
Generalizing vesselness with respect to
dimensionality and shape

Release 1.00

Luca Antiga1

August 3, 2007
1Medical Imaging Unit

Mario Negri Institute, Bergamo, Italy
email: antiga at marionegri.it

Abstract

In this paper we present a generalization of Frangi’s vesselness measure [2] for the enhacement of M-
dimensional shapes in N-dimensional images, together with the implementation of the corresponding
Insight Toolkit (ITK) filter [3]. Inspired by the implementation of a multiscale vesselness measure re-
cently presented on the Insight Journal [1], we also propose a unified framework for the evaluation of
generic multiscale Hessian-based measures. The manuscript is accompanied by source code and exam-
ples.

Contents

1 Introduction 2

2 Generalization to M-dimensional objects in N-dimensions 3

3 ITK implementation 4

4 Experiments and results 5

5 Conclusions and future directions 5

A Example 1 - Multiscale 3D Objectness (M=1) 8

B Example 2 - Multiscale 2D Objectness (M=1) 10

C Example 3 - Multiscale 3D Vesselness 12

2

1 Introduction

Vessel enhancement techniques are employed for the identification and quantification of vascular structures
in 2D and 3D angiographic images. They provide enhancement of visual appearance of vascular structures
for clinical evaluation and they have been successfully used for centerline extraction and for pre-processing,
initialization and feature definition in segmentation procedures.

The majority of vessel enhancement filters are based on the analysis of eigenvalues of the Hessian matrix
of image intensity. The mutual magnitude of eigenvalues is indicative of the shape of the underlying object.
Isotropic structures are associated to eigenvalues having a similar non-zero magnitude, while vessels present
one negligible and two similar non-zero eigenvalues.

Recalling Frangi’s formulation [2] and indicating the eigenvalues of a Hessian matrix as λ1, λ2 and λ3, with
|λ1| ≤ |λ2| ≤ |λ3|, vesselness is defined in 3D as

Vσ(λ) =

{
(1− e−

R2
A

2α2) · e−
R2

B
2β2 · (1− e

− S2

2γ2) if λ2 < 0 and λ3 < 0
0 otherwise

(1)

where

RA =
|λ2|
|λ3|

(2)

RB =
|λ1|
|λ2λ3|

(3)

S =
√

λ2
1 +λ2

2 +λ2
3 (4)

and α, β and γ are user-defined parameters. The constraint on the sign of eigenvalues assumes that vessels
to enhance are bright on a dark background, and has to be reversed in opposite case. In Equation (1), the
term containing RA yields a large value (closer to 1) when the ratio RA is large, i.e. when the magnitude of
the two largest eigenvalues is similar. In contrast, the term containing RB yields a value closer to 1 when
the smallest eigenvalue is much smaller than the other two. Considering the second-order ellipsoid defined
by the eigenvalues, we are requiring that the ellipsoid has a high aspect ratio (high anisotropy) along the λ1
axis and a low aspect ratio (low anisotropy) in the λ2λ3 plane. In fact, RA and RB can be rewritten as

RA =
|λ2λ3|
|λ3|2

∝
Largest cross sect area

Largest cross sect largest axis
(5)

RB =
|λ1λ2λ3|
|λ2λ3|

3
2

∝
Volume

Largest cross sect area
(6)

The term containing S, the Frobenius norm of the Hessian matrix, or second-order structureness, serves to
control the sensitivity of Vσ to background noise.

The σ footer in Vσ indicates that vesselness is computed on a smoothed version of the image and is therefore
representative of the variations of image intensity at the spatial scale σ. Vesselness is evaluated at a range of
spatial scales, and the maximum response is selected at every voxel

3

V (λ) = max
σ∈[σmin,σmax]

Vσ(λ) (7)

Equation (1) can be adapted to extract, for example, isotropic blob-like structures by replacing e
− R2

B
2β2 with

(1− e
− R2

B
2β2), therefore requesting that all three eigenvalues have a similar magnitude. This is equivalent to

requiring that the second-order ellipsoid has a low aspect ratio for all three axes. Indeed, since eigenvalues
are sorted, the condition on RA is redundant, since it is implied by the condition on RB.

