
www.allitebooks.com

http://www.allitebooks.org

The Developer’s
Guide to Social
Programming

www.allitebooks.com

http://www.allitebooks.org

T
he Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

www.allitebooks.com

http://www.allitebooks.org

The Developer’s
Guide to Social
Programming

Building Social Context Using

Facebook, Google Friend

Connect, and the Twitter API

Mark D. Hawker

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was aware

of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or

special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales

international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Hawker, Mark D.

The developer’s guide to social programming : building social context using Facebook,

Google friend connect, and the Twitter API / Mark D. Hawker.

p. cm.

ISBN 978-0-321-68077-8 (pbk. : alk. paper) 1. Online social networks. 2. Entertainment

computing. 3. Internet programming. 4. Google. 5. Facebook (Electronic resource) 6.

Twitter. I. Title.

HM742.H39 2010

006.7’54—dc22

2010020866

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-

right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-

age in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department

501 Boylston Street, Suite 900

Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-321-68077-8

ISBN-10: 0-321-68077-4

Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville,

Indiana.

First printing, August 2010

www.allitebooks.com

http://www.allitebooks.org

❖

To Mam and Dad, I am forever grateful for your

patience, understanding, love, and support.

More than you will ever know.And to my

brother, Dale, who continues to pleasantly

surprise us all. I will love you always.

“Some dreams are dressed in gossamer and

gumboots; ethereal hope undergirded by

practical endeavour.”

SarahJayne Vivian

❖

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

I: Twitter

1 Working with the Twitter API 1

2 Diving Into the Twitter API Methods 21

3 Authentication with Twitter OAuth 45

4 Extending the Twitter API: Retweets, Lists,

and Location 61

II: Facebook Platform

5 An Overview of Facebook Platform Website

Integration 77

6 Registration, Authentication, and Translations

with Facebook 99

7 Using Facebook for Sharing, Commenting, and

Stream Publishing 115

8 Application Discovery, Tabbed Navigation, and the

Facebook JavaScript Library 137

III: Google Friend Connect

9 An Overview of Google Friend Connect 165

10 Server-Side Authentication and OpenSocial

Integration 193

11 Developing OpenSocial Gadgets with Google

Friend Connect 209

IV: Putting It All Together

12 Building a Microblog Tool Using CodeIgniter 235

13 Integrating Twitter, Facebook, and Google

Friend Connect 267

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

I: Twitter

1 Working with the Twitter API 1

Twitter API Essentials 1

Twitter API Methods 3

Twitter API Parameters 6

Twitter API Return Formats 10

Accessing the Twitter API 11

cURL 12

Twitter-async 14

Twitter API Rate Limiting 17

Twitter API Error Handling 18

Summary 19

2 Diving Into the Twitter API Methods 21

Twitter API Methods 21

User Objects 23

Status Objects 26

Direct Message Objects 28

Saved Search Objects 29

ID Objects 30

Relationship Objects 31

Response Objects 32

Hash Objects 33

Twitter Search API 34

Introducing the Atom Syndication Format 34

Twitter Search API Methods 38

Summary 43

3 Authentication with Twitter OAuth 45

Introducing Twitter OAuth 45

OAuth Benefits 46

OAuth Definitions 46

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Implementing Twitter OAuth 48

Twitter OAuth Workflow 48

Test Tube: A Sample Twitter Application 50

Summary 59

4 Extending the Twitter API: Retweets, Lists,

and Location 61

Extending Twitter’s Core Functionality 61

Retweet API 62

Lists API 64

Geolocation API 68

Twitter Community Evolution 71

Platform Translations 71

Spam Reporting 72

Future Directions 74

Summary 76

II: Facebook Platform

5 An Overview of Facebook Platform Website

Integration 77

Facebook Platform for Developers 77

Facebook Platform 78

Registering a Facebook Application 79

Referencing a Facebook Platform Application 81

Facebook API, FQL, and XFBML 84

Facebook API and FQL 84

XFBML 97

Summary 98

6 Registration, Authentication, and Translations

with Facebook 99

User Authorization and Authentication 99

Logging In and Detecting Facebook Status 101

Logging Out, Disconnecting, and Reclaiming

Accounts 107

www.allitebooks.com

http://www.allitebooks.org

ixContents

Connecting and Inviting Friends 109

Translations for Facebook 111

Preparing Your Application and Registering Text 111

Administering and Accessing Translations 113

Summary 114

7 Using Facebook for Sharing, Commenting,

and Stream Publishing 115

Content-Sharing and Live Conversation 115

Facebook Share 116

Facebook Widgets 118

Social Commenting and Stream Publishing 120

Comments Box 120

Open Stream API 123

Summary 135

8 Application Discovery, Tabbed Navigation,

and the Facebook JavaScript Library 137

Application Dashboards and Counters 138

News and Activity Streams 139

Games and Applications Counters 143

Navigating and Showcasing Your Application

Using Tabs 145

Configuring and Installing an Application Tab 146

Extending an Application Tab 149

Dynamic Content and the Facebook

JavaScript (FBJS) Library 157

Facebook Animation Library 157

Facebook Dialogs 160

Handling Events with an Event Listener 162

Summary 164

III: Google Friend Connect

9 An Overview of Google Friend Connect 165

Components of Google Friend Connect 165

Google Friend Connect Gadgets 166

www.allitebooks.com

http://www.allitebooks.org

x Contents

Google Friend Connect JavaScript API 167

Server-Side Integration 167

Google Friend Connect Plug-ins 168

Using the Google Friend Connect JavaScript API 169

Installing and Configuring the JavaScript Library 169

Working with Google Friend Connect Data 171

An Overview of the OpenSocial API 173

OpenSocial API Methods 173

The DataRequest Object 174

Fetching People and Profiles 176

Fetching and Updating Activities 177

Fetching and Updating Persistence 178

Color Picker: A Google Friend Connect

Application 181

Summary 191

10 Server-Side Authentication and OpenSocial

Integration 193

Server-Side OpenSocial Protocols and Authentication

Methods 193

Google Friend Connect Authentication Methods 194

OpenSocial Client Libraries 196

Using the PHP OpenSocial Client Library

with Google Friend Connect 197

Google Friend Connect Authentication Workflow 197

Setting Up a Server-Side Application 198

OpenSocial Data Extraction Principles 201

Summary 207

11 Developing OpenSocial Gadgets with Google

Friend Connect 209

An Overview of Google Gadgets 209

Anatomy of an OpenSocial Google Gadget 210

OpenSocial v0.9 Specification 214

Advanced OpenSocial Gadget Development 217

Creating a Google Gadget 222

Color Picker, Revisited 222

Testing, Tracking, and Directory Submission 230

Summary 233

xiContents

IV: Putting It All Together

12 Building a Microblog Tool Using CodeIgniter 235

An Overview of CodeIgniter 235

The Model-View-Controller Architectural Design 236

Installing, Configuring, and Exploring CodeIgniter 237

CodeIgniter Libraries 240

CodeIgniter Helpers 245

Building the Basic Sprog Application 246

Stage 1: Creating the Registration, Login, and Home

Pages 247

Stage 2: Extending the Sprog Application with Updates,

Comments, and Likes 257

Summary 266

13 Integrating Twitter, Facebook, and Google Friend

Connect 267

Implementing Twitter Functionality 267

Setting Up Twitter and Twitter-async Support 268

Stage 3: Extending the Sprog Application

with Twitter Functionality 270

Updating a User’s Twitter Account 276

Implementing Facebook Functionality 279

Registering a Facebook Application and Adding

Facebook Support 279

Stage 4: Extending the Sprog Application with

Facebook Functionality 281

Implementing Google Friend Connect Functionality 292

Registering and Adding Google Friend

Connect Support 292

Stage 5: Extending the Sprog Application

with Google Friend Connect Functionality 294

Summary 301

Index 303

Preface
The World Wide Web is in constant flux and, since the introduction of utilities such as

Facebook and Twitter, has only recently had social interaction at its core. Currently,

Facebook and Twitter have more than 400 million active users, and the Facebook

Platform alone is integrated with more than 250,000 websites and applications, engaging

over 100 million Facebook users each month.These numbers continue to increase each

day.Another dominant force is Google, who introduced their Friend Connect, which

enables users to add social functionality to any of their websites.All three companies

continue to roll out massive changes to their development platform, rendering previous

best practices obsolete.

However, just knowing the technical aspects of each platform is not a guarantee that

it will succeed. It is important to also see how each is distinct and to prepare you for

changes through examples and sample code.The purpose of these examples is to provide

a springboard to build applications on, so there is plenty of room for extending and

adapting to suit your own needs.This book is one of the first of its kind to bring

together three of the most popular social programming platforms under one hood.

Welcome to social programming.

Who This Book Is For

This book is written for beginner or intermediate developers who are comfortable with

PHP and the major technologies of the Web: (X)HTML, JavaScript, and Cascading Style

Sheets (CSS), as well as Atom, JavaScript Object Notation (JSON), Really Simple

Syndication (RSS), and Extensible Markup Language (XML).The reader should also

have access to a web server, such as Apache or Internet Information Services (IIS), to test

code examples.

No prior experience of social programming is required, although some familiarity

and active user accounts with Facebook, Google, and Twitter is assumed.To be a good

developer for a platform, it helps to understand it from a user’s perspective.

This book will help the reader understand what makes a good Facebook, Google

Friend Connect, and Twitter application; explain and show how to use the core tech-

nologies of each platform; and build your confidence to develop engaging social

applications.

How This Book Is Structured

This book is divided into four main parts:

Part I,“Twitter,” provides an overview of the methods, authentication workflows, and

components of the Twitter API. It explains what is contained within the Twitter API,

including search, retweets, lists, and geolocation using code examples supported by a PHP

client library, twitter-async.

Part II,“Facebook Platform,” provides an overview of the service, including authenti-

cation, sharing, commenting, and publishing.A sample application is created,Test Tube,

highlighting key features of the platform through both client- and server-side scripting

using the Facebook Platform.

Part III,“Google Friend Connect,” showcases the service and its integration with

OpenSocial through client- and server-side scripting and the creation of a Google

gadget.A sample application, Color Picker, is created to demonstrate Google Friend

Connect in action.

Part IV,“Putting It All Together,” pulls each of the three social platforms together into

a coherent whole and demonstrates how to create your very own microblog from

scratch.A sample application, Sprog, is created using a popular web application frame-

work, CodeIgniter, which is extended using select functionalities from Twitter, Facebook,

and Google Friend Connect.

Contacting the Author

If you have any questions or comments about this book, please send an e-mail to

socialprogramming@gmail.com.You can also visit the book’s website, http://www.

socialprogramming.info, for updates, downloadable code examples, and platform news.

An active code repository will be maintained, http://github.com/markhawker/Social-

Programming, which you can use to post issues you have with the code and to down-

load future updates.

http://www.socialprogramming.info
http://github.com/markhawker/Social-Programming
http://github.com/markhawker/Social-Programming
http://www.socialprogramming.info

Acknowledgments
Writing this book has been one of, if not the, greatest and most thrilling experiences of

my life.This adventure has been supported by a great number of people. First, I want to

thank my acquisitions editor,Trina MacDonald, who was always there to listen and sup-

port me when I had queries and really helped shape the book. I appreciate the encour-

agement given through some tough and challenging times. Second, I’d like to thank my

development editor, Songlin Qiu, for her advice and insight; my technical editors, Joshua

Gross, Ben Schupak, and Joseph Annuzzi, who did an excellent job testing and correct-

ing my source code; and Olivia Basegio for keeping us all in check. Others who offered

excellent advice and direction include Doug Williams at Twitter, Patrick Chanezon,Arne

Roomann-Kurrik, Bob Aman and Chris Schalk at Google, and Jaisen Mathai.Thanks

also to my connections on Twitter and Facebook for being with me from the beginning,

including Kevin Makice and Dusty Reagan, and to Raj Anand and Dr. Lydia Lau for

their input on my original proposal.

A final, special mention goes to SarahJayne Vivian for keeping me inspired and moti-

vated, and for showing me the true meaning of friendship.Thank you. It truly has been

an amazing journey and one that I will never forget.

About the Author
Mark Hawker is a social applications developer and consultant focused on developing

for social platforms such as Facebook and Twitter. He is a graduate from the University

of Leeds, United Kingdom, with a First-class Honors degree in Informatics.A researcher

in the field of health informatics, Mark focuses his time on how to innovatively apply

social networking technologies in a wide variety of consumer health scenarios.

1

Working with the Twitter API

The beauty and success of Twitter lies in its simplicity. It’s simple not just for its users but

also within its rich application programming interface (API), which provides you the

tools required to interact with Twitter’s internal services.The Twitter API is responsible

for more than 90% of Twitter server traffic and provides the gateway to much of Twitter’s

core functionality, such as status updates, direct messaging, and searches.As the Twitter

platform evolves, more features will be added to the Twitter API, so this book will serve as

a complement to the expanding online Twitter documentation. Recent enhancements

include the Geolocation API, Lists API, and the Retweet API (each of which is covered in

Chapter 4,“Extending the Twitter API: Retweets, Lists, and Location”).

This chapter explains a number of building blocks, such as methods, authentication,

return formats, and status codes that will enable you to start interacting with the service.

Interaction with the Twitter API is described using a command-line interface (cURL),

and in this chapter, you are introduced to a PHP client library developed by Jaisen Mathai

called twitter-async, which supports basic authentication as well as Twitter OAuth, which

is covered in Chapter 3,“Authentication with Twitter OAuth.”At the end of this chapter,

you will have gained an understanding of the Twitter API and developed the necessary

skills to start interacting with the service. From here, Chapter 2,“Exploring the Twitter

API and Search API,” will guide you through Twitter API return objects to give you an

in-depth understanding of how to interpret responses to suit all of your applications.

Twitter API Essentials
The Twitter API enables desktop and Internet-enabled third-party applications to interact

with Twitter services in a standard and easy-to-use way.An API is a conduit that enables

data from one application or service, in this case Twitter, to be shared with the outside

world. By making requests to the Twitter API, data is returned in a structured format that

makes it easy to parse and extract information from that data.The Twitter API separates

the functionality of the site into small, manageable functions, such as “get a list of fol-

lowers” or “change a profile background” via a number of methods.

2 Chapter 1 Working with the Twitter API

Counting to 140

Twitter imposes a limit of 140 characters, or more technically 140 bytes, to updates (prima-

rily because of the size restrictions of cell text messages). Although the Twitter API accepts

longer strings of text, those messages are truncated. Because Twitter uses the UTF-8 char-

acter set, it is possible to represent each of the 128 ASCII characters, which consume 1

byte, plus special Unicode and international characters, which can consume up to 4 bytes.

This is why tweets with special characters are truncated even though they are technically

140 characters in length. Twitter uses the Normalization Form C (NFC) convention for count-

ing update length, which can be evaluated using the Normalizer class in PHP.

The Twitter API is a Representational State Transfer (REST)-based resource exposed

over HTTP(S), which means that “accessor” methods (those that retrieve data) require a

GET operation and “mutator” methods (those that create, update, or destroy data) require a

POST operation.

However, the Lists API methods require that you use a PUT operation for updating data

and also a DELETE operation for destroying data.This is discussed in Chapter 4 because it is

slightly removed from the conventional structures of the other Twitter API methods.The

DELETE operation instructs the Twitter servers to remove the requested resource and does

not return a response value to guarantee that this has been performed successfully. It is

recommended that applications use the POST operation wherever possible because both

successful and unsuccessful attempts will be reported to the requestor.

REST-based web services such as the Twitter API consist of three elements:

n HTTP operation

How the request is being transferred to the Twitter API.The transfer operations are

GET, POST, PUT, and DELETE, as described earlier, and which operation is appropriate

depends on the method being executed. Supplying an incorrect operation will result

in an error.

n Method

A URL that points to the location of a resource on Twitter’s servers.A list of meth-

ods appears in the next section, and Chapter 2 further describes these methods.

Methods can also include a number of parameters for customizing requests (for

example, returning only a certain number of values) or for supplying update text.

n Return format

The format in which to return data back, which must be supported by that method.

Twitter accommodates Extensible Markup Language (XML), JavaScript Object

Notation (JSON), Really Simple Syndication (RSS), and Atom return formats

depending on the method that has been executed. For example, changing the URL

extension of a request from .xml to .json will adjust the return format.

The Twitter API has many different components. For example, the REST API and

Search API include methods for accessing Twitter services (for instance, updating time-

lines, status data, and user data), for searching timelines and trend data, and for user

authentication (see Chapter 3).Three other components of the Twitter API are the

3Twitter API Essentials

Retweet API (for accessing and creating retweets), the Lists API (for accessing and creating

lists), and the Geolocation API (for geotagging tweets).These components are discussed

more fully in Chapter 4. Each Twitter API component functions in a similar way, sharing

parameter conventions and returning data in standard file formats, which makes each

component an intuitive service.

Twitter API Methods

Twitter API Versioning

The Twitter API supports versioning, which means that Twitter will be able to provide beta

functionality without compromising stable code. There are currently two method address

conventions: one for search methods, http://search.twitter.com/; and one for other

methods, https://api.twitter.com/<<version>>/. In the second case, you can replace

<<version>> with the version number that you intend to use, which should be set to 2 (the

latest release version as of this writing). Twitter expects that deprecation between old and

new versions will take approximately six months, and so you have plenty of time to update

code before changes become permanent.

The official Twitter API documentation groups methods into “categories” which can be

identified by the method stub. For example, the users/show method is part of the User

method category.The method stub will help you translate methods back into the language

used by Twitter to describe the methods in their official documentation. Most categories

are organized logically and include methods to perform each of the standard CRUD

(Create, Read, Update, and Delete) operations.The Search API methods that have the

stubs search and trends use the https://search.twitter.com/ prefix, and all other methods

use the https://api.twitter.com/2/ prefix.The Lists API methods have been deliberately

excluded here because they use a slightly different structure and are detailed in Chapter 4.

Where methods show an <<id>> parameter, this must be replaced with a valid Twitter

user identifier, such as a screen name, as explained in the next section.All methods should

be appended with a .<<format>> to denote which format the method should return.

Accessor Methods

These methods require a GET operation for extracting data from Twitter and are split into

the following categories:

n Account methods

The account/rate_limit_status method returns the number of requests that a

user has remaining before his limit is refreshed.At the time of this writing, users

had approximately 150 requests available to them per hour.The account/verify_

credentials method checks whether a user’s credentials, in the form of a username

and password or OAuth tokens, are valid and returns an error or User object (see

Chapter 2) if successful.

http://search.twitter.com/
https://api.twitter.com/<<version>>/
https://search.twitter.com/prefix
https://api.twitter.com/2/prefix

4 Chapter 1 Working with the Twitter API

n Block methods

The blocks/blocking method returns a collection of users that a user has blocked

on Twitter.The blocks/blocking/ids method returns the same collection of users

as the blocks/blocking method, although you are given only their user identifiers.

The blocks/exists/<<id>> method checks whether a specified user has been

blocked by the authenticated user.

n Direct messages methods

The direct_messages method retrieves a number of messages that a user has

received and works alongside the direct_messages/sent method, which refers to

the messages that the authenticated user has sent.

n Favorites methods

The favorites method returns a number of updates that a user has marked as a

favorite. Favorites in Twitter are similar to bookmarks in a web browser.

n Friendships methods

The friendships/exists method returns a simple true or false if two users are

following each other. In addition, the friendships/show method can be used to

extract more detailed information, such as whether the follow is reciprocated.

n Help methods

The help/test method can be used to check whether the Twitter API is up and

running and does not count toward a user’s rate limit.

n Saved searches methods

The saved_searches method returns a list of search terms that the authenticated

user has saved.A particular search can be retrieved via the saved_searches/show/

<<id>> method.

n Search methods

The search method is used to perform powerful searches and is covered in detail in

Chapter 2.

n Social graph methods

The followers/ids and friends/ids methods return the identifiers of all the fol-

lowers and friends a user has. For users with large numbers of connections, this can

be iterated over to retrieve them all.

n Status methods

The statuses/retweets/<<id>> method retrieves a number of statuses that have

“retweeted” the original <<id>> update.The statuses/show/<<id>> method

simply returns the Status object (see Chapter 2) for a given <<id>>.

n Timeline methods

The statuses/friends_timeline, statuses/home_timeline, statuses/public_

timeline and statuses/user_timeline methods return a collection of Status

5Twitter API Essentials

objects (see Chapter 2) for a user’s friends, everyone on Twitter, or a specific user. In

addition, mentions (updates that reference a particular user) of the authenticated

user can be retrieved through the statuses/mentions method.Three retweet

methods exist and are covered in Chapter 4: statuses/retweeted_by_me,

statuses/retweets_of_me, and statuses/retweeted_to_me.

n Trends methods

The trends method can be used to return the topics that are currently “trending”

on Twitter.To refine this search, you can also use the trends/current, trends/

daily, and trends/weekly methods. In addition to these three methods,Twitter has

two “local trends” methods—trends/available and trends/location—which

return trends for a given area (for example, the buzz in London or San Francisco).

n User methods

The final set of methods is for returning details about users such as extracting the

details of followers (statuses/followers) and friends (statuses/friends), but

also for specific users via the users/show and users/lookup methods.Twitter

enables you to search for users via the users/search method, and to access sug-

gested users through the users/suggestions and users/suggestions/

<<category>> methods.

The next group of methods is contained within the same categories but is now for cre-

ating, updating, and deleting Twitter data.

Mutator Methods

In addition to the accessor methods described in the preceding section, you might also

want to manipulate Twitter data.These methods require a POST operation for mutating

Twitter data and are split into the following categories of methods:

n Account

Twitter maintains a concise profile for every user that can be updated via the

account/update_profile method.This can be used to update their name, descrip-

tion, and location.You can also update colors and images via the account/update_

profile_background, account/update_profile_colors, and account/update_

profile_image methods. For users who want updates to be sent to their cell

phone, you can set the account/update_delivery_device method. Finally, for

ending a Twitter session, you should use the account/end_session method, which

logs your user out of your application and Twitter.

n Block

One method exists for blocking nuisance users (blocks/create/<<id>>), and

another exists for unblocking should a user change his mind (blocks/destroy/

<<id>>).

www.allitebooks.com

http://www.allitebooks.org

6 Chapter 1 Working with the Twitter API

n Direct messages

Some applications may want to send or delete messages on behalf of their users.The

direct_messages/destroy/<<id>> and direct_messages/new methods exist for

such a use case.

n Favorites

If you want to manage a user’s favorite tweets in your application, both the

favorites/create/<<id>> and favorites/destroy/<<id>> methods should

come in handy. Simply supplying an <<id>> will add or remove a favorite from a

user’s profile.

n Friendships

For managing a user’s friends list, the friendships/create/<<id>> and

friendships/destroy/<<id>> methods are particularly useful for creating and

destroying connections. Like the methods for manipulating favorites, all you need to

provide is an <<id>> of the user to follow or un-follow.

n Notifications

If users request to receive updates to their cell phone, you can use the

notifications/follow/<<id>> and notifications/leave/<<id>> methods to

set which friends they receive updates from.

n Saved searches

Users sometimes may want to store frequently requested searches into their profile

so that they are easy to access at later dates.The saved_searches/create and

saved_searches/destroy/<<id>> methods make this action seamless.

n Statuses

You can use status methods to create statuses (statuses/update) and to delete

them (statuses/destroy/<<id>>).You can also use a status method to retweet a

status (statuses/retweet/<<id>>).

Instead of describing each method (and its parameters) in any more detail in this chap-

ter, this discussion will follow an object-oriented approach, describing each return value as

an “object” (see Chapter 2). From just the methods listed here, you can perhaps start to

understand the size of the Twitter API and get an idea about which methods can be

accessed when connecting to the Twitter API later in this chapter.The remainder of this

section defines the many parameters available to tailor Twitter API method requests. Some

methods require parameters to be set, such as user identifiers or update text, but most do

not (and function just fine).

Twitter API Parameters

Parameters are particularly important because they can be used to customize the outputs

of requests and they affect data sent to the Twitter API in update, create, or delete opera-

tions.Twitter promotes the use of parameters such as since_id, max_id, and cursor in

7Twitter API Essentials

timeline requests to reduce the burden of requests on its servers (not that a full result set

does not have to be returned each time the method is executed).You can set parameters

by either appending them to the method request if using GET operations such as

https://api.twitter.com/1/users/show.xml?id=markhawker and by adding additional

parameters separated by an ampersand (&) or by including them within POST, PUT, or

DELETE operations.The following section explores both approaches.

Coverage and Deprecation

Not all parameters are available for each of the Twitter API methods and may change over

time. Chapter 2 covers each parameter in detail. Parameters for the Lists API are defined in

Chapter 4 because this is a newer component that uses different naming conventions.

The Twitter API uses UTF-8 character encoding for all parameters, which means that

special characters such as the ampersand (&) and equals (=) characters must be encoded

before being sent to Twitter. Most programming languages contain functions for perform-

ing this conversion for you; for example, htmlentities(). Encoding special characters

will take up more storage than a single-byte character, which means that some requests

may be rejected if they are over Twitter’s 140-character limit.A list of the most popular

parameters that you can use when interacting with the Twitter API have been gathered

and categorized into parameters that affect input and parameters that affect output.

Parameters that can be used in both Search API methods and in other Twitter API

methods are denoted by an asterisk (*) character, whereas parameters exclusive to the

Search API are denoted by a caret (^) character.

Parameters Affecting Input

These parameters affect data that is sent to the Twitter API:

n description, email, location, name, url

These parameters can be any set of alphanumeric characters and should be limited

to a maximum length of 20, 40, 100, 30, and 160 characters, respectively.The email

parameter must be a valid e-mail address.

n follow

Boolean true or false parameter used when you want to enable notifications for a

target user and to follow that user.

n image

Used for setting a user’s profile image or background and requires multipart form

data rather than a URL or raw image bytes.The content-type must be a valid GIF,

JPEG, or PNG image. In addition size restrictions apply: < 2,048 pixels and 800KB

for backgrounds and < 500 pixels and 700KB for profile images.

n in_reply_to_status_id

Used for associating a mention with an original status. If the identifier is not valid,

or not the username mentioned within the update, the parameter is just ignored.

https://api.twitter.com/1/users/show.xml?id=markhawker

8 Chapter 1 Working with the Twitter API

n lat, long

The latitude and longitude of the update, which must be a number set within the

range -90.0 to +90.0, and where north and east are positive.These parameters are

ignored if outside that range, if not a number, if geo_enabled is disabled, or if they

are not sent in pairs.

n profile_background_color, profile_link_color, profile_

sidebar_border_color, profile_sidebar_fill_color, profile_text_color

Used for setting a user’s profile colors and must be set to a valid hexadecimal value.

Values may be either three or six characters in length; for example, fff and ffffff

are equivalents for the color white.You do not need to include the hash (#) charac-

ter when using this parameter.

n query

The saved search query that the user would like to save.

n source

To help users identify which tool has published a tweet,Twitter has provided this

parameter, which can contain a short string for identifying your application.The

parameter will be returned as a URL-encoded string containing a hyperlink to your

application.Applications that use OAuth have this parameter set by default.

n status, text

Used for setting a user’s status or within a direct message.To avoid truncation, the

string of text should be within 140 characters when encoded.

n tile

Boolean parameter used to set whether a profile background image should be

“tiled” onscreen. Otherwise, it will remain in a fixed position in the top-left corner

of a profile page.

Parameters That Affect Output

These parameters affect data requested from the Twitter API:

n callback*

For client-side JSON requests, the callback parameter can be set to a JavaScript

function name, which will automatically be sent the return data to parse.

n count, page*, rpp^

Twitter imposes pagination limits, but you can combine count and page parameters

to retrieve the maximum number of results. For example, by setting count to 100,

you can iterate through pages 1–32 to extract all available status updates. Note that

the page parameter begins with 1, not 0.These parameters are scheduled to be dep-

recated in favor of cursor-based pagination.The rpp parameter is specific to the

Search API and is akin to the count parameter.The default is 15, but this can be

increased to 100 entries.

9Twitter API Essentials

You can use the page parameter in conjunction with rpp to extract the maximum

number of results, which is currently 1,500. If you exceed Twitter’s pagination lim-

its, an empty result set will be returned. Currently, the Search API will return results

up to 1.5 weeks in the past, but this might increase or decrease in the future as the

number of updates per day continues to increase.These parameters are set to be

replaced by the cursor parameter.

n cursor

Setting a cursor breaks requests into “pages,” each with 100 results. Providing a

value of -1 begins paging, and the Twitter API will then return next_cursor and

previous_cursor parameters within responses so that you can “scroll” through

requests.Twitter also returns next_cursor_str and previous_cursor_str, which

are the string-based equivalents of the next and previous integers.

n geocode^

For returning updates within a given radius (mi or km) of a latitude/longitude in the

format latitude,longitude,radius. Remember to URL-encode commas (,) to

code %2C.

n id, user, user_a, user_b

When referencing a user, the id parameter can be set to either the integer user_id

or alphanumeric screen_name of a user or an integer identifier of a valid status,

direct message, or saved search.

n lang^, locale^

To search for updates in languages other than English, use this parameter along with

the country’s two-letter ISO 639-1 code.

n lat, long

The latitude and longitude of the location to return trending topics for which must

be a number set within the range -90.0 to +90.0, where north and east are positive.

n max_id*, since_id*

An integer used to return status updates or direct messages that have identifiers

greater or less than that integer. For example, to show all statuses published more

recently than a particular status, say 12345, you set the since_id to 12345.

However, if you want to show all of the statuses that were posted before that partic-

ular status, you set the max_id to 12345 instead.

n per_page

An integer used to control the number of results returned when searching for users.

This must be less than 20.

n q*

The search query or username to be requested, which must be URL-encoded and

no larger than 140 characters.

10 Chapter 1 Working with the Twitter API

n screen_name, source_screen_name, target_screen_name

The “friendly” alphanumeric name or username of a Twitter user, which is not the

same as a user_id, but it is possible that a screen_name may contain just numeric

characters. In this case, the screen_name parameter would be set to distinguish it

from a user_id. For example, a valid screen_name may be 1234567890, which

could also be interpreted by Twitter as a valid user_id value.

n show_user^

When set to true, this parameter is used to prefix updates with <user>: for

readers that do not display Atom’s author element.The default value for this

parameter is false.

n source_id, target_id, user_id

The numeric identifier for a user, which remains fixed, unlike the screen_name

parameter, which can be changed by the user. It is recommended that you work

with and store this parameter rather than screen_name for your applications.

n woeid

For retrieving location-specific trending topics, a Where on Earth IDentifier

(WOEID) is required.

The final part of this section looks at the return formats accepted by the Twitter API.

With this final piece of knowledge, you can start accessing and interacting with the

Twitter API to retrieve data.

Twitter API Return Formats

For successful requests, you should expect the Twitter API to return data back in the for-

mat that you requested.The Twitter API supports four MIME types for formatting

returned data:

n JSON

JavaScript Object Notation is a lightweight data-interchange format favored in

AJAX applications and is considered a simpler and faster alternative to XML.

Defined in a structured format, JSON is object based, and simple text can be used

to represent many different data types and relationships. It is the favored MIME type

of the twitter-async client library, which is used throughout Chapters 2, 3, and 4.

JSON is the only data format supported by all the Twitter API methods, and so it’s

particularly important for you to understand it.

n RSS and Atom

Really Simple Syndication is a standard form of XML commonly used on blogs and

news sites.Atom was created as an alternative to RSS to accommodate some of the

flaws in the RSS protocol and to improve international support. Both RSS and

Atom are used to accommodate people who want to “subscribe” to Twitter infor-

mation streams, such as the public timeline or a particular user’s timeline.

11Accessing the Twitter API

n XML

Extensible Markup Language is a general-purpose language for specifying custom

markup languages.The language is extensible in that users can define their own tags

and structure. XML is used to structure data in a way that separates content from

presentation: a guiding principle of Web 2.0.

Not all methods support all of these data formats. Support for each of the methods will

be clearly identified as you explore the Twitter API in more detail in Chapter 2.As a com-

parison to XML, JSON returns a set of “key/value” pairs nested within curly braces. For

example, using the users/show method with the screen_name parameter set to

“markhawker” with JSON output would produce the following, which has been snipped

for brevity because we’re just comparing the two formats:

{

"screen_name":"markhawker", ..., "status":{

"text":"Testing JSON and XML output formats.", ... }

}

Whereas the same users/show request in XML would produce the following:

<user>

<screen_name>markhawker</screen_name>

...

<status>

<text>Testing JSON and XML output formats.</text>

...

</status>

</user>

As you can see, the two formats are comparable and return exactly the same data. It is

easy to “translate” JSON into a PHP object by using the json_decode() function, which

can then be manipulated in your applications.This complexity is handled for you if you

choose to use the twitter-async client library, which handles JSON responses by default.

The basics of the Atom file format are described in Chapter 2 when interacting with the

Search API, although it is not a requirement to use the format at all (because JSON is sup-

ported by all Twitter API methods).

Accessing the Twitter API
Most Twitter API requests require user authentication to access data that is not otherwise

open to the public, such as direct messages or favorites, and to control Twitter rate limit-

ing. Historically,Twitter has implemented Basic Authentication, whereby user credentials

in the form of a username and password combination are sent in the header of a request.

Although this method is easy to use, it is prone to security risks, even if sent over a secure

connection, due to usernames and passwords being transferred across the Internet.A bet-

ter, and safer, method that which implements open authentication (OAuth) has been

developed (see Chapter 3).

12 Chapter 1 Working with the Twitter API

Authorized Connections

The “Connections” tab inside a Twitter profile lists OAuth applications that users have

authorized on their Twitter account. From there, users can choose the “Revoke Access”

option to de-authorize unwanted applications.

Twitter has not set a deadline for deprecating Basic Authentication, but it is only a mat-

ter of time. For this reason, it is important that you get to grips with OAuth as soon as

possible.You can enable Basic Authentication by either typing the methods into your

browser’s address bar or by using a command-line application known as cURL. For pro-

duction applications, you will require something more sophisticated, and so this section

also details how to make Twitter API requests using a client library called twitter-async. If

you intend to use another client library or programming language, the platform-independ-

ence of cURL should help guide you more than being taught how to interact with the

Twitter API using a specific programming language.The elegance and simplicity of twit-

ter-async makes it a great choice for developing Twitter applications from the ground up.

cURL

The cURL application provides a way of accessing URL resources from the command

line and functions much like a text-based web browser. If cURL is not already installed on

your computer, you can download it for free from http://curl.haxx.se/download.html for

almost any operating system. If you download the version with Secure Sockets Layer

(SSL), you need to ensure that all the necessary files are included in the package.You can

find whether you have all the necessary files by navigating to the directory where you

have saved the cURL files and trying to run the command curl. If you get the following

response, you’ve succeeded:

curl: try "curl --help" or "curl --manual" for more information

If you get an error response saying that your operating system was unable to find a

specified component, it is recommend that you try another download source (of which

there are usually multiple sources for each version of cURL).Alternatively, search for the

component online or check the cURL FAQ (http://curl.haxx.se/docs/faq.html).You can

also run any of the method URLs directly from your web browser, although it is recom-

mended that you change the file format from JSON to XML because browsers display

XML more elegantly inline.The web method works only for accessor methods, those that

pull data from Twitter, and cannot be used for actions such as creating tweets or sending

direct messages, which is why cURL is recommended.

If you are happy to try out cURL, here are some useful commands to help you interact

with the Twitter REST API from the command line:

n curl

After you have navigated to the directory where you installed cURL, you can use

this command in the command line to initiate a cURL request.

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/faq.html

13Accessing the Twitter API

n -A "Name Of Your User Agent"

This is used to set the user agent of the request.Twitter requires that you set this

parameter so requests can be attributed to particular applications and debugged by

the applications’ respective programmers.

n -d

The –d switch is used to send unencoded data via POST. If you want to send a POST

request without parameters, just use –d "".

n --data-urlencode "status=Hello, world."

The --data-urlencode switch is used to send URL-encoded messages—ones

including special characters and spaces—via a POST request.

n -G

The –G switch is used to send –d data as a GET request so that parameters can be set

in the same way as in the switches described earlier (instead of appending them to

method URLs).

n -H "Expect:"

The Twitter API may reject some cURL requests because it sometimes sets the

header parameter to Expect: 100-continue.This needs to be set to an empty field

to be valid.

n -k

You might receive an error message when using the https:// prefix with requests

stating that the “certificate verify failed.”This verification process can be disabled by

supplying the –k switch.

n -u <<username>>:<<password>>

Used for authentication where <<username>> can be a Twitter screen_name, id or

email, and <<password>>.Although cURL provides some security when sending

these details across the network, they might not be 100% secure. Using cURL with

SSL will help reduce the risk of a third-party phishing your Twitter credentials.

n -v

Standing for verbose, this command-line switch will return the full HTTP headers

and additional server debugging information (for example, port names, user agent,

and cookie details).

As an example, you can run the following via cURL to display the public timeline

(which does not require authentication):

curl –k https://api.twitter.com/2/statuses/public_timeline.xml

14 Chapter 1 Working with the Twitter API

Returning the timeline of your followers requires user authentication. Remembering

to replace <<username>>:<<password>> with your actual username and password, try the

following:

curl –k –u <<username>>:<<password>>

https://api.twitter.com/2/statuses/home_timeline.xml

Getting more complex, to post an update which requires user authentication and a

status parameter using a POST request, try this:

curl –k –u <<username>>:<<password>> --data-urlencode "status=Testing updating my
status with cURL."

https://api.twitter.com/2/statuses/update.xml

In addition to using the cURL command-line function, code examples using the twit-

ter-async client library are provided in the next section to hint at how the Twitter API

functions inside a programming language such as PHP.

Twitter-async

You can download the twitter-async client library, which requires PHP 5.2+, from

http://github.com/jmathai/twitter-async. It contains just three files, enabling you to exe-

cute (a)synchronous calls to the Twitter API using Basic Authentication or OAuth.The

asynchronous element of twitter-async means that multiple requests can be executed in

parallel, instead of waiting idly for them to be executed serially (for example, sending mul-

tiple direct messages to a number of followers and then returning the results of each back

to the client application).The simplest twitter-async application you can make is one that

makes an unauthenticated call to the Twitter API, such as retrieving search trends:

$twitter = new EpiTwitter();

$trends = $twitter->get_trends();

echo $trends->responseText;

The preceding code shows the creation of the $twitter object, which is one of three

methods of initiating a request.The second is Basic Authentication, which is achieved by

supplying username and password parameters within the request. For example:

$user = $twitter->get_basic("/account/verify_credentials.json", null, "username",
"password");

The third method is using OAuth, discussed in detail in Chapter 3, which is the use of

a consumer key and consumer secret.The EpiTwitter object that was just created has

only two methods, one of which is constructing it! The second is executing the Twitter

API methods, which use the following naming convention:

n The operation in lowercase, such as get, post, or delete, plus an underscore (_).

Operations that end in _basic are specifically for Basic Authentication or no au-

thentication and must not be used for OAuth.

http://github.com/jmathai/twitter-async

15Accessing the Twitter API

n The path to the Twitter API method that is in lowercase except for when there

needs to be a forward slash (/), which is denoted by a capital letter (for example,

usersShow). Underscores must be retained where appropriate, such as in the

account/verify_credentials method.

n Parameters can be added by including an array inside the request, as follows:

usersShow(array("screen_name" => "markhawker")).

For example, the account/verify_credentials method can be called by using the

following:

$response = $twitter->get_basic("account/verify_credentials.json",

null, <<username>>, <<password>>);

Or, if you are using OAuth, you could use this:

$response = $twitter->get_accountVerify_credentials();

The client library also supports image uploading and exposing response headers, and it

provides additional functionality for exception handling.The following code can be used

to initiate the twitter-async library, assuming that it is stored within a directory called

twitter-async, which should be above your test page, which can be saved as index.php:

<?php

require_once "twitter-async/EpiCurl.php";

require_once "twitter-async/EpiOAuth.php";

require_once "twitter-async/EpiTwitter.php";

$username = "INSERT YOUR TWITTER USERNAME"; // Edit Me

$password = "INSERT YOUR TWITTER PASSWORD"; // Edit Me

$twitter = new EpiTwitter();

try {

$response = $twitter->get_basic("/account/verify_credentials.json",

null, $username, $password);

if($response->code == 200) {

echo "<p>Username: ".$response->screen_name."</p>";

echo "<p>Description: ".$response->description."</p>";

}

}

catch(EpiTwitterException $e){ echo $e->getMessage(); exit; }

catch(Exception $e) { echo $e->getMessage(); exit; }

?>

The preceding code uses Basic Authentication, which you can replace with OAuth

code after reading through Chapter 3.You should replace the $username and $password

parameters with your own Twitter credentials.The example shows how a GET request can

be initiated using your Twitter credentials and how exceptions can be handled. If the

request for verifying a user’s credentials is successful, a status code 200 will be returned

along with a User object (see Chapter 2), which is why you can extract their

www.allitebooks.com

http://www.allitebooks.org

16 Chapter 1 Working with the Twitter API

screen_name and description.With a verified account, you can then extend the exam-

ple index.php file to also retrieve a user’s latest friends by using the following:

1 echo "<h1>Latest Friends</h1>";

2 echo "";

3 $friends = $twitter->get_basic("/statuses/friends.json", null,

$username, $password);

4 foreach($friends as $friend) {

5 echo "".$friend->screen_name.": ".$friend->status->text."";

6 }

7 echo "";

Another way to access the $friends details is to use a for() loop and access each

friend using $friends[$i]["screen_name"], ensuring that your counter is set to $i.

Notice that you can also extract a user’s status via the embedded Status object accessible

via $friend->status->text.The second parameter for this example was set to null, but

you could also insert an array containing the parameters that you want to set. If you want

to extract all the user’s friends, you must set “cursoring” by adding array("cursor" =>

-1) and then extracting the value of the next cursor and rerunning the request:

1 echo "<h1>All Friends</h1>";

2 echo "";

3 $cursor = -1;

4 do {

5 $friends = $twitter->get_basic("/statuses/friends.json",

array("cursor" => $cursor), $username, $password);

6 foreach($friends->users as $friend) {

7 echo "".$friend->screen_name.": ".$friend->status->text."";

8 }

9 $cursor = $friends->next_cursor_str;

10 } while ($cursor > 0);

11 echo "";

This do-while() loop initiates cursoring on Line 3 and then proceeds to return

friends’ details until the cursor returns 0, which means that all the user’s friends have been

returned.The foreach() loop should also be updated to replace $friends with

$friends->users because cursoring places subsequent results within an array called

users.A final example uses the asynchronous capabilities of twitter-async, which delays

accessing results from requests for as long as possible.This might prove useful if you want

to update a number of user accounts simultaneously or send multiple direct messages:

$twitter->useAsynchronous(true);

$users = array("user1", "user2", "user3", "user4"); // Edit Me

$responses = array();

foreach($users as $user) {

$responses[] = $twitter->post_basic("/direct_messages/new.json",

17Accessing the Twitter API

array("user" => $user, "text" => "Hey, {$user}. What’s up?"),

$username, $password);

}

echo "<h1>Direct Messages</h1>";

echo "";

foreach($responses as $response) {

echo "Direct Message: {$response->id}";

}

echo "";

This code, alongside the other elements of index.php, should be uploaded to your

web server.You’ll need all this in Chapter 2 when you experiment with more of the

Twitter API methods.

Twitter API Rate Limiting

Rate limiting is Twitter’s way of controlling and regulating access to their servers, to pro-

vide equitable performance to all application developers and users.You may have seen the

Fail Whale when you tried to access Twitter on the Web, and perhaps you’ve also seen

“Rate Limit Exceeded” errors appearing on third-party applications that you may be

using to access Twitter.This was their server’s way of saying they were overcapacity and

needed a brief pause for breath.

Two different limits apply to the number of requests per hour made to the Twitter API.

For the Twitter API, the default rate is 150 requests per hour, through a mixture of

account- and IP-based rate limiting.Therefore, if you reach the Twitter API limit on one

third-party application, other applications will also be subject to that limit. In which case,

you should access your account through the Twitter web client until your limits have been

reset.The Search API is limited by IP address, but the rate limits are considered sufficient

to not warrant a number being released on the number of requests per hour.

POST and GET Rate Limiting

Rate limiting affects only methods that request information via a GET request. This means

that methods that use the POST, PUT, or DELETE requests to submit, update, or delete data

(such as tweets) are not affected. Requests to the account/rate_limit_status method

to check limit status are not charged, to provide developers access to how many free

requests a user has.

If you think your application might exceed those rate limits—for instance, if you

intend to send out multiple messages or tweets—you can request to be “whitelisted” by

filling out a request form (http://twitter.com/help/request_whitelisting) to increase your

limits to 20,000 requests per hour.This process may take up to a week, but you will

receive confirmation from the Twitter team if you have been whitelisted.Applications that

repeatedly abuse their rate limits can also be “blacklisted” and are required to e-mail

Twitter Support with further details as to why they keep reaching the limits.You can

avoid the rate limiter in several ways, including caching results, prioritizing active users,

and reducing the number of times a particular search is requested.

http://twitter.com/help/request_whitelisting

18 Chapter 1 Working with the Twitter API

Twitter API Error Handling

For error handling, methods that require a particular request will return a meaningful sta-

tus code indicating whether the request was successful or not. If you’ve ever encountered

a “404 – Page Not Found” or a “501 – Internal Server Error,” you’ve experienced status

codes.These are just fancy “user-friendly” ways to present a status code error back to the

browser in a meaningful way.The Twitter API uses a similar method of returning response

codes and friendly error messages should a problem arise with a request.

