Datalisp Technical Report

ilmu@rishi.is

ABSTRACT

This paper presents some of the potential of canonical S-expressions
as a data interchange format by showing how they can be used as
a basis for designing a system with many desirable properties. The
presentation walks through; a description of design considerations,
(some of) the tools needed to interact with the data, how the sys-
tem can be used as a metaprogramming framework (i.e. operating
system interface) and finally we sketch a coordination mechanism
for a decentralized name system and end with a discussion of how
one could potentially create a sustainable decentralized network.

CCS CONCEPTS

» General and reference — Computing standards, RFCs and
guidelines.

KEYWORDS
datalisp, data-interchange, P2P, canonical S-expressions

ACM Reference Format:

ilmu@rishi.is. 2022. Datalisp Technical Report. In Proceedings of European
Lisp Symposium °22 (ELS, 2022). ACM, New York, NY, USA, 7 pages. https:
//doi.org/idkwhattofillinhere

A reoccurring problem is picking an optimal tradeoff between effi-
ciency and redundancy, latency and throughput, consistency and
availability, censorship and pollution. This can be characterized as
different manifestations of Ohm’s law, in many ways you could
say the goal of engineering is to navigate this kind of tradeoff space.

In software engineering we come across this tradeoff quite often,
one manifestation is known as the “lisp curse” - that is - lack of
censorship causing pollution in the language because everyone
extends it in different (perhaps incompatible) ways.

1 INTRODUCING DATALISP

A Motzkin path is a word with digits from the alphabet 3 = {)(_}
subject to the constraint that parenthesis must be balanced. Canon-
ical S-expressions (csexps) are Motzkin paths where the underscore
is written as a netstring . A netstring is a length prefixed string:
k:<k-bytes of data> where Kk is an ascii encoded decimal.
Syntactically correct canonical S-expressions are in one-to-one cor-
respondence to the datatype Tree [u8].

At this point it is good to pause and take another perspective.
As a data-interchange format the above specification is complete,
however, not all syntactically correct canonical S-expressions are
simple to decipher for the receiver of such data. What semantics
are implied by our syntax?

ELS, 2022, March 21-22, 2022, Porto, PT

© 2022

ACM ISBN idk what to fill in here...$15.00
https://doi.org/idkwhattofillinhere

There is quotation, i.e. length prefixed data, and composition, i.e.
parentheses. If we could name compositions then we would have
a very economical way of moving around snippets of data and
composing them into different programs. This motivates the need
for a name system, which means we must find some sort of data
interchange mechanism to drive it (i.e. to give the names meaning).

One thing to consider for a data interchange format is that it deals
in "facts", everything is "self-evident" there is no evaluation where
you rewrite this into that in some globally comprehensible way
(since arbitrary programs can be written to read and write our data
format). When we consider the semantics with which lisp reads
S-expressions then we can see that it’s a structure meant to be
permuted heavily (lots and lots of pointers). However, datalisp de-
rives its name from datalog and datafun so the implied semantics
are different, for now you can treat a form like (f a b) as a mix
between a clause f :- a, b. like in datalog and an f-expression
like in kernel [1] and other such lisps.

(o C))))

o 1

LISP INTERPRETATION

PRELIMINARY INTERPRETATION

I~
~

o~
_

—~
l-

S~
| —~

Given our current understanding; the zeroth underscore is the name
of this data and for that to hold true the rest of the form must con-
form to the specification of that name. However we don’t know
the limits of this "specification” yet so we can’t say we know about
all syntactic restrictions (that we care about) yet. For example we
currently aren’t able to say anything about the way that the second
and fourth underscore are interpreted due to the excessive power
of the zeroth underscore (later we will see that it is unlikely that
data with this shape is complete).

It would be good to do a sanity check w.r.t. our design criteria
(lisp curse). The way we do this is to consider equality, we want
equivalent data to be equal data. This is often achieved by run-
ning a domain specific canonicalizer (compiler) on the format in
question. While canonical S-expressions are already canonical w.r.t
Tree [u8], we would like to do better: our data interchange mecha-
nism should enable coordination of canonical representation (allow
peers to discover shared semantics) and if possible encourage it!
However, since we don’t have a stick to wield (p2p), this "encour-
agement" must be via carrot; which is, in some sense, our ultimate
goal: converging on confluence via economic incentives.

https://doi.org/idk what to fill in here
https://doi.org/idk what to fill in here
https://doi.org/idk what to fill in here

ELS, 2022, March 21-22, 2022, Porto, PT

2 TEMPLATES

In order to achieve this goal we first need a way to refine represen-
tation of semantics. We achieve this with templates, this is the first
part to understanding how we model the system from the "outside"
(i.e. from the perspective of the data rather than the programs -
"show me you tables and I don’t need your flowcharts").