2 Generalization to M-dimensional objects in N-dimensions

From the latter consideration and from Equation (5) we can induce the expression of Equation (1) for the
enhancement of M-dimensional structures in N-dimensional images, with M < N (M = 0 for blobs, M = 1
for vessels, M = 2 for plates, M = 3 for hyper-plates, etc.). In order to do this, we have to require that the
Mth moment of the Nth order ellipsoid is small with respect to higher moments, while the M +1th moment
of the Nth order ellipsoid is large with respect to higher moments, in the same way as in Equation (5). Since
eigenvalues are sorted in magnitude, these two conditions imply analogous conditions on lower and higher
moments, respectively.

Let’s indicate as λ1 . . .λN the N eigenvalues of the N×N Hessian matrix, such that λ1 ≤ ·· · ≤ λN . For the
enhancement of M-dimensional structures in a N-dimensional image we define the following ratios

RA =
∏

N
i=M+1 |λi|

∏
N
i=M+2 |λi|

N−M
N−M−1

(8)

RB = ∏
N
i=M |λi|

∏
N
i=M+1 |λi|

N−M+1
N−M

(9)

which have been expressed as ratio of moments of the Nth order ellipsoid, for ease of comparison to Equation
(5). Simple manipulation of Equation (8) leads to the following expressions for RA and RB

RA =
|λM+1|

∏
N
i=M+2 |λi|

1
N−M−1

(10)

RB =
|λM|

∏
N
i=M+1 |λi|

1
N−M

(11)

In the above expressions, two special cases can be identified. The first is the case M = N−1 (enhancement
of hyperplanes), for which the denominator of RA is not defined. In this case we can allow RA → ∞ for
M = N− 1. The second is the case M = 0 (enhancement of blobs), for which the numerator of RB is not
defined, since λ0 is not defined. Setting it to zero yields RB = 0 for M = 0.

The Frobenius norm of the Hessian matrix follows the usual definition

S =

√√√√ N

∑
j=1

λ2
j (12)

4

Last, analogously to Equation (1), we associate RA, RB and S to the weights α, β and γ.

We finally define the objectness measure as

O(λ)σ =

{
(1− e−

R2
A

2α2) · e−
R2

B
2β2 · (1− e

− S2

2γ2) if λ j < 0 for M < j ≤ N
0 otherwise

(13)

where the constraint on the sign of eigenvalues has been set in the assumption that structures are bright on a
dark background, and has to be reversed in case of dark structures on a bright background. As to the special
cases identified above, for the case M = N− 1 the first term of the product (involving RA) is 1, while for
the case M = 0 the second term of the product (involving RB) is 1. This is consistent with the requirements
of penalizing all eigenvalues with respect to the largest for the M = N − 1 case, and not penalizing any
eigenvalue for the M = 0 case. As expected, Equation (13) reduces to Equation (1) for N = 3 and M = 1.

Equivalently to vesselness, Equation (13) is evaluated at a range of spatial scales, and the maximum response
is selected

O(λ) = max
σ∈[σmin,σmax]

Oσ(λ) (14)

3 ITK implementation

The described technique has been implemented in the Insight Toolkit following the design adopted by En-
quobahrie et al for multiscale vesselness [1].

The computation of the objectness measure for a given scale is performed in
itk::HessianToObjectnessMeasureImageFilter, which computes the measure from a input Hessian
matrix image. The implementation closely follows Equation (13). N is derived from the dimensionality
of the input image, while M is set through the SetObjectDimensionality metric. The metric is
optionally scaled with the magnitude of the largest eigenvalue (throught the SetScaleObjectnessMeasure
method), while the case of a bright object over a dark background or vice-versa is specified through the
SetBrightObject method.

Multiscale computation in itk::MultiScaleHessianBasedMeasureImageFilter. This class builds
on itk::MultiScaleHessianSmoothed3DToVesselnessMeasure presented in [1], adding some general
functionality to it. As in [1] the filter takes a scalar image in input and internally computes the Hessian us-
ing itk::HessianRecursiveGaussianImageFIlter for each of the scales defined by the SetSigmaMin
SetSigmaMax and SetNumberOfSigmaStep methods. It then passes the Hessian matrix image to the filter
that implements the Hessian-based measure computation and fills the output image with the best response
from all the scales.

itk::MultiScaleHessianBasedMeasureImageFilter is templated over the Hessian-
based measure filter type, so it can be employed with the currently available
Hessian-based measure filters namely itk::HessianToObjectnessMeasureImageFilter,
itk::Hessian3DToVesselnessMeasureImageFilter and
itk::HessianSmoothed3DToVesselnessMeasureImageFilter.