Twitter uses the following three-digit codes to report whether a request was successful

and provides a description of the error encountered within a construct known as a Hash

object (see Chapter 2), which is a simple structure containing the error code and a

description from the Twitter API:

n 200 – OK

Your request was successful, and so you should receive back exactly what you

requested from the Twitter API in the data format that you specified.

n 304 – Not Modified

There was no new data to return, and so you already have the most up-to-date

data.This will occur if you make a request to a timeline in a period sooner than

once per minute.

n 400 – Bad Request

The request was invalid.This could be because a method that required parameters

may have been missed, formatted incorrectly, or a rate limit has been exceeded.

n 401 – Not Authorized

Authentication failed for the user details you provided.This means that a password

has been supplied incorrectly. Check that it is correct and try again.

n 403 – Forbidden

The request was understood, but it was refused. Check the returned error text for

an explanation.This may be due to rate limits being reached.

n 404 – Not Found

The method URL requested is invalid or does not exist.

n 406 – Not Acceptable

The method was formatted incorrectly when being requested from the Search API.

Check that you have properly encoded the URL.

n 500 – Internal Server Error, 502 – Bad Gateway, 503 – Service Unavailable

Something is broken with Twitter; try again later. It may be that it is down or being

upgraded, or perhaps its servers are overloaded with requests.

19Summary

As an example,Twitter API error messages are returned in the requested format with

an error message. For example, an XML error may look like this:

<?xml version="1.0" encoding="UTF-8"?>

<hash>

<request>/direct_messages/destroy/456.xml</request>

<error>No direct message with that ID found.</error>

</hash>

When you are using twitter-async, you can retrieve an error message from a response

by using the $response->code and $response->error variables to return both the status

code and error message, respectively. It is assumed that any request that does not return a

status code 200 will need to be reformatted and requested again.This model makes it

simple to enclose a request within a conditional statement to test for this occurrence.You

can then choose whether to return this error message directly back to users or return a

meaningful response indicating that they must resubmit their request.The most common

error message will be that a rate limit will have been exceeded, and so sending a request

for this data before submitting the response may be preferable, storing a cached value for

the number of remaining requests for the duration of the session so that it is not being

requested each time.

Summary
This chapter provided an overview of the Twitter API and its many methods, parame-

ters, and return formats.Two tools that you can use to access the Twitter API were de-

scribed: a command-line tool, cURL; and a PHP client library called twitter-async, which

is used throughout Chapters 2, 3, and 4.This chapter also briefly explained how Twitter

handles errors by returning meaningful status codes with requests, which you can use to

either manipulate the data or manage a failed request.The next chapter identifies the

types of data you can expect to retrieve from the Twitter API, including user data and

status updates.

This page intentionally left blank

2

Diving Into the
Twitter API Methods

Chapter 1,“Working with the Twitter API,” explored the Twitter application program-

ming interface and provided essential information you need when interacting with the

Twitter API, such as return formats and response codes.The Twitter API is split into sev-

eral method categories, but these are grouped together in this chapter, except for the

Retweet API, Lists API, and Geolocation API (which are explored in Chapter 4,

“Extending the Twitter API: Retweets, Lists, and Location”).The Twitter API contains a

number of methods, including ones for sending updates, direct messages, following and

unfollowing users, and account management.The Search API contains methods for

extracting search and trend information from Twitter as a means of filtering, finding, and

sorting the huge volumes of data.

This chapter explores the numerous Twitter API methods in detail, illustrating them

using an object-oriented approach focusing on their return values, and giving examples of

each alongside sample output and source code.You can test the examples using the com-

mand-line cURL interface or via twitter-async, as described in Chapter 1. If you do not

want to use cURL, you can access many of the Twitter API methods directly via the

Twitter web interface by typing the commands into your web browser’s address bar and

providing your Twitter username and password when prompted.

Twitter API Methods

Beware, Deprecation!

As the Twitter API evolves, you may find that some attributes become deprecated. Instead of

removing the attributes from their outputs, Twitter will set them to null where applicable.

There is also the possibility that methods will become deprecated, which will result in an

error being returned for method calls.

22 Chapter 2 Diving Into the Twitter API Methods

+Attribute 1: Type

+Attribute 2: Type

#Attribute 3: Type

+<<HTTP_REQUEST>> Method 1(Parameter 1:Type,

 Parameter 2:Type=20): Return File Format

-<<HTTP_REQUEST>> Method 2(): Return File Format

Object Name

Figure 2.1 Skeleton that will be used to

describe Twitter API objects.

To understand the methods that the Twitter API provides in conjunction with the param-

eters described in Chapter 1, it is important to explore the various outputs that you can

expect when interacting with the service.These return “objects” include several useful

pieces of data about a status or direct message, a user, or even an error or simple Twitter

response.There are eight main objects in the Twitter API:

n User objects

n Status objects

n Direct Message objects

n Saved Search objects

n ID objects

n Relationship objects

n Response objects

n Hash objects

Alongside sample XML responses for each of these methods to illustrate these return

objects, a form of UML (Universal Modeling Language, a universal language and diagram-

ming technique) is used to illustrate these return objects and the methods that can be used

to expose them. Figure 2.1 provides an example of an object and the conventions that

have been adopted in this chapter.

Several conventions have been adopted to fit in with the nature of the Twitter API, as

follows:

n Objects are divided into three “compartments”: a class name; attributes, which

include types such as integer, string, or true/false Boolean values (and attributes

can also be other objects; for example, in some instances, a User object also includes a

Status object); and operations or methods, which will return back that object.

23Twitter API Methods

n #element defines a protected element that requires user authentication for it to be

returned (for example, when users have protected their status). Methods denoted

with a hash (#) character mean that they can be executed without authentication

but may not return all values.

n -method defines a private method that must be executed with user authentication

or will fail and return an error Hash object.

n +method defines a public method that does not require any user authentication to

return all data.

n <<HTTP_OPERATION>> denotes what operation is required by the method, which can

be one of GET, POST, PUT, or DELETE.

n Parameters are enclosed in brackets, and default values are identified with an equals

(=) character. For example, count=20 means that the default value for the count

parameter is 20. So, if the parameter is omitted, 20 values will be returned.

n Return formats appear after the method name and colon (:) and must be set to one

of json, xml, atom, or rss.

For each of the Twitter API objects, you’ll see an illustration of the object, a descrip-

tion, and example of what values to expect back from the service. In Chapter 1, a sample

file was created, index.php, which is extended in this chapter with more calls to the

Twitter API.

User Objects

User objects (see Figure 2.2) are full of interesting data about an individual or a set of

individuals when wrapped inside a users array, such as when using statuses/friends or

blocks/blocking methods.With any of the methods that use cursors for pagination, you

should expect the return format to look like the following skeleton code block, which

includes a collection of User objects plus indicators of the values of the next and previous

cursors, which can be used to retrieve subsequent results:

<users_list>

<users type="array">...</users>

<next_cursor>...</next_cursor>

<previous_cursor>...</previous_cursor>

</users_list>

User objects are also embedded within Status objects to help reduce the number of

calls made to the Twitter API. In this instance, they do not contain the embedded Status

object as shown above. In Direct Message objects, there are also sender and recipient

objects that are exactly the same as User objects but without the embedded Status object,

which is why it defaults to a null value.

24 Chapter 2 Diving Into the Twitter API Methods

User

-<<GET>> account/verify_credentials(): json/xml

-<<GET>> blocks/blocking(page:Integer): json/xml

-<<GET>> blocks/exists/<<id>>(): json/xml

-<<GET>> statuses/followers(cursor:Integer,

 id:String,screen_name:String,

 user_id:Integer): json/xml

-<<GET>> statuses/friends(cursor:Integer,

 id:String,screen_name:String,

 user_id:Integer): json/xml

#<<GET>> users/lookup(screen_name:String,

 user_id:Integer): json/xml

#<<GET>> users/search(page:Integer,per_page:Integer=20,

 q:String): json/xml

#<<GET>> users/show(id:String,screen_name:String,

 user_id:Integer): json/xml

-<<POST>> account/update_delivery_device(device:String): json/xml

-<<POST>> account/update_profile(description:String,

 email:String,

 location:String,

 name:String,

 url:String): json/xml

-<<POST>> account/update_profile_background_image(image:Image,

 tile:Boolean=false): json/xml

-<<POST>> account/update_profile_colors(profile_background_color:String,

 profile_link_color:String,

 profile_sidebar_border_color:String,

 profile_sidebar_fill_color:String,

 profile_text_color:String): json/xml

-<<POST>> account/update_profile_image(image:Image): json/xml

-<<POST>> blocks/create/<<id>>(): json/xml

-<<POST>> friendships/create/<<id>>(follow:Boolean): json/xml

-<<POST>> notifications/follow/<<id>>(): json/xml

-<<POST>> notifications/leave/<<id>>(): json/xml

-<<POST>> report_spam(id:String,screen_name:String,

 user_id:Integer): json/xml

-<<POST/DELETE>> blocks/destroy/<<id>>(): json/xml

-<<POST/DELETE>> friendships/destroy/<<id>>(): json/xml

+created_at: Date

+description: String

+favourites_count: Integer

+followers_count: Integer

+following: Boolean = null

+friends_count: Integer

+geo_enabled: Boolean = false

+id: Integer

+location: String

+name: String

+notifications: Boolean = null

+profile_background_color: String

+profile_background_image_url: String

+profile_background_title: Boolean

+profile_image_url: String

+profile_link_color: String

+profile_sidebar_border_color: String

+profile_sidebar_fill_color: String

+profile_text_color: String

+protected: Boolean

+screen_name: String

#status: Status = null

+statuses_count: Integer

+time_zone: String

+url: String

+utc_offset: String

+verfified: Boolean = false

Figure 2.2 Twitter API User object including Status object.

An example of a User object returned by requesting the

https://api.twitter.com/1/users/show.xml?id=markhawker method currently contains the

following keys and values in XML:

<user>

<id>15397909</id>

<name>Mark Hawker</name>

<screen_name>markhawker</screen_name>

<location>West Yorkshire, United Kingdom</location>

<description>Health informatics researcher and social application

developer. Creator of @omnee.</description>

<profile_image_url>http://a3.twimg.com/profile_images/

234974305/me_normal.jpg</profile_image_url>

<url>http://markhawker.tumblr.com/</url>

<protected>false</protected>

<followers_count>1139</followers_count>

<profile_background_color>001313</profile_background_color>

https://api.twitter.com/1/users/show.xml?id=markhawker

25Twitter API Methods

<profile_text_color>00131e</profile_text_color>

<profile_link_color>1d8395</profile_link_color>

<profile_sidebar_fill_color>e3f0f2</profile_sidebar_fill_color>

<profile_sidebar_border_color>1d8395</profile_sidebar_border_color>

<friends_count>185</friends_count>

<created_at>Fri Jul 11 23:02:14 +0000 2008</created_at>

<favourites_count>131</favourites_count>

<utc_offset>0</utc_offset>

<time_zone>London</time_zone>

<profile_background_image_url>http://a3.twimg.com/profile_background_

images/35364101/collage.gif</profile_background_image_url>

<profile_background_tile>true</profile_background_tile>

<statuses_count>13859</statuses_count>

<notifications/>

<geo_enabled>false</geo_enabled>

<verified>false</verified>

<following/>

<status>...</status>

</user>

Notice the Status object that is returned inside the status element for all nonpro-

tected accounts, and keys, such as <notifications/>, which contain no data and use a

shorthand opening and closing tag.The created_at key is used to show when an individ-

ual first started using Twitter. In this case, it was on July 11, 2008. By default, the majority

of methods will return 100 users per page, so the cursor parameter is required to return

details of all followers. Here are two examples using the twitter-async library and the sam-

ple code created in Chapter 1:

$user = $twitter->get_basic("/users/show.json", array("screen_name" =>

"markhawker"), $username, $password);

// $user = $twitter->get_usersShow(array("screen_name" => "markhawker"),

$username, $password);

$followers = $twitter->get_basic("/statuses/followers.json",

array("cursor" => -1, "screen_name" => "markhawker"), $username,

$password);

// $followers = $twitter->get_statusesFollowers(

array("cursor" => -1, "screen_name" => "markhawker"), $username,

$password);

If successful, each request should return a User object or an array of User objects,

which can be accessed using a foreach($followers->users as $follower) or for()

loop. Note that there are two distinct ways of forming the queries using either

get_basic() or by using the Twitter API method name in the name itself, which will

return equivalent results. In some instances, you might want to use the longhand version

to extract data other than in JSON format. From the $followers data, the relevant

next_cursor_str and previous_cursor_str parameters can be retrieved by using

$followers->next_cursor_str or $followers->previous_cursor_str, respectively,

www.allitebooks.com

http://www.allitebooks.org

26 Chapter 2 Diving Into the Twitter API Methods

which was demonstrated in Chapter 1. Each element of the $user can be accessed by

using $user-> followed by the name of the element; for example, $user->id or $user-

>friends_count. If you want to access the Status object, you just use $user->status-

>id, where the id field can be replaced by any of the elements contained within the

Status object (as described in the following section).

The two variants to these methods are the users/suggestions and users/

suggestions/<<category>> methods, which were not included in Figure 2.2.They can

be used to access Twitter’s suggested user lists—such as users who are recommended from

Business, Health, or Technology categories—and can be accessed as follows:

$users = get_basic("/users/suggestions/health.json", null, $username,

$password);

echo "";

foreach($users->users as $user) {

echo "".$user->screen_name."";

}

echo "";

If you are unsure of category names, you can use the users/suggestions method to

extract a list of categories and their associated “slugs,” which you can then use in the

users/suggestions/<<category>> method.

Status Objects

Status objects (see Figure 2.3) contain data about the user’s latest status update as well as

geolocation data, which is explored in Chapter 4.The truncated key denotes that a status

update was larger than the 140-character limit imposed by Twitter and has been truncated.

The favorited key denotes whether the authenticated user has bookmarked that update,

which can be accessed using any of the favorites methods. Other information contained

within Status objects is the source of the update and information as to whether it was

also a mention.

Each Status object contains a User object minus its nested Status object. Multiple

Status objects are enclosed inside a statuses array and can be accessed in the same way as

the collection of User objects.An example of a Status object returned by requesting the

https://api.twitter.com/2/statuses/show.xml?id=5327214528 method currently contains

the following keys and values in XML:

<status>

<created_at>Sun Nov 01 01:08:45 +0000 2009</created_at>

<id>5327214528</id>

<text>Now, I really must sleep. Good night.</text>

<source>

Gravity</source>

<truncated>false</truncated>

<in_reply_to_status_id/>

<in_reply_to_user_id/>

https://api.twitter.com/2/statuses/show.xml?id=5327214528

27Twitter API Methods

Status
+created_at: Date

+favorited: Boolean

+geo: String

+id: Integer

+in_reply_to_screen_name: String

+in_reply_to status_id:Integer

+in_reply_to_user_id: String

+source: String

+text: String

+truncated: Boolean

+user: User = null

#<<GET>> favorites(id:String,page:Integer): atom/json/rss/xml

-<<GET>> statuses/friends_timeline(count: Integer=20,

 max_id:Integer,

 page:Integer,

 since_id:Integer): atom/json/rss/xml

-<<GET>> statuses/home_timeline(count:Integer=20,

 max_id:Integer,

 page:Integer,

 since_id:Integer): atom/json/rss/xml

-<<GET>> statuses/mentions(count:Integer=20,

 max_id:Integer,

 page:Integer,since_id:Integer): atom/json/rss/xml

+<<GET>> statuses/public_timeline(): atom/json/rss/xml

-<<GET>> statuses/retweeted_by_me(count:Integer=20,

 max_id:Integer,

 page:Integer

 since_id:Integer): atom/json/rss/xml

-<<GET>> statuses/retweets_of_me(count:Integer=20,

 max_id:Integer,

 page:Integer

 since_id:Integer): atom/json/rss/xml

-<<GET>> statuses/retweeted_to_me(count:Integer=20,

 max_id:Integer,

 page:Integer

 since_id:Integer): atom/json/rss/xml

-<<GET>> statuses/retweets(count:Integer,

 id:Integer): json/xml

#<<GET>> statuses/show/<<id>>(): json/xml

-<<GET>> statuses/user_timeline(id:String,

 screen_name:String,

 user_id,count:Integer=20,

 max_id:Integer,

 page:Integer,

 since_id:Integer): atom/json/rss/xml

-<<POST>> favorites/create/<<id>>(): json/xml

-<<POST>> statuses/update(in_reply_to_status_id:Integer,

 lat:String,long:String,

 status:String): json/xml

-<<POST/DELETE>> favorites/destroy/<<id>>(): json/xml

-<<POST/DELETE>> statuses/destroy/<<id>>(): json/xml

-<<POST/PUT>> statuses/retweet/<<id>>(): json/xml

Figure 2.3 Twitter API Status object including User and Retweet objects.

<favorited>false</favorited>

<in_reply_to_screen_name/>

<geo/>

<user>...</user>

</status>

You will notice that within some Status objects (such as the statuses/home_

timeline method, which replaces the deprecated statuses/friends_timeline) there

are Retweet objects denoting that a particular status was retweeted.These are explained

in more detail in Chapter 4. Like User objects, these may not be included in all situa-

tions, and so they may be null or unavailable. Here is an example using the twitter-async

library to update a status:

$status = $twitter->post_basic("/statuses/update.json",

array("status" => "This is a test status."), $username, $password);

Again, this could also be achieved by using the $twitter->post_statusesUpdate()

convention with equivalent outcomes.The results of this request can be extracted by

28 Chapter 2 Diving Into the Twitter API Methods

either using $status->responseText or by accessing fields directly such as $status->id,

which returns the identifier for the new status update.

Direct Message Objects

Direct Message objects (see Figure 2.4) contain all you need to know about the message,

the sender, and the recipient.The sender and recipient elements are User objects

without embedded Status objects, which were discussed earlier in this chapter.This is one

of the advantages of adopting an object-oriented approach: Structures can be reused mul-

tiple times.

+created_at: Date

+id: Integer

+recipient: User

+recipient_id: Integer

+recipient_screen_name: String

+sender: User

+sender_id: Integer

+sender_screen_name: String

+text: String

Direct Message

-<<GET>> direct_messages(count:Integer=20,

 max_id:Integer,page:Integer,

 since_id:Integer): atom/json/rss/xml

-<<GET>> direct_messages/sent(count:Integer=20,

 max_id:Integer,

 page:Integer,

 since_id:Integer): atom/json/rss/xml

-<<POST>> direct_messages/new(user:String,

 screen_name:String,

 user_id:Integer,

 text:String): json/xml

-<<POST/DELETE>> direct_messages/destroy/<<id>>(): json/xml

Figure 2.4 Twitter API Direct Message object.

A sample Direct Message object that can be obtained from any of the methods from

Figure 2.4 looks like this:

<direct_message>

<id>154217109</id>

<sender_id>15397909</sender_id>

<text>Testing out the @twitterapi and Direct Message Objects.</text>

<recipient_id>XXXXXXXX</recipient_id>

<created_at>Wed Jun 03 19:49:27 +0000 2009</created_at>

<sender_screen_name>markhawker</sender_screen_name>

<recipient_screen_name>XXXXXXXX</recipient_screen_name>

<sender>...</sender>

<recipient>...</recipient>

</direct_message>

29Twitter API Methods

+created_at: Date

+id: Integer

+name: String

+position: Integer

+query: String

Saved Search

-<<GET>> saved_searches(): json/xml

-<<GET>> saved_searches/show/<<id>>(): json/xml

-<<POST>> saved_searches/create(query:String): json/xml

-<<POST/DELETE>> saved_searches/destroy/<<id>>(): json/xml

Figure 2.5 Twitter API Saved Search object.

Multiple Direct Message objects are enclosed within a direct-messages array, and

individual message elements are listed as direct_message. Notice the subtle use of an

underscore (_) for individual elements and a hyphen (-) for the array name if you are

looking to parse results using regular expressions or other means.As an example, you

should add the following code to your index.php file:

echo "<h1>Direct Message Objects</h1>";

$direct_messages = $twitter->get_direct_messages(array("count" => 2),

$username, $password);

echo "";

foreach($direct_messages as $direct_message) {

echo "".$direct_message->text."";

}

echo "";

What this code will print out is the text from the authenticated user’s latest two direct

messages.You can modify this by adjusting the count parameter and by adding a page

parameter to view older direct messages.

Saved Search Objects

Four methods enable you to manipulate information about searches that users have saved

to their profile. For example, a search could be saved for a specific keyword (for example,

healthcare), which saves the user time inputting the keyword multiple times across dif-

ferent applications to perform the same search. Saved Search objects (see Figure 2.5) con-

tain five keys for defining a search query that a user has saved: id, name, query, position,

and created_at.

30 Chapter 2 Diving Into the Twitter API Methods

+id: Integer

ID

-<<GET>> blocks/blocking/ids(cursor:Integer): json/xml

#<<GET>> followers/ids(cursor:Integer,id:String,

 screen_name:String,

 user_id:Integer): json/xml

#<<GET>> friends/ids(cursor:Integer,id:String,

 screen_name:String,user_id:Integer): json/xml

Figure 2.6 Twitter API ID object.

A sample Saved Search object in XML looks like this:

<saved_search>

<id>333753</id>

<name>healthcare</name>

<query>healthcare</query>

<position/>

<created_at>Sun Jun 07 13:36:37 +0000 2009</created_at>

</saved_search>

The position key denotes the absolute position of a Saved Search object in the

saved_searches array, which is returned from the saved_searches method.This value

can be empty or an integer starting from 1. In the instance above, it is empty because it is

the only saved search available.To retrieve a collection of saved searches, you should mod-

ify index.php to include the following:

echo "<h1>Saved Search Objects</h1>";

$saved_search = $twitter->post_saved_searchesCreate(array("query" =>

"test"), $username, $password);

echo "<p>Saved Search: ".$saved_search->id."</p>";

$saved_searches = $twitter->get_saved_searches(null, $username,

$password);

print_r($saved_searches->responseText);

$delete_saved_search = $twitter->post_basic("/saved_searches/destroy/

{$saved_search->id}.json", null, $username, $password);

echo "<p>Deleted Search: ".$delete_saved_search->id."</p>";

The preceding code will create a Saved Search object using the keyword test and

then prints out all the authenticated user’s saved searches.The test search is then deleted,

and its identifier is printed.

ID Objects

ID objects (see Figure 2.6) contain multiple id elements wrapped inside an ids array and

a cursor-based id_list.

31Twitter API Methods

The two “social graph” methods friends/ids and followers/ids used for retrieving

all followers and people who a user is following are more lightweight than the

statuses/friends and statuses/followers methods, in that they return only a list of

identifiers, not detailed information about the set of users:

<id_list>

<ids>

<id>XXXXXXXX</id>

<id>XXXXXXXX</id>

<id>XXXXXXXX</id>

...

</ids>

<next_cursor>0</next_cursor>

<previous_cursor>0</previous_cursor>

</id_list>

Remember to enable “cursoring” by setting cursor=-1 in the friends/ids or

followers/ids method calls; otherwise, no results will be returned. In the preceding

example, the next_cursor and previous_cursor elements are set to 0 because all the

data was successfully returned by the query.To extract all of a user’s friends, you use the

following code:

echo "<h1>ID Objects</h1>";

$cursor = -1;

do {

$ids = $twitter->get_basic("/friends/ids.json", array("cursor" =>

$cursor, "screen_name" => $username), $username, $password);

foreach($ids->ids as $id) {

echo "".$id."";

}

$cursor = $ids->next_cursor_str;

} while ($cursor > 0);

For this method to work, you must set the initial cursor parameter to -1; otherwise,

Twitter will return an error.As with other methods that require cursors, the twitter-async

library adds next_cursor_str and previous_cursor_str elements as the other cursor

elements are converted to floating-point numbers by PHP.

Relationship Objects

Relationship objects are generated from the method friendships/show for detailing the

relationship between two users known as the source and target.With authentication,

the source parameter is attributed to the logged-in user unless either a source_screen_

name or source_id is provided.A target user must be supplied by setting the

32 Chapter 2 Diving Into the Twitter API Methods

target_screen_name of target_id parameters.A sample Relationship object using the

friendships/show method is shown here:

https://api.twitter.com/2/friendships/show.xml?target_screen_name=socprog&

source_screen_name=markhawker

The XML response from this query looks like this:

<relationship>

<target>

<followed_by type="boolean">true</followed_by>

<following type="boolean">true</following>

<screen_name>socprog</screen_name>

<id type="integer">109892189</id>

</target>

<source>

<followed_by type="boolean">true</followed_by>

<following type="boolean">true</following>

<notifications_enabled nil="true"/>

<screen_name>markhawker</screen_name>

<blocking type="boolean">false</blocking>

<id type="integer">15397909</id>

</source>

</relationship>

The notifications_enabled and blocking elements will be empty unless user

authentication is provided because this is not publicly available data.This can be re-created

using the sample file by adding the following:

echo "<h1>Relationship Objects</h1>";

$relationship = $twitter->get_basic("/friendships/show.json",

array("target_screen_name" => "socprog", "source_screen_name" =>

$username), $username, $password);

print_r($relationship->responseText);

In this example, the source_screen_name is set to your own username, but this can be

the credentials of any Twitter user.The target_screen_name is set to this book’s account,

but could be any valid user identifier.

Response Objects

Similar to ID objects in that they only return one element, Response objects return a

Boolean value of true or false.Two methods return this response: friendships/exists

and help/test, returning a <friends>true</friends> or <ok>true</ok>.The

friendships/exists uses a GET operation and both user_a and user_b parameters to be

set; these parameters are screen names or identifiers of users, which requires authentication

for protected users.The help/test method does not require any parameters and uses a

GET operation:

echo "<h1>Response Objects</h1>";

33Twitter API Methods

$friendship = $twitter->get_basic("/friendships/exists.json",

array("user_a" => $username, "user_b" => "socprog"), $username, $password);

echo $friendship->responseText;

The $friendship->responseText should return either true or false for this method

depending on whether you follow this book’s Twitter account.

Hash Objects

The final sets of objects are Hash objects.Two methods will return a Hash object as a sign

of success (blocks/exists/<<id>> and account/end_session), whereas the other meth-

ods return a Hash object to notify you of an error.The blocks/exists/<<id>> and

account/verify_credentials methods both return a Hash object to signify that a block

or user does not exist.Although you can check the status codes for successful and unsuc-

cessful requests, it is possible to use the Hash object to get a description of the particular

problem. Hash objects contain two elements error and request. For example, executing

the account/end_session method will return the following:

<hash>

<error>Logged out.</error>

<request>/account/end_session.xml</request>

</hash>

Other popular error messages include “Not found,”“Could not authenticate you,” and

“This method requires authentication.” Even though other error messages may be added

in the future, they will conform to the key/value pair given above.The

account/rate_limit_status method is the only exception to this rule; it returns the

following response:

<hash>

<remaining-hits type="integer">86</remaining-hits>

<hourly-limit type="integer">100</hourly-limit>

<reset-time type="datetime">2009-06-01T21:05:01+00:00</reset-time>

<reset-time-in-seconds type="integer">1243890301</reset-time-in-seconds>

</hash>

The key remaining-hits indicates the number of requests left to the Twitter API until

the counter is reset and should always be less than or equal to the hourly-limit. Both

reset-time and reset-time-in-seconds are two ways of saying when the user’s rate

limit will be reset. First, reset-time is a Greenwich mean time (GMT) datetime stamp

in the format YYYY-MM-DDTHH:MM:SS+00:00, and reset-time-in-seconds is the equivalent

UNIX timestamp measured in seconds since January 1, 1970. By subtracting the current

UNIX timestamp from reset-time-in-seconds, you will see that it is equivalent to

reset-time.To access these elements programmatically, you use the following:

echo "<h1>Hash Objects</h1>";

$rate_limit_status = $twitter>get_basic("/account/rate_limit_status.json",

34 Chapter 2 Diving Into the Twitter API Methods

null, $username, $password);

echo "<p>Remaining Hits: ".$rate_limit_status->remaining_hits."</p>";

echo "<p>Hourly Limit: ".$rate_limit_status->hourly_limit."</p>";

echo "<p>Reset Time: ".$rate_limit_status->reset_time."</p>";

echo "<p>Reset Time (Secs): ".$rate_limit_status->reset_time_in_seconds.

"</p>";

One thing to note is that twitter-async has converted the minus character (-) of each

element to an underscore (_), which was discovered by printing out

$rate_limit_status->responseText.

Twitter Search API
The Search API is used to perform Twitter searches and for extracting trend data. Unlike

the methods discussed previously, which support multiple return formats, the Search API

supports only two formats,Atom and JSON, which is why the JSON format is recom-

mended.The Atom syndication format is described in the following section so that you

can see how it compares to JSON before exploring the Search API methods and search

operators.The Twitter API and Search API are separate entities, which means that date

formats, User and Status objects, and screen_name capitalization are not standard across

both, although this is one of the goals of the new version of the Twitter API.

Introducing the Atom Syndication Format

The Atom syndication format is an XML-based data standard considered to be an alterna-

tive to Really Simple Syndication (RSS), which you may have been exposed to through

newsfeed subscriptions.The Atom format is the reason you can subscribe to Twitter

searches in your browser via the web interface.To get you started, here is an example of a

Search API Atom feed for the search term markbook, which is the hashtag used during the

production of this book:

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns:google="http://base.google.com/ns/1.0" xml:lang="en-US"

xmlns:openSearch="http://a9.com/-/spec/opensearch/1.1/"

xmlns="http://www.w3.org/2005/Atom"

xmlns:twitter="http://api.twitter.com/">

<id>tag:search.twitter.com,2005:search/markbook</id>

<link type="text/html" rel="alternate"

href="http://search.twitter.com/search?q=markbook"/>

<link type="application/atom+xml" rel="self"

href="http://search.twitter.com/search.atom?q=markbook&rpp=1"/>

<title>markbook - Twitter Search</title>

<link type="application/opensearchdescription+xml" rel="search"

href="http://search.twitter.com/opensearch.xml"/>

<link type="application/atom+xml" rel="refresh"

35Twitter Search API

href="http://search.twitter.com/search.atom?q=markbook&rpp=1&

since_id=2452360691"/>

<twitter:warning>since_id removed for pagination.</twitter:warning>

<updated>2009-07-02T21:47:02Z</updated>

<openSearch:itemsPerPage>1</openSearch:itemsPerPage>

<link type="application/atom+xml" rel="next"

href="http://search.twitter.com/search.atom?max_id=2452360691&

page=2&q=markbook&rpp=1"/>

<entry>

<id>tag:search.twitter.com,2005:2443841666</id>

<published>2009-07-02T21:47:02Z</published>

<link type="text/html" rel="alternate"

href="http://twitter.com/markhawker/statuses/2443841666"/>

<title>Been working on #markbook tonight. Getting a skeleton

chapter ready. Funny how Atom and JSON are *so* different in

@twitterapi.</title>

<content type="html">

Been working on <a href="http://search.twitter.com/

search?q=%23markbook">#markbook tonight.

Getting a skeleton chapter ready. Funny how Atom and JSON are *so*

different in <a href="http://twitter.com/

twitterapi">@twitterapi.</content>

<updated>2009-07-02T21:47:02Z</updated>

<link type="image/png" rel="image" href="http://s3.amazonaws.com/

twitter_production/profile_images/234974305/me_normal.jpg"/>

<twitter:source>TweetDeck

</twitter:source>

<twitter:lang>en</twitter:lang>

<twitter:geo></twitter:geo>

<author>

<name>markhawker (Mark Hawker)</name>

<uri>http://twitter.com/markhawker</uri>

</author>

</entry></feed>

The first thing you will notice is that you are given a wealth of meta-data stored inside

the feed element and related Twitter update information embedded within an entry ele-

ment (or multiple entry elements). Note that in this example, one entry element has

been included by setting the rpp parameter to 1; typically, however, multiple elements are

returned, with the default being 15 entries.

Feed Elements

All feed elements contain meta-data associated with the search query to enable it to be

repeated or traversed programmatically.This includes preformatted links to display the

next results and refresh the page plus any Twitter warning information.They also contain

www.allitebooks.com

http://www.allitebooks.org

36 Chapter 2 Diving Into the Twitter API Methods

information regarding the OpenSearch specifications used by Twitter (for example, in the

link http://search.twitter.com/opensearch.xml).The attributes within a feed element are

as follows:

n entry

Each result is contained within its own entry element, which is described in the

next section.

n id

Unlike numeric identifiers in Twitter API objects, the id element of the Search

object contains a text string describing the search query in general terms.

n link

Several link elements are contained within a feed element, each including three

common attributes detailing their type, href and ref.The link element tagged

with the self attribute details the query that was run along with XML pointers for

OpenSearch, which facilitates the syndication of results. Both the next and refresh

references enable results to be automatically refreshed if desired.

n openSearch:itemsPerPage

This element contains the number of search results returned and should be identical

to the rpp parameter supplied in the query.The default is 15 but can be increased

up to a maximum of 100 entries returned in an instance.

n title

Containing the query appended with the - Twitter Search label, this element

may be useful in saving you time creating an appropriate page title yourself.

n twitter:warning

Any warning messages provided by Twitter will be contained within this element

(in this instance warning that the since_id parameter was excluded).Although this

element can be useful when debugging your applications, it is important to note

that not all Search API responses will contain this element.

n updated

This element describes when the search results were last updated and is in the for-

mat YYYY-MM-DDTHH:MM:SSZ.This can be useful if caching results in a database,

because you can test whether an update needs to be performed based on whether

the data has been refreshed.

Entry Elements

Each update matching the query string is encapsulated within its own entry element.

Although some basic information is returned referencing the update, it is nowhere near as

complete as the data returned in Status or User objects from the Twitter API. In this case,

http://search.twitter.com/opensearch.xml

37Twitter Search API

should additional information be required by your application, sufficient information is

provided to enable you to make requests using the Twitter API to extract that information:

n author

This value contains a nested set of two elements, name and uri.The name element

contains the name and screen_name of the user enclosed in parentheses and uri

links to the author’s Twitter profile page.

n content, title

Both elements contain the body of the update but the content element also con-

tains HTML that can be used to reconstruct the Status object. Depending on

whether you want to re-present the update or analyze its text will help you decide

which element to use.

n id

Similar to feed elements, the id is a text string used to identify the update in the

search results.The trailing integers of this value are the Status object id of the

update, which provides an opportunity to extract further details using the Twitter

API.The Status object id and full URL is provided in one of the link elements.

n link

Containing the same attributes as in feed elements, the two link values give the

URL to the Status object and a link to the author’s profile image stored by Twitter.

n published, updated

These two values give the creation date of the Status object in the same YYYY-MM-

DDTHH:MM:SSZ format as in feed elements.

n twitter:geo

This element will be populated with status location data if explicitly enabled by

the user.

n twitter:lang, twitter:source

The twitter:source value is the encoded link to the application used to publish

the update and matches the source attribute of the Status object.The

twitter:lang value is the language of the update stored in the two-letter ISO 639-

1 format.

Contrasting Atom and JSON Outputs

In contrast to the Atom syndication format the Search API, JSON output returns a set of

“key/value” pairs enclosed within a parent results object. For the same query for

markbook that was executed earlier, the following JSON data is returned:

{"results":[

{

"text":"Been working on #markbook tonight. Getting a skeleton

38 Chapter 2 Diving Into the Twitter API Methods

chapter ready. Funny how Atom and JSON are *so* different in

@twitterapi.",

"to_user_id":null,

"from_user":"markhawker",

"id":2443841666,

"from_user_id":924649,

"iso_language_code":"en",

"geo":null,

"source":"<a href="http:\/\/www.tweetdeck.com

\/">TweetDeck<\/a>",

"profile_image_url":"http:\/\/s3.amazonaws.com

\/twitter_production\/profile_images\/234974305\/me_normal.jpg",

"created_at":"Thu, 02 Jul 2009 21:47:02 +0000"

}

],

"since_id":0,

"max_id":2452360691,

"refresh_url":"?since_id=2452360691&q=markbook",

"results_per_page":1,

"next_page":"?page=2&max_id=2452360691&rpp=1&q=markbook",

"completed_in":0.027692,

"page":1,

"query":"markbook"

}

In this example, you can see a results key with entries placed within square brackets

and each enclosed within a pair of curly braces and separated by a comma: "results":.

You will also notice there is meta-data returned similar to feed elements: since_id,

max_id, refresh_url, results_per_page, next_page, completed_in, page, and query.

The attributes returned for each entry are similar to entry elements with a few aesthetic

exceptions. Forward slashes (/) are “escaped” by a backslash (\), because in JavaScript a for-

ward slash is used as an escape character. By escaping the character, it prevents the inter-

preter from performing the action typically associated after the forward slash.You are also

explicitly given the Status object id attribute and a to_user attribute if a user is men-

tioned in the update. Finally, the date format between both outputs is inconsistent, but the

JSON output is comparable to that of the JSON output of the Twitter API.

Twitter Search API Methods

There are two categories in the Search API: Search and Trends. Search allows you to sup-

ply a query and retrieve results based on search terms and a mix of operators and parame-

ters.The Trends category shows you what’s hot or “trending” in the community currently

or for any given date or week.

39Twitter Search API)]

To conduct a simple search within the index.php sample code, you just add the

following:

echo "<h1>Search Objects</h1>";

$query = "test";

$search = $twitter->get_search(array("q" => urlencode($query),

"rpp" => 2), $username, $password);

echo "<p>Query: ".$search->query."</p>";

echo "";

foreach($search->results as $result) {

echo "".$result->from_user.": ".$result->text."";

}

echo "";

Twitter Search is about more than just simple keywords and parameters, which were

discussed in Chapter 1.You can also use a wealth of operators to customize results or con-

trol how results are returned from the Search API. Operators are similar to the parameters

that you were shown in Chapter 1 and the main operators are listed here.You can find a

full list at http://search.twitter.com/operators, which mirrors some, but not all, of the

functionality of an advanced Twitter search.

There are numerous content-based operators, including those for phrase matching,

hyperlink and source filtering, and word negation. Here is a description of some content-

based operators:

n To search for multiple keywords, you can separate words with a plus (+) character. For

example, twitter+api would find status updates containing both twitter and api.

Search

In its simplest form, a query in the Search API consists of the stem

https://search.twitter.com/search.<<format>>, where <<format>> can be replaced with

json or atom, a q parameter, and a keyword (for example, https://search.twitter.com/

search.json?q=twitter).This will return in JSON format the default number of updates,

15, that include the twitter keyword. Note that keywords must be URL encoded. So,

for example, if you want to find updates mentioning a particular user, an @ symbol is

encoded as %40; for a hashtag, the hash character (#) is encoded as %23; and for searching

for an update containing a question, the question mark character (?) is encoded as %3F.

Set a User Agent

You must supply a user agent to prevent the Twitter API returning a status code 403 for

requests. You can do so by setting the –A switch in cURL, or if you are using twitter-async

this will be set automatically for you.

https://search.twitter.com/search.<<format>>
https://search.twitter.com/search.json?q=twitter
https://search.twitter.com/search.json?q=twitter
http://search.twitter.com/operators

40 Chapter 2 Diving Into the Twitter API Methods

n Exact phrase matches can be found by enclosing the words within quotation marks

(“”), which are URL encoded using %22. For example, %22twitter+api%22 would

find status updates containing the phrase twitter api.

n To search for one word or another word (or both), you use the logical OR operator

(for example, twitter+OR+api).

n If you want to exclude a word from a search you prefix the word with a minus (-)

character. For example, twitter+-api searches for updates containing twitter but

not api.

n You can return status updates that must include a hyperlink. For this, you would use

the filter:links operator. For example, twitter+filter:links returns status

updates containing twitter and that include a hyperlink.

n If you want to find updates sent from a particular source, such as TweetDeck, you

can use the source:application operator (for example,

twitter+source:tweetdeck).This could prove useful if you have set your own

source parameter and want to track how users are interacting with your application.

In addition to content-based operators, a number of meta-content operators exist for

filtering updates to or from a particular user and updates sent from a geographic region or

before or after specific dates.The operators are as follows:

n To filter by updates sent to or from a user, you can use the from:username and

to:username operators. For example, twitter+from:markhawker would search for

updates containing twitter and sent by markhawker. For filtering updates sent to

markhawker, you would use to:markhawker.

n As devices begin to be supported by the Geolocation API, the

location:place_name operator and geocode parameter will become increasingly

useful for location-based searches (for example, party+location:London).

n Dates can be used to filter updates using since:YYYY-MM-DD or until:YYYY-MM-DD.

For example, you may be running a competition that only accepts entries after a

specified date, or even before a closing date (for example, vote+until:2009-07-

04). Note that Twitter Search currently only provides results up to a week and a half

in the past.

You can experiment with any of these operators by modifying the $query parameter,

which was used in the search example. By outputting the $search->responseText, you

can also start to build up a picture of what elements are returned by the Search API and

how you can use them in your own applications.

Trends

Although search is good for filtering and extracting information at an individual level, you

need trends methods to provide aggregate-level data across the Twitter ecosystem.

41Twitter Search API

Local Trends Methods

Twitter has two trends methods for providing trends specific to a particular location. The

trends/available and trends/location methods will return trending topics using the

Yahoo! Where On Earth ID (WOEID) convention and will make trend results more relevant to

a user’s specific location.

There are four trends methods.They output in JSON format only and are summa-

rized here:

n To extract the ten topics currently trending on Twitter, use the trends method.

This method will return a trends element containing a name and url for perform-

ing the related Twitter search.An as_of attribute is also included, which gives the

date and time that the results were valid.An example date is Sat, 01 Aug 2009

18:00:00 +0000.

n The trends/current method displays similar information to the ten topics but

uses a non-URL-encoded query attribute in place of a url and provides the as_of

element as the number of seconds since January 1, 1970.This method permits the

use of an exclude parameter, which can be set to hashtags to remove all hashtags

from the trends list.An example date is 2009-08-01 18:00:00.

n The trends/daily method allows for a date parameter to be supplied in the for-

mat YYYY-MM-DD to extract top topics for a given date. If no date is provided, results

are returned for today’s date.The exclude parameter can be supplied to exclude

hashtags.

n The trends/weekly method returns the top 30 topics for each day in a given week

by providing a date parameter and optionally setting the exclude parameter. If no

date is provided, results are returned for the current week.

All methods apart from the trends method return results in a somewhat strange man-

ner. Comparing the two, the trends method will return the following JSON results,

which have been truncated to show only two trends:

{"trends":[

{

"name":"Roger Federer",

"url":"http:\/\/search.twitter.com\/search?

q=%22Roger+Federer%22+OR+%23Federer"

},

{

"name":"A-Rod",

"url":"http:\/\/search.twitter.com\/search?q=A-Rod"

}

],

"as_of":"Sun, 05 Jul 2009 18:34:58 +0000"

}

42 Chapter 2 Diving Into the Twitter API Methods

In comparison, all three trends/current, trends/daily, and trends/weekly meth-

ods return results in the following format, which (again) has been truncated and general-

ized for the sake of brevity:

{"trends":{

"2009-07-05 19:30:00":[

{

"query":"Wimbledon OR #Wimbledon",

"name":"Wimbledon"

},

{

"query":"\"Roger Federer\" OR Federer",

"name":"Roger Federer"

}

]

},

"as_of":1246822183

}

These short examples demonstrate the varied outputs of the trends methods in terms

of both their structure and date formats.To access the same trends programmatically, you

should add the following code:

echo "<h1>Trends Objects</h1>";

echo "<h2>Current Trends</h2>";

$trends = $twitter->get_trends(null, $username, $password);

print_r($trends->responseText);

echo "<h2>Current Trends</h2>";

$trends_current = $twitter->get_trendsCurrent(array("exclude" =>

"hashtags"), $username, $password);

print_r($trends_current->responseText);

echo "<h2>Daily Trends</h2>";

$date = date("Y-m-d");

$trends_daily = $twitter->get_trendsDaily(array("date" => $date,

"exclude" => "hashtags"), $username, $password);

print_r($trends_daily->responseText);

echo "<h2>Weekly Trends</h2>";

$trends_weekly = $twitter->get_trendsDaily(array("date" => $date,

"exclude" => "hashtags"), $username, $password);

print_r($trends_weekly->responseText);

In addition to these examples, the two local trends methods can be accessed by supply-

ing lat and long parameters or a woeid.The lat and long is used to sort results from

the trends/available method by distance from that particular location.These methods

are accessible via the following code:

echo "<h1>Local Trends Objects</h1>";

$trends_available = $twitter->get_basic("/trends/available.json",

array("lat" => 37, "long" => -122), $username, $password);

print_r($trends_available->responseText);

This should return the closest matches to San Francisco (the town specified by the lat

and long parameters), which is contained within this JSON response:

"country":"United States",

"url": "http://where.yahooapis.com/v1/place/2487956",

"placeType": {"code": 7, "name": "Town"},

"woeid": 2487956,

"countryCode": "US",

"name": "San Francisco"

}, ...]

The response will return a number of potential matches, starting with the closest,

which was an exact match to San Francisco.The next stage is to extract the WOEID by

using $trends_available[0]["woeid"], which can then be entered into the

trends/location method:

$trends_location = $twitter->get_basic("/trends/".