One of the most fundamental tools for interacting with our datas-
tructure is a less-like program (a unix $READER) that allows the
user to highlight text and persist the highlighting. When the user ex-
its the program it will return the data needed to recover the session.
We represent this data as two lists, the former one quotes all the
non-highlighted parts and the latter one quotes all the highlighted
parts. To recover the file we interleave the two lists (unquote and
concatenate) and highlight the text from the latter list.

This sentence is false.

Frame: (1:25:This 7: false.)
Vars: (1:111:sentence is)

Since we want all data to be named but these lists have no inherent
meaning beyond how many elements are in them we’ve found the
first useful names: the natural numbers as ascii encoded decimals
(length prefixed lists essentially). These are reserved names in datal-
isp. All "anonymous data" is named in this way unless there is no
composition. This will become clearer as we discuss string diagrams
more, suffice to say that the simplest diagram is n side-by-side iden-
tity wires (i.e. n quoted data).

We call the former list a frame and we consider it "immutable"
in the sense that we will hash it and expect to be able to fetch it
again by content address. The idea here is to be able to link a lot of
data to the frame (such as: locally available data or default values
for filling the holes, predicates for testing data before putting it
in a hole, programs who will accept the file resulting from filling
the holes w.r.t. predicates, annotations, explanations, etc.) and then
we name the association of this linked data with the frame. We’ll
refer to these elaborated frames as templates. The name allows us
to easily refer to templates when we want to pass data into the
system safely. Naming templates in a "metastable way" - that is;
when the template receives bug fixes we want it to be likely that
others will believe that the new data is what the name refers to..
but if someone claims the name refers to malware then we want it
to be unlikely that anyone will believe the name has that definition
- this is a complicated problem that we will scope out a bit in a later
section where we discuss legitimacy.

For binary data we need to think about byte alignment. This means
that for each quotation of binary data we need to read the first
three bits to know how many bits after that we should ignore be-
fore we start reading. If the binary data happens to be byte aligned
then we can skip this, we’ve motivated a small syntactic addition
to our canonical S-expressions: k;<k bytes of data> where the
semicolon means that the data is not byte aligned binary data (and
therefore will use this three bit trick), whereas a normal colon

ilmu@rishi.is

means our data is byte aligned. We will name these kinds of net-
strings differently; "nitstrings" (bit vs byte) because I will nitpick
that this small addition would undermine the canonicality of our
encoding so I am against using it without proper forethought and
I prefer moving such bookkeeping into the name (in practice it is
easy to specify which slots will have binary data in the same way
as you would specify any other property).

A so far implicit notion is the idea that canonical representation is
so important that we are willing to use an inefficient format (on
disk representation, network packets, etc. would not use canonical
S-expressions). Hopefully this paper serves as some motivation for
this belief, content addressing is already a strong argument but
clarity is also important.

What we’ve described so far allows us to abstract interfaces to
arbitrary programs and gives us further understanding of what we
actually need, semantics wise. For example we know now that each
name can be "flat" in the sense that it doesn’t change the meaning of
names in sub-forms, the goal is only to collect all the quotes needed
to plug the holes in the frame of the template associated with the
name and produce a complete file (which will be understandable to
things exterior to the system).

Here we run into another tricky problem; method dispatch. For
the proof of concept we will use a simple approach; we associate
names with frames without ambiguity. That means each name has
a fixed number of slots because each frame has a fixed number
of holes. However we will often have default values available and
having many names for different states of partially filled in data is
cumbersome, likewise we want the name to refer to a template not
a frame and there are many templates for any given frame. In order
to have a "new name" for these cases we will adopt the convention
of versioning the templates for a given frame.

