
www.allitebooks.com

http://www.allitebooks.org

Spring Web Services 2
Cookbook

Over 60 recipes providing comprehensive coverage of
practical real-life implementations of Spring-WS

Hamidreza Sattari

Shameer Kunjumohamed

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Spring Web Services 2 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1130212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-582-5

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Hamidreza Sattari

Shameer Kunjumohamed

Reviewers
Biju Kunjummen

Bhavani P Polimetla

Daniel Vaughan

Acquisition Editor
Sanjay Rajan

Lead Technical Editor
Chris Rodrigues

Technical Editors
Manasi Poonthottam

Lubna Shaikh

Sakina Kaydawala

Copy Editor
Leonard D'Silva

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Elinor Perry-Smith

Indexer
Hemangini Bari

Graphics
Manu Joseph

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Hamidreza Sattari started software development in 2002 and has been involved
in several areas of Software Engineering, from programming to architecture as well as
management. His area of interest has been integration among the software applications.

Hamidreza Sattari earned his Master's degree in Software Engineering in 2008 from Herriot
Watt University, UK, and his Bachelor's degree in 1994 in Electrical Engineering (Electronics)
from Tehran Azad University, Iran. In recent years, his research area of interest has been
scientific data mining using algorithms and statistical techniques in pattern recognition,
estimation, and machine learning. He maintains the blog justdeveloped.blogspot.com.

First, I should thank the open source community that is too large to name.
Definitely without using the products, ideas, articles, and web log of this
community, I would have never been able to write this book. Besides, I
would like to thank my friend, Shameer P.K., for his cooperation in writing
this book.

www.allitebooks.com

http://www.allitebooks.org

Shameer Kunjumohamed is a software architect, specialized in enterprise application
integrations and SOA. He is well-versed in J2EE and Microsoft .NET platforms. He is interested
in various mobile platforms, including Android, Blackberry, and other cross-platform mobile
frameworks that are in the market these days.

After graduating from Calicut University, India, in 2000, Shameer handled different roles in
software engineering. He earned his Master's degree in Software Engineering from Heriot
Watt University of UK (Dubai campus) in 2009. He has worked for Wellogic ME, at Dubai
Internet City. At present, he works as a Solutions Architect in Dubai, UAE, and is a guest
lecturer at Heriot Watt University for Post Graduate students in Information Technology.

He maintains the blog http://justcompiled.blogspot.com.

I would like to thank a number of people who encouraged me to write this
book and reviewed my blog (http://justcompiled.blogspot.com),
which was a route to this book. I thank my wife Shehida, and my daughters
Shireen and Shahreen, who were supporting me and bearing with me when
I was busy writing the chapters. It was their precious time I was utilizing
for this book. Also, I would like to thank my friend, Hamidreza Sattari,
who is a great friend and colleague; without his support and hard work, I
wouldn't have taken up this challenge. I extend my thanks to all those who
contributed to my knowledge and passion towards technology to make me
capable of writing this book.

www.allitebooks.com

http://justcompiled.blogspot.com/
http://justcompiled.blogspot.com/
http://www.allitebooks.org

About the Reviewers

Biju Kunjummen is a Senior Software Developer with Johnson Controls Inc. and works on
an Enterprise Java-based Web application, with focus on integration using the open source
stack—Core Spring, Spring Integration, Spring Web-Services, and Apache Active MQ.

He has been in the Software Industry since 1998, with focus on Enterprise applications
across the Finance and Healthcare domains.

I would like to thank my wife, Athira, and daughter, Sara, for their patience
during the review process.

Bhavani P Polimetla is learning and working in the IT Industry since 1990. He graduated
with Bachelor of Computer Science and Master of Computer Applications degrees from
Andhra University, India. He worked on standalone Swing applications to Grid computing
and the N-tire architecture. He has worked with the world's top-class clients including three
from Fortune 50 companies. At present, he is working as an independent Java consultant in
Atlanta, Georgia, USA.

To demonstrate his skills, he completed more than 25 certifications in the spectrum of J2EE,
Database, and Project Management subjects. He also achieved many awards for many of
his projects. He spends his free time performing social service activities. More information is
available at his website www.polimetla.com.

www.allitebooks.com

http://www.polimetla.com
http://www.allitebooks.org

Daniel Vaughan has been a commercial software developer since the late 1990s, and
over the recent years, has increasingly specialized in Java-based web applications. He has
worked with startups through to multinational organizations, either as a part of small agile
teams or in consulting roles.

He is currently privileged to be a Software Engineer at the European Bioinformatics Institute
in Cambridge, UK, where he works with a large amount of data and tries to understand the
magical world of biology.

Daniel is also the author of Ext GWT: The Beginner's Guide and can be found at
http://www.danielvaughan.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Building SOAP Web-Services	 5

Introduction	 6
Using Maven for building and running a Spring-WS project	 9
Creating a data contract	 13
Setting up a Web-Service using DispatcherServlet	 15
Simplifying the creation of a Web-Service using MessageDispatcherServlet	 20
Setting up a Web-Service on JMS transport	 24
Setting up a Web-Service on E-mail transport	 28
Setting up a Web-Service on embedded HTTP transport	 33
Setting up Spring-WS on XMPP transport	 36
Setting up a contract-first Web-Service	 38
Setting up a simple endpoint mapping for the Web-Service	 42
Setting up an endpoint by annotating the payload-root	 45
Setting up a transport-neutral WS-Addressing endpoint	 49
Setting up an endpoint using an XPath expression	 52
Handling the incoming XML messages using DOM	 55
Handling the incoming XML messages using JDOM	 58
Handling the incoming XML messages using JAXB2	 61
Validating the XML messages at the server side using an interceptor	 64

Chapter 2: Building Clients for SOAP Web-Services	 69
Introduction	 69
Setting up a Web-Service client development environment within Eclipse	 70
Setting up a Web-Service client development environment using Maven	 73
Creating a Web-Service client on HTTP transport	 77
Creating a Web-Service client on JMS transport	 80
Creating a Web-Service client on E-mail transport	 83
Setting up a Web-Service on XMPP transport	 86

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Creating a Web-Service client using XPath expressions	 89
Creating a Web-Service client for a WS-Addressing endpoint	 93
Transforming a Web-Service message using XSLT	 96

Chapter 3: Testing and Monitoring Web-Services	 99
Introduction	 99
Integration testing using Spring-JUnit support	 100
Server-side integration testing using MockWebServiceClient	 104
Client-side integration testing using MockWebServiceServer	 107
Monitoring TCP messages of a Web-Service using TCPMon	 110
Monitoring and load/functional testing of a Web-Service using soapUI	 114

Chapter 4: Exception/SOAP Fault Handling	 121
Introduction	 121
Handling server-side exceptions by returning the exception's message
as a SOAP fault string	 122
Mapping exception class names to SOAP faults	 125
Annotating exception classes with @SOAPFault	 129
Writing your own exception resolvers in Spring-WS	 134

Chapter 5: Logging and Tracing of SOAP Messages	 139
Introduction	 139
Logging message payload manually	 140
Logging both request and response SOAP Envelopes using log4j	 144
Logging both request and response using Spring-WS's Interceptors	 147
Using Eclipse IDE to debug a Spring-WS	 152

Chapter 6: Marshalling and Object-XML Mapping (OXM)	 159
Introduction	 159
Marshalling with JAXB2	 160
Marshalling with XMLBeans	 165
Marshalling with JiBX	 169
Marshalling with XStream	 174
Marshalling with MooseXML	 177
Creating a custom marshaller using XPath for conditional XML parsing	 181

Chapter 7: Securing SOAP Web-Services using XWSS Library	 187
Introduction	 187
Authenticating a Web-Service call using plain/digested username token	 189
Authenticating a Web-Service call using Spring security to authenticate
a username token with a plain/digested password	 196
Authenticating a Web-Service call using a JAAS service to authenticate
a username token	 203
Preparing pair and symmetric keystores	 208

iii

Table of Contents

Securing SOAP messages using digital signature	 216
Authenticating a Web-Service call using X509 certificate	 220
Encrypting/decrypting of SOAP messages	 225

Chapter 8: Securing SOAP Web-Services using WSS4J Library	 235
Introduction	 235
Authenticating a Web-Service call using a username token with
a plain/digest password	 237
Authenticating a Web-Service call using Spring security to authenticate
a username token with a plain/digest password	 242
Securing SOAP messages using a digital signature	 247
Authenticating a Web-Service call using an X509 certificate	 251
Encrypting/decrypting SOAP messages	 253

Chapter 9: RESTful Web-Services	 261
Introduction	 261
Setting up a Spring RESTful Web-Service using RESTful features in
Spring MVC	 263
Using the REST Client tool to access Spring RESTful Web-Service	 268
Setting up a Spring RESTful Web-Service using HTTP message conversion	 270
Creating a WS Client for the Spring RESTful Web-Service using
Spring template classes	 276

Chapter 10: Spring Remoting	 281
Introduction	 281
Setting up Web-Services using RMI	 282
Setting up a servlet-based Web-Service using Hessian/Burlap, exposing
business beans	 286
Setting up Web-Services using JAX-WS	 290
Exposing servlet-based Web-Services using Apache CXF	 293
Exposing Web-Services using JMS as the underlying
communication protocol	 295

Index	 299

Preface
Spring Web-Services (Spring-WS), introduced by the SpringSource community (http://www.
springsource.org/), aims to create contract-first SOAP Web-Services in which either a
WSDL or an XSD is required primarily for the creation of a Web-Service. Since Spring-WS is a
Spring-based product, it takes advantage of Spring's concepts such as Inversion of Control
(IOC) and dependency injection. Some of the key features of Spring-WS are:

ff Powerful endpoint mappings: The incoming XML requests can be forwarded to any
handler object, based on the payload, SOAP action, and an XPath expression

ff Rich XML API support: The incoming XML messages can be read using a variety of
Java's XML APIs such as DOM, JDOM, dom4j, and so on

ff Built by Maven: Spring-WS can be easily integrated with your Maven project

ff Support for Marshalling technologies: Several OXM technologies, such as JAXB,
XMLBean, XStream, and JiBX, can be used alternatively for the conversion of XML
messages to/from an object

ff Security support: Security operations, such as encryption/decryption, signature,
and authentication

Covering all of these key features of Spring-WS 2.x has been the main goal of this book.

However, in the last two chapters, a different approach toward Web-Service development
using REST-style and contract-last development using Spring remoting feature are detailed.

What this book covers
Chapter 1, Building SOAP Web-Services: This chapter covers setting up SOAP Web-Services
over HTTP, JMS, XMPP, and E-mail protocols. It also covers the different implementations of
Web-Service's endpoint using technologies such as DOM, JDOM, XPath, and Marshaller.

Chapter 2, Building Clients for SOAP Web-Services: This chapters covers building SOAP
Web-Services clients over HTTP, JMS, XMPP, and E-mail protocols, using Spring-WS
template classes.

http://www.springsource.org/
http://www.springsource.org/

Preface

2

Chapter 3, Testing and Monitoring Web-Services: This chapter explains the testing of
Web-Services using the latest features of Spring-WS and monitoring a Web-Service using
tools such as soapUI and TCPMon.

Chapter 4, Exception/SOAP Fault Handling: This chapter explains exception handling in the
case of application/system failure.

Chapter 5, Logging and Tracing of SOAP Messages: In this chapter, we will see how to log
important events and trace Web-Services.

Chapter 6, Marshalling and Object-XML Mapping (OXM): We will discuss marshalling/un-
marshalling technologies as well as creating a custom marshaller in this chapter.

Chapter 7, Securing SOAP Web-Services using XWSS Library: This chapter covers security
topics, such as encryption, decryption, digital signature authentication, and authorization
using the Spring-WS feature, based on XWSS, and has a recipe about creating key stores.

Chapter 8, Securing SOAP Web-Services using WSS4J Library: In this chapter, we will
see security topics, such as encryption, decryption, digital signature authentication, and
authorization using the Spring-WS feature, based on the WSS4J package.

Chapter 9, RESTful Web-Services: This chapter explains REST Web-Service development using
RESTful support in Spring.

Chapter 10, Spring Remoting: We will discuss contract-last Web-Service development using
Spring remoting features to expose local business services as a Web-Service using Hessian/
Burlap, JAX-WS, JMS, and a recipe to set up a Web-Service by Apache CXF using JAX-WS API.

What you need for this book
Java knowledge as well as basic Maven knowledge is a prerequisite. Having experience
with Web-Service makes it easier for you to use recipes in your development environment,
professionally. Basic recipes in the book help beginners learn Web-Service topics quickly.

Who this book is for
This book is for those Java/J2EE developers that either have experience with Web-Service and
for beginners. Since this book covers a variety of topics in Web-Service development, those who
are already familiar with Web-Service can benefit from the book as a reference. Beginners can
use this book to gain real-world experience of Web-Service development rapidly.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

3

Code words in text are shown as follows: "MessageDispatcherServlet is the core
component of Spring-WS."

A block of code is set as follows:

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/classes/applicationContext.xml</param-value>
 </context-param>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<tns:placeOrderRequest ...>
 <tns:order>
......
 </tns:order>
</tns:placeOrderRequest>

Any command-line input or output is written as follows:

mvn clean package tomcat:run

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You can click on the JUnit tab,
adjacent to the Console tab, to see whether the test case has succeeded or not".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

Preface

4

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Building SOAP
Web-Services

In this chapter, we will cover:

ff Using Maven for building and running a Spring-WS project

ff Creating a data contract

ff Setting up a Web-Service using DispatcherServlet

ff Simplifying the creation of a Web-Service using MessageDispatcherServlet

ff Setting up a Web-Service on JMS transport

ff Setting up a Web-Service on E-mail transport

ff Setting up a Web-Service on embedded HTTP server transport

ff Setting up a Web-Service on XMPP transport

ff Setting up a simple endpoint mapping for the Web-Service

ff Setting up a contract-first Web-Service

ff Setting up an endpoint by annotating the payload-root

ff Setting up a transport-neutral WS-Addressing endpoint

ff Setting up an endpoint using an XPath expression

ff Handling the incoming XML messages using DOM

ff Handling the incoming XML messages using JDOM

ff Handling the incoming XML messages using JAXB2

ff Validating the XML messages on the server side using an interceptor

Building SOAP Web-Services

6

Introduction
SOAP (Simple Object Access Protocol) was designed to be language-, transport-, and platform-
independent, which is an alternative to the old fashioned middleware technologies such as
CORBA and DCOM. SOAP was also designed to be extensible. The standards referred to as
WS-*—WS-Addressing, WS-Policy, WS-Security, and so on—are built on the SOAP protocol.

The Web-Services that use SOAP, along with WSDL and XML schema, have become the
standard for exchanging the XML-based messages. The Spring Web-Services facilitate SOAP
service development, by providing a comprehensive set of APIs and configurations for the
creation of flexible Web-Services. The following diagram shows how a Spring-WS works
when it receives an incoming message (the diagram is in abstract form):

: MessageDispatcher : Interceptors : EndpointAdapter : Endpoint

request

1: getEndpoint()

2 : handleRequest()

6 : handleResponse()

Response

5 : response()

4 : invoke()3 : invoke()

: EndpointMapping

MessageDispatcher is the central point for a Spring Web-Service and dispatches Web-
Service messages to the registered endpoint. In Spring-WS, request/response messages
are wrapped inside the MessageContext object and the MessageContext will be passed
to the MessageDispatcher (response will be set into MessageContext after invoking the
endpoint). When a message arrives, MessageDispatcher uses the request object to get the
endpoint. (Mapping a request to an endpoint is called endpoint mapping and it can be done
by using data from beans registration within application context, scanning, and autodetection
of annotations). Then the MessageDispatcher by using the endpoint, gets endpopint's
interceptors (which range from zero to many) and calls handleRequest method on them.

Chapter 1

7

An interceptor (EndpointInterceptor here), as the name suggests, intercepts the
request/response to perform some operations prior to (for request)/after (for response)
invoking the endpoint. This EndpointInterceptor gets called before/after calling the
appropriate endpoint to perform several processing aspects such as logging, validating,
security, and so on. Next, MessageDispatcher gets appropriate endpoint adapter for the
endpoint method to be called. This adapter offers compatibility with various types of endpoint
methods. Each adapter is specialized to call a method with specific method parameter and
return type.

And Finally, EndpointAdapter invokes the endpoint's method and transforms the response
to the desired form and set it into the MessageContext object. Now the initial message
context that was passed to MessageDispatcher, contains the response object, that will be
forwarded to the client (by the caller of MessageDispatcher).

Spring-WS only supports the contract-first development style in which creating the contract
(XSD or WSDL) is the first step. The required steps to build a contract-first Web-Service using
Spring-WS are as follows:

1.	 Contract definition (either XSD or WSDL)

2.	 Creating endpoint: the class that receives and processes an incoming message.

3.	 Configuration of Spring beans and the endpoint.

There are two types of endpoints, namely, payload endpoints and message endpoints. While
message endpoints can access the entire XML SOAP envelop, the payload endpoint will only
access the payload part of a SOAP envelop, that is, the body of a SOAP envelop. In this book,
the focus is on creating payload endpoints.

In this chapter, after a recipe for the explanation of creating contract from a set of XML
messages, the major focus will be on implementing endpoints and its related configuration.

For the purpose of illustrating the construction process of Web-Services, this book uses a
simple business scenario of a fictitious restaurant, Live Restaurant, which needs to accept
online orders from customers. Live Restaurant decides to publish its OrderService
component as a Web-Service. For simplicity, just two operations are considered for the
OrderService (Java interface).

<<interface>>
OrderService

+String placeOrder
+boolean cancelOperator

(.....)
(.....)

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

8

The project will follow the following domain model:

Java Interface
OrderService

+String placeOrder(.......)
+boolean cancelOrder(.......)

Name

#String fName
#String mName
#String IName

Order

#String refNumber
#Customer customer
#XML GregorianCalendar dateSubmitted
#XML GregorianCalendar orderDate
#List<FoodItem>items

FoodItem

#FoodItem Type type
#String name
#double quantity

Address

#String doorNo
#String building
#String street
#String city
#String country
#String phoneMobile
#String phoneLandLine
#String email

Jva Enum
FooditemType

SNACKS
BEVERAGES
STARTERS
MEALS
COFFEE
JUICES
DESSERTS

Customer

#Address addressPrimary
#Address addressSecondary
#Name name

1

1

1 1

1

1

*

Each recipe in this book will incrementally build parts of the project to make it a complete
Web-Service application. The Java project name is LiveRestaurant, and each recipe will
use a slightly different version of the project, with the extension _R-x.x. For example, the
first recipe in this chapter will use LiveRestaurant_R-1.1 for the Web-Service server and
LiveRestaurant_R-1.1-Client for the client as the project name.

Setting up a Web-Service is the goal of this chapter, so more
emphasis is on explanation of the server-side code and settings.
Client-side code is used in this chapter for checking the functionality
of the server. More about client side code, settings, and testing will
be discussed in the following chapters.

Chapter 1

9

Using Maven for building and running a
Spring-WS project

Recent modern software development, based on enterprise-grade open source technologies,
requires a new generation of build and project management tools. Such tools can make a
standard way for building, managing, and deploying small scale to large scale applications.

Maven, hosted by the Apache Software Foundation, is a project management and automated
build and deploy tool. Maven is built upon Ant's features and adds several features such as
feature dependency and project management. Maven was initially used for Java programming,
but it can also be used to build and manage projects written in other programming languages.
In recent years, Maven has been used to automate the process of building, managing, and
testing the deployments of major open source projects.

This recipe details the steps required to set up Maven for building, testing, and deploying the
projects used in this book.

Getting ready
This recipe requires the installation of the following software or tools:

1.	 Java 6 or higher and Maven 3.0.2: For download and installation, refer to
http://maven.apache.org/ and http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

2.	 Add your custom repositories to settings.xml under MAVEN_HOME/conf or .m2
folders (MAVEN_HOME is the folder in which Maven is installed and .m2 is the folder
in which Maven downloads its artifacts to).

Later, you can add an extra repository to your custom repositories. You can disable
this repository by setting activeByDefault to false (the file that contains
repositories is in the resources folder):

 <profile>
 <id>my-repository</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <!-- list of standard repository -->
 <repositories>
 ...
 ...
 <repository>
 <id>maven2-repository.java.net</id>

Building SOAP Web-Services

10

 <name>Java.net Repository for Maven</name>
 <url>http://download.java.net/maven/2</url>
 </repository>

....
 <repository>
 <id>maven1-repository.java.net</id>
 <name>Java.net Repository for Maven</name>
 <url>http://download.java.net/maven/1</url>
 </repository>
 </repositories>
 </profile>

An alternative way to include the Maven repositories to your Maven build is to include
repository data in the POM file directly. Samples of both ways to include repositories are
included under the Using Maven folder in the resource bundle of this chapter.

How to do it...
1.	 Build and deploy a project.

mvn clean package tomcat:run

2.	 Browse the following Web-Service WSDL file:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

The following is the browser's output:

<wsdl:definitions
 targetNamespace="http://www.packtpub.com/liverestaurant/
OrderService/schema">
 <wsdl:types>
 <schema elementFormDefault="qualified"
targetNamespace="http://www.packtpub.com/liverestaurant/
OrderService/schema">
 <element name="placeOrderRequest">
 <complexType>
 <sequence>
 <element name="order" type="QOrder:Order" />
 </sequence>
 </complexType>
 ….....
 </schema>
 </wsdl:types>
…....

Chapter 1

11

 <wsdl:binding name="OrderServiceSoap11" type="tns:OrderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="placeOrder">
 <soap:operation soapAction="" />
 <wsdl:input name="placeOrderRequest">
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output name="placeOrderResponse">
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="cancelOrder">
 <soap:operation soapAction="" />
 <wsdl:input name="cancelOrderRequest">
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output name="cancelOrderResponse">
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="OrderServiceService">
 <wsdl:port binding="tns:OrderServiceSoap11"
name="OrderServiceSoap11">
 <soap:address
 location="http://localhost:8080/LiveRestaurant/spring-ws/
OrderService" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

The following is the output of the Maven command:

...........

[INFO] Building war: C:\...\LiveRestaurant.war

.......

[INFO] --- tomcat-maven-plugin:1.1:run ...@ LiveRestaurant ---

[INFO] Running war on http://localhost:8080/LiveRestaurant

[INFO] Creating Tomcat server configuration ...

Oct 15,...org.apache.catalina.startup.Embedded start

INFO: Starting tomcat server

Oct 15...org.apache.catalina.core.StandardEngine start

Building SOAP Web-Services

12

INFO: Starting Servlet Engine: Apache Tomcat/6.0.29

 org.apache.catalina.core.ApplicationContext log

...Set web app root ..: 'webapp.root' = [...src\main\webapp\]

INFO: Initializing log4j from..WEB-INF\log4j.properties]

...

INFO: Initializing Spring FrameworkServlet 'spring-ws'

......

INFO .. - FrameworkServlet 'spring-ws': initialization ..

Oct .. org.apache.coyote.http11.Http11Protocol init

INFO: Initializing Coyote HTTP/1.1 on http-8080

Oct .. org.apache.coyote.http11.Http11Protocol start

INFO: Starting Coyote HTTP/1.1 on http-8080

In order to import a Maven project into an Eclipse IDE:

Go to the root of the project (\chapterOne\LiveRestaurant_R-1.1)
and execute:
mvn eclipse:eclipse -Declipse.projectNameTemplate="LiveRes
taurant_R-1.1"

Then, you can import the Maven project as an Eclipse project.

In case Maven cannot find a JAR file, you can use your custom repository
using the following command:
mvn -P my-repository clean package tomcat:run

How it works...
mvn clean package installs the required components into a local repository and creates a
WAR/JAR file of the project:

[INFO] Building war: ...LiveRestaurant.war

mvn tomcat:run runs a WAR file of the project on the Tomcat plugin. mvn jetty:run
runs the WAR file of the project on the Jetty plugin:

INFO] --- tomcat-maven-plugin:1.1:... LiveRestaurant ---

[INFO] Running war on http://localhost:8080/LiveRestaurant

[INFO] Creating Tomcat server configuration at

Chapter 1

13

Creating a data contract
A WSDL document, known as a service contract, provides a standard way in which a Web-
Service client and server exchange data. Using WSDL, the client and server could be on
a different application or platform. XML Schema Definition(XSD), known as data contract,
describes the structure of the datatypes that are being exchanged between the Web-Service
server and client. XSD describes the types, fields, and any validation on those fields (such as
max/min or pattern, and so on). While WSDL is specific to the Web-Service and describes a
Web-Service's artifacts, such as methods and data passed through these methods (WSDL
itself uses an XSD for that), URL, and so on; XSD only presents the structure of the data.

To be able to set up a Spring Web-Service, we need a contract. There are four different ways of
defining such a contract for XML:

ff DTDs

ff XML Schema (XSD)

ff RELAX NG

ff Schematron

DTDs have limited namespace support, so they are not suitable for Web-Services. RELAX NG
and Schematron certainly are easier than XML Schema. Unfortunately, they are not so widely
supported across platforms. Spring-WS uses XML Schema.

A data contract is the center of Spring-WS and a service contract can be generated from a
data contract. The easiest way to create an XSD is to infer it from the sample documents. Any
good XML editor or Java IDE offers this functionality. Basically, these tools use some sample
XML documents and generate a schema from it that validates them all. In this recipe, we will
discuss sample XML data massages and how to convert them into a single schema file. The
generated schema is used in this book as a data contract.

Getting ready
1.	 Install Java (as described in the first recipe).

2.	 Install xmlbeans-2.5.0 from http://xmlbeans.apache.org/.

3.	 The resources for this recipe are included in the folder Create Data Contract.

Building SOAP Web-Services

14

How to do it...
1.	 Copy your XML messages (placeOrderRequest.xml, placeOrderResponse,

cancelOrderRequest.xml, and cancelOrderResponse.xml) to the
xmlbeans-2.5.0\bin working folder.

2.	 Run the following command:
inst2xsd -design rd -enumerations never placeOrderRequest.xml
placeOrderResponse.xml cancelOrderRequest

3.	 The preceding command creates the schema0.xsd schema file. The generated
schema result certainly needs to be modified, but it's a great starting point. Here is
the final polished schema (orderService.xsd):
<?xml version="1.0" encoding="UTF-8"?>
…...
<schema...">
 <element name="placeOrderRequest">
 <complexType>
 <sequence>
 <element name="order" type="QOrder:Order"></
element>
 </sequence>
 </complexType>
 </element>
 <element name="placeOrderResponse">
 <complexType>
 <sequence>
 <element name="refNumber" type="string"></element>
 </sequence>
 </complexType>
 </element>

 <complexType name="Order">
 <sequence>
 <element name="refNumber" type="string"></element>
 <element name="customer" type="QOrder:Customer"></
element>
 <element name="dateSubmitted" type="dateTime"></element>
 <element name="orderDate" type="dateTime"></element>
 <element name="items" type="QOrder:FoodItem"
 maxOccurs="unbounded" minOccurs="1">
 </element>
 </sequence>

Chapter 1

15

 </complexType>
 <complexType name="Customer">
 <sequence>
 <element name="addressPrimary" type="QOrder:Address"></
element>
 <element name="addressSecondary"
type="QOrder:Address"></element>
 <element name="name" type="QOrder:Name"></element>
 </sequence>
 </complexType>

</schema>

How it works...
Initially, the input and output sample messages are required. In this book, there are four XML
messages (placeOrderRequest.xml, placeOrderResponse, cancelOrderRequest.
xml, and cancelOrderResponse.xml) and all the recipes use these message data
formats for communication. Inst2xsd generates a schema file from the existing XML sample
messages. Resources of this recipe are included under the Create Data Contract folder
in the resource bundle of this chapter.

Setting up a Web-Service using
DispatcherServlet

Spring-WS provides one of the easiest mechanisms to develop Web-Services in the Java
platform. This recipe focuses on building a very simple Web-Service using the Spring-MVC
DispatcherServlet and the components provided by Spring-WS.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.2 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Building SOAP Web-Services

16

How to do it...
1.	 Copy the service contract from the resources folder (orderService.wsdl).

2.	 Create an endpoint (OrderSeviceMessageReceiverEndpoint).

3.	 Configure the endpoint, service contract,
WebServiceMessageReceiverHandlerAdapter, MessageDispatcher,
and WsdlDefinitionHandlerAdapter, in the server Spring configuration file
(Dispatcher-servlet.xml).

4.	 Configure DispatcherServlet inside the web.xml file.

5.	 Run the server using the following command:
 mvn clean package tomcat:run

The following is the output:
…........................

[INFO] Running war on http://localhost:8080/LiveRestaurant

…................................

18-Oct-2011 10:23:02.....ApplicationContext log

INFO: Initializing Spring FrameworkServlet 'Dispatcher'

18-Oct-2011 10:23:02 org.apache.coyote.http11.Http11Protocol init

INFO: Initializing Coyote HTTP/1.1 on http-8080

18-Oct-2011 10:23:02 org.apache.coyote.http11.Http11Protocol start

INFO: Starting Coyote HTTP/1.1 on http-8080

6.	 To browse your service WSDL, open the following link inside your browser:
http://localhost:8080/LiveRestaurant/Dispatcher/OrderService.
wsdl

7.	 To test, open a new command window, go to the folder LiveRestaurant_R-1.2-
Client, and run the following command:
mvn clean package exec:java

The following is the server-side output:
Inside method, OrderSeviceMethodEndpoint.receive - message content
= <?xml version="1.0" encoding="UTF-8"?><tns:placeOrderRequest
xmlns:tns="http://www.packtpub.com/liverestaurant/OrderService/
schema">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 ….....

Chapter 1

17

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

How it works...
DispatcherServlet receives all the incoming requests, and based on request
context, it forwards the request to the endpoint (the general form of a request URL is
http://<host>:<port>/<appcontext>/<requestcontext> (here appcontext
is Liverestaurant and requestcontext should start with /Dispatcher/). The requests
context that ends with /OrderService go to OrderSeviceMessageReceiverEndpoint
and requests that end with *.wsdl go to SimpleWsdl11Definition).

DispatcherServlet configured in web.xml is responsible for receiving all requests with a
URL mapping [/Dispatcher/*].

 <servlet>
 <servlet-name>Dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.
DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Dispatcher</servlet-name>
 <url-pattern>/Dispatcher/*</url-pattern>
 </servlet-mapping>

You can change the URL pattern to suit your requirement.

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

18

DispatcherServlet plays a major role in intercepting the HTTP requests and then loads
the Spring bean configuration file. By default, it detects the bean configuration file by name
<servlet-name>-servlet.xml. Since we have named the DispatcherServlet
as Dispatcher in web.xml file, the server looks for Dispatcher-servlet.xml as
application context filename. You may configure another file, using the following context
param in the web.xml:

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/classes/applicationContext.xml</param-value>
 </context-param>

DispatcherServlet needs separate instances of
WebServiceMessageReceiverHandlerAdapter, MessageDispatcher, and
WsdlDefinitionHandlerAdapter that in this recipe are configured inside Dispatcher-
servlet.xml. The DispatcherServlet, by default, delegates to controllers for handling
requests, but in the configuration file, it is configured to delegate to a MessageDispatcher
(WebServiceMessageReceiverHandlerAdapter). SaajSoapMessageFactory is a
specific message factory for message creation in Spring-WS.

<beans ...">
 <bean class="org.springframework.ws.transport.http.
WebServiceMessageReceiverHandlerAdapter">
 <property name="messageFactory">
 <bean class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory"></bean>
 </property>
 </bean>
 …....

To let DispatcherServlet handle the WSDL contract,
WsdlDefinitionHandlerAdapter, which is registered in the configuration
file; it reads the WSDL file source using the WsdlDefinition implementation
(SimpleWsdl11Definition) and writes that as the result to the HttpServletResponse.

SimpleUrlHandlerMapping is to redirect the client requests to the appropriate
endpoints using the URL patterns. Here the request URL that ends with *.wsdl will be
redirected to sampleServiceDefinition (that is, SimpleWsdl11Definition that
uses OrderService.wsdl to generate the response), and if the request URL contains
/OrderService, it will be redirected to OrderSeviceMessageReceiverEndpoint.
SOAPMessageDispatcher is to dispatch a SOAP message to the registered endpoint(s)
(OrderSeviceMessageReceiverEndpoint).

…....
<bean class="org.springframework.web.servlet.handler.
SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>

Chapter 1

19

 <prop key="*.wsdl">sampleServiceDefinition</prop>
 <prop key="/OrderService">OrderServiceEndpoint</prop>
 </props>
 </property>
 <property name="defaultHandler" ref="messageDispatcher"/>
 </bean>
 <bean id="messageDispatcher" class="org.springframework.ws.soap.
server.SoapMessageDispatcher"/>
 <bean id="OrderServiceEndpoint" class="com.packtpub.liverestaurant.
service.endpoint.OrderSeviceMessageReceiverEndpoint"/>
 <bean class="org.springframework.ws.transport.http.
WsdlDefinitionHandlerAdapter"/>
 <bean id="sampleServiceDefinition" class="org.springframework.
ws.wsdl.wsdl11.SimpleWsdl11Definition">
 <property name="wsdl" value="/WEB-INF/OrderService.wsdl"/>
 </bean>
</beans>

OrderSeviceMessageReceiverEndpoint is a very basic endpoint
that get incoming message (messageContext.getRequest().
getPayloadSource()) and prin it out:
….....
public class OrderSeviceMessageReceiverEndpoint implements
 WebServiceMessageReceiver {

 public OrderSeviceMessageReceiverEndpoint() {
 }

 public void receive(MessageContext messageContext) throws Exception
{

 System.out
 .println("Inside method, OrderSeviceMethodEndpoint.receive -
message content = "
 + xmlToString(messageContext.getRequest().
getPayloadSource()));
 }

You can change the URL pattern to suit your requirement.

 private String xmlToString(Source source) {
 try {
 StringWriter stringWriter = new StringWriter();
 Result result = new StreamResult(stringWriter);
 TransformerFactory factory = TransformerFactory.newInstance();

Building SOAP Web-Services

20

 Transformer transformer = factory.newTransformer();
 transformer.transform(source, result);
 return stringWriter.getBuffer().toString();
 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 return null;
 }

}

See also
The Setting up a Web-Service using MessageDispatcherServlet recipe in this chapter.

Simplifying the creation of a Web-Service
using MessageDispatcherServlet
MessageDispatcherServlet is the core component of Spring-WS. With simple
configuration, a Web-Service can be set up in minutes. This servlet came as a simple way to
configure an alternative to the Spring-MVC DispatcherServlet. As in the second recipe,
Setting up a Web-Service using DispatcherServlet, DispatcherServlet needs separate
instances of WebServiceMessageReceiverHandlerAdapter, MessageDispatcher,
and WsdlDefinitionHandlerAdapter. However, MessageDispatcherServlet
can dynamically detect EndpointAdapters, EndpointMappings,
EndpointExceptionResolvers, and WsdlDefinition by setting inside the
application context.

Since this is the default method for configuring Spring Web-Services, it will be used in later
recipes. In this recipe, a very basic implementation of setting up a Spring-WS is detailed.
More advance implementation will be explained later in the recipe Setting up a contract-first
Web-Service.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.3 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Chapter 1

21

How to do it...
1.	 Copy the service contract from the resources folder (orderService.wsdl).

2.	 Create an endpoint (OrderSeviceMethodEndpoint).

3.	 Configure the endpoint. The service contract is in the server Spring configuration file
(spring-ws-servlet.xml).

4.	 Configure MessageDispatcherServlet inside the web.xml file.

5.	 Run the server using the following command:
mvn clean package tomcat:run

The following is the output after the server is run successfully:
…........................

[INFO] >>> tomcat-maven-plugin:1.1:run .. LiveRestaurant >>>

[..............

[INFO] Running war on http://localhost:8080/LiveRestaurant

[I...........

..XmlBeanDefinitionReader.. Loading..spring-ws-servlet.xml]

 ...

..SimpleMethodEndpointMapping#0, OrderService,
OrderServiceEndpoint]; root of factory hierarchy

 INFO [main] (SaajSoapMessageFactory.java:135) -..

 INFO [main] (FrameworkServlet.java:320) - FrameworkServlet '

….....

INFO: Starting Coyote HTTP/1.1 on http-8080

6.	 To browse your service WSDL, open the following link in your browser:
http://localhost:8080/LiveRestaurant/spring-ws/OrderService.wsdl

7.	 To test, open a new command window, go to the folder LiveRestaurant_R-1.3-
Client, and run the following command:

mvn clean package exec:java

The following is the server-side output:

Sent response

...

<tns:placeOrderResponse....>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

Building SOAP Web-Services

22

.....

for request

<tns:placeOrderRequest.... >

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

....

How it works...
The MessageDispatcherServlet is configured in the web configuration file web.xml:

 <servlet>
 <servlet-name>spring-ws</servlet-name>
 <servlet-class>
 org.springframework.ws.transport.http.MessageDispatcherServlet</
servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>spring-ws</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

23

MessageDispatcherServlet is the central element that handles the incoming SOAP
requests, with the help of other components (EndpointAdapters, EndpointMappings,
EndpointExceptionResolvers, and WsdlDefinition). It combines the attributes of
both DispatcherServlet and MessageDispatcher that dispatch to the appropriate
endpoint. This is the standard servlet recommended to build Web-Services with Spring-WS.

Since the MessageDispatcherServlet is inherited from FrameworkServlet, it looks
for a configuration file named <servlet-name>-servlet.xml in the class path (you can
change the configuration filename using the context-param, contextConfigLocation
settings in the web.xml, as described in the recipe Setting up a Web-Service using
DispatcherServlet). In the example, since the servlet name in the web.xml file is set to
Spring-WS, the file spring-ws-servlet.xml is the Web-Services configuration file.

MessageDispatcherServlet then looks up for an endpoint mapping element in the
configuration file, for the purpose of mapping the client requests to the endpoint. Here,
<sws:static-wsdl sets the data contract in the WSDL format. This is the
element to be configured in spring-ws-servlet.xml to set up a Web-Service:

<bean class="org.springframework.ws.server.endpoint.mapping.
SimpleMethodEndpointMapping">
 <property name="endpoints">
 <ref bean="OrderServiceEndpoint"/>
 </property>
 <property name="methodPrefix" value="handle"></property>
 </bean>
 <sws:static-wsdl id="OrderService" location="/WEB-INF/orderService.
wsdl"/>

 <bean id="OrderServiceEndpoint" class="com.packtpub.liverestaurant.
service.endpoint.OrderSeviceMethodEndpoint">
 </bean>

The example uses SimpleMethodEndpointMapping that maps the client requests
to MethodEnpoints. It maps the incoming request to a method that starts with the
handle+root element of the message (handle+placeOrderRequest). In the
endpoint class (OrderSeviceMethodEndpoint), a method with the name
handleplaceOrderRequest should be defined.

In this method, the parameter source includes the incoming message and input parameters
to call order service could be extracted from this parameter, then the method calls to the
orderService method and wraps the outgoing message in the StringSource that is to
be sent back to the client:

public class OrderSeviceMethodEndpoint {
 OrderService orderService;
 public void setOrderService(OrderService orderService) {
 this.orderService = orderService;

Building SOAP Web-Services

24

 }
 public @ResponsePayload
 Source handleplaceOrderRequest(@RequestPayload Source source) throws
Exception {
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+orde
rService.placeOrder(fName,lName,refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }

The endpoint mappings will be detailed in the later recipes.

See also
The recipes Setting up a Web-Service using DispatcherServlet, Setting up a simple endpoint
mapping for the Web-Service, and Setting up a contract-first Web-Service discussed in
this chapter.

Setting up a Web-Service on JMS transport
HTTP is the most common Web-Service protocol. However, Web-Services are currently built on
multiple transports, each with different scenarios.

JMS was included in Java 2, J2EE by Sun Microsystems in 1999. Using JMS, systems are
able to communicate synchronously or asynchronously and are based on point-to-point
and publish-subscribe models. SOAP over JMS inherits the JSM features and meets the
following requirements:

ff Where asynchronous messaging is required

ff Where the message consumers are slower than the producers

ff To guarantee the delivery of messages

ff To have a publisher/subscriber(multiple) model

ff When sender/receiver might be disconnected

Spring Web-Services provide features to set up a Web-Service over JMS protocol that is built
upon the JMS functionality in the Spring framework. In this recipe, how to set up a Spring-WS
over JMS is presented.

Chapter 1

25

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.4 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff spring-jms-3.0.5.RELEASE.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

ff log4j-1.2.9.jar

ff jms-1.1.jar

ff activemq-core-4.1.1.jar

In this recipe, Apache ActiveMQ is used to set up a JMS server and to create JMS
server-related objects (queue and broker are used here). Spring-WS family JARs provide
a functionality to set up a Spring-WS and spring-jms and jms JARs provide the JMS
functionality that the Spring-WS, over JMS, is built upon it.

How to do it...
1.	 Create an endpoint (OrderSeviceMethodEndpoint).

2.	 Configure the MessageListenerContainer, MessageListener, and
connectionFactory in the Spring configuration file (applicationContext.
xml).

3.	 Configure MessageDispatcher that includes the endpoint mappings inside
applicationContext.xml.

4.	 Run the recipe project using the following command:
mvn clean package

5.	 The following is the output once the project runs successfully:
 INFO [main] (SaajSoapMessageFactory.java:135) -..

 INFO [main] (DefaultLifecycleProcessor.java:330) -..

 INFO [main] .. - ActiveMQ 4.1.1 JMS Message Broker (localhost)..

..

 INFO [JMX connector] ..

 INFO [main]..ActiveMQ JMS Message Broker ..started

 INFO [main] ..- Connector vm://localhost Started

Building SOAP Web-Services

26

.....

 Received response

<tns:placeOrderResponse ..><tns:refNumber>..</tns:refNumber>

</tns:placeOrderResponse>....

 for request

<tns:placeOrderRequest>

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

….....

How it works...
DefaultMessageListenerContainer listens to destinationName (RequestQueue)
for incoming messages. When a message arrives, this listener will use the message factory
(messageFactory) to extract the message and use the dispatcher (messageDispatcher)
to dispatch the message to the endpoint (SimplePayloadEndpoint).

In the application context, WebServiceMessageListener is a listener inside
MessageListenerContainer. The message container uses connectionfactory
to connect to the destination (RequestQueue):

 <bean id="connectionFactory" class="org.apache.activemq.
ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost?broker.
persistent=false"/>
 </bean>

Chapter 1

27

 <bean id="messageFactory" class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory"/>

 <bean class="org.springframework.jms.listener.
DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="destinationName" value="RequestQueue"/>
 <property name="messageListener">
 <bean class="org.springframework.ws.transport.jms.
WebServiceMessageListener">
 <property name="messageFactory" ref="messageFactory"/>
 <property name="messageReceiver"
ref="messageDispatcher"/>
 </bean>
 </property>
 </bean>

This listener uses message Dispatcher and messageFactory to receive incoming
messages and to send outgoing SOAP messages. Inside messageDiapatcher, endpoint's
mapping is included, which sets the endpoint (SimplePayloadEndpoint) and type of
endpoint mapping (PayloadRootQNameEndpointMapping):

 <bean id="messageDispatcher" class="org.springframework.ws.soap.
server.SoapMessageDispatcher">
 <property name="endpointMappings">
 <bean class="org.springframework.ws.server.endpoint.
mapping.PayloadRootQNameEndpointMapping">
 <property name="defaultEndpoint">
 <bean class="com.packtpub.liverestaurant.service.
endpoint.SimplePayloadEndpoint">
 <property name="orderService">
 <bean class="com.packtpub.liverestaurant.service.
OrderServiceImpl"/>
 </property>
 </bean>
 </property>
 </bean>
 </property>
 </bean>

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

28

The invoke method from the endpoint (SimplePayloadEndpoint) will be called when a
request comes to the server, and the response will be returned to be sent back to the client:

public class SimplePayloadEndpoint implements PayloadEndpoint {
 OrderService orderService;
 public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
 }

 public Source invoke(Source request) throws Exception {
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";

 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }

JmsTransportWebServiceIntegrationTest is included in the project to load the
application context, set up the JMS server, and test the Web-Service. However, these details
are not discussed here. The client of JMS transport will be discussed in the next chapter.

See also
The Creating a Web-Service client on JMS transport recipe discussed in Chapter 2, Building
Clients for SOAP Web-Services and the Exposing Web-Services using JMS as the underlying
communication protocol recipe discussed in Chapter 10, Spring Remoting.

Setting up a Web-Service on E-mail transport
HTTP is easy to understand and therefore has been most often defined and implemented, but
it's clearly not the most suitable transport for Web-Services in any scenario.

Web-Service on E-mail transport can take advantage of store-and-forward messaging to
provide an asynchronous transport for SOAP. In addition, there is no firewall concern on e-mail
and those applications that are able to communicate together don't need web servers to set
up a Web-Service. This allows SOAP, over mail transport, to be used in a number of scenarios
where HTTP is not suitable.

Chapter 1

29

The reasons why setting up a Web-Service over HTTP is not suitable and e-mail might be a
solution as a transport protocol are listed as follows:

ff If a system is protected by a firewall, there is no control over the HTTP request/
response, but e-mail is always is accessible.

ff If a system expects no request/response conventional model. For example, publish/
subscriber model is required.

ff If a request takes too long to complete. For example, if the server has to run complex
and time-consuming services, the client would get an HTTP timeout error. In such a
scenario, Web-Service over e-mail is more appropriate.

In this recipe, setting up a Web-Service over E-mail transport is presented. To load the
application context and test the Web-Service, a test class is used. This class also starts up
and shuts down the server.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.5 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff mail-1.4.1.jar

ff mock-javamail-1.6.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

Setting up a mail server outside a system that is using JavaMail for testing purpose is difficult.
Mock JavaMail addresses this issue and provides a pluggable component to the system using
JavaMail. The system can use this component to send/receive e-mails against the temporary
in-memory mailbox.

How to do it...
1.	 Create an endpoint (SimplePayloadEndpoint).

2.	 Configure MessageReceiver and MessageDispatcher that include endpoint
mappings inside applicationContext.xml.

3.	 Run the recipe project using the following command:
mvn clean package

Building SOAP Web-Services

30

The following is the output:
........

 INFO [main] ...- Creating SAAJ 1.3 MessageFactory with SOAP 1.1
Protocol

..- Starting mail receiver [imap://server@packtpubtest.com/INBOX]

....

 Received response...

<tns:placeOrderResponse xmlns:tns="....">

<tns:refNumber>...</tns:refNumber></tns:placeOrderResponse>

...for request ..

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

....

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

......

How it works...
Messages sent to an address will be saved in an inbox. The message receiver
(messageReceiver) monitors the inbox at continuous intervals and as soon as it detects
a new E-mail, it reads the E-mail, extracts the message, and forwards the message to a
message dispatcher (messageDispatcher). The message dispatcher will call the invoke
method inside its default endpoint (SamplePayloadEndpoint), and inside the handler
method (invoke), the response will be sent back to the client.

Chapter 1

31

When the application context is being loaded, MailMessageReceiver starts up a mail
receiver and its inbox folder (imap://server@packtpubtest.com/INBOX), that is, a
temporary in-memory inbox. After loading the application context, the messageReceiver
bean acts as a server monitor for the incoming messages based on a pluggable strategy
(monotoringStrategy) that monitors the INBOX folder (imap://server@packtpubtest.
com/INBOX) for new messages on pollingInterval of 1000 ms. storeUri is the location
to be monitored for the incoming messages (imap://server@packtpubtest.com/INBOX)
and transportUri is the mail server for sending the responses:

 <bean id="messageFactory" class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory"/>
 <bean id="messagingReceiver" class="org.springframework.
ws.transport.mail.MailMessageReceiver">
 <property name="messageFactory" ref="messageFactory"/>
 <property name="from" value="server@packtpubtest.com"/>
 <property name="storeUri" value="imap://server@packtpubtest.
com/INBOX"/>
 <property name="transportUri" value="smtp://smtp.packtpubtest.
com"/>
 <property name="messageReceiver" ref="messageDispatcher"/>
 <property name="session" ref="session"/>
 <property name="monitoringStrategy">
 <bean class="org.springframework.ws.transport.mail.
monitor.Pop3PollingMonitoringStrategy">
 <property name="pollingInterval" value="1000"/>
 </bean>
 </property>
 </bean>

Inside messageDiapatcher, endpoint mapping is included that sets the
endpoint (SimplePayloadEndpoint) and type of the endpoint mapping
(PayloadRootQNameEndpointMapping):

 <bean id="messageDispatcher" class="org.springframework.ws.soap.
server.SoapMessageDispatcher">
 <property name="endpointMappings">
 <bean class="org.springframework.ws.server.endpoint.
mapping.PayloadRootQNameEndpointMapping">
 <property name="defaultEndpoint">
 <bean class="com.packtpub.liverestaurant.service.
endpoint.SimplePayloadEndpoint">
 <property name="orderService">
 <bean class="com.packtpub.liverestaurant.
service.OrderServiceImpl"/>
 </property>
 </bean>

Building SOAP Web-Services

32

 </property>
 </bean>
 </property>
 </bean>

SimplePayloadEndpoint receives a request and returns a fixed dummy response using
OrderService. When a request comes to the server, the invoke method will be called
and the response will be returned that is to be sent back to the client:

public class SimplePayloadEndpoint implements PayloadEndpoint {
 OrderService orderService;
 public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
 }

 public Source invoke(Source request) throws Exception {
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";

 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }

To test this recipe, a webServiceTemplate is used. We will discuss it in the next chapter.

MailTransportWebServiceIntegrationTest is included in the project to load the
application context, set up the mail server, and to test the Web-Service.

See also
The Creating Web-Service client on E-mail transport recipe, discussed in Chapter 2, Building
Clients for SOAP Web-Services.