$trends_available[0]["woeid"].".json", null, $username, $password);

print_r($trends_location->headers);

The results from this query should return the following JSON data:

"as_of": "2010-03-15T22:10:03Z",

"locations": ,

"trends":

This response will return a regular Trends object with an embedded locations ele-

ment for extracting the initial woeid and name of the location.

Summary
This chapter illustrated a number of Twitter API methods that enable you to perform a

multitude of actions to access and mutate data, such as sending updates and exploring a

user’s social graph.You were also given an overview of the Search API, including the

Atom syndication format, methods, and operators that you can use to extract both indi-

vidual-level search data and also aggregate trends data.The next chapter explores how to

use OAuth for user authentication so that you can begin to put your knowledge of Twit-

ter methods to practical use.

43Summary

This page intentionally left blank

3

Authentication with
Twitter OAuth

Chapter 2,“Exploring the Twitter API and Search API,” covered the various Twitter API

and Search API methods using cURL and twitter-async using Basic Authentication. Basic

Authentication is by no means unique to Twitter, and many sites and social services also

use the same mechanism for user authentication. However, requiring a user’s password

even over a secure connection such as HTTPS can present security concerns.Although

the barrier to entry is higher for an OAuth implementation in comparison to Basic

Authentication, it is an essential tool for accessing the Twitter API because Basic

Authentication will be deprecated in the future.

This chapter investigates Twitter’s implementation of OAuth as an alternative to Basic

Authentication and describes the workflow of Twitter OAuth, with a focus on web appli-

cations. OAuth is a method for interacting with Twitter on behalf of users without

requiring them to supply a password every time they want to use an application.Twitter

OAuth takes the form of the “Sign in with Twitter” service, which enables users to sign in

to your website or application using their Twitter credentials.The chapter then provides a

walkthrough of how to implement Twitter OAuth using twitter-async to create a very

simple application called Test Tube.You can then use the code in this example as a basic

template for your own Twitter application ideas.

Introducing Twitter OAuth
OAuth is an open protocol to facilitate a standard, secure authorization method for desk-

top, mobile, and web applications.The idea behind OAuth is similar to that of valet keys

provided in some of today’s luxury cars.The valet keys give parking attendants access to

certain features of the car but may restrict them to driving only a limited number of miles

or may prevent them from opening the trunk. In this instance, you are giving someone

limited access to your car via a special key, while using another key to unlock everything

else.This is in contrast to Basic Authentication, through which users are giving you their

www.allitebooks.com

http://www.allitebooks.org

46 Chapter 3 Authentication with Twitter OAuth

keys, and thus not only exposing their passwords to prying eyes but also giving you unre-

stricted access to their accounts.

In February 2009,Twitter released the first implementation of OAuth as a closed beta

for developer experimentation.This has now been opened up to all developers through a

new registration process for OAuth applications, available at http://twitter.com/oauth_

clients. (You must have a Twitter account to access this URL.) All the applications that

you have previously registered with Twitter will appear here. Clicking an application

name will give you further details about the application and will enable you to edit your

application settings, reset your consumer key and consumer secret (described in the next

section), or delete your application.

During registration, you are prompted with a series of fields that you must fill out,

including application name, description, and website.You are also asked whether you are

creating a desktop or browser application (because the authentication steps are slightly

different) and whether you require read/write or just read-only access to user data. Read-

only access is just “pulling” data from Twitter, as you have seen with Twitter API accessor

methods, and would include reading a user’s updates, direct messages, or favorites.

Read/write access includes pulling data from Twitter but also “pushing” data back, as you

have seen with mutator methods of the Twitter API.This includes updating a user’s status,

sending a direct message, or marking a favorite.The callback URL is a location where

users are redirected after successfully authenticating your application. For unsuccessful

attempts, a user is returned to the Twitter home page.

OAuth Benefits

In addition to avoiding the impending deprecation of Basic Authentication, both users

and developers can gain a number of benefits by adopting OAuth. For users, they no

longer need to hand out their passwords to applications, and they can view authorized

applications by visiting the Twitter “Connections” tab in their profile. From the Twitter

“Connections” tab, users can de-authorize or “Revoke Access” to unwanted applications,

which was previously subject to a user trusting an application to remove users’ profile

details from their data store or required users to change their password to “break” the

relationship. In the case of “Sign in with Twitter”, users can also use their Twitter creden-

tials to authenticate themselves on third-party websites (using their Twitter details to post

comments, for example). Permissions are also granular, allowing users to select whether

they want to permit read-only or read/write access to an application. For developers, you

will no longer need to worry about users changing their password or storing password

details securely.Adopting OAuth will also show that you care about the progression and

evolution of the Twitter API, which gives users greater confidence in your application.

OAuth Definitions

Before delving into the Twitter OAuth workflow, you need to understand a few terms so

that you can start speaking the OAuth lingo:

http://twitter.com/oauth_clients
http://twitter.com/oauth_clients

47Introducing Twitter OAuth

n Consumer

A website or application that uses OAuth to access Twitter on behalf of the user:

your application. Consumers are created and developed by individuals or organiza-

tions known as consumer developers (you).Access by the consumer to a user’s pro-

tected resources is controlled by a consumer key and consumer secret, which are

used by Twitter to identify the consumer.The consumer key and consumer secret

are given to a consumer developer when registering a consumer and can be reset at

any time. For brevity, throughout this chapter, the word application is used rather

than the word consumer.

n OAuth protocol parameters

Parameters with names beginning with oauth_ (for example, oauth_consumer_

key, oauth_token, oauth_nonce, oauth_timestamp, oauth_version, oauth_

signature_method, and oauth_signature).These parameters are handled inter-

nally via the twitter-async client library to ensure that OAuth exchanges are

validated.

n Protected resources

Data stored by Twitter that an application can access through authentication (for

example, account data, updates, direct messages, favorites).

n Service provider

A web application that allows access to protected resources via OAuth. In this chap-

ter,Twitter is the service provider.

n Tokens

Used by the application rather than a user’s username and password to gain access

to protected resources on Twitter.Tokens are random strings of letters and numbers

paired with a token secret.There are two types of token: request and access.Twitter

supports the HMAC-SHA1 signature base string.The Twitter OAuth workflow has

two phases: authorization and access.The authorization phase is when the users

give permission to Twitter that an application can “impersonate” them.The access

phase is when the application actually does the impersonating.

In terms of tokens, a request token is required only once during the authorization

phase to generate an access token and token secret, which can then be stored and

used multiple times during action phases.Twitter tokens currently do not expire,

and so once users authorize an application, it will be granted infinite access to their

information unless they choose to revoke access.Access can also be revoked if

Twitter suspends an application.

n User

This is an individual or organization that has signed up for a Twitter account. Users

create protected resources, which they can share with a consumer. For example,

their direct messages or updates can be read (and written) by an application.

48 Chapter 3 Authentication with Twitter OAuth

The next section explores the full Twitter OAuth workflow, using all these terms in

context (so don’t worry if they don’t make much sense just yet).

Implementing Twitter OAuth
After you have registered your application, you are ready to begin implementing Twitter

OAuth.The Twitter API includes four OAuth methods: oauth/request_token,

oauth/authorize, oauth/authenticate, and oauth/access_token.The official Twitter

documentation for these methods is complex and is best described using workflows and

by giving an example.

Twitter OAuth Workflow

A simplified workflow for browser-based applications is as follows:

1. A user visits an application, and a request token is generated by Twitter by calling

the oauth/request_token method and using the application’s consumer key and

consumer secret.

2. A request can be made to oauth/authorize by following a URL appended with

the request token to request user authorization.The oauth/authenticate method

is reserved for applications using the “Sign in with Twitter” feature, which can be

used to provide “one-click” user authentication. For desktop applications, you must

set the parameter oauth_callback=oob in the oauth/authorize method to initi-

ate PIN-based authorization.Where desktop authorization differs is that after

obtaining approval from the user,Twitter displays a seven-digit PIN that must be

recorded by the user and then entered into the application to be used as the

oauth_verifier parameter. Steps 4 and 5 are the same as web-based authentica-

tion.The twitter-async library does not support this desktop application workflow.

3. Following the URL, the user is redirected to Twitter where the request token is

verified. If not logged in to Twitter, the user is required to log in to grant access to

the application.At this stage, the user is reminded of which application is requesting

access by being shown its logo, description, and developer information, and is then

prompted to allow or deny access to their protected resources. If access is denied, a

prompt will be displayed by Twitter but the user will not be redirected back to the

application.

4. If allowed,Twitter marks the request token as authorized and redirects the user back

to the application using the callback URL together with the request token and

other OAuth protocol parameters.

5. An access token is then generated by passing the request token and OAuth protocol

parameters to the oauth/access_token method, which can then be stored along-

side the token secret by the application.

49Implementing Twitter OAuth

6. Whenever applications want to access a user’s protected resources, they use the ac-

cess token and token secret along with their consumer key and consumer secret for

each request.

Figure 3.1 shows this workflow, specifically the transition between your application

and Twitter in terms of authentication and redirects. If a user is already signed in to

Twitter and they have authorized your application, this will appear like a “one-click”

process. If users close down their browser window before authenticating their details, the

next time they visit the Twitter site they will be prompted with an error saying that their

request token has expired.

User Visits

Application

Redirect to

Home Page

Application Sends Request to

oauth/authenticate or

oauth/authorize using Request

Token created by

oauth/request_token

User Clicks Button

or Link to Sign In

With Twitter

Is User Logged in to

Twitter?

No

Yes

Yes

Yes

Redirect to Callback URL

Including Access Token

and Token Secret

Store Screen Name, Access

Token and Token Secret

Prompt User to

Authorize

Application

No

No
Authorized?

Has User Authorized

Application Before?

Your

Application

Domain

Twitter

Your

Application

Domain

Allow User to Enter

Their Credentials

Figure 3.1 Workflow of a “Sign in with Twitter” session.

50 Chapter 3 Authentication with Twitter OAuth

A number of OAuth client libraries are available to help reduce the complexity of this

workflow. Client libraries are generally supplied by third parties and are tested quite rig-

orously by hundreds, if not thousands, of developers. One such library is twitter-async,

which is used in the sample application described in the next section,Test Tube, which

you can use as a template for your own Twitter applications.

Test Tube: A Sample Twitter Application

Twitter-async is a PHP client library that enables you to integrate with the Twitter API

and Search API using OAuth.Twitter-async was written to maximize the efficiency of

making HTTP requests over cURL using a mixture of synchronous and asynchronous

methods.The twitter-async client file (EpiTwitter.php) has two dependencies contained

within EpiOAuth.php and EpiCurl.php that handle all the authentication and URL

signing relevant to Twitter and for handling the cURL requests. If you like, take some

time to familiarize yourself with them; you will be using them later in this section.

Class Methods

Twitter-async has two methods: __construct and __call.The constructor takes a mini-

mum of two parameters and a maximum of four.The first two parameters are the con-

sumer key and consumer secret that were generated by Twitter during application

registration.The last two are the access token and token secret, which are generated dur-

ing the authorization phase and should be stored to allow requests to be made on behalf

of users.The __call method handles the majority of other requests and uses a simple

naming convention to map onto Twitter API and Search API method names known as

API endpoints.As an example, the account/verify_credentials method maps to

get_accountVerify_credentials, which consists of a lowercase GET request, an under-

score (_) and a lowercase URL which has the forward slash (/) omitted and the first letter

of the preceding method name capitalized. Parameters can be added by adding an array

inside the method call. For example, for statuses/update, you would use

post_statusesUpdate(array("status" => "This is my new status.")).

Uploading Images Using Twitter-async

Twitter-async supports the uploading of images via the account/update_profile_image

and account/update_profile_background_image methods. This is achieved by using

the following:

post_accountUpdate_profile_image(
array("@image" => "@filename.png;type=image/png")

)

Remember to prefix the key and value with an “at” (@) character and that the image must be

an absolute path to a file on your server.

51Implementing Twitter OAuth

When using OAuth, you should not use the get_basic(), post_basic(), and

delete_basic() methods; these were reserved for Basic Authentication. Instead, twitter-

async provides get(), post(), and delete() methods that require an application’s

consumer key and secret to access Twitter resources. For these methods, you are not

required to supply the user’s screen name and password; these are already catered for

when using OAuth.

Accessing Responses

When you use twitter-async to make a call to the Twitter API, you will be returned an

object with properties.The properties are named identical to what you have previously

seen in both of the Twitter APIs, and dimensions of two or more are returned as arrays

(for instance, when a collection of users or statuses is returned). For example, the follow-

ing code snippet is a JSON response from the account/verify_credentials method

that has been stored in the $user variable:

{

screen_name: "markhawker",

name: "Mark Hawker",

status: {

text: "This is my last status.",

created_at: "Sat Aug 01 12:00:00 +0000 2009"

},

}

In this example, you can access properties in two ways, either directly as member vari-

ables such as $user->screen_name or $user->status->text or through the response

property by using $user->response["screen_name"] or $user->response

["status"]["text"]. For methods that return multiple responses, you can either access

them through the $user[0]->screen_name syntax (remembering that PHP uses zero-

based indexing, and so zero is actually the first response) or via using a looping function

such as for(), foreach() or while(). If you are having trouble accessing data, you should

return the response text via $user->responseText, which will give the full data set. In

some instances,Twitter wraps data within arrays, so instead of using $response->element,

you would use $response[0]->element instead.

Creating a Twitter-async Application

As a developer, it is generally easier to understand a new concept by experiencing it, so in

this section you will develop a simple application to show your ten latest Twitter friends

along with their profile image and a link back to their profile.You can demonstrate both

the oauth/authorize and the oauth/authenticate or “Sign in with Twitter” workflows

using similar codes, but the only difference between the oauth/authenticate and the

oauth/authorize workflow is that in the former the user is only prompted to allow or

deny access to the application once. In the latter, users are prompted to allow or deny

access each time that they use the application.

52 Chapter 3 Authentication with Twitter OAuth

“Sign in with Twitter” Buttons

Twitter provides a number of ready-made buttons that you can use to standardize the sign-in

experience of users. You can find these on the Twitter API wiki (http://apiwiki.twitter.com/

Sign-in-with-Twitter).

Downloadable source code for this chapter is available via the book’s code repository

(http://github.com/markhawker/Social-Programming/). If you want to start from

scratch, however, it is assumed that you have downloaded the twitter-async client library

and have uploaded the files EpiCurl.php, EpiOAuth.php, and EpiTwitter.php to your

web server inside a twitter-async directory.There are four steps to getting your applica-

tion up and running: registering your application with Twitter, creating a “landing page,”

creating a “master page,” and then testing your application.Although only a simple appli-

cation, you should be able to quickly make modifications to test what you have learned

so far about the Twitter API methods.

Registering Your Application

At the start of every project, you must register your application with Twitter by going to

http://twitter.com/apps/new. From there, the required fields should be self-explanatory

up to callback URL field, which will point to a “master page,” which is the page that the

user will be sent back to once a request token and token secret have been granted,

master.php. For example, if your domain name is http://mytwitterapp.com/, you set

your callback URL to http://mytwitterapp.com/master.php. Because you are just going

to be accessing protected resources and not mutating them, you should select read-only

access and also check the Use Twitter for Login option (because you will be using this

feature). Click Save and create a new PHP file called functions.php, which will be a

utility file for all your Twitter functions, and enter the lines shown in Listing 3.1 using the

consumer key and consumer secret that Twitter has just generated for your application

during the registration process.

Listing 3.1 The functions.php File

1 <?php

2 include "twitter-async/EpiCurl.php";

3 include "twitter-async/EpiOAuth.php";

4 include "twitter-async/EpiTwitter.php";

5 define("TWITTER_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXX");

6 define("TWITTER_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXX");

7 define("INDEX", "index.php");

8 define("MASTER", "master.php");

9 define("TITLE", "Test Tube - Sign In With Twitter");

10 function init($oauth_token = null, $oauth_token_secret = null) {

11 return new EpiTwitter(TWITTER_CONSUMER_KEY,

TWITTER_CONSUMER_SECRET, $oauth_token, $oauth_token_secret);

12 }

13 function login() {}

http://apiwiki.twitter.com/Sign-in-with-Twitter
http://apiwiki.twitter.com/Sign-in-with-Twitter
http://github.com/markhawker/Social-Programming/
http://twitter.com/apps/new
http://mytwitterapp.com/
http://mytwitterapp.com/master.php

53Implementing Twitter OAuth

14 function logout() {}

15 function verify() {}

16 function check() {}

17 function printFriends() {}

18 ?>

The INDEX, MASTER, and TITLE variables can be modified should you want to use dif-

ferent filenames. Remember that if you change the value of MASTER you should also edit

the callback URL from withinTwitter. Be sure to add the consumer key and consumer

secret thatTwitter generated for your application on lines 5 and 6.The init() function on

lines 10 to 12 is used to create the EpiTwitter object using the consumer key and con-

sumer secret but also handles being passed an OAuth token and token secret upon a user

successfully authorizing the application. Methods on lines 13 to 17 are intentionally left

empty because they will be updated later in this section. Now that you have saved your

configuration details within functions.php, you are ready to create the landing page.

Creating the Landing Page

The landing page will serve a single purpose: generating a valid request token, which can

be then passed to the Twitter OAuth authorization and authentication URLs for a user to

click to be taken to Twitter.Twitter-async handles all this complexity for you, so a simple

landing page can be created using the code in Listing 3.2.

Listing 3.2 The index.php File

1 <?php

2 include "functions.php";

3 $twitter = init();

4 try {

5 $authorize_url = $twitter->getAuthorizeUrl();

6 $authenticate_url_forced = $twitter->getAuthenticateUrl(null,

array("force_login" => true));

7 $authenticate_url_unforced = $twitter->getAuthenticateUrl();

8 }

9 catch(EpiOAuthException $e) { echo "There was an error"; exit; }

10 catch(EpiTwitterException $e) {

11 echo "There was an unknown exception"; exit;

12 }

13 ?>

14 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

15 <html xmlns="http://www.w3.org/1999/xhtml">

16 <head>

17 <title><?php echo TITLE; ?></title>

18 <link href="static/css/style.css" rel="stylesheet"

type="text/css" />

19 </head>

54 Chapter 3 Authentication with Twitter OAuth

20 <body>

21 <div id="main">

22 <h1>Test Tube</h1>

23 <p>This application uses Twitter’s "Sign in with Twitter"

feature to demonstrate what is possible in only a few lines of

code.</p>

24 <p id="authorize"><a href="<?php echo $authorize_url; ?>">

Authorize with Twitter</p>

25 <h2>Forced Login</h2>

26 <p>Whether a user is logged into Twitter or not they will be

prompted to login and then Allow/Deny the application.</p>

27 <p id="authenticate"><a href="<?php echo $authenticate_url_forced; ?>">

<img src="static/img/siwt-darker.png" height="24" width="151" alt="Sign

in with Twitter" /></p>

28 <h2>Unforced Login</h2>

29 <p>The currently logged in user will be used and then prompted to

then Allow/Deny the application.</p>

30 <p id="authenticate"><a href="<?php echo $authenticate_url_unforced;

?>"><img src="static/img/siwt-darker.png" height="24" width="151"

alt="Sign in with Twitter" /></p>

31 </div>

32 </body>

33 </html>

34 ?>

Line 2 is used to include the functions.php file containing the application logic for

convenience.The Twitter object is initiated on line 3 and can be used for a number of

things, but on the landing page you will use it to create an authorization (line 24) and

two authenticate URLs (lines 27 and 30).These URLs map to the Twitter API

oauth/authorize and oauth/authenticate methods.The authenticate URL on line 24

demonstrates how you can pass the force_login parameter to the method, thus prompt-

ing users to log in to Twitter regardless of whether they are already logged in (which

proves useful if they have multiple accounts). Note that Twitter handles the force_login

rather strangely, in that even if it is set to false, it will be accepted and the user will be

forced to log in.The “Sign in with Twitter” button has also been used alongside a simple

Cascading Style Sheet (CSS) containing the following styles:

body { background: #3ea8bc; font-family: Tahoma, Verdana, Arial, sans-

serif; margin: 1em; padding: 1em; }

img { border: 0; }

#main { background: #fff; padding: 1em; border: 5px solid #ccc; text-

align: center; }

.following, .follower { margin: 1em; border: 0; }

.tweet { font-size: 1.5em; color: #ccc; }

Save the code in Listing 3.2 as index.php, and then upload the file to your web server

alongside functions.php, the image, and the CSS.

55Implementing Twitter OAuth

Creating the Master Page

The next page is the master page, which is the page that was set as the callback URL, and

will have the following functionality:

n Handling of a “sign-in” process

n Handling of a “sign-out” process

n Handling of users who access the page and who have not signed in

n Accessing a user’s protected resources in the form of a friends list

n Handling of simple exceptions to degrade gracefully

For simplicity, you can use cookie-based storage of user credentials, although in prac-

tice you might want to store them in a database or in PHP sessions.You can re-create the

master page with the skeleton code used in Listing 3.3.

Listing 3.3 The master.php File

1 <?php

2 include "functions.php";

3 if (isset($_GET["logout"])) {

4 logout();

5 } else {

6 $twitter = login();

7 $user = verify($twitter);

8 if ($user) {

9 ?>

10 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

11 <html xmlns="http://www.w3.org/1999/xhtml">

12 <head>

13 <title><?php echo TITLE; ?></title>

14 <link href="static/css/style.css" rel="stylesheet" type="text/css" />

15 </head>

16 <body>

17 <div id="main">

18 <h1>Hello, <?php echo $user->screen_name; ?>!</h1>

19 <p><img src="<?php echo $user->profile_image_url; ?>" alt="<?php

echo $user->screen_name; ?>" height="48" width="48" /></p>

20 <p class="tweet">"<?php echo $user->status->text; ?>"</p>

21 <?php

22 // Print Latest Friends

23 printFriends ($twitter, 10);

24 ?>

25 <p><a href="<?php echo MASTER; ?>?logout">Sign Out</p>

26 <?php } else { ?>

27 <h1>Twitter Error</h1>

www.allitebooks.com

http://www.allitebooks.org

56 Chapter 3 Authentication with Twitter OAuth

28 <p>We were unable to verify your Twitter credentials.</p>

29 <?php } ?>

30 </div>

31 </body>

32 </html>

33 <?php } ?>

As with the landing page, you must include the functions.php dependency, which

will be revisited to add the login(), logout(), verify(), check(), and printFriends()

functions. Lines 3 to 8 contain the workflow that first evaluates whether the logout

parameter has been set via the link on line 25. If it hasn’t, this workflow will attempt to

create the Twitter object and verify whether a valid user has visited the page on line 7. If a

valid $user is available, the application will show his or her Twitter username, profile pic-

ture, and latest friends. If not, an error message will display. Save the code in Listing 3.3 as

master.php and reopen functions.php. Edit the logout() function so that it contains

the following code:

function logout() {

$twitter = init($_COOKIE["oauth_token"], $_COOKIE["oauth_token_secret"]);

$twitter->post_accountEnd_session();

setcookie("oauth_token", "", 1);

setcookie("oauth_token_secret", "", 1);

header("Location: ".INDEX."?loggedout");

}

These lines are used to handle the sign-out process by calling the

account/end_session method, clearing the cookie that contained the user’s credentials,

and then redirecting back to the landing page. Next, here’s the login() function:

function login() {

// An OAuth Token has just been granted from Twitter

if (!empty($_GET["oauth_token"])) {

$twitter = init();

$oauth_token = $_GET["oauth_token"];

try {

$twitter->setToken($oauth_token);

$token = $twitter->getAccessToken();

$twitter->setToken($token->oauth_token, $token->oauth_token_secret);

setcookie("oauth_token", $token->oauth_token);

setcookie("oauth_token_secret", $token->oauth_token_secret);

header("Location: ".MASTER."?loggedin");

}

catch(EpiOauthException $e) { header("Location: ".

INDEX."?oauthexception"); }

catch(EpiTwitterException $e) { header("Location: ".INDEX."?exception");

}

} else if (

57Implementing Twitter OAuth

empty($_COOKIE["oauth_token"]) && empty($_COOKIE["oauth_token_secret"])

) {

setcookie("oauth_token", "", 1);

setcookie("oauth_token_secret", "", 1);

header("Location: ".INDEX);

} else {

return init($_COOKIE["oauth_token"], $_COOKIE["oauth_token_secret"]);

}

}

If an authorized request token has been returned from Twitter, you then need to con-

vert it into an access token.This function checks for the token, attempts to create the

access token, and then stores it alongside the token secret within a cookie.The user is

then redirected or the page is “refreshed” so that the request token cannot be reused. If

you do not do this, users might receive an error if they refresh the page manually with the

request token still in the URL. If an access token and token secret cannot be found in the

cookie, you should redirect the user back to the landing page.

The only case this leaves is if you have a user who has had his credentials stored in the

cookie and has just returned from the automatic refresh and is now logged in. In this case,

the init() function is called using the access token and token secret. If you store the

access token and token secret alongside the user’s screen name, you will be able to per-

form Twitter actions on behalf of the user. In Part IV of this book, you learn how to cre-

ate your own microblog application from scratch.

Just because you have received an access token and token secret does not mean that

the user has been verified as legitimate.This is why you need to call the

account/verify_credentials method, which will return a status code 401 if the user

credentials are incorrect, which is encompassed within the verify() and check() func-

tions, which will return false for all responses that do not have a status code of 200:

function verify($twitter) {

if(is_object($twitter)) {

$response = $twitter->get_accountVerify_credentials();

return check($response);

} else {

return false;

}

}

function check($payload) {

return ($payload->code == 200) ? $payload : false;

}

You now have a test to ensure that you have a verified user and can now work with

his protected resources. Remember that a call to the account/verify_credentials

method returns a User object if valid, so that is why you can extract their profile_

image_url, screen_name, and status on lines 18 to 20 in Listing 3.3.The final function

58 Chapter 3 Authentication with Twitter OAuth

is printFriends(), which calls the statuses/friends method, passing a count parame-

ter to extract the user’s latest ten friends.The results from this method are ordered by the

latest person added first:

function printFriends($twitter, $count = 10) {

try {

$friends = $twitter->get_statusesFriends(array("cursor" => -1));

if (check($friends)) {

$next_cursor = $friends->next_cursor;

$previous_cursor = $friends->previous_cursor;

echo "<h2>Latest ".$count." Twitter Friends</h2>";

for ($i = 0; $i < $count; $i++) {

$friend = $friends->users[$i];

echo "name."\" href="http://twitter.com/\".

$friend->screen_name."\">

profile_image_url."\" alt=\"".$friend->screen_name."\" height="48"

width="48" />";

}

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no friends to

list.</p>"; }

}

Save functions.php after adding the new functions, and then upload it alongside

master.php to your web server.

Testing Your Application

Before testing, you should ensure that you have all the files uploaded to your web server

and have successfully registered your test application on Twitter. Navigate to your landing

page in a browser and you should see your landing page with three hyperlinks:“Autho-

rize with Twitter” and two “Sign in with Twitter” buttons, as shown in Figure 3.2.

If you roll your mouse cursor over the links, you should see that you have an

oauth_token parameter appended to the URL, which was automatically generated by

twitter-async. Clicking the first link should redirect you to Twitter, where you can sign in

(if required) and gain access to your application. If all was successful, you should then be

redirected to your master page, which is shown in Figure 3.3.

Feel free to now explore the other links and see where they take you. Consider deny-

ing access to your application or using the forced and unforced login options.You might

also want to be more adventurous and test some other Twitter API methods using the

same principles as used to create the printFriends() method. For example, you could

update the code created in Chapter 2 to use OAuth rather than Basic Authentication.

59Summary

Figure 3.2 Landing page for the Test Tube application.

Figure 3.3 Master page for the Test Tube application.

Summary
This chapter provided an overview of OAuth as a more secure mechanism for obtain-

ing user credentials for accessing their protected resources from Twitter.The example in

this chapter used a PHP OAuth client library, twitter-async, to show how you can use

OAuth to simplify the Twitter authorization process to create a simple Twitter application.

Combining the skills you have learned in this chapter with those you learned in and

Chapters 1 and 2, you should now feel confident to go on and develop your own applica-

tions. Chapter 4,“Extending the Twitter API: Retweets, Lists, and Location,” covers some

of the newer Twitter API methods, such as the Retweet API and the Geolocation API.

This page intentionally left blank

4

Extending the Twitter API:
Retweets, Lists, and Location

Chapter 1,“Working with the Twitter API,” and Chapter 2,“Exploring the Twitter API

and Search API,” gave an overview of the Twitter API and illustrated the essential Twitter

API methods for account maintenance, updating status, searching, and accessing trends

using Basic Authentication, cURL, and the twitter-async PHP client library. In Chapter

3,“Authentication with Twitter OAuth,” you used OAuth as a means of authenticating

user accounts without handling usernames and passwords within your applications and

created a simple application using this method.As Twitter evolves, new functionality will

be added to the public website and also for developers within the Twitter API.As exam-

ples, new features that were implemented during the writing of this book include the

Retweet API, Lists API, and geolocation functionality:

n The Retweets API provides core functionality for handling retweets.

n The Lists API enables users to curate lists of users that can be subscribed to and

followed and can be either public or private.

n There are many location-based Twitter applications that handle geolocation inter-

nally.Twitter now allows developers to “tag” updates on an opt-in tweet-by-tweet

basis based on a user’s privacy settings.

This chapter takes each of these new functionalities and describes how they work

and, with the aid of simple code examples, shows you how you can implement them in

your Twitter applications.These examples extend the Test Tube application created in

Chapter 3.

Extending Twitter’s Core Functionality
As Twitter continues to gain momentum in the personal and business spheres, it is

inevitable that they will look to increase their core service functionality to both generate

revenue and increase user participation.As has been seen with the introduction of OAuth

and the phased deprecation of Basic Authentication, sometimes these changes can affect

62 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

your applications in major ways, which is why OAuth was explained in detail.Twitter has

introduced API versioning, which means that applications can be made to support specific

API versions and Twitter will be able to provide beta functionality without compromising

stable code.The convention that is being used is as follows:

https://api.twitter.com/<<version>>/<<method>>

Here, <version> can be replaced with the version number that you intend to use,

which can currently be set to a 1 or 2.Twitter intends to keep this version control

method simple, and so will not be introducing complex branching and conventional ver-

sion-control features. Introduced in version 2 of the Twitter API was support for retweets,

lists, and geolocation.

Retweet API

The Retweet API enables developers to programmatically create a retweet (an act akin to

forwarding an e-mail) and provides several ways to access retweets that users have created,

that their followers have created, and tweets of their own that have been retweeted. Five

new methods were added, and the statuses/friends_timeline method was superseded

by the statuses/home_timeline method, which includes retweets.The new Retweet

API methods are as follows:

n statuses/retweet

Retweets a tweet and requires an id parameter of the tweet you are retweeting

submitted via POST or PUT.This method supports only JSON or XML output.

n statuses/retweets

Returns up to 100 retweets of a given tweet using GET.An example is https://api.

twitter.com/2/statuses/retweets/1234.xml, where 1234 is the value of a valid status

id.An optional count parameter can be supplied to restrict results.This method

supports only JSON or XML output.

n statuses/retweeted_by_me, statuses/retweeted_to_me

Returns a default of the 20 most recent tweets made by or to the authenticated

user and accepts the count and page parameters using GET.Along with JSON and

XML, this method also supports Atom.

Following its initial release to developers, the majority of feedback for the Retweet

API addressed how to handle multiple retweets, which saw a change in the way retweet

“collapsing” was processed by Twitter.To prevent clutter, a retweet appears only once in

the user’s home timeline, and subsequent retweets of the same tweet have to be retrieved

via the statuses/retweets method, which will return up to a maximum of 100

retweets. For example, if you want to return the five most recent retweets for the tweet

with identifier 1234, you make the following call:

https://api.twitter.com/2/statuses/retweets/1234.xml?count=5

https://api.twitter.com/2/statuses/retweets/1234.xml
https://api.twitter.com/2/statuses/retweets/1234.xml

63Extending Twitter’s Core Functionality

In the initial specification, it was possible that users would see updates from others

whom they did not follow appearing in their timeline because of retweets being repre-

sented internally as “User B retweeted by User A” rather than “User A retweeted User B.”

In the latest incarnation of the Retweet API, you will see retweets from users you are fol-

lowing returned as Status objects that have a retweeted_status element nested within

them from the original tweeter.This way, users will see a familiar face in their timeline

but the retweeted tweet will be accredited to the original user. If no retweeted_status

element is returned within the Status object, the tweet has not yet been retweeted.To see

an example using twitter-async, open the functions.php file that you created in Chapter

3 and add the printRetweets() function as shown in Listing 4.1.

Listing 4.1 The printRetweets() Function

function printRetweets($twitter, $type = "of", $count = 5, $page = 1) {

try {

$method = "get_statusesRetweets_".$type."_me";

$retweets = $twitter->$method(array("count" => $count, "page" =>

$page));

if (check($retweets)) {

echo "<h2>Latest ".$count." Retweets ".$type." Me</h2>";

echo "";

foreach ($retweets as $retweet) {

echo "".$retweet->id.": "".$retweet-> text."" last

retweeted by: ";

$method = "get_statusesRetweets{$retweet->id}";

$statuses = $twitter->$method(array("count" => 1));

if (check($statuses)) {

$retweeters = "";

foreach ($statuses as $status) {

$retweeters .= $status->user->screen_name.", ";

}

}

echo substr($retweeters, 0, -2)."";

}

echo "";

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no retweets

to list.</p>"; }

}

The function can be called within master.php underneath the printFriends()

function as printRetweets($twitter, "of", 5, 1).The function makes use of the

64 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

statuses/retweets method to get details of the retweeter and prints a single user as the

count parameter is set to 1.The format of the retweeted_status element is exactly the

same as with a Status object.When multiple retweets are requested, they are contained

within a statuses element as an array of status elements, which can be iterated over

using a foreach() loop. In the code listing above, the original status text could be

accessed using $status->retweeted_status->text using data from the statuses/

retweets method call.

Unfortunately, the way in which retweets are handled by Twitter means that com-

menting on the original tweet is not permitted (which has caused some upset in the user

base, and many clients support both the new method of retweeting plus allowing users to

comment and submit as a regular mention).What the Retweet API adds is the ability to

quickly retrieve retweets programmatically so that they can be tracked and managed

gracefully within all third-party applications that choose to implement the new features.

Lists API

Lists are a feature for organizing and sharing “groups” of Twitter users publicly or pri-

vately.These lists are linked through a user’s profile and can be subscribed to (if permit-

ted) by everyone, and therefore have the potential to be the new discovery mechanism for

new and exciting accounts. For developers, the Lists API contains methods for creating,

updating, retrieving, and deleting lists (and their members and subscribers).Another fea-

ture exists for retrieving a timeline of updates from a list that gives users greater control

over their timelines and how information is filtered to prevent overload (for example,

being able to see messages from close friends or work colleagues in a separate timeline

from the home timeline). If group preferences are stored within Twitter, this means that

other applications can share these preferences to provide a more streamlined user experi-

ence (because users will need to create lists only one time rather than multiple times per

application).An example is when switching between desktop and mobile clients and syn-

chronization of groups occurs between the two.

List API Limits

The current incarnation of the Lists API limits users to having a maximum of 20 lists, each

of which can have up to 500 members. There are no known limits for list subscribers. These

numbers may be increased, or decreased, in the future depending on Twitter’s resource man-

agement and capability.

Unlike other Twitter API methods, the Lists API adheres more strictly to the definition

of the Representational State Transfer (REST) design pattern, such as https://twitter.

com/<<username>>/lists/memberships.xml, which returns the public lists that a speci-

fied <<username>> has been added to (see Table 4.1).This structure will decrease the need

for excessive parameters in API method calls and should be a more friendly and under-

standable format for Twitter users.To demonstrate how the information is returned back

to developers in XML the List object looks like this:

https://twitter.com/<<username>>/lists/memberships.xml
https://twitter.com/<<username>>/lists/memberships.xml

65Extending Twitter’s Core Functionality

<list>

<id>1111</id>

<name>Example List</name>

<full_name>@markhawker/example-list</full_name>

<slug>example-list</slug>

<description>An example list.</description>

<subscriber_count>0</subscriber_count>

<member_count>1</member_count>

<uri>/markhawker/example</uri>

<mode>public</mode>

<user>...</user>

</list>

Table 4.1 Lists Methods, Parameters, and Return Types

Method Description Method Parameters Return Type

POST Creates a new list lists description,

mode, name

List object

POST/

PUT

Updates an

existing list

lists/

<<list_id>>

description,

mode, name

List object

GET Gets the lists that

the user has

created

lists cursor Lists collection

GET Gets the lists that

the user has been

added to

lists/

memberships

cursor Lists collection

GET Gets the lists that

the user

subscribes to

lists/subsc

riptions

cursor Lists collection

DELETE Deletes a

specified list

lists/

<<list_id>>

None List object

GET Gets the timeline

for list members

lists/

<<list_id>>

/statuses

max_id, page,

per_page,

since_id

Statuses

collection

GET Gets the list

details.

lists/

<<list_id>>

None List object

66 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The id element is unique to each list and does not change if elements such as the list

name changes.The slug element is an alphanumeric version of the name, which is in low-

ercase and uses the hyphen character (-) in place of spaces.The Lists API is split into three

categories, each with similar methods: Lists, for creating, reading, updating, and deleting of

lists (see Table 4.1); List Members, for adding and removing of users to the list and for

checking member status for a user and returning all members (see Table 4.2); and List

Subscribers, for subscribing and unsubscribing and for checking subscriber status for a

user and returning all subscribers (see Table 4.3).

Table 4.2 List Member Methods, Parameters, and Return Types

Method Description Method Parameters

Return

Type

POST Adds a member

to a list

<<list_id>>/

members

id List object

GET Gets the list

members

<<list_id>>/

members

cursor Users

collection

DELETE Removes a

member from a list

<<list_id>>/

members

id List object

GET Checks whether a

user is a memberf

<<list_id>>/

members/<<id>>

None User object

Table 4.3 List Subscriber Methods, Parameters, and Return Types

Method Description Method Parameters

Return

Type

POST Subscribes the

authenticated user

to a list

<<list_id>>/

subscribers

None List object

GET Gets the list sub-

scribers

<<list_id>>/

subscribers

cursor Users col-

lection

DELETE Unsubscribes the

authenticated user

from a list

<<list_id>>/

subscribers

None List object

GET Checks whether a

user is a subscriber

of a list

<<list_id>>/

subscribers/

<<id>>

None User

object

67Extending Twitter’s Core Functionality

The https://api.twitter.com/2/<<username>>/ prefix is used on each of the Lists API

methods where <<username>> must be replaced with the logged-in user’s screen_name in

the methods in Table 4.1 and can be set to any valid screen_name in the methods in

Tables 4.2 and 4.3.

Instead of using <<list_id>>, you should use the appropriate identifier of the list that

you want to access. For the XML example shown earlier, for example, you would use

1111 as the <<list_id>>. Each of these methods should be appended with a format set to

either XML or JSON.The following few examples use twitter-async. In these examples,

the <<username>> parameter is set to the value of $list_user, which is equal to $user-

>screen_name, which can be accessed after calling the verify() function in master.php

of the sample code:

n $new_list = $twitter->post("/{$list_user}/lists.json",

array("description" => "An example list.",

"mode" => "private", "name" => "Example List"));

n $updated_list = $twitter->post("/{$list_user}/lists/

{$new_list->id}.json", array("description" => "An updated

example list."));

n $lists = $twitter->get("/{$list_user}/lists.json",

array("cursor" => -1));

n $deleted_list = $twitter->delete("/$list_user/lists/

{$updated_list->id}.json");

For each of the examples, you can access the responseText, such as $new_list->

responseText, to retrieve the data returned by the Twitter API. In the examples of updat-

ing and deleting the list, these also use the id value of the previous lists within their

method names. Here is an example of extracting all the lists that the authenticated user has

been added to:

echo "<h1>List Objects</h1>";

$cursor = -1;

do {

$lists = $twitter->get("/{$list_user}/lists/memberships.json",

array("cursor" => $cursor));

foreach($lists->lists as $list) {

echo "".$list->id.": ".$list->name." created by ".$list->

user->screen_name."";

}

$cursor = $lists->next_cursor_str;

} while ($cursor > 0);

https://api.twitter.com/2/<<username>>/

68 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The next set of methods (see Table 4.2) is for updating the members of an existing list.

With the exception of the final method, these methods function in the same way as

Lists methods but require a numeric id parameter, which is of the logged-in user. In the

last method, if the user is not a member of the specified list, an appropriate Hash object

will be returned; otherwise, it will be a User object. Each of these methods should be

appended with a format set to either XML or JSON. Here are two sample URLs that use

the public @twitterapi team list:

n https://api.twitter.com/2/twitterapi/team/members.xml

n https://api.twitter.com/2/twitterapi/team/members/3191321.xml

To test the final method using twitter-async, you would use the following:

$id = $response->id;

$membership = $twitter->get("/twitterapi/team/members/{id}.json");

if ($membership->code == 200) {

echo "Yes, the user is a member of this list.";

} else {

echo "Sorry, the user is not a member of this list.";

}

The $id parameter will be that of the authenticated user. However, if you replace it

with 3191321 (a current member of the Twitter API team), you should receive a successful

response.The $membership element will also contain a User object if successful, so the

message could use $membership->name to display the member’s name.The methods listed

in Table 4.3 enable you to update subscribers to an existing list. Unlike the List Member

methods that only allow the authenticated user who created the list to add and remove

members, authenticated users can subscribe and unsubscribe themselves to and from any

public list. Like the List Member methods, you can use the using the final check method

shown in the table to determine whether a user subscribes to a list.

These three categories cover all the current functionalities, but these may be extended

in future implementations of the Lists API (perhaps to include bulk adding and removing

features).

Geolocation API

Many third-party applications that support geolocation do so by using the user-defined

location field within Twitter profiles.This field is not coded in any way and represents an

account-level location for the user. Some applications provide functionality to update pro-

file locations by using the Global Positioning System (GPS) within cell phones or loca-

tion-aware laptops or other Internet-enabled devices.The Geolocation API is the natural

extension to this third-party functionality, enabling applications to tag single updates with

a user’s current latitude and longitude.The feature is an opt-in service, quite understand-

ably, and supports multiple use cases such as providing context-aware advertising or for

browsing updates from users around a neighborhood, arena event, or music concert.

https://api.twitter.com/2/twitterapi/team/members.xml
https://api.twitter.com/2/twitterapi/team/members/3191321.xml

69Extending Twitter’s Core Functionality

Mozilla Geode and Yahoo! Fire Eagle

Several options are available for supporting geolocation within web browsers and mobile

devices. Two popular choices are Mozilla’s Geode and Yahoo!’s Fire Eagle. In the future,

many more will become available as geolocation becomes a mainstream feature. A browser-

based extension for Mozilla Firefox named Geode can be used to add geolocation features

to the popular web browser through a W3C standards-compliant API. A broker-based solution

is Fire Eagle, a service that allows users to update their location and control its privacy and

access by other applications. It provides an API to access locations, but requires users to

have access to an account.

In terms of the Geolocation API for developers, two new fields were created: one

within the User object, which is a read-only field named geo_enabled, indicating

whether the user has opted-in to the feature; and the geolocation itself, which can be

added as lat and long parameters to a status update request. GeoRSS-Simple is used to

specify the return data format of locations in XML and uses GeoJSON for JSON

requests. For example, specifying a lat of 37.78445 and long of -122.39671 (the

approximate location of the Twitter headquarters in San Francisco) will return the follow-

ing in XML using GeoRSS-Simple:

<geo xmlns:georss="http://www.georss.org/georss">

<georss:point>37.78445 -122.39671</georss:point>

</geo>

And the same request will return the following using GeoJSON:

"geo": {

"type": "Point",

"coordinates": [37.78445, -122.39671]

}

If no geolocation data is available, an empty result set will be returned as <geo /> in

XML or "geo": {} in JSON. If geolocation data is available, coordinates and place

elements will also be included, with further details about the current location of the user.

The place elements will contain all the data described in the Twitter geo methods

described here. Currently, all geolocation data will be removed from an update after seven

days of being posted.Twitter also provides three Geolocation API methods that support

adding a location to updates: geo/reverse_geocode and geo/nearby_places, for return-

ing a set of locations that are closest to a latitude and longitude or IP address; and

geo/id/<<id>>, which returns detailed information about one specific location. It is rec-

ommended that you use the geo/nearby_places method for returning location data spe-

cific to the authenticated user and geo/reverse_geocode for general geographic data.

Both methods will return the same data elements, but the former will return results in an

order specific to the user. If you use the latitude and longitude of the Twitter headquar-

ters, a call to the geo/reverse_geocode method will return the following JSON:

70 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

{

"result": {

"places":

}.

"query":{

"type": "reverse_geocode",

"url": "http://api.twitter.com/1/geo/reverse_geocode.json?

lat=37.78445&long=-122.39671&accuracy=0&granularity=neighborhood",

"params": {

"granularity": "neighborhood",

"coordinates": {

"type": "Point", "coordinates": [-122.39671,37.78445]

},

"accuracy": 0

}

}

}

Additional parameters that you can send to this method include max_results (to con-

trol how many results are returned), granularity (which defaults to neighborhood but

could also be set to city), and accuracy (which you can set to a numeric value to

denote a radius in meters or a string for feet which must be suffixed by ft). For example,

to search for results within an 800-foot radius, you set the accuracy parameter to 800ft.