This means we have (definition name k specification) where
k is the version (as ascii decimal) of the name and we will refer
to name by version so for example (4:name1:0...) is the zeroth
version of name and refers to some unique specification. At this
point it is becoming clear that a specification is two things; the
templates for invoking programs to check data and guix packages
for reproducing those programs. Together they are the information
required to check whether a name is being used correctly.

Composing templates by putting templates in holes of other tem-
plates results in a tree of templates whose holes are the holes of
the templates along the fringe of the tree (as well as unfilled holes
in the interior), we would want to identify holes in some cases and
shrink the interface. This kind of problem is described by string
diagrams which we will be assuming some familiarity with from
here on out, a gentle introduction can be found at [2].

With logic programming we have a way to ask for paths between
names and put rules on compositions. This allows the user to access
different representations of data seamlessly and a canonical repre-
sentation also makes the programmers job easier (implementation
complexity is O(n) via star topology).

Datalisp Technical Report

3 BIPARTITE GRAPHS
In lisp we try to exploit the duality between code and data to

simplify the task of programming. However we rarely represent
the duality with a bipartite graph... Consider the following sketch:
O Mail Server

INTERNET

, 0s known (@)) © "
s X > outbox

inbox

__________ [] eneak _ _
signature ~

@
g
&

There are potentially many ways to understand this sketch but in
this section we are more concerned with the structure than the
content. We dissect it (roughly) as follows:

e Squares are called “transitions” they are represented by a
guix manifest (describing how to reproduce the programs
needed to validate the data and perform the transition). We
call this the meet in the transition. Transitions also describe
(using templates) how to wire up incoming quoted data to
call the programs correctly; the join in the transition.

e Circles are called “places” they are where we know what

names mean; each name is specified and the associated data

must be valid according to that specification (guix packages

+ datalisp templates). The same name can mean different

things in different places. The meet in the place is the col-

lection of specifications and associated names (i.e. the local
definitions) while the join in the place is the cached data

meeting those specifications (you can think of the join of a

name in a place like a table in a database).

Circle->Square arrows are the names [from the source place]

that are allowed to fire this transition and how to wire them

to the transition interface.

e Square->Circle arrows are also compatibility parts the data
here is projections, injections and rewiring of that kind be-
tween (some of) the wires from the transition interface and
(some of) the named wires in the target place (that place will
test the received data according to local customs).

The arrow data is there to cover place-specific compatibility with
the transition interface, The idea is to give each peer some flexibility
so that it is easier to have independent consensus on the transitions
(likewise for places).

The reason we speak of a "meet" will be elaborated below but
the idea is that we want the peers in the network to be able to
agree on transition representatives and in that way they pool their
risk. These kinds of "eggs in one basket" gambles can then be used
to measure the legitimacy of branches in the source tree ("how
bad would it be if this transition is faulty?" == "how many people
depend on this?" X "how much can damage can it do?", this is a

ELS, 2022, March 21-22, 2022, Porto, PT

similar idea to "bus factor" except here we don’t care who maintains
code; we care who depends on code). The idea is that if everyone is
willing to trust something (newtonian physics..) then it is likely to
be legitimate but there is also a greater reward for proving it is not.

Pooling risk makes it economical to improve the security of the
whole (cheap for each person to contribute but still in aggregate
there is enough to pay for proper infrastructure maintenance) but
it also makes it harder to trust anyone with the associated responsi-
bility. We will however (again!) postpone discussion of this problem
and continue with our reification of the sketch presented.

There are 6 slots under bigraph:

o A first slot is raw binary data encoding a n X m bit-matrix for
P — T so the bit at index k - n + r indicates the existence of
an arrow from place r to transition k (if I got the orientations
right).

o Similarly, we encode T — P as a m X n bit-matrix.

e Then we have four lists, the first two: are the places and
transitions (of length m and n respectively) they describe
our database of stored data in the case of places and pro-
grams ("stored procedures” in databse lingo) in the case of
transitions.

e The latter two lists are the arrows: first of length equal to
number of 1 bits in P — T and latter has length equal to
1 bits in T — P. They have the data representing what we
discussed above.

Of course we take advantage of content addressing to chunk this
up into manageable amounts of data but in principle this bigraph
is the "proof" that we want the computer to produce. The goal is to
find a way to incentivice improving the proof so that more peers
can trust it.