Chapter 1

33

Setting up a Web-Service on embedded
HTTP transport

External HTTP servers might be able to provide several features, but they are not light and
they need a configuration to set up.

Spring-WS provides a feature to set up an HTTP-based Web-Service using embedded Sun's
JRE 1.6 HTTP server. The embedded HTTP server is a light-weight standalone server that
could be used as an alternative to external servers. While configuration of the web server is a
must in a conventional external server (web.xml), the embedded HTTP server doesn't need
any deployment descriptor to operate and its only requirement is to configure an instance of
the server through the application context.

In this recipe, setting up a Spring Web-Service on the embedded HTTP server is presented.
Since there is no external HTTP server, a Java class is used to load application context and
start up the server.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.6 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
1.	 Copy the service contract (OrderService.wsdl) from the resource folder.

2.	 Create a service and an implementation of it and annotate its implementation with
@Service("serviceName") (OrderSevice,OrderServiceImpl).

3.	 Configure the service in the application context (applicationContext) that is to
be scanned and detected automatically.

4.	 Configure the embedded HTTP server inside the application context.

5.	 Add a Java class with the main method to load the application context to set up the
embedded HTTP server.

6.	 Run the server using the following command:
mvn clean package exec:java

Building SOAP Web-Services

34

7.	 From LiveRestaurant_R-1.6-Client, run the following command:
mvn clean package exec:java

The following is the output when the server runs successfully:
<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

 <tns:customer>

…....

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

The following is the client-side output:

<tns:placeOrderResponse ...><refNumber>order-John_Smith_1234</
refNumber></tns:placeOrderResponse>>

…...

…..

How it works...
In the application context, SimpleHttpFactoryBean creates a simple HTTP server (from
embedded Sun's JRE 1.6) and it starts the HTTP server on initialization and stops it on
destruction.

The HTTP server that has a context property sets up a Web-Service with the service class
(orderServiceImpl) set as the endpoint and specifies the URL defined by the properties
inside the context (localhost:3478/OrderService). This service interface is registered
within the context property.

Chapter 1

35

However, the service implementation is autodetected using component-scan.
HttpInvokerProxyFactoryBean creates a client's proxy for a specific server URL.

 <context:annotation-config />
 <context:component-scan base-package="com.packtpub.liverestaurant.
service.endpoint" />
 <bean id="httpServer" class="org.springframework.remoting.support.
SimpleHttpServerFactoryBean">
 <property name="contexts">
 <util:map>
 <entry key="/OrderService">
 <bean class="org.springframework.remoting.httpinvoker.
SimpleHttpInvokerServiceExporter">
 <property name="serviceInterface" value="com.packtpub.
liverestaurant.service.endpoint.IOrderServiceEndPoint" />
 <property name="service" ref="orderServiceImpl" />
 </bean>
 </entry>
 </util:map>
 </property>
 <property name="port" value="3478" />
 <property name="hostname" value="localhost" />
 </bean>

IOrderServiceEndPointImpl and IOrderServiceEndPoint are simple service
interface and implementation classes. IOrderServiceEndPointImpl is annotated by
@Service (orderServiceImpl) and is to be detected as a service implementation.

package com.packtpub.liverestaurant.service.endpoint;
public interface OrderService {
 String invoke(String request) throws Exception;
}

package com.packtpub.liverestaurant.service.endpoint;
import org.apache.log4j.Logger;
import org.springframework.stereotype.Service;
@Service("orderServiceImpl")
public class OrderServiceImpl implements OrderService {
 static Logger logger = Logger.getLogger(OrderServiceImpl.class);
 private static final String responseContent =
"<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.com/
liverestaurant/OrderService/schema\"><refNumber>Order Accepted!</
refNumber></tns:placeOrderResponse>";

 public String invoke(String request) throws Exception {
 logger.info("invoke method request:"+request);
 return responseContent;

 }
}

Building SOAP Web-Services

36

ServerStartUp.java is used to load the application context and start up the server:

package com.packtpub.liverestaurant.server;
public class ServerStartUp {
 public static void main(String[] args) throws IOException {
 ClassPathXmlApplicationContext appContext = new
ClassPathXmlApplicationContext("/applicationContext.xml");
 System.out.println(appContext);
 char c;
 // Create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));
 System.out.println("Enter any character to quit.");
 c = (char) br.read();
 appContext.close();
 }

Setting up Spring-WS on XMPP transport
HTTP is most often used as a Web-Service transport protocol. However, it is not able to meet
the asynchronous communication requirements.

Web-Service on XMPP transport is capable of asynchronous communication in which a client
doesn't need to wait for a response from a service; instead, the service sends the response
to the client when the process is completed. Spring-WS 2.0 includes XMPP (Jabber) support
in which a Web-Service can communicate over the XMPP protocol. In this recipe, setting up a
Spring-WS on XMPP transport is presented. Since there is no external HTTP server, a test class
is used to load the application context.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.7, which has the following
Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

ff smack-3.1.0.jar

Chapter 1

37

How to do it...
1.	 Create an endpoint (SamplePlayLoadEndPoint).

2.	 Configure connection to the XMPP server in the application context
(applicationContext.xml).

3.	 Configure the message receiver in the application context.

4.	 Run the following command:
mvn clean package

The following is the response received:

<placeOrderRequest xmlns="..."><id>9999</id></placeOrderRequest>

...

 for request

 ...<placeOrderRequest xmlns="...."><id>9999</id></
placeOrderRequet>...

How it works...
In the application context, the messageFactory bean is responsible for creating the
incoming and outgoing SOAP messages. The messageReceiver bean acts as a server,
using a connection (to XMPP server:google talk), and listens to the host on a specific
service with a username and password.

 <bean id="messageFactory" class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory"/>
 <bean id="connection" class="org.springframework.ws.transport.
xmpp.support.XmppConnectionFactoryBean">
 <property name="host" value="talk.google.com"/>
 <property name="username" value="yourUserName@gmail.com"/>
 <property name="password" value="yourPassword"/>
 <property name="serviceName" value="gmail.com"/>
 </bean>

 <bean id="messagingReceiver" class="org.springframework.
ws.transport.xmpp.XmppMessageReceiver">
 <property name="messageFactory" ref="messageFactory"/>
 <property name="connection" ref="connection"/>
 <property name="messageReceiver" ref="messageDispatcher"/>
 </bean>

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

38

Once the message is sent by the client, it will be forwarded to the endpoint
(SamplePlayLoadEndPoint that is configured within messageDispatcher)
by the message dispatcher and the response will be returned to the client:

 <bean id="messageDispatcher"
 class="org.springframework.ws.soap.server.SoapMessageDispatcher">
 <property name="endpointMappings">
 <bean class="org.springframework.ws.server.endpoint.mapping.
PayloadRootQNameEndpointMapping">
 <property name="defaultEndpoint"> <bean class="com.packtpub.
liverestaurant.service.endpoint.SamplePlayLoadEndPoint"/>
 </property> </bean>
 </property>
 </bean>

Webservicetemplate is used here as a client; it will be discussed in the next chapter.

SamplePlayLoadEndPoint just receives a request and returns a response:

public class SamplePlayLoadEndPoint implements PayloadEndpoint {
 static Logger logger = Logger.getLogger(SamplePlayLoadEndPoint.
class);
 public Source invoke(Source request) throws Exception {
 return request;
 }

A test class is included in the project to load the application context, set up the XMPP
Web-Service server, and test the Web-Service.

See also
The Creating Web-Service client on XMPP transport recipe discussed in Chapter 2, Building
Clients for SOAP Web-Services.

Setting up a contract-first Web-Service
Generating WSDL and XSD contracts from Java code and setting up a Web-Service is called
contract-last development. The major drawback to this approach is the contracts (WSDL or
XSD) of the Web-Service could eventually change if there are any changes in Java classes. In
this way, the client side has to update the client-side classes and that always is not favorable.
The contract-first approach was introduced as an alternative to tackle the contract-last's
bottleneck. In the contract-first approach, the contract (WSDL or schema) are primary
artifacts to set up a Web-Service.

Chapter 1

39

Some of the advantages of the contract-first approach over contract-last are as follows:

ff Performance: In contract-last, some extra data, that is, serialization of Java code
might be exchanged between client and server, which decreases the performance,
while contract-last precisely exchanges the required data and maximizes the
performance.

ff Consistency: Different vendors may generate different WSDL in the contract-last
approach, while the contract-first approach eliminates this problem by standing on
the same contract.

ff Versioning: Changing the version of a contract-last Web-Service means changing
Java classes in both client and server side and that might eventually be expensive
in case there are a lot of clients that call a Web-Service, while in contract-first, since
the contract is decoupled from implementation, versioning could be simply done
by adding a new method implementation in the same endpoint class or using a
stylesheet to convert an old message format into new message format.

ff Maintenance/enhancement cost: Changing only a contract is much cheaper than
changing Java code in both client and server side. In this recipe, we will discuss
how to set up a contract-first Web-Service using Spring-WS.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.8, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff jdom-1.0.jar

How to do it...
1.	 Copy the data contract (orderService.xsd) from the resources folder.

2.	 Create an endpoint (OrderEndpoint).

3.	 Configure the auto-detection of the endpoint using the component scan in the server
Spring configuration file (spring-ws-servlet.xml).

4.	 Configure the dynamic generation of WSDL from the data contract (orderService.
xsd).

5.	 Run the server using the following command:
mvn clean package tomcat:run

6.	 Browse to the following link to see the WSDL:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

Building SOAP Web-Services

40

7.	 Run client from LiveRestaurant_R-1.8-Client:

mvn clean package

The following is the output when the server runs successfully:

 Sent response....

<tns:placeOrderResponse xmlns:tns="...."><tns:refNumber>tns:refNum
ber>order-John_S

mith_9999</tns:refNumber></tns:refNumber></

tns:placeOrderResponse>...

 for request ...

<tns:placeOrderRequest xmlns:tns="....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

How it works...
The steps of this recipe are the same as that of the recipe Simplifying the creation of
a Web-Service using MessageDispatcherServlet, except the implementation of endpoint
handling methods.

This annotation serves as a specialization of @Component, allowing for the implementation
classes to be autodetected through classpath scanning, which is configured in the server
application context file (spring-ws-servlet.xml):

 <context:component-scan base-package="com.packtpub.liverestaurant.
service"/>
 <sws:annotation-driven/>

Chapter 1

41

OrderEndpoint is the endPoint of this recipe and the @Endpoint annotation is also the
same as @service, allowing for the implementation classes to be autodetected through
classpath scanning. A request with the root element placeOrderRequest (localPart
= "placeOrderRequest") and the namespace http://www.packtpub.com/
liverestaurant/OrderService/schema will be forwarded to call the corresponding
method (handlePlaceOrderRequest).

@Endpoint
public class OrderEndpoint {
 private static final Log logger = LogFactory.getLog(OrderEndpoint.
class);
 private static final String NAMESPACE_URI = "http://www.packtpub.
com/liverestaurant/OrderService/schema";
 private OrderService orderService;
 @Autowired
 public OrderEndpoint(OrderService orderService) {
 this.orderService = orderService;
 }
 @PayloadRoot(namespace = NAMESPACE_URI, localPart =
"placeOrderRequest")
 @ResponsePayload
 public Source handlePancelOrderRequest(@RequestPayload Element
placeOrderRequest) throws Exception {
 String refNumber=placeOrderRequest.getElementsByTagNameNS(NAMESP
ACE_URI, "refNumber") .item(0).getTextContent();
 String fName=placeOrderRequest.getElementsByTagNameNS(NAMESPAC
E_URI, "fName") .item(0).getTextContent();
 String lName=placeOrderRequest.getElementsByTagNameNS(NAMESPAC
E_URI, "lName") .item(0).getTextContent();
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+orde
rService.placeOrder(fName,lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }
 }

Other details about annotations and how the request will be mapped to an endpoint method
are contained in this chapter.

The following setting in the spring-ws-servlet.xml file causes the application to
automatically generate the WSDL file from the data contract (orderService.xsd).

 <sws:dynamic-wsdl id="OrderService"
portTypeName="OrderService" locationUri="http://localhost:8080/
LiveRestaurant/spring-ws/OrderService"

Building SOAP Web-Services

42

 targetNamespace="http://www.packtpub.com/
liverestaurant/OrderService/schema">
 <sws:xsd location="/WEB-INF/orderService.xsd"/>
 </sws:dynamic-wsdl>

Even though WSDL can be generated automatically from the data
contract (XSD), Spring-WS recommends avoiding autogeneration of
WSDL for these reasons:

ff To keep consistency between releases (there might be slight
differences among autogenerated WSDLs for different versions)

ff Autogeneration of WSDL is slow, although once generated, WSDL
will be cached and used later.

Therefore, Spring-WS recommends, while developing, autogenerate
WSDL once via the browser and save it and use static WSDL to expose
the service contract.

See also
The recipes Setting up an endpoint by annotating the payload-root, Simplifying the creation of
a Web-Service using MessageDispatcherServlet, discussed in this chapter and the Creating
a Web-Service client on HTTP transport recipe, discussed in Chapter 2, Building Clients for
SOAP Web-Services.

Also see the recipes discussed in Chapter 10, Spring Remoting, to find out how to set up
contract-last Web-Services.

Setting up a simple endpoint mapping for
the Web-Service

This recipe demonstrates a very simple endpoint mapping that maps a Web-Service request
to a Java class method.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.9, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-12.9.jar

Chapter 1

43

How to do it...
The steps of this recipe are the same as that of the previous recipe, Setting up a contract-first
Web-Service, except that the registration of the endpoint, that is, method endpoint mapping
and is configured in spring-ws-servlet.xml.

1.	 Define an endpoint (OrderSeviceMethodEndpoint) based on the method
mapping standard (SimpleMethodEndpointMapping).

2.	 Configure the method endpoint mapping in spring-ws-servlet.xml.

3.	 Run the mvn clean package tomcat:run command and browse to see
the WSDL:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

4.	 To test, open a new command window, go to Liverestaurant_R-1.9-Client,
and run the following command:
mvn clean package exec:java

Here is the server-side output:

Sent response ..

<tns:placeOrderResponse xmlns:tns="..."><tns:refNumber>order-John_
Smith_1234</tns:refNumber>

</tns:placeOrderResponse>...

 for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>order-9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Building SOAP Web-Services

44

How it works...
SimpleMethodEndpointMapping maps from the local name of the request payload
(placeOrderRequest) to the methods of the POJO classes. Here is a sample of the
request payload (note the local name of the request payload):

<tns:placeOrderRequest ...>

 <tns:order>
......
 </tns:order>
</tns:placeOrderRequest>

The endpoint bean is registered using the endpoints property. This property tells you that
there should be a method in the endpoint class (OrderServiceEndpoint) with a name
that starts with methodPrefix(handle) and ends with the request payload local name
(placeOrderRequest). This increases the flexibility of the endpoint naming by using the
configuration in spring-ws-servlet.xml:

 <bean class="org.springframework.ws.server.endpoint.mapping.
SimpleMethodEndpointMapping">
 <property name="endpoints">
 <ref bean="OrderServiceEndpoint"/>
 </property>
 <property name="methodPrefix" value="handle"></property>
 <property name="interceptors">
 <list>
 <bean
 class="org.springframework.ws.server.endpoint.interceptor.
PayloadLoggingInterceptor">
 <property name="logRequest" value="true" />
 <property name="logResponse" value="true" />
 </bean>
 </list>
 </property>
 </bean>
 <bean id="OrderServiceEndpoint" class="com.packtpub.liverestaurant.
service.endpoint.OrderSeviceMethodEndpoint">
 </bean>

The endpoint method name should match the handle+request message root name
(handleplaceOrderRequest). In the body of the method, we should process the request
and finally return the response in the form of javax.xml.transform.Source:

public class OrderSeviceMethodEndpoint {
 private OrderService orderService;
 @Autowired

Chapter 1

45

 public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
 }
 public @ResponsePayload Source handleplaceOrderRequest(@
RequestPayload Source source) throws Exception {
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }
}

See also
The recipes Setting up a transport-neutral WS-Addressing endpoint and Setting up an
endpoint by annotating the payload-root, discussed in this chapter.

Setting up an endpoint by annotating the
payload-root

Spring-WS simplifies the creation of complex Web-Services further by its annotation features
and reduces the code and configuration in XML.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.10, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-12.9.jar

Building SOAP Web-Services

46

How to do it...
The steps of this recipe are the same as that of Setting up a contract-first Web-Service and
here we want to describe the endpoint mapping using annotation in the endpoint class.

1.	 Run the following command:
mvn clean package tomcat:run

2.	 Browse to the following link to see the WSDL:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

3.	 To test, open a new command window, go to LiveRestaurant-1.10-Client, and
run the following command:
mvn clean package exec:java

Here is the server-side output:

Sent response ..

<tns:placeOrderResponse xmlns:tns="..."><tns:refNumber>order-John_
Smith_1234</tns:refNumber>

</tns:placeOrderResponse>...

 for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>order-9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Chapter 1

47

How it works...
By including component scan and annotation-driven settings in the Spring-WS configuration
file (spring-ws-servlet.xml), the Spring container will scan the entire package for
endpoints, services, and dependencies to inject and autowire each other to build the Web-
Service blocks. You cannot see the adapters and other handlers here, since the container
smartly picks the right/default adapter, dynamically (messageDispatcher runs support
method of an adapter from a list of existing adapters for the endponit, and if support method
returns true, that adapter is the right adapter):

 <context:component-scan base-package="com.packtpub.liverestaurant.
service"/>

 <sws:annotation-driven/>

 <sws:dynamic-wsdl id="OrderService" portTypeName="OrderService"
locationUri="http://localhost:8080/LiveRestaurant/spring-ws/
OrderService"
 targetNamespace="http://www.packtpub.com/
liverestaurant/OrderService/schema">
 <sws:xsd location="/WEB-INF/orderService.xsd"/>
 </sws:dynamic-wsdl>

The @Endpoint annotation of OrderSeviceAnnotationEndpoint makes it an endpoint,
with PayloadRootAnnotationMethodEndpointMapping, with the exact pointers to the
method-endpoint mapping with the method-level annotations:

@Endpoint
public class OrderSeviceAnnotationEndpoint {
 private final String SERVICE_NS = "http://www.packtpub.com/
liverestaurant/OrderService/schema";
 private OrderService orderService;
 @Autowired
 public OrderSeviceAnnotationEndpoint(OrderService orderService) {
 this.orderService = orderService;
 }
 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {

 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

48

 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }

 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handleCancelOrderRequest(@RequestPayload Source source)
throws Exception {
 //extract data from input parameter
 boolean cancelled =true ;
 return new StringSource(
 "<tns:cancelOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><cancelled>"+(cancelled?"true
":"false")+"</cancelled></tns:cancelOrderResponse>");
 }

@PayloadRoot helps the MessageDispatcher to map the request to the method, with
the help of an argument annotation, @RequestPayload, which specifies the exact message
payload part of the entire SOAP message as an argument into the method (it finds the method
by root element of a request equal to localPart, for example, placeOrderRequest
or placeCancelRequest). @RequestPayload tells the container that the argument
RequestPayload is to be extracted from the SOAP message and injected to the method
as an argument at runtime.

The return type annotation, @ResponsePayload, instructs MessageDispatcher that the
instance of javax.xml.transform.Source is ResponsePayload. The smart Spring-
WS framework detects the type of these objects at runtime and delegates to the appropriate
PayloadMethodProcessor. In this case, it is SourcePayloadMethodProcessor, since
the input argument and the return value are of the type javax.xml.transform.Source.

See also
The recipes Setting up a transport-neutral WS-Addressing endpoint and Setting up a simple
endpoint mapping for the Web-Service, discussed in this chapter.

Chapter 1

49

Setting up a transport-neutral
WS-Addressing endpoint

Using HTTP transport information inside the XML messages for routing messages to
endpoints mixes data and operation together, and these messages will be replied
to for the requested client.

WS-Addressing standardizes routing mechanism by separating routing data and including it
inside the SOAP headers. WS-Addressing may use its own metadata instead of using HTTP
transport data for endpoint routing. In addition, a request from a client may return to a
different client in WS-Addressing. For example, considering the following request from a client,
the client side can set ReplyTo to its own address and FaultTo to admin the endpoint
address. Then, the server will send successful messages to the client and fault messages
to the admin address [<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.
xmlsoap.org/soap/envelope/">.

<SOAP-ENV:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <wsa:To>server_uri</wsa:To>

 <wsa:Action>action_uri</wsa:Action>

 <wsa:From>client_address </wsa:From>

 <wsa:ReplyTo>client_address</wsa:ReplyTo>

 <wsa:FaultTo>admen_uri </wsa:FaultTo>

<wsa:MessageID>..</wsa:MessageID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest>....</tns:placeOrderReques>

</SOAP-ENV:Body></SOAP-ENV:Envelope>]

In this recipe, we will set up a Spring-WS using WS-Addressing.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.11 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-12.9.jar

Building SOAP Web-Services

50

How to do it...
The steps of this recipe are the same as that of Setting up an endpoint by annotating the
payload-root, except for the endpoint class. So, follow the steps of the mentioned recipe and
define a new endpoint with WS-Addressing standards.

1.	 Run the following command:
mvn clean package tomcat:run

2.	 To test, open a new command window to Liverestaurant_R-1.11-Client and
run the following command:
mvn clean package exec:java

The following is the server-side output:

Sent response [<SOAP-ENV:Envelope ...><SOAP-ENV:Header...>

<wsa:To ...>http://www.w3.org/2005/08/addressing/anonymous</
wsa:To>

<wsa:Action>http://www.packtpub.com/OrderService/OrdReqResponse</
wsa:Action>

<wsa:MessageID>...</wsa:MessageID>

<wsa:RelatesTo>urn:uuid:2beaead4-c04f-487c-86fc-caab64ad8461</
wsa:RelatesTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderResponse ...><tns:refNumber>order-John_Smith_1234</
tns:refNumber></tns:placeOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>...

 for request <SOAP-ENV:Envelope ..><SOAP-ENV:Header ...>

<wsa:To SOAP-..>http://www.packtpub.com/liverestaurant/
OrderService/schema</wsa:To>

<wsa:Action>http://www.packtpub.com/OrderService/OrdReq</
wsa:Action>

<wsa:MessageID>...</wsa:MessageID>

</SOAP-ENV:Header><SOAP-ENV:Body>

<tns:placeOrderRequest ...>

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 ...

Chapter 1

51

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

How it works...
Same as the previous recipe, Setting up an endpoint by annotating the payload-
root, the incoming WS-Addressing SOAP messages will be forwarded to the endpoint
(OrderEndpoint, which is autodetected by @Endpoint). As you can see from the output, a
header is added to the SOAP envelop that WS-Addressing uses for mapping and dispatching
purposes of the endpoint method.

<SOAP-ENV:Header ...>

<wsa:To SOAP-..>http://www.packtpub.com/liverestaurant/OrderService/
schema</wsa:To>

<wsa:Action>http://www.packtpub.com/OrderService/OrdReq</wsa:Action>

<wsa:MessageID>...</wsa:MessageID>

</SOAP-ENV:Header>

In this recipe, the server applies AnnotationActionEndpointMapping, which uses @
Action (http://www.packtpub.com/OrderService/OrdReq). @Action is similar
to @PayloadRoot for recognizing the handling methods (handleOrderRequest) in the
endpoint (OrderEndpoint).

@Endpoint
public class OrderEndpoint {
 private OrderService orderService;
 @Autowired
 public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
 }

Building SOAP Web-Services

52

 @Action("http://www.packtpub.com/OrderService/OrdReq")
 public @ResponsePayload
 Source handleOrderRequest(@RequestPayload Source source) throws
Exception {
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";

 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }
}

See also
The recipe Creating Web-Service client for WS-Addressing endpoint, discussed in Chapter 2,
Building Clients for SOAP Web-Services, and the recipe Setting up an endpoint by annotating
the payload root, discussed in this chapter.

Setting up an endpoint using an XPath
expression

Spring-WS allows us to extract the passed parameters in the endpoint method's signature
using annotations with the XPath expressions. For example, in the endpoint method's
handleOrderRequest (@RequestPayload Source source), if you want to find the value
of any element in the source object, you have to use Java API to extract the value. You can
eliminate using Java API in the handler method by using XPath in the method's signature to
extract the data from the incoming XML data, as shown as follows: handleOrderRequest(@
XPathParam("/OrderRequest/message") String message).

This recipe illustrates the usage of XPath expressions in endpoint mapping with the help
of annotation.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.12 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-12.9.jar

Chapter 1

53

How to do it...
The steps of this recipe are the same as that of Setting up an endpoint by annotating the
payload-root, except for the implementation of endpoint handling methods. So, follow the
steps of the mentioned recipe and use XPath expressions to extract data from incoming
message and create a response.

1.	 Run the following command from LiveRestaurant_R-1.12:
mvn clean package tomcat:run

2.	 Browse to the following link to see the Web-Service service contract:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

3.	 To test, open a new command window, go to LiveRestaurant_R-1.12-Client,
and run the following command:
mvn clean package exec:java

The following is the server-side output:

 Sent response ..

<tns:placeOrderResponse xmlns:tns="">

<tns:refNumber>order-John_Smith_9999</tns:refNumber>

</tns:placeOrderResponse>

...

for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <order>

 <refNumber>9999</refNumber>

 <customer>

 </customer>

 <dateSubmitted>2008-09-29T05:49:45</dateSubmitted>

 <orderDate>2014-09-19T03:18:33</orderDate>

 <items>

 <type>Snacks</type>

 <name>Pitza</name>

 <quantity>2</quantity>

 </items>

 </order>

Building SOAP Web-Services

54

</tns:placeOrderRequest>

...

 Sent response...

<tns:cancelOrderResponse xmlns:tns="...">

<tns:cancelled>true</tns:cancelled>

</tns:cancelOrderResponse>

...

for request ...

<tns:cancelOrderRequest xmlns:tns="...">

 <refNumber>9999</refNumber>

</tns:cancelOrderRequest>

How it works...
Passing the method parameter is the same as the recipe Setting up an endpoint by
annotating the payload-root, except that it uses @XPathParam, which specifies the path
of the data in a message that is to be passed as an argument into the method. Here
XpathParamMethodArgumentResolver is responsible for extracting the value from the
message and passing it to the method.

The annotation XpathParam helps the MethodArgumentResolvers
(XpathParamMethodArgumentResolver) to extract information out of the XML and binds
a node value to a method argument (using // cause, the whole message is searched
recursively, for example, //lName searches the whole placeRequestRequest message).
The same implementation is used for the method cancelOrderRequest:

@Endpoint
public class OrderEndpoint {

 private final String SERVICE_NS = "http://www.packtpub.com/
liverestaurant/OrderService/schema";

 private OrderService orderService;

 @Autowired
 public OrderEndpoint(OrderService orderService) {
 this.orderService = orderService;
 }

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload

Chapter 1

55

 Source handleOrderRequest(@XPathParam("//fName") String fName,@
XPathParam("//lName") String lName,@XPathParam("//refNumber") String
refNumber) throws Exception {
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>" +
orderService.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }

 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handleCancelOrderRequest(@XPathParam("//refNumber") String
refNumber) throws Exception {
 boolean cancelled = orderService.cancelOrder(refNumber);
 return new StringSource(
 "<tns:cancelOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><cancelled>"+(cancelled?"true
":"false")+"</cancelled></tns:cancelOrderResponse>");
 }

The method argument can be any of the following:

ff boolean or Boolean

ff double or Double

ff String

ff Node

ff NodeList

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in this chapter.

Handling the incoming XML messages
using DOM

The implementation of the endpoint requires us to get the incoming XML messages and
extract its data. In Java, there are various methods (W3C DOM, SAX, XPath, JAXB, Castor,
XMLBeans, JiBX, or XStream) for extracting data from an input XML message, but most of
them are not language-neutral.

Building SOAP Web-Services

56

DOM was created to be language-neutral and initially used for JavaScript manipulation of
HTML pages. In Java, W3C DOM library is provided to interact with XML data. Classes, such as
org.w3c.dom.Document, org.w3c.dom.Element, org.w3c.dom.Node, and org.w3c.
dom.Text from W3C DOM library, are for extracting data from an input XML message.

In this recipe, W3C DOM is used to extract the data from incoming messages.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.13, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
The steps of this recipe are the same as that of the recipe Setting up an endpoint by
annotating the payload-root, except for the implementation of the endpoint-handling methods.
So, follow the steps of the mentioned recipe and use DOM to extract data from the incoming
message and create the response.

1.	 Run the command mvn clean package tomcat:run and browse to the
following link:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

2.	 To test, open a new command window and run the following command:
mvn clean package exec:java

The following is the server-side output:

Sent response

<placeOrderResponse xmlns="...">

<refNumber>order-John_Smith_1234</refNumber></placeOrderResponse>

...

for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

.... </tns:customer>

Chapter 1

57

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

How it works...
Passing the method parameter is the same as the recipe Setting up an endpoint by
annotating the payload-root, except that we use @RequestPayload, which specifies
the DOM element of data in a message to be passed as an argument into the method.
Here, DomPayloadMethodProcessor is responsible for extracting the value from the
message and passing it to the method. Since the return type which is specified by @
ResponsePayload is also a DOM element type, DomPayloadMethodProcessor is
being used as return handler.

The @PayloadRoot annotation informs Spring-WS that the handleCancelOrderRequest
method is a handling method for XML messages. The sort of message that this method
can handle is indicated by the annotation values (the @RequestPayload element
tells it is of the DOM element type). In this case, it can handle XML elements that
have the placeOrderRequest local part and the http://www.packtpub.com/
liverestaurant/OrderService/schema namespace.

 @PayloadRoot(namespace = NAMESPACE_URI, localPart =
"placeOrderRequest")
 @ResponsePayload
 public Element handlePlaceOrderRequest(@RequestPayload Element
placeOrderRequest) throws Exception {

 String refNumber=placeOrderRequest.getElementsByTagNameNS(NAMESP
ACE_URI, "refNumber") .item(0).getTextContent();
 String fName=placeOrderRequest.getElementsByTagNameNS(NAMESPAC
E_URI, "fName") .item(0).getTextContent();
 String lName=placeOrderRequest.getElementsByTagNameNS(NAMESPAC
E_URI, "lName") .item(0).getTextContent();

www.allitebooks.com

http://www.allitebooks.org

Building SOAP Web-Services

58

The preceding code extracts the elements refNumber, fName, and lName from the incoming
XML message (placeOrderRequest) via the method getElementsByTagNameNS. Then,
it finds and returns the text content of the first item in the refNumber, fName, and lName
elements (by item(0).getTextContent()).

The following part of the code creates an outgoing XML message by creating the
placeOrderResponse element (using document.createElementNS). Then, it creates the
child element refNumber (using document.createElementNS) and creates the text of this
element (using createTextNode and appendChild). Then, it appends the refNumber
element to the response element placeOrderResponse (using the appendChild method):

 Document document = documentBuilder.newDocument();
 Element responseElement = document.createElementNS(NAMESPACE_
URI,
 "placeOrderResponse");

 Element canElem=document.createElementNS(NAMESPACE_
URI,"refNumber");
 Text responseText = document.createTextNode(orderService.
placeOrder(fName, lName, refNumber));

 canElem.appendChild(responseText);
 responseElement.appendChild(canElem);
 return responseElement;

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in this chapter
and the recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2,
Building Clients for SOAP Web-Services.

Handling the incoming XML messages using
JDOM

Implementation of endpoints requires us to get the incoming XML messages and extract its
data. DOM can fetch the data from an XML document, but it is slow and memory consuming
and has very basic features.

JDOM document is not built into the memory; it is built on demand (lazy initialization design
pattern). In addition, JDOM makes navigating through the document tree or manipulating the
elements easier by providing a standard Java-based collection interface. In this recipe, JDOM
is used to extract data from incoming messages.

Chapter 1

59

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.14, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff jdom-1.0.jar

ff log4j-1.2.9.jar

ff jaxen-1.1.jar

ff xalan-2.7.0.jar

How to do it...
The steps of this recipe are the same as that of the Setting up an endpoint by annotating the
payload-root recipe, except for the implementation of the endpoint-handling methods. So,
follow the steps of the aforementioned recipe, use JDOM to extract the data from incoming
message, and create the response.

1.	 Run the following command:
mvn clean package tomcat:run

2.	 Browse to the following link:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

3.	 To test, open a new command window and run the following command:
mvn exec:java exec:java

The following is the server-side output:
Sent response ...

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>....

 for request

<tns:placeOrderRequest xmlns:tns="....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

Building SOAP Web-Services

60

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

How it works...
It works in the same way as explained in the previous recipe, except that it uses JDOM in its
method implementation.

The following part of the code extracts the values refNumber, fName, and lName from the
incoming XML message (placeOrderRequest) by using namespace and XPath object:

 Namespace namespace = Namespace.getNamespace("tns", NAMESPACE_
URI);
 XPath refNumberExpression = XPath.newInstance("//tns:refNumber");
 refNumberExpression.addNamespace(namespace);

 XPath fNameExpression = XPath.newInstance("//tns:fName");
 fNameExpression.addNamespace(namespace);

 XPath lNameExpression = XPath.newInstance("//tns:lName");
 lNameExpression.addNamespace(namespace);

 String refNumber = refNumberExpression.valueOf(placeOrderRequest);
 String fName = fNameExpression.valueOf(placeOrderRequest);
 String lName = lNameExpression.valueOf(placeOrderRequest);

The following part of the code creates an outgoing message by creating the
placeOrderResponse element (using new Element(...)). Then, it creates the child
element refNumber (using new Element(...)) and creates the text of this element
(using setText(...)). Then, it appends the message element to the response element
placeOrderResponse (using the addContent method):

 Namespace resNamespace = Namespace.getNamespace("tns",
NAMESPACE_URI);
 Element root = new Element("placeOrderResponse", resNamespace);
 Element message = new Element("refNumber", resNamespace);
 message.setText(orderService.placeOrder(fName, lName, refNumber));
 root.addContent(message);
 Document doc = new Document(root);
 return doc.getRootElement();

Chapter 1

61

See also
The recipes Setting up an endpoint by annotating the payload-root and Handling incoming
XML Messages using DOM, discussed in this chapter.

The recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2,
Building Clients for SOAP Web-Services.

Handling the incoming XML messages
using JAXB2

Java Architecture for XML Binding (JAXB) is a Java standard for Object-XML marshalling. JAXB
defines a programmer API for reading and writing Java objects to / from XML documents.
The object-XML mapping is generally annotated in classes. JAXB provides a set of useful
annotations with the default values for most of them that make this marshalling an easy job.

This recipe demonstrates how to handle the incoming XML message in a Web-Service using
JAXB in a very simple way. For simplicity and a continuation from the previous recipes, the
same recipes are re-used with little improvements in converting the XML schema into domain
classes to demonstrate the usage of JAXB.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.15 and has the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
The steps of this recipe are the same as that of the recipe Setting up an endpoint by
annotating the payload-root, except for the implementation of the endpoint handling methods.
So, follow the steps of the aforementioned recipe and use JAXB Marshaller/Un-Mashaller to
convert payload into/from POJO.

1.	 First, we define a set of domain objects we need to marshal to/from XML from the
data contract OrderService.xsd (refer to the recipe Marshalling with JAXB2,
discussed in Chapter 6, Marshalling and Object-XML Mapping (OXM)—Converting
POJO to/from XML messages using Marshallers and Un-Marshallers).

2.	 Change the implementation of the endpoint (OrderEndpoint) to use JAXB.

Building SOAP Web-Services

62

3.	 Run the following command:
mvn clean package tomcat:run

4.	 Browse to the following link:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

5.	 To test, open a new command window to Liverestaurant_R-1.15-Client and
run the following command:

 mvn clean package exec:java

The following is the server-side output:

Sent response

<placeOrderResponse xmlns="...">

<refNumber>order-John_Smith_1234</refNumber>

</placeOrderResponse>....

....

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <!--1 or more repetitions:-->

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Chapter 1

63

How it works...
In the preceding code, the XML is bound with Java classes at runtime using JAXB. The
incoming XML is converted into Java objects (unmarshalling) and after processing the objects,
the resultant objects are marshalled back to XML before returning to the caller:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {

 PlaceOrderRequest request = (PlaceOrderRequest) unmarshal(source,
PlaceOrderRequest.class);
 PlaceOrderResponse response = new PlaceOrderResponse();
 String refNumber=request.getOrder().getRefNumber();
 String fName=request.getOrder().getCustomer().getName().
getFName();
 String lName=request.getOrder().getCustomer().getName().
getLName();
 response.setRefNumber(orderService.placeOrder(fName,lName,refNumb
er));

 return marshal(response);
 }
 private Object unmarshal(Source source, Class clazz) throws
JAXBException {
 JAXBContext context;
 try {
 context = JAXBContext.newInstance(clazz);
 Unmarshaller um = context.createUnmarshaller();
 return um.unmarshal(source);
 } catch (JAXBException e) {
 e.printStackTrace();
 throw e;
 }
 }

 private Source marshal(Object obj) throws JAXBException {
 JAXBContext context = JAXBContext.newInstance(obj.getClass());
 return new JAXBSource(context, obj);
 }

Building SOAP Web-Services

64

The JAXB context binds the Java classes passed via the constructor with the incoming XML,
with the help of annotations in the classes at runtime, which instructs the unmarshaller to
instantiate and load data from the XML tags into the objects. The objects are now passed
to the service classes (OrderServiceImpl) for processing:

public class OrderServiceImpl implements OrderService {
 @Service
public class OrderServiceImpl implements OrderService {

 public String placeOrder(String fName,String lName,String
refNumber){
 return "order-"+fName+"_"+lName+"_"+refNumber;
 }

 public boolean cancelOrder(String refNumber){
 return true;
 }

This approach allows the developer to work with Java objects instead of XML code with simple
marshalling technology.

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in this chapter.

The recipe Marshalling with JAXB2, discussed in Chapter 6, Marshalling and Object-XML
Mapping (OXM)—Converting POJO to/from XML messages using Marshallers and
Un-Marshallers.

Validating the XML messages at the server
side using an interceptor

Data contract is a basic concept used to set up a Spring-WS. However, validation is a basic
requirement before a SOAP message sends/replies on the server side/client side.

Spring-WS supports validation of messages on the server side as well as the client side. In
this recipe, server-side validation is applied and when the incorrect request comes to the
server or the incorrect response replays from the server to the client, it throws an exception.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-1.16 with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Chapter 1

65

How to do it...
The steps of this recipe are the same as that of Handling the incoming XML messages using
DOM, except for the validation of request/response message.

1.	 Modify spring-ws-servlet.xml to include PayloadValidatingInterceptor.

2.	 Run the following command:
 mvn clean package tomcat:run

3.	 Browse to the following link:
http://localhost:8080/LiveRestaurant/OrderService.wsdl

4.	 To test, open a new command window to Liverestaurant_R-1.16-Client and
run the following command:

mvn clean package exec:java

The following is the server-side output:

Sent response [...

<placeOrderResponse xmlns="...">

<refNumber>order-John_Smith_1234</refNumber>

</placeOrderResponse>...

 for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 <tns:addressPrimary>

 </tns:addressPrimary>

 </tns:customer>

 </tns:order>

</tns:placeOrderRequest>

 WARN [http-8080-1] (AbstractFaultCreatingValidatingInterceptor.
java:156) - XML validation error on request: cvc-complex-
type.2.4.a: Invalid content was found s

Building SOAP Web-Services

66

tarting with element 'tns:address'. One of '{"http://www.packtpub.
com/liverestaurant/OrderService/schema":addressPrimary}' is
expected.

........ Sent response....

<faultcode>SOAP-ENV:Client</faultcode><faultstring
xml:lang="en">Validation error</faultstring><detail><spring-
ws:ValidationErr

or xmlns:spring-ws="http://springframework.org/spring-ws">cvc-
complex-type.2.4.a: Invalid content was found starting with
element 'tns:address'. One of '{"http:

//www.packtpub.com/liverestaurant/OrderService/
schema":addressPrimary}' is expected.</spring-
ws:ValidationError></detail></SOAP-ENV:Fault></SOAP-ENV:Body></
SOAP

-ENV:Envelope>]

How it works...
spring-ws-servlet.xml is almost the same, as described in the recipe Handling the
incoming XML messages using DOM, except that it includes the interceptor that uses
schema for validation, validateRequest, and validateResponse.

 <sws:interceptors>
 <bean class="org.springframework.ws.soap.server.endpoint.
interceptor.PayloadValidatingInterceptor">
 <property name="schema" value="/WEB-INF/OrderService.
xsd"/>
 <property name="validateRequest" value="true"/>
 <property name="validateResponse" value="true"/>
 </bean>
 <bean class="org.springframework.ws.server.endpoint.
interceptor.PayloadLoggingInterceptor">
 </bean>
 </sws:interceptors>

When running the client, two requests will be sent to the server. The first one will be
processed and the response will be sent back to the client, while the second one contains
the wrong element (address instead of addressPrimary) that will send the faulty
response back:

Sent response....

<faultcode>SOAP-ENV:Client</faultcode><faultstring
xml:lang="en">Validation error</faultstring><detail><spring-
ws:ValidationErr

Chapter 1

67

or xmlns:spring-ws="http://springframework.org/spring-ws">cvc-
complex-type.2.4.a: Invalid content was found starting with element
'tns:address'. One of '{"http: //www.packtpub.com/liverestaurant/
OrderService/schema":addressPrimary}' is expected.</spring-
ws:ValidationError></detail></SOAP-ENV:Fault></SOAP-ENV:Body></SOAP

-ENV:Envelope>]

….

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in this chapter.

The recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2, Building
Clients for SOAP Web-Services.

2
Building Clients for

SOAP Web-Services

In this chapter, we will cover:

ff Setting up a Web-Service client development environment within Eclipse

ff Setting up a Web-Service client development environment using Maven

ff Creating a Web-Service client on HTTP transport

ff Creating a Web-Service client on JMS transport

ff Creating a Web-Service client on E-mail transport

ff Creating a Web-Service client on XMPP transport

ff Creating a Web-Service client using XPath expression

ff Creating a Web-Service client for WS-Addressing endpoint

ff Transforming a Web-Service message using XSLT

Introduction
Using Java API, such as SAAJ, client-side SOAP messages can be generated and transmitted
to/from a Web-Service. However, it requires an extra amount of coding and knowledge about
SOAP messages.

The package org.springframework.ws.client.core contains the core functionality
of the client-side API, which facilitates calling the server-side Web-Service.

Building Clients for SOAP Web-Services

70

APIs in this package provide template classes like WebServiceTemplate that simplifies
the use of Web-Services. Using these templates, you will be able to create a Web-Service
client over various transport protocols (HTTP, JMS, e-mail, XMPP, and so on) and send/receive
XML messages as well as marshal objects to XML before sending them. Spring also provides
classes, such as StringSource and Result, which simplify passing and retrieving XML
messages while using WebServiceTemplate.

In this chapter, the first two recipes explain how to set up the environment for calling a
Web-Service client using Eclipse and Maven.

Then we will discuss the usage of WebServiceTemplate to create a Web-Service client over
various transport protocols (HTTP, JMS, e-mail, XMPP, and so on). In addition to this, the recipe
Setting up a Web-Service client using an XPath expression explains how to retrieve data from
an XML message. Finally, in the last recipe, Transforming a Web-Service message using XSLT,
how to convert the XML messages into different formats between the client and server is
presented. To set up a Web-Service server, some recipes from Chapter 1, Building SOAP
Web-Services, are used and a separate client project is created that calls the server-side
Web-Service.

Setting up a Web-Service client development
environment within Eclipse

A Web-Service client in the simplest form is a Java class that calls a server-side Web-Service.
In this recipe, setting up the environment to call a server-side Web-Service is presented. Here,
a client-side Java class calls a Web-Service on the server in two forms. The first one is a Java
class that calls a Web-Service in the main method of the class. The second one uses the JUnit
test class to call the server-side Web-Service.

Getting ready
This recipe is similar to the recipe Using Maven for building and running a Spring-WS,
discussed in Chapter 1, Building SOAP Web-Services.

1.	 Download and install the Eclipse IDE for Java EE developers—Helios.

2.	 In this recipe, the project's name is LiveRestaurant_R-2.1 (for server-side
Web-Service), with the following Maven dependencies:

�� spring-ws-core-2.0.1.RELEASE.jar

�� jdom-1.0.jar

�� log4j-1.2.9.jar

�� jaxen-1.1.jarb

�� xalan-2.7.0.jar

Chapter 2

71

3.	 The LiveRestaurant_R-2.1-Client (for the client side) has the following
Maven dependencies:

�� spring-ws-core-2.0.1.RELEASE.jar

�� jdom-1.0.jar

�� log4j-1.2.9.jar

�� jaxen-1.1.jar

�� xalan-2.7.0.jar

�� junit-4.7.jar

4.	 Run the following Maven command to be able to import the client projects into
Eclipse (for the client side):
mvn eclipse:eclipse -Declipse.projectNameTemplate="LiveRestaurant
_R-2.1-Client"

How to do it...
This recipe uses the recipe Handling the incoming XML messages using JDOM, discussed in
Chapter 1, Building SOAP Web-Services, as the server-side project.

1.	 Run a Java class that calls a Web-Service in the main method.

2.	 Import LiveRestaurant_R-2.1-Client into the Eclipse workspace by going to
File | Import | General | Existing projects into workspace | LiveRestaurant_R-
2..1-Client.

3.	 Go to the folder LiveRestaurant_R-2.1 in the command prompt and run the
server using the following command:
mvn clean package tomcat:run

4.	 Select the class OrderServiceClient in the folder src/main/java from the
package com.packtpub.liverestaurant.client and select Run As | Java
Application.

The following is the console output on running the Java class on the client side:
Received response

<tns:placeOrderResponse xmlns:tns=".."> <tns:refNumber>order-John_
Smith_9999</tns:refNumber>

</tns:placeOrderResponse>

for request...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

Building Clients for SOAP Web-Services

72

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>....

5.	 Run a JUnit test case using Eclipse.

6.	 Select the class OrderServiceClientTest in the folder src/test/java
from the package com.packtpub.liverestaurant.client and select
Run As | Junit Test.

The following is the console output on running the JUnit test case (you can click
on the JUnit tab, adjacent to the Console tab, to see whether the test case has
succeeded or not):

Received response ..

 <tns:placeOrderResponse xmlns:tns="...">

 <tns:refNumber>order-John_Smith_9999</tns:refNumber>

 </tns:placeOrderResponse>..

<tns:placeOrderRequest xmlns:tns=".....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Chapter 2

73

To pass parameters or customize the settings for a test, select the test
unit class, Run As | Run Configuration |, and double-click on JUnit on
the left pane.

Then you will be able to customize the passed parameters or the
settings and run the client.

How it works...
When a Java class that calls a Web-Service in the main method is run, Eclipse runs the
following command internally using the following Java class path:

java -classpath com.packtpub.liverestaurant.client.OrderServiceClient

When a JUnit test case is run, Eclipse runs a test case using the JUnit framework by internally
calling the following command:

java -classpath com.packtpub.liverestaurant.client.OrderServiceClientTest

See also
The recipes Using Maven for building and running a Spring-WS project and Handling the
incoming XML messages using JDOM, discussed in Chapter 1, Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in this chapter.

Setting up a Web-Service client development
environment using Maven

Maven supports running the main method of a class using command prompt as well as a JUnit
test case.

In this recipe, setting up a Maven environment to call a client-side Web-Service is explained.
Here, a client-side Java code calls a Web-Service on the server in two forms. The first one is
a Java class that calls a Web-Service in the main method of the class. The second one uses
JUnit to call a server-side Web-Service.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.2 (for a server-side Web-Service)
with the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Building Clients for SOAP Web-Services

74

The following are the Maven dependencies for LiveRestaurant_R-2.2-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff junit-4.7.jar

How to do it...
This recipe uses the recipe Handling the incoming XML messages using DOM, discussed in
Chapter 1, Building SOAP Web-Services, as the server-side project.

1.	 Run a Java class that calls a Web-Service in the main method.

2.	 Go to the folder LiveRestaurant_R-2.2 in the command prompt and run the
server using the following command:
mvn clean package tomcat:run

3.	 Go to the folder LiveRestaurant_R-2.2-Client and run the following command:
mvn clean package exec:java

The following is the output when the Maven command is run on the client side:

Received response

<placeOrderResponse xmlns="...">

<refNumber>order-John_Smith_9999</refNumber>

</placeOrderResponse>....

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Chapter 2

75

4.	 Run a JUnit test case using Maven.

5.	 Go to the folder LiveRestaurant_R-2.2 from the command prompt and run the
server using the following command:
mvn clean package tomcat:run

6.	 Go to the folder LiveRestaurant_R-2.2-Client and run the following command:

mvn clean package

Here is the output after running the JUnit test case using Maven on the client side:

Received response ...

<placeOrderResponse xmlns="...">

<refNumber>order-John_Smith_9999</refNumber>

</placeOrderResponse>...

for request ...

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest></SOAP-ENV:Body></SOAP-ENV:Envelope>]

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.702 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Building Clients for SOAP Web-Services

76

How it works...
Run a Java class that calls a Web-Service in the main method, exec-maven-plugin, set in
the pom.xml file. The Java class tells Maven to run mainClass of OrderServiceClient:

 <build>
 <finalName>LiveRestaurant_Client</finalName>
 <plugins>
 …....
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>com.packtpub.liverestaurant.client.
OrderServiceClient</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>

Maven runs the following command internally using the project class path:

java -classpath com.packtpub.liverestaurant.client.OrderServiceClient

To set up and run a JUnit test case in Maven, the test class OrderServiceClientTest
should be included in the folder src/test/java and the test class name should end with
Test (OrderServiceClientTest). The command mvn clean package runs all the test
cases in the src/test/java folder (internal Maven calls):

java -classpath …;junit.jar.. junit.textui.TestRunner com.packtpub.
liverestaurant.client.OrderServiceClientTest) .