For the geo/nearby_places method, you can also supply an ip parameter rather than a

lat and long.Twitter will convert the ip parameter using Geo-IP. Currently, results are

limited to the United States, but the Twitter people are working on including other loca-

tions eventually.This method returns the coordinates of both the place itself and the

neighborhood or city in which it is situated.This could be used if you wanted to plot the

location in a Geographical Information System (GIS).

If this same query were executed via twitter-async, you would access variables using

the following code:

echo "<h1>Geolocation Objects</h1>";

$response = $twitter->get("/geo/reverse_geocode.json", array("lat" =>

37.78445, "long" => -122.39671, "max_results" => 3));

echo "";

foreach($response->result->places as $geo) {

echo "".$geo->id.": ".$geo->full_name." (".$geo->contained_within[0]

->full_name.")";

}

echo "";

The results are accessed from within the $response->result->places object, and

data from the contained_within element must be extracted by using $geo->con-

tained_within[0].As for accessing the initial query, you would use $response->query

to extract the parameters executed alongside the method.To demonstrate the

geo/id/<<id>> method, you can use one of the id elements returned by the query

71Extending Twitter’s Core Functionality

above.The closest to the Twitter headquarters is 5c92ab5379de3839, which is South

Beach, San Francisco. If you pass this into the geo/id/<<id>> method, you’ll output the

following JSON:

{

"url": "http://api.twitter.com/1/geo/id/5c92ab5379de3839.json",

"country": "",

"bounding_box": {

"type": "Polygon",

"coordinates": [[...]]

},

"place_type": "neighborhood",

"contained_within": ,

"polylines": ["ioseFd`_jVhKjKxKkHbFdHhD{DjIhEhLiSnDbUo}@bmAoj@su

"full_name": "South Beach",

"geometry": {

"type": "Polygon",

"coordinates": [[...]]

},

"name": "South Beach",

"id": "5c92ab5379de3839",

"country_code": "US"

}

The additional information contained within this method gives access to polygon

coordinates as well as data for drawing a polyline. Unfortunately, the id returned by both

of these methods does not relate to a Yahoo! Where On Earth ID (WOEID), which could

be used by the Local Trends methods. If you are using your own GIS, you could use these

coordinates to plot your own maps or use the Google Maps API to show the locations of

tweets in near real time.

Twitter Community Evolution
Alongside major feature extensions, which offer new opportunities for application devel-

opers in their own applications,Twitter has also started supporting community-driven

tools that promote the growth of its own platform. Currently, these include translations

and spam reporting, but could extend to other features in the future.The translate feature

has huge potential to be extended to third-party developers for providing international-

ized applications based on community submissions of translations, which is something

Facebook and Google Friend Connect already support.

Platform Translations

Translations is a new feature to support Twitter in French, Italian, German, and Spanish

(FIGS) in addition to English and Japanese, which are currently available on the Twitter

72 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

website. In the future, this will be extended to other languages, too. For now, however,

Twitter hopes to test the platform using these four new languages first.Twitter is recruit-

ing volunteers to provide these translations. If you’re interested in contributing, you can

visit their official Translate (@translate) page to register to become a translator.

Spam Reporting

The original solution for spam reporting involved following the Twitter spam account

(@spam) and sending it a direct message with the screen name of the suspected spammer.

However, this was found to be too complicated for most users, who often just retweeted

spam messages and therefore were suspected of spamming themselves.As a replacement, a

Report for Spam feature has been added to the Twitter actions context menu. So, you can

now report a particular user without having to follow the spam account and send it a

message.

Twitter also released a new API method for performing this functionality named

report_spam. It enables developers to incorporate spam control directly within their

applications. Spam can be reported by supplying an id, user_id, or screen_name param-

eter via a POST request to the report_spam method, which will return a User object if

successful or a Hash object if unsuccessful. For example, if you suspect iamaspammer13 is

a spam account, you can use the following cURL command:

curl –k -u username:password -d "screen_name=iamaspammer13"

https://api.twitter.com/2/report_spam.json

Calls to this method are limited per user per hour and so should be used sparingly

when in batches.As usual, relevant error responses will be returned once this rate has

been reached. No automated response will be taken by Twitter as a result of a spam

request for reasons such as abuse and mistaken identity, so users should not expect

accounts to be suspended immediately upon submitting a request.To test this feature out

in code, you can use the Test Tube application from Chapter 3, adding the following line

of code to the master.php:

printFollowers($twitter, 10);

The line above will execute the printFollowers() function, which will be detailed

next, should be placed inside the functions.php file.The function will return a list of the

last ten (or however many are provided in the second parameter) followers of the authen-

ticated user along with a radio button next to each so that a user can select a potential

spammer and click Report Spam to send the request to Twitter.The printFollowers()

function is shown in Listing 4.2.

Listing 4.2 The printFollowers() Function

function printFollowers($twitter, $count = 10) {

try {

$followers = $twitter->get_statusesFollowers(array("cursor" => -1));

if (check($followers)) {

73Twitter Community Evolution

$next_cursor = $followers->next_cursor;

$previous_cursor = $followers->previous_cursor;

echo "<h2>Latest ".$count." Twitter Followers</h2>";

echo "<form name=\"spam\" action=\"".MASTER."\" method=\"post\">";

for ($i = 0; $i < $count; $i++) {

$follower = $followers->users[$i];

echo "name."\" href=\"

http://twitter.com/".$follower->screen_name."\"><img class=\"follower\"

src=\"".$follower->profile_image_url."\" alt=\"".$follower->

screen_name."\" height=\"48\" width=\"48\" />";

echo "<input type=\"radio\" name=\"spammer\" value=\"".$follower->

screen_name."\" />";

}

echo "<input type=\"hidden\" name=\"method\" value=\"spam\" />";

echo "<p><input type=\"submit\" value=\"Report Spam\" /></p>";

echo "</form>";

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no followers to

list.</p>"; }

}

In this function, the statuses/followers method is called along with a cursor

parameter that returns the latest 100 followers.These are then iterated over using the

$count parameter that was supplied to the function as a limiter. Each follower has a radio

button next to his or her profile picture that will be submitted via the form as a spammer

value alongside a hidden method value, which will be parsed by the master.php file.An

extension to this could be to use a check box to report multiple spammers.You now need

to add the report_spam functionality within the master.php file:

if (isset($_POST["method"])) {

switch($_POST["method"]) {

case "spam":

$response = $twitter->post_report_spam(array("screen_name" =>

$_POST["spammer"]));

echo check($response) ? "<p>Spam user {$_POST[‘spammer’]} reported

successfully.</p>" : "<p>Spam user {$_POST[‘spammer’]} reported

unsuccessfully.</p>";

break;

}

} else {

printFollowers($twitter, 10);

}

74 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The name of the case parameter is the same as the hidden method value of the form,

and the screen_name parameter is set to the value of spammer.The check() function will

validate the method call and return the corresponding User object if successful or false

if unsuccessful. For this example, no further processing was completed on the response,

but the simple text line denoting either a successful or unsuccessful report attempt indi-

cates where you could add extra functionality.The extensibility of the functions.php

library and the power of twitter-async make adding these features relatively easy after you

have suitable architectures in place.

Future Directions

As a platform,Twitter is still in its infancy.The introduction of OAuth and Sign In With

Twitter is their first real step toward being a worthy “connect” provider.Twitter has

already confirmed three features during the writing of this book: the Streaming API, con-

tributions functionality, and Twitter @anywhere.

Streaming API

Twitter has released new Streaming API methods, such as firehose, filter, and

retweet, that enable developers to provide almost real time access to large amounts of

Twitter data.This is also the service that is used to index public statuses by Google and

Microsoft Bing.These methods use streaming HTTP, whereby clients are connected to

continuous data streams and will have to explicitly disconnect themselves to stop receiv-

ing data.The current Streaming API methods are as follows:

n The statuses/filter method returns all public statuses that match one or more

filter parameters.These include follow for mentions, locations for geotagged up-

dates, and track for specific keywords.The default access to this method allows you

to track up to 200 keywords, 200 users, and 10 “bounding boxes” for locations.

These boxes are a combination of longitude/latitude pairs, such that the first pair is

the southwest corner of the box and the second pair is the northeast corner.

n The statuses/firehose method returns all public statuses without any kind of fil-

tering.This is one of the least-used Streaming API methods because of its size and

the fact that other methods that return less data can often be used in combination

to return a more comprehensive set of data.

n The statuses/links method returns all statuses that contain either an http: or

https: link. Like the statuses/firehose method, because of the number of data

items retrieved by this method, it is less widely used.

n The statuses/retweet method returns all retweets made by users. It is generally

not used, in favor of the statuses/filter method, whereby you can set the follow

parameter to track a set of users.

75Twitter Community Evolution

n The statuses/sample method returns a random sample of all public statuses,

which is a small proportion of the Firehose. For research or data mining,Twitter

also allows you to request access to the Gardenhose, which gives access to a larger

number of samples.

Only public accounts are made available, and so you will not be able to extract infor-

mation from protected Twitter accounts.The Streaming API uses Basic Authentication,

and access to methods other than statuses/filter and statuses/sample must be

explicitly requested from Twitter to prevent abuse and to track usage. Because of the large

amounts of data that will be flowing to your applications, it is recommended that you

decouple stream processing and persistence.This just means that as soon as you receive

data from Twitter it should be stored and then processed using methods other than

attempting to render inline.

An example PHP client for use with the Streaming API is Phirehose (http://code.

google.com/p/phirehose/), which is moderately maintained.The library uses a fairly sim-

ple structure that conforms to the official Streaming API documentation:

require_once("Phirehose.php");

class MyStream extends Phirehose {

public function enqueueStatus($status) {

print $status;

}

}

$stream = new MyStream("<<USERNAME>>", "<<PASSWORD>>");

$stream->consume();

In this example, the Phirehose class is extended, and the enqueueStatus() function

is overridden, and called once for each status successfully retrieved. If you are interested in

using the Streaming API, you should read the documentation provided by Twitter (http:/

/dev.twitter.com/pages/streaming_api) and within Phirehose to ensure that your applica-

tions run smoothly. Because extracting large amounts of data was not the focus of this

book, this section provides just a snapshot of what is possible via the Streaming API.

Contributions

For groups or organizations that have multiple users who post on their behalf from a

shared account,Twitter is implementing a “contributors” feature.An account will have to

explicitly enable the feature, which will set the contributors_enabled parameter within

a User object to true, and thus enable specified user accounts to update its status.Within

a Status object will be a new parameter called contributors containing a set of user

identifiers who will have “signed” the update.A sample can be accessed at https://api.

twitter.com/2/statuses/show/7680619122.xml.The update outputs a regular Status

object plus the following:

<contributors>

<user_id>8285392</user_id>

</contributors>

http://code.google.com/p/phirehose/
http://code.google.com/p/phirehose/
http://dev.twitter.com/pages/streaming_api
http://dev.twitter.com/pages/streaming_api
https://api.twitter.com/2/statuses/show/7680619122.xml
https://api.twitter.com/2/statuses/show/7680619122.xml

76 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The feature enables you to append the contributor’s username to a tweet (for example,

the @twitterapi account invited @raffi to tweet on its behalf) so that users can direct

responses back to the person who was referred to in the tweet.At the time of this writ-

ing, this feature is not yet available within the Twitter API.

Twitter @anywhere

At the time of this writing, the details about Twitter @anywhere are scarce.As a concept,

@anywhere is an attempt to enable Twitter functionality, such as following people, to be

embedded within any web page using just a few lines of JavaScript. Like website integra-

tion with the Facebook Platform (see Part II) and Google Friend Connect (Part III), this

client-side functionality could see new incarnations of Sign In With Twitter and other

related Twitter API methods when used in combination with a server-side library such as

twitter-async.

Summary
Twitter is a continually moving target.As a developer, not only will you have to con-

tend with existing features being changed, you will also have to react to new features be-

ing added or old features being deprecated and removed. During the course of writing

this book,Twitter introduced the Lists API, Retweet API, and Geolocation API, and was

already underway in the development of the Streaming API.This goes to show the pace

of change of the platform in even a short space of time. In this chapter, you were given

examples of these new methods and other community features such as translations and

spam reporting, which are likely to be included as features in the future. Keeping up-to-

date with the Twitter API announcements and blog will ensure you are the first to know

of new Twitter enhancements.

5

An Overview of Facebook
Platform Website Integration

In today’s networked world, Facebook is a household name enabling users to create rich

profiles and interact with others across the world through wall posts, status updates, mes-

sages, and pokes. For developers, the Facebook Platform has opened up almost infinite

possibilities to create engaging applications that have before been mostly restricted to the

internal Facebook environment.This is where Facebook Platform integration for websites

(previously known as Facebook Connect) is different. It allows developers to hook into

the Facebook ecosystem through external applications on the Web, cell phones, and even

game consoles.

This chapter explores the fundamentals of Facebook for developers, including the

Facebook Platform and website integration.You will learn about core components,

including the Facebook API for manipulating Facebook data, the Facebook Query

Language (FQL) for accessing data, and the Facebook Markup Language (XFBML) for

displaying Facebook components such as profile pictures in your web applications.

You will also learn how to create a sample application that you’ll use in Chapter 6,

“Registration,Authentication, and Translations with Facebook,” for registration, authen-

tication, and internationalization and in Chapter 7,“Using Facebook for Sharing,

Commenting, and Stream Publishing,” for sharing, commenting, and publishing.

Facebook Platform for Developers
On August 15, 2006, Facebook introduced the first version of its Facebook Platform and

API enabling users to share their information with third-party websites and applications

of their choosing.At the official 2007 f8 press conference, Mark Zuckerberg gave a

keynote presentation to 800 developers introducing the next evolution of the Facebook

Platform:“Imagine all the things we’re going to be able to build together”.

78 Chapter 5 An Overview of Facebook Platform Website Integration

This movement was led by the opening of Facebook registration to users outside of

the United States and the exploitation of network connections through the social graph.

He highlighted three components to the platform:

n Deep integration

Integration points enable applications to create synergies with the Facebook envi-

ronment.These integration points include boxes, tabs, application info sections,

inboxes, bookmarks, the Publisher, activity streams, feed forms, and canvas pages.

Not all integration points suit all applications, and so which features you choose to

exploit depends on what type of application you are developing.Also, Facebook has

deprecated many of these integration points (such as boxes and application info sec-

tions), and Facebook is likely to add more in the future.

n Mass distribution

The integration points provide unique ways to distribute your application through

the social graph.These include notifications and requests that can push messages to

friends, but also serendipitous means (such as via activity streams or via browsing a

user’s profile page). New features also include application and game dashboards, and

counters, which were not available for testing during the production of this book,

but are available on the Facebook Developer Roadmap.

n New opportunity

Applications can create new business opportunities, as within canvas pages you can

display advertisements or use applications to transact through Facebook. By attract-

ing more users to your application, both your business and Facebook benefit

through increased site traffic and creating a richer social graph.

While the Facebook Platform continues to evolve, enabling developers to build within

the Facebook ecosystem, a new movement to integrate Facebook data with external

applications has already started to mature.This is where Facebook Platform website inte-

gration comes into its own.

Facebook Platform
Facebook Platform for websites is the next evolution of the Facebook Platform, enabling

you to integrate Facebook functionality into your own site, desktop application, cell

phone applications, and beyond.This is not just about users collaborating and sharing

within the internal Facebook environment as was the intention of the original Facebook

Platform, this is about bringing Facebook to your own product or service. Plug-ins and

social widgets, as well as custom programming, can get you up and running with the

Facebook Platform in minutes in some cases. Facebook Platform website integration

offers three benefits:

1. Increasing registrations because users can register on your application in just two

clicks using their Facebook user credentials (see Chapter 6). No longer do they

79Facebook Platform

need to remember yet another password. In addition, through authorized accounts,

you get access to their Facebook data such as name, photo, location, and more.This

allows you to create a richer personalized experience, such as serving them targeted

information based on their location, age, gender, or interests.

2. Driving traffic to your product or service by giving users the opportunity to com-

ment on, share, and stream content through their Facebook social graph and activ-

ity streams so that their friends click back to your site and engage with your

content, completing the viral loop (see Chapter 7).

3. Increasing activity on your site by adding social context to increase user engage-

ment, not just showing users what’s most popular on your site, but what’s most

popular with their friends on your site.This is known as social filtering and adds to

the personalized experience.

Facebook provides a sample application called The Run Around (http://www.

somethingtoputhere.com/therunaround/) that demonstrates the service in action.To

integrate the Facebook Platform into your site, you need to first set up a Facebook appli-

cation, get an API key, and add some snippets of JavaScript code to your existing site.The

next section focuses on concretizing these steps and requires an active Facebook user

account.

Registering a Facebook Application

The process for creating a Facebook application is much the same as for regular Facebook

Platform applications.You’ll need to ensure that you have the Facebook Developer appli-

cation enabled on your account by visiting http://www.facebook.com/developers and

then clicking “Set Up New Application”.You will be presented with a space to enter

your application name and agree to the Facebook terms and conditions.The application

name entered here will be the one that is used within the Facebook Application

Directory and viewable on all correspondence with users. Use a suitable name such as

“Test Tube” and click “Create Application”.

Facebook Principles and Policies

As a developer, you are obliged to adhere to the Facebook Developer Principles and Policies

(http://developers.facebook.com/policy/) to help protect your users, yourself, and Facebook.

The Application Edit page contains seven tabs, containing every setting available to

Facebook Platform developers:

n Basic

n Authentication

n Profiles

n Canvas

n Connect

http://www.somethingtoputhere.com/therunaround/
http://www.somethingtoputhere.com/therunaround/
http://www.facebook.com/developers
http://developers.facebook.com/policy/

80 Chapter 5 An Overview of Facebook Platform Website Integration

n Widgets

n Advanced

n Migrations

Most of these tabs are applicable to Facebook Platform for website applications with

the exception of Canvas, which is used only if you have an internal Facebook application,

and Advanced, which is for server whitelisting and mobile integration.The “Sandbox

Mode” setting in the “Advanced” tab may prove useful should you only want developers

to view the application (for instance, before being made live).

Basic Tab

The “Basic” tab contains options for controlling how your application appears within the

Facebook Application Directory, such as name, description, logo, icon and language. From

this tab, you can also add other developers to your application (who must be a friend on

Facebook), which will give them full access to the application via their own profile.

Facebook also strongly supports adding user-facing links to help, privacy, and terms of

service URLs, which can contain information such as contact addresses or frequently

asked questions.The bookmark URL must be set if you want to allow users to bookmark

your application via the <fb:bookmark> XFBML element.

The three most important fields on this tab are your application ID,API key, and secret.

These parameters are used to authenticate your application with Facebook. (Only you and

Facebook should know the secret!) These parameters should be added to a configuration

file, which you can create and save as config.php and which will be included on each

page on which you want to use Facebook Platform for websites functionality:

<?php

define("APP_ID", "XXXXXXXXXXXX");

define("API_KEY", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

define("SECRET", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

?>

Should your secret ever be compromised, you can reset it by going to the Facebook

Developer application, selecting your application, and clicking the “Reset Secret Key”

option. Because the secret is used to “sign” all Facebook requests, resetting it renders the

old code useless.

Authentication Tab

The “Authentication” tab contains two important authentication callback URLs, which

are “pinged” when a user first authorizes or removes your application.These will be cre-

ated in Chapter 6, where the authentication process is explained, but should be set to

http://myfacebookapp.com/authorize.php and http://myfacebookapp.com/remove.php

(where myfacebookapp.com should be replaced by your own web server details).

http://myfacebookapp.com/authorize.php
http://myfacebookapp.com/remove.php

81Facebook Platform

Profiles Tab

The “Profiles” tab is usually reserved for Facebook Platform applications, but it also con-

tains options for the Publisher interface (see Chapter 7). Set the “Publish Text” option to

Check Mood and the Publish Callback URL to http://myfacebookapp.com/publish.php

and “Self-Publish Text” to “Update Mood” and the “Self-Publish Callback URL” to

http://myfacebookapp.com/self_publish.php.

Connect Tab

The “Connect” tab contains settings that are available only to Facebook Platform for web-

sites applications, such as the “Connect URL”, which you should set to http://myface-

bookapp.com/, and a setting that enables you to add a logo, which will appear when a

user first registers for your application or when requesting permissions such as reading or

writing to their stream. If you want your implementation to span multiple domains, you

can set the base domain to myfacebookapp.com, which will enable foo.myfacebookapp.

com and bar.myfacebookapp.com.The account reclamation URL, as explained in

Chapter 6, is requested should a user remove his or her account from Facebook and wants

to create an independent account on your site without Facebook integration.Access to

friend linking is being revamped by Facebook and will be available in mid to late 2010.

Further details are available on the Facebook Developer Roadmap and will also be posted

on this book’s website at http://www.socialprogramming.info.

Widgets Tab

The “Widgets” tab is useful if you intend to use the comment boxes or live stream boxes

on your website or application (see Chapter 7). From here, you can control who can

administrate and moderate comments and also control who is able to comment.When

you are happy with all the settings, just click “Save Changes” to be returned back to the

Facebook Developer application.You can make other user-facing changes from here, such

as editing your application’s profile, which is where users can become fans, viewing appli-

cation usage statistics, and handling translations (see Chapter 6).The next section explains

how to reference your application using both the server-side PHP and client-side

JavaScript client libraries.

Migrations Tab

The “Migrations” tab was created to provide backward functionality to help developers

transition their applications to use Facebook’s new features (for example, the handling of

empty arrays in JSON and other potentially application-breaking platform adjustments).

From this tab, developers can disable new features until they are happy that their applica-

tion can support them.

Referencing a Facebook Platform Application

To reference Facebook Platform on your site, you need to upload a small file called a

cross-domain communication channel file onto your web server to enable authenticated

http://www.socialprogramming.info
http://myfacebookapp.com/publish.php
http://myfacebookapp.com/self_publish.php
http://myfacebookapp.com/
http://myfacebookapp.com/

82 Chapter 5 An Overview of Facebook Platform Website Integration

communication between your site and Facebook.The file can be created by creating a

new file called xd_receiver.htm and adding the following HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<body>

<script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

XdCommReceiver.js" type="text/javascript"></script>

</body>

</html>

Only one of these channel files is required per domain, and so you can specify its loca-

tion as a relative path using a forward slash (/) to denote relativity to your root directory.

For instance, /example/xd_receiver.htm would look at the location http://www.

example.com/example/xd_receiver.htm, whereas if your root directory were set to

http://www.example.com/example already then you could just use xd_receiver.htm

without the forward slash.After uploading the file and setting its permissions to 644 using

chmod, you then need to add some JavaScript code to each of your pages that use

Facebook. Listing 5.1 shows a simple implementation of this that you can save as

index.php and store in the same directory as config.php and xd_receiver.htm.

Listing 5.1 A Simple Facebook Platform Page

1 <?php

2 include "config.php";

3 ?>

4 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

5 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

6 <head>

7 <title>Test Tube</title>

8 </head>

9 <body>

10 <h1>Test Facebook Platform Page</h1>

11 <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php" type="text/javascript"></script>

12 <fb:login-button autologoutlink="true" onlogin="login();">

</fb:login-button>

13 <script type="text/javascript">

14 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm",

{"reloadIfSessionStateChanged":true});

15 function login() {

16 alert("Logged into Facebook.");

http://www.example.com/example/xd_receiver.htm
http://www.example.com/example/xd_receiver.htm
http://www.example.com/example

83Facebook Platform

17 }

18 </script>

19 </body>

20 </html>

The code in Listing 5.1 is the simplest implementation of Facebook Platform website

integration utilizing the JavaScript client library to log a user in and out. In Chapter 6,

you will learn how to extend this basic authentication to use the post-authorize and post-

remove callback URLs so that you can start tracking which users are interacting with your

application.This client-side code can be extended to use a server-side library such as the

official Facebook PHP Client Library to access the Facebook API.

Using the official client libraries means that a user’s session can be shared between

client-side and server-side code, but if you want to use a third-party client, you will have

to verify the signature of requests yourself by adding the following function to a

functions.php file and uploading that to your web server:

function valid_facebook_session($expires, $session_key, $ss, $user,

$valid_signature, $secret) {

$signature = md5("expires=".$expires."session_key=".$session_key."ss=".

$ss."user=".$user.$secret);

return ($signature == $valid_signature ? true : false);

}

The function ensures that parameters sent from Facebook are authentic and have not

been tampered with. If you send a request to Facebook and receive a true response, then

you know that it is genuine.Adding to the index.php file that you created in Listing 5.1,

add the following code below line 2:

include "functions.php";

include "facebook-platform/php/facebook.php";

$facebook = new Facebook(API_KEY, SECRET);

$official_user = $facebook->get_loggedin_user();

$valid_facebook_session = valid_facebook_session(

$_COOKIE[API_KEY."_expires"], $_COOKIE[API_KEY."_session_key"],

$_COOKIE[API_KEY."_ss"], $_COOKIE[API_KEY."_user"],

$_COOKIE[API_KEY], SECRET);

$unofficial_user = ($valid_facebook_session ? $_COOKIE[API_KEY."_user"] :

false);

After adding the code into index.php, you can reference the $official_user and

$unofficial_user by adding the following code within the <body> tags:

<p>Official Client User: <?php echo $official_user; ?></p>

<p>Unofficial Client User: <?php echo $unofficial_user; ?></p>

84 Chapter 5 An Overview of Facebook Platform Website Integration

Notice that both parameters will output the same identifier, but if the Facebook

cookie (which is used in the unofficial clients) is tampered with, the signature will not

match and will return false.With the client-side and server-side libraries now referenced

successfully, you can now begin to use the Facebook API to access and manipulate user

details and use the Facebook Markup Language (FBML) to display the results.

Facebook API, FQL, and XFBML
The Facebook Platform is split into four core components that comprise its REST-based

API and give developers the tools to perform Facebook actions such as creating events,

getting a list of friends, or updating a status through accessor (retrieval) and mutator (cre-

ating, updating, or deleting) methods and accessing Facebook data through the Facebook

Query Language (FQL). For consistent formatting and user experience, you can use

FBML for canvas applications and XFBML for <iframe> and Facebook Platform applica-

tions to replicate the appearance of Facebook controls (for example, displaying usernames

and profile photos, creating secure areas through privacy settings, and for hooking into

Facebook’s integration points).

A client-side version of the REST-based API is provided by Facebook JavaScript

(FBJS) for creating rich, interactive user experiences through a sandboxed JavaScript envi-

ronment. Select uses of the Facebook JavaScript appear throughout this chapter and

Chapters 6 and 7, but the majority of requests will be managed using server-side applica-

tion logic.There is currently an open source version of the Facebook JavaScript SDK in

production that is slimmer than the existing client library and will be continually updated

throughout 2010 and beyond.

Facebook Platform Developer Roadmap

Facebook has published a roadmap of future developments for developers to keep up-to-date

with changes to the Facebook Platform. Because the Platform is constantly evolving, you

should keep track of this page to ensure future applications are compatible with new ver-

sions. The two features that could not be included in this book but that are important are the

creation of an inbox for user content sharing, and invites for inviting friends to applications.

For those of you who want to dive straight into coding, the Facebook Test Console

(http://developers.facebook.com/tools/) can be used to test a number of features, such as

finding friends and publishing to the stream.The Console is a great resource to begin

exploring how the Facebook API works, which can then be extended and customized

using the server-side client library.The next two sections cover the Facebook API, FQL,

and FBML in more detail.

Facebook API and FQL

Facebook provides two ways to access user data: through FQL (Facebook’s own SQL-like

query language, which can be used to craft complex queries); or via predefined Facebook

http://developers.facebook.com/tools/

85Facebook API, FQL, and XFBML

Using the Facebook PHP client library, you can conveniently access many of the

Facebook API functions through the $facebook object. For example, to access and dis-

play a user’s friends, you can use the following within index.php:

if($official_user) {

try {

$friends = $facebook->api_client->friends_get();

foreach($friends as $friend) {

echo '<p><fb:name uid="'.$friend.'" /></p>';

}

}

catch(Exception $e) {

print_r($e);

}

} else {

echo "<p>User not logged in.</p>";

}

API methods, which are less customizable but provide a user-friendly interface to

Facebook data.With the Facebook API, you can add social context to your application by

using profile, friend, page, group, photo, and event data.The Facebook API is a REST-

based resource that sends data over the Internet using GET and POST operations though

the Facebook API REST server http://api.facebook.com/restserver.php.

Facebook Open Graph

At the f8 Developer Conference in 2010, Facebook announced a new evolution of the

Facebook Platform, the open graph. The open graph puts people at the center of the Web

with the introduction of “social plug-ins” (http://developers.facebook.com/plugins). These

plug-ins enable users to add (via one line of HTML) Facebook functionality to their websites

that are aware of users’ Facebook connection status. These include adding Like or

Recommend buttons, which can be used to show site visitors whether their friends have

liked a blog post, a photo, or a piece of music (to give just a few examples). This activity can

then be streamed via an activity feed plug-in for alerting users to their friends’ interactions.

The final plug-in that was announced enables recommendations, to highlight content based

on popular items generated by site visitors. Implementing these features will allow visitors

to take actions on your site and will become more relevant to them and their friends as they

find and share what matters most to them. Facebook also announced the Open Graph

Protocol (http://developers.facebook.com/docs/opengraph), which is Facebook’s move

toward a semantically enabled social web and the Graph API (http://developers.facebook.

com/docs/api), which simplifies the way in which developers read and write data to

Facebook. All of these changes will unfold in time, and so keeping up with the Facebook

developer resources and this book’s blog, http://www.socialprogramming.info, will help you

make the best choices for your applications.

http://www.socialprogramming.info
http://api.facebook.com/restserver.php
http://developers.facebook.com/plugins
http://developers.facebook.com/docs/opengraph
http://developers.facebook.com/docs/api
http://developers.facebook.com/docs/api

86 Chapter 5 An Overview of Facebook Platform Website Integration

Many other Facebook API methods are available and can be viewed within the

facebookapi_php5_restlib.php file contained within the Facebook PHP client library,

which also indicates their return types and optional parameters.These methods are cate-

gorized as follows:

n Administration methods

n Login/authentication methods

n Data-retrieval methods

n Publishing methods

n Mobile methods

n Dashboard API methods

n Photos API methods

n Events API methods

n Custom Tags API methods

It’s impossible to cover every one of these methods here, because they are too numer-

ous, but we will take a look at some of the most useful methods in this chapter. It is

worth checking the facebookapi_php5_restlib.php file itself to see how each method

works and what data you can expect to be returned.

Administration Methods

These methods are used to administer your applications and their users—such as using

the admin.banUsers and admin.unbanUsers to ban and unban users, admin.

getBannedUsers to get banned users, and links.getStats to get Facebook share statis-

tics for a link—and for checking allocation limits using admin.getAllocation, which

prevent applications from spamming users.Another useful method is admin.getMetrics,

which returns specific metrics for your application, such as active_users, canvas_page_

views, and api_calls.An example of this method in action is shown here:

$end_time = time();

$period = 86400;

$start_time = $end_time - $period;

$metrics = $facebook->api_client->admin_getMetrics(

$start_time, $end_time, $period, array("active_users",

"canvas_page_views"));

foreach($metrics as $metric) {

echo "Active Users: ".$metric["active_users"];

echo "Canvas Page Views: ".$metric["canvas_page_views"];

}

Because the UNIX time is being used, the $period in this instance must be set to

either 1 day (86,400 seconds), 1 week (604,800 seconds), or 30 days (2,592,000 seconds).

87Facebook API, FQL, and XFBML

The value of $end_time must not be greater than thirty days after the $start_time

parameter.This method proves particularly useful if you want to track your own applica-

tion statistics for storage automatically within an external database.

Login/Authentication Methods

You can use these methods for advanced session management, particularly for desktop

applications. For Facebook Platform for websites, the most useful methods are for session

expiration using auth.expireSession, getting a session via auth.getSession (which

returns a session key, user ID, and a session expiry time), and creating temporary sessions

with the auth.promoteSession method. In particular, you may want to call the

auth.getSession method after a user has connected and store the details within a tem-

porary encrypted session for future use. For sessions that have an expiry of zero, this

means that the user has granted offline access to his account, meaning that you can per-

form actions on his behalf irrespective of whether he has logged in to Facebook. For

users who want to completely remove your application, the auth.revokeAuthorization

method logs them out of Facebook and revokes access to their details until they authorize

your application again.The same is true of the auth.revokeExtendedPermission

method, which will remove access to a previously authorized extended permission such

as offline_access or read_stream.

Data-Retrieval Methods

You can use a number of methods to return Facebook data: from comments, friends,

groups, and notes, to accessing a user’s stream and profile information. Included in these

methods is also the ability to execute FQL, which is explored in the next section via the

fql.query and fql.multiquery methods.All of these methods are for retrieving data

and contain methods such as comments.get, friends.get, groups.get, notes.get,

status.get, and stream.get. Because many of these methods are used throughout later

chapters in this book, they are not explored in great detail in this section. However, meth-

ods such as friends.areFriends, friends.getAppUsers, users.getInfo, and

users.getStandardInfo are useful for extracting data about users and their friends.An

example of the user.getStandardInfo method is shown here:

$users = $facebook->api_client->users_getStandardInfo(

array($official_user), array("first_name", "last_name"));

echo "";

foreach($users as $user) {

echo "Name: ".$user["first_name"]." ".$user["last_name"]."";

}

echo "";

The results from this method must not be displayed to the user (that’s what users.

getInfo is for), but it can be used to gather analytics data. Other fields that can be used

include uid, name, timezone, birthday, sex, affiliations, locale, profile_url,

88 Chapter 5 An Overview of Facebook Platform Website Integration

proxied_email, current_location, and allowed_restrictions.The allowed_

restrictions field is particularly useful for restricting content based on a user’s age,

country of residence, and type of content (for example, alcohol-related content). It can be

used in conjunction with admin.setRestrictionInfo and admin.setRestrictionInfo

to set restrictions that prevent users from accessing an application if they fail to meet your

criteria. For example, if the following were set, it would restrict an application to anybody

over the age of 18 from the United Kingdom:

$info = array("age" => "18+", "location" => "UK", "type" => "alcohol");

$success = $facebook->api_client->admin_setRestrictionInfo($info);

Because the alcohol type was set, this automatically restricts access for each country’s

minimum age rather than setting them individually.The allowed_restrictions field

will return alcohol if the user is able to view the content.Another way to restrict con-

tent that does not completely prevent users from access is to use the <fb:restricted-

to> XFBML element, which can be wrapped around potentially sensitive material.

Publishing Methods

Unlike data-retrieval methods, these methods are used to create and delete Facebook data

(comments, links, notes, statuses, streams, and such). Most methods require extended per-

missions, as discussed in Chapter 7.The majority of the publishing methods are described

in Chapters 6, 7, 8, and 13, and so we do not discuss them in this section. However, the

one set of methods that may be of use are for creating and handling notes. Facebook pro-

vides three methods for working with notes, which are similar to blog posts and require

the create_note extended permission:

n notes.create

n notes.edit

n notes.delete

A note consists of a suitable title plus a string of content, which can include some

HTML elements (see http://www.facebook.com/notes_cheatsheet.php) for added visual

effect. New lines are supported by either wrapping content within two <p> tags or by

using the
 element.An example note would be created as follows:

$note_id = $facebook->api_client->notes_create("Test Note", "This is a

bold paragraph.<p>This is a normal paragraph.</p>");

If successful, a note_id will be returned, which can then be used to make edits or

delete. For retrieving notes, you can use the notes.get method, which includes an

optional note_ids parameter, which accepts an array of note identifiers that you may

have collected via the creation methods.

http://www.facebook.com/notes_cheatsheet.php

89Facebook API, FQL, and XFBML

Mobile Methods

For applications that use the Mobile platform, you can use two methods to check

whether a user has enabled Short Message Service (SMS): for an application, via

sms.canSend and for sending a message to their cell phone, sms.send.

Dashboard API Methods

A new set of integration points for both applications and games is exposed via the

Dashboard API (see Chapter 8,“Application Discovery,Tabbed Navigation, and the

Facebook JavaScript Library”). Methods in this category are used for sending users short

notifications and displaying counters related to actions generated by users and their

friends.These experimental methods were not available to test at the time of this writing,

but they were described on the Developer Roadmap.

Photos API Methods

Photos are an important component of the Facebook Platform and user experience.

Facebook provides a set of methods for creating and viewing data about albums, upload-

ing and getting photos, and for creating and reading photo tags.The best way to demon-

strate each method is by way of example.This will involve creating a new album,

uploading a photo, adding a tag, and then retrieving all of this data programmatically:

1 $album = $facebook->api_client->photos_createAlbum("Test Album",

"This is a test album.", "Everywhere", "everyone");

2 $photo = $facebook->api_client->photos_upload("photo.jpg",

$album["aid"], "This is a test photo.");

3 $tag = $facebook->api_client->photos_addTag($photo["pid"],

$official_user, null, 50.0, 50.0, null);

4 $albums = $facebook->api_client->photos_getAlbums(null, null);

5 echo "";

6 foreach($albums as $album) {

7 if($album["name"] != "Profile Pictures") {

8 echo "".$album["aid"].": ".$album["name"]."";

9 $photos = $facebook->api_client->photos_get(null, album["aid"],

null);

10 echo "";

11 foreach($photos as $photo) {

12 echo "".$photo["pid"].": ".$photo["caption"]."";

13 $tags = $facebook->api_client->photos_getTags($photo["pid"]);

14 if(is_array($tags)) {

15 echo "";

16 foreach($tags as $tag) {

17 echo "".$tag["subject"].": (".$tag["xcoord"].", ".

$tag["ycoord"].")";

90 Chapter 5 An Overview of Facebook Platform Website Integration

18 }

19 echo "";

20 }

21 }

22 echo "";

23 }

24 }

25 echo "";

An album is created on line 1, which includes setting its name, description, and loca-

tion details.The final parameter is for setting privacy permissions and can be set to one of

everyone, friends, friends-of-friends, or networks. Unless you are going to display

an advanced user interface for your users to select particular permissions, it is recom-

mended that you set this to null.The resulting $album array includes keys such aid,

owner, name, created, and a link to the album on Facebook. Once an album has been

created, you can then upload a photo to that album using the returned $album["aid"].

If you do not supply an album identifier, the photo will be uploaded to the application’s

default album, which can contain up to 1,000 photos.The first parameter should be set to

an existing image file located on your web server, which in this instance is called

photo.jpg.The $photo array will contain the newly created pid and aid and links to the

photo src, src_big, src_small, and link.All applications can upload photos.The photos

remain in a “pending” state until the user authorizes them or grants the photo_upload

extended permission.The only storable values from this method are aid, pid, and the

owner who uploaded the photo.

After a photo has been uploaded to Facebook, users can add tags to specific sections to

indicate the locations of their friends or other details.The photos.addTag method is used

to reference users and provide the horizontal and vertical coordinates of the tag. In the

preceding code, line 3 includes a reference to the authenticated user, but this could be the

Facebook identifier of any user. If this were set to null, the next parameter could contain

a string of text to identify an object in the photo.

On line 4, an array of albums is extracted, which could be restricted to a particular

user by inserting a Facebook identifier as the first parameter, or to a set of albums by sup-

plying an array of aid values as the second parameter.This array of albums is then iterated

over and the relevant photos are extracted on line 9 and associated tags for each photo on

line 13.Although the photos.getTags uses just a single pid, you could also use an array

of multiple pid values, and for the photos.get method you could set the first parameter

as a Facebook identifier or the third parameter as an array of pid values.

Events API Methods

As with photos, Facebook provides an extensive Events API for creating, editing, and can-

celing events and for inviting friends and setting RSVP status. Creating events on behalf

of a user requires the create_event extended permission. Setting RSVP status requires

rsvp_event, which is explored in Chapter 7. For now, you should visit the following

91Facebook API, FQL, and XFBML

two URLs, replacing <<API_KEY>> with your own API key, which will grant extended

permissions to your application:

n http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=

1.0&ext_perm=create_event

n http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=

1.0&ext_perm=rsvp_event

When handling events, your application will be added as an administrator for the event

and the authenticated user as the creator.Therefore, you can edit and cancel events as

required. Events created by the events.create method require the creation of an Events

object, which must be converted to JSON.The one tricky element with creating events is

that Facebook handles time data very strangely.The time is converted to UTC (coordi-

nated universal time) based on the assumption that the date already exists in Pacific time

format (Facebook server’s time), which could have major implications on your applica-

tions if they are using another time zone, such as Greenwich mean time (GMT).

However, you can counteract this by creating a function using DateTime and

DateTimeZone objects:

function prepare_time($time) {

$date_string = date("r", $time);

$datetime = new DateTime($date_string);

$facebook_time = new DateTimeZone("America/Los_Angeles");

$datetime->setTimezone($facebook_time);

$offset = $datetime->getOffset();

$offset = $offset * (-1);

$datetime->modify($offset." seconds");

return $datetime->format("U");

}

This function will take a time and then reverse the offset that is applied by Facebook

so that when it is stored it is translated to the original time.To find the original function,

go to http://forum.developers.facebook.com/viewtopic.php?pid=129685.

With this function at hand, you can then create an event using the three required

parameters (name, start_time, and end_time):

$start_time = gmmktime(22, 0, 0, 3, 25, 2010);

$start_time = prepare_time($start_time);

$end_time = gmmktime(23, 0, 0, 3, 25, 2010);

$end_time = prepare_time($end_time);

$event_info = array(

"name" => "Test Event",

"start_time" => $start_time,

"end_time" => $end_time

);

$event_info = json_encode($event_info);

$event = $facebook->api_client->events_create($event_info,

"event_logo.png");

http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=create_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=create_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=rsvp_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=rsvp_event
http://forum.developers.facebook.com/viewtopic.php?pid=129685

92 Chapter 5 An Overview of Facebook Platform Website Integration

This code creates an event whose date is March 25, 2010, with a start time of 10

p.m. and an end time of 11 p.m.An optional file parameter is also passed to the

events.create method, which must be a file saved on your web server. If successful,

the $event variable will contain a numeric Facebook event identifier.To demonstrate

the other parameters that can be set, you can use the events.edit method on the

returned $event:

$event_info = array(

"name" => "Updated Test Event",

"category" => 1,

"subcategory" => 1,

"location" => "My House",

"street" => "1 Test Lane",

"city" => "London",

"phone" => null,

"email" => null,

"page_id" => null,

"description" => "This is a test event.",

"privacy_type" => "SECRET",

"tagline" => null,

"host" => "Me"

);

$event_info = json_encode($event_info);

$updated_event = $facebook->api_client->events_edit($event, $event_info);

The additional values include an event category and subcategory (http://wiki.devel-

opers.facebook.com/index.php/Event_Categories).These are set to a “Party > Birthday

Party”, a page_id (which can be used to associate an event with a particular group or

page), and privacy_type (which can be one of OPEN, CLOSED, or SECRET, depending on

how discoverable you want your event to be).Again, an image can be supplied as the third

parameter in the call to events.edit if you want to update it. If the update was success-

ful, the $updated_event value will be set to 1.

After your event has been created and users have granted the rsvp_event extended

permission, you can set their RSVP status by using the following:

$rsvp = $facebook->api_client->events_rsvp("<<EVENT_ID>>", "unsure");

The values for status can be one of attending, unsure, or declined. Users attending

an event might want to invite their friends.This is catered for via the events.invite

method, which accepts an event identifier as its first parameter, an array of the user’s

friends’ identifiers, and an optional message to be sent along with the invitation.Another

useful method is events.getMembers, which helps you display which members have

been invited to an event and their RSVP status.You can use this if you want to provide

your own events interface and allow users to view others who are attending on your own

site. It can be used as follows:

$members = $facebook->api_client->events_getMembers("<<EVENT_ID>>");

http://wiki.developers.facebook.com/index.php/Event_Categories
http://wiki.developers.facebook.com/index.php/Event_Categories

93Facebook API, FQL, and XFBML

The $members variable will contain four array keys: attending, unsure, declined, and

not_replied.These contain arrays of user identifiers according to RSVP status. If you are

unsure about an event identifier, you can use the events.get method to extract all the

events for a specified user.You can filter this by start and end times and by RSVP status.

For example, to find the test event that was just created, you just use the following:

$events = $facebook->api_client->events_get($official_user, null,

$start_time, $end_time, "attending");

The method will return an array of events that match the query, and any or all the

parameters can be set to null to include more results.The second parameter can be an

array of event identifiers if you want to extract details from a list of known events that

have been created by your application or within Facebook. Finally, events can be canceled

by calling the following:

$facebook->api_client->events_cancel("<<EVENT_ID>>", "This event has been

cancelled by the organisers due to bad weather.");

The second parameter is a message that is sent to all users detailing why the event has

been canceled. If you do not want to provide an explanation, you can exclude this param-

eter from the method call.The Facebook API gives access to many of the events functions

which can be used within applications to create, update, and delete Facebook events.They

also enable you to set RSVP status for users and create simple ways for them to invite a

list of friends.

Custom Tags API Methods

The final set of methods can be used for registering, retrieving, and deleting custom tags.

Custom tags allow developers to extend existing FBML tags by defining their own and

optionally sharing them with others.Tags consist of FBML snippets that are rendered dur-

ing parse time and can be either private or public. Custom tags can be defined with the

fbml.registerCustomTags method and are referenced by importing them into a name-

space using the xmlns attribute of the <fb:fbml> tag. Unfortunately, at the time of this

writing, there is no way to use custom tags in Facebook Platform for website applica-

tions. So, your best option is to keep tracking the Facebook Developer Roadmap for an

alert about this addition.