Anyway, let us return to the matter at hand by expanding our
understanding of the aforementioned "outside view" - if you con-
sider how a user treats data they are processing in the shell; caching
it in files before making experimental changes that eventually work
as intended - then clearly this workflow is improved by forgetting
about the nitty-gritty of files and rather just quoting all data at rest,
that way we can work on many pipelines in parallel and capture
the resulting dataflow construction as a bigraph that others can
reproduce and make use of.

There is no reason we can’t have an interactive GUI to access
places and fire transitions, in fact statebox [3] has already imple-
mented interactive graphical editors for string diagrams and petri
nets. Furthermore; you’d need to be psychotic to program csexps
by hand, therefore, we should associate templates with other infor-
mative presentation formats [than bigraphs and string diagrams]
this motivates general purpose structured editors for csexps (with
different layouts depending on the data in question) and a "menu
system" for firing transitions and traversing the database (that I
will describe in more detail below).

ELS, 2022, March 21-22, 2022, Porto, PT

4 VERSION CONTROL

We’ve already talked about how the transitions are like build sys-
tems since they are concerned with reproducing the correct code
(given some data). What we’ve yet to talk about is how the places
function like version control systems (since they care about data).

A recent paper[4] shows a way to do linear time diffs on typed trees
(or ordered trees). Canonical S-expressions can therefore be effi-
ciently version controlled (by treating the netstrings as immutable
we find the minimal conflicting substructure in the tree and replace
it).

WORKSPACE O i
. ' untoad kv

T store

< # csexp

. '
e o 1] . .
1 send transition

This picture is based on the ideas in the paper but I am sure we can
go further by integrating ideas from pijul and using some classic
algorithms to change tokens into frames (again trying to find maxi-
mal shared structure, this time in a flat [u8] file) and then using
the structural methods described above.

Sadly I have not yet reached very deep in this investigation so
I will not go into the specifics of "how" and rather will focus on the
"what"s that have nice implications.

We can think of each place as a workspace like in the picture (backed
by a datastore to retrieve preimage of hashes), it is constantly look-
ing for shared structure and keeping track of the content addresses
it has seen. This makes it easier to reason about idempotence (which
can grant us coordination-freeness if we satisfy propnet axioms)
and allows us to version interfaces, since we can find which edges
have to be added to the graph so that we can "lift" a place up a
version and then eventually if we trust the new version enough
(i.e. the diagram proved commutative) then we can "drop" the old
place from the bigraph (but keep the arrows needed to route past it).

Any invariants that should hold such as adjunctions or commutativ-
ity of (sub)diagrams in the bigraph can be tested for programmati-
cally as new data arrives in that part of the graph. This way we can
build confidence in new versions. Any broken invariants that we
detect we should share with the network to obtain economic gains
of some sort (i.e. the protocol rewards sharing useful information
such as counterexamples to theorems).

Type theory is useful for reasoning about composition and in datal-
isp we want to support different user provided type theories (to
aid in program construction and other metaprogramming). The
logic programming that is responsible for maintaining invariants
in our system is not fully worked out yet but it is also out of scope

ilmu@rishi.is

for this paper; the general idea we are pitching is to replace a file
system with a some kind of general-purpose type system.. but in-
vestigations into the intersection of logic and measure theory (and
especially how to implement these theories in computers) is a very
deep field (called artificial intelligence) and from what I can tell
it offers diminishing returns to dive too deep into this too early. I
think it will be sufficient to use an algorithm like datalog (query
transitive closures of some rules+facts) as the engine of the proof
of concept implementation, that can then serve as reference for
further development.

As mentioned above, the form (4:name1:0. ..) is associated with
a specification indexed by version 0 of name. A very type system-y
idea is that if the graph updates arrive via the graph then we should
be able to always keep the version<->implementation relation coor-
dinated with peers we trust (we model them as places in our graph
as shown before in sketch so we just need to add a transition that
normalizes any quirks in their vocabulary), to achieve this we will
want to keep track of where information comes from and what
vocabulary different peers are using, then use structural decomposi-
tion to remove confusion and keep track of causality (see all papers
by Ugo Montanari, he is incredible).[5] To improve this further
we’d want to be able to negotiate with our peers to standardise or
simplify things.

