annotation and Matchmaking. In D. Fensel, K. Sycara, & J. Mylopoulos
(Ed.), The Semantic Web—ISWC 2003. Proceedings of the Second International
Semantic Web Conference, Sanibel Island, Florida, USA, October 2003, LNCS 2870.
(pp. 335-350). Berlin: Springer.

[6] Feltovich, P., Bradshaw, J. M., Jeffers, R., Suri, N., & Uszok, A. (2004). Social order and
adaptability in animal and human cultures as an analogue for agent communities: Toward
a policy-based approach. In Engineering Societies in the Agents World IV. (pp. 21-48).
Berlin, Germany: Springer-Verlag.

[7] Fensel, D., Hendler, J., Lieberman, H., & Wahlster, W. (Ed.). (2003). Spinning the
Semantic Web. Cambridge, MA: The MIT Press.

[8] Kagal, L., Finin, T., & Joshi, A. (2003). A policy-based approach to security for the
Semantic Web. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The Semantic Web—
ISWC 2003. Proceedings of the Second International Semantic Web Conference, Sanibel
Island, Florida, USA, October 2003, LNCS 2870. (pp. 402-418).: Springer.

[9] Li, N., Grosof, B. N., & Feigenbaum, J. (2003). Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information Systems
Security (TISSEC), 1-42.

[10] McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic Web Services. IEEE Intelligent
Systems, 46-53.

[11] Potter, S., Tate, A., & Dalton, J. (2003). I-X Task support on the Semantic Web. Poster
and Demonstration Proceedings for the Second International Semantic Web Conference
(ISWC 2003). Sanibel Island, FL,

[12] Seamons, K. E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., & Yu,
L. (2002). Requirements for policy languages for trust negotiation. Proceedings of the
Third International Workshop on Policies for Distributed Systems and Networks
(POLICY 2002). Monterey, CA,

[13] Tate, A. (2003). Coalition task support using I-X and <I-N-C-A>. In Proceedings of the
Third International Central and Eastern European Conference on Multi-Agent Systems
(CEEMAS 2003), 16-18 June, Prague, Czech Republic, LNAI 2691. (pp. 7-16). Berlin:
Springer.

440 A. Uszok et al.

[14] Tate, A., Dalton, J., Siebra, C., Aitken, S., Bradshaw, J.M. and Uszok, A. (2004)
Intelligent Agents for Coalition Search and Rescue Task Support, AAAI-2004 Intelligent
Systems Demonstrator, in Proceedings of the Nineteenth National Conference of the
American Association of Artificial Intelligence, (AAAI-2004), San Jose, California,
USA, July 2004.,

[15] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., & Uszok, A. (2003).
Semantic Web languages for policy representation and reasoning: A comparison of
KAoS, Rei, and Ponder. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The Semantic
Web—ISWC 2003. Proceedings of the Second International Semantic Web Conference,
Sanibel Island, USA, 2003, LNCS 2870. (pp. 419-437). Berlin: Springer.

[16] Uszok, A., Bradshaw, J. M., Hayes, P., Jeffers, R., Johnson, M., Kulkarni, S., Breedy, M.
R., Lott, J., & Bunch, L. (2003). DAML reality check: A case study of KAoS domain and
policy services. Submitted to the International Semantic Web Conference (ISWC 03).
Sanibel Island, Florida,

[17] Uszok, A., Bradshaw, J. M., Jeffers, R., Suri, N., Hayes, P., Breedy, M. R., Bunch, L.,
Johnson, M., Kulkarni, S., & Lott, J. (2003). KAoS policy and domain services: Toward
a description-logic approach to policy representation, deconfliction, and enforcement.
Proceedings of Policy 2003. Como, Italy,

[18] Wright, S., Chadha, R., & Lapiotis, G. (2002). Special Issue on Policy-Based
Networking. IEEE Network, 16(2), 8-56.

[19] Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D. (2003). Automating DAML-S Web
Services composition using SHOP2. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The
Semantic Web—ISWC 2003. Proceedings of the Second International Semantic Web
Conference, Sanibel Island, Florida, USA, October 2003, LNCS 2870. (pp. 195-210).
Berlin: Springer.

[20] Schlenoff, C., Gruninger M., Tissot, F., Valois, J., Lubell, J., Lee, J. (2000). The Process
Specification Language (PSL): Overview and Version 1.0 Specification," NISTIR 6459,
National Institute of Standards and Technology, Gaithersburg, MD.

Knowledge-Intensive Induction of Terminologies
from Metadata

Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and
Giovanni Semeraro

Dipartimento di Informatica, Università degli Studi di Bari
Via Orabona 4, 70125 Bari, Italy

{esposito,fanizzi,iannone,palmisano,semeraro}@di.uniba.it

Abstract. We focus on the induction and revision of terminologies from
metadata. Following a Machine Learning approach, this setting can be
cast as a search problem to be solved employing operators that tra-
verse the search space expressed in a structural representation, aiming
at correct concept definitions. The progressive refinement of such defini-
tions in a terminology is driven by the available extensional knowledge
(metadata). A knowledge-intensive inductive approach to this task is
presented, that can deal with on the expressive Semantic Web repre-
sentations based on Description Logics, which are endowed with well-
founded reasoning capabilities. The core inferential mechanism, based
on multilevel counterfactuals, can be used for either inducing new con-
cept descriptions or refining existing (incorrect) ones. The soundness of
the approach and its applicability are also proved and discussed1.

1 Introduction

The Semantic Web (SW) relies on ontological knowledge in order to gain a se-
mantic interoperability for organizing and processing resources on the ground
of their meaning. Though SW actors adopt ontologies as a formal tool for se-
mantic convergence, these are the outcome of a complex engineering process of
acquisition and harmonization that is still limitedly machine-aided. Automated
reasoning is typically exploited to assist knowledge engineers in the detection
of failures in the ontologies. However, harder problems involving (non standard)
inferences, such as the induction or revision of defective semantic knowledge is
typically delegated to knowledge engineers. The actors ought to be able not only
to detect inconsistent sections in the knowledge bases shared with their peers,
but also to adopt proper counter-measures to revise them accordingly and main-
tain a sound source of semantic information. A particular aspect of this kind of
1 This research was partially funded by the European Commission under the IST In-

tegrated Project VIKEF - Virtual Information and Knowledge Environment Frame-
work (Contract no. 507173 - more information at http://www.vikef.net) and by
National Ministry of Instruction University and Research Project COFIN 2003 “Tec-
niche di intelligenza artificiale per il reperimento di informazione di qualita’ sul Web”.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 441–455, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

442 F. Esposito et al.

problems is investigated. A domain ontology, supposed to be described by an
ontology data model, proves itself incorrect (incomplete or inconsistent) with
respect to processed assertional knowledge (metadata). Such a flawed informa-
tion undermines the very foundations of semantic interoperability. Ideally, the
required knowledge revision should be operated in a (semi)automatic fashion
at a machine level so that the knowledge engineer’s duties reduce to the mere
checking of the outcomes. The induction and revision of structural knowledge is
not new issue for Machine Learning, though it has been investigated for poorly
expressive languages. Description Logics (henceforth DLs) and derived markup
languages are a sort of de facto standard for representing ontologies owing to
their well-founded semantics and available reasoning services [1]. DLs represent
a peculiar fragment of First Order Logic that is comparable to graph representa-
tions. The induction of such a structural knowledge is known as a hard task [2].
Recently, in Logic Programming contexts, attempts have been made to extend
relational learning techniques toward more expressive languages such as prenex
conjunctive normal forms [3] or hybrid representations [4,5]. In order to cope
with the complexity issues, former methods use heuristic search and generally
implement bottom-up algorithms, such as the least common subsumer (lcs) [6].
Yet this induces overly specific concept definitions, which may have poor predic-
tive capabilities (the phenomenon of overfitting). Moreover, for many DLs, it is
well known that lcs’s do not yield a compact representation of the generalizations
[7]. Hence, other works propose heuristic generalizations [8].

Further approaches have shown that also a top-down search of concept def-
initions is feasible [9], yet the proposed methods are less operational. They can
be considered as a theoretical study of the search space properties since the ex-
ploitation of the assertions in the refinement process is neglected, in favor of a
generate and test strategy that can turn out to be in practice very inefficient.

A more knowledge-intensive refinement method is needed for concept defini-
tions. Besides, when new assertions become available and turn out to be incon-
sistent w.r.t. the previously defined ontology, it is computationally expensive to
re-build the the concept definitions accordingly. Thus the revision process should
be possibly performed incrementally on the ground of the metadata.

In our investigation the learning problem is cast as a search problem in the
space determined by an expressive DL representation. Imposing an order over
the space of concept descriptions, we give the definition of theoretical operators
that can traverse the space seeking a solution to the problem. Intending to give
operational instruments for inference and refinement of conceptual descriptions,
we introduce an algorithm based on multilevel counterfactuals [10] for operating
with anALC [11] representation (yet extensions to other DLs should be possible).

The method is based on mutually recursive cycles of specialization and gen-
eralization with respect to the (newly) available assertions (examples) regarding
the concepts to be revised. The intuition is that specialization can be obtained
by learning exceptions, while generalizations stand as exceptions to exceptions,
and so on. We show how this method can be adapted to the DLs representation,

Knowledge-Intensive Induction of Terminologies from Metadata 443

Table 1. The constructors for ALC descriptions and their interpretation.

Name Syntax Semantics
top concept � ΔI

bottom concept ⊥ ∅
concept negation ¬C ΔI \ CI

concept conjunction C1 � C2 CI
1 ∩ CI

2

concept disjunction C1 � C2 CI
1 ∪ CI

2

existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}

converging to correct concept definitions (with respect to the intended model of
the knowledge).

The paper is organized as follows. After the next preliminary section intro-
ducing the representation, in Sect. 3 the search space and its properties are
presented. The method for learning and refining DL concept definitions is illus-
trated in Sect. 4, where its applicability is also briefly analyzed. Finally, possible
extensions of the method are discussed in Sect. 5.

2 Syntax and Semantics

Most of the SW languages (RDF Schema, DAML+OIL, OWL) have their the-
oretical foundations in Description Logics. These formalisms are fragments of
First Order Logic with different degrees of expressive powers. They rely on well-
founded descriptive style semantics and offer efficient reasoning services (de-
ductive inferences) such as subsumption, consistency and instance check. It is
straightforward that the efficiency of reasoning is strongly dependent on the lan-
guage expressiveness [1]. In this section we recall syntax and semantics for the
reference representation ALC [11] adopted in the paper, although the method
is also extensible to other DLs. Moreover, examples are shown where the DL
constructs are mapped onto the descriptions in SW languages.

In a DL language, primitive concepts NC = {C, D, . . .} are interpreted as
subsets of a certain domain of objects (resources) and primitive roles NR =
{R, S, . . .} are interpreted as binary relations on such a domain (properties).
More complex concept descriptions are built using atomic concepts and primitive
roles by means of the constructors in Table 1. Their meaning is defined by an
interpretation I = (ΔI , ·I), where ΔI is the domain of the interpretation and
the functor ·I stands for the interpretation function, mapping the intension of
concepts and roles to their extension.

A knowledge base K = 〈T ,A〉 contains two components: a T-box T and
an A-box A. T is a set of concept definitions C ≡ D, meaning CI = DI ,
where C is the concept name and D is a description given in terms of the
language constructors. A contains extensional assertions on concepts and roles,
e.g. C(a) and R(a, b), meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI .

444 F. Esposito et al.

The semantic notion of subsumption between concepts (or roles) can be given in
terms of the interpretations:

Definition 2.1 (subsumption). Given two concept descriptions C and D in
T , C subsumes D, denoted by C D, iff for every interpretation I of T it holds
that CI ⊇ DI . Hence, C ≡ D amounts to C D and D C.

Example 2.1. An instance of concept definition in the proposed language is:
Father ≡ Human �Male � ∃hasChild.Human
which translates the sentence: ”a father is a male human that has some humans
as his children”. A-box assertions look like:
Father(Tom),Father(Bill), hasChild.Human(Bill, Joe) and so on.
Now, if we define two new concepts:
FatherWithoutSons ≡ Human �Male � ∃hasChild.Human � ∀hasChild.(¬Male)
Parent ≡ Human � (Male � Female) � ∃hasChild.Human
then it is easy to see that Father FatherWithoutSons and Parent Father,
yet Father � Parent and FatherWithoutSons � Father
The corresponding OWL/XML representation can be found in Figure 1.

Many semantically equivalent (yet syntactically different) descriptions can be
given for the same concept. However they can be reduced to a canonical form by
means of rewriting rules that preserve their equivalence, e.g. ∀R.C1 � ∀R.C2 ≡
∀R.(C1 � C2) (see [1] for normalization and simplification issues). Preliminar-
ily, some notation is needed to name the different parts of an ALC description:
prim(C) is the set of all the concepts at the top-level conjunction of C; if there
exists a universal restriction ∀R.C ′ on the top-level of C then valR(C) = C ′ oth-
erwise valR(C) = # (a single one because of the equivalence mentioned above).
Finally, exR(C) is the set of the concept descriptions C ′ appearing in existential
restrictions ∃R.C ′ at the top-level conjunction of C.

Definition 2.2 (normal form). A concept description D is in ALC normal
form iff D ≡ ⊥ or D ≡ # or if D = D1 � · · · �Dn with

where, for all i = 1, . . . , n, Di �≡ ⊥ and, for any R, every sub-description in
exR(Di) and valR(Di) is in normal form.

This form will be employed for defining an ordering over the concept descriptions
and the refinement operators.

3 Induction as Search

The problem of induction in its simplest form can be now formally defined as a
supervised learning task:

Knowledge-Intensive Induction of Terminologies from Metadata 445

<!ENTITY ns1 "http://www.myontos/Friend#">
<rdf:RDF ... >
<owl:Class rdf:about="&ns1;FatherWithoutSons">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty><rdf:Property rdf:about="&ns1;hasChild"/>
</owl:onProperty>
<owl:minCardinality>1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf><owl:Class rdf:about="&ns1;Male"/>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty><rdf:Property rdf:about="&ns1;hasFemaleChild"/>
</owl:onProperty>
<owl:maxCardinality>0</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="&ns1;Female">
<rdfs:subClassOf><owl:Class rdf:about="&ns1;Human"/>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:about="&ns1;MaleOrFemale">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="&ns1;Male"/>
<owl:Class rdf:about="&ns1;Female"/>

</owl:unionOf>
</owl:Class>
<owl:Class rdf:about="&ns1;Parent">
<rdfs:subClassOf rdf:resource="&ns1;Human"/>
<rdfs:subClassOf rdf:resource="&ns1;MaleOrFemale"/>

</owl:Class>
<owl:Class rdf:about="&ns1;Male">
<rdfs:subClassOf rdf:resource="&ns1;Human"/>

</owl:Class>
<rdf:Property rdf:about="&ns1;hasFemaleChild">
<rdfs:range rdf:resource="&ns1;Female"/>
<rdfs:subPropertyOf rdf:resource="&ns1;hasChild"/>

</rdf:Property>
</rdf:RDF>

Fig. 1. OWL/XML representation of Example 2.1

Definition 3.1 (learning problem). In a search space (S,$)
Given a knowledge base K = 〈T ,A〉 and a set of positive and negative asser-
tions AC = A+

C ∪ A
−
C regarding the membership (or non-membership) of some

446 F. Esposito et al.

individuals to a concept C such that: T �|= A ∪AC

Find a new T-box T ′ = (T \ {C ≡ D}) ∪ {C ≡ D′} such that: T ′ |= A ∪AC

Thus, if a concept C is not defined in the terminology T we have a case of an
induction problem requiring to find definitions C ≡ D entailing the (new) asser-
tions in AC . Conversely, when an existing definition in T proves to be incorrect
i.e. it is uncapable of entailing the positive assertions in AC (incomplete defini-
tion) or it entails negative ones (inconsistent definition), this yields a refinement
problem where a new correct definition C ≡ D′ is to be found on the ground of
the previous one and the new examples.

The induction of the definitions can be modeled as a search in the space of
candidate definitions. First, the search space of concept descriptions must be
taken into account for the target language. This space is defined once a quasi-
ordering on the descriptions is adopted (i.e. subsumption); then, definitions of
refinement operators should be given for deciding the traversal of the search
space. The (algebraic) properties of the search space obviously depend on the
ordering imposed over its components (concept descriptions). This notion, in
turn, induces a generalization model (a quasi-ordering) that gives a criterion for
traversing the space of solutions by means of suitable operators.

In order to traverse the search space seeking for correct concept definitions
solving the learning problem, we will employ the notion of particular operators:

Definition 3.2 (refinement operators). In a quasi-ordered space (S,$), a
downward (respectively upward) refinement operator ρ (resp. δ) is a mapping
from S to 2S , such that D′ ∈ ρ(D) implies D $ D′ (resp. D′ ∈ δ(D) implies
D′ $ D). D′ is called a specialization (resp. generalization) of D

Here the order should be based on the subsumption relationship. It is now possi-
ble to specify refinement operators for the reference search space. Preliminarily,
the definition of a difference operator is needed for both conjunctive and dis-
junctive descriptions. In the former case, C = C1 � · · · �Cn, the difference is the
generalized conjunct resulting from removing one conjunct: C − Ci = �k �=i Ck.
In the latter case, D = D1 � · · · �Dm, the difference is the specialized disjunct
D − Dj =

⊔
k �=j Dk. Taking into account the ALC normal form, each level of

a concept description interleaves disjunctive or conjunctive descriptions. Thus,
the operators should accommodate either case.

Definition 3.3 (downward operator). In the search space (ALC,), the
downward refinement operator ρ� for disjunctive concept descriptions (in ALC
normal form) D = D1 � · · · �Dn is defined as follows:

– D′ ∈ ρ�(D) if D′ = D −Di for some 1 ≤ i ≤ n
– D′ ∈ ρ�(D) if D′ = (D −Di) �D′

i for some D′
i ∈ ρ�(Di), 1 ≤ i ≤ n

where the downward refinement operator ρ�, given a conjunctive concept de-
scription C = C1 � · · · � Cm, is defined as follows:

– C ′ ∈ ρ�(C) if C ′ = C � Cj+1 for some Cj+1 � C

Knowledge-Intensive Induction of Terminologies from Metadata 447

– C ′ ∈ ρ�(C) if C ′ = (C − Cj) � C ′
j for some 1 ≤ j ≤ m, where:

• C ′
j = ∃R.D′

j, Cj = ∃R.Dj and D′
j ∈ ρ�(Dj) or

• C ′
j = ∀R.D′

j, Cj = ∀R.Dj and D′
j ∈ ρ�(Dj)

It is straightforward to define the dual upward operator that seeks for more
general hypotheses by dropping disjuncts or refining them.

Definition 3.4 (upward operator). In the search space (ALC,), the up-
ward refinement operator δ� for disjunctive concept descriptions (in ALC nor-
mal form) D = D1 � · · · �Dn is defined as follows:

– D′ ∈ δ�(D) if D′ = D �Dn+1 for some Dn+1 such that Dn+1 �� D
– D′ ∈ δ�(D) if D′ = (D −Di) �D′

i for some D′
i ∈ δ�(Di), 1 ≤ i ≤ n

where the upward refinement operator δ�, given a conjunctive concept descrip-
tion C = C1 � · · · � Cm, is defined:

– C ′ ∈ δ�(C) if C ′ = C − Cj for some 1 ≤ j ≤ m
– C ′ ∈ δ�(C) if C ′ = (C − Cj) � C ′

j for some 1 ≤ j ≤ m, where:
• C ′

j = ∃R.D′
j, Cj = ∃R.Dj and D′

j ∈ δ�(Dj) or
• C ′

j = ∀R.D′
j, Cj = ∀R.Dj and D′

j ∈ δ�(Dj)

Several properties of the refinement operators may be investigated such as
completeness, ideality, minimality and non-redundancy [9]. Although theoretical
results for these operators have been found (i.e. non ideality, completeness, local
finiteness), these issues are beyond the intended scope of this paper. Defining
both upward and downward operators allows for the specification of an inductive
algorithm for T-box refinement that exploits the information provided by the
examples and that is presented in the following section.

4 Induction of Concept Descriptions Based on Assertions

The main idea is to combine theoretic refinement operators with heuristics in
order to converge toward a solution of the learning problem. The efficiency of
this method derives from biasing inductive search with information coming from
assertions. These, indeed, can indicate the search directions in order to avoid
mere generate and test refinements and converge more rapidly to the solution.
The methodology for the induction and refinement of T-boxes proposed in this
work is based on the notion of counterfactuals built on the ground of residual
learning problems [10]. We discuss its correctness, applicability and some issues
related to its complexity.

4.1 The Method

It is assumed that the learning process can start exclusively from the examples
and counterexamples in the A-box of the concept for which a new definition is
required. This classification is assumed to be given by a trainer (the knowledge

448 F. Esposito et al.

engineer). However, the methodology would apply also for a similar yet different
setting where the starting hypothesis for the target concept is already available
in a given T-box, which may have turned out to be incorrect (overly general) for
entailing some (new) assertions that have been classified as being negative for
the target concept.

Each assertion is not processed as such: it is supposed that a representative at
the concept language level (single representation trick) is preliminarily derived in
the form of most specific concept (msc). The msc required by the algorithm is a
maximally specific DL concept description that entails the given assertion. Since,
in some DL it does not exist, we consider their approximations up to a certain
depth [12]. Hence, in the algorithm the positive and negative examples will be
very specific conjunctive descriptions obtained by means of the realization [13] of
the assertions concerning the target concept. For many DLs the msc cannot be
easily computed or simply it is not unique. For our purposes it suffices to have
good (upper) approximations. The algorithm relies on two interleaving routines
(see Figure 2) performing, respectively, generalization and specialization, that
call each other for converging at a correct concept definition.

The generalization algorithm is a greedy covering one: it tries to explain
the positive examples by constructing a disjunctive definition. At each outer
iteration, a very specialized definition (the msc of an example) is selected as a
starting seed for a new partial generalization; then, iteratively, the hypothesis is
generalized by means of the upward operator δ (with a heuristic that privileges
the refinements that cover the most of the positives) until all positive concept
representatives are covered or some negative representatives are explained. In
such a case, the current concept definition ParGen has to be specialized by
some counterfactuals. The co-routine, which receives the covered examples as
its input, finds a sub-description K that is capable of ruling out the negative
examples previously covered. In the routine for building counterfactuals, given
a previously computed hypothesis ParGen, which is supposed to be complete
(covering the positive assertions) yet inconsistent with respect to some negative
assertions, the aim is finding those counterfactuals to be conjuncted to the ini-
tial hypothesis for restoring a correct definition, that can rule out the negative
instances. The algorithm is based on the construction of residual learning prob-
lems based on the sub-descriptions that caused the subsumption of the negative
examples, represented by their msc’s. In this case, for each model a residual
is derived by considering that part of the incorrect definition ParGen that did
not play a role in the subsumption. The residual will be successively employed
as a positive instance of that part of description that should be ruled out of
the definition (through negation). Analogously the msc’s derived from positive
assertions will play the opposite role of negative instances for the residual learn-
ing problem under construction. Finally, this problem is solved by calling the
co-routine which generalizes these example descriptions and then conjoining its
negation of the returned result.

Knowledge-Intensive Induction of Terminologies from Metadata 449

generalization(Positives, Negatives, Generalization)
input Positives, Negatives: positive and negative instances at concept level;
output Generalization: generalized concept definition
begin
ResPositives ← Positives
Generalization ← ⊥
while ResPositives �= ∅ do

ParGen ← select seed(ResPositives)
CoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
CoveredNeg ← {Neg ∈ Negatives | ParGen � Neg}
while CoveredPos �= ResPositives and CoveredNeg = ∅ do

ParGen ← select(δ(ParGen),ResPositives)
CoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
CoveredNeg ← {Neg ∈ Negatives | ParGen � Neg}

if CoveredNeg �= ∅ then
K ← counterfactuals(ParGen,CoveredPos,CoveredNeg)
ParGen ← ParGen � ¬K

Generalization ← Generalization � ParGen
ResPositives ← ResPositives \ CoveredPos

return Generalization
end

counterfactuals(ParGen,CoveredPos,CoveredNeg, K)
input ParGen: inconsistent concept definition

CoveredPos, CoveredNeg : covered positive and negative descriptions
output K: counterfactual
begin
NewPositives ← ∅
NewNegatives ← ∅
for each Ni ∈ CoveredNeg do

NewPi ← residual(Ni,ParGen)
NewPositives ← NewPositives ∪ {NewPi}

for each Pj ∈ CoveredPos do
NewNj ← residual(Pj ,ParGen)
NewNegatives ← NewNegatives ∪ {NewNj}

K ← generalization(NewPositives,NewNegatives)
return K
end

Fig. 2. The co-routines used in the method.

Example 4.1. Suppose to have the RDF metadata fragment as in Figure 3, the
resulting A-box2 is:
A = {IP (j),¬IP (f),¬IP (m),¬IP (h), R(j), F (j, j1), I(j1), F (j, j2), I(j2),

R(f), R(m), F (m, m1), I(m1), F (m, m2), F (h, h1), F (h, h2), I(h2)}
2 where R stands for rich, I stands for influential and F stands for the hasFriend

relationship (an example taken from [9]).

450 F. Esposito et al.

The msc’s of the examples in the A-Box are the following3:
msc(j)R � ∃F.I � ∀F.I mmsc(f) = R
msc(m) = R � ∃F.I mmsc(h) = ∃F.I � ∀F.I

The algorithm is presented with the incorrect definition G1 = # for the target
concept IP . This definition turns out to cover the example description msc(j)
and all the counterexample descriptions. Thus the routine counterfactuals is in
charge for building a residual learning problem by computing the new examples.

Then, Neg1
j = msc(j) is the only counterexample and Pos1f = msc(f),

Pos1m = msc(m) and Pos1h = msc(h) are the examples for the new learning
problem. Suppose Pos1f is chosen as a seed description G2. It turns out to be
overly general since it would cover Pos1f , Pos1m and Neg1

j but not Pos1h. In a new
inner call, counterfactuals computes the following residuals (beside Neg2

m = #):
Pos2j = Neg1

j −G2 = (R � ∃F.I � ∀F.I) � ¬R = # � ((∃F.I � ∃∀F.I) � ¬R) =
(∃F.I � ∀F.I) � ¬R

Neg2
m = Pos1m −G2 = (R � ∃F.I) � ¬R = # � (¬R � ∃F.I) = ¬R � ∃F.I

Now, a trivial generalization G3 amounts to the example description Pos2j that
does not cover the negative example description Neg2

m. Then, returning from
the inner call, we got a new specialized generalization G2 := G2 � ¬G3 =
R � ¬((∃F.I � ∀F.I) � ¬R) = R � (¬(∃F.I � ∀F.I) � R) = R � ¬(∃F.I � ∀F.I)
which is consistent because it now rules out Neg1

j . Yet it is not complete for it
covers Pos1f and Pos1m but not Pos1h; then a new generalization problem is issued
for producing a second disjunct.

The very Pos1h is used as a seed for the new generalization G′
2. Since it

covers the negative description Neg1
j . Then the counterfactual found for this

small problem is K2 := Neg1
j−Pos1h = (R�∃F.I�∀F.I)�¬(∃F.I�∀F.I) = (R�

¬(∃F.I �∀F.I))�# = R�¬(∃F.I �∀F.I) and the corresponding generalization
is G′

2 = Pos1h�¬K2 = (∃F.I�∀F.I)�¬(R�¬(∃F.I�∀F.I) = ¬R�(∃F.I�∀F.I)
that covers Pos1h but not Neg1

j .
Recollecting the two disjuncts G2 = (R � ¬(∃F.I � ∀F.I)) � (¬R � (∃F.I �

∀F.I)). Finally, the complete and consistent generalization for the original prob-
lem is G1 := G1 �¬G2 = #�¬((R�¬(∃F.I �∀F.I))� (¬R� (∃F.I �∀F.I))) =
¬(R � ¬(∃F.I � ∀F.I)) � ¬(¬R � (∃F.I � ∀F.I)) = (¬R � (∃F.I � ∀F.I)) � (R �
¬(∃F.I�∀F.I)) = (R�(∃F.I�∀F.I))�(¬R�¬(∃F.I�∀F.I)). This generalization
is complete and consistent. Its OWL/XML serialization is reported in Figure 4.

4.2 Discussion

For the sake of simplicity, the generalization routine described in the method is
non-deterministic in the points where heuristic choices have to be made: among
the possible upward refinements computed by the operator δ, those that maxi-
mize the number of covered positives should be preferred. The residual operator
3 Value restriction can be included by making a temporary domain closure assumption,

whose extent is limited to the time the msc’s computation is being performed. After
that, we adopt the Open Domain Assumption, as usual in inductive reasoning.

Knowledge-Intensive Induction of Terminologies from Metadata 451

<!ENTITY ns1 "http://www.myontos/Friend#">
...
<rdf:RDF xmlns:ns0=’http://www.myontos/Friend#’ ... >
<owl:Ontology rdf:about=’’/>
<owl:ObjectProperty rdf:about=’&ns1;F’/>
<rdf:Description rdf:about=’&ns1;f’>
<rdf:type><owl:Class rdf:about=’&ns1;R’/></rdf:type>
</rdf:Description>
<owl:Thing rdf:about=’&ns1;h’>
<ns0:F rdf:resource=’&ns1;h1’/><ns0:F rdf:resource=’&ns1;h2’/>

</owl:Thing>
<rdf:Description rdf:about=’&ns1;j’>
<rdf:type><owl:Class rdf:about=’&ns1;R’/></rdf:type>
<ns0:F rdf:resource=’&ns1;j1’/><ns0:F rdf:resource=’&ns1;j2’/>

</rdf:Description>
<rdf:Description rdf:about=’&ns1;m’>
<rdf:type><owl:Class rdf:about=’&ns1;R’/></rdf:type>
<ns0:F rdf:resource=’&ns1;m1’/><ns0:F rdf:resource=’&ns1;m2’/>

</rdf:Description>
<owl:Thing rdf:about=’&ns1;h1’/>
<rdf:Description rdf:about=’&ns1;h2’>
<rdf:type><owl:Class rdf:about=’&ns1;I’/></rdf:type>
</rdf:Description>
<rdf:Description rdf:about=’&ns1;j1’>
<rdf:type><owl:Class rdf:about=’&ns1;I’/></rdf:type>
</rdf:Description>
<rdf:Description rdf:about=’&ns1;j2’>
<rdf:type><owl:Class rdf:about=’&ns1;I’/></rdf:type>
</rdf:Description>
<rdf:Description rdf:about=’&ns1;m1’>
<rdf:type><owl:Class rdf:about=’&ns1;I’/></rdf:type>
</rdf:Description>
<owl:Thing rdf:about=’&ns1;m2’/>

</rdf:RDF>

Fig. 3. OWL/RDF representation of Example 4.1

is essentially a difference function [14]. In general a possible definition of the
operator could be C−D = max {E | E �D ≡ C}, where the maximum depends
on the ordering induced by subsumption. Depending on the representation lan-
guage, other forms of difference are possible, as discussed in [12]. In the case
ALC, the difference can be simply defined as C −D = C � ¬D.

Now let us turn to prove that the method actually converges to a solution of
the learning problem:

Theorem 4.1 (correctness). The algorithm eventually terminates computing
a correct concept definition.
Proof. The two routines are discussed separately.

452 F. Esposito et al.

<!ENTITY ns1 "http://www.myontos/Friend#">
...
<owl:Class rdf:about="&ns1;Learned">
<rdfs:subClassOf>
<owl:Class><owl:unionOf rdf:parseType="Collection">
<owl:Class><owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="&ns1;R"/>
<owl:Class><owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction><owl:onProperty rdf:resource="&ns1;F"/>
<owl:someValuesFrom><owl:Class rdf:about="&ns1;I"/>
</owl:someValuesFrom></owl:Restriction>
<owl:Restriction><owl:onProperty rdf:resource="&ns1;F"/>
<owl:allValuesFrom><owl:Class rdf:about="&ns1;I"/>
</owl:allValuesFrom></owl:Restriction>

</owl:intersectionOf></owl:Class>
</owl:intersectionOf></owl:Class>
<owl:Class><owl:intersectionOf rdf:parseType="Collection">
<owl:Class><owl:complementOf><owl:Class rdf:about="&ns1;R"/>
</owl:complementOf></owl:Class>
<owl:Class><owl:complementOf>
<owl:Class><owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction><owl:onProperty rdf:resource="&ns1;F"/>
<owl:someValuesFrom><owl:Class rdf:about="&ns1;I"/>
</owl:someValuesFrom></owl:Restriction>
<owl:Restriction><owl:onProperty rdf:resource="&ns1;F"/>
<owl:allValuesFrom><owl:Class rdf:about="&ns1;I"/>
</owl:allValuesFrom></owl:Restriction>

</owl:intersectionOf></owl:Class>
</owl:complementOf></owl:Class>
</owl:intersectionOf></owl:Class>
</owl:unionOf></owl:Class>

</rdfs:subClassOf>
</owl:Class>

Fig. 4. Induced Concept Description in the Example 4.1

(generalization) The routine is controlled by the outer cycle that produces one
disjunct at each iteration, accommodating at least one positive example which is
successively removed. Thus eventually the termination of the routine is guaran-
teed, provided that the inner loop terminates. The inner loop generalizes mono-
tonically the starting seed-definition (a conjunct) by applying δ. Eventually, the
loop terminates either because the generalization is correct or because it covers
some negative example. This is the case when the counterfactuals co-routine is
invoked.
Supposing that the latter is correct, the former can terminate by conjoining the
negation of the counterfactuals produced to the incorrect definition, thus covering
at each iteration new positives and no negative assertion.

Knowledge-Intensive Induction of Terminologies from Metadata 453

(counterfactuals) This routine contains two initial loops that are controlled by
the sizes of the example sets in the input. Each iteration produces a residual
concept definition to be used for the successive generalization. Provided that the
other routine terminates with a correct generalization of the residual concept
then also the counterfactual routine terminates. As regards the correctness, it is
to be proven that, on return from the routine, the following relations hold:
1. ∀Pos ∈ CoveredPos : (ParGen � ¬K) Pos
2. ∀Neg ∈ Negatives : (ParGen � ¬K) � Neg. If the call to generalization
succeeds then for all NewNj ∈ NewNegatives : K � NewNj. By definition of
NewNegatives, Pj ∈ Positives implies that the
residual(Pj ,ParGen) ∈ NewNegatives. Hence K � residual(Pj ,ParGen). Since
∀Pos ∈ Positives = CoveredPos : ParGen Pos the first condition is proven.
For the other condition, recall that (ParGen � ¬K) � Neg iff ParGen � Neg
or ParGen Neg and K residual(Neg,ParGen). Now, considering all
Neg ∈ Negatives, if ParGen � Neg we have immediately the truth of the condi-
tion. Otherwise, if ParGen Neg then the routine builds a residual element
residual(Neg,ParGen) for NewPositives. Thus, on return from the call to gener-
alization, K is a generalization of every description in NewPositives, and hence
K residual(Neg,ParGen).

The algorithm may fail in two cases: a call to counterfactuals with null positive
and negative descriptions indicates that it is impossible to discriminate between
two identical descriptions. The second case is when generalization fails, which is
unlikely to happen because trivially there exists the disjunction of all positive
examples descriptions as basic generalization. Such cases should be eliminated
beforehand by preprocessing the examples for obtaining the msc’s. The coun-
terfactuals algorithm is linear except for the dependency on the generalization
algorithm. Then it suffices to discuss the complexity of such an algorithm. The
generalization proposed here is a generic divide and conquer algorithm which
performs a greedy search using the refinement operator δ. Introducing a better
refinement operator based on examples, the heuristic information conveyed by
the examples can be better exploited so to have a faster convergency. The cycles
are linear on the number of instances. The subsumption tests, that are PSpace-
complete in ALC [11], represent the real source of complexity. As mentioned in
the introduction, an easy solution to the learning problem could be computing
the minimal generalization: lcs(msc(Pos1), . . . , msc(Posm), msc(¬Neg1), . . . ,
msc(¬Negn)). Yet, suffers from lacking of predictive power, fitting precisely only
the known examples (while it may turn out to be inconsistent wrt new ones).
Moreover, for many expressive DLs, such as ALE , msc’s are difficult to com-
pute (provided they exist). In ALC, although lcs is simply the disjunction of the
inputs, there is no algorithm for computing msc’s. Our algorithm processes ap-
proximations of the msc’s, for it is endowed with the specialization mechanism of
the counterfactuals, whereas the lcs can only generalize starting from very spe-
cialized definitions. The algorithm could be the skeleton for similar ones, based
on different DL representations. In such cases, it suffices to change the operator

454 F. Esposito et al.

for calculating residuals and proper methods to conjoin the counterfactual to
the starting description should be devised.

5 Conclusions and Future Work

Structural knowledge is expected to play an important role in the Semantic
Web. Yet, while techniques for deductive reasoning for such knowledge bases are
now very well assessed, their construction is a hard task for knowledge engineers
even for limited domains; they could be supported by (semi)automatic induc-
tive tools that still require investigation. In this paper, we have investigated on
the induction concept definitions in structural representations both theoretically
casting the task as a search problem and operationally, presenting a method for
inducing and/or refining concept definitions. The method illustrated in this pa-
per (actually initially presented in [15]) has been implemented in a refinement
system (YingYang, Yet another INduction Yields A New Generalization) that
induces or refines ALC knowledge bases which can be maintained by means of
OWL markup. This will allow to design a learning and refinement service for the
Semantic Web. The proposed framework could be extended along three direc-
tions. First, an investigation on the properties of the refinement operators on DL
languages is required. In order to increase the efficiency of learning, redundancy
during the search for solutions is to be avoided. This can be done by defin-
ing minimal refinement operators [9]. Secondly, the method can be extended to
other DLs by changing the residual operator and devising a proper representa-
tion for counterfactuals. Another promising direction is the study of constructive
induction methods to overcome the mentioned problem of inadequate language
bias to represent the concepts instantiated in the A-box, under the interactive
supervision of the knowledge engineer as an oracle.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. Cambridge University Press (2003)

[2] Haussler, D.: Learning conjuntive concepts in structural domains. Machine Learn-
ing 4 (1989) 7–40

[3] Nienhuys-Cheng, S., Laer, W.V., Ramon, J., Raedt, L.D.: Generalizing refinement
operators to learn prenex conjunctive normal forms. In: Proceedings of the In-
ternational Conference on Inductive Logic Programming. Volume 1631 of LNAI.,
Springer (1999) 245–256

[4] Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN . In Cussens, J.,
Frisch, A., eds.: Proceedings of the 10th International Conference on Inductive
Logic Programming. Volume 1866 of LNAI., Springer (2000) 191–208

[5] Kietz, J.U.: Learnability of description logic programs. In Matwin, S., Sammut,
C., eds.: Proceedings of the 12th International Conference on Inductive Logic
Programming. Volume 2583 of LNAI., Sydney, Springer (2002) 117–132

Knowledge-Intensive Induction of Terminologies from Metadata 455

[6] Cohen, W., Hirsh, H.: Learning the CLASSIC description logic. In Torasso, P.,
Doyle, J., Sandewall, E., eds.: Proceedings of the 4th International Conference on
the Principles of Knowledge Representation and Reasoning, Morgan Kaufmann
(1994) 121–133

[7] Baader, F., Turhan, A.Y.: TBoxes do not yield a compact representation of least
common subsumers. In: Working Notes of the International Description Logics
Workshop. Volume 49 of CEUR Workshop Proceedings., Stanford, USA (2001)

[8] Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14 (1994) 193–218

[9] Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics.
In Cussens, J., Frisch, A., eds.: Proceedings of the 10th International Conference
on Inductive Logic Programming. Volume 1866 of LNAI., Springer (2000) 40–59

[10] Vere, S.: Multilevel counterfactuals for generalizations of relational concepts and
productions. Artificial Intelligence 14 (1980) 139–164

[11] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48 (1991) 1–26

[12] Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in descrip-
tion logics. In Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.A., eds.:
Proceedings of the International Conference on Knowledge Representation, Mor-
gan Kaufmann (2002) 203–214

[13] Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Volume
422 of LNAI. Springer (1990)

[14] Teege, G.: A subtraction operation for description logics. In Torasso, P., Doyle, J.,
Sandewall, E., eds.: Proceedings of the 4th International Conference on Principles
of Knowledge Representation and Reasoning, Morgan Kaufmann (1994) 540–550

[15] Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Induction and
revision of terminologies. In de Mataras, R.L., Saitta, L., eds.: Proceedings of the
16th European Conference on Artificial Intelligence, IOS Press (2004) 1007–1008

Inferring Data Transformation Rules to
Integrate Semantic Web Services

Bruce Spencer and Sandy Liu

National Research Council of Canada
46 Dineen Drive, Fredericton, New Brunswick, E3B 9W4

{Bruce.Spencer, Sandy.Liu}@nrc.ca, http://iit.nrc.gc.ca/il.html

Abstract. OWL-S allows selecting, composing and invoking Web Ser-
vices at different levels of abstraction: selection uses high level abstract
descriptions, invocation uses low level grounding ones, while composi-
tion needs to consider both high and low level descriptions. In our set-
ting, two Web Services are to be composed so that output from the
upstream one is used to create input for the downstream one. These
Web Services may have different data models but are related to each
other through high and low level descriptions. Correspondences must be
found between components of the upstream data type and the down-
stream ones. Low level data transformation functions may be required
(e.g. unit conversions, data type conversions). The components may be
arranged in different XML tree structures. Thus, multiple data transfor-
mations are necessary: reshaping the message tree, matching leaves by
corresponding types, translating through ontologies, and calling conver-
sion functions. Our prototype compiles these transformations into a set
of data transformation rules, using our tableau-based ALC Description
Logic reasoner to reason over the given OWL-S and WSDL descriptions,
as well as the related ontologies. A resolution-based inference mechanism
for running these rules is embedded in an inference queue that conducts
data from the upstream to the downstream service, running the rules to
perform the data transformation in the process.

1 Introduction

Some envision that software components can be described sufficiently so that
they can be autonomously found and incorporated, can pass data that will be
automatically understood and processed, can recover from faults, and can prove
and explain their actions and results. The OWL-S specification for Semantic
Web Services [2] has recently been released in which these components are Web
Services described using the Web Ontology Language, OWL [13].

The OWL-S release 1.0 proposes to describe Web Services in three layers: the
service profile, service model, and service grounding, describing respectively what
the service does, how it does it, and how to access it. The service profile gives
the information necessary for discovering and for combining (composing) Web
Services. By convention, it may describe the services only abstractly and not in

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 456–470, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Inferring Data Transformation Rules to Integrate Semantic Web Services 457

complete detail; the inputs, outputs, preconditions, and effects of the service may
be advertised at a high level for faster but imperfect matching. The grounding
layer is where the complete details would be found for each of the components in
these objects, expressed both in OWL-S grounding and Web Service Description
Language (WSDL) [12], a low-level specification. By separating the abstract
from the concrete specifications, the tasks for which the service profile are used,
discovery and composition, are greatly simplified, making the whole architecture
more viable.

In general several Web Services can be selected to work together, but in this
paper we consider the case where only two Web Services have been selected: one
as the producer and the other as the consumer of a stream of data messages.
The producer, or upstream service will deliver one input message at a time to
the downstream service, which will consume it. We imagine that one or both of
these services were not previously designed to work together, and that they were
selected to work together based on their service profiles; now the two service
groundings must be coupled autonomously, using descriptions of both levels as
well as ontologies available. The setting can be seen as a special case of data
integration assisted by semantic markup.

We consider two use cases, a simple one for converting dates from year /
month / day order as given by the upstream service, into month / day / year
order as required by the downstream service. This simple case allows us to explain
the various steps in the proposals. In the second use case we convert flight
information from one format to another, reshaping the XML tree containing the
data and invoking two different kinds of conversions.

In section 2 we discuss the integration problem in light of two use cases, and
give the general technique for building the rules in Section 3. Section 4 gives a
presentation of inference queues used to run the rules. In the last two sections,
we give related and future work and conclusions.

2 Grounding Level Integration

We intend to automatically integrate Web Services. In our setting, the inte-
gration task is done at several levels. We assume that a high-level plan has
determined which Web Services can be integrated, based on descriptions of the
effects produced by upstream services, and the preconditions required by the
downstream one. The abstract planning level will have determined that the data
produced by the upstream services provide information needed by the down-
stream service. Matching upstream to downstream services should be done with-
out knowledge of minor differences in the concrete types of data to be transferred,
if reasoning at this level is to be kept unencumbered by overwhelming detail.
Once compatibility is established at the upper level, the task of matching at the
lower level can begin. Two similar or identical descriptions at the abstract level
can refer to very different descriptions at the concrete level.

Therefore, our objective is to create a message of the downstream data type
from one or more upstream messages. We assume there exist ontologies describ-

458 B. Spencer and S. Liu

• OWL-S description
(Process & Grounding)

• WSDL description
• Ontologies
• Specifications of

converters &
typeCasters

 Web Service Web Service

Trans-
formation

Rules

Converters &
TypeCasters

Upstream Downstream

X
M

L
 in

te
rf

ac
e

Inference

Queue

X
M

L
 interface

Rule

Compiler

Fig. 1. System Architectural Overview

ing both the upstream messages and downstream messages, and in particular
description logic, possibly OWL-S specifications containing the leaf-level parts
of these messages. Figure 1 shows the overall system architecture to perform the
grounding level integrations. The rule compiler takes the OWL-S descriptions,
WSDL descriptions, auxiliary ontologies, and specifications of data converters
as inputs, and creates data transformation rules. If the semantic integration is
attempted but is not feasible, this will be indicated by a failure to create the
rules.

At service invocation time, the set of transformation rules can be run to
actually perform the data transformation from upstream to downstream. The
intermediate carrier is called an inference queue [11], which accepts input data
encoded as facts and rules in first-order logic, and can perform inferences on
those facts so that both the input facts and inferred facts are transmitted as
output. Such an inference queue loaded with data transformation rules at service
composition time, and loaded with upstream data at runtime, will be able to
convert that data to the appropriate form and deliver it to the downstream
service.

Because the inference queue includes a theorem prover for definite clauses, it
is capable of some of the other tasks we identified as necessary for robustness:
it can detect when the upstream data is not convertible into data acceptable by
the downstream service; it can also perform sanity test on the data. The OWL-S
proposal allows us to express preconditions expected by the downstream service
and effects expected from the upstream service. Since we may not have control
over how these Web Services are written, we should attempt to verify that the
expected effects were produced and expected preconditions were met. These
checks would also be performed by the rule engine.

In the real world many data types that are not identical syntactically are
still convertible, such as temperatures expressed in either Fahrenheit or Celsius,
currency in either dollars or Yen, etc. We assume the existence of some mappings
between data types, called converters, intended to be used for converting data

Inferring Data Transformation Rules to Integrate Semantic Web Services 459

from one type to another. We also assume that low-level type conversion such as
converting between string and numeric can be performed through type casters.
The functions of the converters and type casters can be specified, then they can
be used by the rule compilers to generate the proper transformation rules. As
a result, a number of these standard conversions can be expressed as relations
in the bodies of rules, and at runtime the inference engine will perform the
conversion.

2.1 Use Cases

Consider the following example: Suppose a Web Service produces a date in the
conventional U.S. order month / day / year. In a typical usage scenario this date
would be part of a larger message, but for simplicity we consider that this is the
entire contents of the message. Suppose this Web Service has been selected as
the upstream service so it will provide data to the downstream Web Service. The
downstream message will also be composed of just a date, but in this case in the
ISO order year / month / day. The decision to connect these two Web Services
in this way would be done by a planning system, designed in accordance with
the current OWL-S proposal [2]. While building the abstract plan, it determined
that these messages are compatible, using only the information at the OWL-S
profile and process levels. An ontology of dates states that ISO and U.S. dates
are both subclasses of the class date and are composed of a year, a month and
a day, as in Figure 2. The planner did not look into the lower level, where the
types of the date are slightly different; these differences were considered to be

<owl:Class rdf:ID="Date">
</owl:Class>
<owl:ObjectProperty rdf:ID="hasYear">

<rdfs:domain rdf:resource="#Date"/>
<rdfs:range rdf:resource="#Year"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasMonth"/>

<rdfs:domain rdf:resource="#Date"/>
<rdfs:range rdf:resource="#Month"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasDay"/>

<rdfs:domain rdf:resource="#Date"/>
<rdfs:range rdf:resource="#Day"/>

</owl:ObjectProperty>
<owl:Class rdf:ID="ISODate">

<rdfs:subClassOf rdf:resource="#Date"/>
</owl:Class>
<owl:Class rdf:ID="USDate">

<rdfs:subClassOf rdf:resource="#Date"/>
</owl:Class>

Fig. 2. A Date Ontology in OWL

460 B. Spencer and S. Liu

<grounding:WsdlAtomicProcessGrounding
rdf:ID="WSDLGrounding_CalendarMgmt_setVisitDate">
<grounding:wsdlInputMessageParts rdf:parseType="owl:collection">
<grounding:WsdlMessageMap>
<grounding:damlsParameter rdf:resource="&pm_file;#year"/>
<grounding:wsdlMessagePart>
<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg0"/>

</grounding:wsdlMessagePart>
</grounding:WsdlMessageMap>
<grounding:WsdlMessageMap>
<grounding:owlsParameter rdf:resource="&pm_file;#month"/>
<grounding:wsdlMessagePart>
<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg1"/>

</grounding:wsdlMessagePart>
</grounding:WsdlMessageMap>
<grounding:WsdlMessageMap>
<grounding:damlsParameter rdf:resource="&pm_file;#day"/>
<grounding:wsdlMessagePart>
<xsd:uriReference rdf:value="http://lclhst/calendar.wsdl#arg2"/>

</grounding:wsdlMessagePart>
</grounding:WsdlMessageMap>

</grounding:wsdlInputMessageParts>
</grounding:WsdlAtomicProcessGrounding>

Fig. 3. Snippet from the Downstream Grounding in OWL

inessential at planning time. The specific types of date from the upstream and
downstream services are described in WSDL as three integers, and these integers
are given more meaning by the OWL-S grounding specification. Figure 3 shows
a snippet of OWL-S grounding specification for the downstream Web Service.

We compile the data transformation into a rule to be invoked to do this
transformation. The messages are passed from upstream to downstream via
an inference queue. An inference queue is a conduit for data that contains an
inference engine. Data are considered facts, and rules are “plugged in” to tell
how to infer new facts, which become the output of the queue. We illustrate
the data transformation rules using a Prolog notation, where variables are
shown with an upper case letter. The current prototype directly uses the XML
messages, but it is possible to use RuleML [1] or SWRL [3]. Any upstream
message is assumed to be given to the inference queue as a fact using the
unary predicate symbol up, where the argument is a Prolog term, in this case
containing a date in month / day / year order. The inference queue produces
a message meant for the downstream service, also as a fact with the unary
predicate symbol down and the arguments in ISO order.

The rule for data transformation in this case is

down(isoDate(Year, Month, Day)) :- up(usDate(Month, Day, Year)).

When a fact, say, up(usDate(12, 31, 1999)) is entered to the inference queue,
a resolution step is done, in which Month is bound to 12, Day to 31 and Year to

Inferring Data Transformation Rules to Integrate Semantic Web Services 461

1999. The inference drawn is down(isoDate(1999, 12, 31)). This is expelled
from the downstream end of the inference, to be delivered to the downstream
Web Service.

For the second use case, suppose that a European-based Web Service pro-
ducing flight information is selected to provide input to a Canadian-based Web
Service accepting flight information. For the upstream (producing) Web Service
the flight has three data items: a source city, a destination city and a cost quoted
in Euros. The downstream service expects the flight to be described with two
pieces of information: the cost in Canadian dollars and a flight manifest, which
itself consists of two pieces of information, the code of the departure airport and
arrival airport, respectively. In this case we make use of two converters: from
Euros to dollars, and from cities to airport codes. We also need to have the
translation mechanism create a message with an internal structure, the manifest
object. The final rule generated for this case follows:

down(canadaFlight(DollarCurrency,
manifest(DepartureAirportCode, ArrivalAirportCode))):-

up(euroFlight(SourceCity, DestCity, EuroCurrency)),
stringToDouble(EuroCurrency, EuroCurrencyDouble),
euro2Dollar(EuroCurrencyDouble, DollarCurrency),
city2AirportCode(SourceCity, DepartureAirportCode),
city2AirportCode(DestCity, ArrivalAirportCode).

There are three tasks: creating the appropriate structure, converting the
currency, and converting the two airport locators. Each needs to be reflected in
the translation rules. The structure of the both up- and downstream messages
must be reflected in the rule. In this case the downstream message, which is
the argument of the down predicate, contains the term canadaFlight which
itself contains two arguments, one for the dollar currency and other for the
flight manifest, represented by the function symbol (or XML tag) manifest and
containing two airport codes. So the rule constructor must be aware of and reflect
all of the inner structure of both messages. These XML structures are inferred
from the OWL-S grounding and WSDL information. Figure 4(a) and (b) shows
these two trees representing the XML structure of the messages.

The second task is to place a call to a converter in the body of a rule. It is
straightforward in the case of converting the currency amount in the upstream
message to a dollar amount in the downstream message. There is a converter
available, euro2Dollar whose specification shows that has the appropriate types;
it maps Euros to dollars. In the conversion rule that is constructed, a call to this
converter is included as a goal in the body of the clause. The first argument of
this goal is a variable for the Euro amount that is shared within the up literal, as
the first argument of the canadaFlight term. The second argument of the call
to euroToDollar converter is a variable for the dollar amount that appears also
in the down literal. All of these placements are straighforward because the types
of the converter and the types of the message match. The arrow in Figure 4(c)
from EuroCurrency to DollarCurrency was easy to place because of the type
correspondences. It is not always so simple.

462 B. Spencer and S. Liu

euroFlight

SourceCity DestCity Euro
Currency

canadaFlight

Dollar
Currency

manifest

Departure
AirportCode

Arrival
AirportCode

(a) (b)

euroFlight

SourceCity DestCity Euro
Currency

canadaFlight

Dollar
Currency

manifest

Departure
AirportCode

Arrival
AirportCode

(c)

euro2Dollar

airportCity2Code

airportCity2Code

Euro
Currency

Dollar
Currency

euro2Dollar

(d)

String2Double

Fig. 4. Data transformation: Reshaping two XML trees
]

One complication arises because the output type of the converter may not
match the required type. If the output type is a subtype of what is required, it
must be promoted to the required type. But from a typing point of view, the
converter can be used since it is guaranteed to produce a value of the required
type. Alternately, if the output type is a supertype of what is required, it must
be demoted to the required type. The converter may be still be useful, but a
check must be done at runtime to ensure that the actual value is appropriate.
On the input side of the converter, similar cases apply.

Yet the discussion so far does not fully account for the rule above. Two airport
cities of different types, source and destination, need to be converted to airport
codes. We want these two outputs to be of type departure and arrival airport
codes, respectively. The converter, city2AirportCode will create data values of
type airport code, but not specifically of type arrival airport code or departure
airport code. Thus requires to promote the input of the converter and demote
the output. But there is information lost in the promote step, which leads to
confusion. (This will be illustrated in case (a) in Figure 6.) In our first attempt
to write this rule, the rule compiler mixed up the types and created calls to
the airportCity2Code converter in which the SourceCity was converted to the
ArrivalAirportCode, instead of the DestinationAirportCode. Promoting the
type from SourceCity to the more general type City causes information about
the specialization to be lost.

Inferring Data Transformation Rules to Integrate Semantic Web Services 463

SourceCity = SourceLocation � City
DestCity = DestLocation � City

DepartureAirportCode = DepartureLocation � AirportCode
ArrivalAirportCode = ArrivalLocation � AirportCode

SourceLocation = DepartureLocation
DestLocation = ArrivalLocation
EuroCurrency � Currency

DollarCurrency � Currency

Fig. 5. Description Logic Axioms for Airport Example

One impractical way to solve this problem would be to provide one converter
that takes a source city and creates an departure airport code, and another which
converts a destination city to an arrival airport code. In this way the types of the
converters would exactly match the types from the input and output messages.
This is unreasonable because the programs for these two different converters
would be identical, and each converter would be less useful than the original
general converter. Moreover all of these converters would have to be written
before the web services were encountered, defeating the goal of dealing with
unforeseen Web Services.

Instead, our strategy is to create special converters dynamically from our
library of general converters. The input and output types are specialized so they
are closer to what is required. In this example, the concept of a SourceCity
is actually defined as the intersection of a SourceLocation and a City, shown
in Figure 5, while DepartureAirportCode is defined as the intersection of a
DepartureLocation and AirportCode. Moreover, the set DepartureLocation
is declared to be identical to the set SourceLocation. Thus the mapping from
SourceCity to DepartureAirportCode can be seen as a specialization of the
mapping from City to AirportCode. (This will be illustrated in case (a.1) in
Figure 6.) Using this specialized mapping to convert the provided SourceCity
gives us the right value for our DepartureAirportCode.

To create the correct specializations, we need to do some description logic
reasoning. We have a tableau-based implementation of an ALC reasoner in-
corporated into our prototype. It is capable of searching among the ancestors
(supersets) of a given concept. If two specific concepts are given and it is asked
whether the first one can be converted to the second, a search is made among the
superconcepts of each, to find some pair of ancestors that is most specific such
that a converter is available from one to the other. In our example the ancestor
types of the SourceCity are SourceLocation and City and the ancestors of
DepartureAirportCode are DepartureLocation and AirportCode. We have a
converter between two of these ancestors: SourceCity and AirportCode). The
other two types, SourceLocation and DepartureLocation, are declared to be
equivalent. From this information, the arrow in Figure 4(c) from SourceCity to
DepartureAirportCode can be drawn.

464 B. Spencer and S. Liu

Note that the rule also pays attention to the fact that the Euro currency was
reported as an XML Schema string and needs to be converted to a decimal num-
ber (double) before being passed to the euro2Dollar converter. See Figure 4(d).

3 Creating Transformation Rules

The general procedure of creating the rule can now be described. A desired
downstream Web Service message type is to be constructed, and we have a (set
of) candidate upstream message type(s) that may provide values to be used. At
higher level of abstraction, a reasoning system, such as a planner, has determined
that these messages are compatible. A rule is required that at run-time creates
the desired downstream message from the upstream message(s). The rule must
contain a down conclusion in the head and this must match the structure of
the downstream message, in that internal structures are reproduced within the
Prolog term structure. An up goal with a reproduction of the upstream message
is always added to the body of the rule. For each leaf-level data item in the
downstream message, given its data type R2, we need to identify a source R1
among the data types available in the upstream message.

There are several possibilities. An upstream data type may exactly match or
be a subconcept of the downstream data type: R1 � R2. In that case we identify
this upstream data as the source for the downstream data. For example, if R1 is
EuroCurrency and R2 is Currency then we are assured that the value in R1 is
appropriate for R2. Two occurrences of a shared variable are placed in the rule,
one in the position of the target datum in the downstream message and one in
the position in this upstream message of the selected matching datum.

An upstream data type may be a superconcept of the target downstream
type: R1 � R2. In that case the datum provided at runtime may or may not be
of the appropriate type for the downstream message. In this case a check can
be placed in the goal to verify that that datum a is of the downstream type,
a ∈ R2, if such a runtime check is possible. For example if R1 is Currency and
R2 is EuroCurrency then at runtime we should check that value in R1 is indeed
a EuroCurrency.

The other possibilities come from the converters. A converter is defined as
a mapping of data values from one type to another where both an element and
its image represent the same individual. For example, a converter might map
measurements in the imperial system to the metric system, but must map a
quantity in one system to an equal quantity in the other. We assume that a
converter C maps S1 → S2.

Suppose there is a converter C available to generate data of the target down-
stream type R2 from some available upstream type R1; in other words by good
fortune the types exactly match R1 = S1 and R2 = S2. Then add a goal to the
body of the rule that calls that converter, where in loss at both endts input vari-
able is shared with the position in the upstream message of the identified source
datum, and the converter’s output variable is shared with the target downstream
datum.

Inferring Data Transformation Rules to Integrate Semantic Web Services 465

Next suppose that the types do not match exactly. There are four cases to
consider, shown as Figure 6(a-d), where the S’s are either subsets or proper
supersets of the R’s.

Given a data value of type R1 if it is guaranteed to be in S1, as in cases (a)
and (b), we can consider the data to have type S1, promoting it so that we can
use it as the input to the converter. If not, then S1 � R1, and since the type is
demoted, a check at runtime for being in S1 is needed to be sure we can use this
converter. This check is added as a condition of the rule. Similarly for cases (b)
and (d) the output of the converter is guaranteed to be in R2, while for cases
(a) and (c), which are demotions, an additional check is needed.

However, for case (a) information is lost during promotion. It was this prob-
lem that mixed up our early prototype when it converted the SourceCity into
the ArrivalAirportCode. It may be possible to retain this information, to pre-
serve the mapping. Suppose that there exists a type T such that R1 = S1 � T
and R2 = S2 � T . Then we may assume that calling the converter with a datum
of type R1 will generate a datum of type R2. See Figure 6(a.1). In our exam-
ple from the previous section, we were able to restrict the domain and range of
C by T , as follows: S1 = City, S2 = AirportCode, R1 = SourceCity, R2 =
DepartureAirportCode, and T = SourceLocation = DepartureLocation.

If no such T exists, it may still be possible to specialize the converter. Suppose
that there exist types T1 and T2 such that R1 = S1 � T1 and R2 = S2 � T2. If
T1 � T2 then the converted value is sure to be a member of R2. See Figure 6(a.2).
Otherwise if T1 � T2 there is a chance that the output of the converter provided
is not in R2, and another goal should be placed into the rule checking that it is.

If there are two sources of upstream information available for the downstream
type, this may mean that the data is not described in sufficient detail to make a
unique determination. More semantic information may needed to disambiguate
the situation. Ambiguity may also arise if there are different converters that could
be applied. We can state that one converter is a better match than the other if it
provides the exact types needed. However there seems to be no general technique
to prefer using one converter over another. If ambiguities arise at rule generation
time, several strategies could be employed: abort, ask a human, deliver a set of
candidate rules, choose a probabilistically best one if a model of probability can
be imposed, etc. We did not consider this problem further.

Note that in many ways the semantic integration of these Web Serices may
fail and even if a rule is produced, it may not map data correctly. This could arise
if the OWL-S descriptions are not sufficiently detailed, if no ontology is available
to connect the data model of the upstream service to that of the downstream
service, and many other reasons. We feel that more experience with marking up
real life Web Services is needed before we can prescribe the sufficient conditions
for producing valid data transformation rules, and the necessary conditions for
succeeding to produce a rule.

In this discussion we have ignored the concrete (syntactic) data types, but at
run time, when Web Service data is actually given, it is important to consider
the XML Schema datatypes in which the data will delivered, either as xsd:string,

466 B. Spencer and S. Liu

 (a.1) specialize converter (a.2) specialize and promote

R1
R2

S1 S2

T2 T1

(a) promote-demote (b) promote-promote

(d) demote-promote (c) demote-demote

S1 S2

R1 R2

R1 S2

S1 R2

S1 R2

R1 S2

R1 R2

S1 S2

R1

S1 S2

T
R2

Fig. 6. Cases for specializing the converter

one of the numeric types, etc. The downstream Web Service and the converter
will need to be called with the appropriate data type so a type casting (sometime
called type conversion) may need to be done. Our compiler also considers this
type casting and generates rules with these conversions inserted as necessary.
See Figure 4(d).

The rule compiler is written in Prolog, and uses our Prolog implementation
of a tableau-based ALC description logic engine.

4 Inference Queues

The inference queue plays a fundamental role in the delivery system from the
upstream to the downstream Web Service. As a queue it provides two main
functions: insert and remove, which are asynchronous calls (i.e. they can be
called by separate threads in any order.) The insert operation accepts facts and
rules and places them into the queue. It is non-blocking in that at any time a call
to insert will succeed without any infinite delays. The remove operation produces
facts that are logical consequences of the already inserted facts and rules. It is
also non-blocking in the following sense; if there is some fact to be removed,
there will be an at most finite delay. Usually any delay is extremely short.

In Section 3 we discuss how the inference queue is incorporated into an
engine for composing Web Services. The inference queue takes on the role of
transporting the messages from one Web Service to the next. The messages are

Inferring Data Transformation Rules to Integrate Semantic Web Services 467

NewFacts is a priority queue of facts, ordered by %, that have not yet been
processed. OldFacts is a list of facts that have already been processed. Rules
is a list of rules, and the first condition of each is designated the selected goal.
backgroundProcessingIsComplete is a boolean variable which recalls whether
processing has been done since the most recent remove and is initially true.
mostRecentlyRemovedFact is a fact which has a valid value when background-
ProcessingIsComplete is false.

synchronized insert(c)
if not backgroundProcessingIsComplete

performBackgroundProcessing(mostRecentlyRemovedFact)
endif
process(c)
notify

end insert

synchronized Fact remove()
if not backgroundProcessingIsComplete

performBackgroundProcessing(mostRecentlyRemovedFact)
endif
repeat

while NewFacts is empty
wait

end while
select and remove a new fact fnew from NewFacts

until fnew is not subsumed by any member of OldFacts
set backgroundProcessingIsComplete to false
set mostRecentlyRemovedFact to fnew

return fnew

end remove

synchronized performBackgroundProcessing(fnew)
for each rule r whose first condition unifies with fnew

resolve r against fnew producing r1

process(r1)
end for each
set backgroundProcessingIsComplete to true
add fnew to OldFacts

end performBackgroundProcessing

process(c)
if c is a rule

add c to Rules
for each old fact fold unifying with the selected goal of c

resolve c with fold to produce the new result n
process(n)

end for each
else

add c to NewFacts
end if

end process

Fig. 7. Inference Queue Operations: insert and remove

468 B. Spencer and S. Liu

in XML, but while they are in the inference queue, they are considered to be
terms in logic.

The inference queue has six properties that make it suitable for our task.
(See [11] for proofs.) (1) The engine computes only sound conclusions, which
means they are correct according to the meaning of the given formulas. (2) It
computes a complete set of conclusions, which means that if a conclusion log-
ically follows from the facts and rules that have been inserted into the queue,
then such a conclusion will be produced by the inference queue. (3) The output
is irredundant in that a fact, once produced, will not be produced again. More-
over, suppose one fact is more specific than another, as p(a) is more specific than
p(X) for all values X. Then the inference queue will not generate the more spe-
cific fact after it has already produced the more general one. (4) The conclusions
are generated by fairly. This means for every implied conclusion, either it or a
more general one will eventually be chosen as the output to a remove request;
it will not be infinitely often deferred. Combining this property with complete-
ness means we are guaranteed that every conclusion will eventually be produced,
given a sufficient number of remove requests. To ensure this, the inference queue
depends on a partial order, % between the facts, and produces them in accor-
dance with this order. (5) The calls to insert and to remove are thread safe
which means that these calls can occur simultaneously without the risk of the
mechanism getting into an unsafe state. (6) Calls to insert and remove are re-
sponsive which means that there will not be an infinite delay between calls. This
remains true even if the facts and rules have an infinite number of consequences.

Figure 7 shows the details of how the inference queue operations are defined.
Note that it uses the convention that methods declared to be synchronized are
mutually exclusive; there can not be threads active in two such methods at
once. The insert and remove methods also communicate via wait and notify,
which allows remove to block if the queue is currently empty, but to return a
value when a fact becomes available.

Other features of the inference queue can contribute to other parts of a
robust Web Services architecture, including the ability to detect, report and
recover from errors during service invocation. The inference queue is based on
the jDREW open-source libraries [10], which are found on SourceForge.

5 Related Work

The task we perform is similar to that proposed for a broker [4], in that messages
from one Web Service are translated to an appropriate form for another, where
these Web Services are not in direct communication, but pass through a third
party. The abstraction algorithm in [4] is similar to our proposal, but it does not
consider converters.

A recent proposal [5] to align OWL-S to DOLCE, is motivated in part by
the difficulty to state in OWL-S that the output of one process is the input of
another. We are interested in this work and look forward to seeing more details
on how the proposal would handle the converters that we have employed.

Inferring Data Transformation Rules to Integrate Semantic Web Services 469

A number of recent proposals for integration of Semantic Web Services have
been presented. We are not aware of any other work chosing to compile the
integration tasks into rules, yet the integration tasks are similar. For example,
the merge-split of Xu and Embley [14] corresponds to our XML tree reshaping,
and their superset/subset value matching corresponds to our matching of basic
elements, as described in Section 3. They seem not to have incorporated con-
verter rules. Likewise the work of Giunchglia and Shvaiko [8] and that of Silva
and Rocha [9] consider mapping Web Services descriptions. Each of these pa-
pers offers insights for using semantic descriptions to assist with the integration
problems. We are less focused on this task, and more on the rule compilation
and execution tasks, so the approaches can be considered complementary. In-
deed, the problem of dynamically specialing converters seems not to have been
addressed in related field of database integration.

The inference queue appears related to rule-based systems, with a long his-
tory from OPS-5 [6] to modern implementations [7]. They include rules for re-
acting to an event E under conditions C to perform action A with postcondition
P; hence are sometimes called ECAP rules. These systems do not usually have
a model theoretic semantics and usually allow one to delete facts. Our system
computes one model incrementally and does not allow deletion of facts; instead
they are preserved. The RETE match algorithm [6] on which most rule-based
systems are implemented bears a resemblance to the resolution-based system
we propose in the inference queue, in that it activates the goals in a rule in
left-to-right order and does high-speed matches from facts, or working memory
elements, to the conditions in the rules. Rule-based systems have a notion of
negation as the non-existence of a fact; we propose to allow negation in the
inference queue in the future.

6 Conclusion and Future Work

To conclude, we introduce a rule-based approach for integrating semantic Web
Services at the grounding level. Suppose a pair of Web Services is selected by
an abstract reasoning system, such as a planner, such that the output of one,
intended as the upstream service, semantically matches the input of the other,
intended to be downstream. Our approach is capable of generating data transfor-
mation rules; data from the upstream Web Service is transformed into the data
model of the downstream service such that the meaning is preserved. The core
transformation steps include reshaping the XML structure (complex data types),
followed by mapping the leaf level elements (the basic components). Special con-
vertors can also be employed as built-in utilities for semantic type conversions or
type casting between the basic components. The inference queue is proposed to
generate messages in their desired formats. Given a set of transformation rules,
the inference queue can produce sound, complete, and irredundant results. It
is also fair, responsive, and thread safe. We illustrate with two use cases. Our
approach compensates for the inflexibility of third-party code and completes the
integration solution after Semantic Web Services discovery and composition.

470 B. Spencer and S. Liu

We plan to add a form of negation to the inference queue. Given a stratifi-
cation of the literals that is consistent with the partial order % employed by the
inference queue, we could then guarantee that any consequence removed from
the queue is consistent with the model of data so far inserted into the queue. If
negative information is later inserted or derived, those previously removed conse-
quences may not be consistent with the model including the new information. We
will consider whether such a system could be useful in the realm of Web Services.

Our rules for performing the data transformation are definite clauses for
which all of the reasoning in the descrption-logic level has already been done. We
also consider to compile to SWRL [3] and defer some description logic reasoning
until invocation time, as the data passes through the inference queue. In future
work we propose to give the inference queue DL reasoning ability.

References

1. Harold Boley. The rule markup initiative. http://www.ruleml.org, 2003.
2. The OWL Service Coalition. OWL-S 1.0 Release.

“http://www.daml.org/services/owl-s/1.0/”, 2004.
3. Ian Horrocks et al. SWRL: A Semantic Web Rule Language Combing OWL and

RuleML. http://www.daml.org/2003/11/swrl/, 2003.
4. Massimo Paolucci et al. A Broker for OWL-S Web Services. In Semantic Web Ser-

vices: Papers from the 2004 AAAI Spring Symposium, pages 92–99. AAAI Press,
2004.

5. Peter Mika et al. Foundations for OWL-S: Aligning OWL-S to DOLCE. In Se-
mantic Web Services: Papers from the 2004 AAAI Spring Symposium, pages 52–59.
AAAI Press, 2004.

6. C. Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence, 19:17–37, 1982.

7. Ernest Friedman-Hill. Jess, the expert system shell for the java platform. Technical
report, http://herzberg.ca.sandia.gov/jess/, 2002.

8. Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In AnHai Doan, Alon
Halevy, Natasha Noy, editor, Proceedings of the Semantic Integration Workshop,
volume Vol-82. CEUR-WS.org, 2003.

9. Nuno Silva and Joao Rocha. Service-oriented ontology mapping system. In AnHai
Doan, Alon Halevy, Natasha Noy, editor, Proceedings of the Semantic Integration
Workshop, volume Vol-82. CEUR-WS.org, 2003.

10. Bruce Spencer. A Java Deductive Reasoning Engine for the Web. www.jdrew.org,
2004. Accessed 2004 Jan 12.

11. Bruce Spencer and Sandy Liu. Inference Quenes for Communicating and Monitor-
ing Declarative Information between Web Services. In Proceedings of RuleML-2003,
number 2876 in Lecture Notes in Artificial Intelligence, 2003.

12. W3C. Web Services Description Language. “http://www.w3.org/tr/wsdl”, 2001.
13. W3C. Web ontology language reference. “http://www.w3.org/TR/owl-ref/”, 2004.
14. Li Xu and David W. Embley. Using domain ontology to discover direct and indirect

matches for schema for schema elements. In AnHai Doan, Alon Halevy, Natasha
Noy, editor, Proceedings of the Semantic Integration Workshop, volume Vol-82.
CEUR-WS.org, 2004.

Using Vampire to Reason with OWL

Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks

Department of Computer Science
The University of Manchester

Manchester, UK
{tsarkov|riazanov|seanb|horrocks}@cs.man.ac.uk

Abstract. OWL DL corresponds to a Description Logic (DL) that is a fragment
of classical first-order predicate logic (FOL). Therefore, the standard methods of
automated reasoning for full FOL can potentially be used instead of dedicated
DL reasoners to solve OWL DL reasoning tasks. In this paper we report on some
experiments designed to explore the feasibility of using existing general-purpose
FOL provers to reason with OWL DL. We also extend our approach to SWRL, a
proposed rule language extension to OWL.

1 Introduction

It is well known that OWL DL corresponds to the SHOIND−
n Description Logic (DL),

and that, like most other DLs,SHOIND−
n is a fragment of classical first-order predicate

logic (FOL) [8,17,1]. This suggests the idea of using standard methods of automated
reasoning for full FOL as a mechanism for reasoning with OWL DL, not necessarily with
a view to replacing dedicated DL reasoners, but perhaps as a supplementary mechanism
that can be used in development, testing and to attempt problems that are outside the
expressive range of existing DL reasoners.

This might be done by trying to create from scratch new architectures for reasoning
in full FOL, which would be specialised for dealing efficiently with typical DL reasoning
tasks. A much less expensive option is to use existing implementations of FOL provers,
with the possibility of making adjustments that exploit the structure of DL reasoning
tasks. In this paper we investigate, experimentally, the viability of the latter approach. It
should be noted that our current implementation is very simplistic, and is only intended
as a preliminary feasibility study.

Our main experiment is organised as follows. We use a DL reasoner, FaCT++,
to classify three reasonably realistic OWL ontologies (DL knowledge bases): Galen,
Tambis and Wine. A large number of nontrivial class (concept) subsumption subtasks
are extracted, translated into FOL and submitted to Vampire, a state-of-the-art general-
purpose resolution-based FOL prover. This allows us to compare the performance of the
two systems on the same problem set.

Although by no means suggesting that dedicated DL reasoners are redundant, the
results of our experiment are quite encouraging, and show thatVampire can cope with the
vast majority of problems derived from the classification of these ontologies. Moreover,
our experiments show that some fairly simple pre-processing optimisations can greatly
improve Vampire’s performance on ontology derived problems, and suggest that there

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 471–485, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

472 D. Tsarkov et al.

may be scope for further significant improvements.At the same time, a significant number
of tests were too hard for the FOL prover, which indicates that there may be a place for
DL reasoning oriented optimisations in the Vampire architecture. Finally, a valuable
byproduct of this experiment is a large set of realistic FOL problems which may be of
interest to developers of other FOL systems.

In a second experiment, we use FOL translation and Vampire to solve problems
from the OWL Test suite [25] designed to test reasoners for OWL DL. Although OWL
DL corresponds to an expressive description logic for which the consistency problem
is known to be decidable, there is as yet no effective decision procedure known for the
complete language,1 and consequently no implemented DL reasoners [18,17]. Since no
tableaux procedure is known for this DL, it is interesting to check if a general-purpose
FO system can at least cope with some of the tasks in the OWL Test suite [25]. In fact
it turns out that Vampire can solve the vast majority of these problems.

Finally, we show how the simplicity and flexibility of our FOL translation approach
allows it to be trivially extended to deal with the Semantic Web Rule Language (SWRL),
a proposed rule language extension to OWL [13].

2 Preliminaries

There have been earlier investigations of the use of FOL provers to reason with descrip-
tion logics. Paramasivam and Plaisted, for example, have investigated the use of FOL
reasoning for DL classification [26], while Ganzinger and de Nivelle have developed
decision procedures for the guarded fragment, a fragment of FOL that includes many
description logics [10]. The most widely known work in this area was by Hustadt and
Schmidt [20], who used the SPASS FOL prover to reason with propositional modal
logics, and, via well known correspondences [30], with description logics. Their tech-
nique involved the use of a relatively complex functional translation which produces a
subset of FOL for which SPASS can be tuned so as to guarantee complete reasoning.
The results of this experiment were quite encouraging, with performance of the SPASS
based system being comparable, in many cases, with that of state of the art DL reasoners.
The tests, however, mainly concentrated on checking the satisfiability of (large) single
modal logic formulae (equivalently, OWL class descriptions/DL concepts), rather than
the more interesting task (in an ontology reasoning context) of checking the satisfiability
of formulae w.r.t. a large theory (equivalently, an OWL ontology/DL knowledge base).

In all of the above techniques, the DL is translated into (the guarded fragment of)
FOL in such a way that the prover can be used as a decision procedure for the logic—i.e.,
reasoning is sound, complete and terminating. Such techniques have, however, yet to
be extended to the more expressive DLs that underpin Web ontology languages such as
DAML+OIL and OWL DL [16], and it is not even clear if such an extension would be
possible.

An alternative approach, and the one we investigate here, is to use a simple “direct”
translation based on the standard first order semantics of DLs (see, e.g., [1]). Using this
approach, an ontology/knowledge base (a set of DL axioms), is translated into a FO

1 Briefly, the interaction between inverse roles, nominals and number restrictions causes problems
for existing algorithms.

Using Vampire to Reason with OWL 473

theory (a set of FO axioms). A DL reasoning task w.r.t. the knowledge base (KB) is
then transformed into a FO task that uses the theory. Unlike methods such as Hustadt
and Schmidt’s functional translation, this does not result in a decision procedure for the
DL. The direct translation approach can, however, be used to provide reasoning services
(albeit without any guarantee of completeness) for the expressive DLs underlying Web
ontology languages, DLs for which no effective decision procedure is currently known.
Moreover, the translation approach can easily deal with language extensions such as
SWRL (see Section 5).

In recent years, a number of highly efficient FO provers have been implemented [23,
33,29]. These provers compete annually on a set of tasks, and the results are published [7].
One of the most successful general-purpose provers has been Vampire [29], and we have
chosen this prover to use in our comparison.

2.1 Translation Issues

We will only discuss the translation from DL to FOL as the correspondence between
OWL DL andSHOIND−

n is well known [17].The translationφmaps DL conceptC and
role name R into unary and binary predicates φC(x) and φR(x, y) respectively. Complex
concepts and axioms are mapped into FO formulae and axioms in the standard way [6,
1]. For example, subsumption and equivalence axioms are translated into, respectively,
FO implication and equivalence (with the free variables universally quantified).

As an example, let’s see a translation of a couple of concept and role axioms:

DL FOL
R � S ∀x∀y(φR(x, y) → φS(x, y))
C ≡ D � ∃R.(E � ∀x(φC(x) ≡ φD(x) ∧ ∃y(φR(x, y) ∧ (φE(y) ∨

∀S−.F) ∀x(φS(x, y) ∧ φF (x)))))
A � � 3 R.B ∀x(φA(x) → ∃y1∃y2∃y3(φR(x, y1) ∧ φB(y1) ∧

φR(x, y2) ∧ φB(y2) ∧ φR(x, y3) ∧ φB(y3) ∧
(y1 �= y2) ∧ (y2 �= y3) ∧ (y1 �= y3))

Transitive(T) ∀x∀y∀z(φT (x, y) ∧ φT (y, z) → φT (x, z))

Simple DLs (like ALC) can be translated into the FOL class L2 (the FOL fragment
with no function symbols and only 2 variables), which is known to be decidable [22].
The above translations of the role inclusion axiom and concept equality axiom are, for
example, inL2. When number restrictions are added to these DLs, they can be translated
into C2—equivalent to L2 with additional “counting quantifiers”—which is also known
to be decidable [12].

The FOL translation of more expressive description logics, e.g., with transitive roles
(SHIQ, OWL Lite and OWL DL) and/or complex role axioms (RIQ [19]), may lead
to the introduction of three or more variables.2 The above transitivity axiom for role T
is an example of this case. FOL with three variables is known to be undecidable [6].

OWL DL also provides for XML schema datatypes [5], equivalent to a very simple
form of concrete domains [18]. The minimum requirement for OWL DL reasoners is that

2 In some cases, the effects of transitive roles can be axiomatised in C2 [35].

474 D. Tsarkov et al.

they support xsd:integer and xsd:string datatypes, where support means providing
a theory of (in)equality for integer and string values [27].

Our translation encodes the required datatype theory by mapping datatypes into pred-
icates and data values into new constants. Lexically equivalent data values are mapped
to the same constant, with integers first being canonicalised in the obvious way, and
axioms are added that assert inequality between all the string and integer data constants
introduced. If a data value DV and a datatype DT are mapped to DV and DT respectively,
and DV is of type DT, then an axiom DT (DV) is also added. As the xsd:integer and
xsd:string interpretation domains are disjoint, we add an axiom to that effect. Finally,
we add an axiom asserting the disjointness of the datatype domain (the set of data values)
and the abstract domain (the set of individuals).

In accordance with the OWL DL semantics, other “unsupported” data types are
treated opaquely, i.e., data values are mapped to the same constant if they are lexically
identical, but no other assumptions are made (we do not assume inequality if the lexical
forms are not identical) [27].

2.2 Key Reasoning Tasks

Given a DL Knowledge Base K (equivalently an OWL DL ontology) consisting of a
set of axioms about concepts, roles, individuals and (possibly) datatypes, key reasoning
tasks w.r.t. K include: Knowledge Base (KB) consistency (do the axioms in K lead to
a contradiction); concept consistency (is it consistent for a concept to have at least one
instance); concept subsumption (are the instances of one concept necessarily instances
of another); instance checking (does a given class contain a given instance); instance
retrieval (find all KB instances for a given class); classification (compute the subsumption
partial ordering of concept names inK); and entailment (doesK entail all of the axioms
in another KB). All of these tasks are reducible to KB consistency or, equivalently,
concept consistency w.r.t. a KB [17] (in fact they are reducible to concept consistency
w.r.t. an empty KB via internalisation [1]).

The tests presented here include several classification tasks, and a set of OWL DL
consistency and entailment tasks. Each classification task transforms into a (usually quite
large) set of concept subsumption/consistency tasks.

As a standard DL reasoner we will use FaCT++ version 0.85 beta. This system
is a next generation of the well-known FaCT reasoner [15], being developed as part
of the EU WonderWeb project (see http://wonderweb.semanticweb.org/). This
implementation is based on the same tableaux algorithms as the original FaCT, but has
a different architecture and is written in C++ instead of LISP. The goal of developing
FaCT++ was to create a modern reasoner for complex DLs (like SHIQ and OWL DL)
with good performance, improved extensibility and internal data structures that are better
able to handle very large knowledge bases.

As an FOL prover we used Vampire v6 [29]. Vampire is a general-purpose FOL
prover developed by Andrei Voronkov and Alexandre Riazanov. Given a set of first-
order formulas in the full FOL syntax,Vampire transforms it into an equisatisfiable set of
clauses, and then tries to demonstrate inconsistency of the clause set by saturating it with
ordered resolution and superposition (see [3,24]). If the saturation process terminates

Using Vampire to Reason with OWL 475

without finding a refutation of the input clause set, it indicates that the clause set, and
therefore the original formula set, is satisfiable, provided that the variant of the calculus
used is refutationally complete and that a fair strategy3 has been used for saturation. The
main input format of Vampire is the TPTP syntax [31], although a parser for a subset
of KIF [11] has been added recently.

Vampire is one of the most competitive general-purpose provers, which is demon-
strated by its performance in the last five CASC competitions [7]. However, we would
like to stress that Vampire uses no optimisations targeting specific needs of ontological
reasoning. Moreover, most of the strong features of the implementation are not very
useful in the experiments presented here. In particular, Vampire’s implementation is
highly optimised towards finding refutations, often at the cost of using incomplete pro-
cedures, whereas the majority of subsumption tests in our current experiment require
the detection of satisfiability. Also, the needs of light-weight reasoning, when one needs
to solve relatively easy problems very fast, have never been addressed. Most of the core
implementation features, such as a number of complex term indexing techniques, in-
troduce noticeable overhead during the first seconds of a run, which only pays off on
reasonably hard problems.

3 Ontology Reasoning Comparison

3.1 Test Ontologies

We used three ontologies (KBs) in the test: the Tambis ontology4 has a small size and
very simple structure; the Wine ontology5 has a similar size, but a much more complex
structure and 150 general concept inclusion axioms (GCIs)6 [1]; the Galen ontology7 has
a very large size with quite a simple concept language (only conjunction and existential
restrictions), but with transitive roles and more than 400 GCIs. Table 1 gives the size
of the ontologies along with the number of (positive and negative) subsumption tests
performed by FaCT++ during classification.

Table 1. Ontologies used for the comparison

Ontology Concepts Roles Total subs Pos subs Neg subs
Tambis 345 107 597 25 572
Wine 346 16 2221 465 1756
Galen 2749 207 25631 3561 22070

3 i.e., all generated clauses are eventually processed
4 A biochemistry ontology developed in the Tambis project [4].
5 A wine and food ontology which forms part of the OWL test suite [25].
6 A GCI is an axiom of the form C � D, where C may be an arbitrarily complex class description.

The presence of GCIs can significantly decreases the performance of a tableaux reasoner.
7 A medical terminology ontology developed in the Galen project [28].

476 D. Tsarkov et al.

3.2 Experimental Methodology

We used the following comparison scheme. For a given ontology, the DL reasoner
performed the classification process. In the case where a subsumption test is necessary,
a task was also generated for the FO prover, and the result of the DL testing was noted
for future comparison. After finishing the classification process, the set of problems that
were solved had been generated. The FO prover was then run on this set of problems.
The results were recorded and then compared with the DL ones.

In the experiments with Galen, Wine and Tambis we used the default settings of
Vampire with the following two adjustments. Firstly, the default saturation procedure
may apply an incomplete strategy, so we replaced it by a complete one (--main alg
otter). Secondly, the literal selection function, which is one of the most important res-
olution strategy parameters, was set to simulate positive hyperresolution (--selection
2), as this strategy showed the best results on a training set of tasks randomly selected
from the given problems. All tests with Vampire and FaCT++ were made on Pentium
III, 1000 Mhz running Linux. We ran Vampire with a time limit of 300 seconds and a
memory limit of 350Mb per task.

Note that the actual number of comparisons performed in order to classify an ontol-
ogy depends on the DL system’s classification algorithm. If the algorithm is optimised
(i.e., exploits concept structure, results of previous operations, etc.), then the number of
(logical) subsumption tests may be much smaller than the number required by a naive
(unoptimised) algorithm. In the FaCT++ classifier, for example, the number of actually
performed subsumption tests is typically only 0.5-2% of those that would be required in
a “brute force” implementation (see [2]). Moreover, relatively few of these tests give a
positive result (i.e., one in which a subsumption is proved), because most subsumptions
are “obvious”, and do not need to be computed using a logical subsumption test.

The comparisons were generated by FaCT++ running in its standard (optimised)
mode. This resulted in all of the general axioms in the test ontologies being absorbed [14],
i.e., axioms of the form C � D (where C is a complex concept) were re-written as axioms
of the form CN � D′ (where CN is a primitive concept name). Absorbed axioms can
be more efficiently dealt with by FaCT++’s tableaux algorithm.

3.3 Basic Translation Tests

Results using the basic translation (see Section 2.1 for details) are presented in Table 2.
The number of (solved) tasks is given, along with the average time (in seconds) per
solved task. The results are broken down into positive tasks (ones where subsumption is
proved) and negative tasks (ones where non-subsumption is proved). Tasks that are not
solved don’t influence this parameter.

Vampire can solve every positive task for Tambis, 93% for Wine and 99% for
Galen. It could not solve any negative subsumption task for Wine, but it solved 78% of
negative tasks for Galen.

3.4 Relevant-Only Translation Tests

One problem with the results presented in the previous section is that Vampire receives
all of the axioms that occur in the ontology when usually only a small fraction of them

Using Vampire to Reason with OWL 477

Table 2. Results for basic translation

Ontology Task Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.31
neg 572 572 572 < 0.01 0.31

Wine pos 465 465 433 < 0.01 41.94
neg 1756 1756 0 0.037 —

Galen pos 3561 3561 3536 < 0.01 23.75
neg 22070 22070 17260 0.027 24.20

are actually relevant to a given subsumption problem. Unlike FaCT++, Vampire is not
optimised to deal efficiently with large numbers of irrelevant axioms, and so is at a
significant disadvantage.

An obvious way to correct this situation is to remove all irrelevant information from
the FO task given to Vampire. We call an axiom irrelevant to a subsumption test C � D
if we can easily show (i.e., via a syntactic analysis) that removing it from the ontology
would not affect the interpretation of either C or D; other axioms are called relevant.
Note that not every “relevant axiom” really will affect the computation of the test C � D,
but we cannot (easily) rule out the possibility that it may affect the computation. In the
rest of paper, we will say that an FO-translation is relevant-only if it contains only
FO-translations of axioms relevant (in the above sense) to the given subsumption test.

A concept or role expression depends on every concept or role that occurs in it, and
a concept or role C depends on a concept or role D if D occurs in the definition of
C. In addition, a concept C depends on every GCI in the ontology. Relevance is the
transitive closure of depends. An algorithm for computing relevant information is quite
straightforward and is described in detail in [36].

Table 3. Results for relevant-only translation

Ontology Task Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.03
neg 572 572 572 < 0.01 0.03

Wine pos 465 465 461 < 0.01 3.44
neg 1756 1756 1243 0.037 14.32

Galen pos 3561 3561 3561 < 0.01 2.48
neg 22070 22070 17271 0.027 1.73

Results using the relevant-only translation are presented in Table 3. Note that here
only Vampire running times are changed (the additional overhead for creating relevant-
only tasks is negligible, and we did not include it in the comparison).

The removal of irrelevant information results in a big improvement for Vampire.
For the large but quite simple Galen ontology, the number of solved tests increased, and
the average time was significantly reduced. In particular, Vampire solved all positive

478 D. Tsarkov et al.

tests. For the complex Wine ontology, the majority of negative subsumption tests were
solved, whereas none were solved before.

3.5 Non-absorbed Translation Tests

In our test ontologies, all GCIs were successfully absorbed. In general, however, not
every GCI can be absorbed. It is well known that non-absorbed GCIs lead to a significant
degradation in the performance of DL reasoners [15], so we decided to compare the
effect of non-absorbed GCI’s on Vampire and FaCT++ by switching off the absorption
optimisation in FaCT++. The results of this test are presented in Table 4.

Table 4. Results for non-absorbed translation

Ontology Task Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.30
neg 572 572 572 < 0.01 0.31

Wine pos 465 465 465 0.035 4.85
neg 1756 1756 0 1.33 —

Galen pos 3561 0 3550 — 18.38
neg 22070 0 17263 — 17.95

In this test Vampire can solve all positive tasks with the smaller ontologies and 99%
with the Galen one. It could not solve any negative subsumption tasks for Wine, but
78% of Galen’s negative tasks were solved. FaCT++ could not solve any subsumption
tests for the Galen ontology, and shows significantly (up to 2 orders) worse results for
the Wine ontology. This test also demonstrates that a FO prover may be able to solve
some subsumption tests that are very hard for a tableaux based DL reasoner.

It is interesting to note that the results for Vampire are similar to those for the
basic translation given in Table 2, with the average solution time for the positive Wine
problems actually being 9 times longer for the basic translation. This seems to be due to
the increased number of complex clauses generated by the absorption optimisation (as
we can see in Table 6, the fraction of non-horn clauses grows 4 times in the absorbed
case for the Wine ontology), which makes the proving process harder for Vampire.

An example illustrating how absorption can increase the number of non-horn clauses
is given in Table 5. Here C, D, E and F are concept names. The GCI C � F is absorbed
into the axiom D � F � E, and the corresponding formula becomes non-horn.

3.6 Translation Result Profiles

To give the reader an idea of the syntactic complexity of the first-order proof tasks which
Vampire has to deal with in our experiments, we present in Table 6 the integral syntactic
characteristics of the clause sets obtained by clausifying the input provided by FaCT++.
In addition to some standard parameters (i.e. number of non-horn clauses and number
of clauses with positive equalities), we count the number of so-called chain clauses,

Using Vampire to Reason with OWL 479

Table 5. Explanation of non-horn clause introduction

Ontology DL axiom FO axiom Clause
type

Non absorbed C ≡ D � ¬E ∀x(φC(x) ≡ (φD(x) ∧ ¬φE(x)))
C � F ∀x(φC(x) → φF (x)) horn

Absorbed C ≡ D � ¬E ∀x(φC(x) ≡ (φD(x) ∧ ¬φE(x)))
D � F � E ∀x(φD(x) → (φF (x) ∨ φE(x))) non-horn

i.e., clauses of the form ±p(x1, . . . , xn) ∨±q(x1, . . . , xn), where p and q are different
predicates. This is not directly related to our current experiments, but the high proportion
of chain clauses in our tests supports the thesis of applicability of chain resolution [34]
to terminological reasoning, and may be a valuable observation for future work.

Table 6. Syntactic profiles of the test suites

Tambis Galen Wine
translation type Bas. Rel. N.A. Bas. Rel. N.A. Bas. Rel. N.A.
num. of clauses 576 42 576 6111 1715 6146 3354 1223 3123

% nonhorn 0 0 0 0 0 0 12 32 3
% chain 24 29 24 60 72 61 64 71 61
% with pos. eq. 5 4 5 2 3 2 7 8 8

lit. per clause 2.05 2.03 2.05 2.71 3.88 2.59 2.58 3.65 2.12
symbols per lit. 2.4 2.35 2.4 2.52 2.57 2.51 2.54 2.68 2.42

4 OWL Tests Comparison

The W3C WebOnt working group8 have been responsible for the definition of the OWL
Web Ontology Language. A key facet of the WebOnt activity has been to define a suite of
OWL Tests [25]. These consist of a number of tasks categorised according to their type
(consistency, entailment, etc.) and the expected result (positive or negative). In the main,
the problems are trivial in terms of reasoning, and are intended primarily to illustrate the
features of the language.A number of tests have, however, been translated from other test
collections (notable the DL98 tests [9]), and these provide more challenging problems
for reasoners, testing both correctness (e.g., termination on problems with no finite
interpretation) and efficiency (e.g., of searching large spaces of possible interpretations).

Because no existing DL reasoner can deal with the complete OWL language, we
decided to use Vampire to try to prove (or disprove) the correctness of (some of) the
OWL tests. Not all of the OWL tests were attempted as some are, e.g., designed to
test parsers or OWL Full reasoners, and some use unsupported datatypes. The tests
we attempted here are the consistency tests (both positive and negative) for OWL DL
ontologies that use no datatypes other than xsd:string or xsd:integer.

8 http://www.w3.org/2001/sw/WebOnt

480 D. Tsarkov et al.

In order to use Vampire with these tests, the OWL DL ontologies were translated
into FO axioms as described in Section 2.1; we then tried to prove the inconsistency
(consistency) of the resulting FO theory. In principle it would also be possible to use
Vampire with the positive entailment tests by trying to prove the inconsistency of the
premise theory augmented with the negated conclusion theory, but this would require a
more sophisticated translation in order to deal correctly with anonymous individuals in
the negated conclusion theory [17].

The current conversion strategy ignores OWL annotations, i.e., comments that are
intended to have no formal semantics. This has no impact on the Consistency and In-
consistency tests. For entailment tests, however, further investigation would be needed
as annotations do have an impact on entailment (in particular negative entailment) [27].

4.1 Test Results

We categorise the test results as follows. Pass—the prover returned a definitive result
which is as expected. Fail—the prover returned a definitive result which is not as ex-
pected. Unknown—the prover failed as a result of technical problems with the translation
or with Vampire. Timeout—the prover ran out of time (the prover is currently allowed
up to 300 seconds to find a proof).

Strictly speaking, any result other than pass should be taken as a failure. A wrong
answer is, however, clearly a much more serious failure than an inability to find a proof
(timeout) or an inability to deal with the problem (unknown).

Table 7. OWL test results

Type Attempted Pass Fail Unknown Timeout Pass (%)
Inconsistent 66 64 0 1 1 97%
Consistent 46 43 0 1 2 93%

Total 112 107 0 2 3 96%

A summary of the current results is shown in Table 7. As can be seen, Vampire was
able to pass over 95% of the tests. Moreover, of the 2 tests returning Unknown, one was
due to the presence of large cardinality constraints (with values >500) in the original
problem. The number of variables introduced in the translation results in a very large
source file for the problem, causing technical difficulties in parsing and converting the
test.

5 Extension to SWRL

An attractive feature of the use of a first order prover is its extensibility. The proposed
“Semantic Web Stack” includes further layers that build on the Ontology or Logical layer
provided by OWL (or similar languages). These layers are likely to add expressivity that
moves us out of the fragments of FOL supported by Description Logic reasoners, so
alternative techniques will be required to handle these extensions.

Using Vampire to Reason with OWL 481

One such proposed extension to OWL is the Semantic Web Rule Language (SWRL)
[13], which extends OWL with Horn-like rules. Note that SWRL is different from lan-
guages such as CARIN [21], where the combination of a relatively inexpressive DL
(ALCNR), and rather severe syntactic restrictions on rules, are used to ensure the de-
cidability of the combined language. In contrast, SWRL’s underlying logic is much more
expressive, and the form of rules is much less restrictive, with the result that the com-
bined language is no longer decidable. Using the translation approach, however, we can
easily extend our first-order translation to incorporate these rules and provide a simple
implementation of a SWRL reasoner.

5.1 Translating SWRL Rules

Rules in SWRL are of the form:

B1, . . . , Bm → H1, . . . , Hn

where each of the Bi or Hj are rule atoms. Possible rule atoms are shown in Table 8.
Here C is an OWL class description, R an OWL property and i and j are either OWL
individual names or SWRL variables. We consider a simplification of the proposal in

Table 8. Rule Atoms

Atom Type
C(i) Class Atom
R(i,j) Property Atom
i==j Equality Atom
i!=j Inequality Atom

[13], where C must be a class name (rather than arbitrary class descriptions), and R must
be an object property. The first of these restrictions does not affect the expressivity of
the language, as new class names can be introduced into the ontology to represent any
complex descriptions required in rules. The restriction to object properties simplifies our
implementation, but the translation we describe could easily be extended to handle data
valued properties.

The translation of rules exactly follows the semantics of the rules as given in [13].
Each rule is translated as an implication, and any free variables in the rule are assumed
to be universally quantified. Thus a rule:

B1, . . . , Bm → H1, . . . , Hn

is translated to an axiom:

∀x1, x2, . . . , xk.T (B1) ∧ . . . ∧ T (Bm) → T (H1) ∧ . . . ∧ T (Hn)

where x1, x2, . . . , xk are all the variables occurring in the Bi and Hj .

482 D. Tsarkov et al.

Table 9. Rule Atom Translation

Atom Translation
C(i) C(i)
R(i,j) R(i, j)
i==j i=j

i!=j i �= j

Translation of atoms is trivial and is shown in Table 9. Combining this translation
with the translation from OWL to FOL described in Section 2 provides us with a proto-
type implementation of a SWRL reasoner. Given an ontology and a collection of rules
relating to that ontology, we translate the ontology to FOL, and then add the FOL axioms
generated by translating the rules. The resulting theory is passed to a FO prover, where
it can be used for reasoning tasks such as satisfiability checking and instance checking.
Of course the effectiveness of such a naive approach is open to question, but this does at
least provide us with a reasoner for the complete language (rather than for some fragment
that can be handled by a rule or DL reasoner) that can be used for illustrative and test
purposes.

5.2 Examples

The proposed rule language extends the expressivity of OWL, in particular allowing us
to provide extra information about properties.A standard example of this is the following
definition of “uncle”, which cannot be expressed in OWL alone:

hasParent(?x,?y), hasSibling(?y, ?z), Male(?z)
⇒ hasUncle(?x,?z)

If our ontology additionally includes the axiom and facts (expressed here using standard
DL syntax):

Uncle ≡ ∃hasUncle−.#
〈Robert, Paul〉 : hasParent
〈Paul, Ian〉 : hasSibling

then the reasoner can infer not only hasUncle(Robert, Ian), but also that Ian is an
instance of the Uncle class.

Another interesting aspect of the language is illustrated by the following rule:

Beer(?x) ⇒ Happy(Sean)

This expresses the fact that for any instances of the class Beer, Sean must be an instance
of Happy. This effectively allows us to express an existential quantification over the class
Beer: if we can prove the existence of an instance of this class, then Seanwill be Happy.
Note that we do not actually have to provide a name for such an instance. For example,
if our ontology includes the fact:

Sean : ∃drinks.Beer
then the reasoner can infer that Sean must be Happy as we now know that there exists
some instance of Beer—even though this instance is unnamed.

Using Vampire to Reason with OWL 483

6 Discussion

As can be seen from the results, the performance of Vampire is much worse than that of
FaCT++ when tested with reasoning tasks derived from a naive translation of subsump-
tion tests (w.r.t. an ontology). When a suitably optimised translation is used, however, the
performance of Vampire improves dramatically: for the small ontology it is comparable
with that of FaCT++, although for the more complex Galen and Wine ontologies it is
still in the order of 100 times slower (and this does not take into consideration the tests
which Vampire is unable to solve within the 300s time limit).

Vampire is able to solve the vast majority of tasks within the time limit, but for
the complex ontologies it still fails on a significant number of negative tests (non-
subsumption). Unfortunately, the vast majority of tests performed during ontology classi-
fication are negative tests. It should also be pointed out that performing each subsumption
test in isolation puts Vampire at a considerable disadvantage, as fixed startup costs are
incurred in every test, and information from previous tests cannot be reused.

The performance of Vampire is sufficiently encouraging to suggest that further in-
vestigations of FO theorem proving techniques for OWL ontology derived tasks would
be worthwhile. The FO tasks generated in the tests are in the TPTP format [32], which
is a de-facto standard for the theorem proving community, making it easy to use other
FO provers in a similar comparison. Given that the performance of FO provers can vary
greatly depending on the type of problem, it may be that another FO prover would give
better performance on DL subsumption reasoning tasks. On the other hand, the perfor-
mance gap with respect to FaCT++ is sufficiently large that the designers of FO provers
might be encouraged to consider adding some DL reasoning oriented optimisations to
their systems.

Although the results presented here do not suggest that FO provers might be used
to replace dedicated DL reasoners, they do illustrate that a FO prover can be a useful
tool for ontology reasoning. A FO prover might, for example, be used as part of the
infrastructure for developing new algorithms and reasoners for various languages, in
particular for debugging, prototyping, and for checking the status of newly developed
test problems (such as those in the OWL test suite).

It might also be useful to use a FO prover in a hybrid tool for dealing with very
expressive languages, e.g., for OWL DL, where reasoning with the complete language is
beyond the scope of existing DL algorithms, or for SWRL, where the complete language
no longer corresponds to a DL (or to any other decidable fragment of FOL). In these
cases, it would be possible to use a FO prover to compute some or all of the relevant
inferences. Although there would inevitably be problems with the speed of response,
and with incompleteness, there would still be an improvement in performance given that
existing DL reasoners currently can’t deal with these situations at all.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2002.

484 D. Tsarkov et al.

2. Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich, and Enrico Fran-
coni. An empirical analysis of optimization techniques for terminological representation
systems. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR’92), pages 270–281. Morgan Kaufmann, Los Altos, 1992.

3. L. Bachmair and H. Ganzinger. ResolutionTheorem Proving. InA. Robinson andA.Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 2, pages 19–99. Elsevier Sci-
ence, 2001.

4. P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. Tambis: Transparent
access to multiple bioinformatics information sources: an overview. In Proceedings of the
Sixth International Conference on Intelligent Systems for Molecular Biology, ISMB98, pages
25–34. AAAI Press, 1998.

5. Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. W3C Recommendation,
May 2001. http://www.w3.org/TR/xmlschema-2/.

6. Alexander Borgida. On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82(1–2):353–367, 1996.

7. The CASC web page. http://www.cs.miami.edu/˜tptp/CASC/.
8. Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and LynnAndrea Stein. OWLWeb Ontology Language
Reference. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/owl-ref/.

9. DL’98 test suite. http://dl.kr.org/dl98/comparison/.
10. Harald Ganzinger and Hans de Nivelle. A superposition decision procedure for the guarded

fragment with equality. In Proc. IEEE Conference on Logic in Computer Science (LICS),
pages 295–304, 1999.

11. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format Version 3.0 Refer-
ence Manual. Technical Report Logic Group Report Logic-92-1, Stanford University, 2001.
http://logic.stanford.edu/kif/Hypertext/kif-manual.html.

12. E. Gradel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In Pro-
ceedings of LICS 1997, pages 306–317, 1997.

13. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML.
http://www.daml.org/2003/11/swrl/, 2003.

14. I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc. of the 7th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’2000), pages
285–296, 2000.

15. Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 636–647,
1998.

16. Ian Horrocks and Peter F. Patel-Schneider. The generation of DAML+OIL. In Proc. of
the 2001 Description Logic Workshop (DL 2001), pages 30–35. CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-49/, 2001.

17. Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the
2003 International Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes
in Computer Science, pages 17–29. Springer, 2003.

18. Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 199–204,
2001.

19. Ian Horrocks and Ulrike Sattler. The effect of adding complex role inclusion axioms in
description logics. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pages 343–348. Morgan Kaufmann, Los Altos, 2003.

Using Vampire to Reason with OWL 485

20. U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-order
resolution. In R. Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference (TABLEAUX 2000), volume 1847 of Lecture Notes in
Artificial Intelligence, pages 67–71. Springer, 2000.

21. Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language combining
horn rules and description logics. In European Conference on Artificial Intelligence, pages
323–327, 1996.

22. M. Mortimer. On languages with two variables. Zeitschr. für math. Logik und Grundlagen
der Math., 21:135–140, 1975.

23. Max Moser, Ortrun Ibens, Reinhold Letz, Joachim Steinbach, Christoph Goller, Johann Schu-
mann, and Klaus Mayr. SETHEO and e-SETHEO - the CADE-13 systems. Journal of
Automated Reasoning, 18(2):237–246, 1997.

24. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages
371–443. Elsevier Science, 2001.

25. OWL test suite. http://www.w3.org/TR/owl-test/.
26. M. Paramasivam and David A. Plaisted. Automated deduction techniques for classification

in description logic systems. J. of Automated Reasoning, 20(3):337–364, 1998.
27. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology language

semantics and abstract syntax. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/owl-semantics/.

28. A. L. Rector, W. A. Nowlan, and A. Glowinski. Goals for concept representation in the galen
project. In Proc. of the 17th Annual Symposium on Computer Applications in Medical Care
(SCAMC’93), pages 414–418, Washington DC, USA, 1993.

29. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communica-
tions, 15(2-3):91–110, 2002.

30. Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proc.
of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471, 1991.

31. G. Sutcliffe and C. Suttner. The TPTP Problem Library. TPTP v. 2.4.1. Technical report,
University of Miami, 2001.

32. G. Sutcliffe and C. Suttner. The TPTP Problem Library. TPTP v. 2.4.1. Technical report,
University of Miami, 2001.

33. T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, 1997.
34. Tanel Tammet. Extending Classical Theorem Proving for the Semantic Web. In R. Volz,

S. Decker, and I. Cruz, editors, Proceedings of the First International Workshop on Practical
and Scalable Semantic Systems, October 2003.
http://km.aifb.uni-karlsruhe.de/ws/psss03/proceedings.

35. Stephan Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany,
2001.

36. Dmitry Tsarkov and Ian Horrocks. DL reasoner vs. first-order prover. In Proc. of the 2003
Description Logic Workshop (DL 2003), volume 81 of CEUR (http: // ceur-ws. org/),
pages 152–159, 2003.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 486–501, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Generating On the Fly Queries for the Semantic Web:
The ICS-FORTH Graphical RQL Interface (GRQL)1

Nikos Athanasis1,2, Vassilis Christophides1,2, and Dimitris Kotzinos2

1 Institute of Computer Science, Foundation for Research and Technology – Hellas,
P.O. Box 1385, 71110 Heraklio, Greece

{athanasi, christop}@ics.forth.gr
2 Department of Computer Science, University of Crete,

P.O. Box 2208, 71110 Heraklio, Greece
kotzino@csd.uoc.gr

Abstract. Building user-friendly GUIs for browsing and filtering RDF/S de-
scription bases while exploiting in a transparent way the expressiveness of de-
clarative query/view languages is vital for various Semantic Web applications
(e.g., e-learning, e-science). In this paper we present a novel interface, called
GRQL, which relies on the full power of the RDF/S data model for construct-
ing on the fly queries expressed in RQL. More precisely, a user can navigate
graphically through the individual RDF/S class and property definitions and
generate transparently the RQL path expressions required to access the re-
sources of interest. These expressions capture accurately the meaning of its
navigation steps through the class (or property) subsumption and/or associa-
tions. Additionally, users can enrich the generated queries with filtering condi-
tions on the attributes of the currently visited class while they can easily specify
the resource’s class(es) appearing in the query result. To the best of our knowl-
edge, GRQL is the first application-independent GUI able to generate a unique
RQL query which captures the cumulative effect of an entire user navigation
session.