An Overview of FQL

FQL can be used to perform many of the retrieval functions of the Facebook API, but it

even enables greater customization such as multiquery support. FQL queries can be made

more efficient than Facebook API counterparts because you can specify which fields you

want returned, which condenses request outputs, and allows for a standard interface for

data extraction.A number of FQL tables are available (and which you’ll be using

throughout Chapters 6 and 7).With these tables, you’ll be able to access the following:

n Application data via the application, developer, metrics, notification, and

cookies tables

94 Chapter 5 An Overview of Facebook Platform Website Integration

n Event data via the event and event_member tables

n Family and friends data via the connection, family, friend, friend_request,

standard_friend_info, friendlist, and friendlist_member tables

n Group data via the group and group_member tables

n Inbox data via the mailbox_folder, message, and thread tables

n Links data via the link and link_stat tables

n Page data via the page, page_admin, and page_fan tables

n Photo data via the album, photo, and photo_tag tables

n Privacy data via the permissions, permissions_info, and privacy tables

n Stream data via the comment, like, status, stream, and stream_filter tables

n User data via the profile, standard_user_info and user tables

n Video data via the video and video_tag tables

n Plus, other data such as notes and translations via the note and translation tables

Through these tables, you can access almost any element of Facebook data provided

that you have sufficient permissions.To get you started, here is what a typical FQL query

looks like:

$fql = "SELECT uid2 FROM friend WHERE uid1=".$official_user." LIMIT 10";

$friends_fql = $facebook->api_client->fql_query($fql);

foreach($friends_fql as $friend) {

echo '<p><fb:name uid="'.$friend["uid2"].'" /></p>';

}

This query is equivalent to the Facebook API function used in the previous section to

retrieve a user’s friends using the friends.get method, but this one has been limited to

ten friends. Note also how the user identifier is extracted using $friend["uid2"], which

maps to the fields returned by the FQL query.Table 5.1 provides some examples of the

commutability of the Facebook API and FQL queries.

The main difference is that when you are using the Facebook API methods, you must

include the <<UIDS>> and <FIELDS> parameters as an array (but these must be a comma-

separated list when using FQL).The <<FLID>> parameter exists only in the Facebook API

for specifying a friends list identifier and alongside <<UID>> must be supplied as a single

string. Data from the user information method cannot be stored but can be displayed,

whereas the standard information method may be used to store user data for internal ana-

lytics but cannot be used to display user information.

95Facebook API, FQL, and XFBML

Table 5.1 Common Relationships between Facebook API Methods and FQL

Description Facebook API FQL

Get user information users_getInfo(

<<UIDS>>,

<<FIELDS>>

)

SELECT <<FIELDS>>

FROM user

WHERE uid IN (

<<UIDS>>

)

Get a user’s friends friends_get(

<<FLID>>,

<<UID>>

)

SELECT uid2

FROM friend

WHERE uid1 =

“<<UID>>”

Get user standard

information (for example,

name, birthday, locale,

and sex)

users_getStandardInfo(

<<UIDS>>,

<<FIELDS>>

)

SELECT <<FIELDS>>

FROM

standard_user_info

WHERE uid IN (

<<UIDS>>

)

Unlike database SQL, in FQL you can supply only one table name in the FROM clause,

which is where you can use the FQL multiquery functionality. For example, suppose you

want to get some data about users who are members of a group.You’d have to perform

two queries in a row, waiting for the results of the first query before running the second

query, because the second query depends on data from the first one.With $facebook-

>api_client->fql_multiquery(), you can run both results at the same time and get all

results at once, which is more efficient than running single queries.An example follows:

$queries = array(

"group_members" => "SELECT uid, positions FROM group_member

WHERE gid='2205007948' LIMIT 5",

"members_details" => "SELECT id, name, url, pic FROM profile WHERE id IN

(SELECT uid FROM #group_members)"

);

$queries = json_encode($queries);

$data = $facebook->api_client->fql_multiquery($queries);

96 Chapter 5 An Overview of Facebook Platform Website Integration

Notice that your queries need to be JSON encoded before being passed to the multi-

query method.Assuming that a valid gid was provided, the $data variable will return the

following:

Array (

[0] => Array (

[name] => group_members

[fql_result_set] => Array (

[0] => Array ([uid] => XX [positions] =>)

[1] => Array ([uid] => YY [positions] =>)

...

)

)

[1] => Array (

[name] => members_details

[fql_result_set] => Array (

[0] => Array ([id] => XX [url] => XX [name] => XX [pic] => XX)

[1] => Array ([id] => YY [url] => YY [name] => YY [pic] => YY)

...

)

)

)

To access the results, you can use the following code:

$group_members = $data[0]["fql_result_set"];

$members_details = $data[1]["fql_result_set"];

$i = 0;

foreach($group_members as $group_member) {

echo '<fb:name uid="'.$group_member["uid"].'"></fb:name>

'.$members_details[$i]["name"].'
';

$i++;

}

The ordering of results is the same as supplied to the query, which is why

$group_members accesses the first set of data and $members_details the second. Inside

those arrays, the data is also ordered symmetrically so that the first result in one is also the

first result in the other. In the example above, this should produce two identical name

values.The multiquery functionality can prove quite useful when used in conjunction

with the FQL to get the user’s friends who are application users by using the following

base and replacing <<UID>> with the logged-in user’s Facebook identifier:

SELECT uid FROM user

WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1="<<UID>>"

) AND is_app_user

Using this base, an application can use the user’s set of friends who have also added the

application to make features more prominent to them or to help a user find those friends

97Facebook API, FQL, and XFBML

who have not added the application to invite them to do so.The results can then be

wrapped within <fb:name> or <fb:profile-pic> XFBML tags to reveal the user’s

friends’ names and profile pictures.You can also request other features via the

<fb:prompt-permission> XFBML element, such as allowing an application to send

e-mail to users, updating status, uploading and tagging photos, creating and modifying

events, and many other Facebook functionalities.These permissions can then be queried

via the $facebook->api_client->users_hasAppPermission() method to test whether

a user has granted application access before executing Facebook events.

XFBML

XFBML, the Facebook Markup Language for websites, is the Facebook equivalent of

HTML and can be used to provide social context to your applications. For example, the

<fb:name> element can be used to render a user’s name if you supply a uid parameter

such as $official_user.The full list of XFBML parameters is available from the

Facebook Developer wiki, and most are explored in Chapters 6 and 7. Here is a sample of

common XFBML elements you can use in your applications:

n fb:bookmark

The <fb:bookmark> tag renders an Add Bookmark button on your website so that

a user can add your application to a user’s profile. If the user already bookmarked

your application, the bookmark will not be shown.To adhere to Facebook’s terms

of service, you cannot force a user to bookmark your application but could high-

light the additional benefits, such as how a bookmark contributes to applications

and game dashboards, as discussed in Chapter 8.

n fb:name

The <fb:name> tag can be used to render the user’s name and requires a uid

parameter to be set. Optional parameters include firstnameonly, which can be set

to true to just display the user’s first name, linked to add a link to the user’s pro-

file, or possessive to make the user’s name possessive (for example, Mark’s).You

can use other parameters such as reflexive and ifcantsee to render a string of

text for users whose names cannot be retrieved for privacy reasons.As with the

<fb:profile-pic> tag (described next), this tag ensures that you always have the

user’s most recent name rendered by your application.

n fb:profile-pic

The <fb:profile-pic> tag renders a profile picture of the user supplied in the

required uid parameter. For Facebook Platform for websites applications, an

optional facebook-logo parameter can be set to display a Facebook logo in the

bottom corner of the user’s profile picture. Using this tag will ensure that whenever

you want to show a user’s photograph it will be his or her most current one.

98 Chapter 5 An Overview of Facebook Platform Website Integration

n fb:pronoun

For applications that want to display a he, she, or they within text the <fb:pronoun>

tag can be used.This option reduces the need to store the user’s gender in an appli-

cation to perform the same logic.

n fb:user-status

The <fb:user-status> tag can be used to show the status of the user supplied in

the uid parameter.

Unlike FBML parameters used within canvas pages, XFBML elements must use a clos-

ing tag, such as <fb:name uid="512973464"></fb:name>.All XFBML tags can contain

an optional condition attribute, which can be used to hide or show elements such as the

following:

<fb:container condition="FB.XFBML.Conditions.ifCanSee('512973464',

'profile')">

<p>This is only visible if the user can see the profile of user

512973464.</p>

</fb:container>

This could be particularly useful to adhere to privacy restrictions set by users if they

have blocked access to their details to specific users.As you can see, the extensibility of

XFBML means that you can start building applications that use Facebook data with as lit-

tle data as a user’s identifier.When used in combination with the Facebook API and FQL,

you can integrate the look and feel of Facebook within your web pages just by including

the Facebook libraries.This can also be extended by making use of the dialog and anima-

tion libraries provided by Facebook (see Chapter 8) for adding greater functionality to

your applications.

Summary
Facebook is one of the most visited sites on the Web, with millions of users coming back

each day. Since the release of the Facebook Platform on May 24, 2007, thousands of

applications have been developed.As an evolutionary step for the Facebook Platform,

you can use Facebook to integrate with your own site, desktop application,Apple iPhone

application, and beyond. Now you can leverage your existing user base and attract new

and existing users using the power of the Facebook social graph. In this chapter, you were

given an overview of the Facebook Platform.This included setting up a new application,

Test Tube, which will be used in Chapters 6 and 7.The next chapter explores authentica-

tion and application translations in more detail.

6

Registration,Authentication,
and Translations with Facebook

Chapter 5,“An Overview of Facebook Platform Website Integration,” introduced you

to the Facebook Platform as a technology that facilitates identity and friend connection

sharing with any Internet-enabled device through client-side and server-side libraries that

can be used to access many of the Facebook resources described in this chapter and in

Chapter 7,“Using Facebook for Sharing, Commenting, and Stream Publishing.”The

Facebook Platform for website integration toolset is split into two interrelated sections:

one for registration, authentication, and translations (discussed in this chapter); and one

for adding social interactions such as commenting, publishing, and for content sharing

(see Chapter7).

This chapter explores how to handle the user registration and authentication process

via Facebook.This includes handling users logging in and out of Facebook and helping

them reclaim accounts if they have deactivated their Facebook account.When users are

connected to a site through Facebook, either for the first time or as a returning user, they

may want to search for friends. Doing so is facilitated through the Facebook API client

libraries, both client and server side. Once registered via Facebook, you can begin to per-

sonalize content and publish to a user’s stream (as covered in Chapter 7).

User Authorization and Authentication
Facebook can be used as a login mechanism for users of any website or Internet-enabled

application such as a cell phone or game console. If a user registers an account using

Facebook and already has an account and profile on the third-party application, this can

be linked to the user’s Facebook account and that user can start finding his or her friends

who have already connected their accounts.Three of the main processes for handling

Facebook logins will be described in this section:

n Logging users in with Facebook for the first time, registering their details, and

when they revisit the application, detecting whether they can be logged in auto-

matically using their Facebook account

100 Chapter 6 Registration, Authentication, and Translations with Facebook

n Logging users out of the application using Facebook and handling de-registration if

they choose to disconnect their account

n Helping users reclaim their third-party application accounts if they choose to de-

activate their Facebook accounts

Both the Facebook API PHP client library and the JavaScript API provide functional-

ity to handle each of these processes, which can be integrated seamlessly into existing

code. Most of the functionality is contained within the post-authorize callback URL,

post-remove callback URL, and account reclamation URL, which were explained in

Chapter 5. In the case of the first two URLs these are “pinged” by Facebook without

redirecting the user anywhere.The account reclamation URL should be a branded page

that users visit, enabling them to create an independent, non-Facebook account.

The workflow of a Facebook authorization is shown in Figure 6.1. It shows the

exchange between your application server, the user’s web browser, and Facebook in ren-

dering login buttons and creating a session.

The workflow keeps user information secure through several means.These include

signing the user’s session with a secret key that can be verified within your applications to

ensure that the information came from Facebook and not a malicious source.The

browser mediates all communication, meaning user identifiers are kept private unless

Yes No

Send HTML Response

Including Code to

Render Facebook

Connect Button

Execute Facebook

Connect JavaScript

Retrieve, Verify

and Store User

Details

Prompt to Authorize

Application

Render Facebook

Connect Button

User Clicks Button Prompt to Log In

User Visits

Application
Retrieve User’s

Connect Status

Application Server Web Browser Facebook

Yes

Yes

No

Logged In?

Authorized

Application?

Set Facebook

Cookies and

Execute Callback

Function

Figure 6.1 Standard Facebook Platform for websites authentication workflow.

101User Authorization and Authentication

users who have accessed your application have authenticated themselves within

Facebook. Finally, during the authentication step, no information about the application is

passed to Facebook apart from your API key.

Logging In and Detecting Facebook Status

When users visit a website or application that is using Facebook, they can be in one of

three states: Connected, which means that they are logged in to Facebook and have author-

ized the application; Not Logged In, which means that they are not logged in to Facebook,

and so their Facebook status cannot be evaluated (and so need to be prompted to log in

or create a Facebook account); or they are Not Authorized, which means they have logged

in to Facebook but have not connected to the application. For most applications, the dis-

tinction between Not Logged In and Not Authorized is not important because they both

require users to log in to their Facebook account.This detection is handled using the

Facebook JavaScript library using the FB.Connect.get_status() function:

FB.Facebook.init("<?php echo API_KEY; ?>");

FB.ensureInit(function() {

FB.Connect.get_status().waitUntilReady(function(status) {

switch (status) {

case FB.ConnectState.connected:

loggedIn = true;

break;

case FB.ConnectState.appNotAuthorized:

loggedIn = false;

break;

case FB.ConnectState.userNotLoggedIn:

loggedIn = false;

}

});

});

For users who are not logged in, Facebook provides an <fb:login-button> XFBML

element that handles the process of registering users, which can be shown or hidden

depending on their connection state.The <fb:login-button> element is displayed

whether a user is logged in or not, and so its visibility should be handled programmati-

cally to prevent confusion.This could be performed server side by testing whether

$facebook->get_loggedin_user() or the FB.Connect.get_loggedInUser() function

returns a user identifier or null. If a user is logged in, you can set the autologoutlink

parameter of the <fb:login-button> element to true to show logout text instead.

For applications that do not use the XFBML element, the FB.Connect.require

Session() function can be used.This function contains three parameters for providing a

callback: for a successful session creation, for an unsuccessful session creation, and a final

102 Chapter 6 Registration, Authentication, and Translations with Facebook

parameter that must be set to true for registering a user action hint. Usage of this func-

tion could be as follows:

<a href="#" onclick="FB.Connect.requireSession(function() { alert(true); },

null, true); return false;"> Connect with Facebook

Once users are logged in using Facebook, the application can make Facebook API calls

on their behalf. If this is the first time they’ve connected to the site, their details will be

pinged to the post-authorize callback URL, which is detailed in the “Using the Post-

Authorize Callback URL” section. If they are returning users, they will be connected and

a new session created for the application.

Detecting and Handling Facebook State Changes

For sites that generate content using server-side processing, it is often simplest to refresh

the page when users connect or log out or redirect them depending on their connection

state.This is to prevent having to update all elements using client-side scripts, which may

become complex if multiple states are tested.Within the FB.init() function, three

parameters can be provided to handle state changes: reloadIfSessionStateChanged,

which can be set to true to refresh the current page; ifUserConnected, which can be set

either to a URL for redirection or to a JavaScript function to perform client-side process-

ing; and ifUserNotConnected, which can be set in the same way as ifUserConnected.

An example, which now includes a URL to the cross-domain communication channel

file xd_receiver.htm explored in Chapter 5, is as follows:

FB.init(

"<?php echo API_KEY; ?>", "xd_receiver.htm",

{

"ifUserConnected":"http://myfacebookapp.com/member.php",

"ifUserNotConnected":"http://myfacebookapp.com/register.php"

}

);

In the example above, http://myfacebookapp.com/member.php and http://

myfacebookapp.com/register.php would need to exist on your web server, and so could

be replaced by JavaScript functions such as onConnected() and onNotConnected() to

process the connection client side.A single user parameter will be passed to the

onConnected() function:

FB.init(

"<?php echo API_KEY; ?>", "xd_receiver.htm",

{

"ifUserConnected": onConnected(user),

"ifUserNotConnected":onNotConnectd()

}

);

http://myfacebookapp.com/member.php
http://myfacebookapp.com/register.php
http://myfacebookapp.com/register.php

103User Authorization and Authentication

The reloadIfSessionStateChanged parameter could also be set to refresh the page,

which promotes the use of the $facebook->get_loggedin_user() method to test for

user credentials. Listing 6.1 shows a simple skeleton Facebook implementation that

includes status change handling and uses both client-side and server-side processing.You

should save this as index.php and upload it to your web server alongside the Facebook

client files.

Listing 6.1 A Sample Facebook Page

1 <?php

2 include "config.php";

3 include "functions.php";

4 include "facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $user = $facebook->get_loggedin_user();

7 ?>

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

9 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

10 <head>

11 <title>Facebook Integration</title>

12 </head>

13 <body>

14 <fb:login-button autologoutlink="true" onlogin="connected(); return

false;"></fb:login-button>

15 <?php echo "<p>User Identifier: ".($user ? $user : "Unknown").

"</p>"; ?>

16 <p>Facebook Name: Unknown</p>

17 <p>Facebook Status: Unknown</p>

18 <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php/en_GB" type="text/javascript"></script>

19 <script type="text/javascript">

20 function connected() {

21 document.getElementById("facebook_name").innerHTML =

‘<fb:name uid="loggedinuser" useyou="false"></fb:name>’;

22 FB.XFBML.Host.parseDomTree();

23 }

24 function not_connected() {

25 document.getElementById("facebook_name").innerHTML = "Unknown";

26 }

27 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm", {

"reloadIfSessionStateChanged":true, "ifUserConnected":connected,

"ifUserNotConnected":not_connected});

28 FB.ensureInit(function() {

29 FB.Connect.get_status().waitUntilReady(function(status) {

104 Chapter 6 Registration, Authentication, and Translations with Facebook

30 switch (status) {

31 case FB.ConnectState.connected:

32 document.getElementById("connect_status").innerHTML =

"Connected";

33 break;

34 case FB.ConnectState.appNotAuthorized:

35 document.getElementById("connect_status").innerHTML =

"Not Authorized";

36 break;

37 case FB.ConnectState.userNotLoggedIn:

38 document.getElementById("connect_status").innerHTML =

"Not Logged In";

39 }

40 });

41 });

42 </script>

43 </body>

44 </html>

This sample code demonstrates how to handle a Facebook login using both client-side

and server-side code.The <fb:login-button> on line 14 uses an additional onlogin

parameter that links to the JavaScript function on lines 20 to 23.This function simply

updates the element facebook_name and includes a call on line 22 that is required to

parse and render the XFBML.The connected() function is also referenced on line 27

along with a not_connected() function that will update the facebook_name element

without having to click the login button.As the page is refreshed on status change, the

$user variable on line 6 will remain current.

Storable User Data

To adhere to Facebook Platform policies, you cannot cache any user data you receive from

Facebook for more than 24 hours. The exception to this rule is if an application is being run

on a device controlled by and possessed by the user, such as a desktop or mobile device.

However, data cannot be stored remotely and must be stored locally in the absence of a

user’s Internet connection. There are values that can be stored indefinitely, including uid,

aid, eid, email, flid, gid, page_id, pid, and post_id. You cannot store relationships

between these values, though, because these must be extracted programmatically via the

Facebook API or via FQL tables.

Facebook utilizes cookies upon a user logging in, so you can extract cookie data via

the data.getCookies method or via the cookies FQL table:

$cookie = $facebook->api_client->data_getCookies($user, null);

This method will return a multidimensional array of cookie parameters, with each

including uid, name, value, expires, and path keys. For added security, and to ensure the

105User Authorization and Authentication

cookies remain unique, each value for name is suffixed by your application’s API key. For

example, you can access the value of the session key by using $cookie[1]["<<API_

KEY>>_session_key"] as the session key is returned as the second value in the array.

Alternatively, you can supply <<API_KEY>>_session_key as the second parameter of the

data.getCookies method, replacing <<API_KEY>> with your application’s session key.

It is possible to take advantage of Facebook’s cookie mechanism by setting your own

values via the data.setCookie method.Although this might be beneficial for small-scale

data storage, you must be aware that cookies are embedded within each request.A

workaround to storing user preferences is to use the Data Store API, which is Facebook’s

scalable storage solution.

Storing User Preferences via the Data Store API

The Data Store API is a collection of specialized tables and object-oriented “distributed”

tables with associations. Storing user preferences is catered for via a set of specialized

tables and methods.The four User Preference API methods are as follows:

n data.setUserPreference for updating one preference

n data.setUserPreferences for updating multiple preferences

n data.getUserPreference for retrieving one preference

n data.getUserPreferences for retrieving all preferences

Applications can store up to 201 preferences for each user.These preferences are given

an identifier between 0 and 200.As with other Facebook API methods, these are sup-

ported by the client library.An example follows:

$preference = $facebook->api_client->data_setUserPreference(0, "male");

echo $facebook->api_client->data_getUserPreference(0);

The first parameter in the data.setUserPreference is the numeric identifier for the

preference, and the second parameter must be a string that is 128 characters or fewer.To

remove a preference, you pass an empty string or a value of 0 to the method.You can set

multiple preferences by providing an associative array as the first parameter of the

data.setUserPreferences method along with a Boolean parameter for telling

Facebook that you want to replace existing preferences or whether they should be

merged with existing preferences. For example, if a user has set the first, third, and fourth

preferences, you might want to set the second preference at a later stage.The associated

data.getUserPreferences will return an array of preferences for an optional user iden-

tifier.This means that you can extract preferences for any user as well as the current user

via these methods.

User Registration Using the Post-Authorize Callback URL

When a user first connects to an application, Facebook pings its post-authorize callback

URL, which was set in Chapter 5, via a POST operation with the following fields so that

the user’s details can be stored for future reference:

n fb_sig_added, fb_sig_authorize, and fb_sig_in_new_facebook

106 Chapter 6 Registration, Authentication, and Translations with Facebook

These three fields will always be set to 1.

n fb_sig_api_key, fb_sig_app_id, fb_sig_expires, fb_sig_session_key, and

fb_sig_ss

The fb_sig_app_id and fb_sig_api_key fields should already be available to the

host but can be used if multiple applications are maintained on a single domain to

perform customized addition on a per-application basis.The remaining parameters

can be used to perform Facebook API actions for the fb_sig_user and will remain

valid until the value of fb_sig_expires or if the user uninstalls.The session secret

(fb_sig_ss) is a session-only secret key that can be used to perform Facebook API

actions in the place of the fb_sig_session_key (and should never be revealed to

the user).

n fb_sig_cookie_sig

The signature of the cookie saved for the Facebook user.

n fb_sig_ext_perms

This will be set to auto_publish_recent_activity, which is a permission to pub-

lish entries to the user’s wall and which can be extended to publish_stream and

read_stream (described in Chapter 7).

n fb_sig_locale

This is the user’s locale—including language, which is a two-character ISO 639-1-

alpha-2 code, plus their country, which is an ISO 3166-1-alpha-2 code separated by

an underscore (_) character. For example, for a British English user, it is set to en_GB.

n fb_sig_profile_update_time and fb_sig_user

The UNIX time when the user last updated his profile and the identifier for the

user, which should be the identifier stored within the host to link accounts.

n fb_sig_time

The UNIX time in seconds when the callback was performed.

n fb_sig

The signature of the POST, which is used to validate that all fields that have been

returned from Facebook have not been tampered with maliciously.

Fields have an fb_sig prefix that can be accessed via the $facebook->fb_params array

with the prefix removed. For example, fb_sig_authorize becomes $facebook->fb_

params["authorize"].The Facebook signature, fb_sig, is not accessible via the

$facebook->fb_params array and must be accessed via $_POST["fb_sig"]. Once con-

nected, the user does not get transferred to the post-authorize callback URL, so this must

not contain any Facebook-framed processing information. Listing 6.2 shows a typical page

using the Facebook API PHP client library, which is used to verify the connect request,

which should be saved as authorize.php and uploaded to your web server alongside the

Facebook client files.

107User Authorization and Authentication

Listing 6.2 A Sample Facebook Post-Authorize Callback URL

1 <?php

2 include "config.php";

3 include "facebook-platform/php/facebook.php";

4 $facebook = new Facebook(API_KEY, SECRET);

5 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

6 try {

7 if (!empty($facebook_parameters) && $facebook->fb_params["authorize"]

== 1) {

8 // Add the user’s details to storage using $facebook->

fb_params["user"] as the identifier

9 } else {

10 // Log unsuccessful addition attempt due to incorrect parameters

11 }

12 }

13 catch (Exception $e) {

14 // Log unsuccessful addition attempt due to exception

15 }

16 ?>

The $facebook object that is created on line 4 can be used to manipulate the

Facebook API and handle all the Facebook processes.With the Facebook API initialized,

the $facebook object can be used to validate the parameters sent to the post-authorize

callback URL on line 5.This method passes in the $_POST fields and sets the field “slug,”

which in this instance is fb_sig, because all fields are prefixed with these characters,

except for the underscore (_) character, which is appended within the function itself. If

the fields are not valid, an empty array is returned; otherwise, a full set of fields is made

accessible via the $facebook_parameters variable or $facebook->fb_params.

Logging Out, Disconnecting, and Reclaiming Accounts

Logging users out of a website or application also means logging them out of Facebook,

in a process known as single sign out. The single sign out process is used because users may

log out of a third-party application but forget to log out of Facebook where their session

is still active. If you are using the <fb:login-button> element with the autologoutlink

parameter set to true, this process is automatically catered for. If this is not convenient,

Facebook provides two JavaScript functions, FB.Connect.logout() and FB.Connect.

logoutAndRedirect(), that you can place within an onclick parameter of a link or but-

ton.The former accepts a callback parameter that is executed on a successful logout, and

the latter requires a URL string that redirects users after they have been logged out. In

PHP, a logout can be performed by the $facebook->logout() method, which also

accepts a URL redirection URL.

108 Chapter 6 Registration, Authentication, and Translations with Facebook

User Disconnection Using the Post-Remove Callback URL

Disconnecting users from a website or application takes a bit more care and processing.

Users can either de-authorize applications via the Facebook Edit Applications page or this

can be achieved programmatically via the $facebook->api_client->auth_revoke

Authorization() method passing in a user identifier; otherwise, the currently logged-in

user will be selected.The method will return a 1 if successful or 0 if unsuccessful.

Setting a post-remove callback URL is important because if users want to disassociate

their Facebook account with a website or application that has stored details about them,

this removal request must be honored. If users choose to sever the link between an appli-

cation and their Facebook account, the post-remove callback URL will be pinged via a

POST operation, which will return the following fields:

n fb_sig_uninstall

This field will always be set to 1, indicating removal.

n fb_sig_added, fb_sig_api_key, fb_sig_app_id, fb_sig_in_new_facebook,

fb_sig_locale, fb_sig_time, fb_sig_user and fb_sig

These fields will be the same as those returned by the post-authorize callback URL,

except for fb_sig_added, which will be set to 0.

Listing 6.3 shows a post-remove callback URL page using the Facebook API PHP

client library, which is used to verify the disconnect request and should be populated with

code to remove a user’s details from the host. Save this code as remove.php and upload it

to your web server alongside the Facebook client files.

Listing 6.3 A Sample Facebook Post-Remove Callback URL

1 <?php

2 include "config.php";

3 include "facebook-platform/php/facebook.php";

4 $facebook = new Facebook(API_KEY, SECRET);

5 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

6 try {

7 if (!empty($facebook_parameters) && $facebook->fb_params["uninstall"]

== 1) {

8 // Remove the user’s details from storage using $facebook->

fb_params["user"] as the identifier

9 } else {

10 // Log unsuccessful removal attempt due to incorrect parameters

11 }

12 }

13 catch (Exception $e) {

14 // Log unsuccessful removal attempt due to exception

15 }

16 ?>

109Connecting and Inviting Friends

With the Facebook API initialized, the $facebook object can then be used to validate

the parameters sent to the post-remove callback URL on line 5.The remaining lines 6 to

15 are the skeleton code suggesting where to place code to remove a user’s details or to

log an exception.

Reclaiming Deactivated User Accounts

In the unlikely event that users deactivate their Facebook account, there must be ade-

quate controls in place to help them recover their profile on sites that they have already

connected to using Facebook.When users deactivate their Facebook account, they are

sent an e-mail that includes any Facebook accounts they have linked to and which have

provided an account reclamation URL in their application settings.Alongside the applica-

tion’s logo and name, they are given a URL that directs them to the site and that includes

two parameters:

n A user identifier (u) containing the Facebook ID of the user wanting to set up the

independent account on the site

n An MD5 hash (h) of the user identifier and the application’s secret, which should be

used for validating legitimate requests

These parameters can be conveniently validated using the $facebook-

>verify_account_reclamation($_GET["u"], $_GET["h"]) method, which returns a

true or false depending on the result of the validation.You could then prompt users to

create a new account and update their entry in your database using the validated user

identifier parameter.

Connecting and Inviting Friends
After users have connected their Facebook account to an application, they may also want

to recommend that their friends connect.A special connect request can be sent to friends

to encourage them to sign in via Facebook. Facebook provides this functionality via the

<fb:connect-form> XFBML element, which renders an invitation widget on a page, or

via the recommended FB.Connect.inviteConnectUsers() function, which renders the

same information but within a Facebook pop-up that allows users to select their uncon-

nected friends. Before rendering these options, an application should first test whether a

user has any friends whom to invite, which can be displayed via the <fb:unconnected-

friends-count> XFBML element or the $facebook->api_client->connect_

getUnconnectedFriendsCount() method. Note that these two features are set to be

deprecated but will be replaced by similar methods in the future.A suggested implementa-

tion follows:

if($user) {

try {

$unconnected_friends_count =

$facebook->api_client->connect_getUnconnectedFriendsCount();

echo "<p>You have <fb:unconnected-friends-count>

110 Chapter 6 Registration, Authentication, and Translations with Facebook

</fb:unconnected-friends-count>friends who have not connected

their Facebook accounts.</p>";

if($unconnected_friends_count > 0) {

echo ‘<p><a href="#" onclick="FB.Connect.inviteConnectUsers();

return false;">Invite Facebook Friends</p>’;

}

}

catch (Exception $e) {

// There was an exception

}

}

An alternative is to use <fb:connect-form> in place of the FB.Connect.invite

ConnectUsers function link, which you could do as follows:

<fb:serverfbml style="width: 350px;">

<script type="text/fbml">

<fb:connect-form action="connect_request.php"></fb:connect-form>

</script>

</fb:serverfbml>

The <fb:connect-form> must be placed within an <fb:serverfbml> XFBML ele-

ment, which renders FBML inside an <iframe> for security reasons.The optional action

parameter will be pinged with a list of invited friends via an ids[] array within a POST

operation.This can be used to track the individual invitation habits of Facebook users or

to analyze invitation conversions. Facebook intends to transition invitations to a tab in

their inbox that will display along with private messages and other updates.The inbox will

also be the place where users can send shared content to their friends rather than display-

ing it in their stream.

Facebook Friend Linking

Specific details of friend-linking capabilities were not available at the time of this writing

because Facebook was updating its deprecated $facebook->api_client->connect_

registerUsers() and $facebook->api_client->connect_unregisterUsers()

methods. You can find further information on the Facebook Developer Roadmap. As new

details emerge, code will be added to this book’s repository and to the blog at http://www.

socialprogramming.info.

As Facebook registration also requires users to enter their e-mail address.These func-

tions could be extremely useful for linking Facebook accounts with existing accounts on

your website. For example, if you have collected the e-mail addresses of users on your site,

you can register these with Facebook, which will then prompt them to link their

accounts.An example without using these friend-linking methods is demonstrated in

Chapter 13,“Integrating Twitter, Facebook Connect, and Google Friend Connect.”

http://www.socialprogramming.info
http://www.socialprogramming.info

111Translations for Facebook

Translations for Facebook
Translations for Facebook is a free tool for developers. It provides a simplified process to

translate a website or application into any of the languages currently supported by

Facebook.There are more than 65 locales available, which can be constructed by taking

the two-letter ISO 639 language code and joining it with an underscore (_) character to

a two-letter ISO 3166 country code. For example, en_US represents U.S. English. Locales

generally follow these standards, but there are two exceptions: ar_AR and es_LA, which

are “umbrella” locales for Arabic and Spanish. Developers have complete control over the

translation process, from registering text for translation to administering and accessing

translations.Translations are still a work in progress as Facebook reaches out to communi-

ties to provide additional translations for the platform.They are also looking to incorpo-

rate translations into other elements with internationalization set for stream attachments

(as described in Chapter 7,“Using Facebook Connect for Sharing, Commenting, and

Stream Publishing”).

Preparing Your Application and Registering Text

To prepare an application for translation, you must set a default locale via the Application

Settings panel, which is found on the “Basic” tab of the Application Settings page, which

then allows a developer to access the Translations Administration panel (http://www.face-

book.com/translations/), as shown in Figure 6.2.

From this Administration panel, you can enable a language for translation, which will

make text strings available to connected users.Translation progress can be reviewed by

administrators or designated language managers, and existing translations can be made

live, which makes the application appear in the Facebook Application Directory in the

new locale.

Once enabled, text that is to be translated can originate from many different sources.

Facebook automatically registers the application name, description, and the publish and

Figure 6.2 Facebook Translations Administration panel.

http://www.facebook.com/translations/
http://www.facebook.com/translations/

112 Chapter 6 Registration, Authentication, and Translations with Facebook

self-publish text alongside any text contained within <fb:intl> elements.Additional

strings such as static text contained within databases or within stream stories can be

uploaded via the $facebook->api_client->intl_uploadNativeStrings() method,

translated from within Facebook and then retrieved via the $facebook->api_

client->intl_getTranslations() or via the Translation FQL table.An example using

XFBML follows:

1 <fb:intl desc="Label displaying a location that a user has visited">

2 <fb:name uid="loggedinuser" useyou="false" firstnameonly="true">

</fb:name> has visited {location}.

3 <fb:intl-token name="location"><fb:intl desc="United States of

America">United States</fb:intl></fb:intl-token>

4 </fb:intl>

The code demonstrates how a description can be used (on line 1) that will be shown

to the users translating the string. On line 2, the <fb:name> element is included alongside

a location token, which is contained within curly parentheses ({}).This is accompanied

by an <fb:intl-token> XFBML element on line 3 containing a country name.This

arrangement means that if a different country is submitted, the whole string does not

need to be translated again.A list of country names from a database would be submitted

to Facebook via the $facebook->api_client->intl_uploadNativeStrings() method:

$locations = array(

array(

"text" => "United States",

"description" => "United States of America"

)

);

$uploaded_strings = $facebook->api_client->intl_uploadNativeStrings(

$locations);

If successful, the $uploaded_strings will contain the number of strings uploaded (1)

to Facebook, which will then be made available within the Translations Administration

panel.Another example using the <fb:intl> and <fb:intl-token> tags follows:

<fb:intl desc="Label for my favorite number.">

My favorite number is {number}

<fb:intl-token name="number">5</fb:intl-token>

</fb:intl>

If you are rendering a button or text field that uses a prepopulated value attribute, use

the <fb:tag-attribute> XFBML element:

<input type="submit">

<fb:tag-attribute name="value">

<fb:intl desc="Button: Submit Form">Submit</fb:intl>

</fb:tag-attribute>

</input>

113Translations for Facebook

Finally, if you want to translate the title of your application, use the <fb:window-

title> XFBML element within the <body> tag:

<fb:window-title>

<fb:intl desc="Page Title">Test Tube<fb:intl>

</fb:window-title>

The source code for this chapter, which is available from this book’s code repository at

http://github.com/markhawker/Social-Programming/, includes the internationalized

version of the sample application created in the previous section.

Administering and Accessing Translations

After you have registered all of your text for translation, you can guide your users to the

Translations Administration panel for your application via the following:

http://www.facebook.com/translations/index.php?translate?app=<<APP_ID>>

The <<APP_ID>> parameter should be replaced by the application identifier created in

Chapter 5.As the application creator, you can follow the progress of translations via the

Administration panel, and when you have a significant proportion of you application

translated, you can publish the translations to make them available to your users (see

Figure 6.3). Strings contained within <fb:intl> elements will be translated inline transla-

tion but could also be retrieved via FQL. For example:

SELECT best_string, native_string, translation, approval_status

FROM translation

WHERE locale="<<LOCALE>>"

AND pre_hash_string IN ("United States:::United States of America:")

Figure 6.3 Administering, viewing, and publishing

user-provided translations.

http://github.com/markhawker/Social-Programming/

114 Chapter 6 Registration, Authentication, and Translations with Facebook

The <<LOCALE>> should be replaced by the locale of the user, which can be retrieved

using the $facebook->api_client->users_getInfo() method and requesting the

locale parameter. If the result of the method was stored within a $locale parameter, it

can then be extracted by using $locale[0]["locale"]. If the locale parameter cannot

be extracted, Facebook will assume that it is en_US. Using the results from this query, you

can then decide how to present the translation back to the user. For example, if the

approval_status is set to approved, you may want to use that translation. If it is set to

unapproved, you might choose to keep the original translation.

As well as using FQL for specific translations, you can retrieve all translations using the

$facebook->api_client->intl_getTranslations("all", true) method or for a spe-

cific locale by replacing the parameters with the locale code (such as en_GB) and setting

the second parameter to false.The approval status for each translated string will be one

of auto-approved, approved, or unapproved, which will dictate whether a localized

translation is appropriate for use.When you are confident that you have translations ready,

you can append FeatureLoader.js.php with a forward slash (/) and the short code for

the locale, such as FeatureLoader.js.php/es_LA to display your application in Spanish

for a Latin American audience.

Summary
This chapter explored how the Facebook Platform can provide functionality for user

authentication and authorization as well as for inviting and connecting with friends across

websites and applications.Through the client- and server-side libraries, users can log in,

log out, and disconnect seamlessly using only their Facebook account. Facebook can also

be used to connect users with their existing Facebook friends, reducing the barrier to

entry of mapping their social graph or re-creating networks time and time again.The

next chapter describes how the Facebook Platform can be used for content-sharing,

commenting, and publishing.

7

Using Facebook for Sharing,
Commenting, and
Stream Publishing

Chapter 6,“Registration,Authentication, and Translations with Facebook Connect,”

explained how to use Facebook for user authorization and authentication, which enables

users to log in to a website or application using their Facebook credentials. Once con-

nected, it is possible to access users’ Facebook details to personalize an application to their

needs, such as providing custom content for males or females or international visitors and

interacting with their friends. For activity publishing, the Open Stream API can be used

to track user activities such as comments, likes, or shares, which can then be retrieved for

users and their friends.This creates a “virtuous cycle of sharing” whereby shared content

will be made more prominent, thus encouraging further commenting and liking.

This chapter explores how the sharing of multimedia is facilitated using Facebook,

which enables users to “push” content to Facebook, and describes how Facebook widg-

ets, such as the Like Box and Live Stream Box, provide scalable solutions for driving traf-

fic and increasing engagement using only a few lines of code.The second section of this

chapter discusses social commenting and stream publishing and how you can integrate

them into an existing website to enable users to share comments with their friends both

inside and outside of the Facebook environment.

Content-Sharing and Live Conversation
Prior to the Facebook Platform for websites, the only option for promoting third-party

content was inside Facebook through Facebook pages or groups or by directing users to

an external website and attempting to create a custom solution for providing social con-

text.Although users were able to share content such as links, photos, and videos through

social bookmarks, e-mail, and other media, there was no easy way for them to share con-

tent with their friends on Facebook.There was also no easy way for them to discuss con-

tent in real time with friends and others around the world. Facebook Share and widgets

116 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

attempt to fill this gap by providing easy-to-use services to enable streamlined content

sharing and live conversation with Facebook.

Facebook Share

Facebook Share allows you to place a button or link onto a page so that its content can

be shared on Facebook.The content can be set to appear in a user’s stream or as a mes-

sage in a friend’s inbox. Content can be a link to a page or blog article or other multime-

dia such as audio, photo, or video, which controls how the content is parsed and displayed

when returned to Facebook.You can use either the Facebook <fb:share-button>

XFBML tag or use the following code, which includes the FB.Share library:

Share

<script src="http://static.ak.fbcdn.net/connect.php/js/FB.Share"

type="text/javascript"></script>

The <a> tag contains three attributes: to initialize Facebook Share (name), to decide

how the button will be rendered (type), and the link itself (share_url). If the type and

share_url attributes are omitted, the button will default to button_count and the URL

of the page in which it is placed. Button styles will be explored later in this section, but

note that the Share text between the anchor tags can be replaced with any text, of any

language, to support internationalization of the button.As a comparison to this syntax, the

<fb:share-button> equivalent looks like this:

<fb:share-button class="url" href="http://example.com/"

type="button_count">

</fb:share-button>

<script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php/en_GB" type="text/javascript"></script>

<script type="text/javascript">

FB.init("<?php echo API_KEY; ?>");

</script>

The <fb:share-button> tag contains a class attribute, which must be set to url, a

href attribute in replace of share_url, and an equivalent type attribute. If none of these

are supplied, the button will default to the URL for the current page.Whichever method

is used to share content, the URL sent to Facebook will be in the format

http://www.facebook.com/sharer.php?u=<<url>>&t=<<title>>, where <<url>> and

<<title>> must be URL-encoded strings containing the URL of the content that is

being shared and its title (for example,

http://www.facebook.com/sharer.php?u=www.cnn.com&t=CNN).

Facebook Share can also be used to share other content, such as audio, photo, and

video, which can be passed to Facebook so that the content can be accompanied by

other meta-data, such as a link to an audio or video file or an album title and artist. Using

multimedia tags will enhance the richness of the share because content will be made

http://www.facebook.com/sharer.php?u=<<url>>&t=<<title>>
http://www.facebook.com/sharer.php?u=www.cnn.com&t=CNN

117Content-Sharing and Live Conversation

playable or viewable directly within the user’s feed (for example, aYouTube video or an

audio track).

Facebook Share and Multimedia Content

As well as links, Facebook Share enables the posting of other multimedia content to

Facebook through <link> and <meta> tags.The process of sharing means that Facebook

parses the HTML of the shared content before being published, which means that certain

tags can be used to configure its display.To provide a content preview, Facebook will

always look for the title of the page, a summary of the content, and an image.These tags

must be added within the <head> element of pages, such as the following:

<head>

<meta name="title" content="Example Page" />

<meta name="description" content="This is an example page." />

<link rel="image_src" href="http://www.example.com/image.png" />

...

</head>

These basic tags can be extended (depending on the content being shared) by setting

the medium <meta> tag and supplying one of audio, image, video, news, blog, or mult.

Additional <meta> and <link> tags for specific content are as follows:

n Audio

There are two required tags: one <meta> tag containing the audio_type, which

must be set to the content type of the audio (for example, audio/mpeg3 or

audio/wav); and a <link> to the source of the audio setting the audio_src.

Optional <meta> tags are audio_title, audio_artist, and audio_album, which

are all self-explanatory.

n Video

There are four required tags: three <meta> tags containing the video_height,

video_width, and the video_type, which must be set to the Adobe Flash content

type (application/x-shockwave-flash), which is the only supported

video_type; and a video_src <link> tag provides Facebook with the source

URL of the video, which must be registered via the Developer Help Contact Form

(http://www.facebook.com/developers/developer_help.php). Providing the

domain names that are to be used in the video_src attribute ensures that videos

will play correctly when content is shared back to Facebook.

Facebook Share tags make it convenient for users to post content back to their feed or

via messages. In the examples, the button_count type was used to format the button to

display a counter with the Facebook Share button, which is 96 pixels wide and 18 pixels

high. Other values can be supplied. For example, you can show the counter above the

button via box_count (57x57px), button (56x18px), icon (18x15px), or icon_link

(51x15px).You can find more information about this on the Facebook Developer wiki.

http://www.facebook.com/developers/developer_help.php

118 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Retrieving Shares, Likes, Comments, and Clicks Using FQL

Although counters can be displayed visually on a page, counts can also be accessed pro-

grammatically via the Facebook API.This can prove useful for extracting statistics for a

batch of URLs or for triggering events in applications once a given count has been

achieved. If you reference the link_stat table using the Facebook Query Language

(FQL), the following fields can be retrieved from Facebook: normalized_url,

share_count, like_count, comment_count, total_count, and click_count.The

click_count is the number of times users have clicked the share on Facebook and

returned back to the original source. Here is what a simple implementation extracting

statistics for two URLs (facebook.com and google.com) looks like:

<?

include "config.php";

include "facebook-platform/php/facebook.php";

$facebook = new Facebook(API_KEY, SECRET);

try {

$response = $facebook->api_client->fql_query(

‘SELECT url, normalized_url, share_count, like_count, comment_count,

total_count, click_count FROM link_stat WHERE url IN ("facebook.com",

"google.com")’);

print_r($response);

}

catch (Exception $e) { print_r($e); }

?>

The $response from the Facebook API will be a 0-based array of results, which can

then be iterated over using a foreach() loop. Note that in FQL you cannot supply an

asterisk (*) for the SELECT clause to return all fields, so these must be entered separately

into the query. Individual fields can be returned by using $response[n]["field"].