Among things in need of simplification is equivalency classes of
places and/or transitions (they will usually be equivalency classes
since whenever any dependency is updated there is one more pos-
sible meaning for the name).

We’ve mentioned several times already how the goal of datalisp is
to be a (sustainable) decentralized name system, i.e. to resolve the
ambiguity caused by multiple equivalent things and allow users
to refer to semantics by name, qualifier free, without unexpected
things happening (i.e. “do what I mean”). Now it is time to start
talking about how to measure different candidates and how to co-
ordinate with other peers in the selection process.

We will need some measure theory and I again am not expert
enough to magic one forth. However I have a pretty reasonable
approach to testing different candidate solutions to the problem.
The general idea is to use a protocol where you trade (signed
(contextual (measured (named data)))), there will be a more
thorough look at this when we describe a potential bootstrap ver-
sion (with each field in that expression explained and a proper
introduction to the problem it tries to solve) but first we need to
talk about UX.

Since the system is peer-to-peer there is no root of trust, there-
fore, we only have a measure of trust for each exterior information
source (in each context) and perhaps a measure of our confidence
in that measure. We want to make this information resistant to
manipulation by cooperating with people we trust in reality, this is
how we obtain a (so far informal) notion of "proof of trust”, how
we motivate people to share their truthful estimations and whether
or not these estimations can be made to converge in some manner
is a question for religious study, let’s return to tool making.

Datalisp Technical Report

5 INTERACTION

The menu system has the guiding philosophy that it only provides
you with a window into data where you can perhaps perform some
structural manipulations via keybindings but then those changes
are atomic so that it is always possible to serialize the current state
and share it with others or reproduce it yourself.

We've already discussed how we can create/view/edit frames and
while that is an important piece of the system it should be clear by
now that the higher level abstraction; templates, are going to be
important. Now is the time to talk about the associated interfaces.

e Editor - the simplest structured editor, similar to what you’d
use to interact with a filesystem, i.e. move, delete, edit and
add vertices in/to/from a tree (like files and folders in a
filesystem). This editor is used to make syntactically correct
changes to csexps, it also (optionally) outputs the shortest
editscript for the session (i.e. the data of what changes you
made, which is allows you to undo them / share them).

o Menu - while this program seems simple; "just a way to fire
transitions in the bigraph", it is actually an internet browser.
The evolution tree for this program is huge but the simplest
manifestation is just a list of human readable options backed
by shell commands. Select an option to run a command. By
adding a minibuffer we can show the command to run or
annotations or any other (supported) metadata about the
highlighted option. Options can of course open the menu
program again but with different data. This makes it easy
to think of various utility programs that can hook onto the
menu as well as different menu layouts (underneath it is all
just data). In particular it would be useful to have interfaces
to fill in templates, that way the menus can index partial
commands (with constraints) which means each command
can be more general (easier to coordinate) while still being
safe via predicates (and legitimacy contest).

Shell - Combines the two menus above with an interactive

“shell language” which is a human-typeable syntax that trans-

lates back to canonical S-expressions. This time our number

one design criteria is tab completion but we would also want

a clean way to describe firing sequences in the bigraph.

The structured editor will eventually need to support predicate
checking data in the tree and external viewers / editors (for im-
ages/videos/etc) but otherwise will most probably be practically
replaced by more domain specific utilities as the ecosystem matures
(however in many ways it is the ultimate fallback since it is general
purpose).

I'm pretty sure that all these interfaces will converge in the shell
language IDE program. The shell syntax is based on “generalized
S-expressions” which are still work in progress but are meant to
give easy access (via our vocabulary of names) to all the code and
data that we know about in this computer. For this syntax to be
useful we require that any syntax rule must have the editor support
to unambiguously rewrite back to a canonical S-expression in a
user-understandable way.

In my current design the interface is split into four parts:

ELS, 2022, March 21-22, 2022, Porto, PT

o header is one line at the top of the screen indicating stateful
things like the mode the editor is in and the location in the
contexts hierarchy.

o viewer is the top half of the window, it will elaborate what
the highlighted slot contains (rough intuition: it follows one
pointer out and displays what it finds). At rest it will show
the bigraph we are working in.

e options is the bottom half of the window, here we see the
possible things to hook in at the current location (if we
are tab completing) or possible structures to explore in the
viewer (links out from currently viewed data or similar).

e commandline is one line at the bottom of the screen where
the user types in generalized S-expressions.

