

Dextera
Audit Report

Nov. 11, 2021

Revision 1: Nov. 18, 2021

2

Contents
Executive Summary.. 3

Audit Details .. 3

Methodology .. 3

Contract Details ... 4

Token Details ... 4

Result Summary .. 4

Risk Levels .. 4

Issues Reported .. 5

Issues Summary .. 5

Detailed Findings .. 6

DXTA-0 – Owner Privilege ... 6

DXTA-1 – Division before multiplication .. 6

DXTA-2 – Use of non-standard SafeMath library .. 7

DXTA-3 – Variables can be declared as ‘constant’ .. 7

DXTA-4 – State variable visibility is not set .. 7

DXTA-5 – Unhandled return value ... 8

DXTA-6 – Floating pragma ... 8

DXTA-7 – Missing Event emissions .. 8

DXTA-8 – Missing zero-address validation .. 9

DXTA-9 – Environment & function/variable naming mismatch ... 9

DXTA-10 – Dead code .. 9

DXTA-11 – Function initializing state .. 10

DXTA-12 – Functions that could be declared external ... 10

Automated Analysis .. 11

Code Documentation .. 13

Adherence to Specifications ... 14

Adherence to Best Practices ... 14

On-Chain Analysis .. 14

Token/Holder Distribution ... 14

Priviledged Transactions ... 14

Liquidity .. 14

Appendix ... 15

Revision History ... 15

Functions ... 15

Global Variables .. 17

Balance Updates ... 18

3

Executive Summary

Audit Details
Project Name Dextera

Codebase R1: https://www.bscscan.com/address/0xccc7023ed2c8215dc7e297d1d458d3ac9300b6f9#code

Source Code Dextera.sol

Initial Audit Date Nov 11, 2021

Revision Dates R1: Nov. 18, 2021

Methodology Manual, Automated

Methodology
This audit’s objectives are to evaluate:

▪ Security-related issues

▪ Code quality

▪ Relevant documentation

▪ Adherence to specifications

▪ Adherence to best practices

This audit examines the possibility of issues existing along the following vectors (but not limited
to):

▪ Single & Cross-Function Reentrancy

▪ Front Running (Transaction Order
Dependence)

▪ Timestamp dependence

▪ Integer Overflow and Underflow

▪ Mishandled exceptions and call stack limits

▪ Unsafe external calls

▪ Number rounding errors

▪ DoS with (Unexpected) Revert

▪ DoS with Block Gas Limit

▪ Insufficient gas griefing

▪ Forcibly sending native currency

▪ Logical oversights

▪ Access control

▪ Centralization of power

▪ Logic-Specification Contradiction

▪ Functionality duplication

▪ Malicious token minting

The code review conducted for this audit follows the following structure:

1. Review of specifications, documentation to assess smart contract functionality

2. Manual, line-by-line review of code

3. Code’s adherence to functionality as presented by documentation

4. Automated tool-driven review of smart contract functionality

5. Assess adherence to best practices

6. Provide actionable recommendations

https://www.bscscan.com/address/0xccc7023ed2c8215dc7e297d1d458d3ac9300b6f9#code

4

Contract Details
Contract IDs R1: 0xCcC7023ed2c8215dc7E297d1D458d3AC9300b6F9

Network BSC

Language Solidity

Compiler v0.8.4+commit.c7e474f2

Verification Date Nov. 18, 2021

Contract Type BEP-20 Token

Libraries Custom

Token Details
Contract Name Dextera

Symbol DXTA

Decimals 9

Total Supply 10,000,000,000

Max Tx Amount 100,000,000

Total Tx Tax % 14

Holder Reflection % 2

Liquidity Provision % 8

Marketing Reflection % 4

Liquidity Provision Trigger 20,000,000

Result Summary
Ethos‘ audit of the Dextera token smart contract has concluded with a POSITIVE result. The initial
review identified a number of non-critical issues that could have been left within the final build
with simple acknowledgements and transparency. However, the Dextera team has gone above
and beyond to ensure that as many of the identified issues were resolved prior to launch. This is
a testament to the team’s dedication to the project and their desire to focus on security and
best practices. The remaining report includes all issues identified in the initial review, as well as
the revised status post resolution by the team.