For example, $response[0]["normalized_url"] would return the normalized URL

http://www.facebook.com.When passing URLs into the WHERE clause of the FQL query,

these must be URL encoded, which can be achieved by wrapping them within the PHP

urlencode() function, which ensures that Facebook is able to parse the location. In the

code example above, this was not required because the http:// prefix was excluded for

brevity.The data returned by queries is cached for 2 minutes by Facebook and is updated

in near real time every 10 to 20 minutes based on network capacity.

Facebook Widgets

Facebook provides a number of widgets that you can use to promote Facebook content

on external websites (for example, the Like Box and Live Stream Box widgets). In com-

parison to Facebook Share, widgets can be used to “pull” users in to Facebook rather than

push content to it or do both simultaneously, as is the case with the Live Stream Box.

These widgets are highly customizable and use the Facebook Platform library to display

dynamically updated “live” information from Facebook pages.To utilize the functionality

http://www.facebook.com

119Content-Sharing and Live Conversation

of widgets, you must have access to a Facebook page and administrator privileges. So, this

option might not be appropriate in all situations if you are not an administrator (although

it is recommended that one is created to supplement the website of an organization,

product, or service).

For users’ personal profiles, Facebook widgets can also be used to embed a profile

badge or photo badge on their web pages, or for sharing their favorite pages via the page

badge.These badges are generated dynamically by Facebook and involve adding a chunk

of HTML to a web page.

Like Box

Like boxes allow users to become a fan (using the old Facebook terminology which is

now being transitioned to mean “those who like a page”) of a Facebook page, see how

many users are also fans and whether their friends are fans, and to view its activity stream

on an external site without having to visit Facebook.A like box can be created using the

Like Box Wizard or the <fb:fan> XFBML tag.The following example also includes the

Facebook Platform library for completeness, which must be omitted if it has already been

initialized when using Facebook Share:

<fb:fan profile_id="XXXXXXXXXXX" stream="1" connections="10"

width="300"></fb:fan>

<script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php/en_GB" type="text/javascript"></script>

<script type="text/javascript">

FB.init("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

</script>

In the example, the profile_id must be replaced by the Facebook page identifier.You

can find this by moving your cursor over its profile photo and extracting the id parame-

ter of the URL.Alternatively, the name parameter can be supplied in replace of

profile_id if a Facebook page has been secured.The stream parameter indicates

whether the page’s activity stream is to be included, the connections parameter is the

number of fans who should be displayed (and can range from 0 to 100), and width is used

to control the width of the like box.There are also two optional parameters: a height

parameter that you can use to control the height of the like box (which is 554 pixels high

if all features are included and only 64 pixels high if only the “Like” button is shown), and

a css parameter for setting an external style sheet.

Live Stream Box

The Live Stream Box widget allows users to share activity and comments around an event

in real time.As compared to the Comments Box widget, which is explored in the next

section, the Live Stream Box widget works best in situations where events are occurring

in real time and supports millions of simultaneous users. Users can see comments from

their friends as well as others viewing the live stream, which can also be posted back to

120 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Facebook (including a URL link back to the referring website).You can add a Live

Stream Box widget by using the <fb:live-stream> XFBML tag, as follows:

<fb:live-stream event_app_id="<?php echo APP_ID; ?>" xid="default"

width="300" height="500"></fb:live-stream>

To identify the live stream box, either the event_app_id (the application ID that can

be found for your application in the Facebook Developers section of the site) or an

apikey parameter must be supplied. If multiple live stream boxes exist on the same web-

site, the optional xid parameter must be used to help separate the updates and is set to

default if not supplied. Unlike a comments box, updates from a live stream box cannot

be accessed programmatically via the Facebook API.

Social Commenting and Stream Publishing
Facebook widgets are a great way of engaging users and driving traffic to a website, but

two additional functionalities can be exploited using the Facebook Platform library: the

comments box and stream publishing. Social comments can increase the authenticity and

quality of conversation on websites and can increase traffic through the power of the

social graph, where users discover new content on Facebook through friends’ comments.

It is reported that websites that have implemented comments with Facebook Platform

integration have seen as much as a 15% to 20% increase in users who register to com-

ment, and even more in total comment activity.

Comments Box

You can use the Comments Box widget to allow users to comment on content from

within a website or application. Users have the option of sharing the comment on

Facebook, with the comment appearing both on their wall and in their friends’ streams.

This is a great way to have your users engage in an asynchronous way, whether for a

blog, news site, or review application.As with the other Facebook widgets, a comments

box can be created through a single <fb:comments> XFBML tag that can be customized

to suit the particular application.The simplest version of the comments box is using the

tag itself, <fb:comments></fb:comments>, but the following parameters are available for

customization:

n css, numposts, width, simple, and reverse

These parameters are used to control the aesthetics of a comments box: css for

providing an external style sheet; numposts for controlling the number of displayed

posts (if set to 0, all comments will be hidden, which allows for comment modera-

tion); width for controlling the width of the comments box (and which must

include px at the end of the value [for example, 600px]); simple, which can be set

to true to prevent each comment being enclosed within a rounded box; and

reverse for ordering the comments so that the most recent one appears at the

bottom of the list when set to true.

121Social Commenting and Stream Publishing

Figure 7.1 Sample rendering of a comments

box with inline administration.

n quiet, title, and url

These parameters are used when posting comments back to Facebook and default

to the title of the current web page and its URL.The quiet parameter can be set

to true so that comments don’t send any notifications to Facebook.

n xid

A unique identifier for the comments box if multiple instances exist on the website

and can contain alphanumeric characters plus any that are created by the

urlencode() function; for example, hyphens (-) or percentages (%).

For administrators, comments can be moderated by clicking the “Administrate

Comments” link inline on the comments box (see Figure 7.1).This link gives the option

of adding new administrators and moderators as well as enabling settings for global and

local comments boxes (such as whitelist and blacklist modes and allowing anonymous

comments). Comments that have been entered can also be deleted from here, or this can

be done programmatically (as explained in the following section).

One feature is unique to the Facebook Platform: the ability to “listen” for comment

submissions via the JavaScript library.You can use the following code within applications

that want to trigger an external event upon adding and deleting a comment. It must be

placed within the <script> tag with the FB.init() method:

1 FB_RequireFeatures(["Comments"],

2 function() {

3 FB.CommentClient.add_onComment(

4 function(comment) {

5 alert("ID: " + comment.user + " Comment Added: " + comment.post);

6 }

7);

8 }

9);

122 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

On line 1, the JavaScript API ensures that the comments feature is loaded, and then the

callback function is executed on lines 2 to 8.The function adds a comment listener on

line 4 that includes a function to display an alert() that accepts a comment object con-

taining user and post values, which hold the unique Facebook identifier for the user and

the comment text. Extracting the callback on lines 4 to 6 and instead referencing it by

name would mean that the FB.CommentClient.remove_onComment() method could also

be used to deregister the function.This functionality could be used in conjunction with

the detection of whether a user is logged in or out of Facebook (as discussed in Chapter

6) so that functionality can be tailored to non-Facebook users.

Retrieving Comments Using FQL and the Facebook API

As with Facebook Share, comments on Facebook can be accessed programmatically using

the Facebook API and FQL. Comments can be retrieved in two ways, both of which have

equivalent responses. However, unlike Facebook Share, the Facebook API provides a

comments_get() method that accepts an xid (the unique identifier of the comments box)

as its only parameter. Calls to this method will execute the equivalent FQL statement:

SELECT xid, object_id, post_id, fromid, time, text, id, username,

reply_xid

FROM comment

WHERE xid = "<<xid>>"

If you are using this Facebook API method, only a single xid can be requested at a

time. If the fql_query() method is used, however, multiple xid parameters can be sup-

plied in the same call.The object_id, post_id, username, and reply_xid parameters

will return null values because the comment FQL table is also used for returning com-

ments on videos, notes, photos, and other Facebook objects as well as some stream com-

ments. Other returned values include a fromid, which is the identifier of the commenter;

time, which returns a UNIX time stamp of when the comment was posted; and id,

which is the unique identifier for the comment and local to the xid.To add further social

context to comments, the friends_getAppUsers() can be called.This retrieves a list of

the user’s friends who have also connected to the calling application.The list can be

passed alongside the xid inside the WHERE clause as a list of fromid values.

Adding and Removing Comments Using the Facebook API

As well as retrieving comments, the Facebook API provides functionality for adding and

removing comments via the Comments API.You can use the Comments API to integrate

an existing comments system with Facebook if the functionality of the comments box is

too restrictive (for example, if comments need to be sent in a particular format or exter-

nal validation checks are required on the inputs).The comments_add() method can be

used to optionally publish comments to the user’s stream (as described in the next sec-

tion) if it has been granted by the user and contains the following parameters:

123Social Commenting and Stream Publishing

n publish_to_stream, title, and url

These optional parameters can be used to publish a comment to the user’s stream.

The publish_to_stream parameter will default to false if the user has not

granted extended permissions to the calling application.This functionality will be

discussed in the following section on stream publishing.

n text, uid, and xid

There are two required parameters, xid and text (which must be URL encoded)

and an optional uid parameter that defaults to the identifier of the logged-in user.

This parameter can also be accessed by using $facebook->get_loggedin_user(),

which will return null if the user is not logged in. In this instance, the user can be

prompted to log in using Facebook.

When you are using the Facebook API PHP client library, there is no need to pass in

the extra session_key parameter to this method, although this is required for the desk-

top and JavaScript client library applications.

Facebook Developer Principles and Policies

When using the Comments API to add or remove comments, users should be made aware

explicitly of their actions. For example, an application should not post to their stream without

their prior knowledge or use any functionality that may deceive them into adding comments

inadvertently. A simple “Also Post Comment to Facebook” check box should satisfy this plat-

form policy.

If successful, the comments_add() method returns a comment_id that can be stored by

the calling application, because this is a required parameter for the comments_remove()

method.The comments_remove() method also requires an xid parameter and the

optional session_key parameter. Remember that users can delete their own comments

either on Facebook or in the comments box itself.Therefore, this method may return an

error if unsuccessful or will return true if the comment has been deleted.The three

Comments API methods for retrieving, adding, and deleting comments show that aside

from the simple installation of the comments box, the Facebook Platform provides greater

functionality for administering comments without using the standard tools.

Open Stream API

An accompaniment to the comments box is provided by the Open Stream API.This API

allows users to post content, add comments, and create content “likes” (on their profile or

on the wall of a Facebook page, group, or event). Not only can the Open Stream API be

used to stream content to Facebook (such as that which is provided by Facebook Share or

to update their status), but it can also be used to retrieve content, comments, and likes

from the user’s stream. Using the Open Stream API requires special permissions to be

granted by the user in the form of the publish_stream and read_stream permissions.

124 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Setting these permissions enables applications to publish and read to the user’s stream

automatically without prompting again unless the user chooses to revoke permissions via

his Settings page. Facebook provides the FB.Connect.showPermissionDialog() method

for streamlining this authorization process, which can be utilized as follows:

function get_permissions(names) {

FB_RequireFeatures(["Connect"],

function() {

FB.Connect.showPermissionDialog(names,

function(response) { alert(response); }, true, null);

}

);

}

get_permissions("publish_stream,read_stream");

The get_permissions() function can be used to show the Permissions dialog box and

could be used within a function for writing to or reading from the stream.This is dis-

cussed in the next section. On success, the callback function returns a string with a

comma-separated list of the permissions that the user has granted. On failure, or if the user

cancels the Permissions dialog, a null value is returned.Two optional parameters were also

supplied to the method:The first is for displaying a drop-down menu so that the user can

select pages that they administer and also want the application to write to its stream; and

the second parameter can be an array of page or user identifiers to be shown in the drop-

down menu. For example, if a user administers two pages, 12345 and 67890, the method

call is as follows:

FB.Connect.showPermissionDialog("publish_stream", <<callback>>, true,

[12345,67890]);

A list of all the pages where the user is an administrator can be retrieved using the

following FQL:

SELECT uid, page_id, type

FROM page_admin

WHERE uid = "<uid>"

As good practice, the Extended Permissions dialog should be shown the first time the

user chooses to publish content from an application rather than the first time it is visited,

which is why it has been placed within the get_permissions() function. It is also possi-

ble to access whether a user has already granted publish_stream and read_stream per-

missions by using FQL:

SELECT uid, publish_stream, read_stream

FROM permissions

WHERE uid = "<uid>"

The result of this FQL query will return a 0 if the user has not granted extended

permissions or a 1 if the user has granted permissions. If you are using the get_

permissions() function, this will always return the permissions that have been granted.

125Social Commenting and Stream Publishing

So, if publish_stream has been allowed, this will always be returned to the callback.

Remember that the uid parameter can also be that of a page, and so it can be combined

with the FQL for identifying the pages that a user administrates.

Writing Data to the Stream

There are two related processes for writing data to a stream depending on the required

workflow of the calling application: via feed forms, which work in a similar way to

Facebook Share, where users are first prompted to confirm the content before posting to

the stream; or via direct publishing, which requires extended permissions so that content

can be streamed directly to Facebook. Generally, it’s better to use feed forms rather than

direct publishing because feed forms provide users with the most control over what gets

posted to their profiles. If using direct publishing, it must be made clear to users that they

are publishing to Facebook, and they should always be given the option to opt out of this

feature. Both processes use the FB.Connect.streamPublish() or stream_publish()

methods, but their functionality depends on which parameters are supplied to them.

Working with Stream Attachments and Action Links

Stream attachments work in a similar way to the meta elements used by Facebook Share

in that they give the opportunity to expand on the post by describing what the user did

in an application (for instance, sharing a blog post to the stream alongside an image, link,

and textual description). Stream attachments are optional, and if one is not supplied the

stream function will just update a user’s status message. Stream attachments must be

JSON-encoded strings and can contain any of the following optional elements:

n name, href, and description

The name, href, and description are used to provide further details about the

story and should be as concise as possible so that they are displayed correctly to the

user.The caption parameter is a subtitle and should describe the action that the

user has taken and can contain the {*actor*} token, which gets replaced by a link

to the profile of the session user.An example caption parameter is {*actor*} just

posted a new high score!.All these parameters must contain plain text and href

should be no longer than 1,024 characters.

n properties and comments_xid

The properties parameter can be used to pass in an array of key/value pairs which

are shown to the user and are stored by Facebook.These could be used to store data

such as high scores for games or ratings for book reviews.To store values that are

not shown to the user you would pass in a key/value pair within the method, such

as longitude and latitude values for location-based applications.The comments_

xid is an application-specific identifier for the comment and can be used to retrieve

comments and likes for that comment and for associating it with a comments box.

n media

The media parameter enables rich media to be associated with the stream post and

can be of the type image, flash, or mp3. Only one of these types will be displayed

126 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

within the stream story, although an array can be supplied, such as for sending mul-

tiple photos that can be viewed by clicking a “See More” link that gets appended to

the story. Unfortunately, the parameters for each type are not the same as with

Facebook Share.

Here are three variations of stream attachments shown as PHP arrays and which can be

JSON encoded using the json_encode() function:

$example_1 = array(

"name" => "Facebook",

"href" => "http://www.facebook.com/",

"description" => "Facebook Home Page",

"media" => array(

array(

"type" => "image",

"src" => "http://static.ak.facebook.com/images/wiki_logo.png",

"href" => "http://www.facebook.com/"

)

)

);

In this example, the user is publishing the Facebook home page to his stream alongside

a Facebook logo that directs them to the home page when clicked.The next example

demonstrates how the flash type can be used within applications:

$example_2 = array(

"name" => "Facebook Song",

"href" => "http://www.youtube.com/watch?v=rSnXE2791yg",

"description" => "Rhett and Link’s Facebook Song",

"media" => array(

array(

"type" => "flash",

"swfsrc" => "http://www.youtube.com/v/rSnXE2791yg&hl=en&fs=1",

"imgsrc" => "http://i3.ytimg.com/i/bochVIwBCzJb9I2lLGXGjQ/1.jpg",

"width" => 100,

"height" => 30,

"expanded_width" => 320,

"expanded_height" => 260

)

)

);

In this example, the user can share a YouTube video, which will be playable within

their stream.The user can also share an audio file by using the mp3 type, which will be

rendered using Facebook’s MP3 Player widget. (Note that in the third example the src

parameter is not set.)

$example_3 = array(

"name" => "Flight of the Bumble Bee",

127Social Commenting and Stream Publishing

"href" => "http://www.last.fm/music/Maksim+Mrvica/_/ The+Flight+of+the+Bumble-Bee",

"description" => "Flight of the Bumble Bee performed by Maksim Mrvica",

"media" => array(

array(

"type" => "mp3",

"src" => "XXXXXX",

"title" => "Flight of the Bumble Bee",

"artist" => ‘Maksim Mrvica",

"album" => "The Piano Player"

)

)

);

As shown by the examples, stream attachments are highly extensible and can be used

in multiple ways depending on your needs.They can also be combined with an action

link, which is a short string of text that accompanies a stream story and invites the user to

take some action related to that story.An example of an action link for an MP3 could be

to purchase it via an online store. Like with stream attachments, an action link should be

a JSON-encoded string containing two parameters, text and href, which could be as

follows:

[{"text":"Buy Song", "href":"<<URL>>"}]

Stream attachments and action links are only a small part of the wider scope of pub-

lishing and need to be placed in context to be useful.You can see other examples in “The

Publisher” section. (The Publisher is used to update a user’s status from within Facebook).

Feed Forms and Direct Publishing

Publishing to the stream is achieved through either the FB.Connect.streamPublish() or

stream_publish() methods, depending on whether the application wants to use client-

or server-side scripting. Both methods contain similar, but not identical, parameters for

publishing to the stream after a user has granted extended permissions to the publish_

stream functionality.The following optional parameters are shared by both publish

methods:

n action_links and attachment

As detailed above, rich content can be added to a user’s stream via the

attachment and action_links, which allows media such as images and video

to be added to posts.

n target_id

By default, content is published to the logged-in user’s stream. By supplying a

target_id, however, it can be pushed to a page, group, or event or to a friend’s wall

instead if a valid identifier is provided.This mimics the action of posting on a

friend’s wall on Facebook.

When you are using the stream_publish() server-side method, a message parameter

should be supplied containing the short update that will be posted alongside any content

128 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

such as stream attachments or action links. Because this is a direct publishing method, this

can be automated if users have granted an application access to post directly to their

stream.As an example from the stream attachments, a call to this method may look like

the following:

$message = "Check out this great song!";

$attachment = $example_3;

$action_links = ‘’;

$target_id = null;

$uid = null;

$response = $facebook->api_client->stream_publish($message, $attachment,
$action_links, $target_id, $uid);

print_r($response);

Upon success, the $response parameter will contain a post_id to the published post

or will return an error if unsuccessful.As with the Comments API methods, an optional

session key or session secret can be supplied to this method, and that is used alongside the

uid parameter for posting content on behalf of another user or page. If the user is an

administrator of a page and this is supplied in both the target_id and uid parameters, the

post will appear as if published by the page itself and not the user.

Removing Stream Posts Programmatically

Removing stream posts is achieved through the stream_remove() method, which requires

a post_id parameter and an optional session_key and uid. Posts can be removed only

by the application that created them, and therefore it is good practice to save post_id val-

ues stored when publishing to the stream. The method returns true if the post was

removed or false and an error code if the post could not be removed.

Feed forms can be activated by setting the auto_publish parameter of the

FB.Connect.streamPublish() method to false, which prompts the user to add or ver-

ify the user_message as advised by the user_message_prompt parameters. Feed forms

can be displayed even if the user has not granted extended permissions to the calling

application.A callback parameter can be supplied to the method, and this will return

post_id, exception and data.user_message values back to the application for further

processing.The method uses an actor_id in place of the uid parameter of

stream_publish(). Listing 7.1 gives a suggested implementation of a

get_write_permission() function.

Listing 7.1 get_write_permission() Method

1 function get_write_permission() {

2 FB_RequireFeatures(["Connect"],

3 function() {

4 FB.Connect.showPermissionDialog("publish_stream", publish_to_stream,

false, null);

5 }

129Social Commenting and Stream Publishing

6);

7 }

8 function publish_to_stream(response) {

9 if(response == "publish_stream") {

10 FB_RequireFeatures(["Connect"],

11 function() {

12 user_message = "This is a test.";

13 attachment = action_links = target_id = actor_id = null;

14 user_message_prompt = "What’s on your mind?";

15 auto_publish = false;

16 FB.Connect.streamPublish(user_message, attachment, action_links,

target_id, user_message_prompt, function(post_id, exception, data)

{ alert(post_id + ", " + exception + ", " + data.user_message); },

auto_publish, actor_id);

17 }

18);

19 } else {

20 alert("Extended Permissions Denied");

21 }

22 }

Lines 1 to 7 define the get_write_permission() function, which will check that the

publish_stream permission has been accepted and then execute the callback function

publish_to_stream().The publish_to_stream() function exists on lines 8 to 22 and

first checks that a valid publish_stream response has been received and if null will

create an alert box on line 20.A post is then created, and then the FB.Connect.

streamPublish() method is called on line 16, passing in all the defined parameters.A

simple alert box is used as a callback to display the response of the request. Functionality

can be tested by adding an onclick="get_write_permission();" attribute to any

HTML link or button.This basic skeleton code can be used to increase complexity such

as adding stream attachments or posting to a friend’s wall.

Adding and Removing Comments and Likes

As well as posting content to the stream, it is possible for users to both comment and like

a post, which can be achieved using the stream_addComment() and stream_addLike()

methods. Both methods require a post_id as an identifier, and the stream_addComment()

method also requires a comment parameter containing the user’s comment. If successful,

the stream_addComment() method will return a comment_id, whereas the

stream_addLike() method will return a true value. Both methods will return false and

an error code if unsuccessful. Comments and likes can be removed via the

stream_removeComment() and stream_removeLike() methods, which require a

comment_id or post_id parameter, respectively.

130 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Reading Data from the Stream

Facebook enables you to read users’ streams, including content from both their news feed

and wall. Reading the stream retrieves all the content of a user’s stream, including posts,

comments, and likes from the user and their friends (regardless of privacy settings of the

posts).Two Facebook API methods that can also be accessed using FQL exist for retriev-

ing posts and comments:

n stream_get()

By default, calls to the stream_get() method will return the last 50 posts associated

with the logged-in user from the past 180 days.This can be restricted in numerous

ways such as supplying source_ids, start_time, end_time, or limit parameters

but can also contain a filter_key.A list of filter_key values can be extracted by

querying the stream_filter FQL table, but it is useful to note that an application-

level filter exists in the form app_XXXXXXXXXXX, where XXXXXXXXXXX is an applica-

tion identifier.Applying filters will restrict results to the past 9 days.

n stream_getComments()

This method works in an identical way to the comments_get() method of the

Comments API, but instead indexes the FQL query by post_id rather than xid.

Original posts must have been created by the calling application; otherwise, they

will not be retrieved and a successful call will return an array of comments, each

containing the fields from the comment table.

Both of these methods require the read_stream extended permission, so this must be

first tested for in the same way as the publish_stream permission before requesting the

stream or comments.An example call follows:

$viewer_id = $source_ids = $start_time = $end_time = $filter_key = null;

$limit = 5;

$metadata = ‘’;

$response = $facebook->api_client->stream_get($viewer_id, $source_ids,

$start_time, $end_time, $limit, $filter_key, $metadata);

print_r($response);

A successful $response will return an array of posts in reverse chronological order,

which can be iterated over to extract all of their values.Values include additional property

and metadata that was set using stream attachments, profile data for retrieving thumbnails

and URLs, plus access to likes and comment data.To retrieve additional data associated

with albums, profiles, and photo tags, you can set the $metadata parameter to a JSON-

encoded array that includes albums, profiles, and photo_tags.An alternative is to use

activity streams, which are Atom-based syndications of user feeds and which can be

accessed via the following URL:

http://www.facebook.com/activitystreams/feed.php?source_id=<<uid>>

&app_id=<<app_id>>&session_key=<<session_key>>&sig=<<checksum>>&v=0.7&read

&updated_time=<<time>>

131Social Commenting and Stream Publishing

The <<uid>> must set the user identifier that is to be retrieved, <<app_id>> is the

application identifier, <<session_key>> must be a valid session key or session secret for

the user, and the <<checksum>> is used to verify that the request was sent from a valid

application.This parameter is computed by performing the md5() function on the combi-

nation of an <<app_id>>, <<session_key>>, and <<uid>> appended with the applica-

tion’s secret. For example, if the user identifier is 12345, application identifier is 67890, the

session key is ABCDE, and the application secret is ZYXWV, the <<checksum>> is as follows:

app_id=67890session_key=ABCDEsource_id=12345ZYXWV

This would result in a value of 47fdd4fe6cc4f19f58f1485c33749a9b that should be

passed as the <<checksum>>.The <<time>> parameter is an optional UNIX time stamp

indicating that results should be returned only for posts after this time.The functionality

of activity streams might not suit all applications and so has not been covered in great

detail, although it could be used if you want to subscribe to activity within a news reader.

All of these Open Stream API methods can be used to make rich applications that

users and their friends can interact with both inside and outside of the Facebook environ-

ment.As you can see, some overlap exists between the Open Stream API and other serv-

ices, such as the Comments API and Facebook widgets, that you can use to hide some of

the complexities of stream publishing for people who are not developers.The extensibility

of the methods provided by the Facebook API PHP client library and JavaScript client

library reduce the barriers to entry in creating rich device-independent applications,

whether client or server side.

The Publisher

The Publisher is the primary feature for users to post information and messages on their

own wall or on their friends’ walls. Applications can create their own Publisher interface,

which enables users to post rich content to profiles and which will appear in their stream.

Applications are sorted with default applications first such as for photos, videos, and

events, and then by how recently the application was used by the user. The Publisher inter-

face looks similar to users when viewing their own profile as when viewing a friend’s profile,

but its content may differ if supported by an application. For example, the Photos application

allows users to post a photo to a friend’s profile, but allows them to create an album on

their own profile. An application’s Publisher interface can be accessed by using

http://www.facebook.com/?pub=<<app_id>> and replacing the <<app_id>> parameter

with a valid application identifier.

A Publisher can contain custom HTML, CSS, and FBJS for interactive content that is

handled by a callback URL. Once a user authorizes an application, its Publisher interface

will be shown to that user.Two registration options are available to developers when set-

ting up a Publisher within the “Profiles” tab of an application’s settings:

n For publishing content to a user’s own profile, a developer can set the self-publish

text and self-publish callback URL.

http://www.facebook.com/?pub=<<app_id>>

132 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

n For publishing content to a user’s friend’s profile, a developer can set the publish

text and publish callback URL.

The Text fields determine the label that is shown to the user (for instance,“Add

Photo” or “Update Status”), and an application can set one or both of the callback URLs.

A Publisher can be in one of two states: for rendering the Publisher interface, and for

posting content to the user’s stream.The states can be differentiated by the method value,

which is sent as a POST parameter.A skeleton Publisher for displaying on a user’s profile

would be coded in the following way:

1 <?php

2 function render_publisher_css() {

3 return ‘<style type="text/css">#self_publish_frame { padding: 10px;

}</style>’;

4 }

5 function render_publisher_js() {

6 return ‘<script type="text/javascript">function enable_publish() {

Facebook.setPublishStatus(true); }</script>’;

7 }

These two utility functions generate the CSS and JavaScript for the Publisher interface

which must be embedded within the FBML and cannot be references to external files.

The JavaScript contains a function to enable the Share button of the Publisher interface,

which is disabled by default.This technique proves useful if users are required to input

data before publishing to their stream:

8 function error_and_exit($error_title, $error_message) {

9 $data = array(

"errorCode" => 1,

"errorTitle" => $error_title,

"errorMessage" => $error_message

);

10 echo json_encode($data);

11 exit;

12 }

If an error occurs in the Publisher, it is appropriate to provide a function that will

return an error code and message back to Facebook. Currently, the only supported error

code is 1, which is then returned with a title and message as a JSON-encoded string.

Further processing is then halted via the exit command. In addition, a developer may

want to log the error along with the user who interacted with the Publisher, which is

contained within the $_POST["fb_sig_user"] parameter, or if they were interacting

with a friend’s profile, via the $_POST["fb_sig_profile_user"] parameter:

13 if ($_POST["method"] == "publisher_getInterface") {

14 $fbml = render_publisher_css();

15 $fbml .= render_publisher_js();

16 $fbml .= ‘<div id="self_publish_frame">’;

133Social Commenting and Stream Publishing

17 $fbml .= " <form>";

18 $fbml .= ‘ <label for="mood">How are you feeling today?</label>

’;

19 $fbml .= ‘ <select name="mood" onclick="enable_publish();

return false;">’;

20 $fbml .= " <option value="undecided">Undecided</option>";

21 $fbml .= " <option value="happy">Happy</option>";

22 $fbml .= " <option value="sad">Sad</option>";

23 $fbml .= " </select>";

24 $fbml .= " </form>";

25 $fbml .= "</div>";

26 $content = array(

"fbml" => $fbml,

"publishEnabled" => false,

"commentEnabled" => true

);

27 }

This is where the Publisher interface is constructed and contains references to the CSS

and JavaScript functions on lines 14 and 15.This simple Publisher will post a “mood” to

the user’s profile which uses a drop-down menu with three options. On line 19, the

enable_publish() function that enables the Share button is called.The content of the

interface is packaged into an array on line 26 containing the FBML for the interface

alongside settings for whether the publish facility and comments are enabled by default.

The enable_publish() function sets the value of the publishEnabled parameter to

true when executed:

28 else if ($_POST["method"] == "publisher_getFeedStory") {

29 $attachment = array(

"name" => "I’ve just updated my mood.",

"href" => "http://www.example.com/",

"caption" => "Today, {*actor*} is feeling ".

$_POST["app_params"]["mood"].".",

"properties" => array(

"mood" => $_POST["app_params"]["mood"]

)

);

30 $content = array("attachment" => $attachment);

31 }

When users select and publish their mood, this branch of code is executed. It contains

any submitted parameters within an $_POST["app_params"] array. For this Publisher, this

is determined by the mood drop-down box on line 19. For users who also submit a com-

ment with their update, this is packaged within the $_POST["comment_text"] parameter.

In this example, the content is then packaged within a stream attachment because these

can also contain rich media such as images or video. From here, you might want to store

134 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Figure 7.2 Final rendering of the Update

Mood self-publisher.

Figure 7.3 Final rendering of the Update

Mood self-publisher within the stream.

interactions using the $_POST["fb_sig_user"] and $_POST["fb_sig_profile_user"]

parameters or perform other Facebook actions using the

$_POST["fb_sig_session_key"], $_POST["fb_sig_expires"] and

$_POST["fb_sig_ss"] parameters if a user has authorized the application:

32 else {

33 error_and_exit("Method Error", "Unknown method passed.");

34 }

If the method isn’t set to publisher_getInterface or publisher_getFeedStory, the

error function will be called.

35 $data = array("method" => $_POST["method"], "content" => $content);

36 echo json_encode($data);

37 ?>

The content is wrapped inside another array that is then JSON-encoded and posted to

Facebook. Figure 7.2 shows how the Publisher would be rendered within a user’s profile

on Facebook, and Figure 7.3 shows the same within his stream.

The code provides an example of what a self-publish callback URL may look like, but

the code could also be used for a regular publish callback URL. However, the attachment

on line 29 and any other processing would have to be modified to be made suitable for a

friend interaction.

135Summary

Summary
This chapter explored how the sharing of multimedia is facilitated using the Facebook

Platform through Facebook widgets such as the Like Box and Live Stream Box and how

you can use social commenting and feed publishing to enable users to share updates and

feedback with their friends both inside and outside of the Facebook environment.The

Open Stream API can be an incredibly powerful tool for integrating threaded conversa-

tions into websites and Facebook through a multitude of methods for publishing content

and enabling comments and likes.

This page intentionally left blank

8

Application Discovery,Tabbed
Navigation, and the Facebook

JavaScript Library

Facebook can be used as a mechanism for sharing content, commenting, and stream

publishing, as you learned in Chapter 7,“Using Facebook Connect for Sharing,

Commenting, and Stream Publishing.” However, the Facebook environment contains

three other ways in which users and their friends can interact: application dashboards,

which focus on the discovery and reengagement of games and applications; counters, for

alerting users that they need to take action on an application or game (perhaps taking

their next turn) or that a report is ready for them to view; and application tabs, which can

be shown on a user’s profile alongside other profile information.These three channels can

be used by a Facebook Platform application to engage users both within and outside of

Facebook.

This chapter explores how you can use dashboards in your Facebook Platform applica-

tion through the Dashboard API.Through the Dashboard API, you can post news items

to a user’s dashboard, promote friends’ activities, and utilize activity counters.The second

part of this chapter focuses on application tabs as a way of sharing your application’s

information with users and their friends. Following the deprecation of profile boxes,

application tabs are the only mechanism for enabling users to personalize their profiles

and showcase their favorite applications.This section includes details about how to con-

figure, install, and develop an application tab through the use of “Mock AJAX”.The final

section showcases Facebook JavaScript (FBJS) and how you can use it for events, anima-

tions, and Facebook dialogs.

138 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.1 Screenshot of the Games dashboard.

Application Dashboards and Counters

Dashboard API

At the time of this writing, the methods from the Dashboard API were not available to test

and could be subject to change. When the Dashboard API becomes fully available, examples

will be added to this book’s code repository. A blog post will also be added to the book’s

website denoting that the functionality in this section is available.

Because of the popularity of social gaming applications on Facebook, their recent

redesigns have started to put more emphasis on highlighting specific features for games.

There are now two types of “dashboards”: Games (http://www.facebook.

com/?sk=games) and Applications (http://www.facebook.com/?sk=apps).These are

accessible via a user’s home page alongside bookmarks.The goal of each of the dashboards

is to make it easier for Facebook users to access games or applications that they or their

friends have recently used and to discover new applications through their friends or the

Application Directory (see Figure 8.1).

Various key features are available within the dashboards:

n Recently used applications or games display right at the top so that users can

quickly and easily find applications they use on a daily basis.The number of friends

who also use the application is also highlighted next to each application’s title.

n News items can be used to allow applications to communicate with users either to

display news to all users or alert individual users that they need to take action. For

example, a game news item may say “It’s your turn to play, Mark!”You can also use

news items to mention a user’s friends and invite them to play a game with you.

http://www.facebook.com/?sk=games
http://www.facebook.com/?sk=games
http://www.facebook.com/?sk=apps

139Application Dashboards and Counters

n A user’s friends’ recent activity is shown, which is used to promote applications and

games that a user might not have installed.This can also be toggled to display the ac-

tivities that an individual has recently completed, which can be privacy controlled.

n A list is maintained of all friends who recently interact with applications that appear

below the activities.These take the form of a list and are updated dynamically based

on usage.

n The legacy Facebook Application Directory is displayed right at the bottom of the

dashboards for searching for applications in particular categories.When submitting

your own application to the directory, this will be the category or categories that

you have provided.

n Facebook also runs features on particular applications or sponsored applications,

which are shown to the right side of a profile.These are generated by combining a

users’ and their friends’ activities to suggest the most suitable applications or games

to their profile.

n Counters can be shown alongside an application’s name for games or applications

that a user has bookmarked.These are discussed further in the “Games and Applica-

tions Counters” section, later in this chapter.

When submitting an application to the directory, a developer will choose whether the

application should be listed as a “game” or as a regular “application.”This designation dic-

tates which dashboard it will be placed within. Both dashboards contain the same func-

tionality and so differ only in content.A new Dashboard API was released in February

2010 to encompass all the features of dashboards (the subject of the remainder of this

section), including adding to news and activity streams and updating counters.

News and Activity Streams

As you have seen in the Games and Application dashboards, Facebook has concentrated a

lot of their efforts on keeping users updated as to what they and their friends are up to.

One of the main ways in which this is achieved is through activity streams.Activities are

reported on the Games and Application dashboards in two distinct ways, through news

and activities:

n News items can be set to display global and personal items to an individual or set of

individuals.These could be that a new feature has been added to your game or

application or if a friend has initiated an action involving a particular user.

n Activity items display actions performed specifically by the individual that appear in

that individual’s stream but could also reference one of their friends. In which case,

that individual’s activity will also appear in a friend’s news items.

The methods for each of these streams are similar to those regarding stream publishing

discussed in Chapter 7.The only real difference here is that news and activities are

restricted to the dashboards rather than the user’s stream, which helps to reduce unneces-

sary clutter.

140 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Working with News Items

News items are a way of sharing announcements with your users or for indicating that a

friend has performed an activity that has referenced them.There are two types of news

items, global and personal, depending on what method was called to create the item.

Facebook displays just two news items within either the Games or Applications dashboard,

and so they also provide a convenient method to clear news items from a user’s stream.

Adding News Items

Dashboard API Naming Conventions

Although Facebook lists these methods as including add in their name, this might change to

set in the future. In the most recent version of the Facebook API PHP client library, the

dashboard.addNews method was actually dashboard.setNews but returned an error

when executed.

News items can be added using the following methods either individually, globally, or for

multiple individuals using the following:

n dashboard.addNews

n dashboard.addGlobalNews

n dashboard.multiAddNews

Each method requires a slightly different set of parameters, such as providing a uid

(which is that of the user whose dashboard you are updating) for individual news and

which is not required for global news items. For updating multiple users, an array of uids

is required instead.This array contains a number of user identifiers that require updating.

Note that you cannot set multiple messages for each of these individuals, so each news

item will be the same for each of the identifiers you provide.An array of up to eight news

items is also required.This must contain a message and an optional action_link that

includes text and a href. If you want, you can also supply an optional image parameter.

This must be an absolute URL that is formatted as a 64x64px square.An example of each

method is shown here:

$user = $facebook->get_loggedin_user();

$users = array("1", "2", "3");

$news = array(

array(

"message" => "Hey, {*actor*}. Your friend @ just invited

you to play chess.",

"action_link" => array (

"text" => "Play Now!",

"href" => "http://myfacebookapp.com/?game=chess"

)

)

);

$global_news = array(

141Application Dashboards and Counters

array(

"message" => "Hey, {*actor*}. There is a new game to play, chess.",

"action_link" => array (

"text" => "Play Chess!",

"href" => "http://myfacebookapp.com/?game=chess"

)

)

);

$image = "http://29.media.tumblr.com/avatar_abad48dbd089_96.png";

$individual_news = $facebook->api_client->dashboard_addNews($user, $news,

$image);

$global_news = $facebook->api_client-

>dashboard_addGlobalNews($global_news, $image);

$multi_news = $facebook->api_client->dashboard_multiAddNews($users, $news,
$image);

If successful, the $global_news and $individual_news items will return a news_id if

the call succeeds, and the $multi_news item will return an associative array of uid keys

that contain either a news_id if successful or false if unsuccessful.These news_id values

are important and should be stored because they will be required if news items need to be

cleared from a dashboard. In addition, two conventions were demonstrated in the message

values:You can use the {*actor*} token, which is also available within stream attach-

ments, to be rendered as the user whose dashboard is being updated; and you can use

<<USER_ID>>, where <<USER_ID>> can be replaced by any user identifier. In your own ap-

plications, this would form part of a two-stage process of updating an individual’s activity

stream but also updating the news streams of that user’s friends that he or she was playing

against or wanting to update.

Clearing News Items

As with adding news items, three methods enable you to clear updates that have already

been created by an application. Clearing individual news will not remove global news and

vice versa, and so these methods may be used alongside each other:

n dashboard.clearNews

n dashboard.clearGlobalNews

n dashboard.multiClearNews

All of an individual’s news items can be removed by using the dashboard.clearNews

method and supplying their uid as the single required parameter or by additionally pass-

ing in an array of news_id values. For global news, the dashboard.clearGlobalNews

method can be called without any parameters to remove all news or can include an array

of news_id values similar to the individual news item method. Clearing multiple indi-

viduals’ news items is slightly more complex. Here is an example assuming that the

$multi_news parameter that was presented in the “Adding News Items” section above

returned the following:

142 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

$multi_news = array(

"1" => 111,

"2" => 222,

"3" => 333

);

$ids = array(

"1" => array("111"),

"2" => array("222"),

"3" => array()

);

$removed_multi_news = $facebook->api_client->dashboard_multiClearNews($ids);

A successful response from the individual and global methods is an associative array of

news_id keys and Boolean values depending on whether the news item has been

removed.When you are removing multiple individuals’ news items, an associative array

will be returned equivalent to the individual and global methods if news_id values were

supplied. Otherwise, if no news_id values were supplied (such as the last $ids parameter),

an associative array will be returned containing the uid as the key and a Boolean value of

whether the news item was removed or not.

Getting News Items

The final sets of methods are used to extract a user’s or group of users’ news streams.

Simply put, these methods provide you with the original news and image values that were

set when adding news items.The method names are as follows:

n dashboard.getNews

n dashboard.getGlobalNews

n dashboard.multiGetNews

These methods prove particularly useful should you not want to store news_id values

within your database of file stores.

Working with Activity Items

Unlike news items, activity items are an experimental feature and may be removed by

Facebook in the future.Activity streams are used to broadcast to a user’s friends what that

user been up to within a game or application (for example, posting high scores or whether

the user has uploaded new files or photos).There are only three methods for working

with activity items, and these cannot be called for multiple individuals like news items:

n dashboard.getActivity

This method will return the latest 100 activities recorded for the current user.The

method can be called with an optional activity_ids array if you have recorded

each activity_id for your users.

143Application Dashboards and Counters

n dashboard.publishActivity

This method works in exactly the same way as dashboard.addNews, but rather than

being a news object, it is an activity.The same conventions for using {*actor*}

and <<USER_ID>> tokens can be used when setting activity items. Successful publishing

of an activity will return a numeric activity_id.

n dashboard.removeActivity

Activities can be removed by supplying an array of activity_id values, which will

return an associative array of activity_id keys and a Boolean value indicating suc-

cess or failure.

When setting up your application in Chapter 5,“An Overview of Facebook Platform

Website Integration,” you may have noticed a setting called Hide User Activity within the

“Advanced” tab.This setting can be checked if you think that your application will gener-

ate activities that a user might want to keep private and not share with friends.Although

further details were not available at the time of this writing, Facebook intends to give

users sufficient control over which news and activity items they both send and receive.

Like items being posted to their stream, it may be that they want to inform certain friends

of their activities but exclude others.

Games and Applications Counters

Before an application or game can utilize counters, it must first be bookmarked by the

user.This can be done from within Facebook using the links provided on each of the

dashboards. However, it can also be facilitated through embeddable <fb:bookmark>

FBML and XFBML tags.A bookmark URL must be set.You can find this within the

“Basic” tab of an application; otherwise, the application’s connect URL or canvas page

URL will be used. For Facebook Platform applications, you can set the type attribute of

the button to off-facebook, which will render a blue button in place of the standard gray

used within canvas applications. Upon clicking the button, users are prompted with a dia-

log box to add the application to their profile (see Figure 8.2).

If a user has already bookmarked your application, the button will not appear.You can

also check this by querying the permissions FQL table, as follows:

$bookmarked = $facebook->api_client->fql_query(‘

SELECT uid, bookmarked

FROM permissions

WHERE uid = "‘.$official_user.’"

‘);

The result of this FQL query will be either a 1 or a 0 that can be extracted by using

$bookmarked[0]["bookmarked"]. New bookmarks will appear underneath the links to

the Games and Applications dashboards and can be rearranged by users after clicking the

“More” link below their bookmarks.After an application has been bookmarked, you can

start exploiting the features of counters via the Dashboard API.

144 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

There are two types of counter methods. One type of method enables you to update

an individual’s counter.The other type of method can be used to update a number of

individuals’ counters. Users could utilize this to let a group of friends know of an action

they’ve taken in a game and that it is now their turn.There are four methods for updating

the first type of counter for individuals:

n dashboard.decrementCount

n dashboard.getCount

n dashboard.incrementCount

n dashboard.setCount

These methods can be run either using the logged-in user’s credentials or by supplying

a uid alongside your application secret. Unlike internal Facebook applications or games,

when using website integration you must ensure that every time a user visits your book-

mark URL that the user’s counter is reset to zero. For applications that want to update a

group of individuals’ counters at the same time, the second type of counter method, a

number of batch methods are available:

n dashboard.multiDecrementCount

n dashboard.multiGetCount

n dashboard.multiIncrementCount

n dashboard.multiSetCount

These batch methods all request that an array of uids be supplied and will return an

array of uids as the key and a Boolean value for whether the request was successful. It is

suggested that when users visit your application, either on a canvas page or via an external

website, that their counter is set to zero to ensure that users do not get confused as to

what actions they are required to take.

Figure 8.2 Example bookmark dialog for the

Test Tube application.

145Navigating and Showcasing Your Application Using Tabs

Navigating and Showcasing Your Application
Using Tabs
In the early days of Facebook, a number of “integration points” were available to develop-

ers to showcase their applications.These integration points included profile boxes, news

feeds, and notifications.As a greater mass of developers started using the platform,

Facebook quickly became a dumping ground for spam because insufficient controls and

policies failed to prevent malicious developers abusing the platform.Today, Facebook has

become a lot more of a controlled environment, which means that many developers have

been forced away, but many others have gone on to produce really impressive applica-

tions.With the introduction of Games and Applications dashboards alongside a unified

stream social application, developers have to focus a lot more of their attention on users’

experiences.

Add Application Tab FBML Element

Like the deprecated <fb:add-section-button> FBML element, Facebook intends to cre-

ate a related element for adding an application tab. However, at the time of this writing, no

information was available as to its name or related attributes.