In addition, itk::MultiScaleHessianBasedMeasureImageFilter produces two outputs. The first is
the image containing the actual measure, returned by the GetOutput method. The second is the image
containing the value of the scale at which the pixels gave the best response, and it is returned by the

5

Figure 1: Left: DSA dataset depicting cerebral circulation and two cerebral aneurysms. Center: Multiscale 2D blobness
(objectness with N = 2 and M = 0), σ ∈ [1,10], 10 steps. Right: Multiscale 2D vesselness (objectness with N = 2 and
M = 1), σ ∈ [1,10], 10 steps, α = 0.5, β = 0.5, γ = 5.0.

GetScalesOutput method. This second image can be employed to derive an estimate of the size of the
structures being enhanced.

4 Experiments and results

In Figure 1, the multiscale objectness filter has been applied to a 2D digital subtraction angiography (DSA)
image of the cerebral criculation depicting two aneurysms. Both blobness and vesselness are computed for
σ ∈ [1,10] (pixel spacing is 1).

In Figure 2, blobness (N = 2, M = 0) with σ ∈ [5,10] is shown, together with the second filter output,
depicting the best response spatial scales. Figure 2 shows the same information relative to vesselness (N = 2,
M = 0).

For direct comparison with [1], the cropped lung dataset has been enhanced using the same parameters
(N = 3, M = 1, σ ∈ [0.5,4] in 10 steps, α = 0.5, β = 0.5, γ = 0.5), as shown in Figure 4, upper. In the lower
left image, the same measure has been computed by scaling the measure with the largest eigenvalue. In the
lower right, the result of multiscale Sato’s vesselness 3D computed using the new generalized multiscale
Hessian-based analysis filter is shown (as detailed in Example 3).

5 Conclusions and future directions

In this paper, a general definition for a Hessian-based object enhancement measure was presented, together
with the implementation of a generalized multiscale filter for Hessian based measures.

Future work will involve the generalization of the smooth metric presented in [1]. The smoothing term will

have to be expressed with an expression of the type e−
2c2
RC , with RC = ∏

N
i=M+1 |λi|i−1. This will provide a

smoother objectness measure and the possibility of employing it for anisotropic diffusion.

6

Figure 2: Left: Multiscale 2D blobness (objectness with N = 2 and M = 0), σ ∈ [5,10], 10 steps, α = 0.5, β = 0.5,
γ = 5.0. Aneurysms, bifurcations and vessel overlaps are enhanced. Right: best response scales.

Figure 3: Left: Multiscale 2D vesselness (objectness with N = 2 and M = 1), σ ∈ [5,10], 10 steps, α = 0.5, β = 0.5,
γ = 5.0. Right: best response scales.

7

Figure 4: Upper left: Cropped lung dataset employed in [1]. Upper right: multiscale Frangi’s vesselness computed
with the objectness measure, N = 3, M = 1, σ ∈ [0.5,4], 10 steps, α = 0.5, β = 0.5, γ = 5.0. Lower left: multiscale
Frangi’s vesselness normalized with the magnitude of the largest eigenvalue computed with the objectness measure
(same parameters). Lower right: multiscale Sato’s vesselness computed using ITK’s 3D vesselness, σ ∈ [0.5,4], 10
steps, α1=0.5, α2 = 0.5, within the new multiscale Hessian based measure filter.

8

Additional work will also include broader testing of the algorithms presented in this paper, especially on
4D (3D+time) datasets, for the evaluation of enhancement performance and optimization of user-defined
parameters.

A Example 1 - Multiscale 3D Objectness (M=1)

#include "itkHessianToObjectnessMeasureImageFilter.h"
#include "itkMultiScaleHessianBasedMeasureImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImage.h"

int main(int argc, char *argv[])
{

if (argc < 4)
{
std::cerr << "Missing Parameters: "

<< argv[0]
<< " Input_Image"
<< " Enhanced_Output_Image"
<< " Scales_Output_Image"
<< std::endl;

return EXIT_FAILURE;
}

// Define the dimension of the images
const unsigned char Dim = 3;

typedef float PixelType;

// Declare the types of the images
typedef itk::Image<PixelType,Dim> ImageType;

typedef itk::ImageFileReader<ImageType> FileReaderType;
typedef itk::ImageFileWriter<ImageType> FileWriterType;

typedef itk::RescaleIntensityImageFilter<ImageType> RescaleFilterType;

// Declare the type of enhancement filter
typedef itk::HessianToObjectnessMeasureImageFilter<double,Dim> ObjectnessFilterType;