Risk Levels

The issue is informational
and does not pose an
immediate risk, but is
relevant to security best
practices.

The risk is relatively small
and could not be
exploited on a recurring
basis, or is a
risk that the client has
indicated is low impact
in view of the client’s
business circumstances.

The issue puts a subset of
users’ sensitive
information at risk, would
be detrimental for the
client’s reputation if
exploited, or is
reasonably likely to lead
to moderate financial
impact.

The issue puts a large
number of users’
sensitive information at
risk, or is reasonably likely
to lead to catastrophic
impact for client’s
reputation or serious
financial implications for
client and users.

5

Issues Reported

Severity Unresolved Acknowledged Resolved

Extreme 0 0 0

High 0 0 1

Medium 0 0 2

Low 0 6 4

Issues Summary

ID Title Severity Status

DXTA-0 Owner Privilege High Resolved

DXTA-1 Division before multiplication Medium Resolved

DXTA-2 Use of non-standard SafeMath library Medium Resolved

DXTA-3 Variables can be declared as ‘constant’ Low Resolved

DXTA-4 State variable visibility is not set Low Resolved

DXTA-5 Unhandled return value Low Acknowledged

DXTA-6 Floating pragma Low Resolved

DXTA-7 Missing Event emissions Low Acknowledged

DXTA-8 Missing zero-address validation Low Resolved

DXTA-9 Environment & function/variable naming
mismatch Low Acknowledged

DXTA-10 Dead code Low Acknowledged

DXTA-11 Function initializing state Low Acknowledged

DXTA-12 Functions that could be declared external Low Acknowledged

6

Detailed Findings

DXTA-0 – Owner Privilege

Severity: High Status: Resolved

Description: The “addLiquidity” function calls the uniswapV2Router.addLiquidityETH function
with the “to” address specified as owner() for acquiring the generated LP tokens from the
DXTA-BNB pool.

Risk: Over time the _owner address will accumulate a significant portion of LP tokens. If the
_owner is an Externally Owned Account, mishandling of its private key can have devastating
consequences to the project as a whole.

Recommendation: We advise the to address of the uniswapV2Router.addLiquidityETH function
call to be replaced by the contract itself, i.e. address(this), and to restrict the management of
the LP tokens within the scope of the contract’s business logic. This will also protect the LP
tokens from being stolen if the _owner account is compromised. In general, we strongly
recommend centralized privileges or roles in the protocol to be improved via a decentralized
mechanism or via smart-contract based accounts with enhanced security practices, i.e.
Multisig wallets.

Feasible solutions that would also mitigate the potential risk:

• Time-lock with reasonable latency
• Assignment of privileged roles to multi-sig wallets to prevent single point of failure
• Introduction of a DAO / governance / voting module to increase transparency and

user involvement.

Location: Dextera.sol : line 743

Team Comment: The ‘to’ address has been changed to the contract address, address(this).

DXTA-1 – Division before multiplication

Severity: Medium Status: Resolved

Description: On line 685, transferToAddressETH(marketingAddress,
transferredBalance.div(_liquidityFee).mul(marketingDivisor)) division is performed before
multiplication.

Location: Since the division can produce non-integer results with long repeating decimals, this
can cause unforeseen rounding errors.

Recommendation: Consider ordering multiplication before division.

Location: Dextera.sol : line 685

7

DXTA-2 – Use of non-standard SafeMath library

Severity: Medium Status: Resolved

Description: The contract uses a non-standard version of the SafeMath library which may lead
to possible integer overflow/underflow scenarios.

Risk: This can become a potentially critical scenario during variable updates which have the
potential to exceed the limits of an integers upper or lower bounds. If an integer variable’s
value exceeds its max value during execution, the variables value will cycle back to either its
min/max value, making the entire smart contract more vulnerable to attack.