1 Introduction

Semantic Web (SW) technology and in particular the Resource Description Frame-
work (RDF) [12] and its Schema definition language (RDFS) [3] are increasingly
gaining acceptance by modern web applications (e.g., e-learning, e-science) striving
to describe, retrieve and process large volumes of information resources spread
worldwide. In this context, several declarative languages for querying and specifying
views over RDF/S description bases have been proposed in the literature such as RQL
[12], and RVL [15] (see [14] for an extensive comparison of SW QLs). However,
these languages are mainly targeting experienced users, who need to understand not

1 This work was partially supported by the EU Projects MesMuses (IST-2000-26074) and

Selene (IST-2001-39045).

Generating On the Fly Queries for the Semantic Web 487

only the RDF/S data model but also the syntax and the semantics of each language in
order to formulate a query or a view in some textual form. Building user-friendly
GUIs for browsing and filtering RDF/S description bases while exploiting in a trans-
parent way the expressiveness of declarative languages like RQL/RVL is still an open
issue for emerging SW technology.

The idea of using suitable visual abstractions in order to access data collections
originates from the early days of the database systems. Commercial systems like the
IBM QBE [21] and Microsoft Query Builder [16], as well as research prototypes like
PESTO [8], IVORY [5], Lorel’s DataGuide-driven GUI [10], BBQ [17], QURSED
[18], and XQBE [2] are just few examples of graphical front-ends to relational, object
or semistructured/XML databases assisting end-users in formulating queries to the
underlying language (e.g., SQL, OQL, or XPath/XQuery) of the DBMS. These visual
querying interfaces essentially rely on a graphical representation of the schema con-
structs (i.e., relations, object classes, XML elements/attributes) supported in each data
model along with appropriate end-user interactions allowing to construct custom
views and display their results in a default fashion. They are usually implemented as
standalone applications targeting experienced users who need to understand not only
the schema of the underlying database but also a great part of the functionality of the
supported query language (i.e., joins, projections, etc.).

In the context of Semantic Web Portals, several browsing interfaces have been pro-
posed (like RDF Distillery [9], OntoWeb [11], OntoPortal [4], ODESeW [7]) for
accessing ontologies and their related information resources. These visual browsing
interfaces offer a graphical view of the entire ontology as a tree or a graph of related
classes and properties where users can either access directly the classified resources or
formulate (attribute-value) filtering queries. They are usually implemented as Web
applications for the “general public” using the programming APIs supported by the
underlying ontology repository. As a result of their API limitations, the resources
accessed each time correspond only to the most recently performed browsing action,
regardless of the navigation paths traversed by a user. Thus, SW browsing interfaces
ignore the class associations followed by users when visiting one class after the other.

The graphical interface presented in this paper aims to combine the simplicity of
SW browsers with the expressiveness of DB query generators in order to navigate the
Semantic Web by generating queries on the fly. The proposed interface, called
GRQL, relies on the full power of the RDF/S data model for constructing, in a trans-
parent to the end-user way, queries expressed in a declarative language such as RQL.
More precisely, after choosing an entry point, users can discover the individual
RDF/S class and property definitions and continue browsing by generating at each
step the RQL path expressions required to access the resources of interest. These path
expressions capture accurately the meaning of its navigation steps through the class
(or property) subsumption and/or associations. Additionally, at each navigation step
users can enrich the generated queries with filtering conditions on the attributes of the
currently visited class while they can easily specify which class of resources should
be finally included in the query result. To the best of our knowledge, GRQL is the
first application-independent graphical interface able to generate a unique RQL query
which captures the cumulative effect of an entire user navigation session. This func-
tionality is vital for Semantic Web Portals striving to support conceptual bookmarks

488 N. Athanasis, V. Christophides, and D. Kotzinos

and personalized knowledge maps build on demand according to user’s navigation
history [19].

The rest of the paper is organized as follows. Section 2 presents the graphical gen-
eration of RQL queries using different navigation scenarios related to an example
RDF/S schema. Section 3 details the implementation of our generic query generation
algorithm including the internal representation model of RDF/S schemas and RQL
queries, as well as the GUI demonstrating the intuitive use of GRQL by non-expert
users. Finally, Section 4 summarizes our contributions and outlines our future work.

r2: www.museum.es/
guernica.jpg

r1:www.rodin.fr/
thinker.gif

Portal
Schema

Portal
Resource
Descriptions

&r3

&r1

&r2

&r4

Artist

Sculptor

String
Artifact

Sculpture

Painting

sculpts

createsfname

lname

paints

String
Museumexhibited

technique
StringPainter

paints

creates

&r5

&r6

fname

lname

lname

paints

“Pablo”

“Picasso”

“Rodin”

“oil on canvas”technique

exhibited

“oil on canvas”
technique

r4:www.museum.esr3:www.museum.es/
woman.qti

Web
Resources

r2: www.museum.es/
guernica.jpg

r1:www.rodin.fr/
thinker.gif

Portal
Schema

Portal
Resource
Descriptions

&r3

&r1

&r2

&r4

&r3

&r1

&r2

&r4

Artist

Sculptor

String
Artifact

Sculpture

Painting

sculpts

createsfname

lname

paints

String
Museumexhibited

technique
StringPainter

Artist

Sculptor

String
Artifact

Sculpture

Painting

sculpts

createsfname

lname

paints

String
Museumexhibited

technique
StringPainter

paints

creates

&r5

&r6

fname

lname

lname

paints

“Pablo”

“Picasso”

“Rodin”

paints

creates

&r5

&r6

fname

lname

lname

paints

“Pablo”

“Picasso”

“Rodin”

“oil on canvas”technique

exhibited

“oil on canvas”
technique

“oil on canvas”technique

exhibited

“oil on canvas”technique

exhibited

“oil on canvas”
technique

“oil on canvas”
technique

r4:www.museum.esr3:www.museum.es/
woman.qti

Web
Resources

Fig. 1. RDF/S Descriptions of Web Resources in a Cultural Portal

2 From RDF/S Schema Browsing to RQL Queries

In this section we will present our graphical RQL interface (GRQL) and in particular
the translation of the browsing actions performed by a user on the RDF/S class (or
property) subsumption and/or associations to appropriate RQL path expressions and
filters. To this end, we will use a fairly well known example schema originally em-
ployed in [12] to present the functionality of RQL.

Fig. 1 illustrates the RDF/S descriptions of four available resources: a sculpture
image (resource identified as r1), two painting images (resources identified as r2 and
r3) and a museum web site (resource identified as r4). These descriptions have been
created according to an RDF/S schema for cultural applications comprising three top-
level classes, namely Artist, Artifact and Museum, which are associated thought the

Generating On the Fly Queries for the Semantic Web 489

properties creates and exhibited. Given the flexibility of the RDF/S data model, both
classes and properties can be specialized through subsumption relationships. In our
example, the class Artist is specialized to Sculptor and Painter while class Artifact to
Sculpture and Painting. In the same way the property creates (with domain the class
Artist and range the class Artifact) is specialized to sculpts (with domain the class
Sculptor and range the class Sculpture) and paints (with domain the class Painter and
range the class Painting). Properties fname, lname, and technique play the role of
attributes and range over the literal type string (or more generally an XML Schema
data type [1, 20]). Then, resource r2 can be described as an instance of the class
Painting with an attribute technique having as value “oil on canvas” and it is associ-
ated with resource r4 though the property exhibited.

It is fairly obvious that users of our cultural portal need to navigate through the
schema in order to access the corresponding resource descriptions. Nevertheless this
navigation should take place without having to learn an RDF query language and
construct the necessary queries by themselves. Furthermore, they want to distinguish
Artifact resources for which information about their creator is available (e.g., r1, r2,
r3) from Artifact resources having additional information about their exhibiting mu-
seum (e.g., r2). In other words, as in the case of static hyperlinks between web pages,
users should be able to browse the Semantic Web in order to access resources accord-
ing to the navigation paths traversed in the conceptual space defined by an RDF/S
schema. This is a non-trivial task given that users can arbitrary browse back and forth
through both the subsumption relationships of classes (or properties) and the associa-
tions of classes captured by properties. In the rest of this section, we will detail how
the translation algorithm of the GRQL interface supports the desired functionality.

2.1 Browsing Class Associations

GRQL provides a tree-shaped graphical representation of the class (or property) sub-
sumption relationships defined in an RDF/S schema, as for instance, the cultural ex-
ample of Fig. 1. Then, users can choose one of the available classes (or properties) to
begin their navigation session, while the definition of the selected class (i.e., its sub-
classes, attributes and associations) is displayed in order to enable them to browse
further the DAG of class associations2. This elementary browsing action is translated
into an appropriate RQL query, which essentially specifies a dynamic view over the
underlying resource descriptions according to the performed schema navigation.
Table 1 depicts the choice of the class Artist as entry point, as well as the generated
RQL query returning all resources classified under Artist and recursively its sub-
classes (i.e., resources r5 and r6). At each browsing step, GRQL displays the path(s)
of classes and properties visited insofar during a navigation session. In this way,
GRQL not only informs users about their navigation history but also provides the
ability to return to a previous browsing step. As we will see later on in this paper, this
is useful for specifying which class of resources will be finally included in the con-

2 Cyclic properties, having as domain and range the same class, are not considered in this

paper.

490 N. Athanasis, V. Christophides, and D. Kotzinos

structed view, as well as for navigating through multiple schema paths (see subsection
2.3).

Table 1. Choice of class Artist as entry point to the schema navigation

Navigation RQL query Path

select X1 from Artist{X1} Artist

After displaying the definition of the class Artist the user can access the resources

of other associated classes, as for instance, the class Artifact (through the creates
relationship). Now the user’s view is extended with property creates relating in-
stances of the class Artist with instances of the class Artifact. Table 2 shows the per-
formed browsing action, the generated RQL query and the corresponding navigation
path. Note that the path expression creates in the from clause of the RQL query con-
siders resources associated by this property and any of its subproperties such as paints
and sculpts (i.e., Artifact resources r1, r2 and r3). By default, the resources included
in the final result i.e., the select clause of the RQL query, correspond to the current
class (or property) selection in the navigation path, as in this example the range class
of the property creates.

Table 2. Navigation to associated class Artifact through property creates

Navigation RQL query Path

select X2 from
{X1}creates{X2} Artist creates Artifact

In the same manner, users can continue their navigation from class Artifact to Mu-

seum through the property exhibited and the available view is now specified by the
following RQL query: select X3 from {X1}creates{X2}.exhibited{X3}. In this example,
the constructed view comprises the Museum resource r6.

2.2 Browsing Subsumption Relationships

In addition, GRQL gives the ability to interleave at any step browsing on class asso-
ciations with browsing on class (or property) subsumption relationships. For instance,
after the navigation illustrated in Table 2 a user may choose to visit the subclass
Painting of Artifact. As is shown in Table 3, this browsing action has the effect to
narrow the user’s view only to Painting(s) created by an Artist. Compared to the RQL
query of Table 2, the path expression in the from clause has been now accordingly
modified to {X1}creates{X2;Painting} where the range of the property instead of the
default Artifact class (and thus initially omitted) is now restricted to Painting.

Generating On the Fly Queries for the Semantic Web 491

Table 3. Navigation to specialized classes

Navigation RQL query Path

select X2 from
{X1}creates{X2;Painting} Artist creates Painting

Then, users can either continue browsing through more specialized subclasses, if

available, or visit other associated classes of class Painting. Note that RDF/S sub-
classes may have additional associations and attributes, as for instance, technique.
The user can alternatively return to a previous step in the navigation path by clicking
on the name of an already visited class or property (or more generally by clicking the
back button of a Web browser).

Table 4. Navigating back to an already visited class

Navigation RQL query Path

select X2 from
{X1}creates{X2;Painting} Artist creates Painting

select X1 from
{X1}creates{X2;Painting} Artist creates Painting

As shown in Table 4 (solid arrows represent the current position of the user in a

navigation path), this browsing action affects only the target class of resources, which
are going to be included in the user view i.e., the select clause of the generated RQL
query. For example, while the first scenario considers in the view resources of the
class Painting (represented by variable X2), the second scenario returning back to the
initial navigation step, considers resources of the class Artist (represented by variable
X1). It should be stressed that, although the user visits the same class Artist in both
the initial and the final browsing step, the constructed views are different (see Tables
4, 1), since they capture the effect of a sequence of performed browsing actions.

492 N. Athanasis, V. Christophides, and D. Kotzinos

Table 5. Navigating to sibling subclasses in a path

Navigation RQL query Path

select X2 from
{X1}creates{X2;Painting

}, Sculpture{X2}

Artist creates Painting
 Sculpture

2.3 Browsing Multiple Navigation Paths

If a user revisits the class Artifact from the scenario of Table 4, the constructed view
remains the same as illustrated in Table 3. This ensures that the GRQL interface does
not generate redundant RQL queries in the case where a user loops in the navigation
path. However, since the definition of class Artifact is made available once more, the
user may choose to visit another subclass such as Sculpture. In this scenario, the view
contains the Artist(s) and their Painting(s) computed previously, which are also
Sculpture(s). As it can be seen in Table 5 this browsing action is translated into a
conjunction of two RQL path expressions, given that the user was firstly interested to
Painting(s) and then to Sculpture(s). Note that conjunctive path expressions in the
from clause of an RQL query share common resource variables (e.g., variable X2). In
this way GRQL interface captures the fact that the same URL may be classified under
several unrelated through subsumption classes. The class of resources included in the
final result of the view corresponds, as usual, to the current position of the user in the
navigation path(s), but there is also the ability to obtain all the resources (e.g., repre-
sented by variables X1, X2 and X3) involved in its navigational view by selecting the
special “Include All” GRQL button.

Users may in turn decide to revisit the class Painting displayed in the first naviga-
tion path and select the associated class Museum through the property exhibited. In
this scenario, its view provides access to Museum(s) exhibiting Painting(s) that have
been created by Artist(s), with the additional condition that these Painting(s) are also
Sculpture(s). The generated RQL query by this browsing action is shown in Table 6.

Table 6. Navigating to associated classes that belong to different navigation paths

Navigation RQL query Path

select X3 from
{X1}creates{X2;Pa

inting}.
{;Painting}exhibi

ted{X3},
Sculpture{X2}

 Sculpture
Artist creates Painting

exhibited Museum

Generating On the Fly Queries for the Semantic Web 493

Table 7. Navigating to specialized properties

Navigation RQL query Path

Select X1, X2 from
{X1}paints{X2}.{;Pai
nting}exhibited{X3},

Sculpture{X2}

 Sculpture
Painter paints Painting

exhibited Museum

As a different navigation scenario, we consider browsing through specialized
properties, like paints, which can be reached in our example by clicking on the prop-
erty creates already appearing in the first navigation path of Table 6. Compared to
subclasses (see Table 3), browsing subproperties has as effect to alter both the domain
and range classes of properties included in a navigation path. As shown in Table 7,
this browsing action will construct a new view containing those Painter(s) that have
painted Painting(s) exhibited in a Museum with the additional condition that these
Painting(s) are also Sculpture(s). Since these classes are the default domain-range
definitions of paint, the corresponding restrictions can be omitted in the from clause
of the generated RQL query.

Finally, as a last navigation scenario, we consider browsing through different paths
that converge to the same class. This class is the common range of properties (same
or different) traversed by distinct branching paths. In Table 8, we assume that the user
has navigated twice to the class Museum through the property exhibited: first from the
class Painting and then from the class Sculpture. Given the semantics of the naviga-
tion to sibling classes (Table 5), our user is intrested in Painting(s), which are also
Sculpture(s), and the previous browsing action results to the addition only of the
subpath Painting exhibited Museum. Note that the addition of the subpath Sculptu-
re exhibited Museum is redundant, since the generated RQL query will always
return the same results as previously: the corresponding view provides access to
Painters that have created Painting, which are also Sculptures, exhibited in a Mu-
seum.

It becomes clear that GRQL enables users to browse towards all directions in an
RDF/S schema (i.e., subsumption and association relationships of classes and proper
ties), including backtracking and choice of branching navigation paths. The views

Table 8. Navigating to an associated class from multiple different paths

Navigation RQL query Path

select X3 from
{X1}paints{X2}.
{;Painting}exhib
ited{X3}, Sculp-

ture{X2}

 Sculpture
Painter paints Painting

exhibited Museum

494 N. Athanasis, V. Christophides, and D. Kotzinos

constructed at each step carry the information of the previous navigation and augment
it with the additional resources that can be actually accessed by the current browsing
action. In other words, GRQL creates dynamic views based on the incremental con-
struction of adequate RQL queries capturing the effect of browsing actions performed
by a user during its navigation session. To begin a new session, users have just to
return back to the initial tree-shaped interface of class (or property) subsumption
relationships and choose another entry point to the schema.

2.4 Enriching Path Expressions with Filtering Conditions

In addition to the ability to navigate through the RDF schema paths, users can formu-
late filtering conditions on the attributes of the class visited at each navigation step.
The comparison operators which can be used in these conditions are related to the
data types of the class attributes specified in XML Schema [1, 20], e.g. strings,
datetime, numerical like integer and float, and enumerations. Thus, GRQL enables
users to select graphically the desirable filtering condition that can be used with a
particular attribute data type and fill the comparison values in a dedicated text area.

For example, if the RQL query of Table 4 should be restricted to obtain Artists,
whose last name (attribute named last_name) contains a “P”, the user has to insert the
required information (“P”) and select the “like” operator for filtering. The constructed
conjunctive RQL query is given below:

select X1 from {X1}:creates{X2;Painting}, {X1}last_name{X4} where X4 like "*P*"

It becomes clear that filtering provides the ability to select resources that their at-

tributes conform to user specified conditions in conjunction with their associations to
other resources specified by the user schema navigation paths. As a result RQL que-
ries can define custom views that present to users a snapshot of the underlying RDF/S
description base by hiding unnecessary information.

RDF-Schema

RDF-Class RDF-PropertyRange

RDF-Triplet(RDF-Class, RDF-Property, RDF-PropertyRange)

getClass()

getProperty()

g
e
t
R
a
n
g
e
(
)

create new or update existing triplet

isSubClassOf()

isSubPropertyOf()

RDF-Property

Fig. 2. The GRQL Java classes representation of RDF/S schemas

Generating On the Fly Queries for the Semantic Web 495

3 Implementation of the GRQL Translation Algorithm and GUI

In this section we detail the translation algorithm of the user browsing actions on an
RDF/S schema into appropriate RQL queries. To this end, we first introduce the
GRQL interface internal representation of RDF/S schemas and RQL queries. Finally,
we present the GRQL GUI, which allows browsing arbitrary RDF/S schemas and
resource descriptions by generating RQL queries on the fly.

3.1 GRQL Internal Model of RDF/S Schemas and RQL Queries

An RDF/S schema is first loaded into the main memory during the GRQL system
initialization by using appropriate Java classes. That way, schema navigation is effi-
ciently implemented by accessing directly the required, at each step, class and prop-
erty definitions instead of generating new RQL queries (e.g., to obtain subclasses or
subproperties). Note that, GRQL is able to obtain during initialization the entire
schema information stored in a RSSDB database [0] through a single RQL query.

As we can see in Fig. 2, the result of the initial schema query is processed by the
java class RDF-Schema, while each RDF class is represented by the java class RDF-
Class and each RDF property by the java class RDF-Property (java class RDF-
PropertyRange captures either a literal type or a class serving as range of a prop-
erty). Schema navigation performed by the user is represented as a list of objects of
type RDF-Triplet containing references to objects of type RDF-Property, RDF-Class
and RDF-PropertyRange. Then methods (like getDomain(), getRange(), isSub-
ClassOf(), isSubPropertyOf()) are used to construct the appropriate RDF-Triplets
according to the browsing actions performed by a user.

3.2 GRQL Translation Algorithm of Browsing Actions

The creation of dynamic views during the user’s navigation relies on the generation
of an appropriate RQL query. In order to create correctly this query we have imple-
mented an algorithm translating the user navigation into schema triplets, which are
used in the sequel to produce the corresponding RQL query, as well as visualize the
traversed navigation paths. The algorithm relies on the RDF/S schema information
represented by the Java classes of Fig. 2. A triplet consists of statements of the form
<subject, predicate, object> where predicate captures the properties while subject
and object capture the classes traversed during schema navigation.

Recall that GRQL interface allows users to navigate though classes and subclasses,
as well as properties and subpropeties. Note also that properties are selected either
explicitly by their name, or implicitly by their range given a specific domain class in
the navigation path. At each browsing action performed by a user the GRQL transla-
tion algorithm will either create a new triplet or modify an existing one or leave eve-
rything unchanged in case of loops. The triplets belong either to the same path that
the user is currently traversing (in which case the new triplet’s domain is the range of

496 N. Athanasis, V. Christophides, and D. Kotzinos

the current triplet), thus creating a chain or to a new path (in which case the new
triplet’s domain is the same with the domain of the current triplet), thus creating tree-
shaped paths. Thus, GRQL is able to construct and manipulate any kind of navigation
path, including linear and branching paths with common origin and/or destination as
depicted in Fig. 3. The pseudocode of the GRQL translation algorithm is given in Fig.
4 (the class and property selected by a user are denoted as selClass and selProp).

Going back to the first navigation scenario of the previous section, one can easily
correlate the triplets created by our algorithm with the navigation paths traversed by a
user and consequently with the generated RQL queries. So the initial selection of the
Artist class as an entry point produces the first triplet: <Artist, empty, empty>
(lines 2 – 5 of Fig. 4). Then, when the user navigates to an associated class, i.e. selects
the Artifact(s) create(d) by the Artist(s), the triplet is modified to <Artist, creates,
Artifact>. It should be stressed that we could obtain the same triplet in one step, if in
the initial selection the property creates was chosen instead of the class Artist (lines
34 – 37). In any case, by selecting a subclass (Painting) the user chooses a more spe-
cific description about the available resources and thus the triplet is once more modi-
fied to <Artist, creates, Painting> (lines 15 – 18).

In the backtracking scenario when the user revisits a class, the triplets produced in-
sofar remain the same. On the other hand, when the user selects a class not specializ-
ing the domain of the current triplet (i.e., sibling), the algorithm creates a new triplet
corresponding to a branching path. For example, by selecting Sculpture(s) create(d)
by Artist(s) instead of Painting(s), the triplet <empty, empty, Sculpture> is added
to the list of existing triplets (lines 20 – 25). Once again users could alternatively
have chosen to view the Sculpture(s) sculpt(ed) by the Sculptor(s) by navigating
through the subproperty sculpts of creates, which results to the modification of the
triple <Artist, creates, Painting> to <Sculptor, sculpts, Sculpture> (lines 43 -
44) and the addition of the triplet <empty, empty, Painting> (lines 51 – 55). In
both cases the user’s navigation path has two branches and the RQL query is updated
accordingly.

Fig. 3. Schema navigation paths constructed and manipulated by GRQL

Assuming now that the user wants to further expand his navigation along the initial
path (<Artist, creates, Artifact>) in order to also obtain the Museums that the Arti-
facts are exhibited at, the new triplet <Artifact, exhibited, Museum> will be added
(lines 64 - 69) to the list of existing triples. If the user narrows the scope of its naviga-
tion by selecting the subclass Painting, this browsing action affects both triplets hav-
ing Artifact as subject or object by modifying them to <Artist, creates, Painting>,
<Painting, exhibited, Museum> (lines 15 – 18 and 10 – 13 respectively).

…
c2 c3 c4

c5 c6 c7

c1 c8

p2
p3

p5
p4

p7

p6…

…
… p1

Generating On the Fly Queries for the Semantic Web 497

Fig. 4. Pseudocode of the class navigation triplet construction

498 N. Athanasis, V. Christophides, and D. Kotzinos

In the same manner, triplets are created when users add filtering conditions to their
navigation paths. In this case though, triplets are constructed based on the attribute, its
value and corresponding condition and the associated class. Referring to the example
presented in 2.4 and for exactly the same RQL query the constructed triplets will be:
<Artist, creates, Painting>, <Artist, last_name, like “*P*”>.

It becomes clear that the GRQL translation algorithm captures successfully a se-
quence of complex browsing actions performed by a user at the schema level. Then,
at each navigation step the generated triples are employed to construct dynamically
the RQL query defining a user view. Last but not least, the GRQL translation algo-
rithm ensures that the generated RQL queries are minimal, i.e., there do not exist
other less complex RQL queries, which can produce the same result. As a matter of
fact, our algorithm computes at each browsing step the minimal RQL query corre-
sponding to the conjunction of the current and the previous navigation paths. For
instance, assuming that a user selects initially the property creates, then refines its
range to the subclass Painter and finally narrows its view to the subproperty paints,
GRQL generates three RQL queries for which the following containment relation-
ships are true:
Q3 select * Q2 select * Q1 select *
 from {X1}paints{X2} ⊆ from {X1;Painter}creates{X2} ⊆ from {X1}creates{X2}
Since the result of Q2 is contained in the result of Q1, the conjunction of the queries
(or more precisely of their path expressions) generated at the current (2) and previous
steps (1) results to a redundant RQL query, which can be simplified as follows:
Q2 select * Q2’ select *
 from{X1;Painter}creates{X2} ≡ from{X1;Painter}creates{X2},{X1}creates{X2}
In the same way, the minimal RQL query produced at the navigation step 3 is Q3.
Readers are referred to [6] for formal foundations of RQL query containment.

3.3 The GRQL Graphical User Interface

The GRQL GUI consists of three basic interaction areas. The left area provides a tree-
shaped display of the subsumption hierarchies3 of both the classes and properties
defined in an RDF/S schema. Selecting the name of a class or property, results to a
new navigation session. This session considers the selected class or property as entry
point for further schema browsing. In this respect, the right upper area of the GRQL
GUI allows users to explore progressively the individual RDF/S class and property
definitions and generate navigational and/or filtering RQL queries. Finally, the right
lower area visualizes the constructed query/view results. A snapshot of the GRQL
GUI is illustrated in Fig. 5.

The left area of the GUI displays the predefined views over the class and property
hierarchies (e.g., corresponding to a particular RDF/S schema namespace). Each tree
node is labeled with a class or a property name and users can access their subclasses

3 In case of multiple subsumption, the same class or property appears as a child of all its par-

ent nodes.

Generating On the Fly Queries for the Semantic Web 499

Fig. 5. A Snapshot of the GRQL GUI after navigating at the schema level

and subproperties by expanding the tree nodes. Each tree node is essentially a hyper-
link that, after activation, fetches in the right area of the GUI the complete definition
of the selected class or property. More precisely, for each selected class the following
items are displayed: its subclasses, its associations with other classes and its attributes.
For each selected property the domain and range classes are displayed, as well as its
subproperties. As have presented in the previous section, selections on classes asso-
ciations and/or subsumption result to the construction of appropriate schema naviga-
tion paths.

GRQL also supports navigation at the resource level. When the “Get Resources”
hyperlink is activated, the lower area of the GUI will display the resources matching
the generated RQL path expressions and filters, i.e., populating the constructed view.
If the “Include All” button is also selected, the resources of all the classes taking part
in the navigation path(s) will be displayed. In the opposite, (and this is the default
behavior), only the resources of the last visited class will be displayed (or the re-
sources in the domain and range of the last visited property). Additionally the user
has the ability to “Eliminate Duplicates”, if such an action is desirable. For educa-
tional purposes, a user has the ability to inspect the generated RQL query by clicking
on the “View Query” hyperlink. After computing the resources that correspond to a
current position in the navigation path, users can select a specific resource URI to
obtain its full semantic description (i.e., the classes under which are classified, their
attribute values and associations to other resources) or they can continue their naviga-
tion at the schema level.

Finally, an appropriate navigation bar is employed to visualize the navigation his-
tory of a user and therefore the so-constructed RQL query. Hyperlinks of all constitu-
ent path parts enable users to revisit a class or property and follow an alternative
navigation path. In a nutshell, GRQL GUI supports unconstrained browsing through
both RDF/S resource descriptions and schemas.

500 N. Athanasis, V. Christophides, and D. Kotzinos

4 Summary and Future Work

In this paper we have presented GRQL, a graphical query generator assisting non-
expert users in browsing RDF/S resource descriptions and schemas available on the
Semantic Web. More precisely, GRQL enables users to browse towards all directions
in an RDF/S schema (i.e., subsumption and association relationships of classes and
properties), including backtracking and choice of branching navigation paths. The
most notable GRQL feature is its ability to translate, into a unique RQL query, a se-
quence of browsing actions during a navigation session performed by a user.

As recognized by previous work on web navigation patterns [19], non-expert users
need intuitive tools for capturing resources they have visited in previous navigation
steps. We believe that GRQL addresses successfully this need, by enabling SW appli-
cations to support conceptual bookmarks and personalized knowledge maps build on
demand according to users’ navigation history. We are currently implementing this
functionality in the context of the ICS-FORTH Semantic Web Portal Generator4.

Finally, we are planning to extend the GRQL graphical interface to also support
disjunctive queries, as well as updates of RDF/S descriptions and schemas. In this
way, users will be equipped with a uniform graphical interface for navigating, filter-
ing and updating RDF/S description bases and schemas without needing to learn
dedicated declarative languages or to program in application-specific APIs.

References

0. Alexaki S., Christophides V., Karvounarakis G., Plexousakis D., Tolle K.: The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proceedings of the
2nd International Workshop on the Semantic Web (SemWeb), in conjunction with the
Tenth International World Wide Web Conference (WWW), Hongkong, May 1, 2001.

1. Biron P. V., and Malhotra A.: XML SchemaPart 2: Datatypes. W3C Recommendation 02
May 2001.
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&
volume=2992&spage=848

2. Braga D., Campi A., and Ceri S.: XQBE: A Graphical Interface for XQuery Engines. In
Proceeding of the 9th International Conference on Extending Database Technology
(EDBT), Heraklion, Crete, Greece, March 14-18, 2004.

3. Brickley D., Guha R.V., and McBride B.: RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation 10 February 2004.

4. Carr L., Kampa S., and Miles-Board T.: OntoPortal: Building Ontological Hypermedia
with the OntoPortal Framework. MetaPortal Final Report 2001. The semantic portal is
available at: http://www.ontoportal.org.uk

5. Chang S., Lee D and Kim H. A.: Visual Browse/Query Tool for Navigating and Retriev-
ing Multimedia Data on Object Databases. In Proceedings of the First International Con-
ference on Advanced Multimedia Content Processing Osaka, Japan, November 1998.

4 http://athena.ics.forth.gr:8999/RQLdemo/

Generating On the Fly Queries for the Semantic Web 501

6. Christophides V., Karvounarakis G., Koffina I., Kokkinidis G., Magkanaraki A.,
Plexousakis D., Serfiotis G., and Tannen V.: The ICS-FORTH SWIM: A Powerful Seman-
tic Web Integration Middleware, First International Workshop on Semantic Web and Da-
tabases (SWDB), collocated with VLDB 2003, Humboldt-Universitat, Berlin, Germany,
September 7-8, 2003.

7. Corcho, O., Gómez-Pérez, A., López-Cima, A., and del Carmen Suárez-Figueroa, M.:
ODESeW: Automatic Generation of Knowledge Portals for Intranets and Extranets. The
semantic portal is available at: http://www.esperonto.net/semanticportal/jsp/frames.jsp

8. Carey M., Haas L., Maganty V., and Williams J.: PESTO: An Integrated Query/Browser
for Object Databases. In Proceedings of the 22nd International Conference on Very Large
Data Bases (VLDB), September 3-6, 1996, Bombay, India.

9. Gibson, D.: The RDF Distillery. University of Queensland, 2002. Available at:
http://www.kvocentral.com/reports/diongibsonthesis.pdf

10. Goldman R., and Widom J.: DataGuides: Enabling Query Formulation and Optimization
in Semi-structured Databases. Stanford Technical Report 1997. Available at: http://www-
db.stanford.edu/lore/pubs/dataguide.pdf

11. Jarrar M., Majer B., Meersman R., Spyns P., Studer R., Sure Y., and Volz R.: OntoWeb
Portal: Complete ontology and portal. In Proceedings of the 17th National Conference on
Artificial Intelligence, Austin/TX, USA, July 30-August 3, 2000, AAAI Press/MIT Press.

12. Karvounarakis G., Alexaki S., Christophides V., Plexousakis D., and Scholl M.: RQL: A
Declarative Query Language for RDF, The Eleventh International World Wide Web Con-
ference (WWW), Honolulu, Hawaii, USA, May 7-11, 2002.

13. Klyne G., Carroll J.J, and McBride B.: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation. 10 February 2004.

14. Magkanaraki A., Karvounarakis G., Christophides V., Plexousakis D., and Anh T..: On-
tology Storage and Querying. ICS-FORTH Technical Report No 308, April 2002.

15. Magkanaraki A., Tannen V., Christophides V., and Plexousakis D.: Viewing the Semantic
Web Through RVL Lenses. In Proceedings of the Second International Semantic Web
Conference (ISWC), Sanibel Island, Florida, USA, 20-23 October, 2003.

16. Microsoft Visual InterDev, Available at http://msdn.microsoft.com/vinterdev/
17. Munroe K., and Papakonstantinou Y.: BBQ: A Visual Interface for Browsing and Query-

ing XML. In Proceedings of the 5th IFIP 2.6 Working Conference on Visual Database Sys-
tems Fukuoka – Japan, May 10-12, 2000.

18. Petropoulos M., Papakonstantinou Y. and Vassalos V.: Graphical Query Interfaces for
Semistructured Data: The QURSED System. In ACM Transactions on Internet Technology
(TOIT), vol 5/2, 2005.

19. Tauscher L., and Greenberg S.: How People Revisit Web Pages: Empirical Findings and
Implications for the Design of History Systems. In International Journal of Human Com-
puter Studies, Special issue on World Wide Web Usability 1997. 47(1): p.97-137.

20. Thompson H.S., Beech D., Maloney M., and Mendelsohn N.: XML Schema Part 1: Struc-
tures. W3C Recommendation 2 May 2001.

21. Zloof, M.: Query By Example. In Proceedings of the National Compute Conference,
AFIPS, Vol. 44, 1975, pp. 431-438.

A Comparison of RDF Query Languages

Peter Haase1, Jeen Broekstra2, Andreas Eberhart1, and Raphael Volz1

1 Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
{haase, eberhart, volz}@aifb.uni-karlsruhe.de

2 Vrije Universiteit Amsterdam, The Netherlands
jbroeks@cs.vu.nl

Abstract. The purpose of this paper is to provide a rigorous compari-
son of six query languages for RDF. We outline and categorize features
that any RDF query language should provide and compare the individ-
ual languages along these features. We describe several practical usage
examples for RDF queries and conclude with a comparison of the expres-
siveness of the particular query languages. The use cases, sample data
and queries for the respective languages are available on the web[6].

1 Introduction

The Resource Description Framework (RDF) is considered to be the most rele-
vant standard for data representation and exchange on the Semantic Web. The
recent recommendation of RDF has just completed a major clean up of the initial
proposal [11] in terms of syntax [1], along with a clarification of the underlying
data model [10], and its intended interpretation [7]. Several languages for query-
ing RDF documents and have been proposed, some in the tradition of database
query languages (i.e. SQL, OQL), others more closely inspired by rule languages.
No standard for RDF query language has yet emerged, but the discussion is ongo-
ing within both academic institutions, Semantic Web enthusiasts and the World
Wide Web Consortium (W3C). The W3C recently chartered a working group1

with a focus on accessing and querying RDF data. We present a comparison of
six representative query languages for RDF, highlighting their common features
and differences along general dimensions for query languages and particular re-
quirements for RDF. Our comparison does not claim to be complete with respect
to the coverage of all existing RDF query languages. However, we try to maintain
an up-to-date version of our report with an extended set of languages on our
website[6]. This extended set of languages also includes RxPath2 and RDFQL3.

Related Work. Two previous tool surveys [12,4] and diverse web sites4 have
collected and compared RDF query languages and their associated prototype
1 http://www.w3.org/2001/sw/DataAccess/
2 http://rx4rdf.liminalzone.org/RxPath
3 http://www.intellidimension.com/
4 http://www.w3.org/2001/11/13-RDF-Query-Rules/\#implementations

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 502–517, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Comparison of RDF Query Languages 503

implementations. The web sites are usually focused on collecting syntactic ex-
ample queries along several use cases. We follow this approach of illustrating
a language but instantiate general categories of orthogonal language features
to avoid the repetitiveness of use cases and capture a more extensive range of
language features. Two tool surveys [12],[4] were published in 2002 and focused
mainly only the individual prototype implementations comparing criteria like
quality of documentation, robustness of implementation and to a minor extent
the query language features5 which changed tremendously in the past two years.
We detail the feature set and illustrate supported features through example
queries. [5] analyzes the foundational aspects of RDF data and query languages,
including computational aspects of testing entailment and redundancy.

It should be stressed that our comparison does not involve performance fig-
ures, as the focus is on the RDF query languages, not the tools supporting these
languages.

The paper is organized as follows. Section 2 elicits several dimensions that
are important for designing and comparing RDF query languages. Section 3
introduces the six languages that are compared in this paper along with the im-
plementations that we have used. Section 4 demonstrates RDF query use cases,
which are grouped into several categories. These use cases are used to compare
the individual languages and expose the set of features supported by each lan-
guage. Section 5 presents a wish list for further important but yet unsupported
query language features. We conclude in Section 6 with a summary of our results.

2 Language Dimensions

2.1 Support for RDF Data Model

The underlying data model directly influences the set of operations that should
be provided by a query language. We therefore recapitulate the basic concepts
of RDF and make note of their implications for the requirements on an RDF
query language.
RDF abstract data model. The underlying structure of any RDF document
is a collection of triples. This collection of triples is usually called the RDF graph.
Each triple states a relationship (aka. edge, property) between two nodes (aka.
resource) in the graph. This abstract data model is independent of a concrete
serialization syntax. Therefore query languages usually do not provide features
to query serialization-specific features, e.g. order of serialization.
Formal semantics and Inference. RDF has a formal semantics which pro-
vides a dependable basis for reasoning about the meaning of an RDF graph.
This reasoning is usually called entailment. Entailment rules state which im-
plicit information can be inferred from explicit information. Hence, RDF query
languages can consider such entailment and might convey means to distinguish
implicit from explicit data.
Support for XML schema data types. XML data types can be used to repre-
sent data values in RDF. XML Schema also provides an extensibility framework
5 cf. [12][Table 2 on page 16] for the most extensive summary

504 P. Haase et al.

suitable for defining new datatypes for use in RDF. Data types should therefore
be supported in an RDF query language.
Free support for making statements about resources. In general, it is not
assumed that complete information about any resource is available in the RDF
query. A query language should be aware of this and should tolerate incomplete
or contradicting information.

2.2 Query Language Properties

In addition to eliciting the support for the above RDF language features we will
discuss the following properties for each language.

– Expressiveness. Expressiveness indicates how powerful queries can be formu-
lated in a given language. Typically, a language should at least provide the
means offered by relational algebra, i.e. be relationally complete. Usually,
expressiveness is restricted to maintain other properties such as safety and
to allow an efficient (and optimizable) execution of queries.

– Closure. The closure property requires that the results of an operation are
again elements of the data model. This means that if a query language
operates on the graph data model, the query results would again have to be
graphs.

– Adequacy. A query language is called adequate if it uses all concepts of
the underlying data model. This property therefore complements the closure
property: For the closure, a query result must not be outside the data model,
for adequacy the entire data model needs to be exploited.

– Orthogonality. The orthogonality of a query language requires that all oper-
ations may be used independently of the usage context.

– Safety. A query language is considered safe, if every query that is syntac-
tically correct returns a finite set of results (on a finite data set). Typical
concepts that cause query languages to be unsafe are recursion, negation and
built-in functions.

3 Query Languages

This section briefly introduces the query languages and actual systems that were
used in our comparison.

3.1 RQL

RQL [8] is a typed language following a functional approach, which supports
generalized path expressions featuring variables on both nodes and edges of
the RDF graph. RQL relies on a formal graph model that captures the RDF
modeling primitives and permits the interpretation of superimposed resource
descriptions by means of one or more schemas. The novelty of RQL lies in its
ability to smoothly combine schema and data querying while exploiting the

A Comparison of RDF Query Languages 505

taxonomies of labels and multiple classification of resources. RQL follows an
OQL-like syntax: select Pub from {Pub} ns3:year {y} where y = "2004"
using namespace ns3 = ... RQL is orthogonal, but not closed, as queries re-
turn variable bindings instead of graphs. However, RQL’s semantics is not com-
pletely compatible with the RDF Semantics: a number of additional restrictions
are placed on RDF models to allow querying with RQL6.

RQL is implemented in ICS-FORTH’s RDF Suite7, and an implementation
of a subset of it is available in the Sesame system8. For our evaluation we used
Sesame version 1.0, which was released on March 25, 2004.

3.2 SeRQL

SeRQL [3] stands for Sesame RDF Query Language and is a querying and tran-
formation language loosely based on several existing languages, most notably
RQL, RDQL and N3. Its primary design goals are unification of best practices
from query language and delivering a light-weight yet expressive query language
for RDF that addresses practical concerns.

SeRQL syntax is similar to that of RQL though modifications have been
made to make the language easier to parse. Like RQL, SeRQL is based on a
formal interpretation of the RDF graph, but SeRQL’s formal interpretation is
based directly on the RDF Model Theory.

SeRQL supports generalized path expressions, boolean constraints and op-
tional matching, as well two basic filters: select-from-where and construct-from-
where. The first returns the familiar variable-binding/table result, the second re-
turns a matching (optionally transformed) subgraph. As such, SeRQL construct-
from-where-queries fulfill the closure and orthogonality property and thus allow
composition of queries. SeRQL is not safe as it provides various recursive built-in
functions.

SeRQL is implemented and available in the Sesame system, which we have
used for our comparison in the version 1.0. A number of querying features are still
missing from the current implementation. Most notable of these are functions
for aggregation (minimum, maximum, average, count) and query nesting.

3.3 TRIPLE

The term Triple denotes both a query and rules language as well as the actual
runtime system [16]. The language is derived from F-Logic [9]. RDF triples
(S,P,O) are represented as F-Logic expressions S[P->O], which can be nested.
For example, the expression S[P1->O1, P2->O2[P3->O3]] corresponds to three
RDF triples (S,P1,O1), (S,P2,O2), and (O2,P3,O3).

6 An example of such a restriction is that every property must have exactly one domain
and range specified.

7 http://139.91.183.30:9090/RDF/
8 http://www.openrdf.org/

506 P. Haase et al.

Triple does not distinguish between rules and queries, which are simply head-
less rules, where the results are bindings of free variables in the query. For ex-
ample, FORALL X <- (X[rdfs:label->"foo"])@default:ln. returns all re-
sources which have a label ”foo”. Since the output is a table of variables and pos-
sible bindings, Triple does not fulfill the closure property. Triple is not safe in the
sense that it allows unsafe rules such as FORALL X (X[rdfs:label->"foo"] <-
(a[rdfs:label->"foo"])@default:ln.. While Triple is adequate and closed
for its own data model, the mapping from RDF to Triple is not lossless. For ex-
ample, anonymous RDF nodes are made explicit. Triple is able to deal with
several RDF models simultaneously, which are identified via a suffix @model.

Triple does not encode a fixed RDF semantics. The desired semantics have to
be specified as a set of rules along with the query. Datatypes are not supported
by Triple. For the comparison, we used Triple in the latest version from March
14th, 2002 along with XSB 2.5 for Windows.

3.4 RDQL

RDQL currently has the status of a W3C submission [15].
The syntax of RDQL follows a SQL-like select pattern, where a from clause

is omitted. For example, select ?p where (?p, <rdfs:label>, "foo") col-
lects all resources with label ”foo” in the free variable p. The select clause at the
beginning of the query allows projecting the variables. Namespace abbreviations
can be defined in a query via a separate ”using” clause. RDF Schema information
is not interpreted. Since the output is a table of variables and possible bindings,
RDQL does not fulfill the closure and orthogonality property. RDQL is safe and
offers preliminary support for datatypes.

For the comparison, we worked with Jena 2.0 of August 2003.

3.5 N3

Notation3 (N3) provides a text-based syntax for RDF. Therefore the data model
of N3 conforms to the RDF data model. Additionally, N3 allows to define rules,
which are denoted using a special syntax, for example: ?y rdfs:label "foo"
=> ?y a :QueryResult Such rules, whilst not a query language per se, can
be used for the purpose of querying. For this purpose queries have to be stored
as rules in a dedicated file, which is used in conjunction with the data. The
CWM filter command allows to automatically select the data that is generated
by rules. Even though N3 fulfills the orthogonality, closure and safety property,
using N3 as a query language is cumbersome.

N3 is supported by two freely available systems, i.e. Euler [14] and CWM [2].
None of these systems do automatically adhere to the RDF semantics. The
semantics has to be provided by custom rules. For our comparison, we worked
with CWM in the version of March 21, 2004.

A Comparison of RDF Query Languages 507

3.6 Versa

Versa takes an interesting approach in that the main building block of the lan-
guage is a list of RDF resources. RDF triples play a role in the so-called traversal
operations, which have the form ListExpr - ListExpr -> BoolExpr. These
expressions return a list of all objects of matching triples. For instance, the
traversal expression all() - rdfs:label -> * would return a list containing
all labels. Within a traversal expression, we can alternatively select the subjects
as well by placing a vertical bar at the beginning of the arrow symbol. Thus,
all() |- rdfs:label -> eq("foo") would yield all resources having the label
”foo”. The fact that a traversal expression is again a list expression, allows us
to nest expressions in order to create more complex queries.

The given data structures and expression tree make it hard to project several
values at once. Versa uses the distribute operator to work around this limitation.
It creates a list of lists, which allows selecting several properties of a given list
of resources.

Versa offers some support for rules since it allows traversing predicates tran-
sitively. Custom built-ins, views, multiple models, and data manipulation are
not implemented. However, Versa fulfills the orthogonality and safety criteria.

The Versa language is supported by 4Suite, which is a set of XML and RDF
tools9. We used 4Suite version 1.0a3 for Windows from July 4, 2003 along with
Python 2.3.

4 Use Cases

In this section we present use cases for the querying of RDF data and evaluate
how the six query languages support them. In the following tables, “-” indicates
no support, “•” full support and “◦” partial support.

4.1 Sample Data

For our comparison, we have used a sample data set10. It describes a simple sce-
nario of the computer science research domain, modelling persons, publications
and a small topic hierarchy. The data set covers the main features of the RDF
data model. It includes a class hierarchy with multiple inheritance, data types,
resources with multiple instantiations, reification, collections of resources, etc.
These variety of features are exploited in the following use cases.

4.2 Use Case Graph

Due to RDF’s graph-based nature, a central feature of most query languages is
the support for graph matching.
9 http://www.4suite.org

10 Available at
http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/sample.rdf

508 P. Haase et al.

Table 1. Path expression query in all languages

N3 Triple
{ ?y s:author ?z. FORALL C,X,A,N <-
?z ?p ?x. (s:Paper[s:author->C] AND
?x a s:Person; s:name ?result. C[X->A] AND
} => { ?result a :QueryResult.}. A[s:name->N])@rdfschema(s:ln).
RDQL Versa
SELECT ?n WHERE QUERY=((s:Paper
<s:Paper>, <s:author>, ?c), - s:author -> *) - properties(.) -> *)
(?c, ?collection, ?a), (?a, <s:name>, - s:name -> *
?n) USING s FOR ...
SeRQL RQL
select PersonName select PersonName
from {X} <s:author> {} <rdfs:member> from {X} s:author {y}. rdfs:member
{} <s:name> {PersonName} {z}. s:name {PersonName}
using namespace using namespace
s = <!...> s = ...

rdfs = ...

The namespace s is bound to that of the sample data.

Path Expressions. The central feature used to achieve this matching of graphs
is a so-called path expression, which is typically used to traverse a graph. A
path expression can be decomposed into several joins and is often implemented
by joins. It comes at no surprise that path expressions are offered - in various
syntactic forms (cf. Table 1) - by all RDF query languages.

Return the names of the authors of publication X

Query RDQL Triple SeRQL Versa N3 RQL
Path • • • • • •

Optional Path Expressions. The RDF graph represents a semi-structured
data model. Its weak structure allows to represent irregular and incomplete
information. Therefore RDF query languages should provide means to deal with
irregularities and incomplete information. A particular irregularity, which has to
be accounted for in the following query, is that a given value may or may not be
present.

What are the name and, if known, the e-mail of the authors of all avail-
able publications ?

Query RDQL Triple SeRQL Versa N3 RQL
Optional Path - - • • - ◦

Unfortunately, only two languages - namely Versa and SeRQL - provide built-
in means for dealing with incomplete information. For example, the SeRQL lan-
guage provides so-called optional path expressions (denoted by square brackets)
to match paths whose presence is irregular:

A Comparison of RDF Query Languages 509

SELECT PersonName, Email FROM
{X} <ns3:author> {} <rdfs:member>
{p} <ns3:name> {PersonName};
[<ns3:email> {Email}]
USING NAMESPACE

ns3 = <!...>

Usually, such optional path expressions can be simulated, if a language pro-
vides set union and negation. A correct answer is provided by unifying the results
of two select-queries, where the first argument of the union retrieves all persons
with an e-mail address, the second those without an e-mail address. Conse-
quently, RQL gets partial credit since these operations are supported. Another
workaround is possible in rule languages like N3 and Triple by defining a rule,
which infers a dummy value in absence of other data. In our example, an op-
tional path would carry the dummy email address. Since this workaround might
create undesired results if the absence of values is checked in other parts of the
query, we do not credit the respective languages. Versa’s distribute operator al-
lows formulating the query by converting the list of authors into a list of lists of
(optional) attributes.

4.3 Use Case Relational

RDF is frequently used to model relational structures. In fact, n-ary tables such
as found in the the relational data model can easily be encoded in RDF triple.

Basic algebraic operations. In the relational data model several basic alge-
braic operations are considered, i.e. (i) selection, (ii) projection, (iii) cartesian
product, (iv) set difference and (v) set union. These operations can be combined
to express other operations such as set intersection, several forms of joins, etc.
The importance of these operations is accounted by the definition of relational
completeness. In the relational world, a given query languages is known to be
relationally complete, if it supports the full range of basic algebraic operations
mentioned above.

The three basic algebraic operations selection, projection, product are sup-
ported by all languages and have been used in the path expression query of
the previous use case Graph. We therefore concentrate on the other two basic
operations mentioned above, i.e. union and difference, in this section.

Union. As we have seen in the previous section, union is provided by RQL.
Versa contains an explicit union operator as well. N3 and Triple can simulate
union with rules.

Return the labels of all topics that and (union) the titles of all publications

Query RDQL Triple SeRQL Versa N3 RQL
Union - • - • • •

510 P. Haase et al.

Difference. Difference is a special form of negation:

Return the labels of all topics that are not titles of publications

Query RDQL Triple SeRQL Versa N3 RQL
Difference - - - ◦ - •

While difference is described in the Versa documentation (but not imple-
mented) RQL also provides an implementation of this algebraic operator.

The following RQL query provides the correct answer:

(select title
from s:Topic{T}. rdfs:label {title}

) minus (
select title
from s:Publication{P}. s:title {title})

using namespace
s = ... , rdfs = ...

Quantification. An existential predicate over a set of resources is satisfied if at
least one of the values satisfies the predicate. Analogously, a universal predicate
is satisfied if all the values satisfy the predicate. As any selection predicate
implicitly has existential bindings, we here consider universal quantification.

Return the persons who are authors of all publications.

Query RDQL Triple SeRQL Versa N3 RQL
Universal - - - - - •

RQL is the only language providing the universal quantification needed to
answer this query:

SELECT person
FROM s:Person{person}
WHERE FORALL z IN

(SELECT x FROM s:Publication{x})
SUCH THAT EXISTS p IN
(SELECT Y FROM {z} s:author {}. rdfs:member {y})

SUCH THAT person = p
USING NAMESPACE s = ..., rdfs = ...

4.4 Use Case Aggregation and Grouping

Aggregate functions compute a scalar value from a multi-set of values. These
functions are regularly needed to count a number of values. For example, they
are needed to identify the minimum or maximum of a set of values. Grouping
additionally allows aggregates to be computed on groups of values.

A Comparison of RDF Query Languages 511

Aggregation. A special case of aggregation tested in the following query is a
simple count of the number of elements in a set:

Count the number of authors of a publication.

Query RDQL Triple SeRQL Versa N3 RQL
Counting - - - • • •

Counting is supported by N3, Versa and RQL. The following N3 rule gives
the appropriate answer:

{?y.sam:author math:memberCount ?result .} =>
{:Query :Result ?result}.

Grouping. None of the compared query languages allows to group values, such
as provided with the SQL GROUP BY clause11.

4.5 Use Case Recursion

Recursive queries often appear in information systems, typically if the underlying
relationship is transitive in nature. Note that the RDF query engine must handle
schema recursion, i.e. the transitivity of the subClassOf relation. The scope of
this use case is data recursion introduced by the application domain. In the
sample datasettopics are defined along with their subtopics, where the subtopic
property is transitive. This must be expressed in the query.

Return all subtopics of topic “Information Systems”, recursively.

Query RDQL Triple SeRQL Versa N3 RQL
Recursion - • - • • -

Triple (and N3), being rule-based systems, naturally can support the required
recursion through the definition of auxiliary rules:

FORALL O,P,V O[acm:SubTopic->V] <-
EXISTS W (O[acm:SubTopic->W] AND W[acm:SubTopic->V])@default:ln.

FORALL Y <-
(’...#ACMTopic/’:Information_Systems[acm:SubTopic->Y])@default:ln.

Versa does not support general recursion, but provides a keyword ”traverse”,
which effects a transitive interpretation of a specified property. This suffices to
answer our recursive query:

traverse(@"...#ACMTopic/Information_Systems",
acm:SubTopic, vtrav:forward, vtrav:transitive)

11 The RQL query language allows the computation of global aggregate values such as
required for a query such as selecting the publication with the maximum number of
authors.

512 P. Haase et al.

4.6 Use Case Reification

Reification is a unique feature of RDF. It adds a meta-layer to the graph and
allows treating RDF statements as resources themselves, such that statements
can be made about statements. In the sample data reification is used to state
who entered publication data. Hence, the following query is of interest:

Return the person who has classified the publication X.

Query RDQL Triple SeRQL Versa N3 RQL
Reification ◦ ◦ • ◦ - ◦

SeRQL and Triple support reification with a special syntax. In SeRQL, a
path expression representing a single statement can be written between the curly
brackets of a node:

select Person
from {{X} <s:isAbout> {}} <dc:creator> {Person}
using namespace s = <!...>

In Triple statements can be reified by placing them in angle brackets and using
this within another statement: FORALL V,W,X,Y,Z <- (V[W-><X[Y->Z]>]).
However, we were only able to use this feature in the native F-Logic syntax,
since the reified statements in the RDF sample data were not parsed correctly.

While N3 cannot syntactically represent RDF reification, RDQL, RQL and
Versa treat reified statements as nodes in the graph, which can be addressed
through normal path expressions by relying on the RDF normalization of reifi-
cation. This allows treating the reification use case like any other query. We show
the Versa example below:

QUERY=(all() |- rdf:predicate -> s:isAbout) - dc:creator -> *

4.7 Use Case Collections and Containers

RDF allows to define groups of entities using collections (a closed group of en-
tities) and containers, namely Bag, Sequence and Container, which provide an
intended meaning of the elements in the container. A query language should be
able to retrieve the individual and all elements of these collections and contain-
ers, along with order information, if applicable, as in the following query:

Return the last author of Publication X

Query RDQL Triple SeRQL Versa N3 RQL
Sequences ◦ ◦ ◦ ◦ ◦ ◦

Although none of the query languages provide explicit support for the pro-
cessing of containers (as known for example from the processing of sequences in
XQuery), in all query languages it is possible to query for a particular element

A Comparison of RDF Query Languages 513

in a container with the help of the special predicate <rdf: n>, which allows to
address the nth element in a container. However, this approach only allows to
retrieve the last element of a container if its size is known before.

None of the query languages provide explicit support for ordering or sorting of
elements, except for Versa which features a special sort operator. RQL does have
specific operators for retrieval of container elements according to its specification,
but this feature is not implemented in the current engine.

4.8 Use Case Namespaces

Namespaces are an integral part of any query language for web-based data. The
various examples presented so far showed how the languages allow introducing
namespace abbreviations in order to keep the queries concise. This use case
evaluates which operations are possible on the namespaces themselves. Given a
set of resources, it might be interesting to query all values of properties from a
certain namespace or a namespace with a certain pattern. The following query
addresses this issue. Pattern matching on namespaces is particularly useful for
versioned RDF data, as many versioning schemes rely on the namespace to
encode version information.

Return all resources whose namespace starts with “http://www.aifb.uni-
karlsruhe.de/”.

Query RDQL Triple SeRQL Versa N3 RQL
Namespace ◦ - • - • •

SeRQL, RQL and N3 allow for pattern matching predicates on URIs in the
same manner as for literals, which allows to realize the query as shown in the
following for N3:

{?a ?b ?c. ?a log:rawUri ?d.
?d string:startsWith "http://www.aifb.uni-karlsruhe.de/" } =>

{:Query :Result ?d}.
For RDQL, the string match operator is defined in the grammar, however the
implementation is incomplete. Versa has a contains operator, which apparently
only works for string literals, not URIs.

4.9 Use Case Language

RDF allows to use XML-style language tagging. The XML tag enclosing an RDF
literal can optionally carry an xml:lang attribute. The respective value identified
the language used in the text of the literal. Possible values include en for english
or de for german. This use case examines, whether the various languages support
this RDF feature.

Return the German label of the topic whose English label is “Database
Management”

514 P. Haase et al.

Query RDQL Triple SeRQL Versa N3 RQL
Language - - • - - -

Out of the compared languages, SeRQL is the only one that has explicit sup-
port to query language specific information. SeRQL provides a special function
to retrieve the language information from a literal:

select deLabel
from {} <rdfs:label> {deLabel, enLabel}
where lang(deLabel) = "de" and lang(enLabel) = "en" and

label(enLabel) = "Database Management"

4.10 Use Case Literals and Datatypes

Literals are used to identify values such as numbers and dates by means of a
lexical representation. In addition to plain literals, RDF supports the type system
of XML Schema to create typed literals. An RDF query language should support
the XML Schema datatypes. A datatype consists of a lexical space, a value space
and lexical to value mapping. This distinction should also be supported by an
RDF query language. The sample data for example contains a typed integer
literal to represent the page number of a publication, with the following two
queries we will query both the lexical space and the value space:

Return all publications where the page number is the lexical value ’08’

Query RDQL Triple SeRQL Versa N3 RQL
Lexical Space • • • • • •

Return all publications where the page number is the integer value 8

Query RDQL Triple SeRQL Versa N3 RQL
Value Space ◦ - • - - •

All query languages are able to query the lexical space, but most query lan-
guages have no or only preliminary support for datatypes and do not support
the distinction between lexical and value space. RDQL and SeRQL provide sup-
port for datatypes using a special syntax to indicate the datatype. However, the
RDQL query did not work correctly in the implementation.

4.11 Use Case Entailment

RDF Schema vocabulary supports the entailment of implicit information. Two
typical use cases in the context of RDF are:

– Subsumptions between classes and properties that are not explicitly stated
in the RDF Schema,

A Comparison of RDF Query Languages 515

– Classification of resources: For a resource having a property for which we
know its domain – or analogously the range – is restricted to a certain class,
we can infer the resource to be an instance of that class.

With the following query we evaluate the support of the query languages for
RDF Schema entailment. The query is expected to return not only the resources
for which the class membership is provided explicitly, but also those whose class
membership can be inferred based on the entailment rules. Obviously, several
other queries would be necessary to test the full RDF-S support. Due to space
limitations, we restrict ourselves to the following query:

Return all instances of that are members of the class Publication

Query RDQL Triple SeRQL Versa N3 RQL
Entailment ◦ ◦ • - ◦ •

Discussion. Regarding the support for RDF-S entailment, the query languages
take different approaches: RQL and SeRQL support entailment natively and
even allow to distinguish between subclasses and direct subclasses. RDQL leaves
entailment completely up to the implementation of the query engine, it is thus
not part of the semantics of RDQL. Nevertheless, it gets partial credit, since Jena
provides an optional mechanism for attaching an RDF–S reasoner such that the
query processor takes advantage of it. N3 and Triple require an axiomatization
of the RDF-S semantics, i.e. a set of rules. Versa provides no support.

The following sample shows how the query is realized in RQL:

select publications
from ns3:Publication{publications}
using namespace
ns3 = <!http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/sample.rdf#>

5 Wish List

In the previous sections we have seen that the currently available query languages
for RDF support a wide variety of operations. However, several important fea-
tures - listed in the following text - are not well supported, or even not supported
at all.
Grouping and Aggregation. Many of the existing proposals support very little
functionality for grouping and aggregation. Functions such as min, max, average
and count provide important tools for analysing data.
Sorting. Perhaps surprisingly, except for Versa, no language is capable to do
sorting and ordering on the output. Related to this seems to be that many
query languages do not support handling of ordered collections.
Optional matching. Due to the semi-structured nature of RDF, support for op-
tional matches is crucial in any RDF query language and should be supported
with a dedicated syntax.

516 P. Haase et al.

Adequacy. Overall, the languages’ support for RDF-specific features like contain-
ers, collections, XML Schema datatypes, language tags, and reification is quite
poor. Since these are features of the data model, the degree of adequacy among
the languages is low. For instance, it would be desirable for a query language to
support operators on XML Schema datatypes, as defined in [13], as built-ins.

6 Conclusion

We believe that defining a suitable RDF query language should be a top pri-
ority in terms of standardization. Querying is a very fundamental functionality
required in almost any Semantic Web application. Judging from the impact of
SQL to the database community, standardization will definitely help the adop-
tion of RDF query engines, make the development of applications a lot easier,
and will thus help the Semantic Web in general.

We have evaluated six query language proposals with quite different ap-
proaches, goals, and philosophies. Consequently, it is very hard to compare the
different proposals and come up with a ranking. From our analysis, we identify
a small set of key criteria, which differ vastly between the languages.

A key distinction is the support for RDF Schema semantics. Languages like
N3 and Triple do not make a strict distinction between queries and rules. Thus,
a logic program representing the desired semantics, in this case RDF-S, can
optionally supplement a query. SeRQL and RQL support RDF-S semantics in-
ternally. Versa takes a pragmatic approach by supporting the transitive closure
as a special operator. While this is not very flexible, it solves most of the prob-
lems like traversing a concept hierarchy. RDQL’s point of view is that entailment
should be completely up to the RDF repository.

Orthogonality is a very desirable features, since it allows combining a set
of simple operators into powerful constructs. Out of the six candidates, RQL,
SeRQL, N3, and Versa support this property. Versa uses sets of resources as the
basic data structure, whereas RQL, N3 and SeRQL operate on graphs. Triple
can mimic orthogonality via rules, whereas RDQL does not support it.

Furthermore, we consider the extent to which the various use cases are sup-
ported. Obviously, one would have to distinguish between features like the sup-
port for recursive queries that fundamentally cannot be expressed in a language
and a feature that simply has not been implemented in the respective system like
a simple string match operator. However, since this distinction is often hard to
make, we simply add up the queries that could be expressed. If the query could
be formulated with a workaround, we count half a point. Using this metric, RQL
and SeRQL appear to be the most complete languages, covering 10.5 and 8.5
out of 14 use case queries. Versa and N3 follow with 7.5 and 7. Triple and RDQL
were able to answer the least queries and got 5.5 and 4.5 points.

Finally, we consider the readability and usability of a language. Obviously,
this depends very much on personal taste. Syntactically, RQL, RDQL, and
SeRQL are very similar due to their SQL / OQL heritage. Triple and N3 share
the rules character. The Triple syntax allows for some nice syntactic variants.
Versa’s style is quite different, since a query directly exposes the operator tree.

A Comparison of RDF Query Languages 517

Acknowledgments. Research reported in this paper has been partially fi-
nanced by the EU in the project IST-2003-506826 SEKT.

References

1. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Working Draft, 2003.
Internet: http://www.w3.org/TR/rdf-syntax/.

2. T. Berners-Lee. CWM - closed world machine.
Internet: http://www.w3.org/2000/10/swap/doc/cwm.html, 2000.

3. Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF Query and Transforma-
tion Language. To be published, 2004.
http://www.cs.vu.nl/˜jbroeks/papers/SeRQL.pdf.

4. D. Fensel and A. Perez. A survey on ontology tools. Technical Report OntoWeb
Deliverable 1.3, OntoWeb consortium, May 2002. http://www.ontoweb.org/ down-
load/deliverables/D13 v1-0.zip.

5. Claudio Gutiérrez, Carlos A. Hurtado, and Alberto O. Mendelzon. Foundations
of semantic web databases. In Proceedings of the Twenty-third Symposium on
Principles of Database Systems (PODS), June 14-16, 2004, Paris, France, pages
95–106, 2004.

6. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A compar-
ison of rdf query languages. Technical report, University of Karlsruhe, 2004.
http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/.

7. Patrick Hayes. Rdf semantics.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/\#rules.

8. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Schol.
RQL: A Declarative Query Language for RDF. In Proceedings of the Eleventh
International World Wide Web Conference (WWW’02), Honolulu, Hawaii, USA,
May7-11 2002.

9. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42, 1995.

10. G. Klyne and J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Data Model. W3C Working Draft, 2003.
Internet: http://www.w3.org/TR/rdf-concepts/.

11. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C Working Draft, 1999.
Internet: http://www.w3.org/TR/REC-rdf-syntax/.

12. A. Maganaraki, G. Karvounarakis, V. Christophides, D. Plexousakis, and T. Anh.
Ontology storage and querying. Technical Report 308, Foundation for Research
and Technology Hellas, Institute of Computer Science, Information Systems Lab-
oratory, April 2002.

13. Ashok Malhotra, Jim Melton, and Norman Walsh. Xquery 1.0 and xpath 2.0
functions and operators, w3c working draft 12 november 2003.
http://www.w3.org/TR/xpath-functions/.

14. J. De Roo. Euler proof mechanism. Internet: http://www.agfa.com/w3c/euler/,
2002.

15. Andy Seaborne. Rdql - a query language for rdf, w3c member submission 9 january
2004, 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

16. M. Sintek and S. Decker. TRIPLE - an RDF query, inference and transformation
language. In Deductive Databases and Knowledge Management (DDLP), 2001.

Information Retrieval Support for
Ontology Construction and Use

Willem Robert van Hage�, Maarten de Rijke, and Maarten Marx

Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam
wrvhage,mdr,marx@science.uva.nl

Abstract. Information retrieval can contribute towards the construc-
tion of ontologies and the effective usage of ontologies. We use
collocation-based keyword extraction to suggest new concepts, and study
the generation of hyperlinks to automate the population of ontologies
with instances. We evaluate our methods within the setting of digi-
tal library project, using information retrieval evaluation methodology.
Within the same setting we study retrieval methods that complement the
navigational support offered by the semantic relations in most ontologies
to help users explore the ontology.

1 Introduction

Today’s prevalent methods of searching, navigating, and organizing Internet in-
formation builds on several decades of research in information retrieval (IR) [2].
Based, ultimately, on general statistical laws governing human language use,
these methods are being used not just in document retrieval but also in semanti-
cally richer tasks such as question answering [28]. One vision of the Semantic Web
is that it will be much like the Web as we know it today, except that documents
will be enriched with machine understandable markup [18]. These annotations
will provide metadata about the documents and machine interpretable state-
ments capturing some of the semantics of documents’ content [7]. We discuss
how the IR paradigm can contribute to this effort, by aiding the architects of
non-trivial ontologies. IR techniques can aid in defining, populating, and check-
ing the consistency of ontologies. Specifically, eight stages can be distinguished
in the ontology building process [1]:
1. Determine the scope of the ontology.
2. Consider reusing (parts of) existing ontologies.
3. Enumerate all the concepts you want to include.
4. Define the taxonomy of these concepts.
5. Define properties of the concepts.
6. Define facets of the concepts such as cardinality, required values etc.
7. Define instances.
8. Check the consistency of the ontology.
� Current affiliation: TNO TPD and the Free University Amsterdam.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 518–533, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Information Retrieval Support for Ontology Construction and Use 519

Of these stages, we address 3 and 7 with IR-based techniques as we believe
that these stages can be usefully tackled using retrieval technology available
today. While equally suitable for automation, stage 4 is far from being a solved
problem [21], and stage 8 is best left for purely symbolic reasoning methods as
implemented in, e.g., the Fact and Racer provers.

In addition to being used to assist ontology builders, IR techniques can also
assist users in searching, browsing, and providing serendipity. People will want
to use the Semantic Web to search not just for documents, but also for informa-
tion about specific semantic relationships, for instance in the setting of digital
libraries [24]. Thus, we explore approaches to “retrieval within a concept hi-
erarchy,” where exact-match search as provided by most navigation tools and
ontology editors may not be adequate [25].

By making today’s document retrieval algoritms useful to building and ex-
ploiting the Semantic Web infrastructure, improvements in the former lead di-
rectly to improvements in the latter. But we have a more methodological reason
for bringing IR and Semantic Web efforts closer together. The IR community
has long emphasized the importance of evaluation. With the advent of the Text
REtrieval Conferences (TREC, [26]), experimental evaluation of retrieval related
tasks received a significant boost, which led to rapid progress in the tasks eval-
uated. Similar benefits occur with other retrieval-related evaluation exercises
(CLEF [5], INEX [9], NTCIR [20]), and with efforts to evaluate semantically
richer language processing tasks (e.g., CoNLL [6] and Senseval [23]). The Se-
mantic Web community would benefit from a stronger emphasis on evaluation,
and on tasks that can be evaluated, than it has so far had. Eating our own dog
food, we conduct experimental evaluations for all tasks addressed in this paper.

Section 2 discusses the setting in which our work takes place: the Logic and
Language Links (LoLaLi) project, aimed at providing ontology-based access to
an electronic handbook on the interface of linguistics and logic. In Section 3 we
discuss the automation of stage 3 and its evaluation. In Section 4 we discuss the
automation of stage 7 and its evaluation. In Section 5 we discuss and evaluate
search in the LoLaLi concept hierarchy. We conclude in Section 6.

2 LoLaLi: Logic and Language Links

Our work, and the experiments on which we report below, take place in the
setting of a digital library project. Specifically, the Logic and Language Links
(LoLaLi) project [4,15] explores methods to extend the traditional format of
scientific handbooks with electronic tools. These tools help readers explore the
content of the handbook and make it easier to locate relevant information.

As a case study the project focuses on the Handbook of Logic and Lan-
guage [27], a 20 chapter, 1200 page publication; for our experiments we used the
LATEX sources (about 4.5MB of text). The LoLaLi project uses a WordNet-like
concept hierarchy to provide access to (an electronic version of) the handbook.
Concept hierarchies are often used for navigating through large collections of
documents [29,16]. They are useful for the organization, display and exploration

520 W.R. van Hage, M. de Rijke, and M. Marx

artificial
intelligence

knowledge
representation

modal logic

logic

temporal
logic

modal
operator

mathematics

computer
science

top

Fig. 1. An excerpt from the LoLaLi concept hierarchy.

of a large amount of information, and users carrying out a hypertext search task
who have hierarchical browsing patterns perform better than users with sequen-
tial browsing paths [19]. Hence, architectures for electronic handbooks should
allow for, or even enforce, hierarchical patterns: a concept hierarchy is a good
way of doing this. The LoLaLi concept hierarchy is being built by hand, by do-
main experts, who have currently collected, organized, and related close to 600
concepts. At the back-end, a Sesame-based server stores the hierarchy informa-
tion, which is edited and updated through a collection of purpose-built scripts
and Protege. In Section 3 we discuss how basic IR techniques can help concept
authors determine which concepts to consider for inclusion in the hierarchy.

Each concept in the LoLaLi hierarchy is annotated with a gloss, which briefly
describes it. Moreover, concepts come with a longer description, also provided by
the authors of the concept. The hierarchy consists of a TOP concept, with four
main branches underneath it: computer science, mathematics, linguistics, and
philosophy, organized by relations of subtopic-supertopic. The latter relations are
typed, and the types include ‘is-a’ and ‘part-of.’ The LoLaLi hierarchy is a graph
rather than a strict tree, as multiple parenthood is allowed; see Figure 1. Non-
hierarchical relations are also allowed, and are used for navigational purposes;
these include ‘sibling,’ ‘other meanings,’ and ‘associated concepts.’ Concepts in
the LoLaLi hierarchy are also connected to external resources. Chief among these
is the Handbook of Logic and Language; other examples include links to highly
relevant online tools and demos. The (hypertext) links to the Handbook take a
concept in the hierarchy as source and highly relevant segments in the Handbook
as targets. In Section 4 we describe how IR techniques help address this task.

At present, users can access an early ‘alpha’ version of the hierarchy. Follow-
ing the outcomes of an early user study, navigation along the semantic relations
mentioned above has been complemented with search facilities that allow users
to locate concepts in the hierarchy in an arbitrary manner. In Section 5 we
describe and assess the underlying IR techniques.

3 Assisting Ontology Builders

When building an ontology for an established scientific domain, as in the LoLaLi
project, there is a wealth of literature whose content should be “covered” by the
ontology. We report on IR support for addressing the following question: Which
concepts should be included in the ontology? Rather than manually mining the

Information Retrieval Support for Ontology Construction and Use 521

Table 1. Precision at different ranks in the result lists.

rank 10 25 50 100 250 750
precision at rank (Handbook) 1.00 0.96 0.9 0.85 0.79 0.55

precision at rank (relative to the CLEF corpus) 1.00 1.00 0.98 0.99 0.94 0.80

literature, we describe methods to identify candidate concepts from domain spe-
cific text using term extraction. Concept names are usually noun phrases. Hence,
recognizing noun phrases is likely to be a good first step for detecting candidate
concepts. We distinguish between two cases, as they exploit different techniques:
single word candidates and multi-word candidates.

3.1 Single Noun Concepts

To discover interesting nouns, we first POS-tag the Handbook text, and then
select all nouns. We used two ways to rank them: by raw frequency, and by
relative frequency, that is, by the number of occurrences divided by the number
of occurrences in a general purpose document collection (we used the English
CLEF collection [5]). The resulting lists were assessed by three assessors who
were asked, for each noun in the result lists whether they would include it in
a comprehensive list of important or useful notions in the domain, aimed at
novices and experts. For our “gold standard”, a noun was considered relevant if
the majority of assessors deemed it relevant.

With this gold standard, we computed precision @ n scores (what fraction
of the top n results is relevant?), for increasing values of n; see Table 1, where
the second row concerns the result list ordered by raw frequency, and the third
the result list ordered by relative frequency. Surprisingly, even the raw frequency
result list, is of very high quality, with now non-relevant high-frequency nouns
in the top. And by taking into account domain specificity (as in the list ordered
by relative frequency), very high precision scores can be obtained. What about
recall? It is hard, if not impossible, to compile an exhaustive list of important or
useful nouns in the domain of the Handbook. Instead, we decided to approximate
recall by using concept recall (CR): what fraction of the single noun concepts in
the LoLaLi hierarchy did we identify, and what were their ranks in the result
lists? Of the 522 concepts in the version of the concept hierarchy used, 158 are
single nouns; hence, CR was measured against those 158. The noun extraction
algorithm identified 77% (121) of the single noun concepts in the LoLaLi hier-
archy; 70% of these are in the top 750. While this is not a perfect recall score,
our ontology builders found the suggestions to be very helpful in further devel-
opment of the hierarchy, telling us that the suggestions often inspired them to
think of additional concepts, hence indirectly addressing the recall problem.

522 W.R. van Hage, M. de Rijke, and M. Marx

Table 2. Part-of-speech tag patterns for collocation filtering.

POS-tag pattern example collocation
Adjective Noun logical study
Noun Noun computer science
Adjective Adjective Noun floating decimal point
Adjective Noun Noun recursive enumerable set
Noun Adjective Noun card programmed calculator
Noun Noun Noun program storage unit
Noun Preposition Noun theory of computation

Table 3. The top 10 collocations extracted from the Handbook (left) and our web
collection (right), with “usefulness” assessments by all three assessors, together with
the “gold standard” (last column).

noun-collocation useful?
natural language yes yes yes yes
computer science yes yes yes yes
modal logic yes yes yes yes
lambda calculus yes yes yes yes
situation theory yes yes yes yes
discourse representation no yes yes yes
artificial intelligence yes yes yes yes
phrase structure yes yes yes yes
other hand no no no no
proof theory yes yes yes yes

noun-collocation useful?
computer science yes yes yes yes
other hand no no no no
natural language yes yes yes yes
university press no no no no
modal logic yes yes yes yes
induction hypothesis yes yes yes yes
first order yes yes yes yes
district page no no no no
description post no no no no
post manual ref no no no no

3.2 Multi-word Noun Phrases

Let us turn to the extraction of multi-word noun phrases now. We present a
simple yet useful method that is based on collocations and that can be subdi-
vided into three steps: (1) Shallow parse the text. (2) Filter out word sequences
with interesting POS-tag patterns for closer examination. (3) Decide for each
word sequence if it is a noun collocation. Step 1 is done with Schmid’s Tree-
Tagger POS-tagger [22]. Step 2 is accomplished by a method due to Justeson
and Katz [11,17], which uses the POS-tag patterns shown in Table 2. We scan
the tagged text and discard everything that does not match one of the listed
POS-tag patterns. Step 3 is done by testing whether the words in the sequence
occur together significantly more often than is to be expected if all the words in
the text would be ordered randomly. Following Krenn and Evert [14], who ad-
dressed the related task of detecting PP-Verb collocations, we use the the t-test
for addressing Step 3. Our null hypothesis will be that, in the text, the words
that make up the sequence appear completely independently of each other.

When we apply our multi-word method to the Handbook of Logic and Lan-
guage, we get promising results. As an example, the 10 noun collocations with
the highest t-scores are shown in Table 3. Exactly how well did we do? As in the
single noun case, we use concept recall (CR) and precision (P) to answer this
question. Of the 522 concepts in the version of the concept hierarchy used, 364

Information Retrieval Support for Ontology Construction and Use 523

Table 4. Precision at different ranks in the result list.

rank 10 25 50 100 250 750
precision at rank 0.90 0.76 0.74 0.65 0.67 0.63

are multi-word expressions; hence, CR was measured against those 364. Working
on the Handbook our algorithm yielded 3896 collocations, 99 of which are con-
cepts from the hierarchy. I.e., we found 28% of the multi-word concepts; 73% of
these are in the top 750. Concerning P, we asked our three assessors to assess the
candidate concepts returned (as in the earlier single noun case). Table 3 contains
a sample of results produced, together with human assessments. Table 4 contains
the resulting precision scores, at different ranks; the precision drops sharply as
we move down the result list.

While precision, and especially early precision, is at an acceptable level, con-
cept recall leaves something to be desired. There are several ways to improve
recall: develop more extraction patterns, make the patterns less strict, or in-
crease the amount of data they work on. The second option might hurt precision
too much, and the first likely yields highly specific patterns, making little or no
difference in terms of concept recall. We go for the third option: many interesting
noun phrases only occur once in the Handbook, and since our detection method
essentially works through redundancy we will not be able to find those words.

To create a larger corpus of relevant data, we proceeded as follows. Each
of the 522 concepts in the LoLaLi hierarchy was fed to a web search engine
(as a separate query), while restricting the output to PDF files (assuming that
this restriction would increase the chance of retrieving scientific papers in our
domain, rather than arbitrary documents). Per query, the top 20 results were
kept; text was extracted using pstotext, producing 358MB of usable text. We
extracted 206,475 collocations; a total of 197 (out of 364) concepts were found,
and more importantly, 44% of those were found amongst the top 750 results.
So, CR has certainly gone up, when compared against the results of running
our algorithm against the Handbook text. The top 10 results (Table 3, right)
reveal that early precision is seriously hurt by moving to our Web collection.
The precision at various ranks in the result list for the Web collection does not
drop as dramatically as for the Handbook ; in fact, it goes up (Table 5, row 3).
In Table 5 we also list the precision figures for the Web collection, relative to
the CLEF corpus (bringing in domain specifity, as in the earlier single noun
case). Domain specificity helps to get rid of expressions such as ‘other hand’,
but it pushes expressions such as ‘next section’ to the top of the ranking, which
explains the low p@10 score in row 3.

To examine the interplay between precision and recall, we looked at the con-
cept precision (in addition to concept recall, both in terms of concepts from the
LoLaLi hierarchy), and compiled plots for concept precision and concept recall.
In Figure 3.2 we plotted concept recall (Left) and concept precision (Right) of
collocations found, in the Handbook, in our Web collection, and in the latter,
relative to the CLEF collection; the rank (plotted on the X-axis) is obtained by
sorting by t-test score. As is to be expected, for the larger Web collection, con-

524 W.R. van Hage, M. de Rijke, and M. Marx

Table 5. Precision at different ranks in the result list, Handbook vs. Web collection.

rank 10 25 50 100 250 750
precision at rank (Handbook) 0.90 0.76 0.74 0.65 0.67 0.63

precision at rank (Web collection) 0.50 0.40 0.56 0.53 0.56 0.47
precision at rank (Web collection, rel. to CLEF corpus) 0.20 0.52 0.54 0.60 0.62 0.55

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700

co
nc

ep
t r

ec
al

l

rank

Handbook
Web collection

Web collection, freq. relative to CLEF

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700

co
nc

ep
t p

re
ci

si
on

rank

Handbook
Web collection

Web collection, freq. relative to CLEF

Fig. 2. (Left) The percentage of concepts present in the LoLaLi hierarchy identified at
different points in the ranking. (Right) The fraction of concepts present in the LoLaLi
hierarchy at different points in the ranking.

cept recall is highest, followed by the Web collection-relative-to-CLEF, followed
by the Handbook. For concept precision, the relative order is reversed.

3.3 Conclusions and Further Steps

A simple single noun method and a simple collocation-based method can both
yield valuable suggestions for concepts to be included in a concept hierarchy, thus
addressing step 3 from Antoniou and Van Harmelen’s list (see Section 1). For
extracting multi-word expressions, more data proves useful to improve recall. Our
results were further improved by filtering out the generic English expressions.
Our scores are far from perfect, but as a source of suggestions, our ontology
builders found the output of our methods extremely valuable. It may help to
make our Web collection more focussed; if some concepts are available before
collocation detection takes place, they could be used to constrain the text: new
interesting concepts can be expected to occur in the proximity of the old ones.

4 Automatically Defining Instances

Ontologies rarely exist for their own sake, and their envisaged usage determines
how ontologies should be populated. In settings where ontology-like structures
are being used as navigational aids, an important group of instances are hyper-
text links to (fragments of) documents. In this section we describe and evaluate
methods for automatically defining such instances, again within the setting of

Information Retrieval Support for Ontology Construction and Use 525

Lambek calculus

section

chapter

book

subsection

paragraph

chapter

section

Categorial Type Logics

Grammatical composition
Recursion theory

Fig. 3. Eliminating overlapping units of retrieval

the LoLaLi project. The task we are addressing is to link concepts in the LoLaLi
hierarchy to highly relevant text fragments in the Handbook. We view this task as
a high-precision information retrieval task by treating every concept as a topic
and every text fragment as a document: to define the required instances, we
need to identify highly relevant text fragments for every concept in the LoLaLi
hierarchy. How much of the specific digital library and ontology aspects that we
have access to, can usefully exploited to address the task at hand. Our strategy
is an incremental one: starting from a simple baseline we determine the impact
of exploiting document structure, text markup cues, and collocations.

4.1 Under the Hood

The document collection in which we have to identify link targets consists
of LATEX documents: semi-structured data with explicit markup of segments:
\chapter, \section, \subsection, etc. These annotations provide a segmenta-
tion of the entire Handbook into (we assume) topically coherent text fragments.
As hyperlink targets (that is, as units to be returned by the retrieval engine),
we allow any segment at any level, from chapter down to paragraph. While it is
sensible to allow this (as some topics are discussed in a single paragraph only,
while others may exhaustively cover bigger units), it does raise a problem. If a
subsection contains a relevant piece of text, then so does the section it belongs
to and so does any larger surrounding annotation. How do you decide how small
or large the unit of retrieval should be? Following our experience with XML re-
trieval [12], we decided not to allow returning overlapping pieces of text. In cases
where we have to decide between two overlapping units of retrieval we choose
the one ranked highest by the retrieval system. This is illustrated in Figure 3:
if we choose to return the section then we are not allowed to return anything
contained in that section or anything that contains the section [13].

To simplify the evaluation of the hyperlink generation task, we made use of
the entries from the back-of-the-book index of the Handbook. Specifically, we used
all entries in the back-of-the-book index that also occur in the LoLaLi hierarchy;
there are 141 such entries. Each entry is explicitly marked up in the LATEX source
of the Handbook (with the \index{<entry>} command); on average, an entry
comes with three occurrences of the corresponding \index{..} tag. Our “gold

526 W.R. van Hage, M. de Rijke, and M. Marx

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. An example quantile plot of the baseline compared to a run that exploits
emphasis annotations.

standard” used for assessment consists of the 141 concepts mentioned as our
“topics” (in IR parlance). A text segment is considered relevant for a topic if it
is marked up with the corresponding \index{..} command. Clearly, the quality
of our results depends on the quality of the back-of-the-book index.

We use Incremental R-Precision as our metric; it returns 0 when none of
the relevant documents have been found for a given topic, and 1 when all have
been found. It has a higher value when a returned document appears high in the
ranking than when it appears further down in the ranking. Given a topic, p@n
(precision at n) is |{d ∈ Relevant | rank(d) ≤ n}|/n, and

Incremental R-Precision =
∑|Relevant|

n=1
p@n

|Relevant| ,

where Relevant is the set of relevant documents for the given topic. The score
for a run or experiment is obtained by averaging over all topics.

If the distribution of the performance differences is not skewed and if there
are few outliers then it is safe to use the paired t-test for the evaluation of
information retrieval [8]. These two conditions can be tested with quantile plots.
The points in such a plot are supposed to be balanced around the identity
line. We checked that this is the case for all our data; an example is shown in
Figure 4. Hence, we test how significant the differences between two methods are
by comparing the results per query with the paired t-test. Significant differences
(95% confidence, t ≥ 1.645) are marked with �,� and material differences (99%
confidence, t ≥ 2.346) with �,�. Insignificant differences are not marked.

4.2 Experiments

Our baseline uses a standard tf.idf weighting scheme [2], and we reduce all
words to their stem using the TreeTagger lemmatizer [22]. On top of that we
experimented with additional layout cues, and with collocations. First, words
that appear inside the titles of units (such as sections) are likely to be good
indicators of the main topic covered by those units. Word sequences that are
emphasized (the Handbook convention is to use \emph{..} and {\em ..}) seem

Information Retrieval Support for Ontology Construction and Use 527

Table 6. Link generation experiments. (Top) Runs that exploit layout cues. (Bottom)
Runs that exploit collocations.

Experiment Inc. R-Precision
baseline .35
title bonuses .41 �
emphasis bonuses .33
title and emphasis bonuses .39 �
collocation bonus .35
title and collocation bonus .46 � (relative to .41)
emphasis and collocation bonus .33

more important than others. We implement the preference for terms with a cer-
tain annotation, or occurring in a certain context, fairly naively, by increasing
the score of the text segment at hand. If a segment starts with a title and that ti-
tle contains the query words we double the segment’s score. If the segment’s title
contains nothing else, i.e., it coincides with the query, we double the segment’s
score again. If a document contains \em or \emph environments that literally
contain the query we double the score; and if the emphasis is on nothing but
the query we double it again. The experimental outcomes are shown in Table 6
(Top). There is a material difference for runs that prefer titles, but no significant
difference between runs that prefer emphasized text and those that do not: even
though emphasis is frequently used to stress key phrases, there appear to be
more cases where it is used to stress unimportant words.

With the resources developed in the previous section, we tried to boost the
performance of our link generation method. Using the collocations obtained from
our Web collection, we increased a segment’s score for a topic whenever it con-
tained a collocation from the topic. Using a similar naive scoring mechanism
as before, whenever a segment contains one or more collocations its score is
doubled. (A segment’s score can only be doubled once.) The idea is to bring
some word order to the topic-segment matching process, which should increase
precision whenever we know that word order may matter (as is the case for
our collocations: e.g., proof theory is likely to be more informative than theory
proof). Table 6 (Bottom) shows the results of the experiments with collocation
bonuses. There is no significant difference between the baseline and runs that
only exploit collocations, but when we combine title and collocation preference
there is a material difference with the baseline and even with the title preference
only run: the literal occurrence of the query in a segment’s body or emphasized
text does not say more about a segment’s probability of being relevant to the
query than its tf.idf score. However, the (literal) occurrence of query terms in
both a segment’s title and body is overwhelming evidence of relevancy.

4.3 Conclusions and Further Steps

We showed that exploiting title fields and collocations can improve the perfor-
mance of automatic hyperlinking. The methods we used are quite crude and

528 W.R. van Hage, M. de Rijke, and M. Marx

it is very likely that further improvements can be realized by optimization. A
more careful method to combine the evidence provided by tf.idf, title markup
and collocations could be beneficial to the results, thus leading us to consider
more sophisticated weighting schemes that standard ones used here.

5 Searching in Ontologies

After Sections 3 and 4, which were aimed at IR support for ontology construction,
we change tack and address support for end users that access ontologies for
navigational purposes. The process of browsing through the ontology to find a
concept can give the user a good impression about how the ontology (and the
underlying domain) is organized and how the concepts are related, but it can
also be a difficult and laborious process. Examples where browsing frustrates
the information access process are well-known, and include such things as not
knowing were in the hierarchy a concept might be located, using a different
vocabulary, or simply getting lost because of the sheer size of the ontology. In
such cases IR techniques can help address these information needs. Instead of
following the semantic relations hard-wired in an ontology, IR offers random
access to an ontology and a flexible interpretation of a user’s information need.

The task we want to address in the remainder of this section is the fol-
lowing: given a query, find relevant concepts in a concept hierarchy. In other
words, users’ information needs are formulated using arbitrary keywords, while
the “documents” to be returned are concepts, in the LoLaLi hierarchy.

5.1 Under the Hood

When trying to retrieve relevant concepts from an ontology, we have to deal
with a number of issues. (1) The queries tend to be very short. The number of
keywords per topic can be expected to be roughly equal to that of web search
engine queries, on average two keywords per topic [10,3]. (2) The documents are
very short too. Even if we have an extended description of the concepts (as many
of the concepts in the LoLaLi hierarchy do), the documents to be retrieved are
short compared to standard test collections. (On average, the descriptions are
23.3 words long, and the concept names 1.8 words; so the average document is
about 26 words long.) (3) The document collection is small. This means that
recall may be an issue. Summing up, retrieval against the LoLaLi hierarchy is a
high precision task, but, potentially, with high recall requirements.

Our topics, of which there are 26, have been made by four different authors
and are based on what first-year artificial intelligence students of the University
of Amsterdam typed into a prototype search engine in a user test of the LoLaLi
user interface. A “gold standard” was established using three assessors, in the
same manner as for the link generation task addressed in Section 4. The metric
used is also the same as in Section 4: incremental R-precision.

All documents and topics are stripped of all non-word characters except
hyphens and, as with the hyperlinking task described in Section 4, lemmatized

Information Retrieval Support for Ontology Construction and Use 529

Table 7. (Top) Results of collocation and exact match bonuses. (Bottom) Results of
concept relation based reranking.

Inc. R-Precision
baseline .53
only collocations .55
only exact match .56
coll. and exact match .58
grouping .65 �
grouping adding context .68 �
grouping with coll. and exact match .67 �
grouping adding context with coll. and exact match .74 �

using TreeTagger [22]. Each topic is then compared to documents in the inverted
index, producing a ranked list of documents, which is presented to the user.

5.2 Experiments

As a baseline we choose a simple tf.idf based retrieval model. As in the pre-
vious section, we are interested in finding out to which extent the structure
of the concepts and concept hierarchy can help improve retrieval effectiveness.
Specifically, we tried the following ideas on top of the baseline, all aimed at high
precision without hurting recall: (1) Give concepts of which the name exactly
matches the topic a bonus over other concepts. e.g. If the user types in ‘logic’
then the concept ‘logic’ would be preferred over ‘modal logic’. (2) Give concepts
that share a collocation with the topic a bonus over concepts that share the
constituents in some other order. (3) Group concepts that are related to each
other together, allowing concepts that are related to concepts in the top of the
ranking to benefit.

The first thing we try to improve over the baseline is to exploit characteristics
of the syntax of the documents. The results from our automatic hyperlinking
experiments suggests that we should prefer words in titles to words in the body
of a section. Similarly, we will prefer occurrences of query terms in a concept’s
name to cases where it appears only in its description; in the former case the
scores are simply doubled. Since the concept hierarchy is filled with very specific
terms, the influence of word order can be expected to be even greater in this
experiment than with the automatic hyperlinking. So we will try applying the
same method as with that experiment too. When a concept contains a collocation
that also appears in the query, we double its score. When a concept’s name is
exactly equal to the topic it is unlikely that the user desires another concept. So
we apply the same technique as before: we double the concept’s score.

The results of these techniques are shown in Table 7 (Top). Given the small
number of topics we can not conclude that the improvement is significant. We
can only say with about 90% confidence that there is a difference.

We now turn to further improvements over the baseline, ones that try to
exploit the semantics that are encoded by the relations in the concept hierar-

530 W.R. van Hage, M. de Rijke, and M. Marx

meaning relation
relation

synonymy
semantic relation

antonymy
semantic relation

hyponymy
semantic relation

semantic paradox
semantic

child

child
child

semantic network
semantic

Fig. 5. Sometimes related concepts are better than concepts that match the query well.

chy. For brevity we only report on the use of the subsumption relations is-a and
subclass-of for this purpose. Concepts inherit information from their parents and
specify them in some way; the converse holds for parent concepts in relation to
their children. Queries have to be answered as precisely as possible: not too gen-
eral, and not too specific. Often, the concept that gets the highest score from
a weighting scheme is the right concept, but sometimes things are more com-
plicated, as in Figure 5. Here, the query is ‘semantic relation’ and the desired
concept is ‘meaning relation,’ but the only concepts that contain ‘semantic rela-
tion’ literally are the children of ‘meaning relation.’ To address this problem we
propose to rerank the list of concepts produced by the weighting scheme in such
a way that related concepts appear close to each other. This allows concepts
that are related to a concept that gets a high score to benefit from this relation
and move up the ranking. The rules we use to group related concepts together
are listed below:

1. Every matching concept should be clustered under its parent; this parent
concept shows the context of the concept.

2. Matching concepts with the same parent should be put together under that
common parent, ordered by their own score.

3. Every chain of parent-child related matching concepts should end in a non-
matching concept that shows the context of the chain.

4. Unrelated clusters are joined together as a forest, ordered by the maximum
score of the cluster.

5. When parents have the same children they are joined together and get the
highest of the two scores.

These rules let parents benefit from their children and vice versa, and they let
siblings benefit from higher scoring siblings.

To constrain the size of the groups, and, hence, to allow more than one group
to fill the top of the ranking, we discard everything after a certain discrete cut-off
point and apply grouping on the concepts that are left. After some experimen-
tation, we chose 10 as the cut-off point, based on the average number of rele-
vant documents per topic. An overview of the retrieval-plus-reranking process is
shown in Figure 6. The results of the grouping rules are shown in Table 7 (Bot-
tom). Even with the small number of queries we can conclude that there is a

Information Retrieval Support for Ontology Construction and Use 531

tf.idf
exact match &

collocation bonusses

pick top-n
generate

groups

flatten

groups

final ranking

intermediate

ranking

Fig. 6. Overview of the concept grouping process.

material improvement of the scores when we exploit concept relations, and that
the combination of all techniques discussed so far improves most, suggesting that
distinct techniques have distinct effects.

5.3 Conclusion and Further Steps

While search in a concept hierarchy has special features that may require special
IR approaches, we have seen that standard retrieval techniques offer acceptable
levels of performance, but that material improvements can be achieved by ex-
ploiting the structure of the concept hierarchy. This, we believe, is a very inter-
esting combination of IR and Semantic Web techniques. Obvious further steps
worth exploring to improve ontology search include using additional relations
from the hierarchy, as well as using different retrieval models.

6 Conclusion

We used collocation-based keyword extraction to suggest new concepts, and
we studied the automatic generation of hyperlinks to automate the population
of ontologies with instances. We evaluated our methods within the setting of
an ontology-based digital library project. Within the same setting we explored
retrieval methods aimed at helping users search an ontology, and found that a
mixture of IR techniques and result reranking based on the underlying concept
hierarchy was the most effective method.

We should point out that, except for the grouping methods deployed in the
previous section, the IR methods that we used are mostly standard ones; how-
ever, their applications in the Semantic Web setting are novel. The methods
and results on which we reported in this paper should be interpreted as provid-
ing baselines for their respective tasks. There is a wealth of IR methods that,
we believe, can make further contributions to ontology construction, and to the
effective usage of ontologies.

Acknowledgments. Maarten de Rijke was supported by the Netherlands Or-
ganization for Scientific Research (NWO), under project numbers 612-13-001,
365-20-005, 612.069.006, 612.000.106, 220-80-001, 612.000.207, 612.066.302, and

532 W.R. van Hage, M. de Rijke, and M. Marx

264-70-050. Maarten Marx was supported by a grant from NWO under project
number 612.000.106.

References

1. G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.
2. R. Baeza-Yates and N. Ribeiro-Neto. Modern Information Retrieval. ACM Press,

1999.
3. N.J. Belkin, C. Cool, D. Kelly, G. Kim, J.-Y. Kim, H.-J. Lee, G. Muresan, M.-C

Tang, and X.-J Yuan. Query length in interactive information retrieval. In Proc.
of SIGIR, 2003.

4. C. Caracciolo. Towards modular access to electronic handbooks. Journal of Digital
Information, 3(4), 2003. Article No. 157, 2003-02-19.

5. CLEF. Cross-Language Evaluation Forum, 2003.
URL: http://www.clef-campaign.org/.

6. CoNLL. Conference on Natural Language Learning, 2003.
URL: http://cnts.uia.ac.be/signll/conll.html.

7. J. Heflin, J. Hendler, and S. Luke. Shoe: A prototype language for the semantic
web. Linköping Electronic Articles in Computer and Information Science, 6, 2001.
URL: http://www.ep.liu.se/ea/cis/2001/003/.

8. D. Hull. Evaluating evaluation measure stability. In Proc. of SIGIR 2000, 2000.
9. INEX. INitiative for the Evaluation of XML Retrieval, 2004. URL:

http://inex.is.informatik.uni-duisburg.de:2004/.
10. B.J. Jansen. An investigation into the use of simple queries on web ir systems.

Information Research: An Electronic Journal, 6(1), 2000.
11. J.S. Justeson and S.M. Katz. Technical terminology: some linguistic properties

and an algorithm for identification in text., 1995.
12. J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. XML retrieval: What to

retrieve? In Proc. of SIGIR, 2003.
13. G. Kazai, M. Lalmas, and A. de Vries. The overlap problem in content-oriented

XML retrieval evaluation. In Proc. of SIGIR, 2004.
14. B. Krenn and S. Evert. Can we do better than frequency? A case study on ex-

tracting PP-verb collocations. In Proc. ACL Workshop on Collocations, 2001.
15. LoLaLi. Logic and Language Links, 2003. URL: http://lolali.net/.
16. M. Dewey. Dewey Decimal Classification, 1870.

URL: http://www.oclc.org/dewey.
17. C.D. Manning and H. Schütze. Foundations of statistical language processing. The

MIT Press, 1999.
18. J. Mayfield and T. Finin. Information retrieval on the Semantic Web: Integrating

inference and retrieval. In Proc. SIGIR 2003 Semantic Web Workshop, 2003.
19. J.E. McEneaney. Visualizing and assessing navigation in hypertext. In Proc. ACM

Conference on Hypertext and Hypermedia, pages 61–70, 1999.
20. NTCIR. NII-NACSIS Test Collection for IR Systems, 2003.

URL: http://research.nii.ac.jp/ntcir/.
21. M. Sanderson and B. Croft. Deriving concept hierarchies from text. In Pro. SIGIR

1999, pages 206–213, 1999.
22. H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc. of

International Conference on New Methods in Language Processing, 1994.

Information Retrieval Support for Ontology Construction and Use 533

23. Senseval. Evaluation of Systems for the Semantic Analysis of Text, 2003. URL:
http://www.senseval.org/.

24. U. Shah, T. Finin, A. Joshi, R.S. Cost, and J. Mayfield. Information retrieval on
the semantic web. In Proc. CIKM 2002, 2002.

25. H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries.
In Proc. FQAS’02, 2002.

26. TREC. Text REtrieval Conference, 2003. URL: http://trec.nist.gov/.
27. J. van Benthem and A. Ter Meulen, editors. Handbook of Logic and Language.

Elsevier, 1997.
28. E.M. Voorhees. Overview of the TREC 2003 Question Answering Track. In NIST

Special Publication 500-255: TREC 2003, 2004.
29. Yahoo! Yahoo!, 1995. URL: http://www.yahoo.com/.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 534–548, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Rules-By-Example – A Novel Approach to Semantic
Indexing and Querying of Images

Suzanne Little1,2 and Jane Hunter1

1 DSTC Pty Ltd, The University of Queensland,
St Lucia, Queensland, Australia

{slittle, jane}@dstc.edu.au
2 ITEE Dept., The University of Queensland,

St Lucia, Queensland, Australia

Abstract. Images represent a key source of information in many domains and
the ability to exploit them through their discovery, analysis and integration by
services and agents on the Semantic Web is a challenging and significant
problem. To date the semantic indexing of images has concentrated on applying
machine-learning techniques to a set of manually-annotated images in order to
automatically label images with keywords. In this paper we propose a new
hybrid, user-assisted approach, Rules-By-Example (RBE), which is based on a
combination of RuleML and Query-By-Example. Our RBE user interface
enables domain-experts to graphically define domain-specific rules that can
infer high-level semantic descriptions of images from combinations of low-
level visual features (e.g., color, texture, shape, size of regions) which have
been specified through examples. Using these rules, the system is able to
analyze the visual features of any given image from this domain and generate
semantically meaningful labels, using terms defined in the domain-specific
ontology. We believe that this approach, in combination with traditional
solutions, will enable faster, more flexible, cost-effective and accurate semantic
indexing of images and hence maximize their potential for discovery, re-use,
integration and processing by Semantic Web services, tools and agents.

1 Introduction

Images constitute a significant and under-utilized proportion of information in many
domains and semantic indexing of images is essential if they are to be discovered and
fully exploited by Web search engines, services, agents and applications. Because of
the complexity and multidimensional nature of image data, manual annotation is
slow, expensive and predisposed to high subjectivity. Significant progress has been
made in recent years on the automatic recognition of low-level features within
images. However, comparatively little progress has been made on the machine-
generation of high-level semantic descriptions of images.

In this paper we describe a unique, user-assisted approach to generating ontology-
based semantic descriptions of images from low-level automatically extracted
features. Our approach enables domain-experts to define rules specific to their domain
which map particular combinations of low-level visual features (colour, texture,
shape, size) to high-level semantic terms defined in their domain ontology. Such

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 535

descriptions enable more sophisticated semantic querying of the images in terms
familiar to the user’s domain whilst still ensuring that the information and knowledge
within the images has a much greater chance of being discovered and exploited by
services, agents and applications on the Web. The use of ontologies reduces the
potential subjectivity of the semantic descriptions and the documentation of the
inference rules provides a mechanism for capturing and sharing human domain
knowledge, in the form of the analysis methods employed by the domain experts.

Query-By-Example (QBE) is a well-recognized approach to image retrieval. In
QBE, the user provides the system with an example image or examples of the visual
features that they are seeking and the system attempts to retrieve similar images by
matching the visual features. In order to define semantic inferencing rules for images,
users need to be able to specify values for low-level visual features. Consider, for
example, an oncologist labelling CAT scans of brains, in order to enable the search
and retrieval of particular types of brain tumours:

IF [(color is like this) AND (texture is like this) AND (shape is like this)]
THEN (the object is an astrocytoma)

The simplest and most intuitive way to specify such rules is to provide a QBE-
type interface by which users can specify colour, texture, shape and size through
visual examples, drawing from images within their collection of interest. Hence we
decided to develop a Graphical User Interface (GUI) which provides users with color
palettes, texture palettes, pre-defined shapes or drawing tools, by which they can
define their own semantic inferencing rules. The GUI is generated from and
dependent on the pre-selected back-end (OWL) ontology (specified at time of system
configuration) which defines and constrains the semantic descriptions that can be
generated. The system can be migrated to a different domain by supplying a different
back-end ontology. Graphically-defined rules are saved as RuleML which can be
applied to image metadata from that particular domain to generate semantic
descriptions.

In order to test and evaluate our proposed approach we wanted a domain in which
image analysis played a key role and in which a certain amount of knowledge was
already available in the form of existing but informal models, vocabularies and image
analysis methods which could be represented within ontologies and inference rules.
Discussions with the Centre for Microscopy and Microanalysis at The University of
Queensland led us to the fuel cell community and their problem of optimization of
fuel cells. This application is typical of many eScience applications in that it requires
the analysis of large numbers of microstructural images and their assimilation with
related information such as performance data and manufacturing parameters. Because
the efficiency of fuel cells is dependent on the internal structure of the fuel cell layers
and the interfaces between them, an analysis of electron microscopy images of cross-
sectional samples through fuel cells can reveal valuable new information. Simple
macro-level information such as the thickness of the cell layers, surface area,
roughness and densities can be used to determine gas permeation of the electrode
materials. Nano-level information about the electrode's internal interface structure
provides data on the efficiency of exchange reactions. Figure 1 illustrates a sample of
the image data obtainable at different magnifications which needs to be analyzed and
semantically indexed in order to fully mine the potential knowledge held within the
images.

536 S. Little and J. Hunter

Fig. 1. Microscopic images of a fuel cell at 3 different magnifications

The remainder of this paper describes in more detail the semantic indexing system
which we built and its application and evaluation within the context of the fuel cell
domain. Although we have chosen one particular community in which to test our
approach, the design is such that it applies to any image-analysis domain e.g., remote-
sensing, satellite or medical images. The paper is structured as follows:

• Section 2 describes previous research on the generation of semantic image
descriptions from low-level features;

• Section 3 describes the overall architecture of our system and its main
components:

• The ontologies which we developed;
• The automatic image analysis programs which we invoked to extract

low-level features and to generate MPEG-7 descriptions;
• How we applied semantic inferencing rules to image data and the

challenges this involved;
• Section 4 describes the Rules-By-Example graphical user interface which we

developed;
• Section 5 contains empirical results obtained by testing our approach on real

fuel cell images;
• Section 6 contains our conclusions and describes future plans for this research.

2 Previous Work

Most recent research in image or video indexing and retrieval has focused on query-
by-example (QBE) [1-3]. However semantic querying or query-by-keyword (QBK)
has recently motivated research into semantic indexing of images and video content.
A number of research efforts have investigated the use of automatic recognition
techniques to extract different low-level visual or audio features which together can
be used to generate improved semantic descriptions of multimedia content. Recent
attempts include work by Naphade et. al. [4] which proposes a statistical factor graph
framework to bridge the gap between low-level features and semantic concepts.
Chang et. al. [5] use a library of examples approach, which they call semantic visual
templates. Adams et. al. [6] manually annotate atomic audio and video features in a
set of training videos and from these develop explicit statistical models to
automatically label the video with high-level semantic concepts. Zhao and Grosky [7]
employ a latent semantic indexing technique which integrates a variety of
automatically extracted visual features (global and sub-image colour histograms and

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 537

anglograms for shape-based and colour-based representations) to enable semantic
indexing and retrieval of images.

Overall the use of machine learning techniques to bridge the semantic gap
between image features and high-level semantic annotations provides a relatively
powerful method for discovering complex and hidden relationships or mappings.
However the ‘black-box’ method often employed can be difficult to develop and
maintain as its effectiveness relies upon the design and configuration of multiple
variables and options. In addition, extensive and detailed training corpuses are
required to ensure optimum performance from the system. The main disadvantage of
machine learning-based systems is that they are built specifically for one particular
domain and document type (e.g., images or speech) and cannot easily accommodate
other domains or information sources.

In their recent paper, Marques and Barman [8] used machine-learning techniques
to semantically annotate images with semantic descriptions defined within ontologies.
Our approach is to replace or augment the machine-learning component with domain-
specific inferencing rules defined by domain-experts through an intuitive user-
friendly interface. Hatala and Richards [9] applied a similar approach to generating
semantic descriptions for learning objects - relevant values for a particular metadata
field are suggested by applying ontologies and rules – but they have not applied this
approach to image content.

We believe that our approach enables some of the limitations in existing image
annotation approaches (such as difficulty determining the distinguishing features and
adapting to different domains) to be overcome. We do this through the
complementary use of semantic web technologies and an interface which allows
domain experts to intuitively and interactively develop and define semantic
inferencing rules in an interoperable, machine-understandable and shareable format.

3 System Architecture

Figure 2 illustrates the overall system components and architecture for the knowledge
management system that we developed to manage the manufacturing, performance,
microscopy and image data captured from the fuel cell components.

The MPEG-7 (Multimedia Content Description) [10] standard is used to describe
the low-level image features. The OME (Open Microscopy Environment) [11]
standard is used to capture associated microscope details and settings – essential
provenance information within any scientific context. An additional metadata schema
(FUSION [12]) was developed specifically to satisfy the descriptive requirements of
fuel cell analysts. We developed both XML Schemas [13] to define and validate the
metadata descriptions, and OWL [14] ontologies, to define the semantics and
semantic relationships between the terms used in each of these schemas. User-
specified RuleML rules define the relationships between low-level automatically-
extracted MPEG-7 features and high-level FUSION concepts or terms and are applied
by an inferencing engine. All of the generated and validated metadata is stored in a
central knowledge repository. A query engine, visualization engine and knowledge
capture (annotation) tools sit on top of the knowledge repository. Together these
enable users to access, interpret, assimilate and mine the stored data.

538 S. Little and J. Hunter

manufacture.xml

performance.xml

microscopy.xml

image.xml
Image Analysis

.xsd

M icroscopy
.xsd

M anufacturing
.xsd

Performance
.xsd

FUSION.owl

OME.owl

M PEG-7.owl

rules.xml
(RuleML/MathM L)

image.jp2

FUSION Knowledge
Repository

Inference Engine
FUSION
schema

 ABC
Ontology

Rules-By-Example

Collaborative Annotation

Visualization EngineQuery EngineKnowledge Capture

Fig. 2. Overall Architecture

A key aspect of our approach is the separation (as far as possible) of rules from
facts. The rules are contained within explicit definitions in the RuleML files
(rules.xml) and within implicit class/property relationships of the ontologies.
Together these produce rules which are more flexible and able to be easily abstracted
e.g., if a given rule applies to mpeg7:Color then it will also apply to
mpeg7:DominantColor. The facts are built from the knowledge repository elements
which are defined by both XML Schema (syntactic) definitions and ontological
(semantic) definitions. Applying the rules through a reasoning engine, produces more
“facts” which are inserted into the knowledge repository and defined within the
related XML Schema and OWL ontology.