Okay, so what are these gsexps? We already mentioned how tab
completion is an important consideration (as well as human type-
ability..) so it may not be surprising that we are whitespace sensitive
and have the equivalency: (f a ...)isf(a ...)isa.f(...).

However we don’t really care in which order the template is filled
so we can add a bit more syntactic sugar (f a b ¢c)is (f’ b ¢
a) is (f’’ c a b) this gives more accessibility when tab com-
pleting, ideally the application has enough polish to auto rewrite
f?77 into f and keep the user in flow. Similarly we need a way to
"box" whitespaces in a quote, the shell will therefore be using a
vim-y command language for entering and exiting boxes (quotes,
netstrings, they are all the same).

Finally we also have three types of commonly used delimiters:
(parens), [brackets] and {braces}. One idea is to use parens to
access names in places, brackets to access names in transitions and
braces to access discrete data via different search methods (higher
order filters). For example if you finish filling in a parenthesis and
send it to the bigraph then a token is put in that place on the bigraph.
If you fill in brackets then you are asking to fire a transition which
could also put some tokens on the bigraph. You can then serialize
the marking on the bigraph to save what you were working on and
return to it later.

The main takeaway is that we can use different parenthesis as
different access patterns to the data in the bigraph and in that way
make the tab completion more “complete”.

Anyone who has played with the analysis tool in lichess or used
agda will know that it is possible to provide very good UX for struc-
tured editors, the key problem is how we organize the data and
therefore the root problem is finding a method that will converge on
a solution. If the convergence is bound to happen then our problem
is said to be "coordination free" but resource allocation problems
always require coordination and cognitive capacity ("namespace")
is a scarce resource.

Trust is the thing we want to quantify, we define it as the thing
that turns information into behaviour, so what we want to assess
is which information (data) we want to turn into behaviour (code).
These assessments are useful for others so, as previously mentioned,
we’d want to encourage peers to share their truthful assessments.

ELS, 2022, March 21-22, 2022, Porto, PT

6 COORDINATION

In a peer-to-peer system we have no a priori hierarchy but we may
have some common starting point (synchronization); software that
all honest peers share. We call this the meet in the network our
goal is to give the honest peers a way to trust strangers without
being burned by byzantine actors.

Sustainability is an important property for a decentralized system,
it is defined in terms of the incentives in the system; a sustainable
decentralized system is resistant to the tragedy of the commons.

The tragedy of the commons is a famous problem in economics,
defined as "the interest of the individual colliding with that of the
whole" so again the "lisp curse". Another way to state it is as a non-
convex incentive structure, that is, where locally optimal behaviour
can undermine the functioning of the system. This problem is usu-
ally solved (in theory) with centralization (censorship). However
that is a bit like postulating a solution since the original problem is
precisely that we don’t know how to align incentives (i.e. centralize
in a "fair" manner), systems like taxes and voting are still vulnerable
to the tragedy so government is not really accountable. This is a
huge problem in practice.

The nobel prize economist Elinor Ostrom stated (famously) that
"a system that works in practice can work in theory" (about sus-
tainable decentralization observed around the world) but we don’t
know if that is necessarily true (since we cannot rule out the exis-
tence of god € 0). What we can do is build a realistic representative
(a "personal bureaucrat") that actually has the users best interest in
mind and then hope for the best, maybe it works in practice. On that
note: I think any realistic attempt at peer-to-peer networks should
be mostly focused on making the peer more representative of what
the user wants. To that end communication protocols are motivated
by the desire to be precise in your communication (for fear of being
misunderstood) while still being able to shitpost occasionally (like
the hackernews slang of ending a message with /s).