Recommendation: It is highly recommended to use the OpenZeppelin SafeMath.sol library to
mitigate the potential overflow/underflow instances.

Location: Dextera.sol : lines 47-99

SWC Registry: SWC-101

DXTA-3 – Variables can be declared as ‘constant’

Severity: Low Status: Resolved

Description: Variables _tTotal , _name , _symbol and _decimals could be declared as
constant since these state variables are never to be changed.

Risk: This is a minor gas optimization issue.

Recommendation: We recommend declaring these variables as ‘constant’ if they aren’t
going to be changed.

Location: Dextera.sol : lines 432, 443, 447, 448, 449

DXTA-4 – State variable visibility is not set

Severity: Low Status: Resolved

Description: The global state variable “inSwapAndLiquify” visibility is unspecified. Labelling the
visibility explicitly makes it easier to catch incorrect assumptions about who can access the
variable.

Risk: Minor informational issue, RE: CWE-710: Improper Adherence to Coding Standards.

Recommendation: It is best practice to set the visibility of all state variables explicitly. The
default visibility for "inSwapAndLiquify" is internal.

Location: Dextera.sol : line 467

SWC Registry: SWC-108

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-108

8

DXTA-5 – Unhandled return value

Severity: Low Status: Acknowledged

Description: The return value of the function call “addLiquidityETH” is not checked or handled.

Risk: Execution will resume even if the “addLiquidityETH” throws an exception. If the call fails
accidentally or an attacker forces the call to fail, this may cause unexpected behaviour in
the subsequent program logic.

Recommendation: We recommend using variable to receive the return value of the
“addLiquidityETH” function call and handle both success and failure scenarios.

Location: Dextera.sol : line 738

SWC Registry: SWC-104

DXTA-6 – Floating pragma

Severity: Low Status: Resolved

Description: Contract is not set with a defined pragma solidity version, but with a floating
pragma. Currently set to “^0.8.4”.

Risk: Contracts should be deployed with the same compiler version and flags that they have
been tested with thoroughly. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler version that might
introduce bugs that affect the contract system negatively.

Recommendation: We recommend locking the pragma version and also consider known
bugs (https://github.com/ethereum/solidity/releases) for the compiler version that is chosen.

Pragma statements can be allowed to float when a contract is intended for consumption by
other developers, as in the case with contracts in a library.

Location: Dextera.sol : line 19

SWC Registry: SWC-103

DXTA-7 – Missing Event emissions

Severity: Low Status: Acknowledged

Description: There are several functions that change state variables, however, they do not
emit events to pass the changes out of chain.

Risk: Not emitting an event from functions that impose changes to state variables could result
in a lack of functionality often required for sound logic and functionality within external
applications calling on smart contract functions.

https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-103

9

Recommendation: We recommend emitting events for all essential state variables that are
possible to be changed during runtime.

Location: Dextera.sol

DXTA-8 – Missing zero-address validation

Severity: Low Status: Resolved

Description: The “setMarketingAddress” function does not include any validation to ensure
that the address being set isn’t the zero or dead address.

Risk: While the risk is minimal, it is still a possibility for the marketing address to be set to the zero
or dead addresses, causing loss of tokens and marketing funds from the project.

Recommendation: We recommend adding checks to ensure that the address provided as
input to functions are valid addresses for its intended use.

Location: Dextera.sol : line 920

DXTA-9 – Environment & function/variable naming mismatch

Severity: Low Status: Acknowledged

Description: The Dextera contract uses Pancakeswap for swapping and liquidity adds using
BNB, however, functions and variable are named with Uniswap and Ethereum.

Risk: Mismatched function and variables names from the environment in which a smart
contract operates can cause confusion.

Recommendation: We recommend changing Uniswap and ETH to Pancakeswap and BNB.

Location: Dextera.sol

DXTA-10 – Dead code

Severity: Low Status: Acknowledged

Description: The “addLiquidity” function is never called or used within the contract, and its
visibility is private so it has no use.

Risk: Dead code can affect the gas cost.

Recommendation: We recommend removing any dead code from non-library contracts.