In order to enable semantic interoperability between the MPEG-7, OME and
FUSION metadata vocabularies, and to define the semantic and inferencing
relationships between the terms in these different schemas, we needed to develop
ontologies for each of these vocabularies and harmonize or relate them. We used the
top-level or core ABC ontology [15] developed within the Harmony project to do this.
The ABC ontology provides a global and extensible model that expresses the basic
concepts that are common across a variety of domains and provides the basis for
specialization into domain-specific concepts and vocabularies. Brief descriptions of
the MPEG-7, OME and FUSION ontologies together with figures illustrating a subset
of these ontologies are provided below.

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 539

3.1 The MPEG-7 Ontology

Figure 3 illustrates graphically a subset of the MPEG-7 OWL ontology [16] which we
developed to define the semantics of terms used within the MPEG-7 standard for
describing multimedia/image content – and in particular low level visual features.
Figure 3 shows only those classes for which “color” is a visual descriptor and the five
sub-properties of color. A complete description of the MPEG-7 ontology is available
at [17].

Video
Segment

Still
Region

Moving
Region

color

visual
descriptor

domain

domain

domain range Color

rdfs:Resource

Dominant
Color

Scalable
Color

Color
Layout

Color
Structure

GoFGoP
Color

rdfs:subClassOf

 rdfs:subClassOf

rdfs:subClassO
f

rd
fs

:s
ub

Clas
sO

f

 rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

Fig. 3. The MPEG-7 Visual Descriptor “Color”.

3.2 The OME Ontology

The OME (Open Microscopy Environment) [18] is an open source collaborative
software project which aims to develop a common environment for the analysis,
management and exchange of biological microscopic images. A key component of the
OME is an XML-encoded file standard for the storage, analysis and exchange of
image data output from microscopy procedures. A common standard for recording
microscope-related metadata is essential for capturing the provenance or source of
microscopy images and it includes such information as: the microscope manufacturer,
serial and model, instrument settings, detectors, filters and light sources. An OME
ontology was developed from the OME CoreSemanticTypes [19]. It defines the
semantics associated with microscope output data and settings and enables them to be
related to the image descriptors defined by MPEG-7 and FUSION ontologies. Figure
4 illustrates a subset of the OME OWL ontology that we developed.

3.3 The FUSION Ontology

Figure 5 illustrates the key classes or concepts and their relationships, as defined in
the FUSION ontology that we developed for the fuel cell community. This was
developed in collaboration with domain experts using the approach recommended in
[20] and was used to generate the high-level semantic descriptions or terms which the
fuel-cell experts use when searching and retrieving images.

540 S. Little and J. Hunter

Instrument

LightSourceDetector Objective Filter

abc:Actuality manufacturer
model

serialNumber

type

serialNumber

model
manufacturer

string

string

string

string

string

string

string

rdfs:subClassOf

abc:containsabc:containsabc:containsabc:contains

Laser

Filament

Arc

OpticalTransferFunction

otf

ExcitationFilter

Dichroic

EmissionFilter

FilterSet

OpticalTransferFunction

otf otfstringmanufacturer
stringmodel
stringserialNumber
stringtype
floatgain
floatvoltage
floatof fset

rdfs:subClassOf rdfs:subClassOf

Fig. 4. A subset of the OME ontology showing an instrument and its components

FuelCell

MEA

Electrolyte

ActiveMetal

Catalyst

CatalystSupport

Support

1

2

n
1

1

1

1

1

1

1

n

1

n

Electrode

Anode Cathode

rdfs:subClassOf

abc:contains

abc:contains

abc:contains

rdfs:subClassOf rdfs:subClassOf

abc:contains

abc:contains

abc:contains

abc:contains

1

1

abc:Actuality

Fig. 5. A subset of the Fuel Cell ontology showing components of a fuel cell.

3.4 Automatic Feature Extraction

Automatic feature extraction for images [21] is a significant research area and a wide
variety of tools and mechanisms exist for analyzing scientific and other types of
images (e.g. [22]). Within the scope of this project, we are not particularly interested
in the underlying method by which these programs process images but we are
interested in the outputs or features that such programs produce and whether they can
be used to generate MPEG-7 descriptions from which higher-level semantic concepts
can be inferred. For our system we have chosen to use MATLAB [23] because it is a
popular and powerful tool which is currently being widely used by microscopists and
scientists for analyzing scientific images. MATLAB is capable of producing a large
amount of low-level data about the features and objects within an image e.g., area,

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 541

location, pixel colour, centroid, eccentricity, orientation etc. Currently we are calling
MATLAB analysis methods directly but plan to employ SOAP [24], WSDL [25] and
OWL-S [26] to make the automatic feature extraction modules of MATLAB available
as web services. This would allow greater flexibility and adaptability by enabling the
optimum extraction and analysis tools or services to be plugged in at runtime. The
data produced by MATLAB analysis methods is transformed to MPEG-7 descriptions
using Python scripts.

3.5 Defining and Invoking Semantic Inferencing Rules

Many challenges need to be overcome, when implementing inferencing rules within a
Semantic Web application. [27] provides a useful discussion of the current
approaches to rules within the Semantic Web and examines some of the motivations
and difficulties. The three main issues faced by our project were: what recording
syntax to choose; how to build or generate the rules; and how to apply the rules.

The recording syntax had to be flexible, machine-processable and interoperable
with existing tools and standards (e.g., XML Schema, OWL). By using an XML-
based rule definition language such as RuleML, the rules, ontologies and metadata
schemas can be linked through the use of URIs, namespaces and semantic attributes
defined in the XML Schema documents (see [28] for further details on this approach).
In addition, as noted by Boley et. al. [29], XML-based rules provide a sharable,
application-independent form of knowledge which can easily be processed for each
application using transformation methods such as XSLT or others of the growing
variety of generic tools for the creation, modification and management of XML data.
Several possible XML formats exist for representing inference rules. The most
popular markup language for rules and the current most likely candidate for adoption
by the Semantic Web community is RuleML [30], the Rule Markup Language.
Although still under active development, RuleML has a wide user base, a reasonable
level of available tool support in the form of reasoning engines and transformation
options and provides an XML description of inference rules. Alternative markup
languages which were examined included the eXtensible Rule Markup Language
(XRML) [31] and the Description Logic Markup Language (DLML) [32] both of
which lacked the breadth of users and tool support available for RuleML. A
promising emerging approach, the Semantic Web Rule Language (SWRL) [33, 34]
which combines OWL and RuleML, is also under-development and may be
considered for use within this project as its stability and support base expands. In
addition MathML [35], the W3C’s Mathematical Markup Language, was also
investigated in order to support the description of more complex mathematical
relationships and models relating to the fuel cell domain.

While XML-based rules have many advantages, they can be very difficult and
time consuming to create and in the case of image data, rely on the specification of
low-level features which can be highly complex (e.g., colour histograms). The size of
the resulting XML file is also a serious issue. For example, the simple rule provided
in the introduction to this paper would convert to approximately 40 lines of RuleML.
The translation from rules specified in a natural language format to RuleML is not
necessarily a one-to-one mapping. For example, color is ‘one of’ set can have
multiple possible RuleML representations. In order to assist domain experts in the
creation, refinement and application of the semantic inferencing rules, we developed

542 S. Little and J. Hunter

the Rules-By-Example GUI – an intuitive user interface generated from the
configured backend ontologies that allows users to build complex RuleML rules
quickly and easily. This is described in detail in the next section.

Once the rules have been defined and recorded they need to be processed and
applied to the specified data using an inferencing engine. Possible candidates for the
inferencing engine include: JESS (Java Expert System Shell) [36]; and Mandarax
[37], a Java RuleML engine. Problems that often arise when invoking the semantic
inferencing rules include: slow processing speed; the need to convert data to in-
memory RuleML facts and the lack of native RuleML support for applying standard
string and mathematical relations (e.g., greater than, equal to, etc.). Mandarax
provides some internal representation and processing options (ZKB) which can be
used to overcome these issues. Alternatively using wrapper scripts and relational or
XML databases can also be used to improve performance and flexibility.

4 Rules-By-Example Implementation and Interface

Figure 6 illustrates the dataflow within the Rules-By-Example (RBE) system. The
RBE GUI enables the user to specify values for visual features from palettes of
sample colors and textures, drawing tools or by specifying example images selected
from the knowledge repository. For example, using the graphical tools, users can
easily specify that ‘color’ should be ‘like this region in this image’. By generating the
GUI’s pull-down menus from MPEG-7 descriptions generated by the image analysis
services and the ontologies specified at configuration time, the GUI enables domain
experts to easily define complex rules and store them in RuleML format without
understanding the complexities of image analysis or RuleML.

FUSION Knowledge
Repository

image.jp2image.jp2image.jp2

Image Analy sis Serv ice
(MATLAB)

MPEG-7
description

Inference Enginerules.xml
(RuleML)

Rules-By-Example

FUSION
description

Domain Expert

Feedback loop

FU
SI

ON
.ow

l

OM
E.

ow
l

M
PE

G-
7.

ow
l

 ABC
Ontology

Fig. 6. Rules-By-Example Dataflow

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 543

Fig. 7. Screenshot of user interface prototype

Figure 7 illustrates a screenshot of the prototype RBE interface developed. The
menu options within the interface are populated dynamically from the back-end
ontologies specified during system configuration. For example, the initial menu
(marked A) identifies the MPEG-7 Media element to which the rule applies.
Consequently the drop-down menu displays subclasses of the Region class of the
MPEG-7 ontology. In this case the user has selected the StillRegion sub-class. Further
use of relationships derived from ontologies can be seen in the menu marked B.
Depending on the media element selection made in menu A, menu B displays all
possible properties (or attributes) which have that element or its superclass as the
domain. The possible operators and values for a property, are also generated from its
range definition e.g., if the type is string then relationships such as less than are
irrelevant. This type of dynamic population of the user interface provides both user
support and domain independence – both strengths of this system. Standard logical
operators (AND/OR) enable the specification of more advanced, composite, logic-
based rules. The window in the upper right-hand section of Figure 7 shows the
metadata which has been automatically extracted for the highlighted region.

In order to specify the values of atoms within a rule’s body, the user is able to
select an existing image (or set of images) and choose regions or segments of the
image to use as examples. For instance, in the screenshot above, the color
specification within this rule states that for the rule to be true (that is for the
StillRegion to depict Electrolyte) then color must be one or more of the set shown on
the palette. The palette displays all of the colors in the selected segment and the user
is able select one or more. An additional complexity when searching for visual
features is the fuzzy matching problem. Similarity rather than exact matches are
usually required. To support this, the interface provides the ability to set a threshold
value for individual image attributes or features.

544 S. Little and J. Hunter

Once the user is satisfied with a rule definition, it can be transformed and saved in
RuleML format (possibly augmented with MathML). The RuleML file generated
from the rule in Figure 7 is available1. Manual creation of such a rule would have
been extremely difficult and time consuming.

Overall the Rules-By-Example interface allows the user to quickly develop, apply
and refine highly complex rules without needing to understand complex low-level
MPEG-7 terms or values. In addition, it enables users to direct the system so that it
focuses on the objects, regions or distinguishing features of highest priority or interest
– in contrast to traditional approaches which require pre-selection of important
features. The next section discusses the results of initial system evaluation.

5 System Evaluation

5.1 Evaluation Process

Initial evaluation tests were carried out using a set of sample fuel cell images. The
objectives of these experiments were: to determine how the semantic labels generated
by our rules-based system compare with manual annotations; and to gather feedback
on the usability and expediency of the RBE interface.

The evaluation process was conducted as follows:
1. Twelve microscopy images, of equivalent magnification (10000x) and from the

same fuel cell component (electrolyte of a ceramic fuel cell) were manually
segmented by defining region boundaries. The images were all grayscale and
either high quality JPEG or TIFF images of average size 2560x1920 pixels. Two
main region types were present: large pale gray 10% yttria-stabilized zirconia
(10YSZ) grains and smaller, darker alumina grains.

2. The images were analyzed using the MATLAB image processing toolbox and
low level data (including: Boundary Coordinates, Area, BoundingBox,
Eccentricity, Color (lightest, darkest, mean, standard deviation, dominant color,
dominant range of colors)) were extracted and saved to a MySQL database.

3. The RBE interface was used by the system designers to manually assign labels to
all of the regions in the images (total of 274 regions).

4. The RBE interface was then used by the fuel cell experts to build six sample
RuleML rules (three describing the 10YSZ grains and three describing the
alumina grains) based on a region’s Area, Eccentricity, DominantColor and
DominantColorRange. Feedback on the usability of the interface was recorded
during this phase.

5. A Python script converted the data in the database into RuleML facts describing
the features of each region. Some filtering and preprocessing of the facts was
necessary to remove tiny (<100 pixel) areas that were detected by the segmenting
software but which do not represent relevant regions. These regions can greatly
reduce the speed of the inferencing engine. Secondly, as discussed in section 3.5,
mathematical relationships defined within the rules (e.g., greater than) are not
processed by Mandarax. So in order for the inferencing engine to apply rules
such as, “DominantColor must be greater than (165,165,165)”, a Python pre-

1 http://metadata.net/sunago/fusion/sample.ruleml

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 545

processing script was required to generate additional facts e.g., declaring those
regions with attribute values greater than the nominated threshold.

6. A sample RuleML query was defined and the rule, query and facts were
combined into a rulebase and processed using the Mandarax inferencing engine.
The list of regions which matched the query were saved and compared with the
labels of the manually annotated regions to calculate the precision and recall of
the RBE system.

5.2 Evaluation Results

Table 1 shows the results of initial evaluation tests generated by applying the six rules
specified below the table. Initial results demonstrate exceptional precision but only
mediocre recall. The high precision is a direct result of the RBE interface which
enables users to interactively adapt and refine their rules and filter out erroneous
rules, based on system feedback. However this also encourages users to mould rules
to fit the test set, potentially at the expense of performance or accuracy when applied
to a larger size or range of images. The improvement in recall shown when two rules
were combined (Rules 3 and 6) demonstrates how this tendency can be overcome and
leveraged to improve the results.

Table 1. Summary of initial evaluation results

 1 2 3 4 5 6
Total regions which match the rule (I) 66 52 102 24 24 33

Regions which match the rule and have
the equivalent label in the database (H)

66 52 102 23 24 32

Total regions labeled as component in the
database (C)

167 167 167 53 53 53

Precision (C/I) 100 100 100 95.83 100 95.83
Recall (C/H) 39.52 31.14 61.08 43.4 45.28 60.38

1. mpeg7:Region mpeg7:Depicts 10YSZ IF mpeg7:DominantColor is ‘(1,1,1)’
AND DominantColorRange is ‘(6,6,6)’

2. mpeg7:Region mpeg7:Depicts 10YSZ IF Area < 5000 and Eccentricity < 0.5
3. mpeg7:Region mpeg7:Depicts 10YSZ IF Rule1 OR Rule2
4. mpeg7:Region mpeg7:Depicts alumina IF mpeg7:DominantColor is >

‘(165,165,165)’ and mpeg7:DominantColor < ‘(200,200,200)’
5. mpeg7:Region mpeg7:Depicts alumina IF Area > 100000 and Eccentricity > 0.5
6. mpeg7:Region mpeg7:Depicts alumina IF Rule4 OR Rule5

The homogeneous nature of the images also contributed to the high precision of
the results. The images were highly consistent because they originated from the same
fuel cell component (albeit at different cross-sections) and were created under exactly
the same microscopy conditions. This consistency, together with the presence of only
two distinct region types, made the creation of precise rules relatively simple.

However, the slow performance of the system was a serious problem. The size of
the images, the number of regions and the size of the associated data (100MB text

546 S. Little and J. Hunter

files generated by MATLAB) significantly affected the performance and
responsiveness of the RBE interface. Processing even a simple query and rule over a
large set of facts took up to 10 minutes. A number of solutions (e.g., closer integration
of database functionality, use of MATLAB APIs and faster image processing
techniques) are currently being investigated.

User’s feedback on the interface produced several useful requests including: the
ability to compare and contrast selected sample regions; a ‘sketch’ interface integrated
with feature measurements such as eccentricity, to assist in describing shape; and
enabling the definitions of the ontology terms used to populate the dropdown menus
to be displayed. These interface issues are currently being addressed.

6 Future Work and Conclusions

The initial test results were very encouraging. A comparison of the semantic labels
generated automatically (by applying user-defined rules) with the semantic labels
manually attached to the same images, has demonstrated very high correlation. Given
the semantic descriptions generated by applying the rules defined within the RBE
GUI, domain-experts are able to perform much more complex and sophisticated
queries over the image data, in terms which are useful and familiar to their domain
e.g., “give me all of the images depicting Catalysts with high ActiveMetal density”.

However further testing is required – using larger image sets and images from
other domains. Future tests will also involve more formal interface evaluation (user
interviews, observation, task analysis) and more comprehensive investigation of
methods for improving performance and scalability. We also plan to compare the
performance of the system with machine learning based methods for image analysis.

Additional future plans include: supporting user suggestions gathered from the
initial trials; including confidence ratings with rule specifications; extending the
approach described here to the semantic indexing of video content (exploiting
automatically-extracted audio and moving object features); adding an annotation
component to allow shared evaluation of experimental data.

To conclude, we have described in this paper a new approach to the semi-
automatic semantic indexing of images. Rules-By-Example (RBE) combines RuleML
with a Query-By-Example type interface to enable domain-experts to graphically
define domain-specific rules that can infer high-level semantic descriptions of images
from combinations of low-level visual features (e.g., color, texture, shape, size of
regions). By applying these rules, the system is able to analyze the visual features of
any given image from this domain and generate semantically meaningful descriptions,
using terms defined in the domain-specific ontology. We believe that the advantages
of this approach include:

• Faster, more accurate cost-effective semantic indexing of images;
• A graphical user interface which provides an intuitive, user-friendly means by

which domain-experts can interactively develop, apply and refine semantic
inferencing rules for images;

• A flexible architecture which enables any ontology to be easily linked to the
system at configuration time, dynamically customizing the system for a
particular domain;

Rules-By-Example – A Novel Approach to Semantic Indexing and Querying 547

• The ability to plug in the optimum or most appropriate automatic image
analysis tools/services at runtime;

• The use of machine-understandable XML-based image metadata standards,
schemas, ontologies and rule languages which ensure maximum
interoperability of the system and data;

• A knowledge capture system which accurately and easily captures the
knowledge of domain experts and maximizes the potential of their image
content to be discovered, re-used and assimilated by communities, services,
tools and agents on the Web.

Acknowledgements. The work reported in this paper has been funded in part by the
Co-operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government's CRC Programme (Department
of Education, Science and Training). Thanks also to staff from the Centre for
Microscopy and Microanalysis at the University of Queensland for their feedback and
the images used in this project.

References

1. Deng, Y. and Manjunath, B. S. "Content-based search of video using color, texture and
motion." in International Conference on Image Processing (ICIP '97). Washington, DC,
USA, October 26-29, 1997.

2. Marchand-Maillet, S., "Content-Based Video Retrieval: An Overview." University of
Geneva, Geneva, Switzerland. 2000. Technical Report No. 00.06, CUI.

3. Zhang, H., Wang, A., and Altunbasak, Y. "Content-based video retrieval and compression:
a unified solution." in IEEE International Conference on Image Processing. Santa Barbara,
CA, Oct 1997.

4. Naphade, M. R., et al. "A Factor Graph Framework for Semantic Indexing and Retrieval in
Video", in IEEE Workshop on Content-based Access of Image and Video Libraries
(CBAIVL'00). Hilton Head, South Carolina, June 16 2000.

5. Chang, S. F., Chen, W., and Sundaram, H. "Semantic Visual Templates: linking visual
features to semantics", in IEEE International Conference on Image Processing (ICIP '98).
Chicago, Illinois, 1998.

6. Adams, B., et al., Semantic Indexing of Multimedia Content Using Visual, Audio and Text
Cues. EURASIP Journal on Applied Signal Processing. 2003.

7. Zhao, R. and Grosky, W. I., Negotiating The Semantic Gap: From Feature Maps to
Semantic Landscapes. Pattern Recognition. 35(3): p. 51-58, 2002.

8. Marques, O. and Barman, N. "Semi-automatic Semantic Annotation of Images Using
Machine Learning Techniques", in International Semantic Web Conference. Florida,
October 2003.

9. Hatala, M. and Richards, G. "Value-added Metatagging: Ontology and Rule based
Methods for Smarter Metadata", in Rules and Rule Markup Languages for the Semantic
Web (RuleML2003), 2003.

10. ISO/IEC 15938-5 FDIS Information Technology, "Multimedia Content Description
Interface - Part 5: Multimedia Description Schemes". MPEG7, Sydney. July 2001.

11. Open Microscopy Environment, OME, (http://www.openmicroscopy.org/).
12. FUSION Project, (http://metadata.net/sunago/fusion.htm).
13. W3C, XML Schema Specifications (Part 0: Primer, Part 1: Structures, and Part 2:

Datatypes), W3C Recommendation, May 2001, (http://www.w3.org/XML/Schema#dev).

548 S. Little and J. Hunter

14. W3C, OWL Web Ontology Language Overview, W3C Recommendation, 10 Feb 2004,
Edited by Deborah L. McGuinness and Frank van Harmelen, (http://www.w3.org/TR/owl-
features/).

15. Lagoze, C. and Hunter, J., The ABC Ontology and Model (v3.0). Journal of Digital
Information. 2(2), 2001.

16. Hunter, J. "Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology", in
International Semantic Web Working Symposium (SWWS). Stanford, July 30 - August 1,
2001.

17. MPEG-7 Ontology, (http://metadata.net/harmony/MPEG7/mpeg7.owl).
18. Swedlow, J. R., et al., Informatics and Quantitative Analysis in Biological Imaging.

SCIENCE. 300: p. 100-102, 2003.
19. Open Microscopy Environment, OMECoreSemanticTypes.ome, 4 Sep 2003,

(http://openmicroscopy.org/XMLschemas/STD/RC2/OMECoreTypes.ome).
20. Noy, N. and McGuinness, D., "Ontology development 101: A Guide to Creating Your

First Ontology". Stanford University, 2001. Technical Report SMI-2001-0880.
21. Nixon, M. and Aguado, A., Feature Extraction and Image Processing. 2002: Newnes.
22. Internet Analysis Tools Registry,

(http://www.cma.mgh.harvard.edu/iatr/display.php?search_type=all).
23. MathWorks, MATLAB, (http://www.mathworks.com/products/imageprocessing/).
24. W3C, SOAP Version 1.2 Part 0: Primer, W3C Recommendation, 24 June 2003, Edited by

Nilo Mitra, (http://www.w3.org/TR/2003/REC-soap12-part0-20030624/).
25. Christensen, E., et al., Web Services Description Language (WSDL) 1.1, W3C Note, 15

March 2001, (http://www.w3.org/TR/wsdl).
26. The DAML Services Coalition, OWL-S: Semantic Markup for Web Services, May 2003,

(http://www.daml.org/services/owl-s/1.0/).
27. Staab, S., et al., Trends & controversies - Where are the rules? Intelligent Systems, IEEE.

18(5): p. 76, 2003.
28. Hunter, J. and Lagoze, C. "Combining RDF and XML Schemas to Enhance

Interoperability Between Metadata Application Profiles", in WWW10. HongKong, May
2001.

29. Boley, H., Tabet, S., and Wagner, G. "Design Rationale of RuleML: A Markup Language
for Semantic Web Rules", in Semantic Web Working Symposium (SWWS), 2001.

30. The Rule Markup Initiative, RuleML, (http://www.dfki.uni-kl.de/ruleml).
31. eXtensible Rule Markup Language, XRML, (http://xrml.kaist.ac.kr/).
32. Description Logic Markup Language, DLML, (http://co4.inrialpes.fr/xml/dlml/).
33. Horrocks, I., et al., "SWRL: A Semantic Web Rule Language Combining OWL and

RuleML". 19 November 2003. proposal
34. Grosof, B. N., et al. "Description Logic Programs: Combining Logic Programs with

Description Logic", in 12th Intl. Conf. on the World Wide Web (WWW-2003). Budapest,
Hungary, May 20-23, 2003.

35. W3C, Mathematical Markup Language (MathML), W3C Proposed Edited
Recommendation, 04 August 2003, Patrick Ion Edited by David Carlisle, Robert Miner
and Nico Poppelier, (http://www.w3.org/TR/2003/PER-MathML2-2003080).

36. Friedman-Hill, E., Jess, The Expert Shell for the Java Platform,
(http://herzberg.ca.sandia.gov/jess/).

37. Dietrich, J., The Mandarax Project, (http://www.mandarax.org/).

Query Answering for OWL-DL with Rules

Boris Motik1, Ulrike Sattler2, and Rudi Studer1

1 FZI Research Center for Information Technologies, Univ. of Karlsruhe, Germany
{motik,studer}@fzi.de

2 Department of Computer Science, Univ. of Manchester, UK
sattler@cs.man.ac.uk

Abstract. Both OWL-DL and function-free Horn rules1 are decidable
logics with interesting, yet orthogonal expressive power: from the rules
perspective, OWL-DL is restricted to tree-like rules, but provides both
existentially and universally quantified variables and full, monotonic
negation. From the description logic perspective, rules are restricted to
universal quantification, but allow for the interaction of variables in arbi-
trary ways. Clearly, a combination of OWL-DL and rules is desirable for
building Semantic Web ontologies, and several such combinations have
already been discussed. However, such a combination might easily lead to
the undecidability of interesting reasoning problems. Here, we present a
decidable such combination which is, to the best of our knowledge, more
general than similar decidable combinations proposed so far. Decidabil-
ity is obtained by restricting rules to so-called DL-safe ones, requiring
each variable in a rule to occur in a non-DL-atom in the rule body. We
show that query answering in such a combined logic is decidable, and we
discuss its expressive power by means of a non-trivial example. Finally,
we present an algorithm for query answering in SHIQ(D) extended with
DL-safe rules based on the reduction to disjunctive datalog.

1 Introduction

OWL-DL [20] is a W3C recommendation language for ontology representation in
the Semantic Web. It is a syntactic variant of the SHOIN (D) description logic
(DL), offering a high level of expressivity while still being decidable. For exam-
ple, SHOIN (D) provides full negation, disjunction, and (a restricted form of)
universal and existential quantification of variables. A related logic, SHIQ(D)
[13,12], distinguished from SHOIN (D) mainly by not supporting nominals (or
named objects), has been successfully implemented in practical reasoning sys-
tems, such as Racer [9] and FaCT [10]. Description logics have been found useful
in numerous applications such as information integration [1, ch. 16], software
engineering [1, ch. 11], and conceptual modeling [1, ch. 10].

Although OWL-DL is very expressive, it is a decidable fragment of first-
order logic, and thus cannot express arbitrary axioms: the only axioms it can
express are of a certain tree-structure [8]. In contrast, decidable rule-based for-
malism such as function-free Horn rules do not share this restriction, but lack
1 Throughout this paper, we use “rules” and “clauses” synonymously, following [11].

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 549–563, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

550 B. Motik, U. Sattler, and R. Studer

some of the expressive power of OWL-DL: they are restricted to universal quan-
tification and lack negation in their basic form. To overcome the limitations
of both approaches, OWL-DL was extended with rules in [11], but this ex-
tension is undecidable [11]. Intuitively, the undecidability is due to the fact
that adding rules to OWL-DL causes the loss of any form of tree model prop-
erty. In a logic with such a property, every satisfiable knowledge base has a
model of a certain tree-shaped form. As a consequence, to decide satisfiabil-
ity (i.e. the existence of a model of a knowledge base), we can search only for
such tree-shaped models. For most DLs, it is possible to ensure termination
of such a search. To see how rules can destroy this property, consider e.g. the
rule hasAunt(x, y) ← hasParent(x, z), hasSibling(z, y), Female(y), which ob-
viously has only non-tree models.

It is natural to ask what kind of (non-tree) rules can be added to OWL-DL
while preserving decidability. This follows a classic line of research in knowledge
representation, investigating the trade-off between expressivity and complexity,
and providing formalisms with varying expressive power and complexity. It not
only provides insight into the causes for the undecidability of the full combina-
tion, but also enables a more detailed complexity analysis and, ultimately, the
design of “specialized” decision procedures. Applications that do not require the
expressive power of the full combination can use such procedures, relying upon
known upper time and space bounds required to return a correct answer. Fi-
nally, in the last decade, it turned out that many specialized decision procedures
are amenable to optimizations, thus achieving surprisingly good performance in
practice even for logics with high worst-case complexity [1, ch. 9].

In this paper, we propose a decidable combination of OWL-DL with rules,
where decidability is obtained by restricting the rules to so-called DL-safe ones.
Importantly, we do not restrict the component languages, but only reduce the
interface between them. Generalizing the approaches of other decidable combi-
nations of rules and description logics [16,5], in DL-safe rules, concepts and roles
are allowed to occur in both rule bodies and heads as unary, respectively binary
predicates in atoms, but each variable of a rule is required to occur in some body
literal whose predicate is neither a concept nor a role. We discuss the expressive
power and limitations of our approach by means of an example, and show that
query answering for it is decidable.

Moreover, we present an algorithm for query answering in the extension of
SHIQ(D) with DL-safe rules which is based on a novel technique for reducing
SHIQ(D) knowledge bases to disjunctive datalog programs [15,14]. This yields a
query answering algorithm which follows the principle of “graceful degradation”:
the user “pays” only for the features she actually uses. Although a full evaluation
is not yet finished, our partial evaluation from [18] is very promising, and we
believe that this algorithm can be efficiently realized in practice.

Please note that we are primarily concerned with the semantic and decid-
ability aspects of hybrid reasoning, and not with the infrastructure aspects, such
as the syntax or the exchange of rules on the Web. For these issues, we refer the
reader to [11] since our approach is fully compatible with the one proposed there.

Query Answering for OWL-DL with Rules 551

2 Preliminaries

OWL-DL is a syntactic variant of the SHOIN (D) description logic [11]. Hence,
although several XML and RDF syntaxes for OWL-DL exist, in this paper we
use the traditional description logic notation since it is more compact. For the
correspondence between this notation and various OWL-DL syntaxes, see [11].
SHOIN (D) supports reasoning with concrete datatypes, such as strings or

integers. For example, it is possible to define a minor as a person whose age is less
than or equal to 18 in the following way: Minor ≡ Person � ∃age. ≤18. Instead
of axiomatizing concrete datatypes in logic, SHOIN (D) employs an approach
similar to [2], where the properties of concrete datatypes are encapsulated in
so-called concrete domains. A concrete domain is a pair ('D, ΦD), where 'D

is an interpretation domain and ΦD is a set of concrete domain predicates with
a predefined arity n and an interpretation dD ⊆ 'n

D. An admissible concrete
domain D is equipped with a decision procedure for checking satisfiability of
finite conjunctions over concrete predicates. Satisfiability checking of admissible
concrete domains can successfully be combined with logical reasoning for many
description logics [17].

We use a set of concept names NC , sets of abstract and concrete individuals
NIa and NIc , respectively, and sets of abstract and concrete role names NRa and
NRc

, respectively. An abstract role is an abstract role name or the inverse S− of
an abstract role name S (concrete roles do not have inverses). In the following,
we assume that D is an admissible concrete domain.

An RBox R consists of a finite set of transitivity axioms Trans(R), and role
inclusion axioms of the form R � S and T � U , where R and S are abstract
roles, and T and U are concrete roles. The reflexive-transitive closure of the role
inclusion relationship is denoted with �∗. A role not having transitive subroles
(w.r.t. �∗, for a full definition see [13]) is called a simple role.

The set of SHOIN (D) concepts is defined by the following syntactic rules,
where A is an atomic concept, R is an abstract role, S is an abstract simple role,
T(i) are concrete roles, d is a concrete domain predicate, ai and ci are abstract
and concrete individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ nS | ≤ nS | {a1, . . . , an} |
| ≥ nT | ≤ nT | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A TBox T consists of a finite set of concept inclusion axioms C � D, where
C and D are concepts; an ABox A consists of a finite set of concept and role
assertions and individual (in)equalities C(a), R(a, b), a ≈ b, and a �≈ b, respec-
tively. A SHOIN (D) knowledge base (T ,R,A) consists of a TBox T , an RBox
R, and an ABox A.

The SHIQ(D) description logic is obtained from SHOIN (D) by disallowing
nominal concepts of the form {a1, . . . , an} and {c1, . . . , cn}, and by allowing qual-
ified number restrictions of the form ≥ n S.C and ≤ nS.C, for C a SHIQ(D)
concept and S a simple role.

552 B. Motik, U. Sattler, and R. Studer

Table 1. Translation of SHOIN (D) into FOL

Mapping Concepts to FOL
πy(�, X)=� πy(⊥, X)=⊥
πy(A, X)=A(X) πy(¬C, X)=¬πy(C, X)

πy(C � D, X)=πy(C, X) ∧ πy(D, X) πy(C � D, X)=πy(C, X) ∨ πy(D, X)
πy(∀R.C, X)=∀y : R(X, y) → πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy({a1 . . . , an}, X)=X ≈ a1 ∨ . . . ∨ X ≈ an

πy(≤ n R.C, X)=∀y1, . . . , yn+1 :
∧

R(X, yi) ∧ ∧
πx(C, yi) → ∨

yi ≈ yj

πy(≥ n R.C, X)=∃y1, . . . , yn :
∧

R(X, yi) ∧ ∧
πx(C, yi) ∧ ∧

yi �≈ yj

πy(∀T1, . . . , Tm.d, X)=∀yc
1, . . . , y

c
m :

∧
Ti(X, yc

i) → d(yc
1, . . . , y

c
m)

πy(∃T1, . . . , Tm.d, X)=∃yc
1, . . . , y

c
m :

∧
Ti(X, yc

i) ∧ d(yc
1, . . . , y

c
m)

πy(≤ n T , X)=∀yc
1, . . . , y

c
n+1 :

∧
T (X, yc

i) → ∨
yc

i ≈ yc
j

πy(≥ n T , X)=∃yc
1, . . . , y

c
n :

∧
T (X, yc

i) ∧ ∧
yc

i �≈ yc
j

Mapping Axioms to FOL
π(C(a))=πy(C, a) π(R(a, b))=R(a, b)

π(a ≈ b))=a ≈ b π(a �≈ b))=a �≈ b
π(C � D)=∀x : πy(C, x) → πy(D, x)
π(R � S)=∀x, y : R(x, y) → S(x, y)

π(Trans(R))=∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
Mapping KB to FOL

π(KB)=
∧

R∈NR
∀x, y : R(x, y) ↔ R−(y, x) ∧ ∧

α∈KBR∪KBT ∪KBA
π(α)

where X is a meta variable and is substituted by the actual variable
and πx is defined as πy by substituting x and xi for all y and yi, respectively.

Since the algorithms we present in Section 5 are based on resolution, instead
of using a direct model-theoretic semantics to SHOIN (D) [13], we present an
equivalent semantics by translation into multi-sorted first-order logic. To sepa-
rate the interpretations of the abstract and the concrete domain, we introduce
the sorts a and c, and use the notation xc and f c to denote that x and f are of
sort c. We translate each atomic concept into a unary predicate of sort a, each
n-ary concrete domain predicate into a predicate with arguments of sort c, and
each abstract (concrete) role into a binary predicate of sort a × a (a × c). The
translation operator π is presented in Table 1.

For rules, we use the standard definitions. Let NP be a set of predicate
symbols such that NC ∪NRa

∪NRc
⊆ NP . A term is either a constant (denoted

by a, b, c) or a variable (denoted by x, y, z). An atom has the form P (s1, . . . , sn),
where P is a predicate symbol and si are terms. A rule has the form

H ← B1, . . . , Bn

where H and Bi are atoms; H is called the rule head, and the set of all Bi is
called the rule body. A program P is a finite set of rules. For the semantics, we
define a rule H ← B1, . . . , Bn to be equivalent to the clause H∨¬B1∨ . . .∨¬Bn.
This yields a monotonic formalism compatible with the one from [11].

Query Answering for OWL-DL with Rules 553

Table 2. Example Knowledge Base

Person(Peter) Peter is a person.
Person � ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) � Grandchild Things having a father of a father who

is a person are grandchildren.

3 Reasons for the Undecidability of OWL-DL with Rules

In [11], the following problem was shown to be undecidable: given an OWL-DL
knowledge base KB and a program P , is there a common model of π(KB)
and P , i.e. is KB consistent with P? As a consequence, subsumption and query
answering w.r.t. knowledge bases and programs is also undecidable. Investigating
this proof and the ones in [16] more closely, we note that the undecidability is
caused by the interaction between some very basic features of description logics
and rules. In this section, we try to give an intuitive explanation of this result
and its consequences.

Consider the simple knowledge base KB from Table 2. It is not too difficult to
see that this knowledge base implies the existence of an infinite chain of fathers:
since Peter must have a father, there is some x1 who is a Person. In turn, x1
must have some father x2 , which must be a Person, and so on. An infinite model
with such a chain is shown in Figure 1, upper part a). Observe that Peter is a
grandchild, since he has a father of a father.

Let us now check whether KB |= Grandchild(Jane); this is the case if and
only if KB∪{¬Grandchild(Jane)} is unsatisfiable, i.e. if it does not have a model.
We can check this by trying to build such a model; if we fail, then we conclude
that KB ∪ {¬Grandchild(Jane)} is unsatisfiable. However, we have a problem:
starting from Peter , a näıve approach to building a model will expand the chain
of Peter’s fathers indefinitely, and will therefore not terminate.

This very simple example intuitively shows that we have to be careful if we
want to ensure termination of a satisfiability checking algorithm. For many DLs,
termination can be ensured without losing correctness because we can restrict
our attention to certain “nice” models. For numerous DLs, we can restrict our
attention to tree models, i.e. to models where the underlying relational structure
forms a tree [22]. This is so because every satisfiable knowledge base has such

peter x1 x2

peter x’1

Person � Grandchild

Legend:

father

equivalent nodes

a)

b)

Fig. 1. Two Similar Models

554 B. Motik, U. Sattler, and R. Studer

a tree model (to be precise, for some DLs we consider tree-like abstractions of
non-tree-like models). Even if such a tree model is infinite, we can wind this
infinite tree model into a finite one. In our example, since KB does not require
each father in the chain to be distinct, the model in Figure 1, lower part b) is
the result of this “winding” of a tree into a “nice” model. Due to their regular
structure, these “windings” of tree models can be easily constructed in an auto-
mated way. To understand why every satisfiable SHIQ(D) knowledge base has
a tree model [13], consider the mapping π in Table 1 more closely (we abstract
some technicalities caused by the transitive roles): in all formulae obtained by
transforming the result of π into prenex normal form, variables are connected
by roles only in a tree-like manner, as shown in the following example:

∃S.(∃R.C � ∃R.D) � Q ⇒
∀x : {[∃y : S(x, y) ∧ (∃x : R(y, x) ∧ C(x)) ∧ (∃x : R(y, x) ∧D(x))]→ Q(x)} ⇒
∀x, x1, x2, x3 : {S(x, x1) ∧R(x1, x2) ∧ C(x2) ∧R(x1, x3) ∧D(x3) → Q(x)}

Let us contrast these observations with the kind of reasoning required for
function-free Horn rules. In such rules, all variables are universally quantified,
i.e. there are no existentially quantified variables in rule consequents. Hence, we
never have to infer the existence of “new” objects. Thus, reasoning algorithms
must consider only individuals explicitly introduced in the knowledge base and
will never run into the termination problems outlined above. Hence, the rules,
such as the one defining hasAunt(x, y) from the introduction, are allowed to en-
force arbitrary but finite, non-tree relational models, and not only “nice” models.

Now let us see what happens if we extend, eg. SHIQ, with function-free Horn
rules. Then, we combine a logic whose decidability is due to the fact that we can
restrict our attention to “nice” models (but with individuals whose existence
may be implied by a knowledge base) with the one whose decidability is due
to the fact that we can restrict our attention to “known” individuals (but with
arbitrary relations between them). Unsurprisingly, this and similar combinations
are undecidable [16,11].

4 DL-Safe Rules

As a reaction to the observations in Section 3, in this section we define the
formalism of DL-safe rules, discuss its benefits and drawbacks, and prove that
query answering in SHOIN with DL-safe rules is decidable.

Definition 1 (DL-safe Rules). Let KB be a SHOIN (D) knowledge base,
and let NP be a set of predicate symbols such that NC ∪ NRa

∪ NRc
⊆ NP . A

DL-atom is an atom of the form A(s), where A ∈ NC , or of the form R(s, t),
where R ∈ NRa

∪ NRc
. A rule r is called DL-safe if each variable in r occurs

in a non-DL-atom in the rule body. A program P is DL-safe if all its rules are
DL-safe.

The semantics of the combined knowledge base (KB , P) is given by transla-
tion into first-order logic as π(KB)∪P . The main inference in (KB , P) is query
answering, i.e. deciding whether π(KB) ∪ P |= α for a ground atom α.

Query Answering for OWL-DL with Rules 555

Some remarks are in order. Firstly, DL-safety is similar to the safety in dat-
alog. In a safe rule, each variable occurs in a positive atom in the body, and
may therefore be bound only to constants explicitly present in the database.
Similarly, DL-safety makes sure that each variable is bound only to individuals
explicitly introduced in the ABox. For example, if Person, livesAt , and worksAt
are concepts and roles from KB , the following rule is not DL-safe:

Homeworker(x) ← Person(x), livesAt(x, y),worksAt(x, y)

The reason for this is that both variables x and y occur in DL-atoms, but do not
occur in a body atom with a predicate outside of KB . This rule can be made
DL-safe by adding special non-DL-literals O(x) and O(y) to the rule body, and
by adding a fact O(a) for each individual a. In Subsection 4.1 we discuss the
consequences that this transformation has on the semantics.

Secondly, DL-safety only allows atomic concepts to occur in a rule. This is
not really a restriction: for a complex concept C, one may introduce an atomic
concept AC , add the axiom C � AC to the TBox, and use AC in the rule.

4.1 Expressivity of DL-Safe Rules

In our approach, to achieve decidability, we do not restrict the component lan-
guages. Rather, we combine full SHOIN (D) with function-free Horn rules, and
thus extend both formalisms. DL-safety only restricts the interchange of con-
sequences between the component languages to those consequences involving
individuals explicitly introduced in the ABox.

To illustrate the expressive power of DL-safe rules, we extend the example
from Table 2 with the TBox axioms and rules from Table 3. We use a rule to
define the only non-DL-predicate BadChild as a grandchild which hates some of
its siblings (or itself). Notice that this rule involves relations forming a triangle
between two siblings and a parent and thus cannot be expressed in a description
logic such as SHOIN (D). Moreover, it is not DL-safe because each variable in
the rule does not occur in a non-DL-atom in the rule body.

Now consider the first group of ABox facts. Since Cain is a Person, as in
Section 3 one may infer that Cain is a Grandchild . Since Cain and Abel are
children of Adam, and Cain hates Abel , Cain is a BadChild .

Similarly, Romulus has a father who is a father of Remus, and Romulus hates
Remus, so Romulus is a BadChild as well. We are able to derive this without
knowing exactly who the father of Romulus is2.

Consider now the DL-safe rule defining BadChild ′ (assuming that the ABox
contains O(a) for each individual a): since the father of Cain and Abel is known
by name (i.e. Adam is in the ABox), the literal O(y) from the rule for BadChild ′

can be matched to O(Adam), and we may conclude that Cain is a BadChild ′. In
contrast, the father of Romulus and Remus is not known in the ABox. Hence,
2 Historically, the father of Romulus and Remus is Mars, but for illustration purposes

we assume that the modeler does not know that.

556 B. Motik, U. Sattler, and R. Studer

Table 3. Example with DL-safe Rules

father � parent Fatherhood is a kind of parenthood.
BadChild(x) ← Grandchild(x), A bad child is a grandchild who hates

parent(x, y), parent(z, y), hates(x, z) one of his siblings.
BadChild ′(x) ← Grandchild(x), DL-safe version of a bad child.

parent(x, y), parent(z, y), hates(x, z),
O(x), O(y), O(z)

Person(Cain) Cain is a person.
father(Cain,Adam) Cain’s father is Adam.
father(Abel ,Adam) Abel’s father is Adam.
hates(Cain,Abel) Cain hates Abel.

Person(Romulus) Romulus is a person.
∃father .∃father−.{Remus}(Romulus) Romulus’ father is a father of Remus.
hates(Romulus,Remus) Romulus hates Remus.

Child(x) ← GoodChild(x), O(x) Good children are children.
Child(x) ← BadChild ′(x), O(x) Bad children are children.
(GoodChild � BadChild ′)(Oedipus) Oedipus is a good or a bad child.

O(α) for each explicitly named individual α Enumeration of all ABox individuals.

the literal O(y) from the DL-safe rule cannot be matched to the father’s name,
so the rule does not derive that Romulus is a BadChild ′.

This may seem confusing. However, DL-safe rules do have a “natural” read-
ing: just append the phrase “where the identity of all objects is known” to the
meaning of the rule. For example, the rule defining BadChild ′ can be read as “A
BadChild ′ is a known grandchild for which we know a parent, and who hates
one of his known siblings”.

Combining description logics with DL-safe rules increases the expressivity
of both languages. Namely, a SHOIN (D) knowledge base cannot imply that
Cain is a BadChild ′ because the “triangle” rule cannot be expressed using
SHOIN (D) constructs. Similarly, a set of function-free Horn rules cannot imply
this either: we know that Cain has a grandfather because Cain is a person, but
we do not know who he is. Hence, we need the existential quantifier to infer the
existence of ancestors, and then to infer that Cain is a Grandchild .

Finally, we would like to point out that it is incorrect to compute all con-
sequences of the description logic component first, and then to apply the rules
to the consequences. Consider the KB part about Oedipus: he is a GoodChild
or a BadChild ′, but we do not know exactly which. Either way, one of the
rules derives that Oedipus is a Child , so (KB , P) |= Child(Oedipus). This
would not be derived by applying the rules to the consequences of KB , since
KB �|= GoodChild(Oedipus) and KB �|= BadChild ′(Oedipus).

4.2 Decidability of Query Answering

We now sketch a proof for the decidability of query answering for SHOIN
extended with DL-safe rules, which is by a non-deterministic reduction of the
query answering problem to the satisfiability problem for SHOIN without rules.

Query Answering for OWL-DL with Rules 557

Theorem 1. For a SHOIN knowledge base KB and a DL-safe program P ,
query answering in (KB , P) is decidable.

Proof. Clearly (KB , P) |= α iff π(KB)∪P ′ is unsatisfiable, where P ′ = P∪{¬α}.
Let P g be the set of ground instances of P ′, i.e. P g contains all possible ground
instantiations of rules in P ′ with individuals from KB and P .

We now show that π(KB)∪P ′ is satisfiable iff π(KB)∪P g is satisfiable. The
(⇒) direction is trivial. For the (⇐) direction, let I be a model of π(KB) ∪ P g.
Since π(KB)∪P g does not contain non-DL-atoms with variables, we may safely
assume that the interpretation of each non-DL-predicate contains only tuples
of the form (α1, . . . , αn), such that, for each αi, there is a constant ai with
aI

i = αi. Let r be a rule from P . Since r is DL-safe, each variable in r occurs in
a body non-DL-atom. Hence, for each valuation replacing a variable in r with
an individual α, for which there is no such constant a with aI = α, there will be
a body atom of r which is false in I, making r true in I. Thus, I is a model of
π(KB) ∪ P ′.

Satisfiability of π(KB) ∪ P g can be decided by case analysis as follows: each
model of P g satisfies at least one literal per rule. Hence, we don’t-know non-
deterministically choose one literal per clause in P g and, for Lc the resulting
set of literals, we test the satisfiability of π(KB) ∪ Lc. Clearly, π(KB) ∪ P g is
satisfiable iff there exists a “choice” of Lc such that π(KB) ∪ Lc is satisfiable.

Next, let Lc
DL ⊆ Lc be the set of (ground) literals in Lc involving DL pred-

icates. Clearly, π(KB) ∪ Lc is unsatisfiable iff either Lc contains a complemen-
tary pair of ground literals or π(KB) ∪ Lc

DL is unsatisfiable. The first case can
be checked easily, and the second case can be reduced to standard SHOIN
reasoning as follows: Lc

DL can be viewed as an ABox, apart from literals of the
form ¬R(a, b). However, each such literal can be transformed into an equivalent
SHOIN ABox assertion (∀R.¬{b})(a). Thus we have reduced query answering
to deciding satisfiability of a SHOIN knowledge base. This problem is decid-
able because (i) transitivity axioms can be eliminated from SHOIN knowledge
bases in the same way as this is done for SHIQ in [14] and (ii) the resulting
logic is a syntactic variant of the two variable fragment of first-order logic with
counting quantifiers, which is known to be decidable [7]. ��

We strongly believe that Theorem 1 also holds for SHOIN (D): (i) the
decidability proof of SHOIN should be easily adaptable to SHOIN (D), and
(ii) the same non-deterministic reduction of ground DL-safe rules to sets of
ground literals as for SHOIN is applicable to SHOIN (D). To work out the
details of this proof is part of our future work.

5 Query Answering with DL-Safe Rules

In the proof of the Theorem 1, we have presented a decision procedure for query
answering in the full combination from Section 4. However, this procedure is
likely to be hopelessly inefficient in practice, mainly due to the huge amount

558 B. Motik, U. Sattler, and R. Studer

of don’t-known non-determinism. Hence, in this section, we describe a practi-
cal reasoning algorithm for the following fragment: (i) the description logic is
SHIQ(D), and (ii) in rules, DL-atoms are restricted to concepts and simple
roles. Our algorithm is based on reducing the description logic knowledge base
to a positive disjunctive datalog program which entails the same set of ground
facts as the original knowledge base. DL-safe rules (with the above restriction to
concepts and simple roles) can simply be appended to such a program. For unary
coding of numbers and assuming a bound on the arity of predicates in rules, our
algorithm runs in deterministic exponential time, which makes it optimal since
SHIQ is ExpTime-complete [21].

The full presentation of the algorithm and a proof of its correctness are tech-
nically involved and lengthy. Here, we just provide an overview of the procedure,
without going into details. For a complete presentation of the procedure and for
the proofs of its correctness, we direct the interested reader to [14,15].

Our algorithm does not support all of SHOIN (D) since it does not support
nominals: to the best of our knowledge, no decision procedure has yet been
implemented for SHOIN (D). The development of such a decision procedure is
part of our ongoing work. Namely, the combination of nominals, inverse roles,
and number restriction is known to be difficult to handle, which is confirmed by
the increase in complexity from ExpTime to NExpTime [21].

5.1 Reducing SHIQ(D) to Disjunctive Datalog

Let KB be a SHIQ(D) knowledge base. The reduction of KB to a disjunc-
tive datalog program DD(KB) can be computed by an algorithm schematically
presented in Figure 2. We next explain each step of the algorithm.
Elimination of Transitivity Axioms. Our core algorithms cannot handle transi-
tivity axioms, basically because in their first-order logic formulation they involve
three variables. However, we can eliminate transitivity axioms by encoding KB
into an equisatisfiable knowledge base Ω(KB). Roughly speaking, for each tran-
sitive role S, each role S �∗ R, and each concept ∀R.C occurring in KB , it
is sufficient to add an axiom ∀R.C � ∀S.(∀S.C). Intuitively, this axiom propa-
gates all relevant concept constraints through transitive roles. Whereas KB and
Ω(KB) entail the same set of ground facts concerning simple roles, they do not
entail the same set of ground facts concerning complex roles. This is the reason
for the restriction (ii) which allows only simple roles to occur in DL-safe rules.
Translation into Clauses. The next step is to translate Ω(KB) into clausal first-
order logic. We first use π as defined in Table 1 and then transform the result

SHIQ(D)

KB

Elimination of

Transitivity

Axioms

Translation

into Clauses

Saturation

by Basic

Superposition

Elimination of

Function

Symbols

Conversion to

Disjunctive

Datalog

Disjunctive

Program

DD(KB)

Fig. 2. Algorithm for Reducing SHIQ(D) to Datalog Programs

Query Answering for OWL-DL with Rules 559

π(Ω(KB)) into clausal form using structural transformation to avoid exponential
blow-up [19]. We call the result Ξ(KB).
Saturation by Basic Superposition. We next saturate the RBox and TBox clauses
of Ξ(KB) by basic superposition [4] — a clausal calculus optimized for theorem
proving with equality. In this key step of the reduction, we compute all non-
ground consequences of KB . We can prove that saturation terminates because
application of each rule of basic superposition produces a clause with at most one
variable and with functional terms of depth at most two. This yields an exponen-
tial bound on the number of clauses we can compute, and thus an exponential
time complexity bound for our algorithm so far.
Elimination of Function Symbols. Saturation of RBox and TBox of Ξ(KB) com-
putes all non-ground consequences of KB . If we add ABox assertions to this
saturated clause set, all “further” inferences by basic superposition will produce
only ground clauses. Moreover, the resulting ground clauses contain only ground
functional terms of depth one. Hence, it is possible to simulate each functional
term f(a) with a new constant af . For each function symbol f , we introduce a
binary predicate Sf , and for each individual a, we add an assertion Sf (a, af).
Finally, if a clause contains the term f(x), we replace it with a new variable xf

and add the literal ¬Sf (x, xf), as in the following example:

¬C(x) ∨D(f(x)) ⇒ ¬Sf (x, xf) ∨ ¬C(x) ∨D(xf)

We denote the resulting function-free set of clauses with FF(KB). In [14], we
show that each inference step of basic superposition in Ξ(KB) can be simulated
by an inference step in FF(KB), and vice versa. Hence, KB and FF(KB) are
equisatisfiable.
Conversion to Disjunctive Datalog. Since FF(KB) does not contain functional
terms and all its clauses are safe, we can rewrite each clause into a positive
disjunctive rule. We use DD(KB) for the result of this rewriting.

The following theorem summarizes the properties of our algorithm (we use
|=c for cautions entailment in disjunctive datalog, which coincides on ground
facts with first-order entailment for positive datalog programs [6]):

Theorem 2 ([14]). Let KB be an SHIQ(D) knowledge base, defined over an
admissible concrete domain D, such that satisfiability of finite conjunctions over
ΦD can be decided in deterministic exponential time. Then the following claims
hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.
2. KB |= α if and only if DD(KB) |=c α, for α of the form A(a) or S(a, b), A

an atomic concept, and S a simple role.
3. KB |= C(a) if and only if DD(KB ∪{C � Q}) |=c Q(a), for C a non-atomic

concept, and Q a new atomic concept.
4. Let |KB | be the length of KB with numbers in number restrictions coded in

unary. The number of rules in DD(KB) is at most exponential in |KB |, the
number of literals in each rule is at most polynomial in |KB |, and DD(KB)
can be computed in time exponential in |KB |.

560 B. Motik, U. Sattler, and R. Studer

Adding DL-safe Rules. The disjunctive program DD(KB) can be combined with
DL-safe rules by simply appending the rules to the program. The following the-
orem shows that (KB , P) and DD(KB)∪P entail the same sets of ground facts:

Theorem 3 ([14]). Let KB be a SHIQ(D) knowledge base and P a DL-safe
disjunctive datalog program. Then (KB , P) |= α if and only if DD(KB)∪P |=c α,
where α is a DL-atom A(a) or S(a, b) for S a simple role, or α is a ground non-
DL-atom.

5.2 Evaluating Queries in Datalog Program

Answering queries in disjunctive datalog programs is computationally more ex-
pensive than in non-disjunctive programs [6]. Furthermore, if disjunction is not
used in a knowledge base, our algorithm should not introduce a performance
penalty. To address that, we have devised an algorithm for evaluating queries in
disjunctive programs, which we outline next. For details, please see [14].

Let P be a positive datalog program and let Q be a query predicate not
occurring in the body of a rule of P . This is not a limitation since one can always
introduce a new predicate AQ and add the rule AQ(x) ← Q(x). To compute all
answers of a to Q w.r.t. P , i.e. all a such that P |=c Q(a), we saturate P by
hyperresolution and perform paramodulation inferences between ground clauses
to deal with equality. It is well-known that this calculus remains complete if
ground literals are totally ordered under an arbitrary ordering (, and inferences
are performed on maximal literals only [3]. This ordering has the useful property
that, in each ground disjunction, exactly one literal is maximal. Hence, instead
of performing an inference on each literal of a ground fact, it is sufficient to do
so on the maximal literal only, which dramatically improves performance.

In [14] we have shown that, if all literals involving the predicate Q are minimal
w.r.t. (, then all ground consequences of P will be derived as unit ground clauses
in the saturation. To compute all answers to a query, it is sufficient to saturate
P only once using an appropriate ordering (. Thus, our algorithm computes all
consequences by a single saturation.

An example of a hyperresolution inference is presented in Figure 3. The maxi-
mal literals in the premises are underlined, and only these literals can participate
in an inference. When performing hyperresolution, premises are matched to a
disjunctive rule exactly as in the non-disjunctive case, the variables in the rule

R(X) � S(Y) :- T(X,Y), U(Y)Rule:

T(a,b) � V(c) U(b) � W(d)Facts:

R(a) � S(b) � V(c) � W(d)Resolvent:

Fig. 3. Hyperresolution Example

Query Answering for OWL-DL with Rules 561

head are instantiated, and the remaining literals from the rule body are trans-
ferred to the rule head. Observe that, if premises and the rule are not disjunctive,
then hyperresolution becomes exactly the least fixpoint operator used to eval-
uate non-disjunctive datalog programs. The consequences of the least fixpoint
operator can be computed in polynomial time, so we get tractable behavior. In
this way our algorithm supports the principle of “graceful degradation”: the user
pays a performance penalty only for features actually used.

6 Related Work

AL-log [5] is a logic which combines a TBox and ABox expressed in the ba-
sic description logic ALC with datalog rules, which may be constrained with
unary atoms having ALC concepts as predicates in the body. Query answering
in AL-log is decided by a variant of constrained resolution, combined with a
tableaux algorithm for ALC. The combined algorithm is shown to run in single
non-deterministic exponential time. The fact that atoms with concept predi-
cates can occur only as constraints in the body makes rules applicable only to
explicitly named objects. Our restriction to DL-safe rules has the same effect.
However, our approach is more general in the following ways: (i) it supports a
more expressive description logic, (ii) it allows using both concepts and roles
in DL-atoms and (iii) DL-atoms can be used in rule heads as well. Further-
more, (iv) we present a query answering algorithm as an extension of deductive
database techniques which runs in deterministic exponential time. A comprehen-
sive study of the effects of combining datalog rules with description logics is pre-
sented in [16]. The logic considered is ALCNR, which, although less expressive
than SHOIN (D) or SHIQ(D), contains constructors that are characteristic
of most DL languages. The results of the study can be summarized as follows:
(i) answering conjunctive queries over ALCNR TBoxes is decidable, (ii) query
answering in a logic obtained by extending ALCNR with non-recursive datalog
rules, where both concepts and roles can occur in rule bodies, is also decidable,
as it can be reduced to computing a union of conjunctive query answers, (iii) if
rules are recursive, query answering becomes undecidable, (iv) decidability can
be regained by disallowing certain combinations of constructors in the logic,
and (v) decidability can be regained by requiring rules to be role-safe, where at
least one variable from each role literal must occur in some non-DL-atom. As in
AL-log, query answering is decided using constrained resolution and a modified
version of the tableaux calculus. Besides the fact that we treat a more expressive
logic, in our approach all variables in a rule must occur in at least one non-DL-
atom, but concepts and roles are allowed to occur in rule heads. Hence, when
compared to the variant (v), our approach is slightly less general in some, and
slightly more general in other aspects.

The OWL Rule Language (ORL) [11] combines OWL-DL with rules in which
concept and role predicates are allowed to occur in the head and in the body,
without any restrictions. As mentioned before, this combination is undecidable
but, as pointed out by the authors, (incomplete) reasoning in such a logic can

562 B. Motik, U. Sattler, and R. Studer

be performed using general first-order theorem provers. Our approach trades
some expressivity for decidability. Furthermore, we provide an optimal query
answering algorithm covering a significant portion of OWL-DL.

Finally, [8] describes a natural, decidable intersection of description logic and
logic programming. This provides a useful insight into the relationship between
these two formalisms, but yields a combination which is less expressive than our
approach, since it does not support existential quantifiers, negation, or disjunc-
tion in the axiom consequent.

7 Summary and Outlook

We have presented an approach for extending OWL-DL with DL-safe rules.
Instead of reducing the component formalisms, we reduce the interface between
them. As a consequence, rules apply only to individuals explicitly introduced
in the ABox. We have discussed the effects of such a definition on a non-trivial
example, which also shows that our approach increases the expressivity of its
two components.

Besides a decidability result for SHOIN with DL-safe rules, we have pre-
sented an algorithm for answering queries over SHIQ(D) extended with DL-
safe rules which we believe to be useful in practice. This algorithm transforms a
SHIQ(D) knowledge base into a disjunctive datalog program. To attenuate the
increased computational complexity introduced by using disjunctive datalog, we
developed a query answering algorithm which supports the principle of “graceful
degradation”: the user only pays a performance penalty for the features actually
used in a knowledge base.

In our future work, we shall try to extend the reduction algorithm to support
all of OWL-DL. Furthermore, we are currently implementing the algorithms
presented here in KAON2, a new hybrid reasoner, for which we shall conduct a
thorough performance evaluation.

Acknowledgements. We thank Stefan Decker for his very valuable comments.
This work was partially funded by the EU IST project DIP 507483.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, January 2003.

2. F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into
Concept Languages. In Proc. of the 12th Int’l Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, Australia, 1991.

3. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

4. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

Query Answering for OWL-DL with Rules 563

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. J. of Intelligent Information Systems, 10(3):227–252, 1998.

6. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

7. E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In Proc. of 12th IEEE Symposium on Logic in Computer Science LICS ‘97,
Warsaw, Poland, 1997.

8. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. of the Twelfth Int’l
World Wide Web Conf. (WWW 2003), pages 48–57. ACM, 2003.

9. V. Haarslev and R. Möller. RACER System Description. In 1st Int’l Joint Conf.
on Automated Reasoning (IJCAR-01), pages 701–706. Springer-Verlag, 2001.

10. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. 6th
Int’l. Conf. on Principles of Knowledge Representation and Reasoning (KR’98),
pages 636–647. Morgan Kaufmann Publishers, 1998.

11. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. of the Thirteenth Int’l World Wide Web Conf.(WWW 2004). ACM, 2004.

12. I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description
Logic. In B. Nebel, editor, Proc. of the 17th Int’l Joint Conf. on Artificial Intelli-
gence (IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

13. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

14. U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around
SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe,
Germany, April 2004. http://www.fzi.de/wim/publikationen.php?id=1172.

15. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In Proc. of the 9th Conference on Knowledge Rep-
resentation and Reasoning (KR2004). AAAI Press, June 2004.

16. A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1-2):165–209, 1998.

17. C. Lutz. Description Logics with Concrete Domains—A Survey. In Advances in
Modal Logics, volume 4. King’s College Publications, 2003.

18. B. Motik, A. Maedche, and R. Volz. Optimizing Query Answering in Descrip-
tion Logics using Disjunctive Deductive Databases. In 10th Int’l Workshop on
Knowledge Representation meets Databases (KRDB-2003), Hamburg, Germany,
September 15-16 2003.

19. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science, 2001.

20. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL Web
Ontology Language; Semantics and Abstract Syntax, W3C Candidate Recommen-
dation. http://www.w3.org/TR/owl-semantics/, November 2002.

21. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, Germany, 2001.

22. M. Vardi. Why is modal logic so robustly decidable? In N. Immerman and P. Ko-
laitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 149–184.
AMS, 1997.

A Semantic Web Resource Protocol: XPointer
and HTTP

Kendall Clark1, Bijan Parsia2, Bryan Thompson3, and Bradley Bebee4

1 University of Maryland, MIND Lab
8400 Baltimore Ave,

College Park MD 20742, USA
kendall@monkeyfist.com

2 University of Maryland, MIND Lab
8400 Baltimore Ave,

College Park MD 20742, USA
bparsia@isr.umd.edu

3 SAIC, Advanced Systems and Concepts
3811 N. Fairfax Dr., Suite 850

Arlington VA 22203, USA
BRYAN.B.THOMPSON@saic.com

4 SAIC, Advanced Systems and Concepts
3811 N. Fairfax Dr., Suite 850

Arlington VA 22203, USA
bebeeb@saic.com

Abstract. Semantic Web resources — that is, knowledge representation
formalisms existing in a distributed hypermedia system — require dif-
ferent addressing and processing models and capacities than the typical
kinds of World Wide Web resources. We describe an approach to build-
ing a Semantic Web resource protocol — a scalable, extensible logical
addressing scheme and transport protocol — by using and extending ex-
isting specifications and technologies. We introduce XPointer and some
infrequently used, but useful features of HTTP/1.1, in order to support
addressing and server side processing of resource and subresource oper-
ations. We consider applications of the XPointer Framework for use in
the Semantic Web, particularly for RDF and OWL resources and sub-
resources. We describe two initial implementations: filtering of RSS re-
sources by date and item range; RDF subresource selection using RDQL.
Finally, we describe possible application to the problem of OWL imports.

1 RDF, RDFS, and OWL

RDF, RDFS, and OWL form the middle layers of the so-called Semantic Web
layer cake. They are also its transitional layers; the parts beneath RDF-RDFS-
OWL are part of the existing Web and are not distinctively semantic. These
lower layers — URIs, Unicode, XML, and W3C XML Schema (WXS) — are not
KR formalisms, though they do contribute, especially XML and WXS, to the
syntax and the semantics of RDF, RDFS, and OWL. RDF, RDFS, and OWL

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 564–575, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Semantic Web Resource Protocol: XPointer and HTTP 565

are minimalist formalisms, defined primarily as logics independent of particular
theories of the world or of the Web. At best they have a thin upper ontology for
representing aspects of their own abstract syntax and semantics. For example,
the hierarchy of builtin classes of OWL Full, which is the richest of the OWL
variants in terms of expressiveness and predefined ontology, contains a universal
class (rdfs:Resource), several classes of classes and of properties (rdfs:Class,
owl:Class, rdf:Property, rdf:AnnotationProperty, etc.), along with a few
individuals (rdf:nil).1

Further, certain kinds of inference are licensed in RDF, RDFS, and OWL. If,
for example, an RDF graph contains a triple (s p o), then there is at least one
other triple (p rdf:type rdf:Property) that is RDF-entailed by that graph.
This is unusual from a first order logic point of view; it is not merely a syntac-
tically sensitive inference. Rather, it derives a claim about that syntax, which
highlights the strong reflective modeling capabilities deemed essential to the Se-
mantic Web. But putting aside, first, the desirability of such reflective modeling
capabilities or, second, the specific capabilities of OWL Full, there are two ways
in which the thin upper ontology formed by RDFS and OWL Full, together with
the associated inference mechanisms, fails to cover existing, critical aspects of
the Web and the Semantic Web:

1. There are no classes or properties to represent RDF graphs or documents
themselves. RDF graphs are a fundamental kind of Semantic Web resource.

2. There is no connection between the defined semantics of URIs and the as-
sertions, especially type assertions, using them. For example, it is not un-
reasonable, and it has sometimes been proposed, that mailto:’ URIs only
denote things that are mailboxes or mail address endpoints.

Since there appears to be no consensus for specific sets of URI as to their
proper associated type, standardization of such inferences would be premature.
However, it is important to be able easily to coin sensible URIs for mailboxes,
Web pages, people, and RDF graphs. Taking just the case of RDF graphs, it is
simple enough to offer some sensible principles to resource publishers and URI
owners.2 For example, treat RDF graphs as normal Web accessible information
resources. The simplest application of this principle is to publish RDF graphs
as RDF/XML documents on the Web, allowing others to interact with those
graphs using HTTP.3 This deployment practice will suffice if two conditions are
1 Of course, in OWL Full all classes and properties are rdfs:Resource and, thus,

individuals in the domain as well.
2 The canonical discussion of URI ownership is [10], especially section 2.2.1.1.
3 Or, as [10] puts it,

A URI owner may, upon request, provide representations of the resource iden-
tified by the URI. For example, when a URI owner uses the HTTP protocol to
provide those representations, the HTTP origin server...is the software agent
acting on behalf of the URI owner to provide the authoritative representa-
tions for the resource identified by that URI. The owner is also responsible for
accepting or rejecting requests to modify the resource identified by that URI...

566 K. Clark et al.

met: first, that the graphs we want to manipulate directly are relatively small;
and, second, that we can anticipate the subgraphs users will need and provide
the appropriate document interface to them.

When RDF graphs or OWL ontologies are very large4, retrieving the entire
graph as a document to be processed locally by the client is often impracti-
cal, especially if the graph is dynamic or if the client is resource-constrained.
Further, it is not at all clear that standard techniques for mapping resource rep-
resentations to documents fits Semantic Web resource representations very well.
While for many applications RDF data has an obvious document chunking —
for example, individual Web resource metadata can be embedded or associated
with the corresponding resource — it can be difficult to anticipate the range of
kinds of queries a client may need to execute. And many common queries may
cut across the obvious or common case RDF chunking. While it is natural to
associate creator information with created resources, it is perfectly sensible to
want to know all the creators for a site, all the resources created by the current
page’s creators, and so on. In such cases, having to aggregate the chunking RDF
is worse than simply downloading a very large RDF/XML document.

These problems and constraints point to the need for a logical, extensible
means of identifying and addressing Semantic Web resources, preferably in a way
that is as consonant as possible with existing standards and deployed systems.

2 Web Addressing and Fragment Identifiers

According to [2], in order to authoritatively interpret a URI fragment identifier,5

a user-agent must dereference the URI containing the fragment identifier, using
the Internet Media Type (IMT) [7] of the retrieved representation to apply an
authoritative interpretation function6 to the fragment identifier.

When dereferencing URIs that return HTML representations, the user-agent
is usually acting on behalf of a human person who is navigating web hypermedia
resources. In this case the semantics of the fragment identifier are interpreted
by a web browser such that the subresource identified by the fragment identifier

4 For example, the National Cancer Institute’s Cancer Ontology, an OWL version of
the NCI Thesaurus, is made up of more than 500,000 RDF triples, 17,000 concepts,
and is roughly 35 megabytes. Or consider the RDF/XML serialization of UniProt
(Universal Protein Resource) KB which is about 134,000,000 triples and 8 gigabytes.

5 A fragment identifier, according to [10],

allows indirect identification of a secondary resource by reference to a primary
resource and additional identifying information. The secondary resource may
be some portion or subset of the primary resource, some view on representa-
tions of the primary resource, or some other resource defined or described by
those representations.

6 See [10], section 3.3.1.

A Semantic Web Resource Protocol: XPointer and HTTP 567

is made visible in the browser window. Fragment identifiers do not allow user-
agents to manipulate subresources directly; they are, rather, processed by the
user-agent only after the resource representation has been retrieved. In fact,
HTTP does not even transmit the fragment identifier as part of the Request-URI.
Origin servers never see the fragment identifier component of the URI.

HTTP does, however, provide an extensible mechanism for user-agents to in-
teract with a range of the resource representation, using the Range header. The
only range-unit that is explicitly described by the HTTP/1.1 RFC is “bytes”.
User-agents may address one or more byte ranges in the retrieved resource repre-
sentation. The bytes range-unit is useful for some IMTs; for example, retrieving
a byte-range of a URI that returns a binary image as its representation. The
HTTP specification breaks transparency and encourages caches to combine byte
ranges under certain validity conditions. The bytes range-unit is obviously much
less useful for Semantic Web resources because it isn’t appropriate for directly
addressing and manipulating logical or semantic subresources.

3 XPointer and HTTP

The XPointer Framework [9] provides an extensible mechanism for addressing
XML subresources. The XPointer Working Group defined a core set of XPointer
addressing schemes — [4], [8], and [5] — in addition to the fundamental XPointer
Framework. Since XPointer is an extensible scheme, we can define new XPointer
schemes and adopt existing XPointer schemes for addressing subresources of spe-
cific XML vocabularies. For example, SVG [6] defines a scheme for interpreting
fragment identifiers as logical views into a rendered SVG document.

Of the existing W3C-standardized XPointer schemes, the element() scheme
is too weak and the xpointer() scheme is so complex that it is rarely imple-
mented. But it is simple enough to declare and implement new schemes. Such
schemes can be crafted specifically for the specific nature of particular resource
types. Consider an XPointer addressing scheme, xpath(), that would facilitate
addressing subresources using the widely adopted XPath Recommendation [3].
Or consider a scheme, isbn(), that would facilitate addressing metadata re-
sources about books by ISBN identifier.

We want to shape our XPointer schemes such that they will serve dual use:
not only will they provide a data access mechanism for subresources, but they
will also make it possible for authorized user-agents to directly manipulate those
subresources. A card catalog resource, for example, could be maintained by in-
terchanging XML fragments that represent metadata about books in a library’s
collection.

3.1 Server-Side XPointer

How can we use the XPointer Framework and HTTP to address and manipulate
resources and subresources directly? The key pieces include an XPointer scheme
and three HTTP headers: Accept-Range, Range, and Content-Type.

568 K. Clark et al.

First, the origin server uses the Accept-Range: xpointer header-key/value
pair to signal its support for the XPointer Framework. Second, the client sends
a subresource request via the Range: [xpointer-scheme] = [pointer-parts]
header-key/value pair. Third, the server provides a partial content response using
the Content-Type: multipart/mixed header-key/value pair.

Our main proposal is very simple: the user agent creates an HTTP Range
request header using the fragment identifier, which makes the fragment identifier
a visible part of the request sent to the origin server. That way XPointer schemes
may be processed by the origin server, and so user agents do not have to retrieve
an entire representation just in order to apply an XPointer scheme, the intention
of which may very well be to work with only a subresource. In sum, the only new
requirement imposed by our scheme on a user agent is that, when it prepares an
HTTP request, it must create a Range header, the value of which is the fragment
identifier.7 xpointer in the Range header specifies the range-unit. The range-
unit signals the server as to the appropriate interpretation of the range-specifier,
which in this case is element.

Consider the following example. The user agent’s request:

GET /resource HTTP/1.1
Host: example.org
Accept: text/xml
Range: xpointer=element(a12)

The origin server’s response:

HTTP/1.1 206 Partial Content
Content-Type: multipart/mixed; boundary="simple boundary"

--simple boundary

Content-type: text/xml; charset=ISO-8859-1

<bar>Hello</bar>

--simple boundary--

When the server uses an XPointer processor to evaluate the XPointer expres-
sion — the element(a12) range-specification from the Range header — against
the negotiated representation8 of the current state of the resource, the result is
a node set consisting of the single XML element whose ID type attribute has
7 User agents must also be able to process the response by recognizing the HTTP

status code 206 Partial Content and must be able to handle the multipart/mixed
IMTs.

8 Recall that the semantics of any particular fragment identifier are defined in terms
of a particular IMT and are applied to the negotiated, retrieved representation of
the resource. When a user agent is smart about the use of fragment identifiers, it
can correctly choose the right fragment identifier for the desired content type, which

A Semantic Web Resource Protocol: XPointer and HTTP 569

the value “a12”. The response, then, contains a single XML fragment, which
is the serialization of that XML element. However, since there could have been
multiple matched XML subresources in the general case, the individual XML
subresources are returned as the body parts of a multipart/mime response en-
tity. The HTTP status code is a 2xx series, indicating success; but the 206 status
code is used to indicate that partial content is being returned by the server in
response to the Range header included by the client.

3.2 Addressing Multiple Subresources

Consider an XPointer scheme named xpath(). Since it’s not an official XPointer
scheme, it must be placed into an explicit namespace using the XPointer xmlns()
scheme. This provision for explicit namespaces on XPointer schemes is partially
responsible for XPointer’s extensibility.

The user agent’s request:

The origin server’s response:

HTTP/1.1 206 Partial Content
Content-Type: multipart/mixed; boundary="simple boundary"

--simple boundary

Content-type: text/xml; charset=ISO-8859-1

<bar id="a12">Hello</bar>

--simple boundary

Content-type: text/xml; charset=ISO-8859-1

<bar id="a13">World</bar>

--simple boundary--

is done using the HTTP Accept request header. However, if the user agent attempts
to apply a fragment identifier that has no semantics for the retrieved IMT-typed
representation, then the evaluation of the fragment identifier will fail. So, given a
link to an SVG resource using the svgView() fragment identifier, a user agent that
does not support SVG may negotiate for a JPEG representation of the resource. The
svgView() scheme is not defined against the JPEG IMT, and thus the user agent,
for example, a browser, will not be able to establish the correct viewport onto the
retrieved image.

570 K. Clark et al.

The response entity now contains one body part for each matched node in
the addressed XML resource. Further, the MIME body parts are presented to
the client in document order, just as they would be identified if you applied that
XPath expression directly to the negotiated text/xml representation of that
resource.

4 RDF Query Language and XPointer

There is a large and growing number of query languages for RDF. The W3C
has chartered the Data Access Working Group to create a recommendation for
both an RDF query language and a data access protocol. Since XPointer is an
extensible framework, we can choose any RDF query language — including, but
not limited to one standardized by the Data Access Working Group — and
develop a notation for that query language that is consistent with the XPointer
Framework. Once that is done, we can encode a query in a URI and use the
techniques described above to address subresources — for example, subgraphs
of an RDF graph, all the classes in an OWL ontology, the creator of an RDF
snippet — identified by that query language.

Consider an XPointer scheme, rdql(), for RDQL [11]. Since rdql() isn’t an
officially specified W3C XPointer scheme, we use the xmlns() scheme to setup
the namespace context so that rdql() is correctly recognized by the XPointer
processor. Once the namespace context has been established, we set the resulting
XPointer expression as the value of the Range header. When the request is re-
ceived by the server it will use an XPointer processor to evaluate that expression
on behalf of the client and ship back the results.

The user agent’s request:

GET /myStore HTTP/1.1
Accept: application/rdf+xml
Range: xmlns(q=http://www.myorg.org/xpointer-scheme/rdql)

rdql(
SELECT (?x foaf:mbox ?mbox)
WHERE (?x foaf:name "John Smith")

(?x foaf:mbox ?mbox)
USING foaf FOR <http://xmlns.com/foaf/0.1/>

)

The origin server’s response:

HTTP/1.1 206 Partial Content
Content-Type: application/rdf+xml

<rdf:RDF xmlns:rdf="...">...</rdf:RDF>

Notice that in this case multiple subresources are being returned using an
atomic, as opposed to a multipart, IMT. We can do this for three reasons: First,

A Semantic Web Resource Protocol: XPointer and HTTP 571

we are using a logical as opposed to syntactic addressing scheme. Second, we are
assuming that any subresources of an RDF graph are also RDF graphs, which
is to say that you can’t address anything more simple than an RDF triple.
Third, any RDF graph can be interchanged as a single application/rdf+xml
document.

5 RDF, OWL, and XPointer

Our proposal enables user agents to delegate the evaluation of the fragment
identifier to the origin server. The client is essentially declaring that it only
needs those subresource(s) that are actually addressed by the fragment identifier.
rdf() and owl() XPointer schemes would allow for appropriate kinds of server
(and, subsequently, client-side) processing of Semantic Web resources. But what
about the reflective modeling questions raised above?

5.1 Reflective RDF Modeling and Management

Consider a Semantic Web application which allows RDF graphs to be collected
and aggregated. One approach to managing such an application is to include
provenance information about each bit of RDF in the snippet itself. That is,
for each RDF graph, it would contain explicit triples asserting, for example, the
creator of the snippet, as well as the date the snippet was submitted and the
date it was updated. Thus, a query for the metadata about a particular RDF
snippet might retrieve every assertion with the snippet’s URI as the subject; but
that approach has some obvious problems.

A more tractable solution is to store the metadata about each snippet sepa-
rately from the RDF graph about which that metadata makes assertions. Storing
the metadata about an RDF graph outside the graph has some obvious advan-
tages; suppose, for example, that we want to assert that the content of some
snippet is untrustworthy or outdated. Presumably that characterization of the
assertions in the graph is not intended to apply to the characterization itself.
That is, we might very well want to say things about the whole graph which
were not meant to be said of the graph’s metadata.

This point exposes a modeling problem for RDF data and the Semantic Web
generally. We want to treat RDF documents as web resources, one of the general
uses of which is to make assertions about other resources. But we also want to be
able to make assertions about RDF graphs, qua Web resources, themselves. We
want, therefore, some measure of reflective or second-order expressiveness about
all web resources, including the ones that are RDF and OWL. One approach to
achieving this kind of reflective expressivity is to establish a URI convention for
the metadata of a graph — by, say, appending a “/rdf” URI path segment to
any URI. Setting aside the widespread breakage that might impose, it’s not a
very elegant solution. It is far more reasonable to create an XPointer scheme, say
metadata() that, in conjunction with our server-side XPointer proposal, would

572 K. Clark et al.

be taken by Semantic Web origin servers to be a query or retrieval of information
about a resource rather than of the resource.

This approach is similar to the URIQA [13] proposal in that both approaches
avoid the needless proliferation of URIs. We, however, want to have a URIRef
for the metadata about a resource as well. The URIQA approach — to create
new HTTP methods, most notably MGET — effectively hides the switch from
resource to metadata about the resource in the request.9 Which says nothing, of
course, about the non-technical intractability of standardizing a new set of core
HTTP methods.

5.2 OWL Partial Imports

OWL ontologies are usually encoded, published, and exchanged as RDF/XML
documents. One way in which the needs of the Semantic Web, quo a KR-like
system, are not fully served by the typical implementation of HTTP/1.1 is the
importation of third party OWL ontologies. We think the proposed Semantic
Web resource protocol described herein can address some of the problems asso-
ciated with OWL partial imports.

In order to understand the utility of our proposal for OWL imports, it’s im-
portant to review its semantics. Using owl:imports in ontology A to import
ontology B has the effect of merging the set of RDF triples which constitute the
two ontologies. One of the problems with multi-ontology Semantic Web appli-
cations is selective use of a term or terms from another ontology. For example,
consider an OWL ontology about biological research, which may need to use a
few terms from a very large ontology about proteins, but which, for practical
reasons, does not want to simply owl:imports the very large ontology. Since
the only semantics of owl:imports is something like “graph concatenation”,
the choices seem to be either import the entire large ontology, do not import
any of it, or shadow some of its terms by declaring equivalent classes in the host
ontology. Each of these options has real disadvantages.

But using the techniques described herein, we can specify partial imports of
resources which are, in fact, subresources addressed and retrieved by means of
RDF or OWL or even arbitrary XQuery or XPath queries. By providing a URI
that contains an XPointer scheme — for example, the rdql scheme described
above — as the value of an owl:imports, we can specify a complex query to
filter a published OWL ontology to a subresource that only contains the triples
we need.

Such filtered, partial imports may well be semantically problematic in light
of the original ontology creator’s intention; but whatever semantic perturbations
9 URIQA not only proposes three new HTTP methods, MGET, MPUT, and MDELETE, but

it also requires clients and origins servers to support a new HTTP header, URIQA-uri:
“it is recommended that when submitting a URIQA request where the request URI
contains a fragment identifier, the full URI should be redundantly specified using
the special HTTP message header URIQA-uri.” The proposal herein has the relative
advantage of using only extant headers and URI serialization forms.

A Semantic Web Resource Protocol: XPointer and HTTP 573

are created by a partial import are no different in principle than the perturba-
tions that may be created by an ordinary import. The publisher of an OWL
ontology has no control over what happens to it once it is imported into an
arbitrary ontology.

A partial import has the advantage of neither touching the original creator’s
URI space nor requiring some kind of shadow resource or document. It does re-
quire coordination of XPointer schemes between the user agent and origin server,
however; though, as we point out in the next section, this does not impose a very
high burden of implementation. Furthermore, we can imagine future XPointer
schemes that would allow us to address subresources of OWL ontologies that
are OWL specific; for example, addressing and retrieving the subresource of an
ontology that is a particular class and all its subclasses.

6 Implementation Experience

As a test of our claims herein we have developed software to support two
XPointer schemes for server-side processing.

6.1 Partial OWL Imports in Pellet

The Pellet OWL Reasoner [12] is a Java DL reasoner implemented, using the
tableaux algorithm, by members of the UMD Mindlab, including one of the
authors of this paper. The developers of Pellet support a subset of RDQL queries
as a kind of conjunctive ABox query. As a proof of the concepts described in this
paper, we deployed Pellet in a simple HTTP application environment wherein
it used the Accept-Range: xpointer HTTP header to advertise its ability to
process XPointer URIs.

We were then able to address and retrieve representations of subresources of
the very large NCI cancer ontology using RDQL and Pellet. We were able to do
this with very simple HTTP user agents; for example, we used the Unix command
line tool wget, which allows the insertion of an arbitrary HTTP header into every
request. With this environment we are able to create complex RDQL queries, use
those queries to address and retrieve subresources of the NCI cancer ontology,
and we’re able to do this with very little implementation burden. The user agent
implementation is very minimal, and the origin server burden is equally minimal.

6.2 RSS Querying

RSS 1.0 [1] is an RDF vocabulary for representing and exchanging typed web
site event streams. These event streams, known colloquially as “channels”, are
published on the Web and referred to by URI. Because it is an RDF vocabulary,
the kinds of events that it can serialize are limited only by RDF itself. As further
proof of the concepts described herein, we implemented an XPointer scheme, rss,
that allowed querying of an RSS channel in two ways.

574 K. Clark et al.

First, the rss scheme supports queries by list slice semantics; that is, taking
the channel to be a list of events, you can address a subresource of the channel
by indexing into the list in the same way as you index a list in a high-level pro-
gramming language. Because we used Python as our implementation language,
we simply exposed a subset of the Python list slice semantics to the rss scheme.
For example, rss(-1) addresses the last entry of the channel; and rss(0:5)
addresses the first five channel entries.

Second, we implemented support for arbitrary date range queries. One of
the standard properties of the entries of an RSS channel is a date property. For
example, rss(2004-05-05:2004-05-07) addresses the subresource constituted
by all the RSS events occurring on or between 2004-0505 and 2004-05-07.

7 Conclusion and Future Work

The nature of most Semantic Web resources, represented by RDF and OWL doc-
uments, is significantly different from World Wide Web resources, represented
by HTML and XML documents. The latter are intended for human consumption
and syntactic interoperability. The former are KR formalisms and are amenable
to logical query languages and KR-sensitive addressing schemes. But the Se-
mantic Web is still supposed to be the Web, which suggests that extensions of
existing addressing and protocol technologies are appropriate.

We have described herein one such extension, which has as its goal the cre-
ation of a Semantic Web resource protocol using the extensible XPointer ad-
dressing scheme and some features of HTTP/1.1. The benefits of this proposal
include scalability, derived from XPointer processing at the origin server rather
than by the client, as well as extensibility, which allows for addressing and inter-
action models that are sensitive to RDF and OWL. In particular our proposal
offers a way of handling the resource/resource-metadata distinction without the
needless propagation of URIs, as well as offering some traction for the problems
of OWL imports.

We conclude that the proposal described herein is practically realizable on
a large scale, such realization being primarily a matter of multiparty agreement
as to the semantics of particular XPointer schemes. We anticipate more detailed
analyses of the semantics of RDF and OWL-specific XPointer schemes in con-
junction with HTTP methods like DELETE, PUT, POST, LINK and UNLINK.

References

1. G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, and et. al. RDF Site
Summary (RSS) 1.0. http://web.resource.org/rss/1.0/spec.

2. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. IETF Network Working Group Internet Draft,
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html.

3. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation 16 November 1999 http://www.w3.org/TR/xpath/.

A Semantic Web Resource Protocol: XPointer and HTTP 575

4. S. DeRose, E. Maler, and R. Daniel Jr. XPointer xpointer() Scheme. W3C Working
Draft 19 December 2002 http://www.w3.org/TR/xptr-xpointer/.

5. S. J. DeRose, R. Daniel Jr., E. Maler, and J. Marsh. XPointer xmlns() Scheme.
W3C Recommendation 25 March 2003 http://www.w3.org/TR/xpointer-xmlns/.

6. J. Ferraiolo, F. Jun, and D. Jackson. Scalable Vector Graphics (SVG) 1.1 Specifi-
cation. W3C Recommendation 14 January 2003 http://www.w3.org/TR/SVG11/.

7. N. Freed and N. Borenstein. Multipurpose Internet Mime Extensions (MIME) Part
Two: Media Types. IETF Network Working Group RFC 2046,
http://www.ietf.org/rfc/rfc2046.txt.

8. P. Grosso, E. Maler, J. Marsh, and N. Walsh. XPointer elemnet() Scheme. W3C
Recommendation 25 March 2003 http://www.w3.org/TR/xptr-element/.

9. P. Grosso, E. Maler, J. Marsh, and N. Walsh. XPointer Framework. W3C Recom-
mendation 25 March 2003 http://www.w3.org/TR/xptr-framework/.

10. I. Jacobs. Architecture of the World Wide Web. W3C Working Draft 9 December
2003 http://www.w3.org/TR/webarch/.

11. A. Seaborne. RDQL - A Query Language for RDF. W3C Member Submission 9
January 2004, http://www.w3.org/Submission/RDQL/.

12. E. Sirin and B. Parsia. Pellet OWL Reasoner.
http://www.mindswap.org/2003/pellet/.

13. P. Stickler. The Nokia URI Query Agent Model.
http://sw.nokia.com/uriqa/URIQA.html.

On the Emergent Semantic Web and Overlooked Issues

Yannis Kalfoglou1, Harith Alani1, Marco Schorlemmer2, and Chris Walton3

1 Advanced Knowledge Technologies (AKT), School of Electronics and Computer Science,
University of Southampton, UK

{y.kalfoglou,ha}@ecs.soton.ac.uk
2 Escola de Tecnologies d’Informació i Comunicació,

Universitat Internacional de Catalunya, Spain
marco@cir.unica.edu

3 Advanced Knowledge Technologies (AKT), CISA, School of Informatics,
University of Edinburgh, UK

cwd@inf.ed.ac.uk

Abstract. The emergent Semantic Web, despite being in its infancy, has already
received a lot of attention from academia and industry. This resulted in an abun-
dance of prototype systems and discussion most of which are centred around the
underlying infrastructure. However, when we critically review the work done to
date we realise that there is little discussion with respect to the vision of the Seman-
tic Web. In particular, there is an observed dearth of discussion on how to deliver
knowledge sharing in an environment such as the Semantic Web in effective and
efficient manners. There are a lot of overlooked issues, associated with agents
and trust to hidden assumptions made with respect to knowledge representation
and robust reasoning in a distributed environment. These issues could potentially
hinder further development if not considered at the early stages of designing Se-
mantic Web systems. In this perspectives’ paper, we aim to help engineers and
practitioners of the Semantic Web by raising awareness of these issues.

1 Introduction

The SemanticWeb (SW) is on its early stages of research and development – not more than
five years in life loosely counting from appearances of early publications in the literature
and W3C blueprints and design notes – and there has been considerable progress in
both academic and industrial fronts. The emergent SW, however, still falls short of
expectations and hasn’t realised the vision outlined in [5]. This statement is bound to
be subjective as many would interpret the “SW expectations” differently depending on
their experiences with SW technologies and their successes or failures. In this paper
we aim to put in perspective these views and critically review the SW vision and work
done to date. We reflect on the expectations created by the SW literature, but our aim is
not to conclusively discount the idea of the SW. Rather, we aim to raise awareness of
overlooked issues with respect to: (a) provision of robust reasoning on the SW, (b) usage
of mechanised forms of trust, (c) enabling software agents on the SW, and (d) cultural
legacy from a Web user’s point of view. We base our critique on personal experiences with
involvement in the design, development, and deployment of SW-enabled applications,
thus our discussion is targeted to practitioners and engineers and the focus is on technical
issues and limitations of current technology.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 576–590, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Emergent Semantic Web and Overlooked Issues 577

From an ethnographical point of view, this sort of critique and analyses of a new
technology is sparse in the SW literature. For example, in the past three SW events –
starting with the SWWS’01 symposium and followed by two ISWC conferences – there
have been 135 papers published but, to our judgment, we only found 3 critiquing papers
highlighting problems, experiences and issues emerged. Similar dearth of critiquing
is found in SW related events organised by adjacent communities like the WWW or
major Artificial Intelligence (AI) conferences. Based on this evidence and seeing all this
excitement and work done so far, an average Web user would wonder: the SW should be
already out there and I could use it as I use the Web?. However, this is not true yet, as
current users of the emergent SW are mostly its engineers and practitioners rather than
the general public.

These two are the main anchor points upon which we unravel our argumentation:
review work done to date and highlight issues that could hinder future development by
focusing on the expectations of the SW from a Web user’s point of view. We start with a
brief overview of the emergent SW in section 2 before elaborating on emerging issues
in the following sections. In particular, in section 3 we argue for the role of agency
and mechanised trust as the means to realise the benefits of a SW. These are closely
related with our ability to operationalise robust reasoners on the SW, an issue related
with Knowledge Representation (KR). We elaborate on known limitations of KR for the
SW in section 4, and we put together all these issues under a pragmatics’ lens in section
5 where we speculate on the impact of these issues and pinpoint to directions that could
help us come closer to realise the SW vision before concluding our perspectives’ paper
in section 6.

2 The Emergent Semantic Web

The SW endeavour is well underway with the majority of work concentrating on infras-
tructure issues. As semantics are seen as the differentiating factor from the Web, one of
the first deliverables of the SW, namely RDF [29], was aiming to assist content providers
with annotation of their data with semantic information. The adoption and use of RDF
though has not been unproblematic, as reported in [24]. In [42] the authors elaborate
further on the problems associated with RDF syntax and notation , in particular when
it is used with the W3C’s recommended Web Ontology Language (OWL) [36]. OWL
emerged in the last few years as an ontology language that, hopefully, will become a de
facto language in which to represent SW ontologies. The design of this carefully crafted
language was influenced by AI products, such as Frame Logic and Description Logic
(DL). These formalisms have their own peculiarities which are inherited in the language
itself but we will elaborate on them in the next section.

As RDF preceded OWL, early adopters of this technology used sophisticated, but ad-
hoc ways of providingAI-style inferencing in early systems (for example, the OntoBroker
system [10]).As OWL became widely available and backed by theW3C we are beginning
to see content annotated with OWL syntax not only for ontology encoding but for
describing instances too (ABoxes in DL). A number of tools are already available,
including robust APIs like HP’s Jena1 and the OWL-API2.

1 http://jena.sourceforge.net
2 http://sourceforge.net/projects/owlapi

578 Y. Kalfoglou et al.

But despite the sophisticated machinery for annotating content and reasoning over
it, the main driver of the SW seems to be simplicity and ease of use. This is evident since
the early days of designing the SW [4], when the widespread belief was to keep things
simple and to compromise on KR principles that shaped most of the KR practice in AI
for years, as we will discuss in the next section. To quote Berners-Lee [4]: “The Semantic
Web is what we will get if we perform the same globalisation process to Knowledge
Representation that the Web initially did to Hypertext. We remove the centralised con-
cepts of absolute truth, total knowledge, and total provability, and see what we can do
with limited knowledge.” Similar statements are found in the SW literature almost 5
years after these design notes were written, as for example in McBride’s report [34]:

[. . .] the perception that the Semantic Web is concerned with AI is not helpful
to its widespread adoption in the IT industry [. . .] this perception is understand-
able. The Semantic Web is often presented as the technology that will achieve
marvelous things [. . .] much of the excitement and motivational power of such
scenarios come from the handling of speech, NLP, general problem solving,
scheduling, common sense reasoning and other features commonly associated
with intelligence. These are not what the Semantic Web is about. The Semantic
Web is about creating an infrastructure in which information from a variety of
sources can be integrated on demand to achieve some task. The Semantic Web
provides mechanisms that enable access to and integration of data.

There is a hidden antithesis in these two, chronologically distant, but similar calls for
compromised KR and infrastructure. McBride’s call for infrastructure reflects much of
the work done to date, but the infrastructure call presupposes a non-compromised KR,
as the tasks envisaged for this infrastructure require the full strength of today’s best
KR practices. You can’t have a compromised KR to support an infrastructure that aims
to provide the means for accessing and integrating disparate data in semantically rich
manners. At least not with the current state-of-the-art in KR and SW infrastructure.
So, there is a comprise on both ends, KR and infrastructure, as it is evident on early,
successful, SW systems and demonstrators.

For example, the 2003 SW challenge award-winner CS AKTive space3 strikes a
balance between aggregation of vast amounts of semantically annotated data from a
variety of disparate sources and provision of robust reasoning services. For instance, as
the focus is on infrastructure, more attention has been paid on performance and scaling
issues4 rather than robust reasoning, as for example resolving the ever so re-occurring
problem of referential integrity [1]. On the other hand, systems like KAON [51], provide
more robust reasoning services but compromise on scale and, arguably, on the principle
of decentralization and distributiveness of the SW as KAON is a stand-alone application
server with its processing centralised. The list of early prototypes who compromise on
either scale and distributiveness or KR capabilities is long to mention in this paper but
to the best of our knowledge none of those developed so far, have managed both.

An issue closely related with the ability to provide robust reasoning over distributed
resources is not so much the capabilities of the reasoner but the usefulness of the external

3 http://www-agki.tzi.de/swc/csaktivespace.html
4 One of the biggest RDF triplestores available today with more than 25 million RDF triples in

store.

On the Emergent Semantic Web and Overlooked Issues 579

resources. In an environment the size of the SW these could be assessed by some form of
mechanised trust and accessed with software agents, as it is envisaged in the literature.
There are open issues, however, when we call upon agency and trust which we review
in the next section.

3 The Role of Agency and Trust

The SW is predicated on the notion of agents as the key consumers of SW information.
This is expressed in [5]: “The real power of the Semantic Web will be realised when
people create many programs that collect Web content from diverse sources, process
the information and exchange the results with other programs. The effectiveness of
such software agents will increase exponentially as more machine-readable Web content
and automated services (including other agents) become available.”. The underlying
assumption in this description is that agents will be able to automatically utilise the
information on the Web once semantic annotation has been provided. Nonetheless, there
are many challenges associated with the use of agency in this manner, and a solution
to many of the issues is far from clear. We outline a number of these challenges in this
section, with reference to state-of-the-art techniques for addressing the associated issues.

What is an agent? The first issue concerns the definition of the term “software agent”
itself. There is a surprising lack of consensus in the agency community over how this
term should be defined. Indeed, the term is applied to a wide range of systems, ranging
from simple distributed objects, to complex autonomous entities [41]. The reason for
this lack of consensus is primarily because the term is used generically to refer to a
heterogeneous body of AI research, rather than a specific implementation. From the
perspective of the SW, it is unclear what kind of agency is required. The increasing use
of Web services5 to express computation on the SW points to a purely procedural notion
of agency, while the kinds of reasoning which are envisaged in the description of the SW
appear to require something more complex, e.g. proactive behaviour. Thus, to address
this issue, a number of systems that combine autonomous agents with Web services have
been proposed (e.g., [52]).

Agent Coordination. It can be argued that a precise definition of agency on the SW is
unimportant, provided that the agents can cooperate in meaningful ways. This is further
expressed in [5]: “[. . .] even agents that were not expressly designed to work together
can transfer data among themselves when the data come with semantics.”. From this
description it appears that the semantic markup itself is intended to solve the problem
of coordination among heterogeneous agents. However, it is far from clear how this
can be achieved. The problem of coordinating agents with semantic markup introduces
the issues associated with semantic interoperability (see section 4). For example, if two
agents wish to cooperate, and they have different internal representations of the domain
in question, then they must perform a mapping between (or a subset of) their knowledge.
This must be done automatically if the agents are to cooperate autonomously in the SW.
There are a number of proposed solutions, e.g., the adoption of a standard upper ontology

5 http://www.w3.org/TR/ws-arch/

580 Y. Kalfoglou et al.

such as OWL-S6, or the use of partial mappings [23]. However, it is likely that this will
be an open issue for some time to come.

A popular basis for coordination among agents is the use of performative languages.
These languages have their roots in the theory of speech acts. This theory identifies a
class of performative verbs (e.g. inform, promise, request) that have the characteristics
of physical actions, in that they change the state of the world. The use of performa-
tives to express interactions between agents has been enthusiastically adopted by the
agency community and this is most visible in the development of Agent Communica-
tion Languages (ACLs), such as the Foundation for Intelligent Physical Agents ACL
(FIPA-ACL7). In these languages, the model of interaction between agents is based on
the exchange of messages. FIPA-ACL defines a set of performatives (message types)
that express the intended meaning of these messages.

Sincerity. There is a significant issue in the use of performative languages in an open
environment. There is an underlying sincerity assumption in these languages which
demands that agents always act in accordance with their intentions. It will always be
possible for an insincere agent to simulate any required internal state, and we cannot
verify the sincerity of an agent as we have no access to its internal mental states. This
problem is termed the semantic verification problem and is detailed in [54]. In order to
address the sincerity issues, a number of alternatives have been proposed which we now
discuss. The proposals all address sincerity by restricting the kinds of behaviours that
the agents can exhibit and exposing the internal state of the agents. Thus, agents who
are not acting in accordance with the intended dialogue can be readily identified.

Dialogue protocols. The first of these imposes a layer of control above the performa-
tive language, through the use of dialogue protocols (e.g., [49]). In this approach, the
performative language defines only how agents can communicate, while the dialogue
protocol defines if and when agents should communicate. The underlying concept in the
Electronic Institutions (EI) approach is that human interactions are never completely
unconstrained, rather they are always guided by formal and informal conventions such
as customs, etiquette, and laws. EI are a means of representing and controlling these
conventions within multi-agent systems (MAS). Dialogue protocols greatly assist in the
design of MAS as they impose structure on the agents, co-ordinate tasks between agents,
and define commitments which agents must satisfy. Nonetheless, there are a number of
pertinent issues which need to be addressed in the EI framework. The most serious of
these is that there is no straightforward means to disseminate the institutions, and thus
the agents must be explicitly designed (in advance) for a specific institution.

Social policy. Another alternative is the use of social policy to control agent interaction.
The key concept of the social commitment model is the establishment of shared commit-
ments between agents.A social commitment between agents is a binding agreement from
one agent to another. The commitment distinguishes between the creditor who commits
to a course of action, and the debtor on whose behalf the action is done. Establishing
a commitment constrains the subsequent actions of the agent until the commitment is
discharged. Commitments are stored as part of the social state of the MAS and are ver-
ifiable. A theory which combines speech acts with social commitments is outlined in

6 http://www.daml.org/services/
7 http://www.fipa.org

On the Emergent Semantic Web and Overlooked Issues 581

[17], though there remain considerable implementation issues in maintaining a suitable
store of shared commitments.

Dialogue games. A further approach involves the use of dialogue games, which trace
their origins to the philosophical tradition of Aristotle. Dialogue games have been used
to study fallacious reasoning, for natural language processing and generation, and to
develop a game-theoretic semantics for various logics. These games can also be utilised
as the basis for interaction between autonomous agents. A group of agents participate in
a dialogue game in which their utterances correspond to moves in this game. Different
rules can be applied to the game, which correspond to different dialogue types, e.g.
persuasion, negotiation, enquiry [53]. For example, a persuasion dialogue begins with
an assertion and ends when the proponent withdraws the claim or the opponent concedes
the claim. A framework which permits different kinds of dialogue games, and also meta-
dialogues is outlined in [35]. However, this framework is only defined at a formal level,
and an implementation has yet to be realised.

Dynamic scripting. The final approach which we describe here relaxes the requirement
that the agent coordination must be statically defined before evaluation can take place.
Rather, we can take a script-based approach to coordination, where the script is built
dynamically during evaluation, as the agents communicate. In general, a great deal of
conversation is an expression of protocol. For example, the question “Can you tell me
the time?” implies that the next step in the protocol is for the other party to respond
with the time. We express the coordination as an executable protocol, which is passed
between agents as the communication happens. This approach is detailed in [47], where
the scripting language is derived from the Calculus of Communication Systems [39].

Trust

One of the needs for software agents’ cooperation on the SW is the ability to use au-
tomated methods for measuring trust. This is exemplified in [5]: “Lucy’s agent, having
complete trust in Pete’s agent in the context of the present task, automatically assisted
by supplying access certificates...” Trust is placed at the top of the proposed SW “layer
cake”8. The trustworthiness of knowledge-base statements have generally been accepted
without any proof [50]. Van Harmelen argues that some measurement of trust will be
needed when dealing with distributed knowledge sources. In [32] the authors highlight
some of the issues that need to be incorporated into the SW service architecture to en-
able exchanging trust and reputation and to control policies and negotiations. There are
several issues to consider with respect to trust and the SW. For example, how can trust be
modelled and exchanged between agents and SW services? Where should trust annota-
tions be stored and made available? What kind of knowledge is required to measure trust
and where will this knowledge come from? What trust features need to be considered
(e.g. subjectivity, propagations, transitivity)? and how do they effect trust in general?

Modelling & representation. For trust to be used by SW agents it must first be formalised
and modelled in an agreed fashion. The first computational model of trust was introduced
in [31], which inspired much work in this domain. Modelling trust helps to untangle its

8 http://www.w3c.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

582 Y. Kalfoglou et al.

complexity and understand its main components and evolution. However, the accuracy
and completeness of such models is one thing, and their suitability and integration into
MAS communication is a totally different thing. In [19] the authors are calling for security
and trust to be added to the systems design process, rather than trying to attach them
to already existing systems which might not be compatible. They argue that modelling
trust and security should be closely related to where they will be applied and used, which
raises questions about the actual applicability of generic trust models.

There is a clear need for semantic language support for representing trust. In [16]
the authors suggested to use a semantic policy language to enable annotating security
and belief. Representing trust explicitly can significantly improve knowledge exchange
and outsourcing performance between agents [13]. There are some emerging standards
such as SOAP security extension and PICS which was originally designed for rating
Web pages. However, none of these languages are sophisticated enough to represent
trust efficiently.

Sourcing. There is still no agreement about whether trust information is best gathered
and broadcasted in centralised units, or left in a distributed format for agents to collect and
reach their own conclusions. In [18] the authors developed a centralised system to help
users annotate sources to highlight alternative, probably contradictory, sources. Users
feedback can then be used to assess information sources. Another example is proposed
in [33] for a centralised agent to measure the reputation of Web services by monitoring
and collecting outcomes and client feedback, and making this information available to
other agents. Such centralised systems raise the question of how trustworthy are the users
or agents who provided the feedback in the first place, and why such trust warehouses
should be trusted [13]. For example, in [16] the authors argue against centralised units for
measuring trust because of their scalability limitations and the implicit trust measurement
mechanisms they adopt.

Measuring trust. To reduce the risk of online trading on the SW, there must be a way
to infer trust and reputation electronically [40]. However, there is no consensus about
how this can be done. In [55] the authors state the need for agents to combine their own
experience with the experience of other agents when measuring the trustworthiness of a
specific agent. This raises the issue of availability and accessibility of such experience
outcome over the SW, and whether trust can still be measured in their absence.

Several approaches have been introduced in an attempt to extract trust values from
decentralised, interconnected semantic networks. In [22] the authors argue that trust
can be propagated through relatively short paths connecting entities in small world
networks. They believe that modern information networks will be decentralised and
highly dynamic, where traditional trust control methods will no longer apply. They used
an algorithm based on the small world theory [38] to measure trust between entities that
are not directly connected. Similarly, in [20] the authors applied techniques to measure
trust over a FOAF network, extended with trust relations while in [46] the authors applied
path algebra and probabilistic algorithms to measure the trustworthiness of users along a
network of trust connections explicitly specified by users. All these approaches seem to
rely to some extent on trust values given explicitly by users. One observation made in [45]
with respect to eBay is that users feedback is almost always positive. The authors note
that most people do not like giving negative feedback, unless revenge is a motivation.

On the Emergent Semantic Web and Overlooked Issues 583

Furthermore, scalability becomes a serious issue when relying solely on users trust
feedback.

Context. One major problem with many approaches proposed for measuring trust is the
lack of context, which is a basic feature of trust [13]. You may trust your colleague to
write a good project proposal, but you might not trust him to fix your car. Associating
trust measurement with specific contexts will inevitably increase its calculation and
representation complexity, but nevertheless is crucial for the resulting trust values to be
on any use. Transitivity of trust is a complex issue that also needs to be investigated to
determine how trust should propagate along the SW. Some argue that trust is not strictly
transitive, and that the transitivity of trust is subjective and context dependent [12].

It should now be clear that the capitalisation of agency and trust in the SW will
require a significant number of challenges to be addressed. The focus of our attention
has been on the provision of a coordination framework for agents, and mechanised
ways for measuring trust. However, even with such a framework in place and a well-
connected network upon which network analysis algorithms will measure trust, we are
still dependent on robust reasoners that will operate in such an environment.

4 Knowledge Representation and Reasoning on the Semantic Web

Robust reasoning. Intimately connected with the ability to operationalise our reasoners
on the SW is how we handle soundness and completeness. These are precise technical
terms that describe properties of formal systems or sets of sentences, and they get their
meaning from the field of mathematical logic. A formal system is sound when every
sentence produced by the system’s inference rules operating on the system’s initial set of
axioms logically follows from that set; it is complete when every sentence that logically
follows from the system’s initial set of axioms can be formally derived using the inference
rules. In addition a set of sentences is said to be complete if for every sentence of the
logical language, either it or its negation can be proven from the set, using the rules of
the formal system.

These notions are tightly connected to the story of first-order logic (FOL), which,
among all logics, has a special status due to its expressive power, its natural deductive
systems, and its intuitive model theory based on sets. It is because of FOL’s success in
providing rigorous definitions of mathematical truth and proof, that, from the early days
of the field of AI, knowledge representation and reasoning (KRR) has been developed
primarily around FOL and its model-theoretic semantics.

From a practical point of view, to render the SW operational, it is understandable
that current standardisation efforts for SW technology have primarily focused around
traditional views of KRR, using FOL’s model theory as its semantic underpinning. FOL is
well understood, both mathematically and computationally, and is also well established
via many customised representation languages and highly optimised inference engines
that have been developed for a plethora of different subsets and variants of FOL. Hence,
it comes at no surprise that OWL is based on well-studied DL theory and technology,
very well following FOL’s traditional model-theoretic semantics [36].

But, despite of FOL’s prominent status in mathematical logic, and besides the practi-
cal reasons for adopting FOL’s model theory as semantic underpinning to get the SW up

584 Y. Kalfoglou et al.

and running, it would be a mistake to base the current emergent SW technology solely,
or primarily, around the traditional KRR paradigm. In [15] the author has nicely sum-
marised the strengths and limitations of the model-theoretic approach to the SW, which
situates many of the envisioned applications of the SW clearly beyond the capacity of
FOL-based, and consequently DL-based SW technology.