Chapter 2

77

See also
The recipes Using Maven for building and running a Spring-WS project and Handling the
incoming XML messages using JDOM, discussed in Chapter 1, Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in this chapter.

Creating a Web-Service client on HTTP
transport

In this recipe, WebServiceTemplate is used to send/receive simple XML messages from
the client side over the HTTP transport.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.3 (for server-side Web-Service)
with the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

The following are the Maven dependencies for LiveRestaurant_R-2.3-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff junit-4.7.jar

How to do it...
This recipe uses the recipe Setting up an endpoint by annotating the payload-root, discussed
in Chapter 1, Building SOAP Web-Services, as the server-side project. Here is how you set up
the client side:

1.	 Create a class that calls the Web-Service server using WebServiceTemplate
in src/test.

2.	 Configure WebServiceTemplate in the applicationContext.xml file.

3.	 From the folder Liverestaurant_R-2.3, run the following command:
mvn clean package tomcat:run

Building Clients for SOAP Web-Services

78

4.	 Open a new command window to Liverestaurant_R-2.3-Client and run the
following command:
mvn clean package

The following is the client-side output:

Received response

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>...

<tns:placeOrderRequest xmlns:tns="....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

…..

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.749 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

How it works...
Liverestaurant_R-2.3 is a server-side project that reuses the recipe Setting up an
endpoint by annotating the payload-root, discussed in Chapter 1, Building SOAP Web-Services.

Chapter 2

79

The applicationContext.xml file of the configured client WebServiceTemplate
(id="webServiceTemplate") is used for sending and receiving XML messages. The
instance of this bean can be fetched from the client-side program to send and receive
XML messages.

messageFactory is an instance of SaajSoapMessageFactory, which is referenced inside
WebServiceTemplate. messageFactory is used to create a SOAP packet from the XML
messages. The default service URI is the URI that WebServiceTemplate uses by default to
send/receive all requests/responses:

 <bean id="messageFactory" class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory" />
 <bean id="webServiceTemplate" class="org.springframework.ws.client.
core.WebServiceTemplate">
 <constructor-arg ref="messageFactory" />
 <property name="defaultUri" value="http://localhost:8080/
LiveRestaurant/spring-ws/OrderService" />

 </bean>

OrderServiceClientTest.java is a simple JUnit test case that is used to
fetch and initialize WebServiceTemplate from applicationContext.xml in
the method setUpBeforeClass() (marked by @BeforeClass). In the methods
testCancelOrderRequest and testPlaceOrderRequest (marked by @Test),
WebServiceTemplate sends a simple XML message (created by a StringSource object
from an existing input XML file) and receives a response from the server wrapped inside the
Result object:

 private static WebServiceTemplate wsTemplate = null;
 private static InputStream isPlace;
 private static InputStream isCancel;
 @BeforeClass
 public static void setUpBeforeClass() throws Exception {
 ClassPathXmlApplicationContext appContext = new
ClassPathXmlApplicationContext("/applicationContext.xml");
 wsTemplate = (WebServiceTemplate) appContext.
getBean("webServiceTemplate");
 isPlace = new OrderServiceClientTest().getClass().getResourceAsStr
eam("placeOrderRequest.xml");
 isCancel = new OrderServiceClientTest().getClass().getResourceAsSt
ream("cancelOrderRequest.xml");
 }
 @Test
 public final void testPlaceOrderRequest() throws Exception {
 Result result = invokeWS(isPlace);
 Assert.assertTrue(result.toString().indexOf("placeOrderRespon
se")>0);
 }

Building Clients for SOAP Web-Services

80

 @Test
 public final void testCancelOrderRequest() throws Exception {
 Result result = invokeWS(isCancel);
 Assert.assertTrue(result.toString().indexOf("cancelOrderRespon
se")>0);
 }
 private static Result invokeWS(InputStream is) {
 StreamSource source = new StreamSource(is);
 StringResult result = new StringResult();
 wsTemplate.sendSourceAndReceiveToResult(source, result);
 return result;
 }

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services and the recipe Setting up a Web-Service client development
environment using Maven, discussed in this chapter.

Creating a Web-Service client on JMS
transport

JMS (Java message Service) was introduced in 1999 by Sun Microsystems as part of
Java 2, J2EE. The systems that use JMS can communicate synchronously or asynchronously
and are based on point-to-point and publish-subscribe models. Spring Web-Services provide
features to set up a Web-Service over the JMS protocol that is built upon the JMS functionality
in the Spring framework. Spring Web-Service over JMS protocol provides the following
communication features:

ff The client and server could be disconnected and can be connected only when
sending/receiving messages

ff The client doesn't need to wait until the server replies (in case the server needs a lot
of time to process, for example, while doing complex mathematical calculations)

ff JMS provides features that guarantee the delivery of messages between the client
and server

In this recipe, WebServiceTemplate is used to send/receive simple XML messages on the
client side over JMS transport. A JUnit test case class is used to set up as on server side and
send and receive messages using WebServiceTemplate.

Chapter 2

81

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.4, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff spring-jms-3.0.5.RELEASE.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

ff log4j-1.2.9.jar

ff jms-1.1.jar

ff activemq-core-4.1.1.jar

How to do it...
This recipe uses the recipe Setting up a Web-Service on JMS transport, discussed in Chapter
1, Building SOAP Web-Services, as a server-side project.

1.	 Create a JUnit test class that calls the Web-Service server using
WebServiceTemplate.

2.	 Configure WebServiceTemplate in applicationContext to send messages over
the JMS protocol.

3.	 Run the command mvn clean package. You will see the following as output:

 Received response ..

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>....

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

Building Clients for SOAP Web-Services

82

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

How it works...
In this project, we set up a Web-Service server, over JMS transport, using a JUnit class. The
server uses PayloadEndpoint to receive the XML request message and returns a simple
XML message as the response (the server is already described in the recipe Setting up a
Web-Service on JMS transport, discussed in Chapter 1, Building SOAP Web-Services).

The applicationContext.xml file of the configured client WebServiceTemplate
(id="webServiceTemplate") is used for sending and receiving XML messages. The
instance of this bean can be fetched from the client-side program to send and receive XML
messages. messageFactory is an instance of SaajSoapMessageFactory, referenced
inside WebServiceTemplate. messageFactory is used to create a SOAP packet from the
XML messages. The default service URI is the JMS URI that WebServiceTemplate uses
by default to send/receive all requests/responses. JmsMessageSender, configured inside
WebServiceTemplate, is used to send JMS messages. To use the JmsMessageSender,
the defaultUri or JMS URI should contain the jms: prefix and a destination name. Some
examples of JMS URI are jms:SomeQueue, jms:SomeTopic?priority=3&deliveryM
ode=NON_PERSISTENT, jms:RequestQueue?replyToName=ResponseName, and so on.
By default, the JmsMessageSender sends JMS BytesMessage, but this can be overridden
to use TextMessages by using the messageType parameter on the JMS URI. For example,
jms:Queue?messageType=TEXT_MESSAGE.

 <bean id="webServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">
 <constructor-arg ref="messageFactory"/>
 <property name="messageSender">
 <bean class="org.springframework.ws.transport.jms.
JmsMessageSender">
 <property name="connectionFactory"
ref="connectionFactory"/>
 </bean>
 </property>
 <property name="defaultUri" value="jms:RequestQueue?deliveryMo
de=NON_PERSISTENT"/>
 </bean>

Chapter 2

83

JmsTransportWebServiceIntegrationTest.java is a JUnit test case that fetches and
injects WebServiceTemplate from the applicationContext.xml file (marked by @Conte
xtConfiguration("applicationContext.xml")). In the method testSendReceive()
(marked by @Test), WebServiceTemplate sends a simple XML message (created by
a StringSource object from a simple input string) and receives a response from the
server wrapped inside the Result object. In the method testSendReceive() (marked
by @Test), sending and receiving of messages is similar to the HTTP client and uses
WebServiceTemplate.sendSourceAndReceiveToResult to send/receive messages:

 @Test
 public void testSendReceive() throws Exception {
 InputStream is = new JmsTransportWebServiceIntegrationTest().
getClass().getResourceAsStream("placeOrderRequest.xml");
 StreamSource source = new StreamSource(is);
 StringResult result = new StringResult();
 webServiceTemplate.sendSourceAndReceiveToResult(source,
result);
 XMLAssert.assertXMLEqual("Invalid content received",
expectedResponseContent, result.toString());
 }

See also
The recipe Setting up a Web-Service on JMS transport, discussed in Chapter 1, Building SOAP
Web-Services.

Unit testing a Web-Service using Spring Junit

Creating a Web-Service client on E-mail
transport

In this recipe, WebServiceTemplate is used to send/receive simple XML messages on
the client side, over E-mail transport. The Setting up a Web-Service on E-mail transport
recipe from Chapter 1, Building SOAP Web-Services, is used to set up a Web-Service.
A JUnit test case class is used to set up a Web-Service on the server side and messages
are sent/received using WebServiceTemplate.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.5, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

Building Clients for SOAP Web-Services

84

ff spring-test-3.0.5.RELEASE.jar

ff mail-1.4.1.jar

ff mock-javamail-1.6.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

How to do it...
This recipe uses the recipe Setting up a Web-Service on E-mail transport, discussed in
Chapter 1, Building SOAP Web-Services, as the server-side project.

1.	 Create a test class that calls the Web-Service server using WebServiceTemplate.

2.	 Configure WebServiceTemplate in applicationContext to send messages over
the e-mail protocol.

3.	 Run the command mvn clean package. The following is the output of
this command:

Received response

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>....

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Chapter 2

85

How it works...
This project sets up a Web-Service server over the E-mail transport, using a JUnit class. This
class uses Spring JUnit that loads the application context, sets up the server first, and then
runs the client unit test to verify that it functions as expected. The server is already explained
in the recipe Setting up a Web-Service on E-mail transport, discussed in Chapter 1, Building
SOAP Web-Services.

The applicationContext.xml file of the configured client WebServiceTemplate
(id="webServiceTemplate") is used for sending and receiving XML messages. The
instance of this bean can be fetched from the client-side program to send and receive XML
messages. messageFactory is an instance of SaajSoapMessageFactory, referenced
inside WebServiceTemplate. messageFactory is used to create a SOAP packet from XML
messages. transportURI is a URI used by WebServiceTemplate and indicates the server
to use for sending requests. storeURI is a URI, configured inside WebServiceTemplate,
and indicates the server to poll for responses (typically, a POP3 or IMAP server). The default
URI is the e-mail address URI that WebServiceTemplate uses by default to send/receive all
requests/responses:

 <bean id="webServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">
 <constructor-arg ref="messageFactory"/>
 <property name="messageSender">
 <bean class="org.springframework.ws.transport.mail.
MailMessageSender">
 <property name="from" value="client@packtpubtest.
com"/>
 <property name="transportUri" value="smtp://smtp.
packtpubtest.com"/>
 <property name="storeUri" value="imap://client@
packtpubtest.com/INBOX"/>
 <property name="receiveSleepTime" value="1500"/>
 <property name="session" ref="session"/>
 </bean>
 </property>
 <property name="defaultUri" value="mailto:server@packtpubtest.
com"/>
 </bean>
 <bean id="session" class="javax.mail.Session" factory-
method="getInstance">
 <constructor-arg>
 <props/>
 </constructor-arg>
 </bean>

Building Clients for SOAP Web-Services

86

MailTransportWebServiceIntegrationTest.java is a JUnit test case that
fetches and injects WebServiceTemplate from applicationContext.xml (marked
by @ContextConfiguration("applicationContext.xml")). In the method
testWebServiceOnMailTransport()(marked by @Test), WebServiceTemplate sends
a simple XML message (created by a StringSource object from an input XML file) and
receives a response from the server wrapped inside the Result object.

 @Test
 public void testWebServiceOnMailTransport() throws Exception {
 InputStream is = new MailTransportWebServiceIntegrationTest().
getClass().getResourceAsStream("placeOrderRequest.xml");
 StreamSource source = new StreamSource(is);
 StringResult result = new StringResult();

 webServiceTemplate.sendSourceAndReceiveToResult(source,
result);
 applicationContext.close();
 XMLAssert.assertXMLEqual("Invalid content received",
expectedResponseContent, result.toString());
 }

See also..
The recipe Setting up a Web-Service on E-mail transport, discussed in Chapter 1,
Building SOAP Web-Services.

Unit testing a Web-Service using Spring Junit

Setting up a Web-Service on XMPP transport
XMPP (The Extensible Messaging and Presence Protocol) is an open and decentralized
XML routing technology on which systems can send XMPP messages to each other. The
XMPP network consists of XMPP servers, clients, and services. Each system using XMPP is
recognized by a unique ID known as the Jabber ID (JID). XMPP servers publish XMPP services
to offer connected to a client remote service.

In this recipe, WebServiceTemplate is used to send/receive simple XML messages on the
client side over XMPP transport. The recipe Setting up a Web-Service on XMPP transport from
Chapter 1, Building SOAP Web-Services, is used to set up a Web-Service. A JUnit test case
class is used to set up a Web-Service on the server side and send and receive messages
using WebServiceTemplate.

Chapter 2

87

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.6, with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-support-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

ff smack-3.1.0.jar

How to do it...
1.	 This recipe uses the recipe Setting up a Web-Service on XMPP transport, discussed

in Chapter 1, Building SOAP Web-Services, as the server-side project.

2.	 Create a test class that calls the Web-Service server using WebServiceTemplate.

3.	 Configure WebServiceTemplate in applicationContext to send messages over
the XMPP protocol.

4.	 Run the command mvn clean package. You will see the following output:
Received response ..

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>....

<tns:placeOrderRequest xmlns:tns="...">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

Building Clients for SOAP Web-Services

88

How it works...
This project sets up a Web-Service server over the XMPP transport using a JUnit class. The
server is already explained in the recipe Setting up a Web-Service on e-mail transport,
discussed in Chapter 1, Building SOAP Web-Services.

The applicationContext.xml file of the configured client WebServiceTemplate
(id="webServiceTemplate") is used for sending and receiving XML messages. The
instance of this bean can be fetched from the client-side program to send and receive XML
messages. messageFactory is an instance of SaajSoapMessageFactory, referenced
inside WebServiceTemplate. messageFactory is used to create a SOAP packet from XML
messages. WebServiceTemplate uses XmppMessageSender to send messages to the
server. The default URI is a XMPP address URI that WebServiceTemplate uses by default to
send/receive all requests/responses:

 <bean id="webServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">
 <constructor-arg ref="messageFactory"/>
 <property name="messageSender">
 <bean class="org.springframework.ws.transport.xmpp.
XmppMessageSender">
 <property name="connection" ref="connection"/>
 </bean>
 </property>
 <property name="defaultUri" value="xmpp:yourUserName@gmail.
com"/>
 </bean>

XMPPTransportWebServiceIntegrationTest.java is a JUnit test case that
fetches and injects WebServiceTemplate from applicationContext.xml (marked
by @ContextConfiguration("applicationContext.xml")). In the method
testWebServiceOnXMPPTransport()(marked by @Test), WebServiceTemplate sends
an XML message (created by a StringSource object from a simple input XML file) and
receives a response from the server wrapped inside the Result object.

 @Autowired
 private GenericApplicationContext applicationContext;
 @Test
 public void testWebServiceOnXMPPTransport() throws Exception {
 StringResult result = new StringResult();
 StringSource sc=new StringSource(requestContent);
 webServiceTemplate.sendSourceAndReceiveToResult(sc, result);
 XMLAssert.assertXMLEqual("Invalid content received",
requestContent, result.toString());

 applicationContext.close();
 }

Chapter 2

89

See also
The recipe Setting up a Web-Service on XMPP transport, discussed in Chapter 1, Building
SOAP Web-Services.

Unit testing a Web-Service using Spring JUnit

Creating a Web-Service client using XPath
expressions

Using XPath in Java programming is one of the standard ways of extracting data from
XML messages. However, it mixes the XPath address of XML nodes/attributes (that might
eventually turn out to be very long) with Java code.

Spring provides a feature to extract these addresses from Java and shift them into the Spring
configuration file. In this recipe, the Setting up an endpoint by annotating the payload-root
recipe from Chapter 1, Building SOAP Web-Services, is used to set up a Web-Service server.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.7 (for the server-side Web-
Service), with the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

The following are the Maven dependencies for LiveRestaurant_R-2.7-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff junit-4.7.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses the Setting up an endpoint by annotating the payload-root recipe discussed
in Chapter 1, Building SOAP Web-Services, as the server-side project.

1.	 Configure the XPath expression inside applicationContext.xml.

2.	 Configure WebServiceTemplate in applicationContext to send messages
over the HTTP protocol, as described in the recipe Creating a Web-Service client on
HTTP transport.

Building Clients for SOAP Web-Services

90

3.	 Create a test class that calls the Web-Service server using WebServiceTemplate
and uses the XPath expression in Java code to extract the desired values.

4.	 From the folder Liverestaurant_R-2.7, run the command mvn clean package
tomcat:run.

5.	 Open a new command window to Liverestaurant_R-2.7-Client and run the
following command:

mvn clean package.

The following is the output of the client-side code:

--Request

<tns:placeOrderRequest xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 <tns:addressPrimary>

 <tns:doorNo>808</tns:doorNo>

 <tns:building>W8</tns:building>

 <tns:street>St two</tns:street>

 <tns:city>NY</tns:city>

 <tns:country>US</tns:country>

 <tns:phoneMobile>0018884488</tns:phoneMobile>

 <tns:phoneLandLine>0017773366</tns:phoneLandLine>

 <tns:email>d@b.c</tns:email>

 </tns:addressPrimary>

 <tns:addressSecondary>

 <tns:doorNo>409</tns:doorNo>

 <tns:building>W2</tns:building>

 <tns:street>St one</tns:street>

 <tns:city>NY</tns:city>

 <tns:country>US</tns:country>

 <tns:phoneMobile>0018882244</tns:phoneMobile>

 <tns:phoneLandLine>0019991122</tns:phoneLandLine>

 <tns:email>a@b.c</tns:email>

 </tns:addressSecondary>

 <tns:name>

 <tns:fName>John</tns:fName>

Chapter 2

91

 <tns:mName>Paul</tns:mName>

 <tns:lName>Smith</tns:lName>

 </tns:name>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

 <!--Received response-->

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber></
tns:placeOrderResponse>

 ...Request

 <tns:cancelOrderRequest xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest></SOAP-ENV:Body></SOAP-ENV:Envelope>]

...Received response..

<tns:cancelOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

How it works...
Setting up the client and server and using WebserviceTemplate are done in the same way
as we did in the recipe Creating a Web-Service client on HTTP transport. xpathExpPlace
and xpathExpCancel are configured in the client applicationContext.xml and
it creates an instance of XPathExpressionFactoryBean that gets a property of
expression as the XPath of the required data and namespaces of the XML messages:

 <bean id="xpathExpCancel"
 class="org.springframework.xml.xpath.XPathExpressionFactoryBean">
 <property name="expression" value="/tns:cancelOrderResponse/
tns:cancelled" />
 <property name="namespaces">
 <props>

Building Clients for SOAP Web-Services

92

 <prop key="tns">http://www.packtpub.com/liverestaurant/
OrderService/schema</prop>
 </props>
 </property>
 </bean>

 <bean id="xpathExpPlace"
 class="org.springframework.xml.xpath.XPathExpressionFactoryBean">
 <property name="expression" value="/tns:placeOrderResponse/
tns:refNumber" />
 <property name="namespaces">
 <props>
 <prop key="tns">http://www.packtpub.com/liverestaurant/
OrderService/schema</prop>
 </props>
 </property>
 </bean>

In the class OrderServiceClientTest, an instance of XPathExpressionFactoryBean
can be extracted from applicationContext. String message = xpathExp.
evaluateAsString(result.getNode()) returns the required data using an
XPath expression:

 @Test
 public final void testPlaceOrderRequest() {
 DOMResult result=invokeWS(isPlace);
 String message = xpathExpPlace.evaluateAsString(result.
getNode());
 Assert.assertTrue(message.contains("Smith"));

 }
 @Test
 public final void testCancelOrderRequest() {
 DOMResult result= invokeWS(isCancel);
 Boolean cancelled = xpathExpCancel.evaluateAsBoolean(result.
getNode());
 Assert.assertTrue(cancelled);

 }

See also
The recipe Setting up an endpoint using an XPath expression, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in this chapter.

Unit testing a Web-Service using Spring JUnit.

Chapter 2

93

Creating a Web-Service client for a
WS-Addressing endpoint

As described in the recipe Setting up a transport-neutral WS-Addressing endpoint, discussed
in Chapter 1, Building SOAP Web-Services, WS-Addressing is an alternative way for routing.
Instead of including the routing data within the body of the SOAP messages, WS-Addressing
separates the routing data from the messages and includes it with the SOAP headers. Here is
a sample of the WS-Addressing style of a SOAP message, sent from the client side:

<SOAP-ENV:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <wsa:To>server_uri</wsa:To>

 <wsa:Action>action_uri</wsa:Action>

 <wsa:From>client_address </wsa:From>

 <wsa:ReplyTo>client_address</wsa:ReplyTo>

 <wsa:FaultTo>admen_uri </wsa:FaultTo>

<wsa:MessageID>..</wsa:MessageID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest>....</tns:placeOrderReques>

</SOAP-ENV:Body></SOAP-ENV:Envelope>]

While using WS-Addressing, the client or server can access more features when compared to
the other methods (including routing data within a message). For example, here the client side
can set ReplyTo to its own and FaultTo to the admin endpoint address. Then the server
sends successful messages to the client and fault messages to the admin address.

Spring-WS supports client-side WS-Addressing as well as on the server side. To create
WS-Addressing headers for the client side, org.springframework.ws.soap.
addressing.client.ActionCallback can be used. This callback keeps the Action
header as a parameter. It also uses the WS-Addressing version and a To header.

In this recipe, the Setting up a transport-neutral WS-Addressing endpoint recipe, discussed
in Chapter 1, Building SOAP Web-Services, is used to set up a WS-Addressing Web-Service.
A client application is used here to call the server and return the response object.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.8 (for server-side Web-Service),
with the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Building Clients for SOAP Web-Services

94

The following are the Maven dependencies for LiveRestaurant_R-2.8-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff junit-4.7.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses the recipe Setting up a transport-neutral WS-Addressing endpoint, discussed
in Chapter 1, Building SOAP Web-Services, as the server-side project. Creating a client for WS-
Addressing is done in the same way as described in the recipe Creating a Web-Service client
on HTTP transport, without using WebServiceTemplate. To add a WS-Addressing header on
the client side, the method sendSourceAndReceiveToResult of WebServiceTemplate
gets an ActionCallBack instance.

1.	 From the folder LiveRestaurant_R-2.8, run the following command:
mvn clean package tomcat:run

2.	 Open a new command window to LiveRestaurant_R-2.8-Client and run the
following command:

 mvn clean package

The following is the client-side output:

Received response [<SOAP-ENV:Envelope xmlns:SOAP-ENV="..../">

<SOAP-ENV:Header xmlns:wsa="...">

<wsa:To SOAP-ENV:mustUnderstand="1">....</
wsa:To><wsa:Action>http://www.packtpub.com/OrderService/
CanOrdReqResponse</wsa:Action>

<wsa:MessageID>....</wsa:MessageID>

<wsa:RelatesTo>...</wsa:RelatesTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:cancelOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>]

 for request ...

 <SOAP-ENV:Envelope xmlns:SOAP

-ENV=".."><SOAP-ENV:Header xmlns:wsa="..">

Chapter 2

95

<wsa:To SOAP-ENV:mustUnderstand="1">http://www.packtpub.com/
liverestaurant/OrderService/schema</wsa:To>

<wsa:Action>http://www.packtpub.com/OrderService/CanOrdReq</
wsa:Action>

<wsa:MessageID>..</wsa:MessageID>

</SOAP-ENV:Header><SOAP-ENV:Body/>

</SOAP-ENV:Envelope>]

<?xml version="1.0" encoding="UTF-8"?>

<tns:cancelOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

How it works...
The Liverestaurant_R-2.8 project is a server-side Web-Service that supports the WS-
Addressing endpoint.

The applicationContext.xml file of the configured client WebServiceTemplate
(id="webServiceTemplate") is used for sending and receiving XML messages, as
described in the recipe Creating a Web-Service client on HTTP transport, except for the
implementation of the Java class that used WebServiceTemplate.

WS-Addressing client passes an instance of ActionCallBack to the method
sendSourceAndReceiveToResult of WebServiceTemplate. Using ActionCallBack,
the client adds a custom header that contains the Action URI, for example, http://www.
packtpub.com/OrderService/OrdReq and the To URI, for example, http://www.
packtpub.com/liverestaurant/OrderService/schema.

 @Test
 public final void testPlaceOrderRequest() throws URISyntaxException
{
 invokeWS(isPlace,"http://www.packtpub.com/OrderService/
OrdReq");
 }
 @Test
 public final void testCancelOrderRequest() throws
URISyntaxException {
 invokeWS(isCancel,"http://www.packtpub.com/OrderService/
CanOrdReq");
}

 private static Result invokeWS(InputStream is,String action)
throws URISyntaxException {

Building Clients for SOAP Web-Services

96

 StreamSource source = new StreamSource(is);
 StringResult result = new StringResult();
 wsTemplate.sendSourceAndReceiveToResult(source, new
ActionCallback(new URI(action),new Addressing10(),new URI("http://www.
packtpub.com/liverestaurant/OrderService/schema")),
 result);
 return result;
 }

Using this header, the server side will be able to find the method in the endpoint (using the
@Action annotation).

See also
The recipe Setting up a transport-neutral WS-Addressing endpoint, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in this chapter.

Unit testing a Web-Service using Spring JUnit

Transforming a Web-Service message
using XSLT

Eventually, clients of a Web-Service may use different versions of XML messages and the
requirement is to use the same Web-Service on the server side.

Spring Web-Services provide PayloadTransformingInterceptor. This endpoint
interceptor uses XSLT stylesheets and is useful when you need multiple versions of a
Web-Service. Using this interceptor, you can transform the old format of the message
to a newer one.

In this recipe, the Setting up a simple endpoint mapping for the Web-Service recipe from
Chapter 1, Building SOAP Web-Services, is used to set up a Web-Service and the client
application here calls the server and returns the response message.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-2.9 (for a server-side web service),
with the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Chapter 2

97

The following are the Maven dependencies for LiveRestaurant_R-2.9-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff junit-4.7.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses the Setting up a simple endpoint mapping for the Web-Service recipe,
discussed in Chapter 1, Building SOAP Web-Services, as a server-side project. The client
side is the same as discussed in the recipe Creating a Web-Service client on HTTP transport,
except for the XSLT files and their configuration in the server-side application context file:

1.	 Create the XSLT files (oldResponse.xslt, oldRequest.xslt).

2.	 Modify the file spring-ws-servlet.xml in LiveRestaurant_R-2.9 to include
the XSLT files

3.	 From the folder Liverestaurant_R-2.9, run the following command:
mvn clean package tomcat:run

4.	 Open a new command window to Liverestaurant_R-2.9-Client and run the
following command:

mvn clean package

The following is the client-side output:
Received response...

<ns:OrderResponse xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema" message="Order Accepted!"/>...

 for request

<OrderRequest xmlns="http://www.packtpub.com/LiveRestaurant/
OrderService/schema" message="This is a sample Order Message"/>

The following is the server-side output:

actual request ..

<ns:OrderRequest xmlns:ns="...">

<ns:message>This is a sample Order Message</ns:message></
ns:OrderRequest>

actual response = <ns:OrderResponse xmlns:ns="..">

<ns:message>Order Accepted!</ns:message></ns:OrderResponse>

Building Clients for SOAP Web-Services

98

How it works...
The server side is the same as that described in the recipe Setting up a simple endpoint
mapping for the Web-Service from Chapter 1, Building SOAP Web-Services. On the client
side, WebServiceTemplate and OrderServiceClientTest.java are the same as
those described in the recipe Creating a Web-Service client on HTTP transport.

The only difference is the server application context file. The transformingInterceptor
bean in spring-servlet.xml uses oldRequests.xslt and oldResponse.xslt
to convert the old request XML message to the server's newer version and vice versa,
respectively:

. <bean class="org.springframework.ws.server.endpoint.mapping.
SimpleMethodEndpointMapping">
 <property name="endpoints">
 <ref bean="OrderServiceEndpoint" />
 </property>
 <property name="methodPrefix" value="handle"></property>
 <property name="interceptors">
 <list>
 <bean
 class="org.springframework.ws.server.endpoint.interceptor.
PayloadLoggingInterceptor">
 <property name="logRequest" value="true" />
 <property name="logResponse" value="true" />
 </bean>
 <bean id="transformingInterceptor"
 class="org.springframework.ws.server.endpoint.interceptor.
PayloadTransformingInterceptor">
 <property name="requestXslt" value="/WEB-INF/oldRequests.
xslt" />
 <property name="responseXslt" value="/WEB-INF/oldResponse.
xslt" />
 </bean>
 </list>
 </property>
 </bean>

See also
The recipe Setting up a simple endpoint mapping for the Web-Service, discussed in
Chapter 1, Building SOAP Web-Services.

Unit testing a Web-Service using Spring JUnit.

3
Testing and Monitoring

Web-Services

In this chapter, we will cover:

ff Integration testing using Spring-JUnit support

ff Server-side integration testing using MockWebServiceClient

ff Client-side integration testing using MockWebServiceServer

ff Monitoring TCP messages of a Web-Service using TCPMon

ff Monitoring and load/functional testing a Web-Service using soapUI

Introduction
New software development strategies require comprehensive testing in order to achieve
the quality in the software development process. Test-driven design (TDD) is an evolutionary
approach to the development process, which combines the test-first development process
and re-factoring. In the test-first development process, you write a test before writing the
complete production code to simplify the test. This testing includes unit testing as well as
integration testing.

Spring provides support for integration testing features using the spring-test package.
These features include dependency injection and loading the application context within
the test environment.

Writing a unit test that uses mock frameworks (such as EasyMock and JMock to test a Web-
Service) is quite easy. However, it is not testing the content of the XML messages, so it is not
simulating the real production environment of testing.

Testing and Monitoring Web-Services

100

Spring Web-Services 2.0 provides features to create server-side integration tests as well
as the client-side one. Using these integration test features, it is very simple to test a SOAP
service without deploying it on the server when you are testing the server side, and without
the need to set up a server when you are testing the client side.

In the first recipe, we will discuss how to use the Spring framework for Integration testing. In
the next two recipes, new features for integration testing of Spring-WS 2.0 are detailed. In the
last two recipes, using tools, such as soapUI and TCPMon for monitoring and testing Web-
Services, are presented.

Integration testing using Spring-JUnit
support

Spring supports integration testing features using the classes in the org.
springframework.test package. These features provide dependency injection in your
test case using either the production's application context or any customized one for testing
purposes. This recipe presents how to use JUnit test cases using features, spring-test.
jar, JUnit 4.7, and XMLUnit 1.1.

Please note that to run Integration test, we need to start the server.
However, in the next two recipes, we will use new features for integration
testing of Spring-WS 2.0 that do not require starting up the server.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-3.1 (for server-side Web-Service)
and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

The following are the Maven dependencies for LiveRestaurant_R-3.1-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

Chapter 3

101

How to do it...
This recipe uses the project used in the recipe Setting up an endpoint by annotating the
payload-root discussed in Chapter 1, Building SOAP Web-Services, as the server-side project.
Here is the setup for the client side:

1.	 Create a test class that calls the Web-Service server using WebServiceTemplate in
src/test.

2.	 Configure WebServiceTemplate in applicationContext.xml.

3.	 From the folder Liverestaurant_R-3.1, run the following command:
mvn clean package tomcat:run

4.	 Open a new command window to Liverestaurant_R-3.1-Client and run the
following command:

mvn clean package.

The following is the client-side output:

…..............

 T E S T S

Running com.packtpub.liverestaurant.client.OrderServiceClientTest

............................

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
1.633 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

How it works...
The server-side projects set up a Web-Service server and the client-side project runs an
integration test and sends predefined request messages to the server and gets the response
message from the server. Then compare the server response with the expected response.
Setting up a Web-Service and a client of the Web-Service have already been detailed in the
first two chapters. Here, only the testing framework is detailed.

Testing and Monitoring Web-Services

102

In OrderServiceClientTest.java, the method setUpBefore() will be called first to
initialize data (since it is annotated by @before) and test methods that are annotated by
@Test (testCancelOrderRequest or testPalceOrderRequest) to follow, and finally,
the method setUpAfter() will be called to free up the resources (since it is annotated
by @after).

When you run mvn clean package, Maven builds and runs any test class inside
the src/test/java folder. So in OrderServiceClientTest.java, first the test
application context will be loaded. In the application context, only the configuration of
WebServiceTemplate is required:

 <bean id="messageFactory" class="org.springframework.ws.soap.saaj.
SaajSoapMessageFactory" />

 <bean id="webServiceTemplate" class="org.springframework.ws.client.
core.WebServiceTemplate">
 <constructor-arg ref="messageFactory" />
 <property name="defaultUri" value="http://localhost:8080/
LiveRestaurant/spring-ws/OrderService" />

 </bean>

In OrderServiceClientTest.java, to include the Spring dependency injection, and
to set up and run the test, code is annotated with some information. The JUnit @RunWith
annotation tells JUnit to use the Spring TestRunner. The @ContextConfiguration
annotation from Spring tells to load which application context and use this context to inject
applicationContext and webServiceTemplate, which are annotated with @Autowired:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class OrderServiceClientTest {
 @Autowired
 private WebServiceTemplate webServiceTemplate;
 ….....

@Before from JUnit tells to run the marked method (setUpBefore) before running the
test case. JUnit @After causes the marked method to be called after the test case is
executed. @Test from JUnit converts the marked methods (testCancelOrderRequest
and testPlaceOrderRequest) into JUnit test methods:

@After
 public void setUpAfter() {
 applicationContext.close();
 }
 @Test
 public final void testPlaceOrderRequest() throws Exception {

Chapter 3

103

 Result result = invokeWS(placeOrderRequest);
 XMLAssert.assertXMLEqual("Invalid content received", getStringFro
mInputStream(placeOrderResponse), result.toString());
 }
 @Test
 public final void testCancelOrderRequest() throws Exception {
 Result result = invokeWS(cancelOrderRequest);
 XMLAssert.assertXMLEqual("Invalid content received", getStringFro
mInputStream(cancelOrderResponse), result.toString());
 }
 private Result invokeWS(InputStream is) {
 StreamSource source = new StreamSource(is);
 StringResult result = new StringResult();
 webServiceTemplate.sendSourceAndReceiveToResult(source,
result);
 return result;
 }
 public String getStringFromInputStream (InputStream is)
 throws IOException {
 BufferedInputStream bis = new BufferedInputStream(is);
 ByteArrayOutputStream buf = new ByteArrayOutputStream();
 int result = bis.read();
 while(result != -1) {
 byte b = (byte)result;
 buf.write(b);
 result = bis.read();
 }
 return buf.toString();
 }

Note that for each test method, the @After and @Before methods will be executed once.
XMLAssert.assertXMLEqual compares the real result and the expected XML messages.

In a real situation, the data will change dynamically every day.
We should be able to build data dynamically based on dates
and from the database. This helps continuous integration and
smoke testing over a period of time.

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Service.

The recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2, Building
Clients for SOAP Web-Services.

Testing and Monitoring Web-Services

104

Server-side integration testing using
MockWebServiceClient

Writing a unit test that uses mock frameworks, such as EasyMock and JMock, to test a Web-
Service is quite easy. However, it does not test the content of the XML messages, so it is not
simulating the real production environment of testing (since these mock objects mimic a part
of the software, which is not running, this is neither unit testing nor integration testing).

Spring Web-Services 2.0 provides features to create server-side integration tests. Using this
feature, it is very simple to test a SOAP service without deploying on the server and without
the need to configure a test client in the Spring configuration file.

The main class of server-side integration tests is MockWebServiceClient from the org.
springframework.ws.test.server package. This class creates a request message,
sends the request to the service, and gets the response message. The client compares the
response with the expected message.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-3.2 (as the server-side Web-
Service that includes a test case that uses MockWebServiceClient) and has the following
Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
This recipe uses the project from Setting up an endpoint by annotating the payload-root,
discussed in Chapter 1, Building SOAP Web-Services, as the server-side
project. Here is the setup for the test case:

1.	 Include the following data in pom.xml:
 <testResources>
 <testResource>
 <directory>src/main/webapp</directory>
 </testResource>
 </testResources>
 </build>

Chapter 3

105

Add the test case class in the folder src/test/java.

2.	 Run the following command for Liverestaurant_R-3.2:

mvn clean package

The following is the server-side output:

…...............

 T E S T S

Running com.packtpub.liverestaurant.service.test.
OrderServiceServerSideIntegrationTest

l.........

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
1.047 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

How it works...
In the class OrderServiceServerSideIntegrationTest.java, annotation and
unit testing materials are the same as those used in the recipe Integration testing using
Spring-JUnit support. The only difference here is that we are not setting up the server.
Instead, we load the server application context in the test case class:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/WEB-INF/spring-ws-servlet.xml")
public class OrderServiceServerSideIntegrationTest {
…....................

The test case class, in the @Before method, initializes an instance of the client mock object
and XML messages:

 @Before
 public void createClient() {
 wsMockClient = MockWebServiceClient.createClient(applicationCon
text);
 placeOrderRequest = new OrderServiceServerSideIntegrationTest().
getClass().getResourceAsStream("placeOrderRequest.xml");

Testing and Monitoring Web-Services

106

 cancelOrderRequest = new
OrderServiceServerSideIntegrationTest().getClass().getResourceAsStream
("cancelOrderRequest.xml");
 placeOrderResponse = new
OrderServiceServerSideIntegrationTest().getClass().getResourceAsStream
("placeOrderResponse.xml");
 cancelOrderRsponse = new
OrderServiceServerSideIntegrationTest().getClass().getResourceAsStream
("cancelOrderResponse.xml");
 }

Then, it sends a message and receives the response. It then compares the expected response
and the real response:

 @After
 public void setUpAfterClass() {

 applicationContext.close();
 }

 @Test
 public final void testPlaceOrderRequest() throws Exception {
 Source requestPayload = new StreamSource(placeOrderRequest);
 Source responsePayload = new StreamSource(placeOrderResponse);
 wsMockClient.sendRequest(withPayload(requestPayload)).
 andExpect(payload(responsePayload));
 }
 @Test
 public final void testCancelOrderRequest() throws Exception {
 Source requestPayload = new StreamSource(cancelOrderRequest);
 Source responsePayload = new StreamSource(cancelOrderRsponse);
 wsMockClient.sendRequest(withPayload(requestPayload)).
 andExpect(payload(responsePayload));
 }

In the method createClient(), MockWebServiceClient.createClient(applica
tionContext) creates an instance of the client mock object (wsMockClient). In the test
case methods (testCancelOrderRequest, testPlaceOrderRequest), using the code
wsMockClient.sendRequest(withPayload(requestPayload)).andExpect(pay
load(responsePayload)), the mock client sends an XML message and compares the
response (from server endpoint) with the expected response (The client mock is aware of
server endpoint from application context file and when it sends request to server, invokes the
endpoint method and gets the response back).

Chapter 3

107

See also
The recipes Integration testing using Spring-JUnit support and Client-side integration testing
using MockWebServiceServer, discussed in this chapter.

The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services.

Client-side integration testing using
MockWebServiceServer

Writing a client-side unit test that uses mock frameworks to test a client of a Web-Service is
quite easy. However, it does not test the content of the XML messages that are sent over the
wire, especially when mocking out the entire client class.

Spring Web-Services 2.0 provides features to create client-side integration tests. Using this
feature, it is very simple to test the client of a SOAP service without setting up a server.

The main class of client-side integration tests is MockWebServiceServer from the org.
springframework.ws.test.server package. This class accepts a request message from
a client, verifies it against the expected request messages, and then returns the response
message back to the client.

Since this project is a client-side test integration using MockWebServiceServer, it doesn't
need any external server-side Web-Service.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-3.3-Client (as the client-side
project that includes a test case that uses MockServiceServer as the server) and has the
following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

Testing and Monitoring Web-Services

108

How to do it...
This recipe uses the client-side project from Creating a Web-Service client on HTTP transport,
discussed in Chapter 2, Building Clients for SOAP Web-Services. Here is the setup for the
test case:

1.	 Create a test case class under src/test.

2.	 Create a class that extends WebServiceGatewaySupport to send/receive
messages.

3.	 Run the following command for Liverestaurant_R-3.3-Client:

mvn clean package

The following is the client-side output:

 T E S T S

Running com.packtpub.liverestaurant.client.test.
ClientSideIntegrationTest

........

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.945 sec

Results :

Tests run: 3, Failures: 0, Errors: 0, Skipped: 0

How it works...
The flow in the test case class ClientSideIntegrationTest.java is as follows:

1.	 Create a MockWebServiceServer using WebServiceGatewaySupport
(OrderServiceClient that extends WebServiceGatewaySupport). You can
also create MockWebServiceServer using WebServiceTemplate or using
ApplicationContext.

2.	 Set up request expectations using RequestMatcher and return the response using
ResponseCreator.

3.	 Make a client call by using the WebServiceTemplate.

Chapter 3

109

4.	 Call the verify method to make sure all the expectations are met. The
application context file is just a configuration of WebServiceTemplate and
OrderServiceClient:

 <bean id="client" class=" com.packtpub.liverestaurant.client.
test.OrderServiceClient">
 <property name="webServiceTemplate"
ref="webServiceTemplate"/>
 </bean>

 <bean id="webServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">
 <property name="defaultUri" value="http://www.packtpub.
com/liverestaurant/OrderService/schema"/>
 </bean>
 </beans>

Inside ClientSideIntegrationTest.java, the annotation and unit testing materials are
the same as those used in the recipe Integration testing using Spring-JUnit support. The method
createServer() creates MockWebServiceServer using WebServiceGatewaySupport
(OrderServiceClient extends WebServiceGatewaySupport):

public class OrderServiceClient extends WebServiceGatewaySupport {

 public Result getStringResult(Source source) {
 StringResult result = new StringResult();
 getWebServiceTemplate().sendSourceAndReceiveToResult(source,
result);
 return result;
 }
}

In the test, the method testExpectedRequestResponse, mockServer.expect sets
the expected request and response (webServiceTemplate is configured in 'testing mode'
in client-integration-test.xml. When the sendSourceAndReceiveToResult
method is being called, the template calls server virtually without any real HTTP connection).
Then client.getStringResult calls webserviceTemplate to call the server
(MockWebServiceServer). Then, mockServer.verify checks if the returned response
matches the expected one:

 @Test
 public void testExpectedRequestResponse() throws Exception {

 Source requestPayload = new StringSource(getStringFromInputSt
ream(placeOrderRequest));
 Source responsePayload = new StringSource(getStringFromInputS
tream(placeOrderResponse));
 mockServer.expect(payload(requestPayload)).andRespond(withPay
load(responsePayload));

Testing and Monitoring Web-Services

110

 Result result = client.getStringResult(requestPayload);
 XMLAssert.assertXMLEqual("Invalid content received",
xmlToString(responsePayload), result.toString());
 mockServer.verify();
 }

In the test method testSchema, instead of using a hardcoded request/response, the
schema of the expected request and response is used. This test can test if the format
of the request/response is as expected. This is shown as follows:

. @Test
 public void testSchema() throws Exception {
 Resource schema=new FileSystemResource("orderService.xsd");
 mockServer.expect(validPayload(schema));
 client.getStringResult(new StreamSource(placeOrderRequest));
 mockServer.verify();
 }

In the test method testSchemaWithWrongRequest, the schema of the expected request
and response is used. However, the client is trying to send invalid request, that is to be failed:

 @Test(expected = AssertionError.class)
 public void testSchemaWithWrongRequest() throws Exception {
 Resource schema=new FileSystemResource("orderService.xsd");
 mockServer.expect(validPayload(schema));
 client.getStringResult(new StringSource(getStringFromInputStre
am(cancelOrderRequestWrong)));
 mockServer.verify();
 }

See also
The recipe Integration testing using Spring-JUnit support, discussed in this chapter.

Monitoring TCP messages of a Web-Service
using TCPMon

TCPMon is an Apache project with a Swing UI, which provides features to monitor TCP-based
messages transmitted between the client and server. A SOAP message can also be sent to the
server using TCPMon.

This recipe presents how to monitor messages passed between a Web-Service client and
the server. In addition, it shows how to send a SOAP message using TCPMon. The recipe
Integration testing using Spring-JUnit support is used for server-side and client-side projects.

Chapter 3

111

Getting ready
Download and install TCPMon 1.0 from the website http://ws.apache.org/commons/
tcpmon/download.cgi.

How to do it...
Monitor the messages between the client and server as follows:

1.	 Run it on Windows using tcpmon.bat (tcpmon.sh for Linux).

2.	 Enter the values 8081 and 8080 into the Listen port # and Target port # fields and
click on the Add option.

3.	 Change applicationContext.xml in LiveRestaurant_R-3.1-Client to use
the 8081 port for webserviceTemplate:
 <bean id="messageFactory" class="org.springframework.ws.soap.
saaj.SaajSoapMessageFactory" />

 <bean id="webServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">

http://ws.apache.org/commons/tcpmon/download.cgi
http://ws.apache.org/commons/tcpmon/download.cgi

Testing and Monitoring Web-Services

112

 <constructor-arg ref="messageFactory" />
 <property name="defaultUri" value="http://localhost:8081/
LiveRestaurant/spring-ws/OrderService" />

 </bean>

4.	 Run the server from the project LiveRestaurant_R-3.1 using the following
command:
mvn clean package tomcat:run

5.	 Run the client from the project LiveRestaurant_R-3.1-Client using the
following command:
mvn clean package

6.	 Go to the Port 8081 tab and see request and response messages, as shown in the
following screenshot:

Send a SOAP request to the server as follows:

Go to the Sender tab. Enter the SOAP service address and a SOAP request message and click
on the Send button to view the response:

Chapter 3

113

How it works...
Monitoring transmitted messages between a client and a Web-Service server is the most
important usage of the TCPMon. In addition, TCPMon can be used as a client to send a
message to a Web-Service server. This is an intermediary role that shows the transmitted
messages between the client and server. The client has to point to the intermediary instead
of the server service.

Client TCPMon Server

Listener
Port Server port

The second activity (sending a SOAP request to the server) shows the sending of a message
using TCPMon to the server, the reception of the response, and shows all of this on TCPMon.

See also
The recipe Integration testing using Spring-JUnit support discussed in this chapter.

Testing and Monitoring Web-Services

114

Monitoring and load/functional testing of a
Web-Service using soapUI

soapUI is an open source testing solution for testing web services. Using a user-friendly GUI,
this tool provides a feature to create and execute automated functional and load testing as
well as monitor SOAP messages.

This recipe presents how to monitor SOAP messages of the Web-Service and functional and
load testing using soapUI. To set up a Web-Service, Recipe 3.1, Integration testing using
Spring-JUnit support, is used.

Getting ready
Get started by carrying out the following steps:

1.	 Install and run soapUI 4.0 (http://www.soapui.org/).

2.	 Run the following command from the folder LiveRestaurant_R-3.1:
mvn clean package tomcat:run

How to do it...
To run the functional tests and monitor the SOAP messages, carry out the following steps:

1.	 Right-click on the Projects node. Select New soapUI Project and enter the WSDL
URL and the Project Name.

Chapter 3

115

2.	 Right-click on the project's name, OrderService, in the navigator pane. Select Launch
HTTP Monitor and enable the option Set as Global Proxy. Click on the OK button:

3.	 Expand the OrderService methods (cancelOrder and placeOrder). Double-click
cancelOrder. Click on Submit Request to Specific Endpoint URL (The green icon on
the top-left corner of the Request1 screen). The following is the output of this action:

Testing and Monitoring Web-Services

116

4.	 Right-click OrderServiceSoap11 | Generate Test Suite | OK. Enter
OrderServiceSoap11 TestSuite.

5.	 Double-click on OrderServiceSoap11 TestSuite on the navigator pane. Click Run the
selected TestCases.

Chapter 3

117

6.	 The following is the output when the test suite is run:

Testing and Monitoring Web-Services

118

Run a load test as follows:

1.	 Right-click the cancelOrder test case. Select New Local Test and enter the
Load Test Name.

2.	 Double-click Load test name. Enter Parameter and click on Run Load Test.

Chapter 3

119

3.	 The following is the output of the test:

Testing and Monitoring Web-Services

120

How it works...
Functional testing and monitoring SOAP messages: soapUI provides three levels of functional
testing: test suites, test cases, and test steps.

Test cases are the unit tests that are generated from the WSDL file and test suites are
a collection of these unit tests. Test steps control the flow of execution and validate the
functionality of the service that is to be tested. For example, a test case in the test suite for
the cancelOrder mentioned previously may test the database first. If there is such an order
available, it cancels the order.

Load testing: soapUI provides a feature to run multiple threads (as many as your machine's
hardware limits you to) on your test cases. When you run a load test, the underlying test case
will be cloned internally for each thread. Delay settings let each thread wait before starting
and let the Web-Service rest for each thread.

See also
The recipe Integration testing using Spring-JUnit support, discussed in this chapter.