Location: Dextera.sol : line 733

SWC Registry: SWC-135

https://swcregistry.io/docs/SWC-135

10

DXTA-11 – Function initializing state

Severity: Low Status: Acknowledged

Description: A few state variables are initialized through function calls that are not
pure/constant, or that use non-constant state variables

Risk: Users might intend a function to return a value a state variable can initialize with, without
realizing the context for the contract is not fully initialized.

Recommendation: Remove any initialization of state variables via non-constant state variables
or function calls. If variables must be set upon contract deployment, locate initialization in the
constructor instead.

Location: Dextera.sol : lines 444, 453, 456

DXTA-12 – Functions that could be declared external

Severity: Low Status: Acknowledged

Description: Several functions are declared as public visibility, however, since they are never
called by the contract they should be declared external.

Risk: This is a gas optimization issue.

Recommendation: We recommend that functions that are never called by the contract to be
declared as external to save gas.

Location: Dextera.sol

11

Automated Analysis
An automated analysis was completed by running Slither on the codebase. A multitude of issues
were detected, however, only the issues that were deemed to be relevant to the security of the
smart contract have been shown below.

Divide before multiply

Dextera.swapTokens(uint256) (Desktop/Code/Dextera.sol#678-687) performs a multiplication on the
result of a division:
 -
transferToAddressETH(marketingAddress,transferredBalance.div(_liquidityFee).mul(marketingDiviso
r)) (Desktop/Code/Dextera.sol#685)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply

Unused return

Dextera.addLiquidity(uint256,uint256) (Desktop/Code/Dextera.sol#733-746) ignores return value
by uniswapV2Router.addLiquidityETH{value:
ethAmount}(address(this),tokenAmount,0,0,owner(),block.timestamp)
(Desktop/Code/Dextera.sol#738-745)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unused-return

Local variable shadowing

Dextera.allowance(address,address).owner (Desktop/Code/Dextera.sol#539) shadows:
 - Ownable.owner() (Desktop/Code/Dextera.sol#173-175) (function)
Dextera._approve(address,address,uint256).owner (Desktop/Code/Dextera.sol#630) shadows:
 - Ownable.owner() (Desktop/Code/Dextera.sol#173-175) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-
shadowing

Missing events arithmetic

Dextera.setTaxFeePercent(uint256) (Desktop/Code/Dextera.sol#896-898) should emit an event for:
 - _taxFee = taxFee (Desktop/Code/Dextera.sol#897)
Dextera.setLiquidityFeePercent(uint256) (Desktop/Code/Dextera.sol#900-902) should emit an event
for:
 - _liquidityFee = liquidityFee (Desktop/Code/Dextera.sol#901)
Dextera.setMaxTxAmount(uint256) (Desktop/Code/Dextera.sol#904-906) should emit an event for:
 - _maxTxAmount = maxTxAmount (Desktop/Code/Dextera.sol#905)
Dextera.setMarketingDivisor(uint256) (Desktop/Code/Dextera.sol#908-910) should emit an event
for:
 - marketingDivisor = divisor (Desktop/Code/Dextera.sol#909)
Dextera.setNumTokensSellToAddToLiquidity(uint256) (Desktop/Code/Dextera.sol#912-914) should
emit an event for:
 - minimumTokensBeforeSwap = _minimumTokensBeforeSwap (Desktop/Code/Dextera.sol#913)
Dextera.setBuybackUpperLimit(uint256) (Desktop/Code/Dextera.sol#916-918) should emit an event
for:
 - buyBackUpperLimit = buyBackLimit * 10 ** 18 (Desktop/Code/Dextera.sol#917)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-
arithmetic

Missing zero address validation

Dextera.setMarketingAddress(address)._marketingAddress (Desktop/Code/Dextera.sol#920) lacks a
zero-check on :
 - marketingAddress = address(_marketingAddress) (Desktop/Code/Dextera.sol#921)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-
validation