Soundness and completeness, for instance, have a different dimension when it comes
to the SW. As it is reported in [50]: “[. . .] some of the assumptions underlying current
KR technology [that] will have to be revised when applied to the Semantic Web.” While
scale and change rate are regarded as big obstacles that test current KR technology
to its limits, the crux of the problem with preserving and mechanizing soundness and
completeness on the SW is lack of referential integrity and inconsistent knowledge
produced by multiple knowledge sources, as they will exist in the SW. There is call for
more robust inferencing [50]:

In an environment the of size of the web we must abandon the classical idea of
sound and complete reasoners, our reasoners will almost certainly have to be
incomplete (no longer guaranteeing to return all logically valid results), but most
likely also unsound: sometimes jumping to a logically unwarranted conclusion.
Furthermore, the degrees of such incompleteness or unsoundness must be a
function of the available resources. Answers will have to be approximate.

Open and closed worlds. We visit a key notion that has been used in the past to tackle
incompleteness, and it is revised in the context of agents’ research to become more
operational when applied at a large scale. Closed World Assumption (CWA) states that
everything that is not known or cannot proved to be true, must be false. CWA originates
from AI and database research in the late 70s (for example, Reiter’s work on CWA
[44] as an implementation of McCarthy’s investigations on the Frame Problem) and the
same fundamental assumption still holds for most of databases’ design today. Despite
its similarities, it has a different interpretation when studied in DL, as it is stated in [2]:
“a database instance represents exactly one interpretation, namely the one where classes
and relations in the schema are interpreted by the objects and tuples in the instance
[. . .] an ABox represents many different interpretations, namely all its models.” So,
absence of information in a database instance is interpreted as negative information,
while absence of information in an ABox only indicates lack of knowledge. Thus, while
the information in a database is always understood to be complete, the information in
an ABox is in general viewed as incomplete, and that leads to the perception of ABoxes
semantics as “open world”, while the traditional semantics of databases is characterised
as “closed world”.

This view that ABoxes (set of instances or facts that comprise a knowledge base)
have an “open world” semantics is clearly reflected in the current SW technologies which
originate from DL (for instance, in OWL). For this reason, CWA has received a rather
controversial perception. In the W3C OWL requirements recommendation [25], the abil-
ity to state closed worlds is seen as an objective, rather than a requirement9 and its value
is praised by the author: “[. . .] the language must be able to state that a given ontology

9 The difference being, that a W3C requirement is a feature that the OWL language must have
as opposed to an objective which is not mandatory but nice to have.

On the Emergent Semantic Web and Overlooked Issues 585

can be regarded as complete. This would sanction additional inferences to be drawn
from that ontology. The precise semantics of such statement (and the corresponding set
of inferences) remains to be defined, but examples might include assuming complete
property information about individuals, assuming completeness of class-membership,
and assuming exhaustiveness of subclasses.”. These features are indeed what a SW rea-
soner would expect to find in a knowledge source on the SW in order to draw complete,
and possibly sound inferences.

But, providing the right machinery to automate the task of asserting information about
the completeness of a knowledge source is not an easy job and solutions vary across dis-
ciplines. For example, in the logic programming realm, the use of extra-logical operators,
embedded in the syntax of the language, are common, like the use of not operator in some
implementations of Prolog. Similar attempts are reported in the software engineering
domain [30], whereas in [6] the authors use techniques from Answer Set Programming
(ASP), which allow to draw conclusions based on the lack of evidence of the contrary.
Their approach augments the semantics of SW languages’ constructs, in particular that
of the DAML daml:subClassOf, with ASP programs to be fed into an ASP solver in
order to allow drawn, default inferences to be dropped if opposite knowledge is found
in the knowledge source. A promising approach emerged in the agents’ community as
an extension of the classical CWA, namely Local World Assumption - hereafter, LCW. It
was first applied in the XII planner [21] to reduce the planning time when dealing with
external information. LCW allows closed-world information to be obtained on subsets
of information that are known to be complete, while still allowing other information to
be treated as unknown. A problem acknowledged with early LCW approaches though,
was the assumption that there must exist a priory knowledge of the local completeness
of the information sources. And that assumption cannot be operational in an environ-
ment the size and scale of the Web. In [26] a proposed solution to this is to provide the
means for facilitating the assertion of local completeness information in SW languages
themselves, thus enabling SW content providers to annotate their resources with LCW
statements. However, the issue of how to acquire knowledge of local completeness in
the first place still remains unsolved. The plausible assumption made here, is that the
content providers should possess that knowledge and they only need to annotate their
content with it. Still, this leave some open issues with respect to the consistency of their
content, as LCW could easily introduce contradictions if not handled properly when
applied at huge resources.

Semantic interoperability. Spurred by the need to be able to reuse knowledge-based
systems and to make them interoperable, the effort in achieving knowledge sharing has
carried this tradition in KR over to the research on information system ontologies. In
such a highly distributed and decentralised environment as that envisioned for the SW,
ontologies were quickly adopted as its semantic backbone: The proposed layer diagram10

reflecting the SW architecture includes a layer for “ontological vocabulary”. But the pro-
liferation of ontologies and ontology representation languages has highlighted the need
of standardisation, similarly to that achieved at lower levels of the proposed architecture
diagram, which encapsulate already de facto standards of current Web technology, such
as URI’s and XML syntax. As already mentioned in section 2, in the past years RDF and

10 http://www.w3c.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

586 Y. Kalfoglou et al.

RDF Schema, with their model-theoretic semantics, have emerged as recommendations
for formalisms for defining the semantic content of the Web [29].

Within ontologies’ field, many proposals for standard ontologies have arisen in var-
ious domains, and the difficulty of consensus has not hindered the continuing work on
even the old dream of philosophy of building representations of common-sense knowl-
edge in so called “upper” or “top-level” ontologies such as Cyc11 and IEEE’s Standard
Upper Ontology.12 These efforts attempt to provide generic “objective” representations
of knowledge about our world on which ideally particular domain-specific knowledge
would define their primitive terminology.

Without questioning the value and necessity of standardisation efforts of this kind,
such centralised ontologies may basically make sense for small communities. But large
standard ontologies bring back the rigidity of centralised agencies organised under clas-
sical codification-based management philosophies [9]. The very distributed and decen-
tralised nature of the web makes the proliferation of ontologies and of formalisms to
represent these an unavoidable reality. This has put forward the need to support the
interoperability and integration of communities on the semantic level, for instance by
means of technology that supports the mapping and merging of ontologies [28].

Corrêa da Silva et al. have shown situations in which even a shared conceptualisation
as explicitly specified by means of an ontology is not enough for achieving flawless
knowledge sharing [8]: A knowledge base whose inference engine is based on linear
logic that poses a query to a knowledge base with the same ontology, but whose inference
engine is based on relevance logic should not accept answers as valid if the inference
carried out in order to answer the query was using the contraction inference rule, which is
not allowed in linear logic. Here, we have clearly an issue of trust on the other knowledge
base’s inference engine, which results from each knowledge base being based on different
logical systems.

In [15] Farrugia suggests that, before any meaning negotiation between two agents
can start, first the “logical setup” needs to be established, for which he points to
Meseguer’s notion of logical system [37]. This contrasts with the mainstream effort
within the SW community where semantic interoperability is sought within the context
of standardised representation languages based on Tarskian model-theoretic semantics.

Alternative approaches for a logic based on precise mathematical models of infor-
mation as a necessary requirement for designing and operating information-processing
systems have been advocated e.g., [11,3]. We have recently explored how mathematical
theories of information may provide a different angle from which to approach the dis-
tributive nature of semantics on the Semantic Web. As it seems, an information-theoretic
approach such as that of Barwise and Seligman’s channel theory [3] may be suitable to
accommodate various understandings of semantics like those occurring in the Web, and
also allows for the establishing of ontology mappings that accommodate the particular
way different communities use their terminology in their respective contexts, as defined
by the use and classification of particular instances with respect to local concepts [27].

11 http://www.cyc.com
12 http://suo.ieee.org

On the Emergent Semantic Web and Overlooked Issues 587

5 Pragmatics

In sections 3 and 4 we reviewed and analysed a number of challenges that SW faces
today. In this section we focus on their impact and put them in perspective when we
consider short to medium term deliverables. As the challenges we reviewed cover a
broad area of scientific research, it is not realistic to expect them to be fully resolved
before the SW will be available and commercially exploitable. It will take time to come
up with sound scientific and practical solutions to the problems of robust reasoning,
agency coordination, and semantic interoperability, to name a few. In the meantime, the
SW will continue to grow and attract attention based on short to medium term solutions.
This model of evolution follows the Web legacy, when the SW’s predecessor grew on
the basis of a network effect. Early Web adopters volunteered to link up their content
which resulted in the biggest distributed network ever build in modern computer science.
This fundamental assumption is passed onto SW adopters as linked content is still the
main deliverable. The difference which should be catered for, though, is that a broken
semantic link in a futuristic SW will take more than an explanatory Web-style “404”
error message to resolve. As mechanised reasoners will be the main crawlers of content,
and not humans as it is often the case with the Web, there have to be automated ways
of getting around broken semantic links. Safeguarding your inferences against such an
event will be crucial for the quality of service a SW provider will aim to deliver.

Another consideration with respect to the network effect principle of building the
SW, is that content management is no longer a carefully manifested process controlled
by few but rather an ad-hoc procedure engaged by many. The side-effect of this, is that
trust and interoperability will take centre stage as the means to ensure that only useful
content will be fed into our reasoners. We also see from evidence from analysing the
behaviour of users of the Internet as whole, that erosion of trust is something that we
should become to expect in the future, as Blumenthal and Clark point out: “Of all the
changes that are transforming the Internet, the loss of trust may be the most fundamental.
The simple model of the early Internet - a group of mutually trusting users attached to
a transparent network - is gone for ever. A motto for tomorrow may well be ‘global
communication with local trust’.” [7]. Providing the means for local trust would relax
the “tension between the demand for trustworthy overall operation and the inability
to trust the behaviour of individual users”[7]. As we reported in section 3, laying out
the technological foundations for operationalising this ‘local trust’ that Blumenthal and
Clark call for is a whole new challenge in its own right.

The communitity’s favourable route to provide reliable reasoning, is to build as robust
as possible reasoning machines for the SW. This is clearly reflected in the latest OWL
family of tools (e.g., OWL languages, OWL rules, OWL-S) but would probably not be
enough to tackle flawed content. As we reported in section 4 the current state-of-the-art
in KRR prevents us from providing guaranteed (i.e., complete) and trustworthy (i.e.,
sound) automated reasoning over incomplete and/or inconsistent content.

Furthermore, in [48] it is reported that the focus on the KR formalisms RDF and OWL
does not include current computer technology, such as the query and modelling languages
SQL and UML, into the SW in a satisfactory way. Such languages are widely used in
database and software engineering circles, and they are more expressive than OWL. Any
pragrmatic approach to the SW would also have to aim at a seamless integration of this
technology into the SW architecture.

588 Y. Kalfoglou et al.

Lastly, but not least, we have to consider cultural issues related to users’expectations
and modus operandi. As the SW is seen by many as the natural evolution of the Web,
users’ will become to expect the same, and probably, more advanced usability and func-
tionality. For example, inspired by the unprecedented success of the Web browser, some
have engaged in exploratory activities to build “semantic web browsers” (e.g., [14,43]).
However, these are far from being fully operational or at least comparable with current
Web browser technology. And we believe that this is a crucial point when it comes to
promoting the SW idea to Web users as they have accumulated a 10 year experiences
with the Web and only a truly superior product will win them over.

6 Conclusions

Despite using a pessimistic tone in pragmatics’ section we are optimistic of the SW idea.
We do, however, speculate on the process of building such an ambitious network and
argue for a change of course. It seems more practical, and arguably easier to build and
deliver in short time, to change the process of building a SW, to that of building a series
of Semantic Webs, all of which will be smaller in size than the envisaged SW, but at
least deliver – to the maximum degree possible – the vision outlined in Berners-Lee et
al.’s Scientific American article. It could be argued that early SW prototypes are such
small Semantic Webs. Once we master the art of managing these Semantic Webs and
they reach a critical mass with satisfied users, the next natural step will be to link them,
thus creating a Web of Semantic Webs, which eventually could evolve to the envisaged
SW. This course is contrary to the current trend of hastingly annotating with dubious
semantics masses of content in the hope that advanced, but yet-to-be-built, reasoners and
intelligent services will exploit this content and deliver the output to eager users, thus
creating the SW. Which approach is the best, time can only tell but it’s worth exploring
both.

Acknowledgments. This work is supported under the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC), which is sponsored
by the UK Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing
official policies or endorsements, either express or implied, of the EPSRC or any other
member of the AKT IRC. M. Schorlemmer is supported by a Ramón y Cajal Fellowship
from the Spanish Ministry of Science and Technology.

References

1. H. Alani, S. Dasmahapatra, N. Gibbins, H. Glasser, S. Harris, Y. Kalfoglou, K. O’Hara, and
N. Shadbolt. Managing reference: Ensuring Referential Integrity of Ontologies for the Seman-
tic Web. In Proc. of 13th Int. Conf. on Knowledge Engineering and Knowledge Management
(EKAW’02), pages 317–334, 2002.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Pater-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

On the Emergent Semantic Web and Overlooked Issues 589

3. J. Barwise and J. Seligman. Information Flow. Cambridge University Press, 1997.
4. T. Berners Lee. What the Semantic Web can represent. Web design Issues, 1998.
5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May

2001.
6. E. Bertino, A. Provetti, and F. Salvetti. Local Closed-World assumptions for reasoning about

Semantic Web data. In Proc. of APPIA-GULP-PRODE Joint Conference on Declarative
Programming, AGP’03, 2003.

7. M. Blumenthal and D. Clark. Rethinking the Design of the Internet: The end-to-end arguments
vs. the brave new world. ACM Transactions on Internet Technology (TOIT), 1(1):70–109,
2001.

8. F. Corrêa da Silva, W. Vasconcelos, D. Robertson, V. Brilhante, A. de Melo, M. Finger, and
J. Agustı́. On the insufficiency of ontologies: Problems in knowledge sharing and alternative
solutions. Knowledge Based Systems, 15(3):147–167, 2002.

9. F. da Silva and J. Agustı́. Knowledge Coordination. John Wiley and Sons Ltd., 2003.
10. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to

Distributed and Semi-Structured Information. In Proc. of DS-8, Semantic Issues in Multimedia
Systems, pages 351–369, 1999.

11. K. Devlin. Logic and Information. Cambridge University Press, 1991.
12. T. Dimitrakos and J. Bicarregui. Towards a Framework for Managing Trust in e-services. In

Proc. of 4th Int. Conf. on Electronic Commerce Research, pages 360–381, 2001.
13. L. Ding, L. Zhou, and T. Finin. Trust based Knowledge Outsourcing for Semantic Web agents.

In Proc. of 2nd International Conference on Web Intelligence (WI-2003), 2003.
14. M. Dzbor, J. Domingue, and E. Motta. Magpie—Towards a Semantic Web browser. In Proc.

of 2nd International Conference on the Semantic Web (ISWC’03), pages 690–705, 2003.
15. J. Farrugia. Logical Systems: Towards protocols for Web-based meaning negotiation. In

Proc. of AAAI 2002 Workshop on Meaning Negotiation, pages 56–59, 2002.
16. T. Finin and A. Joshi. Agents, Trust, and Information access on the Semantic Web. Technical

report, Dec. 2002. SIGMOD Record, Volume 31, Number 4.
17. R. A. Flores and R. C. Kremer. Bringing Coherence to Agent Conversations. In Proc. of

Agent-Oriented Software Engineering (AOSE 2001), LNCS 2222, pages 50–67, 2002.
18. Y. Gil and V. Ratnakar. Trusting Information sources: One citizen at a time. In Proc. of 1st

Int. Conf. on the Semantic Web (ISWC’02), pages 162–177, 2002.
19. P. Giorgini, F. Massaci, J. Mylopoulos, and N. Zannone. Requirements engineering meets

trust management: model, methodology, and reasoning. In Proc. of 2nd Int. Conf. on Trust
Management (iTrust’04), 2004.

20. J. Golbeck, B. Parsia, and J. Hendler. Trust networks on the Semantic Web. In Proc. of 7th
Int. Workshop on Cooperative Information Agents (CIA-2003), 2003.

21. K. Golden, O. Etzioni, and D. Weld. Omnipresence without omnipresence. In Proc. of 12th
Nat. Conf. on Artificial Intelligence(AAAI’94), 1994.

22. E. Gray, J. Seigneur, Y. Chen, and C. Jensen. Trust propagation in small world. In Proc. of
1st Int. Conf. on Trust Management (iTrust’03), 2003.

23. M. Burstein. Ontology Mapping for Dynamic Service Invocation on the Semantic Web. In
Proc.of AAAI Sprimg Symposium on Semantic Web Services, 2004.

24. S. Haustein and J. Pleumann. Is participation in the Semantic Web too difficult? In Proc. of
1st Int. Conf. on the Semantic Web (ISWC’02), pages 448–454, 2002.

25. J. Heflin. OWL Web Ontology Language use cases and requirements. Technical report, W3C,
2004. W3C Recommendation—10 Feb 2004.

26. J. Heflin and H. Munoz-Avila. LCW-based agent planning for the Semantic Web. In Proc. of
AAAI’02 Workshop on Ontologies and the Semantic Web (WS-02-11), 2002.

27. Y. Kalfoglou and M. Schorlemmer. IF-MAP: an ontology mapping method based on Infor-
mation Flow theory. Journal on Data Semantics, 1:98–127, LNCS 2800, 2003.

28. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge
Engineering Review, 18(1):1–31, 2003.

29. O. Lassila and R. Swick. Resource Description Framework(RDF) Model and Syntax Speci-
fication. W3C recommendation, W3C, Feb 1999.

590 Y. Kalfoglou et al.

30. Luqi and D. Cooke. How to combine nonmonotonic logic and rapid prototyping to help
maintain software. Int. J. of Software Engineering and Knowledge Engineering, 5(1):89–
118, 1995.

31. S. Marsh. Formalising trust as a computational concept. PhD thesis, University of Stirling,
1994.

32. B. Matthews and T. Dimitrakos. Deploying trust policies on the Semantic Web. In Proc. of
2nd Int. Conf. on Trust Management (iTrust’04), 2004.

33. M. Maximilien and P. Singh. An ontology for Web service ratings and reputations. In Proc.
of AAMAS 2003 Workshop on Ontologies in Agent Systems (OAS’03), 2003.

34. B. McBride. Four steps towards the widespread adoption of the Semantic Web. In Proc. of
the 1st Int. Conf. on the Semantic Web (ISWC’02), pages 419–423, 2002.

35. P. McBurney and S. Parsons. Games that agents play: A formal framework for dialogues
between autonomous agents. Journal of Logic, Language and Information, 11(3):315–334,
2002.

36. D. McGuinness and F. van Harmelen. OWL Web Ontology Language. Technical report,
W3C, 2004.

37. J. Meseguer. Formal Interoperability. In Proc. of 5th Int. Symp. on Artificial Intelligence and
Mathematics, 1998.

38. S. Milgram. The small world problem. Psychology Today, pages 60–67, 1967.
39. R. Milner. Communication and Concurrency. Prentice Hall International, 1989. ISBN:

0131150073.
40. L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model for trust and reputation.

In Proc. of 35th Hawaii Int. Conf. on System Sciences (HICSS-35), 2002.
41. H. S. Nwana. Software Agents: An Overview. The Knowledge Engineering Review, 11(3):1–

40, 1996.
42. P. Patel-Schneider and D. Fensel. Layering the Semantic Web: Problems and directions. In

Proc. of 1st Int. Conf. on the Semantic Web (ISWC’02), pages 16–30, 2002.
43. D. Quan and D. Karger. How to make a Semantic Web browser. In Proc. of 13th Int. World

Wide Web Conf. (WWW’04), 2004.
44. R. Reiter. On Closed World databases. In Proc. of 1978 ACM SIGMOD Int. Conf. on

Management of Data, 1978.
45. P. Resnick and R. Zeckhauser. Trust among strangers in Internet transactions: Empirical

analysis of eBay’s reputation system. Advances in Applied Mircroelectronics, 11, 2002.
46. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the Semantic Web. In

Proc. of 2nd Int. Conf. on the Semantic Web (ISWC’03), pages 351–368, 2003.
47. D. Robertson. A Lightweight Method for Coordination of Agent Oriented Web Services. In

Proc. of the AAAI Spring Symposium on Semantic Web Services, 2004.
48. J. Sowa. Architectures for Intelligent Systems. IBM Systems Journal, 41(3), pages 331-349,

2002.
49. J. A. Rodríguez, F. J. Martı́n, P. Noriega, P. Garcia, and C. Sierra. Towards a Formal Spec-

ification of Complex Social Structures in Multi-Agent Systems. In Proc. of Collaboration
between Human and Artificial Societies conference, pages 284–300, 2000.

50. F. van Harmelen. How the Semantic Web will change KR: challenges and opportunities for
a new research agenda. The Knowledge Engineering Review, 17(1):93–96, 2002.

51. R. Volz, D. Oberle, S. Staab, and B. Motik. KAON server: A Semantic Web management
system. In Proc. of the 12th Int. World Wide Web Conf. (WWW’03), 2003.

52. C. Walton. Model Checking Multi-Agent Web Services. In Proc. of the AAAI Spring Sympo-
sium on Semantic Web Services, 2004.

53. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press, 1995.

54. M. Wooldridge. Semantic issues in the verification of agent communication languages. Au-
tonomous Agents and Multi-Agent Systems, 3(1):9–31, 2000.

55. B. Yu and M. Singh. An evidential model of distributed reputation management. In Proc. of
the 1st Int. Joint Conf. On Autonomous Agents and Multi-Agent Systems (AAMAS’02), pages
294–301, 2002.

Metadata-Driven Personal Knowledge
Publishing

Ikki Ohmukai1, Hideaki Takeda2, Masahiro Hamasaki1, Kosuke Numa1, and
Shin Adachi3

1 Graduate University for Advanced Studies,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan,

i2k@grad.nii.ac.jp,
http://www-kasm.nii.ac.jp/˜i2k/
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
3 Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan

Abstract. We propose a personal knowledge publishing system called
Semblog is realized with integration of Semantic Web techniques and We-
blog tools. Semblog suite provides an integrated environment for gath-
ering, authoring, publishing, and making human relationship seamlessly
to enable people to exchange information and knowledge with easy and
casual fashion. We use a lightweight metadata format like RSS to ac-
tivate the information flow and its activities. We define three level of
interest of information gathering and publishing i.e., “check”, “clip” and
“post” and provide suitable ways to distribute information depending
on the interest level. Our system called Semblog platform consists of two
types of extended content aggregator and information retrieval / rec-
ommendation applications. We also design a new metadata module to
define personal ontology that realizes semantic relations among people
and Weblog sites.

1 Introduction

We propose a personal knowledge publishing system called Semblog is realized
with integration of Semantic Web techniques and Weblog tools. Semblog suite
provides an integrated environment for gathering, authoring, publishing, and
making human relationship seamlessly to enable people to exchange information
and knowledge with easy and casual fashion.

We are aiming to build systems that support not only human information
but also human communication activities. We show the scheme of human infor-
mation and communication activities in Fig.1. It is an extension of ”Activities
and Relationships Table” proposed by Shneiderman[1]. The first layer has three
elements that concern information handling, i.e., collect, create and donate in-
formation. Three activities form a cycle, i.e., they are invoked repeatedly. The
second layer has also three elements that concerns communication handling, i.e.,

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 591–604, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

592 I. Ohmukai et al.

Fig. 1. Information and Communication Activities

relate, collaborate and present people. They also form a cycle. The two layers
are not isolated rather closely related. Organization of information in the first
layer is performed by the communication process of multiple people in the sec-
ond layer. It implies that support for information activities requires support for
communication activities, and vice versa.

We set Weblog as a platform for systems to support human information and
communalization activities, because Weblog supports more these activities than
Web. Web only supports publishing of information, and other information ac-
tivities are left to other services like HTML editors and search engines. Weblog
directly supports authoring and publishing in an integrated way, and further-
more it commits communication activities. Weblog users tend to refer to each
other and form so-called ”Weblog communities”, and Weblog tools support such
communication like TrackBack and ping. But the support is partially, indirectly,
and not integrated.

Semblog suites extend Weblogs by adding flexible but uniform operations for
Weblog sites and entries like aggregation and clipping, and facilities for searching
and contacting to other Weblog sites. It means that Semblog suite supports
communication activities as well as information activities.

The organization of the paper is as follows; in the following section, we discuss
relationship between Weblog and Semantic Web. Then we identify architecture
of Semblog in Section 4. We describe details of Semblog suites, first platforms
of Semblog and then applications of Semblog in Section 5 and 6 respectively.
We furthermore introduce ontology in Semblog platform in Section 6. Finally we
conclude the paper in Section 7.

2 Semantic Web and Weblog

In this section, we overview the current situation of information distribution
on Web, Semantic Web and Weblog. Web lacks functionality of information
distribution and Semantic Web aims to fulfill the functionality by metadata. We
support Semantic Web approach but it has difficulty of metadata annotation.
So we focus on Weblog that also use metadata for information distribution.

Metadata-Driven Personal Knowledge Publishing 593

2.1 Information Processing with Semantic Web Techniques

We propose a content distribution support system for individuals with Semantic
Web techniques. Information distribution process does not mean just publishing
but an integrated process containing information gathering and authoring. In
the current web, however, there is no framework to support the whole process
of information distribution despite the fact that Berners-Lee specified the first
world wide web to support both authoring and publishing process equally[2].
Protrusion of information publishing just accelerates so-called information over-
load.

There is a great hope that the Semantic Web technologies will resolve in-
formation overload. According to the manifesto[3], Semantic Web is an environ-
ment, which consists of the contents with machine-readable (semantic) tags and
the software agents, to realize autonomous information distribution and syndi-
cation. Resource Description Framework (RDF)[4] and other ontology definition
languages[5] are recommended by W3C as elemental technologies of the Semantic
Web and these are now in practical use.

However it is difficult to produce contents with semantic tags because of
their complicated syntax and vocabulary. Ordinary people hardly find a merit of
semantic annotation although it is a time-consuming task. It is also impossible
to annotate the semantic tags to existing enormous information on the Internet.
There are some researches about automatic annotation with AI techniques and
natural language processing[6] however their effects are still unclear.

In our approach, we use lightweight metadata formats, i.e., RSS 1.0 (RDF Site
Summary[7]), to activate the information flow and its activities. RSS is one of the
metadata to describe a summary of a web site. It contains general attributes of
the site i.e. title and publisher’s name of the web site, and excerpt and updated
date of its contents. A number of web sites already publish RSS metadata, and
several applications and services called RSS aggregator are provided based on
this trend.

An aggregator collects these RSS from various web sites and reform them to
organize this large amount of contents to show at a glance. There are two types
of aggregator; one is a standalone application that is executed on client PCs.
The other is an aggregation service that runs on the internet server and the user
access via her/his web browser. The former applications provide rapid browsing
of RSS by their flexible user interface and the latter enables the user to access
their information wherever she/he is.

Use of RSS and the aggregator decreases information gathering, but it is just
a part of information distribution process as we mentioned. Gathering should
be related to information authoring and publishing otherwise it will be another
search engines without any selection or extraction.

2.2 Information Creation with Weblog

Weblog is one of the most advanced systems that use metadata in gathering,
creating and publishing.

594 I. Ohmukai et al.

Recently Weblog has come into the spotlight in the Web[8]. There is no strict
definition about Weblog but it is recognized as a web site that consists of miscel-
laneous notes updated daily[9]. In such sites the authors do not make efforts to
knit up these contents because Weblog tools align them in chronological order
with a well-designed HTML format. We call these frequently posted contents as
small contents in this paper. Small contents include various subjects including
journal, expertise and critique. One of most popular topics is the introductions
and comments of the web sites ranging from news sites to the other small con-
tents. Some Weblog sites attract the attention with their own editorial policy.
The authors of Weblog sites reedit the existing web contents by quoting them.
Moreover there are new types of Weblogs that criticize the other Weblogs so that
these Weblogs are regarded to organize the ”Weblog community”. Now there are
millions of weblog sites in the World. It is a surprising number because these peo-
ple are now active information creators and distributors as well as information
receivers thanks to weblog.

Most of Weblog sites use so-called Weblog tools that are a kind of content
management systems (CMS). Weblog tools enable the author to describe and
edit the small contents via a web browser and transform the contents form text
format to HTML files. These tools are implemented based on MVC (Model /
View / Controller) model which is the fundamental concept of web applications.
The author defines a view template once then do not have to decorate the con-
tents with various HTML tags. This model decreases the cost of publication
remarkably in comparison with traditional style that requires local text editor
and FTP. This feature contributes abundant production of the small contents.

Weblog tools usually generate RSS automatically. General attributes such as
publisher’s name are set as a profile by the user. Excerpt and updated date of
each content are generated by the tools. Most of distributed RSS are generated
by these Weblog tools. Main purpose of RSS aggregator is also to browse the
Weblog site. Currently the number of news site feeding RSS is expanding.

3 Semblog Architecture

We propose a personal publishing system using Semantic Web techniques and
Weblog tools. The system supports the whole process of information distribution
which includes gathering, authoring and publishing. Furthermore it connects in-
formation distribution process of different people seamlessly, i.e., it also supports
finding collaborating and advertising people for information distribution.

We divide system architecture into the following four levels, i.e., metadata
format, metadata management, metadata aggregator, and metadata applica-
tion. In Weblog, they correspond to RSS, Weblog tools, RSS aggregator, and
various applications on Weblog respectively. In Semblog, Metadata on person
and interpersonal relations is added in order to include activities on the com-
munication levels. We adopt FOAF (Friend-Of-A-Friend) as person metadata.
Content (RSS) and person metadata should be processed seamlessly in every
level.

Metadata-Driven Personal Knowledge Publishing 595

Fig. 2. Semblog Architecture

We build our systems by integrating new technologies and existing technolo-
gies shown in Fig.2. A box with solid line indicates our proposal and a box with
dashed line an existing one.

In the following two sections, we explain platforms and application of Sem-
blog. The former corresponds the first three levels and the latter the last level.

4 Semblog Platform

Fig.3 shows the system architecture of Semblog platform. Semblog system con-
sists of the two types of extended RSS aggregator, semblog applications and
conventional Weblog tools. Each module exchanges data in RSS format and com-
municates with XML-RPC protocol[10] for dynamic invocation. We use Movable
Type system as Weblog tool[11], which supports RSS and XML-RPC call. In this
section, we explain extended RSS aggregators that support authoring and pub-
lishing with different levels of interest.

4.1 Different Levels of Interest

We define the level of interest of information gathering and publishing i.e.,
”check”, ”clip” and ”post”. Our system provides different ways to distribute
information depend on the interest level.

”Check” means that the user routinely browses particular web sites and in-
formation sources. The user does not know ”what” is described at those sites
exactly but she/he knows ”what kind” of contents are included in these sites.
We assume that these ”what kind” knowledge are important for information
distribution so that our system supports the user to present her/his interest by
publishing the list of URIs she/he always accesses.

”Clip” makes shortcut to a content to which the user has strong interest
among various contents of ”Checked” sites. Our system automatically publishes
the list of ”clipped” contents. We suppose that ”clip” link presents stronger
interest of the user than ”check” link because it points individual content directly.
In addition, contents of ”checked” links are changing momentary but those of
”clipped” links are persistent (called ”Permalink”).

Online bookmark systems were developed for the same objective. These sys-
tems make a backup of ”bookmark” or ”favorite” of the user’s web browser and
she/he can obtain the list from anywhere. The user can also make the list to be
public or not so the list will be a web content. However that bookmark is only

596 I. Ohmukai et al.

Fig. 3. System Architecture

a static list of URIs and is lacking functions for change in time. Therefore these
online bookmark systems are not useful for everyone except the user.

Conventional bookmark systems do not distinguish the URIs between to
a site and content. It is necessary to switch the way to distribute these links
because they have different level of interest as described above.

”Post” means that the user quotes content, adds some comment, and pub-
lishes it as new information. In that case the user presents not only strong inter-
est but also her/his personal opinion. In our system, ”post” type of information
publication is made by the Weblog tools.

Providing different levels for publishing reduces the psychological burden of
publishing. In standard BBSs, it is said that lurkers show feeling of belonging
to communities in sprite of their reluctant behavior[12]. This is important to
involve ordinary people into the cycle of information gathering and publishing.

The all process is realized by metadata handling therefore it is open to other
systems and applications. It enables seamless connection of information distri-
bution of different people.

4.2 RNA: RSS Aggregation Service

RNA is an extended RSS aggregator described with Perl CGI. Fig.4(left) shows
a snapshot of RNA. The user puts this script to her/his own web server and
operates it. Basic function and interface of RNA are shown below.

– RSS registration and loading
The user should register RSS in a configuration interface. Once she/he enters
the URIs of RSS, RNA obtains these RSS files via HTTP. The user is able to

Metadata-Driven Personal Knowledge Publishing 597

Fig. 4. Snapshot of RNA (left) and Glucose (right)

classify each RSS using categories. The list of registered sites is transformed
into RSS and it can be used by the other applications. RNA can also import
or export an OPML file which is standard format for the bookmarks.

– Building RSS tree
RNA parses multiple RSSs from various sites and builds a ”global” RSS tree
from each RSS tree. The global tree stores all information obtained by RNA.
Next RNA recomposes the global tree into several sub trees according to rule
templates. In default setting, RNA reproduces three types of sub trees i.e.,
list of contents sorted by chronological order and updated contents in each
site. The user can describe own template script to generate a new sub tree.

– RSS redistribution
Generated sub trees are distributed as new RSS and are visualized by server
/ client side XSLT engine using XSL stylesheet. RNA can also transform
these RSS into HTML with its own template system. With these templates,
the user is easily able to customize an output style rather than XSLT since
the syntax of template is similar to HTML.

– Content clipping
The user can register content to a clip list in one click. Clipped contents are
stored in ”clipped” RSS tree and it is published like the other RSS. Each
element of RSS tree is changing momentary but those of ”clipped” tree are
persistent.

– Updating
It is necessary to get RSS and build trees occasionally since its contents are
changeable with update of its distributor. RNA can update periodically by
a Cron interface of the server. Update interface can be called both manually
and remotely by XML-RPC message the Weblog tools automatically gen-
erated. The latter feature enables the author of a Weblog to notify her/his
new content to RNA.

– TrackBack tracing
RNA also queries to registered Weblog tools whether its content has Track-
Back links (reverse link provided by Weblog tools) or not. If exist, RNA
extracts these links and adds them to RSS tree.

– Sanitizing and caching RSS
RNA checks syntax of acquired RSS and corrects them if they are not valid.
Currently three versions of RSS are proposed i.e., 0.91, 1.0 and 2.0. RNA
converts all versions into 1.0, which is based on RDF model. Every RSS is
cached and decomposed to attach to each content as a fine-grained metadata.

598 I. Ohmukai et al.

”Antenna” services are already provided to check update of registered sites.
Conventional antenna obtains HTTP LastModified header of each URI and sorts
the site list by chronological order. Using RNA the user can get richer informa-
tion than the antenna since RSS contains not only updated time but its excerpt
and so on. RNA also enables the user to edit information in the contents level
such as clip and TrackBack tracing.

4.3 Glucose: Standalone RSS Aggregator

Glucose is also an extended RSS aggregator but a standalone program for Win-
dows. Fig.4(right) shows a snapshot of Glucose. Unlike orthodox aggregators,
Glucose is developed to support information distribution process by coordina-
tion with RNA. Main functions and interfaces of Glucose are shown below.

– RSS registration
Like in RNA, the user registers URIs of RSS or OPML site list. Glucose
can access several news sites without RSS by ”sensor” script which extracts
articles and converts them to RSS.

– Three-pane interface
Glucose has three panes interface. The left pane shows ”RSS Channels”
which is subscribed by the user. The upper right pane indicates the headline
list of contents including title, updated time, source and category. The lower
right pane shows original contents.

– TrackBack tracing
Glucose can extract TrackBack links from each content. Obtained links are
shown below the corresponding entry in headline pane with ”Re:” just like
a mailer.

– Posting to Weblog
With a Weblog editor interface in Glucose, the user can post an entry to
her/his Weblog if she/he has strong interest for content. This interface uses
XML-RPC protocol.

– RNA clipping
The user can post content to the clip list of own RNA using XML-RPC.

– P2P content recommendation
Glucose runs as a P2P servant and the users automatically construct P2P
network. In this network, several contents read by someone are distributed
randomly and the other user may receive these contents as a recommenda-
tion. The user can clip or post it to her/his own system and can also register
URI of its RSS to the site list.

We distribute RNA and Glucose in our web site
(http://www.semblog.org/wiki/?en). About 2000 users downloaded RNA
and over 20000 users downloaded Glucose from September 2003.

5 Application on Semblog Platform

Using functions on Semblog platform, we develop a new type of recommendation
and retrieval systems.

Metadata-Driven Personal Knowledge Publishing 599

5.1 RNA Alliance

Each RNA has XML-RPC interface that can send and receive its data dynam-
ically. RNA alliance is a content recommendation system based on cooperation
of multiple RNA.

We use FOAF metadata to identify each RNA. FOAF is RDF-based meta-
data format for describing human relationship. Besides the basic elements such
as name, email and URI of the user, FOAF provides a statement that user X
knows user Y.

The current version of RNA can generate FOAF data. RNA also has an
interface for FOAF management to extend social network easily. We call this
method as ”FOAF TrackBack”.

First the user X enters an RNA URI of the user Y in her/his own FOAF
manager. The manager X asks the manager Y to acquire the FOAF data of Y,
and writes ”X knows Y” link in its FOAF. The manager Y records ”Y isKnown
X” link in its FOAF and notifies to the user Y. If the user Y agrees, her/his
manager registers ”Y knows X” link. Repeating this process, a personal network
of the user is constructed. Following recommendation methods are performed in
the network.

Collaborative Recommendation. Collaborative recommendation is based on
difference of registered sites or clips among multiple RNAs. At first it calculates
similarities: Si between the user’s RNA: R0 and a RNA on the personal network:
Ri (1 < i < n). Each RNA has a list of URIs: Ri = {u0, . . . , uk}.

Si =
|R0 ∩Ri|
|R0|+ |Ri|

The system gives recommendation score: V (u) to each URI by the following
formula:

Vi(u) =

{
Si if u ∈ Ri

0 if u �∈ Ri (i = 1, . . . , n)

V (u) =
∑n

i=i Vi(u)
n

This score is used for recommendation to R0’s user if URI u is not included
in R0.

The system shows the list of recommended URIs sorted by the score. The
user can add these URI to her/his own ”check” list.

Categorical Similarity and Recommendation. The user of RNA can cat-
egorize the sites and clips she/he registered. Using this category, relationship of
interest among users can be identified and recommended. We apply a recom-
mendation method based on a categorical similarity to this objective[13].

600 I. Ohmukai et al.

Fig. 5. Document-based (left) and Person-based (right) Network

Relational Filtering. Relational filtering method realizes access control of
information using the categorized social network. By merging the personal net-
work of every user, a large human network like a small world is constructed. This
method extracts multiple communities from this network and enables informa-
tion sharing in single community[14]. The user can manage her/his contents
which have various level of disclosure through an unified interface.

5.2 Egocentric Search

Egocentric search provides subjective search which collects and evaluates infor-
mation for each user[15]. We think that it is suitable for handling of the small
contents like Weblog entries because connection is usually more subjective than
other Web pages.

The users daily write and post contents to their Weblog sites with the editor
interface. Egocentric search interface scans a content that the user is posting.
If this content contains a hyperlink, the editor acquires the whole content and
RSS of the link, and constructs an entry network around the user’s content
(Fig.5(left)). This network indicates not only relations of contents but also hu-
man relationships because all entries on Weblog are owned by some authors. Our
method organizes a document network into person-based network (Fig.5(right)).
Each path of the personal network is weighted relatively to the frequency of ci-
tation. Once the user cites some site as a topic in the new content (entry), the
editor interface performs egocentric search and shows the result.

– Relative Chain Search
Relative chain search returns the contents which is directly linked with the
entry cited by the authoring content. This model is based on a simple model
but consequently it seems most trustful. (Fig.6(a))

– Co-citation Search
Co-citation search discovers the entries that link the same contents as the
authoring entry links to. Co-citation entries are retrieved from the RSS cache
and the search result contains the weight of authors. (Fig.6(b))

– Keyword Search
Keyword search method picks up the entries by keyword matching from the
RSS cache. Unlike the conventional search engines, our method targets only
related sites around the user’s Weblog. (Fig.6(c))

Metadata-Driven Personal Knowledge Publishing 601

Fig. 6. Egocentric Search Methods

The user can read search results by these methods with the right-hand side
window while authoring, and can append the link of some helpful contents to the
currently authoring content. This process expects to enrich the user’s content
and change the search result of the system in turn.

6 Personal Ontology

We propose a bottom-up personal ontology framework using RSS and FOAF
metadata. To process small contents in various forms, we have to annotate a
semantic markup with an ontology language to those contents. It is difficult to
organize practical ontology hierarchy with top-down approach because building
and maintaining such well-organized large ontology takes a lot of efforts. We
aim to develop loose and bottom-up ontology system by combining personal
classification, because we consider that personal knowledge will be represented
with a routine work such as categorization and arrangement of information. Fig.9
indicates a conceptual architecture of the personal ontology system.

At first we define a personal ontology as a hierarchical system of categories.
Everyone has those categories, and they routinely classify described and collected
contents to the category. A label of a category can be named arbitrarily by user.

Unlike the conventional ontology, the personal ontology has to be related to
the person who produces it. Therefore we apply FOAF metadata to link between
the ontology and the person.

Personal ontology metadata consists of FOAF, RDFS Ontology and Contents
RSS. The FOAF describes personal information, and the RDFS ontology shows
a structure of the categories, and the contents RSS shows written and collected
contents by the user.

602 I. Ohmukai et al.

Fig. 7. Personal Ontology Framework

(a) Extended FOAF

(c) Contents RSS

(b) RDFS Ontology

Fig. 8. Personal Ontology Metadata

We add two elements to basic FOAF model shown in Fig.8 (a). One
is <foaf:interest> which is to point the contents RSS, and the other is
<rs:personalontology> that is originally defined by our Rough Semantics
project (http://www.roughsemantics.org/) to indicate the RDFS ontology.

The RDFS ontology is described with the form of Open Directory RDFS
format shown in Fig.8 (b). Each node has a fragment ID.

The contents RSS is similar to a conventional RSS. Our RSS uses
<foaf:topic> to point a category on the RDFS ontology, while the conven-

Metadata-Driven Personal Knowledge Publishing 603

Fig. 9. Bottom-up Ontology

tional model applies <dc:subject> to express a thesis of a content. This makes
our RSS to have backward compatibility. Example of this RSS is shown in Fig.8
(c). It should be noted that topics pointed by this tag are not restricted to those
in their own ontology, rather any topics in others’ and some global ontology.
Separating ontology and instances enables such flexible management.

FOAF, RDFS ontology, and RSS are described in separate files so that we
can keep compatibility with existing applications on these formats. This is a
great benefit that our system can cope with such existing applications via these
files.

Our framework enables applications and services to produce new types of
search or recommendation. For example, mapping methods between two direc-
tories or bookmarks are applicable to the personal ontology. Egocentric search
is also able to realize easily by building a social network with <foaf:knows> in
the users’ FOAF.

Unlike these peer-to-peer model, we can calculate a similarity among a per-
sonal ontology and the global ontologies such like WordNet and ODP in advance.
Multiple personal ontology can be matched each other via the global ontology
and this method needs less computation cost as shown in Fig.9. In addition, it is
not necessary to modify that algorithm in P2P model and personal-global model
because both ontology has the same structure.

7 Conclusion

In this paper we propose a personal publishing system with Semantic Web tech-
niques and Weblog tools. We use a lightweight metadata format like RSS to
activate the information flow and its activities. We define three level of inter-
est of information gathering and publishing i.e., ”check”, ”clip” and ”post” and
provide suitable ways to distribute information depending on the interest level.

604 I. Ohmukai et al.

Our system called Semblog platform consists of two types of extended content
aggregator and information retrieval / recommendation applications.

Through these techniques and systems, we have shown that metadata can
be used to realize more efferent and more personalized information distribution.
Metadata design should be careful because it should be acceptable by many peo-
ple and systems. Our approach, i.e., extending and integrating RSS and FOAF,
is successful in this aspect since existing tools like Weblog tools are ready to use
them. We hope that our approach will be a bridge between emerging Semantic
Web technologies and other growing technologies on the Internet.

References

1. Shneiderman, B.: Leonardo’s Laptop: Human Needs and the New Computing
Technologies. MIT Press (2002)

2. Berners-Lee, T.: Weaving the Web. HarperCollins (1999)
3. Berners-Lee, T.: A roadmap to the Semantic Web.

http://www.w3.org/DesignIssues/Semantic.html (1998)
4. World Wide Web Consortium (W3C): Resource Description Framework (RDF)

Model and Syntax Specification. http://www.w3.org/TR/REC-rdf-syntax (1999)
5. World Wide Web Consortium (W3C): OWL Web Ontology Language Overview.

http://www.w3.org/TR/owl-features/ (2003)
6. Dill, S., Eiron, N., Gibson, D., et al.: SemTag and Seeker: Bootstrapping the

Semantic Web via Automated Semantic Annotation. Proceedings of the Twelfth
International World Wide Web Conference (WWW2003) (2003)

7. RDF Site Summary 1.0 Specification Working Group: RDF Site Summary (RSS)
1.0. http://web.resource.org/rss/1.0/spec (2001)

8. Blood, R.: We’ve Got Blog: How Weblogs are Changing Our Culture. Perseus
Publishing (2002)

9. Aimeur, E., Brassard, G., Paquet, S.: Using Personal Knowledge Publishing to
Facilitate Sharing Across Communities. Workshop on (Virtual) Community In-
formatics, Held in conjunction with the Twelfth International World Wide Web
Conference (WWW2003) (2003)

10. UserLand Software: XML-RPC Specification.
http://www.xmlrpc.com/spec (1999)

11. Six Apart: Movable Type. http://www.movabletype.org/ (2003)
12. B.Nonnecke, J.Preece: Shedding light on Lurkers in Online Communities. Ethno-

graphic Studies in Real and Virtual Environments: Inhabited Information Spaces
and Connected Communities (1999) 123–128

13. M.Hamasaki, H.Takeda: Find better friends? – re-configuration of personal net-
works by the neighborhood matchmaker method –. In: The International Workshop
on Semantic Web Foundations and Application Technologies (SWFAT). (2003) 73–
76

14. I.Ohmukai, H.Takeda: Social Scheduler: A Proposal of Collaborative Personal Task
Management. Proceedings of Web Intelligence (WI2003) (2003)

15. I.Ohmukai, K.Numa, H.Takeda: Egocentric Search Method for Authoring Support
in Semantic Weblog. Workshop on Knowledge Markup and Semantic Annotation
(Semannot2003), the Second International Conference on Knowledge Capture (K-
CAP2003) (2003)

An Extensible Directory Enabling Efficient Semantic
Web Service Integration

Ion Constantinescu, Walter Binder, and Boi Faltings

Artificial Intelligence Laboratory
Swiss Federal Institute of Technology,

IN (Ecublens), CH–1015 Lausanne, Switzerland.
{ion.constantinescu,walter.binder,boi.faltings}@epfl.ch

Abstract. In an open environment populated by large numbers of heterogeneous
information services, integration is a major challenge. In such a setting, the
efficient coupling between directory-based service discovery and service
composition engines is crucial. In this paper we present a directory service that
offers specific functionality in order to enable efficient service integration. The
directory implementation relies on a compact numerical encoding of service
parameters and on a multidimensional index structure. It supports isolated service
integration sessions providing a consistent view of the directory data. During a
session a client may issue multiple queries to the directory and retrieve the results
incrementally. In order to optimize the interaction of the directory with different
service composition algorithms, the directory supports custom ranking functions
that are dynamically installed with the aid of mobile code. The ranking functions
are written in Java, but the directory service imposes severe restrictions on the
programming model in order to protect itself against malicious or erroneous code
(e.g., denial-of-service attacks). With the aid of user-defined ranking functions,
application-specific ordering heuristics can be deployed directly. Experiments on
randomly generated problems show that they significantly reduce the number of
query results that have to be transmitted to the client by up to 5 times.1

Keywords: Incremental service integration, service directories, service discovery,
service ranking.

1 Introduction

Service composition is an exciting area which has received a significant amount of
interest in the last period. Initial approaches to web service composition [28] used a
simple forward chaining technique which can result in the discovery of large numbers
of services. There is a good body of work which tries to address the service composi-
tion problem by applying planning techniques based either on theorem proving (e.g.,
Golog [21,22], SWORD [24]) or on hierarchical task planning (e.g., SHOP-2 [32]).

1 Work presented in this paper was partly carried out in the framework of the EPFL Center for
Global Computing and supported by the Swiss National Science Foundation as part of the
project MAGIC (FNRS-68155), as well as by the Swiss National Funding Agency OFES as
part of the European projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 605–619, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

606 I. Constantinescu, W. Binder, and B. Faltings

The advantage of this kind of approach is that complex constructs like loops (Golog)
or processes (SHOP-2) can be handled. All these approaches assume that the relevant
service descriptions are initially loaded into the reasoning engine and that no discovery
is performed during composition.

Still the current and future state of affairs regarding web services will be quite
different since due to the large number of services and to the loose coupling between
service providers and consumers we expect that services will be indexed in directories.
Consequently, planning algorithms will have to be adapted to a situation where operators
are not known a priori, but have to be retrieved through queries to these directories.
Recently, Lassila and Dixit [19] have addressed the problem of interleaving discovery
and integration in more detail, but they have considered only simple workflows where
services have one input and one output.

Our approach to automated service composition is based on matching input and
output parameters of services using type information in order to constrain the ways how
services may be composed [12]. Our composition algorithm allows for partially matching
types and handles them by computing and introducing switches in the integration plan.
Experimental results carried out in various domains show that using partial matches
decreases the failure rate by up to 7 times compared with an integration algorithm that
supports only complete matches [12].

We have developed a directory service with specific features to ease and make more
efficient service composition but without fully solving it. Queries may not only search for
complete matches, but may also retrieve partially matching directory entries [10]. As the
number of (partially) matching entries may be large, the directory supports incremental
retrieval of the results of a query. This is achieved through sessions, during which a
client issues queries and retrieves the results in chunks of limited size. Sessions are
well isolated from each other, also concurrent modifications of the directory (i.e., new
service registrations, updates, and removal of services from the directory) do not affect
the sequence of results after a query has been issued. We have implemented a simple but
very efficient concurrency control scheme which may delay the visibility of directory
updates but does not require any synchronization activities within sessions. Hence, our
concurrency control mechanism has no negative impacts on the scalability with respect
to the number of concurrent sessions [9].

As in a large-scale directory the number of (partially) matching results for a query
may be very high, it is crucial to order the result set within the directory according to
heuristics and transfer first the better matches to the client. If the ranking heuristics work
well, only a small part of the possibly large result set has to be transferred, thus saving
network bandwidth and boosting the performance of a directory client that executes
a service composition algorithm (the results are returned incrementally, once a result
fulfills the client’s requirements, no further results need to be transmitted). However,
the ranking heuristics depend on the concrete composition algorithm. For each service
composition algorithm (e.g., forward chaining, backward chaining, etc.), a different
ranking heuristic may be better adapted. Because research on service composition is
still in the beginning and the directory cannot anticipate the needs of all possible service
integration algorithms, our directory supports user-defined ranking functions.

An Extensible Directory Enabling Efficient Semantic Web Service Integration 607

Custom ranking-functions allow the execution of user-defined application-specific
heuristics directly within the directory, close to the data, in order to transfer the best
results for a query first. They dramatically increase the flexibility of our directory, as
the client is able to tailor the processing of directory queries according to its needs. The
ranking functions are written in Java and dynamically installed during service compo-
sition sessions by means of mobile code. Because the support of mobile code increases
the vulnerability of systems and custom ranking functions may be abused for various
kinds of attacks, such as denial-of-service attacks consuming a vast amount of memory
and processing resources within the directory, our directory imposes severe restrictions
on the code of these functions.

As the main contributions of this paper, we show how our directory supports service
integration sessions and user-defined ranking functions. We present some parts of the
session API and explain the restricted programming model for ranking functions. More-
over, we explain how our directory protects itself against malicious code. Performance
evaluations point up the necessity to support heuristic ranking functions that are tailored
to specific service composition algorithms.

This paper is structured as follows: In Section 2 we explain how service descriptions
can be numerically encoded as sets of intervals and we give an overview of the index
structure for multidimensional data on which our directory implementation is based.
In Section 3 we discuss extensions of the directory specific to service composition that
enable consistent views of the directory data during the service integration process.
In Section 4 we show how the directory can be dynamically extended by user-defined
ranking functions. We discuss some implementation details, in particular showing how
the directory protects itself against malicious code. In Section 5 we present some ex-
perimental results that illustrate the need for dynamically installing application-specific
heuristic ranking functions. Finally, Section 6 concludes this paper.

2 Service Composition with Directories

Since we assume a large-scale open environment with a high number of available ser-
vices, the integration process has to be able to discover relevant services incrementally
through queries to the service directory. Interleaving the integration process with service
discovery in a large-scale directory is a novelty of our approach.

Our composition algorithm builds on forward chaining, a technique well known
for planning [6] and more recently for service integration [28]. Most previous work on
service composition has required an explicit specification of the control flow between
basic services in order to provide value-added services.

For instance, in the eFlow system [8], a composite service is modeled as a graph
that defines the order of execution of different processes. The Self-Serv framework [2]
uses a subset of statecharts to describe the control flow within a composite service.
The Business Process Execution Language for Web Services (BPEL4WS) [7] addresses
compositions where the control flow of the process and the bindings between services
are known in advance. In service composition using Golog [22], logical inferencing
techniques are applied to pre-defined plan templates.

608 I. Constantinescu, W. Binder, and B. Faltings

More recently, planning techniques have been applied to the service integration
problem [25,33,34]. Such an approach does not require a pre-defined process model of
the composite service, but returns a possible control flow as a result. Other approaches
to planning, such as planning as model checking [15], are being considered for web
service composition and would allow more complex constructions such as loops.

Informally, the idea of composition with forward chaining is to iteratively apply a
possible service S to a set of input parameters provided by a query Q (i.e., all inputs
required by S have to be available). If applying S does not solve the problem (i.e., still
not all the outputs required by the query Q are available) then a new query Q′ can be
computed from Q and S and the whole process is iterated. This part of our framework
corresponds to the planning techniques currently used for service composition [28].
Details on our service composition algorithm, which also supports partial matches, can
be found in [12].

2.1 Directories of Web Services

Currently, UDDI is the state of the art for directories of web services (see [9] for an
overview of other service directory systems). The standard is clear in terms of data
models and query API, but suffers from the fact that it considers service descriptions to
be completely opaque.

A more complex method for discovering relevant services from a directory of ad-
vertisements is matchmaking. In this case the directory query (requested capabilities) is
formulated in the form of a service description template that presents all the features of
interest. This template is then compared with all the entries in the directory and the results
that have features compatible with the features of interest are returned. A good amount
of work exists in the area of matchmaking including LARKS [27], and the newer efforts
geared towards OWL-S [23]. Other approaches include the Ariadne mediator [17].

Regarding service descriptions, in this paper we partially build on existing develop-
ments, such as [31], [1], and [13], by considering a simple table-based formalism where
each service is described through a set of tuples mapping service parameters (unique
names of inputs or outputs) to parameter types (the spaces of possible values for a given
parameter). For efficiency reasons, we represent the DG numerically. Details concerning
the encoding can be found in [10].

2.2 Match Types

We consider four match relations between a query Q and a service S (see example for
input parameters in Fig. 1):

– Exact - S is an exact match of Q.
– PlugIn - S is a plug-in match for Q, if S could be always used instead of Q.
– Subsumes - Q contains S. In this case S could be used under the condition that Q

satisfies some additional runtime constraints such that it is specific enough for S.
– Overlap - Q and S have a given intersection. In this case, runtime constraints both

over Q and S have to be taken into account.

An Extensible Directory Enabling Efficient Semantic Web Service Integration 609

Fig. 1. Match types of inputs of query Q and service S by “precision”: Exact, PlugIn, Subsumes,
Overlap.

In the example we show how the match relation is determined between the inputs
available from the queries Q1, Q2, Q3, Q4 and the inputs required by service S.

Given that a Subsumes match requires the specification of supplementary constraints
we can order the types of match by “precision” as following: Exact, PlugIn, Subsumes,
Overlap. We consider Subsumes and Overlap as “partial” matches. The first three
relations have been previously identified by Paolucci in [23] and the forth, Overlap, was
identified by Li [20] and Constantinescu [10].

Determining one match relation between a query description and a service description
requires that subsequent relations are determined between all the inputs of the query Q
and service S and between the outputs of the service S and query Q (note the reversed
order of query and services in the match for outputs). Our approach is more complex
than the one of Paolluci in that we take also into account the relations between the
properties that introduce different inputs or outputs (equivalent to parameter names).
This is important for disambiguating services with equivalent signatures (e.g., we can
disambiguate two services that have two string outputs by knowing the names of the
respective parameters).

2.3 Multidimensional Access Methods – GiST

The need for efficient discovery and matchmaking leads to a need for search structures
and indexes for directories. We consider numerically encoded service descriptions as
multidimensional data and use techniques related to the indexing of such kind of in-
formation in the directory. This approach leads to local response times in the order of
milliseconds for directories containing tens of thousands (104) of service descriptions.

The indexing technique that we use is based on the Generalized Search Tree (GiST),
proposed as a unifying framework by Hellerstein [16]. The design principle of GiST
arises from the observation that search trees used in databases are balanced trees with a
high fanout in which the internal nodes are used as a directory and the leaf nodes point
to the actual data. Each internal node holds a key in the form of a predicate P and a
number of pointers to other nodes (depending on system and hardware constraints, e.g.,
filesystem page size). To search for records that satisfy a query predicate Q, the paths
of the tree that have keys P satisfying Q are followed.

610 I. Constantinescu, W. Binder, and B. Faltings

3 Service Integration Sessions and Concurrency Control

As directory queries may retrieve large numbers of matching entries (especially when
partial matches are taken into consideration), it is important to support incremental access
to the results of a query in order to avoid wasting network bandwidth. Our directory
service offers sessions which allow a user to issue queries to the directory and to retrieve
the results one by one (or in chunks of limited size).

3.1 Session API

Fig. 2 presents the UML diagram of our directory service API. Sessions have a lim-
ited time-span after which session methods cannot be invoked anymore (timeout). The
directory has per-session resource usage limits regarding the number of created rank-
ing functions and the size of the result set of a query. The directory also checks for
non-conforming ranking functions (see Section 4) and invalid service IDs.

The Directory interface is used to create a service integration session. Within a
session several queries may be issued. The Query interface allows the sequential retrieval
of query results, i.e., the directory entries that match the requirements of the query (see
above Section 2.2 or [23]).

There is no particular order in which the results are returned (the order depends on
the internal organization of the directory tree), unless a user-defined ranking function
has been provided by the client (see Section 4). A session may define multiple ranking
functions and associate a different ranking function with each query. Identifiers for
declared ranking functions remain valid throughout a session, unless they are destroyed
explicitly. Explicit destruction of ranking function IDs may be needed if the directory
enforces a strict limit on the number of ranking functions active within a session. The
ranking function is provided as bytecode of a compiled Java class.

The getNextResult() and getNextResults()methods do not return full service
descriptions, but IDs that can be used later to retrieve the associated service description
using the getService() method. The IDs remain valid and unique during the whole
session. This approach allows the service integration client to cache retrieved service
descriptions (the same service description may be returned in several queries) and thus
helps to reduce the network traffic with the directory. The complete service description
may be much larger than its ID of 64 bits.

Within a session several queries may be started in parallel. For each query the di-
rectory has to maintain some internal state. If there are too many concurrent queries
in a session or a query requires too much processing or memory allocation within the

Fig. 2. The session API.

An Extensible Directory Enabling Efficient Semantic Web Service Integration 611

directory, an appropriate exception is thrown. When a session is closed, all its queries are
closed automatically, too, and returned IDs of service descriptions may become invalid.

3.2 Session Implementation

The session guarantees a consistent view of the directory, i.e., the directory structure and
contents as seen by a session does not change. Concurrent updates (service registration,
update, and removal) do not affect the sequence of query results returned within a session;
sessions are isolated from concurrent modifications.

Previous research work has addressed concurrency control in generalized search
trees [18]. However, these concurrency control mechanisms only synchronize individual
operations in the tree, whereas our directory supports long-lasting sessions during which
certain parts of the tree structure must not be altered. This implies that insertion and
deletion operations may not be performed concurrently with query sessions, as these
operations may significantly change the structure of the tree (splitting or joining of
nodes, balancing the tree, etc.).

The following assumptions underly the design of our concurrency control mecha-
nism:

1. Read accesses (i.e., queries within sessions and the incremental retrieval of the
results) will be much more frequent than updates.

2. High concurrency for read accesses (high number of concurrent query sessions).
3. Read accesses shall not be delayed.
4. Updates may become visible with a significant delay, but feedback concerning the

update (success/failure) shall be returned immediately.
5. The duration of a session may be limited (timeout).

A simple solution would be to create a private copy of the result set of each query.
However, as we want to support a high number of concurrent sessions, such an approach
is inefficient, because it wastes memory and processing resources to copy the relevant
data. Hence, such a solution may not scale well and is not in accord with our first two
assumptions. Another solution would be to support transactions. However, this seems to
be too heavy weight. The directory shall be optimized for the common case, i.e., for read
accesses (first assumption). This distinguishes directory services from general-purpose
databases. Concurrency protocols based on locking techniques are not in accord with
these assumptions either. Because of assumption 3, sessions shall not have to wait for
concurrent updates.

In order to meet the assumptions above, we have designed a mechanism which
guarantees that sessions operate on read-only data structures that are not subject to
changes. In our approach the in-memory structure of the directory tree (i.e., the directory
index) is replicated up to 3 times, while the actual service descriptions are shared between
the replicated trees.

When the directory service is started, the persistent representation of the directory
tree is loaded into memory. This master copy of the directory tree is always kept up to
date, i.e., updates are immediately applied to that master copy and are made persistent,
too. Upon start of the directory service, a read-only copy of the in-memory master copy

612 I. Constantinescu, W. Binder, and B. Faltings

is allocated. Sessions operate only on this read-only copy. Hence, session management
is trivial, there are no synchronization needs. Periodically, the master copy is duplicated
to create a new read-only copy. Afterwards, new sessions are redirected to the new
read-only copy. The old read-only copy is freed when the last session operating on it
completes (either by an explicit session termination by the client or by a timeout).

We require the session timeout to be smaller than the update frequency of the read-
only copy (the duplication frequency of the master copy). This condition ensures that
there will be at most 3 copies of the in-memory representation of the directory at the
same time: The master where updates are immediately applied (but which is not yet
visible to sessions), as well as the previous 2 read-only copies used for sessions. When
a new read-only copy is created, the old copy will remain active until the last session
operating on it terminates; this time span is bounded by the session timeout.

In our approach only updates to the master copy are synchronized. Updates are
immediately applied to the master copy (yielding immediate feedback to the client
requesting an update). Only during copying the directory is blocked for further updates.
In accord with the third assumption, the creation of sessions requires no synchronization.

4 Custom Ranking Functions

Sessions allow a service integration engine to incrementally retrieve service descriptions
from the directory that (partially) match some of the requirements of the query. The or-
der in which matching service descriptions are returned depends on the actual structure
of the directory search tree. However, depending on the service integration algorithm,
ordering the results of a query according to certain heuristics may significantly improve
the performance of service composition. In order to avoid the transfer of a large num-
ber of service descriptions, the ranking and sorting according to application-dependent
heuristics should occur directly within the directory. As for each service integration al-
gorithm a different order may be advantageous, our directory allows its clients to define
custom ranking functions which are used to sort the results of a query. This approach
can be seen as a form of remote evaluation [14].

4.1 API for Ranking Functions

The ranking function receives as arguments information concerning the matching of
a service description in the directory with the current query. It returns a value which
represents the quality of the match. The bigger the return value, the better the service
description matches the requirements of the query. The sequence of results as returned
by the directory is sorted in descending order of the values calculated by the ranking
function (a higher value means a better match). Results for which the ranking function
evaluates to zero come at the end, a negative value for the ranking function indicates
that the match is too poor to be returned, i.e., the result is discarded and not passed to
the client.

As arguments the client-defined ranking function takes four ParamSet objects cor-
responding to the input and output parameter sets of the query, and respectively of the

An Extensible Directory Enabling Efficient Semantic Web Service Integration 613

service. The ParamSet object provides methods like size, membership, union, inter-
section, and difference (see below Fig. 3). The size and membership methods have as
single argument the current ParamSet object while the union, intersection and differ-
ence methods use two arguments - the current object and a second ParamSet object
passed as parameter.

It is very important to note that some of the above methods address two different
issues in the same time:

1. basic set operations, where a set member is defined through a parameter name and
it’s type ; for deciding the equality of parameters with same name and different types
a user-specified expression is used.

2. computation of new types for some parameters in the resulting sets ; when a pa-
rameter is common to the two argument sets it’s type in the resulting set is computed
using a user-specified expression.

The explicit behavior of the ParamSet methods is the following:

– size - returns the number of parameters in the current set.
– containsParam - this method returns true when the current set contains a parameter

with the same name as that passed as parameter regardless of it’s type.
– union - this method returns all parameters in the two argument sets. For any param-

eter that is common to the two argument sets the type in the resulting set is computed
accordingly to the user-specified expression newTypeExpr.

– intersection - this method returns the parameters that are common to the two
sets AND for which the respective types conform to the equality test specified by the
eqTestExpr. Those parameters are added to the resulting set, with a type computed
accordingly to the user-specified expression newTypeExpr.

– minus - this method returns the parameters that are either present only in the
ParamSet object on which the method is called or in the case of common parameters
only those that DO NOT conform to the equality test specified by the eqTestExpr.
For the latter kind of parameters the type in the resulting set is computed accordingly
to the user-specified expression newTypeExpr.

The expressions used in the eqTestExpr and newTypeExpr parameters have the
same format and they are applied to parameters that are common to the two arguments
of a union, intersection or minus method. For such kind of parameter we note
it’s type in the two argument sets as A and B. The expressions are created from these
two types possibly by using some extra constructors based on the Description Logic
language OWL [30] like #, ⊥, ¬, �, �, �, ≡. The expressions are build by specifying
a constructor type and which of the argument types A and B should be considered
negated. For the single type constructors # and ⊥ negation cannot be specified and for
the constructors A and B the negation is allowed only for the respective type (e.g., for
constructor type A only ¬A can be set).

We represent an expression as a bit vector having a value corresponding to it’s
respective constructor type. For encoding the negation of any of the types that are argu-
ments to the constructor two masks can be applied to the constructor types: NEG A and

614 I. Constantinescu, W. Binder, and B. Faltings

Table 1. Possible expressions for constructors of parameter sets.

Constructor type ¬A? ¬B? Possible expressions
THING - - �
NOTHING - - ⊥
A Y/N - A, ¬A
B - Y/N B, ¬B
UNION Y/N Y/N A � B, A � ¬B, ¬A � B, ¬A � ¬B
INTERSECTION Y/N Y/N A � B, A � ¬B, ¬A � B, ¬A � ¬B
SUBCLASS Y/N Y/N A � B, A � ¬B, ¬A � B, ¬A � ¬B
SUPERCLASS Y/N Y/N A � B, A � ¬B, ¬A � B, ¬A � ¬B
SAMECLASS Y/N Y/N A ≡ B, A ≡ ¬B, ¬A ≡ B, ¬A ≡ ¬B

public interface Ranking {
double rank(ParamSet qin, ParamSet qout, ParamSet sin, ParamSet sout);

}

public interface ParamSet {
static final int THING=1, NOTHING=2, A=3, B=4, UNION=5, INTERSECTION=6,
SUBCLASS=7, SUPERCLASS=8, SAMECLASS=9, NEG_A=16, NEG_B=32;

int size();
boolean containsParam(String paramName);
ParamSet union(ParamSet p, int newTypeExpr);
ParamSet minus(ParamSet p, int eqTestExpr, int newTypeExpr);
ParamSet intersection(ParamSet p, int eqTestExpr, int newTypeExpr);

}

Fig. 3. The API for ranking functions.

NEG B. For the actual encoding see Table 1. For example, A � ¬B will be expressed as
ParamSet.INTERSECTION | ParamSet.NEG B.

As an example of API usage, assume we need to select the parameters that are com-
mon to two sets X and Y , which have in X a type that is more specific than the one in
Y . We would like to preserve in the result set the type values in X . The following state-
ment can be used for this purpose: X.intersection(Y, ParamSet.SUPERCLASS,
ParamSet.A).

The directory supports ranking functions written in a subset of the Java programming
language. The code of the functions is provided as a compiled Java class. The class has
to implement the Ranking interface shown in Fig. 3.

On one hand, this API allows to write rather generic ranking functions that take into
account only the number of parameters in a certain matching relationship between the
description of the query and the description of the service. On the other hand, the ranking
function may be customized for a query for which the existance of particular parameters
is important by using the set membership test (e.g., if a required output is known to be
very hard to be found, a service description that provides exactly this output may receive
a higher ranking).

An Extensible Directory Enabling Efficient Semantic Web Service Integration 615

4.2 Exemplary Ranking Functions

In the example in Fig. 4 two basic ranking functions are shown, the first one more
appropriate for a service composition algorithms using forward chaining, the second for
algorithms using backward chaining with complete type matches.

public final class ForwardRanking implements Ranking {
public double rank(ParamSet qin, ParamSet qout,

ParamSet sin, ParamSet sout) {
// services that provide more required parameters are better;
// the provided output has to be more specific than the required one
return (double)sout.intersection(qout, ParamSet.SUPERCLASS, ParamSet.A).size();

}
}

public final class BackwardCompleteRanking implements Ranking {
public double rank(ParamSet qin, ParamSet qout,

ParamSet sin, ParamSet sout) {
// services that reduce most the number of required outputs are better
ParamSet remaining = qout.minus(sout, ParamSet.SUBCLASS, ParamSet.A);
ParamSet newRequired = sin.minus(qin, ParamSet.SUBCLASS, ParamSet.A);
ParamSet required = remaining.union(newRequired, ParamSet.INTERSECTION);
return 1 / (double)(1+required.size());

}
}

Fig. 4. Exemplary ranking functions.

4.3 Safe and Efficient Execution of Ranking Functions

Using a subset of Java as programming language for ranking functions has several
advantages: Java is well known to many programmers, there are lots of programming
tools for Java, and, above all, it integrates very well with our directory service, which is
completely written in Java.

Compiling and integrating user-defined ranking functions into the directory leverages
state-of-the-art optimizations in recent JVM implementations. For instance, the HotSpot
VM [26] first interprets JVM bytecode and gathers execution statistics. If code is executed
frequently enough, it is compiled to optimized native code for fast execution. In this way,
frequently used ranking functions are executed as efficiently as algorithms directly built
into the directory.

The class containing the ranking function is analyzed by our special bytecode ver-
ifier which ensures that the user-defined ranking function always terminates within a
well-defined time span and does not interfere with the directory implementation. Effi-
cient, extended bytecode verification to enforce restrictions on JVM bytecode for the
safe execution of untrusted mobile code has been studied in the JavaSeal [29] and in
the J-SEAL2 [3,4] mobile object kernels. Our bytecode verifier ensures the following
conditions:

- The Ranking interface is implemented.
- Only a single method is provided.
- The control-flow graph of the rank() method is acyclic. The control-flow graph

616 I. Constantinescu, W. Binder, and B. Faltings

is created by an efficient algorithm with execution time linear with the number of JVM
instructions in the method.

- No exception handlers (using malformed exception handlers, certain infinite loops
can be constructed that are not detected by the standard Java verifier, as shown in [5]).
If the ranking function throws an exception (e.g., due to a division by zero), its result is
to be considered zero by the directory.

- No JVM subroutines (they result from the compilation of finally{} clauses).
- No explicit object allocation. As there is some implicit object allocation in the set

operations in ParamSet, the number of set operations and the maximum size of the
resulting sets are limited.

- Only the interface methods of ParamSet may be invoked, as well as a well-defined
set of methods from the standard mathematics package.

- Only the static fields defined in the interface ParamSet may be accessed.
- No fields are defined.
- No synchronization instructions.

These restrictions ensure that the execution time of the custom ranking function
is bounded by the size of its code. Hence, an attacker cannot crash the directory by
providing, for example, a ranking function that contains an endless loop. Moreover,
ranking functions cannot allocate memory. Our extended bytecode verification algorithm
is highly efficient, its performance is linear with the size of the ranking method. As a
prevention against denial-of-service attacks, our directory service allows to set a limit
for the size of ranking functions.

Ranking functions are loaded by separate classloaders, in order to support multiple
versions of classes with the same name (avoiding name clashes between multiple clients)
and to enable garbage collection of the class structures. The loaded class is instantiated
and casted to theRanking interface that is loaded by the system classloader.The directory
implementation (which is loaded by the system classloader) accesses the user-defined
functions only through the Ranking interface.

As service integration clients may use the same ranking functions in multiple ses-
sions, our directory keeps a cache of ranking functions. This cache maps a hashcode of
the function class to a structure containing the function bytecode as well as the loaded
class. In case of a cache hit the user-defined function code is compared with the cache
entry, and if it matches, the function in the cache is reused, skipping verification and
avoiding to reload it with a separate classloader. Due to the restrictions mentioned be-
fore, multiple invocations of the same ranking function cannot influence each other. The
cache employs a least-recently-used replacement strategy. If a function is removed from
the cache, it becomes eligible for garbage collection as soon as it is not in use by any
service integration session.

Service composition sessions that do not define custom ranking functions require
only a small amount of memory within the directory in order to keep track of the traversal
of the directory tree. However, when custom ranking functions are used, the directory
has to allocate a temporary data structure in order to sort the matching entries according
to the ranking function. In order to protect the directory from attacks, queries issued in
sessions that employ custom ranking functions are rejected if the size of the result set
exceeds a certain threshold defined by the directory service provider. In such a case, the

An Extensible Directory Enabling Efficient Semantic Web Service Integration 617

Fig. 5. Impact of ranking functions on composition algorithms.

client has either to do without the custom ranking function, or the query has to be made
more specific in order to reduce the number of results.

5 Evaluation

We have evaluated our approach by carrying out tests on random service descriptions and
service composition problems that were generated as described in [11]. As we consider
directory accesses to be a computationally expensive operation we use them as a measure
of efficiency.

The problems have been solved using two forward chaining composition algorithms:
one that handles only complete type matches and another that can compose partially
matching services, too [12]. When running the algorithms we have used two different
directory configuration: The first configuration was using the extensible directory de-
scribed in this paper which supports custom ranking functions, in particular using the
forward chaining ranking function described in Fig. 4. In the second configuration we
used a directory which is not aware of the service composition algorithm (e.g., forward
complete, backward, etc.) and cannot be extended by client ranking functions. This direc-
tory implements a generic ordering heuristic by considering the number of overlapping
inputs in the query and in the service, plus the number of overlapping outputs in the
query and in the service.

For both directories we have used exactly the same set of service descriptions and at
each iteration we have run the algorithms on exactly the same random problems.As it can
be seen in Fig. 5 using custom ranking functions consistently improves the performance
of our algorithms. In the case of complete matches the improvement is up to a factor of
5 (for a directory of 10500 services) and in the case of partial matches the improvement
is of a factor of 3 (for a directory of 9000 of services).

6 Conclusion

Efficient service integration in an open environment populated by a large number of
services requires a highly optimized interaction between large-scale directories and ser-
vice integration engines. Our directory service addresses this need with special features

618 I. Constantinescu, W. Binder, and B. Faltings

for supporting service composition: indexing techniques allowing the efficient retrieval
of (partially) matching services, service integration sessions offering incremental data
retrieval and a consistent view of the directory data, as well as user-defined ranking
functions that enable the installation of application-specific ranking heuristics within
the directory. In order to efficiently support different service composition algorithms,
it is important not to hard-code ordering heuristics into the directory, but to enable the
dynamic installation of specific ranking heuristics. Thanks to the custom ranking func-
tions, the most promising results from a directory query are returned first, which helps to
reduce the number of transferred results and to save network bandwidth. As user-defined
ranking functions may be abused to launch denial-of-service attacks against the direc-
tory, we impose severe restrictions on the accepted code. Performance measurements
underline the need for applying application specific heuristics to order the results that
are returned by a directory query.

References

1. D.-S. C. A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web service
description for the Semantic Web. Lecture Notes in Computer Science, 2342, 2002.

2. B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web services
composition. IEEE Internet Computing, 7(1):40–48, 2003.

3. W. Binder. Design and implementation of the J-SEAL2 mobile agent kernel. In The 2001
Symposium on Applications and the Internet (SAINT-2001), San Diego, CA, USA, Jan. 2001.

4. W. Binder, J. Hulaas,A.Villazón, and R.Vidal. Portable resource control in Java: The J-SEAL2
approach. In ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA-2001), Tampa Bay, Florida, USA, Oct. 2001.

5. W. Binder and V. Roth. Secure mobile agent systems using Java: Where are we heading? In
Seventeenth ACM Symposium on Applied Computing (SAC-2002), Madrid, Spain, Mar. 2002.

6. A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90(1–2):281–300, 1997.

7. BPEL4WS. Business process execution language for web services version 1.1,
http://www.ibm.com/developerworks/library/ws-bpel/.

8. F. Casati, S. Ilnicki, L. Jin,V. Krishnamoorthy, and M.-C. Shan. Adaptive and dynamic service
composition in eflow. Technical Report HPL-2000-39, Hewlett Packard Laboratories, 2000.

9. I. Constantinescu, W. Binder, and B. Faltings. Directory services for incremental service
integration. In First European Semantic Web Symposium (ESWS-2004), Heraklion, Greece,
May 2004.

10. I. Constantinescu and B. Faltings. Efficient matchmaking and directory services. In The 2003
IEEE/WIC International Conference on Web Intelligence, 2003.

11. I. Constantinescu, B. Faltings, and W. Binder. Large scale testbed for type compatible service
composition. In ICAPS 04 workshop on planning and scheduling for web and grid services,
2004.

12. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composi-
tion. In IEEE International Conference on Web Services (ICWS-2004), San Diego, CA, USA,
July 2004.

13. DAML-S. DAML Services, http://www.daml.org/services.
14. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Transactions

on Software Engineering, 24(5):342–361, May 1998.

An Extensible Directory Enabling Efficient Semantic Web Service Integration 619

15. F. Giunchiglia and P. Traverso. Planning as model checking. In European Conference on
Planning, pages 1–20, 1999.

16. J. M. Hellerstein, J. F. Naughton, andA. Pfeffer. Generalized search trees for database systems.
In U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proc. 21st Int. Conf. Very Large Data Bases,
VLDB, pages 562–573. Morgan Kaufmann, 11–15 1995.

17. C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea, A. Philpot, and S. Tejada. The
Ariadne Approach to Web-Based Information Integration. International Journal of Cooper-
ative Information Systems, 10(1-2):145–169, 2001.

18. M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency and recovery in generalized
search trees. In J. M. Peckman, editor, Proceedings, ACM SIGMOD International Conference
on Management of Data: SIGMOD 1997: May 13–15, 1997, Tucson, Arizona, USA, 1997.

19. O. Lassila and S. Dixit. Interleaving discovery and composition for simpleworkflows. In
Semantic Web Services, 2004 AAAI Spring Symposium Series, 2004.

20. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide Web,
2003.

21. S. McIlraith, T. Son, and H. Zeng. Mobilizing the semantic web with daml-enabled web
services. In Proc. Second International Workshop on the Semantic Web (SemWeb-2001),
Hongkong, 2001.

22. S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic web services. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Proceedings of the
8th International Conference on Principles and Knowledge Representation and Reasoning
(KR-02), pages 482–496, San Francisco, CA,Apr. 22–25 2002. Morgan Kaufmann Publishers.

23. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services
capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC), 2002.

24. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In In
11th World Wide Web Conference (Web Engineering Track), 2002.

25. B. Srivastav. Automatic web services composition using planning. In International Confer-
ence on Knowledge Based Computer Systems (KBCS-2002), 2002.

26. Sun Microsystems, Inc. Java HotSpot Technology.
Web pages at http://java.sun.com/products/hotspot/.

27. K. Sycara, J. Lu, M. Klusch, and S. Widoff. Matchmaking among heterogeneous agents on
the internet. In Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents in
Cyberspace, Stanford University, USA, March 1999.

28. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing web
services from on-line sources. In Proceeding of the AAAI-2002 Workshop on Intelligent
Service Integration, pages 1–7, Edmonton, Alberta, Canada, July 2002.

29. J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal or how to make Java safe for agents.
Technical report, University of Geneva, July 1998.

30. W3C. OWL web ontology language 1.0 reference, http://www.w3.org/tr/owl-ref/.
31. W3C. Web services description language (wsdl) version 1.2, http://www.w3.org/tr/wsdl12.
32. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services

composition using SHOP2. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), 2003.

33. Wu, Dan and Parsia, Bijan and Sirin, Evren and Hendler, James and Nau, Dana. Automating
DAML-S Web Services Composition Using SHOP2. In Proceedings of 2nd International
Semantic Web Conference (ISWC2003), 2003.

34. J. Yang and M. P. Papazoglou. Web component: A substrate for Web service reuse and
composition. Lecture Notes in Computer Science, 2348, 2002.

Working with Multiple Ontologies on the
Semantic Web

Bernardo Cuenca Grau1,2, Bijan Parsia1, and Evren Sirin1

1 Maryland Information and Network Dynamics Laboratory, USA
2 Department of Computer Science, University of Valencia, Spain

Abstract. The standardization of the second generation Web Ontology
Language, OWL, leaves a crucial issue for Web-based ontologies unsat-
isfactorily resolved: how to represent and reason with multiple distinct,
but linked, ontologies. OWL provides the owl:imports construct which,
roughly, allows Web ontologies to include other Web ontologies, but only
by merging all the linked ontologies into a single logical “space.” Re-
cent work on multidimensional logics, fusions and other combinations of
modal logics, distributed and contextual logics, and the like have tried
to find formalisms wherein knowledge bases (and their logic) are kept
more distinct but yet affect each other. These formalisms have various
degrees of robustness in their computational complexity, their modular-
ity, their expressivity, and their intuitiveness to modelers. In this paper,
we explore a family of such formalisms, grounded in E-connections as
extensions to OWL, with emphasis on a novel sub-formalism that seems
very straightforward to implement on existing tableau OWL reasoners,
as witnessed by our implementation of this formalism in the OWL rea-
soner Pellet. We discuss how to integrate those formalisms into OWL,
as well as some of the issues that modelers have to face when using such
formalisms in the context of a large number of heterogeneous, indepen-
dently developed, richly interconnected ontologies that we expect to be
the norm on the Semantic Web.

1 Introduction

Combining ontologies in a controlled and scalable way is crucial for the success
of the Semantic Web. However, at the current stage, the means provided by
the Web Ontology Language (OWL) for such a purpose are clearly insufficient.
OWL provides a construct, ’owl:imports’1, that allows to include by reference in
a knowledge base the axioms contained in another ontology, presumably retriev-
able from the Web and identified by a URI. However, the functionality provided
by owl:imports is unsatisfactory for a number of reasons.

First, it does not support information hiding or filtering, which means that
everything in (the transitive closure of the imports of) the imported ontologies
gets into the original ontology. Thus, it relies on developer discipline to avoid
1 Throughout, we abbreviate the URI, http://www.w3.org/TR/2004/REC-owl-

semantics-20040210/#owl imports, with the pseudo-qname ‘owl:imports’.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 620–634, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Working with Multiple Ontologies on the Semantic Web 621

unmanageable blow up of ontology size. Indeed, as ontology reuse via owl:imports
increases, so does the chance than an innocuous owl:imports will bring into the
local ontology a large chunk of the Semantic Web. Second, none of the imported
axioms or facts retain their context. While it is possible to track down the
originator(s) of some assertions by inspection of the imported ontology, OWL
reasoning does not take such context into account. Finally, the use of a “foreign”
URI reference without a corresponding owl:imports brings nothing from any of
the foreign owner’s ontologies

Hence, with owl:imports, OWL can let in either all the axioms of a foreign
ontology, or none. The primary distinction, in practical terms, between using
owl:imports and directly adding all the assertions in the imported ontology is
that with owl:imports, the modeler can break an ontology into different docu-
ments. This is a very important distinction, but it is not quite the distinction
many hope for.

2 Logical Formalisms for Combining Knowledge Bases

Fortunately, there is a growing body of work about combining multiple ontologies
in ways that strike a middle ground between importing all and nothing. In this
paper, we consider two formalisms, which are natural extensions of OWL-DL:
Distributed Description Logics (DDLs) [2], and E-connections [4].

2.1 Distributed Description Logics

Distributed Description Logics (DDL) [2] is a formalism for combining different
DL knowledge bases in a loosely coupled information system. The idea of the
combination is to preserve the “identity” and independence of each local ontol-
ogy. The coupling is established by allowing a new set of inter-ontology axioms,
called bridge rules. A bridge rule is an expression of one of the following forms2

Ci
�→ Cj ; ; Ci

�→ Cj ; ai→bj

Where, Ci, Cj are classes and ai,bj individuals in the ontologies Oi,Oj re-
spectively.

From the modeling point of view, bridge rules have been conceived for es-
tablishing directional (“view dependent”) subsumption relationships between
classes and correspondences between individuals in different ontologies. The mo-
tivation for bridge rules, hence, covers a wide variety of intuitive modeling sce-
narios on the Semantic Web. For example, suppose that in ontology O1 we have
a class “Beer” defined as a subclass of “GermanProduct” and which doesn’t ex-
ist in ontology O2. However, in ontology O2 there is a class “Drink”, but there
is no class modeling the concept of “Beer”. Both ontologies could be linked by
2 We will consider bridge rules without complete individual correspondences along the

paper

622 B. Cuenca Grau, B. Parsia, and E. Sirin

using a bridge rule stating that “Beer” in ontology O1 is a subclass of “Drink”
in O2 .

These kind of modeling scenarios are appealing, because they nicely fit in the
vision of the Semantic Web in which the notion of a universal upper ontology
is abandoned by the notion of a web of distributed, linked and independently
developed ontologies. Researchers in the Semantic Web community are starting
to realize the importance of extending OWL with a suitable formalism that pro-
vides inter-ontology mappings with a precise logical semantics. A first attempt in
this direction resulted in C-OWL [3], a syntax and semantic extension of OWL
that adds the DDL formalism to the language.

However, C-OWL, as presented in [3] has some difficulties. First, no reasoning
support is provided for the language. Extending the existing tableau reasoners
to deal with such an extension is certainly a crucial issue. Second, some ex-
pressive features that are beyond DDLs (and also beyond E-connections), like
the inclusion of inter-ontology role subsumption statements, are included in the
language without the required discussion. This kind of expressive power could
even make the reasoning undecidable. Finally, from the modeling perspective,
no distinction is made between the idea of partially importing concepts from a
foreign KB and the idea of linking ontologies through the use of inter-ontology
subsumption relationships. It is unclear whether the semantics of DDLs capture
that idea of linking, as we will discuss in section 5.

2.2 E-Connections

The E-connections technique [4] is a method for combining logical formalisms
that are expressible in the Abstract Description System (ADS) framework. ADSs
are a generalization of description, modal and epistemic logics and many logics
of time and space (see [1] for a detailed discussion).

The advantages of this technique are twofold: On one hand, E-connections
provide a quite expressive way for combining knowledge bases written in a wide
variety of logical languages, while, on the other hand, the coupling between
the combined logical formalisms is loose enough for ensuring the decidability
of the combined formalism. Hence, E-connections provide a trade-off between
the tightness of the coupling between the component logical languages and the
computational robustness of the combination.

The E-connection method can be applied, for example, to the following set-
ting. Assume that we have n disjoint domains D1, ..., Dn and two languages l1
and l2 for talking about them, and suppose that l1 and l2 are two propositionally
closed description logics (two extensions of ALC) with decidable satisfiability
(and hence subsumption) problem and such that they can be expressed as an
Abstract Description System. Assume we want to define a combined formalism
C(l1, l2) which talks about the domains and also about the relationships among
them. First, we define countable and disjoint sets εij with i, j = 1, ..., n; i �= j of
link names. A link E ∈ εij can be seen as a property that relates elements from
the domain Di to elements of the domain Dj , as opposed to object properties,
which relate elements of the same interpretation domain.

Working with Multiple Ontologies on the Semantic Web 623

For example, let K1 and K2 be two knowledge bases written in l1 and l2 re-
spectively. The knowledge base K1 deals with people, while K2 describes the do-
main of Pets; then we can define the links Owns ∈ ε12, and LovesToP layWith ∈
ε21. Intuitively, the link Owns represent the relationships of a person to own a
pet, while the link lovesToP layWith would represent the relation of pets liking
to play with people. In its basic form, the syntax of the combination is specified
by extending the syntax of l1 and l2 with two new constructors: existential and
value restrictions on links. For example, in our ontologies K1, K2 it is possible
to define in K1 a “DogOwner” as a person who owns at least one dog and in K2
an “unfriendly pet” as a pet that doesn’t like to play with people:

DogOwner ≡ Person � ∃Owns.Dog
UnfriendlyPet ≡ Pet � ∀LovesToP layWith.(¬Person)

Finally, we can also use inverses on the links and define an “Unhappy Cat”
in K2 as a cat that is owned by a “Dog Owner”:

UnhappyCat ≡ Cat � ∃Owns−(DogOwner)

Given n ontologies, the semantics of the combined KB, written in C(l1, l2),
is given by a combined interpretation I = ({Ii}n

i=1ε
I
ij), where Ii = (Wi, .

Ii)
is an interpretation and Wi ∩ Wj = ∅,∀i �= j. A link E ∈ εij is interpreted
as a cross-domain relation EI ⊆ Wi ×Wj , and its inverse E− as the relation
(E−)I = {(a, b) ∈ Wj × Wi|(b, a) ∈ EI}. Finally, the expressions ∃E.C, and
∀E.C, where E ∈ εij and C a concept in the jth KB, are interpreted as subsets
of Wi, as follows:

(∃E.C)I = {x ∈Wi|∃y ∈Wj , (x, y) ∈ EI , y ∈ CI}
(∀E.C)I = {x ∈Wi|∀y ∈Wj , if (x, y) ∈ EI ,→ y ∈ CI}

E-connections are strictly more expressive than DDLs (without individual
correspondences), and in [4] it is shown how DDLs can be translated into axioms
in an E-connection.

3 Integrating E-Connections into OWL

In this section, we define a syntax and semantic extension of OWL that integrates
the E-connections formalism into the language in a compact and natural way.
The extension is based on the definition of a new set of properties, called links,
that stand for the inter-ontology relations in the E-connections framework. The
OWL-DL3 language is then enriched with a new set of constructors that basically
allow to define new classes by placing restrictions on the link properties.
3 We are considering OWL-DL/OWL-Lite along the paper because OWL-Full is be-

yond the ADS framework, and hence E-connections cannot be used to combine OWL-
Full with OWL-DL KBs

624 B. Cuenca Grau, B. Parsia, and E. Sirin

3.1 Abstract Syntax

The syntax presented in this section is an extension of the normative OWL
abstract syntax, as described in the OWL abstract syntax and semantics rec-
ommendation [5]. We use the same Extended BNF syntax as in the normative
document. A new set of properties, called link properties, are named using a
URI, and hence a linkID is defined to be a URIreference

In order to ensure the separation of vocabularies, a URI-reference cannot
be both a linkID, an individual-valued property ID, a datatype property ID, an
annotation property ID or an ontology property ID. Intuitively, while individual-
valued properties relate individuals to other individuals in the same ontology,
while link properties relate individuals corresponding to different interpretation
domains. Thus, link properties act as a bridge between different ontologies, which
remain separate, and keep their own identity.

Our proposal extends OWL-DL with a new kind of property axiom, by adding
the following production rule:

axiom::= ‘Link(‘linkID[’Deprecated’] { annotation }
[‘inverseOf(‘ linkID ’)’]
{ ‘ domain (‘ Description’)’ }
{ ‘ range (‘Description’)’ }
‘ForeignOntology (‘ OntologyID’)

Informally, link properties are used to bring or import class descriptions
from a foreign OWL ontology to the local context, without having to import
the whole external knowledge base. The addition of inverses in link properties
is a distinguishing feature of E-connections, which has important consequences,
both conceptually and in practice.

Link properties can be used to define new classes by means of restrictions
on them. Intuitively, a restriction on a link property is applied to a concept in
a foreign ontology, and returns a concept defined over the local interpretation
domain.

restriction::= ‘Restriction(’linkID
linkRestrictionComponent
{ linkRestrictionComponent } ’)’

linkRestrictionComponent::= ‘allValuesFrom(’Description)’
| ‘someValuesFrom(’Description)’

The intuition is that the classes specified in link restriction properties are
evaluated according to the semantics of the foreign ontology specified in the
definition of the link property. Finally, the set of facts is defined by extending
the set of facts in OWL in order to provide the means for instantiating link
properties. This is achieved by simply adding to the OWL abstract syntax a
new alternative to the non-terminal “value”

Working with Multiple Ontologies on the Semantic Web 625

value ::= ‘value(‘ linkID individualID ’)’

Essentially, link properties are similar to Datatype properties. In OWL DL,
datatypes constitute a domain disjoint from the domain of classes. Similarly,
classes defined in foreign ontologies belong to a domain separate from the do-
main of classes defined in the importing ontology. The reasoning about datatypes
is done by a so-called “Datatype Oracle” and this process is a black-box opera-
tion for the rest of the reasoning procedure. Analogously, reasoning about link
properties are done with respect to the foreign ontology in an isolated process.

3.2 Direct Model-Theoretic Semantics

The semantics starts with the notion of vocabulary.

Definition 1. (Combined OWL Vocabulary)
A combined OWL vocabulary V consists of a tuple V = {V1, ..., Vn, Vlink},

where V1, ..., Vn is a set of OWL vocabularies, as defined in [5], and Vlink is a
set whose elements are triples of the form:

(Oi, Oj , Lk), i, j = 1, ..., n, i �= j

Where Oj , Oi are ontologyIDs with i �= j, Lk a linkID (a URI), and where none
of the linkIDs are contained in any of the Vi, i = 1..., n

Definition 2. (Combined OWL interpretation)
A combined OWL interpretation with vocabulary V = {V1, ..., Vn, Vlink} is a

tuple of the form:

I = ({Ii}n
i=1, εij = (Oi, Oj , Lk)I), i, j = 1, ..., n; i �= j;

Where Ii, i = 1, ..., n is an abstract OWL interpretation with vocabulary Vi,
and with respect to a datatype map Di, and domain Wi, and (Oi, Oj , Lk)I =
Wi ×Wj, for (Oi, Oj , Lk) ∈ Vlink.

Class and property axioms are interpreted as in OWL-DL, with the remark
that now the concepts built using the new constructors can appear in class axioms
and the semantics applied to them must be the semantics of table 1.

Definition 3. (E−Connection of OWL ontologies)
A combined OWL ontology is a combined KB Σ = {O1, ..., On} written in

the extended abstract syntax, such that it is closed under ‘owl:imports’ and for
every ontology in Σ, all the link properties it contains refer to a foreign ontology
which is also contained in Σ.

Finally, we say that a combined interpretation I satisfies Σ, iff it satisfies all
the axioms of all the ontologies in it.

626 B. Cuenca Grau, B. Parsia, and E. Sirin

Table 1. Semantics

Abstract Syntax EC Syntax Semantics
Link(Lk) defined in Oi Lij

k
(Lij

k
)I ⊆ Wi × Wj

ForeignOntology(Oj)
inverseOf((Em)) Lij

k
≡ (Eji

m)− ((Lk)ij)I = ((Eji
m)I)−

domain(C) (Lij
k

)I ⊆ CI × Wj

range(D) (Lij
k

)I ⊆ Wi × DI

restriction(Lk ∃Lij
k

(C) (∃Lij
k

(C))I = {x ∈ Wi|∃y ∈ Wj , [x, y] ∈ (Lij
k

)I and y ∈ CI}
someV aluesFrom(C))
restriction(Lk ∀Lij

k
(C) (∀Lij

k
(C))I = {x ∈ Wi|∀y ∈ Wj , if [x, y] ∈ (Lij

k
)I → y ∈ CI}

allV aluesFrom(C))
value (t Lk o) (t, o) : Lij

k
(tI , oI) : (Lij

k
)I

4 Reasoning with E-Connections on the Semantic Web

Finding efficient and easy to implement algorithms for reasoning on E-
connections is a challenging task. Two possible ways of simplifying the problem
are, on one hand, defining subformalisms of E-connections which still preserve
most of the expressive power of E-connections, and, on the other hand, restricting
to particular ADS of special practical relevance.

In this paper we do both. We define Perspectival E-connections (PECs), an
expressive sublanguage of E-connections, and we restrict ourselves to combi-
nations of OWL-Lite (SHIF(D)) ontologies without ABoxes. We will use the
notation Cε(SHIF (D)), for the PEC language that enables the combination of
OWL-Lite ontologies.

The main motivation for introducing PECs is that they can be implemented
in a quite straightforward way by extending the existing tableaux-based DL
reasoners, at least for logics that do not include nominals (hence the restriction
to SHIF(D)/OWL-Lite).

4.1 Perspectival E-Connections

Perspectival E-connections (PECs) are obtained from E-connections by disal-
lowing the use of inverses on link properties. This implies that links cannot be
“navigated” in both directions anymore. In the abstract syntax, PECs would be
obviously defined by suppressing the inverse clause in the definition of link prop-
erties. In our example of persons and pets, we would still be able to define the
concept of a “dog owner” and “unhappy pet owner” in K1, but not the concept
of “unhappy cat” in K2.

As a consequence of the restrictions imposed to the formalism, PECs are
strictly less expressive than E-connections, but remain strictly more expressive
than DDLs.

The syntax and semantics of the combined language Cε(SHIF (D)) is defined
as follows:

Definition 4. Let Ci, Ri, δi, εij be disjoint sets, for i, j = 1...n; i �= j, where the
Ci, Ri, δi, εij are respectively sets of concept, role, datatype properties, and link

Working with Multiple Ontologies on the Semantic Web 627

Table 2. Semantics of i-concepts

Syntax Semantics
R− (R−)I = {(a, b)|(b, a) ∈ RI}
¬C (¬C)I = Wi − CI

C � D (C � D)I = CI ∩ DI

C � D (C � D)I = CI ∪ DI

∃R.C (∃R.C)I = {x ∈ Wi|∃y ∈ Wi, (x, y) ∈ RI , y ∈ CI}
∀R.C (∀R.C)I = {x ∈ Wi|∀y ∈ Wi, (x, y) ∈ RI → y ∈ CI}
≤ 1S (≤ 1S)I = {x ∈ Wi|∀y, z, if (x, y) ∈ SI ∧ (x, z) ∈ SI → y = z}
≥ 2S (≥ 2S)I = {x ∈ Wi|∃y, z : (x, y) ∈ SI , (x, z) ∈ SI , ∧y �= z}
∃U.d (∃U.d)I = {x ∈ Wi|∃y ∈ ΔD, (x, y) ∈ UI , y ∈ dD}
∀U.d (∀U.d)I = {x ∈ Wi|∀y ∈ ΔD, (x, y) ∈ UI → y ∈ dD}
∃G.Z (∃G.Z)I = {x ∈ Wi|∃y ∈ Wj , (x, y) ∈ GI , y ∈ ZI}

(∀G.Z) (∀G.Z)I = {x ∈ Wi|∀y ∈ Wj , if (x, y) ∈ GI , → y ∈ ZI}

names. The set of i-roles is the set Ri ∪ {R−|R ∈ Ri}. We will use the notation
Inv(R) = S if R = S−.

For R, S i-roles, a role inclusion axiom is an assertion of the form R � S. An
i-role axiom is either a role inclusion axiom, an assertion of the form Inv(R) = S
or a transitivity axiom Trans(R) , with R ∈ Ri. An i-role box)i is a finite set
of i-role axioms.The combined role box is given by the tuple) = ()1, ...,)n). An
i-role R is called simple if for �∗ the transitive reflexive closure of � on)i, and
for each i-role S, S �∗ R implies Trans(R) /∈)i. The set of ij-links is the set
of atomic links εij, and the set of i-datatype properties is the set δi.

Finally, the set of i-concepts in Cε(SHIF (D)) is recursively defined, for
i = 1, ..., n as the smallest set such that each concept name A ∈ Ci, is an i-
concept and, for R an i-role, U an i-datatype property, S a simple i-role, G ∈ εij

C, D i-concepts, and Z a j-concept, the following constructions are also valid
i-concepts:

– C �D, C �D, ¬C, ∀R.C, ∃R.C, (≤ 1S), (≥ 2S), ∀U.d, ∃U.d
– ∃G.Z, ∀G.Z

A combined TBox is defined as K = (K1, ..., Kn), where Ki is a set of
assertions of the form C � D, with both C, D i-concepts. The semantics is
given by means of an interpretation I = ({Ii}εI

ij), i, j = 1, ..., n; i �= j where
Ii = (Wi, .

Ii), with Wi∩Wj = ∅. The interpretation function maps every atomic
concept A ∈ NCi

to AI ⊆ Wi, every role R ∈ NRi
to RI ⊆ Wi ×Wi, every link

G ∈ εij to GI ⊆ Wi ×Wj, every i-datatype property U to U I ⊆ Wi ×ΔD, and
every datatype d to dD ⊆ ΔD. Table 1 shows the extension of the interpretation
function to complex descriptions. In the table, C, D are i-concepts, R is an i-role,
S is an simple i-role, U is an i-datatype property, Z is a j-concept, G ∈ εij, and
d is a datatype.

An interpretation satisfies an i-role inclusion axiom R � S, if RIi ⊆ SIi ,
where R, S are both i-roles and the axiom is in)i, and satisfies a transitivity

628 B. Cuenca Grau, B. Parsia, and E. Sirin

axiom Trans(R), iff RIi = (RIi)+. An interpretation satisfies the combined
role box) iff it satisfies all the axioms in each)i. If C, D are i-concepts, an
interpretation satisfies the axiom C � D if CI ⊆ DI , and satisfies the combined
TBox K iff it satisfies all the axioms in each Ki. A combined knowledge base
is defined as Σ = (T,)), where K is a combined TBox and) a combined role
box. An interpretation satisfies Σ if it satisfies both K and). An i-concept C
is satisfiable wrt Σ iff there is an interpretation I such that it satisfies Σ, and
CI �= ∅. Such an interpretation is called a model of C w.r.t. Σ. An i-concept C
is subsumed by another i-concept D wrt Σ iff CI ⊆ DI , for each interpretation
satisfying Σ.

We can transform each component Ki of a combined TBox K into a single
equivalent concept equation #i ≡ CKi

, where:

CKi
= �Ci

j
�Di

j
∈Ki

(¬Ci
j �Di

j)

An interpretation I will satisfy the TBox K iff #i = CI
Ki

, for i = 1, ..., n.

5 A Combined Tableau for Cε(SHIF (D))

We will assume concepts written in NNF. To transform an i-concept into NNF,
we can push negation inwards using De Morgan’s laws and the following equiv-
alences:

For R an i-role, U an i-datatype role S an i-simple role, E ∈ εij , i, j =
1, ..., n; i �= j, C an i-concept, Z a j-concept and d a datatype:

¬∃R.C ≡ ∀R.¬C ¬∀R.C ≡ ∃R.¬C ¬ ≥ 2S ≡≤ 1S ¬ ≤ 1S ≡≥ 2S
¬∃U.d ≡ ∀U.¬d ¬∀U.d ≡ ∃U.¬d ¬∃E.Z ≡ ∀E.¬Z ¬∀E.Z ≡ ∃D.¬Z

We will use the notation ∼ C for the NNF of ¬C.
Let X be an i-concept, then the set subi(X,)) of i-subconcepts of X w.r.t.

the combined role box) is defined as follows, for all i, j = 1, ..., n; i �= j :

– If X is an atomic primitive i-concept or its negation, then subi(X,)) = {X},
subj(X,)) = ∅

– If X is of the form ∃R.C where ∃R.C is an i-concept, then subi(X,)) =
{X} ∪ subi(C,)), subj(X,)) = subj(C,))

– If X is of the form ∀R.C, where ∀R.C is an i-concept then subi(X,)) =
{X} ∪ subi(C,))

⋃
k{∀Sk.C} for every Sk �∗ R, with Trans(Sk) in)i.

Again, subj(X,)) = subj(C,))
– If X is of the form C1 �C2, or C1 �C2 where C1 and C2 are i-concepts, then

subi(X) = {X,)} ∪ subi(C1,)) ∪ subi(C2,)), subj(X,)) = subj(C1,)) ∪
subj(C2,))

– If X is of the form ≤ nS or ≥ nS, where S is a simple role, then subi(X,)) =
{X} and subj(X,)) = ∅

– If X is a concept of the form ∃U.d, or ∀U.d, where U is a datatype property
and d a datatype, then subi(X,)) = {X} ∪ {d} and subj(X,)) = ∅

Working with Multiple Ontologies on the Semantic Web 629

– If X is an i-concept of the form ∃G.D or ∀G.D, where G ∈ εij , D a j-concept,
then subi(X,)) = {X} ∪ subi(D,)), subj(X,)) = subj(D,))

For X and a combined knowledge base Σ, we define subi(X, Σ) as the union
of subi(X,)) and all the subi(CTk

,)), k = 1, ..., n. From now on, we will call ρi

and δi to the set of i-roles and i-datatype properties respectively occurring in
X,Σ, and εij will be the set of ij-links appearing in X, Σ

Definition 5. (Combined Tableau)
Let X be a valid i-concept (written in NNF), and Σ a combined KB. A com-

bined tableau T for X wrt Σ is defined as a tuple T = ({Ti}, εX), i = 1, ..., n
where:

– Ti = (Oi, Li, αi, μi), with Oi a set of individuals, and:
• Li : Oi → 2subi(X,Σ)

• αi : ρi → 2Oi×Oi

• μi : δi → 2Oi×ΔD

– εX : εij → 2Oi×Oj

In a combined tableau for an i-concept X, there must exist n individuals
oj ∈ Oj such that {X, CKj

} ⊆ Lj(oj) if j = i and {CKj
} ⊆ Lj(oj) otherwise,

for all j = 1, ..., n.
Moreover, for all i, j = 1, ..., n; i �= j, si, ti ∈ Oi, C, D ∈ subi(X, Σ), Z ∈

subj(X, Σ), R, S ∈ ρi, E ∈ εij U ∈ δi, and d a datatype, the following conditions
must hold:

1. If C ∈ Li(si), then ¬C /∈ Li(si)
2. If (C �D) ∈ Li(si), then C ∈ Li(si), and D ∈ Li(si)
3. If (C �D) ∈ Li(si), then C ∈ Li(si), or D ∈ Li(si)
4. If ∀R.C ∈ Li(si), and (si, ti) ∈ αi(R), then C ∈ Li(ti)
5. If ∃R.C ∈ Li(si), then there is some ti ∈ Oi such that (si, ti) ∈ αi(R), and

C ∈ Li(ti)
6. If ∀R.C ∈ Li(si), and (si, ti) ∈ αi(S), for some S �∗ R with Trans(S),

then ∀S.C ∈ Li(ti)
7. If (≤ 1R) ∈ Li(si), and (si, ti) ∈ αi(R), and (si, t

′
i) ∈ αi(R), then ti = t′i

8. If (≥ 2R) ∈ Li(si), then there are some ti, t
′
i ∈ Oi, such that (si, ti) ∈ αi(R),

(si, t
′
i) ∈ αi(R), and ti �= t′i

9. If (si, ti) ∈ αi(R) and R �∗ S, then (si, ti) ∈ αi(S)
10. (s, t) ∈ αi(R) iff (t, s) ∈ αi(Inv(R))
11. If ∀U.d ∈ Li(si), and (si, ti) ∈ μi(U), then ti ∈ dD

12. If ∃U.d ∈ Li(si), then there is some ti ∈ ΔD such that (si, ti) ∈ μi(U), and
ti ∈ dD

13. If ∀E.Z ∈ Li(s) where s ∈ Oi, and (s, t) ∈ εX(E), then Z ∈ Lj(t), t ∈ Oj

14. If ∃E.Z ∈ Li(s), where s ∈ Oi, then there exists some t ∈ Oj such that
(s, t) ∈ εX(E), and Z ∈ Lj(t)

Lemma 1. An i-concept X in Cε(SHIF (D)) is satisfiable wrt a combined
knowledge base Σ iff X has a combined tableau wrt Σ.

630 B. Cuenca Grau, B. Parsia, and E. Sirin

5.1 Description of the Algorithm

We suggest a tableaux-based reasoning algorithm for determining the satisfia-
bility of i-concepts (i=1,2) wrt a combined knowledge base Σ in the language
Cε(SHIF (D)).

From the structure of a combined TBox it is easy to see that the combined
TBox K cannot be internalized into a single concept. This means that we cannot
directly use a concept satisfiability algorithm with empty TBox as a decision
procedure for the reasoning problems in the combined TBox. We add a rule
→ CE that ensures that every i-node contains the concept CKi

.
The algorithm works on a finite combined completion, which is a forest of

SHIF (D) completion trees. The labels of the i-nodes in the model are restricted
to subsets of subi(X, Σ).

The algorithm tries to build a combined tableau for the input concept. If it
succeeds, it returns “satisfiable”, while if it fails to build the tableau, it returns
“unsatisfiable”.

The algorithm generates n kinds of nodes, called i-nodes, and can generate n
different types of trees, called i-trees. An i-tree is expanded using the SHIF (D)
rules, plus the additional rules and can contain i-nodes and j-nodes, i �= j.
The root node of an i-tree is always an i-node and the j-nodes of the i-trees are
always leaves. The algorithm will keep track of all the generated i-trees, together
with the dependencies between them. If the algorithm is building an i-tree T and
during the process generates a new j-tree, the algorithm will continue expanding
T , potentially generating new j-trees on the way, which are all processed after
T is finished. A j-node g in an i-tree contains a clash iff the corresponding j-tree
contains a clash when expanded. Otherwise, it is satisfiable and g is marked with
the label “visited”.