4
Exception/SOAP Fault

Handling

In this chapter, we will cover:

ff Handling server-side exceptions by returning an exception's message as a SOAP
fault string

ff Mapping exception class names to SOAP faults

ff Annotating exception classes with the @SOAPFault

ff Writing your own exception resolvers in Spring-WS

Introduction
The server-side exceptions generated while processing a Web-Service are transmitted as
SOAP faults. The SOAP <Fault> element is used to carry error and status information
within a SOAP message.

The following code represents a general structure of the SOAP fault element in a
SOAP message:

<SOAP-ENV:Fault>
 <faultcode xsi:type="xsd:string">SOAFP-ENV:Client</faultcode>
 <faultstring xsi:type="xsd:string">
 A human readable summary of the fault
 </faultstring>
 <detail xsi:type="xsd:string">
 Application specific error information related to the Body
element
 </detail>
</SOAP-ENV:Fault>

Exception/SOAP Fault Handling

122

If a Fault element is present, it must appear as a child element of the Body element. A
Fault element can only appear once in a SOAP message.

Spring Web-Services offer smart mechanisms to handle SOAP faults with its easy-to-
use API. The exceptions that are thrown when handling the request get picked up by
MessageDispatcher and get delegated to any of the endpoint exception resolvers that
are declared in the application context (XML or annotation). This exception resolver-based
handling mechanism allows the developer to define custom behaviors (such as returning a
customized SOAP fault) when a particular exception gets thrown.

This chapter starts with recipes for easy exception-handling mechanisms and then moves on
to slightly complex scenarios.

org.springframework.ws.server.EndpointExceptionResolver is the
primary specification/contract for server-side exception handling in Spring-WS. org.
springframework.ws.soap.server.endpoint.SimpleSoapExceptionResolver
is the default implementation of EndpointExceptionResolver, available in the Spring-
WS framework. If not explicitly handled by the developer, MessageDispatcher handles the
server-side exceptions with SimpleSoapExceptionResolver.

The recipes in this chapter demonstrate different usages of org.springframework.
ws.server.EndpointExceptionResolver and its implementations, including
SimpleSoapExceptionResolver.

For demonstration purposes, the simplest recipe for building a Spring-WS is Simplifying the
creation of a WebService using MessageDispatcherServlet.

Handling server-side exceptions by returning
the exception's message as a SOAP
fault string

Spring-WS framework automatically converts the description of application-level exception
thrown in server-side into SOAP fault messages and includes it within response message and
sends it back to the client. This recipe demonstrates catching the exception and setting a
meaningful message to be sent back as a SOAP fault string in the response.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-4.1 (for server-side Web-Service)
and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Chapter 4

123

The following are the Maven dependencies for LiveRestaurant_R-4.1-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses projects from Setting up an endpoint by annotating the payload-root,
discussed in Chapter 1, Building SOAP Web-Services. The following steps describe how
to modify the endpoint:

1.	 Modify the endpoint to throw an exception when an application/system error occurs.

2.	 Build and deploy the project in the Maven-embedded Tomcat server.

3.	 Run the following command from the root of the project, in a command-line window:
mvn clean package tomcat:run.

4.	 To test, open a new command window, go to the folder LiveRestaurant_R-4.1-
Client, and run the following command:

mvn clean package exec:java

The following is the output from the server-side console (note the SOAP-Env:Fault
element generated in the message):
DEBUG [http-8080-1] (MessageDispatcher.java:167) - Received
request.....

<SOAP-ENV:Fault><faultcode>SOAP-ENV:Server</faultcode>

<faultstring xml:lang="en">Reference number is not provided!</
faultstring>

</SOAP-ENV:Fault>

For request

...

<tns:placeOrderRequest xmlns:tns="....">

 …...

</tns:placeOrderRequest>

The following is the output from the client-side console:

Received response

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

Exception/SOAP Fault Handling

124

<faultstring xml:lang="en">Reference number is not provided!</
faultstring>

</SOAP-ENV:Fault>

... for request....

<tns:placeOrderRequest xmlns:tns="...">

 …......

</tns:placeOrderRequest>

....

[WARNING]

java.lang.reflect.InvocationTargetException

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)

 at org.codehaus.mojo.exec.ExecJavaMojo$1.run(ExecJavaMojo.
java:297)

 at java.lang.Thread.run(Thread.java:619)

Caused by: org.springframework.ws.soap.client.
SoapFaultClientException: Reference number is not provided!

How it works...
In the endpoint (OrderServiceEndpoint) in the handler method
(handlePlaceOrderRequest), as the incoming message doesn't contain a reference
number, a simple RuntimeException is thrown. This symbolizes any unexpected runtime
exception. For clarification, a meaningful error description (Reference number is not
provided!) is passed to the exception:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {

 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="";
 if(refNumber.length()>0)
 return new StringSource(

Chapter 4

125

 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 else
 throw new RuntimeException("Reference number is not provided!");
 }

You can see that there are no explicit exception resolvers configured for this project. The
smart MessageDispatcher of the Spring-WS framework allocates a default exception
resolver to handle any exception when there is no exception resolver configured. It uses
SimpleSoapExceptionResolver to handle the situation.

SimpleSoapExceptionResolver resolves the exception by performing the
following operations:

ff Logs the exception to the logger (console, log file)

ff Generates the SOAP fault message with the exception message as the fault string
and returns as part of the response message

When we check the response message at the client side, we can see the exact
exception message (Reference number is not provided!) that is set inside the method,
OrderServiceEndpoint. handlePlaceOrderRequest is returned as the SOAP fault
string in the response message.

What is interesting here is that the developer doesn't need to do anything to handle and send
the SOAP fault message, except for throwing an exception with a meaningful message.

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2, Building
Clients for SOAP Web-Services.

Mapping exception class names to SOAP
faults

Spring-WS framework allows the SOAP fault messages to be customized easily in the
bean-configuration file, spring-ws-servlet.xml. It uses a special exception resolver,
SoapFaultMappingExceptionResolver, to do that job. We can map exception classes
to the corresponding SOAP fault to be generated and returned to the client.

Exception/SOAP Fault Handling

126

Getting ready
In this recipe, the project's name is LiveRestaurant_R-4.2 (for server-side Web-Service)
and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

The following are the Maven dependencies for LiveRestaurant_R-4.2-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses the projects from Setting up an endpoint by annotating the payload-root,
discussed in Chapter 1, Building SOAP Web-Services.

1.	 Create a custom exception class DataOutOfRangeException.java.

2.	 Modify OrderServiceEndpoint to throw DataOutOfRangeException.

3.	 Register SoapFaultMappingExceptionResolver in spring-ws-servlet.xml.

4.	 Build and deploy the project in the Maven-embedded Tomcat server.

5.	 Run the following command from the root of the project, in a command-line window:
mvn clean package tomcat:run

6.	 To test, open a new command window, go to the folder LiveRestaurant_R-4.2-
Client, and run the following command:

mvn clean package exec:java

The following is the output from the server-side console (note that the SOAP-
Env:Fault element is generated in the message):
DEBUG [http-8080-1] (MessageDispatcher.java:177) -

Sent response

...

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

<faultstring xml:lang="en">such a data is out of range!</
faultstring>

Chapter 4

127

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

... for request

<tns:placeOrderRequest xmlns:tns="....">

 …....

</tns:placeOrderRequest>

The following is the output from the client-side console:

 Received response...

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Server</faultcode>

<faultstring xml:lang="en">such a data is out of range!</
faultstring>

</SOAP-ENV:Fault>

......

for request....

<tns:placeOrderRequest xmlns:tns="......">

</tns:placeOrderRequest>

.....

[WARNING]

java.lang.reflect.InvocationTargetException

Caused by: org.springframework.ws.soap.client.
SoapFaultClientException: such a data is out of range!

How it works...
In the preceding code, the OrderServiceEndpoint.placeOrderRequest method
throws a custom exception, DataOutOfRangeException, which symbolizes a typical
server-side exception:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {

Exception/SOAP Fault Handling

128

 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="123456789";
 if(refNumber.length()<7)
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 else
 throw new DataOutOfRangeException("RefNumber is out of range");
 }

This exception is caught by MessageDispatcher and delegated to the configured exception
resolvers. In this project, SoapFaultMappingExceptionResolver is used, which is
a special kind of resolver that allows the exception classes to be mapped with custom
messages in the configuration file. In this example, a different message is used to map
against DataOutOfRangeException. It acts as an interceptor that converts the SOAP fault
message into whatever is given in the following mapping:

 <bean id="exceptionResolver"
 class="org.springframework.ws.soap.server.endpoint.
SoapFaultMappingExceptionResolver">
 <property name="defaultFault" value="SERVER" />
 <property name="exceptionMappings">
 <value>
 com.packtpub.liverestaurant.service.exception.
DataOutOfRangeException=SERVER,
 such a data is out of range!
 </value>
 </property>
 </bean>

The generated SOAP fault message is logged in at both the server-side as well as the client-
side console screens. It displays the mapped SOAP fault message instead of what is originally
thrown by the DataOutOfRangeException class.

There's more...
This powerful facility to map exceptions with SOAP fault strings is very useful for externalizing
SOAP fault management from the code. It gives developers the flexibility to change the SOAP
fault string, based on any business requirements at a later stage, without touching the code
and rebuilding it. Moreover, if properly designed, this feature, with its configuration (SOAP fault
mapping) in the spring-ws.xml file, can serve as a single point of reference for all possible
SOAP fault messages of the services that can be maintained easily.

Chapter 4

129

This is a good solution for B2B applications. Not good for B2C, when
supporting multiple languages. In general, the best way to do this is by
configuring messages in the database. This way, we can change them
and fix them during runtime. The drawback in configuring in XML is that
it needs to restart. In real time, one app runs on 30 servers. Deploying
and restarting are painful processes.

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe Creating a Web-Service client on HTTP transport, discussed in Chapter 2, Building
Clients for SOAP Web-Services.

The recipe Handling server-side exceptions by returning exception's message as a SOAP fault
string, discussed in this chapter.

Annotating exception classes with
@SOAPFault

Spring-WS framework allows application exceptions to be annotated to SOAP fault messages
and customized easily in the exception class itself. It uses a special exception-resolver,
SoapFaultAnnotationExceptionResolver, for that job. SOAP fault string and fault
code can be customized by annotating in the class.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-4.3 (for the server-side Web-
Service) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

The following are the Maven dependencies for LiveRestaurant_R-4.3-Client (for the
client-side Web-Service):

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

Exception/SOAP Fault Handling

130

How to do it...
This recipe uses the project from Setting up an endpoint by annotating the payload-root,
discussed in Chapter 1, Building SOAP Web-Services, as server-side and the recipe How to
integrate test using Spring-Junit support, discussed in Chapter 3, Testing and Monitoring
Web-Services, as client-side.

1.	 Create a custom exception class (InvalidOrdeRequestException.java), which
is annotated with @SoapFault.

2.	 Create a custom exception class (OrderProcessingFailedException.java),
which is annotated with @SoapFault.

3.	 Modify Endpoint(OrderServiceEndpoint) to throw both
InvalidOrderRequestException and OrderProcessingFailedException.

4.	 Register SoapFaultAnnotationExceptionResolver in the server application
context file (spring-ws-servlet.xml).

5.	 Build and deploy the project in the Maven-embedded Tomcat server.

6.	 Run the following command from the root of the project, in a command-line window:
mvn clean package tomcat:run.

7.	 To test, open a new command window, go to the folder LiveRestaurant_R-4.3-
Client, and run the following command:

mvn clean package

The following is the output from the client-side console (please note the SOAP-
Env:Fault element generated in the message):

DEBUG [main] (WebServiceTemplate.java:632) -

Received response

.....

<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>

<faultstring xml:lang="en">Invalid Order Request: Request message
incomplete</faultstring>

</SOAP-ENV>

for request....

<tns:placeOrderRequest>

</tns:placeOrderRequest>

....................

 Received response ...

Chapter 4

131

<SOAP-ENV:Fault><faultcode>SOAP-ENV:Server</faultcode>

<faultstring xml:lang="en">Database server under maintenance,
please try after some time.</faultstring>

</SOAP-ENV:Fault>...

 for request ...

<tns:cancelOrderRequest ..>

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest>

...

Tests run: 2, Failures: 0, Errors: 2, Skipped: 0, Time elapsed:
0.874 sec <<< FAILURE!

How it works...
In the endpoint's methods, OrderServiceMethodEndoint.processOrder
(placeOrderRequest and cancelOrderRequest), custom exceptions are thrown
(ProcessingFailedException and InvalidOrderRequestException) that
symbolize a typical server-side/client-side exception:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {

 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="";
 if(refNumber.length()>0)
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 else
 throw new InvalidOrderRequestException("Reference number is not
provided!");
 }
 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload
 Source handleCancelOrderRequest(@RequestPayload Source source)
throws Exception {

Exception/SOAP Fault Handling

132

 //extract data from input parameter
 boolean cancelled =true ;
 if(isDataBaseServerRunning())
 return new StringSource(
 "<tns:cancelOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><cancelled>"+(cancelled?"true
":"false")+"</cancelled></tns:cancelOrderResponse>");
 else
 throw new ProcessingFailedException("Database server is down!");
 }
 private boolean isDataBaseServerRunning(){
 return false;
 }

This exception is caught by the MessageDispatcher and delegates to the configured
exception resolvers. In this project, SoapFaultAnnotationExceptionResolver is used,
which is a special kind of resolver that allows the exception classes to be annotated with custom
fault-code and fault-strings in the class. SoapFaultAnnotationExceptionResolver is
configured to be used in spring-ws-servlet.xml, thus any exception handling is delegated
to it by MessageDispatcherServlet at runtime:

 <bean id="exceptionResolver"
class="org.springframework.ws.soap.server.endpoint.
SoapFaultAnnotationExceptionResolver">
 <property name="defaultFault" value="SERVER" />
 </bean>

ProcessingFailedException represents a server-side system exception (faultCode =
FaultCode.SERVER):

@SoapFault(faultCode = FaultCode.SERVER,
 faultStringOrReason = "Database server under maintenance, please
try after some time.")
public class ProcessingFailedException extends Exception {
 public ProcessingFailedException(String message) {
 super(message);
 }
}

InvalidOrderRequestException represents a client-side business logic exception
(faultCode = FaultCode.CLIENT):

@SoapFault(faultCode = FaultCode.CLIENT,
 faultStringOrReason = "Invalid Order Request: Request message
incomplete")
public class InvalidOrderRequestException extends Exception {

Chapter 4

133

 public InvalidOrderRequestException(String message) {
 super(message);
 }
}

You can see that the annotated faultStringOrReason is generated as a SOAP fault and is
transmitted back to the client. The generated SOAP fault message, which is logged in both the
server-side as well as client-side console screens, displays the annotated SOAP fault message
instead of what is originally thrown in the Endpoint class.

There's more...
The attribute faultCode of the @SoapFault annotation has the following possible
enumerated values:

ff CLIENT

ff CUSTOM

ff RECEIVER

ff SENDER

The selection of one from the enumerated list instructs the dispatcher which kind of SOAP
fault is to be generated along with its specifics. Based on the preceding selection, dependent
attributes become mandatory.

For example, if FaultCode.CUSTOM is selected for faultCode, the property
customFaultCode string must be used instead of faultStringOrReason, as given in
the code snippet of this recipe. The format used for customFaultCode is that of QName.
toString(), that is, "{" + Namespace URI + "}" + local part, where the
namespace is optional. Note that custom fault codes are only supported on SOAP 1.1.

The @SoaPFault annotation has one more attribute, namely, locale, which decides the
language of the SOAP fault message. The default locale is English.

In general practice, we use error codes rather than error messages.
Mapping will be done on the client side using mapping information.
This avoids any load on the network and there will be no issue with
multiple language support.

Exception/SOAP Fault Handling

134

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe How to integrate test using Spring-JUnit support, discussed in Chapter 3, Testing
and Monitoring Web-Services.

The recipe Mapping exception class names to SOAP faults, discussed in this chapter.

Writing your own exception resolvers in
Spring-WS

While Spring-WS framework provides default mechanisms to handle exceptions using the
standard exception resolvers, it allows developers to handle exceptions in their own way by
building their own exception resolvers. SOAP faults can be customized to add custom details
in their own formats and transmitted back to the client.

This recipe illustrates a custom exception resolver that adds the exception stack trace to
the SOAP fault detail element of the SOAP response, so that the client will get the complete
stack trace of the server-side exception, which is very useful for certain cases. This custom
exception resolver already carries the power of annotations, as in the previous recipe.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-4.4 (for the server-side
Web-Service) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-4.4-Client (for the client side) has the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff spring-test-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

ff xmlunit-1.1.jar

Chapter 4

135

How to do it...
This recipe uses the project from Setting up an endpoint by annotating the payload-root,
discussed in Chapter 1, Building SOAP Web-Services.

1.	 Create a custom exception resolver, DetailedSoapFaultExceptionResolver,
extending SoapFaultAnnotationExceptionResolver.

2.	 Register DetailedSoapFaultExceptionResolver in spring-ws-servlet.
xml.

3.	 Build and deploy the project in the Maven-embedded Tomcat server.

4.	 Run the following command from the root of the project, in a command-line window:
mvn clean package tomcat:run.

5.	 To test, open a new command window, go to the folder LiveRestaurant_R-4.4-
Client, and run the following command:

mvn clean package exec:java

The following is the output from the server-side console (note the SOAP-Env:Fault
element generated in the message):

DEBUG [http-8080-1] (MessageDispatcher.java:167) - Received
request.....

<tns:placeOrderRequest xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

</tns:placeOrderRequest></SOAP-ENV:Body>...

DEBUG [http-8080-1] (MessageDispatcher.java:177) - Sent response

...

<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>

<faultstring xml:lang="en">Invalid Order Request: Request message
incomplete</faultstring

><detail>

<stack-trace xmlns=".....">

 at com.packtpub.liverestaurant.service.endpoint.
OrderSeviceEndpoint.handlePlaceOrderRequest(OrderSeviceEndpoint.
java:43)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)

 at sun.reflect.NativeMethodAccessorImpl.
invoke(NativeMethodAccessorImpl.java:39)

Exception/SOAP Fault Handling

136

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(Delegat
ingMethodAccessorImpl.java:25)

 at java.lang.reflect.Method.invoke(Method.java:597)

 at org.springframework.ws.server.endpoint.MethodEndpoint.
invoke(MethodEndpoint.java:132)

 at org.springframework.ws.server.endpoint.adapter.
DefaultMethodEndpointAdapter.invokeInternal(DefaultMethodEndpointA
dapter.java:229)

 at org.springframework.ws.server.endpoint.adapter.
AbstractMethodEndpointAdapter.invoke(AbstractMethodEndpointAdapt
er.java:53)

 at org.springframework.ws.server.MessageDispatcher.
dispatch(MessageDispatcher.java:230)

</stack-trace></detail></SOAP-ENV:Fault>

How it works...
In the preceding code, our custom exception resolver,
DetailedSoapFaultExceptionResolver, which is a subclass of
SoapFaultAnnotationExceptionResolver, overrides the method custmizeFault()
to add an exception stack trace into the SOAP fault detail element. The method
stackTraceToString() returns the exception stack trace from a given exception, and it is
used to set the stack trace to the detail element of the SOAP fault of the response message.

There's more...
There are many different ways of creating custom exception resolvers. It is not just
SoapFaultAnnotationExceptionResolver that can be inherited for that purpose. Any
implementation of org.springframework.ws.server.EndpointExceptionResolver
can be configured appropriately to be used as an exception resolver. Developers can choose
from a set of very convenient implementations of EndpointExceptionResolver, available
in the Spring-WS API, leveraging the power of these implementations.

The place for customizing these classes is the method, customizeFault. The SOAP fault
can be customized by overriding the method customizeFault. Take a look at the package
org.springframework.ws.soap.server.endpoint for the readily available exception
resolvers that suit your requirement.

Chapter 4

137

AbstractSoapFaultDefinitionExceptionResolver would be an ideal starting point
to extend, if an exclusively custom exception resolver needs to be developed that doesn't fit
with the currently available implementations, as it has already implemented some of the very
common and basic functionality that are needed for any exception resolvers. The developer
just needs to implement the abstract method, resolveExceptionInternal(), to suit your
specific need.

What needs to be taken care of is that MessageDispatcherServlet should be instructed
to consider the resolver in use, either by registering in spring-ws-servlet.xml or
annotating in the exception class (in addition to registering in spring-ws-servlet.xml).

See also
The recipe Setting up an endpoint by annotating the payload-root, discussed in Chapter 1,
Building SOAP Web-Services.

The recipe Annotating Exception classes with @SOAP fault, discussed in this chapter.

5
Logging and Tracing

of SOAP Messages

In this chapter, we will cover:

ff Logging the message payload manually

ff Logging both request and response SOAP Envelopes using log4j

ff Logging both request and response using Spring-WS's Interceptors

ff Using Eclipse IDE to debug a Spring-WS

Introduction
Logging and tracing refers to capturing and recording events and data structures about a
software program's execution to provide an audit trail. It helps the developers and support
team to collect runtime information on the execution of the software program. For any serious
software development team, it is very important to implement logging in their system.

For Web-Service development, it is quite useful to be able to see the SOAP messages being
transported between client and server. Spring Web-Services offer logging and tracing of SOAP
messages, when they arrive, or just before they are sent. Logging, in Spring-WS, is managed
by the standard Commons Logging interface.

Generally, log4j is used as the concrete logging library in Spring Projects (as Spring
logging feature are build upon log4j). This chapter illustrates a few simple ways of logging
SOAP messages.

The recipes illustrated here can be applied to project sources of any recipe in this book. For
demonstration purpose, an existing project source of the recipe Setting up an endpoint by
annotating the payload-root is used, as this can be applied to any project used in this book.

Logging and Tracing of SOAP Messages

140

Logging message payload manually
Message payload is the content of the SOAP message element, SOAP-ENV:Body. This is the
exact message part of the whole SOAP Envelope for both request and response.

This recipe demonstrates logging the message payload manually from inside the code.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-5.1 (for the server-side
Web-Service) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

And LiveRestaurant_R-5.1-Client (for the client side), with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses projects used in the recipe Setting up an endpoint by annotating the payload-
root in Chapter 1, Building SOAP Web-Services.

1.	 Modify log4j.properties to default the log level into INFO. Remove any type of
debug setting for any package or API in log4j.properties.

2.	 Modify OrderServiceEndpoint to create two xmlToString methods and call
these two methods to convert incoming messages into String and log it.

3.	 Build and deploy the project in the Maven-embedded Tomcat server. Run mvn clean
package tomcat:run from the root of the project in a command line window.

4.	 To test this, open a new command line window and go to the folder
LiveRestaurant_R-5.1-Client and run: mvn clean package exec:java.

5.	 Here is the output from the server-side console:
 INFO [http-8080-1] (OrderSeviceEndpoint.java:49) -

 Message Payload method handlePlaceOrderRequest start ====

 <?xml version="1.0" encoding="UTF-8"?>

<tns:placeOrderRequest xmlns:tns="....">

Chapter 5

141

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

 ==== Message Payload End

........................

 INFO [http-8080-1] (OrderSeviceEndpoint.java:67) -

Message Payload method handleCancelOrderRequest start ====

 <?xml version="1.0" encoding="UTF-8"?>

<tns:cancelOrderRequest xmlns:tns="...">

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest>

==== Message Payload End

How it works...
The code simply logs the message payload manually, without any configuration change
anywhere in the application. The changes in the log4j.properties makes sure that the
log messages are printed to the console (as the appender is the ConsoleAppender) and no
debug messages are printed:

log4j.rootLogger=INFO, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's file name and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n

Logging and Tracing of SOAP Messages

142

The method xmlToString(...) transforms the XML Source/Element Object into a String
using a StringWriter:

 private String xmlToString(Node node) {
 try {
 Source source = new DOMSource(node);
 StringWriter stringWriter = new StringWriter();
 Result result = new StreamResult(stringWriter);
 TransformerFactory factory = TransformerFactory.
newInstance();
 Transformer transformer = factory.newTransformer();
 transformer.transform(source, result);
 return stringWriter.getBuffer().toString();
 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 return null;
 }

 private static String xmlToString(Source source) {
 try {
 StringWriter stringWriter = new StringWriter();
 Result result = new StreamResult(stringWriter);
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer();
 transformer.transform(source, result);
 return stringWriter.getBuffer().toString();
 } catch (TransformerConfigurationException e) {
 e.printStackTrace();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 return null;
 }

In the handleCancelOrderRequest() and handlePlaceOrderRequest() methods,
xmlToString() is invoked passing the Source/Element of the RequestPayload to return
the message payload as a String instance, which is then logged into the configured logging
appender (console in this case):

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public @ResponsePayload

Chapter 5

143

 Source handlePlaceOrderRequest(@RequestPayload Source source) throws
Exception {
 String placeOrderRequestMessage = xmlToString(source);
 logger.info("\n\n Message Payload method handlePlaceOrderRequest
start ==== \n\n\n " + placeOrderRequestMessage + "\n\n\n ==== Message
Payload End\n\n");
 //extract data from input parameter
 String fName="John";
 String lName="Smith";
 String refNumber="1234";
 return new StringSource(
 "<tns:placeOrderResponse xmlns:tns=\"http://www.packtpub.
com/liverestaurant/OrderService/schema\"><tns:refNumber>"+order
Service.placeOrder(fName, lName, refNumber)+"</tns:refNumber></
tns:placeOrderResponse>");
 }
 @PayloadRoot(namespace = SERVICE_NS, localPart =
"cancelOrderRequest")
 @ResponsePayload
 public Source handleCancelOrderRequest(@RequestPayload Element
cancelOrderRequest) throws Exception {
 String refNumber=cancelOrderRequest.
getElementsByTagNameNS(SERVICE_NS, "refNumber") .item(0).
getTextContent();
 String cancelOrderRequestMessage = xmlToString(cancelOrderReq
uest);
 logger.info("\n\nMessage Payload method handleCancelOrderRequest
start ==== \n\n\n " + cancelOrderRequestMessage + "\n\n\n ==== Message
Payload End\n\n");
 return new StringSource(
 "<tns:cancelOrderResponse xmlns:tns=\"http://www.packtpub.com/
liverestaurant/OrderService/schema\"><tns:cancelled>"+orderService.
cancelOrder(refNumber)+"</tns:cancelled></tns:cancelOrderResponse>");
 }

As good practice, we log messages in debug mode. To get
better performance, we do as follows:

If(logger.isDebugEnabled())
 logger.debug(message);

During runtime, we can enable and disable a log based on
requirements.

Logging and Tracing of SOAP Messages

144

There's more...
The example given in this recipe makes use of SimpleMethodEndpointMapping, which
receives the message payload in the form of XML Source (javax.xml.transform.Source)
or the Element (org.w3c.dom.Element) object as the method argument, with the help of
the RequestPayload annotation, whereas in other cases, the incoming message will be in a
different form. For example, marshalling endpoint—the input is already a marshalled object. You
will need to adopt the appropriate mechanisms to transform the incoming argument in those
cases. The recipes after that will give you insights on other approaches of logging and tracing.

See also
ff Setting up an endpoint by annotating the payload-root in Chapter 1, Building SOAP

Web-Services.

Logging both request and response SOAP
Envelopes using log4j

Spring-WS framework allows the developer to log the entire SOAP message using simple
logger configuration. This recipe illustrates configuring this internal logging of SOAP messages
by the framework with log4j logger framework.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-5.2 (for the server-side Web
Service) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

It also has LiveRestaurant_R-5.2-Client (for the client side) with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses projects used in the recipe Setting up an endpoint by annotating
the payload-root:

1.	 Modify log4j.properties to set message tracing.

Chapter 5

145

2.	 Build and deploy the project in the Maven-embedded Tomcat server. Run mvn clean
package tomcat:run from the root of the project in a command-line window.

3.	 To test this, open a new command-line window, go to the folder
LiveRestaurant_R-5.1-Client, and run mvn clean package exec:java.

The following is the output from the server-side console (please note the SOAP-Env:Envelope
element of the Web-Service response generated in the message):

DEBUG [http-8080-1] (MessageDispatcher.java:167) - Received request

....

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Body>

….

<tns:placeOrderRequest xmlns:tns="......">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

....

DEBUG [http-8080-1] (MessageDispatcher.java:177) - Sent response

....

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Body>

…..

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber></
tns:placeOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

...

DEBUG [http-8080-1] (MessageDispatcher.java:167) - Received request …

Logging and Tracing of SOAP Messages

146

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Body>

….

<tns:cancelOrderRequest xmlns:tns="....">

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

...

DEBUG [http-8080-1] (MessageDispatcher.java:177) - Sent response

…

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Body>

…..

<tns:cancelOrderResponse xmlns:tns="....">

<tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

...

How it works...
The very core component of Spring-WS framework, namely, MessageDispatcher, logs
every incoming SOAP message as soon as it receives it in the receive() method, after
extracting the message content from the MessageContext, if logging is enabled for tracing
or debugging.

In the receive() method, it checks for log settings for a named log instance, org.
springframework.ws.server.MessageTracing.received checks for logging SOAP
requests, and org.springframework.ws.server.MessageTracing.sent checks for
SOAP responses. If those settings are given a value of either TRACE or DEBUG, it prints the
entire SOAP Envelope of the corresponding request or response:

log4j.rootLogger=INFO, stdout, R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's file name and line number.
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n

 #RollingFileAppender
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=LiveRestaurant.log

Chapter 5

147

log4j.appender.R.MaxFileSize=100KB
Keep one backup file
log4j.appender.R.MaxBackupIndex=1

log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n
log4j.logger.org.springframework.ws.server.MessageTracing.
received=TRACE
log4j.logger.org.springframework.ws.server.MessageTracing.sent=TRACE

The easiest setting for the log tracing or debugging is in log4j.properties, as mentioned
previously.

Previously, for security purposes, messages were encrypted,
so enabling logging was not useful all the time. It's better to
log the message after completion of the decryption inside the
entry method.

See also
ff Setting up an endpoint by annotating the payload-root in Chapter 1, , Building SOAP

Web-Services.

Logging both request and response using
Spring-WS's Interceptors

Spring-WS provides features to log incoming/outgoing messages. These facilities are provided
by using the PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
classes that log using Commons Logging Log. While PayloadLoggingInterceptor logs
only a message's payload, SoapEnvelopeLoggingInterceptor logs the whole SOAP
Envelope including headers. To activate logging features using these two interceptors, log
property within the log4j properties file should be set to debug for interceptors package.

In this recipe, logging Web-Service messages using PayloadLoggingInterceptor and
SoapEnvelopeLoggingInterceptor are explained.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-5.3 (for the server-side
Web-Service) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

Logging and Tracing of SOAP Messages

148

And LiveRestaurant_R-5.3-Client (for the client side) with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
This recipe uses projects used in the recipe Setting up an endpoint by annotating
the payload-root:

1.	 Open log4j.properties and set logging to debug the package org.
springframework.ws.server.endpoint.interceptor.

2.	 Register PayloadLoggingInterceptor in the server-side application context.

3.	 Build and deploy the project in the Maven-embedded Tomcat server. Run mvn clean
package tomcat:run from the root of the project in a command-line window.

4.	 To test this, open a new command-line window, go to the folder
LiveRestaurant_R-5.3-Client, and run mvn clean package exec:java.

Here is the output from the server-side console:

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Request:

<tns:placeOrderRequest xmlns:tns=".....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Response:

<tns:placeOrderResponse xmlns:tns="...">

Chapter 5

149

<tns:refNumber>order-John_Smith_1234</tns:refNumber></
tns:placeOrderResponse>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Request:

<tns:cancelOrderRequest xmlns:tns="...">

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Response:

<tns:cancelOrderResponse xmlns:tns="...">

<tns:cancelled>true</tns:cancelled>

</tns:cancelOrderResponse>

To log Web-Service messages using SoapEnvelopeLoggingInterceptor, follow
these steps:

1.	 Register SoapEnvelopeLoggingInterceptor in the server-side application
context.

2.	 Open log4j.properties and set logging to debug the package org.
springframework.ws.soap.server.endpoint.interceptor.

3.	 Build and deploy the project in the Maven-embedded Tomcat server. Run mvn clean
package tomcat:run from the root of the project in a command-line window.

4.	 To test this, open a new command-line window, go to folder LiveRestaurant_R-
5.3-Client, and run mvn clean package exec:java.

Here is the output from the server-side console:

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV=....">

<SOAP-ENV:Header/><SOAP-ENV:Body>

<tns:placeOrderRequest xmlns:tns="....">

 <tns:order>

 <tns:refNumber>9999</tns:refNumber>

 <tns:customer>

 </tns:customer>

 <tns:dateSubmitted>2008-09-29T05:49:45</tns:dateSubmitted>

 <tns:orderDate>2014-09-19T03:18:33</tns:orderDate>

 <tns:items>

 <tns:type>Snacks</tns:type>

Logging and Tracing of SOAP Messages

150

 <tns:name>Pitza</tns:name>

 <tns:quantity>2</tns:quantity>

 </tns:items>

 </tns:order>

</tns:placeOrderRequest>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Response:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV=..."><SOAP-ENV:Header/><SOAP-ENV:Body>

<tns:placeOrderResponse xmlns:tns="...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Request:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Header/><SOAP-ENV:Body>

<tns:cancelOrderRequest xmlns:tns="...">

 <tns:refNumber>9999</tns:refNumber>

</tns:cancelOrderRequest>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

DEBUG [http-8080-1] (AbstractLoggingInterceptor.java:160) - Response:

 <SOAP-ENV:Envelope xmlns:SOAP-ENV="..."><SOAP-ENV:Header/><SOAP-
ENV:Body>

<tns:cancelOrderResponse xmlns:tns="...a">

<tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

How it works...
MessageDispatcherServlet calls the Interceptor (if any) when the message is received
as well as before calling the handler method in the endpoint and before sending back the
response to the client.

Registering PayloadLoggingInterceptor inside spring-ws-servlet.xml only logs
the message's payload:

 <sws:interceptors>
 <bean class="org.springframework.ws.server.endpoint.
interceptor.PayloadLoggingInterceptor"/>
 </sws:interceptors>

Chapter 5

151

Similarly, registering SoapEnvelopeLoggingInterceptor inside spring-ws-servlet.
xml logs the whole message's SOAP Envelope:

 <sws:interceptors>
 <bean class="org.springframework.ws.soap.server.endpoint.
interceptor.SoapEnvelopeLoggingInterceptor"/>
 </sws:interceptors>

In both cases, the package name of these Interceptors should be set to debug for logging
purpose:

….....
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n

log4j.logger.org.springframework.ws.soap.server.endpoint.
interceptor=debug
log4j.logger.org.springframework.ws.server.endpoint.interceptor=debug

There's more...
Setting the logRequest and logResponse properties of PayloadLoggingInterceptor
to true/false, enables/disables logging for request/response messages.

 <bean class="org.springframework.ws.server.endpoint.interceptor.
PayloadLoggingInterceptor">
 <property name="logRequest" value="false" />
 <property name="logResponse" value="true" />

 </bean>

In addition to logRequest and logResponse, there is a logFault property for
SoapEnvelopeLoggingInterceptor that setting these to true/false, enables/disables
logging for request/response/fault messages:

 ….
 <bean class="org.springframework.ws.soap.server.endpoint.
interceptor.SoapEnvelopeLoggingInterceptor">
 <property name="logRequest" value="false" />
 <property name="logResponse" value="true" />
 <property name="logFault" value="true" ></property>
 </bean>

See also
ff Setting up an endpoint by annotating the payload-root in Chapter 1 , Building SOAP

Web-Services.

ff Logging both request and response SOAP Envelope using Log4j

Logging and Tracing of SOAP Messages

152

Using Eclipse IDE to debug a Spring-WS
The ability to debug an application during the development phase is one of the most
important features of an IDE, as it helps the developers to find out the bugs easily and hence
speeds up the development. For a server-side application, which is more complex, the debug
ability is more important for defect-discovery. A remote debugger attached to an IDE like
Eclipse can shorten the problem analysis time significantly and make the process
more enjoyable.

Eclipse can be configured for debugging within a web/app server with both embedded and
remote servers. This recipe explains how to debug a Spring-WS project as a web application
from inside Eclipse, with an external remote Tomcat instance.

Getting ready
To get started:

1.	 Install Apache-Tomcat-6.0.14.

2.	 Download and install Eclipse IDE for Java EE Developers—Helios.

In this recipe, the project's name is LiveRestaurant_R-5.4 (for the server-side
WebService) and has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

It also has LiveRestaurant_R-5.4-Client (for the client side) with the following Maven
dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

How to do it...
1.	 Modify the profile in user home (/home/weblogic) for Linux, or in the system

variable in Windows for Tomcat.

After installing Tomcat: On Linux > edit .profile>, add these lines for Tomcat:
export TOMCAT_HOME=/opt2/apache-tomcat-6.0.14
export PATH=$TOMCAT_HOME:$PATH

Chapter 5

153

On Windows >edit system variable, set the system variable for Tomcat, as shown in
the following screenshot:

2.	 In the $TOMCAT_HOME/conf/tomcat-users.xml file, set the role as manager
and username and password as follows:
<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager"/>
 <user username="tomcat" password="tomcat" roles="manager"/>
</tomcat-users>

3.	 In the MAVEN_HOME/conf/settings.xml file and if any .m2/settings.xml
(.m2 is maven repository folder), add a user login configuration named tomcat with
the password tomcat as follows:
 <server>
 <id>myserver</id>

 <username>tomcat</username>
 <password>tomcat</password>
 </server>

Logging and Tracing of SOAP Messages

154

4.	 Modify debug.sh/debug.bat TOMCAT_HOME/bin/ at the end of the file:

On Windows, modify debug.bat:
set JPDA_TRANSPORT=dt_socket
set JPDA_ADDRESS=8000
call "%EXECUTABLE%" jpda start %CMD_LINE_ARGS%

On Linux, modify debug.sh:

export JPDA_ADDRESS=8000
export JPDA_TRANSPORT=dt_socket
exec "$PRGDIR"/"$EXECUTABLE" jpda start "$@"

5.	 Run Tomcat on Linux/Windows using debug.sh/debug.bat from
TOMCAT_HOME/bin/.

6.	 Modify the pom.xml file of LiveRestaurant_R-5.4:
<!-- <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>tomcat-maven-plugin</artifactId>
 <version>1.1</version>
 </plugin> -->

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>tomcat-maven-plugin</artifactId>
 <version>1.1</version>
 <configuration>
 <server>myserver</server>
 <path>/LiveRestaurant</path>
 </configuration>
 </plugin>

7.	 Import the project LiveRestaurant_R-5.4 into Eclipse and set a break
point in the class com.packtpub.liverestaurant.service.endpoint.
OrderEndpoint.java in the method handleCancelOrderRequest.

8.	 Run mvn clean package from LiveRestaurant_R-5.4 and then copy the WAR
file into tomcat/webapp (the application will be deployed into Tomcat).

Chapter 5

155

9.	 In Eclipse, set Maven installation: Windows | Preferences | Maven | Installations,
click on the Add button, and set external Maven:

Logging and Tracing of SOAP Messages

156

10.	 Open Eclipse. Right-click on LiveRestaurant_R-5.4 | Debug as | Debug
Configurations | Remote Java Application, click on New, and then click
on the Debug button:

11.	 From the project LiveRestaurant_R-5.4-Client, run mvn clean package

The following is the output of this test:

Chapter 5

157

12.	 Now you can try different options for debugging the application, such as:

�� Step Over (F5)

�� Step Into (F5)

�� Step Out (F7)

�� Watch

�� Inspect

How it works...
This recipe makes use of the Java Debugger (JDB) tool that helps find and fix bugs in the
Java language programs both locally and on the server. JDB is part of the Java Platform
Debugging Architecture (JPDA) that provides the infrastructure you need to build end-user
debugger applications for the Java platform.

To use JDB in a Java EE application server or a servlet container, such as Tomcat, you must
first launch it with debugging enabled and attach it to the server from the debugger through
a JPDA port (the default port is 1044). At step 4, the JPDA port is set to 8000. Instead of the
run.bat/run.sh, this recipe starts the server using the debug.bat/debug.sh, which
means the server is started in debug mode.

Logging and Tracing of SOAP Messages

158

The JDB parameters specify the way the debugger will operate. For instance, JPDA_
TRANSPORT=dt_socket instructs the JVM that the debugger connections will be made
through a socket, while the JPDA_ADDRESS=8000 parameter informs it that the port number
will be 8000.

The Eclipse IDE is then attached to a JVM that accepts debugging connections. The project is
set as a Remote Java Application inside Eclipse that listens to the same port, that is, 8000, for
any debugging activity. In the next step, the break point will be set inside the service class that
would be managed and redirected to the IDE by the JDB at runtime.

When the LiveRestaurant_R-5.4-Client project is executed as the client program of
the service, the service class, OrderServiceEndpoint, is invoked and the break point
is hit at the JVM, which is in the debug mode. It notifies the frontend as to where the JDI is
implemented and which is the IDE in this case.

There's more...
Similar to the Tomcat server, you can attach any application server to any IDE such as Eclipse,
Net Beans, or JDeveloper. The concepts are the same. However, the steps may vary for each
application server and IDE.

When debug mode is enabled, try to send the total time taken
by a message in a given layer as one of the attributes in an XML
message. This helps to troubleshoot in performance testing.

6
Marshalling and

Object-XML Mapping
(OXM)

In this chapter, we will cover the following topics:

ff Marshalling with JAXB2

ff Marshalling with XMLBeans

ff Marshalling with JiBX

ff Marshalling with XStream

ff Marshalling with MooseXML

ff Creating a custom marshaller using XPath for conditional XML parsing

Introduction
In Object/XML Mapping (OXM) terminology, marshalling (serializing) converts the object
representation of data into the XML format and unmarshalling converts XML into the
corresponding object.

Spring's OXM simplifies OXM operations by using rich aspects of the Spring framework.
For example, the dependency injection feature can be used to instantiate different OXM
technologies into objects to use them, and Spring can use annotations to map a class or a
class's field to XML.

Marshalling and Object-XML Mapping (OXM)

160

Spring-WS benefits from Spring's OXM for converting a Payload message into objects or vice
versa. For example, set JAXB as the OXM framework using the following configuration in the
application context:

 <bean class="org.springframework.ws.server.endpoint.adapter.
GenericMarshallingMethodEndpointAdapter">
 <constructor-arg ref="marshaller" />
 </bean>

 <bean id="marshaller" class="org.springframework.oxm.jaxb.
Jaxb2Marshaller">
 <property name="contextPath" value="com.packtpub.liverestaurant.
domain" />
 </bean>

In addition, marshalling frameworks could be changed by changing the marshaller bean in
the configuration file, while keeping the implementation of Web-Services unchanged.

There are many implementations of marshalling frameworks available. JAXB (Java Architecture
for XML Binding), JiBX, XMLBeans, Castor, and so on are examples. For some of the OXM
frameworks, tools are provided to convert schema into POJO classes and generate mapping
data within these classes, or in a separate external configuration file.

This chapter provides recipes to illustrate the usage of different frameworks for Object/XML
mapping.

For simplification, most of the recipes in this chapter use projects used in the Integration
testing using Spring-JUnit support recipe, discussed in Chapter 3, Testing and Monitoring
Web-Services, to set up a server and send and receive messages by client. However, in the
recipe Marshalling with XStream, projects from the Creating Web-Service client for WS-
Addressing endpoint recipe, discussed in Chapter 2, Building Clients for SOAP Web-Services,
are used for the server and client sides.

Marshalling with JAXB2
Java Architecture for XML Binding (http://jaxb.java.net/tutorial/) is an API that
allows developers to bind Java objects to XML representations. JAXB implementation is
a part of the project Metro (http://metro.java.net/), which is a high-performance,
extensible, and easy-to-use Web-Service stack. The main functionality of JAXB is to marshall
Java objects into XML equivalents and unmarshall them back to the Java object (which can
be called Object/XML binding or marshalling) as needed. JAXB is particularly useful when the
specification is complex and changing.

Chapter 6

161

JAXB provides many extensions and tools that make the Object/XML binding an easy job. Its
annotation support allows developers to mark the O/X binding within the existing classes in
order to generate the XML at runtime. Its Maven tool plugin (maven-jaxb2-plugin) enables
the generation of Java classes from a given XML Schema file.

This recipe illustrates how to set up a marshalling end point and build a client program using
JAXB2 as the marshalling library.

Getting ready
This recipe contains a server (LiveRestaurant_R-6.1) and a client
(LiveRestaurant_R-6.1-Client) project.

LiveRestaurant_R-6.1 has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-6.1-Client has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

This recipe uses maven-jaxb2-plugin to generate classes from a schema.

How to do it...
1.	 Register the JAXB marshaller inside the server/client-side configuration file.

2.	 Configure maven-jaxb2-plugin inside server/client-side POM files.

3.	 Set up the server and run the client (it also generates classes from a schema):

�� Client project-root: mvn clean package

�� Server project-root: mvn clean package tomcat:run

The following is the client-side output:

- Received response

<ns2:cancelOrderResponse...>

<ns2:cancelled>true</ns2:cancelled>

</ns2:cancelOrderResponse>

...

Marshalling and Object-XML Mapping (OXM)

162

for request ...

<ns2:cancelOrderRequest ...>

<ns2:refNumber>Ref-2010..</ns2:refNumber>

</ns2:cancelOrderRequest>

.....

....

- Received response

 <ns2:placeOrderResponse ...>

 <ns2:refNumber>Ref-2011-1..</ns2:refNumber>

 </ns2:placeOrderResponse>

 ...

 for request ...

 <ns2:placeOrderRequest ...>

 <ns2:order>.....

 </ns2:order></ns2:placeOrderRequest>

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
2.293 sec

How it works...
The main player in this marshalling business is
GenericMarshallingMethodEndpointAdapter, which utilizes a marshaller to perform
the Object/XML marshalling process. The marshaller used here is org.springframework.
oxm.jaxb.Jaxb2Marshaller, which performs O/X marshalling, utilizing the JAXB2
framework. If you examine the Java classes generated by the Maven plugin tool, you can see
the JAXB annotations such as @XmlType, @XmlRootElement, @XmlElement, and so on.
These annotations are the instructions to the JAXB engine that determines the structure of
the XML to be generated at runtime.

The following section in the POM files generates JAXB classes from the schema
(OrderService.xsd) in the folder src\main\webapp\WEB-INF (set by
schemaDirectory).

GeneratePackage set the package includes the generated classes and
generateDirectory set the folder host generatedPackage:

 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.6</source>

Chapter 6

163

 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>tomcat-maven-plugin</artifactId>
 <version>1.1</version>
 </plugin>
 <plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <configuration>
 <schemaDirectory>src\main\webapp\WEB-INF</schemaDirectory>
 <schemaIncludes>
 <include>orderService.xsd</include>
 </schemaIncludes>
 <generatePackage>com.packtpub.liverestaurant.domain</
generatePackage>
 </configuration>
 <executions>
 <execution>
 <phase>generate-resources</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 </plugins>

The OrderServiceEndPoint, which is annotated as an @Endpoint, maps the Web-Service
request, with a payload-root, placeOrderRequest, to the method getOrder, recognizing
the annotation @PayloadRoot. While the marshaller marshalls the incoming XML into an
instance of PlaceOrderRequest, the method getOrder returns PlaceOrderResponse.
The same thing happens to the method cancelOrder:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public PlaceOrderResponse getOrder(
 PlaceOrderRequest placeOrderRequest) {

 PlaceOrderResponse response = JAXB_OBJECT_FACTORY
 .createPlaceOrderResponse();
 response.setRefNumber(orderService.placeOrder(placeOrderRequest
 .getOrder()));

Marshalling and Object-XML Mapping (OXM)

164

 return response;
 }

 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public CancelOrderResponse cancelOrder(
 CancelOrderRequest cancelOrderRequest) {

 CancelOrderResponse response = JAXB_OBJECT_FACTORY
 .createCancelOrderResponse();
 response.setCancelled(orderService.cancelOrder(cancelOrderRequest
 .getRefNumber()));
 return response;
 }

The following section in spring-ws-servlet.xml in the server sets the marshaller in the
endpoint (OrderServiceEndpoint) to Jaxb2Marshaller. The setting contextPath
in the marshaller bean registers all beans included in the package com.packtpub.
liverestaurant.domain to be marshalled/unmarshalled by Jaxb2Marshaller:

 <bean class="org.springframework.ws.server.endpoint.adapter.
GenericMarshallingMethodEndpointAdapter">
 <constructor-arg ref="marshaller" />
 </bean>

 <bean id="marshaller" class="org.springframework.oxm.jaxb.
Jaxb2Marshaller">
 <property name="contextPath" value="com.packtpub.liverestaurant.
domain" />
 </bean>

The same things happen in the client. The only difference is that the marshaller is set for
WebServiceTemplate:

 <bean id="orderServiceTemplate" class="org.springframework.
ws.client.core.WebServiceTemplate">
 <constructor-arg ref="messageFactory" />
 <property name="marshaller" ref="orderServiceMarshaller"></
property>
 <property name="unmarshaller" ref="orderServiceMarshaller"></
property>
 …......</bean>

 <bean id="orderServiceMarshaller" class="org.springframework.oxm.
jaxb.Jaxb2Marshaller">
 <property name="contextPath" value="com.packtpub.
liverestaurant.domain" />
 </bean>

Chapter 6

165

The MessageDispatcherServlet, with the help of the Jaxb2Marshaller, detects
the O/X mapping annotations as well as the reflection and delegates the final marshalling
process to the JAXB framework.

Marshalling with XMLBeans
XMLBeans (http://xmlbeans.apache.org/) is a technology for accessing XML by
binding it to Java types. The library comes from the Apache Foundation and is a part of the
Apache XML project. Known for its Java-friendliness, XMLBeans allows the developers to take
advantage of the richness and features of XML and XML Schema and have these features
mapped as naturally as possible to the equivalent Java language and typing constructs.