12

Dead Code

Address._functionCallWithValue(address,bytes,uint256,string) (Desktop/Code/Dextera.sol#140-157)
is never used and should be removed
Address.functionCall(address,bytes) (Desktop/Code/Dextera.sol#123-125) is never used and should
be removed
Address.functionCall(address,bytes,string) (Desktop/Code/Dextera.sol#127-129) is never used and
should be removed
Address.functionCallWithValue(address,bytes,uint256) (Desktop/Code/Dextera.sol#131-133) is
never used and should be removed
Address.functionCallWithValue(address,bytes,uint256,string) (Desktop/Code/Dextera.sol#135-138)
is never used and should be removed
Address.isContract(address) (Desktop/Code/Dextera.sol#103-112) is never used and should be
removed
Address.sendValue(address,uint256) (Desktop/Code/Dextera.sol#114-120) is never used and should
be removed
Context._msgData() (Desktop/Code/Dextera.sol#26-29) is never used and should be removed
Dextera.addLiquidity(uint256,uint256) (Desktop/Code/Dextera.sol#733-746) is never used and
should be removed
SafeMath.mod(uint256,uint256) (Desktop/Code/Dextera.sol#91-93) is never used and should be
removed
SafeMath.mod(uint256,uint256,string) (Desktop/Code/Dextera.sol#95-98) is never used and should
be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Function initializing state

Dextera._rTotal (Desktop/Code/Dextera.sol#444) is set pre-construction with a non-constant
function or state variable:
 - (MAX - (MAX % _tTotal))
Dextera._previousTaxFee (Desktop/Code/Dextera.sol#453) is set pre-construction with a non-
constant function or state variable:
 - _taxFee
Dextera._previousLiquidityFee (Desktop/Code/Dextera.sol#456) is set pre-construction with a
non-constant function or state variable:
 - _liquidityFee
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-
state

Incorrect versions of Solidity

Pragma version^0.8.4 (Desktop/Code/Dextera.sol#19) necessitates a version too recent to be
trusted. Consider deploying with 0.6.12/0.7.6
solc-0.8.8 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-
solidity

State variables that could be declared constant

Dextera._decimals (Desktop/Code/Dextera.sol#449) should be constant
Dextera._name (Desktop/Code/Dextera.sol#447) should be constant
Dextera._symbol (Desktop/Code/Dextera.sol#448) should be constant
Dextera._tTotal (Desktop/Code/Dextera.sol#443) should be constant
Dextera.deadAddress (Desktop/Code/Dextera.sol#432) should be constant
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-
could-be-declared-constant

Public function that could be declared external

renounceOwnership() should be declared external:
 - Ownable.renounceOwnership() (Desktop/Code/Dextera.sol#182-185)