The algorithm adds three new expansion rules:

– → ∃link Rule: If ∃E.C is in Li(x) (E ∈ εij), x is not blocked and has no
E-successor y with L(x, y) = {E}, and {C} ∈ Lj(y), then create a new E-
successor (a j-node) y of x with Lj(y) = {C}. A new j-tree is created with
root y labeled with Lj(y). The j-tree won’t be expanded until no more rules
apply in the i-tree.

– → ∀link Rule:If ∀E.C is in Li(x) (E ∈ εij), x is not blocked and there exists
an E-successor y of x, such that C /∈ Lj(y), then Lj(y) = Lj(y) ∪ {C}.

– → CE Rule: If CKi /∈ Li(x), then Li(x) ← Li(x) ∪ {CKi}

However, the algorithm as we have described it so far may not terminate. In
order to ensure termination an extra blocking condition is required. Each time
the algorithm starts expanding a new i-tree T with root g, created as a successor
of a certain j-node, the algorithm checks if there exists a node x in a not yet
completed i-tree such that Li(g) ⊆ Li(x). In that case the algorithm blocks the
root of the new tree, which returns “satisfiable”. Given as an input an i-concept
X and a combined KB Σ the algorithm creates an i-tree with a single i-node xi,
labeled Li(xi) = {X}, and a j-tree for each j = 1, ..., n; j �= i, each with a single
j-node labelled with the emptyset.

Working with Multiple Ontologies on the Semantic Web 631

A tree is complete when some node in it contains a (SHIF(D)) clash, or when
none of the rules is applicable in the i-nodes and all the j-nodes it contains are
marked as “visited”.

If for the input i-concept X, the expansion rules can be applied to all the
trees in such a way that each initial tree yields to a complete, clash-free comple-
tion tree, then the algorithm returns “X is satisfiable”, and “X is unsatisfiable”
otherwise.

The algorithm presented in this section is a decision procedure for satisfia-
bility and subsumption of i-concepts w.r.t. a combined knowledge base Σ, as a
direct consequence of the following lemma:

Lemma 2. Let Σ = (K,)) a combined knowledge base in the PEC
Cε(SHIF (D)) and let X be an i-concept. Then:

1. The algorithm terminates when applied to Σ and X

2. The rules can be applied such that they generate a clash-free and complete
combined completion iff X is satisfiable w.r.t. Σ

This technique shows that the generated i-trees in a combined completion are
independent, in the sense that they do not affect each other, and hence the deci-
sion procedure we have presented has a “black box” property. A a slight modifi-
cation of existing DL reasoners suffices for implementing the algorithm. However,
this technique cannot be straightforwardly extended to basic E-connections. If
the algorithm is naively applied to the basic E-connections case, then it happens
to be unsound.

As an example, consider the concept in the pet ontology:

Man � ∃Owns(∀Owns−(¬Man))

The concept is clearly unsatisfiable; however, the algorithm will return the
wrong answer. The unsoundness is caused by the presence of inverses on the
links, which breaks the black box property of the algorithm.

Nominals (presence of the oneOf constructor) also cause unsoundness if the
algorithm is naively extend to PECs whose component logics contain nominals.
For example, a concept of the form:

∃E.({o} �A) � ∃F.({o} � ¬A)

Would be unsatisfiable. However, a straightforward extension of the algo-
rithm would return the wrong answer4. Similar considerations do apply to the
Cε(SHIF (D)) combination when ABoxes are included.

4 We would like to thank the anonymous reviewer of the DL-2004 workshop that
pointed out this example to us in an earlier presentation of some of this work

632 B. Cuenca Grau, B. Parsia, and E. Sirin

5.2 Implementation

We have implemented the algorithm in the OWL reasoner Pellet, a tableau based
DL reasoner specifically developed to work with OWL ontologies. The reasoner
also supports XML Schema datatypes and includes a datatype oracle for this
purpose.

In Pellet, an OWL ontology is normally parsed into one KB that has the
associated TBox/ABox components. The effect of importing an OWL ontology
results in the merging of these two KBs. For PECs, the component ontologies
should be kept separate. Hence, each ontology is loaded into a disjoint KB during
the parsing process. A global ontology manager stores this set of ontologies along
with the cached results of satisfiability results for the different KBs. Please note
that we are considering combinations of an arbitrary number of ontologies.

The modification to the existing tableau algorithm implies marking each node
with the ontology it belongs to. When a successor node is being created due to a
link property, the new node is marked as belonging to the ontology which defined
that link. The clash detection for the nodes that belong to foreign ontologies is
performed by the ontology manager.

This ensures termination and also provides some caching of the satisfiabil-
ity results. For each ontology two different caches are stored: one for satisfiable
concepts and the other for unsatisfiable concepts. After a satisfiability test suc-
ceeds, the labels of all the nodes in the resulting completion tree are added to
the satisfiability cache of that ontology. In the case of an unsatisfiable concept,
only the label of the root node is stored in the unsatisfiability cache. When a
new satisfiability test is asked, these caches are first searched for the previous
answers.

6 Difficulties When Modeling with C-OWL and DDLs

Consider the ontology Figure 1a. The ontology O defines two disjoint concepts
Flying and NonFlying, the concept Bird and the concept Penguin. The axioms
in O state that all birds fly and also that a penguin is a bird, but it doesn’t fly.
In this case, in which all the axioms are gathered in a single logical space, the
concept Penguin would be clearly unsatisfiable.

Now, imagine that we split the knowledge about the domain in two coupled
ontologies, shown in Figure 1b. The ontology A states that the concepts Flying
and NonFlying are disjoint and states that all birds fly. On the other hand, the
ontology B defines the concept Penguin and states, using DDL subsumption
links, that a penguin doesn’t fly and that a penguin is a bird. However, it is easy
to see by direct application of the semantics that in this case the obvious (and
relevant) contradiction is not detected, and Penguin is satisfiable in the coupled
system.

The reason for this is that what bridge rules actually do is to place restrictions
on a link property, which is nothing but an “ordinary” E-connection link. Intu-
itively, there’s nothing contradictory in these bridge rules in the same way that

Working with Multiple Ontologies on the Semantic Web 633

O = { NonFlying = ¬Flying,
Bird � Flying,
Penguin � Bird,
Penguin � NonFlying}

A = { FlyingA,
NonFlyingA = ¬FlyingA,
BirdA � FlyingA }

B = { PenguinB ,

BirdA
�−→ PenguinB ,

NonFlyingA
�−→ PenguinB}

(a) (b)

Fig. 1. Figure (a) shows a single ontology where concept Penguin is unsatisfiable.
Figure (b) shows the same definition with bridge rules where contradiction cannot be
detected anymore

there is no inconsistency between two axioms like Father � ∃hasChild.Male
and Father � ∃hasChild.¬Male in an ordinary ontology.

This result, together with the fact that inter-ontology subsumption links do
not propagate transitively, shows that DDLs can be misleading and counterin-
tuitive, and do not seem to capture the notion of subsumption links across a
“Web of ontologies”. The example suggests that a formalism for dealing with
inter-ontology subsumption relationships is still lacking. E-connections, though
suitable for covering a wide variety of relevant modeling scenarios in the Seman-
tic Web context, do not capture the idea of linking ontologies with subsumption
relationships, but, as opposed to DDLs, were not conceived for such a purpose.

7 Conclusion and Future Work

One of the most important challenges for the Semantic Web is to understand
how to represent and reason with multiple, distinct, independently developed,
but linked ontologies in a distributed environment. In this paper, we have ex-
plored the E-connections framework as a powerful formalism for combining OWL
ontologies.

We argue that E-connections capture the intuition behind many relevant
modeling scenarios in which ontology developers “partially import” concepts
from other ontologies and use them for the definition of new concepts without
having to bring to the local logical space all the axioms in the foreign ontology.
We have shown how to integrate the formalism into OWL in a natural and
compact way. The resulting syntax and semantic extension of OWL is strictly
more expressive than earlier proposals, like C-OWL.

We have defined an expressive subformalism of E-connections, strictly more
expressive than DDLs, which can be implemented in a quite straightforward
way for the combination of OWL-Lite ontologies by extending existing tableaux-
based reasoners. The resulting algorithm has been satisfactorily implemented in
the OWL reasoner Pellet. Finally, we have shown how DDLs seem unsatisfactory,
because on one hand they are too inexpressive for the modeling scenarios for
which E-connections are suitable, and on the other hand because they seem not

634 B. Cuenca Grau, B. Parsia, and E. Sirin

to capture the intuitive idea behind subsumption links across multiple ontologies.
This suggests further work in defining a new semantics for DDLs that correctly
describes inter-ontology subsumption links.

Another important application for E-connections for knowledge engineering
and also for the Semantic Web is the ability to factor large ontologies. Instead
of combining and integrating ontologies, E-connections could be used the other
way round, namely for decomposing large and heterogeneous5 knowledge bases
into smaller, more homogeneous E-connected ontologies. When ontologies grow,
they become more difficult to understand for modelers and also harder to reuse.
Hence, the ability to “break” large ontologies into smaller, connected pieces may
yield to the development of more effective and modular knowledge modeling
techniques. Factoring ontologies in this way may also result in a computational
efficiency gain when performing reasoning, since the number of non-absorbable
general concept inclusion axioms in the original knowledge base is partitioned
into different sets, corresponding to the different ontologies in the combination,
which may result in a remarkable performance gain.

Future work includes the development of reasoning techniques for handling
nominals in the combination (and hence OWL-DL ontologies), and also to ex-
plore the transition from PECs to full E-connections. We also plan to extend
the algorithm presented here to reason with Aboxes. When reasoning with in-
dividuals using this technique, we expect a major performance gain, since the
number of individuals in the original ontology is divided among the different on-
tologies in the combination. Finally, we are also looking into integrating support
for multiple ontologies in the SWOOPed ontology editor in order to make these
formalisms as usable and intuitive as possible for modelers, which is crucial for
successfully bringing them to the Semantic Web.

References

1. F. Baader, C. Lutz, H.Sturm, and F.Wolter. Fusions of description logics and ab-
stract description systems. Journal of Artificial Intelligence Research (JAIR), 16:1-
58, 2003.

2. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153-184, 2003.

3. Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-owl: Contextualizing ontologies. In Proc. of the 2003
International Semantic Web Conference (ISWC 2003), 2003.

4. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artificial Intelligence 156(1):1-73, 2004.

5. P.F. Patel-Schneider, P. Hayes, and I.Horrocks. Web ontology language (owl) ab-
stract syntax and semantics. W3C Recommendation, 2004.

5 The word heterogeneous is used here to state that a certain ontology covers different
topics or domains

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 635–649, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Opening Up Magpie via Semantic Services

Martin Dzbor, Enrico Motta, and John Domingue

Knowledge Media Institute, The Open University, Milton Keynes, UK
{M.Dzbor, E.Motta, J.B.Domingue}@open.ac.uk

Abstract. Magpie is a suite of tools supporting a ‘zero-cost’ approach to se-
mantic web browsing: it avoids the need for manual annotation by automati-
cally associating an ontology-based semantic layer to web resources. An
important aspect of Magpie, which differentiates it from superficially similar
hypermedia systems, is that the association between items on a web page and
semantic concepts is not merely a mechanism for dynamic linking, but it is the
enabling condition for locating services and making them available to a user.
These services can be manually activated by a user (pull services), or opportu-
nistically triggered when the appropriate web entities are encountered during a
browsing session (push services). In this paper we analyze Magpie from the
perspective of building semantic web applications and we note that earlier im-
plementations did not fulfill the criterion of “open as to services”, which is a
key aspect of the emerging semantic web. For this reason, in the past twelve
months we have carried out a radical redesign of Magpie, resulting in a novel
architecture, which is open both with respect to ontologies and semantic web
services. This new architecture goes beyond the idea of merely providing sup-
port for semantic web browsing and can be seen as a software framework for
designing and implementing semantic web applications.

1 Introduction

Magpie [5-7] is a suite of tools supporting a ‘zero-cost’ approach to semantic web
browsing. It avoids the need for manual annotation by automatically associating an
ontology-based semantic layer to web resources. There are many ways to characterize
Magpie. One view, emphasized in earlier papers, is to consider Magpie as a tool sup-
porting the interpretation of web pages. Specifically, one can see the automatic rec-
ognition of entities in web pages and the linking of these entities to semantic concepts
as a way to bring an interpretative context to bear, which can help users in making
sense of the information presented in a web page. For instance, we are using Magpie
in a learning context to help students of a course in climate science in understanding
the vast mass of information about climate change that can be found on the web. In
such a context, using Magpie can be seen as adopting the viewpoint of an expert in
the field, and use this as an aid for navigating the web.

Another way to look at Magpie is as a semantic web browser. If we take this view,
then Magpie can be seen as providing an efficient way to integrate semantic and
‘standard’ (i.e., non-semantic) web browsing, through the automatic association of
semantics to web pages and the provision of user-interface support. This allows the

636 M. Dzbor, E. Motta, and J. Domingue

user to navigate the web using both semantic and hypertext links, and helps him/her to
invoke the services appropriate for a given class of ontological entities.

A third viewpoint we can use to characterize Magpie is as a framework for devel-
oping semantic web applications. According to this view, the Magpie suite of tools
can be seen as a ‘shell’ for building semantic web applications, which provides ge-
neric mechanisms for bringing together ontologies, web resources and (semantic) web
services. For instance, the climate science example mentioned above can be viewed as
a semantic web application, characterized by a number of ontology-based services,
which are made available to students opportunistically, when the ‘right web page’ is
encountered. The key feature of Magpie here is that it allows developers to focus on
the semantic functionalities, i.e., specifying and populating the ontology and defining
the services, with no need to identify, let alone annotate web resources.

Although the idea of Magpie as a framework for building semantic web applica-
tions has informed our research since the very beginning, the implementations de-
scribed in earlier papers fall somewhat short of realizing this vision. In particular, the
original Magpie architecture was open with regard to ontologies, but not with respect
to services, which had to be statically coupled with the ontology. In other words, they
had to be designed by a Magpie developer, much like in a ‘closed system’ scenario.
This approach goes against the vision of the web as an open architecture and more
importantly goes against the vision of the semantic web as an open web of interoper-
able applications [1], which can be opportunistically located and composed, either
manually (web services) or automatically (semantic web services).

For these reasons, in the past twelve months we have carried out a radical redesign
of Magpie, resulting in a novel architecture, which is open both with respect to on-
tologies and with respect to functionalities, the latter delivered through semantic web
services. This new architecture goes beyond the idea of providing support for seman-
tic web browsing and can be seen as software framework for designing and imple-
menting semantic web applications. Among other things, the new Magpie opens up
new communication modalities allowing bi-directional exchange of information
among services and users. This is crucial for going beyond the traditional ‘click&go’
modality of existing hypermedia systems, such as COHSE, and realizing the ‘seman-
tic web of applications’ vision described above.

In this paper we describe this new architecture for Magpie and we illustrate its
functionalities using the example of the Open University’s course on climate science,
which we mentioned earlier. The paper is structured as follows. In section 2 we illus-
trate the Magpie functionalities from an end user’s perspective. Section 3 describes
the new architecture in detail. In section 4 we elaborate the concept of “open publish-
ing”, further stressing its importance in the context of the semantic web. Finally, we
conclude the paper by reviewing related work in section 5, and by reiterating its key
contributions in section 6.

2 Magpie as a Resource Aggregator in Education

At The Open University, students enrolling in a level-one climatology course receive
printed and multimedia educational material. In addition, they are expected to use
web resources that are often complex scientific analyses and technical reports of cli-
mate scientists, as well as technical news stories related to the subject. Magpie facili-

Opening Up Magpie via Semantic Services 637

Fig. 1. A climate science related web page with Magpie plug-in highlighting concepts relevant
from the perspective of climatology course for a particular student. Menu shown in the center is
associated with the concept of ‘precipitation’.

tates a course-specific perspective on such texts. It enables students to relate the con-
tent of third-party documents to the relevant course concepts, materials, activities, and
knowledge they are expected to gain from studying the course.

Fig. 1 shows a student’s web browser with a web page describing stratospheric cir-
culation. This is a relevant but complex text, so the student interacts with it using the
Magpie plug-in. The web page1 is first annotated with several course-specific onto-
logical concepts by selecting some of the ontology-specific toolbar buttons. In this
course the student can annotate concepts in four scientific areas: Climatology, Mete-
orology, Physics, and Chemistry. Annotated and highlighted concepts become ‘hot-
spots’ to allow the user to request a menu with relevant functionalities for a relevant
item. In Fig. 1, the contextual right-click on the ‘precipitation’ reveals a menu of se-
mantic services. The choices depend on the ontological classification of a particular
concept in the selected ontology.

Our new, services-oriented framework supports composition of such semantic
menus from the services available for a particular ontology. These services can be in
principle implemented by different knowledge providers. For instance, service ‘Rele-
vant parts in S199’ is an internal index to the course material. On the contrary, the
‘Background reading’ service is provided by a different university that uses its own,
proprietary encyclopedia to provide contextually related reading on a particular con-
cept/topic. Yet another type of service is ‘Explain concept’. This is an aggregating

1 The original text is a property of NASA Goddard Institute for Space Studies, and the page

can be accessed at http://www.giss.nasa.gov/research/intro/koch_01/.

638 M. Dzbor, E. Motta, and J. Domingue

service using sophisticated ontology-based reasoning to combine chunks of textual
and visual knowledge explaining a particular concept. The combination is based on
having access to simpler services retrieving semantically annotated knowledge chunks
from several sources and appreciating their semantic ‘closeness’. Obviously, the de-
gree of sophistication of the services is independent of the Magpie architecture, which
considers all services as black boxes.

Thus, the ‘Explain concept’ service in Fig. 1 generates a textual explanation from
the course glossary, and attempts to attach a related image or scheme if this exists in
its repository of annotated materials (e.g. Fig. 2B). The answer as shown in Fig. 2A
does not explicitly exist in the course books, and indeed it is an interpretative view-
point of the selected ontology. It facilitates an expert’s view – as if a tutor was associ-
ating different materials together. Because the answer to a semantic query may be a
web resource in its own right, it can be further browsed or annotated semantically.
Here Magpie merges the independent mechanisms for recognizing semantic relevance
and browsing the resulting web resources.

Entirely different strategy is employed by the ‘Analysis of effects by IPCC’ service.
Unlike the services mentioned earlier, this focuses more on computing the answer
rather than linking to any relevant document. A sample response to invoking this se-
mantic service for concept ‘precipitation’ may look as shown in Fig. 2C.

The support Magpie provides for trigger services, is based on the ‘sub-
scribe&acquire’ rather than ‘click&go’ user-system interaction modality. Our dedi-
cated interfaces, called collectors, visualize the results of such services. For example,
the collector in Fig. 3 aggregates those concepts appearing in the web page that can be

Fig. 2. Results of the ‘Explain concept’ semantic query invoked for the ‘precipitation’ concept
by the semantic menu action depicted in Fig. 1. Window A shows a brief explanation drawing
on course glossary and a link to the associated image originating at a third-party site. The actual
image related to the concept based on its semantic proximity is in window B. Window C shows
a sample analysis relevant to the same concept by Intergovernmental Panel on Climate Change.

A

B

C

Opening Up Magpie via Semantic Services 639

modeled or visualized using the state-of-the-art climate model each student runs on
his/her computer. As shown in the figure, the list of collected items differs from the
highlighted concepts because the model is constrained to run a sub-set of possible
analyses. This alternative way of delivering information to the students might imple-
ment a tutor’s pedagogical goal of providing additional information to those students
who are interested in a deeper understanding of the topic. Magpie collectors also offer
a range of other functionalities, such as semantic bookmarking or browsing history
management. These are discussed in detail e.g. in [5].

This example presents Magpie as an application development framework for build-
ing semantic web applications. In this case, a course-specific ontology supports stu-
dents in making sense of information about climate science, independently of where
this information resides on the web. The application is built by selecting or construct-
ing the appropriate ontology and by defining the appropriate services. This example
highlights the desirability of an architecture open with respect to services, so that
more functionalities can be made available to students, using standard mechanisms
for interoperability on the web. This openness facilitates more focused approach to
using scarce resources, and enables better personalization. In the next section we look
at the backend infrastructure required to support openness with respect to services.

3 An Open Semantic Services Architecture

We now describe the architecture, which allows Magpie users to define, publish and
use their own semantic services (shown in Fig. 4). It uses an infrastructure we have
developed – IRS-II [13], which supports the publishing and invocation of semantic
services. IRS-II is based on the UPML framework [8], and therefore differentiates be-
tween tasks, problem solving methods (generic reasoners) and domain models. By dis-
tinguishing between tasks and problem solving methods we separate the activity of

Fig. 3. A simple trigger service aggregating all those concepts from a page, which could be fur-
ther investigated by the users. This ‘further investigation’ usually comprises a hands-on model-
ing exercise with their customized climate model (courtesy of the climateprediction.net project)
– see pointer . In addition to providing dedicated guidance, the trigger service also serves as a
semantic bookmarking tool remembering where particular concepts appeared (see pointer).

640 M. Dzbor, E. Motta, and J. Domingue

specifying and implementing semantic services (problem solving methods) from mak-
ing them available in a form that can be invoked in terms familiar to a user (tasks).

The Magpie architecture comprises a Service Provider and a Service Recipient.
These are briefly described in the next two sections.

Fig. 4. Schematic architecture of “open services” Magpie framework

3.1 Service Recipient Components

On the service recipient side the framework features: the Magpie Browser Extension
(of Internet Explorer), the Magpie Client-Side Service Dispatcher, and Trigger Ser-
vice Interfaces. The Magpie Browser Extension has already been described in detail
in earlier papers [5, 7], and therefore does not need to be discussed again. In a nutshell
it provides the basic Magpie functionality, by automatically matching items in a web
page to items in the selected ontology and by allowing users to bring up a menu of
services contextualized for ontological concepts.

The Magpie Client-Side Service Dispatcher acts as a dedicated service proxy for
the user. It manages the communication between the Browser Extension and the ser-
vice dispatcher embedded in the Magpie server. The Dispatcher delivers both user re-
quests and the responses from providers, using customized XML messages, e.g. to be
used by collectors. These are a form of Magpie Trigger Service Interfaces, which are
able to visualize the data pushed by the specific trigger services a user subscribes to.

Trigger services are an important innovation in the Magpie infrastructure. Unlike
contextual, menu-based services, trigger services are activated based on patterns and
relations among concepts recognized in the page and automatically asserted in a se-
mantic log. The subscription system allows the user to filter only ‘useful’ items to be
collected. Since a lot of spam is due to ‘pushing’ unsolicited content to the users, the
principle of trigger services is different. They are not designed for ‘blanket coverage’

Opening Up Magpie via Semantic Services 641

of all users browsing a particular page. They are selected and activated by the user
and only push information to him/her when a specific pattern emerges on the page.

The Client-Side Service Dispatcher handles the interactions between the user, the
Magpie-enabled browser and the Magpie service providers. In principle, it is an alter-
native to the GET/POST requests available for standard hypermedia. Although Mag-
pie supports such requests, a growing number of services are available in formats not
suitable for integration with a standard web browser, and for this reason the Magpie
architecture supports a more generic approach to service mediation.

In particular, the Magpie dispatcher acts on behalf of the user and can be identified
as such. Hence, it is possible to communicate service requests/responses asynchro-
nously. This is an important extension of standard hypermedia protocol, which as-
sumes synchronous interactions. This capability is also critical for supporting trigger
services or generally, semantically-filtered ‘pushed content’. Such a two-way commu-
nication is not possible in standard HTTP-based hypermedia systems.

The support for asynchronous interaction between the client and the server makes
the Magpie architecture extremely flexible. For instance, trigger messages may be re-
directed to a more appropriate user interface than a standard web browser (e.g. a
graphic visualization widget). The possibility of bi-directional information exchange
is also useful to support negotiation. For instance, different degrees of response
granularity may be available, or ontologies may be stored in different formats. Our
dispatchers may make it possible for the user to customize the ontology used for in-
terpreting the web pages; e.g. by selecting “a relevant sub-set” of an extensive domain
model.

3.2 Service Provider Components

A number of components on the service provider side manage value-added function-
alities such as semantic logging, the association of semantic services with ontological
classes, and reasoning for trigger services. Two criteria important for designing this
“back-office support” for semantic enrichment of web browsing in Magpie are:

• Open as to the definition of new semantic services, which may use an existing
ontology and a require access to the semantic log, and

• Allowing users to customize how the output of a service is rendered.

The rationale for these criteria is similar to that of the envisaged Semantic Web [1].
Rather than authors hard-wiring the relationships into the content of web resources,
the users are allowed to (re-)use data and services, and adapt them to different con-
texts. Our Magpie service manager caters for authors publishing new services, and for
users selecting or subscribing to a particular set of services. Since Magpie relies on
ontologies for associating services with web content, the authors have to publish se-
mantic descriptions of their services. In other words, given the ontology-centric nature
of Magpie, a key requirement here is to integrate Magpie with an architecture for se-
mantic web services, rather with standard (i.e., non-semantic) web services.

As already mentioned, we have fulfilled this requirement by integrating Magpie
with the IRS-II architecture [13], and the Magpie service manager uses the IRS-II
framework to handle the subscriptions of individual users to individual services. The
service manager also communicates with the IRS broker, whose job is to locate the
appropriate web service when a request is made to achieve a task.

642 M. Dzbor, E. Motta, and J. Domingue

Conceptually, the integration between Magpie and the IRS is achieved by defining
a top-level Magpie task, which takes as input an ontological identifier of a concept,
various related arguments and a choice of a visual renderer specifying the desirable
output format (typically HTML). Specific semantic services inherit from this generic
task, and extend it with specific input or output roles (e.g., the semantic service ‘Ex-
plain concept’ described in section 2 takes a concept from a specific category as input
and a textual definition or a pair of textual/graphical definitions as its output).

In IRS-II a task can be handled by one or more problem-solving methods (PSMs).
PSMs are the knowledge-level descriptions of code for reasoning with particular input
roles as specified by the task definition. PSMs tackle a particular task, and introduce a
system of pre-conditions (e.g. an argument supplied mustn’t be a ‘Physics’ or ‘Chem-
istry’ concept), and post-conditions (e.g. show graphics if available). While PSMs are
crucial for reasoning, the end-user only interacts at the task level – thus specifying
what needs to be achieved rather than how to achieve it. The IRS-II framework sup-
ports different modes of service publishing and invocation, as well as other emerging
standards such as WSDL [13]. Regardless of the publication, IRS-II generates a
unique “access URI” where the web service can be invoked. These URIs are then
used in Magpie to achieve a particular task when a user right-clicks a particular ‘hot-
spot’ item in a web page.

4 Defining Magpie Semantic Services

The process of manual definition of semantic services for different ontologies by the
knowledge engineer is not feasible on a larger scale. We argued in section 3.2 that the
publication procedure has to be open. Before describing the technical details of defin-
ing semantic services using the web services framework, we re-consider the educa-
tional example from section 2 to highlight key benefits for the end-user.

4.1 Benefits of Open Services Architecture

Magpie shows the on-demand services menu whenever the mouse hovers over a rec-
ognized entity. This menu is context-dependent, but so-far, we have used a one-size-
fits-all semantic context defined by the membership of a particular entity to a particu-
lar ontological class. The class membership is defined in the ontology, and is essen-
tially the same for all users subscribing to a particular ontology. This acknowledges a
certain degree of commonality of purpose among the subscribers, but it is a rather su-
perficial commonality. For example, if a tutor decides to divide the students into
‘standard’ and ‘advanced’ learners, Magpie should reflect this pedagogic strategy by
offering suitable services to the sub-groups of students based on the tutor’s choice.

Another issue concerns the development of such educational resources. Institutions
accelerate their course production and update procedures, but with printed materials
this may still take some time. In Magpie framework, new semantic services for stu-
dents could be developed and updated continuously. Because of the nature of the
framework, new services are accessible to the end users (students) with ‘near-zero’
delay since their development.

Opening Up Magpie via Semantic Services 643

4.2 Defining Magpie Tasks

The generic Magpie framework comes with core ontologies that define a) a basic do-
main ontology of items such as ‘Thing’ and ‘HTML’, b) a task ontology defining the
top-level Magpie task, and c) a basic PSM ontology of default Magpie services (e.g.
rendering HTML and XML-based output). The magpie-generic-request-task is a top-
level, generic description taking three inputs: user’s identity (UID), ontological con-
cept identifier (OID), and rendering. Its output has to be a result that complies with
the rendering provided as an input argument, and it can be in form of RDF, HTML or
a generic list. Specific Magpie tasks inherit from this generic request task.

Fig. 5. Schematic task description for Magpie service ‘Explain concept’ in IRS-II

A task description for the service ‘Explain concept’ containing optional graphics
(from section 2) is shown in Fig. 5. Marker ‘ ’ highlights parts that re-define the ge-
neric task; e.g. restricting the concept OID to be an instance of Climatology or Mete-
orology classes. These classes come from a specific, climate course reference
ontology. Hence, the ‘Explain concept’ task is defined in an ontology that inherits
from both a generic ontology of Magpie tasks and from the course ontology.

The definition of the magpie-explain-thing-task contains two extra slots (see markers
‘ ’): has-pretty-name labels the task in the displayed semantic menu, and has-goal-
expression plays two roles. Firstly, it specifies what the task does for a human reader.
Secondly, the expression enables knowledge-level reasoning about the task for the
purposes of automatic service location or composition.

4.3 Defining Magpie PSMs

Having described what a particular task can do for a particular ontology, the semantic
web application developer describes the actual methods tackling it. Fig. 6 shows a
PSM description, which looks similar to that of a task. The main difference is that the
developer defines different PSMs to implement a particular task for different types of
input. For instance, let’s assume that we have already defined a generic (empty) PSM
for the ‘Explain concept’ service, and now want to narrow it for the class ‘Climatol-
ogy’. Constraining a PSM for a particular class means introducing an additional appli-
cability condition (the input has to be a Climatology concept) that must be satisfied

magpie-explain thing-task (magpie-generic-request-task)
 input roles: has_oid // task is invoked for a given item
 has_user // task is invoked by a given user
 has_rendering // result rendered as …

 output role: has_result // the result of the service

 constraints: type-of (has_oid) = (or Climatology Meteorology Physics Chemistry)
 cardinality (has_oid) = 1
 value (has-pretty-name) = “Explain concept”

 has-goal-expression: value = (kappa (?task ?sol)
 (= ?sol (magpie-render-function (role-value ?task has-rendering)
 (request-explain-thing-function (role-value ?task has-oid)))))

644 M. Dzbor, E. Motta, and J. Domingue

before invoking this method. This condition semantically annotates the code that im-
plements it and makes it applicable only to this class. In practice this may mean that
different providers can handle different categories of data using mutually incompati-
ble approaches or techniques. Our PSMs take this fully into account.

Fig. 6. PSM description for Magpie service tackling the task ‘Explain concept’ (see Fig. 5) for
the ‘Climatology’ class (category)

Applicability conditions enable the broker to select from several PSMs tackling the
same task. There may be several distinct descriptions (e.g. with or without graphical
explanation), but the user needs to refer to a single task (‘Explain concept’). The ser-
vice manager can invoke a specific PSM and its implementation depending on the
type of the submitted argument or user preference. This also explains why semantic
menus for different categories may use the same label to identify a service (task) that
delivers different functionality in a different context (through different PSMs).

4.4 Publishing and Invoking Magpie Services

The final step is to write a snippet of code in Java (for example), and to make it avail-
able by publishing it via IRS-II. Publishing is explained in [13]; here it suffices to say
that it essentially means creating wrappers turning a piece of proprietary code into a
web service and associating that service with an appropriate PSM. The associations
are stored in a registry, which is referred to whenever a user makes a request to
achieve a particular task with a particular set of arguments. The IRS-II takes care of
invoking the appropriate service provider code, passing the necessary arguments, and
processing the results.

All the activities described so-far were done by service or semantic web applica-
tion developers – outside of the Magpie end user scope of attention. The implications
of such a standard means of publishing services for the end user are in the simplifica-
tion of the entire interaction. Once the user decides which classes in the selected on-
tology he/she is interested in, the Magpie plug-in uses the Dispatcher to request the
semantic services applicable to each chosen class. The generator of semantic menus is
itself a service that takes a (top-level) class name as an input, and sends back a list of
URIs to invoke applicable tasks. The generator takes all tasks published for a particu-
lar ontology, where at least one argument matches a given class; i.e. the input type is
either the given class or is a subclass of the given class. Each service is rendered as a
pair pretty-name, URI ; for example (the ‘XXXN’ replaces the actual values):

Explain concept
http://irsserver:3000/achieve-task?ontology=climateprediction-kb& task=request-
explain-thing-task&has_oid=XXX1& has_user=XXX2 & has_rendering=XXX3

magpie-explain-climatology-provider (magpie-explain-thing-provider)
 tackles-task: magpie-explain-thing-task
 has-applicability-condition: (kappa (?p)
 (climatology-category (role-value ?p has-oid)))

Opening Up Magpie via Semantic Services 645

The actual execution of a particular service from a semantic services menu in a
Magpie-enabled web browser invokes the task behind the ‘pretty label’ (through
URI). The benefit to the user is the task-based reference to semantic services. Instead
of knowing (and labeling) the individual methods, the user refers to a particular func-
tionality using a single label, regardless of the context. This reduces the maintenance
overhead. New variations of a service for different contexts can be added without
changing the structure of the displayed menus; the implementation or location of an
individual service can be changed transparently.

4.5 Specifics of Trigger Services

Magpie trigger services can be defined following the same procedure as for the on-
demand services (described in previous sections). However, there is one major differ-
ence; a generic ‘trigger task’ has no particular concept (OID) as its input. It does not
make sense for a trigger service to invoke it for a single specific item (e.g., ‘airmass’).
An access to regularly updated semantic log, which resides on one of the central
Magpie servers, is required instead. Since services (including trigger ones) can be de-
fined by anyone, and may be distributed, there is a problem in accessing the central
semantic log. This cannot be replicated because of security issues, and for this reason,
each trigger service needs to monitor it for a particular (approved) pattern.

As a result, both the task and PSM definitions of trigger services use a simple ex-
tension to the standard service specification mechanism. First, the author declares that
a particular trigger name is associated with a particular pattern. The pattern is then
typically defined in terms of applicable antecedents for an ‘IF…THEN…’ rule. For
example, a trigger may generate experiment guidelines to investigate concepts found
in a web page (for which some guideline exists). The pattern would look like this:

(and (climatology-category ?X) (has-link-to ?X ?Y) (experiment-guide ?Y))
The author then associates a task invocation with the pattern. The actual implemen-

tation of the trigger task calls a central, shared service monitoring the semantic log
with this specific pattern as one of the arguments. In other words, once a user registers
with a particular trigger task, the respective pattern is forwarded to the semantic log
monitor, where it is applied whenever the log is updated. Otherwise, the trigger task
behaves as a standard service; it takes the asserted data as an input and distributes an
alert to all those users who subscribed to the trigger. An example of how this trigger
functionality has been used to facilitate team collaboration is discussed in [6].

5 Related Work

A tool that functionally resembles Magpie is the KIM plug-in for Internet Explorer
[14]. Knowledge and Information Management (KIM) is a platform for automatic
semantic annotation, web page indexing and retrieval. As Magpie, it uses named enti-
ties as a foundation for document semantics, and assigns ontological definitions to the
entities in the text. The platform uses a massive populated ontology of common ‘up-
per-level’ concepts (e.g. locations, dates, organizations or money) and their instances.

646 M. Dzbor, E. Motta, and J. Domingue

Unlike Magpie, KIM is based on the GATE platform [4] but it extends its flat NER
rules with ontological hierarchies. The entities are recognized by the KIM proxy, and
in parallel they are associated with respective instances in the ontology. GATE sup-
ports the recognition of acronyms, incomplete names and co-references thus enabling
KIM to work with both already-known and new named entities.

Magpie differs from KIM in a number of respects. While KIM is coupled with a
specific, large knowledge base, Magpie is open with respect to ontologies, allowing
users to select a particular semantic viewpoint and use this to enrich the browsing ex-
perience. Another important difference is that while KIM is very much steeped in the
classic ‘click&go’ hypermedia paradigm, Magpie is open with respect to services, as
discussed in this paper. Hence, as already pointed out Magpie goes beyond KIM in
the direction of providing a framework for building semantic web applications, rather
than simply supporting semantic annotation and semantic web browsing.

Magpie also differs from ‘free-text’ document annotation tools [9, 10] by
intertwining entity recognition, annotation and ontological reasoning. Annotation
using ontological lexicons outperforms ‘free-text’ annotations in terms of >90-95%
recall rate and similar precision for in-domain resources. Yet, free-hand annotations
are useful for ad-hoc, personal, customized interpretation of the web resources.
Magpie does not currently support manual semantic annotation, which is a limitation.
To address this issue we will shortly begin work on integrating Magpie with MnM, a
semantic annotation framework developed at the Knowledge Media Institute [16].

From user interface adaptability perspective Magpie is relevant to projects such as
Letizia [11] with its reconnaissance agents. This type of agent “looks ahead of the
user on the links on the current web page”. Such pre-filtering may use semantic
knowledge to improve the relevance and usefulness of browsing. Magpie implements
functionality similar to that of Letizia (“logged entities reconnaissance”) through se-
mantic logging and trigger services, and thus provides a more general and flexible
framework for implementing push services, than the one provided by Letizia.

Another system superficially similar to Magpie is COHSE, which implements an
open hypermedia approach [2]. The similarity between the two systems is due to the
fact that (at a basic level of analysis) both work with web resources and use similar
user interaction paradigms (‘click&go’). However, beyond the superficial similarity
there are very major differences between these two systems. The main goal of
COHSE is to provide dynamic linking between documents – i.e., the basic unit of in-
formation for COHSE is a document. Dynamic linking is achieved by using the on-
tology as a mediator between terms appearing in two different documents. COHSE
uses a hypertext paradigm to cross-link documents through static and dynamic an-
chors. In contrast with COHSE, Magpie is not about linking documents.

As emphasized in the introduction, there are three ways we can look at Magpie: as
a way to support semantic web browsing, as a tool to support interpretation of web re-
sources through ‘ontological lenses’ and as a framework for building semantic web
applications. In particular, if we take the latter perspective, Magpie goes beyond the
notion of hypermedia systems, by providing a platform for integrating semantic ser-
vices into the browsing experience, both in pull and push modalities. In a nutshell,
Magpie uses a different paradigm. It views web as a knowledge-based servicing of
various user needs. Using Magpie’s “web as computation” paradigm, we not only
provide information about one concept, but can easily offer knowledge dependent on
N-ary relationships among concepts. This is impossible in any hypermedia system –

Opening Up Magpie via Semantic Services 647

one can’t use one click to follow multiple anchors simultaneously, and reach a single
target document or a piece of knowledge.

Moreover, Magpie supports the publishing of new services without altering the
servers or the plug-in. Service publishing leaves the users in control by allowing them
to subscribe to selected services. It also makes the development of a semantically rich
application more modular; thus cheaper and easier for domain experts rather than
knowledge engineers. This is more powerful than the mechanisms used by open hy-
permedia systems, which are largely based on the “editorial choice of links”. Magpie
explores the actual knowledge space as contrasted with navigating through hypertext
as one of its explicit manifestations. Mere link following (in open or closed hyperme-
dia) is not sufficient to facilitate document interpretation. We complement the famil-
iar ‘click&go’ model by two new models: (i) ‘publish&subscribe’ (for services) and
(ii) ‘subscribe&acquire’ (for data and knowledge).

To conclude we want to note a growing recognition by the research community of
the need to make the semantic web accessible to “ordinary” users. Two approaches
follow similar, lightweight and near-zero overhead principles as Magpie; albeit for
different purposes. The authors of Haystack [15] and Mangrove [12] argue that the
major issue with Semantic Web is the gap between the power of authoring languages
such as RDF(S) or OWL and sheer simplicity of HTML. In response to this concern,
Magpie separates the presentation of semantic knowledge, service authoring, and pub-
lishing from the underlying knowledge-level reasoning mechanisms.

6 Concluding Remarks

In this paper we described the Magpie framework focusing on how semantic services
can be deployed and used in an open fashion. Magpie is an open architecture in re-
spect to the technological infrastructure; it is not bound to a single ‘services standard’.
The separation of the user interface from a ‘thin communication client’, the Client-
Side Service Dispatcher, offers several benefits, and enables us to implement dynami-
cally defined/updated on-demand and trigger services. By combining semantic web,
browsing technologies and semantic web services we created an open framework that
maximizes flexibility. A Magpie user is free to select both the overall viewpoint, cap-
tured within an ontology, and the associated services. Semantic web application de-
velopers are free to customize and extend the available services including a number of
core Magpie services such as the NER and lexicon generation.

As we showed in our example, Magpie enables lay members of the public to ex-
plore rich scientific resources (such as climatology and climate prediction, for exam-
ple). Thus, the semantic browsing capabilities of Magpie may serve as an enabling
technology for the increased public understanding of science. In the past papers, we
presented Magpie as a tool for browsing the Semantic Web. However, as Tim Bern-
ers-Lee argues: “Semantic Web is about integration of resources rather than brows-
ing.”2. Leaving aside the philosophical issue of what constitutes “the semantic web
browser”, the extended Magpie framework can be seen as a display integrating
knowledge resources distributed throughout the Semantic Web. Web services offer

2 Quote from Tim Berners-Lee’s keynote speech delivered at the 2nd International Semantic

Web Conference, Sanibel Island, Florida, US, October 2003.

648 M. Dzbor, E. Motta, and J. Domingue

small, easier to maintain modules of a larger semantic web application, could be au-
thored independently, and stored as a distributed system.

Whether the Semantic Web is about browsing, computation or integration, the
main contribution of our research is in allowing users to browse the standard Web
whilst utilizing the concepts and relationships captured within a selected ontology.
The semantic services (whether on-demand or triggered) that are offered through the
Magpie framework enhance web interoperability and user interaction with knowl-
edge. Magpie plug-in acts more as an end-user interface for accessing and interacting
with the distributed semantic web services rather than a mere “web browser”.

For the future, a number of issues remain open. As mentioned earlier, we want to
integrate Magpie with a framework for semantic annotation [16], to allow seamless
integration of browsing, service invocation and annotation. This would enable the us-
ers to extend and/or customize the existing ontological commitments. We are also
working on more powerful named entity recognition mechanisms, both ontology-
based and general-purpose (such as GATE [4]). Finally, we are working on a set of
support tools that would enable web developers to publish their applications for the
Magpie users quickly and simply. This is critical in order to reduce the development
time for any subsequent applications of our framework.

Once this publishing facility is in place, a comprehensive usability study needs to
be performed to back our assumptions and design principles. Nonetheless, our initial
experiments with tools supporting the application developers seem to support our ex-
perience-driven requirement for reducing the complexity of interacting with semantic
web services. Magpie is clearly geared towards high recall/precision annotation within
a specific domain. Early evidence suggests there is a benefit for naïve users and nov-
ices in interacting with the domain knowledge in such a constrained way. However, to
measure the value-added of Magpie more objective usability study is planned.

Acknowledgments. The Magpie effort is supported by the climateprediction.net and
the Advanced Knowledge Technologies (AKT) projects. Climateprediction.net is
sponsored by the UK Natural Environment Research Council and UK Department of
Trade e-Science Initiative, and involves Oxford University, CLRC Rutherford Apple-
ton Labs and The Open University. AKT is an Interdisciplinary Research Collabora-
tion (IRC) sponsored by the UK Engineering and Physical Sciences Research Council
by grant no. GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen,
Edinburgh, Sheffield, Southampton and The Open University.

References

[1] Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web. Scientific American,
2001. 279(5): p.34-43.

[2] Carr, L., Bechhofer, S., Goble, C., et al. Conceptual Linking: Ontology-based Open Hy-
permedia. In Proc. of the 10th Intl. WWW Conf. 2001. Hong-Kong.

[3] Ciravegna, F., Chapman, S., Dingli, A., et al. Learning to Harvest Information for the
Semantic Web. In 1st European Semantic Web Symposium. 2004. Greece.

Opening Up Magpie via Semantic Services 649

[4] Cunningham, H., Maynard, D., Bontcheva, K., et al. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. In Proc. of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL). 2002.
Pennsylvania, US.

[5] Domingue, J., Dzbor, M., and Motta, E. Magpie: Supporting Browsing and Navigation on
the Semantic Web. In Proc. of the Intelligent User Interfaces Conf. (IUI). 2004. Portugal.

[6] Domingue, J., Dzbor, M., and Motta, E. Collaborative Semantic Web Browsing with
Magpie. In 1st European Semantic Web Symposium. 2004. Greece.

[7] Dzbor, M., Domingue, J., and Motta, E. Magpie: Towards a Semantic Web Browser. In
Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[8] Fensel, D. and Motta, E., Structured Development of Problem Solving Methods. IEEE
Transactions on Knowledge and Data Engineering, 2001. 13(6): p.913-932

[9] Handschuh, S., Staab, S., and Maedche, A. CREAM - Creating relational metadata with a
component-based, ontology driven annotation framework. In Intl. Semantic Web Working
Symposium (SWWS). 2001. California, USA.

[10] Kahan, J., Koivunen, M.-R., Prud'Hommeaux, E., et al. Annotea: An Open RDF Infra-
structure for Shared Web Annotations. In Proc. of the 10th Intl. WWW Conf. 2001. Hong-
Kong.

[11] Lieberman, H., Fry, C., and Weitzman, L., Exploring the web with reconnaissance
Agents. Comm. of the ACM, 2001. 44(8): p.69-75.

[12] McDowell, L., Etzioni, O., Gribble, S.D., et al. Mangrove: Enticing Ordinary People
onto the Semantic Web via Instant Gratification. In Proc. of the 2nd Intl. Semantic Web
Conf. 2003. Florida, USA.

[13] Motta, E., Domingue, J., Cabral, L., et al. IRS-II: A Framework and Infrastructure for
Semantic Web Services. In Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[14] Popov, B., Kiryakov, A., Kirilov, A., et al. KIM - Semantic Annotation Platform. In Proc.
of the 2nd Intl. Semantic Web Conf. 2003. Florida, USA.

[15] Quan, D., Huynh, D., and Karger, D.R. Haystack: A Platform for Authoring End User
Semantic Web Applications. In Proc. of the 2nd Intl. Semantic Web Conf. 2003. Florida,
USA.

[16] Vargas-Vera, M., Motta, E., Domingue, J., et al. MnM: Ontology Driven Semi-automatic
and Automatic Support for Semantic Markup. In Proc. of the 13th European Knowledge
Acquisition Workshop (EKAW). 2002. Spain.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 650–667, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards a Symptom Ontology for
Semantic Web Applications

Kenneth Baclawski1, Christopher J. Matheus2, Mieczyslaw M. Kokar1,
 Jerzy Letkowski3, and Paul A. Kogut4

1 Northeastern University
2 Versatile Information Systems, Inc.

3 Western New England College
4 Lockheed Martin

Abstract. As the use of Semantic Web ontologies continues to expand there is a
growing need for tools that can validate ontological consistency and provide
guidance in the correction of detected defects and errors. A number of tools
already exist as evidenced by the ten systems participating in the W3C’s
evaluation of the OWL Test Cases. For the most part, these first generation
tools focus on experimental approaches to consistency checking, while minimal
attention is paid to how the results will be used or how the systems might
interoperate. For this reason very few of these systems produce results in a
machine-readable format (for example as OWL annotations) and there is no
shared notion across the tools of how to identify and describe what it is that
makes a specific ontology or annotation inconsistent. In this paper we propose
the development of a Symptom Ontology for the Semantic Web that would
serve as a common language for identifying and describing semantic errors and
warnings that may be indicative of inconsistencies in ontologies and
annotations; we refer to such errors and warnings as symptoms. We offer the
symptom ontology currently used by the ConsVISor consistency-checking tool,
as the starting point for a discussion on the desirable characteristics of such an
ontology. Included among these characteristics are 1) a hierarchy of common
symptoms, 2) clear associations between specific symptoms and the axioms of
the languages they violate and 3) a means for relating individual symptoms
back to the specific constructs in the input file(s) through which they were
implicated. We conclude with aa number of suggestions for future directions of
this work including its extension to syntactic symptoms.

1 Introduction

As the Semantic Web initiative and the use of the Web Ontology Language (OWL)
[1] continue to develop and grow in popularity, there will be an increasing need for
ways to validate ontological consistency and provide guidance in the correction of
defects and errors in OWL documents. Even with relatively simple OWL documents,
identifying inconsistencies within their XML markup can be a major challenge
beyond the capabilities of most writers of ontologies and annotations. Fortunately,
formal and heuristic techniques exist for automatically detecting certain types of
inconsistencies, and several tools, called “validators” or “consistency checkers”,
already provide some limited capabilities. The W3C’s OWL Test Results page [2]
shows nine systems capable of detecting at least some forms of inconsistencies within

Towards a Symptom Ontology for Semantic Web Applications 651

OWL documents; additional tools with consistency-checking capabilities can be
found in [3] and at [4]. As automated consistency-checking techniques continue to
mature they will eventually become an integral part of most if not all OWL tools and
application development suites. Given the formative stage of these tools, now is the
time to consider how they might evolve and explore ways of fostering their ultimate
effectiveness and interoperability with other tools.
 In this paper we focus on the nature of the output of consistency-checking tools,
both in terms of what they are like now and what they might be in the future. In
particular we are concerned with the format and content of the output reports these
tools generate, which currently vary widely in the inconsistencies they identify, the
identification and description of the detected symptoms of the inconsistencies and the
format in which the results are delivered. We begin by reviewing the content and
format of the results returned by several existing tools and argue that the lack of a
consistent and well-grounded (semantically speaking) approach to the representation
of results makes these tools difficult to use, especially by automated programs
intended to leverage the results of one or more of them. The situation as it currently
exists seems to be begging for the development of a common, shared ontology for
describing the symptoms of the inconsistencies discovered in OWL documents. As an
example of how such an ontology might work, we present the symptom ontology used
by ConsVISor [5], the authors’ consistency-checking tool, and offer it as an initial
step towards the establishment of a symptom ontology for Semantic Web
applications. In closing we discuss the strengths and limitations of this nascent
ontology along with making a number of suggestions for future improvements and
extensions.

2 Review of Existing Consistency Reports

We have analyzed the output from several freely available consistency-checking tools
but for this paper we limit attention to the following five: ConsVISor [6], Euler [7],
FOWL [8], Pellet [9] and vOWLidator [10]. The first four of these systems
participated in the W3C OWL Test Cases demonstration [2] and either provided links
to their full output reports for each test or they were available as Web services from
which their results could be easily obtained. The fifth system was included due to its
early popularity as a DAML+OIL [11] (the predecessor to OWL) validation tool and
because it exhibits some desirable characteristics worth noting. For the sake of
comparing the various outputs, we used just one of the W3C’s DL inconsistency test
cases (DL 109) to produce the sample output reports that appear in Figures 1-5.
 Many consistency-checking tools also perform syntax checking. As defined in the
OWL standard, a syntax checker makes a determination of the language level of the
OWL document being examined. A consistency checker makes no such
determination: the OWL language level must be explicitly asserted by the user.
Because many tools perform both functions, the distinction between these two types
of tools is often blurred. In this paper we consider only consistency checkers.
 In our analysis, we were not as concerned with the correctness of the results as we
were with the general nature of the content and format of the reports. On the chosen
test case all of the first four systems correctly identified the document as being
inconsistent; the fifth system was unable to perform a consistency test due to an error

652 K. Baclawski et al.

Fig. 1. ConsVISor Sample Output Report (condensed HTML version)

produced by the parser it happens to use. Of greater interest to us were the answers to
three simple questions.
1. What language does the tool use to format its output? In other words, is the output

report written in plain text, structured HTML, RDF, OWL or some non-standard
language? The answer to this question conveys a lot about how easy it is to
automatically process the results with other programs. It also identifies whether
there is a well-defined semantics for interpreting the results. While natural
language output can be very useful when humans are reading the output of a tool,
it is of little use for automated processing. In this paper we focus on the extent to
which these tools produce output that can processed automatically, and we do not
comment on how readable the output might be to a human reader. We also do not
speculate on whether one might be able to interact with a tool on the source code
level (such as via some API).

2. Did the tool identify specific symptoms of the inconsistencies within the
document? This question is not about whether the tool correctly identified the
presence of one or more inconsistencies (i.e., that it responded “Inconsistent”
or “Consistent”) but rather whether the specific nature of the inconsistencies
was identified; just knowing that a document is inconsistent is not as helpful as
knowing why. In the ideal case a tool would associate each symptom of an
inconsistency with the specific axiom or axioms of the ontology language (i.e.,
OWL Lite, OWL DL, OWL Full) that were violated.

3. How useful to the document’s author is the output report in identifying and
helping to correct the cause(s) of the inconsistency(s)? Being told that a complex
document violates a specific OWL axiom will not necessarily provide sufficient
information for the author to locate and correct the error, even if she is a highly
skilled ontologist. Ideally a tool will, when possible, indicate the line number and
character position of the symptom(s) indicative of the underlying inconsistencies.

Towards a Symptom Ontology for Semantic Web Applications 653

Fig. 2. Euler Sample Output Report (condensed)

 Table 1 provides a summary of the answers to the three questions for the five
analyzed systems. The intent of this table is not to pass judgment on particular
systems but to indicate the disparate nature of the output of current systems. In the
following subsections we discuss each of our three questions and their answers in
more detail. In the fourth subsection we describe the differences between statements
made by some of the systems pertaining to errors, warnings, information and fatal
failures, some of which go beyond the mere identification of symptoms of
inconsistencies.

Table 1. Summary of Answers to Three Questions

System Output Language Axiom Violations Ided Location
ConsVISor HTML or OWL Yes yes, if possible

Euler non-standard difficult to determine no
FOWL non-standard difficult to determine no

Pellet text (html markup) No no
vOWLidator structured HTML Sometimes no

2.1 Question 1: Output Language

The W3C OWL test results show that in the case of the set of all inconsistency tests
no single participating system is currently capable of detecting every inconsistency
across all language species (i.e., Full, DL, Lite). This is not very surprising given that
the tools employ different techniques for detecting inconsistencies and many of them
are still in the early stages of development. Moreover, because OWL Full is undecid-
able, it is impossible for a single tool to detect every possible inconsistency. These
observations, however, suggest that one should run an OWL document through more
than one of these systems. It is fair to say that writing a program to automatically

654 K. Baclawski et al.

Fig. 3. FOWL Sample Output Report

run all five systems (or even some reasonable subset) on a given OWL document and
then combine the results into a meaningful summary would be challenging. Even if
one succeeded in creating such a program it would require tweaking whenever any of
the tool authors changed the output representation of their systems or when new, more
powerful systems come along, each having its own unique output format. Of the 5
consistency checkers surveyed, only one (ConsVISor) can produce ontologically-
based output, and only one other tool (vOWLidator) can produce well structured
output.
 If the intent is to be able to have consistency-checking tools that can interoperate
with other tools or amongst themselves, then it is paramount that these systems at
least provide the option for outputting their results in an ontology language such as
OWL. Once this conclusion is accepted it becomes necessary to consider what should
belong in the ontology created for this purpose. Before addressing this issue,
however, there are two additional factors we would like to consider regarding the
nature of the output of consistency-checking tool.

Fig. 4. Pellet Sample Output Report

Towards a Symptom Ontology for Semantic Web Applications 655

2.2 Question 2: Axiom Violation

The guidelines provided with the W3C OWL Test Cases specify that a consistency-
checking tool “takes a document as input and returns one word being Consistent,
Inconsistent, or Unknown” [12]. This approach is fine if all you wish to know is
whether an ontology is consistent or not. A Semantic Web browser, for example, may
only need this level of feedback from a consistency checker in order to determine
whether or not it should attempt to render a document; if the checker returns
Inconsistent the browser can simply refuse to process it further. If, on the other
hand, you are an author needing to produce a consistent document, having a tool that
simply tells you your document is Inconsistent is not very helpful; rather, you
would like to receive some indication of what it is about your document that makes it
inconsistent.

Fig. 5. vOWLidator Sample Output Report

 So what makes an OWL document inconsistent? An OWL document is
inconsistent if there is no interpretation for the RDF graph defined by the document’s
triples [13]. An interpretation exists if and only if there are no contradictions in the set
of triples consisting of the document triples plus all of the derived triples entailed by
the axioms of the OWL language. In theory, if a consistency checker discovers a
contradiction in this set of triples it should be possible to trace the contradiction to a
specific violation or violations of the OWL language semantics specified in [13].
Ideally, a consistency-checking tool should describe the detected symptoms of
inconsistencies in terms of the specific language axioms that are violated. By doing so
it provides a means for verifying that the tool “understands” what it is talking about.
In other words, if a tool can state why it believes there is an inconsistency we have a
means for determining whether it is correct. We currently have no systematic way of
knowing if the reasoning behind the Consistent and Inconsistent responses we
get from the tools is sound. What we need is an agreed upon approach for how tools
indicate the axiom violations they detect – yet another reason for the creation of a
common symptom ontology.

656 K. Baclawski et al.

2.3 Question 3: Symptom Location

In addition to identifying the nature of a violation, an ideal consistency checker would
indicate the precise location and nature of the “bug” or “bugs” discovered in an OWL
document. For example, the tool might tell you that “in the Ontology element you
forgot to include an import for the XYZ ontology” or “you mistyped the name of the
resource at line 10 character position 5”. Unfortunately the precise identification of
the underlying cause or causes of an inconsistency, let alone its location, is often not
possible. This situation can result from limitations in the methods these tools use to
detect inconsistencies, but it can also be due to the fact that it is frequently impossible
to determine the original intentions of the author. In either case what these first
generation tools usually detect are “symptoms” of problems rather than the problems
themselves, and in many cases a single problem can lead to multiple symptoms. It can
be very confusing to receive tens of messages from a consistency checker about an
undefined resource and yet receive no mention of the construct causing the error
itself, such as a typo in the id of the element where the resource was supposedly
defined. This is a problem not yet addressed by any existing tool and so for the time
being we will need to be content with identifying and locating symptoms rather than
bugs.1

2.4 Errors, Warnings, Information, and Fatal Failures

All problems are not created equal. In the process of analyzing an OWL document a
consistency-checking tool may encounter a variety of issues of various degrees of
severity. The most egregious are those that clearly violate one or more axioms of the
language semantics; these are clearly identifiable as errors. In addition to errors,
however, there are several types of identifiable “issues” that are not clear violations of
the OWL semantics but which none the less indicate that an unintended meaning may
be implicit in the document. Consequently, many tools provide informative statements
that describe, for example, activities such as importing additional ontologies or the
making of an assumption about the OWL language class being used (e.g. Full, DL or
Lite). Warnings represent the identification of constructs (or often, lack there of) that
indicate the author may have constructed something other than what was intended,
even though it is perfectly valid. For example, it is perfectly permissible in OWL full
to use a resource as a property without defining it as such, but it is often the case that
doing so represents an oversight in the definition of the property or perhaps a
misspelling of the resource name. Informative statements and warnings are not
actually indicators of inconsistencies but they are often helpful in providing
information that the author can use to ensure the ultimate document conveys the
intended meaning. There is finally another type of “issue” not quite captured by any
of the other three and that is what we call a fatal failure. A fatal failure occurs when
the system failed to complete the consistency check because it either crashed or ran
out of resources. In such cases the tool (if it can) should return “Unknown” as its

1 The authors are working on a second generation tool, called BugVISor, that attempts to

reason from observed symptoms back to the root problems, i.e., the “bugs”, that caused
them; unfortunately this topic is beyond the scope of the current paper.

Towards a Symptom Ontology for Semantic Web Applications 657

result and ideally include as much information as may be useful in determining the
cause of the failure.
 As with the case of symptom location, there is the question of “where” and “how”
to report information about these various types of issues. Once again, having a
common ontology would provide the vehicle for representing such information in a
consistent and meaningful manner usable by humans and machines alike.

3 Proposed Solution

For the purpose of giving an account of the symptoms of inconsistencies detected in
an OWL document by a consistency-checking tool, various approaches are possible.
A natural approach, and one chosen by several existing tools, is the use of a plain
textual description describing the problem(s) in human readable terms. An obvious
extension to this is to beautify the output with HTML markup or to add some
structure to the results using, for example, HTML tables. While the latter approach
makes it possible to write programs to “screen scrape” the content of the results from
the HTML, none of these approaches is well suited to the automated processing and
interpretation of the results by machines. As discussed above, there are several
advantages to making consistency-checking results machine processible, and, given
the intended audience of this paper, we do not believe it is necessary to belabor the
argument. Given that the use of a formal language is desirable the question then
becomes one of choosing which one based on the requirements of the information that
needs to be conveyed. Clearly we will need to define at least a class to represent
instances of symptoms and this class will need properties to associate individual
symptoms with the specific resources involved, axioms violated, and location
information, at the least. These requirements represent a clear case for use of an
ontology language and in the context of the Semantic Web the natural choice is of
course OWL itself.
 If we agree it is worthwhile to develop a common ontology in OWL for use in
annotating the results of consistency-checking tools, we can then turn our attention to
the question of what it needs to contain. As we have argued, symptoms are about as
much as one can expect to receive from the current generation of tools, and even with
the advent of more sophisticated systems capable of identifying actual bugs there will
always be situations where the best one can do is cite the symptom(s) indicative of a
possible bug (this is so because there will always be situations where a system cannot
unequivocally determine the intent of the author). For this reason we believe the
symptom class should be the focus of the ontology, and have placed it at the center of
our proposed high-level design shown in Fig. 6. So what makes up a symptom? First,
a symptom is always attributable to a specific OWL document, i.e., the one in which
it was detected. In fact, since the output of the tool may actually include multiple
symptoms it would be convenient to define a high-level class to describe the OWL
document and associate with it the (possibly empty) set of symptoms that were
detected. One could also associate it with other meta-data about the document, such as
the high-level conclusion reached by the tool (i.e., Consistent, Inconsistent or
Unknown).
 Another characteristic of a symptom is that there should always be (in theory at
least) an axiom of the ontology language that was violated and which serves as the

658 K. Baclawski et al.

justification for claiming the symptom represents an inconsistency. This allows a
client to examine the original language references that define the OWL language. This
can be represented using a property on the symptom class that connects it with a class
representing axioms. In addition, a symptom is always manifested by the
characteristics of one or more RDF statements (i.e., triples) found in or inferred from
the OWL document. It is possible to identify various types of symptom sub-classes
based on the statement characteristics they share; when we consider the ontology used
by ConsVISor in the next section we present an example of a set of symptom
subclasses defined in this manner. This idea of creating symptom subclasses based on
shared characteristics is appealing because we can then define the relationships
between the statements comprising a subclass of symptoms through the definition of
appropriate property constraints on the subclass. The examples in the next section will
make this more clear, but for now the point is that the ontology needs to be able to
associate symptoms with specific statements specified in or inferred from the OWL
document, and one convenient way to do this is by defining various symptom
subclasses based on shared statement characteristics.

Fig. 6. Proposed High-Level Design for a Shared Symptom Ontology

 The UML diagram in Fig. 6 shows a high-level view of the proposed design for a
common symptom ontology, as described in the preceding paragraphs. This design is
intended to capture the general concepts that we hope can be agreed upon by the
Semantic Web user community and thereby serve as a starting point for discussion;
consequently, many of the details of a complete solution – including what fully
defines the Axiom and Document classes – are left unspecified. In the next section
we describe the design decisions made during the creation of ConsVISor’s symptom
ontology and offer the implementation as a case study from which to draw ideas for a
community-defined solution.

Towards a Symptom Ontology for Semantic Web Applications 659

4 ConsVISor’s Symptom Ontology

ConsVISor is a rule-based tool for checking the consistency of OWL Full, OWL DL
and OWL Lite documents. At the time of this writing it is freely available for use as a
Web service at http://www.vistology.com/ConsVISor. ConsVISor’s development
was initiated as a DARPA funded project in 2002, at which time the target languages
were DAML+OIL and RDF and the implementation was done in Prolog and Java.
During the conversion from DAML+OIL to OWL in 2003 the system underwent a
number of changes including a re-implementation in Jess and Java and the
introduction of a symptom ontology for use in producing OWL-annotated results. The
success of this ontology-based approach to generating consistency reports led to the
conceptualization of this paper. In the rest of this section we describe the design of the
ConsVISor symptom ontology and offer it as an initial step towards the ultimate
realization of a common symptom ontology for Semantic Web applications.
 As stated earlier, a symptom is an indication of a possible problem in an ontology.
As with human disease symptoms, such an indication can be benign or it can be
severe. The actual diagnosis is not addressed by this ontology. It is only concerned
with those conditions that may be of some use in a determination that the ontology
has a problem that should be addressed.

Fig. 7. ConsVISor’s Symptom Ontology (simplified for display purposes)

 As discussed in the previous section, a particular symptom individual is always
characteristic of some particular ontology. Since symptoms are properties of an
ontology, they must somehow be linked with the ontology being checked. However, it
would be inappropriate to link the symptom directly with the ontology being checked
because the symptom is not an intrinsic property of the ontology. It is only a property
of the particular invocation of the consistency checker on that ontology. If one regards

660 K. Baclawski et al.

the symptoms as being in a report generated by a tool, then the symptoms should
properly reside in that report, and the report (along with many others) can refer to the
ontology being checked. Since such a report consists of OWL statements, it is itself
an OWL ontology. The instances of the Ontology class in Fig. 7 are these reports, and
symptoms in this report are explicitly linked with the report to which they belong by
the symptom ontology property. By defining the collection of symptoms generated
by a consistency checker to be an OWL ontology, it can itself be checked for
consistency, as well as processed by any OWL-aware tool. Consistency checking
reports have a number of other ontology properties that are used to specify the context
within which the consistency checker produced them, such as:
• The consistency-checking tool that produced the collection of symptoms is

specified by the checked ontology property.
• There are three language levels for OWL ontologies. This level is not intrinsic to

the ontology, and a single ontology can be regarded as belonging to any one of
the three. The owlLevel ontology property specifies the level that was used for
the consistency checking operation. Some tools require that the user specify the
level for consistency checking, while others report the level of the ontology as
part of their output. The former can be regarded as performing three consistency-
checking tasks: one for each level.

• The consistency ontology property gives the result of the consistency-
checking task. There are three possible values: Consistent, Inconsistent
and Unknown.

• If the consistency-checking tool was unable to download the ontology, then the
found ontology property is false, otherwise it is true. This ontology property
was introduced to distinguish the case of an ontology that does not exist (usually
because its URI was not given correctly) from an ontology that is so complex that
the consistency checker cannot make a definitive determination of consistency in
a reasonable amount of time. At first a separate symptom class was used for
indicating whether an ontology could be downloaded, but such a characteristic is
not a feature of the ontology but rather of the mechanism used to download it.
For the same reason, it was felt that this ontology property should not be
combined with the consistency ontology property.

• The processingError ontology property is used when the consistency checker
fails in its processing either because some internal error (bug) occurred or there
were insufficient resources available for the task. Unlike the found ontology
property, which is usually due to an error by the client, a processing error is
entirely the fault of the consistency checker.

 The most important part of the Symptom Ontology is its hierarchy of symptom
classes. All of these classes are subclasses of Symptom, and they share the following
properties:
• The description of a symptom is an explanation, using ordinary natural language,

of the symptom that occurred.
• There are four severity levels for symptoms:

1. Symptoms having no effect on consistency are at the info level. These
symptoms are simply reporting on entailments that might possibly be
indicators of a problem. For example, a resource that was used as the
predicate of a statement but was not declared to be a property would generate
such a symptom. It is considered to be only informational because the fact

Towards a Symptom Ontology for Semantic Web Applications 661

that the resource is a property is entailed by its use as a predicate. However,
not all entailments result in symptoms. Subsumptions, for example, are too
common and routine to merit explicit mention. Currently there is no clear
boundary between those entailments that should produce a symptom and
those that should not.

2. A warning is a symptom that is not just the result of an entailment, but that
also is not a clear indicator of an inconsistency. Ideally, there should not be
any of these as they represent a situation in which the consistency checking
tool has been unable to decide between consistency and inconsistency.
However, every tool has its limitations because consistency checking is
computationally very hard in the worst case (and even undecidable for OWL
Full).

3. An error symptom is a clear indication of an inconsistency. Such a symptom
is definitely a problem.

4. A fatal error means that processing of the ontology did not complete
normally. If a fatal error occurs then there will normally also be a
processingError ontology property. A fatal error gives more detailed information
about the error, such as its location.

• The OWL language reference does not have a single listing of all of the axioms
of the language. The specification of the three language levels is stated in several
ways, some of which do not specify the axioms of all the language constructs. To
deal with this complexity, each symptom specifies one or more references to
items in the OWL language reference documents that are responsible for the
symptom. Each symptom is linked with at most one member of the Axiom class
via the axiomViolated property. Each such axiom, in turn, is linked to specific
places in the OWL language reference documents via the reference property.
This allows a client to examine the original sources that define the OWL
language. Unfortunately, these sources are not formally specified, so these links
are only meaningful to a person.

 The subclasses of Symptom differ from one another with respect to the properties
that apply; these differences are depicted in Fig. 8. All of these other properties are
alike in linking a symptom to one or more resources of type Statement. The
Statement class is one of the built-in classes of RDF (and therefore also OWL). A
resource of type Statement is a reified statement. The reified statements linked with
a symptom indicate the statements that were responsible for the symptom. There are
several reasons for using reified statements.
• Reified statements are not asserted so they do not represent statements in the

consistency checker report. One would certainly expect that the report generated
by a consistency checker should itself be consistent so that it can be processed by
the same tools that process any other ontology or annotation. If the statements
were asserted they would, in general, reproduce the same inconsistencies in the
report that exist in the ontology being checked.

• Reified statements are resources, so one can make statements about them. The
statements in this case are explanations of the reasons for a symptom being
generated.

662 K. Baclawski et al.

Fig. 8. Property Associations for each Symptom Class

• One could certainly have explained each symptom by referring to various
resources. This was the case in an early version of the Symptom Ontology.
However, this design was complex because it required one to introduce a number
of auxiliary classes to express all of the concepts. We found that by using reified
statements one could eliminate the auxiliary classes. For a while the design used
both reified statements and direct references to literals and resources. Eventually
the design evolved until all such direct references were eliminated and all
explanations were specified using reified statements. The resulting design
achieved significant simplifications.

 Another design alternative that was considered for some time was for the symptom
explanations to be proofs. Some of the symptom classes have sufficient information
(including references to axioms in the OWL languages reference documents) to
construct a proof. However, we chose not to give complete proof traces because it
would make processing of the resulting report much more difficult (both by humans
and by software agents). In addition, it would make comparing the reports of different
consistency checkers much more difficult if not impossible.

4.1 The Symptom Classes

In this section we define the fifteen symptom classes and identify their properties. The
association between the symptom classes and properties are visually depicted in Fig.
8. Every symptom class can occur at any language level, but not necessarily at every

Towards a Symptom Ontology for Semantic Web Applications 663

severity. If the possible severity levels are not mentioned, then a symptom class can
occur at every severity level.

AmbiguousComponent. An inverse functional property maps two resources to the
same resource. If the two resources are different, then this symptom signals an
inconsistency. Properties: The conflict property gives the conflicting facts, and
the asserted property gives the inverse functionality constraint assertion.

CardinalityConstraint. A cardinality constraint was not satisfied. This includes max,
min and equal cardinality constraints. For a max cardinality constraint to result in an
error, the set of resources must be distinct as well as have too large a cardinality,
otherwise the symptom will only be informational. Similarly, for a min cardinality
constraint to result in an error, the set of possible resources must be limited in some
way (such as by using an enumeration). Properties: The cardinality constraint that
was asserted is given by the constraint property. The property that is being
constrained is given by property. The resource that is mapped to the wrong number
of other resources is given by the instance property. The numerical relation
(equality or inequality) that failed to hold is given by the unsatisfied property.
Cardinality constraints are usually specified by asserting a subclass constraint
between a class and a relation. This fact is given by the restriction property.

ConflictingFacts. Two facts conflict with one another. In other words, they cannot
both hold and still be consistent. This is the superclass of several other symptom
classes that specify more specific kinds of conflict. A symptom of this kind is either
informational or an error. Properties: The conflict property gives the conflicting
facts. When there is an explicitly asserted statement that acts as a constraint (such as a
functionality constraint on a property) then the assertion is given by the asserted
property. The difference between the asserted fact and the conflicting facts is that the
two conflicting facts are at the same "level" and are similar (such as two resources
mapped to the same resource), while the asserted fact is on a different "level" (such as
a functionality constraint). If the constraint is built-in then the asserted property
will not have a value.

DisjointnessFailure. Two disjoint classes have an instance in common. A symptom
of this kind can be either informational or an error. Properties: The conflict
property gives the conflicting facts. When an explicit assertion of disjointness was
made, then the asserted property gives this statement. Built-in disjointness
constraints will not have a value for the asserted property.

FunctionalityFailure. A functional property maps a resource to two resources. If the
two resources are different, then this symptom signals an inconsistency. A symptom
of this kind can be either informational or an error. Properties: the conflict
property gives the conflicting facts, and the asserted property gives the
functionality constraint assertion.

IllegalStatement. A statement was asserted that is not allowed at the specified
language level. A symptom of this kind is either informational or an error.
Properties: The asserted property gives the asserted illegal statement. Sometimes
there will also be an element item. This occurs when a list of a particular kind (given
by the asserted property) contains an illegal element.

664 K. Baclawski et al.

IncompleteUnion. A union or enumeration class has an instance that does not occur
in the component classes (for a union) or is not one of the enumerators. Properties:
When there is an explicitly stated union or enumeration constraint, then it is given by
the constraint property. Built-in constraints are not given. The instance of the
union or enumeration is given by the instance property. For a union class, the
instance should be an instance of one (or more) component classes. These facts may
be given using the unasserted property. Similarly for enumeration classes.

LiteralConstraint. A literal was asserted to have a datatype with which its value is
incompatible. A symptom of this kind is always an error. Properties: The asserted
property gives the statement that the literal has the datatype.

MissingComponent. A required resource is missing. For example, rdf:first must
always have exactly one value. This is a special case of a minimum cardinality
constraint, but this symptom class is not a subclass of CardinalityConstraint.
This symptom is informational only because the necessary statements are entailed.
Properties: The asserted property gives the statement that uses the resource in
question. The unasserted property gives the statement that should have been
asserted. The object of this statement does not exist, so shown as
sym:unspecifiedEntity. However, this is just a placeholder. If two symptoms of
this kind occur, the unspecified entities need not be the same.

MissingDeclaration. A resource was used in a manner that requires that it be an
instance of particular class, but the resource was never explicitly declared to be such
an instance. These symptoms are informational only, since the unasserted
statement is immediately entailed. However, these symptoms are some of the most
useful for catching errors. Spelling errors, for example, will result in a
MissingDeclaration symptom. Properties: The asserted property gives the
statement that uses the resource in question. The undeclared property gives the
statement that should have been asserted.

MissingDeclaredValue. This is a combination of MissingComponent and
MissingDeclaration. The value is not only missing, it also must be declared to be
an instance of a particular class. This symptom arises from an
owl:someValuesFrom constraint. This symptom is informational only because the
necessary statements are entailed. Properties: The owl:someValuesFrom constraint
is specified using property, restriction and constraint as in the
CardinalityConstraint symptom. The instance is given by the instance
property. The missing value is given by unasserted as in MissingComponent, and
the missing declaration is given by undeclared.

MissingItemDeclaration. An item in a collection is required to be an instance of a
particular class, but it was not declared to be in this class. This is an informational
symptom only because the declarations are entailed. Properties: The asserted
property gives the collection-valued statement that constrains the elements of the
collection. The particular item that was not declared is given by the item property.
The declaration that was not asserted is given by the undeclared property.

MissingValue. A particular case of an owl:hasValue constraint was not satisfied.
This is informational only as the statement is entailed. Properties: The

Towards a Symptom Ontology for Semantic Web Applications 665

owl:hasValue constraint is specified using property, restriction and constraint as in
the CardinalityConstraint symptom. The instance is given by the instance
property. The missing fact is given by unasserted property.

MissingValueDeclaration: A particular case of an owl:allValuesFrom constraint
was not satisfied. This is informational only as the declaration is entailed. Properties:
The owl:allValuesFrom constraint is specified using property, restriction and
constraint as in the CardinalityConstraint symptom. The instance is given by
the instance property. The statement mapping the instance by the property to an
undeclared value is given by the asserted property. The missing declaration is
given by undeclared property.

TargetConstraint: Any of several constraints such as domain and range constraints
that have exactly one asserted and exactly one unasserted statement. These are usually
informational symptoms, but in some cases the symptom is an error when asserting
the unasserted statement is not allowed. Properties: The constraint (such as a domain
constraint) is given by the constraint property. The statement (such as a mapping
of a resource that does not satisfy the constraint) that gave rise to the constraint failure
is given by the asserted property. The statement that should have been asserted is
given by the unasserted property.
 The symptom classes given above cover all possible violations of the axioms of
OWL at any of the language levels. They were designed to have a level of detail that
includes the RDF statements that participate in the axiom being violated. While there
may be some redundancy among the classes (i.e., there may be overlap among classes
other than the overlap due to the subclass relationship), an attempt was made to
minimize such occurrences.

5 Possible Extensions and Enhancements

If a Symptom Ontology for OWL is accepted, then it could be the beginning of a
trend toward formalizing the output of many other tools. OWL is most commonly
represented using RDF and XML Schema, so that the first step in consistency
checking is parsing RDF and XML Schema files (which, in turn, requires parsing
XML documents). Both RDF and XML Schema have complex semantics that require
their own forms of consistency checking. In fact, RDF has a suite of test cases that is
as extensive as the OWL test case suite. [14] The same kind of Symptom Ontology
can be developed for RDF as we have done for OWL. Although most of the
symptoms would be syntactic, RDF has nontrivial semantics, which, as in the case of
OWL ontologies, should be checked for consistency. Both RDF and OWL use XML
Schema for the representation of literals, and one can also develop a Symptom
ontology for validating XML Schema data types and literals.
 More generally, one could formalize the output of compilers for languages other
than OWL, RDF and XML Schema. This would allow one to automate the validation
of compilers. It would also make it possible to build tools (such as integrated
development environments) that process and present the output of whichever
compiler one chooses to use.

666 K. Baclawski et al.

 While developing the Symptom Ontology, we found that there were many
constraints that were not expressible in OWL. For example, a FunctionalityFailure
symptom has two reified statements that conflict with one another. The subjects of
these two reified statements must be the same. One cannot express such a constraint
using OWL alone. However, it is possible to do so using rules. When an OWL rule
language is available, it will be possible to give a more complete theory of symptoms.

6 Conclusion

In their Scientific American article, Tim Berners-Lee, James Hendler and Ora Lassila
envisioned the Semantic Web to be "an extension of the current web in which
information is given well-defined meaning, better enabling computers and people to
work in cooperation” [15]. The success of the Semantic Web depends on tools to
ensure that meaning is really "well-defined", i.e., that information is consistent and
reflects the intentions of the authors. Many first generation tools have now established
that consistency checking of Semantic Web ontologies is feasible. However, for the
most part these tools have not themselves adhered to the Semantic Web vision of
well-defined meaning and interoperability. Few of them produce results that can be
processed by machine, and there is no shared notion of how to describe the flaws that
they detect in Semantic Web ontologies and annotations.
 To remedy this situation, we have proposed a common language for identifying and
describing semantic errors and warnings that may be indicative of inconsistencies in
ontologies and annotations. This language is expressed as an OWL ontology called
the Symptom Ontology. This language is currently used by our ConsVISor
consistency-checking tool. Some of the characteristics that we have proposed as being
important for such an ontology include those that should be supported by any tool
(such as a compiler or interpreter) that requires semantic consistency; namely, a
hierarchy of common symptoms and a means of relating the symptoms to the
constructs in the source document that gave rise to them. We have also proposed that
symptoms should be associated with the axioms of the language that are violated. The
latter proposal goes beyond what compilers and other consistency checkers currently
do but is essential for achieving the goal of the Semantic Web in which all
information is well defined.
 We see the Symptom Ontology as an example of how many tools that currently
produce informal, idiosyncratic output can be Semantic Web enabled. Virtually every
software tool generates errors and warnings when anomalous situations arise. By
formalizing these errors and warnings, their meanings will be formally defined and
grounded in the standard for the language, thereby contributing to the Semantic Web
vision of meaning and interoperability.

References

1. W3C Recommendation, OWL Web Ontology Language Overview, February
2004. http://www.w3.org/TR/owl-features/

2. W3C, OWL Test Results Page, March 2004.
http://www.w3.org/2003/08/owl-systems/test-results-out

Towards a Symptom Ontology for Semantic Web Applications 667

3. European OntoWeb Consortium, A Survey of Ontology Tools, May 2002.
http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip

4. InfoEther & BBN Technologies, SemWebCentral Validation Tools Assessment.
http://semwebcentral.org/assessment/report?type=category&category=Validation

5 K. Baclawski, M. Kokar, R. Waldinger and P. Kogut, Consistency Checking of Semantic
Web Ontologies. 1st International Semantic Web Conference (ISWC)}, Lecture Notes in
Computer Science, LNCS 2342, Springer, pp. 454--459, 2002.

6. Versatile Information Systems, Inc., ConsVISor.
http://www.vistology.com/consvisor/

7. AGFA, Euler. http://www.agfa.com/w3c/euler/
8. UMBC, FOWL. http://fowl.sourceforge.net
9. University of Maryland Institute for Advanced Computer Studies, Pellet.

http://www.mindswap.org/2003/pellet/
10. BBN, vOWLidator. http://owl.bbn.com/validator/
11. DAML, DARPA Agent Markup Language. http://www.daml.org/
12. W3C, OWL Test Cases, February 2004. http://www.w3.org/TR/owl-test/
13. W3C Recommendation, OWL Web Ontology Language Semantics and Abstract Syntax,

February 2004. http://www.w3.org/TR/owl-semantics/
14. W3C Recommendation, RDF Test Cases, February 2004.

http://www.w3.org/TR/rdf-testcases/
15. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities.
Scientific American, May 2001.

References

1. W3C Recommendation, OWL Web Ontology Language Overview, February
2004. http://www.w3.org/TR/owl-features/

2. W3C, OWL Test Results Page, March 2004.
http://www.w3.org/2003/08/owl-systems/test-results-out

3. European OntoWeb Consortium, A Survey of Ontology Tools, May 2002. http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip
4. InfoEther & BBN Technologies, SemWebCentral Validation Tools Assessment. http://semwebcentral.org/assessment/report?type=category&category=Validation
5. K. Baclawski, M. Kokar, R. Waldinger and P. Kogut, Consistency Checking of Semantic Web Ontologies. 1st International Semantic Web Conference (ISWC)}, Lecture Notes in Computer Science, LNCS 2342, Springer, pp. 454--459, 2002.
6. Versatile Information Systems, Inc., ConsVISor.

http://www.vistology.com/consvisor/
7. AGFA, Euler. http://www.agfa.com/w3c/euler/
8. UMBC, FOWL. http://fowl.sourceforge.net
9. University of Maryland Institute for Advanced Computer Studies, Pellet.

http://www.mindswap.org/2003/pellet/
10. BBN, vOWLidator. http://owl.bbn.com/validator/
11. DAML, DARPA Agent Markup Language. http://www.daml.org/
12. W3C, OWL Test Cases, February 2004. http://www.w3.org/TR/owl-test/
13. W3C Recommendation, OWL Web Ontology Language Semantics and Abstract Syntax, February 2004. http://www.w3.org/TR/owl-semantics/
14. W3C Recommendation, RDF Test Cases, February 2004.

http://www.w3.org/TR/rdf-testcases/
15. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American, May 2001.

Patching Syntax in OWL Ontologies

Sean Bechhofer1 and Raphael Volz2

1 University of Manchester, UK
http://www.cs.man.ac.uk

seanb@cs.man.ac.uk
2 Institute AIFB, University of Karlsruhe, Germany

http://www.aifb.uni-karlsruhe.de
rvo@aifb.uni-karlsruhe.de

Abstract. An analysis of OWL ontologies represented in RDF/XML
on the Web shows that a majority are OWL Full. In many cases this
may not be through a desire to use the expressivity provided by OWL
Full, but is rather due to syntactic errors or accidental misuse of the
vocabulary. We present a “rogues gallery” of common errors encountered,
and describe how robust parsers that attempt to cope with such errors
can be produced.

1 Introduction

In Feb 2004, the World Wide Web Consortium (W3C) announced the release
of the OWL Web Ontology Language Standard1. OWL is intended to provide
the “Ontology Layer” of the oft-cited Semantic Web stack and in order to fulfill
this, has an RDF carrier syntax [8] that will allow RDF-aware applications to
make use of data marked up in OWL.

The publication of the OWL Recommendation does not, of course, mean that
our work is done in terms of Ontology Languages. We must now support users
and application builders in the development of ontologies and applications that
use them. This is the rationale behind activities such as the Semantic Web Best
Practices Working Group2.

A key aspect of the OWL design is the layering of different language sub-
species. All OWL documents can be represented using the same RDF/XML
carrier concrete syntax, and OWL has three language variants with increasing
expressivity: Lite, DL and Full. All Lite documents are DL, and all DL docu-
ments are Full, but the converse is not true. The constraints on the expressivity
of OWL DL have been made in such a manner as to produce a language for
which there exists sound and complete decision procedures. The task of species
recognition – determining which particular species an ontology is in – thus be-
comes important, as an OWL DL application needs to know whether it can apply
the appropriate semantics and inference procedures to an ontology. See [2] for a
detailed discussion of the issues concerning parsing and recognition.
1 http://www.w3.org/News/2004##item14
2 http://www.w3.org/2001/sw/BestPractices/

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 668–682, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Patching Syntax in OWL Ontologies 669

The designers of OWL expect that a significant number of ontologies will
use the Lite and DL subspecies. However, in a simple analysis reported here,
we discover that the proportion of OWL Lite and DL ontologies currently on
the web is small. It appears, however, that the reasons for this are often due to
accidental syntactic errors or vocabulary misuse rather than modelling intention.
For example, the rules about OWL DL are strict in their requirements for explicit
typing of all classes used in the ontology. Such problems can be tackled through
provision of tools supporting the production of ontologies, which ensure that
correct and appropriate syntax is used.

As a parallel approach, we propose the use of robust parsers that can cope
with syntactic errors and apply “fixups” or patches (as initially discussed in [2])
wherever necessary3 in order to produce OWL DL ontologies. This approach
is predicated on the assumption that we are interested in working with OWL
DL ontologies – a hypothesis that we feel is valid (the number of implementors
building OWL DL and Lite reasoners4 bears witness to this).

The paper is structured as follows. Section 2 describes an experiment in
analysing a number of Web ontologies in order to determine which particular
species they fell into. Section 3 provides an analysis of the detailed reasons for
membership (or non-membership) of a particular species – these reasons can be
classified into a number of more general reasons (such as missing type triples)
providing us with a rogues gallery of the “usual suspects” or kinds of syntactic
malforms we may encounter that contribute towards non-membership of DL or
Lite. Section 4 describes possible patches that can be applied to these classes
of error in order to obtain OWL DL or Lite ontologies. Section 5 describes
extensions to an OWL parser that provides a more robust tool that will attempt
to cope with a number of different “error” conditions. We conclude with remarks
on related work and a summary of our contribution.

2 Ontology Sources

Our initial motivation was to answer the question “how much OWL is there on
the Web?” Of course, any RDF graph is, in fact, an OWL (Full) graph, but such
documents can not necessarily be used with tools targeted at OWL DL or Lite.
Thus, an alternative, and perhaps more interesting, question is “how much OWL
DL is there on the Web?”

2.1 Ontology Library

Our first port of call was the largest library of ontologies in the Web - the
DAML ontology library5 - which contained 282 ontologies of various formats at
the time of our experiment. Of these 282 we selected those which we considered
3 Of course, as discussed in the paper, we must be careful when applying patches in

such situations as the semantics may be impacted.
4 http://www.w3.org/2001/sw/WebOnt/impls
5 http://daml.org/ontologies/

670 S. Bechhofer and R. Volz

Table 1. Species Breakdown

Collection Total Full DL Lite
DAML Library 76 63 (83%) 3 (4%) 10 (13%)
Google 201 174 (86%) 19 (10%) 8 (4%)

to be candidates for OWL DL ontologies. Our heuristic to judge whether an
ontology is a candidate was based on usage of the OWL namespace. If an RDF
graph fails to mention the OWL namespace, we can be sure that it will not be
an OWL DL graph, as there can be no explicit typing as required by the OWL
DL rules6.

Unfortunately most of the ontologies in this library (193 ontologies) were
definitely not candidates as they were no longer available, had XML errors, or
used previous Web ontology languages such as OIL or DAML-ONT. Seventy-six
ontologies, however, were available, were valid XML, and used elements from the
OWL vocabulary.

2.2 Google

This small set of 76 ontologies was not considered satisfactory, so we chose to
expand our collection by searching for OWL ontologies using Google. A simple
search for OWL is of course too broad and leads to more than 4 million web pages,
most of which are not ontologies. Two refined searches for filetype:.owl owl
and filetype:.rdf owl provided 2647 more appropriate documents, of which
56 documents were suitable, e.g. they were HTML pages, and 15 documents
were no longer available online. In conclusion we actually found 201 candidate
ontologies. Obviously, these ontologies do not necessarily constitute all available
ontologies, since we missed those that departed from the syntactic search pattern
used or were not made publicly available8.

3 Analysis

A breakdown of the species distribution of the candidate ontologies from the
DAML Library and Google search is shown in Table 1. This initial analysis re-
veals that a majority of the ontologies found are not directly usable by OWL
DL or OWL Lite-aware systems. Our hypothesis, however, is that most of these
ontologies are not intentionally OWL Full, but become OWL Full through var-
ious errors made by the designer of the ontologies. We therefore had a closer
6 An exception to this, of course, is the trivially empty graph, relatively uninteresting

in this context.
7 The reader may note that the Google estimate displayed with the search results is

not correct.
8 For example ontologies held in repositories such as Sesame [4] will not necessarily be

apparent to Google unless the owners of the repository have taken steps to publish
information about them.

Patching Syntax in OWL Ontologies 671

look at the 174 OWL Full ontologies found by Google and the 63 OWL Full
ontologies found in the DAML library9. We could identify 20 different reasons
why those ontologies were OWL Full (cf. Table 2). As discussed before, these
reasons are seen as errors for OWL DL and OWL Lite processors. The errors
can be aggregated into five more general categories of fault, which are described
below.

Note that here we are making an assumption that our desired intention is
that ontologies should be in the OWL DL or Lite subspecies. Thus we use the
term “error” to describe a situation where an ontology does not belong to DL
or Lite.

Missing typing: This category occurred most frequently and in almost all of
the OWL Full ontologies. A good example for missing typing is when a
property was not specified to be a datatype or object property. Missing
type information often occurred together for various types of elements, for
example in 154 (89%) of the OWL Full ontologies found by Google;

Namespace problems: Namespace problems occurred in about half of all full
ontologies, but more frequently in the ontologies from the DAML library.
Namespace problems are (i) a violation of the namespace separation man-
dated in OWL, (ii) usage of the OWL namespace itself (one may not declare
classes, properties or instances in the OWL namespace) and a (iii) redefini-
tion of elements of OWL itself, e.g. OWL class.

Wrong vocabulary: 32 (18%) of the OWL Full ontologies found by Google
were using the wrong vocabulary. But this was the second most frequent
(78%) error category for the DAML ontologies. Usage of the wrong vocab-
ulary, for example rdf:Class instead of owl:Class, rdf:Property instead
of owl:Property or usage of owl:sameAs on classes, can be accounted to
mistakes in legacy migration. With no exceptions all of the ontologies in this
category also had missing type information and namespace problems, which
are both direct results of using wrong vocabulary;

OWL Full: Around 20% of the ontologies in both data sets were definitely
OWL Full, since either (i) complex object properties were declared to be
transitive10 or (ii) illegal subproperty statements were made. The latter refers
to making a datatype property a subproperty of an object property or vice
versa11.

OWL/RDF Irregularities: 20 (11%) of the Google ontologies and 15 (24%)
of the DAML ontologies contained various OWL/RDF irregularities. This
refers to (i) Unused RDF Triples, (ii) Malformed Lists, (iii) Anonymous

9 More detailed results concerning the analysis can be found at:
http://owl.man.ac.uk/patching.

10 In order to ensure that OWL DL is decidable, there are extra side conditions on
the use of transitive properties. Complex properties are those that are functional,
are involved in cardinality restrictions, or have a complex inverse or superproperty.
Such properties cannot be declared to be transitive. See [8] for details.

11 With a single exception, the definitely Full ontologies found by Google also had also
namespace problems and were missing type information.

672 S. Bechhofer and R. Volz

Table 2. Frequent Error Types

Error DAML Library Google
Type Absolute Relative Absolute Relative
OWL Full (Total) 63 100% 174 100%
Missing Typing 63 100% 167 96%
Untyped Ontology 5 7% 24 13%
Untyped Object Property 34 53% 131 75%
Untyped Individual 37 58% 137 78%
Untyped Datatype 18 28% 10 5%
Untyped Data Property 18 28% 134 77%
Untyped Class 58 92% 148 85%
Untyped Functional Property 1 1% 4 2%
Namespace Problems 41 65% 76 43%
Redefinition of built in vocabulary 23 36% 50 28%
OWL Namespace Used 14 22% 35 20%
Namespace Separation Violated 33 52% 68 39%
Wrong Vocabulary 49 77% 32 18%
SameAs with Class 0 0% 2 1%
RDF Property Used 9 14% 27 15%
RDF Class Used 48 76% 23 13%
OWL Full 13 20% 31 17%
Illegal Sub Property 14 22% 28 16%
Complex role declared Transitive 1 1% 3 1%
OWL/RDF Irregularities 15 23% 20 11%
Unused Triples 12 19% 10 5%
Structure Sharing 0 0% 4 2%
Malformed Restriction 9 14% 2 1%
Malformed List 2 3% 8 4%
Anonymous Class Creation 3 4% 8 4%

Class Creation, (iv) Structure Sharing and (v) Malformed Restrictions. With
no exceptions all of the ontologies in this category also had missing type
information and namespace problems, which comes at no surprise since these
errors are directly effected by the OWL/RDF irregularities.

Note that the categories are not disjoint – an ontology could have both miss-
ing type information and illegal sub property axioms. Note also that the sum-
mary figures (e.g. Missing Typing) summarise any of the subcategories referred
to, e.g. untyped class, untyped individual etc.

We can identify several other problems that could theoretically occur, but
were not found in the data set. These include particular RDF malforms such as
malformed descriptions or owl:AllDifferent axioms, the use of Inverse Func-
tional Data Properties [8], cycles in bnodes or owl:sameAs applied to Object or
Datatype Property.

Patching Syntax in OWL Ontologies 673

4 Patching

Adopting the terminology as introduced in [2], errors can be classified into ex-
ternal and internal errors. Internal errors are those where the triples correspond
to an OWL ontology, but the ontology makes use of expressivity outside of the
required species. External errors are those where the RDF graph is in some way
incorrectly formed. We can also identify a third class of syntactic errors to cover
those situations where there are problems with the underlying concrete presenta-
tion of the ontology – for example the XML concrete syntax is malformed. Such
situations are likely to be best dealt with by the underlying XML parsers – we do
not devote much attention to these here, and concentrate mainly on addressing
external errors such as missing type information. In addition, we would expect
that as more and more ontologies are produced by tools, malformed XML will
become a thing of the past. Similarly, if ontologies are held in RDF repositories
(such as Sesame [4]) we would hope to see less malformed XML as the reposi-
tory takes responsibility for the production of the concrete representation. Some
internal errors, in general those arising from imports, can be tackled, and we
discuss these here.

4.1 Missing Type Information

Fortunately the most frequent error of missing type information is also the most
easy to deal with. OWL DL requires that URI references used in particular
contexts (e.g. as a class) must be explicitly typed as such. This requirement for
complete information about the typing of resources is effectively a restriction on
the syntax. Contrast this with the semantics [8] of OWL, which applies an open
world assumption, allowing incomplete information.

As we have seen in the previous section almost all of the OWL Full on-
tologies tested failed to belong to OWL DL primarily because of such missing
information.

There are a number of situations that we can identify as Class Contexts –
those where a URI is expected to be an owl:Class. Such situations include:

– The subject or object of an rdfs:subClassOf triple.
– The object of an rdf:type triple.
– The object of an owl:someValuesFrom or owl:allValuesFrom triple where

the subject of the triple is also the subject of an owl:onProperty triple with
an owl:ObjectProperty as the object.

– The object of an rdf:domain triple.
– The object of an rdf:range triple where the subject is an

owl:ObjectProperty.

In these cases, we can be fairly sure that the intention is that the URI is intended
to be an owl:Class and can add an appropriate rdf:type triple.

Similarly, we can identify Object Property Contexts, those where an
owl:ObjectProperty is expected. These include:

674 S. Bechhofer and R. Volz

– The object of an owl:onProperty triple where the subject of the triple is
also the subject of an owl:someValuesFrom or owl:allValuesFrom triple
with an owl:Class as the object.

– The subject of an rdf:range triple where the object is an owl:Class.
Data Property Contexts encapsulate those situations where an

owl:DatatypeProperty is expected. These include:

– The object of an owl:onProperty triple where the subject of the triple is
also the subject of an owl:someValuesFrom or owl:allValuesFrom triple
with a Datatype12 as the object.

– The subject of an rdf:range triple where the object is a Datatype.

Note that the identification of owl:ObjectProperty and
owl:DatatypeProperty usage requires some analysis of the surrounding context.

These possible contexts may interact and it may be the case that it is not
possible to disambiguate. For example, consider the following fragment:

<rdf:Property rdf:about=’#p’>
<rdf:range rdf:resource=’#D’/>

</rdf:Property>

One possible patch here would be to consider p as an owl:ObjectProperty
and D as an owl:Class. An alternative would be to consider p as a
owl:DatatypeProperty and D as an rdfs:Datatype. Either would provide a
valid OWL DL ontology.

Patching is, of course, not always possible (as the ontology may use expres-
siveness that results in an OWL Full ontology). In the following fragment:

<rdf:Description rdf:about="#a">
<rdf:type rdf:resource="#A"/>

</rdf:Description>
<rdf:Description rdf:about="#A">
<rdf:type rdf:resource="#B"/>

</rdf:Description>

There is no combination of type triples that we can add here to produce an
OWL DL ontology as there is an implicit use of classes as instances (and thus
a violation of the requirement for a separated vocabulary [8]) as A is both given
a type and used as a type. This example serves to illustrate that there may not
always be an appropriate patch that can be applied.

The order in which the contexts are addressed has an impact. For ex-
ample, if rdf:Property (rather than owl:ObjectProperty) has been used
in an ontology, analysing the use of the property in owl:someValuesFrom or
owl:allValuesFrom triples is likely to yield more information than, for example
owl:cardinality triples (which do not tell us anything about the characteris-
tics of the property). Thus the entire context of the ontology can prove useful in
disambiguating such situations.
12 When we refer to Datatypes we mean either an rdfs:Datatype or a known XML

Schema Datatype.

Patching Syntax in OWL Ontologies 675

Another “hard” case is where the intention is that a property is used for
annotation. Take the following ontology:

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://owl.man.ac.uk/ontologies/whatever"
xmlns="http://owl.man.ac.uk/ontologies/whatever#">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:about="#A"/>
<rdf:Description rdf:about="#A">
<author rdf:resource="http://www.cs.man.ac.uk/˜seanb"/>

</rdf:Description>
</rdf:RDF>

In this example, A is explicitly declared to be an owl:Class. However, we have
no type for the property author. In this particular case, by choosing to type
author as an owl:AnnotationProperty we can produce an OWL DL ontology.
Choosing to type author as an owl:ObjectProperty would also require us to
treat http://www.cs.man.ac.uk/˜seanb as an individual (and thus provide a
type), but would then push us into OWL Full due to the treatment of A as class
and instance. Thus in this case, to obtain an OWL DL ontology, we need to treat
author as an owl:AnnotationProperty.

In situations like this, it is unlikely that an automated approach will be
appropriate – we are in a situation where user input is needed in order to make
the ultimate decision as to how to resolve the problem. Tools can, however,
provide a degree of support in determining what needs to be done and suggest
appropriate course of action.

4.2 Import of OWL or RDF Schemas

A common occurrence in OWL ontologies is the import of OWL or RDF schemas.
This is not necessary in order to produce OWL ontologies, and in fact will always
result in an OWL-Full (and not OWL-DL) ontology as the import of the schema
results in triples using terms from the disallowed vocabulary (see Section 4 of [8]
for details) as subjects in triples. Although it may be the case that importing
the OWL schema is sometimes required or intended – for example if we wish to
extend the OWL Schema itself – in the majority of cases this is unnecessary.

Resources in RDF namespace. OWL does not completely forbid the use
of URIs from the RDF and RDF(S) namespaces. For example, rdf:Bag can be
used as a Class in an OWL DL ontology. Addition of type triples is, however,
necessary in certain situations in order to ensure that such RDF schemas are
OWL DL. For example, we need to say that rdf:Bag is being treated as an
owl:Class. Similarly, the RDF container properties rdf: 1, rdf: 2, etc. can be
used as properties, but must be typed appropriately.

676 S. Bechhofer and R. Volz

4.3 Use of Vocabularies Without Appropriate Import

This also belongs to the category of missing type information, but is worth
special attention. A number of standard vocabularies are often used in ontologies
without the necessary definitions. For example, in the ontologies analysed, we
encounter Dublin Core properties such as dc:author or dc:title used without
import of the Dublin Core schema or explicit definition of the property. Even if
the schema at http://purl.org/dc/elements/1.1 is included, however, this
does not necessarily alleviate the position, as that particular schema is itself an
OWL Full document due to the use of rdf:Property rather than a more specific
OWL property. In general, we might expect a property from the Dublin Core to
be treated as an owl:AnnotationProperty.

4.4 Misuse of owl:sameAs

According to the OWL semantics [8], the owl:sameAs property should be used
to represent the fact that two individuals are the same. Using owl:sameAs
to relate two Classes is thus not the same thing as relating them using
owl:equivalentClass (the latter states that the classes are extensionally equiv-
alent, e.g. have the same members while the former asserts that the two classes
are to be interpreted as the same object). Using owl:sameAs to relate two
Classes results in an OWL Full ontology. The situation is similar with prop-
erties, although here we would expect to see owl:equivalentProperty rather
than owl:sameAs. It is likely that in such situations, the modeller may have in-
tended to use owl:equivalentClass or owl:equivalentProperty rather than
owl:sameAs.

4.5 xml:base and xmlns Confusion

The use of xml:base and the default namespace xmlns often causes confusion
and can be the source of missing type information. The confusion arises due to
the fact that in an RDF/XML file, elements are resolved with respect to the
default namespace, whereas attribute values are resolved with respect to the
XML base [7]. If no xml:base attribute is explicitly set, then this is the URI
where the file is retrieved from. If xml:base is not set and the document is moved,
this can then cause problems as the URIs of the classes and properties declared in
the ontology may not match those used in the ontology. For example, assume the
following ontology is available at http://owl.man.ac.uk/ontologies/base:

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns="http://owl.man.ac.uk/ontologies/base#">

<owl:Class rdf:about="#A"/>
<A rdf:about="#a"/>
</rdf:RDF>

Patching Syntax in OWL Ontologies 677

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://owl.man.ac.uk/ontologies/broken"
xmlns="http://owl.man.ac.uk/ontologies/broken#">

<owl:Ontology rdf:about=""/>
<!-- B should be a class -->
<owl:Class rdf:about="#A">
<rdfs:subClassOf rdf:resource="#B"/>

</owl:Class>
</rdf:RDF>

Fig. 1. Not OWL DL

This particular ontology will validate as OWL DL. If, however, we move the file
to http://owl.man.ac.uk/ontologies/base2 and then attempt to validate,
validation will fail as the owl:Class typing triple will now apply to the URL
http://owl.man.ac.uk/ontologies/base2#A. Use of an xml:base declaration
would alleviate this problem.

Unfortunately there is not much we can do in terms of applying patches here.
The resolution of URIs is, in general, dealt with by the XML parser and the infor-
mation regarding the base and default namespaces may not actually be available
to the RDF processing phase. However, it is worth mentioning here as this is an
issue that those publishing ontologies need to be aware of and sensitive to.

5 Implementation

The OWL Validator [2] provided with the WonderWeb OWL API [3] checks the
species of OWL ontologies represented using RDF/XML. It does this through a
combination of syntactic checks on the structure of the triple graph, and further
checks on the expressiveness used in the ontology13.

The Validator reports any violations of the OWL DL/Lite rules encountered
during the parse – this information can then be used to try and provide patches
for such violations. The implementation of the Validator has been extended to
provide such a Patcher, applying the heuristics described in the paper in order
to try and obtain OWL DL ontologies.

5.1 Additions

A number of different approaches can be taken to producing “patches”. In the
case of errors of omission, such as missing type information, we can try and
provide a collection of triples that need to be added to the ontology in or-
der to provide OWL DL. We cannot always assume, however, that we have
13 The Validation and Patching services described in this paper are available at:

http://owl.man.ac.uk/services.shtml

678 S. Bechhofer and R. Volz

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">
<owl:imports>
<owl:Ontology rdf:about="http://owl.man.ac.uk/ontologies/broken"/>

</owl:imports>
</owl:Ontology>
<owl:Class rdf:about="http://owl.man.ac.uk/ontologies/broken#B"/>
</rdf:RDF>

Fig. 2. OWL DL

access to the source of the ontology – indeed in most cases we will not as
the ontologies are referred to via URLs. In order to cope with this, we can
produce a new ontology which uses owl:imports to import the checked on-
tology and then adds the necessary type triples. For example, say that at
http://owl.man.ac.uk/ontologies/broken we find the RDF shown in Fig-
ure 1. The results of the patcher will be a new OWL ontology as shown in
Figure 2.

Addition of extra triples can be considered to be a “safe” manipulation of the
graph. In this case, any entailments (in the RDF sense) that held will continue
to hold, due to the monotonicity of RDF entailment [6].

5.2 Deletions

For situations such those described in Sections 4.2 (the import of the OWL
schema), the change required to the ontology is effectively a deletion, e.g. remov-
ing the offending owl:import triple. Again, if the ontology source is not within
our control, removing such a triple is impossible. We can, however, instruct the
parser to ignore particular import statements when parsing. In contrast to the
addition of triples, after deletions, RDF entailments from the original graph may
no longer hold. We must be sure that this is not done silently – the ontology
obtained when we ignore an owl:import triple is not the same ontology as that
obtained when the triple is processed. Note, however, that in terms of entail-
ments that can be drawn using OWL DL semantics, the question is moot, as the
original graph is not OWL DL, and thus cannot have the OWL DL semantics
applied to it.

Similarly, for vocabulary misuse such as the owl:sameAs problem described
in Section 4.4 we can tell the parser to treat owl:sameAs triples as if they were
owl:equivalentClass or owl:equivalentProperty as appropriate (depending
on context).

Once the processor has identified all the possible patches it can apply, it
attempts to revalidate the ontology in the light of those patches and reports its
findings.

Patching Syntax in OWL Ontologies 679

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.daml.org/tools/tools-ont#">
<Project rdf:ID="DAML">
<name>DAML</name>

</Project>
<Tool rdf:ID="SiRPAC">
<name>Simple RDF Parser And Compiler (SiRPAC)</name>
<description>RDF parser, from W3C</description>
<site>http://www.w3.org/RDF/Implementations/SiRPAC/</site>
<category>RDF Parser</category>

</Tool>
<Tool rdf:ID="SiLRI">
<name>Simple Logic-based RDF Interpreter (SiLRI)</name>
<description>a main-memory logic-based inference engine</description>
<site>http://www.ontoprise.de/download/</site>
<uses rdf:resource="#SiRPAC"/>
<category>Inference Engine</category>

</Tool>
...

</rdf:RDF>

Fig. 3. DAML Tools Ontology (fragment)

Table 3. Results of Patching Non-DL Ontologies

Collection Attempted Patched by Type
Triples

Patched by
Schema Handling

DAML Library 50 16 (32%) 1 (2%)
Google Search 140 78 (56%) 2 (1%)

The outcome of the process is thus a combination of things:

– A report on the errors encountered during the parse/validation.
– A collection of type triples that need to be added to the ontology.
– Identification of imports that cause problems (such as the OWL Schema).

As an example of this process, the DAML pages provide an ontology of
tools at http://www.daml.org/tools/tools.owl. This is a vanilla RDF (and
thus OWL Full) file that does not validate as OWL DL due to the presence
of a number of untyped properties and classes. A fragment of the source is
shown in Figure 3. In this case, an analysis of the RDF suggests that Tool is
intended to be an owl:Class, properties such as name and site are instances
of DatatypeProperty, and uses is an owl:ObjectProperty. After adding these
triples to the ontology (using the owl:imports mechanism as described above),
we find that the resulting graph does indeed validate as OWL DL.

680 S. Bechhofer and R. Volz

5.3 Results

The ontologies analysed in the initial experiment were run through the Patcher
in order to see whether OWL DL ontologies could be produced. Results are
summarised in Table 3. Of the 63 candidates from the DAML Library, 13 were
definitely OWL Full due to the expressiveness used (for example subproperty
axioms were asserted between Object and Datatype Properties), leaving 50 po-
tentially available for patching. Of the ontologies gathered using Google, 31 were
definitely OWL Full, leaving 140 potentially available for patching.

6 Related Work

Approaches to parsing OWL in RDF are described in [2,1]. The application
described here extends the approach of trying to construct an abstract syntax
tree representing the OWL ontology. In contrast, the Jena recognizer attempts
to classify nodes according to their occurrence within the RDF graph. The graph
validates as a particular species if the classification of the nodes meets certain
conditions. This approach may well also be amenable to patching as described
here as the node categories provide pointers to the expected types of the nodes.

BBN’s OWL Validator14 is a tool to “...check OWL markup for problems
beyond simple syntax errors...”. It is able to spot some missing type errors, but
does not (as yet) supply detailed information on how these errors could or should
be addressed.