// Declare the type of multiscale enhancement filter
typedef itk::MultiScaleHessianBasedMeasureImageFilter<ImageType,ObjectnessFilterType>
MultiScaleEnhancementFilterType;

// Read the image
FileReaderType::Pointer imageReader = FileReaderType::New();
imageReader->SetFileName(argv[1]);
try
{

imageReader->Update();

9

}
catch (itk::ExceptionObject &ex)
{

std::cout << ex << std::endl;
return EXIT_FAILURE;

}

// Instantiate the multiscale filter and set the input image
MultiScaleEnhancementFilterType::Pointer multiScaleEnhancementFilter =
MultiScaleEnhancementFilterType::New();

multiScaleEnhancementFilter->SetInput(imageReader->GetOutput());
multiScaleEnhancementFilter->SetSigmaMin(0.5);
multiScaleEnhancementFilter->SetSigmaMax(4.0);
multiScaleEnhancementFilter->SetNumberOfSigmaSteps(10);

// Get the objectness filter and set the parameters
ObjectnessFilterType* objectnessFilter =
multiScaleEnhancementFilter->GetHessianToMeasureFilter();

objectnessFilter->SetScaleObjectnessMeasure(false);
objectnessFilter->SetBrightObject(true);
objectnessFilter->SetAlpha(0.5);
objectnessFilter->SetBeta(0.5);
objectnessFilter->SetGamma(5.0);
objectnessFilter->SetObjectDimension(1);

// The above is equivalent to vesselness

// Now run the multiscale filter
try
{

multiScaleEnhancementFilter->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

// Write the enhanced image
FileWriterType::Pointer writer = FileWriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(multiScaleEnhancementFilter->GetOutput());
try
{

writer->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

// Write the image containing the best response scales
FileWriterType::Pointer writer2 = FileWriterType::New();
writer2->SetFileName(argv[3]);
writer2->SetInput(multiScaleEnhancementFilter->GetScalesOutput());

10

try
{

writer2->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

}

B Example 2 - Multiscale 2D Objectness (M=1)

#include "itkHessianToObjectnessMeasureImageFilter.h"
#include "itkMultiScaleHessianBasedMeasureImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImage.h"

int main(int argc, char *argv[])
{

if (argc < 5)
{
std::cerr << "Missing Parameters: "

<< argv[0]
<< " Input_Image"
<< " Enhanced_Output_Image"
<< " Scales_Output_Image"
<< " [SigmaMin SigmaMax NumberOfScales ObjectDimension]" << std::endl;

return EXIT_FAILURE;
}

// Define the dimension of the images
const unsigned char Dim = 2;

typedef float PixelType;

// Declare the types of the images
typedef itk::Image<PixelType,Dim> ImageType;

typedef itk::ImageFileReader<ImageType> FileReaderType;
typedef itk::ImageFileWriter<ImageType> FileWriterType;

typedef itk::RescaleIntensityImageFilter<ImageType> RescaleFilterType;

// Declare the type of enhancement filter
typedef itk::HessianToObjectnessMeasureImageFilter<double,Dim> ObjectnessFilterType;

// Declare the type of multiscale enhancement filter
typedef itk::MultiScaleHessianBasedMeasureImageFilter<ImageType,ObjectnessFilterType>
MultiScaleEnhancementFilterType;

11

FileReaderType::Pointer imageReader = FileReaderType::New();
imageReader->SetFileName(argv[1]);
try
{

imageReader->Update();
}
catch (itk::ExceptionObject &ex)
{

std::cout << ex << std::endl;
return EXIT_FAILURE;

}

MultiScaleEnhancementFilterType::Pointer multiScaleEnhancementFilter =
MultiScaleEnhancementFilterType::New();

multiScaleEnhancementFilter->SetInput(imageReader->GetOutput());

ObjectnessFilterType* objectnessFilter = multiScaleEnhancementFilter->GetHessianToMeasureFilter();
objectnessFilter->SetScaleObjectnessMeasure(false);
objectnessFilter->SetBrightObject(false);
objectnessFilter->SetGamma(5.0);

if (argc >= 5)
{
multiScaleEnhancementFilter->SetSigmaMin(atof(argv[4]));
}

if (argc >= 6)
{
multiScaleEnhancementFilter->SetSigmaMax(atof(argv[5]));
}

if (argc >= 7)
{
multiScaleEnhancementFilter->SetNumberOfSigmaSteps(atoi(argv[6]));
}

if (argc >= 8)
{
objectnessFilter->SetObjectDimension(atoi(argv[7]));
}

try
{

multiScaleEnhancementFilter->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