13

transferOwnership(address) should be declared external:
 - Ownable.transferOwnership(address) (Desktop/Code/Dextera.sol#187-191)
getUnlockTime() should be declared external:
 - Ownable.getUnlockTime() (Desktop/Code/Dextera.sol#193-195)
getTime() should be declared external:
 - Ownable.getTime() (Desktop/Code/Dextera.sol#197-199)
lock(uint256) should be declared external:
 - Ownable.lock(uint256) (Desktop/Code/Dextera.sol#201-206)
unlock() should be declared external:
 - Ownable.unlock() (Desktop/Code/Dextera.sol#208-213)
name() should be declared external:
 - Dextera.name() (Desktop/Code/Dextera.sol#513-515)
symbol() should be declared external:
 - Dextera.symbol() (Desktop/Code/Dextera.sol#517-519)
decimals() should be declared external:
 - Dextera.decimals() (Desktop/Code/Dextera.sol#521-523)
totalSupply() should be declared external:
 - Dextera.totalSupply() (Desktop/Code/Dextera.sol#525-527)
transfer(address,uint256) should be declared external:
 - Dextera.transfer(address,uint256) (Desktop/Code/Dextera.sol#534-537)
allowance(address,address) should be declared external:
 - Dextera.allowance(address,address) (Desktop/Code/Dextera.sol#539-541)
approve(address,uint256) should be declared external:
 - Dextera.approve(address,uint256) (Desktop/Code/Dextera.sol#543-546)
transferFrom(address,address,uint256) should be declared external:
 - Dextera.transferFrom(address,address,uint256) (Desktop/Code/Dextera.sol#548-552)
increaseAllowance(address,uint256) should be declared external:
 - Dextera.increaseAllowance(address,uint256) (Desktop/Code/Dextera.sol#554-557)
decreaseAllowance(address,uint256) should be declared external:
 - Dextera.decreaseAllowance(address,uint256) (Desktop/Code/Dextera.sol#559-562)
isExcludedFromReward(address) should be declared external:
 - Dextera.isExcludedFromReward(address) (Desktop/Code/Dextera.sol#564-566)
totalFees() should be declared external:
 - Dextera.totalFees() (Desktop/Code/Dextera.sol#568-570)
minimumTokensBeforeSwapAmount() should be declared external:
 - Dextera.minimumTokensBeforeSwapAmount() (Desktop/Code/Dextera.sol#572-574)
buyBackUpperLimitAmount() should be declared external:
 - Dextera.buyBackUpperLimitAmount() (Desktop/Code/Dextera.sol#576-578)
deliver(uint256) should be declared external:
 - Dextera.deliver(uint256) (Desktop/Code/Dextera.sol#580-587)
reflectionFromToken(uint256,bool) should be declared external:
 - Dextera.reflectionFromToken(uint256,bool) (Desktop/Code/Dextera.sol#590-599)
excludeFromReward(address) should be declared external:
 - Dextera.excludeFromReward(address) (Desktop/Code/Dextera.sol#607-615)
isExcludedFromFee(address) should be declared external:
 - Dextera.isExcludedFromFee(address) (Desktop/Code/Dextera.sol#884-886)
excludeFromFee(address) should be declared external:
 - Dextera.excludeFromFee(address) (Desktop/Code/Dextera.sol#888-890)
includeInFee(address) should be declared external:
 - Dextera.includeInFee(address) (Desktop/Code/Dextera.sol#892-894)
setBuyBackEnabled(bool) should be declared external:
 - Dextera.setBuyBackEnabled(bool) (Desktop/Code/Dextera.sol#929-932)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-
could-be-declared-external

Code Documentation
The code has a moderate amount of comments. This could be improved in order to help others
understand the contract.

14

Adherence to Specifications
The smart contract adheres to the smart contract functionality described by the Dextera team
and is in line with its intended usage.

Adherence to Best Practices
The smart contract adheres to the majority of best practices associated with a standard BEP-20
token. The few things that don’t follow the best practices are noted in the automated review.

On-Chain Analysis

Token/Holder Distribution
To be completed on future revisions post-launch of the project.

Priviledged Transactions
To be completed on future revisions post-launch of the project.

Liquidity
To be completed on future revisions post-launch of the project.

15

Appendix

Revision History
Initial Review: Nov. 11, 2021 – Audit results delivered for contract ID:
0x13AA46B576f75161e4F12e8F3d2cdaEafc9854Ac

Revision #1: Nov. 18, 2021 – Issues DXTA-0, 1, 2, 3, 4, 6, 8 resolved and redeployed contract ID:
0x2E16558a2068238F20815b29b54D2602Dd435120

Functions
Function Parameters Visibility Modifiers Returns Requires Events

constructor Transfer

name public string

symbol public string

decimals public uint8

totalSupply public uint256

balanceOf address account public uint256

transfer address recipient,
uint256 amount public bool

allowance address owner,
address spender public uint256

approve address spender,
uint256 amount public bool

transferFrom
address sender,
address recipient,
uint256 amount

public bool

increaseAllowance address spender,
uint256 addedValue public bool

decreaseAllowance
address spender,
uint256
subtractedValue

public bool

isExcludedFromRewar
d address account public bool

totalFees public uint256
minimumTokensBefor
eSwapAmount public uint256

buyBackUpperLimitA
mount public uint256

deliver uint256 tAmount public

reflectionFromToken uint256 tAmount, bool
deductTransferFee public uint256

tokenFromReflection uint256 rAmount public uint256

excludeFromReward address account public onlyOwner

includeInReward address account public onlyOwner
(_isExcluded[account],
"Account is not
excluded")