7 Conclusion

The widespread use of ontology languages like OWL is at a rather early stage,
and a number of the “rough edges” still need to be smoothed out. Providing
tools that support the production of ontologies that conform to the rules and
conditions relating to OWL sublanguages is, we feel, a useful step in the right
direction. This paper can be seen as complementary to Appendix E of the OWL
Reference [5] and the Working Group Note on Parsing [1]. The former provides
“Rules of Thumb” to ensure that ontologies are in OWL Lite or DL, while the
latter describes how to parse OWL ontologies in RDF/XML. This work describes
how, in some sense, one might retrospectively apply the Rules of Thumb to
existing ontologies.

Our results are encouraging. As we see in Section 5, over half of the searched
ontologies that were originally found to be OWL Full can in fact be “retrofitted”
to the OWL DL requirements through the addition of the missing type triples
or judicious handling of imports. For those in the DAML Library, we were able
to handle around a third. The solutions we describe here are admittedly rather
simple – the latter example in Section 4.1 gives a glimpse of the complex depen-
dencies that may arise from missing types and we do not (as yet) offer automated
14 http://owl.bbn.com/validator/

Patching Syntax in OWL Ontologies 681

solutions to such problems. However the results reported show that even with
simple approaches, we are able to handle a significant number of ontologies.

A key message here is that care should be taken when applying such heuristics
– the underlying semantics of the ontology are being changed (see Sections 5.1
and 5.2), and tools must ensure that users are aware of the fact that this is hap-
pening. We are not advocating that applications should feel free to arbitrarily
rewrite ontologies they find on the web – this is likely to compromise interoper-
ability. Rather, the procedures we describe here can form a first cut in a process
of “cleaning up” information on the Web.

An analogy can be made with HTML processors. A significant proportion of
HTML pages which are available on the web do not, in fact, conform to schema
such as the XHTML standard. It is often the case that, for example, closing tags
are missing. HTML parsers such as those found in browsers have been carefully
honed to try and deal with these situations. Indeed, it is unlikely that the web
would have met with the success it has if browsers were not able to handle
poorly structured documents. We should be careful not to stretch this analogy
too far, however. In general, HTML pages are targeted at a human interpreter
– humans are fairly robust in terms of their ability to deal with incomplete or
dirty information. Software agents are a different matter, and care must be taken
when applying patching heuristics to ensure that the end user is aware that such
an approach is being taken. In addition, even with what seems to be “broken”
or dirty information, it may be the case that the original syntactic presentation
is exactly what was intended.

Support for the migration from vanilla RDF to OWL is also of interest here.
As discussed in the introduction, the number of OWL DL/Lite ontologies cur-
rently on the web is small. Indeed the number of ontologies that even use the
OWL vocabulary is small – many more schemas are currently represented using
RDF. It would be useful if such schemas could be made accessible to OWL pro-
cessors whenever possible. Again, we surmise that in a large proportion of the
RDF schemas available on the web, the schemas are not inherently OWL Full
due to the expressivity used, but are rather OWL Full because they do not meet
the syntactic restrictions imposed by OWL DL. Translating these to valid OWL
DL ontologies is not, as we have seen, simply a case of replacing vocabulary.
However, with the application of appropriate heuristics, we can move towards
the support of automatic migration of RDF vocabularies to OWL DL and Lite.

Another issue that we touch on here, but do not examine in much depth
is that of the provision of ontology libraries. The success of the Semantic Web
relies, in part, on the provision of ontologies and the sharing of those ontolo-
gies. Not only must we author the ontologies, but they must also be published
and made available to applications. The initial analysis reported here used a
somewhat crude mechanism (searching Google) in order to find OWL ontolo-
gies. There are a small number of ontology libraries on the web (for example the
DAML ontology library15 which is probably the largest) but these are not partic-

15 http://www.daml.org/ontologies

682 S. Bechhofer and R. Volz

ularly comprehensive, and in the main are rather lightweight16. For example, our
experience of encountering Dublin Core properties in OWL ontologies suggests
that an available OWL DL or Lite schema for the Dublin Core properties17 is
likely to be a useful resource.

In conclusion, although the initial answer to the question “how much OWL
DL is there on the Web?” is “not much”, with the provision of some quite simple
tool support, we believe we can increase this to at least “a little bit”.

Acknowledgments. This work was supported by the WonderWeb project
(EU grant IST-2001-33052). Sean Bechhofer would like to thank Peter Patel-
Schneider and Jeremy Carroll for their invaluable assistance in deciphering the
minutiae of OWL syntax.

References

1. Sean Bechhofer. OWL Web Ontology Language Parsing OWL in RDF/XML. W3C
Working Group Note, World Wide Web Consortium, January 2004.
http://www.w3.org/TR/owl-parsing.

2. Sean Bechhofer and Jeremy J. Carroll. Parsing OWL DL: Trees or Triples? In
Proceedings of World Wide Web Conference, WWW2004. ACM Press, May 2004.

3. Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the Semantic Web with
the OWL API. In 2nd International Semantic Web Conference, ISWC, volume
2870 of Lecture Notes in Computer Science, Sanibel Island, Florida, October 2003.
Springer.

4. Jeen Broekstra, Arjohn Kampman, and F. van Harmelen. Sesame: A Generic Archi-
tecture for Storing and Querying RDF. In Ian Horrocks and James Hendler, editors,
Proceedings of the International Semantic Web Conference, ISWC2002, volume 2342
of Lecture Notes in Computer Science, pages 54–68. Springer-Verlag, June 2002.

5. Mike Dean and Guus Schreiber. OWL Web Ontology Language Reference. W3C
Recommendation, World Wide Web Consortium, 2004.
http://www.w3.org/TR/owl-ref/.

6. P. Hayes. RDF Semantics. W3C Recommendation, World Wide Web Consortium,
2004. http://www.w3.org/TR/rdf-mt/.

7. Jonathan Marsh. XML Base. W3C Recommendation, World Wide Web Consor-
tium, 2004. http://www.w3.org/TR/xmlbase/.

8. P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Ab-
stract Syntax and Semantics. W3C Recommendation, World Wide Web Consor-
tium, 2004. http://www.w3.org/TR/owl-semantics/.

16 By lightweight here we mean ontologies that do not extend much beyond the ex-
pressivity supported by RDF Schema.

17 http://www.aifb.uni-karlsruhe.de/WBS/rvo/ontologies/dublincore.owl

QOM – Quick Ontology Mapping

Marc Ehrig and Steffen Staab

Institute AIFB, University of Karlsruhe

Abstract. (Semi-)automatic mapping — also called (semi-)automatic alignment
— of ontologies is a core task to achieve interoperability when two agents or
services use different ontologies. In the existing literature, the focus has so far
been on improving the quality of mapping results. We here consider QOM, Quick
Ontology Mapping, as a way to trade off between effectiveness (i.e. quality) and
efficiency of the mapping generation algorithms. We show that QOM has lower
run-time complexity than existing prominent approaches. Then, we show in exper-
iments that this theoretical investigation translates into practical benefits. While
QOM gives up some of the possibilities for producing high-quality results in favor
of efficiency, our experiments show that this loss of quality is marginal.

1 Introduction

Semantic mapping1 between ontologies is a necessary precondition to establish interop-
eration between agents or services using different ontologies. In recent years we have
seen a range of research work on methods proposing such mappings [1,2,3]. The focus
of the previous work, however, has been laid exclusively on improving the effectiveness
of the approach (i.e. the quality of proposed mappings such as evaluated against some
human judgement given either a posteriori or a priori). When we tried to apply these
methods to some of the real-world scenarios we address in other research contributions
[4], we found that existing mapping methods were not suitable for the ontology inte-
gration task at hand, as they all neglected efficiency. To illustrate our requirements: We
have been working in realms where light-weight ontologies are applied such as the ACM
Topic hierarchy with its 104 concepts or folder structures of individual computers, which
corresponded to 104 to 105 concepts. Finally, we are working with Wordnet exploiting its
106 concepts (cf. [5]). When mapping between such light-weight ontologies, the trade-
off that one has to face is between effectiveness and efficiency. For instance, consider
the knowledge management platform built on a Semantic Web And Peer-to-peer basis
in SWAP [4]. It is not sufficient to provide its user with the best possible mapping, it is
also necessary to answer his queries within a few seconds — even if two peers use two
different ontologies and have never encountered each other before.

In this paper we present an approach that considers both the quality of mapping
results as well as the run-time complexity. Our hypothesis is that mapping algorithms
may be streamlined such that the loss of quality (compared to a standard baseline) is
marginal, but the improvement of efficiency is so tremendous that it allows for the ad-hoc
mapping of large-size, light-weight ontologies. To substantiate the hypothesis, we outline

1 Frequently also called alignment.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 683–697, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

684 M. Ehrig and S. Staab

a comparison of the worst-case run-time behavior (given in full detail in [6]) and we
report on a number of practical experiments. The approaches used for our (unavoidably
preliminary) comparison represent different classes of algorithms for ontology mapping.
Comparing to these approaches we can observe that our new efficient approach QOM
achieves good quality. The complexity of QOM is of O(n · log(n)) (measuring with n
being the number of the entities in the ontologies) against O(n2) for approaches that
have similar effective outcomes.

The remainder of the paper starts with a clarification of terminology (Section 2). To
compare the worst-case run-time behavior of different approaches, we then describe a
canonical process for ontology mapping that subsumes the different approaches com-
pared in this paper (Section 3). The process is a core building block for later deriving
the run-time complexity of the different mapping algorithms. Section 4 presents our
toolbox to analyze these algorithms. In Section 5, different approaches for proposing
mappings are described and aligned to the canonical process, one of them being our
approach QOM. The way to derive their run-time complexity is outlined in Section 6.
Experimental results (Section 7) complement the comparison of run-time complexities.
We close this paper with a short section on related work and a conclusion.

2 Terminology

2.1 Ontology

As we currently focus on light-weight ontologies, we build on RDF/S2 to represent on-
tologies. To facilitate the further description, we briefly summarize its major primitives
and introduce some shorthand notations. An RDF model is described by a set of state-
ments, each consisting of a subject, a predicate and an object. An ontology O is defined
by its set of Concepts C (instances of “rdfs:Class”) with a corresponding subsumption
hierarchy HC (a binary relation corresponding to “rdfs:subClassOf”). RelationsR (in-
stances of “rdf:Property”) exist between single concepts. Relations are arranged alike in
a hierarchy HR (“rdfs:subPropertyOf”). An entity i ∈ I may be an instance of a class
c ∈ C (“rdf:type”). An instance i ∈ I may have one j or many role fillers from I for a
relation r fromR. We also call this type of triple (i, r, j) a property instance.

2.2 Mapping

We here define our use of the term “mapping”. Given two ontologies O1 and O2, mapping
one ontology onto another means that for each entity (concept C, relation R, or instance
I) in ontology O1, we try to find a corresponding entity, which has the same intended
meaning, in ontology O2.

Definition 1. We define an ontology mapping function, map, based on the vocabulary,
E , of all terms e ∈ E and based on the set of possible ontologies,O, as a partial function:

map : E × O ×O ⇀ E ,

with ∀e ∈ O1(∃f ∈ O2 : map(e, O1, O2) = f ∨map(e, O1, O2) = ⊥).
2 http://www.w3.org/RDFS/

QOM – Quick Ontology Mapping 685

Ontology 1

Ontology 2

Ontology 1

Ontology 2

Fig. 1. Example Ontologies and their Mappings

Table 1. Mapping Table for Relation mapO1,O2
(e, f)

Ontology O1 Ontology O2

Object Thing
Car Automobile

Porsche KA-123 Marc’s Porsche
Speed Characteristic

250 km/h fast

A term e interpreted in an ontology O is either a concept, a relation or an instance,
i.e. e|O ∈ C ∪ R ∪ I. We usually write e instead of e|O when the ontology O is clear
from the context of the writing. We write mapO1,O2

(e) for map(e, O1, O2). We derive
a relation mapO1,O2

by defining mapO1,O2
(e, f) ⇔ mapO1,O2

(e) = f . We leave out
O1, O2 when they are evident from the context and write map(e) = f and map(e, f),
respectively. Once a (partial) mapping, map, between two ontologies O1 and O2 is
established, we also say “entity e is mapped onto entity f” iff map(e, f). An entity can
either be mapped to at most one other entity.A pair of entities (e, f) that is not yet in map
and for which appropriate mapping criteria still need to be tested is called a candidate
mapping.

2.3 Example

The following example illustrates a mapping. Two ontologies O1 and O2 describing the
domain of car retailing are given (Figure 1). A reasonable mapping between the two
ontologies is given in Table 1 as well as by the dashed lines in the figure.

Apart from one-to-one mappings as investigated in this paper one entity often has
to be mapped to a complex composite such as a concatenation of terms (first and last
name) or an entity with restrictions (a sports-car is a car going faster than 250 km/h). [7,

686 M. Ehrig and S. Staab

8] propose approaches for this. We do not deal with such issues of complete ontology
mappings here.

3 Process

We briefly introduce a canonical process that subsumes all the mapping approaches we
are aware of.3 Figure 2 illustrates its six main steps. It is started with two ontologies,
which are going to be mapped onto one another, as its input: 1. Feature engineering
transforms the initial representation of ontologies into a format digestible for the simi-
larity calculations. For instance, the subsequent mapping process may only work on a
subset of RDFS primitives.

2. Selection of Next Search Steps. The derivation of ontology mappings takes place in
a search space of candidate mappings. This step may choose, to compute the similarity
of a restricted subset of candidate concepts pairs {(e, f)|e ∈ O1, f ∈ O2} and to ignore
others.

3. Similarity Computation determines similarity values of candidate mappings.

4. Similarity Aggregation. In general, there may be several similarity values for a
candidate pair of entities e, f from two ontologies O1, O2, e.g. one for the similarity of
their labels and one for the similarity of their relationship to other terms. These different
similarity values for one candidate pair must be aggregated into a single aggregated
similarity value.

5. Interpretation uses the individual or aggregated similarity values to derive mappings
between entities from O1 and O2. Some mechanisms here are, to use thresholds for
similarity mappings [2], to perform relaxation labelling [3], or to combine structural and
similarity criteria.

6. Iteration. Several algorithms perform an iteration over the whole process in order to
bootstrap the amount of structural knowledge. Iteration may stop when no new mappings
are proposed. Note that in a subsequent iteration one or several of steps 1 through 5 may
be skipped, because all features might already be available in the appropriate format or
because some similarity computation might only be required in the first round.

Eventually, the output returned is a mapping table representing the relation
mapO1,O2

.

Search Step
Selection

Similarity
Computation

Similarity
Aggregation

Iteration

2 3 4

6

Feature
Engineering

Inter -
pretation

1 5Input Output
Search Step
Selection

Similarity
Computation

Similarity
Aggregation

Iteration

2 3 4

6

Feature
Engineering

Inter -
pretation

1 5InputInput OutputOutput

Fig. 2. Mapping Process

3 The process is inspired by CRISP-DM, http://www.crisp-dm.org/, the CRoss Industry Standard
Process for Data Mining.

QOM – Quick Ontology Mapping 687

4 A Toolbox of Data Structures and Methods

The principal idea of this section is to provide a toolbox of data structures and methods
common to many approaches that determine mappings. This gives us a least common
denominator based on which concrete approaches instantiating the process depicted in
Figure 2 can be compared more easily.

4.1 Features of Ontological Entities

To compare two entities from two different ontologies, one considers their characteristics,
i.e. their features. The features may be specific for a mapping generation algorithm, in
any case the features of ontological entities (of concepts, relations, instances) need to be
extracted from extensional and intensional ontology definitions. See also [9] and [10]
for an overview of possible features and a classification of them. Possible characteristics
include:

– Identifiers: i.e. strings with dedicated formats, such as unified resource identifiers
(URIs) or RDF labels.

– RDF/S Primitives: such as properties or subclass relations
– Derived Features: which constrain or extend simple RDFS primitives (e.g. most-

specific-class-of-instance)
– Aggregated Features: i.e. aggregating more than one simple RDFS primitive, e.g. a

sibling is every instance-of the parent-concept of an instance
– OWL Primitives: such as an entity being the sameAs another entity
– Domain Specific Features are features which only apply to a certain domain with

a predefined shared ontology. For instance, in an application where files are repre-
sented as instances and the relation hashcode-of-file is defined, we use this feature
to compare representations of concrete files.

Example. We again refer to the example in Figure 1. The actual feature consists of a
juxtaposition of relation name and entity name. The Car concept of ontology 1 is charac-
terized through its (label, Car), the concept which it is linked to through (subclassOf,
Vehicle), its (concept sibling, boat), and the (direct property, hasSpeed). Car is also de-
scribed by its instances through (instance, Porsche KA-123). The relation hasSpeed
on the other hand is described through the (domain, Car) and the (range, Speed).
An instance would be Porsche KA-123, which is characterized through the instanti-
ated (property instance, (hasOwner, Marc)) and (property instance, (hasSpeed, 250
km/h)).

4.2 Similarity Computation

Definition 2. We define a similarity measure for comparison of ontology entities as a
function as follows (cf. [11]):

sim : E × E × O ×O → [0, 1]

688 M. Ehrig and S. Staab

Different similarity measures simk(e, f, O1, O2) are indexed through a label k. Further,
we leave out O1, O2 when they are evident from the context and write simk(e, f). The
following similarity measures are needed to compare the features of ontological entities
at iteration t.

– Object Equality is based on existing logical assertions — especially assertions from
previous iterations: simobj(a, b) := {1 iff mapt−1(a) = b, 0 otherwise}

– Explicit Equality checks whether a logical assertion already forces two entities to
be equal: simexp(a, b) := {1 iff statement(a, “sameAs′′, b), 0 otherwise}

– String Similarity measures the similarity of two strings on a scale from 0 to 1 (cf.
[12]) based on Levenshtein’s edit distance, ed [13].
simstr(c, d) := max(0, min(|c|,|d|)−ed(c,d)

min(|c|,|d|))
– SimSet: For many features we have to determine to what extent two sets of entities

are similar. To remedy the problem, multidimensional scaling [14] measures how
far two entities are from all other entities and assumes that if they have very similar
distances to all other entities, they must be very similar:

simset(E, F) =
∑

e∈E e

|E| ·
∑

f∈F f

|F |
with e = (sim(e, e1), sim(e, e2), . . . , sim(e, f1), sim(e, f2), . . .), f analogously.

These measures are all input to the similarity aggregation.

4.3 Similarity Aggregation

Similarities are aggregated by:
simagg(e, f) =

∑
k=1...n wk·adj(simk(e,f))

∑
k=1...n wk

with wk being the weight for each individual similarity measure, and adj being a function
to transform the original similarity value (adj : [0, 1] → [0, 1]), which yields better
results.

4.4 Interpretation

From the similarity values we derive the actual mappings. The basic idea is that each
entity may only participate in one mapping and that we assign mappings based on a
threshold t and a greedy strategy that starts with the largest similarity values first. Ties
are broken arbitrarily by ˜argmax(g,h), but with a deterministic strategy.

P (⊥,⊥, E ∪ {⊥}, E ∪ {⊥}).
P (g, h, U\{e}, V \{f}) ← P (e, f, U, V) ∧ sim(g, h) > t

∧(g, h) = ˜argmax(g,h)∈U\{e}×V \{f}simagg(g, h).
map(e, f) ← ∃X1, X2P (e, f, X1, X2) ∧ (e, f) �= (⊥,⊥).

5 Approaches to Determine Mappings

In the following we now use the toolbox, and extend it, too, in order to define a range
of different mapping generation approaches. In the course of this section we present our
novel Quick Ontology Mapping approach — QOM.

QOM – Quick Ontology Mapping 689

5.1 Standard Mapping Approaches

Our Naive Ontology Mapping (NOM)[9] constitutes a straight forward baseline for
later comparisons. It is defined by the steps of the process model as follows. Where
appropriate we point to related mapping approaches and briefly describe the difference
in comparison to NOM.

1. Feature Engineering. Firstly, the ontologies have to be represented in RDFS. We use
features as shown in Section 4.1.
For PROMPT and Anchor-PROMPT [2] any ontology format is suitable as long as it
can be used in the Protege environment. GLUE [3] learns in advance, based on a sample
mapping set, a similarity estimator to identify equal instances and concepts.

2. Search Step Selection. All entities of the first ontology are compared with all entities
of the second ontology. Any pair is treated as a candidate mapping.
This is generally the same for other mapping approaches, though the PROMPT algorithm
can be implemented more efficiently by sorting the labels first, thus only requiring the
comparison of two neighboring elements in the list.

3. Similarity Computation. The similarity computation between an entity of O1 and
an entity of O2 is done by using a wide range of similarity functions. Each similarity
function is based on a feature (Section 4.1) of both ontologies and a respective similarity
measure (Section 4.2). For NOM they are shown in Table 2.
The PROMPT system determines the similarity based on the exact equality (not only

similarity) of labels. Anchor-PROMPT adds structural components. In GLUE the sim-
ilarity is gained using the previously learned Similarity Estimator. It further adds other
features using Relaxation Labelling based on the intuition that mappings of a node are
typically influenced by the node’s neighborhood.

4. Similarity Aggregation. NOM emphasizes high individual similarities and de-
emphasizes low individual similarities by weighting individual similarity results with
a sigmoid function first and summing the modified values then. To produce an aggre-
gated similarity (cf. Section 4.2) NOM applies adj(x) = 1

1+e−5(x−0.5) . Weights wk are
assigned by manually maximizing the f-measure on overall training data from different
test ontologies.
In systems with one similarity value such as PROMPT or GLUE this step does not apply.

5. Interpretation. NOM interpretes similarity results by two means. First, it applies a
threshold to discard spurious evidence of similarity. Second, NOM enforces bijectivity
of the mapping by ignoring candidate mappings that would violate this constraint and
by favoring candidate mappings with highest aggregated similarity scores.
As PROMPT is semi-automatic this step is less crucial. It presents all pairs with a
similarity value above a relatively low threshold value and the users can decide to carry
out the merging step or not. The relaxation labelling process of GLUE can also be seen
as a kind of interpretation.

6. Iteration. The first round uses only the basic comparison method based on labels and
string similarity to compute the similarity between entities. By doing the computation
in several rounds one can access the already computed pairs and use more sophisticated
structural similarity measures. Therefore, in the second round and thereafter NOM relies
on all the similarity functions listed in Table 2.

690 M. Ehrig and S. Staab

Table 2. Features and Similarity Measures for Different Entity Types Contributing to Aggregated
Similarity in NOM. The corresponding ontology is indicated through an index.

Comparing No. Feature Similarity Measure

Concepts

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (direct properties,Y1) SimSet(Y1, Y2)
5 all (inherited properties,Y1) SimSet(Y1, Y2)
6 all (super-concepts,Y1) SimSet(Y1, Y2)
7 all (sub-concepts,Y1) SimSet(Y1, Y2)
8 (concept siblings,Y1) SimSet(Y1, Y2)
9 (direct instances,Y1) SimSet(Y1, Y2)

10 (instances,Y1) SimSet(Y1, Y2)

Relations

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2), (Xr1, Xr2)
5 all (super-properties,Y1) SimSet(Y1, Y2)
6 all (sub-properties,Y1) SimSet(Y1, Y2)
7 (property siblings,Y1) SimSet(Y1, Y2)
8 (property instances,Y1) SimSet(Y1, Y2)

Instances

1 (label,X1) string similarity(X1, X2)
2 (URI1) string equality(URI1, URI2)
3 (X1,sameAs,X2) relation explicit equality(X1, X2)
4 all (parent-concepts,Y1) SimSet(Y1, Y2)
5 (property instances,Y1) SimSet(Y1, Y2)

Property-
Instances

1 (domain,Xd1) and (range,Xr1) object equality(Xd1, Xd2), (Xr1, Xr2)
2 (parent property,Y1) SimSet(Y1, Y2)

PROMPT also requires these iterations after feedback has been given by the user. The
GLUE system heavily relies on iterations for the relaxation labelling process. Both do
not change the strategies during the iterations.

5.2 QOM — Quick Ontology Mapping

The goal of this paper is to present an efficient mapping algorithm. For this purpose, we
optimize the effective, but inefficient NOM approach towards our goal. The outcome is
QOM — Quick Ontology Mapping. We would also like to point out that the efficiency
gaining steps can be applied to other mapping approaches as well.

1. Feature Engineering. Like NOM, QOM exploits RDF triples.

2. Search Step Selection. A major ingredient of run-time complexity is the number of
candidate mapping pairs which have to be compared to actually find the best mappings.
Therefore, we use heuristics to lower the number of candidate mappings. Fortunately we
can make use of ontological structures to classify the candidate mappings into promising
and less promising pairs.

QOM – Quick Ontology Mapping 691

In particular we use a dynamic programming approach [15]. In this approach we
have two main data structures. First, we have candidate mappings which ought to be
investigated. Second, an agenda orders the candidate mappings, discarding some of
them entirely to gain efficiency. After the completion of the similarity analysis and
their interpretation new decisions have to be taken. The system has to determine which
candidate mappings to add to the agenda for the next iteration. The behavior of initiative
and ordering constitutes a search strategy.

We suggest the subsequent strategies to propose new candidate mappings for inspec-
tion:

Random. A simple approach is to limit the number of candidate mappings by selecting
either a fixed number or percentage from all possible mappings.

Label. This restricts candidate mappings to entity pairs whose labels are near to each
other in a sorted list. Every entity is compared to its “label”-neighbors.

Change Propagation. QOM further compares only entities for which adjacent entities
were assigned new mappings in a previous iteration. This is motivated by the fact
that every time a new mapping has been found, we can expect to also find similar
entities adjacent to these found mappings. Further, to prevent very large numbers of
comparisons, the number of pairs is restricted.

Hierarchy. We start comparisons at a high level of the concept and property taxonomy.
Only the top level entities are compared in the beginning. We then subsequently
descend the taxonomy.

Combination. The combined approach used in QOM follows different optimization
strategies: it uses a label subagenda, a randomness subagenda, and a mapping change
propagation subagenda. In the first iteration the label subagenda is pursued. After-
wards we focus on mapping change propagation. Finally we shift to the randomness
subagenda, if the other strategies do not identify sufficiently many correct mapping
candidates.

With these multiple agenda strategies we only have to check a fixed and restricted
number of mapping candidates for each original entity.4 Please note that the creation of
the presented agendas does require processing resources itself.

3. Similarity Computation. QOM, just like NOM, is based on a wide range of ontology
feature and heuristic combinations. In order to optimize QOM, we have restricted the
range of costly features as specified in Table 3. In particular, QOM avoids the complete
pair-wise comparison of trees in favor of a(n incomplete) top-down strategy. The marked
comparisons in the table were changed from features which point to complete inferred
sets to features only retrieving limited size direct sets.

4. Similarity Aggregation. The aggregation of single methods is only performed once
per candidate mapping and is therefore not critical for the overall efficiency. Therefore,
QOM works like NOM in this step.

5. Interpretation. Also the interpretation step of QOM is the same as in NOM.

6. Iteration. QOM iterates to find mappings based on lexical knowledge first and based
on knowledge structures later.

4 We have also explored a number of other strategies or combinations of strategies with simple
data sets but they did not outperform results of QOM presented here.

692 M. Ehrig and S. Staab

Table 3. Features and Similarity Measures for Different Entity Types Contributing to Aggregated
Similarity in QOM. The lower case “a” indicates that the feature has been modified for efficiency
considerations.

Comparing Change Feature Similarity Measure

Concepts

5 all (inherited properties, Y1) SimSet(Y1, Y2)
−→ 5a (properties of direct super-concepts, Y1) SimSet(Y1, Y2)
6 all (inherited super-concepts, Y1) SimSet(Y1, Y2)
−→ 6a (direct super-concepts, Y1) SimSet(Y1, Y2)
7 all (inherited sub-concepts, Y1) SimSet(Y1, Y2)
−→ 7a (direct sub-concepts, Y1) SimSet(Y1, Y2)
10 all (inherited instances, Y1) SimSet(Y1, Y2)
−→ 10a (instances of direct sub-concepts, Y1) SimSet(Y1, Y2)

Relations
5 all (inherited super-properties, Y1) SimSet(Y1, Y2)
−→ 5a (direct super-properties, Y1) SimSet(Y1, Y2)
6 all (inherited sub-properties, Y1) SimSet(Y1, Y2)
−→ 6a (direct sub-properties, Y1) SimSet(Y1, Y2)

Instances 4 all (inherited parent-concepts, Y1) SimSet(Y1, Y2)
−→ 4a (direct parent-concepts, Y1) SimSet(Y1, Y2)

In all our tests we have found that after ten rounds hardly any further changes occur
in the mapping table. This is independent from the actual size of the involved ontologies.
QOM therefore restricts the number of runs.

Assuming that ontologies have a fixed percentage of entities with similar lexical
labels, we will easily find their correct mappings in the first iteration. These are further
evenly distributed over the two ontologies, i.e. the distance to the furthest not directly
found mapping is constant. Through the change propagation agenda we pass on to the
next adjacent mapping candidates with every iteration step. The number of required
iterations remains constant; it is independent from the size of the ontologies.

6 Comparing Run-Time Complexity

We determine the worst-case run-time complexity of the algorithms to propose mappings
as a function of the size of the two given ontologies. Thereby, we wanted to base our
analysis on realistic ontologies and not on artifacts. We wanted to avoid the consideration
of large ontologies with n leaf concepts but a depth of the concept hierarchy HC of
n− 1. [16] have examined the structure of a large number of ontologies and found, that
concept hierarchies on average have a branching factor of around 2 and that the concept
hierarchies are neither extremely shallow nor extremely deep. The actual branching
factor can be described by a power law distribution. Hence, in the following we base our
results on their findings.

Theorem 1. The worst case run-time behaviors of NOM, PROMPT, Anchor-PROMPT,
GLUE and QOM are given by the following table:

QOM – Quick Ontology Mapping 693

NOM O(n2 · log2(n))
PROMPT5 O(n · log(n))
Anchor-PROMPT O(n2 · log2(n))
GLUE6 O(n2)
QOM O(n · log(n))

Proof Sketch 1. The different algorithmic steps contributing to complexity7 are aligned
to the canonical process of Section 3.

For each of the algorithms, one may then determine the costs of each step. First, one
determines the cost for feature engineering (feat). The second step is the search step
i.e. candidate mappings selection (sele). For each of the selected candidate mappings
(comp) we need to compute k different similarity functions simk and aggregate them
(agg). The number of entities involved and the complexity of the respective similarity
measure affect the run-time performance. Subsequently the interpretation of the simi-
larity values with respect to mapping requires a run-time complexity of inter. Finally
we have to iterate over the previous steps multiple times (iter).

Then, the worst case run-time complexity is defined for all approaches by:

c = (feat + sele + comp · (
∑

k simk + agg) + inter) · iter

Depending on the concrete values that show up in the individual process steps the
different run-time complexities are derived in detail in [6].

7 Empirical Evaluation and Results

In this section we show that the worst case considerations carry over to practical ex-
periments and that the quality of QOM is only negligibly lower than the one of other
approaches. The implementation itself was coded in Java using the KAON-framework8

for ontology operations.

7.1 Test Scenario

Metrics. We use standard information retrieval metrics to assess the different approaches
(cf. [17]):

Precision p = #correct found mapping
#found mappings

Recall r = #correct found mappings
#existing mappings

F-Measure f1 = 2pr
p+r

5 This complexity assumes an ideal implementation of PROMPT using a sorted list. The tool
itself requires O(n2).

6 This result is based on optimistic assumptions about the learner.
7 In this paper we assume that the retrieval of a statement of an ontology entity from a database

can be done in constant access time, independent of the ontology size, e.g. based on sufficient
memory and a hash function.

8 http://kaon.semanticweb.org/

694 M. Ehrig and S. Staab

Data Sets. Three separate data sets were used for evaluation purposes. As real world on-
tologies and especially their mappings are scarce, students were asked to independently
create and map ontologies.9

Russia 1. In this first set we have two ontologies describing Russia. The students created
the ontologies with the objectives to represent the content of two independent travel
websites about Russia. These ontologies have approximately 400 entities each, including
concepts, relations, and instances. The total number of possible mappings is 160, which
the students have assigned manually.

Russia 2. The second set again covers Russia, but the two ontologies are more difficult
to map. After their creation they have been altered by deleting entities and changing the
labels at random. They differ substantially in both labels and structure. Each ontology
has 300 entities with 215 possible mappings, which were captured during generation.

Tourism. Finally, the participants of a seminar created two ontologies which separately
describe the tourism domain of Mecklenburg-Vorpommern. Both ontologies have an
extent of about 500 entities. No instances were modelled with this ontology though,
they only consist of concepts and relations. The 300 mappings were created manually.

Strategies. We evaluated the mapping strategies described in the previous sections:

– PROMPT — As the PROMPT algorithm is rather simple and fast we use it as
a baseline to evaluate the speed. The empirical evaluation is based on the actual
implementation of PROMPT rather than its theoretic potential, as described in the
previous section.

– NOM / Anchor-PROMPT — Naive Ontology Mapping is an approach making use
of a wide range of features and measures. Therefore it reaches high levels of effec-
tiveness and represents our quality baseline. In terms of structural information used
and complexity incurred it is similar to Anchor-PROMPT.

– QOM — Quick Ontology Mapping is our novel approach focusing on efficiency.

To circumvent the problem of having semi-automatic merging tools (PROMPT and
Anchor-PROMPT) in our fully automatic mapping tests, we assumed that every propo-
sition of the system is meaningful and correct. Further, as we had difficulties in running
Anchor-PROMPT with the size of the given data sets, we refer to the results of the some-
what similar NOM. For GLUE we face another general problem. The algorithm has a
strong focus on example instance mappings. As we can not provide this, we refrained
from running the tests on a poorly trained estimator which would immediately result in
poor quality results.

7.2 Results and Discussion

We present the results of the strategies on each of the data sets in Figures 3 and 4. The
tourism dataset shows similar characteristics as Russia 1 and is therefore not plotted.
The x-axis shows the elapsed time on a logarithmic scale, the y-axis corresponds to the
f-measure. The symbols represent the result after each iteration step.

9 The datasets are available from http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/.

QOM – Quick Ontology Mapping 695

0
0,1

0,2
0,3
0,4
0,5
0,6

0,7
0,8

0,9
1

1000 10000 100000 1000000 10000000

time (ms)

f-
m

ea
su

re
PROMPT
NOM
QOM

Fig. 3. Mapping quality reached over time with Russia 1 ontologies.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1000 10000 100000 1000000

time (ms)

f-
m

ea
su

re

PROMPT
NOM
QOM

Fig. 4. Mapping quality reached over time with Russia 2 ontologies.

Depending on the scenario PROMPT reaches good results within a short period of
time. Please notice that for ontologies with a small number of similar labels (Figure 4)
this strategy is not satisfactory (f-measure 0.06). In contrast, the f-measure value of the
NOM strategy rises slowly but reaches high absolute values of up to 0.8. Unfortunately
it requires a lot of time. Finally the QOM Strategy is plotted. It reaches high quality
levels very quickly. In terms of absolute values it also seems to reach the best quality
results of all strategies. This appears to be an effect of QOM achieving an about 20 times
higher number of iterations than NOM within the given time frame.

Lessons Learned. We had the hypothesis that faster mapping results can be obtained
with only a negligible loss of quality. We here briefly present the bottom line of our
considerations in this paper:

1. Optimizing the mapping approach for efficiency — like QOM does — decreases the
overall mapping quality. If ontologies are not too large one might prefer to rather
avoid this.

2. Labels are very important for mapping, if not the most important feature of all, and
alone already return very satisfying results.

696 M. Ehrig and S. Staab

3. Using an approach combining many features to determine mappings clearly leads
to significantly higher quality mappings.

4. The Quick Ontology Mapping approach shows very good results. Quality is lowered
only marginally, thus supporting our hypothesis.

5. QOM is faster than standard prominent approaches by a factor of 10 to 100 times.

Recapitulating we can say that our mapping approach is very effective and efficient.

8 Related Work

We only present closely related work not yet mentioned in this paper. Various authors
have tried to find a general description of similarity with several of them being based on
knowledge networks. [18] give a general overview of similarity.

Original work on mapping is presented by [19] in their tool ONION, which uses
inferencing to execute mappings, but is based on manually assigned mappings or very
simple heuristics.An interesting approach for schema and ontology mapping is presented
by [20]. Explicit semantic rules are added for consideration. A SAT solver is used to
prevent mappings to imply semantical contradictions.

Despite the large number of related work on effective mapping already mentioned
throughout this paper, there are very few approaches raising the issue of efficiency.

Apart from the ontology domain research on mapping and integration has been done
in various computer science fields. [1] present an approach to integrate documents from
different sources into a master catalog. There has also been research on efficient schema
and instance integration within the database community. [21] is a good source for an
overview. Due to the different domain comparisons with our approach are very difficult.

9 Conclusion

The problem of mapping two ontologies effectively and efficiently arises in many ap-
plication scenarios [4,5]. We have devised a generic process model to investigate and
compare different approaches that generate ontology mappings. In particular, we have
developed an original method, QOM, for identifying mappings between two ontologies.
We have shown that it is on a par with other good state-of-the-art algorithms concerning
the quality of proposed mappings, while outperforming them with respect to efficiency
— in terms of run-time complexity (O(n · log(n)) instead of O(n2)) and in terms of the
experiments we have performed (by a factor of 10 to 100).

Acknowledgements. Research reported in this paper has been partially financed by the
EU in the IST projects WonderWeb (IST-2001-33052), SWAP (IST-2001-34103) and
SEKT (IST-2003-506826).

References

1. Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceedings of the tenth international
conference on World Wide Web, ACM Press (2001) 603–612

QOM – Quick Ontology Mapping 697

2. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies 59 (2003) 983–1024

3. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources: A
multistrategy approach. VLDB Journal 50 (2003) 279–301

4. Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R.,
Tempich, C.: The SWAP data and metadata model for semantics-based peer-to-peer systems.
In: Proceedings of MATES-2003. First German Conference on Multiagent Technologies.
LNAI, Erfurt, Germany, Springer (2003)

5. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Pro-
ceedings of the International Conference on Data Mining — ICDM-2003, IEEE Press (2003)

6. Ehrig, M., Staab, S.: Quick ontology mapping with QOM. Technical report, University of
Karlsruhe, Institute AIFB (2004)
http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/.

7. Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches.
In: Proceedings of the 28th VLDB Conference, Hong Kong, China (2002)

8. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: imap: discovering complex
semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. (2004) 383–394

9. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In Bussler, C., Davis, J.,
Fensel, D., Studer, R., eds.: Proceedings of the 1st ESWS. Volume 3053 of Lecture Notes in
Computer Science., Heraklion, Greece, Springer Verlag (2004) 76–91

10. Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In Doan,
A., Halevy, A., Noy, N., eds.: Proceedings of the Semantic Integration Workshop at ISWC-03.
(2003)

11. Bisson, G.: Why and how to define a similarity measure for object based representation
systems. Towards Very Large Knowledge Bases (1995) 236–246

12. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of the
European Conference on KnowledgeAcquisition and Management (EKAW), Springer (2002)

13. Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory (1966)

14. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (1994)
15. Boddy, M.: Anytime problem solving using dynamic programming. In: Proceedings of the

Ninth National Conference on Artificial Intelligence, Anaheim, California, Shaker Verlag
(1991) 738–743

16. Tempich, C., Volz, R.: Towards a benchmark for semantic web reasoners - an analysis of the
DAML ontology library. In Sure, Y., ed.: Evaluation of Ontology-based Tools (EON2003) at
Second International Semantic Web Conference (ISWC 2003). (2003)

17. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings
of the second int. workshop on Web Databases (German Informatics Society). (2002)

18. Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes
from different ontologies. IEEE Transactions on Knowledge and Data Engineering (2000)

19. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology
interdependencies. Lecture Notes in Computer Science 1777 (2000) 86+

20. Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based algorithm for context
matching. In: IV International and Interdisciplinary Conference on Modeling and Using
Context (CONTEXT’2003), Stanford University (CA, USA) (2003)

21. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets
with application to reference matching. In: Knowledge Discovery and Data Mining. (2000)
169–178

An API for Ontology Alignment

Jérôme Euzenat

INRIA Rhône-Alpes, Montbonnot, France,
Jerome.Euzenat@inrialpes.fr

Abstract. Ontologies are seen as the solution to data heterogeneity on the web.
However, the available ontologies are themselves source of heterogeneity. This
can be overcome by aligning ontologies, or finding the correspondence between
their components. These alignments deserve to be treated as objects: they can be
referenced on the web as such, be completed by an algorithm that improves a
particular alignment, be compared with other alignments and be transformed into
a set of axioms or a translation program. We present here a format for expressing
alignments in RDF, so that they can be published on the web. Then we propose
an implementation of this format as an Alignment API, which can be seen as an
extension of the OWL API and shares some design goals with it. We show how
this API can be used for effectively aligning ontologies and completing partial
alignments, thresholding alignments or generating axioms and transformations.

1 Introduction

Like the web, the semantic web will have to be distributed and heterogeneous. Its main
problem will be the integration of the resources that compose it. For contributing solving
this problem, data will be expressed in the framework of ontologies. However, ontolo-
gies themselves can be heterogeneous and some work will have to be done to achieve
interoperability.

Semantic interoperability can be grounded on ontology reconciliation: finding re-
lationships between concepts belonging to different ontologies. We call this process
“ontology alignment”. The ontology alignment problem can be described in one sen-
tence: given two ontologies each describing a set of discrete entities (which can be
classes, properties, rules, predicates, etc.), find the relationships (e.g., equivalence or
subsumption) holding between these entities.

Imagine that one agent wants to query another for bibliographic data but they do
not use the same ontology (see Table 1). The receiver of the query can produce some
alignment for merging both ontologies and understanding the message or for translating
the query in terms of its favorite ontology. Additionally, it could store the alignment for
future use or choose to communicate it to its partner for it to translate messages. The
ability to align ontologies can be seen as a service provided to the agents. As such it will
benefit for some explicit representation of the alignment.

“Reifying” alignment results in a standardized format can be very useful in various
contexts:

– for collecting, hand-made or automatically created, alignments in libraries that can
be used for linking two particular ontologies;

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 698–712, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An API for Ontology Alignment 699

– for modularizing alignments algorithms, e.g., by first using terminological alignment
methods for labels, having this alignment agreed or amended by a user and using it
as input for a structural alignment method;

– for comparing the results with each others or with possible “standard” results;
– for generating from the output of different algorithms, various forms of interoper-

ability enablers. For instance, one might generate transformations from one source
to another, bridge axioms for merging two ontologies, query wrappers (or medi-
ators) which rewrite queries for reaching a particular source, inference rules for
transferring knowledge from one context to another.

The problem is thus to design an alignment format which is general enough for
covering most of the needs (in terms of languages and alignment output) and developed
enough for offering the above functions. We propose an alignment format and an ap-
plication programming interface (API) for manipulating alignments, illustrated through
a first implementation. Providing an alignment format is not solely tied to triggering
alignment algorithms but can help achieving other goals such as:

– allowing a user to select parts of alignments to be used,
– transforming the alignment into some translation programme or articulation axioms,
– thresholding correspondence in an alignment on some criterion,
– improving a partial alignment with a new algorithm,
– comparing alignment results,
– publishing ontology alignments on the web.

The design of thisAPI follows that of the OWLAPI [1] in separating the various concerns
that are involved in the manipulation and implementation of the API.

In the remainder, we shall define the current alignment format (§2), present it as
an alignment API (§3) and its implementation on top of the OWL-API (§4). Then we
will demonstrate the extension of the system by adding new algorithms (§5), composing
alignments (§6), generating various output formats (§7) and comparing the alignments
(§8).

2 Alignment Format

As briefly sketched above and before ([4]), in first approximation, an alignment is a set
of pairs of elements from each ontology. However, as already pointed out in [9], this first
definition does not cover all needs and all alignments generated. So the alignment format
is provided on several levels, which depend on more elaborate alignment definitions.

2.1 Alignment

The alignment description can be stated as follows:

a level used for characterizing the type of correspondence (see below);
a set of correspondences which express the relation holding between entities of the first

ontology and entities of the second ontology. This is considered in the following
subsections;

700 J. Euzenat

an arity (default 1:1): Usual notations are 1:1, 1:m, n:1 or n:m. We prefer to note if the
mapping is injective, surjective and total or partial on both side. We then end up with
more alignment arities (noted with, 1 for injective and total, ? for injective, + for
total and * for none and each sign concerning one mapping and its converse): ?:?,
?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1, +:*, *:+, *:*. These assertions
could be provided as input (or constraint) for the alignment algorithm or as a result
by the same algorithm.

This format is simpler than the alignment representation of [7], but is supposed producible
by most alignment tools.

2.2 Level 0

The very basic definition of a correspondence is the one of a pair of discrete entities in
the language. This first level of alignment has the advantage not to depend on a particular
language. Its definition is roughly the following:

entity1: the first aligned entity. It is identified by an URI and corresponds to some
discrete entity of the representation language.

entity2: the second aligned entity with the same constraint as entity1.
relation: (default "=") the relation holding between the two entities. It is not restricted to

the equivalence relation, but can be more sophisticated operators (e.g., subsumption,
incompatibility [5], or even some fuzzy relation).

strength: (default 1.) denotes the confidence held in this correspondence. Since many
alignment methods compute a strength of the relation between entities, this strength
can be provided as a normalized measure. This measure is by no mean characterizing
the relationship (e.g., as a fuzzy relation which should be expressed in the relation
attribute), but reflects the confidence of the alignment provider in the relation holding
between the entities. Currently, we restrict this value to be a float value between 0.
and 1.. If found useful, this could be generalised into any lattice domain.

id: an identifier for the correspondence.

A simple pair can be characterised by the default relation "=" and the default strength
"1.". These default values lead to consider the alignment as a simple set of pairs.

On this level, the aligned entities may be classes, properties or individuals. But they
also can be any kind of complex term that is used by the target language. For instance,
it can use the concatenation of firstname and lastname considered in [11] if this is an
entity, or it can use a path algebra like in:

hasSoftCopy.softCopyURI = hasURL

However, in the format described above and for the purpose of storing it in some RDF
format, it is required that these entities (here, the paths) are discrete and identifiable by
a URI.

Level 0 alignments are basic but found everywhere: there are no algorithm that cannot
account for such alignments. It is, however, somewhat limited: there are other aspects
of alignments that can be added to this first approximation.

An API for Ontology Alignment 701

2.3 Level 1

Level 1 replaces pairs of entities by pairs of sets (or lists) of entities. A level 1 corre-
spondence is thus a slight refinement of level 0, which fills the gap between level 0 and
level 2. However, it can be easily parsed and is still language independent.

2.4 Level 2 (L)

Level 2 considers sets of expressions of a particular language (L) with variables in these
expressions. Correspondences are thus directional and correspond to a clause:

∀xf (f =⇒ ∃xgg)

in which the variables of the left hand side are universally quantified over the whole
formula and those of the right hand side (which do not occur in the left hand side) are
existentially quantified. This level can express correspondences like:

∀x, z grandparent(x, z) =⇒ ∃y; parent(x, y) ∧ parent(y, z)

This kind of rules (or restrictions) is commonly used in logic-based languages or
in the database world for defining the views in “global-as-view” of “local-as-view”
approaches [2]. It also resembles the SWRL rule language [6] when used with OWL
(see §7.3 for a simple example of such rules). These rules can also be generalised to any
relation and drop the orientation constraint.

Level 2 can be applied to other languages than OWL (SQL, regular expressions, F-
Logic, etc.). For instance, the expression can apply to character strings and the alignment
can denote concatenation like in
name = firstname+" "+lastname

This alignment format has been given an OWL ontology and a DTD for validating
it in RDF/XML. Given such a format, we will briefly describe how is an API designed
around it (§3) before explaining its implementation (§4) and functions (§5-§8).

3 Alignment API

A JAVA API can be used for implementing this format and linking to alignment algo-
rithms and evaluation procedures. It is briefly sketched here.

3.1 Classes

The OWL API is extended with the (org.semanticweb.owl.align) package which
describes the Alignment API. This package name is used for historical reasons. In fact,
the API itself is fully independent from OWL or the OWL API.

It is essentially made of three interfaces. We present here, under the term “features”,
the information that the API implementation must provide. For each feature, there are
the usual reader and writer accessors:

702 J. Euzenat

3.2 Functions

Of course, this API does provide support for manipulating alignments. It offers a number
of services for manipulating the API. As in [1], these functions are separated in their
implementation. The following primitives are available:

parsing/serializing an alignment from a file in RDF/XML
(AlignmentParser.read(), Alignment.write());

computing the alignment, with input alignment (Alignment.align(Alignment,
Parameters));

thresholding alignment with threshold as argument (Alignment.cut(double));
hardening an alignment by considering that all correspondences are absolute

(Alignment.harden(double));
comparing one alignment with another (Evaluator.eval(Parameters)) and seri-

alising them (Evaluator.write());

An API for Ontology Alignment 703

outputting alignment in a particular format (rule, axioms, transformations)
(Alignment.render(stream,visitor));

These functions are more precisely described below.
In addition, alignment and evaluation algorithms accept parameters. These are put

in a structure that allows storing and retrieving them. The parameter name is a string and
its value is any Java object. The parameters can be the various weights used by some
algorithms, some intermediate thresholds or the tolerance of some iterative algorithms.

4 Implementation and Example

For validating the API, we carried out a first implementation, on top of the OWL API
[1], which is presented here and illustrated in the following sections.

4.1 Default Implementation

A (default) implementation of this API can be found in the fr.inrialpes.exmo.-
align.impl package. It implements the API by providing the simple basic classes:
BasicAlignment, BasicCell, BasicRelation, BasicParameters and Basic-
Evaluator. These classes provide all the necessary implementation for the API but the
algorithm specific methods (Alignment.align() and Evaluator.eval()). It also
provides an RDF/XML parser that can parse the format into an Alignment object.

Along with these basic classes the default implementation provides a library of other
classes, mentioned below.

4.2 Command-Line Interface

There is a stand-alone program (fr.inrialpes.exmo.align.util.Procalign)
which:

– Reads two OWL/RDF ontologies;
– Creates an alignment object;
– Computes the alignment between these ontologies;
– Displays the result.

This programme implements the standard structure for using the API.
Additionally, a number of options are available:

– displaying debug information (-d);
– controlling the way of rendering the output (-r);
– deciding the implementation of the alignment method (-i);
– providing an input alignment (-a).

704 J. Euzenat

4.3 Processing an Example

Using this alignment processor works in the following way (assuming that $CWD corre-
sponds to the current directory):
$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment

file://localhost$CWD/rdf/onto1.owl file://localhost$CWD/rdf/onto2.owl
-o aligns/sample.owl

This asks for aligning the ontology onto1.rdf and onto2.rdf with the SubsDist
NameAlignment class which implements a substring based distance on the labels of
classes and properties, and output the result to the sample.owl file. Since the results
are not very satisfying, the program can be called again by asking to threshold under .6:
$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment

file://localhost$CWD/rdf/onto1.owl file://localhost$CWD/rdf/onto2.owl -t .6

which returns:
<?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
<!DOCTYPE rdf:RDF SYSTEM "align.dtd">

<rdf:RDF xmlns=’http://knowledgeweb.semanticweb.org/heterogeneity/alignment’
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema#’>

<Alignment>
<xml>yes</xml>
<level>0</level>
<type>**</type>
<onto1>http://www.example.org/ontology1</onto1>
<onto2>http://www.example.org/ontology2</onto2>
<map>

<Cell>
<entity1 rdf:resource=’http://www.example.org/ontology1#reviewedarticle’/>
<entity2 rdf:resource=’http://www.example.org/ontology2#article’/>
<measure rdf:datatype=’&xsd;float’>0.6363636363636364</measure>
<relation>=</relation>

</Cell>
<Cell>

<entity1 rdf:resource=’http://www.example.org/ontology1#journalarticle’/>
<entity2 rdf:resource=’http://www.example.org/ontology2#journalarticle’/>
<measure rdf:datatype=’&xsd;float’>1.0</measure>
<relation>=</relation>

</Cell>
</map>

</Alignment>
</rdf:RDF>

4.4 Example Data

In order to provide a simple example, we picked up, on the web, two bibliographic
ontologies described in OWL:

– eBiquity Publication Ontology Resource1,
– BibTEX Definition in Web Ontology Language2.

These ontologies are obviously based on BibTEX (see Table 1). This explains the relative
ease of alignment with very simple algorithms. The only purpose of this example is to

1 http://ebiquity.umbc.edu/v2.1/ontology/publication.owl
2 http://visus.mit.edu/bibtex/0.1/

An API for Ontology Alignment 705

Table 1. Classes and properties in the three ontologies (From BibTEX, this table avoids technical
terms like key and crossref). Standard BibTEX classes have been separated from non-standard
ones (some of the non-standard-but-common are mentioned in parenthesis).

BibTEX UMBC MIT BibTEX UMBC MIT
Resource SoftCopy

Publication Entry
Unpublished Conference

article Article Article book Book Book
inbook InBook Inbook incollection InCollection Incollection

inproceedings InProceedings Inproceedings mastersthesis MastersThesis Mastersthesis
misc Misc Misc phdthesis PhdThesis Phdthesis

proceedings Proceedings Proceedings techreport TechReport Techreport
booklet Booklet

title title hasTitle author author hasAuthor
editor editor hasEditor publisher publisher hasPublisher
edition edition hasEdition chapter chapter hasChapter
series series hasSeries pages pages hasPages

volume volume hasVolume number number hasNumber
note note hasNote address address hasAddress

organization organization hasOrganization journal journal hasJournal
booktitle booktitle hasBooktitle shool school hasSchool

howpublished howPublished institution institution hasInstitution
type type hasType year hasYear

annotation hasAnnotation
(affiliation) hasAffiliation (abstract) abstract hasAbstract
(copyright) hasCopyright (content) hasContent
(keywords) keywords hasKeywords

(URL) softCopyURI hasURL (ISBN) hasISBN
(size) softCopySize hasSize (ISSN) hasISSN

(location) hasLocation (LCCN) hasLCCN
(language) hasLanguage (price) hasPrice

softCopy relatedProject
softCopyFormat counter

version description
publishedOn pageChapterData
firstAuthor humanCreator

demonstrate the use of theAPI and its implementation. However, both ontologies display
a number of differences, especially in the name of properties.

The expected alignments of both ontologies is the one given in Table 1. It as been
described in the alignment format for the purpose of evaluating the results of the various
algorithms (see §8).

5 Adding an Algorithm

There are many different methods for computing alignments. However, they always need
at least two ontologies as input and provide an alignment as output (or as an intermediate

706 J. Euzenat

step because some algorithms are more focussed on merging the ontologies for instance).
Sometimes they can take an alignment or various other parameters as input.

5.1 Extending the Implemented Algorithms

The API enables the integration of the algorithms based on that minimal interface. It is
used by creating an alignment object, providing the two ontologies, calling the align
method which takes parameters and initial alignment as arguments. The alignment object
then bears the result of the alignment procedure.

Adding new alignments methods amounts to create a new AlignmentProcess
class implementing the interface. Generally, this class can extend the proposed Basic-
Alignment class. The BasicAlignment class defines the storage structures for on-
tologies and alignment specification as well as the methods for dealing with alignment
display. All methods can be refined (no one is final). The only method it does not imple-
ment is align itself.

5.2 Collection of Predefined Algorithms

Several algorithms have been run to provide the alignments between these two ontolo-
gies:

NameEqAlignment: Simply compares the equality of class and property names (once
downcased) and align those objects with the same name;

EditDistNameAlignment: Uses an editing (or Levenstein) distance between (down-
cased) entity names. It thus has to build a distance matrix and to choose the alignment
from the distance;

SubsDistNameAlignment: Computes a substring distance on the (downcased) entity
name;

StrucSubsDistNameAlignment: Computes a substring distance on the (downcased)
entity names and uses and aggregates this distance with the symmetric difference
of properties in classes.

These simple algorithms should increase the accuracy of the alignment results. We
will see what happens in §8.

6 Composing Alignments

One of the claimed advantages of providing a format for alignments is the ability to
improve alignments by composing alignment algorithms. This would allow iterative
alignment: starting with a first alignment, followed by user feedback, subsequent align-
ment rectification, and so on. A previous alignment can, indeed, be passed to the align
method as an argument. The correspondences of this alignment can be incorporated in
those of the alignment to be processed.

For instance, it is possible to implement the StrucSubsDistNameAlignment, by
first providing a simple substring distance on the property names and then applying a

An API for Ontology Alignment 707

structural distance on classes. The new modular implementation of the algorithm yields
the same results.

Moreover, modularizing these alignment algorithms offers the opportunity to ma-
nipulate the alignment in the middle, for instance, by thresholding. As an example, the
algorithm used above can be obtained by:

– aligning the properties;
– thresholding those under threshold;
– aligning the classes with regard to this partial alignment;
– generating axioms (see below);

Selecting by other criterion (only retaining the alignments on classes or in some specific
area of the ontology) is also possible this way.

7 Generating Output

The obtained alignment can, of course, be generated in some RDF serialisation form
like demonstrated by the example of §4.3. However, there are other formats available.

The API provides the notion of a visitor of the alignment cells. These visitors are
used in the implementation for rendering the alignments. So far, the implementation is
provided with four such visitors:

RDFRendererVisitor displays the alignment in the RDF format described in §2.
OWLAxiomsRendererVisitor generates an ontology merging both aligned ontologies

and comprising OWL axioms for expressing the subsumption, equivalence and ex-
clusivity relations.

XSLTRendererVisitor generates an XSLT stylesheet for transforming data expressed
in the first ontology in data expressed in the second ontology;

SWRLRendererVisitor generates a set of SWRL [6] rules for inferring from data
expressed in the first ontology the corresponding data with regard of the second
ontology.

Some of these methods, like XSLT or SWRL, take the first ontology in the alignment
as the source ontology and the second one as the target ontology.

7.1 Generating Axioms

OWL itself provides tools for expressing axioms corresponding to some relations
that we are able to generate such as subsumption (subClassOf) or equivalence
(equivalentClass). From an alignment, the OWLAxiomsRendererVisitor visitor
generates an ontology that merges the previous ontologies and adds the bridging axioms
corresponding to the cells of the alignment.

They can be generated from the following command-line invocation:

$ java -jar lib/procalign.jar -i fr.inrialpes.exmo.align.impl.SubsDistNameAlignment
file://localhost$CWD/rdf/onto1.owl file://localhost$CWD/rdf/onto2.owl -t .6
-r fr.inrialpes.exmo.align.impl.OWLAxiomsRendererVisitor

708 J. Euzenat

which returns:

<rdf:RDF
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">
<rdfs:comment>Aligned ontollogies</rdfs:comment>
<owl:imports rdf:resource="http://www.example.org/ontology1"/>
<owl:imports rdf:resource="http://www.example.org/ontology2"/>

</owl:Ontology>

<owl:Class rdf:about="http://www.example.org/ontology1#reviewedarticle">
<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#article"/>

</owl:Class>

<owl:Class rdf:about="http://www.example.org/ontology1#journalarticle">
<owl:equivalentClass rdf:resource="http://www.example.org/ontology2#journalarticle"/>

</owl:Class>

</rdf:RDF>

7.2 Generating Translations

Alignments can be used for translation as well as for merging. Such a transformation can
be made on a very syntactic level. The most neutral solution seems to generate translators
in XSLT. However, because it lacks deductive capabilities, this solution is only suited
for transforming data (i.e., individual descriptions) appearing in a regular form.

We have implemented an XSLTRendererVisitor, which generates transformations
that recursively replace the names of classes and properties in individuals. The renderer
produces stylesheets like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<xsl:template match="http://www.example.org/ontology1#reviewedarticle">
<xsl:element name="http://www.example.org/ontology2#article">

<xsl:apply-templates select="*|@*|text()"/>
</xsl:element>

</xsl:template>

<xsl:template match="http://www.example.org/ontology1#journalarticle">
<xsl:element name="http://www.example.org/ontology2#journalarticle">

<xsl:apply-templates select="*|@*|text()"/>
</xsl:element>

</xsl:template>

<!-- Copying the root -->
<xsl:template match="/">

<xsl:apply-templates/>
</xsl:template>

<!-- Copying all elements and attributes -->
<xsl:template match="*|@*|text()">

<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

An API for Ontology Alignment 709

7.3 Generating SWRL Rules

Finally, this transformation can be implemented as a set of rules which will “interpret”
the correspondence. This is more adapted than XSLT stylesheets because, we can assume
that a rule engine will work semantically (i.e., it achieves some degree of completeness
with regard to the semantics) rather than purely syntactically.

The SWRLRendererVisitor transforms the alignment into a set of SWRL rules
which have been defined in [6]. The result on the same example will be the following:

<?xml version="1.0" encoding="UTF-8"?>

<swrlx:Ontology swrlx:name="generatedAl"
xmlns:swrlx="http://www.w3.org/2003/11/swrlx#"
xmlns:owlx="http://www.w3.org/2003/05/owl-xml"
xmlns:ruleml="http://www.w3.org/2003/11/ruleml#">

<owlx:Imports rdf:resource="http://www.example.org/ontology1"/>

<ruleml:imp>
<ruleml:_body>

<swrlx:classAtom>
<owlx:Class owlx:name="http://www.example.org/ontology1#reviewedarticle"/>
<ruleml:var>x</ruleml:var>

</swrlx:classAtom>
</ruleml:_body>
<ruleml:_head>

<swrlx:classAtom>
<owlx:Class owlx:name="http://www.example.org/ontology2#journalarticle"/>
<ruleml:var>x</ruleml:var>

</swrlx:classAtom>
</ruleml:_head>

</ruleml:imp>

...
</swrlx:Ontology>

Of course, level 2 alignments would require specific renderers targeted at their par-
ticular languages.

8 Comparing Alignments

Last, but not least, one of the reasons for having a separate alignment format is to be
able to compare the alignments provided by various alignment algorithms. They can be
compared with each other or against a “correct” alignment. For that purpose, the API
proposes the Evaluator interface.

8.1 Implementing Comparison

The implementation of the API provides a BasicEvaluator which implements a con-
tainer for the evaluation (it has no eval method).

Implementing a particular comparator thus consists in creating a new subclass of
BasicEvaluator and implementing its eval method that will compare two align-
ments (the first one can be considered as the reference alignment). Currently available
subclasses are:

710 J. Euzenat

PRecEvaluator, which implements a classical precision/recall/fallout evaluation as
well as the derived measures introduced in [3]. Precision is the ratio between true
positive and all aligned objects; Recall is the ratio between the true positive and all
the correspondences that should have been found.

SymMeanEvaluator, which implements a weighted symmetric difference between the
entities that are in one alignment and those common to both alignments (missing
alignments count for 0., others weight 1. complemented by the difference between
their strengths). This is thus a measure for the similarity of two alignments. The result
is here split between the kinds of entity considered (Class/Property/Individual).

8.2 Examples

We provided, by hand, an alignment file that corresponds to the alignment of the classes
and properties in Table 1. Each cell, is ranked with strength 1. and relation "=". The
result of applying a particular evaluator (here PRecEvaluator) is obtained by call-
ing a simple command-line evaluation on the files representing the standard alignment
(bibref.owl) and the result of the application of a particular alignment method (here
EditDistName.owl):

$ java -cp lib/procalign.jar fr.inrialpes.exmo.align.util.EvalAlign
-i fr.inrialpes.exmo.align.impl.PRecEvaluator
file://localhost$CWD/aligns/bibref.owl file://localhost$CWD/aligns/EditDistName.owl

The result is:

<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’?>
<rdf:RDF xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

xmlns:map=’http://www.atl.external.lmco.com/projects/ontology/ResultsOntology.n3#’>
<map:output rdf:about=’’>

<map:precision>0.6976744186046512</map:precision>
<map:recall>0.9375</map:recall>

<fallout>0.3023255813953488</fallout>
<map:fMeasure>0.8000000000000002</map:fMeasure>
<map:oMeasure>0.53125</map:oMeasure>
<result>1.34375</result>

</map:output>
</rdf:RDF>

As can be noted, we use the format developed at Lockheed3 extended with a few
attributes, but any other format could have been generated. We have used these compar-
isons for providing the figures of Table 2.

Table 2. Performance measure for the algorithms presented in §5 with the ontologies presented
in §4 (the reference alignment has 32 correspondences).

substring substring substring
eqstring editdist substring property property property

threshold=.4 threshold=.7
Precision 1. .70 .72 .72 .82 .97

Recall .31 .94 .97 .97 .97 .94
Weighted .48 .63 .71 .70 .75 .82

3 http://www.atl.external.lmco.com/projects/ontology/

An API for Ontology Alignment 711

9 Conclusion

In order to exchange and evaluate results of alignment algorithms, we have provided an
alignment format. A Java API has been proposed for this format and a default implemen-
tation described. We have shown how to integrate new alignment algorithms, compose
algorithms, generate transformations and axioms and compare alignments.

This API and its implementation could fairly easily be adapted to other representa-
tion languages than OWL. In particular, if there were some ontology API, that would
constitute a better basis for the implementation than the OWL API. It is unlikely that
this format and API will satisfy all needs, but there is no reason why it could not be
improved.

To our knowledge, there is no similar API. There are some attempts at defining
ontology alignment or ontology mapping either very close to a particular use [5,11]
or instead a very abstract definition which is neither immediately implementable nor
sharable [7]. This was the analysis of [9], which led to the conclusion that alignment
algorithms are not comparable and that their results are different. So, there would be no
alignment format. On the contrary, our position is that it is better to define an alignment
challenge as general as possible and that we use it, not for identifying the best tool, but for
characterising strengths and weaknesses of these algorithms. Moreover, the advantage of
having an alignment format that can generate – nearly for free – transformations, axioms
and merged ontologies, should be an incentive for algorithm developers to generate that
format.

The closest works we know are the RDFT and MAFRA systems. The main goal of
RDFT is to represent mappings that can be executed and imported in a transformation
process [10]. These mappings correspond to sets of pairs between simple entities (RDFS
classes and properties) with a qualification of the relation holding. The ontology is
expressed in DAML+OIL. Surprisingly, if the correspondences are generated by Bayes
techniques no strength is retained. This format is aimed at using the mapping but no hints
are given for adding alignment algorithms or extending the format. MAFRA provides
an explicit notion of semantic bridges modelled in a DAML+OIL ontology [8]. The
MAFRA Semantic bridges share a lot with the mapping format presented here: they can
be produced, serialised, manipulated and communicated through the web. Moreover, the
semantic bridges are relatively independent from the mapped languages (though they
can map only classes, attributes and relations). They have, however, been built for being
used with the MAFRA system, not to be open to external uses, so the classes of the
ontology are rather fixed and cannot easily be extended towards new relations or new
kinds of mappings. This format is also tailored to the processing architecture used (with
non declarative primitives in the transformations).

All the software and the examples presented here are available to everyone 4. The
sources of the API and its implementation are available through an anonymous CVS
server. Readers are invited to use it and report any need that is not covered in the current
state of the API.

4 http://co4.inrialpes.fr/align

712 J. Euzenat

Acknowledgements. This work has been partly supported by the European Knowledge
Web network of excellence (IST-2004-507482). It had benefited from discussions with
Petko Valtchev, Paolo Bouquet and Sergio Tessaris. The author thanks the OWL API
developers for their great work.

References

1. Sean Bechhofer, Rapahel Voltz, and Phillip Lord. Cooking the semantic web with the OWL
API. In Proc. 2nd International Semantic Web Conference (ISWC), Sanibel Island (FL US),
2003.

2. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A framework for ontology
integration. In Isabel Cruz, Stefan Decker, Jérôme Euzenat, and Deborah McGuinness, editors,
The emerging semantic web, pages 201–214. IOS Press, Amsterdam (NL), 2002.

3. Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema matching eval-
uations. In Proc. GI-Workshop "Web and Databases", Erfurt (DE), 2002. http://dol.uni-
leipzig.de/pub/2002-28.

4. Jérôme Euzenat. Towards composing and benchmarking ontology alignments. In Proc.
ISWC-2003 workshop on semantic information integration, Sanibel Island (FL US), pages
165–166, 2003.

5. Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. In Proc. IJCAI 2003 Workshop
on ontologies and distributed systems, Acapulco (MX), pages 139–146, 2003.

6. Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: a semantic web rule language combining OWL and RuleML, 2003.
www.daml.org/2003/11/swrl/.

7. Jayant Madhavan, Philip Bernstein, Pedro Domingos, and Alon Halevy. Representing
and reasoning about mappings between domain models. In Proc. 18th National Con-
ference on Artificial Intelligence (AAAI 2002), Edmonton (CA), pages 122–133, 1998.
http://citeseer.nj.nec.com/milo98using.html.

8. Alexander Mädche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA – a mapping
framework for distributed ontologies. In Proc. ECAI workshop on Knowledge Transformation
for the Semantic web, Lyon (FR), pages 60–68, 2002.

9. Natasha Noy and Mark Musen. Evaluating ontology-mapping tools: requirements and ex-
perience. In Proc. 1st workshop on Evaluation of Ontology Tools (EON2002), EKAW’02,
2002.

10. Borys Omelayenko. Integrating vocabularies: discovering and representing vocabulary maps.
In Proc. 1st International Semantic Web Conference (ISWC-2002), Chia Laguna (IT), pages
206–220, 2002.

11. Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

Specifying Ontology Views by Traversal

Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University,
251 Campus Drive, x-215, Stanford, CA 94305, USA

{noy, musen}@smi.stanford.edu

Abstract. One of the original motivations behind ontology research was
the belief that ontologies can help with reuse in knowledge representa-
tion. However, many of the ontologies that are developed with reuse in
mind, such as standard reference ontologies and controlled terminologies,
are extremely large, while the users often need to reuse only a small part
of these resources in their work. Specifying various views of an ontology
enables users to limit the set of concepts that they see. In this paper, we
develop the concept of a Traversal View, a view where a user specifies the
central concept or concepts of interest, the relationships to traverse to
find other concepts to include in the view, and the depth of the traversal.
For example, given a large ontology of anatomy, a user may use a Traver-
sal View to extract a concept of Heart and organs and organ parts that
surround the heart or are contained in the heart. We define the notion of
Traversal Views formally, discuss their properties, present a strategy for
maintaining the view through ontology evolution and describe our tool
for defining and extracting Traversal Views.

1 Ontology Views

Ontologies constitute an integral and important part of the Semantic Web. For
the Semantic Web to succeed, developers must create and integrate numerous
ontologies, from general top-level ontologies, to domain-specific and task-specific
ontologies. One of the original motivations behind ontology research was the
belief that ontologies can help with reuse in knowledge representation [5]. By
virtue of being formal and explicit representations of a domain, ontologies could
represent shared domain descriptions that different applications and agents use.
When a person developing a new application chooses to reuse a published shared
ontology of the domain rather than to create his own model, he gains a number
of advantages: not having to reinvent the wheel, using an ontology that has
already been tested in other applications, and, perhaps, most important of all,
tremendously facilitating the path to information integration among different
applications that use the same ontology.

Currently, there are several efforts to develop standard reusable ontologies
in various domains and to make them available on the Semantic Web: from
the generic upper-level ontology of SUO1 and lexical corpus of WordNet [3] to
1 http://suo.ieee.org/

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 713–725, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

714 N.F. Noy and M.A. Musen

domain-specific ontologies such as UMLS [9]. Consider for example the Founda-
tional Model of Anatomy (FMA)—a declarative representation of anatomy de-
veloped at the University of Washington [15]. The ontology represents the result
of manual and disciplined modeling of the structural organization of the human
body. While the FMA ontology is a relatively recent development, many in medi-
cal informatics already consider it to be a tremendous resource that will facilitate
sharing of information among applications that use anatomy knowledge. How-
ever, the size and complexity of the ontology is immense: approximately 70,000
concepts at the time of this writing. As a result, the project authors often get
requests for self-contained portions of the ontology that describe only specific
organs and organ parts.

In general, while providing a shared, tested, and well-accepted vocabulary,
many of the large standard resources pose a formidable challenge to Seman-
tic Web users: these resources are huge, often containing tens of thousands of
concepts. However, many Semantic Web users need only a small fraction of the
resource for their application. Currently such a user still needs to make sense of
the complete resource, importing it as a whole, and dragging along this extra
“baggage” of concepts, most of which he is never going to use. In addition to
the cognitive challenge of understanding the large resource (or at least figuring
out which swaths of it are not relevant and can be safely ignored), there can be
a computational penalty as well if the user needs to perform reasoning with the
whole ontology.

Therefore, users need the ability to extract self-contained portions of ontolo-
gies and to use these portions in their applications. For example, we can imagine
the user of the FMA specifying that he needs everything that is directly related
to the heart as well as definitions of all organs and organ parts that surround
the heart. The user may also ask to include organs and organ parts that are
“twice removed” from the heart. Or, the user may ask for everything related
to the heart concept—a transitive closure of all relations in which the concept
participates.

The notion of creating a self-contained portion of a resource has long been
an area of research in databases. A database view provides exactly that: users
specify a query that extracts a portion of database instances satisfying the query,
creating a specific view on the data in the database. Similarly, we call a portion
of an ontology an ontology view.

In databases, a view is specified as a query: all instances satisfying the query
constitute the view. Current research on ontology views (see Section 6) takes a
similar approach: an ontology view is specified as a query in some ontology-query
language. However, this query-based approach does not allow users to specify a
portion of an ontology that results from a particular traversal of ontology links,
as in the heart example above. Therefore, we suggest a complementary way of
defining ontology views: by traversal specification. In such a specification, we
define a starter concept or concepts, the “central” or “focus” concepts in the
result, and the details of the relationship to traverse, starting at these concepts.
We call such a view a Traversal View.

Specifying Ontology Views by Traversal 715

We believe that various types of view definitions—query-based and traversal-
based, and perhaps several others—are necessary to provide full flexibility to
Semantic Web users in extracting specific parts of an ontology. We are developing
a suite of tools that provides a convenient interface to allow users to specify
views in different ways, to examine the resulting views, and to use them in their
applications. In this paper, we focus on Traversal Views, defining their properties,
describing an algorithm for computing them, and presenting our user-centered
tools for specifying and using them.

More specifically, this paper makes the following contributions:

– defines the approach of specifying ontology views through traversal of con-
cepts

– presents an algorithm for finding the results of traversal-view definitions
– identifies properties of Traversal Views
– presents a strategy for maintaining Traversal Views through ontology evolu-

tion
– describes a user-oriented tool for specifying Traversal Views

2 Specification of Traversal Views

In this work, we mainly consider ontologies expressed in RDF Schema and there-
fore consisting of classes, their properties, and instances [18]. Although, as we
discuss in Section 3, our approach can be easily adapted to ontologies expressed
in OWL (in fact, our implementation, which we describe in Section 5, works
both with RDFS and OWL ontologies).

We combine all the properties related to a class or an instance in a concept
definition:

Definition 1 (Concept definition). Given an RDF class or individual C, the
definition of C, Def(C), is a set of RDF triples such that:

– any RDF triple with C as a subject is in Def(C)
– for any property P such that C is in the domain of P (as defined by rdfs :

domain), any triple with P as a subect is in Def(C)

No other triples are in Def(C).

This definition implies for example, that a definition for a class C includes
all the property domain statements for all the properties that contain C in their
domain. Similarly, they include all the triples specifying property values for C.

We can now define the notion of Traversal Views. Traversal Views help users
exploring a new ontology to find its subset that covers a particular “topic.” For
instance, one may not be interested in the entire human anatomy, but just in the
heart and the organs that are physically close to it (say, separated from it by at
most one other anatomical structure). Traversal Views enable users to extract a
manageable and self-contained portion of the ontology relevant to their needs,
allowing them to use and extend it for their own purposes.

716 N.F. Noy and M.A. Musen

Intuitively, we specify a Traversal View by specifying a starter concept (e.g.,
Heart), a list of relationships (property names) that should be traversed and the
maximum distance to traverse along each of the relationships.

Example 1. We can specify a traversal view that starts at the class Heart and
traverses the partOf relationship for 2 steps and the containedIn relationship for
1 step. We then compute the view in the following way:

1. Heart is included in the view
2. If Heart is in the domain of the property partOf or the property containedIn,

then all classes in the range of these properties are also included in the view
3. If Heart was also an instance (RDF Schema does not prevent classes from be-

ing instances as well) and had a value for properties partOf and containedIn,
those values are also included in the view

The view resulting from this process contains the traversal along the partOf and
containedIn properties of length 1. We then apply the same procedure to all
classes in the resulting view but consider only the partOf property to compute
the traversal along the partOf property of length 2 (Recall that we requested a
traversal of length 1 along the containedIn property.)

We now present a formal definition of a traversal view. The definition con-
sists of two parts: the view specification (Definitions 2 and 3) and the view
computation (Definitions 4 and 5).

Definition 2 (Traversal Directive). A traversal directive D for ontology
O is a pair 〈Cst,PT 〉 where

– Cst is a class or an instance in O (the starter concept of the traversal);
– PT is a set of property directives. Each property directive is a pair 〈P, n〉,

where P is a property in O and n is a nonnegative integer or infinity (∞),
which specifies the depth of the traversal along the property P . If n = ∞,
then the traversal includes a transitive closure for P starting with Cst.

In Example 1 we defined a single traversal directive, with Heart playing the role
of the starter concept Cst and two property directives in PT : 〈partOf, 2〉 and
〈containedIn, 1〉.

Definition 3 (Traversal View Specification). A Traversal View specifi-
cation T is a set of traversal directives T D

The view specification in Example 1 contained only one traversal directive.

Example 2. Suppose in addition to the concept Heart and its related concepts
from the view in Example 1, we also want to include all parts of the lung in
the view (without limiting the depth of the traversal). We will then include the
following directive into the view specification (in addition to the directives in
Example 1):

– Cst = Lung

Specifying Ontology Views by Traversal 717

– PT = {〈has part,∞〉}

We define the procedure for computing Traversal Views recursively as follows.

Definition 4 (Traversal Directive Result).
Given a traversal directive D = 〈Cst,PT 〉 for an ontology O, a traversal

directive result D(O) (the result of applying directive D to O) is a set of
instance and class definitions (in the sense of Definition 1) from O such that

1. Cst is in D(O) (the starter concept is in the result)
2. For each property directive Ds ∈ PT , where Ds = 〈P, n〉, n > 0,

– if Cst is a class in the domain of the property P , and a class C ∈ O is
in the range definition for P at Cst, then C in D(O)

– if Cst is an instance and it has a value for the property P , and this value
is another class or instance F ∈ O, then F is in D(O)

3. PT next is a set of property directives such that for each property directive
Ds = 〈P, n〉 in PT , the directive 〈P, n − 1〉 is in PT next. If n = ∞, then
n− 1 = ∞. For each class or instance F that was added to D(O) in step 2,
the traversal directive result for a traversal directive DF = 〈F,PT next〉 is in
D(O).

No other concepts are in D(O).

This definition describes the procedure that we followed in finding the view
in Example 1. Note that along with the concept itself, we include its definition
in the view, which includes the property values for the concept, as well as range,
cardinality, and other constraint statements for the properties for which the
concept serves as a domain.

Finally, we define the concept of a traversal view.

Definition 5 (Traversal View). Given an ontology O and a Traversal View
specification T , consisting of a set of traversal directives T D, a traversal view
TV (O, T) is the union of traversal directive results for each traversal directive
D ∈ T D

In other words, a Traversal View is a subset of an ontology that consists of
classes and instances on the path of the traversal specified in the view.

Note that if the user wants to specify a view that contains the starter con-
cept and everything that is related to it—the transitive closure of all relations
emanating from the starter concept—he needs to specify all the properties in
the ontology and set the infinite depth of traversal on all of them (The user
interface that we describe later makes this operation easy by having a single
“everything” button.)

Standard properties. In addition to the properties defined in the ontology, traver-
sal directives can include standard relations such as rdf:subclassOf, rdf:type, and
so on. In fact, a useful directive could include a starter concept, and some specific
number of levels of its subclasses (or superclasses). To include these standard

718 N.F. Noy and M.A. Musen

ontology relations in the traversal directives, internally, we treat them as prop-
erties: Each class has a property direct-subclasses; the values of this property
are all subclasses of the class. Similarly, there are properties direct-superclasses,
direct-instances, type-of.2 Therefore, these properties can be used in traversal
directives just as all the regular properties.

View Boundary. When we extract a portion of an ontology for the view, we
inevitably leave some of the definitions in the ontology incomplete. For instance,
a view may include a class C1 but not a class C2 which is a range for a property
P for C1. Therefore, the definition of C1 in the view is incomplete. At the same
time, we may not be able to include C2 in the view since it will violate the
specific directives in the view definition.

In this case, we say that the concept C2 in this example is in the boundary
of the view definition: it is referenced by one of the concepts in the view but it
is not itself included in the view. Maintaining the list of concepts in the view
boundary is extremely useful for interactive specification of a view: the user can
see which concepts are missing from the definition of the view and add them to
the specification.

Traversal Views for Description Logics formalisms. While we used RDF Schema
to define Traversal Views, we can also specify views for description-logic ontolo-
gies, such as ontologies in OWL [2]. Classes and properties in OWL are similar
to classes and properties in RDF Schema. Definitions 2, 3, 5 are trivially adapted
by adjusting terminology.

In the Step 2 of Definition 4 we consider all properties that have the starter
concept as part of their domain. There are a number of ways to restrict a prop-
erty value in OWL, by using allValuesFrom, someValuesFrom, or hasValue re-
strictions. These restrictions have classes or individuals as their values. More
specifically, we add the following concepts to D(O) in Step 2 of the Definition:

– If an object property P (a property that specifies relations between instances
of classes) has a restriction for Cst, the classes specified in the restriction
(whether for allValuesFrom, someValuesFrom, hasValue) are in D(O)

– If an object property P has Cst in its domain, the classes in the range of P
are in D(O)

– If an object property P has a value for Cst as an individual, that value is in
D(O)

The view designed in such a way has all the same properties that we discuss
for general Traversal Views in the next section.

3 Properties of Traversal Views

We now discuss the properties of Traversal Views that follow from Definitions
2 through 5. We consider compositional properties of single traversal directives
2 The Protégé ontology-editing environment, which was the platform for our imple-

mentation discussed later, takes exactly this approach.

Specifying Ontology Views by Traversal 719

and complete views. We then discuss completeness of our definition and com-
putational cost of computing the view. Finally we discuss the issue of using
Traversal Views to answer queries.

3.1 Composition of Directives and Views

Composition of traversal directives. It is easy to show, based on Definitions 2
and 4, that traversal directives are commutative with respect to composition: the
set of concepts in the traversal view does not depend on the order of traversal
directives in the view. Each directive is applied to the complete source ontology,
thus traversal directive results are not affected by other directives. The result of
the view is the union of the results of applying each directive.

Traversal directives are also distributive. Recall that a traversal directive D
consists of a starter concept Cst and a set of property directives. Consider two
traversal directives D1 and D2 with the same starter concept Cst. It follows from
Definition 4 that composition of traversal directives is distributive:

〈Cst,PT 1〉 ⊕ 〈Cst,PT 2〉 = 〈Cst,PT 1 ◦ PT 2〉 (1)

Here the composition of the sets of property directives PT 1 and PT 2 is the
union of the directives in each set.

Composition and chaining of Traversal Views. Given an ontology O and two
Traversal View specifications T1 and T2, we define composition of T1 and T2
as applying both T1 and T2 to O and then taking the union of the result:

T1 ⊕ T2 = TV (O, T1) ∪ TV (O, T2) (2)

Composition defined in this way is commutative: the results of applying directives
in one of the traversal views does not depend on the other view, since both are
applied to the complete ontology O.

Chaining of Traversal Views T1 and T2 is the result of applying T2 to the
result of applying T1 to O:

T1 ◦ T2 = TV (TV (O, T2), T1) (3)

Chaining of Traversal Views is not commutative: When the view T2 applied to
T1, the set of concepts in T2 is limited by the concepts that were included in T1.
These concepts may not include some of the concepts that would have been in
T2 if it was applied to all of the ontology O. In fact, the specification of the view
T2 may not even be a valid view specification since some of the starter concepts
in traversal directives in T2 may not even be in T1. Thus, Traversal Views are
not commutative with respect to chaining.

3.2 Completeness and Complexity

Completeness. Traversal Views are complete in the sense that for any subset of
concepts in an ontology there is a (not necessarily unique) Traversal View that

720 N.F. Noy and M.A. Musen

defines it. Let {c1, ..., cn} be a subset of concepts. A Traversal View consisting
of a set traversal directives {td1, ...tdn} such that tdk = (ck, ∅) defines exactly of
the set {c1, ..., cn}. In other words, for each concept in the subset, we create a
traversal directive containing that concept as a starter concept and no property
directives.

Computational Properties. Let t be the number of traversal directives in a view
definition and n be the number of concepts in the ontology. Then the running
time of computing the Traversal View is O(t ∗ n). In other words, if the number
of traversal directives in a view is limited by some constant c, computation of
a Traversal View is linear in the size of the ontology. Indeed, computation of
each traversal directive, which simply follows Definition 4, needs to examine
each concept in the ontology exactly once. Suppose a concept C was examined
during iteration i. If C is visited at any subsequent iterations in computing
the same traversal directive, we do not need to compute the traversal directive
〈C,PT next〉: the depths for all the property directives will be necessarily less
than at iteration i and therefore computing this directive will not add any new
concepts to the view.

3.3 Using Traversal Views in Inference

Consider an ontology O and a Traversal View specification T . If the ontology O is
consistent (for example, based on the interpretation of RDF Schema Semantics
[4]), then the Traversal View TV (O, T) also represents a consistent ontology
based on this semantic interpretation: According to Definition 4, we do not add
any new triples to TV (O, T) that did not already exist in O. Further, given
the fact that the constructs available in RDF Schema are monotonic, if a set
of triples is consistent according to the RDF Semantics interpretation, then its
subset is also consistent. Therefore, any relation between concepts in the view
TV (O, T) that is entailed by the view defintion, is also entailed by the definitions
in the full ontology O.

Note that this property of views is not true in general for Traversal Views
for OWL ontologies. Consider for example the notion of disjointness in OWL.
If the disjointness axiom is not included in the view, we may conclude that two
entities are equivalent that should not be equivalent if disjointness is considered.
We are currently working on identifying a set of syntactic constraints for an
OWL ontology that would allow us to assert that any relation between two
entities that is entailed by TV (O, T) is also entailed by O.

4 Traversal Views and Ontology Evolution

It is inevitable that ontologies change and users need to work with different
versions of the same ontology. After using Traversal Views to extract a portion
of an ontology, and then getting a new version of this ontology, the user should be
able to determine (1) whether the view definition is still valid for the new version

Specifying Ontology Views by Traversal 721

(that is, all the starter concepts and all the properties explicitly mentioned in the
view definition are present in the new version of the ontology); and (2) whether
the subset of the ontology specified by the view is unchanged.

Noy and Musen [11] have developed the PromptDiff algorithm to com-
pare different versions of the same ontology. We integrated PromptDiff with
Traversal Views to answer the questions above.

Given two versions of an ontology Vold and Vnew, for each concept in Vold,
PromptDiff determines a corresponding concept in Vnew if there is one. (It uses
a set of heuristics to find correspondences for classes and properties that changed
their names or definitions). Using this information we determine whether a view
T , which was defined for Vold, is still valid for Vnew. If for each concept from Vold

that is explicitly used in T as a starter concept or a property name, there is a
corresponding concept in Vnew, then the view is valid. Furthermore, if any of the
concepts explicitly used in T have changed, the user has the option of updating
the view T to refer to the corresponding new concepts.

If the view has been materialized, we can use a similar technique to determine
if the materialized view needs to be updated by examining the view to determine
whether each concept in the view has a corresponding concept in the new version.

5 Implementation

We have implemented Traversal Views as a plugin to the Protégé ontology-
development environment.3 Protégé provides an intuitive graphical user interface
for ontology development, a rich knowledge model, and an extensible architecture
that provides API access both to the Protégé knowledge bases and to its user-
interface components.

Figure 1 presents the user interface for Traversal View specification. First,
the user selects a starter concept by browsing the ontology (Figure 1A). Then
the user specifies property directives. Specification may simply include checking
some of the built-in relationships, such as subclasses or superclasses (Figure 1B).
If the user wants to specify a more detailed directive, he does this through an
additional dialog (Figure 1C), specifying the depth of traversal for each property.
In addition, the user can select the “everything” option and set the same depth
of traversal for all the properties in the ontology.

After the user specifies and issues a traversal directive, we materialize the
directive by copying the concepts in the view to the user’s local space. In ad-
dition, we save the traversal directives as instances in an ontology of traversal
directives.

When the user saves the results of his work, both the materialized view
(the extracted portion of the source ontology) and the ontology representing the
traversal directive (the view definition) are saved. The user then has the option
of automatically “replaying” these directives on the source ontology. Another
possibility would be to “mark” concepts from the ontology that belong to the
view rather than to materialize the view.
3 http://protege.stanford.edu

722 N.F. Noy and M.A. Musen

Fig. 1. Specifying and examining Traversal Views. The user chooses the starter concept
by browsing the hierarchy (A), specifies the traversal along the built-in properties (B),
brings up a separate window (C), which lists all the properties in the ontology and
built-in properties (D). The user can examine and edit the defined views through a
simple form-based interface of Protégé (E).

Using an ontology to store the directive is likely to lower the level of exper-
tise required from the user to update the directive: In Protégé users browse and
edit ontology instances (which is exactly what traversal directives are) through
a simple form interface. To many, editing traversal directives through this inter-
face (Figure 1E) is easier than writing an SQL query. Furthermore, a user can
open the ontology with saved traversal directives in an ontology editor, such as
Protégé, and use this simple interface to change the directives before applying
them again.

6 Related Work

Our work is complementary to the work of using queries to define ontology views.
Volz and colleagues [16,17], for instance, define a view language based on the
RQL query language [7]. In this framework, a view represents a new class or
property in the ontology. The authors restrict the RQL queries that can be used
in the view to ensure that the view returns only unary or binary relations (classes
or properties respectively).

In theory, query-based approaches to defining ontology views are equivalent
to our traversal-based approach in terms of their completeness: Just as we showed
that any subset of an ontology can be produced by a combination of trivial
traversal directives, we can show that any subset of an ontology can be produced
by a combination of trivial queries. However, depending on what the user needs

Specifying Ontology Views by Traversal 723

in the view and what information he can specify about the view result, a query-
based or a traversal-based approach may be more appropriate.

Magkanaraki and colleagues [10] take the approach of defining query-based
views further. In their RVL language, which also uses RQL for querying ontolo-
gies, the authors propose mechanisms for restructuring the original class and
property hierarchies, allowing the creation of new resources, property values,
classes, or properties. Therefore, a view definition includes not only the query it-
self, but also a set of statements that define these new structures, linking them to
the query results. We can take a similar approach with Traversal Views, allowing
the users to rename or reorganize the concepts in the view.

XML query languages, such as XQuery [1] are also based on traversing
structures. There are, however, important differences between languages such as
XQuery and Traversal Views: In XQuery, the traversal is aimed at collecting the
data themselves rather than the schema and at presenting the data in the result
according to a particular structure specified in the query. Traversal Views are
aimed at traversing and collecting the schema elements themselves in the result.

Researchers in the Process Interchange Format (PIF) Project have intro-
duced the notion of Partially Shared Views as a way of allowing different groups
to extend a shared standard [8]. A Partially Specified View includes of the type
hierarchy and templates, which are similar to concept definition. In this sense,
Partially Specified Views are reminiscent of Traversal Views: they include defi-
nitions of concepts themselves rather that their instantiations.

A combination of views as a mechanism for extracting ontology subsets and
mechanisms that allow for renaming or slight reorganization of concepts in the
view is crucial to encouraging ontology reuse. This reuse, in turn, can facilitate
the problem of integrating ontologies. Orbst [13] suggests creating application
views of ontologies as a means of enabling applications to use standard
well-developed ontologies. This approach combines views or “perspectives” with
mappings between concepts in the view and in the application. The task of
creating the mappings becomes much easier if the ontology to map to is smaller
and contains only the concepts that are relevant to the application. Ontology
views as means for extracting self-contained subsets of standard ontologies can
help in this task.

7 Summary and Open Issues

We have presented Traversal Views as a way of defining an ontology view. In a
Traversal View, a user specifies a subset of an ontology to include in the view by
specifying of starter concepts to include, the links to follow from those concepts,
and how deep. This mechanism enables users to extract self-contained portions
of an ontology related to a particular concept or a set of concepts (such as all
parts and components of the Heart).

Database researchers have done a lot of work on using views directly to
answer queries [6]. Since database views are themselves queries, this area of re-
search centers on reformulating the user’s query to express it in terms of existing

724 N.F. Noy and M.A. Musen

views. While Traversal Views do not map to queries directly, whether we can
use their definitions directly in answering (perhaps a restricted set of) queries is
an open research issue.

Interfaces that enable users to browse the views while “popping out” to
the original ontology when hitting the boundary of the view are also necessary.
Developers may omit or forget something when defining a view and enabling
users to see more of the original context for concepts in the view may be helpful.

Traversal Views enable users to extract classes and instances to include in the
view, thus simplifying the original ontology for them. However, these classes and
instances can have definitions that are themselves very complex. The next step
would be to allow pruning the definitions, hiding some of the parts or presenting
some the parts differently, based on the user’s perspective.

We limited a concept definition for a concept C to RDF triples where C is
the subject and to ranges of properties where C is a domain. This definition can
be generalized to include a wider “neighborhood” of the concept C in an RDF
graph. For example, it can include an anonymous closure of an RDF graph
[14], which is computed by following graph edges, from subject to object of
statements, until an anonymous RDF resource or RDF Literal is found. This
extension will include, for example, all members of an RDF collection of values
for a property of C in the concept definition of C. This, and similar, extensions
to a concept definition, effect what a Traversal View ultimately includes.

A similar issue is the treatment of transitive properties for languages such
as OWL. Suppose a Traversal View includes a traversal directive with a starter
concept Cst and a property directive 〈P, 1〉, where P is a transitive property.
If we issue a query for all concepts X such that P (Cst, X), looking for all the
concepts directly related to Cst through property P , we will get all concepts in
the transitive closure of Cst with respect to P , rendering the depth of traversal
meaningless. One possibility to handle limited traversal of transitive properties
is to distinguish between explicit and inferred triples in the ontology definition.

As part of future work, we plan to perform user studies to evaluate different
approaches to these issues to determine which ones provide Traversal Views that
correspond most closely to users’ intuition.

Finally, we would like to link query-based view, Traversal Views and other
types of view-definition techniques in a unified framework to enable users to com-
bine the different means of defining ontology views. Furthermore, we consider
definition and manipulation of ontology views to be part of the general frame-
work for ontology management. We have developed a suite of tools—Prompt
[12]—that supports various tasks in ontology management, such as comparing
ontologies, merging them together, maintaining and comparing different ver-
sions, and so on. For example, the users can compare or merge views of different
ontologies, find diffs between different versions of a view, integrate two views
into a single ontology.

Acknowledgments. This work was supported by a grant from the DARPA,
executed by the U.S. Army Medical Research and Materiel Command/TATRC

Specifying Ontology Views by Traversal 725

Cooperative Agreement, Contract # W81XWH-04-2-0012. This work was con-
ducted using the Protégé resource, which is supported by grant LM007885
from the United States National Library of Medicine. The Prompt suite is
available as a plugin to the Protégé ontology-development environment at
http://protege.stanford.edu/plugins/prompt/prompt.html

References

1. S. Boag, D. Chamberlin, M. F. Fern‡ndez, D. Florescu, J. Robie, and J. SimŽon.
XQuery 1.0: An XML query language. Technical report, W3C, 2003.

2. M. Dean, D. Connolly, F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. Web ontology language (OWL) reference
version 1.0, http://www.w3.org/tr/owl-guide/, 2002.

3. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, 1998.

4. R. Fikes and D. L. McGuinness. An axiomatic semantics for RDF, RDF-S, and
DAML+OIL. Technical report, World Wide Web Committee (W3C) Note, 2001.

5. T. R. Gruber. A translation approach to portable ontology specification. Knowl-
edge Acquisition, 5:199–220, 1993.

6. A. Halevy. Answering queries using views: a survey. VLDB Journal, 2001.
7. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.

RQL: A declarative query language for RDF. In Eleventh International World
Wide Web Conference, page 592–603, Honolulu, Hawaii, USA, 2002.

8. J. Lee and T. W. Malone. Partially shared views: a scheme for communicating
among groups that use different type hierarchies. ACM Transactions on Informa-
tion Systems (TOIS), 8(1):1–26, 1990.

9. D. Lindberg, B. Humphreys, and A. McCray. The Unified Medical Language
System. Methods of Information in Medicine, 32(4):281, 1993.

10. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
semantic web through RVL lenses. In Second International Semantic Web Confer-
ence, volume 2870, pages 96–112, Sanibel Island, FL, 2003. Springer-Verlag.

11. N. F. Noy and M. A. Musen. PromptDiff: A fixed-point algorithm for comparing
ontology versions. In 18th Conf. on Artificial Intelligence (AAAI-2002), Edmonton.

12. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

13. L. Obrst, H. Liu, and R. Wray. Ontologies for corporate web applications. AI
Magazine, 24(3):49–62, 2003.

14. M. Palmer, A. Naeve, and F. Paulsson. The SCAM framework: helping semantic
web applications to store and access metadata. In 1st European Semantic Web
Symposium (ESWS 2004), Heraklion, Greece, 2004.

15. C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: The foun-
dational model of anatomy. Journal of Biomedical Informatics., 2004.

16. R. Volz, D. Oberle, and R. Studer. On views in the semantic web. In 2nd Int. Work-
shop on Databases, Documents and Information Fusion (DBFUSION02), 2002.

17. R. Volz, D. Oberle, and R. Studer. Implementing views for light-weight web on-
tologies. In IEEE Database Engineering and Application Symposium (IDEAS),
Hong Kong, China, 2003.

18. W3C. Resource description framework (RDF), 2000.

Automatic Generation of Ontology for Scholarly
Semantic Web

Thanh Tho Quan1, Siu Cheung Hui1, A.C.M. Fong1, and Tru Hoang Cao2

1 School of Computer Engineering, Nanyang Technological University
Singapore

{PA0218164B, asschui, ascmfong}@ntu.edu.sg
2 Faculty of Information Technology, Hochiminh City University of Technology

Vietnam
tru@dit.hcmut.edu.vn

Abstract. Semantic Web provides a knowledge-based environment that
enables information to be shared and retrieved effectively. In this re-
search, we propose the Scholarly Semantic Web for the sharing, reuse
and management of scholarly information. To support the Scholarly Se-
mantic Web, we need to construct ontology from data which is a tedious
and difficult task. To generate ontology automatically, Formal Concept
Analysis (FCA) is an effective technique that can formally abstract data
as conceptual structures. To enable FCA to deal with uncertainty in
data and interpret the concept hierarchy reasonably, we propose to in-
corporate fuzzy logic into FCA for automatic generation of ontology.
The proposed new framework is known as Fuzzy Formal Concept Anal-
ysis (FFCA). In this paper, we will discuss the Scholarly Semantic Web,
and the ontology generation process from the FFCA framework. In ad-
dition, the performance of the FFCA framework for ontology generation
will also be evaluated and presented.

1 Introduction

Semantic Web was introduced as a common framework that allows data to be
shared and reused across application, enterprise and community boundaries[1].
And ontology is used to represent knowledge on the Semantic Web. Ontology
is a conceptualization of a domain into a human understandable, but machine-
readable format consisting of entities, attributes, relationships and axioms[2].
Thus, the knowledge metadata designed in the Semantic Web using ontologies
should be sufficiently expressive to represent and model the domain it applies
to. As such, programs can then access the knowledge carried by the Semantic
Web and use the knowledge for processing information in a semantic manner.

Recently, much research has investigated the use of ontology to represent
data. As the source data is usually stored in unstructured, semi-structured or
fully structured format (e.g. textual documents or database schemata), it needs
to be processed in order to generate the ontology in an appropriate format for
representation. Some tools such as Protégé 2000[3] and OLIEd[4] have been

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 726–740, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Automatic Generation of Ontology for Scholarly Semantic Web 727

developed to help users to edit ontology. However, it is a very difficult and
cumbersome task to manually derive ontology from data. Some recent researches
have been carried out to tackle this problem through the learning of ontology
from free text[5], semi-structured data (e.g., HTML or XML) or structured data
from a database[6].

To represent conceptual organization of the corresponding context of data,
concepts are usually organized into multiple levels as a hierarchy, in which con-
cepts at lower levels are more specific in terms of meaning than those at higher
levels. Generally, to generate ontology from a database automatically, we need
to perform the following two steps: (1) to abstract data items as ontology con-
cepts and (2) to construct relations between concepts. Ontology concepts can be
extracted quite efficiently from free text documents. However, it remains a hard
problem to generate ontology relations automatically due to the complexity of
Natural Language Processing (NLP). Relations represented in semi-structured
and structured data can be extracted as ontology relations. This can be done
using data mining techniques such as association rules mining and clustering[5,7].

Conceptual clustering techniques such as COBWEB[7] were proposed to dis-
cover knowledge that is more meaningful and comprehensible. COBWEB can
cluster data into conceptual clusters, which are clusters associated with concep-
tual descriptions. The generated clusters can then be organized as a concept
hierarchy. However, as COBWEB uses statistical models to describe clusters
conceptually, it is unable to give the “real” conceptual organization, in terms
of descriptions and relations. Moreover, since COBWEB is based on the hier-
archical clustering technique to generate clusters of hierarchical relations, the
concept hierarchy generated has a tree-like form. It means that a subconcept
is only inherited from one superconcept. This way of conceptual representation
cannot really reflect real-life concept organization. For instance, “fuzzy cluster-
ing technique” can be considered as a concept inherited from two superconcepts,
“clustering technique” and “fuzzy theory”.

Formal Concept Analysis (FCA)[8], which is a data analysis technique based
on ordered lattice theory, has been used for conceptual knowledge discovery[9].
FCA offers better conceptual representations compared with traditional concep-
tual clustering techniques such as COBWEB as it provides formal definitions
of concepts and its hierarchical relationships of concepts are organized as a lat-
tice rather than a simple hierarchical tree. However, this technique still suffers
from the drawback on its in capabilities on representing vague information and
extracting “real” concepts. In this paper, we propose a new formal framework
known as Fuzzy Formal Concept Analysis (FFCA) for constructing ontology for
Scholarly Semantic Web that supports citation-based retrieval of scientific pub-
lications for the Semantic Web. The FFCA framework extends Formal Concept
Analysis with fuzzy logic[10] which can represent vague and uncertain informa-
tion. In addition, we also propose a conceptual clustering technique based on
the FFCA framework to construct ontology of “real” concepts.

The rest of this paper is organized as follows. Section 2 discusses the Schol-
arly Semantic Web. Section 3 discusses the Fuzzy Formal Concept Analysis

728 T.T. Quan et al.

framework. Section 4 discusses conceptual clustering based on FFCA. Ontol-
ogy generation is given in Section 5. The ontology generation process using an
experimental citation database is discussed in Section 6. The performance results
are given in Section 7. Finally, Section 8 concludes the paper.

2 Scholarly Semantic Web

Scholars are defined as individuals working in scientific areas. They could be re-
searchers, scientists or academics. Obviously, scholars always need to acquire new
information related to their academic activities in order to support their work
and research. Such information will help researchers to obtain useful knowledge
in their research areas, and enable them to make contributions in their scholarly
activities, such as publishing papers or attending conferences.

The enormous growth of the Internet in recent years has urged scholars
to use the Web for conducting scientific research. Digital libraries[11] and in
particular, citation-based retrieval systems such as ISI (Institute for Scientific
Information)[12] and CiteSeer (or Research Index)[13] are some of the tools that
have been developed to help researchers to search related scientific information
over the Web. In scientific documents, other papers or books that are useful for
the understanding of its contents are usually cited as references. Citation in-
dices contain references that the documents cite. They provide linking between
source documents to the cited documents or papers. Thus, citation indices pro-
vide useful information to help researchers when conducting scientific research,
such as identifying researchers working on their research areas, finding publi-
cations from a certain research area, and analyzing research trends. This helps
researchers avoid doing research that had already been done by others. Citation
indices are stored in a citation database.

Due to the lack of semantic information in the traditional Web, researchers
can only rely on traditional search or retrieval systems to retrieve scientific pub-
lications. To provide more advanced and semantic-based search, research has
recently been carried out based on Semantic Web for scholarly activities. The
E-scholar Knowledge Inference Model (ESKIMO)[14] investigates the use of hy-
pertext links on the traditional Web to develop a scholarly system for the Seman-
tic Web. Using the Semantic Web, ESKIMO can retrieve scholarly information,
such as finding researchers and institutions that are related to a particular doc-
ument, or finding similar journals. However, in ESKIMO, the ontology building
approach is still largely based on manual methods.

In this research, we aim to develop a Scholarly Semantic Web to support
scholarly activities based on citation databases. Figure 1 gives the architecture
of the Scholarly Semantic Web. As shown in Figure 1, scientific publications
stored in the citation database are used as the source for automatic construc-
tion of ontology. The proposed FFCA technique is then applied to the citation
database to construct the Scholarly Ontology. Web Services can be provided to
enable the knowledge stored in the Scholarly Ontology be accessible by other
programs. Semantic Search Engine can also be developed to support seman-

Automatic Generation of Ontology for Scholarly Semantic Web 729

Conceptual
Clustering

Fuzzy Formal
Concept Analysis

Ontology
Generation

Scholarly Ontology

Semantic
Search Engine

Citation
Database

Fuzzy Concept Lattice Concept Hierarchy

Web Services

Fig. 1. The proposed approach for automatic generation of concept hierarchy

tic search functions to locate information on the Scholarly Ontology. As such,
knowledge stored in the Scholarly Ontology can be shared and retrieved. The
major components of the Scholarly Semantic Web are briefly discussed below:

– Fuzzy Formal Concept Analysis: It generates fuzzy formal context from the
citation database. Citation information extracted from scientific documents
is used to generate the necessary fuzzy information in order to construct
the fuzzy formal context. In addition, it also generates fuzzy formal concepts
from the fuzzy formal context and organizes the generated concepts as a
fuzzy concept lattice.

– Conceptual Clustering: It clusters concepts on the fuzzy concept lattice and
generates a concept hierarchy.

– Ontology Generation: It generates the Scholarly Ontology from the concept
hierarchy.

– Web Services: It enables other programs to access the knowledge stored in
the Scholarly Ontology. In addition, advanced search features can also be
provided.

– Semantic Search Engine: It enables users to query the ontology stored in the
Scholarly Ontology.

This paper focuses only on the ontology generation process that involves com-
ponents including Fuzzy Formal Concept Analysis, Conceptual Clustering and
Ontology Generation. Web Services and Semantic Search Engine will not be
discussed in this paper.

3 Fuzzy Formal Concept Analysis

In this section, we propose the Fuzzy Formal Concept Analysis, which incorpo-
rates fuzzy logic into Formal Concept Analysis, to represent vague information.

Definition 1. A fuzzy formal context is a triple K = (G, M, I = ϕ(G ×M))
where G is a set of objects, M is a set of attributes, and I is a fuzzy set on

730 T.T. Quan et al.

domain G × M . Each relation (g, m) ∈ I has a membership value μ(g, m) in
[0, 1].

A fuzzy formal context can also be represented as a cross-table as shown in
Table 1. The context has three objects representing three documents, namely
D1, D2 and D3. In addition, it also has three attributes, “Data Mining” (D),
“Clustering” (C) and “Fuzzy Logic” (F) representing three research topics. The
relationship between an object and an attribute is represented by a membership
value between 0 and 1.The membership values can be generated from linguistic
variables assigned by experts[15] or computed automatically (to be discussed in
Section 6).

Table 1. A cross-table of a fuzzy for-
mal context.

D C F
D1 0.8 0.12 0.61
D2 0.9 0.85 0.13
D3 0.1 0.14 0.87

Table 2. Fuzzy formal context in Ta-
ble 1 with T = 0.5.

D C F
D1 0.8 - 0.61
D2 0.9 0.85 -
D3 - - 0.87

A confidence threshold T can be set to eliminate relations that have low
membership values. Table 2 shows the cross-table of the fuzzy formal context
given in Table 1 with T = 0.5.

Generally, we can consider the attributes of a formal concept as the de-
scription of the concept. Thus, the relationships between the object and the
concept should be the intersection of the relationships between the objects and
the attributes of the concept. Since each relationship between the object and
an attribute is represented as a membership value in fuzzy formal context, then
the intersection of these membership values should be the minimum of these
membership values, according to fuzzy theory[16].

Definition 2. Given a fuzzy formal context K=(G, M , I) and a confidence
threshold T , we define A∗= {m ∈M |∀g ∈ A: μ(g, m) ≥ T} for A ⊆ G and B∗=
{g ∈ G|∀m ∈ B: μ(g,m) ≥ T} for B ⊆ M . A fuzzy formal concept (or fuzzy
concept) of a fuzzy formal context (G, M , I) with a confidence threshold T is a
pair (Af =ϕ(A), B) where A ⊆ G, B ⊆ M , A∗ = B and B∗ = A. Each object
g ∈ ϕ(A) has a membership μg defined as

μg = min
m∈B

μ(g, m)

where μ(g, m) is the membership value between object g and attribute m, which
is defined in I. Note that if B= {} then μg = 1 for every g.

Definition 3. Let (A1, B1) and (A2, B2) be two fuzzy concepts of a fuzzy for-
mal context (G, M , I). (ϕ(A1), B1) is the subconcept of (ϕ(A2), B2), denoted
as (ϕ(A1), B1) ≤ (ϕ(A2), B2), if and only if ϕ(A1) ⊆ ϕ(A2)(⇔ B2 ⊆ B1).
Equivalently, (A2, B2) is the superconcept of (A1, B1).

Automatic Generation of Ontology for Scholarly Semantic Web 731

Definition 4. A fuzzy concept lattice of a fuzzy formal context K with a confi-
dence threshold T is a set F (K) of all fuzzy concepts of K with the partial order
≤ with the confidence threshold T .

Definition 5. The similarity of a fuzzy formal concept K1= (ϕ(A1), B1) and
its subconcept K2 = (ϕ(A2), B2) is defined as E(K1, K2) = |ϕ(A1) ∩ ϕ(A2)|

|ϕ(A1) ∪ ϕ(A2)| .
Figure 2 gives the traditional concept lattice generated from Table 1. Figure

3 gives the fuzzy concept lattice generated from the fuzzy formal context given
in Table 2. As shown from the figures, the fuzzy concept lattice can provide
additional information, such as membership values of objects in each fuzzy formal
concept and similarities of fuzzy formal concepts, that are important for the
construction of concept hierarchy.