We want to use a similar strategy as the quecha (natural) language,
where metadata (grammar) attached to messages gives indications
about the source of the message and how much we trust what we are
saying. As indicated before our blueprint is (signed (contextual
(measured (named data)))) where the proof of concept will
interpret the blueprint in the following manner:

e data is an IPFS hash that links to “anonymous data” so if
we have (x:namey:somez:data) then we will pack it up as
(x:namew: ipfshash) because the metadata just needs to
tell you how to retrieve the data in question (which you will
do if you think it is worth it) so the data we put into IPFS is
(1:2y:somez:data).

e named is the name we believe should be associated with the
data. If you want to make second order statements about
your beliefs (like "I believe that this name is what peers X
will use but that name’ is what peers Y will use") then the
named is a larger structure than literally just a name (and
maybe a version) but it’s better to build vocabulary bottom
up and be concise with messages.

ilmu@rishi.is

e measured means that the signee has voted with an assess-
ment (which is implicitly a bet) the ballots for the proof of
concept network will just give the odds of Signal vs Noise
(information you will trust vs you won’t). In his book[6]
Donald G. Saari observes that the Arrows impossibility theo-
rems are simple information theoretic results that are caused
by the ballots not giving enough information to produce a
reliable tally.

e contextual refers to the context that measure contributes
to, essentially it is a way to tally the votes. The context that
you are participating in coordinating will have some rules for
collecting up the tallies, something that isn’t really worked
out but I will share my intuition.

We’ve already mentioned how coordination-freeness is a property
of a converging system (where it doesn’t matter in which order
information propagates around the system) and how resource allo-
cation is not a coordination-free problem, in fact I believe resource
allocation to be a coordination-complete problem (every kinda of co-
ordination problem is a resource allocation problem and vice versa).

In the system we have two types of consensus (which is coordi-
nation that we have blessed as legitimate rather than accidental),
meet consensus is formed by many peers intersecting in some com-
mon functionality (like the base OS and "automatic updates") while
join consensus is a peer consenting to some configuration (like
installing software).

e Meet consensus; the peers have places seeding the agreed
upon data. Each participant in the consensus is lending legit-
imacy to this version of the software in question, this makes
it more likely that new users install the legitimate version.
All further development is likely to build on the most legiti-
mate meet so a meet consensus can be seen as a “release” of
the software.

e Join consensus; when a peer decides to add customization’s
or patches from the internet to their graph. It’s essentially
the same as installing software, of course many peers in the
same join can form their own meet (release of the software)
that "leaks" legitimacy to their dependencies (or seen another
way; derives legitimacy from associating with trustworthy
dependencies).

Note that each peer is only able to make probabilistic estimates
about the outside world so they may not actually form global con-
sensus (or any consensus for that matter, maybe you are only com-
municating with bots and you’d never know). These estimates are
calculated by updating prior assessments of incoming messages,
multiply the foreign prior (odds of signal) with our local assessment
of the trustworthiness of the source (a bayes factor) to obtain a pos-
terior. We can now sort data by priority based on this posterior, any
feedback we receive from the user updates our local assessments
rather than getting leaked to the network.

Sharing our local priors to the network is done (indirectly) by
sending in a tally. The general idea is that each peer calibrates the
voting rights they give to others as the discussion unfolds and then
collect the votes (weighted by legitimacy) into a tally that they
share with the network.

Datalisp Technical Report

Any two peers always have an implicit bottom of Void (i.e. they
have never communicated, even indirectly, no software in common)
and an implicit top of Conflict (i.e. they can’t agree on how to pro-
ceed with their communication, to the point of death). Currently I
am thinking about a system where peers can establish a bottom (a
context) via initial meet consensus.

Participating peers put polynomial commitments in the bottom
along with (zero knowledge) proofs that the degree of the polyno-
mial equals some n and that the constant term of the polynomial
is the private key of the participant (i.e. fits with the attested pub-
lic key). The idea is that the participant can now send messages
as a representative of the meet (collective identity) but they must
prove that they are leaking a point on the polynomial when they
do it. Their influence on the context is limited by the degree of the
polynomial (once an identity is burned it becomes "anonymous" so
we lose any predictive power). In order to replenish their supply
of influence they must continue to coordinate the collective identity.

This is essentially a twist on the waku protocol which is a twist on
shamir secret sharing. Our goal is to make a self-regulating mon-
etary system based on having this kind of artificial(?) scarcity in
ability to communicate. Each peer will constantly have to be estab-
lishing new contexts by making alliances in the fight for legitimacy
(so that it can sell-out or take advantage of the influence it has on
other peers, hopefully at the cost of its legitimacy [i.e. continued
ability to do noisy things] if so = byzantine fault tolerance).