Two major features that make XMLBeans unique from other XML-Java binding options are:

ff Full XML Schema support: XMLBeans fully supports (built-in) XML Schema and the
corresponding Java classes provide constructs for all of the major functionality of
XML Schema.

ff Full XML infoset fidelity: While unmarshalling XML data, the full XML infoset is
available to the developer. The XMLBeans provides many extensions and tools that
make the Object/XML binding an easy job.

Getting ready
This recipe contains a server (LiveRestaurant_R-6.2) and a client
(LiveRestaurant_R-6.2-Client) project.

LiveRestaurant_R-6.2 has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff xmlbeans-2.4.0.jar

LiveRestaurant_R-6.2-Client has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff xmlbeans-2.4.0.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

This recipe uses xmlbeans-maven-plugin to generate classes and bind files from a
schema.

Marshalling and Object-XML Mapping (OXM)

166

How to do it...
1.	 Register the XMLBean marshaller inside the server/client-side configuration file.

2.	 Configure xmlbeans-maven-plugin inside the server/client-side POM files.

3.	 Set up the server and run the client (it also generates classes from a schema):

4.	 Run the following commands:

�� Server project-root: mvn clean package tomcat:run

�� Client project-root: mvn clean package

The following is the client-side output:

[INFO]

[INFO] --......

[INFO]

[INFO] --- xmlbeans-maven-plugin:2.3.2:xmlbeans

[INFO]

[INFO]

 Received response ...

 <sch:cancelOrderResponse ...>

 <sch:cancelled>true</sch:cancelled>

 </sch:cancelOr

derResponse>...

for request.....

......

- Received response ...

<sch:placeOrderResponse ...>

<sch:refNumber>Ref-2011-10-..</sch:refNumber>

</sch:placeOrderResponse>

...

for request

...

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
2.845 sec

Chapter 6

167

How it works...
This recipe works exactly the same way as the first one, Marshalling with JAXB2, except that
it is using a different marshaller, XMLBeansMarshaller. The scomp (Schema Compiler) tool
used here generates the Java XMLBeans classes from the XML schema (OrderService.
xsd). Besides the domain classes, it generates the classes representing the document root
element, for example, CancelOrderRequestDocument. All the generated classes contain
the Factory methods to instantiate them.

As can be noticed easily, the two main differences in the code are in
OrderServiceEndPoint and spring-ws-servlet.xml. Unlike that of the previous
recipe, the method getOrder returns an instance of OrderResponseDocument and it
accepts OrderRequestDocument as an input argument. The same description is true about
the method cancelOrderDoc:

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public PlaceOrderResponseDocument getOrder(PlaceOrderRequestDocument
orderRequestDoc) {
 PlaceOrderResponseDocument orderResponseDocument
=PlaceOrderResponseDocument.Factory.newInstance();
 orderResponseDocument.addNewPlaceOrderResponse();
 orderResponseDocument.getPlaceOrderResponse().
setRefNumber(orderService.placeOrder(orderRequestDoc));
 return orderResponseDocument;
 }

 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public CancelOrderResponseDocument placeCancelOrderDoc(
 CancelOrderRequestDocument cancelOrderRequestDoc) {

 CancelOrderResponseDocument cancelOrderResponseDocument=
CancelOrderResponseDocument.Factory.newInstance();
 cancelOrderResponseDocument.addNewCancelOrderResponse();
 cancelOrderResponseDocument.getCancelOrderResponse().
setCancelled(orderService.cancelOrder(cancelOrderRequestDoc.
getCancelOrderRequest().getRefNumber()));
 return cancelOrderResponseDocument;
 }

Marshalling and Object-XML Mapping (OXM)

168

The marshaller used in spring-ws-servlet.xml is the XMLBeansMarshaller, which
marshalls and unmarshalls between XML and Java using the XMLBeans library.

 <bean class="org.springframework.ws.server.endpoint.adapter.
GenericMarshallingMethodEndpointAdapter">
 <constructor-arg ref="marshaller" />
 </bean>

 <bean id="marshaller" class="org.springframework.oxm.xmlbeans.
XmlBeansMarshaller"/>

The contract between the @Endpoint class and XMLBeansMarshaller is that the
@PayloadRoot methods should accept and return instances of org.apache.xmlbeans.
XmlObject. Then it dynamically finds out the corresponding classes, and using their
Factory methods, it creates instances and binds to the XML at runtime.

Same as the previous recipe, a plugin in the POM files generates XMLBean classes from
the schema (OrderService.xsd) in the folder src\main\webapp\WEB-INF (set by
schemaDirectory):

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>xmlbeans-maven-plugin</artifactId>
 <version>2.3.2</version>
 <executions>
 <execution>
 <goals>
 <goal>xmlbeans</goal>
 </goals>
 </execution>
 </executions>
 <inherited>true</inherited>
 <configuration>
 <schemaDirectory>src/main/webapp/WEB-INF/</schemaDirectory>
 </configuration>
 </plugin>

The MessageDispatcherServlet, with the help of XMLBeansMarshaller, detects
the O/X mapping annotations and the marshaller configuration, and delegates the final
marshalling process to the XMLBeans framework.

Chapter 6

169

There's more...
XMLBeans come with a set of built-in powerful tools to add much more functionality than
merely marshalling between XML and Java. The recipe utilized just one such tool, scomp, the
Schema Compiler that generates Java classes/compressed JAR files out of an XML Schema
(.xsd) file. A few other tools that may be helpful are:

ff inst2xsd (Instance to Schema Tool): Generates XML schema from XML
instance files.

ff scopy (Schema Copier): Copies the XML schema at the specified URL to the
specified file

ff validate (Instance Validator): Validates an instance against a schema

ff xpretty (XML Pretty Printer): Pretty prints the specified XML to the console

ff xsd2inst (Schema to Instance Tool): Prints an XML instance from the specified
global element using the specified schema

ff xsdtree (Schema Type Hierarchy Printer): Prints an inheritance hierarchy of the
types defined in a schema

ff xmlbean Ant task: Compiles a set of XSD and/or WSDL files into XMLBeans types

The xmlbean Ant task is a nice way to automate the generation of Java classes
in integration with your build scripts.

Marshalling with JiBX
JiBX (http://jibx.sourceforge.net/) is another tool and library for binding XML data
to Java objects. JiBX is known to be the best for speed performance as well as flexibility.
However, it has also been known for its complexity of binding, especially for a complex
data model.

From version 1.2 onwards, JiBX has addressed these bottlenecks and now it has easy-to-use
marshalling tools and framework. Using the JiBX tool, a user can generate a schema from
existing Java code or generate Java code and binding files from an existing schema. JiBX
library at runtime binds Java classes to XML data and vice versa.

In this recipe, the JiBX tool (jibx-maven-plugin) is used to generate POJO classes and
bind a definition file from an existing schema, and then a Web-Service client and server
will be built upon the JiBX libraries.

Marshalling and Object-XML Mapping (OXM)

170

Getting ready
This recipe contains a server (LiveRestaurant_R-6.3) and a client
(LiveRestaurant_R-6.3-Client) project.

LiveRestaurant_R-6.3 has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff spring-expression-3.0.5.RELEASE.jar

ff jibx-run-1.2.3.jar

ff jibx-extras-1.2.3.jar

ff jibx-ws-0.9.1.jar

LiveRestaurant_R-6.3-Client has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff spring-expression-3.0.5.RELEASE.jar

ff jibx-run-1.2.3.jar

ff jibx-extras-1.2.3.jar

ff jibx-ws-0.9.1.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

How to do it...
1.	 Register the JiBX marshaller inside the server/client-side configuration file.

2.	 Configure xmlbeans-maven-plugin inside the server/client-side POM files.

3.	 Set up the server and run the client (it also generates classes from a schema):

�� Server project root: mvn clean package (it also generates classes from
schema). Copy the WAR file into the Tomcat webapp folder and run Tomcat
(apache-tomcat-6.0.18)

�� Client project-root: mvn clean package (it also generate classes
from schema)

Chapter 6

171

The following is the client-side output:
.......

.........

[INFO] --- jibx-maven-plugin:1.2.3:bind (compile-binding) @
LiveRestaurant_Client ---

[INFO] Running JiBX binding compiler (single-module mode) on 1
binding file(s)

[INFO]

[INFO]

 Received response ...

 <tns:cancelOrderResponse ...>

 <tns:cancelled>true</tns:cancelled></tns:cancelOrderResponse>

 ...

 for request ...

 <tns:cancelOrderRequest ...><tns:refNumber>12345</tns:refNumber>

 </tns:cancelOrderRequest>

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

How it works...
As explained in the previous recipe, the application context for the server/client uses a
customized marshaller (org.springframework.oxm.jibx.JibxMarshaller) to perform
the Object/XML marshalling process. This Spring marshaller uses JiBX libraries for binding
and marshalling processes. The following POM plugin setting (goal: schema-codegen)
generates POJO classes from a schema (OrderService.xsd) into a package (com.
packtpub.liverestaurant.domain) and it also generates a binding file (goal: bind):

<plugin>
 <groupId>org.jibx</groupId>
 <artifactId>jibx-maven-plugin</artifactId>
 <version>1.2.3</version>
 <executions>
 <execution>
 <id>generate-java-code-from-schema</id>
 <goals>
 <goal>schema-codegen</goal>
 </goals>
 </execution>
 <execution>

Marshalling and Object-XML Mapping (OXM)

172

 <id>compile-binding</id>
 <goals>
 <goal>bind</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <schemaLocation>src/main/webapp/WEB-INF</schemaLocation>
 <includeSchemas>
 <includeSchema>orderService.xsd</includeSchema>
 </includeSchemas>
 <options>
 <package>com.packtpub.liverestaurant.domain</package>
 </options>
 </configuration>
 </plugin>

As described in the earlier recipes, this setting in the server and client Spring context
file causes the client and server to use a customized marshaller (JibxMarshaller)
for marshalling/unmarshalling POJO classes to/from XML data:

<bean id="marshaller"
 class="org.springframework.oxm.jibx.JibxMarshaller">
 <property name="targetClass" value="com.packtpub.
liverestaurant.domain.CancelOrderRequest" />
 </bean>

JibxMarshaller uses mapping the binding.xml file for the marshalling task.
As it is shown in the mapping file, JiBX supports for simple data binding (<value
style="element" name="fName"...) as well as complex data binding known as
structure (<structure map-as="tns:Address"...). This feature makes JiBX the
most flexibility-binding framework among the others.

…...
<mapping abstract="true" type-name="tns:Customer" class="com.packtpub.
liverestaurant.domain.Customer">
 <structure map-as="tns:Address" get-method="getAddressPrimary"
set-method="setAddressPrimary" name="addressPrimary"/>
 <structure map-as="tns:Address" get-method="getAddressSecondary"
set-method="setAddressSecondary" name="addressSecondary"/>
 <structure map-as="tns:Name" get-method="getName" set-
method="setName" name="name"/>
 </mapping>
 <mapping abstract="true" type-name="tns:Name" class="com.packtpub.
liverestaurant.domain.Name">

Chapter 6

173

 <value style="element" name="fName" get-method="getFName" set-
method="setFName"/>
 <value style="element" name="mName" get-method="getMName" set-
method="setMName"/>
 <value style="element" name="lName" get-method="getLName" set-
method="setLName"/>
 </mapping>
…..

The OrderServiceEndPoint, which is annotated as an @Endpoint, is almost the same as
earlier recipes (Marshalling with JAXB2); only the implementation is slightly different.

 @PayloadRoot(localPart = "cancelOrderRequest", namespace = SERVICE_
NS)
 public
 CancelOrderResponse handleCancelOrderRequest(CancelOrderRequest
cancelOrderRequest) throws Exception {
 CancelOrderResponse cancelOrderResponse=new CancelOrderResponse();
 cancelOrderResponse.setCancelled(orderService.
cancelOrder(cancelOrderRequest.getRefNumber()));
 return cancelOrderResponse;
 }

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public
 PlaceOrderResponse handleCancelOrderRequest(PlaceOrderRequest
placeOrderRequest) throws Exception {
 PlaceOrderResponse orderResponse=new PlaceOrderResponse();
 orderResponse.setRefNumber(orderService.
placeOrder(placeOrderRequest.getOrder()));
 return orderResponse;
 }
…...

There's more...
JiBX provides more flexibility by letting users create their own customized marshaller. It means
instead of using a generated binding file, a custom binding file and custom marshaller classes
to marshal any kind of data structure inside an XML document.

Marshalling and Object-XML Mapping (OXM)

174

Marshalling with XStream
XStream (http://xstream.codehaus.org/) is a simple library for marshalling/
unmarshalling objects to/from XML data. The following major features make this library
different from others:

ff Doesn't need a mapping file

ff Doesn't need to change POJO (no need for a setter/getter and default constructor)

ff Alternative output format (JSON support and morphing)

ff XStream does not have a tool to generate a schema from existing Java code or to
generate Java code from an existing schema

ff XStream does not support namespaces

In this recipe, a Web-Service client and server are created that use XStream libraries as
a marshaller. Since XStream is not using any namespace in XML data (payload), a web
address style of Web-Service is set up.

Getting ready
This recipe contains a server (LiveRestaurant_R-6.4) and a client
(LiveRestaurant_R-6.4-Client) project.

LiveRestaurant_R-6.4 has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff spring-expression-3.0.5.RELEASE.jar

ff jxstream-1.3.1.jar

LiveRestaurant_R-6.4-Client has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff jxstream-1.3.1.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

Chapter 6

175

How to do it...
1.	 Register XStream marshaller inside the server/client-side configuration file.

2.	 Annotate domain classes with the Xstream annotation.

3.	 Set up the server and run the client:

�� Server project-root: mvn clean package tomcat:run

�� Client project-root: mvn clean package

The following is the client-side output:

 Received response

 ..

...

<wsa:Action>http://www.packtpub.com/OrderService/
CancelOrdReqResponse</wsa:Action>

<wsa:MessageID>urn:uuid:a4b681ff-00f5-429e-9ab9-f9054e796a89</
wsa:MessageID>

....

<cancelOrderResponse><cancelled>true</cancelled>

</cancelOrderResponse></SOAP-ENV:Body>

....

...

<wsa:Action>http://www.packtpub.com/OrderService/CancelOrdReq</
wsa:Action>

...<cancelOrderRequest><refNumber>12345</refNumber></
cancelOrderRequest>

How it works...
As explained in the previous recipe, the application context for server/client uses a
customized marshaller (org.springframework.oxm.xstream.XStreamMarshaller)
to perform the Object/XML marshalling process. This spring marshaller uses XStream
libraries for the marshalling process. The beans that are input and output parameters of
the method in the endpoint (OrderServiceEndPoint.java) have to be registered in
XstreamMarshaller. autodetectAnnotations is set to detect annotating within
POJO classes:

 <bean id="marshaller" class="org.springframework.oxm.
xstream.XStreamMarshaller">
 <property name="autodetectAnnotations" value="true"/>

Marshalling and Object-XML Mapping (OXM)

176

 <property name="aliases">
 <map>
 <entry key="placeOrderResponse" value="com.packtpub.
 liverestaurant.domain.PlaceOrderResponse" />
 <entry key="placeOrderRequest" value="com.packtpub.
 liverestaurant.domain.PlaceOrderRequest" />
 <entry key="cancelOrderRequest" value="com.packtpub.
 liverestaurant.domain.CancelOrderRequest" />
 <entry key="cancelOrderResponse" value="com.packtpub.
 liverestaurant.domain.CancelOrderResponse" />
 </map>
 </property></bean>

XStreamMarshaller uses annotation in POJO classes (instead of the binding file) for the
marshalling task. @XstreamAlias tells the marshaller that this class will be serialized/
deserialized as 'name'. There is other annotation that is optional, but it tells marshaller how to
serialize/deserialize the field of a class (@XStreamAsAttribute, @XStreamImplicit, and
so on).

import com.thoughtworks.xstream.annotations.XStreamAlias;
@XStreamAlias("name")
public class Name
{
 private String FName;
 private String MName;
 private String LName;

The OrderServiceEndPoint, which is annotated as an @Endpoint is the same as
JiBX recipes that " the endpoint method's input and and return parameters are POJO
(PlaceOrderResponse, PlaceOrderRequest, and so on) that is mapped to the schema.
The only difference is that the endpoint uses web addressing for method mapping:

 @Action("http://www.packtpub.com/OrderService/CancelOrdReq")
 public
 CancelOrderResponse handleCancelOrderRequest(CancelOrderRequest
cancelOrderRequest) throws Exception {
 CancelOrderResponse cancelOrderResponse=new CancelOrderResponse();
 cancelOrderResponse.setCancelled(orderService.
cancelOrder(cancelOrderRequest.getRefNumber()));
 return cancelOrderResponse;
 }
 @Action("http://www.packtpub.com/OrderService/OrdReq")
 public
 PlaceOrderResponse handlePancelOrderRequest(PlaceOrderRequest
placeOrderRequest) throws Exception {
 PlaceOrderResponse orderResponse=new PlaceOrderResponse();

Chapter 6

177

 orderResponse.setRefNumber(orderService.
placeOrder(placeOrderRequest.getOrder()));
 return orderResponse;
 }

Marshalling with MooseXML
Moose (http://quigley.com/moose/) is a lightweight framework for marshalling/
unmarshalling objects to/from XML data. The schema generator of Moose is what makes this
framework different from others. Moose is able to generate schema directly from annotated
POJO classes. This is what is required to develop contract-last Web-Service development.

In this recipe, Moose is used to marshall/unmarshall objects to/from XML data in the
Web-Service client and server communications.

Getting ready
This recipe contains a server (LiveRestaurant_R-6.5) and a client
(LiveRestaurant_R-6.5-Client) project.

LiveRestaurant_R-6.5 has the following Maven dependencies:

ff log4j-1.2.9.jar

ff moose-0.4.6.jar

LiveRestaurant_R-6.5-Client has the following Maven dependencies:

ff log4j-1.2.9.jar

ff moose-0.4.6.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

How to do it...
1.	 Register Moose marshaller inside the server/client-side configuration file.

2.	 Annotate domain classes with the @XML annotation.

3.	 Set up the server and run the client:

�� Server project-root: mvn clean package tomcat:run

�� Client project-root: mvn clean package

Marshalling and Object-XML Mapping (OXM)

178

The following is the client-side output:

 Received response ...

<ns:cancelOrderResponse...>

<ns:cancelled>true</ns:cancelled>

</ns:cancelOrderResponse>

...

for request ...

<ns:cancelOrderRequest...>

<ns:refNumber>12345</ns:refNumber>

</ns:cancelOrderRequest>

.......

How it works...
As explained in the previous recipe, the application context for the server/client uses a
customized marshaller (com.quigley.moose.spring.MooseMarshaller) to perform the
Object/XML marshalling process. A mapping provider is injected into this custom marshaller.
The mapping provider is to set the namespace and xmlPrefix when the object is being
marshalled into XML and when the XML data is being converted into an object. The mapping
provider gets the list of registered POJO classes from com.quigley.moose.mapping.
provider.annotation.StaticClassesProvider:

<bean class="org.springframework.ws.server.endpoint.adapter.
GenericMarshallingMethodEndpointAdapter">
 <constructor-arg ref="mooseMarshaller"/>
 </bean>
 <bean class="org.springframework.ws.server.endpoint.mapping.
PayloadRootAnnotationMethodEndpointMapping"/>

 <bean id="mooseMarshaller" class="com.quigley.moose.spring.
MooseMarshaller">
 <property name="mappingProvider"><ref
bean="mooseMappingProvider"/></property>
 </bean>

 <bean id="mooseMappingProvider"
 class="com.quigley.moose.mapping.provider.annotation.
AnnotationMappingProvider">
 <property name="xmlNamespace">
 <value>http://www.liverestaurant.com/OrderService/
schema</value></property>

Chapter 6

179

 <property name="xmlPrefix"><value>ns</value></property>
 <property name="annotatedClassesProvider"><ref
 bean="mooseClassesProvider"/></property>
 </bean>

 <bean id="mooseClassesProvider"
 class="com.quigley.moose.mapping.provider.annotation.
 StaticClassesProvider">
 <property name="classes">
 <list>
 <value>com.packtpub.liverestaurant.domain.
 CancelOrderRequest</value>
 <value>com.packtpub.liverestaurant.domain.
 CancelOrderResponse</value>
 <value>com.packtpub.liverestaurant.domain.Order
 </value>
 <value>com.packtpub.liverestaurant.domain.Address
 </value>
 <value>com.packtpub.liverestaurant.domain.Customer
 </value>
 <value>com.packtpub.liverestaurant.domain.FoodItem
 </value>
 <value>com.packtpub.liverestaurant.domain.Name
 </value>
 <value>com.packtpub.liverestaurant.domain.
 PlaceOrderResponse</value>
 <value>com.packtpub.liverestaurant.domain.
 PlaceOrderRequest</value>

 </list>
 </property>
 </bean>

MooseMarshaller, just like XStreamMarshaller, uses annotation in POJO classes for
marshalling tasks. @XML tells the marshaller that this class will be serialized/deserialized as
'name'. @XMLField is the tag that should be placed for each class field.

@XML(name="cancelOrderRequest")
public class CancelOrderRequest
{
 @XMLField(name="refNumber")
 private String refNumber;

 /**   * Get the 'refNumber' element value.

Marshalling and Object-XML Mapping (OXM)

180

 *
 * @return value
 */
 public String getRefNumber() {
 return refNumber;
 }

 /**
 * Set the 'refNumber' element value.
 *
 * @param refNumber
 */
 public void setRefNumber(String refNumber) {
 this.refNumber = refNumber;
 }
}

The OrderServiceEndPoint, which is annotated as an @Endpoint, is the same as the
JiBX recipes that passing and return parameter is mapped POJO (PlaceOrderResponse,
PlaceOrderRequest, and so on) that is mapped to the schema.

 @PayloadRoot(localPart = "cancelOrderRequest", namespace =
SERVICE_NS)
 public
 CancelOrderResponse handleCancelOrderRequest(CancelOrderRequest
cancelOrderRequest) throws Exception {
 CancelOrderResponse cancelOrderResponse=new CancelOrderResponse();
 cancelOrderResponse.setCancelled(orderService.
cancelOrder(cancelOrderRequest.getRefNumber()));
 return cancelOrderResponse;
 }

 @PayloadRoot(localPart = "placeOrderRequest", namespace = SERVICE_
NS)
 public
 PlaceOrderResponse handleCancelOrderRequest(PlaceOrderRequest
placeOrderRequest) throws Exception {
 PlaceOrderResponse orderResponse=new PlaceOrderResponse();
 orderResponse.setRefNumber(orderService.
placeOrder(placeOrderRequest.getOrder()));

 return orderResponse;
 }

Chapter 6

181

Creating a custom marshaller using XPath
for conditional XML parsing

Using the existing marshaller frameworks (JAXB, JiBX, and so on) is always the easiest way
to handle a marshalling task. However, eventually you may need to write a customized
marshaller. For example, you may get an XML input data, which is in a different format from
the one that is generally is being used by the recognized marshaller.

Spring lets you define a customized marshaller and inject it into your endpoint marshaller as
existing marshaller frameworks. In this recipe, the client sends/receives this data to/from the
server in the following format:

<ns:placeOrderRequest xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema">
 <ns:order refNumber="12345" customerfName="fName"
customerlName="lName" customerTel="12345" dateSubmitted="2008-09-29
05:49:45" orderDate="2008-09-29 05:40:45">
 <ns:item type="SNACKS" name="Snacks" quantity="1.0"/>
 <ns:item type="DESSERTS" name="Desserts" quantity="1.0"/>
 </ns:order>
</ns:placeOrderRequest>
<ns:placeOrderResponse xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema" refNumber="1234"/>

However, the XML input that can be mapped to/from the server's POJO is as follows:

<ns:placeOrderRequest xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema">
<ns:order>
<ns:refNumber>12345</ns:refNumber>
<ns:customerfName>fName</ns:customerfName>
<ns:customerlName>lName</ns:customerlName>
<ns:customerTel>12345</ns:customerTel>
<ns:dateSubmitted>2008-09-29 05:49:45</ns:dateSubmitted>
<ns:orderDate>2008-09-29 05:40:45</ns:orderDate>
<ns:items>
<FoodItem>
<ns:type>SNACKS</ns:type>
<ns:name>Snack</ns:name>
<ns:quantity>1.0</ns:quantity>
</FoodItem>
<FoodItem>
<ns:type>COFEE</ns:type>
<ns:name>Cofee</ns:name>

http://www.packtpub.com/LiveRestaurant/OrderService/schema
http://www.packtpub.com/LiveRestaurant/OrderService/schema

Marshalling and Object-XML Mapping (OXM)

182

<ns:quantity>1.0</ns:quantity>
</FoodItem>
</ns:items>
</ns:order>
</ns:placeOrderRequest>

<ns:placeOrderResponse xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema" />
<ns:refNumber>1234</ns:refNumber>
</ns:placeOrderResponse>

In this recipe, a customized marshaller is used to map the incoming XML data to the server's
POJO and the unmarshalling server response to the client format.

Getting ready
This recipe contains a server (LiveRestaurant_R-6.6) and a client
(LiveRestaurant_R-6.6-Client) project.

LiveRestaurant_R-6.6 has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff dom4j-1.6.1.jar

LiveRestaurant_R-6.6-Client has the following Maven dependencies:

ff spring-ws-core-2.0.1.RELEASE.jar

ff log4j-1.2.9.jar

ff spring-test-3.0.5.RELEASE.jar

ff junit-4.7.jar

ff dom4j-1.6.1.jar

How to do it...
1.	 Create a customized marshaller class.

2.	 Register the new marshaller inside the server-side configuration file.

3.	 Set up the server and run the client:

�� Server project-root: mvn clean package tomcat:run

�� Client project-root: mvn clean package

http://www.packtpub.com/LiveRestaurant/OrderService/schema
http://www.packtpub.com/LiveRestaurant/OrderService/schema

Chapter 6

183

The following is the server-side output:
Received request ..

...

<ns:placeOrderRequest ...>

 <ns:order customerTel="12345" customerfName="fName"
customerlName="lName" dateSubmitted="2008-09-29 05:49:45"
orderDate="2008-09-29 05:40:45" refNumber="12345">

 <ns:item name="Snacks" quantity="1.0" type="SNACKS"/>

 <ns:item name="Desserts" quantity="1.0" type="DESSERTS"/>

 </ns:order>

</ns:placeOrderRequest>

....

Sent response...

<ns:placeOrderResponse xmlns:ns="http://www.packtpub.com/
LiveRestaurant/OrderService/schema" refNumber="12345"/>

How it works...
To be able to work as an endpoint marshaller, a customized marshaller
(ServerCustomMarshaller) should implement Marshaller and Unmarshaller
interfaces. The method supports is for verifying if the POJO class is registered with this
marshaller. The value of the registered POJO comes from the Spring context file.

The method unmarshal will be called by the endpoint when the Web-Service calls the endpoint
method (handleOrderRequest) to build the passing parameter (PlaceOrderRequest). In
the unmarshal method, DOM4j and XPath are used to fetch a value from the incoming XML
data. These values will populate the POJO class and return it back to the endpoint. The method
marshal will be called by the endpoint when the endpoint method (handleOrderRequest)
returns the response (PlaceOrderResponse). Inside the marshal method,
XMLStreamWriter is used to return the desired format XML data to the client:

public boolean supports(Class<?> arg0) {
 return registeredClassNames.contains(arg0.getSimpleName()) ; }
@Override
 public Object unmarshal(Source source) throws IOException,
 XmlMappingException {
 PlaceOrderRequest placeOrderRequest=new PlaceOrderRequest();
 Order order=new Order();

 try {
 DOMSource in = (DOMSource)source;

Marshalling and Object-XML Mapping (OXM)

184

 org.dom4j.Document document = org.dom4j.
DocumentHelper.parseText(xmlToString(source));
 org.dom4j.Element orderRequestElem=document.
getRootElement();
 org.dom4j.Node orderNode=orderRequestElem.
selectSingleNode("//ns:order");
 order.setRefNumber(orderNode.valueOf("@refNumber"));
 ….
 placeOrderRequest.setOrder(order);
 List orderItems=orderNode.selectNodes("//ns:order/
ns:item");

…..
 }

 @Override
 public void marshal(Object bean, Result result) throws
IOException,
 XmlMappingException
 {
 XMLStreamWriter writer=null;
 PlaceOrderResponse placeOrderResponse=(PlaceOrderResponse)
bean;
 try {
 DOMResult out = (DOMResult)result;
 writer = XMLOutputFactory.newInstance().
createXMLStreamWriter(out);
 writer.writeStartElement("ns", "placeOrderResponse", "http://
www.packtpub.com/LiveRestaurant/OrderService/schema");
 writer.writeAttribute("refNumber", placeOrderResponse.
getRefNumber());
 writer.writeEndElement();
 writer.flush();
 } catch (Exception e) {
 e.printStackTrace();
 } finally{
 try{writer.close();}catch (Exception e) {}
 }
 } …....

Chapter 6

185

As explained in the previous recipe, the application context for the server/client uses
this customized marshaller (ServerCustomMarshaller) to perform the Object/XML
marshalling process. RegisteredClassNames is for registering the POJO classes eligible for
marshalling/unmarshalling via the customized marshaller (ServerCustomMarshaller).

 <bean id="customMarshaller"
 class="com.packtpub.liverestaurant.marshaller.
ServerCustomMarshaller">

 <property name="registeredClassNames">
 <list>
 <value>PlaceOrderRequest</value>
 <value>PlaceOrderResponse</value>
 </list>
 </property>

 </bean>

The OrderEndPoint, which is annotated as an @Endpoint, is the same as the
JiBX recipes that the endpoint method's input and and return parameters are POJO
(PlaceOrderResponse, PlaceOrderRequest, and so on) that is mapped to the schema.

7
Securing SOAP

Web-Services using
XWSS Library

In this chapter, we will cover:

ff Authenticating a Web-Service call using the username token with a
plain/digested password

ff Authenticating a Web-Service call using Spring security to authenticate a username
token with a plain/digested password

ff Authenticating a Web-Service call using the JAAS service to authenticate a
username token

ff Preparing pair and symmetric keystores

ff Securing SOAP messages using a digital signature

ff Authenticating a Web-Service call using X509 certificate

ff Encrypting/decrypting SOAP messages

Introduction
WS-Security (WSS), published by OASIS, is an extension to SOAP to provide security-standard
features to a Web-Service. XML and Web-Services Security (XWSS) is SUN's implementation
of WSS, which is included in the Java Web-Services Developer Pack (WSDP).

Securing SOAP Web-Services using XWSS Library

188

XWSS is a form of message-level security in which security data is included within a SOAP
message/attachment and allows security information to be transmitted with messages or
attachments. For instance, while signing a message, a security token will be added to the
message that is generated from the encryption of a part of the message for a specific receiver.
When a sender sends this message, this token remains in the encrypted form and travels
along with the message. When a receiver gets this message, the token can be decrypted
only if he/she has the specific key for decryption. So if within transmission of this message,
any non-authorized receiver (who doesn't have the specific key) gets this message, he/she
cannot decrypt the token (this token will be used to check if the original message is altered).
The originality of the message verification can be done by the regeneration of the token at the
receiver's end (from the incoming message) and by comparing it with the incoming token that
came along with the message.

An EndpointInterceptor, as the name suggests, intercepts the request and performs
some action prior to invoking the endpoint. EndpointInterceptors are called before
calling the appropriate endpoint to perform several processing aspects such as logging,
validating, security, and so on. In earlier chapters, SoapEnvelopeLoggingInterceptor,
PayloadLoggingInterceptor, and PayloadValidatingInterceptor were explained
for logging and validation purposes.

In this chapter, and the next one, SecurityInterceptors will be explained.

Spring-WS XwsSecurityInterceptor is an EndpointInterceptor for performing
security operations on a request message before calling the endpoint. This interceptor, which
is based on XWSS, requires a policy configuration file to operate. Here is a sample of the
policy configuration file that can include several security requirements:

<xwss:SecurityConfiguration ...>
 <xwss:RequireTimestamp .../>
 <xwss:RequireUsernameToken/>
 ….....
</xwss:SecurityConfiguration>

The security interceptor uses this configuration to find what security information to expect
from incoming SOAP messages (on the receiver side), and what information is to be added
to outgoing messages (on the sender side).

In addition, this interceptor needs one or more callBackHandlers for security operations
such as authentication, signing outgoing messages, verifying the signature of incoming
messages, decryption, and encryption. These callBackHandlers need to be registered
in the application context file:

 <sws:interceptors>

 <bean
 class="...XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/WEB-INF/

Chapter 7

189

securityPolicy.xml" />
 <property name="callbackHandlers">
 <list>
 <ref bean="callbackHandler1" />
 <ref bean="callbackHandler2" />
 …...........
 </list>
 </property>
 </bean>
 </sws:interceptors>
 <bean id="callbackHandler1"
 class=".....SimplePasswordValidationCallbackHandler">
 <property name="users">
 <props>
 <prop key="admin">secret</prop>
 <prop key="clinetUser">pass</prop>
 </props>
 </property>
 </bean>
…......

This chapter presents how to apply Spring-WS XWSS to different security operations. In
every recipe's project, the client applies a security operation by adding or modifying data in
the outgoing message and sends it to the server. The server receives the message, extracts
security information, and proceeds with the message if the security information matches the
expected requirement; otherwise it returns a fault message back to the client.

For simplification, most of the recipes in this chapter use the projects used in the Integration
testing using Spring-JUnit support recipe, discussed in Chapter 3, Testing and Monitoring
Web Services, to set up a server and send and receive messages by client. However, in the
last recipe, projects from the Creating Web-Service client for WS-Addressing endpoint recipe,
discussed in Chapter 2, Building Clients for SOAP Web Services, are used for the server and
client side.

Authenticating a Web-Service call using
plain/digested username token

Authentication simply means checking whether callers of a service are who they claim to be.
One way of checking the authentication of a caller is to check the password.

XWSS provides APIs to get the usernames and passwords from incoming SOAP messages and
compare them with what is defined in the configuration file. This goal will be accomplished by
defining policy files for the sender and the receiver of the messages that on the sender side,
client includes a username token in outgoing messages, and on the receiver side, the server
expects to receive this username token along with the incoming messages for authentication.

Securing SOAP Web-Services using XWSS Library

190

Transmitting a plain password makes a SOAP message unsecured. XWSS provides the
configuration setting in the policy file to include a digest of passwords (a hash generated
from the password text by a specific algorithm) inside the sender message. On the server
side, the server compares the digested password included in the incoming message with the
digested password calculated from what is set in the configuration file (see the property users
within the callbackHandler bean inside spring-ws-servlet.xml) using the same
algorithms on the sender side. This recipe shows how to authenticate a Web-Service call using
the username token with a plain/digest password. This recipe contains two cases. In the first
case, the password will be transmitted in plain text format. However, in the second case, by
changing the policy file configuration, the password will be transmitted in the digest format.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.1 (for the server-side Web-
Service) and has the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-7.1-Client (for the client-side Web-Service) has the following Maven
dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
The following steps implement authentication using a username token with a plain password:

1.	 Register the security interceptor (XwsSecurityInterceptor) and
callbackHandler (SimplePasswordValidationCallbackHandler) in the
application context file (applicationContext.xml) of LiveRestaurant_R-
7.1-Client.

2.	 Add the security policy file (securityPolicy.xml) for LiveRestaurant_R-7.1-
Client.

Chapter 7

191

3.	 Register the security interceptor (XwsSecurityInterceptor) and
callbackHandler (SimplePasswordValidationCallbackHandler) in the
application context file (spring-ws-servlet.xml) of LiveRestaurant_R-7.1.

4.	 Add the security policy file (securityPolicy.xml) for LiveRestaurant_R-7.1.

5.	 Run the following command from Liverestaurant_R-7.1:
mvn clean package tomcat:run

6.	 Run the following command from Liverestaurant_R-7.1-Client:

mvn clean package

The following is the client-side output (note the password's tag wsse:Password
...#PasswordText) within the underlined section:

INFO: ==== Sending Message Start ====

<SOAP-ENV:Envelope ...">

<SOAP-ENV:Header>

<wsse:Security ..>

<wsu:Timestamp ...>

<wsu:Created>2011-11-06T07:19:16.225Z</wsu:Created>

<wsu:Expires>2011-11-06T07:24:16.225Z</wsu:Expires>

</wsu:Timestamp>

<wsse:UsernameToken>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password ...#PasswordText">****</wsse:Password>

<wsse:Nonce ..#Base64Binary">...</wsse:Nonce>

<wsu:Created>2011-11-06T07:19:16.272Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest xmlns:tns="...">

.....

.......

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

Securing SOAP Web-Services using XWSS Library

192

.....

INFO: ==== Received Message Start ====

......

<SOAP-ENV:Envelope....">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

The following steps implement authentication using the username token with the
digest password:

1.	 Modify the security policy file (securityPolicy.xml) of Liverestaurant_R-7.1
to get the digest password from the incoming message.

2.	 Modify the security policy file (securityPolicy.xml) of Liverestaurant_R-
7.1-Client to send the digest password.

3.	 Run the following command from Liverestaurant_R-7.1:
mvn clean package tomcat:run

4.	 Run the following command from Liverestaurant_R-7.1-Client:
mvn clean package

The following is the client-side output (note the password's tag wsse:Password
...#PasswordDigest) within the underlined section:

Nov 6, 2011 12:19:25 PM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Sending Message Start ====

..

<SOAP-ENV:Envelope .../">

<SOAP-ENV:Header>

<wsse:Security ...>

<wsu:Timestamp ..>

<wsu:Created>2011-11-06T08:19:25.515Z</wsu:Created>

<wsu:Expires>2011-11-06T08:24:25.515Z</wsu:Expires>

</wsu:Timestamp>

Chapter 7

193

<wsse:UsernameToken...>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password ...#PasswordDigest">****</wsse:Password>

<wsse:Nonce ...#Base64Binary">...</wsse:Nonce>

<wsu:Created>2011-11-06T08:19:25.562Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest..">

......

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

........

INFO: ==== Received Message Start ====

<?xml version="1.0" ...>

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse ...>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

How it works...
The Liverestaurant_R-7.1 project is a server-side Web-Service that requires its client to
send a message along with the username token and password. The Liverestaurant_R-
7.1-Client project is a client-side test project that sends a message to the server along
with the username token and password.

Securing SOAP Web-Services using XWSS Library

194

On the server side, XwsSecurityInterceptor forces the server to apply
the policy inside securityPolicy.xml for all incoming messages and uses
SimplePasswordValidationCallbackHandler to compare incoming messages
username/password with includes username/password in the server configuration file
(see the property users within the callbackHandler bean):

 <sws:interceptors>
...
 <bean class="org.springframework.ws.soap.security.xwss.
XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/WEB-INF/
securityPolicy.xml" />
 <property name="callbackHandlers">
 <list>
 <ref bean="callbackHandler" />
 </list>
 </property>
 </bean>
 </sws:interceptors>
 <bean id="callbackHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
SimplePasswordValidationCallbackHandler">
 <property name="users">
 <props>
 <prop key="admin">secret</prop>
 <prop key="clinetUser">pass</prop>
 </props>
 </property>
 </bean>

In the securityPolicy.xml file, <xwss:RequireUsernameToken
passwordDigestRequired="false" nonceRequired="true"/> requires
that the incoming messages have username tokens with non-encrypted passwords.
useNonce="true" indicates that each incoming message will have a random number
that is not equal to the previous message:

<xwss:SecurityConfiguration dumpMessages="true" xmlns:xwss="http://
java.sun.com/xml/ns/xwss/config">
 <xwss:RequireTimestamp maxClockSkew="60"
timestampFreshnessLimit="300"/>
 <xwss:RequireUsernameToken passwordDigestRequired="false"
nonceRequired="true"/>
</xwss:SecurityConfiguration>

Chapter 7

195

On the client side, XwsSecurityInterceptor forces the client to apply the policy inside
securityPolicy.xml for all outgoing messages:

<bean id="webServiceTemplate" class="org.springframework.ws.client.
core.WebServiceTemplate">

 <property name="interceptors">

 <list>
 <ref local="xwsSecurityInterceptor" />
 </list>
 </property>
 </bean>
 <bean id="xwsSecurityInterceptor"
 class="org.springframework.ws.soap.security.xwss.
XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/securityPolicy.
xml"/>
 <property name="callbackHandlers">
 <list>
 <ref bean="callbackHandler"/>
 </list>
 </property>
 </bean>
 <bean id="callbackHandler" class="org.springframework.ws.soap.
security.xwss.callback.SimplePasswordValidationCallbackHandler"/>

In the securityPolicy.xml file, <xwss:UsernameToken name="clinetUser"
password="pass" digestPassword="false" useNonce="true"/> includes
the username token with the password for all outgoing messages:

<xwss:SecurityConfiguration dumpMessages="true" xmlns:xwss="http://
java.sun.com/xml/ns/xwss/config">
 <xwss:Timestamp />

 <xwss:UsernameToken name="clinetUser" password="pass"
digestPassword="false" useNonce="true"/> ...
</xwss:SecurityConfiguration>

Here, useNonce="true" indicates that each request will be sent out with a new random
number for each message (Nonce helps to protect against hijacking of the username token).

Securing SOAP Web-Services using XWSS Library

196

In the case of authentication using a username token with a plain password, since
digestPassword="false" is in both the client- and server-side policy files, you see in the
output result that the message sent by the client has a username and a plain text password
included in the username token:

<wsse:UsernameToken ….>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password ..>****</wsse:Password>

...

</wsse:UsernameToken>

However, in the second case of authenticating using the digest username token with the
digest password, since digestPassword="true" is in both the client- and server-side
policy files, the digest of the password is included in the username token:

<wsse:UsernameToken ….>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password ...#PasswordDigest">****</wsse:Password>

...

</wsse:UsernameToken>

In this case, the server compares the incoming SOAP message digest password with
the calculated digested password from inside spring-ws-servlet.xml. In this way,
communication will be more secure by comparison with the first case in which the password
was transmitted in plain text (the plain text password could be easily extracted from the SOAP
messages. However, using an SSL connection can secure such a communication).

See also...
The recipes Authenticating a Web-Service call using Spring security to authenticate a
username token with plain/digested password, Authenticating a Web-Service call using JAAS
service to authenticate a username token, and Authenticating a Web-Service call using X509
certificate, discussed in this chapter.

Authenticating a Web-Service call using
Spring security to authenticate a username
token with a plain/digested password

Here we make use of the same authentication method used in the first recipe. The only
difference here is that the Spring Security framework is used for authentication. Since the
Spring Security framework is beyond the scope of this book, it is not described here. However,
you can read more about it in the Spring Security reference documentation (http://www.
springsource.org/security).

Chapter 7

197

Same as the first recipe of this chapter, this recipe also contains two cases. In the first case,
the password will be transmitted in plain text format. In the second case, by changing the
policy file's configuration, the password will be transmitted in digest format.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.2 (for the server-side Web-
Service) and has the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-7.2-Client (for the client-side Web-Service) has the following Maven
dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
In this recipe, all the steps are the same as in the previous recipe, Authenticating a
Web-Service call using username token with plain/digested password, except the server-side
application context file (spring-ws.servlet.xml) callback handler changes and uses the
DAO layer to fetch data:

The following steps implement authentication of a Web-Service call using Spring Security
to authenticate a username token with a plain password:

1.	 Register the security interceptor (XwsSecurityInterceptor) and
callbackHandler (SpringPlainTextPasswordValidationCallbackHandler)
in the application context file (spring-ws-servlet.xml) of
LiveRestaurant_R-7.2.

2.	 Add the DAO layer classes to fetch data.

3.	 Run the following command from Liverestaurant_R-7.2:
mvn clean package tomcat:run

4.	 Run the following command from Liverestaurant_R-7.2-Client:
 mvn clean package

Securing SOAP Web-Services using XWSS Library

198

The following is the client-side output:

Nov 6, 2011 1:42:37 PM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Sending Message Start ====

...

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<wsse:Security ...>

<wsu:Timestamp....>

<wsu:Created>2011-11-06T09:42:37.391Z</wsu:Created>

<wsu:Expires>2011-11-06T09:47:37.391Z</wsu:Expires>

</wsu:Timestamp>

<wsse:UsernameToken ...>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password ...#PasswordText">****</wsse:Password>

<wsse:Nonce ...#Base64Binary">...</wsse:Nonce>

<wsu:Created>2011-11-06T09:42:37.442Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest ...>

......

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

INFO: ==== Received Message Start ====

<SOAP-ENV:Envelope ...">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

Chapter 7

199

The following steps implement authentication of a Web-Service call using Spring Security to
authenticate a digested username token:

1.	 Modify springSecurityHandler to
SpringDigestPasswordValidationCallbackHandler in the server
application context file (spring-ws-servlet.xml).

2.	 Modify the security policy file (securityPolicy.xml) in both the server side and
client side to digest the password.

3.	 Run the following command from Liverestaurant_R-7.2:
mvn clean package tomcat:run

4.	 Run the following command from Liverestaurant_R-7.2-Client:

mvn clean package

The following is the client-side output:

Nov 6, 2011 2:04:37 PM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Sending Message Start ====

...

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Header>

<wsse:Security ...>

<wsu:Timestamp ...>

<wsu:Created>2011-11-06T10:04:36.622Z</wsu:Created>

<wsu:Expires>2011-11-06T10:09:36.622Z</wsu:Expires>

</wsu:Timestamp>

<wsse:UsernameToken...>

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password #PasswordDigest">****</wsse:Password>

<wsse:Nonce #Base64Binary">...</wsse:Nonce>

<wsu:Created>2011-11-06T10:04:36.683Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

......

Securing SOAP Web-Services using XWSS Library

200

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

Nov 6, 2011 2:04:37 PM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Received Message Start ====

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse...">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

How it works...
In the Liverestaurant_R-7.2 project, every aspect of security for the client and server
is almost the same as Liverestaurant_R-7.1 that we made use of in the recipe
Authenticating a Web-Service call using username with plain/digested password token,
except for validating the user on the server side. A Spring Security class is responsible for
validating the user and password by comparison with the incoming message's username/
password with fetched data from a DAO layer (instead of hardcoding the username/
password in spring-ws-servlet.xml). In addition, other data (such as permissions,
isAccountBlocked, isAccountExpired, and so on) related to the successfully
authenticated user (that matches the username and password) can be fetched from the DAO
layer and returned for the authorization task or for any validation about the expiry date of the
account and to check if the account is blocked or not.

In the first case, CallbackHandler
SpringPlainTextPasswordValidationCallbackHandler compares the plain
password included in the incoming SOAP message with the plain password that is fetched
from the DAO layer.

 <sws:interceptors>
 <bean

Chapter 7

201

 <bean class="org.springframework.ws.soap.security.xwss.
XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/WEB-INF/
securityPolicy.xml"/>
 <property name="callbackHandlers">
 <list>
 <ref bean="springSecurityHandler"/>
 </list>
 </property>
 </bean>
 </sws:interceptors>

 <bean id="springSecurityHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
SpringPlainTextPasswordValidationCallbackHandler">
 <property name="authenticationManager"
ref="authenticationManager"/>
 </bean>
 ….

In the second test, however, CallbackHandler is
SpringDigestPasswordValidationCallbackHandler that compares the digest
password included in the incoming SOAP message with the digest of the password that is
fetched from the DAO layer.

 <bean id="springSecurityHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
SpringDigestPasswordValidationCallbackHandler">
 <property name="userDetailsService" ref="userDetailsService"/>
 </bean>

springSecurityHandler uses MyUserDetailService.java, which should implement
Spring's UserDetailService to get the username from the provider and internally fetch
all information for that user from a DAO layer (for example, password, roles, is expired, and
so on).

public class MyUserDetailService implements UserDetailsService {

 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException, DataAccessException {

 return getUserDataFromDao(username);
 }

Securing SOAP Web-Services using XWSS Library

202

 private MyUserDetail getUserDataFromDao(String username) {

 /**
 *Real scenario: find user data from a DAO layer by userName,
 * if this user name found, populate MyUserDetail with its
data(username, password,Role,).
 */
 MyUserDetail mydetail=new MyUserDetail(username,"pass",true,true,
true,true);
 mydetail.getAuthorities().add(new GrantedAuthorityImpl("ROLE_
GENERAL_OPERATOR"));

 return mydetail;

 }

This service finally returns the populated data in MyUserDetails.java, which should
implement Spring's UserDetails.

public class MyUserDetail implements UserDetails {

 private String password;
 private String userName;
 private boolean isAccountNonExpired;
 private boolean isAccountNonLocked;
 private boolean isCredentialsNonExpired;
 private boolean isEnabled;

 public static Collection<GrantedAuthority> authority =
 new ArrayList<GrantedAuthority>();

 public MyUserDetail(String userName, String password,boolean
isAccountNonExpired, boolean isAccountNonlocked,boolean
isCredentialsNonExpired, boolean isEnabled){
 this.userName=userName;
 this.password=password;
 this.isAccountNonExpired=isAccountNonExpired;
 this.isAccountNonLocked=isAccountNonlocked;
 this.isCredentialsNonExpired=isCredentialsNonExpired;
 this.isEnabled=isEnabled;
 }
 @Override
 public Collection<GrantedAuthority> getAuthorities() {
 return authority;
 }

 …..
}

Chapter 7

203

Now, if the UserDetails data matches the incoming message's username/password, it
returns a response; otherwise, it returns a SOAP fault message.

Same as the 7.1 project, setting digestPassword to true/false in securityPolicy.
xml on the server/client-side causes the password to be transmitted in plain text or in the
digested format.