C1

{}

{D1,

D2,D3}

{D1,D2}}{“Data Mining”} {“Fuzzy Logic”}{D1,D3}

{“Data Mining”,

“Clustering”}
{D2}

{“Data Mining”,
“Clustering”,

“Fuzzy Logic”}

{}

{D1} {“Data Mining”,

“Fuzzy Logic”}

C2

C3 C4

Fig. 2. A concept lattice generated from
traditional FCA.

C1

{}

{D1 (0.0),

D2(0.0),D3()0.0}

{D1(0.8),
D2(0.9)}{“Data Mining”} {“Fuzzy Logic”}{D1(0.61),

D3(0.87)}

{“Data Mining”,

“Clustering”}
{D2(0.85)}

{“Data Mining”,
“Clustering”,

“Fuzzy Logic”}

{}

{D1(0.61)} {“Data Mining”,

“Fuzzy Logic”}

0.00 0.00

0.5
0.410.35

0.00 0.00

C2

C3 C4

Fig. 3. A fuzzy concept lattice generated
from FFCA.

4 Conceptual Clustering

As in traditional concept lattice, the formal concepts are generated mathemati-
cally, objects that have small differences in terms of attribute values are classified
into distinct formal concepts. At a higher level, such objects should belong to the
same concept when they are interpreted by human. Based on this observation, we
propose to cluster formal concepts into conceptual clusters using fuzzy concep-
tual clustering. The conceptual clusters generated have the following properties:

– Conceptual clusters have hierarchical relationships that can be derived from
fuzzy formal concepts on the fuzzy concept lattice. That is, a concept repre-
sented by a conceptual cluster can be a subconcept or superconcept of other
concepts represented by other conceptual clusters.

– A formal concept must belong to at least one conceptual cluster, but it can
also belong to more than one conceptual cluster. This property is derived
from the characteristic of concepts that an object can belong to more than

732 T.T. Quan et al.

one concept. For example, a scientific document can belong to more than
one research area.

Conceptual clusters are generated based on the premise that if a formal concept
A belongs to a conceptual cluster R, then its subconcept B also belongs to R if
B is similar to A. We can use a similarity confidence threshold TS to determine
whether two concepts are similar or not.

Definition 6. A conceptual cluster of a concept lattice K with a similarity con-
fidence threshold TS is a sublattice SK of K which has the following properties:

1. SK has a supremum concept CS that is not similar to any of its supercon-
cepts.

2. Any concept C �=CS in SK must have at least one superconcept C ′ ∈ SK such
that E(C, C ′) > TS.

C
1

{}

{“Data Mining”}

{“Fuzzy Logic”}

{“Data Mining”,
“Clustering”}

{“Data Mining”,
“Clustering”,

“Fuzzy Logic”}

{“Data Mining”,
“Fuzzy Logic”}

0.5
0.41

C2

C3

C
4

0.00
0.00

0.000.00

0.35

Fig. 4. Conceptual clusters.

Anything

{“Fuzzy Logic”}
{“Data Mining”,

“Clustering”}

Nothing

{“Data Mining”,
“Fuzzy Logic”}

Fig. 5. Concept hierarchy.

Figure 4 shows the conceptual clusters that are generated from the con-
cept lattice given in Figure 3 with the similarity confidence threshold TS = 0.5.
Figure 5 shows the corresponding concept hierarchy, in which each concept is
represented by a set of attributes of objects from the corresponding conceptual
cluster.

Figure 6 gives the algorithm that generates conceptual clusters from a con-
cept CS which is called the starting concept on a fuzzy concept lattice F (K).
To generate all conceptual clusters of F (K), we choose CS as the supremum of
F (K), or CS =sup(F (K)).

5 Ontology Generation

After the construction of the concept hierarchy, we need to convert it into on-
tology for the Semantic Web. Since ontology strongly supports hierarchical rep-
resentation, the conversion is done as follows:

Automatic Generation of Ontology for Scholarly Semantic Web 733

Algorithm: Conceptual Cluster Generation
Input: Starting concept CS of concept lattice F (K) and a similarity threshold TS

Output: A set of generated conceptual clusters SC

Process:
1: SC ← {}
2: F ′(K) ← An empty concept lattice
3: Add CS to F ′(K)
4: for each subconcept C′ of CS in F (K) do
5: F ′(C′) ← Conceptual Cluster Generation(C′, F (K), TS)
6: if E(CS , C′) = |CS∩C′|

|CS∪C′| < TS then
7: SC ← SC∪{ F ′(C′)}
8: else
9: Insert F ′(C′) to F ′(K) with sup(F ′(K)) as a subconcept of CS

10: endif
11: endfor
12: SC ← SC∪{F ′(K)}

Fig. 6. The fuzzy conceptual clustering algorithm.

– Each concept in the hierarchy is represented as an ontology class.
– The concepts’ relations are preserved for the corresponding generated ontol-

ogy classes. That is, if S1 is the superconcept of S2, then C1 is the superclass
of C2 where C1 and C2 are the corresponding classes for S1 and S2 respec-
tively.

– Each attribute of a concept is represented as a property of the corresponding
class.

– Each object in a concept is represented as an instance of the corresponding
class.

– The value of an instance’s property is the membership value of the corre-
sponding object’s attribute. In future research, we will apply fuzzy logic to
convert the membership value into linguistic terms, so that the generated
ontology will be more informative and comprehensible.

We use DMAL+OIL[17] to annotate the generated ontology. DMAL+OIL is
an RDF-based ontology description language that can represent ontology class
properties and relations effectively. For illustration, Figure 7 gives the ontology
for the concept hierarchy given in Figure 5.

6 Scholarly Ontology for Scholarly Semantic Web

In order for evaluating the proposed Fuzzy Formal Concept Analysis framework
for ontology generation for the Scholarly Semantic Web, we have collected a set
of 1400 scientific documents on the research area “Information Retrieval” pub-
lished in 1987-1997 from the Institute for Scientific Information’s (ISI) web-site

734 T.T. Quan et al.

<rdf:RDF>
xmlns:rdf =”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
xmlns:xsd =”http://www.w3.org/2000/10/XMLSchema#”
xmlns:daml=”http://www.w3.org/2001/10/daml+oil#”
<daml:Ontology rdf:about=”Scholarly Information”>
<daml:versionInfo>
$Id: daml+oil-ex.daml,v 1.8 2001/03/27 21:24:04 horrocks Exp $
< /daml:versionInfo>
<rdfs:comment>
An ontology of Scholarly Information
< /rdfs:comment>
<daml:imports rdf:resource=”http://www.w3.org/2001/10/daml+oil”/>
<daml:Class rdf:ID=”Concept1”>
<dmal:label> “Data Mining”</daml:label>
< /daml:Class>
<daml:Class rdf:ID=”Concept2”>
<dmal:label> Fuzzy Logic</daml:label>
< /daml:Class>
<daml:Class rdf:ID=”Concept3”>
<dmal:label> “Data Mining, Fuzzy Logic”</daml:label>
<rdfs:subClassOf rdf:resource=”#Concept1”/>
<rdfs:subClassOf rdf:resource=”#Concept2”/>
< /daml:Class>
<document rdf:ID = “Document3”>
<instanceOf>
<resourceRef xlink:href=”#Concept2”/>
< /instanceOf>
<FuzzyLogic>
<FuzzyLogicValue>0.87</FuzzyLogicValue>
< /FuzzyLogic>
< /document>
< /daml:Ontology>
< /rdf:RDF>

Fig. 7. The ontology for the concept hierarchy given in Figure 5.

[11]. The downloaded documents are preprocessed to extract related informa-
tion such as the title, authors, citation keywords, and other citation information.
The extracted information is then stored as a citation database. We then apply
FFCA, conceptual clustering and ontology generation to the citation database
as follows.

For each document, we have extracted the 10 most frequent citation key-
words. We then construct a fuzzy formal context Kf = {G,M ,I}, with G as
the set of documents and M as the set of keywords. The membership value of a
document D on a citation keyword CK in Kf is computed as

μ(D, CK) =
n1

n2

Automatic Generation of Ontology for Scholarly Semantic Web 735

{"Semantic
Similarity",

"Knowledge
Representation"}

{"User Interface",
"Browsing"}

{"Clustering",
"Neural Network"}

{"Information Retrieval",
"Query Processing",

"Searching"}

{"Recall",
"Precision"}

{“User Satisfaction",
"User Training",
"User Study"}

{"Online Search",
"Information Filtering"}

{"Retrieval Evaluation",
"System Training"}

{"Data Indexing"}

{"Expert System"}

{"Text Retrieval"}

{"Data Mining"}

Fig. 8. An example concept hierarchy generated

where n1 is the number of documents that cited D and contained CK and n2
is the number of documents that cited D. This formula is based on the premise
that the more frequent a keyword occurs in the citing paper, the more important
the keyword is in the cited paper.

Then, conceptual clustering is performed from the fuzzy formal context. As
each conceptual cluster represents a real concept, the concepts to be discovered
are the research areas. They form a hierarchy of research areas from the main
research area on “Information Retrieval”.

Figure 8 shows a part of the generated research hierarchy when TS = 0.7.
As shown in Figure 8, each research area is represented by a set of most fre-
quent keywords occurring in the documents that belong to that research area.
Research areas given by the hierarchy are considered as sub-areas of the re-
search area “Information Retrieval”. Hierarchical relationships between research
areas including sub-areas and super-areas, which correspond to the definitions
of subconcept and superconcept in FFCA, are also given. According to FFCA,
sub-areas inherit keywords from their super-areas. Note that the inherited key-
words are not shown in Figure 8 when labeling the concepts. Only keywords
specific to the concepts are used for labeling.

Then, the generated concept hierarchy is converted into the Scholarly Ontol-
ogy as discussed in Section 5.

736 T.T. Quan et al.

7 Performance Evaluation

To evaluate the performance of FFCA for ontology generation, we can measure
the performance of the conceptual clustering technique from FFCA, as it con-
structs the concept hierarchy for generating the Scholarly Ontology. To do this,
we perform the evaluation as follows. First, we use the relaxation error [18] and
the corresponding cluster goodness measure to evaluate the goodness of the con-
ceptual clusters generated. Typically, the lower the relaxation error is, the better
the conceptual clusters are generated. We also show whether the use of fuzzy
membership instead of crisp value can help improve cluster goodness. Then, we
use the Average Uninterpolated Precision (AUP)[19], which is a typical measure
for evaluating a hierarchical construct, to evaluate the goodness of the generated
concept hierarchy.

7.1 Evaluation Using Relaxation Error

Relaxation error implies dissimilarities of items in a cluster based on attributes’
values. Since conceptual clustering techniques typically use a set of attributes
for concept generation, relaxation error is quite a commonly used measure for
evaluating the goodness of conceptual clusters.

The relaxation error RE of a cluster C is defined as

RE(C) =
∑
a∈A

n∑
i=1

n∑
j=1

P (xi)P (xj)da(xi, xj)

where A is the set of attributes of items in C, P (xi) is the probability of item
xi occurring in C and da(xi,xj) is the distance of xi and xj on attribute a. In
this experiment, da(xi,xj) = |m(i,a) – m(j,a)| where m(i,a) and m(j,a) are the
membership values of objects xi and xj on attribute a respectively. The cluster
goodness G of cluster C is defined as

G(C) = 1 - RE (C)

Obviously, the smaller the cluster relaxation error is, the better the cluster good-
ness is.

The relaxation error and the cluster goodness measure reflect respectively
the dissimilarities and similarities of items in clusters. If we use a crisp number
(that is, only values of 0 and 1 are used) for items’ attributes as in typical FCA
methods, we are unable to represent the similarities between items. Instead,
the fuzzy membership value can be used to represent such similarities, thereby
improving the cluster goodness.

In the experiment, we first measure the fuzzy cluster goodness (FCG) of
clusters generated using the objects’ fuzzy memberships. Then, we replace the
objects’ fuzzy memberships by crisp values. This is done as follows. If the mem-
bership value is greater than 0.5, it is replaced by 1, otherwise it is replaced by
0. Then, we measure the crisp cluster goodness (CCG) using the replaced crisp

Automatic Generation of Ontology for Scholarly Semantic Web 737

Table 3. Performance results for fuzzy cluster goodness and crisp cluster goodness.

Ts=0.2 Ts=0.3 Ts=0.4 Ts=0.5 Ts=0.6 Ts=0.7 Ts=0.8 Ts=0.9

N=2
FCG 0.85 0.77 0.79 0.85 0.86 0.86 0.84 0.85
CCG 0.7 0.7 0.7 0.7 0.67 0.77 0.76 0.76

N=3
FCG 0.84 0.91 0.81 0.81 0.72 0.88 0.75 0.85
CCG 0.72 0.72 0.72 0.71 0.65 0.71 0.69 0.69

N=4
FCG 0.9 0.74 0.82 0.76 0.75 0.81 0.73 0.75
CCG 0.73 0.65 0.63 0.62 0.62 0.65 0.64 0.65

N=5
FCG 0.86 0.78 .075 0.8 0.76 0.75 0.72 0.77
CCG 0.71 0.63 0.61 0.61 0.61 0.63 0.61 0.61

N=6
FCG 0.91 0.76 0.79 0.76 0.7 0.74 0.8 0.8
CCG 0.73 0.65 0.61 0.61 0.6 0.62 0.63 0.63

N=7
FCG 0.91 0.79 0.73 0.73 0.73 0.84 0.78 0.74
CCG 0.76 0.66 0.64 0.63 0.62 0.63 0.65 0.65

N=8
FCG 0.95 0.81 0.73 0.84 0.77 0.82 0.84 0.77
CCG 0.8 0.71 0.64 0.63 0.62 0.63 0.65 0.65

N=9
FCG 0.91 0.88 0.76 0.84 0.71 0.75 0.77 0.85
CCG 0.84 0.75 0.66 0.63 0.63 0.65 0.65 0.65

N=10
FCG 0.94 0.85 0.83 0.73 0.74 0.84 0.84 0.73
CCG 0.85 0.77 0.65 0.64 0.63 0.64 0.66 0.66

values. We vary the number of keywords N extracted from documents from 2
to 10 and the similarity threshold TS from 0.2 to 0.9 for conceptual clustering.
The results are given in Table 3.

As can be seen from Table 3, the FCG obtained is generally better than
the CCG. It has shown the advantage of using fuzzy membership values for
representing object attributes. Since the relaxation error is an important factor
for approximate query answering[20], the experimental results have shown that
the use of fuzzy logic in FFCA can potentially improve retrieval performance on
conceptual clustering.

In addition, the experimental results have also shown that better cluster
goodness is obtained when the number of extracted keywords is small. It is
expected because smaller number of keywords will cause smaller differences in
objects in terms of keywords’ membership values. Therefore, the relaxation error
will be smaller. However, as we will see later in Section 7.2, smaller number of
extracted keywords will cause poor performance in retrieval.

7.2 Evaluation Using Average Uninterpolated Precision

The Average Uninterpolated Precision (AUP) is defined as the sum of the pre-
cision value at each point (or node) in a hierarchical structure where a relevant
item appears, divided by the total number of relevant items. Typically, AUP
implies the goodness of a hierarchical structure.

We have manually classified the downloaded documents into classes based
on their research themes. For each class, we extract 5 most frequent keywords

738 T.T. Quan et al.

Table 4. Performance results for AUPH and AUPU .

Ts=0.2 Ts=0.3 Ts=0.4 Ts=0.5 Ts=0.6 Ts=0.7 Ts=0.8 Ts=0.9

N=2
AUPH 0.0503 0.0503 0.0503 0.05 0.042 0.043 0.0467 0.0464
AUPU 0.0325 0.0325 0.0325 0.0325 0.0251 0.0175 0.0175 0.0175

N=3
AUPH 0.1088 0.1088 0.1083 0.1076 0.0849 0.0763 0.0818 0.0831
AUPU 0.0721 0.0721 0.0721 0.0721 0.0492 0.0305 0.0292 0.0292

N=4
AUPH 0.1609 0.1552 0.1452 0.1418 0.1373 0.1338 0.1404 0.1461
AUPU 0.1458 0.1166 0.1029 0.0985 0.0855 0.0655 0.0636 0.0636

N=5
AUPH 0.2066 0.1871 0.179 0.1779 0.1761 0.1772 0.1876 0.1965
AUPU 0.1924 0.1555 0.1448 0.1429 0.1300 0.1076 0.1065 0.1065

N=6
AUPH 0.2983 0.2688 0.2625 0.2696 0.2733 0.2737 0.2833 0.2938
AUPU 0.2846 0.2424 0.2263 0.2237 0.2077 0.1819 0.1792 0.1797

N=7
AUPH 0.3534 0.328 0.3149 0.3159 0.3295 0.2737 0.2833 0.2938
AUPU 0.352 0.2985 0.2677 0.2651 0.2556 0.2431 0.2316 0.2309

N=8
AUPH 0.3619 0.3368 0.3215 0.3212 0.3306 0.3366 0.3417 0.3605
AUPU 0.36 0.3 0.2687 0.2659 0.2556 0.2422 0.2303 0.2297

N=9
AUPH 0.3723 0.3459 0.3296 0.3267 0.3353 0.341 0.346 0.3657
AUPU 0.3704 0.3114 0.2771 0.2741 0.2635 0.2498 0.2377 0.237

N=10
AUPH 0.3768 0.351 0.3345 0.3294 0.3381 0.3439 0.3485 0.3686
AUPU 0.3747 0.317 0.2824 0.2793 0.2685 0.2548 0.2426 0.242

from the documents in the class. Then, we use these keywords as inputs to
form retrieval queries and evaluate the retrieval performance using AUP. This
is carried out as follows. For each document, we will generate a set of document
keywords. There are two different ways to generate document keywords. The
first way is to use the set of keywords, known as attribute keywords, from each
conceptual cluster as the document keywords. The second way is to use the
keywords from each document as the document keywords. Then, we vectorize
the document keywords and the input query, and calculate the vectors’ distance
for measuring the retrieval performance.

We refer the AUP measured using the first way to as Hierarchical Average
Uninterpolated Precision (AUPH), as each concept inherits attribute keywords
from its superconcepts. Whereas the AUP measured using the second way is
referred to as Unconnected Average Uninterpolated Precision (AUPU). Table 4
gives the performance results for AUPHand AUPUusing different numbers of
extracted keywords N and similarity thresholds TS for conceptual clustering.
Generally, when N gets larger, the performance on both AUPHand AUPU gets
better. It has shown that the number of keywords extracted for conceptual clus-
tering has affected the retrieval accuracy. In addition, the performance on AUPH

is generally better than that of AUPU . It means that the attribute keywords gen-
erated for conceptual clusters are quite appropriate concepts to be represented
in the hierarchical structure.

Automatic Generation of Ontology for Scholarly Semantic Web 739

8 Conclusions

In this paper, we have proposed a new framework called Fuzzy Formal Con-
cept Analysis that extends Formal Concept Analysis for ontology generation
for the Scholarly Semantic Web. As compared to traditional FCA, FFCA can
deal with uncertainty in data. Moreover, we have also proposed a conceptual
clustering technique that can cluster the fuzzy concept lattice to generate a
concept hierarchy, which can then be converted into Scholarly Ontology. The
proposed framework is used to construct Semantic Scholarly Web from a cita-
tion database. The FFCA framework has been evaluated and good performance
has been achieved. As for future research, we intend to restructure the generated
ontology for supporting multiple-level concepts corresponding to multiple levels
of abstractions. Moreover, we will also use fuzzy logic to convert fuzzy property
values of the generated ontology into linguistic terms to make the generated
ontology more informative and comprehensible.

References

1. T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web”, Scientific
American, Available at: <http://www.sciam.com/2001/0501issue/0501berners-
lee.html>, 2001.

2. N. Guarino and P. Giaretta, Ontologies and Knowledge Bases: Towards a Termi-
nological Clarification. Toward Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, IOS Press, Amsterdam, 1995.

3. N. Noy and D. L. McGuinness, “Ontology Development 101: A Guide to Creat-
ing Your First Ontology”, Report SMI-2001-0880, Department of Mechanical and
Industrial Engineering, University of Toronto, 2001.

4. S. Bechhofer, I. Horrocks, P. Patel-Schneider and S. Tessaris, “A Proposal for
a Description Logic Interface”, In Proceedings of the International Workshop on
Description Logics, 1999, pp. 33-36.

5. A. Maedche and S. Staab, “Mining Ontologies from Text”, In EKAW-2000 - 12th
International Conference on Knowledge Engineering and Knowledge Management,
Juan-les-Pins, France. LNAI, Springer, 2000.

6. A. Doan, J. Madhavan, P. Domingos and A.Y. Halevy, “Learning to Map Between
Ontologies on the Semantic Web”, In Proceedings of the Eleventh International
World Wide Web Conference, WWW2002, Honolulu, Hawaii, USA, 2002, pp. 662-
673.

7. A.K Jain and R.C Dubes, Algorithms for Clustering Data, Prentice-Hall, 1988.
8. B. Ganter and R. Wille, Formal Concept Analysis, Springer, Berlin – Heidelberg,

1999.
9. A. Hotho, S. Staab and G. Stumme, “Explaining Text Clustering Results using

Semantic Structures”, In Proceedings of Principles of Data Mining and Knowledge
Discovery, 7th European Conference, PKDD 2003, Croatia, 2003, pp. 217-228.

10. L.A. Zadeh, “Fuzzy Logic and Approximate Reasoning”, Synthese, Vol. 30, 1975,
pp. 407-428.

11. G. Wiederhold, Digital Libraries, Value, and Productivity, Communications of the
ACM, Vol. 38, No. 4, 1995, pp. 85-96.

740 T.T. Quan et al.

12. ISI, Institute for Scientific Information, Available at: <http://www.isinet.com>,
2000.

13. K. Bollacker, S. Lawrence and C. Giles, “Discovering Relevant Scientific Literature
on the Web”, IEEE Intelligent Systems, Vol. 15, No. 2, 2000, pp. 42-47.

14. S. Kampa, T. Miles-Board and L. Carr, “Hypertext in the Semantic Web”, In
Proceedings ACM Conference on Hypertext and Hypermedia, Aarhus, Denmark,
2001, pp. 237-238.

15. L.A. Zadeh, “The concept of a linguistic variable and its application to approximate
reasoning”. Part I: Inf. Science 8,199-249; Part II: Inf. Science 8, 301-357; Part
III: Inf. Science 9, 43-80, 1975.

16. L.A. Zadeh, “Fuzzy Sets”, Journal of Information and Control, Vol. 8, 1965, pp.
338-353.

17. DARPA, DAML-ONT Initial Release, Available at:
<http://www.daml.org/2000/10/daml-ont.html>, 2000.

18. W. Chu and K. Chiang, “Abstraction of High Level Concepts from Numerical
Values in Databases”, In Proceedings of AAAI Workshop on Knowledge Discovery
in Databases, 1994, pp. 133-144.

19. N. Nanas, V. Uren and A. de Roeck, “Building and Applying a Concept Hierarchy
Representation of a User Profile”, In Proceedings of the 26th annual international
ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM Press, 2003.

20. W. Chu and Q. Chen, “Neighborhood and associative query answering”, Journal
of Intelligent Information Systems, Vol. 1, No. 3, 1992.

Querying Real World Services Through the Semantic
Web�

Kaoru Hiramatsu, Jun-ichi Akahani, and Tetsuji Satoh

NTT Communication Science Laboratories
Nippon Telegraph and Telephone Corporation

2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan
{hiramatu,akahani}@cslab.kecl.ntt.co.jp, satoh.tetsuji@lab.ntt.co.jp

Abstract. We propose a framework for querying real world services using meta
data of Web pages and ontologies and implement a prototype system using stan-
dardized technologies developed by the Semantic Web community. The meta data
and the ontologies enable systems to infer related classes while modifying the
queries and retrieving approximate result and help them smooth obstacles in in-
teraction while querying. The standardized technologies help us to describe the
meta data and the ontologies in RDF (Resource Description Framework) and OWL
(Web Ontology Language) formally and enable us to share them on the network. In
this paper, we illustrate details of the framework and the prototype system, demon-
strate how it works using practical data in Kyoto, Japan, and discuss requirements
for actualizing this framework on the network.

1 Introduction

Some of the most popular and frequently used content on the Internet is information on
real world services, such as that containing location information (e.g. store locations and
hours of business) and services (e.g. timetables and route maps of public transportation
systems). Much of this information is accessible as Web pages, and users can search for
them with keywords using major search engines as they can with other kinds of contents
by trial and error. In searching for real world services, locality is one of the most important
factors; therefore it is necessary for users to specify a region geographically in order to
find the real world services efficiently. However, because of the ambiguity of location
names, users have to enter an exact address or use some heuristics (e.g. use a zip code
as a keyword instead of an exact address) that are often noted on help pages for local
searches.

Such inflexibility and heuristics on the current Internet are mainly caused by the
ambiguity of terms extracted fromWeb pages by the search engines and queries submitted
by users. To handle this ambiguity, much research has been done on meta data of the Web
pages with respect to information retrieval [1], natural language processing [2][3], and
databases [4][5]. Although these academic approaches show steady improvement and
some of them mention sharing and reusing the meta data, no standardized frameworks
and languages have yet come into wide use.
� Previous version of this paper was presented at the demonstration session of the 2nd Interna-

tional Semantic Web Conference

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 741–751, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

742 K. Hiramatsu, J. Akahani, and T. Satoh

The Semantic Web [6] is expected to play an important role in improving the situation
on the Internet. Thanks to Semantic Web activity at the World Wide Web Consortium
(W3C), Resource Description Framework (RDF)1 and Web Ontology Language (OWL)2

have been standardized as frameworks of the Semantic Web. They enable us to describe
meta data of the Web pages and the ontologies formally. The formalized meta data and
the ontologies are regarded as being machine-readable semi-structured knowledge and
as sharable on the Internet without ambiguity. Such knowledge will not only enable
the search engines to handle terms extracted from the Web pages and the queries more
accurately, but also help the systems provide users with various related information using
the taxonomic knowledge in the ontologies.

In this paper, we propose a framework for querying information on real world ser-
vices and implement a prototype system based on the framework utilizing standardized
technologies developed by the Semantic Web community. Taxonomic knowledge and
database schemata of the real world services are integrated into the ontologies that are
described in OWL. Based on these ontologies, the meta data of the Web pages con-
cerning real world services such as location, hours of business, and service types, is
extracted from the Web pages by a scraping program, converted into RDF data, and
stored in service provider agents separately according to their area of responsibility and
service categories. The meta data and the ontologies help systems avoid ambiguity of
terms extracted from Web pages and queries, and enable them to infer related classes
for modifying the queries and searching for approximate results.

The prototype system accepts queries in natural language sentences and displays
search results in several styles (e.g. map view and tree-structure view) according to meta
data of the search results. As in the upper example of Fig. 1, the prototype system accepts
a query “Find traditional Japanese restaurants near a bus stop that will be open around
2 p.m. tomorrow3,” then returns three search result sets that include a restaurant and a
bus stop, respectively. The prototype system utilizes the meta data and the ontologies
to smooth interactive querying. For example, if no result satisfies the initial query, the
prototype system will extend its search range using the meta data and the ontologies (e.g.
find a category “Restaurant” that is a superordinate category of “Japanese Restaurant.”)

The accepted queries are translated into queries in extended SQL [7] and submitted to
a mediator agent, which coordinates the optimal combination of service provider agents
according to advertisements for the service provider agents in DAML-S [8]. Then, the
mediator agent submits the query to the coordinated service provider agents and a service
integrator agent integrates the search results returned from them. As the lower example
in Fig. 1 shows, when a user submits the query “find a route to Kyoto station and a bank
on the way to Kyoto station,” the prototype system forwards the query to two service
provider agents, a route finding service and a location information service, and outputs
integrated results on a result viewer (lower right of Fig. 1.) Moreover, to enable the users
to digress from the search results, the prototype system extracts meta data of selected
search results as default values of future queries.

1 RDF: http://www.w3c.org/RDF/
2 OWL: http://www.w3c.org/2001/sw/WebOnt/
3 As in the screenshot (Fig. 1), this version of the prototype system only accepts queries in

Japanese.

Querying Real World Services Through the Semantic Web 743

Find traditional Japanese restaurants
near a bus stop that will be open around
2 p.m. tomorrow.

Found 3 Result Sets

Found the route and banks

Find a route to Kyoto station and
a bank on the way to Kyoto station.

Query Translation and Modification

Coordinating Semantic Web Services

Fig. 1. Example of the prototype system

In the remainder of this paper, we illustrate details of the framework and the prototype
system, and demonstrate how it works using practical data in Kyoto, Japan. We also
discuss requirements for actualizing this framework on the network through comparing
it with related work.

2 Framework and Prototype System

2.1 Overview

Information on real world services is provided by many directory services (e.g. Yahoo!4

and Zagat survey5.) and rendered in various styles. Almost all of entries in them include
names, addresses, hours of business, and telephone numbers. These fields are regarded
as basic and common data. The other fields such as ratings, reputations, and atmospheres
of places are also familiar and useful for users to make their choice. All these data are
important and meaningful for sharing as meta data of information on real world services.
However, in contrast to the former fields that are objective, the latter fields are filled in by
reporters subjectively; consequently, it is necessary for inference engines to take account
of mutual trust between reporters and users. To simplify the prototype system, we mainly
utilize the former fields as the meta data of the information on real world services.

In order to collect meta data of information on real world services, we implemented
a scraping program based on Web robots. It accesses Web pages according to a URL

4 Yahoo!: http://www.yahoo.com/
5 Zagat survey: http://www.zagat.com/

744 K. Hiramatsu, J. Akahani, and T. Satoh

User Agent

Meta data of
Real World Services

Japanese
Restaurant

Restaurant

French
Restaurant

TimeInterval

openHours

Location
locatedAt

DayOfWeek

regularHoliday

RDF Queries
on SOAP

•Natural Language Query Analysis
•Two Phase Query Modification

Route Finding Service

Service Coordinator
Agents

Composite
Service Description
in DAML-S

Service Description
in DAML-S

Ontologies

Fig. 2. System overview

list and downloads them recursively. It then analyzes the downloaded Web pages using
morphological analysis and pattern matching and extracts fields of names, addresses,
and business hours of the real world services. In this analysis, we utilize digital map
data as dictionaries for extracting the names and the addresses and assigning geographic
coordinates to the downloaded Web pages belonging to the real world services. The
extracted fields are converted to RDF data and stored in service provider agents separately
according to their area of responsibility and service category. However, it is difficult and
unreasonable for the scraping program to extract meta data of all the information residing
in route planners and dynamic databases in the same manner. Therefore, we utilize a
service description in DAML-S instead of employing their meta data.

Ontologies of the meta data are described in OWL. The ontologies are utilized to
determine field extraction by the scraping program and to infer related and superordinate
categories by user agents. As shown in Fig. 2, the ontologies include data schemata of
the extracted fields and related knowledge such as hierarchies of service categories and
addresses.

The prototype system based on this framework consists of a user agent and service
coordinator agents (Fig. 2). In this prototype system, one service coordinator agent
performs one or more roles of a service provider agent, a mediator agent, a service
wrapper agent, and a service integrator agent. We will describe the details of these agents
in Section 2.3. These modules are implemented using Java6, Jena7 for manipulating

6 http://java.sun.com/
7 a Java API for manipulating RDF models, http://www.hp.hp.com/semweb/

Querying Real World Services Through the Semantic Web 745

(1) Enter Natural language query in
Japanese:
“Find traditional Japanese restaurants
near a bus stop that will be open around
2 p.m. tomorrow.”

(2) Translate natural language queries
into extended-SQL called GeoLinkSQL
using ontologies.

(3) Two phase query modification using semantic relations
(i) Revise ambiguous conditions into appropriate ones

for avoiding a zero search result or a huge result list.
(ii) Provide next available options to enable users to jump

to advanced and associated topics.

Fig. 3. Query translation

RDF models, PostgresSQL8 for storing RDF data, and Jun for Java9 for displaying tree
structures of search results in the result viewer. These modules utilize SOAP (Simple
Object Access Protocol) for message passing.

The user agent behaves as a front-end of the prototype system. As Fig. 3 shows, the
user agent can accept queries either in natural language style or in form style, which
is equivalent to queries in extended SQL. The query entered as the natural sentence is
classified as a query type using SAIQA10 and translated into a query in extended SQL
using a template that is derived from the query type.

The query in extended SQL is submitted to the mediator agent. According to ad-
vertisements of the service provider agents in DAML-S, the mediator agent coordinates
optimal combination of the service provider agents, divides the query according to the
combination, and submits the divided query to the organized service provider agents.
The service provider agents accept the query and returns search results that satisfy the
queries based on the meta data of the real world services that the service provider agents
store according to their area of responsibility and service category. The service integrator
agent then integrates search results which are returned from the service provider agents
into result sets based on relations that are specified in the query in extended SQL.

While processing a query, the prototype system applies two-phase query modification
[9] to it. We will explain the details of this modification in Section 2.2.

8 an open source Object-Relational DBMS, http://www.postgresql.org/
9 a 3D graphics class library, http://www.sra.co.jp/people/nisinaka/Jun4Java/

10 a question answering system developed by NTT Communication Science Laboratories

746 K. Hiramatsu, J. Akahani, and T. Satoh

Restaurant

Map view (global)
Search result are displayed
as icons.

3D tree view
Relations among
search result are
displayed as tree.

Bus stop

2D tree view
Relations among
search result are
displayed as tree.

Map view (local)
Search result are displayed
as icons.

Individual view
Image of the Web page
and its metadata.

Fig. 4. Screenshot of the result viewer

After the query processing, the user agent displays search results using a result
viewing frame. As shown in Fig. 4, the result viewing frame includes a map view, a
2D tree view, a 3D tree view, an individual view, and an add-search-input frame. The
map view displays search results as icons on a digital map, while the 2D and 3D tree
views show the search results (e.g. three sets of a restaurant and a bus stop) using the
tree style. In both tree views, a node in the tree view expresses a Web page that includes
information on a real world service, where an edge stands for a relation between real
world services (e.g. hyperlinks between Web pages and geographical relationships.) The
individual view enables the user to browse images of the Web page and its meta data by
clicking the icons on the map view or the nodes in the 2D and 3D views. The add-search-
input frame prompts the user to conduct the next search by showing available search
options that are coordinated from meta data of one or all of the initial search results and
preset user profiles. To conform with popular design guidelines for user interfaces, the
available search options are displayed as enabled buttons, while the others are displayed
as disabled buttons.

This query processing of the prototype system is based on an augmented Web space
[7] that enables the system to search for a set of Web pages with relations by specifying
conditions of the Web page attributes, hyperlinks, and implicit geographic relations
between the Web pages. In the augmented Web space, the implicit geographic relations
are calculated as geographical generic links, which are created dynamically according to
implicit geographic relations, such as distance and directions, between objects that are
described in the Web pages. Owing to this function, the prototype system can find sets
of search results that satisfy the queries. Although the original augmented Web space is

Querying Real World Services Through the Semantic Web 747

designed to utilize only geographic relations, we extended it to handle the meta data for
creating semantic links.

2.2 Two-Phase Query Modification

We employ two-phase query modification [9] to the prototype system for driving users
to evolve interactive queries. This query modification is divided into two phases:

1. Revising ambiguous conditions into appropriate ones to obtain an adequate number
of search results.

2. Providing next available options that enable users to jump to advanced and associated
topics.

Both phases are processed tightly coupled with query processing in accordance with the
meta data and the ontologies.

In the first phase, the user agent prefetches a number of search results of each term
condition in the query and identifies ambiguous term conditions in accordance with the
number of search results. It then revises them into appropriate ones automatically using
the ontologies. For example, if a term extracted from the query is too ambiguous and
an enormous amount of search results are matched, the term will be replaced with a
more specific term along with word relations in the taxonomic knowledge. On the other
hand, if a keyword results in a zero search result, then the keyword will be replaced with
a hypernym or a superordinate category name. After that, while joining the retrieved
Web pages, if a geographic condition between Web pages is too narrow, in that an
adequate result cannot be produced, the condition will be expanded into a wider area
in accordance with the characteristics of distribution of the meta data. In contrast, if a
geographic condition is too wide, the condition will be shortened. The user agent applies
this query modification repeatedly until a adequate search result is obtained.

In the second phase, the prototype system provides the users with the next available
options, which are advanced queries from the initial one and associated topics with the
original target. Since the search result has a tree structure, the next available options
are developed from root and leaf nodes of the search result and from characteristics
of links between Web pages, according to the meta data and the ontologies. After the
initial search result is returned to the user, he/she is prompted to choose one of the
next available options, which are explicitly displayed in the add-search-input frame of
the result viewer. In the second phase, all the next options are displayed on the result
viewer so that the user can select and browse them repeatedly through trial and error.
We suppose this helps users deepen and broaden their interests, even if they do not have
a clear search intention when they start querying.

2.3 Coordinating Real-World Services

Various pieces of information on real world services is available on networks and each of
them is responsible for a type of information such as restaurant directories or route guides.
It is thus necessary to find adequate services to coordinate search results. We therefore
need to introduce service coordinator agents into our framework. In our framework, one
service coordinator agent performs one or both of the following roles.

748 K. Hiramatsu, J. Akahani, and T. Satoh

Query

translate

Query in
extended-
SQL

Advanced query 1
Advanced query 2

Detailed query 1
Detailed query 2

Condition 1

Condition 2

Condition 3

Search
result

decompose combine

Combined
condition

query
processing

Enable users to avoid zero or huge result
even if users don’t know exact keywords.

Enable users to jump to
advanced and associated topics.

Phase Two

Phase One

Fig. 5. Two-phase query modification

1. Service provider agents that provide services. Each service provider agent advertises
its service description in DAML-S.

2. Mediator agents that forward queries to suitable service provider agents based on
the service descriptions of the service provider agents.

Moreover, the service provider agents are categorized into the following two types.

1. Service wrapper agent that wraps Web services.
2. Service integrator agent that integrates services provided by other service provider

agents. Each service integrator agent advertises a composite service description.

In the prototype system, we utilize two types of Web services: service provider agents
and a route finding service. These Web services are wrapped by the service wrapper
agents and are accessible in accordance with service descriptions in DAML-S. We have
also implemented a service integrator agent that can integrate these two services.

3 Typical Example

For this prototype system, we prepared a test data set by extending the data originally
created for the Digital City Kyoto prototype [10]. We constructed a URL list that includes
about 5,000 Web pages of real world services in Kyoto, Japan, and extracted meta data
from them using the scraping program. The meta data, such as names, hours of business,
and addresses, are stored in service provider agents separately according to service area
for which they were responsible, and service category. We collected service descriptions
of the service provider agents and the real world services that coordinate search results
dynamically.

To illustrate how the prototype system works, we employ the two example queries
shown in Figure 1. The first is “find traditional Japanese restaurants near a bus stop that
will be open around 2 p.m. tomorrow,” and the second is “find a route to Kyoto station
and a bank on the way to Kyoto station.”

In the first example, a user inputs the example query into the field for a natural
sentence. Then, the user agent analyzes the query and translates it into a query in extended

Querying Real World Services Through the Semantic Web 749

SELECT p2.url
FROM p1,link,p2
p1.keyword =˜ ’traditional’
p1.keyword =˜ ’Japanese restaurant’
is_open(p1,’14:00’)
link AS diatance(p1,p2) < 250m
p2.keyword =˜ ’bus stop’

Fig. 6. Translated query in extended SQL

Find a route to Kyoto station
and a bank on the way to
Kyoto station.

Find a route to
Kyoto station

Find a bank
on the way
to the destination

Q1

Q�
Q�

RDF Queries
on SOAP

Composite Service
Description of route
finding and service
provider agent

Service Description
of route finding

Service Description
of service provider
agent

Q1

Q� Q�

Fig. 7. Coordinating the agents of the real world services

SQL (Fig. 6). After translation, the user agent divides the query into term conditions and
relational conditions, optimizes a processing order for them based on statistics of the
test data set, and transmits them to a service coordinator agent. The service coordinator
agent distributes the term conditions and the relational conditions to service provider
agents based in a service area and service category for which they are responsible, and
ask them to process each condition in the optimized order. While this processing occurs,
the first phase of the query modification process is applied. The number of matching
results for each term condition in the translated query is estimated by the query processing
modules of the service provider agents. In this example, there is no term condition where
the estimated result is zero or beyond the preset thresholds; if there is such a condition,
then it will be replaced with more adequate term conditions using semantic relations in
the ontologies.

Next, matching results are retrieved from the service provider agents and integrated
into the search result in accordance with the link conditions in the query. As shown in the
upper right of Fig. 1, the example query succeeded in retrieving three sets of a restaurant
and a bus stop as the search result; however, if a link condition based on geographic

750 K. Hiramatsu, J. Akahani, and T. Satoh

distance is inadequate, the system extends or shortens the distance in order to obtain an
adequate result.Also, if the combined result becomes invalid even though each condition
is successfully processed, the system backtracks to the term replacement process and
recombines the results until an adequate result is obtained.

The second example is conjunctive, meaning that the prototype system divides and
processes it as in Fig. 7. The user agent translates a query and submits it to a mediator
agent. In this phase, the mediator agent divides query Q1 into two: one is “find a route
to Kyoto station” (Q2), and the other is “find a bank on the way to the destination” (Q3)
according to the service descriptions. The mediator agent first submits query Q2 to a
service wrapper agent, which provides a route finding service, and the service integrator
agent receives route information as search results. The service integrator agent then asks
the mediator agent to add the route information in the search results to query Q3 and
submit it to the service provider agent to find a bank along the route. The search results of
query Q3 are also returned to the service integrator agent and integrated with the search
results of query Q2. The result viewer displays the integrated results and next available
options as shown in Fig. 7.

4 Discussion and Conclusion

In this paper, we illustrated the details of the framework and the prototype system, and
demonstrated how the prototype system works using practical data in Kyoto, Japan. We
assume that enlargement of the Semantic Web will lead to a closer relationship between
the Internet and real world services. To accelerate such evolution, we are planning to
refine the framework and the prototype system along with meta data and ontologies.

As described in Section 1, many heuristics are diffused for searching for real world
services using current search engines on the Internet. In general, the search engines
accept keywords and return results using their indices created from terms scraped from
the Web pages. This simple framework contributes to scalability and performance of
the search engines, but it restricts users to conducting related information and cascading
the result flexibly. In contrast to these search engines, users can utilize meta data of
search results (e.g. names and locations of real world services) as default values of
future searches using other information sources in our framework. However, extracting
such meta data while processing queries causes a reduction in system performance. To
avoid this tradeoff would be difficult; therefore it is necessary to estimate the quantity
and quality of meta data.

As described in Section 2.1, we utilized common and objective meta data of informa-
tion on real world services in the prototype system. Other meta data such as atmosphere,
reputations, and ratings of real world services, are also meaningful for comparison,
though such subjective meta data requires systems and users to confirm author infor-
mation and date of creation and update. Such confirmation, which is regarded as a
component of mutual trust is a difficult but worthwhile challenge in the Semantic Web.

The scraping program extracts meta data of the real world services based on the on-
tologies automatically using morphological processing and pattern matching. However,
due to incomprehensive descriptions in Web pages and imperfect performance of natural
language processing, the scraping program cannot always work correctly. To minimize

Querying Real World Services Through the Semantic Web 751

the effect of errors, we need to investigate robust query processing and error checking
by inferring engines that use ontologies.

Acknowledgment. Thanks are due to content holders for the permission to use their
Web pages concerned with Kyoto, and to Yuji Nagato and Yoshikazu Furukawa of NTT
Comware Corporation for their great contributions to demonstrating the system.

References

1. Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel, R.:
Spatial Information Retrieval and Geographic Ontologies An Overview of the SPRIT Project.
In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR02). (2002) 387–388

2. Smith, D.A., Crane, G.: Disambiguating Geographic Names in a Historical Digital Library.
In: Proceedings of the 5th European Conference on Research and Advanced Technology for
Digital Libraries. (2001)

3. Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Transactions on
Information Systems (TOIS) 10 (1992) 115–141

4. Knoblock, C.: Agents for Gathering, Integrating, and Monitoring Information for Travel
Planning. IEEE Intelligent Systems 17 (2002) 63–66

5. Chen, C.C., Thakkar, S., Knoblock, C.A., Shahabi, C.: Automatically Annotating and Inte-
grating Spatial Datasets. In: Proceedings of the Eighth International Symposium on Spatial
and Temporal Databases (SSTD 2003). (2003)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific America (2001)
7. Hiramatsu, K., Ishida, T.: An Augmented Web Space for Digital Cities. In: The 2001

Symposium on Application and the Internet (SAINT2001). (2001) 105–112
8. Coaliation, T.D.S.: DAML-S: Web Service Description for the Semantic Web. In: The First

International Semantic Web Conference (ISWC). (2002)
9. Hiramatsu, K., Akahani, J., Satoh, T.: Two-phase Query Modification using Semantic Rela-

tions based on Ontologies. In: Proceedings of IJCAI-03 Workshop on Information Integration
on the Web (IIWeb-03). (2003) 155–158

10. Ishida, T., Akahani, J., Hiramatsu, K., Isbister, K., Lisowski, S., Nakanishi, H., Okamoto, M.,
Miyazaki, Y., Tsutsuguchi, K.: Digital City Kyoto: Towards A Social Information Infrastruc-
ture. In: Cooperative Information Agents III. Volume 1652 of Lecture Notes in Computer
Science. (1999) 34–46

Public Deployment of
Semantic Service Matchmaker
with UDDI Business Registry

Takahiro Kawamura1, Jacques-Albert De Blasio1, Tetsuo Hasegawa1,
Massimo Paolucci2, and Katia Sycara2

1 Research and Development Center, Toshiba Corp.
2 The Robotics Institute, Carnegie Mellon University

Abstract. Public deployment of the semantic service matchmaker to a
UDDI registry for half a year is shown in this paper. UDDI is a stan-
dard registry for Web Services, but if we consider it a search engine,
its functionality is limited to a keyword search. Therefore, the Match-
maker was developed to enhance UDDI by service capability matching.
Then, we have deployed the Matchmaker to one of four official UDDI
registries operated by NTT-Communications since September 2003. In
this paper, we first introduce the Matchmaker with UDDI, and illus-
trate client tools which lower the threshold of use of semantics. Then,
we evaluate this deployment by benchmarks in terms of performance
and functionality. Finally, we discuss user requirements obtained by two
ways: questionnaire and observation of search behaviour.

1 Introduction

The recent spread of web services reveals the needs of sophisticated discovery
mechanism. Although UDDI[1] is emerging as a de-facto standard registry for
web services, the search functionality provided by UDDI is the keyword search
only on names, comments and keys of businesses and services descriptions. Un-
fortunately, the keyword search fails to recognize the similarities and differences
between the capabilities provided by web services. To address this problem, we
developed the Matchmaker in collaboration with Carnegie Mellon University[2],
which enhances the search functionality of UDDI by making use of semantic
information. Then, we initiated an experiment on a publicly available UDDI
maintained by NTT-Communications, one of four official UDDI operators[3].
Since started from September 2003, we have evaluated the scalability and feasi-
bility of our approach with performance and functional comparison and collected
user requirements through half a year.

In this paper, we first introduce the Matchmaker in section 2, and the one
deployed with UDDI in section 3. After illustrating supporting tools that provide
user interfaces to the Matchmaker in section 4, we will present the evaluation in
section 5.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 752–766, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Public Deployment of Semantic Service Matchmaker 753

Fig. 1. Matchmaker

2 Semantic Service Matchmaker

Figure 1 shows the architecture of the Matchmaker.

2.1 Service Description

First of all, we mention Web Service Semantic Profile (WSSP), a way to encode
semantic information with WSDL. WSDL specifies the programming interface of
a service to be used at invocation time. To this account it specifies the name of
the function to invoke and the types of data that the service expects as inputs and
outputs. The data types describe how the information is formatted, but because
there are arbitrarily many ways of encoding the same information in data types,
they fail to express the semantics of the information, which is needed to express
the capability of the service.

The aim of WSSP is to enrich WSDL with the basic semantic information
to represent the services capabilities. As in WSDL we can define input and
output parameters, the ontologies of those parameters are defined in WSSP.
Further, WSSP offers the possibility to add constraints to those parameters to
represent conditions for the service invocation more accurately. Since automatic
service composition is out of our experiment for now, preconditions and effect
(postcondition) will be our next priorities. An example of the WSSP is given
below, in which the ontology for the parameter in RDFS[4], DAML+OIL[5] or
OWL[6], facts and rules in RDF-RuleML[7] as the constraints, and the original
WSDL parameter are encoded.

754 T. Kawamura et al.

<profile:input>
<profile:message rdf:ID="1st_INPUTMessage">

<profile:parameter>
<profile:ParameterDescription rdf:ID="1st_INPUTMessage_Param_1">

<profile:parameterName>Param_1</profile:parameterName>
<!-- Ontology -->
<profile:restrictedTo rdf:resource="http://ont.com/Onto.owl#class1"/>
<profile:wsdlParam>xPointer to wsdl parameter</profile:wsdlParam>
<profile:datatype>XMLSchema.xsd#String</profile:datatype>

</profile:ParameterDescription>
</profile:parameter>

<!-- Constraint -->
<profile:constrainedBy rdf:resource="http://rule.com/rdfrules.rdf#fact1"/>
<profile:constrainedBy rdf:resource="http://rule.com/rdfrules.rdf#rule1"/>

<profile:wsdlMessage>xPointer to wsdl message</profile:wsdlMessage>

</profile:message>
</profile:input>

We should note that WSSP has been inspired by DAML-S/OWL-S Service
Profile[8]. Although DAML-S is very powerful to represent all the details about
the service by combining Service Profile, Service Model and Service Grounding,
it is difficult to use only the Service Profile without adopting the Process Model
and the Grounding because of relationship among those three modules. Further,
we would have redundancy if we use both the Service Profile and WSDL. Thus,
we adopted the basic ideas of the Service Profile, and imported them into WSSP.
Due to the highest priority on the standards, if any standard language will allow
to express the same information as WSSP near future, we will be pleased to
adopt it.

2.2 Matchmaking Mechanism

In brief we describe how the matching of capabilities is performed. Ideally, when
the requester looks for a service, the matchmaker will retrieve a service that
matches exactly the service that the requester expects. But, in practice it is very
unlikely that such a service is available, instead the matchmaker will retrieve
a service whose capabilities are similar to the capabilities expected by the re-
quester. To address this problem, the matchmaker identifies the three levels of
matching.

Exact match is the highest degree of matching, it results when the two de-
scriptions are equivalent.

Plug-in match results when the service provided is more general than the ser-
vice requested, but in practice it can be used in place of the ideal system that
the requester would like to use. To this extent the result can be “plugged
in” place of the correct match.

Relaxed match. The relaxed match has a weakest semantic interpretation. It
is used to indicate the degree of similarity between the advertisement and
the request.

Public Deployment of Semantic Service Matchmaker 755

Fig. 2. Four filters

The second aspect of our matchmaker is to provide a series of four filters
(Fig. 2), which are independent from each other, and narrow the set of registered
services with respect to a given criterion. User may select any combination of
these filters at the search time, considering the trade-off between accuracy and
speed of the search. We briefly illustrate each filter as follows. Further details
are provided in Sycara et al.[9]. The degree of the match are calculated as the
sum of scores at the passed filters.
1. Namespace Filter

Pre-checking process which determines whether or not the requested service
and the registered ones have at least one shared namespace (a url of an ontology
file). The intersection of namespaces can be considered shared knowledge be-
tween the request and the advertisement. Therefore, only the registered services
which have at least one shared namespace go into the next filter. Namespaces
of default like rdf, rdfs, xsd, etc. are not considered the intersection. Of course,
there is a case that the relation between two nodes of different ontology files
does exist, although the distance would be relatively long. This filter and the
next filter are meant for the reduction of the computation time of the last two
filters.
2. Text Filter

Pre-checking process for human-readable service explanation parts such as
comment and text descriptions. It utilizes the well-known information retrieval
(IR) technique called Term Frequency Inverse Document Frequency (TF/IDF)
method. This filter help to minimize the risk to miss the services which have any
relation to the requested one.
3. I/O Type Filter

Type Filter checks to see if the ontologies of the input and output match. A
set of subtype inferencing rules mainly based on structural algorithm are used
to determine in this filter. Such a match is determined if: (Fig. 3)

– the types and number of input/output parameters exactly matches, OR
– outputs of the registered service can be subsumed by outputs of the requested

service, and the number of outputs of the registered service is greater than
the number of outputs of the requested service, AND/OR

756 T. Kawamura et al.

Fig. 3. Levels of plug-in match

– inputs of the requested service can be subsumed by inputs of the registered
service, and the number of inputs of the requested service is greater than
the number of inputs of the registered service.

If there is a mismatch in the number of parameters, then the filter attempts to
pair up parameters in the registered one with those in the request, by seeking the
registered one’s parameters that are sub-types of the requested one’s parameters.

Further, the request may not have a model of what inputs may be required,
and may need to obtain this information from the returned service. To support
this, inputs and inputs’ constraints in the next section also match when those
of the request are empty.
4. Constraint Filter

The responsibility of this filter is to verify whether the subsumption relation-
ship for each of the constraints are logically valid. The constraints filter compares
the constraints to determine if the registered service is less constrained than the
request. The Matchmaker computes the logical implication among constraints by
using polynomial θ-subsumption checking for Horn clauses. Matching is achieved
by performing conjunctive pair-wise comparisons for the constraints.

The constraints for inputs and outputs are defined for the request (RI and
RO) and for each registered service (AI and AO). The constraints for inputs RI

is compared with AI , and a match is determined if AI subsumes RI , i.e.

match(RI , AI) ⇐ (∀j,∃i : (i ∈ RI) ∧ (j ∈ AI) ∧ subs(j, i)) ∨RI = ∅

where subs(j, i) is true when j subsumes i. The constraints for outputs match
when all the elements in RO subsumes elements in AO, i.e.

match(RO, AO) ⇐ ∀i,∃j : (i ∈ RO) ∧ (j ∈ AO) ∧ subs(i, j)

3 Matchmaker Deployed with UDDI

At the design phase of this development, we have collected VOCs (Voice Of
the Customer) from system integrators and user companies of web services. The

Public Deployment of Semantic Service Matchmaker 757

Fig. 4. UDDI and Matchmaker

first request from both of the integrators and the users was the reduction of
the cost of development and administration. Then, the second requirement was
interoperability with the current systems running or selling in their companies.
The third ones were a track record and security in general. As a consequence,
we have decided to obey the standards as much as possible. This means not
only the improvement of the interoperability, but also the reduction of the cost
because it will give users and developers freedom of choice at the selection of the
private UDDI registry product and the client tools. Besides, we hope this public
deployment contributes to the track record.

The architecture of the Matchmaker with UDDI is shown in Fig. 4. It strives
to be compliant with the current standards of web services such as SOAP and
WSDL. Also, the Matchmaker API is equivalent to UDDI API to facilitate
the users seamless connection. Furthermore, the format of the results returned
adopts the same format of the results returned by UDDI. So that we hope the
Matchmaker can be added as a part of the common e-Business platform.

4 Supporting Tools

The above VOCs also showed the most important thing in a service search
engine was ease of use and search speed. Although using the semantics surely
has higher value on the service capability matching than the keyword search, it
needs much expense in time and effort. Therefore, we introduce our client tools,
which support to lower the threshold of use of semantics.

758 T. Kawamura et al.

Fig. 5. Matchmaker Client

4.1 Registration of Business Service

Registration of Business Service (UDDI terminology) are shown in the left side of
Fig. 5 (field names are corresponding to UDDI Data Structure). Firstly, the user
can import a WSDL file, which may have been generated automatically from
Java source code to Matchmaker Client. The Client will automatically complete
some of the fields (gray ones in the figure) from the information in the WSDL.

Then, the user can annotate the input and output with the ontology us-
ing Ontology Viewer(Fig. 6), which parses ontology files written by RDFS,
DAML+OIL, or OWL, then show them as graphical trees. The only necessary
to annotate each parameter is to click a node in the trees. Also, the user can
add constraints on each parameter using Rule Editor described later.

Next, the user can register the service to the Matchmaker and the UDDI as a
consequence. The semantic service description, WSSP is automatically generated
by the Client, and uploaded to the Matchmaker. Upon receiving the registration,
the Matchmaker extracts the semantic annotation, and stores it after loading all
the ontologies it refers to. Then, the Matchmaker registers the service to the
UDDI.

The user may decide not to annotate any parameter with the ontology or
constraints. If this is the case, the Client registers the service just to the UDDI.
Note that the Matchmaker has the same API as the UDDI, so the Client can be
used as a UDDI client for any UDDI registry.

Public Deployment of Semantic Service Matchmaker 759

Fig. 6. Ontology Viewer

4.2 Search of Business Service

Search of Business Service are shown in the right side of Fig. 5. In addition
to the ordinary UDDI search conditions like keywords for service names, the
Client allow to specify the capability of the desired service, such as the number
of inputs and outputs, the meaning of each parameter, that is, the ontology,
and the constraints if necessary. Then, the Client sends a search request to the
Matchmaker.

Upon receiving the request, the Matchmaker searches for services that is
similar enough to the requested from the registered services. After making the
matching results, the Matchmaker retrieves the detailed information of those
results from the UDDI, and return them to the Client.

The user may also decide to restrict his search to the UDDI keyword search.
If so, the Client searches just in the UDDI.

4.3 Rule Editor

Writing rules precisely is a difficult and wordy task even for logic experts. To
address this problem, we developed Rule Editor (Fig. 7) which allows anyone
to easily write facts and rules, as if they were writing natural sentences. The
user can just select any predicate for fact or rule as constraint on a parameter.
The parameter corresponds to variable in the fact or rule. After creating the
constraints, they appear in “Rule” field the Client, and RDF-RuleML files will
be automatically generated.

760 T. Kawamura et al.

Fig. 7. Rule Editor

5 Evaluation

We have publicly deployed our Matchmaker to the official NTT UDDI registry
for half a year since September 2003. In this section, we evaluate the Matchmaker
in terms of performance with UDDI and functionality with other matchmakers.

5.1 Performance Comparison

In order to compare the performance of UDDI with UDDI with the Matchmaker,
firstly we made a number of datasets and measure the average search time of
each filter for a query, which always returns 10% of each dataset as matched. The
dataset has a certain number of registered services, each of which has 3 input
parameters and 2 outputs parameters, and each parameter has 1 constraint rule.
Further, we used one of the largest ontology Cyc[10], and randomly put a node
in the Cyc to each input and output parameter. The result is shown in Fig. 8

Although some items are difficult to see in the figure, all the search time
are almost linearly increasing along with the size of the dataset even in UDDI.
However, the rate of increase for Type and Constraint filter is relatively higher
than UDDI. This was caused by the fact that UDDI is running at the very
high-performance server machine, although the Matchmaker is sitting at just a
common PC server with RedHat 7.3 on Intel Xeon 2.7GHz, and the keyword
search costs much lower than our logical computation. But we can say at least
that our Matchmaker succeeded to avoid the exponential increase of the logical
computation time.

Secondarily, we constructed a search model for the users and measured the
total search time for a query. In this model four filters are sequentially connected,

Public Deployment of Semantic Service Matchmaker 761

Fig. 8. Search time at each filter

Fig. 9. A search model

and every filter outputs 10% of the services inputted from the previous one.
Figure 9 illustrates this model, and the search time for each and in total.

UDDI currently stores at most 10,000 services in its database, so that it’s
enough realistic to have 10,000 services as the initial dataset. Further, we anno-
tated each input and output parameter by the Cyc. We believe this setting is
one of the largest cases in scale which can be taken at the present. Therefore,
the search time, 5 seconds in total proves that our Matchmaker can be deployed
in the practical business use.

We also note that the above search does not include the loading time of any
new ontology, because as a way of performance improvement all the ontology
that the Matchmaker encounters at the service registration will be immediately
loaded and parsed in a fast-accessible internal form. Thus we assumed that in
most cases the ontologies are already loaded before the service search. Therefore,

762 T. Kawamura et al.

Fig. 10. Loading time

Fig. 11. Functional comparison

we measured the ontology loading time separately. Figure 10 shows the loading
time for some of the well-known ontologies.

5.2 Functional Comparison

We picked up the following matchmakers from academic and industrial activities,
and summarised the comparison in Fig. 11 and the following list, in which criteria
were syntactical matching like keyword search, semantic matching like ontology,
and compliance with the standards for web services and semantic web.

– UDDI, OASIS
• A standard of Web Services registry, linked to WSDL and SOAP.
• Search functionality is limited to the keyword search.

– InfoSleuth, MCC[11]
• Based on constraint-based reasoning, a broker of information gathering

agents.
• The original service capability and constraint description, LDL++.
• No explicit relationship to Web Services standards.

– Semantic Web based matchmaking prototype, HP Lab.[12]

Public Deployment of Semantic Service Matchmaker 763

Fig. 12. Target users

• Based on ontological subsumption and rules similar to ours.
• The original service description and rule language.
• No integration to UDDI.

– WebSphere Matchmaking Environment, IBM Zurich Research Lab.[13]
• A add-on for IBM Web application server WebSphere.
• Search conditions can be written in a script, which is sent to the match-

maker.
• Semantics seems to be not considered.

– Ian Horrocks et al., University of Manchester[14]
• Based on highly functional DL (Description Logics) reasoner Racer with

DAML-S.
• Semantic matchmaker without any IR techniques like TF/IDF and pre-

filtering for the reduction of computation time.
• No compliance to Web Service standards.

6 Discussion

This section shows user requirements for the Matchmaker explicitly obtained
by questionnaires at the download of the Matchmaker Client, and implicitly
recognised by our observation of users’ search behaviour.

6.1 Explicit Requirements

The targets of this questionnaire are users who intentionally accessed our Match-
maker web page (www.agent-net.com) and downloaded the Client. That is, the
targets are people keeping their eyes on the trend of web services. Figure 12 shows
the breakdown of the targets, which are selected as valid votes. We got future
improvements by adapting DFACE (Define–Focus–Analyze–Create–Evaluate)
methodology, which is a version of “Design for Six Sigma”[15] developed by
Stanford University, to user requirements described in the questionnaire. Fig-
ure 13 shows Cost–Worth analysis for the conceivable improvements, in which

764 T. Kawamura et al.

Fig. 13. Cost-Worth analysis

you will see for example, compliance to web services standards is so much im-
portant, and automatic service invocation should be discussed after the service
search. We couldn’t describe the process to get this analysis in detail due to the
page limitation, but basically it was calculated by proportional distribution from
user requirements considering CSM (Customer Satisfaction Measurement) and
workload.

6.2 Implicit Requirements

The following lists are part of users’ indirect suggestions gotten from the log files
which record every action in the Matchmaker.

– IO Type filter: we found that some amount of users specify the ontology
only to an output. This means that search conditions for the human users
are somewhat vague, and they are willing to manually choose the most de-
sirable one from the results. This behaviour inevitably reduces the accuracy
of logical matching due to the lack of semantic information for the request.
Therefore, matchmakers relying only on the ontology and rules would need
to incorporate other aspects like conventional IR techniques to be practi-
cally deployable. However, for automatic service search and composition by
machines in future ambiguous requests are not allowed, so logical matching
has more importance.

– IO Type filter: some users tend to give just a keyword as the ontology. It
seems that they are thinking the ontology can be automatically specified
from an arbitrary word such that a specific category is determined by any
keyword in Yahoo!. Therefore, pre-process to reason about a specific ontology
node from a keyword would be useful for them.

Public Deployment of Semantic Service Matchmaker 765

– Constraint filter: it seems that the most familiar predicates for the users
are numerical ones like equals, greaterThan, lessThan, etc. This is because
the meanings and effects of those rules are easily imaginable for the users.
On the other hand, putting facts and rules with generic predicate seems to
be difficult enough for the users. This means that our Rule Editor which
now automatically generates the rules from the user’s simple selection of
predicates need to be improved to make the user understand what happens
when you choose it. The same things would be said to precondition and effect
in future.

– Text filter: most of registered services do not have a certain length of com-
ments. Therefore, adopting IR techniques only to comment parts has some
limitation. So we are trying to take other parts of service description like
parameter names and related web pages of the service provider referring to
syntactic approaches of service search like Wang et al.[16].

– Namespace filter: since this filter is the first one, it compares a request to all
the registered services. To reduce the burden of this filter, and to increase
the accuracy even in the above-mentioned case that the user specifies the
ontology only to an output, we are planning to take Category field for Busi-
ness and Services in UDDI Data Structure specified by NAICS, UNSPSC,
etc. into account before this filter. In case that the number of results is less
than the user wants, the services in other categories can be checked by the
filters. This also means more tightly integration to UDDI.

– In general: as you see Link Popularity has one of the biggest roles in Google,
we will have to consider the heuristics even for the logical service match-
ing. We are now examining some of the ideas on the analogy of web search
engines. We hope to show their effectiveness and efficiency in near future.

7 Conclusion

In this paper, we evaluated the deployment of the semantic service matchmaker
to the UDDI in public, and discussed scalability in performance, feasibility in
functionality, and future works from users’ explicit and implicit requirements.
According to the future works, we will make improvement on the Matchmaker
and client tools, and keep our deployment to get further feedbacks near future.

References

1. Universal Description, Discovery and Integration, http://www.uddi.org/.
2. M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, “Semantic Matching of Web

Services Capabilities”, Proceedings of First International Semantic Web Confer-
ence (ISWC 2002), IEEE, pp. 333-347, 2002.

3. T. Kawamura, J. D. Blasio, T. Hasegawa, M. Paolucci, K. Sycara, “Preliminary
Report of Public Experiment of Semantic Service Matchmaker with UDDI Busi-
ness Registry”, Proceedings of First International Conference on Service Oriented
Computing (ICSOC 2003), pp. 208-224, 2003.

766 T. Kawamura et al.

4. Resource Description Framework, http://www.w3.org/RDF/.
5. DAML Language, http://www.daml.org/language/.
6. Web-Ontology Working Group, http://www.w3.org/2001/sw/WebOnt/.
7. The Rule Markup Initiative, http://www.dfki.uni-kl.de/ruleml/.
8. DAML Services, http://www.daml.org/services/.
9. K. Sycara, S. Widoff, M. Klusch, J. Lu, “LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace”. In Autonomous Agents and Multi-
Agent Systems, Vol.5, pp.173-203, 2002.

10. Cyc, http://www.cyc.com/2002/04/08/cyc.daml.
11. M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh, “Active

information gathering in infosleuth”, International Journal of Cooperative Infor-
mation Systems, pp. 3-28, 2000.

12. J. G. Castillo, D. Trastour, and C. Bartolini, “Description Logics for Matchmaking
of Services”, Proceedings of Workshop on Application of Description Logics, 2001.

13. WebSphere Matchmaking Environment, http://www.zurich.ibm.com/wme/.
14. L. Li, I. Horrocks, “A software framework for matchmaking based on semantic web

technology”, Proceedings of the Twelfth International World Wide Web Conference
(WWW 2003), pp. 331-339, 2003.

15. Six Sigma Academy, http://www.6-sigma.com/.
16. Y. Wang, E. Stroulia, “Semantic Structure Matching for Assessing Web-Service

Similarity”, Proceedings of First International Conference on Service Oriented
Computing (ICSOC 2003), pp. 194-207, 2003.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 767–781, 2004.

SemanticOrganizer: A Customizable Semantic
Repository for Distributed NASA Project Teams

Richard M. Keller1, Daniel C. Berrios2, Robert E. Carvalho1, David R. Hall3,
Stephen J. Rich4, Ian B. Sturken3, Keith J. Swanson1, and Shawn R. Wolfe1

1 Computational Sciences Division, NASA Ames Research Center, Moffett Field, CA
{rkeller, rcarvalho, kswanson, swolfe}@arc.nasa.gov

2 University of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA
dberrios@arc.nasa.gov

3 QSS Group, Inc. NASA Ames Research Center, Moffett Field, CA
{dhall, isturken}@arc.nasa.gov

4 SAIC, NASA Ames Research Center, Moffett Field, CA
srich@arc.nasa.gov

Abstract. SemanticOrganizer is a collaborative knowledge management system
designed to support distributed NASA projects, including multidisciplinary
teams of scientists, engineers, and accident investigators. The system provides a
customizable, semantically structured information repository that stores work
products relevant to multiple projects of differing types. SemanticOrganizer is
one of the earliest and largest semantic web applications deployed at NASA to
date, and has been used in varying contexts ranging from the investigation of
Space Shuttle Columbia’s accident to the search for life on other planets.
Although the underlying repository employs a single unified ontology, access
control and ontology customization mechanisms make the repository contents
appear different for each project team. This paper describes SemanticOrganizer,
its customization facilities, and a sampling of its applications. The paper also
summarizes some key lessons learned from building and fielding a successful
semantic web application across a wide-ranging set of domains with disparate
users.

1 Introduction

Over the past five years, the semantic web community has been busily designing
languages, developing theories, and defining standards in the spirit of the vision set
forth by Berners-Lee [1]. There is no lack of publications documenting progress in
this new area of research. However, practical semantic web applications in routine
daily use are still uncommon. We have developed and deployed a semantic web
application at NASA with over 500 users accessing a web of 45,000 information
nodes connected by over 150,000 links. The SemanticOrganizer system [2] has been
used in diverse contexts within NASA ranging from support for the Shuttle Columbia
accident investigation to the search for life on other planets; from the execution of
Mars mission simulations to the analysis of aviation safety and study of malarial
disease in Kenya. This paper describes our system and some of the practical
challenges of building and fielding a successful semantic web application across a

768 R.M. Keller et al.

wide-ranging set of domains. One of the key lessons we learned in building a
successful application for NASA is to understand the limits of shared ontologies and
the importance of tuning terminology and semantics for specific groups of users
performing specific tasks. We describe the methods, compromises, and workarounds
we developed to enable maximal sharing of our ontology structure across diverse
teams of users.

SemanticOrganizer is a collaborative knowledge management application designed
to support distributed project teams of NASA scientists and engineers. Knowledge
management systems can play an important role by enabling project teams to
communicate and share information more effectively. Toward this goal,
SemanticOrganizer provides a semantically-structured information repository that
serves as a common access point for all work products related to an ongoing project.
With a web interface, users can upload repository documents, data, images, and other
relevant information stored in a wide variety of file formats (image, video, audio,
document, spreadsheet, project management, binary, etc.). The repository stores not
only files, but also metadata describing domain concepts that provide context for the
work products. Hardware or software systems that generate these project data
products can access the repository via an XML-based API.

Although there are many document management tools on the market to support
basic information-sharing needs, NASA science and engineering teams have some
specialized requirements that justify more specialized solutions. Examples of such
teams include scientific research teams, accident investigation teams, space
exploration teams, engineering design teams, and safety investigation teams, among
others. Some of their distinctive requirements include:
• sharing of heterogeneous technical information: teams must exchange various

types of specialized scientific and technical information in differing formats;
• detailed descriptive metadata: teams must use a precise technical terminology to

document aspects of information provenance, quality, and collection methodology;
• multi-dimensional correlation and dependency tracking: teams need to interrelate

and explore technical information along a variety of axes simultaneously and to
make connections to new information rapidly;

• evidential reasoning: teams must be able to store hypotheses along with supporting
and refuting facts, and methodically analyze causal relationships;

• experimentation: teams must test hypotheses by collecting systematic
measurements generated by specialized scientific instruments and sensors;

• security and access control: information being collected and analyzed may be
highly proprietary, competitively sensitive, and/or legally restricted; and

• historical record: project teams must document their work process and products –
including both successes and failures – for subsequent scrutiny (e.g., to allow
follow-on teams to validate, replicate, or extend the work; to capture lessons
learned; or to satisfy legal requirements).

Aside from satisfying the above requirements, we faced several other major technical
challenges in building the SemanticOrganizer repository system. One of the most
difficult challenges was to make the information easily and intuitively accessible to
members of different collaborating teams, because each team employs different terms,
relationships, and models to mentally organize their work products. Rather than
organizing information using generic indexing schemes and organizational models,
we felt it was important to employ terms, concepts, and natural distinctions that make

SemanticOrganizer: A Customizable Semantic Repository 769

sense in users’ own work contexts. A second and related challenge was to develop a
single application that could be rapidly customized to meet the needs of many
different types of teams simultaneously. Many of the candidate user teams consisted
of just two or three people, so they could not afford the overhead of running their own
server installation or handling system administration. Thus, the system had to be
centrally deployed while still being customized for each teams’ distinctive work
context. A third key challenge involved knowledge acquisition and the automatic
ingestion of information. With the large volume of information generated during
NASA science and engineering projects and the complexity of the semantic
interrelationships among information, users cannot be expected to maintain the
repository without some machine assistance. A final challenge is providing rapid,
precise access to repository information despite the large volume.

We found that a semantic web framework provided a sound basis for our system.
Storing information in a networked node and link structure, rather than a conventional
hierarchical structure, addressed the need to connect information along multiple
dimensions to facilitate rapid access. Using formal ontologies provided a
customizable vocabulary and a structured mechanism for defining heterogeneous
types of information along with their associated metadata and permissible
relationships to other information. We employed an inference system to assist with
acquiring and maintaining repository knowledge automatically. However, we also
found it necessary to add a host of practical capabilities on top of the basic semantic
web framework: access control mechanisms, authentication and security, ontology
renaming and aliasing schemes, effective interfaces for accessing semantically-
structured information, and APIs to enable ingestion of agent-delivered information.

The balance of the paper is organized as follows. Section 2 describes the basic
SemanticOrganizer system in more detail. Section 3 describes the mechanisms we
have developed to differentially customize the system for multiple groups of
simultaneous users. Section 4 highlights some NASA applications developed using
SemanticOrganizer and describes extra functionality implemented to support these
applications. Section 5 summarizes lessons learned from our experience building a
practical semantic web application. Section 6 discusses related work, and Section 7
presents future directions.

2 The SemanticOrganizer System

SemanticOrganizer consists of a network-structured semantic hypermedia repository
[3] of typed information items. Each repository item represents something relevant to
a project team (e.g., a specific person, place, hypothesis, document, physical sample,
subsystem, meeting, event, etc.). An item includes a set of descriptive metadata
properties and optionally, an attached file containing an image, dataset, document, or
other relevant electronic product. The items are extensively cross-linked via
semantically labeled relations to permit easy access to interrelated pieces of
information. For example, Figure 1 illustrates a small portion of a semantic repository
that was developed for a NASA accident investigation team. The item in the center of
the diagram represents a faulty rotor assembly system that caused an accident in a
wind tunnel test. The links between items indicate that the rotor assembly was
operated by a person, John Smith, who is being investigated as part of the CRW

770 R.M. Keller et al.

training record

document:

investigation:

site:

cause:

micro image:

system:

person:

document:

document:

John Smith

CRW

rotor assembly

rotor test log

Wind Tunnel

metallurgy report

rotor fatigue

SEM image 456

equipment:

SEM

H
A

S
-C

R
E
D

E
N

TI
A

L

MANIFESTED-IN

FOUND-AT

SITE-FOR

OPERATED-BY

UNDER-INVESTIGATION-BY

D
O

C
U
M

E
N

TE
D

-B
Y

PICTURED-INHAS-TEST-LOG

P
R
O

D
U
C

E
D

-B
Y

Fig. 1. Portion of semantic repository network for CRW accident investigation

Fig. 2. Representative classes from SemanticOrganizer’s master ontology. The entire ontology
has over 350 classes and reaches a maximum depth of six.

investigation. Rotor fatigue is hypothesized as a possible accident cause, manifesting
itself in the failed rotor assembly. The fatigue is documented by evidence consisting
of a metallurgy report and a scanning electron microscope (SEM) image. These types
of items and relationships are natural for this domain, whereas others would be
required to support a different application area.

A master ontology (Figure 2) describes all the different types (i.e., classes) of items
for SemanticOrganizer applications, and defines properties of those items, as well as
links that can be used to express relationships between the items. A link (i.e., a
relation) is defined by specifying its name and its domain and range classes, along
with the name of its reverse link. (All links are bidirectional.) Property and link
inheritance is supported. We began development of SemanticOrganizer in 1999, prior
to the standardization of semantic web languages; as a result, the system was built
using a custom-developed language. This language has the representational power of
RDFS [4], except that it does not permit the subclassing of relationships.

SemanticOrganizer was built using Java and its ontology and associated instances
are stored in a MySQL database. The system includes an inference component that is
built on top of Jess [5]. Explicit rules can be defined that create or modify items/links
in the repository or establish item property values. The rules can chain together to
perform inference, utilizing subsumption relationships defined in the ontology.

SemanticOrganizer: A Customizable Semantic Repository 771

Email Ingestor
(email & attachments)

WordNet
thesaurus

Java
servlets

Microsoft Office
Macro Integration

Semantic
Repository

(items, links,
attribute values)

Inference
Engine

MySQL
Database

Jess

Ontology
(item types, link types,

attributes, rules)

Interface
Layer

Representation

& Reasoning

Layer

Implementation

Layer

Node Browser Interface Programmatic/Agent
Interface
Programmatic/Agent
Interface

file system datafiles
documents

images

Apache-
Tomcat

Semantic Annotation

Structure Editors/
Viewers

Structure Editors/
Viewers

Fig. 3. SemanticOrganizer’s architectural components

SemanticOrganizer includes an email distribution and archiving facility that allows
teams to create ad-hoc email lists. Email sent to a SemanticOrganizer distribution list
is forwarded to recipients and archived as an email message item within the team’s
repository. Attachments are preserved along with the message body, and instances
representing the sender and recipients are automatically linked to the message. A
more experimental system component under development is the Semantic Annotator,
which parses text documents, such as email messages, and links them to relevant
items in the repository. The Semantic Annotator employs WordNet [6], as well as
other sources of information, to select relevant items for linking.

SemanticOrganizer’s various components are depicted in Figure 3. For conceptual
clarity, in the diagram we distinguish between the ontology, which stores the class
and link types, and the semantic repository, which stores the interlinked item
instances. In practice, these components are implemented using a single
representational mechanism that stores both classes and instances. Although the
repository is stored on a single server, access control and ontology customization
mechanisms make the repository format and content appear different for each group
of users. In essence, SemanticOrganizer is a set of virtual repositories, each built
upon the same representational framework and storage mechanisms, yet each custom-
designed to suit the needs of its specific users. This is described further in Section 3.

SemanticOrganizer users create and interlink items using a servlet-driven Web
interface that enables them to navigate through the semantic network repository,
upload and view files, enter metadata, and search for specific items (see Figure 4).
The interface restricts the types of links that users can create between items based on
their item types and the domain/range specifications defined in the ontology. The core
interface uses only HTML and basic JavaScript to maximize compatibility with
standard browsers. Aside from the HTML-based Web interface, the system also
includes some specialized applets for visualizing and editing specific interlinked
structures of items. (A more general graphical network visualization component is
currently under development.) SemanticOrganizer features an XML-based API that
enables external agents to access the repository and manipulate its contents. In
addition, we have developed a set of Visual Basic macros that provide an interface

772 R.M. Keller et al.

Fig. 4. SemanticOrganizer’s Web interface displaying a scientific ‘field trip’ item at right. Note
individual and group permissions for the item. Links to related items are displayed at left.

between Microsoft® Office documents and SemanticOrganizer using the Office
application’s menu bar.

Security and authentication are handled by HTTPS encryption and individual user
logins. No access is permitted to users without an assigned login as part of one or
more established project teams. Once inside the repository, user access to items is
controlled by a permission management system. This system limits users’ access to a
defined subnet within the overall information space that contains information relevant
to their team. As part of this access control system, each instance in the repository has
a set of read and write permissions recording the individual users or groups (i.e., sets
of users) that can view and modify the instance.

A set of successively more sophisticated search techniques is available to
SemanticOrganizer users. A basic search allows users to locate items by entering a
text string and searching for matching items. The user can specify where the match
must occur: in an item name, in a property value for an item, or in the text of a
document attached to an item. In addition, the user can limit the search to one or more
item types. An intermediate search option allows the user to specify property value
matching requirements involving a conjunction of constraints on numeric fields,
enumerated fields, and text fields. Finally, a sophisticated semantic search is available
to match patterns of multiply interlinked items with property value constraints [7].

Links to
Related

Items

create new
item instance

modify itemicon identifies
item type

search for
items

Right side
displays
metadata
for the
current
repository
item being
inspected

Left side uses
semantic links

to display all
information

related to the
repository

item shown on
the right

semantic
links

related
items

(click to
navigate)

Current Item

SemanticOrganizer: A Customizable Semantic Repository 773

3 Application Customization Mechanisms

SemanticOrganizer is specifically designed to support multiple deployments across
different types of distributed project teams. Knowledge modelers work with each new
group of users to understand their unique requirements. The modelers add or reuse
ontology classes to form a custom application suitable for the team. To encourage
reuse of class, property, and link definitions, the system contains a single unified
ontology that addresses the needs of users involved in more than 25 different project
teams. Each of these teams uses only a subset of the classes defined in the ontology.
Ontology classes are assigned to users through a process illustrated in Figure 5.

Fig. 5. Mapping ontology classes to users via bundles, application modules, and groups

At the lowest levels, classes are grouped into bundles, where each bundle defines a
set of classes relevant to a specific task function. For example, all of the classes
relevant to growing microbial cultures (e.g., physical samples, microscopes, lab
cultures, culturing media) might constitute one bundle; all classes relevant to project
management (e.g., project plans, project documents, funding sources, proposals,
meetings) might be another bundle. Aside from grouping related classes, bundles
provide a mechanism for aliasing classes to control their interface presentation to
users. For example, the ontology includes a class called ‘field site’. A field site is
simply a location away from the normal place of business where investigation
activities are conducted. Although there may be a general consensus about this
definition across different application teams, the terminology used to describe the
concept may differ. For example, whereas geologists may be perfectly comfortable
with the term ‘field site’, accident investigators may prefer the term ‘accident site’.
Although this distinction may seem trivial, employing appropriate terminology is
essential to user acceptance. The bundling mechanism allows domain modelers to
alias classes with a new name. (Note that renaming of properties is not supported, at
present, but would also prove useful.)

User

Group

Application
Module

Bundle

Class

culture
prep

fault
trees

project
mgmt

microscopelab
culture

proposal scheduleobservation fault action
item

microbiology
accident

investigation

Mars Exobiology
Team

Columbia Accident
Review Board

CONTOUR
Spacecraft Loss

. . .

. . .

. . .

774 R.M. Keller et al.

At the next level up in Figure 5, sets of bundles are grouped together as application
modules. These modules contain all the bundles that correspond to relevant tasks for a
given application. For example, there might be a microbiology investigation team
growing microbial cultures as part of a scientific research project. In this case, the
application builder would simply define a module that includes the microbial culture
bundle and the project management bundle. At the top levels of Figure 5, modules are
assigned to groups of users, and finally through these groups, individual users gain
access to the appropriate classes for their application. A user can be assigned more
than one module if he or she is involved in more than one group. For example, a
microbiologist involved in the Mars Exobiology team may also be on the Columbia
Accident Review Board as a scientific consultant. Note that this discussion explicitly
covers assignment of ontology classes – not ontology relations – to users. However,
the assignment of relations can be considered a byproduct of this process. A specific
relation is available to a user if and only if its domain and range classes are in bundles
assigned to the user via an application module.

4 Applications

4.1 Background

With over 500 registered users and over a half-million RDF-style triples in its
repository, SemanticOrganizer is one of the largest semantic technology applications
that has been fielded at NASA to date. The system was first deployed in 2001 to
support a small group of collaborating research scientists. As of April 2004, over 25
different collaborating groups – ranging in size from 2 people to over 100 – have used
SemanticOrganizer in conjunction with their projects. System users are drawn from
more than 50 different organizations throughout NASA, industry, and academia. The
overall ontology contains over 350 classes and over 1000 relationships. Over 14,000
files have been uploaded into the system and more than 12,000 email messages have
been distributed and archived.

SemanticOrganizer has found application within two primary user communities:
the NASA scientific community (where the system is known as ScienceOrganizer),
and the NASA safety and accident investigation community (where the system is
known as InvestigationOrganizer or IO). In the following sections, we describe
prototypical applications within these distinct SemanticOrganizer user communities.

4.2 ScienceOrganizer

ScienceOrganizer was originally developed to address the information management
needs of distributed NASA science teams. These teams need to organize and maintain
a body of information accumulated through scientific fieldwork, laboratory
experimentation, and data analysis. The types of information stored by scientific
teams are diverse, and include scientific measurements, publication manuscripts,
datasets, field site descriptions and photos, field sample records, electron microscope
images, genetic sequences, equipment rosters, research proposals, etc. Various

SemanticOrganizer: A Customizable Semantic Repository 775

relationships among these types of information are represented within
ScienceOrganizer, and they are used to link the information together within the
repository. For example, a field sample can be: collected-at a field site; collected-by a
person; analyzed-by an instrument; imaged-under a microscope; etc. We have
selected two ScienceOrganizer applications to highlight in this section: EMERG and
Mobile Agents.

The Early Microbial Ecosystems Research Group (EMERG) was an early adopter
of ScienceOrganizer, and provided many of the requirements that drove its
development. EMERG is an interdisciplinary team of over 35 biologists, chemists,
and geologists, including both U.S. and international participants across eight
institutions. Their goal is to understand extreme environments that sustain life on
earth and help characterize environments suitable to life beyond the planet. EMERG
focuses on understanding the evolution of microbial communities functioning in algae
mats located in high salinity or thermally extreme environments. As part of their
research, they conduct field trips and collect mat samples in various remote locations,
perform field analysis of the samples, and ship the results back to laboratories at their
home institutions. There, they perform experiments on the samples, grow cultures of
the organisms in the mats, analyze data, and publish the results.

ScienceOrganizer was used across EMERG to store and interlink information
products created at each stage of their research. This enabled the distributed team to
work together and share information remotely. As a side benefit, the repository served
as an organizational memory [8], retaining a record of previous work that could be
useful when planning subsequent scientific activities. As part of the collaboration
with EMERG, we developed a capability within ScienceOrganizer that allows
scientists to set up and initiate automated laboratory experiments on microbial mat
samples. The scientist defines an experiment within ScienceOrganizer by specifying
its starting time and providing details of the experimental parameters to be used. A
software agent is responsible for controlling internet-accessible laboratory hardware
and initiating the experiment at the specified time. When the experiment is complete,
the agent deposits experimental results back within ScienceOrganizer so they can be
viewed by the scientist. This capability allows remote users to initiate experiments
and view results from any location using ScienceOrganizer.

The second project, Mobile Agents [9], is a space mission simulation that uses
mobile software agents to develop an understanding of how humans and robots will
collaborate to accomplish tasks on the surface of other planets or moons. As part of
the mission simulation, humans (acting as astronauts) and robots are deployed to a
remote desert location, where they conduct a mock surface mission. In this context,
ScienceOrganizer is used as a repository for information products generated during
the mission, including photos, measurements, and voice notes, which are uploaded by
autonomous software agents using the system’s XML-based API. ScienceOrganizer
also serves as a two-way communication medium between the mission team and a
second team that simulates a set of earth-bound scientists. The science team views the
contents of ScienceOrganizer to analyze the field data uploaded by the mission team.
In response, the science team can suggest activities to the mission team by uploading
recommended plans into ScienceOrganizer for execution by the mission team.

776 R.M. Keller et al.

4.3 InvestigationOrganizer

When an accident involving NASA personnel or equipment occurs, NASA policy
requires the creation of an accident investigation board to determine the cause(s) of
the mishap and formulate recommendations to prevent future accidents. Information
management, correlation, and analysis are integral activities performed by an accident
investigation board. Their primary tasks include the following: collecting and
managing evidence; performing different types of analyses (e.g., chemical, structural,
forensic) that generate derivative evidence; connecting the evidence together to
support or refute accident hypotheses; resolving accident causal factors; and making
recommendations. The heterogeneous nature of the evidence in NASA accidents
coupled with the complex nature of the relationships among evidence and hypotheses
make the use of a system like SemanticOrganizer quite natural in this setting. NASA
accident investigation teams typically are composed of engineers, scientists, and
safety personnel from NASA’s ten field centers geographically distributed across the
country. Each team is composed of specialists with expertise pertinent to the accident.
Distributed information sharing is an essential capability for accident investigation
teams. Although the team may start out colocated, evidence gathering and analysis
often take team members to different sites. With lengthy investigations, the logistics
of centralizing personnel and information at one location are unworkable. Teams have
relied on standard information-sharing technology in past investigations: email,
phone, fax, and mail courier. From many perspectives – security, timeliness, and
persistence – these approaches are largely inadequate.

InvestigationOrganizer was developed in partnership with NASA engineers and
mission assurance personnel to support the work of distributed NASA mishap
investigation teams. The types of data stored by these teams include a wide variety of
information: descriptions and photos of physical evidence; schematics and
descriptions of the failed system; witness interviews; design and operational readiness
documents; engineering telemetry; operator logs; meeting notes; training records;
hypothesized contributory accident factors; supporting and refuting evidence for those
factors; etc. Various relationships among these types of information are represented
within InvestigationOrganizer and serve to link information (e.g., as in Figure 1). For
instance, a design document can: describe a physical system; be authored-by a
contractor employee; refute a hypothesized accident factor; be requested-from a
contracting organization; etc.

To date, InvestigationOrganizer has been used with four NASA mishap
investigations ranging in scope from minor localized investigations to major
distributed investigations. The major investigations included the loss of the Space
Shuttle Columbia and the loss of the CONTOUR unmanned spacecraft, which broke
apart while escaping earth orbit.

Within the Columbia and CONTOUR investigations, InvestigationOrganizer was
used to track information pertaining to almost every aspect of the investigation. The
system also supported analysis of the data in terms of fault models and temporal event
models that were built to understand the progression and causes of the accidents.
Mishap investigators in these cases went beyond the system’s basic capabilities to
support evidence collection and correlation; they used InvestigationOrganizer to
explicitly record and share investigators' reasoning processes as the investigations
proceeded. For Columbia, an added benefit to recording these processes was a
preservation of the chain of evidence from hypotheses and theories to findings and

SemanticOrganizer: A Customizable Semantic Repository 777

recommendations. This chain of evidence is currently being used in NASA's efforts to
return the Space Shuttles to flight, allowing engineers to trace the reasoning behind
the conclusions reached by the investigation board.

5 Lessons Learned

Our experience deploying SemanticOrganizer across numerous domains, and working
with a very diverse set of users, has given us a glimpse into the promise and the perils
associated with semantic repository applications. In this section we discuss some of
our key lessons learned.

5.1 Network-Structured Storage Models Present Challenges to Users

Despite the ubiquity of the Web, we found that people are not initially comfortable
using network structures for storing and retrieving information. Most information
repositories use the familiar hierarchical structure of folders and subfolders to
organize files. While network structures have advantages, the notion of connecting
information using multiple, non-hierarchical relationships was very disorienting to
some users. Even with training, they would either fail to comprehend the network
model or reject it as overly complex and unnecessary for their needs. In response to
users’ desire to organize information hierarchically, we introduced nested folder
structures into our repository with limited success. Folders were typed and linked to
their contents via a ‘contains’ relation. Users could create folders of people, photos,
biological samples, etc. However, this model was unfamiliar to users expecting to
place a set of mixed items in a folder without constraint. Our attempt to graft
hierarchical structures onto networks left much room for improvement and we
continue to seek better, more intuitive methods of combining these two models.

5.2 Need for Both ‘Loose’ and ‘Tight’ Semantics

People have widely differing styles regarding the manner in which they wish to
organize information. At one end of the spectrum are the meticulous organizers who
strove to understand and use the full power of the semantic representations in our
system. They would carefully weave the semantic network around their repository
content and suggest precise revisions and extensions to the global ontology. They
appreciated the increased descriptive power of a “tight” (i.e., more precise) semantics
and didn’t mind taking the additional time required to annotate and link the new
material appropriately. At the other end of the spectrum are the casual organizers –
users who simply wanted to add their document to the repository as quickly as
possible. If their new material didn't align easily with the existing semantics, they
became frustrated. They wanted “loose” semantics that would minimally cover their
situation so they could quickly add and link their material, yet feel comfortable it was
at least reasonably correct. SemanticOrganizer was designed with the meticulous
organizers in mind and we had to relax our notion of what was semantically correct to
accommodate the casual organizers. However, we found that in our attempt to craft

778 R.M. Keller et al.

compromises and simultaneously accommodate both styles of use, we sometimes
failed to serve either group properly.

5.3 Principled Ontology Evolution Is Difficult to Sustain

Because we often had a half dozen projects in active development, ontology sharing
and evolution became much harder than expected. Our knowledge modelers
understood the importance of reuse and initially, there was sufficient momentum to
evolve common ontology components to meet the changing needs of different
projects. However, as workload and schedule pressures increased, it became
increasingly difficult to coordinate discussions and create consensus on how to evolve
the global ontology. In an effort to meet individual project needs, modelers would
simply start cloning portions of the ontology and then evolve them independently.
Cloning serves immediate local project needs and offers the freedom to quickly make
decisions and updates without seeking global consensus. Because our tools for
merging classes or morphing instances into new classes were not well developed,
modelers were also reluctant to expend the effort required to recreate a more globally
coherent ontology. We expect this will continue to be a difficult problem to address.

5.4 Navigating a Large Semantic Network Is Problematic

Typical projects in SemanticOrganizer contain more than 5000 informational nodes
with 30,000 to 50,000 semantic interconnections. A common user complaint with
SemanticOrganizer is the difficulty of orienting themselves in the information space.
The standard system interface (Figure 4) presents the details of a single node along
side a hyperlinked listing of its direct neighbors, organized by the semantic type of the
link. This interface is convenient for editing the informational content of a node and
linking it to new neighbors, but it does not help with non-local navigation. The degree
of the node connectivity is bimodal with a small, but significant, percentage of the
nodes being connected to many tens of nodes, while 30 to 40 percent of the nodes
have 3 or fewer links. Imagine trying to explore a city having several massive central
intersections where hundreds of streets meet. Most of these streets are narrow paths
leading thru smaller intersections and ending in a cul-de-sac. Visual approaches that
allow users to understand the overall topology of the information space and that
permit a smooth transition from a local to a global perspective are critical to providing
an effective means of navigating through semantic repositories [10].

5.5 Automated Knowledge Acquisition Is Critical

The original design concept for SemanticOrganizer was that teams would primarily
manage their repository space manually, using the web interface to add links, enter
new information, and upload artifacts such as documents or scientific measurements.
But we quickly found that the task of adding information to the repository and linking
to existing content is time consuming and error prone when the volume of information
is large or when many people are involved. To address this need, SemanticOrganizer
evolved to incorporate various forms of automated knowledge acquisition: an

SemanticOrganizer: A Customizable Semantic Repository 779

inference engine that uses rules to create links between items and maintain the
semantic consistency of the repository; an API that allows software agents to add
artifacts, modify meta-knowledge, and create links; a Microsoft® Office macro that
give users the ability to upload information directly from an Office application; and
an email processing system that incorporates user email directly into
SemanticOrganizer. We now understand the importance of developing knowledge
acquisition methods that allow users to seamlessly add new repository content as a
by-product of their normal work practices, without imposing the burden of new tools
or procedures.

6 Related Work

We have identified four categories of Web-based systems that share important
characteristics with SemanticOrganizer: conventional Web portals, content/document
management systems, semantic portals, and semantic repositories. Conventional Web
portals, as exemplified by sites such as MyYahoo, typically allow users to selectively
subscribe to various published content and customize its presentation. Content or
document management systems (e.g., BSCW, Documentum, FileNet, Vignette, and
DocuShare) are more focused on supporting daily work processes than on publishing.
They allow users to upload, store, and share content (including intermediary work
products). To summarize the difference, portals are intended to publish finished
content, whereas document management systems manage transient and unfinished
work products that are not necessarily appropriate for external or even internal
publication. Neither type of system is semantically based.

Semantic portals [11-14] and semantic repositories [15] can be viewed as
analogous to “regular” portals and content management systems, respectively, except
that they use an underlying ontology to enhance their content with semantics. As a
generalization, the primary difference between them is that semantic portals are
intended to publish finalized information, whereas semantic repositories are intended
to manage work products in process. SemanticOrganizer is a prime example of a
semantic repository; it is intended to provide semantics-enhanced content
management support across various phases of a project lifecycle. ODESeW [16] has
characteristics of both a semantic repository and a semantic portal because it allows
management of internal, preliminary documents, yet also supports external publishing
and presentation of finalized documents.

7 Conclusions and Future Directions

Developing the SemanticOrganizer system has left us with a solid foundation of
experience in developing practical semantic web applications. The application
domains and users we’ve directly supported are extremely diverse and have ranged
from a few highly specialized research scientists exploring microscopic evidence for
signs of life on Mars, to high-ranking generals and executives of major aerospace
companies, leading the investigation into the tragic loss of Columbia.

780 R.M. Keller et al.

SemanticOrganizer represents a microcosm of the benefits and challenges that will
emerge as part of the broadly distributed semantic web vision of the future.

The jury is still deliberating over the ultimate utility of semantically structured
repositories. Some of our users have become enthusiastic evangelists for
SemanticOrganizer and have engaged its use across multiple projects. They find the
organization, access, and search capabilities provided by the system to be highly
intuitive and functional. In contrast, other users consider the complex, cross-linked
information space to be confusing and disorienting, and prefer familiar folder
hierarchies. Some of the usability problems experienced by these users can be traced
to poor interface design; others are due to the use of large and overly complex
ontologies. But there are deeper concerns about whether we are taxing the limits of
human cognitive and perceptual abilities to understand complex information
structures. Clearly human-computer interaction considerations are extremely
important in developing an effective system. NASA, in collaboration with Xerox
Corporation’s DocuShare Business Unit, is currently working with HCI experts to
address some of these issues and develop an improved interface and user experience
as part of a commercial reimplementation of InvestigationOrganizer.

Most of our system components were designed prior to recent semantic web
standardization efforts, so we are currently re-architecting our system to improve
interoperability with emerging technologies. For example, we now have the ability to
export and import our ontology and instances in RDF and OWL. Heeding our own
lessons learned, we are developing new visualization techniques to provide users with
an enhanced ability to understand and navigate our repository. We are also building
acquisition tools that will automatically analyze text from documents and produce
semantic annotations that link documents to related items in SemanticOrganizer.

Acknowledgments. We gratefully acknowledge funding support by the NASA
Intelligent Systems Project and by NASA Engineering for Complex Systems
Program. This work would not have been successful without dedicated application
partners in various scientific and engineering disciplines. Tina Panontin and James
Williams provided invaluable guidance and direction on the application of
SemanticOrganizer to accident investigation. They also took a leading role in the
deployment of SemanticOrganizer for the Shuttle Columbia accident investigation, as
well as other investigations. Brad Bebout provided essential long-term guidance and
support for the application of SemanticOrganizer to astrobiology and life science
domains. Maarten Sierhuis provided support for application to space mission
simulation testbeds. Our sincere appreciation goes to our colleagues Sergey Yentus,
Ling-Jen Chiang, Deepak Kulkarni, and David Nishikawa for their contributions to
system development.

References

1. T. Berners-Lee, "A Roadmap to the Semantic Web," 1998,
http://www.w3.org/DesignIssues/Semantic.html.

2. R. M. Keller, "SemanticOrganizer Web Site," 2004, http://sciencedesk.arc.nasa.gov.

SemanticOrganizer: A Customizable Semantic Repository 781

3. B. R. Gaines and D. Madigan, "Special Issue on Knowledge-based Hypermedia,"
International Journal of Human-Computer Studies, vol. 43, pp. 281-497, 1995.

4. D. Brickley and R. V. Guha, "RDF Vocabulary Description Language 1.0: RDF Schema,"
W3C, 2004, http://www.w3.org/TR/rdf-schema/.

5. E. Friedman-Hill, "Jess: The rule engine for the Java platform," 2004,
http://herzberg.ca.sandia.gov/jess/index.shtml.

6. G. A. Miller, "WordNet: A Lexical Database for English," Communications of the ACM,
vol. 38, pp. 39-41, 1995.

7. D. C. Berrios and R. M. Keller, "Developing a Web-based User Interface for Semantic
Information Retrieval," Proc. ISWC 2003 Workshop on Semantic Web Technologies for
Searching and Retrieving Scientific Data, C. Goble, Ed. Sanibel Island, FL, pp. 65-70.

8. R. Dieng-Kuntz and N. Matta, "Knowledge Management and Organizational Memories",
Boston: Kluwer Academic Publishers, 2002,

9. M. Sierhuis, W. J. Clancey, C. Seah, J. P. Trimble, and M. H. Sims, "Modeling and
Simulation for Mission Operations Work Systems Design," Journal of Management
Information Systems, vol. 19, pp. 85-128, 2003.

10. V. Geroimenko and C. Chen, "Visualizing the Semantic Web: XML-based Internet and
Information Visualization", London: Springer-Verlag, 2003,

11. Y. Jin, S. Xu, S. Decker, and G. Wiederhold, "OntoWebber: a novel approach for
managing data on the Web", International Conference on Data Engineering, 2002.

12. N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure, "SEAL - a framework for
developing semantic portals", Proceedings of the International Conference on Knowledge
capture, pp. 155-162, 2001.

13. P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and R. Meersman,
"OntoWeb - a semantic Web community portal", Fourth International Conference on
Practical Aspects of Knowledge Management, 2002.

14. E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik, D. Oberle, C.
Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme, Y. Sure, J. Tane,
R. Volz, and V. Zacharias, "KAON-towards a large scale Semantic Web," Proceedings of
EC-Web, 2002.

15. BrainEKP Software Application, Santa Monica, CA: TheBrain Technologies Corporation,
2004, http://www.thebrain.com.

16. O. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, and M. Suarez-Figueroa,
"ODESeW. Automatic generation of knowledge portals for Intranets and Extranets," The
Semantic Web - ISWC 2003, vol. LNCS 2870, pp. 802-817, 2003.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 782–796, 2004.
© Springer-Verlag Berlin Heidelberg 2004

SWS for Financial Overdrawn Alerting

José Manuel López-Cobo, Silvestre Losada, Oscar Corcho, Richard Benjamins,
Marcos Niño, and Jesús Contreras

Intelligent Software Components, S.A. (iSOCO)
C/ Pedro de Valdivia, 10. 28006 Madrid, Spain

{ozelin,slosada,ocorcho,rbenjamins,
marcosn,jcontreras}@isoco.com

Abstract. In this paper, we present a Notification Agent designed and imple-
mented using Semantic Web Services. The Notification Agent manages alerts
when critical financial situations arise discovering and selecting notification
services. This agent applies open research results on the Semantic Web Ser-
vices technologies including on-the-fly composition based on a finite state ma-
chine and automatic discovery of semantic services. Financial Domain ontolo-
gies, based on IFX financial standard, have been constructed and extended for
building agent systems using OWL and OWL-S standard (as well as other ap-
proaches like DL or f-Logic). This agent is going to be offered through inte-
grated Online Aggregation systems in commercial financial organizations.

Keywords: Semantic Web Services, Ontologies, Composition, Intelligent
Agent.

1 Introduction

The objective of the distributed system described in this paper (the Customer Notifi-
cation Agent) is to provide added value to customers of financial services. This added
value consists in a fully customizable and configurable set of aggregations and esti-
mation functionalities on account balance evolution, as well as SMS and email alerts
(among others), which will allow customers to have more efficient information about
his financial position.

This system reuses existing technology for aggregation available at our company
(iSOCO GETsee ®), and migrates it to Semantic Web Services technology. The inte-
grated use of Semantic Web technologies and Web Services allows us to describe and
reason with pieces of code understandable for machines, discharging the sometimes
tedious task of checking the online accounts to a software system. This system is able
to engage with other commercial solutions for aggregation and to detect at run-time
and raise alerts if some conditions are detected (for example, a possible overdrawn of
a customer saving account, due to the future payment of an invoice).

We have developed different ontologies to express the needed knowledge for this
application. These ontologies are divided into three groups: general ontologies, which

SWS for Financial Overdrawn Alerting 783

represent common sense knowledge reusable across domains; domain ontologies,
which represent reusable knowledge in a specific domain; and application-dependent
ontologies, which represent the application-dependent knowledge needed.

We have defined three high-level services for performing the task of the Customer
Notification Agent. The GETseeSWS Service accesses the online accounts of the
customer and the invoices associated with them, and calculates the balance for these
accounts. The NotificationService notifies customers with different types of messages
(discharging in 3rd party providers the execution of the actual notification) and fi-
nally, the EstimationService estimates, using different kinds of arithmetical functions,
the expectable amount of an invoice for preventing an overdrawn situation.

One of the main innovations of our systems is the proposal of a finite state diagram
to represent the composition of atomic processes into composite ones using condi-
tions as a way to choose between different choices. Such an approach allows at run-
time the discovery and invocation of services which comply with the conditions de-
fined for the transition from one state to another. This allows describing a composite
process at design-time by defining its behaviour and leaving the selection of the spe-
cific service to the execution time. This is an innovation with respect to other ap-
proaches where the selection of the specific services is done also during the design
time.

The paper is organized as follows. Section 2 describes a sample scenario where the
Notification Agent can be used, showing the main actors and agents involved in the
overall process and the steps usually followed by them. Section 3 describes the on-
tologies that we have developed, either from scratch or by reusing other ontologies or
vocabularies already available elsewhere. Section 4 describes the Semantic Web ser-
vices created for the system, which have been implemented using OWL-S, DL and f-
Logic. Section 5 describes one of the main contributions of this paper, namely the
proposal for service composition using finite state diagrams. Finally, section 6 pro-
vides some conclusions of our work and future lines of research.

2 Scenario Description

Let us suppose that we are working on the scenario presented in figure 1. In this sce-
nario we have a customer with several banking accounts where he/she has different
amounts of money. This customer has also contracts with some consumer goods
companies such as a telephone company, and gas and electricity providers, among
others.

Everyday, the Customer Notification Agent will detect whether any of the cus-
tomer accounts is going to be in an overdrawn situation. Bank accounts may have
different invoices associated from different consumer good companies. If the amount
of the invoice is bigger than the amount of money of the account, there could be an
overdrawn situation. To help the customer, the system calculates an estimation of the

784 J.M. López-Cobo et al.

amount of every invoice expected for that account before its value date and notifies
the customer if the balance of the saving account is less than the expected invoice
amount. The system will choose any of the notification channels available for the
customer and will notify him/her about the overdraw possibility.

Fig. 1. Sample scenario diagram for the Notification Agent.

In this scenario, the following actors are involved: the customer, the banks, and the
consumer goods companies. And the following agents are involved: customer notifi-
cation agent (CNA), Sentinel and some estimation services. Finally, the iSOCO GET-
see® application is at the core of this scenario, in charge of the aggregation of data
from bank accounts and consumer goods companies.

The following steps will be normally done:

Step 1: Everyday, the Customer Notification Agent dynamically configures and in-
vokes the Sentinel Service. This agent has the entire customer’s information needed
for invoking the composed service (online username, password and other data). The
update frequency of this agent can be customized.

Step 2: The Sentinel Service uses iSOCO GETsee® for collecting information from
the customer’s accounts.

Step 3: iSOCO GETsee® collects the amount balance of all the customer's accounts
(of banks B1, B2, …, Bn). In one (or more) of this accounts some consumer goods
companies (E1, E2, …, En) can charge invoices. The invoices have their notification
and value dates. The frequency of those invoices is always the same (weekly,
monthly, bimonthly, annually).

SWS for Financial Overdrawn Alerting 785

Step 4: For each invoice of consumer goods companies (E1, E2, …, En) associated
with the account, the Estimation Service estimates the probable amount at the end of
the period, Ae (estimated amount) in terms of heuristics or mathematical models. Ae
has a relationship with a consumer good company (Ee) and an account of a bank
(ABe). If the Ae is less than the established threshold for the account, then an alert
has to be raised.

Step 5: The Notification Service looks in a (de)centralized registry different ways to
communicate with the user. It can find different services involving many different
devices (phone calls using VoIP, SMS, electronic mail, telegram) and personal data
(phone number, cell phone number, e-mail, postal address). The services discovered
must have the ability to perform the action defined in the Notification Service.

Step 6: The invocation engine sorts in terms of cost, time to deliver, etc., the different
possibilities and chooses the first service in this particular ranking. Some data media-
tion could be needed if terms of the ontology used differ from the one used by the
Notification Service. If the service chosen has an irrecoverable mismatching of proc-
ess or data, or some communication error occurs in the invocation, the service has to
be able to choose another service and invoke it.

Step 7: The service chosen is invoked and the user is notified.

In summary, the objective of the Notification Agent is to provide added value to
the user including a fully customizable and configurable set of aggregations and esti-
mation functionalities on balance evolution as well as SMS and email alerts, allowing
the customer to have more efficient information about his financial position in the
incoming time period.

Several estimation functionalities allow calculating balance evolution on different
accounts according to expected invoices and payments. The foreseen value of account
balances will allow firing alert rules defined by the user and managed by the Notifica-
tion Agent application. Those alerts could let him anticipate any trouble that could
occur in his accounts or avoid missing any business opportunity.

3 Ontology Structure for the CNA

In this section we describe briefly the ontologies that model the domain presented in
our scenario, and which will be used by the Semantic Web services developed for it
and described in section 4. These ontologies have been implemented in OWL [3]
using the Protégé-2000 ontology tool [5], with the OWL-plug-in [6]. A graphical
outline of the main relationships between these ontologies is presented in figure 2.

According to the classifications of Van Heijst and colleagues [1] and of Mizoguchi
and colleagues [2], we can distinguish the following types of ontologies:

General ontologies, which represent common sense knowledge reusable across
domains. In this group we can include our ontologies about users and notifica-

786 J.M. López-Cobo et al.

tions, which include basic concepts related to persons and their contact informa-
tion, and our ontology about estimation parameters, which is based on statistical
concepts.

Domain ontologies, which represent reusable knowledge in a specific domain. In
this group we can include our ontologies about financial products and financial
services.

Application ontologies, which represent the application-dependent knowledge
needed. In this group we can include our ontologies about saving accounts and
invoice payments, and our ontology about overdrawn situations. The reason why
we classify them under this group does not mean that they might not be reusable
in other ontology-based applications; instead it means that we have not designed
them taking into account such objective.

We will first describe the general ontologies. The ontologies about users and notifica-
tions include basic concepts related to persons (users of information systems), such as
name, surname, birth date, etc, and related to their contact information , such as email
addresses, postal addresses, phone and fax numbers, etc. The same message can be
sent in many different types of notifications, using the same or different physical
devices. For instance, if you want to communicate with someone sending him a fax
and an e- mail, the receiver will have two different communications, one in the fac-
simile device and the other in his e-mail inbox.

Fig. 2. Ontologies developed for the Customer Notification Agent for Financial Overdrawn.