_approve
address owner,
address spender,
uint256 amount

private

(owner != address(0),
"ERC20: approve from
the zero address")
(spender != address(0),
"ERC20: approve to the
zero address")

Approval

16

_transfer address from, address
to, uint256 amount private

(from != address(0),
"ERC20: transfer from
the zero address")
(to != address(0),
"ERC20: transfer to the
zero address")
(amount > 0, "Transfer
amount must be greater
than zero")
require(amount <=
_maxTxAmount,
"Transfer amount
exceeds the
maxTxAmount.")

swapTokens uint256
contractTokenBalance private lockTheSwap

buyBackTokens uint256 amount private lockTheSwap

swapTokensForEth uint256 tokenAmount private SwapTokensForETH

swapETHForTokens uint256 amoun private SwapETHForTokens

addLiquidity uint256 tokenAmount,
uint256 ethAmount private

_tokenTransfer

address sender,
address recipient,
uint256 amount, bool
takeFee

private

_transferStandard
address sender,
address recipient,
uint256 tAmount

private Transfer

_transferToExcluded
address sender,
address recipient,
uint256 tAmount

private Transfer

_transferFromExclude
d

address sender,
address recipient,
uint256 tAmount

private Transfer

_transferBothExcluded
address sender,
address recipient,
uint256 tAmount

private Transfer

_reflectFee uint256 rFee, uint256
tFee private

_getValues uint256 tAmount private

uint256,
uint256,
uint256,
uint256,
uint256,
uint256

_getTValues uint256 tAmount private
uint256,
uint256,
uint256

_getRValues

uint256 tAmount,
uint256 tFee, uint256
tLiquidity, uint256
currentRate

private
uint256,
uint256,
uint256

_getRate private uint256

_getCurrentSupply private uint256,
uint256

_takeLiquidity uint256 tLiquidity private

calculateTaxFee uint256 _amount private uint256

calculateLiquidityFee uint256 _amount private uint256

removeAllFee private

restoreAllFee private

isExcludedFromFee address account public bool

excludeFromFee address account public onlyOwner

includeInFee address account public onlyOwner

17

setTaxFeePercent uint256 taxFee external onlyOwner
setLiquidityFeePercen
t uint256 liquidityFee external onlyOwner

setMaxTxAmount uint256 maxTxAmount external onlyOwner

setMarketingDivisor uint256 divisor external onlyOwner

setNumTokensSellTo
AddToLiquidity

uint256
_minimumTokensBefor
eSwap

external onlyOwner

setBuybackUpperLimit uint256 buyBackLimit external onlyOwner

setMarketingAddress address
marketingAddress external onlyOwner _marketingAddress !=

address(0x0

setSwapAndLiquifyEn
abled bool _enabled public onlyOwner SwapAndLiquifyEna

bledUpdated

setBuyBackEnabled bool _enabled public onlyOwner BuyBackEnabledUp
dated

prepareForPreSale external onlyOwner

afterPreSale external onlyOwner

transferToAddressET
H

address payable
recipient, uint256
amount

private

Global Variables
Variable Type Visibilty Read by Functions Written by Functions

marketingAddress address payable public swapTokens setMarketingAddress

deadAddress address public
constant swapETHForTokens

_rOwned mapping (address =>
uint256) private

balanceOf,
excludeFromReward,
_getCurrentSupply

constructor,deliver,
_transferStandard,
_transferToExcluded,
_transferFromExcluded,
_transferBothExcluded,
_takeLiquidity

_tOwned mapping (address =>
uint256) private balanceOf,

_getCurrentSupply

excludeFromReward,
includeInReward,
_transferToExcluded,
_transferFromExcluded,
_transferBothExcluded,
_takeLiquidity