Facebook officially deprecated boxes and application info sections, which left applica-

tion tabs as the only way for users to showcase their favorite applications on their profile.

There are still modifications being made to how application tabs will be rendered, but the

information in this section should give you enough information to start implementing

them in conjunction with your Facebook applications.The deprecation has meant that

many methods have been removed from the API, including the following:

n profile.getFBML

n profile.getInfo

n profile.getInfoOptions

n profile.setFBML

n profile.setInfo

n profile.setInfoOptions

If you are a new Facebook developer, the changes will mean that you now only have a

single integration point to worry about. For developers who have been working with the

platform for a longer period of time, these changes have been met with some negativity.

Ultimately, however, these should improve the platform.They also allow you to focus

more on users’ experience of your applications and will be replaced by newer features as

time goes by.

146 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Configuring and Installing an Application Tab

Application tabs are displayed within Facebook next to a user’s Wall, Info, and Photos tabs,

and must be added explicitly by the user.An application tab is currently 520 pixels wide

and can be used to render information pulled directly from your application servers as

either an <iframe> or FBML. Other features of application tabs are that they can be used

to load AJAX but cannot autoplay Adobe Flash, onload JavaScript, or use <iframes>.

When interacting with an application tab on a friend’s profile, a user’s identifier is passed

within an $facebook->fb_params["user"] parameter alongside the owner’s identifier,

which is passed within an $facebook->fb_params["profile_user"] parameter.An

example of how these two parameters can be used is shown in the next section.

Other Canvas Settings

A number of other canvas settings are available within the Canvas tab that are not used

within this book but are essential if you want to create an internal Facebook application. The

default setting for Facebook Platform website applications is an <iframe> render, which

means that any standard page will be wrapped within a Facebook frame and displayed to the

viewer. For example, if you set the canvas callback URL to the location where you uploaded

your files from Chapters 5–7, you will be presented with your index.php page.

Because application tabs are used within the Facebook environment, their location

must be set relatively to a canvas page URL.And because Facebook Platform website

integration has been the focus of this book, a canvas page URL has not yet been set.We

can rectify this by navigating to the “Canvas” tab of your application’s settings and by pro-

viding a unique base URL prefixed by http://apps.facebook.com/.You should also set a

canvas callback URL, which is the file or directory on your web server that will be served

by Facebook as content for internal canvas pages. For example, if you set your canvas page

URL to http://apps.facebook.com/myfacebookapp/ and your canvas callback URL to

http://myfacebookapp.com/canvas/, that means that if a user visits http://apps.facebook.

com/myfacebookapp/foo.php, it will be rendered from http://myfacebookapp.com/can-

vas/foo.php. Before continuing, check that the render method on the “Canvas” tab is set

to “IFrame” because the Facebook Platform library will be used in this section.

Modifying Your config.php File

The config.php file that was used in Chapters 5, 6, and 7 should be updated with two

new parameters called CANVAS_PAGE_URL and CANVAS_CALLBACK_URL. These should be

inserted as with the other parameters within that file and without their trailing forward

slash (/).

For this chapter, you should create a new directory called canvas within your existing

file structure from Chapters 5, 6, and 7, and upload two files, index.php and tab.php,

along with an xd_receiver.htm file. Ensure that the references to the Facebook API PHP

client library in index.php and tab.php are relative to your existing directory structure.

The code in Listing 8.1 demonstrates a sample Facebook canvas page showing a simple

greeting along with a user’s identifier and name.

http://apps.facebook.com/
http://apps.facebook.com/myfacebookapp/
http://myfacebookapp.com/canvas/
http://apps.facebook.com/myfacebookapp/foo.php
http://apps.facebook.com/myfacebookapp/foo.php
http://myfacebookapp.com/canvas/foo.php
http://myfacebookapp.com/canvas/foo.php

147Navigating and Showcasing Your Application Using Tabs

Listing 8.1 The index.php File Demonstrating a Simple Facebook Canvas Page

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $user = $facebook->get_loggedin_user();

7 ?>

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

9 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

10 <head>

11 <title>Test Tube</title>

12 </head>

13 <body>

14 <h1>Canvas Page – Test Tube</h1>

15 <?php echo "<p>User Identifier: ".($user ? $user : "Unknown").

"</p>"; ?>

16 <?php echo ‘<p>Facebook Name: <fb:name uid="’.$user.’"

useyou="false"></fb:name></p>’; ?>

17 <script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php" type="text/javascript"></script>

18 <script type="text/javascript">

19 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm");

20 </script>

21 </body>

22 </html>

This basic page will be rendered inside an <iframe>, which means that the Facebook

PHP client library alongside the client-side Facebook Platform library will be utilized.

The PHP library and configuration files are included on lines 2 to 5, and the current user

is assigned on line 6. Because any Facebook user can view this page, it might be that you

do not have a $user available.Therefore, this must be tested on line 15.To require that a

user has logged in when visiting your canvas page, you add $facebook->require_

login(); before the call on line 6.The Facebook Platform library is included on line 17

and initialized on line 19, referencing the recently uploaded xd_receiver.htm file. Save

the code in Listing 8.1 as index.php and upload it to your canvas directory, which

should be set as your canvas callback URL. If you visit your canvas page URL, you should

be presented with a page similar to that shown in Figure 8.3.

Unlike pages within a canvas, which can be an <iframe>, your tab.php file must be

rendered as valid FBML, which is demonstrated by the following code by wrapping con-

tent within two <fb:fbml> tags:

148 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.3 Example canvas page for the Test Tube application.

Figure 8.4 Example application tab for the

Test Tube application.

<fb:fbml>

<h1>Tab Page - Test Tube</h1>

<p>Hello, World!</p>

</fb:fbml>

The <fb:fbml> tag has an optional version parameter that, if omitted, will render the

content in the latest version of FBML.To view this number, you can use the

<fb:fbmlversion /> to render the version number within your application.After you’ve

uploaded the tab.php, go back into your application’s settings and enter a tab name and

tab URL on the Profiles tab. In this instance, the tab URL should be set to tab.php to

mirror the file you have just uploaded, and the tab name should be set appropriately.

Once you have saved your settings, visit your own Facebook profile and, if you have

installed your application, you should be able to click the plus sign (+) next to the Wall,

Info, and Photos tabs and select the tab you just created, as illustrated in Figure 8.4.

149Navigating and Showcasing Your Application Using Tabs

Up until now, the application tab contains only static content, and so the next section

looks at how these tabs can be extended to add more personalized information tailored to

its owner and viewers.

Extending an Application Tab

Before adding additional functionality, it is worth evaluating which Facebook parameters

are contained within an application tab, both when viewing a friend’s profile and when

interacting with it (such as sending a message).When you are viewing a canvas page, the

following parameters are exposed and can be accessed by using the $facebook->fb_

params array:

n in_canvas, added, in_profile_tab, and in_new_facebook

These parameters should all be set to a 1, indicating that the profile owner has

added the application and that the viewer is located within the “Profile” tab.The

in_new_facebook parameter is used for legacy reasons when Facebook was transi-

tioning between old and new layouts. If the in_profile_tab is not set to 1, you

should code in functionality to redirect the user to your application’s canvas page or

display an error message.

n friends, locale, profile_update_time, profile_user, profile_id, and

ext_perms

These parameters are associated with the profile owner and contain a comma-sepa-

rated list of their friends alongside their identifiers and any extended permissions

they have granted the host application.

n request_method, time, expires, profile_session_key, api_key, and app_id

The final parameters are used when handling Facebook actions that require sessions,

such as extracting the profile owner’s friends.When you are using the official client

libraries, parameters such as api_key are less important because the library handles

much of its complexity for you.

These parameters are also accompanied by a signature that can be accessed by using

$_POST["fb_sig"].All the parameters above are made available whether the viewer has

added the application or not. However, if users intend to interact with the application (for

example, submitting a form) but they have not added your application, only the following

parameters will be exposed within the $facebook->fb_params array: profile; locale;

in_new_facebook; sig_time; added, which will be set to 0; api_key; and app_id. In the

instance, the identity of the viewer is not accessible to your application. If the viewer has

added your application, this will expose the following additional parameters:

n profile_update_time, expires, session_key, and ext_perms, which were

detailed earlier, although the session_key is linked with the profile viewer and not

the owner.

n The viewer identifier is now also made available via the user parameter.

150 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.5 Extended application tab for the Test Tube application.

One of the great features about application tabs is their capability to utilize Mock

AJAX calls to perform dynamic actions or to submit forms inline without having to redi-

rect the user. In the remainder of this section, you learn how to create an application tab

that enables viewers to leave a basic text comment for their friend to view. Figure 8.5

gives an example of what the final page should look like. It consists of a form that handles

submissions using Mock AJAX, a comments box, and functionality to prompt users who

have not already authorized your application to add it and grant extended permissions to

write data to their stream.

To create the application tab shown in Figure 8.5, you must amend tab.php and create

a new file for handling the comment submissions called post.php.The first step is to cre-

ate the skeleton of the application tab, which will include the Facebook API PHP client

library.This library will be used to validate all parameters and to ensure that the user is, in

fact, viewing from within Facebook. Because the canvas callback URL exists on your own

web server, it is possible for users to type that file location into their web browser outside

of Facebook, which means that they must be redirected back to Facebook to prevent any

malicious access.This can be achieved by adding the code in Listing 8.2 to tab.php.

Listing 8.2 Example for the tab.php File Demonstrating a Simple Application Tab

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET, $_POST["fb_sig_profile_

session_key"]);

151Navigating and Showcasing Your Application Using Tabs

6 $facebook->require_frame();

7 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

8 $profile_user = $facebook_parameters["profile_user"];

9 if($facebook_parameters["in_profile_tab"] == 1) {

10 ?>

11 <fb:fbml>

12 // Your Application Logic Goes Here

13 </fb:fbml>

14 <?php

15 } else {

16 // Either redirect the user by setting $facebook->redirect(CANVAS_

PAGE_URL); or by presenting them with a warning saying that they are

not within an application tab.

17 }

18 ?>

On line 6, a function has been added that ensures that if users type in the URL to your

tab on your domain in their web browser they will be redirected back to a Facebook-

hosted page. Before you add any application logic, it is worth drafting out what use your

new application tab should be able to handle. Because it will have been added by a user, it

is known that the user has already authorized your application, and it is possible that you

can use the user identifier or other details to extract data that you hold about that user

from your database and display that on your tab. Because you are provided with a session

key, a number of functions can be performed on the tab itself (for example, extracting the

user’s friends, photos, or events). However, you will not be able to publish to the user’s

stream or retrieve any protected data on the user’s behalf.When a user’s friends access your

application tab, they will be in a “passive” mode.This means you cannot access their user

identifier, and so cannot determine whether they have authorized your application.

Facebook provides two mechanisms for handling this issue:

n Adding a requirelogin="true" parameter to all links.This will pop up a Facebook

dialog box so that users can authorize your application before proceeding if they

have not already.

n When using Mock AJAX, you can add an ajax.requireLogin=1 parameter so that

if viewers submit your comment form and they are not a user of your application,

they will be prompted to authorize first before the comment is posted.

Both mechanisms should arrive at the same results. However, because you’ll be learning

about Mock AJAX in this example, the second option is used.When submitting their

comment, viewers can also select whether they want to post their comment to their

stream via the comments.add method. Note that you could post the response as a stream

152 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

attachment or even via the Dashboard API (described earlier in this chapter).The

comments.add method is used for convenience because a comments box can be placed on

the application tab to show feedback to the user. Posting to their stream also requires that

a viewer has granted the publish_stream extended permission, which will be prompted

by the Facebook.showPermissionDialog() JavaScript function.

The comments form can be constructed using the following code, which you should

use in place of the comment on line 12 of Listing 8.2:

1 <h1>Tab Page - Test Tube</h1>

2 <p id="comment_response">You can submit a test comment by using the

form below. On submitting the form you will be prompted to grant

permission to write to your stream which will enable your comment to

be submitted.</p>

3 <form>

4 <p><label for="comment_text">Comment Text: </label><input type="text"

name="comment_text" id="comment_text" value="" size="50"

maxlength="140" /></p>

5 <p><label for="publish_comment">Publish To Stream: </label><input

type="checkbox" name="publish_comment" id="publish_comment" /></p>

6 <p><input type="submit" value="Publish Comment" onclick="

submit_form(‘comment_response’); return false;" onsumbit="return

false;" /></p>

7 </form>

8 <h2>Comments</h2>

9 <div id="comments_box">

10 <fb:comments xid="c_<?php echo $profile_user; ?>" canpost="true"

candelete="true"></fb:comments>

11 </div>

The code above displays a simple prompt to the user on line 2.This prompt will be

replaced when the form is submitted by either a success or error response.The form itself

is defined in lines 3 to 7. It does not include traditional action and method attributes

because you will be using the onclick action of the Submit button to post a comment.

Form elements include a mixture of name and id attributes because their values and states

need to be evaluated for validation and submission.The comments box on line 10 is

wrapped inside a <div> because when a user submits a comment there is no way of

“refreshing” its contents without refreshing the application tab.The xid of the

<fb:comments> FBML element is set to that of the profile owner and is prefixed by a c_,

because Facebook sometimes has issues displaying comments boxes that are purely

numeric.

The next element that needs to be created is the JavaScript function submit_form(),

which includes the id of the element to update after submission.The JavaScript for this

example is split into two parts.The first detects whether comment text was added and

whether viewers have chosen to publish their comment to their stream. If both are true,

they are presented with a Permissions dialog box to grant extended permissions. If per-

missions are granted, a successful callback will be triggered, and the comment will be

153Navigating and Showcasing Your Application Using Tabs

posted to their stream. If denied, the comment will still be posted but will not appear in

their stream.The second part is the Mock AJAX itself, which is used to submit the com-

ment and update the user interface.The submit_form() function looks like this and

should be placed inside a <script type="text/javascript"> element:

1 function submit_form(form) {

2 comment_text = document.getElementById("comment_text").getValue();

3 if(!comment_text == "") {

4 publish_comment = document.getElementById("publish_comment").

getChecked();

5 if(publish_comment) {

6 Facebook.showPermissionDialog(

7 "publish_stream",

8 function(response) {

9 if(response) { do_ajax(form, publish_comment); }

10 else {

11 do_ajax(form, false);

12 document.getElementById("publish_comment").setChecked(false);

13 }

14 }

15);

16 } else {

17 do_ajax(form, false);

18 }

19 } else {

20 document.getElementById("comment_text").setStyle({color: "white",

background: "red"});

21 }

22 }

Facebook’s implementation of JavaScript, FBJS, is slightly different to JavaScript in han-

dling variable names. In all instances, variables are prefixed by your application ID, which

creates a more controlled and sandboxed environment that prevents malicious screen

refreshes and other potentially dangerous scripting abilities. Some useful FBJS commands

are shown on line 2 for getting the value of a text box, on lines 4 and 12 for getting and

setting the state of a check box, and on line 20 for setting the style of a text field. Further

details are available in the next section for how to add event listeners and other advanced

functionalities to your application tab.The Facebook.showPermissionDialog() function

on lines 6 to 15 is broken down as follows:

n Line 7 defines the extended permission or permissions that are being requested. In

this instance, you require only the publish_stream permission, but multiple per-

missions can be requested by supplying a string of comma-separated values.

n Lines 8 to 14 are the callback function, which is invoked if the user allows the

permission that leads to the call on line 9. If the user denies permission or closes

the Permissions dialog box, the response will be null.This will still submit the

154 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

comment but will ensure that it does not attempt to publish to their stream. Because

this function is being called as a result of the user checking the Publish Comment

check box and then being denied, the check box is set to “unchecked” to improve

user experience should the user attempt to submit again. Both callback paths will

call a do_ajax() function (detailed below).

The remainder of the submit_form() function is to handle if users do not want to pub-

lish to their stream. Under this scenario, the do_ajax() function is called, much like if they

deny the publish_stream extended permission. If they do not provide any comment text,

the background of the text field will be set to red and the text to white.The do_ajax()

functions should be placed below submit_form() and contains the following code:

1 function do_ajax(div, publish_comment) {

2 comment_text = document.getElementById("comment_text").getValue();

3 if(!comment_text == "") {

4 var ajax = new Ajax();

5 ajax.responseType = Ajax.JSON;

6 ajax.ondone = function(data) {

7 document.getElementById(div).setInnerFBML(data.fbml_response);

8 document.getElementById("comments_box").

setInnerFBML(data.fbml_comments);

9 document.getElementById("comment_text").setValue("");

10 document.getElementById("comment_text").setStyle({

color: "black", background: "white"

});

11 }

12 ajax.onerror = function() {

13 document.getElementById(div).setInnerFBML(‘<fb:error message="There

was an error submitting the form." />’);

14 }

15 var params = {

16 "comment_text": comment_text,

17 "owner": <?php echo $profile_user; ?>,

18 "publish_comment": publish_comment

19 };

20 ajax.requireLogin = 1;

21 ajax.post("<?php echo CANVAS_CALLBACK_URL; ?>/post.php", params);

22 }

23 }

As with the submit_form() function, the do_ajax() function first tests to see that

comment text has been entered. If it hasn’t been, it will not submit any data to Facebook.

On line 4, an AJAX object is created, and its responseType is set on line 5.The

responseType can be set to Ajax.JSON, Ajax.RAW, or Ajax.FBML, which dictates the for-

mat in which the AJAX object expects data to be returned.The most flexible format is

155Navigating and Showcasing Your Application Using Tabs

Ajax.JSON, which will be demonstrated in the example in this chapter. Lines 7 and 8 use

two JSON strings, fbml_reponse and fbml_comments, which will become clear after

exploring the server-side file generating the response.There are two cases for AJAX

requests, which are ajax.ondone and ajax.onerror for handling successful or other

responses.The ajax.ondone function on lines 6 to 11 is used to update the comments_box

and for resetting the Comments text field to its original state.The final part of the func-

tion is shown on lines 15 to 21, which are used to set up POST parameters, comment_text,

owner, and publish_comment, to require that users have authorized the application and to

actually post the data.

The <fb:js-string> FBML Element

When setting the innerFBML of an element, you might find that Facebook refuses to add

the content that you specify. The <fb:js-string> FBML element is provided specifically for

this case—another is for Facebook Dialogs—and contains a single var parameter, which is

the name that it will be referenced by and will contain the FBML that you want to be added.

The <fb:js-string> should be placed within an <fb:fbml> element and will not be dis-

played to users. The var should be passed as the single parameter to an innerFBML()

function.

Your post.php is used to perform specific server-side Facebook functions and to

return the response back to the do_ajax() function.The CANVAS_CALLBACK_URL parame-

ter that was set within the config.php should include the canvas directory to ensure that

the post.php file can be found. Listing 8.3 defines an example post.php file.This should

be uploaded to your web server alongside tab.php and index.php.

Listing 8.3 Example post.php File Demonstrating Adding a Comment and Returning

Data Back to an Application Tab

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $facebook_parameters = $facebook->get_valid_fb_params($_POST,

null, "fb_sig");

7 if(empty($facebook_parameters)) {

8 $facebook->redirect(CANVAS_PAGE_URL);

9 exit;

10 }

11 if($facebook_parameters["is_ajax"] == 1) {

12 $owner = $_POST["owner"];

13 } else {

14 $owner = $facebook_parameters["profile"];

15 }

156 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

16 $viewer = $facebook_parameters["user"];

17 $comment_text = $_POST["comment_text"];

18 $publish_comment = $_POST["publish_comment"];

19 $facebook->set_user($viewer, $facebook_parameters["session_key"]);

20 $json = array();

21 $json["fbml_comments"] = '<p>The page <a href="http://www.facebook.com/

profile.php?id='.$owner.'&v=app_'.$facebook_parameters["app_id"].'">

must be refreshed to view recently-submitted comments.</p>';

22 try {

23 $title = "Test Tube";

24 $url = CANVAS_PAGE_URL;

25 $comment = $facebook->api_client->comments_add("c_".$owner,

$comment_text, $viewer, $title, $url, $publish_comment);

26 $json["fbml_response"] = '<fb:success message="Your comment was added

and will be viewable the next time you visit this tab." />';

27 }

28 catch(Exception $e) {

29 $json["fbml_response"] = '<fb:error message="'.$e->getMessage().

'" />';

30 }

31 echo json_encode($json);

32 ?>

As with the tab.php file, you must cater for the fact that your post.php file will be

accessed externally, which is the reason for including lines 7 to 10. Because Mock AJAX is

being used, Facebook adds another parameter called is_ajax but does not pass the profile

parameter, which is why the owner POST parameter was set within the do_ajax() func-

tion. Other parameters are set on lines 16 to 18, and then the profile viewer is set as the

active user on line 19.An empty array is created on line 20, which is finally converted to a

JSON string on line 31 and which is returned to do_ajax().As an example, line 21 is the

text that replaces the initial comments_box container and is accessed within do_ajax()

using data.fbml_comments. If you want to return data that is to be set using

setInnerFBML, it must be prefixed with fbml_ within the $json parameter.The

comments.add method is called on line 25 using the comment_text, and the final parame-

ter dictates whether the comment is published to the viewer’s stream.

After you have created the post.php file, you should upload it to your web server, and

you should be ready to test out your new application tab. From here, you could try out

another publishing method such as stream.publish or add additional functionality such

as listing the owner’s friends who have commented or displaying richer comments that

include images.The final section looks at how to use the FBJS, and in particular the

Animation library, which can be used to create “tweening” CSS fading background colors

and styles, to hide and show block-level elements, and to ease animations for smoother

transitions.

157Dynamic Content and the Facebook JavaScript (FBJS) Library

Dynamic Content and the Facebook JavaScript
(FBJS) Library
The Facebook JavaScript (FBJS) library is a solution prepared by Facebook to enable

developers to execute JavaScript within their applications. Because allowing developers to

perform the full range of JavaScript commands could lead to malicious use, FBJS attempts

to provide a happy medium for providing access to simple animations and to utilizing

event listeners and implementing Facebook dialog boxes.As you may have seen if you

have tried to use JavaScript within Facebook before, all your variable names and functions

are prefixed with an application ID. If your application ID is 1234567890 and you have a

function named foo(), it becomes a1234567890_foo(). In the code for the application

tab in the previous section, it was not possible to simply refresh the tab using

window.location.reload() because of this, although you could use

document.setLocation(), which is provided in the FBJS library. Because application tabs

are the only way of enabling a user to showcase your application, it is important to add

features such as Mock AJAX and animations to improve the usability of your work and to

distinguish yourself from others.

Including JavaScript Files

If you have a rather large JavaScript file, you can use a <script> tag and set the src to

include the remote file. As Facebook caches the file to reduce the burden on your own

servers, you should suffix your files with a version number after each major update (for

example, foo.js?v=0.1) to ensure that Facebook caches the new file.

The FBML Test Console (http://developers.facebook.com/tools.php?fbml) is a great

resource for testing out your FBJS before deploying to an application tab (see Figure 8.6).

It can also be used to test out a Facebook Platform application or to trial Facebook API

methods before production.

You can set the Position drop-down menu to tab to ensure that the correct propor-

tions are being shown onscreen.When previewing your application in the Test Console,

you are presented with a preview of how your application tab will look, the contents of

the HTML that Facebook will generate, and a simple list of errors (as well as the ability to

view a profile from the perspective of another user by setting the Profile text field).The

remainder of this section uses the FBML Test Console to experiment with the various

features of the FBJS library.

Facebook Animation Library

Facebook provides an easy-to-use library for creating a richer user interface for your users

via CSS both inside Facebook and outside through an animation library (http://develop-

ers.facebook.com/animation/).This library could therefore be used to create animations

for other applications that are not Facebook driven but utilize basic animations such as

http://developers.facebook.com/tools.php?fbml
http://developers.facebook.com/animation/
http://developers.facebook.com/animation/

158 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

creating shading effects that “tween” between background or text colors or hiding and

showing page elements.These could be used to animate a particular element and can be

achieved in the following ways by populating the onclick() parameter of any element:

n Animation(this).to("background', "#000").go();

This function will transition the element’s current background color to black

(#000) and is “executed” by supplying the final .go() method.The use of this

ensures that the animation is performed on the current element but any other

DOM object could also be passed into this function for manipulating elements in

other areas of a page.

n Animation(this).to("background", "#f00").to("color", "#fff").go();

You can string multiple styles together, such as background and color, as shown in

the example. Both transitions will run smoothly in parallel, which means that as the

background is changing color, so will the color of the text.

n Animation(this).to("background", "#fff").from("#000"). go();

To transition between two styles irrespective of the current style, you can use a

.from() method. In this instance, this meant changing the background from white

(#fff) to black (#000).

n Animation(this).by("font-size", "1px").go();

The .by() method can be used to increment or decrement an attribute, such as

font-size, width, height, or left or right positioning.

Figure 8.6 Screen shot of the FBML Test Console showing

an example application tab.

159Dynamic Content and the Facebook JavaScript (FBJS) Library

n Animation(element).to("height", 0).to("opacity", 0).

blind().hide().go();

By setting the height and opacity of a supplied element, you can automatically

hide it from view.You should also set the element’s overflow style to hidden, which

will prevent images contained within the element from still being shown despite it

having no size.The .blind() method is used to prevent automatic text wrapping

from occurring while the element is being resized.

n Animation(element).to("height", "auto").from(0). to("width",

"auto").from(0).to("opacity", 1).

from(0).blind().show().ease(Animation.ease.end).go();

Revealing elements that have a display style set to none works in a similar way to

hiding them but requires both a .to() and .from() method as well as .show() in

replace of .hide().A final, .ease() method was added to the animation, which

will mean the element will “ease” into being revealed. Other options are

Animation.ease.begin and Animation.ease.both, which will start slow and end

fast or start and end slow, respectively.

All the animations above will occur over a duration of 1,000 milliseconds (1 second),

but you can add a .duration() method right before .go() should you want the anima-

tion to last a longer or shorter time.The code examples available for this chapter contain a

few animations to demonstrate how they function on application tabs and how they could

be implemented in your own applications.A final advanced feature of the Animation

library is checkpoints. Checkpoints are useful if you want to build an animation that con-

sists of two or more logical steps that are part of a single animation. Example could be first

increasing a width and then increasing its height or increasing the size of an element and

then changing its color.This can be demonstrated using a simple example:

<div id="test_1" style="display: none; border: 1px solid #ccc; padding:

5px;">

This is a test message which will first increase in width and

then in height.

</div>

<a href="#" onclick="Animation(document.getElementById('test_1')).

to('height', 0).from(0).to('width', 'auto').from(0).show().blind().

checkpoint().to('height', 'auto').blind().go(); return false;">Click

to Expand.

It is also possible to “stagger” checkpoints so that an action can be executed midway

through the first animation.To implement this feature, you can add an additional parame-

ter to the .checkpoint() function, which must be a number that ranges from 0 to 1,

where 0 will not render the animation at all and a value of 1 will render the animation

straight after the first has finished. For example, in the code above, you could set the

checkpoint to 0.5 to start growing the height of the element halfway through its width

increase.This can also be accompanied by a .duration(500) function just before .go()

160 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

to ensure that both animations finish at the same time.A trick to delay animations is to

use the following:

Animation(element).duration(3000).checkpoint().to("width", "auto").go();

This code would pause for 3,000 milliseconds (3 seconds) and then adjust the width of

the given element.A use case for this may be to present a message after a certain period

of time to the user or to hide a message after a number of seconds has elapsed.The final

advanced feature of checkpoints is to use callbacks within the .checkpoint() function

for performing animations on other elements as well as the current element.This can be

achieved by using .checkpoint(1, function() { Animation(...); }) and nesting

your animation within the two parentheses. Remember that you can also save these ani-

mation chains as functions and thus greatly reduce the amount of code you are typing and

make it more readable if you call functions such as expand(), contract() or

growThenFadeToBlack().

Facebook Dialogs

The <fb:dialog> FBML Element

Facebook has a beta version of an <fb:dialog> element that is a condensed version of

the FBJS equivalent discussed in this chapter. The element can be invoked by adding a

clicktoshowdialog attribute to any element. It is recommended that you use the FBJS

version until Facebook confirms the <fb:dialog> element, which is expected in mid-2010.

Facebook uses dialog boxes to alert users of messages that they have deleted and to alert

them about errors and many other scenarios.To make your application blend in with

their environment, they provide a Dialog object that can be manipulated to show a pop-

up message called Dialog.DIALOG_POP or a contextual message called

Dialog.DIALOG_CONTEXTUAL, which displays an inline dialog box rather than a pop-up.

Both types of dialog work in similar ways, except that the contextual dialog can be dis-

played close to where the user’s cursor is pointing or around a certain element.A simple

dialog box can be created by using the following code:

<p><a href="#" onclick="new Dialog(Dialog.DIALOG_POP).showMessage('Test

Dialog Box', 'Hello, World!', 'Close'); return false;">Click to Test

Dialog Box</p>

The dialog box shows a message which has the title Test Dialog Box, the content set

to Hello, World!, and its only button set to Close.The .showMessage() function could

be replaced by .showChoice(), which accepts an additional parameter for allowing a can-

cel option.A more thorough example of using dialogs is to evaluate which action the user

has chosen and to update an element:

1 <p>Do you like social programming? <a href="#" onclick="confirm('Do

you like social programming?', this);">Click to Answer</p>

2 <p id="response">Unknown Response</p>

3 <script type="text/javascript">

4 <!--

161Dynamic Content and the Facebook JavaScript (FBJS) Library

5 function confirm(text, context) {

6 var dialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);

7 dialog.setContext(context).showChoice("Social Programming", text,

"Yes", "No");

8 dialog.onconfirm = function() {

9 document.getElementById("response").setTextValue("Yes, I do.");

10 };

11 dialog.oncancel = function() {

12 document.getElementById("response").setTextValue("No, I don't.");

13 };

14 return false;

15 }

16 //-->

17 </script>

In this example, the results of the dialog box lead to the response element being

updated either on being confirmed (lines 8 to 10) or canceled (lines 11 to 13).You can

also see how the .setContext() function was used to ensure the dialog appeared

close to the Click to Answer text.The final example of dialogs makes use of the

<fb:js-string> FBML element to show a rich select box to the user within a message

and enables them to update a string of text based on the color that they select:

<p id="body_text">This is some standard text.</p>

<p>Update Text Color</p>

<fb:js-string var="color_picker">

<p>What is your favorite color?</p>

<p>

<select id="color_select">

<option value="black">Default</option>

<option value="red">Red</option>

<option value="green">Green</option>

<option value="pink">Pink</option>

</select>

</p>

</fb:js-string>

<script type="text/javascript">

<!--

function update_text_color() {

var dialog = new Dialog(Dialoh.DIALOG_POP).showChoice("Color Picker",

color_picker, "Pick", "Cancel");

dialog.onconfirm = function() {

var color_text = document.getElementById("color_select").getValue();

document.getElementById("body_text").setStyle({color: color_text});

};

return false;

}

//-->

</script>

162 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

The main difference in this example is that instead of passing a string of text into the

.showChoice() function, the var of the <fb:js-string> element is used.This method

can prove particularly effective if you intend to create a rich form that the user has to fill

out or if you intend to include multimedia in your dialog box.The only methods that

have not been explored are .hide(), which can be used to hide a dialog box if it is

already opened (such as if you intend to open multiple dialog boxes or ensure that they

are all properly closed), and .setStyle(), which can add styling to the dialog box.

Handling Events with an Event Listener

You might sometimes want to detect whether users have clicked an element on your

application tab or moved their mouse over a text field or image. In these instances, you

can set up an event listener that sits in the background of your code waiting for actions to

occur. Facebook provides its own facilities to “listen” for events and has thus extended the

W3C addEventListener() method. Event listeners are broken into three components:

n A string related to the event type that is being listened for, which includes mouse

events such click, mousedown, mouseup, mouseover, mousemove, mouseout, or key-

board events like keyup, keydown, or keypress.To detect a particular key press, you

can use the keyCode property of an Event object to perform specific functions

dependent on keys.You can also use the Event object to detect whether the

ctrlKey, shiftKey, or metaKey were pressed.

n A callback function that handles the event and triggers whatever functionality you

want to implement.This could be updating a text box, adding text to row tables, or

performing search “typeahead” functions.Two important functions can be set

within this function: stopPropagation(), for preventing the listener from being

added to any parent elements; and preventDefault(), for stopping an element’s

“normal” behavior (such as preventing clicking a link from directing the user). In

the case of a link, you must also set its onclick attribute to return false;.

n The final parameter must be set and relates to a useCapture behavior, which

should be set to false.This will prevent events being triggered for descendants of

the element that triggers that particular listener.

You can use event listeners in two ways depending on what types of actions you want

to capture.The first type of listener is used to encompass multiple elements and handle

their logic within the callback function. For example, suppose you have a catalog of

images and you want to update a text box to describe the image based on what product

the user has rolled his mouse cursor over.You can do so using the following code:

<p id="product_description">Roll your mouse over an image to update this

description.</p>

<div id="products">

<p id="image_1"></p>

<p id="image_2"></p>

</div>

163Dynamic Content and the Facebook JavaScript (FBJS) Library

<script type="text/javascript">

<!--

function handler(event) {

var product_description = document.getElementById("product_description");

if (event.type == "mouseout") {

product_description.setTextValue("Roll your mouse over an image to

update this description.");

return true;

}

var product_id = event.target.getId();

var product_text = "";

switch(product) {

case "image_1":

product_text = "This is the first product.";

break;

case "image_2":

product_text = "This is the second product.";

break;

default:

product_text = "This is an unknown product.";

}

product_description.setTextValue(product_text);

}

document.getElementById("image_1").addEventListener("mouseover", handler);

document.getElementById("image_1").addEventListener("mouseout", handler);

document.getElementById("image_2").addEventListener("mouseover", handler);

document.getElementById("image_2").addEventListener("mouseout", handler);

//-->

</script>

The code above would display two images and accompanying text and has two listen-

ers, mouseover and mouseout, which will either update the product_description ele-

ment with a product description or reset it to its default text.The

event.target.getId() function ensures that the correct element is identified, and then

the JavaScript logic is tailored to that identifier.Another way to add an event listener is to

completely separate the code from your application tab content:

<div id="test" style="border: 1px solid #ccc; padding: 5px; height: 50px;

width: 100px;" onclick="return false;"></div>

<script type="text/javascript">

<!--

function random_number(low, high) {

return Math.floor((Math.random() * (high - low)) + low);

}

function color(obj) {

var red = random_number (0, 255);

var blue = random_number(0, 255);

164 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

var green = random_number(0, 255);

var color = red + ", " + green + ", " + blue;

obj.setStyle("color", "rgb(" + color + ")");

}

function load() {

var obj = document.getElementById("test");

obj.addEventListener("click",

function(event){

color(obj);

event.stopPropagation();

event.preventDefault();

return false;

}, false);

}

load();

//-->

</script>

The code above will display a box that is clickable and that will change to a random

color generated by the color() function.The difference in this example is that a click

event is being captured and so the preventDefault() function is called to prevent the

usual action of clicking an object. Note that only this second event listener can be vali-

dated using the FBML Test Console and the previous example of the product catalog

must be hosted on a live application tab. Event listeners are the final component of the

FBJS library explored in this section and can be used in combination with the Animation

library and Mock AJAX.You should now feel well enough equipped to create an interac-

tive and dynamic application tab that will keep your users coming back and that will per-

suade their friends to add one of their own.

Summary
This chapter described how you can use dashboards in your Facebook Platform appli-

cation through the Dashboard API.Through the Dashboard API, you can post news items

to a user’s dashboard, promote friends’ activities, and utilize activity counters.The second

part of this chapter focused on application tabs as a way of sharing your application’s in-

formation with users and their friends. Following the deprecation of profile boxes, appli-

cation tabs are the only mechanism for enabling users to personalize their profiles and

showcase their favorite applications.You were shown how to configure and install an ap-

plication tab and how to add Mock AJAX functionality.The final part of this chapter de-

tailed the Facebook JavaScript (FBJS) library, which you can use to add animations,

dialogs, and event listeners.

9

An Overview of Google
Friend Connect

Google Search was their first venture, but now Google offers other products and serv-

ices, such as e-mail, online mapping, video sharing, web browsing, and mobile operating

systems (to name but a few). Google also invests a lot of time in social networking with

their Facebook and MySpace competitor orkut and Google Friend Connect, enabling

users to connect with friends on third-party social applications.With the Google Friend

Connect JavaScript API, you can access content such as user profiles and friends and can

generate “activities” from a Google Friend Connect site directly using JavaScript.

This chapter explores (through code snippets, discussion, and a sample application

called Color Picker) the inner workings of the Google Friend Connect JavaScript API

and demonstrates how it integrates with the OpenSocial API.At the end of this chapter,

you should understand how to implement fully interactive Google Friend Connect

JavaScript code into your website to create functionality such as site members list mainte-

nance, activity generation, and persistent “app data” storage.

Components of Google Friend Connect
Google Friend Connect is a service that provides website owners with tools to add social

features for community building and increasing engagement.These features are known as

gadgets and plug-ins and are suitable for people with little or no programming experience.

For example, the Members gadget enables visitors to join a website and see and interact

with other members through comments, messages, and reviews. Google Friend Connect

was developed to lower two barriers to entry:

n Many website owners want to add social features that enable their visitors to do

things with their friends without necessarily wanting to become a social network. It

is about helping the “long tail” of sites become more social as simply as possible so

that they can publish their activities back to their social network, attracting even

more visitors.

166 Chapter 9 An Overview of Google Friend Connect

n People are tiring of needing to create new logins and profiles and of re-creating

friend lists wherever they go online. Google Friend Connect offers a solution to

this issue through partnering with networks such as OpenID,Twitter, and Yahoo!,

enabling users to sign in using existing credentials. For larger publishers, this could

be perceived negatively because site owners do not “own” users and their data like

they would if Facebook or Twitter were used, but it does not preclude them from

having direct relationships with gadget users on their sites.

The skill sets required to adopting Google Friend Connect range from basic copying

and pasting code snippets known as gadgets and plug-ins into your website via wizard-

like interfaces through to full client- and server-side integration using the Google Friend

Connect JavaScript and OpenSocial APIs. Basic gadgets and plug-ins are not explored in

detail because their usage is as simple as copying and pasting code into your website.What

is explored is how to build your own gadgets to provide deeper integration into your site

with Google Friend Connect. Several examples are available from Google (http://code.

google.com/apis/friendconnect/code.html) demonstrating how to integrate Google

Friend Connect with your website using the Google Friend Connect JavaScript API and

server-side integration.You can use these alongside the Google AJAX API Playground

(http://code.google.com/apis/ajax/playground/), which is useful for debugging code and

exploring features before deployment.

Google Friend Connect Gadgets

Google Friend Connect gadgets are the simplest way to add social capabilities to websites

without any programming experience. Gadgets allow visitors to sign in with OpenID and

preexisting Google,Yahoo!, and other OpenID accounts; integrate existing profiles from

social networks and services; discover existing friends from other linked social networks;

and make friends across networks and interact with fully scalable and tested social gadgets

created by Google and the broader OpenSocial development community. Current

Google Friend Connect gadgets include the Social Bar and the Members gadget.

The Social Bar gives site visitors easy access to social features such as discovering new

friends, reading and posting comments, and exploring new site activities.An example

installation is available on this book’s website at http://www.socialprogramming.info and

shows how the Social Bar works and looks in a live environment (see Figure 9.1).

The Members gadget comes in two forms: a more feature-rich interactive gadget

allowing visitors to join your site, sign in and out, see other members, invite friends, and

use other social features; and a smaller gadget for signing in and out of your site (see

Figure 9.2).

A Gadget Gallery (http://www.google.com/friendconnect/directory/) hosts other

gadgets created by Google (for example, Comments, Ratings and Reviews, Events, and

Recommendations). Other gadgets created by other social application developers are also

contained in the Gadget Gallery.

http://www.socialprogramming.info
http://www.google.com/friendconnect/directory/
http://code.google.com/apis/friendconnect/code.html
http://code.google.com/apis/friendconnect/code.html
http://code.google.com/apis/ajax/playground/

167Components of Google Friend Connect

Figure 9.1 Demonstration of the Social Bar with comments enabled.

Figure 9.2 Demonstration of the Members

gadget with invitations enabled.

Google Friend Connect JavaScript API

The Google Friend Connect JavaScript API works in addition to the basic usage of

Google Friend Connect, where access to OpenSocial content is through the hosting of

gadgets or via server-side integration.The Google Friend Connect JavaScript API allows

you to directly access OpenSocial content from a Google Friend Connect site using

JavaScript.The <iframe> approach to design makes getting up and running with Google

Friend Connect fast and easy, but it keeps Google Friend Connect social data locked

inside of the <iframe> itself.This means that you can’t call Google Friend Connect

JavaScript methods directly from your website.

Server-Side Integration

In combination with the Google Friend Connect JavaScript API, server-side integration

is possible through support for the OpenSocial RESTful and RPC protocols.As well as

running social gadgets on your website and displaying social information, Friend Connect

168 Chapter 9 An Overview of Google Friend Connect

can be integrated with existing server-side code on any desktop, web, or mobile clients

(see Chapter 10,“Server-Side Authentication and OpenSocial Integration”).As an exam-

ple, integration could be with an existing login system, letting anyone with a supported

Google Friend Connect account log in to your website without having to complete a

registration process. Processes will differ from site to site, but most login integrations fol-

low the same processes:

1. Give users an option to log in with Google Friend Connect, which you can do by

adding a few lines of JavaScript code.You don’t need to worry about customizing

another user interface or handling a complicated authorization process because

Google Friend Connect handles much of this centrally.

2. After users have joined your site, their information is made available through the

Google Friend Connect server-to-server APIs. For authentication, a dynamically

generated fcauth cookie is placed on the domain of the site; an alternative method

is to use two-legged OAuth, which is discussed in Chapter 10.

3. Sites need to be able to check for logged-in Google Friend Connect users and

integrate that data with existing accounts so they are treated as “just another” regis-

tered users. Data models need to be extended to keep track of a Google Friend

Connect ID per account and pull profile fields from the server-to-server APIs

because data cannot be persisted.

4. Google Friend Connect provides additional controls that will help users manage

their settings on your site.These include linking to options for configuring their

accounts, managing friends and un-joining your site, and for inviting friends to join

your website.

5. Logging out can be as simple as a single JavaScript call, which can be problematic if

you need to do server-side processing such as ending a session or clearing cookies.

6. Take some time to think how best to present your site’s data in a social way.

Through the login process, you have access to a “friendship model.”Therefore, de-

sign considerations include whether friends might be interested in the content a

user has just added or listing what activities their friends have been performing on

your site (such as sharing reviews or posting high scores).

Several open source client libraries (http://wiki.opensocial.org/

index.php?title=Client_Libraries) written in popular programming languages such as

PHP, Ruby, Java, and Python are available to make it easy to access the OpenSocial

RESTful and RPC protocols.

Google Friend Connect Plug-ins

Third-party plug-ins are available for popular blogging, forum, and content management

systems such as WordPress, Drupal, and phpBB.These make it easier for visitors to log in

with a Google account,Yahoo! account, or to log in via any site that implements

http://wiki.opensocial.org/index.php?title=Client_Libraries
http://wiki.opensocial.org/index.php?title=Client_Libraries

169Using the Google Friend Connect JavaScript API

OpenSocial 0.8 (such as Plaxo, hi5, and MySpace) and comment on material. Developing

Google Friend Connect plug-ins can prove particularly rewarding if your work is used by

a number of other users. For example, you could build a plug-in for a new blogging plat-

form or content management system.This could then be reused by other users and

extended by other developers. Remember when developing plug-ins that you should not

include your own site ID and should allow users to customize every aspect of the design

and functionality of the plug-in.

Using the Google Friend Connect JavaScript API
Every website that uses Google Friend Connect automatically becomes an OpenSocial

container.This means that you can access people, activities, and persistence data (applica-

tion data) through the Google Friend Connect JavaScript API, gadgets, and plug-ins, or

via the OpenSocial RESTful and RPC protocols.Although gadgets can be copied and

pasted easily into web pages, they are run inside an <iframe>, which means that data is

locked inside that frame and cannot be accessed externally.The JavaScript Library pro-

vides a convenient way to access Google Friend Connect and OpenSocial methods,

which you can embed directly into any HTML page.

Installing and Configuring the JavaScript Library

Before you can install the JavaScript Library, you must first register a new Google Friend

Connect site (http://www.google.com/friendconnect/) by filling out the web form.

Every Google Friend Connect site is allocated a unique identifier known as a site ID,

which is the ticket that links interactions back to your container.You will find it by

checking the id parameter in the URL when inside Google Friend Connect and having

selected your application.

You can find the embeddable JavaScript API code under the Plug-ins & APIs section

of the Google Friend Connect site.An example page is shown in Listing 9.1 and is used

throughout this chapter.

Listing 9.1 A Simple Google Friend Connect page.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <title>Test Tube</title>

6 <!-- Load the Google AJAX API Loader //-->

7 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

8 <!-- Load the Google Friend Connect javascript library. //-->

9 <script type="text/javascript">

10 google.load("friendconnect", "0.8");

http://www.google.com/friendconnect/

170 Chapter 9 An Overview of Google Friend Connect

11 </script>

12 </head>

12 <body>

13 <h1>Test Tube</h1>

14 <!-- Initialize the Google Friend Connect OpenSocial API. //-->

15 <script type="text/javascript">

16 google.friendconnect.container.setParentUrl("/");

17 google.friendconnect.container.initOpenSocialApi({

site: "XXXXXXXXXXXXXXXXXXXX",

onload: function(securityToken) { initAllData(); }

});

19 function initAllData() {

20 alert("Hello, world!");

21 }

22 function onData(data) {}

23 function createActivity() {}

24 </script>

25 </body>

26 </html>

The two most important lines in this code snippet are the following:

1. For legacy applications, Google Friend Connect required that you uploaded two

files to your web server for verification. Line 16 is the relative or absolute location

of the rpc_relay.html and canvas.html files that needed to be uploaded. In

newer installations, this line is now redundant because you no longer need to

upload any files.