In real time, we never configure the plain password option.
This is a good option for hackers to enable and disable. We
never need such an option in real time. Passwords are always
transmitted in encrypted format, irrespective of any type of
system or application configuration.

See also...
The recipes Authenticating a Web-Service call using Spring security to authenticate a
username token with plain/digested password, Authenticating a Web-Service call using JAAS
service to authenticate a username token, and Authenticating a Web-Service call using X509
certificate, discussed in this chapter.

Authenticating a Web-Service call using
a JAAS service to authenticate a
username token

We make use of the same authentication task with a plain username token, as used in the
first recipe. The only difference here is that Java Authentication and Authorization Service
(JAAS) is used here for authentication and authorization. Since the JAAS framework is beyond
the scope of this book, it is not described here. However, you can read more about JAAS
in the reference documentation (http://download.oracle.com/javase/6/docs/
technotes/guides/security/jaas/JAASRefGuide.html).

JaasPlainTextPasswordValidationCallbackHandler from the xwss package is the
API that calls the Login module that is configured inside the JAAS configuration file.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.3 (for the server-side
Web-Service) and has the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

http://java.sun.com/products/jaas/

Securing SOAP Web-Services using XWSS Library

204

LiveRestaurant_R-7.3-Client (for the client-side Web-Service) has the following Maven
dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
In this recipe, all the steps are the same as in the previous recipe, Authenticating a Web-
Service call using username token with plain/digested password, except that the server-side
application context file (spring-ws.servlet.xml) callback handler changes and uses the
JAAS framework as an authentication and authorization service:

1.	 Register the JAAS callbackHandler
(JaasPlainTextPasswordValidationCallbackHandler) in the server-side
application context file (spring-ws.servlet.xml).

2.	 Add the JAAS framework's required classes (RdbmsPrincipal, RdbmsCredential,
and RdbmsPlainTextLoginModule) and the configuration file (jaas.config).

3.	 Run the following command from Liverestaurant_R-7.3:
 mvn clean package tomcat:run -Djava.security.auth.login.
config="src/main/resources/jaas.config"

4.	 Run the following command from Liverestaurant_R-7.3-Client:

 mvn clean package

The following is the client-side output:

INFO: ==== Sending Message Start ====

....

<SOAP-ENV:Envelope">

<SOAP-ENV:Header>

<wsse:Security>

<wsu:Timestamp ...>

<wsu:Created>2011-11-06T11:59:09.712Z</wsu:Created>

<wsu:Expires>2011-11-06T12:04:09.712Z</wsu:Expires>

</wsu:Timestamp>

<wsse:UsernameToken ...>

Chapter 7

205

<wsse:Username>clinetUser</wsse:Username>

<wsse:Password#PasswordText">****</wsse:Password>

<wsse:Nonce ...0#Base64Binary">...</wsse:Nonce>

<wsu:Created>2011-11-06T11:59:09.774Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest...>

.....

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

...

INFO: ==== Received Message Start ====

...

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Header>

<wsse:Security ...>

<wsu:Timestamp>

<wsu:Created>2011-11-06T11:59:11.630Z</wsu:Created>

<wsu:Expires>2011-11-06T12:04:11.630Z</wsu:Expires>

</wsu:Timestamp>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderResponse ...>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

Securing SOAP Web-Services using XWSS Library

206

How it works...
In the Liverestaurant_R-7.3 project, everything about security for the client and server
is almost the same as the Liverestaurant_R-7.1 project that we used in the recipe
Authenticating a Web-Service call using a username with plain/digested password token
except for validating a user on the server side. A JAAS framework is responsible for validating
the user and password by comparison of incoming message's username/password with
fetched data from a data source (database here).

The client sends a request SOAP message that contains the username token in plain text. The
server receives this message and uses the JAAS framework to compare an incoming message
username/password with what is fetched from the DAO layer by JAAS. If it matches, it returns
a normal response; otherwise, it returns a failure message.

In spring-ws-servlet.xml, JaasPlainTextPasswordValidationCallbackHandler
is registered as a callback handler that uses RdbmsPlainText as a pluggable JAAS login
module for the username/password authentication:

<sws:interceptors>
 …....
 <bean class="org.springframework.ws.soap.security.xwss.
XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/WEB-INF/
securityPolicy.xml" />
 <property name="callbackHandlers">
 <list>
 <ref bean="jaasValidationHandler" />
 </list>
 </property>
 </bean>
 </sws:interceptors>
 <bean id="jaasValidationHandler" class="org.
springframework.ws.soap.security.xwss.callback.jaas.
JaasPlainTextPasswordValidationCallbackHandler">
 <property name="loginContextName" value="RdbmsPlainText" />
 </bean>

When the server side is being run using mvn -Djava.security.auth.login.
config="src/main/resources/jaas.config", it uses the jaas.config file to locate
the JAAS login module (RdbmsPlainTextLoginModule) that is registered in the server-side
application context as RdbmsPlainText:

RdbmsPlainText {
 com.packtpub.liverestaurant.service.security.
RdbmsPlainTextLoginModule Required;
};

Chapter 7

207

The login method from RdbmsPlainTextLoginModule.java will be called to fetch the
user password and credentials from the DAO layer. If the fetched password matches the
incoming message's password, then it sets credential and returns true; otherwise, it throws
an exception that leads the server to send back a fault message to the client:

public class RdbmsPlainTextLoginModule implements LoginModule {
 private Subject subject;
 private CallbackHandler callbackHandler;
 private boolean success;
 private List<RdbmsPrincipal> principals = new
ArrayList<RdbmsPrincipal>();
 private List<RdbmsCredential> credentials = new
ArrayList<RdbmsCredential>();

 @Override
 public void initialize(Subject subject, CallbackHandler
callbackHandler,
 Map<String, ?> sharedState, Map<String, ?> options) {
 …..
 }
 @Override
 public boolean login() throws LoginException {
 …...
 }
 private List<String> getAllPermission(String username) {
 …...
 }
 private boolean authenticate(String username,String password)
 {
….

 }

 public boolean commit() throws LoginException {
 …..
 }
 @Override
 public boolean logout() throws LoginException {
 …..
 }
}

Securing SOAP Web-Services using XWSS Library

208

In important applications, even the username is encrypted. This provides
more security and competitors can't guess which users are coming from
which location using ISP-level filtering. Hackers guess or track a username
and send duplicate requests to load servers with unnecessary data. In
this recipe, since the password is being transmitted in plain-text format,
using an SSL connection is recommended. Spring-WS also supports
JaasCertificateValidationCallbackHandler, which uses a
certificate for authentication. This handler is not used here. However, you can
find out more about it at the following URL:

http://static.springsource.org/spring-ws/site/apidocs/
org/springframework/ws/soap/security/xwss/callback/
jaas/JaasCertificateValidationCallbackHandler.html.

See also...
The recipes Authenticating a Web-Service call using username token with plain/digested
password, Authenticating a Web-Service call using Spring Security to authenticate a
username token with plain/digested password, and Authenticating a Web-Service call using
X509 certificate, discussed in this chapter.

Preparing pair and symmetric keystores
In order to add more security measures for a Web-Service call, we do need some extra
operations such as signing and verifying the signature of Web-Service messages, encryption/
decryption, and authentication using certificates. XWSS provides these operations using
keystores. The java.security.KeyStore class provides a memory container for the
cryptographic keys and certificates. This class can include three types of entries:

ff Private key entry, which contains a private key and a public key certificate (note
that the public key here is wrapped within the X.509 certificate—a combination
of a private key and a public key certificate is known as a key pair)

ff Secret key entry, which contains a symmetric key

ff Trusted certificate entry, which contains a trusted certificate (this certificate is the
other party certificate, imported as a trusted certificate, which means the owner keys
store the public key within the other party's certificate that belongs to the third party)

A keystore may contain one to many entries. Aliases in a keystore are for distinguishing
entries from one another. The private key and certificate are referred to by one alias while any
other trusted certificates or secret key entries are referred to by different individual aliases
within a keystore.

Chapter 7

209

Earlier in this chapter, authentication of a Web-Service call using the username token was
presented. A Web-Service call can be authenticated by using a certificate. Later in this
chapter, in the recipe Authenticating a Web-Service call using X509 certificate, authentication
using a certificate will be presented. In addition, these certificates can be used for certificate
validation, signature verification, and encryption.

Java keytool is a tool that generates and stores the keys and certificates in a keystore file.
This keystore is protected by a keystore password. In addition, there is another password
that protects the private key.

In this recipe, using the keytool to generate keystores with symmetric key entries, private key
entries (private keys and public key certificates), and trusted certificate entries is presented.
These keys will be used later in this chapter and in Chapter 8, Securing SOAP Web-Services
using WSS4J Library, for signing and verifying the signature of Web-Service messages,
encryption/decryption, and authentication using certificates.

Getting ready
Installation of Java, as described in the first recipe.

How to do it...
To generate a keystore with a secret key entry with the alias symmetric, run the following
command (this keystore is to be used later for symmetric encryption/decryption):

keytool -genseckey -alias 'symmetric' -keyalg 'DESede' -keystore
symmetricStore.jks -storepass 'symmetricPassword' -keypass 'keyPassword'
-storetype "JCEKS"

To generate a keystore with a private key entry or a key pair (that contains private key and
public certificate pairs) follow next steps:

1.	 To generate a receiver (server side here) keystore, run the following command and
follow the command prompt:
keytool -genkey -alias server -keyalg RSA -keystore serverStore.
jks -validity 3653

Enter keystore password:serverPassword

Re-enter new password:serverPassword

What is your first and last name?

 [Unknown]: MyFirstName MyLastName

What is the name of your organizational unit?

 [Unknown]: Software

Securing SOAP Web-Services using XWSS Library

210

What is the name of your organization?

 [Unknown]: MyCompany

What is the name of your City or Locality?

 [Unknown]: MyCity

What is the name of your State or Province?

 [Unknown]: MyProvince

What is the two-letter country code for this unit?

 [Unknown]: ME

Is CN=MyFirstName MyLastName, OU=Software, O=MyCompany, L=MyCity,
ST=MyProvince, C=ME correct?

 [no]: yes

Enter key password for <server>

 (RETURN if same as keystore password):serPkPassword

Re-enter new password:serPkPassword

2.	 To generate a sender (client side here) keystore, run the following command and
follow the command prompt:
keytool -genkey -alias client -keyalg RSA -keystore clientStore.
jks -validity 3653

Enter keystore password:clientPassword

Re-enter new password:clientPassword

What is your first and last name?

 [Unknown]: MyFirstName MyLastName

What is the name of your organizational unit?

 [Unknown]: Software

What is the name of your organization?

 [Unknown]: MyCompany

What is the name of your City or Locality?

 [Unknown]: MyCity

What is the name of your State or Province?

 [Unknown]: MyProvince

What is the two-letter country code for this unit?

 [Unknown]: ME

Is CN=MyFirstName MyLastName, OU=Software, O=MyCompany, L=MyCity,
ST=MyProvince, C=ME correct?

 [no]: yes

Chapter 7

211

Enter key password for <server>

 (RETURN if same as keystore password):cliPkPassword

Re-enter new password:cliPkPassword

3.	 To see the generated private key entry in a keystore, run the following command
(please note privateKeyEntry within the underlined text):
keytool -list -v -keystore serverStore.jks -storepass
serverPassword

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: server

Creation date: 26-Jul-2011

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebd0c

Valid from: Tue Jul 26 17:11:40 GST 2011 until: Mon Jul 26
17:11:40 GST 2021

Certificate fingerprints:

 MD5: 9E:DF:5E:18:F5:F6:52:4A:B6:9F:67:04:39:C9:57:66

 SHA1: C5:0B:8C:E6:B6:02:BD:38:56:CD:BB:50:CC:C6:BA:74:86:
27:6C:C7

 Signature algorithm name: SHA1withRSA

 Version: 3

4.	 To generate a certificate (public key) from a keystore with a private key entry, run the
following command for the client/server-side keystore:
keytool -export -file clientStore.cert -keystore clientStore.jks
-storepass clientPassword -alias client

keytool -export -file serverStore.cert -keystore serverStore.jks
-storepass serverPassword -alias server

Securing SOAP Web-Services using XWSS Library

212

5.	 To import the sender (client) public key certificate into the receiver (server) keystore,
run the following command for the server-side keystore (this certificate will be stored
as a trusted certificate entry in the keystore with the alias client):
keytool -import -file clientStore.cert -keystore serverStore.jks
-storepass serverPassword -alias client

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebf1e

Valid from: Tue Jul 26 17:20:30 GST 2011 until: Mon Jul 26
17:20:30 GST 2021

Certificate fingerprints:

 MD5: FD:BE:98:72:F0:C8:50:D5:4B:10:B0:80:3F:D4:43:E8

 SHA1: 91:FB:9D:1B:69:E9:5F:0B:97:8C:E2:FE:49:0E:D8:CD:25:
FB:D8:18

 Signature algorithm name: SHA1withRSA

 Version: 3

Trust this certificate? [no]: yes

Certificate was added to keystore

6.	 To import the receiver (server) public key certificate into the sender (client) keystore,
run the following command for the sender (client side) keystore (this certificate will be
stored as a trusted certificate entry in the keystore with the alias server):
keytool -import -file serverStore.cert -keystore clientStore.jks
-storepass clientPassword -alias server

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebf1e

Valid from: Tue Jul 26 17:20:30 GST 2011 until: Mon Jul 26
17:20:30 GST 2021

Certificate fingerprints:

 MD5: FD:BE:98:72:F0:C8:50:D5:4B:10:B0:80:3F:D4:43:E8

 SHA1: 91:FB:9D:1B:69:E9:5F:0B:97:8C:E2:FE:49:0E:D8:CD:25:
FB:D8:18

 Signature algorithm name: SHA1withRSA

 Version: 3

Trust this certificate? [no]: yes

Certificate was added to keystore

Chapter 7

213

7.	 To see the server's private key entry and trusted certificate entry in the keystore,
run the following command (please note trustedCertEntry and privateKeyEntry
within the underlined text):

keytool -list -v -keystore serverStore.jks -storepass
serverPassword

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 2 entries

Alias name: client

Creation date: 26-Jul-2011

Entry type: trustedCertEntry

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebf1e

Valid from: Tue Jul 26 17:20:30 GST 2011 until: Mon Jul 26
17:20:30 GST 2021

Certificate fingerprints:

 MD5: FD:BE:98:72:F0:C8:50:D5:4B:10:B0:80:3F:D4:43:E8

 SHA1: 91:FB:9D:1B:69:E9:5F:0B:97:8C:E2:FE:49:0E:D8:CD:25:
FB:D8:18

 Signature algorithm name: SHA1withRSA

 Version: 3

Alias name: server

Creation date: 26-Jul-2011

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Securing SOAP Web-Services using XWSS Library

214

Serial number: 4e2ebd0c

Valid from: Tue Jul 26 17:11:40 GST 2011 until: Mon Jul 26
17:11:40 GST 2021

Certificate fingerprints:

 MD5: 9E:DF:5E:18:F5:F6:52:4A:B6:9F:67:04:39:C9:57:66

 SHA1: C5:0B:8C:E6:B6:02:BD:38:56:CD:BB:50:CC:C6:BA:74:86:
27:6C:C7

 Signature algorithm name: SHA1withRSA

 Version: 3

8.	 To see the client's private key entry and trusted certificate entry in the keystore, run
the following command:

keytool -list -v -keystore clientStore.jks -storepass
clientPassword

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 2 entries

Alias name: client

Creation date: 26-Jul-2011

Entry type: PrivateKeyEntry

Certificate chain length: 1

Certificate[1]:

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebf1e

Valid from: Tue Jul 26 17:20:30 GST 2011 until: Mon Jul 26
17:20:30 GST 2021

Certificate fingerprints:

 MD5: FD:BE:98:72:F0:C8:50:D5:4B:10:B0:80:3F:D4:43:E8

 SHA1: 91:FB:9D:1B:69:E9:5F:0B:97:8C:E2:FE:49:0E:D8:CD:25:
FB:D8:18

Chapter 7

215

 Signature algorithm name: SHA1withRSA

 Version: 3

**

Alias name: server

Creation date: 26-Jul-2011

Entry type: trustedCertEntry

Owner: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Issuer: CN=MyFirstName MyLastName, OU=Software, O=MyCompany,
L=MyCity, ST=MyProvince, C=ME

Serial number: 4e2ebd0c

Valid from: Tue Jul 26 17:11:40 GST 2011 until: Mon Jul 26
17:11:40 GST 2021

Certificate fingerprints:

 MD5: 9E:DF:5E:18:F5:F6:52:4A:B6:9F:67:04:39:C9:57:66

 SHA1: C5:0B:8C:E6:B6:02:BD:38:56:CD:BB:50:CC:C6:BA:74:86:
27:6C:C7

 Signature algorithm name: SHA1withRSA

 Version: 3

How it works...
In the beginning, a symmetric key store is generated that can be shared by a client and a
server for encryption and decryption. This command generates the symmetric key store:

keytool -genseckey -alias 'symmetric' -keyalg 'DESede' -keystore
symmetricStore.jks -storepass 'symmetricPassword' -keypass
'keyPassword' -storetype "JCEKS"

To generate a keystore with a private key entry and a trusted certificate entry, first a key
pair (private key and public certificate) keystore for both the client and server side should
be generated.

Securing SOAP Web-Services using XWSS Library

216

Then the public key certificate should be exported from the client/server keystore. Finally,
the client certificate should be imported into the server keystore and the server certificate
should be imported into the client keystore (this imported certificate will be called trusted
certificate).

keytool -genkey -alias aliasName -keyalg RSA -keystore
keyStoreFileName.jks -validity 3653

The preceding command generates a keystore with a private key entry for which aliasName
is an identifier of the keystore. Validity is the number of days that this key is valid.

keytool -export -file clientStore.cert -keystore clientStore.jks
-storepass clientPassword -alias client

The preceding command exports the public key certificate that is embedded inside the private
key entry in a keystore.

keytool -import -file clientStore.cert -keystore serverStore.jks
-storepass serverPassword -alias client

The preceding command imports the generated public key certificate from the client keystore
into the server keystore (this imported certificate will be called trusted certificate).

More information about cryptography and keystores can be found at the following URLs:

http://docs.oracle.com/javase/1.5.0/docs/api/java/security/KeyStore.
html.

http://en.wikipedia.org/wiki/Category:Public-key_cryptography.

See also...
The recipes Securing SOAP messages using digital signature, Authenticating a Web-Service
call using X509 certificate, and Encrypting/Decrypting of SOAP messages, discussed in
this chapter.

Securing SOAP messages using digital
signature

The purpose of digital signature is to verify whether a received message is altered to prove
the sender is who he/she claims to be (authentication) and to prove the action from a specific
sender. Digital signing of a message means adding hash data, that is, a piece of information
(token) added to the SOAP envelop. The receiver needs to regenerate its own hash from the
incoming message and compare it with the sender's one. If the receiver's hash matches the
sender's one, the data integrity is achieved and the receiver will proceed; otherwise it returns
a SOAP fault message to the sender.

http://docs.oracle.com/javase/1.5.0/docs/api/java/security/KeyStore.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/security/KeyStore.html

Chapter 7

217

In order to authenticate the sender, the sender should encrypt the signature token using his/
her own private key. The receiver should have the sender's public-key certificate in the receiver
keystore (the certificate is called a trusted certificate and comes under the trusted certificate
entry) to decrypt the sender's signature token and repeat the already-explained step to check
the message integrity. Now if the message integrity is achieved, the authentication of the
sender is proved (since only the sender's certificate embedded in the receiver keystore could
decrypt the encrypted signature of the sender). In addition, the action of sending the message
by the sender also is proved (since successful decryption of the signature on the receiver's
side shows that the sender has encrypted it by its own private key).

In this recipe, the sender (client) signs a message and uses its own private key (within the
client keystore) for encryption of signature. On the receiver side (server), the client public key
certificate in the server keystore (the certificate is called trusted certificate and comes under
the trusted certificate entry within the keystore) will be used for decryption of the signature of
the token; then the server verifies the signature token.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.4 (for the server-side Web-
Service) with the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-7.4-Client (for the client-side Web-Service) has the following Maven
dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
1.	 Copy serverStore.jks to the server and clientStore.jks to the client (these

keystores are already generated in the recipe Preparing pair and symmetric keystores
discussed in this chapter.

2.	 Configure the security policy file (securityPolicy.xml) on the server side to
expect a signature token along with the incoming message on the client side
to sign outgoing messages.

Securing SOAP Web-Services using XWSS Library

218

3.	 Register keyStoreHAndler (KeyStoreCallbackHandler) and trustStore
(KeyStoreFactoryBean) in the server-side application context file.

4.	 Register keyStoreHAndler (KeyStoreCallbackHandler) and keyStore
(KeyStoreFactoryBean) in the client-side application context file.

5.	 Run the following command from Liverestaurant_R-7.4:
mvn clean package tomcat:run

6.	 Run the following command from Liverestaurant_R-7.4-Client:

 mvn clean package

The following is the client-side output (note the tag ds:Signature) within the
underlined text:

INFO: ==== Sending Message Start ====

....

<SOAP-ENV:Envelope.....>

<SOAP-ENV:Header>

<wsse:Security>

...

<ds:Signature>

<ds:SignedInfo>

.....

</ds:SignedInfo>

<ds:SignatureValue>....</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body....>

<tns:placeOrderRequest ...>

......

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Chapter 7

219

==== Sending Message End ====....

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

How it works...
Security policy on the server side requires the client to include a binary signature token in
the message. Settings in the client-side policy file include the signature token in the outgoing
messages. A client uses its own private key included in the client-side keystore to encrypt the
signature token of the message. On the server side, the client public key certificate, included
in the server keystore (the certificate is called trusted certificate and comes under the trusted
certificate entry within the keystore), will be used for decrypting the incoming signature token.
Then the server proceeds towards the verification of the signature.

The following server-side security configuration in the policy files causes the server to expect a
security token from the incoming message (for verification of incoming messages):

 <xwss:RequireSignature requireTimestamp="false" />
</xwss:SecurityConfiguration>

On the client side, however, this security configuration in the policy files causes the client to
include a security token inside the SOAP message in the outgoing message:

 <xwss:Sign includeTimestamp="false">

 </xwss:Sign>

The following setting in the client-side application context causes the client to use the private
key inside clientStore.jks to encrypt the signature token of the message. The private
key's password is cliPkPassword, the alias of the private key entry is client, and the
keystore bean is generated by reading the keystore clientStore.jks with the keystore
password clientPassword:

 <bean id="keyStore" class="org.springframework.ws.soap.security.
support.KeyStoreFactoryBean">
 <property name="password" value="clientPassword" />
 <property name="location" value="/clientStore.jks" />
 </bean>

Securing SOAP Web-Services using XWSS Library

220

 <bean id="keyStoreHandler" class="org.springframework.ws.soap.
security.xwss.callback.KeyStoreCallbackHandler">
 <property name="keyStore" ref="keyStore" />
 <property name="privateKeyPassword" value="cliPkPassword" />
 <property name="defaultAlias" value="client" />
 </bean>

On the server side, the following setting in the server configuration file causes the server to
first decrypt the signature token using a client certificate in the server keystore (the certificate
is called a trusted certificate). It then verifies the signature of the incoming messages (to see
whether the original message is altered):

 <bean id="keyStoreHandler" class="org.springframework.
ws.soap.security.xwss.callback.KeyStoreCallbackHandler">
 <property name="trustStore" ref="trustStore"/>

 </bean>
<bean id="trustStore" class="org.springframework.ws.soap.security.
support.KeyStoreFactoryBean">
 <property name="location" value="/WEB-INF/serverStore.jks" />
 <property name="password" value="serverPassword" />
 </bean>

See also...
The recipes Preparing pair and symmetric key stores and Authenticating a Web-Service call
using X509 certificate, discussed in this chapter.

Authenticating a Web-Service call using
X509 certificate

In the previous recipe, Securing SOAP messages using digital signature, by changing the
sender (client) security policy file, the sender can include the client's certificate along with the
outgoing messages. Then on the receiver side (server), before the verification of signatures,
the server tries to authenticate the sender by comparing the client's certificate along with
incoming message with client certificate embedded in the server keystore (trusted certificate).
Additionally in this recipe, the client certificate is included in the sender's outgoing message
and to extract data included in the certificate for authentication and authorization purposes,
on the receiver side.

SpringCertificateValidationCallbackHandler, from the XWSS package, can
extract the certificate data (such as CN=MyFirstName MyLastName) and this data
could be for authentication as well as authorization.

Chapter 7

221

In this recipe, we make use of the Securing SOAP messages using digital
signature recipe for the signing and verification of signatures. Then
SpringCertificateValidationCallbackHandler is used for authentication, using
data fetching from the DAO layer as well as authorization for that Web-Service call.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.5 (for the server-side Web-
Service) and it has the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

LiveRestaurant_R-7.5-Client (for the client-side Web-Service) has the following
Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
In this recipe, all the steps are the same as in the previous recipe, Securing SOAP messages
using a digital signature, except for modifying the client's policy file, as that changes to include
the client certificate along with the outgoing message and the server-side application context
file (spring-ws.servlet.xml) changes, and it uses the DAO layer to fetch data:

1.	 Register springSecurityCertificateHandler in the server-side application
context file (spring-ws-servlet.xml).

2.	 Modify the client-side security policy file to include the client certificate along with the
outgoing messages.

3.	 Add the DAO layer classes to fetch data.

The following is the client-side output (note the X509 client certification) within the
underlined text:

INFO: ==== Sending Message Start ====

<?xml...>

<SOAP-ENV:Header>

<wsse:Security ...>

Securing SOAP Web-Services using XWSS Library

222

<wsse:BinarySecurityToken...wss-x509-token-..>.....</
wsse:BinarySecurityToken>

<ds:Signature>

<ds:SignedInfo>

......

</ds:SignedInfo>

<ds:SignatureValue>.....</ds:SignatureValue>

<ds:KeyInfo>

<wsse:SecurityTokenReference...>

<wsse:Reference ...wss-x509-token-profile-1.0.../>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest ...>

.....

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

INFO: ==== Received Message Start ====

<?xml version="1.0">

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

Chapter 7

223

How it works...
Everything about signatures is the same as described in the recipe Securing SOAP
messages using a digital signature. In addition, the client-side certificate is included in the
outgoing messages and extracting a client's certificate data on the server side for some
processing operations.

Once the client's certificate is extracted (that is, embedded within the incoming message),
authentication can be done by retrieving the username or other information.

Including the following section in the client-side policy file causes the client to include its own
public key certificate in the outgoing messages:

<xwss:X509Token certificateAlias="client" />

Embedding a client certificate in a caller message while signing the message causes the
server to validate this certificate with the one included in the server keystore (sender
trusted certificate entry) before signature validation. This validation confirms that the
caller is the person he/she claims to be. However, if activation/locking of account needs
to be checked or authorization of the caller to access specific resources is required, then
springSecurityCertificateHandler, configured in the server configuration file,
handles these tasks:

 <bean class="org.springframework.ws.soap.security.xwss.
XwsSecurityInterceptor">
 <property name="policyConfiguration" value="/WEB-INF/
securityPolicy.xml"/>
 <property name="secureResponse" value="false" />
 <property name="callbackHandlers">
 <list>
 <ref bean="keyStoreHandler"/>
 <ref bean="springSecurityCertificateHandler"/>
 </list>
 </property>
 </bean>
 </sws:interceptors>

 <bean id="springSecurityCertificateHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
SpringCertificateValidationCallbackHandler">
 <property name="authenticationManager"
ref="authenticationManager"/>
 </bean>

 <bean id="authenticationManager"

Securing SOAP Web-Services using XWSS Library

224

 class="org.springframework.security.authentication.
ProviderManager">
 <property name="providers">
 <bean class="org.springframework.ws.soap.security.x509.
X509AuthenticationProvider">
 <property name="x509AuthoritiesPopulator">
 <bean class="org.springframework.ws.soap.security.
x509.populator.DaoX509AuthoritiesPopulator">
 <property name="userDetailsService"
ref="userDetailsService"/>
 </bean>
 </property>
 </bean>
 </property>
 </bean>

 <bean id="userDetailsService" class="com.packtpub.liverestaurant.
service.dao.MyUserDetailService" />

This handler uses the authentication manager that calls DaoX509AuthoritiesPopulator,
which applies the customized service class MyUserDetailService for authentication and
extracts the user credentials for authorization purposes:

public class MyUserDetailService implements UserDetailsService {

 @Override
 public UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException, DataAccessException {
 return findUserDetailFromDAO(username);
 }
 private UserDetails findUserDetailFromDAO(String userName)throws
UsernameNotFoundException{
 MyUserDetail mydetail=null;

 /**
 *Real scenario: Find user-name from DAO layer, if user
found, get data from the DAO and set MyUserDetail otherwise throw
UsernameNotFoundException.
 */
 if(! userName.equals("MyFirstName MyLastName")){
 throw new UsernameNotFoundException("User name not found");
 }
 mydetail=new MyUserDetail(userName,"fetchedPassword",true,true,t
rue,true,new GrantedAuthorityImpl("ROLE_GENERAL_OPERATOR"));
 return mydetail;
 }
}

Chapter 7

225

See also...
The recipes Securing SOAP messages using a digital signature and Preparing pair and
symmetric keystores, discussed in this chapter.

Encrypting/decrypting of SOAP messages
Encryption is the process of converting readable or plain text data format into an un-readable
encrypted format or cipher text using specific algorithms. These algorithms, known as
encryption algorithms, require an encryption key. Decryption is just the reverse operation
of encryption; it converts back the cipher text into readable or plain text data format using
a decryption key. The encryption and decryption keys could be the same or different. If
encryption and decryption keys are the same and the sender and receiver share the key, then
this key is known as symmetric or secret key. The encryption and decryption keys could be
different, and in this case, the key is called asymmetric or public key.

The following diagram presents the usage of a symmetric key for encryption/decryption. The
sender and receiver can share the same key, which is known as symmetric key. Those having
this key can decrypt/encrypt messages. For example, a symmetric key is used for encryption
by the sender and decryption by the receiver:

Securing SOAP Web-Services using XWSS Library

226

The following diagram presents the usage of the public/private key for encryption/decryption.
Bob, as a sender, gets Alice's public key, encrypts a message, and sends it to Alice. Since only
she is the holder of her own private key, she can decrypt the message:

In this recipe, the sender (client here) encrypts a message and sends it to a receiver (server
here) in three different cases. In the first case, a symmetric key (which is in a store with the
secret key entry that is the same for the client and server) is used for encryption on the client
side and for decryption on the server side. Then, in the second case, the receiver's (server)
public key certificate on the sender's (client) keystore (within the receiver trusted certificate
entry) is used for data encryption and the receiver's (server) private key on the server-side
keystore is used for decryption.

Since encryption of the whole payload in the annotation endpoint mappings
(PayloadRootAnnotationMethodEndpointMapping) makes routing information (for
example, localPart = "placeOrderRequest", namespace = "http://www.
packtpub.com/liverestaurant/OrderService/schema", which is included in
payload) encrypted along with whole payload, and the annotation endpoint mapping cannot
be used. Instead, the SoapActionAnnotationMethodEndpointMapping addressing
style is used for endpoint mapping. In this case, routing data is included in the SOAP header
whereas it is included in payload in the annotation endpoint mapping. Although encryption of
a part of the payload can work with the payload annotation endpoint mapping, however for
consistency, SoapActionAnnotationMethodEndpointMapping addressing style is used
for whole of the recipe.

For more information about endpoint mapping, refer to the recipes Setting up an endpoint
by annotating the payload-root and Setting up a transport-neutral WS-Addressing endpoint,
discussed in Chapter 1, Building SOAP Web-Services.

In the first two cases, the whole payload is used for encryption/decryption. The XWSS policy
configuration file makes it possible to encrypt/decrypt the payload part. In the third case, only
a part of the payload is set as the target for encryption/decryption.

http://www.packtpub.com/liverestaurant/OrderService/schema
http://www.packtpub.com/liverestaurant/OrderService/schema

Chapter 7

227

Getting ready
In this recipe, the project's name is LiveRestaurant_R-7.6 (for the server-side
Web-Service) and has the following Maven dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff mail-1.4.1.jar

ff saaj-api-1.3.jar

ff saaj-impl-1.3.2.jar

LiveRestaurant_R-7.6-Client (for the client-side Web-Service) has the following Maven
dependencies:

ff spring-ws-security-2.0.1.RELEASE.jar

ff spring-ws-test-2.0.0.RELEASE.jar

ff spring-expression-3.0.5.RELEASE.jar

ff log4j-1.2.9.jar

ff junit-4.7.jar

How to do it...
The following steps implement encryption/decryption using a shared symmetric key
(symmetricStore.jks):

1.	 Register keyStoreHandler and symmetricStore in the server/client application
context. Copy the symmetric keystore (symmetricStore.jks) to the server/client
folder (this keystore is already generated in the recipe Preparing pair and symmetric
keystores discussed in this chapter).

2.	 Configure the security policy file (securityPolicy.xml) on the server side to
expect encryption of messages from its client and on the client side to encrypt the
outgoing messages.

3.	 Run the following command from Liverestaurant_R-7.6:
mvn clean package tomcat:run

4.	 Run the following command from Liverestaurant_R-7.6-Client:

mvn clean package

Securing SOAP Web-Services using XWSS Library

228

The following is the client-side output (note the underlined part in the output):

INFO: ==== Received Message Start ====

....

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<wsse:Security>

.......

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<xenc:EncryptedData.....">

<xenc:EncryptionMethod>

<ds:KeyInfo ...xmldsig#">

<ds:KeyName>symmetric</ds:KeyName>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>

3esI76ANNDEIZ5RWJt.....

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

Nov 7, 2011 11:48:46 PM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Sending Message Start ====

<?xml version="1.0" ...

><SOAP-ENV:Envelope ...>

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

Chapter 7

229

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

The following steps implement encryption using a server-trusted certificate (or public key) on
the client-side keystore (clientStore.jks) and decryption on the server private key on the
server-side keystore (serverStore.jks):

1.	 Modify securityPolicy.xml for encryption of messages using a server-trusted
certificate on the client side (included in clientStore.jks) and decryption on the
server side by the server private key (included in serverStore.jks).

2.	 Register keyStoreHandler and keyStore on the server side and
keyStoreHandler and trustStore on the client-side application context. Copy
clientStore.jks to the client and serverStore.jks to the server folder (this
keystore is already generated in the recipe Preparing pair and symmetric Keystores
discussed in this chapter).

3.	 Configure the security policy file (securityPolicy.xml) on the server side to
expect encryption of messages from its client and on the client side to encrypt the
outgoing messages.

4.	 Run the following command from Liverestaurant_R-7.6:
mvn clean package tomcat:run

5.	 Run the following command from Liverestaurant_R-7.6-Client:

mvn clean package

The following is the client-side output (note the underlined part in the output):

INFO: ==== Sending Message Start ====

...

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<wsse:Security ...>

........

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<xenc:EncryptedData....>

<xenc:EncryptionMethod .../>

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<wsse:SecurityTokenReference...>

Securing SOAP Web-Services using XWSS Library

230

<wsse:Reference/>

</wsse:SecurityTokenReference>

</ds:KeyInfo>

<xenc:CipherData>

...

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

Nov 8, 2011 12:12:11 AM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Received Message Start ====

<SOAP-ENV:Envelope>

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse xmlns:tns="http://www.packtpub.com/
liverestaurant/OrderService/schema">

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

The following steps implement encryption/decryption for a part of the payload:

1.	 Modify securityPolicy.xml on client side/server side to set the target of
the encryption.

2.	 Run the following command from Liverestaurant_R-7.6:
mvn clean package tomcat:run

3.	 Run the following command from Liverestaurant_R-7.6-Client:

mvn clean package

Chapter 7

231

The following is the client-side output (note underlined part in the output):

INFO: ==== Sending Message Start ====

...

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<wsse:Security>

........

</wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<tns:placeOrderRequest ...>

<xenc:EncryptedData …..>

….......

<xenc:CipherData>

<xenc:CipherValue>NEeTuduV....

….......

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>

</tns:placeOrderRequest>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Sending Message End ====

Nov 8, 2011 12:18:39 AM com.sun.xml.wss.impl.filter.DumpFilter
process

INFO: ==== Received Message Start ====

....

<SOAP-ENV:Envelope ...>

<SOAP-ENV:Header/>

<SOAP-ENV:Body>

<tns:placeOrderResponse>

<tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

==== Received Message End ====

Securing SOAP Web-Services using XWSS Library

232

How it works...
In the first case, both the client and the server share the symmetric key. The client encrypts
the whole payload using a symmetric key and sends it to the server. On the server side, the
same key will be used to decrypt the payload. However, in the second and third cases, the
server certificate embedded in the client store is used for encryption of the payload and the
server-side private key of the server store will be used for decryption.

The RequireEncryption/Encrypt tag in the server/client policy files causes the client to
encrypt a message and the server to decrypt it. The keyAlias is the alias name that is set at
the time of symmetric keystore generation. The following sections in the client- and server-side
policy files target the part of a message envelop that is to be encrypted/decrypted. qname:
{http://schemas.xmlsoap.org/soap/envelope/}Body causes only the body part of
a SOAP envelop to be used for encryption/decryption.

---server policy file
 <xwss:RequireEncryption>
 <xwss:SymmetricKey keyAlias="symmetric" />

 <xwss:EncryptionTarget type="qname" value="{http://schemas.
xmlsoap.org/soap/envelope/}Body" enforce="true"
 contentOnly="true" />
 </xwss:RequireEncryption>

---client policy file
<xwss:Encrypt>
 <xwss:SymmetricKey keyAlias="symmetric" />
 <xwss:Target type="qname">{http://schemas.xmlsoap.org/soap/
envelope/}Body
 </xwss:Target>
 </xwss:Encrypt>

This part in the server and client configuration files causes a symmetric store to be used for
cryptography. The callbackHandler (keyStoreHandlerBean) uses a symmetric keystore
(symmetricStore bean) with the key password as keyPassword. The KeyStore bean will
be generated by reading from a keystore location (symmetricStore.jks) with the keystore
password as symmetricPassword and the type set to JCEKS (passwords and the type are
set at the time of symmetric keystore generation).

 <bean id="keyStoreHandler" class="org.springframework.
ws.soap.security.xwss.callback.KeyStoreCallbackHandler">
 <property name="symmetricStore" ref="symmetricStore" />
 <property name="symmetricKeyPassword" value="keyPassword" />
 </bean>
 <bean id="symmetricStore"

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/

Chapter 7

233

 class="org.springframework.ws.soap.security.support.
KeyStoreFactoryBean">
 <property name="password" value="symmetricPassword" />
 <property name="location" value="/WEB-INF/symmetricStore.jks" />
 <property name="type" value="JCEKS" />
 </bean>

In the second case, almost all the settings are the same, except that the client is using
the server public key for encrypting and the server is using the server store private key for
decryption. The following section in the server-side configuration file causes the server to
use a server private key in the server-side keystore for decryption. The private key password
is serPkPasswords and the alias of the private key entry in the keystore is server. The
KeyStore bean will be generated by reading from the keystore file (serverStore.jks)
with the password serverPassword (passwords and the alias are set at the time of
keystore generation).

---server configuration
 <bean id="keyStoreHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
KeyStoreCallbackHandler">
 <property name="keyStore" ref="keyStore" />

 <property name="privateKeyPassword" value="serPkPassword" />

 <property name="defaultAlias" value="server" />
 </bean>

 <bean id="keyStore"
 class="org.springframework.ws.soap.security.support.
KeyStoreFactoryBean">
 <property name="location" value="/WEB-INF/serverStore.jks" />
 <property name="password" value="serverPassword" />
 </bean>

This section in the client-side configuration file causes the client to use the server certificate
(public key) in the client-side trust store for encryption. The KeyStore (trust store here) bean
will be generated by reading from clientStore.jks with the password clientPAssword.

---client configuration
 <bean id="keyStoreHandler"
 class="org.springframework.ws.soap.security.xwss.callback.
KeyStoreCallbackHandler">
 <property name="trustStore" ref="trustStore"/>

 </bean>

Securing SOAP Web-Services using XWSS Library

234

 <bean id="trustStore"
 class="org.springframework.ws.soap.security.support.
KeyStoreFactoryBean">
 <property name="location" value="/clientStore.jks" />
 <property name="password" value="clientPassword" />
 </bean>

In the policy file for the client and server side, the following line causes the server public
key to be used for encrypting in the client and the private key in the server store to be used
for decryption.

<xwss:X509Token certificateAlias="server"/>

In the third case, the following section in the policy files for the server and client causes only
a part of the payload to be encrypted:

<xwss:Target type="qname">{http://www.packtpub.com/LiveRestaurant/
placeOrderService/schema}OrderRequest</xwss:Target>

When encrypting the whole of the payload, use WS-Addressing
because routing information will be included in the header.

Keystore, key management, frequent updates to keys, and
certificates are separate areas and are not a part of this book.
Choosing the best option needs more study, and this is part of
architecture-related work.

See also...
The recipes Securing SOAP messages using a digital signature and Preparing pair and
symmetric keystores, discussed in this chapter.

The recipe Creating Web-Service client for WS-Addressing endpoint, discussed in Chapter 2,
Building Clients for SOAP Web Services.

8
Securing SOAP

Web-Services using
WSS4J Library

In this chapter, we will cover:

ff Authenticating a Web-Service call using a username token with a plain/digest
password

ff Authenticating a Web-Service call using Spring security to authenticate a username
token with a plain/digest password

ff Securing SOAP messages using a digital signature

ff Authenticating a Web-Service call using an X509 certificate

ff Encrypting/decrypting SOAP Messages

Introduction
In the previous chapter, the usage of SUN's implementation (XWSS): OASIS
Web-Services Security (WS-Security or WSS) specification in Spring-WS (that uses
XwsSecurityInterceptor to perform security operations) is explained. In this chapter,
Spring-WS's support for Apache's implementation (WSS4J) of OASIS WS-Security specification
will be explained. Even though both of these implementation of WS-Security are capable
of performing the required security operations (authentication, signing messages, and
encryption/decryption), WSS4J performs faster than XWSS.

Securing SOAP Web-Services using WSS4J Library

236

Spring-WS supports WSS4J using Wss4jSecurityInterceptor, which is an
EndpointInterceptor that performs security operations on request messages
before calling the Endpoint.

While XWSS uses the external configuration policy file, WSS4J (and
Wss4jSecurityInterceptor accordingly) requires no external configuration file and is
entirely configurable by properties. The validation (receiver-side) and securement (sender-
side) actions applied by this interceptor are specified through validationActions and
securementActions properties. Multiple actions can be set as space-separated strings.
Here is an example configuration on the receiver side (server-side in this chapter):

<!--In receiver side(server-side in this chapter)-->
<bean id="wss4jSecurityInterceptor"
 <property name="validationActions" value="UsernameToken Encrypt" />
 ..
 <!--In sender side(client-side in this chapter)-->
 <property name="securementActions" value="UsernameToken Encrypt" />
 ..
</bean>

The validationActions is an operations list made up of space-separated strings. When a
sender sends a message, the validationActions (on receiver-side) will be executed.

The securementActions is an operations list made of space-separated strings. These
actions will be executed when the sender sends a message to a receiver.

ff Validation actions: UsernameToken, Timestamp, Encrypt, signature, and
NoSecurity.

ff Securement actions: UsernameToken, UsernameTokenSignature, Timestamp,
Encrypt, Signature, and NoSecurity.

The order of the actions is important and is applied by the Wss4jSecurityInterceptor. This
interceptor will return a fault message if the incoming SOAP message securementActions
(in sender-side) was sent in a different way than the one configured by validationActions
(in receiver-side).

For the operations, such as encryption/decryption or signatures, WSS4J needs to read data
from a key store (store.jks):

<bean class="org.springframework.
 ws.soap.security.wss4j.support.CryptoFactoryBean">
 <property name="key storePassword" value="storePassword" />
 <property name="key storeLocation" value="/WEB-INF/store.jks" />
</bean>

Chapter 8

237

Security concepts such as authentication, signatures, decryption, and encryption were already
detailed in the previous chapter. In this chapter, we will discuss how to implement these
features using WSS4J.

For simplification, for most of the recipes in this chapter, use the projects in How to integrate
test using Spring-JUnit support, Chapter 3, Testing and Monitoring Web-Services, to set up a
server and to send and receive messages by the client. However, in the last recipe, projects
from Chapter 2, Creating Web-Service client for WS-Addressing endpoint, are used
for the server and client side.

Authenticating a Web-Service call using a
username token with a plain/digest password

Authentication simply means to check whether callers of a service are who they claim to be.
One way of checking the authentication of a caller is to check its password (if we consider a
username as a person, the password is similar to the signature of the person). Spring-WS uses
Wss4jSecurityInterceptor to send/receive the username token with the password
along with SOAP messages, and to compare it (in the receiver-side) with what is set as a
pre-defined username/password in the property format. This property setting of the
Interceptor force tells the sender of messages that a username token with the password
should be included in the sender messages, and in the receiver side, the receiver expects
to receive this username token with a password for authentication.

Transmitting a plain password makes a SOAP message unsecure.
Wss4jSecurityInterceptor provides configuration properties (in the property format)
to include the digest of the password along with sender message. On the receiver's side, the
digested password included in the incoming message will be compared with the digested
password, calculated from what is set in the property format.

This recipe presents how to authenticate a Web-Service call using the username token. Here,
the client acts as a sender and the server acts as the receiver. This recipe contains two cases.
In the first case, the password will be transmitted in plain text format. In the second case, by
changing the property, the password will be transmitted in digest format.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-8.1 (for a server-side Web-Service), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

Securing SOAP Web-Services using WSS4J Library

238

2.	 LiveRestaurant_R-8.1-Client (for client-side), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

How to do it...
Follow these steps to implement authentication using a plain username token with a
plain-text password:

1.	 Register Wss4jSecurityInterceptor in the server-side application
context (spring-ws-servlet.xml), set the validation action to
UsernameToken, and configure the callbackHandler (….wss4j.callback.
SimplePasswordValidationCallbackHandler) within this interceptor.

2.	 Register Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml), set the securement action to UsernameToken,
and set the username, password, and password type (in text format here).

3.	 Run the following command on Liverestaurant_R-8.1:

mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-8.1-Client:

mvn clean package

Here is the output of the client side (note the UsernameToken with the plain
password tags that is highlighted within the Header of the SOAP's Envelope):
Sent request

[<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

 <wsse:Security ...>

 <wsse:UsernameToken ...>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password #PasswordText">password</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

</SOAP-ENV:Header>

....

Chapter 8

239

<tns:placeOrderRequest ...>

 </tns:order>

</tns:placeOrderRequest>

... Received response

<tns:placeOrderResponse ...">

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

...

Follow these steps to implement authentication using the username token with the
digest password:

1.	 Modify the client-side application context (applicationContext.xml) to set
the password's type to the digest format (note that no change in the server side
is required).

2.	 Run the following command on Liverestaurant_R-8.1:

mvn clean package tomcat:run

3.	 Run the following command on Liverestaurant_R-8.1-Client:

mvn clean package

Here is the client-side output (note the UsernameToken with the digest password
tags that is highlighted within the Header of the SOAP's Envelope):
Sent request

[<SOAP-ENV:Envelope>

 <SOAP-ENV:Header>

 <wsse:Security ...>

 <wsse:UsernameToken ...>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password #PasswordDigest">

 VstlXUXOwyKCIxYh29bNWaSKsRI=

 </wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </SOAP-ENV:Header>

 <tns:placeOrderRequest ...>

Securing SOAP Web-Services using WSS4J Library

240

 </tns:order>

 </tns:placeOrderRequest>

 ... Received response

 <tns:placeOrderResponse ...">

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

 </tns:placeOrderResponse>

 ...

How it works...
The Liverestaurant_R-8.1 project is a server-side Web-Service that requires its client to
send a SOAP envelope that contains a username with a password.

The Liverestaurant_R-8.1-Client project is a client-side test project that sends SOAP
envelopes to the server that contains a username token with a password.

On the server side, Wss4jSecurityInterceptor forces the server for a username token
validation for all the incoming messages:

<sws:interceptors>

 <bean id="wss4jSecurityInterceptor"	 class="org.
 springframework.
 ws.soap.security.wss4j.Wss4jSecurityInterceptor">
 <property name=
 "validationCallbackHandler" ref="callbackHandler" />
 <property name="validationActions" value="UsernameToken" />
 </bean>
</sws:interceptors>

The interceptor uses a validationCallbackHandler
(SimplePasswordValidationCallbackHandler) to compare the incoming message's
username/password with the included username/password (admin/password).

<bean id="callbackHandler" class="org.springframework.aws.soap.
 security.wss4j.callback.SimplePasswordValidationCallbackHandler">
 <property name="users">
 <props>
 <prop key="admin">password</prop>
 </props>
 </property>
</bean>

Chapter 8

241

On the client side, wss4jSecurityInterceptor includes the username (admin/
password) token in all outgoing messages:

<bean id="wss4jSecurityInterceptor" class="org.springframework.ws.
 soap.security.wss4j.Wss4jSecurityInterceptor">
 <property name="securementActions" value="UsernameToken" />
 <property name="securementUsername" value="admin" />
 <property name="securementPassword" value="password" />
 <property name="securementPasswordType" value="PasswordText" />
</bean>

In this case, authenticate using a plain username token, since the client
includes a plain password (<property name="securementPasswordType"
value="PasswordText"/>) in the ongoing messages:

<wsse:UsernameToke......>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password ...#PasswordText">password</wsse:Password>

</wsse:UsernameToken>

However, in the second case, authenticate using the digest username token,
since the password digest (<property name="securementPasswordType"
value="PasswordDigest">) is included in the username token:

<wsse:UsernameToken...>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password ...#PasswordDigest">

 VstlXUXOwyKCIxYh29bNWaSKsRI=

 </wsse:Password>

 ...