RescaleFilterType::Pointer rescale = RescaleFilterType::New();
rescale->SetInput(multiScaleEnhancementFilter->GetOutput());
rescale->SetOutputMinimum(0);

12

rescale->SetOutputMaximum(255);

FileWriterType::Pointer writer = FileWriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescale->GetOutput());
try
{

writer->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

RescaleFilterType::Pointer rescale2 = RescaleFilterType::New();
rescale2->SetInput(multiScaleEnhancementFilter->GetScalesOutput());
rescale2->SetOutputMinimum(0);
rescale2->SetOutputMaximum(255);

FileWriterType::Pointer writer2 = FileWriterType::New();
writer2->SetFileName(argv[3]);
writer2->SetInput(rescale2->GetOutput());
try
{

writer2->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

}

C Example 3 - Multiscale 3D Vesselness

#include "itkHessian3DToVesselnessMeasureImageFilter.h"
#include "itkMultiScaleHessianBasedMeasureImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImage.h"

int main(int argc, char *argv[])
{

if (argc < 4)
{
std::cerr << "Missing Parameters: "

<< argv[0]
<< " Input_Image"
<< " Enhanced_Output_Image"
<< " Scales_Output_Image"
<< std::endl;

13

return EXIT_FAILURE;
}

// Define the dimension of the images
const unsigned char Dim = 3;

typedef float PixelType;

// Declare the types of the images
typedef itk::Image<PixelType,Dim> ImageType;

typedef itk::ImageFileReader<ImageType> FileReaderType;
typedef itk::ImageFileWriter<ImageType> FileWriterType;

typedef itk::RescaleIntensityImageFilter<ImageType> RescaleFilterType;

// Declare the type of enhancement filter - use ITK’s 3D vesselness (Sato)
typedef itk::Hessian3DToVesselnessMeasureImageFilter<double> VesselnessFilterType;

// Declare the type of multiscale enhancement filter
typedef itk::MultiScaleHessianBasedMeasureImageFilter<ImageType,VesselnessFilterType>
MultiScaleEnhancementFilterType;

// Read the image
FileReaderType::Pointer imageReader = FileReaderType::New();
imageReader->SetFileName(argv[1]);
try
{

imageReader->Update();
}
catch (itk::ExceptionObject &ex)
{

std::cout << ex << std::endl;
return EXIT_FAILURE;

}

// Instantiate the multiscale filter and set the input image
MultiScaleEnhancementFilterType::Pointer multiScaleEnhancementFilter =
MultiScaleEnhancementFilterType::New();

multiScaleEnhancementFilter->SetInput(imageReader->GetOutput());
multiScaleEnhancementFilter->SetSigmaMin(0.5);
multiScaleEnhancementFilter->SetSigmaMax(4.0);
multiScaleEnhancementFilter->SetNumberOfSigmaSteps(10);

// Get the vesselness filter and set the parameters
VesselnessFilterType* vesselnessFilter =
multiScaleEnhancementFilter->GetHessianToMeasureFilter();

vesselnessFilter->SetAlpha1(0.5);
vesselnessFilter->SetAlpha2(0.5);

// Now run the multiscale filter
try
{

multiScaleEnhancementFilter->Update();

References 14

}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

// Write the enhanced image
FileWriterType::Pointer writer = FileWriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(multiScaleEnhancementFilter->GetOutput());
try
{

writer->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

// Write the image containing the best response scales
FileWriterType::Pointer writer2 = FileWriterType::New();
writer2->SetFileName(argv[3]);
writer2->SetInput(multiScaleEnhancementFilter->GetScalesOutput());
try
{

writer2->Update();
}
catch (itk::ExceptionObject &e)
{

std::cerr << e << std::endl;
}

}

References

[1] A. Enquobahrie, L. Ibanez, E. Bullit, and S. Aylward. Vessel enhancing diffusion filter. The Insight
Journal, 2007. (document), 3, 4, 5, 4

[2] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement
filtering. In W. M. Wells, A. Colchester, and S. Delp, editors, MICCAI’98 Medical Image Computing
and Computer-Assisted Intervention, Lecture Notes in Computer Science, pages 130–137. Springer
Verlag, 1998. (document), 1

[3] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003. (document)