_allowances
mapping (address =>
mapping (address =>
uint256))

private
allowance, transferFrom,
increaseAllowance,
decreaseAllowance,

_approve

_isExcludedFromF
ee mapping (address => bool) private

_transfer,
isExcludedFromFee,
excludeFromFee,
includeInFee

constructor

_isExcluded mapping (address => bool) private

balanceOf,
isExcludedFromReward,
deliver,
excludeFromReward,
includeInReward,
_tokenTransfer,
_takeLiquidity,

excludeFromReward,
includeInReward

_excluded address[] private _getCurrentSupply, excludeFromReward,
includeInReward,

MAX uint256 private
constant

_tTotal uint256 private
constant

constructor, totalSupply,
reflectionFromToken,
_getCurrentSupply

_rTotal uint256 private
constructor,
tokenFromReflection,
_getCurrentSupply,

deliver, _reflectFee

_tFeeTotal uint256 private totalFees, deliver, _reflectFee

18

_name string private
constant name

_symbol string private
constant symbol

_decimals uint8 private
constant decimals

_taxFee uint256 public
calculateTaxFee,
removeAllFee,
restoreAllFee

_transfer,
setTaxFeePercent,prepareForPre
Sale, afterPreSale,
setAddressFee,

_previousTaxFee uint256 private restoreAllFee removeAllFee

_liquidityFee uint256 public calculateLiquidityFee,
removeAllFee

_transfer, restoreAllFee,
setLiquidityFeePercent,
prepareForPreSale, afterPreSale,
setAddressFee,

_previousLiquidityF
ee uint256 private restoreAllFee removeAllFee

marketingDivisor uint256 public setMarketingDivisor

_maxTxAmount uint256 public prepareForPreSale, afterPreSale,
setMaxTxAmount

minimumTokensBe
foreSwap uint256 private minimumTokensBeforeSw

apAmount, _transfer

setNumTokensSellToAddToLiquid
ity

buyBackUpperLimit uint256 private
_transfer,
buyBackUpperLimitAmoun
t

setBuybackUpperLimit

uniswapV2Router IUniswapV2Router02 public
immutable

swapTokensForEth,
swapETHForTokens,
addLiquidity

constructor

uniswapV2Pair address public
immutable _transfer constructor

inSwapAndLiquify bool _transfer lockTheSwap
swapAndLiquifyEn
abled bool public

buyBackEnabled bool public

Balance Updates
Function Changes

constructor _rOwned[_msgSender()] = _rTotal

deliver _rOwned[sender] = _rOwned[sender].sub(rAmount)

_transferStandard _rOwned[sender] = _rOwned[sender].sub(rAmount)
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

_transferToExcluded _rOwned[sender] = _rOwned[sender].sub(rAmount)
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

_transferFromExcluded _rOwned[sender] = _rOwned[sender].sub(rAmount)
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

_transferBothExcluded _rOwned[sender] = _rOwned[sender].sub(rAmount)
_rOwned[recipient] = _rOwned[recipient].add(rTransferAmount)

_takeLiquidity _rOwned[address(this)] = _rOwned[address(this)].add(rLiquidity)

	Executive Summary
	Audit Details
	Methodology
	Contract Details
	Token Details
	Result Summary
	Risk Levels
	Issues Reported
	Issues Summary

	Detailed Findings
	DXTA-0 – Owner Privilege
	DXTA-1 – Division before multiplication
	DXTA-2 – Use of non-standard SafeMath library
	DXTA-3 – Variables can be declared as ‘constant’
	DXTA-4 – State variable visibility is not set
	DXTA-5 – Unhandled return value
	DXTA-6 – Floating pragma
	DXTA-7 – Missing Event emissions
	DXTA-8 – Missing zero-address validation
	DXTA-9 – Environment & function/variable naming mismatch
	DXTA-10 – Dead code
	DXTA-11 – Function initializing state
	DXTA-12 – Functions that could be declared external
	Automated Analysis
	Code Documentation
	Adherence to Specifications
	Adherence to Best Practices

	On-Chain Analysis
	Token/Holder Distribution
	Priviledged Transactions
	Liquidity

	Appendix
	Revision History
	Functions
	Global Variables
	Balance Updates