</wsse:UsernameToken>

In this case, the server compares an incoming SOAP message digest password with the
calculated digested password set inside spring-ws-servlet.xml. In this way, the
communication will be more secure by comparison with the first case on which the password
was transmitted in plain text.

See also...
In this chapter:

ff Authenticating a Web-Service call using Spring security, to authenticate a username
token with a plain/digest password

ff Authenticating a Web-Service call using an X509 certificate

Securing SOAP Web-Services using WSS4J Library

242

Authenticating a Web-Service call using
Spring security to authenticate a username
token with a plain/digest password

Here we have the authentication task using the username token with the
digest/plain password, as we did in the first recipe of this chapter. The only
difference here is that the Spring security framework is used for authentication
(SpringPlainTextPasswordValidationCallbackHandler and
SpringDigestPasswordValidationCallbackHandler). Since the Spring security
framework is beyond the scope of this book, it is not described here. However, you can read
more about it in the Spring security reference documentation, available at the following
website: http://www.springsource.org/security.

Just like the first recipe of this chapter, this recipe also contains two cases. In the first case,
the password will be transmitted in a plain-text format. In the second case, by changing the
configuration, the password will be transmitted in a digest format.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-8.2 (for a server-side Web-Service), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

2.	 LiveRestaurant_R-8.2-Client (for client-side), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

Chapter 8

243

How to do it...
Follow these steps to implement the authentication of a Web-Service call, using Spring
security to authenticate a username token with a plain-text password:

1.	 Register Wss4jSecurityInterceptor in the server-side application context
(spring-ws-servlet.xml), set the validation action to UsernameToken,
and configure the validationCallbackHandler (….wss4j.callback.
SpringPlainTextPasswordValidationCallbackHandler) within
this interceptor.

2.	 Register Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml), set securement action to UsernameToken,
and set the username, password, and password type (text format here).

3.	 Run the following command on Liverestaurant_R-8.2:
mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-8.2-Client:

mvn clean package

Here is the output of the client side (note the UsernameToken with the digest
password tags that is highlighted within the Header of the SOAP's Envelop):
Sent request

[<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

 <wsse:Security ...>

 <wsse:UsernameToken ...>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password #PasswordText">password</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

</SOAP-ENV:Header>

....

<tns:placeOrderRequest ...>

 </tns:order>

</tns:placeOrderRequest>

... Received response

<tns:placeOrderResponse ...">

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

….

Securing SOAP Web-Services using WSS4J Library

244

Follow these steps to implement the authentication of a Web-Service call using Spring security
to authenticate a username token with a digested password:

1.	 Modify Wss4jSecurityInterceptor in the server-side
application context (spring-ws-servlet.xml) and configure the
validationCallbackHandler (….ws.soap.security.wss4j.callback.
SpringDigestPasswordValidationCallbackHandler) within this interceptor.

2.	 Modify Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml) to set the password type (digest format here).

3.	 Run the following command on Liverestaurant_R-8.2:

mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-8.2-Client:

mvn clean package

Here is the output of the client side (note the UsernameToken with the digest
password tags that is highlighted within Header of the SOAP's Envelop):
Sent request

[<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

 <wsse:Security ...>

 <wsse:UsernameToken ...>

 <wsse:Username>admin</wsse:Username>

 <wsse:Password #PasswordDigest">

 VstlXUXOwyKCIxYh29bNWaSKsRI=</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </SOAP-ENV:Header>

 <tns:placeOrderRequest ...>

 </tns:order>

</tns:placeOrderRequest>

... Received response

<tns:placeOrderResponse ...">

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

...

Chapter 8

245

How it works...
In the Liverestaurant_R-8.2 project, security for client and server is almost the same
as Liverestaurant_R-8.1 (as shown in the first recipe of this chapter), except for the
validation of the username token on the server side. A Spring security class is responsible
for validating the username and the password, by comparison with the incoming message's
username/password with the fetch data from a DAO layer (instead of hardcoding the
username/password in spring-ws-servlet.xml). In addition, other data related to
the successfully authenticated user can be fetched from the DAO layer and returned for
authorization to check some account data.

In the first case, the CallbackHandler
SpringPlainTextPasswordValidationCallbackHandler uses an
authenticationManager, which uses DaoAuthenticationProvider.

<bean id="springSecurityHandler"
 class="org.springframework.ws.soap.security.
 wss4j.callback.SpringPlainTextPasswordValidationCallbackHandler">
 <property name="authenticationManager"
 ref="authenticationManager"/>
</bean>

<bean id="authenticationManager" class=
 "org.springframework.security.authentication.ProviderManager">
 <property name="providers">
 <bean class="org.springframework.
 security.authentication.dao.DaoAuthenticationProvider">
 <property name="userDetailsService" ref="userDetailsService"/>
 </bean>
 </property>
</bean>

This provider calls a customized user information service (MyUserDetailService.java)
that gets a username from the provider and internally fetches all the information for that user
from a DAO layer (for example, password, roles, is expired, and so on). This service finally
returns the populated data in the UserDetails type class (MyUserDetails.java). Now,
if the UserDetails data matches the incoming message's username/password, it returns a
response; otherwise, it returns a SOAP fault message:

public class MyUserDetailService implements UserDetailsService {

@Override
public UserDetails loadUserByUsername(String username)
throws UsernameNotFoundException, DataAccessException {

Securing SOAP Web-Services using WSS4J Library

246

 return getUserDataFromDao(username);
}

private MyUserDetail getUserDataFromDao(String username) {

 /**
 *Real scenario: find user data from a DAO layer by userName,
 * if this user name found, populate MyUserDetail with its
 data(username, password,Role,).
 */
 MyUserDetail mydetail=new MyUserDetail(
 username,"pass",true,true,true,true);
 mydetail.getAuthorities().add(
 new GrantedAuthorityImpl("ROLE_GENERAL_OPERATOR"));

 return mydetail;

}

In the second case, however, the CallbackHandler is
SpringDigestPasswordValidationCallbackHandler, which compares the digest
password included in the SOAP incoming message with the digested password that is fetched
from the DAO layer (note that the DAO layer could fetch data from different data-sources, such
as the database, LDAP, XML file, and so on):

<bean id="springSecurityHandler"
 class="org.springframework.ws.soap.security.wss4j.callback.
 SpringDigestPasswordValidationCallbackHandler">
 <property name="userDetailsService" ref="userDetailsService"/>
</bean>

Same as the first recipe in this chapter, setting <property
name="securementPasswordType" value="PasswordText"> to PasswordDigest in
the client application context causes the password to be transmitted into a digested format.

See also...
In this chapter:

ff Authenticating a Web-Service call, using a username token with a plain/digest
password

ff Authenticating a Web-Service call using an X509 certificate

Chapter 8

247

Securing SOAP messages using a digital
signature

The purpose of a signature in the security term is to verify whether a received message
is altered. Signature covers two main tasks in WS-Security, namely, signing and verifying
signatures of messages. All concepts involved in a message signature are detailed in the
previous chapter, in the Securing SOAP messages using digital signature recipe. In this recipe,
signing and verification of a signature using WSS4J is presented.

Spring-WS's Wss4jSecurityInterceptor is capable of signing and verification of
signatures based on the WS-Security standard.

Setting this interceptor's securementActions property to Signature causes the
sender to sign outgoing messages. To encrypt the signature token, the sender's private
key is required. Properties of a key store are needed to be configured in the application
context file. The alias and the password of the private key (inside key store) for use are
specified by the securementUsername and securementPassword properties. The
securementSignatureCrypto should specify the key store containing the private key.

Setting validationActions to value="Signature" causes the receiver of the message
to expect and validate the incoming message signatures (as described at beginning). The
validationSignatureCrypto bean should specify the key store that contains the public
key certificates (trusted certificate) of the sender.

org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean
from the wss4j package can extract the key store data (such as the certificate and other key
store information), and this data could be used for authentication.

In this recipe, the client store private key is used for encryption of the client's signature of a
message. On the server-side, the client's public key certificate, included in the server key store
(within a trusted certificate entry), will be used for decryption of the message signature token.
Then the server does the verification of the signature (as described in the beginning). Key
store used in Chapter 7, in the recipe Preparing pair and symmetric Key stores.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-8.3 (for a server-side Web-Service), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

Securing SOAP Web-Services using WSS4J Library

248

2.	 LiveRestaurant_R-8.3-Client (for the client-side), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

How to do it...
1.	 Register Wss4jSecurityInterceptor in the server-side application context

(spring-ws-servlet.xml), set the validation action to Signature, and set the
property validationSignatureCrypto to CryptoFactoryBean (configure the
server-side key store location and its password) within this interceptor.

2.	 Register Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml), set the securement action to Signature, and set
the property securementSignatureCrypto to CryptoFactoryBean (configure
the client-side key store location and its password) within this interceptor.

3.	 Run the following command on Liverestaurant_R-8.3:

mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-8.3-Client:
mvn clean package

Here is the output of the client side (please note highlighted text):
Sent request

<SOAP-ENV:Header>

 <wsse:Security...>

 <ds:Signature ...>

 <ds:SignedInfo>

 </ds:SignedInfo>

 <ds:SignatureValue>

 IYSEHmk+.....

 </ds:SignatureValue>

 <ds:KeyInfo ..>

 <wsse:SecurityTokenReference ...>

 <ds:X509Data>

 <ds:X509IssuerSerial>

Chapter 8

249

 <ds:X509IssuerName>

 CN=MyFirstName MyLastName,OU=Software,O=MyCompany,
L=MyCity,ST=MyProvince,C=ME

 </ds:X509IssuerName>

 <ds:X509SerialNumber>1311686430</
ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body ...>

 <tns:placeOrderRequest ...>

 </tns:order>

</tns:placeOrderRequest>

.. Received response

.....<tns:placeOrderResponse....>

 <tns:refNumber>order-John_Smith_1234</tns:refNumber>

</tns:placeOrderResponse>

How it works...
Security configuration on the server side requires the client to include a binary signature
token in the message. Settings in the client-side configuration file include the signature token
in the outgoing messages. A client uses its own private key, included in client-side key store,
to encrypt the signature of a message (calculated based on the message's content). On the
server-side, the client certificate from the server-side (trusted certificate) key store is used
for decrypting of a signature token. Then the verification of the signature from the binary
signature token (as described at the beginning of this recipe) will be done.

Setting validationActions to Signature on the server-side causes it to expect a
signature from the client configuration, and setting the key store causes the client-side public-
key certificate (trusted certificate) in the server-side key store to be used for the decryption of
the signature. Then the server does a verification of the signature:

<sws:interceptors>
 <bean class="org.springframework.ws.soap.server.endpoint.
 interceptor.PayloadValidatingInterceptor">

Securing SOAP Web-Services using WSS4J Library

250

 <property name="schema" value="/WEB-INF/orderService.xsd" />
 <property name="validateRequest" value="true" />
 <property name="validateResponse" value="true" />
 </bean>
 <bean class="org.springframework.ws.soap.server.endpoint.
 interceptor.SoapEnvelopeLoggingInterceptor"/>
 <bean id="wsSecurityInterceptor" class="org.springframework.ws.
 soap.security.wss4j.Wss4jSecurityInterceptor">
 <property name="validationActions" value="Signature" />
 <property name="validationSignatureCrypto">
 <bean class="org.springframework.ws.soap.security.
 wss4j.support.CryptoFactoryBean">
 <property name="key storePassword" value="serverPassword"
 />
 <property name="key storeLocation"
 value="/WEB-INF/serverStore.jks" />
 </bean>
 </property>
 </bean>
</sws:interceptors>

The code statement <property name="securementActions"
value="Signature" />, and setting the key store on the client-side configuration causes
the client to send the encrypted signature (using the client's private key with the alias
client, and the client encrypts a hash (signature) generated from the message) and
is sent along with the message:

<bean id="wss4jSecurityInterceptor" class="org.springframework.ws.
 soap.security.wss4j.Wss4jSecurityInterceptor">
 <property name="securementActions" value="Signature" />
 <property name="securementUsername" value="client" />
 <property name="securementPassword" value="cliPkPassword" />
 <property name="securementSignatureCrypto">
 <bean class="org.springframework.ws.soap.security.
 wss4j.support.CryptoFactoryBean">
 <property name="key storePassword" value="clientPassword" />
 <property name="key storeLocation"
 value="classpath:/clientStore.jks" />
 </bean>
 </property>
</bean>

Chapter 8

251

See also...
In this chapter:

ff Authenticating a Web-Service call using an X509 certificate

Chapter 7, Securing SOAP Web Services using XWSS Library:

ff Preparing pair and symmetric Key stores

Authenticating a Web-Service call using an
X509 certificate

Earlier in this chapter, how to use a username token for authentication of an incoming
message is presented. The client's certificate, which came along with an incoming message,
could be used to authenticate as an alternative for the username's token for authentication.

To make sure that all incoming SOAP messages carry a client's certificate, the configuration
file on the sender's side should sign and the receiver should require signatures on all
messages. In other words, the client should sign the message, and include the X509
certificate in the outgoing message, and the server, first compares the incoming certificate
with the trusted certificate, which is embedded within server key store, and then it goes into
the steps to verify the signature of the incoming message.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-8.4 (for a server-side Web-Service), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

2.	 LiveRestaurant_R-8.4-Client (for the client-side), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

Securing SOAP Web-Services using WSS4J Library

252

How to do it...
1.	 Register Wss4jSecurityInterceptor on the server-side application context

(spring-ws-servlet.xml), set the validation action to Signature, and set the
property validationSignatureCrypto to CryptoFactoryBean (configure the
server-side key store location and its password) within this interceptor.

2.	 Register Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml), set the securement action to Signature, set a
property (securementSignatureKeyIdentifier) to include a binary X509 token,
and set the property securementSignatureCrypto to CryptoFactoryBean
(configure the client-side key store location and its password) within this interceptor.

Here is the output of the client side (please note highlighted text):
Sent request

<SOAP-ENV:Header>

 <wsse:Security ...>

 <wsse:BinarySecurityToken....wss-x509-token-profile-
 1.0#X509v3" ...>

 MIICbTCCAdagAwIBAgIETi6/HjANBgkqhki...

 </wsse:BinarySecurityToken>

 <ds:Signature>

 </ds:Signature>....

How it works...
Signing and verification of signature is the same as the Securing SOAP messages using
a digital signature recipe from this chapter. The difference is the following part of the
configuration to generate a BinarySecurityToken element containing the X509 certificate,
and to include it in the outgoing message on the sender's side:

<property name="securementSignatureKeyIdentifier"
 value="DirectReference" />

Embedding the client certificate in the caller message while signing the message causes the
server to validate this certificate with the one included in the key store (trusted certificate
entry). This validation confirms whether the caller is the person he/she claims to be.

Chapter 8

253

See also...
In this chapter:

ff Securing Soap messages using a digital signature

Chapter 7, Securing SOAP Web Services using XWSS Library:

ff Preparing pair and symmetric Key stores

Encrypting/decrypting SOAP messages
The concepts of encryption and decryption of SOAP messages are the same as
described in Encrypting/Decrypting of SOAP Messages from Chapter 7. Spring-WS's
Wss4jSecurityInterceptor provides decryption of the incoming SOAP messages
by including the setting property validationActions to Encrypt on the receiver's-
side (server-side here). On the sender's side (the client side here), setting the property
securementActions causes the sender to encrypt outgoing messages.

Wss4jSecurityInterceptor needs to access the key store for encryption/decryption.
In the case of using a symmetric key, Key storeCallbackHandler is responsible for
accessing (by setting the properties of location and password) and reading from a
symmetric key store, and passing it to the interceptor. However, in the case of using a
private/public key pair store, CryptoFactoryBean will do the same job.

In this recipe, in the first case, a symmetric key, which is shared by the client and server,
is used for encryption on the client-side and decryption on the server-side. Then, in the
second case, the server public key certificate in the client-side key store (trusted certificate)
is used for data encryption and the server private key in the server-side key store is used
for decryption.

In the first two cases, the whole payload is used in Encryption/Decryption. By setting one
property, it is possible to Encrypt/Decrypt part of the payload. In the third case, only part
of the payload is set as the target of Encryption/Decryption.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-8.5 (for a server-side Web-Service), with the following
Maven dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

Securing SOAP Web-Services using WSS4J Library

254

2.	 LiveRestaurant_R-8.5-Client (for the client-side), with the following Maven
dependencies:

�� spring-ws-security-2.0.1.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� spring-expression-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

How to do it...
Follow these steps to implement encryption/decryption using a symmetric key:

1.	 Register Wss4jSecurityInterceptor on the server-side application context
(spring-ws-servlet.xml), set the validation action to Encrypt, and configure
Key storeCallbackHandler to read from the symmetric key store (configure the
server-side symmetric key store location and its password) within this interceptor.

2.	 Register Wss4jSecurityInterceptor on the client-side application context
(applicationContext.xml), set the securement action to Encrypt, and
configure the Key storeCallbackHandler to read from the symmetric key
store (configure the client-side symmetric key store location and its password)
within this interceptor.

3.	 Run the following command on Liverestaurant_R-8.5:

mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-8.5-Client:

mvn clean package

Here is the output of the client side (note highlighted text):
Sent request...

<SOAP-ENV:Header>

 <wsse:Security...>

 <xenc:ReferenceList><xenc:DataReference../>
 </xenc:ReferenceList>

 </wsse:Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

 <xenc:EncryptedData ...>

 <xenc:EncryptionMethod..tripledes-cbc"/>

 <ds:KeyInfo...>

Chapter 8

255

 <ds:KeyName>symmetric</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData><xenc:CipherValue>

 3a2tx9zTnVTKl7E+Q6wm...

 </xenc:CipherValue></xenc:CipherData>

 </xenc:EncryptedData>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Follow these steps to implement encryption, using a server-trusted certificate on the client-
side key store (in clientStore.jsk), and decryption on the server-side private key (in
serverStore.jks):

1.	 Register Wss4jSecurityInterceptor on the server-side application context
(spring-ws-servlet.xml), set the validation action to Encrypt, and set the
property validationSignatureCrypto to CryptoFactoryBean (configure the
server-side key store location and its password) within this interceptor.

2.	 Register the Wss4jSecurityInterceptor in the client-side application context
(applicationContext.xml), set the securement action to Encrypt, and set
securementSignatureCrypto to CryptoFactoryBean (configure the client-side
key store location and its password) within this interceptor.

Here is the output of the server side (note highlighted text):
<SOAP-ENV:Header>

 <wsse:Security...>

 <xenc:EncryptionMethod ..">

 <wsse:SecurityTokenReference ...>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>

 CN=MyFirstName MyLastName,OU=Software,O=MyCompany,
 L=MyCity,ST=MyProvince,C=ME

 </ds:X509IssuerName>

 <ds:X509SerialNumber>1311685900</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>dn0lokNhtmZ9...</xenc:CipherValue>

 </xenc:CipherData><xenc:ReferenceList>

Securing SOAP Web-Services using WSS4J Library

256

 </wsse:Security>

 </SOAP-ENV:Header><SOAP-ENV:Body>

 <xenc:EncryptedData .../>

 <ds:KeyInfo ...xmldsig#">

 <wsse:SecurityTokenReference ...>

 <wsse:Reference .../>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData><xenc:CipherValue>

 UDO872y+r....</xenc:CipherValue>

 </xenc:CipherData></xenc:EncryptedData>

</SOAP-ENV:Body>

Follow these steps to implement encryption/decryption on the payload:

1.	 Modify case 2, set the property securementEncryptionParts to a specific part of
the payload in Wss4jSecurityInterceptor on the server side/client side.

2.	 Run the following command on Liverestaurant_R-8.5:
mvn clean package tomcat:run

3.	 Run the following command on Liverestaurant_R-8.5-Client:
mvn clean package

Here is the output of the client side (note highlighted text):
….......

<SOAP-ENV:Body>

<tns:placeOrderRequest...>

<xenc:EncryptedData...>

<xenc:EncryptionMethod .../>

<ds:KeyInfo..xmldsig#">

<wsse:SecurityTokenReference ...>

<wsse:Reference.../></wsse:SecurityTokenReference>

</ds:KeyInfo><xenc:CipherData>

<xenc:CipherValue>

pGzc3/j5GX......

</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedData>

</tns:placeOrderRequest>

…....

Chapter 8

257

How it works...
In the first case, the client and the server both share the symmetric key. The client encrypts
the entire payload using a symmetric key, and sends it to the server. On the server side, the
same key will be used to decrypt the payload.

However, in the second and third cases, the client-side server certificate, embedded in the
client store, is used for encryption of the payload, and on the server side, the private key of
the server store will be used for decryption. The difference between the second and the third
case is that the second case encrypts/decrypts the whole payload, but in the third case, only
part of the payload will be the target of encryption/decryption.

In the first case, the setting validationActions to Encrypt on server-side causes the
server to decrypt the incoming messages using a symmetric key. The interceptor uses the
ValidationCallbackHandler for decryption, using a symmetric key store, set in the
location property. The property type sets the store type of the key, and password sets
the key store password of the symmetric key:

<bean class="org.springframework.ws.soap.
 security.wss4j.Wss4jSecurityInterceptor">
 <property name="validationActions" value="Encrypt"/>

 <property name="validationCallbackHandler">
 <bean class="org.springframework.ws.soap.security.
 wss4j.callback.Key storeCallbackHandler">
 <property name="key store">
 <bean class="org.springframework.ws.soap.security.
 support.Key storeFactoryBean">
 <property name="location" value="/WEB-
 INF/symmetricStore.jks"/>
 <property name="type" value="JCEKS"/>
 <property name="password" value="symmetricPassword"/>
 </bean>
 </property>
 <property name="symmetricKeyPassword" value="keyPassword"/>
 </bean>
 </property>
</bean>

On the client-side, the setting property securementActions to Encrypt causes
the client to encrypt all outgoing messages. Encryption is customized by setting
securementEncryptionKeyIdentifier to EmbeddedKeyName. When the
EmbeddedKeyName type is chosen, the secret key to encryption is mandatory. The
symmetric key alias (symmetric here) is set by the securementEncryptionUser.

Securing SOAP Web-Services using WSS4J Library

258

By default, the ds:KeyName element in the SOAP header takes
the value of the securementEncryptionUser property.
securementEncryptionEmbeddedKeyName could be used to indicate a different value.
The securementEncryptionKeyTransportAlgorithm property defines which algorithm
to use to encrypt the generated symmetric key. securementCallbackHandler is provided
with Key storeCallbackHandler, which points to the appropriate key store, that is, a
symmetric key store, as described in the server-side configuration:

<bean 	 class="org.springframework.ws.soap.
 security.wss4j.Wss4jSecurityInterceptor">
 <property name="securementActions" value="Encrypt" />
 <property name="securementEncryptionKeyIdentifier"
 value="EmbeddedKeyName"/>
 <property name="securementEncryptionUser" value="symmetric"/>
 <property name="securementEncryptionEmbeddedKeyName"
 value="symmetric"/>
 <property name="SecurementEncryptionSymAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <property name="securementCallbackHandler">
 <bean class="org.springframework.ws.soap.security.
 wss4j.callback.Key storeCallbackHandler">
 <property name="symmetricKeyPassword" value="keyPassword"/>
 <property name="key store">
 <bean class="org.springframework.ws.soap.security.
 support.Key storeFactoryBean">
 <property name="location" value="/symmetricStore.jks"/>
 <property name="type" value="JCEKS"/>
 <property name="password" value="symmetricPassword"/>
 </bean>
 </property>
 </bean>
 </property>
</bean>

In the second and the third case, the validationDecryptionCrypto, configured on the
server side is almost the same as the first case for decrypting data:

<bean class="org.springframework.ws.soap.security.
 wss4j.Wss4jSecurityInterceptor">
 <property name="validationActions" value="Encrypt" />

 <property name="validationDecryptionCrypto">

 <bean class="org.springframework.ws.soap.security.
 wss4j.support.CryptoFactoryBean">

Chapter 8

259

 <property name="key storePassword" value="serverPassword" />
 <property name="key storeLocation" value="/WEB-
 INF/serverStore.jks" />
 </bean>
 </property>
 <property name="validationCallbackHandler">
 <bean class="org.springframework.ws.soap.security.
 wss4j.callback.Key storeCallbackHandler">
 <property name="privateKeyPassword" value="serPkPassword" />
 </bean>
 </property>
</bean>

On the client-side, setting value="Encrypt" of securementActions causes the client
to encrypt all outgoing messages. securementEncryptionCrypto is for setting the key
store location and the password. SecurementEncryptionUser is for setting the alias of
the server certificate to reside on the client key store:

<bean class="org.springframework.ws.soap.security.
 wss4j.Wss4jSecurityInterceptor">
 <property name="securementActions" value="Encrypt" />
 <property name="securementEncryptionUser" value="server" />

 <property name="securementEncryptionCrypto">
 <bean class="org.springframework.ws.soap.security.
 wss4j.support.CryptoFactoryBean">
 <property name="key storePassword" value="clientPassword" />
 <property name="key storeLocation" value="/clientStore.jks" />
 </bean>
 </property>
</bean>

The difference between case 2 and 3 is that the following the configuration setting on
the client-side/server-side configuration causes only a part of the payload to be
encrypted/decrypted.

---client/server configuration file	
<property name="securementEncryptionParts"value="{Content}
 {http://www.packtpub.com/LiveRestaurant/OrderService/schema}
 placeOrderRequest"/>

Securing SOAP Web-Services using WSS4J Library

260

See also...
In this chapter:

ff Securing SOAP messages using a digital signature

 Chapter 2, Building Clients for SOAP Web-Services

ff Creating Web-Service client for WS-Addressing endpoint

 Chapter 7, Securing SOAP Web Services using XWSS Library

ff Preparing a pair and symmetric key stores

9
RESTful Web-Services

In this chapter, we will cover:

ff Setting up a Spring RESTful Web-Service, using RESTful features in Spring MVC

ff Using the RESTClient tool to access a Spring RESTful Web-Service

ff Setting up a Spring RESTful Web-Service using HTTP message conversion

ff Creating a WS client for the Spring RESTful Web-Service using Spring template classes

Introduction
Simple Object Access Protocol (SOAP) allows applications to communicate with one
another using XML as the communication format (SOAP is well understood), but because
it is XML-based, it tends to be verbose, even for very simple Web-Service scenarios.

Representational State Transfer (REST), published as a doctoral dissertation by Roy Fielding
in 2000, aimed at simplifying the usage of Web-Service.

While SOAP uses a lot of XML (that looks very complex) to communicate, REST
uses very lightweight and human-readable data (for example, the request URI
http://localhost:8080/LiveRestaurant/customerAccount/234 returns 123-3456.
Compare this simple request and response with SOAP request/response envelop, already
presented in the earlier chapters of this book. Since REST Web-Service implementation is very
flexible and could be very easy, it requires no toolkit. However, SOAP-based Web-Services need
tools for simplification (for example, to call a SOAP Web-Service, you would use tools to generate
client-side proxy classes for a contract-last Web-Service class, or use tools to generate domain
classes from a schema in a contract-first Web-Service). In the earlier chapters, you will have
realized how strict a contract-first Web-Service is with the request/response format (it must
match the contract). The REST Web-Service request/response format is all up to developers,
and could be designed as easily as possible. While using SOAP Web-Services, using JavaScript
is not easy (it needs a lot of code). REST usage is simplified using AJAX technologies and the
JSON format.

http://localhost:8080/LiveRestaurant/orderItems
http://localhost:8080/LiveRestaurant/orderItems

RESTful Web-Services

262

Here are some of REST's demerits: REST only works over HTTP;calling a RESTful Web-Service
is limited by HTTP verbs: GET, POST, PUT, and DELETE.

RESTful was built on the principles of REST, in which HTTP's methods are used based on
their concepts. For example, HTTP's GET, POST, PUT, and DELETE are all used in a RESTful
architecture that match their meaning in the same fashion as with HTTP.

RESTful Web-Services expose the state of its resources. In this chapter, for example, a RESTful
service is exposed to get the list of available order items and the order object, when an order
is placed in an online restaurant. To get a list of the available order items, the GET method is
used, and for placing an order, the POST method is used. The method PUT could be used to
add/update an entry, and DELETE could be used to delete an entry.

Here is the sample URL to make a RESTful Web-Service call and to get the list of available
order items:

http://localhost:8080/LiveRestaurant/orderItems.

The following is the return response (response format is not necessarily in XML format; it
could be in JSON, plain-text, or any format):

<list>

 <orderItem>

 <name>Burger</name>

 <id>0</id>

 </orderItem>

 <orderItem>

 <name>Pizza</name>

 <id>1</id>

 </orderItem>

 <orderItem>

 <name>Sushi</name><id>2</id>

 </orderItem>

 <orderItem>

 <name>Salad</name>

 <id>3</id>

 </orderItem>

</list>

http://localhost:8080/LiveRestaurant/orderItems
http://localhost:8080/LiveRestaurant/orderItems

Chapter 9

263

There are several implementations of the RESTful Web-Service such as Restlet, RestEasy,
and Jersey. Jersey, the most significant one in this group, is the implementation of JAX-RS
(JSR 311).

Spring, being a widely-used framework of Java EE, introduced support for RESTful
Web-Services in release 3. RESTful has been integrated into Spring's MVC layer that allows
applications to build on Spring using RESTful features. The most significant of these
features includes:

ff Annotations, such as @RequestMapping and @PathVariable, used for URI
mappings and passing parameters.

ff ContentNegotiatingViewResolver, which allows the usage of different MIME
types (such as text/xml, text/json, and text/plain)

ff HttpMessageConverter, which allows the production of multiple representations,
based on the client requests (such as ATOM, XML, and JSON).

Setting up a Spring RESTful Web-Service
using RESTful features in Spring MVC

Spring 3.0 supports RESTful Web-Services based on Spring MVC. Spring uses annotations
to set up a RESTful Web-Service and needs to be configured (within the Spring application
context file) to scan for annotation. A spring MVC controller is required to set up a RESTful
Web-Service. The @Controller annotation tags a class as the MVC controller (http://
static.springsource.org/spring/docs/current/spring-framework-
reference/html/mvc.html). The @RequestMapping annotation maps incoming
requests to an appropriate Java method in the controller class. Using this annotation, you can
define the URI and the HTTP method that is mapped to a Java class method. For example,
in the following example, the method loadOrderItems will be called if the request URI is
followed by /orderItems, and @PathVariable is for injecting the value of the request
parameters ({cayegoryId}) variable into a method parameter (String cayegoryId):

@RequestMapping(value="/orderItem/{cayegoryId}",
 method=RequestMethod.GET)
public ModelAndView loadOrderItems(@PathVariable String cayegoryId)
{...}

In this recipe, implementing a RESTful Web-Service using Spring 3 MVC is presented.
The client project of this Web-Service is implemented here, but it will be detailed in the last
recipe of this chapter: Creating a WS client for Spring RESTful Web-Service using Spring
template classes.

RESTful Web-Services

264

Getting ready
In this recipe, the project's name is LiveRestaurant_R-9.1 (the LiveRestaurant_R-
9.1-Client project is included in the code for testing purposes) with the following Maven
dependencies:

ff com.springsource.javax.servlet-2.5.0.jar

ff spring-oxm-3.0.5.RELEASE.jar

ff spring-web-3.0.5.RELEASE.jar

ff spring-webmvc-3.0.5.RELEASE.jar

ff xstream-1.3.1.jar

ff commons-logging-1.1.1.jar

spring-oxm is the Spring support for Object/XML mapping, spring-web and
spring-webmvc are the support for Seb and MVC support, and xstream is for the
Object/XML mapping framework.

How to do it...
1.	 Configure MessageDispatcherServlet inside the web.xml file (URL:http://<h

ost>:<port>/<appcontext>/* is to be forwarded to this servlet).

2.	 Define the controller file (OrderController.java).

3.	 Define the domain POJOs (Order.java,OrderItem.java) and services
(OrderService, OrderServiceImpl).

4.	 Configure the server-side application context-file (order-servlet.xml).

5.	 Run the following command on Liverestaurant_R-9.1:
mvn clean package tomcat:run

6.	 Run the following command on Liverestaurant_R-9.1-Client:
mvn clean package

Here is client-side output:
.... Created POST request for
 "http://localhost:8080/LiveRestaurant/order/1"

.....Setting request Accept header to [application/xml, text/xml,
 application/*+xml]

.... POST request for "http://localhost:8080/LiveRestaurant/
order/1"
 resulted in 200 (OK)

.....Reading [com.packtpub.liverestaurant.domain.Order] as
 "application/xml;charset=ISO-8859-1"

Chapter 9

265

.....

.....Created GET request for
 "http://localhost:8080/LiveRestaurant/orderItems"

.....Setting request Accept header to [application/xml, text/xml,
 application/*+xml]

.....GET request for "http://localhost:8080/LiveRestaurant/
orderItems"
 resulted in 200 (OK)

7.	 Browse to this link: http://localhost:8080/LiveRestaurant/orderItems,
and you will be provided with the following response:

<list>

 <orderItem>

 <name>Burger</name>

 <id>0</id>

 </orderItem>

 <orderItem>

 <name>Pizza</name>

 <id>1</id>

 </orderItem>

 <orderItem>

 <name>Sushi</name><id>2</id>

 </orderItem>

 <orderItem>

 <name>Salad</name>

 <id>3</id>

 </orderItem>

</list>

How it works...
The application is an MVC web project, in which a controller returns Spring's Model and
View objects. Spring's MarshallingView marshalls the model object into XML, using a
marshaller (XStreamMarshaller), and the XML will be sent back to the client.

RESTful Web-Services

266

All requests will come to DispatcherServlet, which will be forwarded to the controller -
OrderController, and based on the request URI, an appropriate method will be called that
will return a response back to the caller. The following configuration in web.xml forwards all
the requests to the DispatcherServlet:

<servlet>
 <servlet-name>order</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>order</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

The following setting in order-context.xml causes Spring to detect all annotations
in the package (this includes OrderService and OrderController). The
BeanNameViewResolver is for mapping a name (orderXmlView in OrderController)
to a view (the bean orderXmlView), which is an instance of org.springframework.
web.servlet.view.xml.MarshallingView:

<context:component-scan base-package=
 "com.packtpub.liverestaurant.orderservice" />
<bean class=
 "org.springframework.web.servlet.view.BeanNameViewResolver" />
<bean id="orderXmlView" class=
 "org.springframework.web.servlet.view.xml.MarshallingView">
...
</bean>

@Controller tags the class OrderController as the controller in an MVC pattern. All
caller requests will be forwarded to this class, and based on the request URI, an appropriate
method will be called. For example, the method placeOrder will be called if any URI similar
to http://<host>:<port>/<appcontext>/order/1 with an HTTP POST method comes
from a caller request.

@RequestMapping(value = "/order/{orderId}", method = RequestMethod.
POST)
public ModelAndView placeOrder(@PathVariable String orderId) {..}

@PathVariable causes the orderId parameter from the URI to be injected and passed
to the placeOrder method.

Chapter 9

267

The body of the method, placeOrder, calls a method from the OrderService interface
and returns the Order object:

Order order = orderService.placeOrder(orderId);
ModelAndView mav = new ModelAndView("orderXmlView",
 BindingResult.MODEL_KEY_PREFIX + "order", order);
return mav;

Then, it builds a view based on marshalling the Order object into the XML format, using
the Marshallingview bean (MarshallingView, which is the view in MVC, uses
XStreamMarshaller to marshall the model object into XML format), and returns it to the
caller of the service.

<bean id="orderXmlView" class=
 "org.springframework.web.servlet.view.xml.MarshallingView">
 <constructor-arg>
 <bean class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="autodetectAnnotations" value="true"/>
 </bean>
 </constructor-arg>
</bean>

The loadOrderItems method works in the same way, except that the URI should be similar
to the following pattern: http://<host>:<port>/<appcontext>/orderItems, with an
HTTP GET:

@RequestMapping(value = "/orderItems", method = RequestMethod.GET)
public ModelAndView loadOrderItems() {
 List<OrderItem> orderItems = orderService.listOrderItems();
 ModelAndView modelAndView = new ModelAndView("orderXmlView",
 BindingResult.MODEL_KEY_PREFIX + "orderItem", orderItems);
 return modelAndView;
}

In this recipe, the database activities are not implemented. However, in a real application, the
HTTP method DELETE could be used to delete an entity (for example, orderItem) from the
database, and the PUT method could be used to update a record (for example, order).

See also...
In this book:

Chapter 6, Marshalling and Object-XML Mapping (OXM):

Marshalling with XStream

RESTful Web-Services

268

Using the REST Client tool to access Spring
RESTful Web-Service

REST Client is an application to call and test RESTful Web-Services. REST Client is provided
as a Firefox/Flock add-on. The Firefox REST Client supports all HTTP methods, RFC2616
(HTTP/1.1), and RFC2518 (WebDAV). Using this add-on, you can build your own customized
URI, add a header, send it to RESTful Web-Services, and get the response back.

In this recipe, we will learn how to use Firefox REST Client to test how a RESTful Web-Service
is presented. This recipe uses the first recipe of this chapter, Setting up a Spring RESTful
Web-Service using RESTful features in Spring MVC, as RESTful Web-Services.

Getting ready
Download and install the following add-on for Firefox:

https://addons.mozilla.org/en-US/firefox/addon/restclient/.

How to do it...
1.	 Run LiveRestaurant_R-9.1 from this chapter.

2.	 Open the Firefox browser and go to Tools | Rest Client.

3.	 Change the Method to GET and enter the URL: http://localhost:8080/
LiveRestaurant/orderItems, and click on Send:

https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://localhost:8080/LiveRestaurant/orderItems

Chapter 9

269

Here is the result:

4.	 Change Method to POST, enter the URL: http://localhost:8080/
LiveRestaurant/order/1, and click on Send:

http://localhost:8080/LiveRestaurant/orderItems

RESTful Web-Services

270

See also...
In this chapter:

Setting up a Spring RESTful Web-Service using RESTful features in Spring MVC

Setting up a Spring RESTful Web-Service
using HTTP message conversion

The client and server on the HTTP protocol exchange data using text format. Eventually,
there are requirements to accept different request formats and covert the text format into a
meaningful format, such as an Object or the JSON format. Spring provides features to provide
multiple requests/presentations to/from the same text format.

Spring 3 introduced ContentNegotiatingViewResolver, which can select various views
from the same URI and can provide multiple presentations.

The alternate way of doing the same task is using the HttpMessageConverter interface
and the @ResponseBody annotation. Implementation of the HttpMessageConverter
interface from Spring converts HTTP messages into several formats. Its widely used
implementations include:

ff StringHttpMessageConverter implementation reads/writes text from the HTTP
request/response. This is the default converter.

ff MarshallingHttpMessageConverter implementation marshalls/unmarshalls
objects from the text HTTP request/response. It gets a constructor argument to
specify the type of Marshaller (such as Jaxb, XStream, and so on).

ff MappingJacksonHttpMessageConverter implementation converts text into the
JSON data format or vice-versa.

In this recipe, message conversion using MarshallingHttpMessageConverter,
MappingJacksonHttpMessageConverter, and AtomFeedHttpMessageConverter is
presented. Since this project is similar to the first recipe of this chapter, Setting up a Spring
RESTful Web-Service using RESTful features in Spring MVC, it is reused as a template for the
project. The difference in this recipe is in the controller implementation and the application
context configuration.

The client project of this Web-Service is implemented here, but it will be detailed in the last
recipe of this chapter, Creating a WS client for Spring RESTful Web-Service using Spring
template classes.

Chapter 9

271

Getting ready
In this recipe, the project's name is LiveRestaurant_R-9.2 (LiveRestaurant_R-
9.2-Client is included in the code for testing purposes in this recipe. However, it will be
explained in the last recipe), and it has the following Maven dependencies:

ff com.springsource.javax.servlet-2.5.0.jar

ff spring-oxm-3.0.5.RELEASE.jar

ff spring-web-3.0.5.RELEASE.jar

ff spring-webmvc-3.0.5.RELEASE.jar

ff xstream-1.3.1.jar

ff commons-logging-1.1.1.jar

ff jackson-core-asl-1.7.5.jar

ff jackson-mapper-asl-1.7.5.jar

ff rome-1.0.jar

jackson-core and jackson-mapper support the JSON format and the others support the
ATOM format.

How to do it...
1.	 Configure the DispatcherServlet inside the web.xml file (URL:http://<host>

:<port>/<appcontext>/* is to be forwarded to this servlet).

2.	 Define the controller file (OrderController.java).

3.	 Define domain POJOs (Order.java,OrderItem.java) and services
(OrderService, OrderServiceImpl)

4.	 Configure the server-side application context-file (order-servlet.xml) and register
the converters.

RESTful Web-Services

272

5.	 Change the Method to POST and add a Request Header: Name - accept,
Value - application/json. Enter the URL http://localhost:8080/
LiveRestaurant/orderJson/1 and click on Send:

6.	 Change the Method to GET, and add Request Header: Name - accept, Value
- application/atom+xml. Enter the URL http://localhost:8080/
LiveRestaurant/orderItemsFeed and click on Send:

Chapter 9

273

How it works...
This recipe is almost the same as the first recipe of this chapter, except that it uses the
message converter and @ResponseBody to provide multiple presentations.

In the first recipe, MarshallingView was responsible for converting the response
to the selected XML type of the view (using XstreamMarshaller). However, here,
the message converters are responsible for rendering data models into a selected
format, MarshallingHttpMessageConverter is responsible for converting the
List<OrderItem> to the application/xml format (using XstreamMarshaller),
and MappingJacksonHttpMessageConverter is used to convert an order into the
application/json format. AtomFeedHttpMessageConverter is used to convert Feed
(that wraps XML content generated from List<OrderItem> using XStreamMarshaller
into the application/atom+xml format:

<context:component-scan base-package=
 "com.packtpub.liverestaurant.orderservice" />
<bean id="xStreamMarshaller" class=
 "org.springframework.oxm.xstream.XStreamMarshaller"/>
<bean class="org.springframework.
 web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" />
<bean class="org.springframework.
 web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="messageConverters">

RESTful Web-Services

274

 <list>
 <ref bean="marshallingConverter" />
 <ref bean="jsonConverter" />
 <ref bean="atomConverter" />
 </list>
 </property>
</bean>

<bean id="marshallingConverter" class="org.springframework.
 http.converter.xml.MarshallingHttpMessageConverter">
 <constructor-arg>
 <bean class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="autodetectAnnotations" value="true"/>
 </bean>
 </constructor-arg>
<property name="supportedMediaTypes" value="application/xml"/>
</bean>
<bean id="jsonConverter" class="org.springframework.
 http.converter.json.MappingJacksonHttpMessageConverter">
 <property name="supportedMediaTypes" value="application/json" />
</bean>
<bean id="atomConverter"class="org.springframework.
 http.converter.feed.AtomFeedHttpMessageConverter">
 <property name="supportedMediaTypes" value="application/atom+xml" />
</bean>

In the controller, the following code causes the controller's method to accept the request URI
method's POST format—json:

@RequestMapping(method=RequestMethod.POST, value="/orderJson/
{orderId}",
 headers="Accept=application/json")
public @ResponseBody Order placeOrderJson(@PathVariable String
orderId) {
 Order order=orderService.placeOrder(orderId);
 return order;
}

And it returns the Order object in JSON format (using @ResponseBody and
MappingJacksonHttpMessageConverter, configured in order-context.xml):

{"message":"Order Pizza has been
 placed","ref":"Ref:1","orderItemId":"1"}

Chapter 9

275

The following code causes the controller's method to accept the request URI method's GET
format—atom:

@RequestMapping(method=RequestMethod.GET, value="/orderItemsFeed",
 headers="Accept=application/atom+xml")
public @ResponseBody Feed loadOrderItemsAtom() {
 Feed feed = null;
 try {
 feed= getOrderItemsFeed(orderService.listOrderItems());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 return feed;
}

It also returns the List<OrderItem> object in Atom format (using @ResponseBody and
AtomFeedHttpMessageConverter, configured in order-context.xml):

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>OrderItems Atom Feed</title>
 <entry>
 <title>Burger</title>
 <id>0</id>
 <content type="xml">
 <com.packtpub.liverestaurant.domain.OrderItem><name>
 Burger</name><id>0</id></com.packtpub.
 liverestaurant.domain.OrderItem>
 </content>
 </entry>
 <entry>
 <title>Pizza</title>
 <id>1</id>
 <content type="xml"><com.packtpub.liverestaurant.domain.
 OrderItem><name>Pizza</name><id>1<
 /id></com.packtpub.liverestaurant.domain.OrderItem>
 </content>
 </entry>
...

RESTful Web-Services

276

See also...
In this chapter:

Setting up a Spring RESTful Web-Service using RESTful features in Spring MVC

Creating a WS Client for the Spring RESTful
Web-Service using Spring template classes

Spring provides varieties of template classes that simplify many complexities using different
technologies. For example, WebServiceTemplate is for calling a SOAP-based Web-
Service, and JmsTemplate is for sending/receiving JMS messages. Spring also has the
RestTemplate to simplify the interaction with RESTful Web-Services.

To use RestTemplate:

ff Create an instance of RestTemplate (can be done using the @Autowired feature)

ff Configure one-to-many message converters (as described in the previous recipe)

ff Call methods of RestTemplate to call a RESTful Web-Service and get a
response back

In this recipe, we will learn to consume a RESTful Web-Service using the RestTemplate. This
recipe uses the third recipe of this chapter, Setting up a Spring RESTful Web-Service using
HTTP Message Conversion, as the RESTful Web-Service.

Getting ready
In this recipe, the project's name is LiveRestaurant_R-9.2-Client
(LiveRestaurant_R-9.2 is included in this recipe to set up a RESTful server, as
explained earlier in the recipe Setting up a Spring RESTful Web-Service using HTTP
Message Conversion) with the following Maven dependencies:

ff spring-oxm-3.0.5.RELEASE.jar

ff spring-web-3.0.5.RELEASE.jar

ff xstream-1.3.1.jar

ff commons-logging-1.1.1.jar

ff jackson-core-asl-1.7.5.jar

ff jackson-mapper-asl-1.7.5.jar

ff rome-1.0.jar

ff junit-4.6.jar

ff spring-test-3.0.5.RELEASE.jar

Chapter 9

277

How to do it...
1.	 Define domain POJOs (Order.java, OrderItem.java) and services

(OrderService, OrderServiceImpl).

2.	 Configure the client-side application context-file (order-servlet.xml) and register
the converters.

3.	 Create a helper class (OrderClient) that wraps calling the RESTful Web-Service
using the RestTemplate.

4.	 Run the following command on Liverestaurant_R-9.2:
mvn clean package tomcat:run

5.	 Run the following command on Liverestaurant_R-9.2-Client:
mvn clean package

Here is the client-side output:
....

.. Created GET request for
 "http://localhost:8080/LiveRestaurant/orderItems"

.. Setting request Accept header to [application/xml, text/xml,
 application/*+xml, application/json]

.. GET request for "http://localhost:8080/LiveRestaurant/
orderItems"
 resulted in 200 (OK)

.. Reading [java.util.List] as "application/xml" using

.. Created POST request for
 "http://localhost:8080/LiveRestaurant/orderJson/1"

.. Setting request Accept header to [application/xml, text/xml,
 application/*+xml, application/json]

.. POST request for "http://localhost:8080/LiveRestaurant/
orderJson/1"
 resulted in 200 (OK)

.. Reading [com.packtpub.liverestaurant.domain.Order] as
 "application/xml" using ...

...Created GET request for
 "http://localhost:8080/LiveRestaurant/orderItemsFeed"

.. Setting request Accept header to [application/xml, text/xml,
 application/*+xml, application/json, application/atom+xml]

.. GET request for "http://localhost:8080/LiveRestaurant/
orderItemsFeed"
 resulted in 200 (OK)

.. Reading [com.sun.syndication.feed.atom.Feed] as "application/
xml"
 using ...

RESTful Web-Services

278

How it works...
Application context loaded by OrderServiceClientTest, loads, instantiates,
and injects RestTemplate into OrderClient. This class calls the controller's
method using RestTemplate and returns a value back to the test suite class
(OrderServiceClientTest).

In the suite class test methods, the response will be compared with the desired values.

The applicationContext.xml defines the restTemplate bean and sets a list of
message converters:

......
<bean id="restTemplate"
 class="org.springframework.web.client.RestTemplate">
 <property name="messageConverters">
 <list>
 <ref bean="xmlMarshallingHttpMessageConverter" />
 <ref bean="jsonConverter" />
 <ref bean="atomConverter" />
 </list>
 </property>
</bean>

<bean id="xmlMarshallingHttpMessageConverter" class="org.
springframework.
 http.converter.xml.MarshallingHttpMessageConverter">
 <constructor-arg>
 <ref bean="xStreamMarshaller" />
 </constructor-arg>
</bean>

<bean id="xStreamMarshaller"
 class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="annotatedClasses">
 <list>
 <value>com.packtpub.liverestaurant.domain.Order</value>
 <value>com.packtpub.liverestaurant.domain.OrderItem</value>
 </list>
 </property>
</bean>

<bean id="atomConverter" class="org.springframework.
 http.converter.feed.AtomFeedHttpMessageConverter">

Chapter 9

279

 <property name="supportedMediaTypes" value="application/atom+xml" />
</bean>
<bean id="jsonConverter" class="org.springframework.
 http.converter.json.MappingJacksonHttpMessageConverter">
 <property name="supportedMediaTypes" value="application/json" />
</bean>

Converters set inside the messageConverters are responsible for converting
requests/responses in different formats (XML, JSON, ATOM) back to object type.
XstreamMarshaller gets the list of recognized POJOs (Order, OrderItem), using
the annotation tags in those classes.