What the context has to be able to do, is to resolve an epoch of
communication (w.r.t. a meet) by comparing all the tallies and see-
ing if there is enough consensus to continue or if there is conflict.
This will result in a proof that is in the meet of the next epoch.

Given some peers representing a meet consensus that many have
joined (i.e. it is very legitimate), if their interest is aligned then
they all work together towards a common goal. If however, their
interests are conflicting somehow then maybe they cannot make
progress with their development; causing stagnation. This may not
be serious in the short or medium term, but eventually wayland
shows up (i.e. some alternative). These other choices put pressure to
cooperate on the participants (in order not to be left behind by the
competition) or move to greener pastures (coordinate something
else). Forks can also gain legitimacy in such situations.

Earlier I called coordination "taking a consistent quotient" so I
should define Quotients are created by identifying equivalent data
and choosing a canonical representative for the equivalency class.
This can for example be a way to manage multiple drafts of a para-
graph in a document or a huge comment thread.

Metadata describing how data is identified or distinguished in dif-
ferent contexts can be looked up by content-address (i.e. asking the
network for data referencing the hash), the idea is to use (proba-
bilistic) logic programming to drive the data interchange graph and
order incoming messages to protect the users focus from noise but
we leave further investigation for a later date.

ELS, 2022, March 21-22, 2022, Porto, PT

7 CONCLUSION

Thope we can make canonical S-expressions into a legitimate choice
for data interchange. Some basic tools for working with them will
go a long way but in order for them to become the canonical pack-
age description format or a programming language agnostic type
system or even a digital democracy system/cryptocurrency - then
it will require some coordination.

However that coordination is long overdue! We desperately need a
way to refine legacy interfaces (such as dotfiles of various formats or
APIs that are too large to reimplement bug-for-bug coughXcough).

Having canonical representations for even "simple" things, like
keybindings, makes it easier to compile configurations for different
choices of window manager / text editor / etc. In a way that is con-
sistent across the whole system. This then makes it (much) easier
for a new software to know where they "fit in" i.e. what kind of
interface do they need to support to be painlessly compatible with
the interface people actually use etc.

Similarly new internet protocols are completely inaccessible un-
less blessed by google to be supported by the one true browser.
By having a simple method to index shell commands (with their
dependencies pinned via guix) it becomes much easier to acciden-
tally share knowledge and your interface becomes more protocol
agnostic.

Where things get more complicated is keeping track of propaga-
tion and managing the probabilities. This is probably going to get
arbitrarily complicated once market incentives are in the mix and
I'm pretty sure solving that problem would be no less impressive
than solving AGL

Although solving it would be hard, we can get a long way with
heuristics. In a content address based network, canonical S-expressions
look to be as good a solution as we can reasonably come up with
and bigraphs with topological semantics seem like a pretty safe
place to start. Although datalisp (as specified) does not need to use
the parenthesis we must consider byzantine fault tolerance ;)

Finally, I believe that there is enormous benefit from having a “type
system” like datalisp for managing compositions of programs. We
want it to be easy to isolate some behaviour and gradually rewrite
software to be more trustworthy. An emerging standard for data
interchange (as opposed to an imposed one) would perhaps allow
us to balance censorship and pollution and overcome the lisp curse.

REFERENCES

[1] J. N. Shutt, Fexprs as the basis of Lisp function application or $ vau: the ultimate
abstraction. PhD thesis, Worcester Polytechnic Institute, 2010.

[2] “graphical linear algebra” https://www.graphicallinealgebra.net.

[3] “Statebox.” https://statebox.org.

[4] S. Erdweg, T. Szabd, and A. Pacak, “Concise, type-safe, and efficient structural
diffing,” in Proceedings of the 42nd ACM SIGPLAN, PLDI 2021, (New York, NY, USA),
p- 406-419, Association for Computing Machinery, 2021.

[5] U. Montanari, H. Melgratti, and R. Bruni, “Concurrency and probability: Removing
confusion, compositionally,” Logical Methods in Computer Science, vol. 15, 2019.

[6] D. G. Saari, Basic geometry of voting, vol. 12. Springer Science & Business Media,
1995.

	Abstract
	1 Introducing Datalisp
	2 Templates
	3 Bipartite Graphs
	4 Version Control
	5 Interaction
	6 Coordination
	7 Conclusion
	References