With regard to the ontology about estimation parameter, it describes the basic ar-
ithmetical functions that can be used, among others, to estimate the amount of the
spending of an invoice (or whatever other numerical concept which has an historical

SWS for Financial Overdrawn Alerting 787

evolution). This ontology considers parameters related to linear estimation factors,
statistical information, heuristics, etc.

Regarding the domain ontologies defined, we have two different ones, as shown in
figure 2: financial services and financial products. These ontologies are based on the
IFX financial standard [12], so that they will be easier to reuse by other ontology-
based applications.

The ontology about financial products contains the different types of products pro-
vided by a bank (loans, investment accounts, saving accounts, investment funds, etc.).
In all of them the bank and the customer sign a contract where the bank stores or lend
money from or to the customer. Each financial product has their own specific attrib-
utes, and is related to the corresponding user(s) of the ontology about users. Each
product can be owned by many holders and vice versa.

The ontology about financial services represents those services that banks can pro-
vide to their customers and which are not financial products. These financial services
provide added value to the relationship between a bank and their customers. They
include loyalty cards, paying invoices by direct debit, Internet connection advantages,
information provision about stock markets, etc.

The application-dependent ontologies describe more specific concepts and rela-
tionships related to our system. One of these ontologies is the one related to invoice
payment, which represents the service that the bank offers to their customers, allow-
ing to charge directly to a saving account of the customer the payment of many dif-
ferent things (taxes, shopping, subscriptions, consumer goods companies consumes
like gas, water or phone). The ontology related to saving accounts includes concepts
related to the types of saving accounts that can be contracted with the banks with
which we are working.

Finally, the last application-dependent ontology extends the general ontology
about estimation parameters, focusing on the specific case of overdrawn situations
like the ones presented in the previous section.

4 Discovery of Notification Semantic Web Services

The following top-level services are available, as shown in figure 3: GETsee Service,
Notification Service and Estimation Service.

Besides, the figure shows how the GETsee Service is decomposed into five atomic
services (openSession, getAccounts, getInvoices, getBalance, closeSession). These
five services are annotated using the same ontology as the GETsee service (although
this is not mandatory in our approach). Those atomic services invoke other services,
which are annotated according to other ontologies. In these cases, data mediation is
needed for the exchange of messages, although this is out of the scope of this paper.

788 J.M. López-Cobo et al.

At last, the Notification Service looks for a service able to notify something to a per-
son and finds at least two services (notification by SMS and notification by e-mail),
which might be annotated according to other two more ontologies.

Fig. 3. A diagram of the Semantic Web services used for our notification scenario.

As commented in the previous section, the Semantic Web services used in our sce-
nario have been annotated with OWL-S, DL and f-Logic [4, 10]. OWL-S uses the
class Service as a complete description of the content and behaviour of a service. It
has three differentiated parts. First of all, the Service Profile explains “what the ser-
vice does”. The Process Model describes “how the service works” and finally the
Service Grounding maps the content and format of the messages needed to interact
with the service. It provides a mapping from the semantic form of the messages ex-
changed as defined in the Process Model, to the syntactic form as defined in the
WSDL input and output specifications.

For a further understanding about how is supposed to work the Discovery of Noti-
fication Services [17], we put the description (using DL) of two services (defined by
their capabilities) and a Request from a User and depict how they will be matched.

Some domain-level facts:
Notification Action
EmailNotification Notification
 =1 from

Capability and a Request:
CapA
EmailNotification from.User to.User to.User
usedProvider.{ProviderA} sendingTime.Timestamp content.String
acknowledgement.=F cost. =5

SWS for Financial Overdrawn Alerting 789

Req
ElectronicNotification from.{Userx} to.{UserY} to.{Userz}
=2to usedProvider.Provider sendTime 200406250900 con-
tent.String acknowledgment =T cost 5

With respect to the ontology schema introduced above the DL-based discovery
component will match requests and capabilities using DL inferences. The basic idea
of the DL-based discovery matching is to check whether the conjunction of a request
and a capability is satisfiable, i.e. there can at least be one instance which they have in
common. If Request CapabilityX holds true there is no such
common instance and the request cannot be fulfilled by this capability.

Other useful approach would be use f-Logic and a reasoner for describe capabili-

ties and goals [8] and make queries for matchmake capabilities and goals. For the
goal we model the postcondition (the state of the information space that is desired).
We express this by a fact in f-logic (here we use the flora2 syntax [16]).

myGoal:goal[
 postCondition->myNotification].
myNotification:notification[
 ntf_userToBeNotified -> johndoe,
 ntf_date-> d040606:date[dayOfMonth->5, monthOfYear->5,

 year->2004],
 paymentMethod -> creditCard, cost -> 0.2,
 ntf_body -> "Your Account Z will be in minus in 2 weeks",
 ntf_from -> sentinel].
johndoe:user[
 nif ->123, name -> "John Doe", password -> "p", login -> "l",
 firstPreference -> jdMobile,
 contacts ->>
 {jdEmaill:eml_account[eml_account->"jon@doe.com"],
 jdMobile:phone[phn_number->"0123456", phn_type->mobile],
 jdHome:phone[phn_number->"6543210", phn_type->home]}].
sentinel:user[
 name -> "Sentinel System",
 contacts ->> {jdEmaill:eml_account[

eml_account->"sentinel@isoco.com"]}].

The capability postcondition describes the state of the information space the ser-

vice has after its execution. Here we use some prolog build in predicate e.g. ‘//’ which
is an integer division, but that might also be replaced by more declarative predicate
names like “integerDivision(X,Y,Z)”.

smsProvider[postcondition] :-
 _AnyNotification:notificationSMS[
 phn_number -> _X:phone[phn_type->mobile],
 ntf_receiptAcknowledgement -> false,
 ntf_time -> Time:dateAndTime,
 content -> AnyMessage:message,
 payment -> Payment],
 is_charlist(
 AnyMessage.msg_body, AnyMessageLength)@prolog(),
 AnyMessageLength < 800,
 Tokens is '//'(AnyMessageLength,160)@prolog()+1,
 Cost is Tokens * 0.05,

790 J.M. López-Cobo et al.

 Payment.cost >= Cost,
 (Payment.paymentMode=creditCard; Payment.paymentMode=account),
 secondsBetween(currentDate,Time,X), X < 5*60.

In the F-Logic approach for discovery we are checking if the capability entails the

goal (capability goal). Current limitations with respect to available reasoners led to
the current modelling, where we have the goal-postcondition as a fact (which may not
be fully specified) and the capability-postcondition as a rule.

We would like to extend this approach on the one hand to overcome the limitations
due to the modelling of the goal as fact (i.e. that makes it hard to express ranges and
constraints) and on the other hand to extend it to other matching semantics (e.g. if the
intersection is satisfiable like in the DL approach).

5 Composition Using Finite State Diagram

The functionality of the non-atomic processes could be decomposed in a structured
(or not) set of atomic processes for performing the same task. This composition (or
decomposition, viewed from the opposite side) can be specified by using control
constructs such as Sequence and If-then-else. Such decomposition normally shows,
among other things, how the various inputs of the process are accepted by particular
subprocesses, and how its various outputs are returned by particular subprocesses.

A CompositeProcess must have a composedOf property by which is indicated the
control structure of the composite, using a ControlConstruct

<rdf:Property rdf:ID="composedOf">
 <rdfs:domain rdf:resource="#CompositeProcess"/>
 <rdfs:range rdf:resource="#ControlConstruct"/>
</rdf:Property>
<owl:Class rdf:ID="ControlConstruct"/>

Each control construct, in turn, is associated with an additional property called

components to indicate the ordering and conditional execution of the sub processes
(or control constructs) from which it is composed. For instance, the control construct,
Sequence, has a components property that ranges over a ProcessComponentList (a list
whose items are restricted to be ProcessComponents, which are either processes or
control constructs).

This property allows managing the control flow of the execution of a Composite-
Process but, in counterpart, binds the ontologies to contain information about the data
and control flow, what is not always desirable [13,14].

For that reason, in our system we have developed a mechanism to describe finite
state machines (finite state diagrams). The situation calculus introduces first-order
terms called situations, [15]. The intuition behind the situation calculus is that the
world persists in one state until an action is performed that changes it to a new state.
Time is discrete, one action occurs at a time, time durations do not matter, and actions
are irreducible entities. Actions are conceptualized as objects in the universe of dis-
course, as are states of the world. Hence, states and actions are reified. All changes to

SWS for Financial Overdrawn Alerting 791

the world are the result of actions, which correspond to our atomic processes. The
situation that holds on entry to an action is different to that which holds on exit. The
exit situation is said to be the successor of the entry situation. Sequences of actions
combine to form histories that describe composite situations – in essence the state that
holds at the end of the sequence. Given this interpretation we can clarify the meaning
of preconditions. A precondition is a condition that must be true of the situation on
entry to an atomic process. However, sometimes these preconditions cannot be com-
puted in terms of the input that is in terms of the domain ontology. That kind of pre-
conditions are also called assumptions.

So, speaking in terms of Semantic Web Services, each state can be seen as a situa-
tion, stable, after or before any action. The set of preconditions that must be true in
this state are part of the preconditions of the atomic processes that make change that
state. Following in this interpretation, transitions in the state diagram represent each
atomic process needed for fulfil part of the goal, as is presented in figure 4.

At this very moment there are several efforts to describe preconditions, postcondi-
tions, effects and assumptions in the research area, but few consensus has been
reached to determine a final good candidate (SWRL, F-Logic, OWL, DRS). In order
to describe our current needs we define a naïve solution to model conditions. Of
course, making use of the reuse, we can import references to other conditions ex-
pressed in other ontologies.

Fig. 4. Finite state diagram ontology.

The class Condition represents conditions, that is, statements which can be true or
false in a particular state of the world (depicted in the state diagram). These condi-
tions could be expressed in the same way (in fact, they are exactly the same) that we
use to describe conditions in Semantic Web Services. Conditions of a State are mod-
elled as instances of this class (or subclasses defined by an Ontology designer). This

792 J.M. López-Cobo et al.

class is defined as subclass of […] Process.owl#Condition and […] Proc-
ess.owl#Effect defined in the OWL-S Process Ontology for model conditions and
effects. Using this technique, expressing conditions in the state diagram in the same
way as in the Services will favor any attempt to matchmake Services with Transi-
tions.

<owl:Class rdf:ID="condition">
 <rdfs:subClassOf rdf:resource="Process.owl#Condition"/>
 <rdfs:subClassOf rdf:resource="Process.owl#Effect"/>
</owl:Class>

5.1 State

The class State models a state inside a state diagram. A state is represented as a node
of the Graph which models a state machine. Each node is labelled with conditions,
using the relationship state_conditions. Besides, each node is identified with a unique
id, the slot state_id. A state in a Service Composition represents an intermediary step
in the execution of two services.

The states (when we are talking of a concrete State Diagram) are represented as in-

stances:
<state rdf:ID="estimated">
 <state_conditions rdf:resource="#logged_in"/>
</state>

5.2 Input and Output

The classes Input and Output defines the desired input and output of each transition.
The specific inputs and outputs are modelled as subclasses of these classes. This is
because the messages exchanged by the services (or viewed from the State Diagram
point of view, the inputs needed for performing an action and the outputs derived
from this actions) are, at last, classes or parts of some domain ontology. For a suc-
cessful matchmaking it could be desirable Data Mediation for helping the Discovery
Service to find services with similar inputs and outputs. The specific subclasses of
Input and Output can be described in the same Ontology or they could inherit from
other Ontologies (multiple inheritance) allowing to express the input and output of a
Transaction in terms of the inputs and outputs of Services.

5.3 Transition

The class Transition models actions in a State Diagram. These actions are responsible
for building a conversation in terms of the domain knowledge. From a stable situation
(a state) and in presence of some conditions (which are true), some action is per-
formed and some transition from the previous state to his successor is made. In a state
diagram this transition is represented using an arrow from the starting state to the
ending state. In a Composite Service framework, a Transition models the execution of
an operation (in terms of Semantic Web Services this could be done by an Atomic
Process or by another Composite Process).

SWS for Financial Overdrawn Alerting 793

The class Transition has the following attributes and relationships:
State_start, State_end: They are the starting and ending state of the transition.
They are instances of the class State. Each state is labeled with conditions which
serve to refer to the preconditions and effect of the transition.

Transition_input, Transition_output: Defines, in the domain ontology, the desired
input and output for the transition. They references to subclasses of the class In-
put or Output (described before) or they could be a simple data type. This restric-
tion makes mandatory the description of this ontology in OWL-full because
OWL-DL doesn’t allow this kind of description.

There are two special states labelled in a special way to denote what is the starting
state and the ending state. Doing this, we always know what the first subgoal which
can be achieved is and what is the final subgoal. With this information, some reason-
ing could be done forward or backward. To be able to transit from one state to an-
other, The Discovery Service has to be able to find some Semantic Web Service with
the same set of preconditions, effects, inputs and outputs which has the instance of
Transition representing the transition between the states in the following terms:

Preconditions: These conditions label the starting state.

Effects: They are the conditions present on the ending state but missing in the
starting state.

Inputs: Define which part of the domain ontology need the service to be exe-
cuted. Some data mediation could be needed if there are 3rd party services using
other ontology.

Outputs: Define which part of the domain ontology is the result of the execution
of the service. Some data mediation could be needed if there are 3rd party services
using other ontology.

For obtaining a more precise understanding of the relationship between the State
Diagram and the Services (for the sake of matchmaking), see the figure 5.

This is the state diagram which models the functionality of Sentinel. It could be
easily translated to the State Diagram Ontology, previously described. With this on-
tology and the description of the Service, an agent could accomplish the task de-
scribed with the state machine. The agent will need to make some decision about
what transition to take (i.e. what service has to execute) and some reasoner (with
storage functionalities) will be needed to perform the control flow. Two instances of
transitions can be seen below.

<transition rdf:ID="KB_044630_Individual_84">
 <state_end rdf:resource="#Logged"/>
 <state_start>
 <stateStart rdf:ID="initState"/>
 </state_start>
 <transition_id>GETseeSWSlogin</transition_id>
 <transition_input rdf:resource="#input_user"/>
 <transition_output rdf:resource="XMLSchema#boolean"/>

</transition>

794 J.M. López-Cobo et al.

<transition rdf:ID="KB_044630_Individual_92">
<transition_input rdf:resource="#input_output_savingAccounts"/>
<transition_input rdf:resource="#input_user"/>
<transition_id>GETseeSWSgetinvoices</transition_id>
<transition_output rdf:resource="#output_InvoicesPayments"/>
<state_start rdf:resource="#AccountsLoaded"/>
<state_end rdf:resource="#InvoicesLoaded"/>

</transition>

Fig. 5. Relationships between the state diagram and the Sentinel service.

6 Conclusions

We have described the Customer Notification Agent which makes use of an aggrega-
tion system, developed by iSOCO, called GETsee. ISOCO GETsee® application is
able to aggregate information coming from different sources. It can be financial in-
formation (saving accounts, credit cards, investment funds, etc.), different invoices
from consumer goods companies, loyalty cards, insurance companies or e-mail ac-
counts from different Web Portals.

SWS for Financial Overdrawn Alerting 795

The Customer Notification Agent focuses on the dynamic configuration of a sys-
tem that generates notifications and suggestions for transactions to the customer re-
lated to conciliation between financial accounts and pending invoices.

Integration of applications is one of the most ambitious goals of the Semantic Web
Services. The existence of different agents or legacy applications must not interfere in
the shared use of information. Exploiting the advantages of semantic interoperability
and loose-coupled services will allow us to interconnect different applications and
integrate data and information through messages. So, the system to be built leans
upon an existing iSOCO’s commercial application and others agents or services built
ad hoc.

For adding semantics to the system, we have defined, or reused, different ontolo-
gies to express the needed knowledge. Besides, we have defined three services for
perform the task of the Customer Notification Agent. The GETseeSWS Service ac-
cess the online accounts of the customer, the invoices associated with them and calcu-
lates the balance for these accounts. The Notification Service notifies the user any
message and finally, the Estimation Service estimates, using some arithmetical func-
tions, the expectable amount of an invoice for preventing an overdrawn situation.

A Finite state diagram has been used for representing the composition of Atomic
Processes, allowing in run-time the discovering and invocation of services which
comply with the conditions defined for transition from a state to another. This allows
us to describe a Composite Process in design-time, defining its behaviour and leaving
the selection of the particular service to the execution time.

Some open research issues have been explored in this work as the composition on-
the-fly and the discovery of Services using different approaches. These approaches
will contribute to the testing of the contents of WSMO [8] and the SWWS-CA [18].
The projects SWWS and DIP, supporting this work, are devoted to the contribution
and dissemination of WSMO.

Acknowledgements. This work is supported by the IST project SWWS (IST-2001-
37134) and the IST project DIP(FP6 – 507483). We would like to thank Pablo
Gómez, Andrés Cirugeda and Ignacio González for their contributions.

References

1. van HeijstG, Schreiber ATh, Wielinga BJ (1997). Using explicit ontologies in KBS devel-
opment .International Journal of Human-Computer Studies 45:183-192

2. Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995). Task Ontology for reuse of problem
solving knowledge. In: Mars N (ed) Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing (KBKS’95). University of Twente, Schede, The Nether-
lands. IOS Press, Amsterdam, The Netherlands.

796 J.M. López-Cobo et al.

3. OWL. Web Ontology Language.
http://www.w3.org/TR/2004/REC-owl- features- 20040210/

4. OWL-S. OWL for Services. http://www.daml.org/services/owl-s/1.0/
5. Protégé 2000. Stanford Medical Informatics. http://protege.stanford.edu/
6. OWL Plugin: A Semantic Web Ontology Editor for Protégé.

http://protege.stanford.edu/plugins/owl/
7. ezOWL Plugin for Protégé 2000. http://iweb.etri.re.kr/ezowl/plugin.html
8. WSMO. Web Service Modeling Framework.

http://www.nextwebgeneration.org/projects/wsmo/
9. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.daml.org/2003/11/swrl/
10. Michael Kifer, Georg Lausen, James Wu , Logical Foundations of Object Oriented and

Frame Based Languages. Journal of ACM 1995, vol. 42, p. 741-843
11. DRS: A Set of Conventions for Representing Logical Languages in RDF. Drew McDer-

mott, January 2004. http://www.daml.org/services/owl-s/1.0/DRSguide.pdf
12. IFX. Interactive Financial eXchange. http://www.ifxforum.org
13. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite state automata as conceptual

model for e-services. In Proc. of the IDPT 2003 Conference, 2003. To appear.
14. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of

Web Services. In Proc. of WWW 2002.
15. H. Levesque, F. Pirri, R. Reiter. Foundations of the Situation Calculus. Linköping Elec-

tronic Articles in Computer and Information Science, Vol 3, nr 18.
http://www.ep.liu.se/ea/cis/1998/018. December 1998

16. FLORA-2: An Object-Oriented Knowledge Base Language. http://flora.sourceforge.net
17. S. Grimm, H. Lausen. Discussion document SWWS Service Description / Discovery. May

2004
18. C. Priest. SWWS-CA A Conceptual Architecture for Semantic Web Services. May 2004

OntoViews
– A Tool for Creating Semantic Web Portals

Eetu Mäkelä, Eero Hyvönen, Samppa Saarela, and Kim Viljanen

Helsinki Institute for Information Technology (HIIT), University of Helsinki
P.O. Box 26, 00014 UNIV. OF HELSINKI, FINLAND

{Firstname.Lastname}@cs.Helsinki.FI
http://www.cs.helsinki.fi/group/seco/

Abstract. This paper presents a semantic web portal tool OntoViews for
publishing RDF content on the web. OntoViews provides the portal designer
with a content-based search engine server, Ontogator, and a link recommendation
system server, Ontodella. The user interface is created by combining these servers
with the Apache Cocoon framework. From the end-user’s viewpoint, the key
idea of OntoViews is to combine the multi-facet search paradigm, developed
within the information retrieval research community, with semantic web RDFS
ontologies, and extend the search service with a semantic browsing facility
based on ontological reasoning. OntoViews is presented from the viewpoints of
the end-user, architecture, and implementation. The implementation described
is modular, easily modified and extended, and provides a good practical basis
for creating semantic portals on the web. As a proof of concept, application of
OntoViews to a deployed semantic web portal is discussed.

Keywords: Semantic web, information retrieval, multi-facet search, view-based
search, recommendation system.

1 Introduction

Much of the semantic web content will be published using semantic portals1 [1]. Such
portals typically provide the end-user with two basic services: 1) a search engine based
on the semantics of the content [2] and 2) dynamic linking between pages based on the
semantic relations in the underlying knowledge base [3].

This paper presents OntoViews — a tool for creating semantic portals — that facil-
itates these two services combined with user interface and Web Services functionality
inside the Apache Cocoon framework2. The search service of OntoViews is based on
the idea of combining multi-facet search [4,5] with RDFS ontologies. The dynamic link-
ing service is based on logical rules that define associations of interest between RDF(S)
resources. Such associations are rendered on the user interface as links with labels that
explain the nature the semantic linkage to the end-user.

These ideas were initially developed and tested as a stand-alone Java application [6]
and as a Prolog-based HTML generator [7]. OntoViews combines and extends these

1 See, e.g., http://www.ontoweb.org/.
2 http://cocoon.apache.org/

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 797–811, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

798 E. Mäkelä et al.

two systems by separating the search and link recommendation services into independent
servers (Ontogator and Ontodella) to be used on the Semantic Web, and by providing a
clear logic-based interface by which ontology and annotation schema specific RDF(S)
structures can be hidden from the servers.

In the following, OntoViews is first presented from the viewpoint of the end-user.
We present an application developed using the tool: MuseumFinland3 [8]. This system
is a deployed semantic portal for publishing heterogeneous museum collections on the
Semantic Web. After this the architecture and the implementation of the framework
are discussed mostly from the portal designer’s viewpoint. In conclusion, benefits and
limitations of the system are summarized, related work is discussed, and directions for
further research are outlined.

2 OntoViews from the End-User’s Perspective

OntoViews provides the end-user with a semantic view-based search engine and a
recommendation system. In MuseumFinland, these services are provided to the end-
user via two different user interfaces: one for desktop computers and one for mobile
devices. In below the desktop computer web interface is first presented.

2.1 A Multi-facet Search Engine

The search engine of OntoViews is based on the multi-facet search paradigm [4,5]. Here
the concepts used for indexing are called categories and are organized systematically into
a set of hierarchical, orthogonal taxonomies. The taxonomies are called subject facets
or views. In multi-facet search the views are exposed to the end-user in order to provide
her/him with the right query vocabulary and for presenting the repository contents and
search results along different views.

In MuseumFinland, the content consists of collections of cultural artifacts and
historical sites in RDF format consolidated from several heterogeneous Finnish museum
databases [9]. The RDF content is annotated using a set of seven ontologies. From the
seven ontologies, nine view-facets are created. The ontologies underlying the application
consist of some 10,000 RDF(S) classes and individuals, half of which are in use in the
current version on the web. There are some 7,600 categories in the views and 4,500
metadata records of collection artifacts and old cultural sites in Finland.

Figure 1 shows the search interface of MuseumFinland. The nine facet hierarchies,
such as Artifact (“Esinetyyppi”) and Material (“Materiaali”), are shown (in Finnish) on
the left column. For each facet hierarchy, the next level of sub-categories is shown as
links.A query is formulated by selecting a category by clicking on its name.When the user
selects a category c in a facet f , the system constrains the search by leaving in the result
set only such objects that are annotated in facet f with some sub-category of c or c itself.
The result set is shown on the right grouped by the sub-categories of the last selection.
In this case the user has selected “Tools”, whose sub-categories include Textile making
tools (“tekstiilityövälineet”) andTools of folk medicine (“kansanlääkinnän työvälineet”).

3 http://museosuomi.cs.helsinki.fi/

OntoViews – A Tool for Creating Semantic Web Portals 799

Fig. 1. MuseumFinland search interface after selecting the category link Tools (“työvälineet”).

Hits in different categories are separated by horizontal bars and can be paged through
independently in each category.

When answering the query, the result sets resulting from the selection of each cate-
gory seen on the screen are recomputed, and a number (n) is shown to the user after the
category name. It tells that if the category is selected next, then there will be n hits in the
result set. For example, in figure 1, the number 193 in the Collection facet (“Kokoelma”)
on the bottom tells that there are 193 tools in the collections of the National Museum
(“Kansallismuseon kokoelmat”). A selection leading to an empty result set (n = 0) is
removed from its facet (or alternatively disabled and shown grayed out, depending on
the user’s preference). In this way, the user is hindered from making a selection leading
to an empty result set, and is guided toward selections that are likely to constrain the
search appropriately. The query can be relaxed by making a new selection on a higher
level in the facet or by dismissing the facet totally from the query.

Above, the category selection was made among the direct sub-categories listed in
the facets. An alternative way is to click on the link Whole facet (“koko luokittelu”) on
a facet. The system then shows all possible selections in the whole facet hierarchy with
hit counts. For example, in figure 2 the user selected in the situation of figure 1 the link
Whole facet of the facet Time of Creation (“Valmistusaika”). The system shows how the

800 E. Mäkelä et al.

Fig. 2. The Time facet hierarchy classifying the result set of tools in figure 1.

tools in the current result set are classified according to the selected facet. This gives
the user a good overview of the distribution of items over a desired dimension. With the
option of graying out categories with no hits, it is also immediately obvious where the
collections are lacking artifacts.

When the user is capable of expressing her information need straightforward in terms
of keywords, then a Google-like keyword search interface is usually preferred. Onto-
Views seamlessly integrates this functionality in the following way: First, the search
keywords from the search form are matched against category names in the facets. A new
dynamic facet is created in the user interface, containing all facet categories matching
the keyword shown with the corresponding facet name. Second, a result set of object hits
is shown. This result set contains all objects contained in any of the categories matched
in addition to all objects whose metadata directly contains the keyword, grouped by the
categories found. This way, the keyword search also solves the search problem of finding
relevant categories in facets that may contain thousands of categories.

OntoViews – A Tool for Creating Semantic Web Portals 801

Fig. 3. Using the keyword search for finding categories.

A sample keyword search is shown in figure 3. Here, a search for “esp” has matched,
for example, the categories Spain (“Espanja” in Finnish) and Espoo in the facet Location
of Creation and the category Espoo City Museum (“Espoon kaupunginmuseo”) in the
facet User (“Käyttäjä”). The categories found can be used to constrain the multi-facet
search as normal, with the distinction that selections from the dynamic facet replace
selections in their corresponding facets and dismiss the dynamic facet.

2.2 The Item View with Semantic Links

At any point during multi-facet search the user can select any hit found by clicking on
its image. The corresponding data object is then shown as a web page, such as the one
in figure 4. The example depicts a special part, distaff (“rukinlapa” in Finnish) used in
a spinning wheel. The page contains the following information and links:

1. On top, there are links to directly navigate in the groups and results of the current
query.

2. The image(s) of the object is (are) depicted on the left.
3. The metadata of the object is shown in the middle on top.
4. All facet categories that the object is annotated with are listed in the middle bottom

as hierarchical link paths. A new search can be started by selecting any category
there.

5. A set of semantic links on the right provided by a semantic recommendation system.

The semantic links on the right reveal to the end-user a most interesting aspect of
the collection items: the implicit semantic relations that relate collection data with their
context and each other. The links provide a semantic browsing facility to the end-user.

802 E. Mäkelä et al.

Fig. 4. Web page depicting a collection object, its metadata, facet categories, and semantic rec-
ommendation links to other collection object pages.

For example, in figure 4 there are links to objects used at the same location (categorized
according to the name of the common location), to objects related to similar events (e.g.,
objects used in spinning, and objects related to concepts of time, because the distaff
in question has a year carved onto it), to objects manufactured at the same time, and
so on. Since a decoratively carved distaff used to be a typical wedding gift in Finland,
it is also possible to recommend links to other objects related to the wedding event,
such as wedding rings. In OntoViews, such associations can be exposed to the end-
user as link groups whose titles and link names explain to the user the reason for the
recommendation.

2.3 The Mobile User Interface

Using OntoViews the same content and services can easily be rendered to the end-users
in different ways. To demonstrate this, we created another user interface for Museum-
Finland to be used by WAP 2.0 (XHTML/MP) compatible devices. OntoViews is a
particularly promising tool for designing a mobile user interface due to the following
reasons. Firstly, empty results can be eliminated, which is a nice feature in an environment
where data transfer latencies and costs are still often high. Secondly, the elimination
of infeasible choices makes it possible to use the small screen size more efficiently for
displaying relevant information. Thirdly, the semantic browsing functionality is a simple
and effective navigation method in a mobile environment.

The mobile interface repeats all functionality of the PC interface, but in a layout more
suitable to the limited screen space of mobile devices. In addition, to better facilitate

OntoViews – A Tool for Creating Semantic Web Portals 803

finding interesting starting points for browsing, some mobile-specific search shortcuts
were created. The search results are shown first up front noting the current search param-
eters for easy reference and dismissal, as seen in figure 5. Below this, the actual search
facets are shown. In the mobile user interface selectable sub-categories are not shown as
explicit links as in the PC interface, but as drop-down lists that replace the whole view
when selected. This minimizes screen space usage while browsing the facets, but maxi-
mizes usability when selecting sub-categories from them. In-page links are provided for
quick navigation between search results and the search form.

Fig. 5. Results of a mobile geolocation search initiated somewhere near Ruuhijärvi, Finland.

The item page (corresponding to figure 4) is organized in a similar fashion, showing
first the item name, images, metadata, annotations, semantic recommendations, and
finally navigation in the search result. There are also in-page links for jumping quickly
between the different parts of the page.

The mobile user interface also provides two distinct services aimed specifically for
mobile use. Firstly, the interface supports search by the geolocation of the mobile device
in the same manner as in the concept-based OntoViews keyword search. Any entries
in the Location ontology near the current location of the mobile user are shown in a
dynamic facet as well as all data objects made or used in any of these locations. In
addition, any objects directly annotated with geo-coordinates near the mobile user are
shown grouped as normal. This feature gives the user a one-click path to items of likely
immediate interest. Secondly, because navigation and search with mobile devices is
tedious, any search state can be “bookmarked”, sent by email to a desired address, and
inspected later in more detail by using the more convenient PC interface.

804 E. Mäkelä et al.

Fig. 6. The components of OntoViews.

3 Architecture and Implementation

OntoViews consists of the three major components shown in figure 6. The logic server
of OntoViews, Ontodella, provides the system with reasoning services, such as category
generation and semantic recommendations. It is based on the HTTP server version of
SWI-Prolog4. It has also been extended to provide simple point-of-interest search based
on geo-coordinates. It is queried via a HTTP connection.

The multi-facet search engine of OntoViews, Ontogator, is a generic view-based
RDF search engine. It defines and implements an RDF-based query interface that is used
to separate view-based search logic from the user interface. The interface is defined as
an OWL ontology5. It can be used to query for category hierarchies and items grouped
by and/or constrained by these. Both categories and items can also be queried using
keywords. Given a set of category and/or keyword-based constraints, Ontogator filters
categories that would lead to an empty result set. Alternatively, filtering the categories,
for example by graying out, can be left for the user interface. This is possible since
Ontogator (optionally) tags every category with a number of hits. There are also a
number of other general options (e.g. accepted language) and restrictions (e.g. max
items/categories returned) that can be used, for example, to page the results by categories
and/or items. Ontogator replies to queries in RDF/XML that has a fixed structure. Since
the search results are used in building the user interface, every resource is tagged with
an rdfs:label.

The third component in figure 6, User Interface, binds the services of Ontogator
and Ontodella together, and is responsible for the user interfaces and interaction. This
component is built on top of the Apache Cocoon framework6. Cocoon is a framework
based wholly on XML and the concept of pipelines constructed from different types
of components, as illustrated in figure 7. A pipeline always begins with a generator,
that generates an XML-document. Then follow zero or more transformers that take an
XML-document as input and output a document of their own. The pipeline always ends

4 http://swi-prolog.org/
5 http://www.cs.helsinki.fi/group/seco/ns/2004/03/ontogator#
6 http://cocoon.apache.org/

OntoViews – A Tool for Creating Semantic Web Portals 805

Fig. 7. The components of a Cocoon pipeline.

in a serializer that serializes its input into the final result, such as an HTML-page, a PDF-
file, or an image. It is also possible for the output of partial pipelines to be combined
via aggregation into a single XML-document for further processing. Execution of these
pipelines can be tied to different criteria, e.g, to a combination of the request URI and
requesting user-agent.

In OntoViews, all of the intermediate components produce not only XML, but valid
RDF/XML. Figure 8 depicts two pipelines of the OntoViews system. The pipe lines
look alike, but result in quite different pages, namely in the search result page seen in
figure 1 (and another similar page used for depicting results of the keyword search),
and in the item page seen in figure 4. This is due to the modular nature of the pipelines,
which makes it possible to split a problem into small units and reuse components.

Every pipeline that is tied to user interaction web requests begins with a user state
generator that generates an RDF/XML representation of the user’s current state. While
browsing, the state is encoded wholly in the request URL, which allows for easy book-
marking and also furthers the possibilities of using multiple servers. This user state is
then combined with system state information in the form of facet identifiers and query
hit counts, and possible user geolocation based information. This information is then
transformed into appropriate queries for the Ontogator and Ontodella servers depending
on the pipeline.

In the Search Page pipeline on the left, an Ontogator query returning grouped hits
and categories is created. In the Item Page pipeline on the right, Ontogator is queried for
the properties and annotations of a specific item and its place in the result set, while On-
todella is queried for the semantic links relating to that item. The Ontogator search engine
is encapsulated in a Cocoon transformer, while the Ontodella transformer is actually a
generic Web Services transformer that creates a HTTP-query from its input, executes it,
and creates SAX events from the HTTP-response. The RDF/XML responses from the
search engines are then given to user interface transformers depending on the pipeline
and the device that originated the request. These transform the results into appropriate
XHTML or to any other format, which is then run through an internationalization trans-
former for language support and serialized. Most of the transformations into queries

806 E. Mäkelä et al.

and XHTML are implemented with simple XSLT-stylesheets. In this way, changes to
layout are very simple to implement, as is the creation of new interfaces for different
media. The mobile interface to MuseumFinland discussed earlier was created in this
way quite quickly.

Search Query XSLT

Ontogator Transformer

Search Page User Interface XSLT

XHTML Serializer

Internationalization Transformer

User State Generator

Facet Root Query Generator

Ontogator Transformer

Pre-Query Transformer

Ontogator Transformer

User State Combining Transformer

Ontodella Transformer

Nearest
Locations

System Facets

Hit Count
for Main Query

Item Query XSLT

Ontogator Transformer

Item Page User Interface XSLT

XHTML Serializer

HTTP Request

Internationalization Transformer

Search Page Item Page

User State Subpipeline

User State
Subpipeline

User State Subpipeline

Ontodella Transformer

Recommendation
Links

Item Properties and
Annotations

Fig. 8. Two Cocoon pipelines used in OntoViews.

All of the transformer components can also be made available for use in other web
applications as Web Services, by creating a pipeline that generates XML from an HTTP-
query and returns its output as XML. In this way, other web applications could make
use of the actual RDF-data contained in the system, querying the Ontogator and On-
todella servers directly for content data in RDF/XML-format. It also provides a way
of distributing the processing in the system to multiple servers. For example, Onto-
Views instances running Ontogator could be installed on multiple servers, and a main
OntoViews handling user interaction could distribute queries among these servers in a
round-robin fashion to balance load.

OntoViews – A Tool for Creating Semantic Web Portals 807

4 Adapting OntoViews to New Data

OntoViews is capable of supporting any RDF-based input data (e.g., OWL). To adapt
the system to new data, the following steps must be taken: First, create rules describing
how categories are generated and items connected to them for the view based search.
Second, create rules describing how links are generated for the recommendations. Third,
possibly change the layout templates.

In the following, we describe how the logic rules needed are defined in our system
using Prolog. The layout templates are straightforward XSLT and will not be discussed.

4.1 Category View Generation

A view is a hierarchical index-like decomposition of category resources where each
category is associated with a set of subcategories and data items. A view is defined
in Ontodella, the logic server of OntoViews, by specifying a view predicate called
ontodella view with the following information: 1) the root resource URI, 2) a binary
subcategory relation predicate, and 3) a binary relation predicate that maps the hierarchy
categories with the items used as leaves in the view. In addition, each view must have a
label.

An example7 of a view predicate is given below:

ontodella_view(
’http://www.cs.helsinki.fi/seco/ns/2004/03/places#earth’,
place_sub_category,
place_of_use_leaf_item,
[fi:’K\"{a}ytt\"{o}paikka’, en:’Place of Use’] % the labels

).

Here the URI on the second line is the root resource, place sub category is the
name of the subcategory relation predicate and place of use leaf item is the leaf
predicate. The label list contains the labels for each supported language. In our case, we
support both Finnish (fi) and English (en).

The binary subcategory predicate can be based, e.g., on a containment property in
the following way:

place_sub_category(ParentCategory, SubCategory) :-
SubCategoryProperty =

’http://www.cs.helsinki.fi/seco/ns/2004/03/places#isContainedBy’,
rdf(SubCategory, SubCategoryProperty, ParentCategory).

The leaf predicate describes when a given resource item is a member of the given cat-
egory. For example, place of use leaf item in our example above can be described
as follows:

place_of_use_leaf_item(ResourceURI, CategoryURI) :-
Relation = ’http://www.cs.helsinki.fi/seco/ns/2004/03/artifacts#usedIn’,
rdf(ResourceURI, Relation, CategoryURI).

7 The syntax is slightly simplified due to presentation reasons. We use SWI-Prolog
(http://www.swi-prolog.org) as the inference engine and SWI-Prolog syntax in the examples.

808 E. Mäkelä et al.

Based on these rules, the categories can be generated by iterating through the pred-
icate ontodella view, and by recursively creating the category hierarchies using the
subcategory rules starting from the given root category. At every category, all relevant
leaf resources are attached to the category based on the leaf rules. When the categories
have been generated, they can be navigated using the Ontogator module presented earlier.

4.2 Recommendation Link Generation

Link generation is based on rules that describe when two resources should be linked. Each
link rule can be arbitrary complex and is defined by a domain specialist. A linking rule is
described by a predicate of the form p(SubjectURI, TargetURI, Explanation) that
should succeed with the two resources SubjectURI and TargetURI are to be linked.
The variable Explanation is then bound to an explanatory label (string) for the link.
In the following, one of the more complex rules — linking items related to a common
event — is presented as an example:

related_by_event(Subject, Target, Explanation) :-

ItemTypeProperty =
’http://www.cs.helsinki.fi/seco/ns/2004/03/artifacts#item_type’,

ItemTypeToEventRelatingProperty =
’http://www.cs.helsinki.fi/seco/ns/2004/03/mapping#related_to_event’,

% check that both URIs correspond in fact to artifacts
isArtifact(Subject),
isArtifact(Target),
% and are not the same
Subject \= Target,

% find all the item types the subject item belongs to
rdf(Subject, ItemTypeProperty, SubjectItemType),
rdfs_transitive_subClassOf(SubjectItemType,SubClassOfSubjectItemType),

% find all the events any of those item types are related to
rdf(SubClassOfSubjectItemType, ItemTypeToEventRelatingProperty, Event),
% and events they include or are part of
(

rdfs_transitive_subClassOf(Even, SubOrSuperClassOfEvent),
DescResource=TransitiveSubOrSuperClassOfEvent;
% or
rdfs_transitive_subClassOf(SubOrSuperClassOfEvent, Event),
DescResource=Event;

),

% find all item types related to those events
rdf(TargetItemType, ItemTypeToEventRelatingProperty, SubOrSuperClassOfEvent),
% and all their superclasses
rdfs_transitive_subClassOf(SuperClassOfTargetItemType, TargetItemType),

% don’t make uninteresting links between items of the same type
SuperClassOfTargetItemType \= SubjectItemType,
not(rdfs_transitive_subClassOf(SuperClassOfTargetItemType, SubjectItemType)),
not(rdfs_transitive_subClassOf(SubjectItemType, SuperClassOfTargetItemType)),

% finally, find all items related to the linked item types
rdf(Target, ItemTypeProperty, SuperClassOfTargetItemType),

list_labels([DescResource], RelLabel),
Explanation=[commonResources(DescResource), label(fi:RelLabel)].

OntoViews – A Tool for Creating Semantic Web Portals 809

The rule goes over several ontologies, first discovering the object types of the objects,
then traversing the object type ontology, relating the object types to events, and finally
traversing the event ontology looking for common resources.Additional checks are made
to ensure that the found target is an artifact and that the subject and target are not the
same resources. Finally, information about the relation is collected, such as the URI and
the label of the common resource, and the result is returned as the link label.

The links for a specific subject are generated when the OntoViews main module
makes an HTTP query to the Ontodella. As a result, the Ontodella returns an RDF/XML
message containing the link information (the target URI and the relation description).
These links are then shown to the user using the User Interface (cf. figure 6).

5 Discussion

5.1 Benefits and Limitations

The example application MuseumFinland shows that the multi-facet search paradigm
combined with ontologies is feasible as a basis for search on the Semantic Web. The
paradigm is especially useful when the user is not just searching for a particular piece of
information, but is interested in getting a broader view of the contents of the repository,
and in browsing of the contents in the large. The addition of keyword-based searching
complements multi-facet searching nicely, better addressing the search needs of people
with a clear idea of what they want and with means of expressing it. Such a search
can be integrated seamlessly into the user interaction logic and visualization of the user
interface. It can be used to also solve the search problem of finding appropriate concepts in
the ontologies to be used as a basis in multi-facet search. The semantic recommendation
system provides further browsing possibilities by linking the items semantically with
each other by relations that cannot be expressed with the hierarchical categorizations
used in the multi-facet search.

The Cocoon-based implementation of the OntoViews is eminently portable, extend-
able, modifiable, and modular when compared to our previous test implementations. This
flexibility is a direct result of designing the application around the Cocoon concepts of
transformers and pipelines, in contrast to servlets and layout XSLT. The generality and
flexibility of OntoViews has been verified in creating the mobile device interface for
MuseumFinland. Furthermore, we have used OntoViews in the creation of a seman-
tic yellow page portal [10], and (using a later version of the tool) a test portal based on
the material of the Open Directory Project (ODP)8. These demonstrations are based on
ontologies and content different from MuseumFinland. With the ODP material, the
system was tested to scale up to 2.3 million data items and 275,000 view categories with
search times of less then 5 seconds on an ordinary PC server.

The use of XSLT in most of the user interface and query transformations makes it
easy to modify the interface appearance and to add new functionality. However, it has
also led to some quite complicated XSLT templates in the more involved areas of user
interaction logic, e.g., when (sub-)paging and navigating in the search result pages. In
using XSLT with RDF/XML there is also the problem that the same RDF triple can

8 http://www.dmoz.org/

810 E. Mäkelä et al.

be represented in XML in different ways but an XSLT template can be only tied to
a specific representation. In our current system, this problem can be avoided because
the RDF/XML serialization formats used by each of the subcomponents of the system
are known, but in a general web service environment, this could cause complications.
However, the core search engine components of OntoViews would be unaffected even
in this case because they handle their input with true RDF semantics.

When applying OntoViews, the category and linking rules are described by a domain
specialist. She selects what should be shown in the views and what relations between
data items should be presented to the user as semantical links. With the help of the rules,
any RDF data can be used as input for OntoViews. The prize of the flexibility is that
somebody must create the rules, which can be a difficult task if the input data is not
directly suitable for generating the wanted projections and links.

5.2 Related Work

Much of the web user interface and user interaction logic in OntoViews and Museum-
Finland pertaining to multi-facet search is based on Flamenco [5]. In OntoViews,
however, several extensions to this baseline have been added, such as the tree view of
categories (figure 2), the seamless integration of concept-based keyword and geolocation
search, extended navigation in the result set, and semantic browsing. The easy addition
of these capabilities was made possible by basing the system on RDF. We feel it would
have been much more difficult to implement the system by using the traditional relational
database model. Our approach also permits OntoViews to load and publish any existing
RDF data, once the rules defining the facet projections and semantic links are defined.

5.3 Future Work

OntoViews is a research prototype. The test with the material of the Open Directory
Project has proved it quite scalable with regards to the amount of data, but the response-
time of the system currently scales linearly with respect to the number of simultaneous
queries. Further optimization work would be needed to make the system truly able to
handle large amounts of concurrent users. The benefits observed applying the XML-
based Cocoon pipeline concept to RDF handling has lead us to the question, whether it
would be possible to create a true “Semantic Cocoon” based on RDF semantics and an
RDF-transformation language.

References

1. A. Maedche, S. Staab, N. Stojanovic, R. Struder, and Y. Sure, “Semantic portal — the SEAL
approach,” Institute AIFB, University of Karlsruhe, Germany, Tech. Rep., 2001.

2. S. Decker, M. Erdmann, D. Fensel, and R. Studer, “Ontobroker: Ontology based ac-
cess to distributed and semi-structured unformation,” in DS-8, 1999, pp. 351–369, cite-
seer.nj.nec.com/article/decker98ontobroker.html.

3. C. Goble, S. Bechhofer, L. Carr, D. D. Roure, and W. Hall, “Conceptual open hypermedia =
the semantic web?” in Proceedings of the WWW2001, Semantic Web Workshop, Hongkong,
2001.

OntoViews – A Tool for Creating Semantic Web Portals 811

4. A. S. Pollitt, “The key role of classification and indexing in view-based searching,” University
of Huddersfield, UK, Tech. Rep., 1998, http://www.ifla.org/IV/ifla63/63polst.pdf.

5. M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Lee, “Finding the flow
in web site search,” CACM, vol. 45, no. 9, pp. 42–49, 2002.

6. E. Hyvönen, S. Saarela, and K. Viljanen, “Application of ontology-based techniques to view-
based semantic search and browsing,” in Proceedings of the First European Semantic Web
Symposium, May 10-12, Heraklion, Greece. Springer–Verlag, Berlin, 2004.

7. E. Hyvönen, M. Holi, and K. Viljanen, “Designing and creating a web site based on RDF
content,” in Proceedings of WWW2004 Workshop on Application Design, Development, and
Implementation Issues in the Semantic Web, NewYork, USA. CEUR Workshop Proceedings,
Vol-105, 2004, http://ceur-ws.org.

8. E. Hyvönen, M. Junnila, S. Kettula, E. Mäkelä, S. Saarela, M. Salminen, A. Syreeni, A. Valo,
and K. Viljanen, “Finnish Museums on the Semantic Web. User’s perspective on MuseumFin-
land,” in Proceedings of Museums and the Web 2004 (MW2004), Seleted Papers, Arlington,
Virginia, USA, 2004, http://www.archimuse.com/mw2004/papers/hyvonen/hyvonen.html.

9. E. Hyvönen, M. Salminen, S. Kettula, and M. Junnila, “A content creation process for the
Semantic Web,” in Proceeding of OntoLex 2004: Ontologies and Lexical Resources in Dis-
tributed Environments, May 29, Lisbon, Portugal, 2004.

10. M. Laukkanen, K. Viljanen, M. Apiola, P. Lindgren, and E. Hyvönen, “Towards ontology-
based yellow page services,” in Proceedings of WWW2004 Workshop on Application Design,
Development, and Implementation Issues in the Semantic Web, New York, USA. CEUR
Workshop Proceedings, Vol-105, 2004, http://ceur-ws.org.

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 812–822, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Applying Semantic Web Technology to the Life Cycle
Support of Complex Engineering Assets

David Price and Rob Bodington

Eurostep Limited, Cwttir Lane, St. Asaph, Denbighshire, LL17 0LQ, UK
david.price@eurostep.com

Abstract. Complex engineering assets, such as ships and aircraft, are designed
to be in-service for many years. Over its life, the support of such an asset costs
an organization many times more than the original cost of the asset itself. An
industry/government initiative has resulted in an International Standard
information model aimed at satisfying three significant business requirements
for owners of these assets: 1) reducing the cost of total ownership of such
assets, 2) protecting the investment in produce data through life, and 3)
increasing the use of the asset to deliver enhanced business performance. This
standard, called Product Life Cycle Support (PLCS), defines a domain-specific,
but flexible, information model designed to be tailored by using organizations
through the use of Reference Data. This paper describes the approach used to
take advantage of the Web Ontology Language (OWL) in the definition of
Reference Data and how it is being applied in pilot projects. The use of
Semantic Web technology for Reference Data is a first step towards the
application of that technology in the Life Cycle Support domain. The
relationship between the information model, and its modelling language called
EXPRESS, and OWL is also explored.

1 What Is Product Life Cycle Support?

Product Life Cycle Support (PLCS) is an ISO standard for the support of complex
engineering assets, such as ships and aircraft, through life. PLCS defines a
comprehensive information model for describing a set of products needing support
and the work required to sustain such products in an operational condition. Because of
its broad scope and variety of using organizations, the PLCS information model is
designed to be used in conjunction with Reference Data (RD). Reference Data is used
to extend the semantics of the information model using a classification capability
designed into the information model itself. PLCS data instances may be classified
using a, potentially external, library of Reference Data.

Formally, PLCS is ISO 10303-239 Product Life Cycle Support [1] and is one of a
suite of standards called STEP – the Standard for the Exchange of Product Model
Data. Other standards that are part of STEP have been successfully deployed on major
industrial projects such as the Eurofighter Typhoon aircraft program where the prime
partners used STEP to exchange product data. Organizations have “reduced design
development times by 10 to 40 percent, and realized cost savings of 5 to 30 percent in

Applying Semantic Web Technology to the Life Cycle Support 813

the management of technical data” [2] through the use of STEP. The STEP standards
are defined in ISO Technical Committee 184, Subcommittee 4 Industrial Data [3].

Figure 1 shows the relationship between the PLCS information model and the
Reference Data. The full semantics required by implementations include those
defined in the information model and those defined in the Reference Data.

PLCS Requirements

PLCS Information Model PLCS Reference Data

Fig. 1. The Relationship between the PLCS Information Model and Reference Data

As an example, the PLCS information model includes the representation of an activity
and that the activity is performed using a chosen method. However, it does not
standardize the different kinds of activities, such as the maintenance activities repair
or replace. Instead, those concepts are defined in the Reference Data.

2 More on Reference Data

In the PLCS context, a Reference Data Library (RDL) is a set of Reference Data
made available to a PLCS implementation. For example, an aircraft Health and Usage
Monitoring System (HUMS) may use PLCS to provide information about the state of
the aircraft to a Maintenance Management System (MMS). Rather than including all
the details about particular equipment fitted to the aircraft, both the HUMS and the
MMS applications have access to the RDL and references to the categories of
equipment in the RDL are provided to the MMS. The properties of the types of
equipment are then available to the MMS from the RDL. Figure 2 illustrates that
scenario.

814 D. Price and R. Bodington

Reference Data
Library

XML exchange
document

MMS

translate
to PLCS

translate
from PLCS

classification

HUMS

Health and Usage
Monitoring System
on board an aircraft

Maintenance
Management

System

Fig. 2. PLCS Data Exchange Referencing Classes in a Reference Data Library

Given the cross-organizational nature of some of the scenarios for PLCS usage, it is
also clear that significant portions of a Reference Data Library can be shared across
industry. In fact, the organizations that created the PLCS information model have an
initiative underway to create a standard set of core Reference Data in the Organization
for the Advancement of Structured Information Standards (OASIS). However, it is
expected that each implementing organization will extend the standard Reference
Data.

The PLCS information model is written using the ISO EXPRESS language [4].
EXPRESS is a structurally object-oriented information modeling language. A simple
example of EXPRESS entity data types is shown in Figure 3 using the graphical
representation of EXPRESS called EXPRESS-G and using the EXPRESS lexical
form. One issue arising from the PLCS use of Reference Data is defining the specific
relationship between the EXPRESS constructs and the RDL. In order to ensure the
appropriate use of Reference Data with respect to the information model, the links to
the elements in that model from the Reference Data are being defined in that standard
core RDL. In order to maintain the integrity of the information model-RDL links,
organization-specific extensions to the RDL are only allowed to be related to the
standard RDL, rather than the information model itself.

PLCS is, therefore, actually the combination of an ISO standardized EXPRESS
information model, a related implementation method (e.g. XML exchange document)
and industry-standardized Reference Data that together define a framework for
organization-specific extension and use in Life Cycle Support applications.

3 Implementing PLCS

The broad scope of the PLCS information model supports an extensive business
process model [5]. It is unlikely that any individual application will support the

Applying Semantic Web Technology to the Life Cycle Support 815

ENTITY Activity_method;
id : STRING;
consequence : STRING;
END_ENTITY;

ENTITY Activity;
id : STRING;
name : STRING;
chosen_method : Activity_method;
END_ENTITY;

ENTITY Maintenance_activity
SUBTYPE OF (Activity);
END_ENTITY;

ENTITY Clean
SUBTYPE OF (Maintenance_activity);
END_ENTITY;

ENTITY Replace
SUBTYPE OF (Maintenance_activity);
END_ENTITY;

ENTITY Repair
SUBTYPE OF (Maintenance_activity);
END_ENTITY;

Fig. 3. A Simple Example of EXPRESS Entity Data Types

complete PLCS information model, or that the complete scope of the PLCS business
processes will be deployed immediately. Therefore, a number of business critical
process flows have been identified along with the subsets of the information model
required to support these process. These subsets of the information model are referred
to as Data Exchange Sets (DEXs). In order to support implementations of DEXs,
usage guidance is developed and will be published through the OASIS Product Life
Cycle Support Technical Committee.

The DEXs are defined using an XML-based document publication facility called
DEXLib. As the DEX is where guidance related to implementation is defined,
DEXLib is also the place where the standard Reference Data is defined. As was
mentioned previously, how the Reference Data relates to the PLCS EXPRESS
information model is also defined as part of the Reference Data Library.

For each DEX, a related XML Schema is generated for use as the data exchange
implementation method and is standardized in OASIS as well. An in-process ISO
mapping from EXPRESS to XML Schema [6] is implemented in DEXLib.

For many planned applications of PLCS, the Reference Data Libraries are expected to
be very large hierarchies of classes and properties. For example, a library of
equipment types could contain tens of thousands of types with numerous properties
associated with each type. It is expected that they will be made available via the
Internet in many cases so that these large libraries need not be duplicated within every
implementing organization.

816 D. Price and R. Bodington

Based on the PLCS architecture, implementing a DEX includes at least the following
steps:

1. selection, or creation, of the appropriate DEX(s) based on the particular systems

being integrated and the business process being supported;
2. analysis of the application systems involved to identify the data requirements from

each and to identify which of those requirements map to PLCS Reference Data;
3. definition of organization-specific extensions to the standard Reference Data;
4. development of pre- and post-processing software to read and write the DEX

XML documents for data exchange that use the standard and organization-specific
reference data;

5. testing and operational deployment of the DEX implementation.

4 The Requirements on Reference Data

The initial usage scenarios for PLCS implementation are systems integration projects
based on data exchange. Given that, and the PLCS framework, a set of requirements
arise for the creation, management and operational use of Reference Data. At a high
level, these requirements are:

1. a method for representing the PLCS EXPRESS model concepts in order to be able

to define the relationship of the standard Reference Data to that model;
2. a method for defining classes, a class hierarchy, properties of the classes and the

necessary associated documentation;
3. a method for publishing the standard Reference Data easily allowing browsing and

operational use both on the Internet and in applications internal to the
implementing organization;

4. a method by which organization-specific extensions to the standard Reference
Data can be defined, including formally relating those extensions to the standard
Reference Data;

5. a method by which the organization-specific extensions may be integrated into the
standard Reference Data over time and as appropriate;

6. enabling Web-centric implementation;
7. support for very large Reference Data Libraries;
8. use of technology supporting XML-based exchange mechanisms;
9. use of technology allowing Reference Data to be embedded, exchanged or

referenced;
10. support for the addition of business rules and constraints where required by the

usage scenario.

Non-functional requirements for PLCS implementation are also important. Use of
information technology that is broad-based and for which experience already exists in
implementing organizations is seen as critical given the broad scope and long life of
PLCS applications.

Applying Semantic Web Technology to the Life Cycle Support 817

5 Our Conclusion: Use OWL for Reference Data

Several approaches for PLCS Reference data were considered. Initially, a project
specific XML DTD was defined and integrated into DEXLib. Two other ISO
standards, ISO 15926 Process Plants including Oil and Gas facilities life-cycle data
[7] and ISO 13584 PLIB - Parts Library [8], were then considered. The publication of
the OWL Candidate Recommendation raised its profile in the PLCS community and it
was included in the analysis. After comparing the requirements against the
capabilities of each approach, considering the non-functional requirements and after
early successes based on the use of the Stanford University Protégé tool and its OWL
Plug-in, it was clear that OWL was the best choice for the PLCS Reference Data
Library. We demonstrated and recommended OWL and Protégé to the OASIS PLCS
Technical Committee and the approach was accepted.

The rationale for the choice of OWL for the PLCS RDL included the following:

OWL satisfies the RDL modelling requirements with its support for classes,
multiple inheritance, properties, datatypes, instances, and reuse of ontologies;
the Object Management Group has support for OWL under development [9]
resulting in a graphical Reference Data Language standard;
OWL satisfies RDL IT requirements having an XML syntax and being Web-
enabled;
OWL aligns well with the ISO standards involving reference data we considered,
particularly ISO 15926, and so reuse of Reference Data may be possible;
industry and academic interest and support including open-source tools;
proven support for very large libraries; and
it was easy to envision how Semantic Web technologies might be used in life cycle
support applications in the future, and choosing OWL sets the stage for evolution
in that direction.

6 Pilot Projects

PLCS pilot projects implementing the approach described in this paper are currently
underway. These pilot projects are coordinated with the OASIS PLCS Technical
Committee. At present, the pilot projects are being driven by the Ministries of
Defence in the United Kingdom, Sweden and Norway. Figure 4 shows the systems,
XML data exchange document, standard Reference Data, and organization-specific
Reference Data.. The systems involved are Maintenance Feedback systems, As-
Operated Configuration Management systems and Maintenance Planning systems.

The approach taken with OWL and the Reference Data in support of these pilot
projects has four major aspects:

1. the translation of the subset of the PLCS EXPRESS model to which the PLCS

classification capability can be applied into OWL;

818 D. Price and R. Bodington

MoD Reference
Data Extensions

DEX-based XML
data exchange file

System A System B

subClassOf

classification

translate
to PLCS

translate
from PLCS

classification

PLCS Standard
Reference Data

Fig. 4. Scenario used in the MoD PLCS Pilot Projects

2. the definition of the standard RDL OWL classes and their relationship to the OWL

representation of the EXPRESS model;
3. the organization-extensions to the standard RDL OWL classes;
4. supporting the documentation of the RDL OWL classes and properties.

For documentation, the decision was made to use an OWL representation of the
Dublin Core [10] as annotation properties. This approach also avoided the need to
define class-of-class relationships in the OWL ontology so that the RDL is OWL DL.

An XSLT stylesheet was developed to translate from the XML representation of the
PLCS EXPRESS into OWL. Only a subset of the EXPRESS was mapped. The
EXPRESS entity types that can be classified according to PLCS are mapped into
OWL classes. The EXPRESS supertype/subtype graph is mapped into the OWL class
hierarchy as well.

The Reference Data itself is defined as OWL classes, including the class hierarchy,
and OWL properties. After considering the semantics of what the combination of the
EXPRESS schema as OWL and the Reference Data as OWL meant, it was
determined that the OWL classes representing Reference Data are actually subclasses
of those representing the EXPRESS entity types which they can classify. As was
shown in Figure 1, completing the semantics of the model is left to the Reference
Data.

Finally, the organization-specific Reference Data is defined by the pilot projects as
OWL classes and properties. The organization-specific ontologies use the OWL
import capability to include the entire standard PLCS ontology and can then extend it
as required. However, extension is limited to defining subclasses of the standard
Reference Data classes to ensure that their semantics are properly defined with
respect to the PLCS information model.

Applying Semantic Web Technology to the Life Cycle Support 819

7 Related Sources of Reference Data for the Pilot Projects

For the MoD pilot projects, much of the required Reference Data for PLCS already
exists. The MoDs, NATO, ISO and other organizations publish standards, catalogues
and classification schemes that can be reused for PLCS.

One such source is a standard aimed and large scale, data warehouse-based
applications in the Oil and Gas industry, ISO 15926 [7]. ISO 15926 is also known as
the EPISTLE Framework. The basis of ISO 15926 is a very generic, 4-dimensional
upper ontology written using EXPRESS, standardized as ISO 15926-2 and also
known as the EPISTLE Core Model [11]. ISO 15926-2 is aimed at supporting a
universal scope and therefore any domain semantics are represented using reference
data in a manner similar to that used for PLCS. An initial set of Oil and Gas reference
data is undergoing standardization as ISO 15926-4. Efforts are underway to reuse ISO
15926-4 reference data as part of the PLCS pilot implementations.

8 Making Use of the Full Semantic Web Capabilities

The proper relationship between the STEP suite of standards and the Semantic Web is
not obvious. STEP was essentially designed to be a data exchange standard and the
EXPRESS language is based on a type-instance paradigm without any expectation for
use with inference engines or reasoners.

A straightforward mapping from the STEP EXPRESS models to OWL can be defined
that covers many of the EXPRESS constructs used in those standards. For example,
the EXPRESS entity type hierarchy can map to an OWL class hierarchy. The
EXPRESS select types can map to OWL classes defined as unions of classes and
become part of the OWL class hierarchy as well. However, some of the EXPRESS
models include the capability to exchange the definitions of categories and classes.
Therefore, some entity instances based on STEP models represent what would
properly be defined as OWL classes in an ontology while others would properly map
to OWL individuals. As the determination about which entity types model the concept
of a class and which are themselves classes is model-specific, a generic mapping from
EXPRESS to OWL supporting reasoning is not possible. STEP schema-specific
mappings are required. A prototype EXPRESS to OWL translator is under
development as an open-source project called Express for Free [12]. Once that is
complete, the translation of the PLCS Reference Data and associated DEX XML data
exchange documents into an OWL ontology can begin to be investigated properly.

The benefits of the use of Semantic Web technology in support of the long-life assets
that are the domain of PLCS are clear. Rather than integrating various support
applications, a knowledge base of the entire history of the asset can be built and used
to more efficiently maintain that asset. Because of the distributed nature of the
Semantic Web technology, that history does not have to be maintained in a single
repository in order to support reasoners and other applications. Each creator of
engineering data about the asset can simply publish that data into the organization

820 D. Price and R. Bodington

Intranet. While the other standards in the STEP suite do not all have the same long-
life context, it is expected that a similar approach can be applied. Those standards
include the following domains: Configuration Controlled 3D Design, Electronic
assembly, interconnect, and packaging design, Ship structures, and Systems
engineering data representation.

Figure 5 illustrates the example of a United Kingdom Ministry of Defence (MoD)
Maintenance Management System exporting or publishing data about tasks performed
as part of an OWL repository. The individuals related to those tasks can be aggregated
with the existing information related to a specific MoD ship, in this case HMS
Illustrious. The PLCS RDL and the MoD-specific extensions that are currently being
developed to support the DEX-based exchange scenarios can be the basis for this
future scenario. That scenario enables automation, through reasoning and other
technologies, that will become more prevalent in the day-to-day operations of the
MoD over the coming years.

MoD Reference
Data Extensions

Ontology

subClassOf

HMS Illustrious
Configuration
Management
Repository

type
type

type

my data

import

PLCS translator
algorithms

OWL API

MoD SystemMoD Maintenance System

read/write

MMS

PLCS Standard
Reference Data

Ontology

Fig. 5. Publish Maintenance Data In a Semantic Web Environment

While Figure 5 shows a Maintenance Management System publishing information
about maintenance performed on a particular ship, a more interesting use of the
Semantic Web capabilities might be based on the periodic publications of information
about the ship such as distance traveled, oceans in which the travel occurred, weather
conditions under which the travel occurred, and current location. Then, based on that
information and other information from naval shipyards including their location,
availability of spare parts and skilled workers, a future maintenance activity can be
planned using an intelligent agent. This scenario is shown in Figure 6.

Applying Semantic Web Technology to the Life Cycle Support 821

Onboard Location
Management System

distance = 8000km

distance = 16000km

MoD System
Shore-based Maintenance

Planning System

MPS

Ship data

Report to shipyard
for engine maintenance

Onboard Location
Management System

Fig. 6. Automated planning of ship maintenance

9 Conclusions

This paper describes an approach for the use of OWL in the context of supporting a
complex asset over its long life. The initial data exchange scenario does not take full
advantage of the Semantic Web capabilities typically enabled through the use of
OWL. However, the approach is a significant first step in that direction by an active
group within the STEP community – a community with more than 15 years of
models, and modelling expertise, that can be applied across many engineering
domains.

The next steps in the evolution of STEP towards full use of the Semantic Web are
being investigated. The relationship between the EXPRESS language and OWL will
be formally defined, likely in an ISO standard mapping between the languages. In the
longer term, the adoption of Semantic Web languages such as OWL by the STEP
community modellers in domains where an ontological approach is required will
certainly be proposed.

The relationship of OWL and other standards within the same ISO subcommittee
producing STEP is also being investigated. The OMPEK (Ontologies for Modeling
Process Engineering Knowledge) [13] project is exploring the use of ISO 15926 as an
upper level ontology by mapping it into OWL. ISO 15926 is also the basis for some
of the PLCS Reference Data described in this paper. Synergy between these two
activities is just beginning to be explored but may also provide another means for the
application of Semantic Web technology to the ISO STEP-standardized engineering
disciplines.

822 D. Price and R. Bodington

References

[1] ISO 10303-239, Industrial automation systems and integration — Product data
representation and exchange — Part 239: Application protocols: Product life cycle
support.

[2] Introducing STEP — The Foundation for Product Data Exchange in the Aerospace and
Defence Sectors, National Research Council Canada. Available on the Internet at
http://strategis.ic.gc.ca/epic/internet/inad-ad.nsf/en/ad03581e.html.

[3] SC4 Online. Available on the Internet at http://www.tc184-sc4.org.
[4] ISO 10303-11:2004, Industrial automation systems and integration — Product data

representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual.

[5] PLCS Process Model, PLCS, Inc. Available on the Internet at
http://www.plcsinc.org/process/index.htm.

[6] ISO 10303-28, Industrial automation systems and integration — Product data
representation and exchange — Part 28: Implementation methods: EXPRESS to XML
Schema bindings.

[7] ISO 15926, Industrial automation systems and integration — Integration of life-cycle data
for process plants including oil and gas production facilities.

[8] ISO 13584, Industrial automation systems and integration — Parts library.
[9] Object Management Group Ontology Definition Metamodel Request For Proposal.

Available on the Internet at http://www.omg.org/docs/ad/03-03-40.pdf
[10] Dublin Core Metadata Initiative Metadata Terms. Available on the Internet at

http://www.dublincore.org/documents/dcmi-terms/.
[11] Standard Upper Ontology Working Group – 4D Ontology. Available on the Internet at

http://suo.ieee.org/SUO/SUO-4D/index.html.
[12] exff is exPRESS for free . Available on the Internet at http://www.exff.org.
[13] The OMPEK (Ontologies for Modeling Process Engineering Knowledge) Project.

Available on the Internet at http://www.ompek.org.

ORIENT: Integrate Ontology Engineering into
Industry Tooling Environment�

Lei Zhang1, Yong Yu1, Jing Lu1, ChenXi Lin1,
KeWei Tu1, MingChuan Guo1, Zhuo Zhang1,

GuoTong Xie2, Zhong Su2, and Yue Pan2

1 APEX Data and Knowledge Management Lab,
Department of Computer Science and Engineering,

Shanghai JiaoTong University, Shanghai, 200030, China.
{zhanglei,yyu,robertlu,linchenxi,tkw,gmc,zhuoz}@apex.sjtu.edu.cn

2 IBM China Research Lab
NO.7, 5th Ave., ShangDi, Beijing, 100085, China.

{xieguot,suzhong,panyue}@cn.ibm.com

Abstract. Orient is a project to develop an ontology engineering tool
that integrates into existing industry tooling environments – the Eclipse
platform and the WebSphere Studio developing tools family. This paper
describes how two important issues are addressed during the project,
namely tool integration and scalability. We show how Orient morphs
into the Eclipse platform and achieves UI and data level integration
with the Eclipse platform and other modelling tools. We also describe
how we implemented a scalable RDF(S) storage, query, manipulation
and inference mechanism on top of a relational database. In particular,
we report the empirical performance of our RDF(S) closure inference
algorithm on a DB2 database.

1 Introduction

Ontology is the backbone that provids semantics to the Semantic Web. The de-
velopment of the Semantic Web thus depends heavily on the engineering of high
quality ontologies. Numerous tools supporting this task have been developed in
the past such as Protégé [1], OilEd [2] and WebODE [3]. Based on the R&D
experiences and results of these tools, we initiated the Orient (Ontology en-
gineeRIng ENvrionmenT) project1 that develops an ontology engineering tool
that integrates into existing industry tooling environments – the open-source
Eclipse platform [4] and the WebSphere StudioTM developing tools family.

In this paper, we describe how two important issues are addressed during the
project, namely tool integration and scalability. The importance of tool integra-
tion comes from three requirements on the tool and can not be underestimated.
� Opinions expressed and claims made in this paper are of the authors. They do not

represent the opinions and claims of the International Business Machine Corporation.
1 http://apex.sjtu.edu.cn/projects/orient/, also available from IBM Semantics Toolkit

at http://www.alphaworks.ibm.com/tech/semanticstk

S.A. McIlraith et al. (Eds.): ISWC 2004, LNCS 3298, pp. 823–837, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

824 L. Zhang et al.

First, to be a complete ontology engineering tool, it must integrate different
tools for different sub-tasks of ontology engineering such as building, mapping,
merging and evaluation. Second, because applying ontologies in real applications
requires the tool be used together with other tools to accomplish a certain task,
tool integration is thus required to reduce the cost of switching between different
tools. Finally, if the tool can be integrated with exisiting tooling environment
e.g. the Eclipse platform and the WebSphere Developing tools family, it will be
much more developer-friendly and easier to use. The success story of the Protégé
tool on the integration of numerous plugins also remind us on the advantages of
tool integration. In the Orient project, instead of designing the tool as a stand-
alone application, we decided to build it as a set of Eclipse plugins that make it
morph into the Eclipse platform. This strategy proves to be effective in satisfy-
ing the above requirements and achieves both data and UI level integration with
other tools. In section 5, an example showing how Orient can be integrated
with an UML editing tool is presented. Futhermore, because WebSphere Studio
developing tools are also built on the Eclipse platform, this strategy paves a
direct way to the product family.

In addition to tool integration, scalability is another important issue in Ori-
ent. Since ontologies2 in real applications tend to have a large size, managing
large volume ontology in industry applications is thus not a feature but a neces-
sity. In this paper, we describe how we implemented a scalable RDF(S) storage,
query, manipulation and inference mechanizm on top of a relational database
and report the empirical performance of this implementation. In particular, we
describe how an algorithm is carefully designed to calculate RDF(S) closure on
a relational database and give the experiment result of its performance test. To
our best knowledge, we do not know any previous report on RDF(S) closure
inference performance on databases yet, although there are reports on RDF(S)
storage and query performance on databases e.g. RQL[5] and Jena2[6].

The rest of the paper is organized as follows. Section 2 introduces the Eclipse
platform and section 3 describes the Eclipse-based Orient architecture. We then
describe the integration with Eclipse UI in section 4 and the integration with
other modelling tools in section 5. The RDF(S) storage, query, manipulation
and inference implementation and empirical performance analysis is presented
in section 6. We conclude this paper in section 7.

2 Eclipse Tools Integration Platform

As stated in its technical overview [4], Eclipse is an open extensible IDE for
anything and nothing in particular. It provides a unified mechanism to expose
extension points and develop plugins that leads to seamlessly-integrated tools.
The Eclipse architecture is designed around the concepts of plugins, extension
points and extensions. New tools and functionalities can be integrated into the

2 In this paper, the term ontology refers to a knowledge base that includes concepts,
relations, instances and instance relations that together model a domain

ORIENT: Integrate Ontology Engineering 825

platform as plugins. Through this plugin architecture, Eclipse platform thus
provides a solid foundation for tools integration.

Besides its well-designed plugin architecture, the Eclipse platform also offers
an extensible user interface paradigm for various plugins to share and extend.
The UI paradigm is based on editors, views and perspectives. A perspective
groups and arranges a set of editors and views on the screen. New types of
editors, views and perspectives can be added to the platform UI through its
plugin mechanism. Actually, Orient adds its own perspective with 8 views and
editors to the Eclipse platform.

The above gives a very brief description of the Eclipse platform. We re-
fer interested readers to the technical overview [4] and various articles on the
Eclipse.org web site for more in-depth information about the Eclipse platform.
The WebSphere Studio developing tools are also built on the Eclipse platform.

3 ORIENT Architecture

In the design of the Orient architecture, the most influential factor is tool inte-
gration at both the data and UI level . The demanding need for tool integration
actually arises from three aspects. Firstly, ontology engineering has a complex
life cycle [7,8] that needs different tools for different sub-tasks (e.g. building,
mapping, merging and evaluation, etc.). Although the sub-task tools may be de-
veloped by different people at different time, they must be integrated to form a
complete ontology engineering environment. For example, it will be preferable if
the ontology evaluation tool can be tightly integrated with the ontology building
tool to provide real-time feedback on the quality of the ontology.

Secondly, applying ontology in real applications requires that the ontology
engineering tool be used together with other tools to accomplish a certain task.
For example, annotating Web pages with semantic tags needs both an ontology
browsing tool and an annotation tool. Building and testing a Semantic Portal
[9] may involve ontology building, portal customization, and portal generation
tools (e.g. in OntoWeaver [10]). Users of these tools have to switch back and forth
between them to get their work done. If the tools can be seamlessly integrated
at both the data and UI level in a single development environment, the cost
associated with switching between them will be greatly reduced. In addition, if
other modelling tools (e.g. ER and UML tools) can be integrated, it will enable
users not familiar with ontology engineering to use our tool through another
familiar tool. It can also leverage existing knowledge on data and application
modelling to help them learn and get familiar with ontology engineering. This
actually is in accordance with many researchers’ opinion that the Semantic Web
should come as an evolution rather than a revolution.

Finally, it will be much more developer-friendly and easier to use, if the tool
can be integrated with the Eclipse platform or the WebSphere Developing tools
product family and appear not as a brand new tool for users to learn but as a
new integrated set of functionalities. In addition, the user base of the industry
tooling environments will also help the ontology engineering tool reach a wider

826 L. Zhang et al.

Legend:

Eclipse
Plugin

Eclipse
extension point

Eclipse
Workbench

Access Control

RDF Knowledge Model

RDF UI

RDF I/O and Inference

Models Layer

Tools Layer

Layer
I/O and Inference

DB

Other Tools

O
R

IE
N

T
 W

iz
ar

d
File

Fig. 1. The Orient architecture using RDF plugins as an example

developer community. We demonstrate how Orient morphs into the Eclipse
platform in section 4.

Based on the above considerations, we decided not to design the tool as a
new stand-alone application but as a set of loosely-coupled cooperative Eclipse
plugins. The plugins are organized into a three layer architecture as shown in
Fig.1. RDF related plugins are used in Fig.1 as concrete examples. The archi-
tecture layers are defined and separated by Eclipse extension points. Plugins
in each layer are only required to correctly extend (implement) the extension
points. This enables flexible mix-and-match of different plugins (possibly from
different vendors) to compose an ontology engineering tool. For example, one
may choose to use an RDF DB plugin to provide storage function for an OWL
knowledge model plugin. Actually, the Orient Wizard plugin (at the left side
of Fig.1) does exactly the job of helping users compose and manage plugins from
different layers.

In the architecture, the models layer provides an in-memory model and ac-
cess API for the ontology and it enables the sharing of the same model among
different tools in the tools layer. For tools using different models, a translation
between models is needed to integrate them at the data level. An example of
this is shown in section 5.

Note that the lowest layer in the architecture is I/O and inference layer that
manages the storage and inference of ontologies. Because it is usually hard to load
a very large ontology entirely into the main memory, better inference algorithm
can be designed if we know how the ontology is stored on the permanent storage.
At the same time, the design of the inference algorithm may also impose certain
requirements on the storage schema. Therefore, we purposely put the inference
function down in this layer for better scalability.

Finally, this Eclipse plugin-centered architecture makes Orient seamlessly
morph into the Eclipse platform. This greatly improves the tool’s usability and
lays a foundation for tool integration.

ORIENT: Integrate Ontology Engineering 827

4 Integration with the Eclipse Platform

In this section, we show several examples of the UI level integration of the
Orient tool with the Eclipse platform.

First, Orient uses an ontology file to represent an ontology in the Eclipse
platform. The file stores information such as which plugins should be activated
to access the ontology, where the ontology is stored, etc. Once the file is opened,
an Orient perspective with editors and views will be opened for editing the
ontology. In this way, ontologies can be put as files into any existing Eclipse
project and sit side-by-side with other resources in the project. This makes in-
corporating, using and managing ontologies in a project very easy. Furthermore,
switching between Orient and other tools can be done by simply double-clicking
on different resources in an Eclipse project. This is where tool integration helps
user quickly switch between different tools to accomplish a task in a project.
In addition to ontology files, Orient also supports creating ontology projects
that contain one or more ontologies. Fig.2 shows the Orient New Ontology
File/Project Wizard in the WebSphere Studio Application Developer V5.1.

Fig. 2. New Ontology File/Project wizard Fig. 3. RDF Import/Export Wizard

Second, Orient provides an ontology import/export function for users
to import/export ontologyes stored in Orient from/to external files. This
import/export functionality is also integrated with the general Eclipse im-
port/export UI and can be accessed very easily. Fig.3 shows a screenshot of
the Orient RDF import function entry in the WebSphere Studio Application
Developer V5.1 import UI.

Finally, Orient offers a dedicated Eclipse perspective that groups its ontol-
ogy related views and editors. Fig.4 is a screen shot of the Orient perspective.
Currently, the Orient perspective contains one editor and eight views for users
to view and edit an RDF ontology. The eight views are grouped into list views,
hierarchy views and information views. The three list views (i.e. Resource List,
Class List and Property List) show all the existing resources, classes and prop-
erties respectively. The two hierarchy views (i.e. Class Hierarchy and Property
Hierarchy) display the hierarchy trees of classes and properties. The three infor-
mation views are used to display detailed information of a resource, a class or a

828 L. Zhang et al.

Fig. 4. The Orient Perspective with EclipseUML

property respectively. The EclipseUML editor in the top right part of the figure
is explained in the next subsection.

5 Integration with Other Tools

The above section has demonstrated the UI level integration of Orient with the
Eclipse platform. What may be more important is how Orient is integrated
at the data level with other tools. In this section, we show how Orient can
be integrated at the data level with Eclipse tools that are based on the Ecore
model.

Ecore model is a central part of the Eclipse Modeling Framework (EMF)3.
Currently, it provides the class digram modeling capabilities of UML. For ex-
ample, Ecore provides modeling elements such as EClass, EAttribute and
EReference etc. Several tools have been developed (or are under development)
based on the Ecore model. Eclipse EMF plugin is a tool that provides a Java
framework and code generation facility for building tools and other applications
based on the Ecore model. EclipseUML4 is a simple graphical UML editing tool
that bases its model on Ecore. UML2 is an Eclipse tool project5 that develops
an Ecore and EMF-based tool for the UML 2.0 meta-model.
3 Ecore and EMF can be found at http://www.eclipse.org/emf
4 EclipseUML can be found at http://www.omondo.com
5 UML2 can be found at http://www.eclipse.org/uml2

ORIENT: Integrate Ontology Engineering 829

RDF UI Other Tools

RDF Knowledge Model Ecore Model

EMF Tool EclipseUML UML2 Other Tools

Translator
Model

Fig. 5. The Integration of Orient and Ecore Tools

As we have mentioned in section 3, if modeling tools such as UML can be
integrated with Orient, it will enable users not familiar with ontology engi-
neering to use Orient through another familiar tool (e.g. UML tool) and it can
also leverage existing industry knowledge on data and application modeling to
help users learn and get familiar with ontology engineering. This is the main
motivation to integrate Orient and the Ecore model based tools. The actual
data level integration is done through a model translator. The model translator
works between the Orient model layer and the Ecore model. It captures the
two sides’ model changes, translates the changes and applies them to the models
accordingly so as to keep them synchronized.

Fig.5 shows this idea visually. This integration enables users to utilize differ-
ent tools to work on the same model even if the model is expressed in different
formalisms. Users can, for example, first edit the model in a graphical UML tool
(e.g. EclipseUML) and then switch to Orient to view it through the RDF per-
spective and finally export it in RDF. On the contrary, users may also be able
to visualize an RDF model through a graphical UML tool and save it as a UML
model. This demonstrates the power of tool integration and how it benefits the
users.

However, the difficulties come from maximally preserving the model seman-
tics in the model translator. Currently, we are doing a translation between RDF
and Ecore in Orient. Detailed explaination of this translation is beyond the
scope of this paper. The following lists some important translation rules in the
current implementation:

– EClass elements of Ecore are converted as rdfs:Class resources and their
hierarchical relationships are preserved using rdfs:subClassOf.

– EAttribute elements in Ecore are converted as rdf:Property resources.
– EMF elements of types other than EClass and EAttribute, when converted

as RDF resources, take on their Ecore types(such as EReferences) as the
value of their rdf:type properties.

The current translation is by no means perfectly sound and complete. It is a
further research issue in ontology transformation and mapping and in ontology
development using UML [11].

Aided by the UI level tool integration, the results of the data level tool
integration are immediately visible to the end users. In Fig.4, Orient is actually
used together with EclipseUML. Both the Orient views and the EclipseUML
graphical editor are shown to the user (note the EclipseUML graphical editor at
the top right corner). Changes in each tool’s view will be instantly reflected in
the other tool’s view once the they are saved.

830 L. Zhang et al.

6 RDF(S) Storage, Query, Manipulation, and Inference

6.1 Query and Manipulation Through RQML

In the current Orient I/O and Inference Layer, a Default Orient RDF DB
plugin is implemented to provide RDF(S) storage, query, manipulation and in-
ference capabilities to the upper layers. For both users and programs to query
and manipulate RDF data in an uniform manner, a declarative RDF Query and
Manipulation Language (RQML) is defined in the plugin. Based on RQML, RDF
models on top of the I/O and inference layer can provide higher level object-
oriented APIs for easier program access. RQML is designed based on previous
RDF query languages such as RQL[5], RDQL[6] and SeRQL[12].

RQML tries to be maximally syntax-compatible with RDQL while at the
same time borrows features like path expression from SeRQL. In addition, it
also introduces some new commands not available in previous languages like
INSERT, DELETE and UPDATE. For example,

UPDATE (?p, <!http://employee/level>, ‘‘Senior Engineer’’)
WHERE (?p, <!http://employee/level>, ‘‘Engineer’’),

(?p, <!http://employee/hasCert>, ‘‘Linux’’).

6.2 Inference Capabilities

Reasoning on existing knowledge to discover implicit information is an important
process on the Semantic Web. It is also very useful in an ontology engineering
tool. Common queries such as what are the (direct and indirect) sub-classes and
instances of an exiting class, what instances has an interested relationship with
a given instance may all involve inference. According to the RDF Semantics doc-
ument [13], RDF(S) closure contains all the triples that can be inferred from an
RDF(S) ontology. In Orient, an algorithm for calculating the RDF(S) closure
is implemented to provide RDF(S) inference support. As we have metioned in
section 3, the inference algorithm is purposely embedded in the Default Orient
RDF DB plugin. This improves the performance of the inference algorithm on
a relational database. In section 6.5, we report the algorithm’s empirical perfor-
mance on a DB2 database. To our best knowledge, we do not know any previous
report on RDF(S) closure inference performance on databases yet, although there
are reports on RDF(S) storage and query performance on databases e.g. RQL[5]
and Jena2[6].

The RDF(S) closure calculation is based on a core subset of the RDF(S)
entailment rules defined in the RDF Semantics document [13] and can be used
in either full mode or incremental mode. In the full mode, RDF(S) closure is not
calculated until the plugin is told to do so and a full re-calculation is performed.
In the incremental mode, every modification to the RDF(S) ontology will trigger
a calculation on the change to the RDF(S) closure. The full mode is suitable for
batch update to the ontology and may take a long time to complete while the
incremental mode is suitable for fast response to small update. Once the RDF(S)
closure is calculated, it can be transparently queried and manipulated through

ORIENT: Integrate Ontology Engineering 831

RQML. At the same time, users of RQML can also distinguish between inferred
and non-inferred data in the closure and process them differently.

6.3 Storage Schema

In order to support efficient RQML processing and RDF(S) closure calculation,
we carefully designed a relational database schema to store RDF(S) ontology.
We followed the following principles in the design of the storage schema:

– For high performance RQML processing and RDF(S) closure calculation, we
trade storage space for speed.

– Although the storage schema should be able to handle arbitrary RDF(S)
data, it must optimize for normal data distribution and typical queries in
ontology engineering scenarios.

Table.1 lists the major database tables in the current storage schema design.
Since the RDFStatement table already holds all RDF triples, all other tables can
be seen as redundant. In addition, we store inferred data with non-inferred data
together in the tables. This can also be seen as a redundancy. However, this re-
dundancy design greatly facilitates and speeds up query processing and RDF(S)
closure calculation. For example, because inferred data are directly stored, an-
swering queries involving inference is almost as fast as queries without inference.
The drawback of this design is that much care must be taken to maintain con-
sistency among the tables.

To quickly answer typical queries about class hierarchies, property hierar-
chies/domains/ranges and instance types, the tables RDFSubClass, RDFSubProp,
RDFDomain, RDFRange and RDFType are created. They can quickly provide an-
swers to these typical queries. In order to support RQML literal comparison and
calculation, the RDFLiteralInteger, RDFLiteralFloat, RDFLiteralBoolean,
and RDFLiteralString talbes are created (not listed in Table.1) to hold com-
mon data type literals and leverage native SQL data type comparison and calcu-

Table 1. Major database tables

Table Name Table Description

RDFSubPropSubProp This table holds all triples (x, rdfs:subPropertyOf,
rdfs:subPropertyOf).

RDFSubProp This table holds all triples (x, rdfs:subPropertyOf, y).
RDFDomain This table holds all triples (x, rdfs:domain, y).
RDFRange This tables holds all triples (x, rdfs:range, y).
RDFSubClass This table holds all triples (x, rdfs:subClassOf, y).
RDFType This table holds all triples (x, rdf:type, y).
RDFStatement This table holds all triples (x, y, z).
RDFResource This table holds all RDF resources.
RDFUserProp This table holds the names of user specified properties.
RDFProp* These tables hold user specified property groups.

832 L. Zhang et al.

lation. We also borrowed Jena2’s Property Tables design [6] in the RDFUserProp
and RDFProp* tables to speed up property lookup.

In addition to the above considerations, the design of the tables are also
influenced by and closely related to the RDF(S) closure calculation algorithm
which is detailed in the next subsection.

6.4 RDF(S) Closure Calculation Algorithm

The closure calculation algorithm works in either full mode or incremental mode.
For brevity, we only describe the full mode here. The algorithm supports a core
subset of the RDF(S) entailment rules including rdf1,rdfs2 -- rdfs11 (as
defined in the RDF Semantics document [13]). We call these eleven rules the
rule set and the involved five RDFS vocabularies rdfs:domain, rdfs:range,
rdfs:type, rdfs:subPropertyOf, and rdfs:subClassOf the reserved vocab-
ularies. The rules are selected based on their importance and wide usage in
common RDF ontology engineering scenarios. Further development of Orient
may support more RDF(S) entailment rules.

A well known fast forward-chaining rule algorithm is Rete [14]. It minimizes
the impact to the rule system caused by the adding or removing of facts. However,
it still falls into repetitive loops if the rules contain cycles. Because the RDF(S)
rule set contains cycles, we try to manually remove them as much as possible to
obtain an almost one-pass algorithm. By analyzing the rule set, we found that
the cycles stem from the following two problems:

P1: The two transitive predicates rdfs:subPropertyOf and rdfs:subClassOf
give rise to cyclic repetitive calculation.

P2: The rules in the rule set and the rdfs:subPropertyOf predicate create
interdependent derivation relationships among the predicates.

However, scrutinizing the second problem P2 reveals that under certain cir-
cumstances the cyclic repetitive calculation can be reduced to just one pass.
Fig.6 shows a simplified graph of the predicates’ derivation relationships caused
by the rule set. Edge lables are names of the rules that cause the derivation
relation. Two set of derivation relations are omitted from the graph:

R1: Rules rdf1, rdfs2, rdfs3, rdfs4a and rdfs4b may derive rdf:type from
any predicate.

R2: Rule rdfs7 may derive any predicate from any predicate due to possible
rdfs:subPropertyOf relations.

The self loops caused by rdfs5, rdfs11, and rdfs9 in the figure actually rep-
resent the problem P1. Without considering P1, it is now clear from Fig.6 that
rdfs6, rdfs8, rdfs10 and R2 create big and complex loops in the derivation
graph. We now introduce the Original Semantics Assumption that removes these
loops.

ORIENT: Integrate Ontology Engineering 833

Other predicates

rdfs 7

rdfs 6

rdfs 8,10

rdfs:subClassOf
rdfs 9

rdfs:subPropertyOf
rdfs 7

rdf:type

rdfs 9rdfs 5 rdfs 11
rdfs:domain/range

rdfs 7
rdfs 2, 3

Fig. 6. Derivation Relationships among Predicates in The Rule Set

Original Semantics Assumption. Let A be the set of RDFS axiomatic triples
defined in the RDF Semantics document [13]. Let T be the closure of A
under the rule set. Let Ω be the closure of the current RDF knowledge base
under the rule set and R ⊆ Ω be the set of all the triples whose subject is
in the set {rdfs:domain, rdfs:range, rdfs:type, rdfs:subPropertyOf,
rdfs:subClassOf}. The original semantics assumption supposes that R ⊆ T .

This assumption actually assumes that the RDF knowledge base does not
strengthen the semantics of the five reserved RDF(S) vocabularies. They still
keep their original meaning defined by the axiomatic facts. In most RDF(S)
ontology engineering scenarios, this assumption is natural and can be satisfied
because most applications does not require the change of the original RDF(S)
semantics.

Under this assumption6, the rdfs6 and rdfs10 rules

rdfs6: (uuu rdf:type rdf:Property) → (uuu rdfs:subPropertyOf uuu)
rdfs10: (uuu rdf:type rdfs:Class) → (uuu rdfs:subClassOf uuu)

become trivial. If the rdf:type closure is obtained, the two rules can be applied
only once on the rdf:type triples and we can be sure that no more triples can be
obtained from them. That is, they can not create loops in the derivation graph.
Now let’s look at the rdfs8 rule:

rdfs8: (uuu rdf:type rdfs:Class) → (uuu rdfs:subClassOf rdfs:Resource)

Under the original semantics assumption, rdfs:subClassOf can not be other
property’s sub-property and rdfs:Resource can not be other resource’s sub-
class. Therefore if the rdf:type closure is obtained, this rule can be applied
only once on the rdf:type triples and we can be sure that no more triples can
be derived from it. Hence this rule can not create loops in the derivation graph
either. We can now safely remove the back lines caused by rdfs6, rdfs8, and
rdfs10 from Fig.6.

Finally, let’s review R2. Because of the original semantics assumption, the
rdfs:subPropertyOf relation can only hold from other predicates to the five
reserved vocabularies. Hence the rdfs7 rule can only create derivation relation
from “other predicates” to the five reserved vocabularies in Fig.6. If R2 is now
6 The Original Semantics Assumption is actually stronger than what we really needed.

However, it is easier to explain and understand.

834 L. Zhang et al.

drawn on Fig.6, the only loop it can create is the one between the “other predi-
cates” and the rdfs:subPropertyOf. However, this loop can be broken because
the rdfs:subPropertyOf closure actually can be independently calculated7.

Now, the only loops left in Fig.6 are the self loops. Except for these self
loops, our algorithm can thus calculate the entire closure in one pass. The al-
gorithm first adds the RDFS axiomatic facts into the database. It then calcu-
lates the rdfs:subPropertyOf and rdfs:subClassOf closure using a variant of
the Floyd algorithm. After that, the closures of rdfs:domain, rdfs:range and
rdf:type are obtained in this order without repetitive calculation because all
the closures they depend on are already obtained. Finally, we can calculate the
rdfs7 rule closure of the “other predicates”. Note that this closure can also be
gained without repetitive calculation if we follow the topology order created by
the rdfs:subPropertyOf relation among the “other predicates”. This one-pass
algorithm’s performance is confirmed by real data experiments shown in the next
subsection. The correctness is also verified using W3C RDF test cases.

6.5 Query and Inference Performance

In this section we report the results of the experiments performed to empirically
evaluate the performance of query and inference of the current Orient RDF DB
plugin. The inference performance test is first presented followed by the query
performance test.

Two data sets are used in the experiments. One is an artificial data set
called “T57” that consists of only rdfs:subClassOf and rdfs:subPropertyOf
relation triples that construct a class hierarchy tree and a property hierarchy
tree. Both the two trees have a maximum height of 7 and a constant fan-out of
5. Another data set is “WN”, which is the RDF representation of WordNet8.
All experiments are performed on a PC with one Pentium-4 2.4GHz CPU and
1GB memory running Windows XP Pro, using J2SDK 1.4.1 and Eclipse-SDK-
2.1.1 connecting to a local machine DB2 UDB V8.1 Workgroup Server. All data
are stored in the database. The inference time is measured as the time cost to
transform a database state of containing only original triples to one that also
containing all inferred triples. The query time is measured from the time when
the query is sent to the time when all results are fetched one by one from the
database.

In our one-pass RDF(S) closure inference algorithm, the major component
that determines the order of magnitude of time complexity is the calculation
of the transitive closure of rdfs:subPropertyOf and rdfs:subClassOf using
Floyd algorithm on databases. The T57 data set is specifically designed to mea-
sure the empirical time complexity of it. By growing the two trees in T57 via
adding one level of height each time (with constant fan-out of 5) until the height
of 7 is reached, a series of growing data set for inference is got. The result is
shown in Fig.7. The T57-1 line shows the relation between the inference time
7 For brevity, the detailed method is not shown here
8 Available at http://www.semanticweb.org/library/

ORIENT: Integrate Ontology Engineering 835

and the number of original triples. The T57-2 line shows the relation between
the inference time and the number of triples after inference.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

In
fe

re
nc

e
T

im
e

(s
)

Number of Triples

T57-1
T57-2
WN-1
WN-2

Fig. 7. RDF(S) Inference Performance

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 T

im
e

(s
)

Number of Triples After Inference

Q1
Q2
Q3
Q4

Fig. 8. RQML Query Performance

Different from T57, the WordNet data set has a very small RDF Schema
with a very large set of instances and instance relations. The instance data in
the four WordNet RDF files are sampled at the same speed. The number of
sampled triples are multiplied by 5 each time and the triples from the four files
are put together to get a series of growing data set for inference. The result is
also shown in Fig.7. The WN-1 line shows the relation between the inference
time and the original number of triples and the WN-2 line shows the relation
between the inference time and the number of triples after inference.

Both the X-axis and Y-axis of Fig.7 are in log10 scale. The two T57 lines
show a linear trend when the number of triples are large (> 1000). Linear regres-
sion analysis of the last four points at the end of each T57 line shows that the
slopes are 1.87 and 1.75 for T57-1 and T57-2 respectively. This indicates approx-
imately O(n1.87) and O(n1.75) time complexity. In theory, calculating transitive
closure using Floyd algorithm has worst-case time complexity O(n3). When the
algorithm is performed on a database, many factors of the RDBMS may further
affect the performance. Combining the experiment result, we tend to empirically
predicate that, when performed on a largely tree hierarchy ontology like T57 on
a relational database, the time complexity of our inference algorithm is around
O(n2).

Because the WordNet RDF data consists mostly of instance data, its number
of inferred triples and inference time are much lower than T57. It, however, shows
the same trend of linear relation in Fig.7. Linear regression analysis of the last
four data points at the end of each WN line indicates approximately O(n0.92) and
O(n0.93) time complexity. Similarly, we empirically expect that, when performed
on a largely instance data ontology like WordNet on a relational database, the
time complexity of our inference algorithm is around O(n).

We can see in Fig.7 that, in the experiments, the number of the triples after
inference is in linear proportion to that of the original triples.If a normal RDF(S)
ontology satisfies this property and the Original Semantics Assumption in section
6.4, with characteristics between T57 and WordNet, we empirically estimate that

836 L. Zhang et al.

its inference time complexity on a relational database is likely between O(n) and
O(n2). The n here can represent either the number of the original triples or the
number of the triples after inference.

The RQML query performance is tested on both T57 and WordNet data set
with inferred triples. We used the following four queries to test sub-class query,
simple query, query with join and query involving literals:

Q1: SELECT ?X WHERE (?X, <rdfs:subClassOf>, [aClass])
Q2: SELECT ?X WHERE (?X, <wn:similarTo>, [randomAdjective])
Q3: SELECT ?Y WHERE ([randomNoun] <wn:hyponymOf>, ?X),

(?X, <wn:wordForm>, ?Y)
Q4: SELECT ?X WHERE (?X, <wn:wordForm>, ?Y) SUCHTHAT ?Y=[randomWordForm]

Q1 is performed on the T57 data set to obtain all direct and in-direct
subclasses of a given class. For each T57 data sample, and for each height of the
tree hierarchy in that sample, Q1 is executed once using a class in that height.
The query time of Q1 is then obtained as the average of the execution times.
Q2, Q3 and Q4 are performed on the WordNet inferred data sets. The query
time is averaged over 1000 query executions by randomly selecting a WordNet
constant to replace the random constant in the above queries. The whole result
is shown in Fig.8.

Both axis of Fig.8 is in log10 scale. Lines in Fig.8 are in linear trend, especially
Q1. Linear regression analysis of the four lines shows approximately O(n0.84),
O(n0.89), O(n1.06), and O(n1.05) time complexity for them. In theory, the worst-
case time complexity of querying on a database table with index is O(n log n).
The actual query time also depends on the size of the result set. This test shows
that the query time has a strong tendency of linear time O(n) complexity and
the query is executed quite speedy.

Although the above experiments shows an encouraging query and inference
performance result, they are not very thorough and conclusive and the result
is still empirical. In the future, more experiments will be performed to further
verify the results obtained here.

7 Conclusion and Future Work

Orient is a project to develop an ontology engineering tool that integrates into
existing industry tooling environments. In this paper, we have described how we
addressed the tool integration and scalability issues in the project. By designing
Orient as a set of Eclipse plugins, we make Orient morph into the Eclipse
platform and achieve both data and UI level integration with other tools. We
have showed how we implemented a scalable RDF(S) storage, query, manipula-
tion and inference mechanism on top of relational databases. In particular, we
have reported the empirical performance of our RDF(S) closure inference algo-
rithm on a DB2 database. Future work of the Orient project includes adding
OWL support and better visualization methods, improving the integration with
Ecore and potentially XMI, and further optimizing and tuning the performance.

ORIENT: Integrate Ontology Engineering 837

References

1. H.Gennari, J., A.Musen, M., W.Fergerson, R., E.Grosso, W., Crubézy, M., Eriks-
son, H., F.Noy, N., W.Tu, S.: The evolution of Protégé: An environment for
knowledge-based systems development. Technical Report SMI-2002-0943, Stan-
ford Medical Informatics (2002)

2. Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OilEd: a reason-able ontol-
ogy editor for the semantic web. In: Proceedings of the Joint German/Austrian
Conference on AI. LNCS 2174 (2001) 396–408

3. Corcho, O., López, M.F., Pérez, A.G., Vicente, O.: WebODE: An integrated work-
bench for ontology representation, reasoning, and exchange. In: Proceedings of
EKAW 2002. LNCS 2473 (2002) 138–153

4. Eclipse.org: Eclipse platform technical overview. Technical report,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf (2003)

5. G.Karvounarakis, S.Alexaki, V.Christophides, D.Plexousakis, Scholl, M.: RQL: A
declarative query language for RDF. In: Proceedings of the Eleventh International
World Wide Web Conference (WWW02). (2002)

6. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In: Proceedings of the first International Workshop on Semantic
Web and Databases (SWDB), Berlin,Germany (2003) 131–150

7. López, M.F., Pérez, A.G., Amaya, M.D.R.: Ontology’s crossed life cycles. In:
Proceedings of the EKAW 2000. LNCS 1937 (2000) 65–79

8. Sure, Y., Studer, R.: On-To-Knowledge methodology - final version. Technical re-
port, Institute AIFB, University of Karlsruhe (2002) On-To-Knowledge Deliverable
18, available at http://www.ontoknowledge.org/downl/del18.pdf.

9. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: SEAL – a framework
for developing semantic web portals. In: Proceedings of the 18th British National
Conference on Databases. Volume 2097 of LNCS. (2001) 1–22

10. Lei, Y., Motta, E., Domingue, J.: Design of customized web applications with
OntoWeaver. In: Proceedings of the 2nd International Conference on Knowledge
Capture (KCAP 2003), FL, USA (2003) 54–61

11. Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., Smith,
J.: UML for ontology development. Knowledge Engineering Review 17 (2002)

12. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF Schema. In: Proceedings of the 1st Inter-
national Semantic Web Conference (ISWC02). LNCS 2342 (2002) 54–68

13. Hayes, P., McBride, B.: RDF Semantics. W3C Recommendation, W3C (2004)
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

14. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19 (1982) 17–37

Author Index

Aberer, Karl 107
Adachi, Shin 591
Akahani, Jun-ichi 741
Alani, Harith 576
Ashri, Ronald 304
Athanasis, Nikos 486

Baclawski, Kenneth 650
Balke, Wolf-Tilo 137
Bebee, Bradley 564
Bechhofer, Sean 350, 471, 668
Benjamins, Richard 782
Berrios, Daniel C. 767
Binder, Walter 605
Bodington, Rob 812
Bradshaw, Jeffrey M. 425
Brockmans, Sara 198
Broekstra, Jeen 122, 502

Cao, Tru Hoang 726
Carvalho, Robert E. 767
Christophides, Vassilis 486
Cimiano, Philipp 166
Clark, Kendall 564
Constantinescu, Ion 605
Contreras, Jesús 782
Corcho, Oscar 782
Cudré-Mauroux, Philippe 107
Cuenca Grau, Bernardo 620

Dalton, Jeff 425
De Blasio, Jacques-Albert 752
de Rijke, Maarten 518
Denker, Grit 304
Domingue, John 635
Dzbor, Martin 635

Eberhart, Andreas 198, 502
Edwards, Pete 152
Ehrig, Marc 122, 683
Esposito, Floriana 441
Etzioni, Oren 182
Euzenat, Jérôme 698

Faltings, Boi 605
Fanizzi, Nicola 441

Fergerson, Ray W. 229
Fikes, Richard 32
Fong, A.C.M. 726

Gessler, Damian 350
Goble, Carole 92, 350
Gray, W. Alex 365
Greenwood, Mark 92
Grimnes, Gunnar AAstrand 152
Guha, Ramanathan 32
Guo, MingChuan 823
Guo, Yuanbo 274
Gutierrez, Claudio 47

Haase, Peter 122, 502
Halevy, Alon 182
Hall, David R. 767
Hamasaki, Masahiro 591
Hasegawa, Tetsuo 752
Hauswirth, Manfred 107
Hayes, Jonathan 47
Heflin, Jeff 62, 274
Hendler, James 335
Heß, Andreas 320
Hiramatsu, Kaoru 741
Horrocks, Ian 471
Hui, Siu Cheung 726
Hull, Duncan 350
Hunter, Jane 534
Hyvönen, Eero 797

Iannone, Luigi 441

Jeffers, Renia 425
Johnston, Eddie 320

Kalfoglou, Yannis 576
Karger, David R. 214
Kawamura, Takahiro 752
Keller, Richard M. 767
Klein, Michel 259, 289
Knublauch, Holger 229
Kogut, Paul A. 650
Kokar, Mieczyslaw M. 650
Kotzinos, Dimitris 486
Kunnatur, Sandhya 259

840 Author Index

Kushmerick, Nicholas 320
Kuter, Ugur 335

Letkowski, Jerzy 650
Liebig, Thorsten 244
Lin, ChenXi 823
Little, Suzanne 534
Liu, Sandy 456
Löffler, Peter 198
López-Cobo, José Manuel 782
Lord, Phillip 350
Losada, Silvestre 782
Lu, Jing 823

Mäkelä, Eetu 797
Majithia, Shalil 365
Marvin, Darren 304
Marx, Maarten 518
Matheus, Christopher J. 650
McCool, Rob 32
McDowell, Luke 182
Menken, Maarten R. 17, 122
Mika, Peter 122
Motik, Boris 549
Motta, Enrico 635
Musen, Mark A. 229, 259, 713

Nau, Dana 335
Nejdl, Wolfgang 1, 137
Niño, Marcos 782
Noppens, Olaf 244
Noy, Natalya F. 229, 259, 713
Numa, Kosuke 591

Ohmukai, Ikki 591
Olko, Mariusz 122

Palmisano, Ignazio 441
Pan, Yue 823
Pan, Zhengxiang 62, 274
Paolucci, Massimo 752
Parsia, Bijan 335, 564, 620
Payne, Terry 304
Pistore, Marco 380
Pivk, Aleksander 166
Plechawski, Michal 122
Preece, Alun 152
Preist, Chris 395
Price, David 812
Pyszlak, Pawel 122

Quan, Dennis 92, 214
Quan, Thanh Tho 726

Riazanov, Alexandre 471
Rich, Stephen J. 767
Rousset, Marie-Christine 6

Saarela, Samppa 797
Sabou, Marta 410
Satoh, Tetsuji 741
Sattler, Ulrike 549
Schiltz, Gary 350
Schnizler, Björn 122
Schorlemmer, Marco 576
Schreiber, Guus 17
Semeraro, Giovanni 441
Siberski, Wolf 137
Siebes, Ronny 122
Sirin, Evren 335, 620
Spencer, Bruce 456
Staab, Steffen 122, 683
Stein, Lincoln 350
Stevens, Robert 92
Stuckenschmidt, Heiner 289
Studer, Rudi 549
Sturken, Ian B. 767
Su, Zhong 823
Sure, York 166
Surridge, Mike 304
Swanson, Keith J. 767
Sycara, Katia 752

Takeda, Hideaki 591
Tate, Austin 425
Tempich, Christoph 122
ter Horst, Herman J. 77
Thaden, Uwe 137
Thompson, Bryan 564
Traverso, Paolo 380
Tsarkov, Dmitry 471
Tu, KeWei 823

Uszok, Andrzej 425

van Assem, Mark 17
van Hage, Willem Robert 518
Van Pelt, Tim 107
Viljanen, Kim 797
Volz, Raphael 198, 502, 668

841

Walker, David W. 365
Walton, Chris 576
Wielemaker, Jan 17
Wielinga, Bob 17
Wilkinson, Mark D. 350
Wolfe, Shawn R. 767
Wroe, Chris 92

Xie, GuoTong 823

Yu, Yong 823

Zhang, Lei 823
Zhang, Zhuo 823
Zhao, Jun 92

	Frontmatter
	Invited Papers
	How to Build Google2Google -- An (Incomplete) Recipe --
	Small Can Be Beautiful in the Semantic Web

	Data Semantics
	A Method for Converting Thesauri to RDF/OWL
	Contexts for the Semantic Web
	Bipartite Graphs as Intermediate Model for RDF
	A Model Theoretic Semantics for Ontology Versioning
	Extending the RDFS Entailment Lemma
	Using Semantic Web Technologies for Representing E-science Provenance

	P2P Systems
	GridVine: Building Internet-Scale Semantic Overlay Networks
	Bibster -- A Semantics-Based Bibliographic Peer-to-Peer System
	Top-{\itshape k} Query Evaluation for Schema-Based Peer-to-Peer Networks

	Semantic Web Mining
	Learning Meta-descriptions of the FOAF Network
	From Tables to Frames

	Tools and Methodologies for Web Agents
	The Specification of Agent Behavior by Ordinary People: A Case Study

	User Interfaces and Visualization
	Visual Modeling of OWL DL Ontologies Using UML
	What Would It Mean to Blog on the Semantic Web?
	The Prot\'{e}g\'{e} OWL Plugin: An Open Development Environment for Semantic Web Applications
	{\sc OntoTrack}: Combining Browsing and Editing with Reasoning and Explaining for OWL Lite Ontologies
	Tracking Changes During Ontology Evolution

	Large Scale Knowledge Management
	An Evaluation of Knowledge Base Systems for Large OWL Datasets
	Structure-Based Partitioning of Large Concept Hierarchies

	Semantic Web Services
	Semantic Web Service Interaction Protocols: An Ontological Approach
	ASSAM: A Tool for Semi-automatically Annotating Semantic Web Services
	Information Gathering During Planning for Web Service Composition
	Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt
	Automating Scientific Experiments on the Semantic Grid
	Automated Composition of Semantic Web Services into Executable Processes
	A Conceptual Architecture for Semantic Web Services
	From Software APIs to Web Service Ontologies: A Semi-automatic Extraction Method
	Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Workflow Composition and Enactment

	Inference
	Knowledge-Intensive Induction of Terminologies from Metadata
	Inferring Data Transformation Rules to Integrate Semantic Web Services
	Using Vampire to Reason with OWL

	Searching and Querying
	Generating On the Fly Queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL)
	A Comparison of RDF Query Languages
	Information Retrieval Support for Ontology Construction and Use
	Rules-By-Example -- A Novel Approach to Semantic Indexing and Querying of Images
	Query Answering for OWL-DL with Rules

	Semantic Web Middleware
	A Semantic Web Resource Protocol: XPointer and HTTP
	On the Emergent Semantic Web and Overlooked Issues
	Metadata-Driven Personal Knowledge Publishing

	Integration and Interoperability
	An Extensible Directory Enabling Efficient Semantic Web Service Integration
	Working with Multiple Ontologies on the Semantic Web
	Opening Up Magpie via Semantic Services

	Ontologies
	Towards a Symptom Ontology for Semantic Web Applications
	Patching Syntax in OWL Ontologies
	QOM -- Quick Ontology Mapping
	An API for Ontology Alignment
	Specifying Ontology Views by Traversal
	Automatic Generation of Ontology for Scholarly Semantic Web

	Industrial Track
	Querying Real World Services Through the Semantic Web
	Public Deployment of Semantic Service Matchmaker with UDDI Business Registry
	SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams
	SWS for Financial Overdrawn Alerting
	{\sc OntoViews} -- A Tool for Creating Semantic Web Portals
	Applying Semantic Web Technology to the Life Cycle Support of Complex Engineering Assets
	ORIENT: Integrate Ontology Engineering into Industry Tooling Environment

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