OrderClient.java is a helper class that wraps calling RESTful Web-Services, using
RestTemplate:

protected RestTemplate restTemplate;
private final static String serviceUrl =
 "http://localhost:8080/LiveRestaurant/";
@SuppressWarnings("unchecked")
public List<OrderItem> loadOrderItemsXML() {
 HttpEntity<String> entity = getHttpEntity(MediaType.APPLICATION_
XML);
 ResponseEntity<List> response = restTemplate.exchange(serviceUrl
 + "orderItems", HttpMethod.GET, entity, List.class);
 return response.getBody();
}
.....
...
public String loadOrderItemsAtom() {
 HttpEntity<String> httpEntity =
 getHttpEntity(MediaType.APPLICATION_ATOM_XML);
 String outputStr = null;
 ResponseEntity<Feed> responseEntity = restTemplate.
exchange(serviceUrl
 + "orderItemsFeed", HttpMethod.GET, httpEntity, Feed.class);
 WireFeed wireFeed = responseEntity.getBody();
 WireFeedOutput wireFeedOutput = new WireFeedOutput();
 try {
 outputStr = wireFeedOutput.outputString(wireFeed);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 return outputStr;
}
private HttpEntity<String> getHttpEntity(MediaType mediaType) {

RESTful Web-Services

280

 HttpHeaders httpHeaders = new HttpHeaders();
 httpHeaders.setContentType(mediaType);
 HttpEntity<String> httpEntity = new HttpEntity<String>(httpHeaders);
 return httpEntity;
}

There's more
This recipe uses only two methods of the RestTemplate (exchange and postForEntity).
However, RestTemplate supports several caller methods:

ff exchange: It calls specific HTTP (GET, POST, PUT, and DELETE) methods and
converts the HTTP response

ff getForObject: It calls the HTTP GET method and converts the HTTP response into
an object

ff postForObject: It calls the HTTP POST method and converts the HTTP response
into an object

See also...
In this chapter:

ff Setting up a Spring RESTful Web-Service using RESTful features in Spring MVC

ff Setting up a Spring RESTful Web-Service using HTTP message conversion

The book, RESTful Java Web Services, at http://www.packtpub.com/restful-java-
web-services/book.

10
Spring Remoting

In this chapter, we will cover:

ff Setting up Web-Services using RMI

ff Setting up servlet-based Web-Services using Hessian/Burlap, exposing
business beans

ff Setting up Web-Services using JAX-WS

ff Exposing servlet-based Web-Services using Apache CXF

ff Exposing Web-Services using JMS as the underlying communication protocol

Introduction
Spring-WS project is a contract-first approach to build a Web-Service. This approach is already
detailed in the first eight chapters. However, sometimes the requirement is to expose the
existing business Spring beans as a Web-Service, which is called contract-last approach,
to set up a Web-Service.

Spring's remoting supports communication with several remoting technologies. Spring
remoting allows you to expose existing Spring beans on server side as a Web-Service. On the
client side, Spring remoting allows the client application to call a remote Spring bean (which is
exposed as a Web-Service) through a local interface. In this chapter, Spring's features for the
following remoting technologies are detailed:

ff RMI: Spring's RmiServiceExporter allows you to expose local business
services on Remote Method Invocation (RMI) on the server side, and Spring's
RmiProxyFactoryBean is the client-side proxy bean to call the Web-Service.

ff Hessian: Spring's HessianServiceExporter allows you to expose local
business services on lightweight HTTP-based protocol, introduced by Caucho
technology (http://hessian.caucho.com) on the server side, and
HessianProxyFactoryBean is the client-side proxy bean to call the Web-Service.

Spring Remoting

282

ff Burlap: This is an XML alternative of Hessian by Caucho Technology. Spring provides
support classes using two of Spring's beans, namely, BurlapProxyFactoryBean
and BurlapServiceExporter.

ff JAX-RPC: Spring's support to set up Web-Services is based on a Remote Procedure
Call that uses J2EE 1.4's JAX-RPC Web-Service API

ff JAX-WS: Spring's support to set up Web-Services using Java EE 5+ JAX-WS API
that allows message-oriented as well as Remote Procedure Call Web-Service
development.

ff JMS: Spring exposes/consumes Web-Services using JMS as the underlying
communication protocol using JmsInvokerServiceExporter and
JmsInvokerProxyFactoryBean classes.

Since JAX-WS is the successor of JAX-RPC, JAX-RPC is not included in this chapter. Instead,
Apache CXF will be detailed in this chapter, as it can use JAX-WS to set up Web-Services, even
though it is not part of Spring's remoting.

For simplification, in this chapter, the following local business service is to be exposed as a
Web-Service (the domain model is the one described in the Introduction section of Chapter 1,
Building SOAP Web-Services).

public interface OrderService {
 placeOrderResponse placeOrder(PlaceOrderRequest placeOrderRequest);
}

And this is the interface implementation:

public class OrderServiceImpl implements OrderService{

 public PlaceOrderResponse placeOrder(PlaceOrderRequest
 placeOrderRequest) {
 PlaceOrderResponse response=new PlaceOrderResponse();
 response.setRefNumber(getRandomOrderRefNo());
 return response;
 }
...

Setting up Web-Services using RMI
RMI, a part of J2SE, allows calling a method on different Java Virtual Machines (JVMs). RMI's
goal is to expose objects in separate JVM's, as if they are like local objects. The client that
calls the remote object through RMI doesn't know whether an object is remote or local, and
calling methods on the remote object has the same syntax as a method invocation on a
local object.

Chapter 10

283

Spring's remoting provides features to expose/access Web-Services, based on RMI
technology. On the server side, Spring's RmiServiceExporter bean exposes server-side
Spring business bean as a Web-Service. On the client-side, Spring's RmiProxyFactoryBean
presents the Web-Service's methods as a local interface.

In this recipe, we will learn to set up a Web-Service using RMI, and learn how the call to Web-
Service through RMI is presented.

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-10.1 (for a server-side Web-Service), with the following
Maven dependencies:

�� spring-context-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

2.	 LiveRestaurant_R-10.1-Client (for the client-side), with the following
Maven dependencies:

�� spring-context-3.0.5.RELEASE.jar

�� spring-ws-test-2.0.0.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

�� xmlunit-1.1.jar

How to do it...
1.	 Register the server-side service implementation within Spring's

RmiServiceExporter in the server-side application context
(applicationContext.xml) and set the port and service name.

2.	 Register the local interface (same as server-side) within Spring's
RmiProxyFactoryBean in the client-side application context
(applicationContext.xml) and set the service's URL.

3.	 Add a Java class to load the server-side application context-file (in the class's main
method) to set up the server.

4.	 Add a JUnit test case class on the client side that calls a Web-Service using the
local interface.

5.	 Run the following command on Liverestaurant_R-10.1:

mvn clean package exec:java

Spring Remoting

284

6.	 Run the following command on Liverestaurant_R-10.1-Client:

mvn clean package

Here is the client-side output:
......

... - Located RMI stub with URL [rmi://localhost:1199/
OrderService]

....- RMI stub [rmi://localhost:1199/OrderService] is an RMI
invoker

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.78 sec

...

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

......

[INFO] BUILD SUCCESS

How it works...
OrderServiceSetUp is the class that loads the server-side application context
and sets up the server to expose the server-side business service as a Web-Service.
OrderServiceClientTest is the client-side test class that loads the client-side
application context and calls the Web-Service methods through a client-side local interface
that represents a remote business service.

The OrderServiceImpl is the service to be exposed through a Web-Service. In
the server-side's application context, within org.springframework.remoting.
rmi.RmiServiceExporter Bean, OrderService is the name of the service
that will be registered with the RMI registry. The service property is for passing the
RmiServiceExporter and the bean instance. serviceInterface is the interface that
represents the local business service remotely. Only those methods that are defined in this
interface can be called remotely:

<bean id="orderService"
 class="com.packtpub.liverestaurant.service.OrderServiceImpl" />

 <bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <property name="serviceName" value="OrderService" />
 <property name="service" ref="orderService" />
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService" />
 <property name="registryPort" value="1199" />
</bean>

Chapter 10

285

On the client side's configuration file, serviceUrl is the URL address of the Web-Service
and serviceInterface in the local interface that enables client calls to the server-side
methods remotely:

<bean id="orderService"
 class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
 <property name="serviceUrl" value="
 rmi://localhost:1199/OrderService" />
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService" />
</bean>

OrderServiceClientTest is the JUnit test case class that loads the application context
and calls remote methods through the local interface:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration("/applicationContext.xml")
public class OrderServiceClientTest {
 @Autowired
 OrderService orderService;
 @Autowired
 private GenericApplicationContext applicationContext;
 @Before
 @After
 public void setUpAfter() {
 applicationContext.close();
 }

 @Test
 public final void testPlaceOrder() throws Exception {
 PlaceOrderRequest orderRequest = new PlaceOrderRequest();
 orderRequest.setOrder(getDummyOrder());
 PlaceOrderResponse orderResponse =
 orderService.placeOrder(orderRequest);
 Assert.assertTrue(orderResponse.getRefNumber().indexOf("1234")>0);
 }

 private Order getDummyOrder() {
 Order order=new Order();
 order.setRefNumber("123");
 List<FoodItem> items=new ArrayList<FoodItem>();
 FoodItem item1=new FoodItem();
 item1.setType(FoodItemType.BEVERAGES);
 item1.setName("beverage");
 item1.setQuantity(1.0);
......
 }
........
}

Spring Remoting

286

Setting up a servlet-based Web-Service
using Hessian/Burlap, exposing
business beans

Hessian and Burlap, developed by Caucho (http://hessian.caucho.com), are
lightweight HTTP-based remoting technologies. Even though both of them use the HTTP
protocol to communicate, Hessian communicates using binary messages, while Burlap
communicates using XML messages.

Spring's remoting provides features to expose/access Web-Services based on these
technologies. On the server side, Spring's ServiceExporter bean exposes the server-side
Spring business bean (OrderServiceImpl) as a Web-Service:

<bean id="orderService"
 class="com.packtpub.liverestaurant.service.OrderServiceImpl" />

<bean name="/OrderService"
 class="....ServiceExporter">
 <property name="service" ref="orderService" />
 </bean>

On the client-side, Spring's ProxyFactory bean exposes remote interface through local
client-side interface (OrderService):

<bean id="orderService"
 class="....ProxyFactoryBean">
 <property name="serviceUrl"
 value="http://localhost:8080/LiveRestaurant/services/OrderService"
/>
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService" />

Getting ready
In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-10.2 (for the server-side Web-Service), with the following
Maven dependencies:

�� spring-webmvc-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� hessian-3.1.5.jar

Chapter 10

287

2.	 LiveRestaurant_R-10.2-Client (for the client-side), with the following Maven
dependencies:

�� spring-web-3.0.5.RELEASE.jar

�� spring-test-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

�� hessian-3.1.5.jar

How to do it...
Follow these steps to set up a servlet-based Web-Service using the Hessian service:

1.	 Configure DispatcherServlet inside the web.xml file
(URL: http://<host>:<port>/<appcontext>/services
to be forwarded to this servlet).

2.	 Register the server-side service interface within Spring's
HessianServiceExporter in the server-side application context
(applicationContext.xml), and set service name and service interface.

3.	 Register the local interface (same as the server side) within Spring's
HessianProxyFactoryBean in the client-side application context
(applicationContext.xml), and set service's URL.

4.	 Add a JUnit test case class in the client side that calls a Web-Service using the
local interface

5.	 Run the following command on Liverestaurant_R-10.2:

mvn clean package tomcat:run

6.	 Run the following command on Liverestaurant_R-10.2-Client:

mvn clean package

In the client-side output, you will be able to see the success message of running the
test case, as follows:
text.annotation.internalCommonAnnotationProcessor]; root of
factory
 hierarchy

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.71 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

Spring Remoting

288

Follow these steps to set up a servlet-based Web-Service using the Burlap service:

1.	 Modify the server-side service interface to Spring's BurlapServiceExporter in
the server-side application context (applicationContext.xml).

2.	 Modify the client-side application context (applicationContext.xml) to Spring's
BurlapProxyFactoryBean.

3.	 Run the following command on Liverestaurant_R-10.2:

mvn clean package tomcat:run

4.	 Run the following command on Liverestaurant_R-10.2-Client:

mvn clean package

In the client-side output, you will be able to see the success message of a running
test case, as follows:
text.annotation.internalCommonAnnotationProcessor]; root of
factory
 hierarchy

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.849
 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --- maven-jar-plugin:2.3.1:jar ..

[INFO] Building jar: ...

[INFO] ---

[INFO] BUILD SUCCESS

How it works...
The Liverestaurant_R-10.2 project is a server-side Web-Service that sets up a
servlet-based Web-Service, using the burlap/hessian exporter from Spring's remoting.

The Liverestaurant_R-10.2-Client project is a client-side test project that calls the
burlap/hessian Web-Service, using the burlap/hessian client proxy from Spring's remoting.

Chapter 10

289

On the server side, DiapatcherServlet will forward all the requests using the URL pattern
to BurlapServiceExporter/ HessianServiceExporter (http://<hostaddress>/<
context>/<services>):

<servlet>
 <servlet-name>order</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>order</servlet-name>
 <url-pattern>/services/*</url-pattern>
</servlet-mapping>

These exporters expose the internal local service implementation (OrderServiceImpl) as a
Web-Service:

<bean name="/OrderService"
 class="org.springframework.remoting.caucho.BurlapServiceExporter">
 <property name="service" ref="orderService" />
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService" />
</bean>

On the client-side, BurlapProxyFactoryBean/HessianProxyFactoryBean is
responsible for exposing remote methods to the client, using a local client-side service
interface (OrderService):

<bean id="orderService"
 class="org.springframework.remoting.caucho.BurlapProxyFactoryBean">
 <property name="serviceUrl"
 value="http://localhost:8080/LiveRestaurant/services/OrderService"
/>
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService" />
</bean>

The OrderServiceClientTest implementation is the same as described in the recipe
Setting up Web-Services using RMI.

See also...
In this chapter:

Setting up a Web-Services using RMI

Spring Remoting

290

Setting up Web-Services using JAX-WS
JAX-RPC was a standard that came with Java EE 1.4 to develop Web-Services, and has
become less and less popular in recent years. JAX-WS 2.0 was introduced with Java EE 5 and
is more flexible and annotation-based than JAX-RPC in biding concept. Here are some of the
advantages of JAX-WS over JAX-RPC:

ff JAX-WS supports both message-oriented as well as Remote Procedure Call (RPC)
Web-Services, while JAX-RPC supports only RPC

ff JAX-WS supports SOAP 1.2 and SOAP 1.1, but JAX-RPC supports SOAP 1.1

ff JAX-WS relies on the rich features of Java 5.0, while JAX-RPC works with Java 1.4

ff JAX-WS uses the very powerful XML for Object mapping framework (uses JAXB) while
JAX-RPC uses its own framework that appeared weak on complex data models

Spring remoting provides feature to set up a JAX-WS Web-Service using java 1.5+ features. For
example here, the annotation @WebService causes Spring to detect and expose this service
as a Web-Service, and @WebMethod causes the following method: public OrderResponse
placeOrder(..), to be called as a Web-Service method (placeOrder):

@Service("OrderServiceImpl")
@WebService(serviceName = "OrderService",endpointInterface =
 "com.packtpub.liverestaurant.service.OrderService")
public class OrderServiceImpl implements OrderService {
 @WebMethod(operationName = "placeOrder")
 public PlaceOrderResponse placeOrder(PlaceOrderRequest
 placeOrderRequest) {

In this recipe, JDK's built-in HTTP server is used to set up the Web-Service (since Sun's JDK
1.6.0_04, JAX-WS can be integrated with the JDK's built-in HTTP server).

Getting ready
Install Java and Maven (SE runtime environment (build jdk1.6.0_29)).

In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-10.3 (for the server-side Web-Service), with the following
Maven dependencies:

�� spring-web-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

Chapter 10

291

2.	 LiveRestaurant_R-10.3-Client (for the client-side), with the following
Maven dependencies:

�� spring-web-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

How to do it...
1.	 Annotate the business service class and its methods.

2.	 Register the service in the application context file (applicationContext.xml),
then configure the SimpleJaxWsServiceExporter bean, and create a class to
load the server-side application context (this sets up the server).

3.	 Register the local interface (in the same way as you did for the server-side interface)
within Spring's .JaxWsPortProxyFactoryBean in the client-side application
context (applicationContext.xml), and set the service's URL.

4.	 Add a JUnit test case class in the client-side that calls the Web-Service using the
local interface.

5.	 Run the following command on Liverestaurant_R-10.3 and browse to see the
WSDL file located at http://localhost:9999/OrderService?wsdl:
mvn clean package exec:java

6.	 Run the following command on Liverestaurant_R-10.3-Client:
mvn clean package

In the client-side output, you will be able to see the success message of a running
test case, as follows:
.....

Dynamically creating request wrapper Class com.packtpub.
liverestaurant.service.jaxws.PlaceOrder

Nov 14, 2011 11:34:13 PM com.sun.xml.internal.ws.model.
RuntimeModeler getResponseWrapperClass

INFO: Dynamically creating response wrapper bean Class com.
packtpub.liverestaurant.service.jaxws.PlaceOrderResponse

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Spring Remoting

292

How it works...
The Liverestaurant_R-10.3 project is a server-side Web-Service (by Spring remoting's
exporter bean) that sets up a JAX-WS using DK's built-in HTTP server.

The Liverestaurant_R-10.3-Client project is a client-side test project that calls JAX-WS
Web-Service using the client proxy from Spring remoting.

On the server-side, applicationContext.xml scans and detects annotating tags in
OrderServiceImpl. Then SimpleJaxWsServiceExporter exposes this business
service as a Web-Service:

<context:annotation-config/>

<context:component-scan base-package=
 "com.packtpub.liverestaurant.service"/>
<bean class=
 "org.springframework.remoting.jaxws.SimpleJaxWsServiceExporter">
 <property name="baseAddress" value="http://localhost:9999/" />
</bean>

In the service class, the annotations @WebService and @WebMethod cause Spring
detects(by scanning), and expose(by SimpleJaxWsServiceExporter) this service
class as a Web-Service and its method (placeOrder) as a Web-Service method:

@Service("orderServiceImpl")
@WebService(serviceName = "OrderService")
public class OrderServiceImpl implements OrderService {
 @WebMethod(operationName = "placeOrder")
 public PlaceOrderResponse placeOrder(PlaceOrderRequest
 placeOrderRequest) {
 PlaceOrderResponse response=new PlaceOrderResponse();
 response.setRefNumber(getRandomOrderRefNo());
 return response;
 }
.......
}

On the client side, JaxWsPortProxyFactoryBean is responsible for exposing remote
methods to the client, using a local client-side interface. WsdlDocumentUrl is the
Web-Service WSDL address, portName is the portName value in WSDL, namespaceUri
is the targetNameSpace in WSDL, and serviceInterface is the local client-side
service interface:

<bean id="orderService" class=
 "org.springframework.remoting.jaxws.JaxWsPortProxyFactoryBean">
 <property name="serviceInterface" value=

Chapter 10

293

 "com.packtpub.liverestaurant.service.OrderService"/>
 <property name="wsdlDocumentUrl" value=
 "http://localhost:9999/OrderService?wsdl"/>
 <property name="namespaceUri" value=
 "http://service.liverestaurant.packtpub.com/"/>
 <property name="serviceName" value="OrderService"/>
 <property name="portName" value="OrderServiceImplPort"/>
</bean>

The OrderServiceClientTest implementation is the same as described in the recipe
named Setting up a Web-Services using RMI.

See also...
In this chapter:

Setting up a Web-Services using RMI

In this book:

Chapter 2, Building Clients for SOAP Web Services

Creating a Web-Service client on HTTP transport

Exposing servlet-based Web-Services using
Apache CXF

Apache CXF originated from a combination of the projects, namely: Celtix (IONA
Technologies) and XFire (Codehaus), which are integrated into the Apache software
foundation. CXF, by name, implies that it originates from the Celtix and XFire project names.

Apache CXF provides features to build and deploy Web-Services. The Apache CXF's
recommended Web-Service configuration method (frontend or API) is JAX-WS 2.x. Apache CXF,
which is not part of Spring's remoting, however, since it can use JAX-WS as its frontend, will be
explained in this recipe.

Getting ready
Install Java and Maven (SE Runtime Environment (build jdk1.6.0_29)).

In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-10.4 (for the server-side Web-Service), with the following
Maven dependencies:

�� cxf-rt-frontend-jaxws-2.2.6.jar

�� cxf-rt-transports-http-2.2.6.jar

Spring Remoting

294

�� spring-web-3.0.5.RELEASE.jar

�� commons-logging-1.1.1.jar

2.	 LiveRestaurant_R-10.4-Client (for the client side), with the following
Maven dependencies:

�� cxf-rt-frontend-jaxws-2.2.6.jar

�� cxf-rt-transports-http-2.2.6.jar

�� spring-web-3.0.5.RELEASE.jar

�� log4j-1.2.9.jar

�� junit-4.7.jar

How to do it...
1.	 Annotate the business service class and methods (in the same way as you did

for JAX-WS).

2.	 Register the service in the application context file (applicationContext.xml) and
configure CXFServlet inside the web.xml file (URL:http://<host>:<port>/ is
to be forwarded to this servlet).

3.	 Register the local interface (in the same way as you did for the server side) within
Spring's .JaxWsPortProxyFactoryBean, in the client-side application context
(applicationContext.xml), and set the service's URL.

4.	 Add a JUnit test case class in the client side, which calls the Web-Service using the
local interface.

How it works...
The Liverestaurant_R-10.4 project is a server-side Web-Service that set up a CXF, using
the JAX-WS API.

The Liverestaurant_R-10.4-Client project is a client-side test project that calls JAX-WS
Web-Service, using the client proxy from Spring's remoting.

On the server side, the configuration in applicationContext.xml detects annotating
tags in OrderServiceImpl. Then jaxws:endpoint exposes this business service as a
Web-Service:

<!-- Service Implementation -->
<bean id="orderServiceImpl" class=
 "com.packtpub.liverestaurant.service.OrderServiceImpl" />

<!-- JAX-WS Endpoint -->
<jaxws:endpoint id="orderService" implementor="#orderServiceImpl"
 address="/OrderService" />

Chapter 10

295

The OrderServiceImpl explanation is the same as described in the recipe Setting up
Web-Services using JAX-WS.

On the client side, JaxWsProxyFactoryBean is responsible for exposing remote methods to
the client using a local client-side interface. address is the Web-Service service address and
serviceInterface is the local client-side service interface:

<bean id="client" class=
 "com.packtpub.liverestaurant.service.OrderService"
 factory-bean="clientFactory" factory-method="create"/>

<bean id="clientFactory"
 class="org.apache.cxf.jaxws.JaxWsProxyFactoryBean">
 <property name="serviceClass"
 value="com.packtpub.liverestaurant.service.OrderService"/>
 <property name="address"
 value="http://localhost:8080/LiveRestaurant/OrderService"/>
</bean>

The OrderServiceClientTest implementation is the same as described in the recipe
Setting up Web-Services using RMI.

See also...
In this chapter:

Setting up Web-Services using RMI

Exposing Web-Services using JMS as the
underlying communication protocol

Java Message Service (JMS) introduced by Java 2 and J2EE was founded by Sun
Microsystems in 1999. Systems using JMS are able to communicate in a synchronous or
asynchronous mode, and are based on the point-to-point and publish-subscribe models.

Spring remoting provides the facility to expose Web-Services using JMS as the underlying
communication protocol. Spring's JMS remoting sends and receives messages on the same
thread in the single-threaded and non-transactional session.

However, for multi-threaded and transactional support for Web-Service on JMS, you can use
Spring-WS on JMS protocol, which is based on Spring's JMS-based messaging.

In this recipe, apache-activemq-5.4.2 is used to set up a JMS server, and default objects,
created by this JMS server (queue, broker), are used by the projects.

Spring Remoting

296

Getting ready
Install Java and Maven (SE Runtime Environment (build jdk1.6.0_29)).

Install apache-activemq-5.4.2.

In this recipe, we have the following two projects:

1.	 LiveRestaurant_R-10.5 (for the server-side Web-Service), with the following
Maven dependencies:

�� activemq-all-5.2.0.jar

�� spring-jms-3.0.5.RELEASE.jar

2.	 LiveRestaurant_R-10.5-Client (for the client side), with the following Maven
dependencies:

�� activemq-all-5.2.0.jar

�� spring-jms-3.0.5.RELEASE.jar

�� junit-4.7.jar

�� spring-test-3.0.5.RELEASE.jar

�� xmlunit-1.1.jar

How to do it...
Register the business service within the JmsInvokerServiceExporter bean and register
SimpleMessageListenerContainer using the activemq default objects (broker,
destination) in the server-side application context file.

1.	 Create a Java class to load the application context and set up the server.

2.	 Register JmsInvokerProxyFactoryBean in the client-side application context file
using the activemq default objects (broker, destination)

3.	 Add a JUnit test case class in the client side that calls the Web-Service using the
local interface.

4.	 Run apache-activemq-5.4.2 (to set up the JMS server).

5.	 Run the following command on Liverestaurant_R-10.5 and browse to see the
WSDL file located at http://localhost:9999/OrderService?wsdl:
mvn clean package exec:java

6.	 Run the following command on Liverestaurant_R-10.5-Client:
mvn clean package

Chapter 10

297

In the client-side output, you will be able to see a success message of a running
test case.
T E S T S

Running com.packtpub.liverestaurant.service.client.
OrderServiceClientTest

log4j:WARN No appenders could be found for logger (org.
springframework.test.context.junit4.SpringJUnit4ClassRunner).

log4j:WARN Please initialize the log4j system properly.

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
1.138 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

How it works...
The Liverestaurant_R-10.5 project is a server-side Web-Service that sets up a Web-
Service by listening on a JMS queue.

The Liverestaurant_R-10.5-Client project is a client-side test project that sends JMS
messages to a JMS queue.

On the server side, the class OrderServiceSetUp loads applicationContext.xml and
creates a messageListener in a container (using SimpleMessageListenerContainer)
that waits to listen for a message at a specific destination (requestQueue). As soon as a
message arrives, it calls the method on the business class (OrderServiceImpl) through
Spring's remoting class (JmsInvokerServiceExporter):

<bean id="orderService"
 class="com.packtpub.liverestaurant.service.OrderServiceImpl"/>
<bean id="listener"
 class="org.springframework.jms.remoting.JmsInvokerServiceExporter">
 <property name="service" ref="orderService"/>
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService"/>
</bean>
<bean id="container" class=
 "org.springframework.jms.listener.SimpleMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="messageListener" ref="listener"/>
 <property name="destination" ref="requestQueue"/>
</bean>

Spring Remoting

298

On the client side, JmsInvokerProxyFactory is responsible for exposing remote methods
to the client, using a local client-side interface (OrderService). When the client calls the
method OrderService, JmsInvokerProxyFactory send a JMS message to the queue
(requestQueue), which is the queue the server is listening to:

<bean id="orderService" class=
 "org.springframework.jms.remoting.JmsInvokerProxyFactoryBean">
 <property name="connectionFactory" ref="connectionFactory"/>
 <property name="queue" ref="requestQueue"/>
 <property name="serviceInterface"
 value="com.packtpub.liverestaurant.service.OrderService"/>
</bean>

Index
Symbols
@Autowired 102
@Before 102
@ContextConfiguration annotation 102
@Controller annotation 263
@Endpoint annotation 41
@Enpoint annotation 47
@PathVariable 266
@PayloadRoot 48, 163
@RequestMapping annotation 263
@RequestPayload 48
@ResponseBody annotation 270
@RunWith annotation 102
@SOAPFault

exception classes, annotating with 129-133
@XmlElement annotation 162
@XmlRootElement annotation 162
@XmlType annotation 162
 XMPP transport

 Spring Web-Service, setting up 36-38
@XPathParam 54

A
Apache CXF

about 293
used, for exposing servlet-based Web-Services

293-295
Apache software foundation 293
asymmetric or public key 225
AtomFeedHttpMessageConverter 275

B
BeanNameViewResolver 266
Burlap 282

BurlapProxyFactoryBean 282
BurlapServiceExporter 282

C
callBackHandlers 188
CancelOrderRequestDocument 167
Castor 55 160
Celtix 293
Celtix (IONA Technologies) 293
certificate (public key)

generating 211
clientPAssword 233
client-side integration testing

MockWebServiceServer, used 107-110
Commons Logging Log 147
connectionfactory 26
ContentNegotiatingViewResolver 270
contract-first Web-Service

setting up 38-41
contract-last approach 281
contract-last development 38
CORBA 6
createClient() method 106
createServer() method 109
CryptoFactoryBean 253
cryptographic keys 208
custom exception resolvers

working 136
writing, in Spring-WS 134, 135

custom marshaller
creating, XPath used 181-185

D
DaoX509AuthoritiesPopulator 224

300

data contract
about 13
creating 13-15

DataOutOfRangeException class 128
DCOM 6
digital signature

about 217
used, for securing SOAP messages 216-220

DispatcherServlet
about 266
used, for setting up Spring Web-Service 15-

19
DOM

used, for handling incoming XML messages
55-58

DomPayloadMethodProcessor 57
DTDs 13

E
EasyMock 99
Eclipse

SOAP Web-Service client development envi-
ronment, setting up 70-73

Eclipse IDE
used, for debugging Spring-WS 152-158

E-mail transport
Spring Web-Service, setting up 28-32
SOAP Web-Service client, creating on 83, 85

embedded HTTP transport
Spring Web-Service, setting up 33-36

endpoint
setting up, @PayloadRoot used 45-48
setting up, XPath expression used 52-55

EndpointAdapter 7
EndpointInterceptor 7, 236 188
endpoints property 44
exception classes

annotating, with @SOAPFault 129-133
exception class names

mapping, to SOAP faults 125-128
exchange method 280

F
Fault element 122
faultStringOrReason 133

Firefox REST Client
downloading 268
installing 268
used, for accessing Spring RESTful Web-Serv-

ice 268, 269
using 268

functional tests
running 114

G
GenericMarshallingMethodEndpointAdapter

162
getForObject method 280
getOrder method 163

H
handleCancelOrderRequest() method 57, 142
handleOrderRequest method 52
handlePlaceOrderRequest() method 142
Hessian 281
Hessian and Burlap

about 286
URL 286
used, for setting up servlet-based Web-Service

286-289
HessianProxyFactoryBean 281
HessianServiceExporter 281
HTTP-based Web-Service

setting up 33
HTTP message conversion

used, for setting up Spring RESTful Web-Serv-
ice 270-275

HttpMessageConverter 270
HttpServletResponse 18
HTTP transport

SOAP Web-Service client, creating on 77-80

I
incoming XML messages

handling, DOM used 55-58
handling, JAXB2 used 61-64
handling, JDOM used 58, 60

inst2xsd (Instance to Schema Tool) 169

301

integration testing, Web-Service
Spring-JUnit support used 100-103

interceptor
used, for validating XML messages 64-66

InvalidOrderRequestException 132
invoke method 28

J
JaasPlainTextPasswordValidationCallback-

Handler 206
JAAS service

used, for authenticating Web-Service call
203-207

Jabber ID (JID) 86
jackson-core 271
jackson-mapper 271
Java

installing 13, 293
Java 6

URL 9
Java Architecture for XML Binding. See JAXB;

See JAXB2
Java Debugger (JDB) tool 157
Java keytool 209
JavaMail 29
Java Message Service. See JMS
Java Platform Debugging Architecture (JPDA)

157
Java project

LiveRestaurant 8
Java Web-Services Developer Pack (WSDP)

187
JAXB 55 160
JAXB2

about 160
used, for handling incoming XML messages

61-64
marshalling with 160-164

JAXB annotations
@XmlElement 162
@XmlRootElement 162
@XmlType 162

JAXB marshaller
registering 161

JAX-RPC 282, 290

JAX-WS
about 282
used, for setting up Spring Web-Services 290,

292
JaxWsPortProxyFactoryBean 294
JDOM

used, for handling incoming XML messages
58-60

JiBX 55
about 160, 169
features 169
URL 169
used, for marshalling 169-173

JibxMarshaller 172
jibx-maven-plugin 169
JMock 99
JMS

about 282
used, for exposing Spring Web-Services 295-

297
JmsInvokerProxyFactoryBean class 282, 298
JmsInvokerServiceExporter class 282
JmsTemplate 276
JMS transport

Spring Web-Service, setting up 24-28
SOAP Web-Service client, creating on 80-83

JmsTransportWebServiceIntegrationTest 28
JPDA port 157
JUnit test class 70

K
keyAlias 232
key pair 208
keyPassword 232
keystore 208
keyStoreHandlerBean 232

L
LiveRestaurant 8
LiveRestaurant_R-1.11 49
Liverestaurant_R-8.1-Client project 240
load/functional testing, Web-Service

monitoring, soapUI used 114-120
loadOrderItems method 267

302

load test
running 118

log4j
about 139
used, for internal logging of SOAP messages

144, 146
logging 139

M
MappingJacksonHttpMessageConverter 270,

274
marshalling

about 159
JAXB2, used 160-164
JiBX, used 169-173
MooseXML, used 177-180
XMLBeans, used 165-168
XStream, used 174-176

marshalling end point
setting up, JAXB2 used 161

marshalling frameworks
changing 160
implementations 160

MarshallingHttpMessageConverter 270
MarshallingView 265
Maven

about 9
installing 293
setting up, for building projects 9
URL 9
used, for building Spring-WS project 9, 10
used, for setting up SOAP Web-Service client

development environment 73-76
Maven project

importing, into Eclipse IDE 12
Maven tool plugin 161
MessageContext 6
messageConverters 279
MessageDispatcher 7, 18, 146
MessageDispatcherServlet

used, for simplifying Spring Web-Service crea-
tion 20-23

message endpoints 7
messageFactory 27
message payload

logging manually 140-143

Metro project
URL 160

MockWebServiceClient
about 104
used. for server-side integration testing 104-

106
MockWebServiceServer

used, for client-side integration testing 107-
110

Moose
about 177
URL 177
used, for marshalling 177-180

MooseMarshaller 179

O
OASIS Web-Services Security 235
Object/XML mapping 160
Object/XML Mapping (OXM) terminology 159
OrderServiceClient 109
OrderService component 7
OrderServiceEndPoint 163
orderService method 23
OrderSeviceAnnotationEndpoint 47
org.springframework.test package 100
OXM frameworks 160

P
payload endpoints 7
PayloadLoggingInterceptor 147 188
PayloadValidatingInterceptor 188
placeOrder method 266
placeOrderRequest 163
placeOrderResponse element 58
plain/digested username token

used, for authenticating Web-Service call
189-196

POJO classes
generating 169

postForObject method 280
ProcessingFailedException 132

R
RdbmsPlainText 206
receive() method 146

303

receiver (server) public key certificate
importing 212

receiver (server side here) keystore
generating 209

refNumber element 58
RELAX NG 13
Remote Method Invocation. See RMI
Remote Procedure Call (RBC) 290
Representational State Transfer. See REST
RequireEncryption/Encrypt tag 232
ResponseCreator 108
REST

about 261
demerits 262
merits 261

REST Client 268
RESTful features

used, in setting up Spring RESTful Web-Serv-
ice 263-267

RESTful Web-Service
reference link 262

RestTemplate
using 276

RFC2518 (WebDAV) 268
RFC2616 (HTTP/1.1) 268
RMI

about 281, 282
used, for setting up Web-Services 282-285

RmiProxyFactoryBean 281
RmiServiceExporter 281

S
SamplePlayLoadEndPoint 38
SAX 55
Schematron 13
scomp 169
scopy (Schema Copier) 169
securementActions property 236
securementEncryptionCrypto 259
SecurementEncryptionUser 259
securityPolicy.xml file 194
sender (client) public key certificate

importing 212
sender (client side here) keystore

generating 210
serPkPasswords 233

serverPassword 233
server-side exceptions

about 121
handling 122-125
storing, as SOAP fault string 122-125

server-side integration testing, Web-Service
MockWebServiceClient, used 104-106

service contract 13
servlet-based Web-Service

setting up, Hessian/Burlap used 286-289
servlet-based Web-Services

exposing, Apache CXF used 293-295
setUpAfter() method 102
setUpBefore() method 102
simple endpoint mapping

setting up, for Spring Web-Service 42, 44
SimpleMethodEndpointMapping 44
Simple Object Access Protocol. See SOAP
SimplePayloadEndpoint 32
SimpleSoapExceptionResolver 122
SimpleUrlHandlerMapping 18
SOAP 6, 261
SOAP envelop 7
SoapEnvelopeLoggingInterceptor 188
SOAP fault element structure 121
SoapFaultMappingExceptionResolver 128
SOAP faults

exception class names, mapping to 12-128
SOAP messages

encrypting/decrypting 225-234, 253-259
internal logging, log4j used 144, 146
securing, digital signature used 216-220,

247-250
soapUI

about 114
installing 114
running 114
URL 114
used, for monitoring load/functional testing

114-120
SOAP Web-Service client

about 70
creating, for WS-Addressing endpoint 93-96
creating, on E-mail transport 83-86
creating, on HTTP transport 77-80
creating, on JMS transport 80-83
creating, XPath expressions used 89-92

304

development environment, setting up using
Maven 73-76

development environment, setting up within
Eclipse 70-72

SOAP Web-Services
building, for clients 69
client, creating for WS-Addressing endpoint

93-96
client, creating on E-mail transport 83-86
client, creating on HTTP transport 77-80
client, creating on JMS transport 80-82
client, creating using XPath expressions 89-

92
client development environment, setting up

using Maven 73-76
client development environment, setting up

within Eclipse 70-72
message, transforming using XSLT 96-98
setting up, on XMPP transport 86-88
SOAP messages, securing using digital signa-

ture 247-250
Web-Service call, authenticating using Spring

security 242-246
Web-Service call, authenticating using user-

name token 237-241
Web-Service call, authenticating using X509

certificate 251, 252
Spring

Burlap 282
Hessian 281
JAX-RPC 282
JAX-WS 282
JMS 282
RMI 281

SpringCertificateValidationCallbackHandler
220

SpringDigestPasswordValidationCallbackHan-
dler 201, 246

Spring framework
using, for unit testing 100

Spring-JUnit support
used, for integration testing 100-103

Spring MVC
Spring RESTful Web-Service, setting up using

RESTful features 263-267
spring-oxm 264
Spring remoting 281

Spring RESTful Web-Service
accessing, REST Client tool used 268, 269
setting up, HTTP message conversion used

270-275
setting up, RESTful features used 263-267
WS Client, creating using Spring template

classes 276-280
Spring Security

URL 196
used, for authenticating Web-Service call

196-203
springSecurityCertificateHandler 221
springSecurityHandler 199, 201
Spring security reference documentation

URL 242
Spring Web-Service

custom exception resolvers, writing 134-136
about 6, 7
contract-first Web-Service, setting up 38-41
diagrammatic representation 6
endpoint, setting up using @PayloadRoot 45-

48
endpoint, setting up using XPath expression

52-55
incoming XML messages, handling using DOM

55-58
incoming XML messages, handling using

JAXB2 61-64
incoming XML messages, handling using

JDOM 58, 60
MessageDispatcher 6
setting up, DispatcherServlet used 15-19
setting up, on E-mail transport 28-32
setting up, on embedded HTTP transport 33-

36
setting up, on JMS transport 24-28
setting up, on XMPP transport 36-38
simple endpoint mapping, setting up 42-44
transport-neutral WS-Addressing endpoint,

setting up 49-52
uses 7
working 6
XML messages, validating with interceptor

64-66
Spring Web-Service creation

simplifying, MessageDispatcherServlet used
20-23

305

Spring Web-Services
exposing, JMS used 295-297
setting up, JAX-WS used 290-292
setting up, RMI used 282-285

Spring Web-Services 2.0 100
Spring-WS

debugging, Eclipse IDE used 152-158
Spring-WS Interceptors

PayloadLoggingInterceptor 147
used, for logging Web Service messages 147-

150
Spring-WS project

building, Maven used 9, 10
domain model 8
running, Maven used 10
working 12

StringHttpMessageConverter 270
symmetric keystores

generating 208-216
symmetric or secret key 225

T
TCP messages, Web-Service

monitoring, TCPMon used 110-113
TCPMon

about 110
downloading 111
download link 111
installing 111
used, for monitoring TCP messages 110-113

Test-driven design (TDD) 99
testExpectedRequestResponse, mockServer.

expect method 109
testSchema method 110
testSchemaWithWrongRequest method 110
tracing 139
transport-neutral WS-Addressing endpoint

setting up 49-51
trusted certificate 216

U
unit test

writing 99
unmarshalling 159

V
validate (Instance Validator) 169
validation actions 236
validationActions property 236
validationCallbackHandler 240
validationDecryptionCrypto 258

W
W3C DOM

about 55
used, for extracting data from incoming mes-

sages 56
Web-Service

client-side integration testing, MockWebServ-
iceServer used 107-110

integration testing, Spring-JUnit support used
100-103

load/functional testing, monitoring using
soapUI 114-120

server-side integration testing, MockWebServ-
iceClient used 104-106

TCP messages, monitoring using TCPMon
110-113

testing 100
Web-Service call

authenticating, JAAS service used 203-207
authenticating, plain/digested username

token used 189-196
authenticating, Spring Security used 196-203
authenticating, X509 certificate used 220-

224
Web-Service call, SOAP Web-Services

authenticating, Spring security used 242-246
authenticating, username token used with

plain/digest password 237-241
authenticating, X509 certificate used 251,

252
WebServiceMessageListener 26
WebServiceMessageReceiverHandlerAdapter

18
Web Service messages

logging, Spring-WS Interceptors used 147-151
Web-Services Security (XWSS) 187
Webservicetemplate 38

306

WebServiceTemplate 70, 276
WS-Addressing 6
WS-Addressing endpoint

SOAP Web-Service client, creating for 93-96
WS Client, Spring RESTful Web-Service

creating, Spring template classes used 276-
280

WSDL contract
handling 18

WsdlDefinitionHandlerAdapter 18
WSDL document 13
WS-Policy 6
WSS4J 235
Wss4jSecurityInterceptor 236, 237
WS-Security 6
WS-Security (WSS) 187

X
X509 certificate

used, for authenticating Web-Service call
220-224

XFire 293
xmlbean Ant task 169
XMLBeans

about 55, 160, 165
features 165
full XML infoset fidelity 165
full XML Schema support 165
marshalling with 165-168
URL 165

xmlbeans-2.5.0
installing 13

XMLBeansMarshaller 167
xmlbeans-maven-plugin

configuring 166
XMLBeans tools

inst2xsd 169
scomp 169
scopy 169

validate 169
xmlbean Ant task 169
xpretty 169
xsd2inst 169
xsdtree 169

XML infoset fidelity 165
XML messages

validating at server side, interceptor used
64-66

XML Schema 13
XML Schema support 165
XML SOAP envelop 7
XMPP 86
XMPP transport

SOAP Web-Service, setting up 86-88
XPath

about 55
used, for creating custom marshaller 181,

182-185
XPath expressions

used, for creating SOAP Web-Service client
89-92

XpathParamMethodArgumentResolver 54
xpretty (XML Pretty Printer) 169
xsd2inst (Schema to Instance Tool) 169
xsdtree (Schema Type Hierarchy Printer) 169
XSLT

used, for transforming SOAP Web-Service
message 96-98

XStream
about 55, 174
features 174
URL 174
used, for marshalling 174-176

XstreamMarshaller 175
XWSS 235
XwsSecurityInterceptor 194, 235
XWSS(Web-Services Security) 188

Thank you for buying
Spring Web Services 2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Axis2 Web Services,
2nd Edition
ISBN: 978-1-84951-156-8 Paperback: 308 pages

Create secure, reliable, and easy-to-use web services
using Apache Axis2

1.	 Extensive and detailed coverage of the enterprise
ready Apache Axis2 Web Services / SOAP /
WSDL engine.

2.	 Attain a more flexible and extensible framework
with the world class Axis2 architecture.

3.	 Learn all about AXIOM - the complete XML
processing framework, which you also can use
outside Axis2.

4.	 Covers advanced topics like security, messaging,
REST and asynchronous web services.

Amazon Web Services:
Migrating your .NET
Enterprise Application
ISBN: 978-1-84968-194-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise application to the Amazon
Web Services Platform

1.	 Get to grips with Amazon Web Services from a
Microsoft Enterprise .NET viewpoint

2.	 Fully understand all of the AWS products including
EC2, EBS, and S3

3.	 Quickly set up your account and manage
application security

4.	 Learn through an easy-to-follow sample
application with step-by-step instructions

Please check www.PacktPub.com for information on our titles

Spring Roo 1.1 Cookbook
ISBN: 978-1-84951-458-3 Paperback: 460 pages

Over 60 recipes to help you speed up the development
of your Java web applications using the Spring Roo
Development tool

1.	 Learn what goes on behind the scenes when
using Spring Roo and how to migrate your existing
Spring applications to use Spring Roo

2.	 Incrementally develop a Flight Booking enterprise
application from scratch as various features of
Spring Roo are introduced

3.	 Develop custom add-ons to extend Spring Roo
features

4.	 Full of tips and code for addressing common
concerns related to developing a real enterprise
application using Spring Roo

Spring Web Flow 2
Web Development
ISBN: 978-1-847195-42-5 Paperback: 200 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1.	 Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2.	 Enhance your web applications with progressive
AJAX, Spring security integration, and Spring Faces

3.	 Stay up-to-date with the latest version of Spring
Web Flow

4.	 Walk through the creation of a bug tracker web
application with clear explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building SOAP Web-Services
	Introduction
	Using Maven for building and running a Spring-WS project
	Creating a data contract
	Setting up a Web-Service using DispatcherServlet
	Simplifying the creation of a Web-Service using MessageDispatcherServlet
	Setting up a web service on JMS transport
	Setting up a Web-Service on E-mail transport
	Setting up a Web-Service on embedded HTTP transport
	Setting up Spring-WS on XMPP transport
	Setting up a contract-first Web-Service
	Setting up a simple endpoint mapping for the Web-Service
	Setting up an endpoint by annotating the payload root
	Setting up a transport-neutral WS-Addressing endpoint
	Setting up an endpoint using an XPath expression
	Handling the incoming XML messages using DOM
	Handling the incoming XML messages using JDOM
	Handling the incoming XML messages using JAXB2
	Validating the XML messages at the server side using an interceptor

	Chapter 2: Building Clients for SOAP Web-Services
	Introduction
	Setting up a Web-Service client development environment within Eclipse
	Setting up a Web-Service client development environment using Maven
	Creating a Web-Service client on HTTP transport
	Creating a Web-Service client on JMS transport
	Creating a Web-Service client on e-mail transport
	Setting up a Web-Service on XMPP transport
	Creating a Web-Service client using XPath expressions
	Creating a Web-Service client for a WS-Addressing endpoint
	Transforming a Web-Service message using XSLT

	Chapter 3: Testing and Monitoring Web-Services
	Introduction
	Integration testing using Spring-JUnit support
	Server-side integration testing using
MockWebServiceClient
	Client-side integration testing using
MockWebServiceServer
	Monitoring TCP messages of a Web-Service using TCPMon
	Monitoring and load/functional testing of a Web-Service using soapUI

	Chapter 4: Exception/SOAP Fault Handling
	Introduction
	Handling server-side exceptions by returning the exception's message as a SOAP fault string
	Mapping exception class names to SOAP faults
	Annotating exception classes with @SOAPFault
	Writing your own exception resolvers in Spring-WS

	Chapter 5: Logging and Tracing of SOAP Messages
	Introduction
	Logging message payload manually
	Logging both request and response SOAP Envelopes using log4j
	Logging both request and response using Spring-WS's Interceptors
	Using Eclipse IDE to debug a Spring-WS

	Chapter 6: Marshalling and Object-XML Mapping (OXM)
	Introduction
	Marshalling with JAXB2
	Marshalling with XMLBeans
	Marshalling with JiBX
	Marshalling with XStream
	Marshalling with MooseXML
	Creating a custom marshaller using XPath for conditional XML parsing

	Chapter 7: Securing SOAP Web-Services using XWSS Library
	Introduction
	Authenticating a Web-Service call using plain/digested username token
	Authenticating a Web-Service call using Spring security to authenticate a username token with a plain/digested password
	Authenticating a Web-Service call using
a JAAS service to authenticate a username token
	Preparing pair and symmetric keystores
	Securing SOAP messages using digital signature
	Authenticating a Web-Service call using X509 certificate
	Encrypting/decrypting of SOAP messages

	Chapter 8: Securing SOAP Web-Services using WSS4J Library
	Introduction
	Authenticating a Web-Service call, using a username token with a plain/digest password
	Authenticating a Web-Service call using Spring security to authenticate a username token with a plain/digest password
	Securing SOAP messages using a digital signature
	Authenticating a Web-Service call using an X509 certificate
	Encrypting/decrypting SOAP messages

	Chapter 9: RESTful Web-Services
	Introduction
	Setting up a Spring RESTful Web-Service
using RESTful features in Spring MVC
	Using the REST Client tool to access Spring RESTful Web-Service
	Setting up a Spring RESTful Web-Service
using HTTP message conversion
	Creating a WS Client for the Spring RESTful Web-Service using Spring template classes

	Chapter 10: Spring Remoting
	Introduction
	Setting up Web-Services using RMI
	Setting up a servlet-based Web-Service using Hessian/Burlap, exposing business beans
	Setting up Web-Services using JAX-WS
	Exposing servlet-based Web-Services using Apache CXF
	Exposing Web-Services using JMS as the
underlying communication protocol

	Index