2. Line 17, which is already prepopulated with your site ID. In this instance, it has

been removed for security reasons.The line also contains a reference to a callback

function that is passed a security token so that Google Friend Connect data can be

retrieved.This callback function is called every time the user’s identity becomes

known or changes.You will be populating the initAllData() function in the fol-

lowing section.

Save the code in Listing 9.1 and upload it to your web server as index.html, which

should match the URL you provided when you first set up Google Friend Connect. If all

was successful, when viewing the file in a web browser you should be greeted with a

pop-up and the words “Hello, world!”. If this wasn’t the case, recheck that your site ID

and callback function are correct.The three functions initAllData(), onData(), and

createActivity() will be updated as you progress through this chapter; you are now

ready to retrieve Google Friend Connect data.

171Using the Google Friend Connect JavaScript API

Working with Google Friend Connect Data

Google Friend Connect data is accessed through two sets of methods: the Google Friend

Connect JavaScript API, which is used to set up the container, initiate the OpenSocial

API, handle sign-in and -out processes, and render other OpenSocial gadgets; and the

OpenSocial API, for fetching and updating people, activities, and persistence.The

OpenSocial v0.8 specification, which is the current standard for Google Friend Connect,

is particularly extensive, so this section focuses on the most important methods and points

you in the right direction to explore the finer details of the OpenSocial API at your

leisure.

Google Friend Connect JavaScript API Methods

Methods in the Google Friend Connect JavaScript API fall into four categories: container

setup, pre-registration, post-registration, and gadget interaction. For methods that support

or require additional parameters, these take the form of a series of "key": "value" pairs

separated by a comma (,) and enclosed within curly parentheses ({}), which is one of the

data structures supported by JSON.

Container Setup Methods

You have used the two container setup methods, google.friendconnect.container.

setParentUrl() and google.friendconnect.container.initOpenSocialApi(), in the

code in Listing 9.1.The first accepts a single url parameter that points to the location of

rpc_relay.html and canvas.html.The second accepts two parameters: a required string

called site containing the site ID; and onload, which is an optional parameter giving the

name of the JavaScript callback function run every time the user’s identity becomes

known or changes.

Pre-Registration Methods

There are two pre-registration methods for prompting a user to sign in using Google

Friend Connect:

n For visual consistency, Google offers several options for generating buttons for

handling signing in to Google Friend Connect sites.To display a standard

Google Friend Connect button, you can use the google.friendconnect.

renderSignInButton() method, which accepts three parameters: id is a required

string containing the HTML element identifier where the button will be rendered;

text is an optional string containing the text to be displayed inside the button; and

style is the button style that can be set to standard, long, or text. For more

information about visual styles, visit the Google Friend Connect Buttons page

(http://code.google.com/apis/friendconnect/gfc_buttons.html).

n Alternatively, you can use the google.friendconnect.requestSignIn() method

to prompt a user to sign in using a link rather than a button.This method requires

visible attribution of the words “Friend Connect” in proximity to the link.A typical

http://code.google.com/apis/friendconnect/gfc_buttons.html

172 Chapter 9 An Overview of Google Friend Connect

usage is this: <a href="#" onclick="google.friendconnect.

requestSignIn();">Sign In with Google Friend Connect.

The pre-registration methods are part of a workflow of events, because you must

change the content of pages when a user’s identity becomes known or changes. For

example, once signed in, you will no longer have to display the Sign In with Google

Friend Connect button.

Post-Registration Methods

There are three post–registration methods.These are displayed only to signed-in users. In

other words, the display of a button or link for signing in and the options presented by

post-registration methods are binary. So, when one is on, the other should be off:

n A site becomes a lot more social with friends, and so the google.friendconnect.

requestInvite() method gives users a convenient way to invite their friends to

your site.With a single line of code, a highly interactive invitation pop-up window

is created, which can be customized via an optional opt_message string for pre-

populating the invitation message field.

n It is important that users have full control over their Google Friend Connect iden-

tity.The google.friendconnect.requestSettings() method enables users to

manage their account and friends or un-join your site. Like the invitation method,

the settings method opens up a pop-up window with a single line of code.

n The google.friendconnect.requestSignOut() method logs the user out of the

Google Friend Connect site.As with signing in, the method then calls the onload

handler when done.This can prove problematic if you need to perform any server-

side processing, such as maintaining a session, and so utilizing a counter for the

number of times the page has been loaded is a useful technique (see Chapter 10).

Although these methods are not mandated, they show good practice and are recom-

mended to ensure users have full control over their Google Friend Connect profile.As an

added bonus (and with little programming effort), the invitation method can promote

your site to a wider audience if members share details with their friends.

Gadget Interaction Methods

None of the methods in this section can be used within gadgets, but the google.

friendconnect.container.renderOpenSocialGadget() and google.friendconnect.

container.setNoCache() methods are useful for testing gadgets in a Google Friend

Connect environment. For example, you can combine ready-made gadgets such as

Activities or Members with custom code on your website.To disable gadget caching, you

just supply a 1 as the parameter, which is useful if you are debugging a gadget that is

being continually updated (e.g., the trunk of version-controlled source code). If you

explore any of the copy and paste gadgets from the Google Friend Connect Gadget

Gallery, you will notice the use of the renderOpenSocialGadget() method. In some

173An Overview of the OpenSocial API

instances, Google has created specialized methods, such as renderMembersGadget() and

renderSocialBar(), but the majority of gadgets do not use these specialized methods.

An Overview of the OpenSocial API
OpenSocial is a set of common APIs for social network applications developed by Google

along with MySpace and a number of other social network partners. It is now maintained

by the OpenSocial Foundation, a “non-profit, private foundation dedicated to the sustain-

able and open development of the OpenSocial initiative and related intellectual property.”

OpenSocial Specifications

At the time of this writing, the most current version of OpenSocial is v0.9, which added a

Lightweight JavaScript API using a new osapi namespace. This specification is used for

gadgets, but the v0.8 specification is used for the Google Friend Connect JavaScript API.

OpenSocial enables applications, social networks known as “containers,” and other

clients such as web, desktop, and mobile devices to collaborate and share social data. Every

OpenSocial container exposes the same set of APIs so that applications are portable across

all social networks.What OpenSocial does is provide an easy way for developers to create

applications that work across all social networks, in essence learning once and writing

everywhere.The OpenSocial JavaScript API and other client libraries provide access to

common concepts such as people and friends, activities, persistence (application data) and

messages. Unlike the Facebook Platform, OpenSocial does not have its own markup lan-

guage, but instead uses regular JavaScript and HTML so that developers are not locked

into the Google platform.

Apache Shindig

For those interested in hosting your own OpenSocial container like LinkedIn, hi5, or Zing,

check out Apache Shindig (http://shindig.apache.org/). Apache Shindig comprises of a

JavaScript container and implementations of the back-end APIs and proxy required for host-

ing OpenSocial applications. Apache Shindig is built on code donated by Ning, Inc. based on

their OpenSocial implementation.

For OpenSocial application developers, Google Friend Connect provides a whole new

audience for applications. Now every site that adopts Google Friend Connect is also an

OpenSocial container.

OpenSocial API Methods

The Google Friend Connect JavaScript Library provides “helper” methods for initiating

requests, but you will need to use the OpenSocial API to fetch and update Google Friend

Connect data.Two of the most popular methods from the opensocial namespace for

interacting via Google Friend Connect are as follows:

http://shindig.apache.org/

174 Chapter 9 An Overview of Google Friend Connect

n opensocial.newDataRequest()

n opensocial.requestCreateActivity()

A number of object “definitions,” such as opensocial.Person and opensocial.

Activity, provide references to the fields and types available for each object. For example,

an opensocial.Person contains fields such as NAME, THUMBNAIL_URL, and CURRENT_

LOCATION, which maps to an opensocial.Address object. In some instances, these fields

are not returned by default and therefore need to be referenced manually via additional

method parameters.

OpenSocial API Field Names

In the OpenSocial API documentation, many of the field names are listed in uppercase and

are separated with an underscore (_). However, in all cases, these can be used interchange-

ably with a “camel case” version. For example, CURRENT_LOCATION becomes

currentLocation. This is a matter of preference, and functionality will be the same

whichever naming structure is chosen (although you should stick to a single convention).

If you want to dive straight in and experience some of the OpenSocial API or the

Google Code AJAX APIs, Playground has an interactive sandbox for editing and debugging

code.You can use your own site ID in examples to imitate the Google Friend Connect

logic on your website.The remainder of this section focuses on the three popular methods

and introduces how to handle errors and use OpenSocial API “identifier specifications” and

parameters to customize methods.

The DataRequest Object

The best place to start is the DataRequest object, which is initiated via a call to the

opensocial.newDataRequest() method.Although initiating the object does not request

any OpenSocial data, it provides a mechanism for “attaching” other requests, which are

then pooled so that you can retrieve all the information that you need by sending a single

request rather than initiating multiple asynchronous requests and handling their responses

individually.After a DataRequest object has been created, requests can be attached using

the add() method and finally submitted via the send() method.This is best explained via

an example, which should be added inside the initAllData() function that you have

already created in Listing 9.1:

1 function initAllData() {

2 var req = opensocial.newDataRequest();

3 req.add(req.newFetchPersonRequest("VIEWER"), "viewer");

4 req.add(req.newFetchPersonRequest("OWNER"), "owner");

5 req.send(onData);

6 }

The DataRequest object is initiated in line 2 and is assigned to the req JavaScript vari-

able. Lines 3 and 4 contain two requests for OpenSocial person data, which will be

explained further in the “Fetching People and Profiles” section.The add() method

175An Overview of the OpenSocial API

requires two parameters to be set: the request itself, and a unique label for that request so

that responses can be handled separately. Finally, the request is sent on line 5, which

includes a parameter representing the JavaScript callback function to be executed after the

request has been completed (with errors or not).All responses are packaged inside an

opensocial.ResponseItem object, which provides methods for testing whether there was

an error and for getting the data from within the response.To extend the example above,

replace the onData() function in Listing 9.1 with the following code:

1 function onData(data) {

2 if (!data.get("viewer").hadError()) {

3 var viewer_data = data.get("viewer").getData();

4 alert(viewer_data.getDisplayName());

5 } else {

6 alert("Viewer is anonymous");

7 }

8 if (!data.get("owner").hadError()) {

9 // Process "owner" data

10 } else {

11 // Process "owner" error data

12 }

13 }

If you resave and upload the new index.html file to your web server, you should see

an alert box containing either your Google Friend Connect display name if already logged

in or an alert box saying Viewer is anonymous. In lines 2 and 8, you can see an example

of the hadError() method of the opensocial.ResponseItem object, which also returns

true for a null value such as the viewer not being signed in the code above. Line 3

demonstrates the getData() method, and line 4 the getDisplayName() method of the

opensocial.Person object.The parameter in the get() method on lines 2, 3, and 8 is set

to the unique labels for viewer and owner data.

Debugging with Firebug

If you use Mozilla Firefox, it is recommended that you install the Firebug developer plug-in for

interrogating the JSON outputs of each of the methods. If you enable the console and

browse to the Net tab and then look for the request beginning with POST rpc, you can ana-

lyze the response from the console.

The code snippet could be used for toggling between the pre- and post-registration

controls from the Google Friend Connect JavaScript Library; if the viewer is not known,

he or she could be requested to sign in with Google Friend Connect.Through the

DataRequest object, you can request social information such as people, activities, and per-

sistence, which will be explored in the remainder of this section.A full integration exam-

ple provided by Google (http://ossamples.com/api/) demonstrates each of these methods

should you want to edit the source and experiment with other parameters.

http://ossamples.com/api/

176 Chapter 9 An Overview of Google Friend Connect

Fetching People and Profiles

You have already seen one of the people methods when calling

newFetchPersonRequest() with the VIEWER and OWNER parameters. In the context of a

Google Friend Connect site, the use of the OWNER parameter in this request returns the

site’s profile information, and VIEWER returns the logged-in user. If you want to access the

site’s owner and administrators, its members, or a user’s friends who are also members of

the site, you use the newFetchPeopleRequest() and provide an opensocial.IdSpec to

define which you would like. For example:

1 function initAllData() {

2 var req = opensocial.newDataRequest();

3 var idspec = new opensocial.IdSpec({

4 "userId": "OWNER",

5 "groupId": "FRIENDS"

6 });

7 var params = {

8 "max": 8,

9 "profileDetail": [

10 opensocial.Person.Field.ID,

11 opensocial.Person.Field.NAME,

12 opensocial.Person.Field.THUMBNAIL_URL,

13 opensocial.Person.Field.PROFILE_URL

14],

15 "sortOrder": [

16 opensocial.DataRequest.SortOrder.NAME

17]

18 };

19 req.add(req.newFetchPeopleRequest(idspec, params), "members");

20 req.send(onData);

21 }

The userId can be one of OWNER or VIEWER depending on whether you want the site’s

“friends” (members) or the viewers’ friends. In most, but not all, instances, groupId can be

set to ADMINS, ALL, FRIENDS, or SELF. If the userId is set to OWNER and groupId to

ADMINS, you can display the site’s owner and administrators. In the example above, param-

eters were used to request a maximum of eight members and additional profile informa-

tion. Not all fields are returned by default, so PROFILE_URL needed to be included

manually.The fields that are available by default can be found in the opensocial.Person

documentation. In the code from “The DataRequest Object” section, you used the

getDisplayName() method, but if you had included PROFILE_URL in your parameters,

you could have added a call to getField("profileUrl") to get the profile URL of the

viewer. Other parameters can be found within the documentation for the DataRequest

object, including filters and sorting:

function onData(data) {

members = data.get("members").getData();

var member_list = document.getElementById("members");

177An Overview of the OpenSocial API

Table 9.1 The Activities Fetched by the OpenSocial API

Method Data

newFetchActivitiesRequest("OWNER") Not supported.

newFetchActivitiesRequest(

new opensocial.IdSpec({

"userId": "OWNER",

"groupId": "FRIENDS"

})

)

Returns all the site member’s activities.

member_list.innerHTML = "";

if (members.size() > 0) {

members.each(

function(member) {

member_list.innerHTML += "<p>" + member.getDisplayName() + "</p>";

}

);

} else {

member_list.innerHTML = "There are no site members";

}

}

Inside the callback function, you can use a combination of the JavaScript size() and

each() functions to iterate through the members and parse the data in any way you like.

In this case, updating a predefined HTML element <div id="members"></div> for each

member or displaying a paragraph “There are no site members” if no persons have added

themselves to the site.

Fetching and Updating Activities

The OpenSocial API lets users share activities with their friends through an activity

stream.An activity can be anything from modifying an application’s state to writing an

online book review. Google Friend Connect site members can specify whether they want

their activities posted to other Google Friend Connect-enabled sites and linked in other

social networks such as orkut or Twitter. Users can set this preference in their Google

Friend Connect settings; this is not a default action. Site owners may want to offer this as

a recommendation for their users by making them aware of that functionality.

Activities can be requested through the DataRequest object’s

newFetchActivitiesRequest() method but are created via the

opensocial.requestCreateActivity() method.Table 9.1 summarizes the activities that

can be requested via Google Friend Connect:

178 Chapter 9 An Overview of Google Friend Connect

Table 9.1 The Activities Fetched by the OpenSocial API

Method Data

newFetchActivitiesRequest("VIEWER"

)
If the user is signed out, this returns null;

otherwise, it returns the viewer’s activities

across all Google Friend Connect sites.

newFetchActivitiesRequest(

new opensocial.IdSpec({

"userId”: "VIEWER",

"groupId": "FRIENDS"

})

)

If the user is signed out, this returns null;

otherwise, it returns the friends’ activities of

the viewer across all Google Friend Connect

sites.

In addition to the activities automatically generated when users join a Google Friend

Connect site to their profile, you can add your own activities through the opensocial.

requestCreateActivity() method.The opensocial.Activity object contains both

title and body parameters for specifying the primary text and an optional expanded ver-

sion of an activity. For gadgets, it is suggested that Activity templates be used to support

internationalization and that message variables be replaced (but that’s not required in this

instance). Using the code from Listing 9.1, you can now add the createActivity()

function:

function createActivity() {

var activity = opensocial.newActivity({

title: viewer.getDisplayName() + " created an activity."

});

opensocial.requestCreateActivity(

activity,

"HIGH",

function() { setTimeout(initAllData, 1000); }

);

}

In the code example, an activity is constructed and then created via a call to the

opensocial.requestCreateActivity() method.The HIGH parameter is the activity pri-

ority, which means it will be created even if it requires asking the user for permission.A

LOW priority means it will not be created if the user has not given permission for the cur-

rent application to create activities. Finally, a callback function is provided and will be run

after 1,000ms.A simple way to test this function is to use a <button

onclick="createActivity();">Create Activity</button>.

Fetching and Updating Persistence

The OpenSocial API defines a data store that applications can use to read and write per-

user and per-application data known as app data. An in-depth view of The Persistence API

is documented on the OpenSocial wiki

179An Overview of the OpenSocial API

(http://wiki.opensocial.org/index.php?title=The_Persistence_API), although this can be

reduced to three primary functions of updating, fetching, and removing data.All functions

utilize the DataRequest object explored earlier and use the

newUpdatePersonAppDataRequest(), newFetchPersonAppDataRequest(), and

newRemovePersonAppDataRequest() methods.The basic premise is that each piece of

data contains a unique identifier for associating the stored data item with a particular user,

a “key” for this data, and the data itself, which must be a formatted as a JSON string.

Translating JavaScript Values to JSON Strings

The gadgets.json object provides two utility methods for converting JavaScript values into

JSON strings. The stringify() and parse() methods prove particularly useful when you

are creating JSON for updating app data if you have more than one value that you want to

update at once.

If you try to update a person’s app data using a previously defined key, the new value

will just replace the existing value.This means that you can set and reset app data as many

times as you want. For example:

1 function initAllData() {

2 var currentTime = new Date().getTime().toString();

3 var currentDate = new Date().getDate().toString();

4 var dateAndTime = {

"currentTime": currentTime,

"currentDate": "" + currentDate + ""

};

5 var json = gadgets.json.stringify(dateAndTime);

6 var req = opensocial.newDataRequest();

7 var idspec = new opensocial.IdSpec({

"userId": "VIEWER",

"groupId": "SELF"

});

8 var params = {

"escapeType": [

opensocial.EscapeType.HTML_ESCAPE

]

};

9 req.add(req.newUpdatePersonAppDataRequest("VIEWER", "time",

json), "update");

10 // req.add(req.newFetchPersonRequest("VIEWER"), "viewer");

11 // req.add(req.newFetchPersonAppDataRequest(idspec, "time",

params), "data");

12 // req.add(req.newRemovePersonAddDataRequest("VIEWER","time"));

13 req.send(onData);

14 }

An optional callback has been included to check whether an error has occurred, which

is important for general OpenSocial applications because some containers do not support

http://wiki.opensocial.org/index.php?title=The_Persistence_API

180 Chapter 9 An Overview of Google Friend Connect

the persistence layer.A successful update does not return any data.The fetch data parame-

ter can be set to HTML_ESCAPE or NONE and is used to HTML-escape outputs, which may

corrupt the display or could even expose security vulnerabilities if left as NONE. If you

choose to set the HTML_ESCAPE parameter, you must unescape the “stringified” JSON

object before parsing.The gadgets.util object has an unescapeString() method that

can be used as follows:

var unescaped_string = gadgets.util.unescapeString(json_data);

var json = gadgets.json.parse(unescaped_string);

If you comment out lines 2 to 9 and uncomment lines 10 and 11, you can add the fol-

lowing callback for fetching the app data:

function onData(data) {

var viewer_data = data.get("viewer");

var data_data = data.get("data");

if (!viewer_data.hadError() && !data_data.hadError()) {

var viewer = viewer_data.getData();

var data = data_data.getData();

var viewer_data = data[viewer.getId()];

if (viewer_data) {

var unescaped_string = gadgets.util.unescapeString(

viewer_data["time"]);

var json = gadgets.json.parse(unescaped_string);

alert(json["currentTime"]);

alert(json["currentDate"]);

} else {

alert("Time not found");

}

} else {

// Process "viewer" and "data" error data

}

The returned app data is contained in a JavaScript map indexed by a data key, which is

in turn contained within another map indexed by an OpenSocial ID.To access the

viewer’s data, you also need the viewer’s ID, which is why the viewer is also fetched.

Because app data can be fetched for several individuals simultaneously, it is necessary to be

contained within this structure. Using the method above, you can access each of the stored

values via the json object, which is the parsed version of the unescaped string stored in

the data store.

You might sometimes want to remove app data from the data store.Again, the

DataRequest object is used, and a request is made to the

newRemovePersonAppDataRequest() method, which accepts an OpenSocial ID as its first

parameter and the name of a key or set of keys as the second parameter. If you uncom-

ment line 12 in the code above, this will remove the time app data that you stored for the

current viewer. Multiple keys can be removed by specifying ["key1", ..., "keyN"] in

181An Overview of the OpenSocial API

Figure 9.3 Color Picker: A sample application using Google Friend

Connect.

replace of the time parameter, and if you want to clear all keys simultaneously, you can use

the asterisk (*) character.

Color Picker: A Google Friend Connect Application

Having explored some of the most popular methods of both the Google Friend Connect

JavaScript API and the OpenSocial API, you should now be able to pool together all this

knowledge into creating a simple Google Friend Connect application. Being a developer,

sometimes the best way to learn something is to be able to dissect a worked example. For

this, a sample site has been created to showcase Google Friend Connect in action: http:/

/socprog.thebubblejungle.com/google/.

The example demonstrates how to access site member details, sign in with Google

Friend Connect, publish and display activities, and store and fetch app data (see Figure 9.3).

Once signed in to Google Friend Connect, you can pick a color and it will automati-

cally be created as an activity.The application also uses app data to store when users last

logged in and displays the most recent members at the top of the application to demon-

strate how users can be extracted, instead of using the embeddable Members gadget.

http://socprog.thebubblejungle.com/google/
http://socprog.thebubblejungle.com/google/

182 Chapter 9 An Overview of Google Friend Connect

Known Limitations

At the time of this writing, the Google Friend Connect JavaScript Library does not function

correctly in the Opera web browser. Two issues prevent gadgets from being rendered and

sign-in functions working correctly (due to reported security errors). In time, these issues will

most likely be resolved, and this will be reflected in the code examples.

You can get this example up and running on your own web server in three steps:

1. Register your site on the Google Friend Connect website and install and configure

the JavaScript Library.

2. Download the HTML source code from the sample site, edit the variables SITE_ID

and FILE_LOCATION to mirror your web server, save as index.html, and then

upload the file to your web server.

3. Finally, visit your newly uploaded page in a web browser and test that you can sign

in and pick a color. If you find that your page throws an error, double-check your

SITE_ID and FILE_LOCATION.

The application construction can be broken into five associated phases: registering and

configuring the Google Friend Connect library, enabling sign-in functionality, retrieving

members, posting and retrieving activities, and storing (and retrieving) app data.These are

explored in the remaining sections of this chapter.Along with the HTML code, you

should also create the following CSS file containing all the styles used in the application:

body { font-family: Arial, sans-serif; text-align: center; }

h1 { color: #07c; font-size: 1.3em; font-weight: normal; }

h2 { color: #666; font-size: 1em; font-weight: normal; padding: 0 0 4px 0;

margin: 0; }

h3 { color: #666; font-size: 0.9em; font-weight: normal;

padding: 0 0 4px 0; margin: 0; }

.page { width: 700px; margin: 0 auto; padding: 5px; text-align:left; }

.left { float: left; width: 40%; border-right: 1px solid #666;

padding-right: 50px; }

.right { float: left; padding-left: 50px; width: 40%; }

.clear { clear: both; height: 5px; }

.footer { font-size: 0.8em; color: #666; text-align: center; }

#recentMembers { padding: 10px 0; }

#recentActivities { width: 300px; border: 1px solid #ddd; }

#colorTable { width: 100%; }

#colorPicker { margin: 20px 40px; }

#redCell { border: 3px solid #666666; }

.color { width: 20px; height: 20px; border: 3px solid #e5ecf9; }

.red { background-color: red; }

.orange { background-color: orange; }

.green { background-color: green; }

.yellow { background-color: yellow; }

183An Overview of the OpenSocial API

.blue { background-color: blue; }

.pink { background-color: pink; }

.memberPhoto { width: 65px; height: 65px; border: 0; padding-right: 5px; }

This file should be saved as style.css and uploaded to your server alongside the

HTML file, which should be named index.html.

Registering and Configuring Google Friend Connect

To get started, you must first register a new application by visiting http://www.google.

com/friendconnect and clicking the “Add New Site” link, which is located in the lower

left of the main window.The form requires a website name,“Color Picker”, and website

URL, which must be set to a location on your web server where the style.css and

index.html are to be uploaded.After these two parameters have been saved, you should

be able to input the site ID into line 14 of the code below, which will be shown as an id

parameter in your browser’s address bar:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="Content-type" content="text/html;charset=UTF-8" />

5 <title>Color Picker</title>

6 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

7 <script type="text/javascript">

8 /* <![CDATA[*/

9 google.load("friendconnect", "0.8");

10 /*]]> */

11 </script>

12 <script type="text/javascript">

13 /* <![CDATA[*/

14 var SITE_ID = "ADD YOUR SITE ID HERE";

15 var FILE_LOCATION = "/";

16 google.friendconnect.container.setParentUrl(FILE_LOCATION);

17 google.friendconnect.container.initOpenSocialApi({

18 site: SITE_ID,

19 onload: function(securityToken) { initAllData(); }

20 });

21 /*]]> */

22 </script>

23 <link href="style.css" media="screen" rel="stylesheet"

type="text/css" />

24 </head>

With your new site ID added to line 14, the remainder of the <head> element con-

tains Google Friend Connect initialization code.After the library has been initialized, a

call is made to the initAllData() JavaScript function, which is described later in this

http://www.google.com/friendconnect
http://www.google.com/friendconnect

184 Chapter 9 An Overview of Google Friend Connect

section.The naming of this function is not fixed, but it is conventional to use this descrip-

tor. If you have named the style sheet anything other than style.css, line 23 is where

you reference your renamed file.With the header complete, it is time to move on to the

document body:

25 <body>

26 <div class="page">

27 <h1>Welcome to this site</h1>

28 <p>This site demonstrates in-page integration with Google Friend

Connect and its JavaScript API.</p>

29 <!-- Placeholder for Members HTML //-->

30 <div class="left">

31 <h2>Instructions</h2>

32 <p>To get started, click the button below to become a member of

this site. After joining, you will automatically appear above as

a recent member.</p>

33 <!-- Placeholder for Sign In HTML //-->

34 <!-- Placeholder for App Data HTML //-->

35 <!-- Placeholder for Activity HTML //-->

36 </div>

37 <div class="right">

38 <!-- Placeholder for Activity HTML //-->

39 </div>

40 <div class="clear"></div>

41 <div class="footer">

42 <p>Example inspired by "Color

Picker".</p>

43 </div>

44 </div>

The first part of the <body> element contains the HTML, which will be dynamically

updated by JavaScript. For example, on line 27 the site name will be updated appropri-

ately if it can be retrieved. Other placeholders, such as on lines 29, 33 to 35, and 38, are to

be replaced during the remaining sections (for displaying a login button and site mem-

bers, for instance).The second part of the <body> element contains the JavaScript for

updating the HTML elements:

45 <script type="text/javascript">

46 /* <![CDATA[*/

47 var viewer, owner, members;

48 function initAllData() {

49 // var buttonHtml = document.getElementById("button").disabled

= true;

50 var params = {

51 "max": 8,

52 "profileDetail": [

53 opensocial.Person.Field.ID, opensocial.Person.Field.NAME,

185An Overview of the OpenSocial API

54 opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL

55]

56 };

57 var idspecOwner = new opensocial.IdSpec({"userId": "OWNER",

"groupId": "FRIENDS"});

58 var idspecViewer = new opensocial.IdSpec({"userId": "VIEWER",

"groupId": "SELF"});

59 var req = opensocial.newDataRequest();

60 req.add(req.newFetchPersonRequest("OWNER", params), "owner");

61 req.add(req.newFetchPersonRequest("VIEWER", params), "viewer");

62 req.add(req.newFetchPeopleRequest(idspecOwner, params), "members");

63 req.add(req.newFetchPersonAppDataRequest(idspecViewer, "time",

params), "data");

64 req.send(onData);

65 }

The JavaScript is split into two sections containing the initAllData() function for

extracting OpenSocial data and the onData() function for parsing responses.To ensure

that variables are available to all functions, viewer, owner, and members are defined on

line 47. Data from lines 57, 58, and 61 to 63 are used later in this section for extracting

details about the viewer of the site (a logged-in Google Friend Connect user), its mem-

bers, and a user’s app data. Finally, the batch of requests is sent on line 64, including the

name of a callback function, which is defined on lines 66 to 78:

66 function onData(data) {

67 var siteNameHtml = document.getElementById("siteName");

68 if (!data.get("owner").hadError()) {

69 owner = data.get("owner").getData();

70 siteNameHtml.innerHTML = owner.getDisplayName();

71 } else {

72 siteNameHtml.innerHTML = "this site";

73 }

74 <!-- Placeholder for Sign In JavaScript //-->

75 <!-- Placeholder for Members JavaScript //-->

76 <!-- Placeholder for App Data JavaScript //-->

77 <!-- Placeholder for Activity JavaScript //-->

78 }

79 /*]]> */

80 </script>

81 </body>

82 </html>

The onData() function will be expanded in later sections but already contains code to

update the siteName element on line 27. If there was an error retrieving this

value, the text will be set to this site.

186 Chapter 9 An Overview of Google Friend Connect

Enabling Sign-In Functionality

With the core of the application complete, it’s time to start adding specific functionality.

The first set of code is for enabling users to sign in using Google Friend Connect.This

includes replacing the HTML on line 33 with the following:

<div id="viewerInfo"><h3>Login</h3></div><p id="gfcButton"></p>

This code will display a heading and element to be replaced by a rendered Google

Friend Connect button.To enable this, you must update the JavaScript on line 74 to make

use of the viewer data requested on line 61:

var viewerInfoHtml = document.getElementById("viewerInfo");

var gfcButtonHtml = document.getElementById("gfcButton");

if (data.get("viewer").hadError()) {

google.friendconnect.renderSignInButton({

"id": "gfcButton",

"style": "standard"

});

gfcButtonHtml.style.display = "block";

viewerInfoHtml.innerHTML = "<h3>Login</h3>";

} else {

gfcButtonHtml.style.display = "none";

viewer = data.get("viewer").getData();

var html = '<img src="' + viewer.getField("thumbnailUrl") +

'" height="65" width="65" alt="' + viewer.getDisplayName() +

'" />
';

html += "Hello, " + viewer.getDisplayName() + ".
";

html += '

Settings | ';

html += '

Invite | ';

html += '

Sign Out';

var buttonHtml = document.getElementById("button").disabled = false;

viewerInfoHtml.innerHTML = html;

// updateAppData();

}

This code first creates references to the two HTML elements, viewerInfo and

gfcButton, which will be updated dynamically. If there was an error retrieving user data,

such as if the user is not logged in, the Google Friend Connect login button will be

shown; otherwise, the gfcButton element will be hidden, and viewerInfo replaced with

the user’s display name and three links to edit the user’s settings, invite friends, and sign

out.The final line, which references the updateAppData() function, has been commented

out because it has not been created yet.

187An Overview of the OpenSocial API

Retrieving Site Members

After allowing users to sign in, it is now possible to start retrieving a list of members and

displaying them in the application.The first snippet of HTML replaces the original line 29:

<h2>Recent Members</h2><p id="recentMembers">Loading...</p>

The HTML element is supported by a block of JavaScript that parses the data

requested on line 62, which replaces the placeholder on line 75:

var membersHtml = document.getElementById("recentMembers");

if (!data.get("members").hadError()) {

members = data.get("members").getData();

membersHtml.innerHTML = "";

if (members.size() > 0) {

members.each(

function(member) {

membersHtml.innerHTML += '<a href="' + member.getField("profileUrl") +

'" title="' + member.getDisplayName() + '"><img class="memberPhoto"

src="' + member.getField("thumbnailUrl") + '" height="65" width="65"

alt="' + member.getDisplayName() + '" />';

}

);

} else { membersHtml.innerHTML += "There are no site members."; }

} else {

membersHtml.innerHTML = "There was an error retrieving site members.";

}

The code first registers the link between the recentMembers HTML element to be

updated dynamically with the retrieved data. If no members are available or there was an

error gathering data, an appropriate error message is shown. Because the params on lines

50 to 56 define the fields and number of results to be returned, a maximum of eight

members will be returned along with a profile URL, display name, and thumbnail URL.

If these additional fields were not added as parameters, they would not be available to be

displayed.

Posting and Retrieving Activities

After users have logged in, you can get them to create events on your site such as posting

status updates, rating articles, or updating their mood.These interactions are stored by

Google, but can also be sent to users’ other social accounts (e.g.,Twitter) if they have

added them to their Google profile.To add activities to Color Picker, you should add the

following HTML, which replaces line 35 of the code above:

<p>Once you've joined you can generate an activity by clicking a color

below and pressing the "Pick" button:</p>

<div id="colorPicker">

<table id="colorTable" cellspacing="10">

<tr>

188 Chapter 9 An Overview of Google Friend Connect

<td><div class="color red" onclick="pickColor(this, 'red');"

id="redCell"></div></td>

<td><div class="color orange" onclick="pickColor(this, 'orange');">

</div></td>

<td><div class="color green" onclick="pickColor(this, 'green');">

</div></td>

<td style="width: 10px;" rowspan="2"><button onclick="

createActivity();" id="button" disabled="disabled">Pick</button></td>

</tr>

<tr>

<td><div class="color yellow" onclick="pickColor(this, 'yellow');">

</div></td>

<td><div class="color blue" onclick="pickColor(this, 'blue');">

</div></td>

<td><div class="color pink" onclick="pickColor(this, 'pink');">

</div></td>

</tr>

</table>

</div>

This HTML generates a selection palette of colors that executes a pickColor()

JavaScript function that parses the color name and creates an activity. By default, the

Submit button is disabled because when users first visit a page they will not be logged in.

After they have logged in, it will execute the createActivity() function. Because this is

the client-side version, all the event handling is in JavaScript. However, this functionality

could also be executed server-side using AJAX if you want. Chapter 10 provides more

information on the server-side implementation of Google Friend Connect and

OpenSocial.The code below should replace the placeholder on line 77:

var color = "red";

var lastColorDiv = document.getElementById("redCell");

function pickColor(div, newColor) {

color = newColor;

div.style.border = "3px solid #666666";

lastColorDiv.style.border = "3px solid #e5ecf9";

lastColorDiv = div;

};

function createActivity() {

if (viewer) {

var activity = opensocial.newActivity({

title: viewer.getDisplayName() + " picked " + color + " as

their favorite color."

});

opensocial.requestCreateActivity(activity, "HIGH", function() {

setTimeout(initAllData, 1000); });

} else { alert("There was an error creating an activity"); }

}

189An Overview of the OpenSocial API

The important part about this code is that it sets the first color, red, as the active ele-

ment.This ensures that a value is always sent to the pickColor() function.The function

updates the HTML depending on the color that the user has picked and highlights the

particular color cell with a colored border.The createActivity() function tests to see

whether the viewer parameter has been set and then creates a new Activity object.The

activity itself will contain the user’s display name along with the color that the user

picked.The activity will then be created, and after 1,000ms the initAllData() callback

function will be executed.This could also be used to update an element or display a suc-

cess or failure message to the user:

<h2>Latest Site Activity</h2><p id="recentActivities"></p>

To display activities, the prebuilt Activities gadget will be used.To initiate the gadget,

you are required to create a placeholder element that replaces line 38 of the code above.

The gadget itself is created within the JavaScript code block, which should be appended

underneath the pickColor() and createActivity() functions:

var skin = {};

skin["HEIGHT"] = "250";

skin["BORDER_COLOR"] = "#cccccc";

skin["ENDCAP_BG_COLOR"] = "#e0ecff";

skin["ENDCAP_TEXT_COLOR"] = "#333333";

skin["ENDCAP_LINK_COLOR"] = "#0000cc";

skin["ALTERNATE_BG_COLOR"] = "#ffffff";

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_LINK_COLOR"] = "#0000cc";

skin["CONTENT_TEXT_COLOR"] = "#333333";

skin["CONTENT_SECONDARY_LINK_COLOR"] = "#7777cc";

skin["CONTENT_SECONDARY_TEXT_COLOR"] = "#666666";

skin["CONTENT_HEADLINE_COLOR"] = "#333333";

google.friendconnect.container.renderOpenSocialGadget({

id: "recentActivities",

url: "http://www.google.com/friendconnect/gadgets/activities.xml",

height: 250,

site: SITE_ID,

"view-params": {"scope": "SITE"}

}, skin);

The gadget itself scopes the whole site, but could also be set to FRIENDS, which would

display activities that the viewer’s friends have made. Feel free to change any of these

parameters to change the colors of the gadget itself.

Storing and Retrieving Application Data

The final benefit of using Google Friend Connect is the ability to store user-level data via

its application data store.This data must be JSON encoded and can contain anything from

user preferences to new profile data. For this example, it is used to store the date that the

user last logged in. Before delving into the details of this function, first uncomment the

190 Chapter 9 An Overview of Google Friend Connect

updateAppData() line used in the sign-in process.This line ensures that each time a user

logs in, a new date is recorded.The following HTML replaces the placeholder on line 34

for displaying a simple text block:

<p id="date">Loading...</p>

Within the onData() function on line 76, the following code checks whether app data

has already been set and then renders it to users. If this is the first time that they have

logged in, no data will be available for their last login, which is displayed to them. In this

code snippet, the date JSON, which contains two keys, currentTime and currentDate, is

parsed and set using the toLocaleDateString() function:

var dateHtml = document.getElementById("date");

if (!data.get("data").hadError()) {

var data = data.get("data").getData();

var viewer_data = data[viewer.getId()];

if (viewer_data) {

var unescaped_string = gadgets.util.unescapeString(viewer_data["time"]);

var json = gadgets.json.parse(unescaped_string);

var date = new Date();

date.setTime(json["currentTime"]);

dateHtml.innerHTML = "Last Login Date: " + date.toLocaleDateString();

} else {

dateHtml.innerHTML = "Last Login Date: Not Available.";

}

} else { dateHtml.innerHTML = ""; }

To update the app data for a user, add the following function to your JavaScript code

block. It gets the current date and time and translates it into a JSON string.The string is

then associated with the user and sent to storage:

function updateAppData() {

var currentTime = new Date().getTime().toString();

var currentDate = new Date().getDate().toString();

var dateAndTime = {

"currentTime": currentTime,

"currentDate": "" + currentDate + ""

};

var json = gadgets.json.stringify(dateAndTime);

var req = opensocial.newDataRequest();

req.add(req.newUpdatePersonAppDataRequest("VIEWER", "time",

json), "update");

req.send();

}

With the code now complete, you can save the file as index.html and upload it

alongside the style.css file to the location set in the Google Friend Connect settings

page. Either using the sample site or the one that you have just created and uploaded, test

191Summary

out signing in and out or picking a color, and then investigate the “behind the scenes”

interactions via a developer tool such as Firebug or the in-built developer tools in

Internet Explorer, Google Chrome, or Apple Safari.Also, why not update the code by

adding a new gadget, displaying more member information, or storing additional infor-

mation via the data store?

Summary
The beauty of Google Friend Connect is its simplicity and extensibility. For example,

its wizard-like interface is great for beginners who want a copy-and-paste solution to add

interactivity to their website through gadgets and plug-ins. For developers, there are a

wide range of options for adding interactivity through the client-side JavaScript API or

server-side through utilizing the OpenSocial RESTful and RPC protocols.The Google

Friend Connect JavaScript API and OpenSocial API provide you with a way of integrat-

ing social features into your website, such as profiles and friends and the ability to gener-

ate “activities.” Some of the ways in which these can be used are for recording site

members, registering comments, and providing login functionality. Because the libraries

are client side, you can embed them directly into static pages without having to worry

about creating complex server-side code.This chapter explored some of the most com-

mon methods contained within these libraries and ended with an example that brought

together all the functions that were discussed.The next chapter examines server-side inte-

gration using OpenSocial and Google Friend Connect.

This page intentionally left blank

10

Server-Side Authentication
and OpenSocial Integration

Chapter 9,“An Overview of Google Friend Connect,” explored the Google Friend

Connect JavaScript API and OpenSocial API for integrating social features directly into

websites. However, what if you already have a login system and want to extend it to

accept Google Friend Connect logins? Because Google Friend Connect supports the

OpenSocial RESTful and RPC protocols, it is possible to access OpenSocial data from a

website or any other Internet-enabled device outside of a gadget or a standard web page.

With authentication and secure server-to-server communication handled through

OAuth, and the fcauth authentication cookie or the security token for gadgets provided

by Google Friend Connect, you can give users peace of mind that their data is being han-

dled securely and safely away from prying eyes.

This chapter demonstrates how to use the PHP OpenSocial client library in conjunc-

tion with the skills learned in Chapter 9 for Google Friend Connect and OpenSocial

server-side integration.This includes fetching site members and creating and fetching

activities and app data. Many of the steps and advice should be transferable to any of the

other available client libraries (including Java, Python, and Ruby).

Server-Side OpenSocial Protocols and
Authentication Methods
Two major disadvantages for advanced developers of Google Friend Connect are that

their application code is exposed to the public through viewing the source of their pages

when using the client-side JavaScript libraries and that they cannot take advantage of fully

integrating with their server-side systems (for example, linking a Google Friend Connect

profile to an existing profile on your website so that data you have already stored can be

displayed to the user).Working in conjunction with the client-side Google Friend

Connect JavaScript API for authentication, you can soon start to build some complex

applications using the knowledge you have already acquired via easy-to-use OpenSocial

client libraries. Using the server-side implementation of these technologies, you can

194 Chapter 10 Server-Side Authentication and OpenSocial Integration

Table 10.1 Google Friend Connect OpenSocial RESTful and RPC Protocol Endpoints

API Endpoint Supported Requests

People REST /people/ GET

Activity REST /activity/ GET, POST, DELETE, PUT

App Data REST /appdata/ GET, POST, DELETE, PUT

All RPC /rpc POST

extend Google Friend Connect past websites and onto any Internet-enabled platform

such as mobile phones or game consoles.

Both the OpenSocial RESTful and RPC protocols enable developers to access and

update OpenSocial container data via HTTP through a number of URL-addressable

endpoints. Google Friend Connect supports four such endpoints for accessing data:

through GET (or POST in the case of the All RPC endpoint), updating through POST and

PUT, and deleting through DELETE requests. In the case of Google Friend Connect, not all

endpoints support all operations, as shown in Table 10.1. (All endpoints have the common

http://www.google.com/friendconnect/api URL stub.)

You may have noticed that when debugging your code in Chapter 9 that you came

across requests that began with POST rpc.This was in fact a call to the All RPC endpoint

with additional parameters supplied for the authentication method, which would have

taken the form of a gadget security token (st) parameter.Three Google Friend Connect

authentication methods are explored in the following section.To access data, you make a

request using one of the endpoints either using cURL from the command line or inside

your server-side code adding two additional parameters (userId such as @me) and

groupId (such as @self or @friends).A typical request looks something like this:

http://www.google.com/friendconnect/api/people/@me/@self?fcauth=XXXX

Instead of handling requests in this raw form, you should use a specialized client

library that has been purpose built to reduce the barrier to entry for developers new to

OpenSocial. But first, let’s look at the three authentication methods supported by

Google Friend Connect: gadget security tokens, authentication cookies, and standard

two-legged OAuth.

Google Friend Connect Authentication Methods

Google Friend Connect provides three authentication methods to apply in different sce-

narios. For example, the client-side example in Chapter 9 used a security token, which

was passed via the onload parameter of the

http://www.google.com/friendconnect/apiURLStub

195Server-Side OpenSocial Protocols and Authentication Methods

google.friendconnect.container.initOpenSocialApi() method without you even

realizing.A security token is preferred for gadget developers because it provides a short-

lived token that offers access to information about the site, gadget, and the viewer (which

is discussed further in Chapter 11,“Developing OpenSocial Gadgets with Google Friend

Connect”).Two additional authentication methods are provided for use by site owners for

online and offline processing: the Friend Connect authentication cookie, and standard

two-legged OAuth.

The Google Friend Connect Authentication Cookie

Whenever a user signs in using Google Friend Connect, an fcauth cookie is placed on

the domain of the site named fcauthXXXXXXXXXXXXXXXXXXXX, where

XXXXXXXXXXXXXXXXXXXX should be replaced by the numeric site identifier found in the

Google Friend Connect administration page for your site.The cookie is long-lived,

meaning that it will expire after a number of days or until the user signs out of your site

and is unique to the user who signed in. Using a developer plug-in such as Firecookie,

you should be able to identify the fcauth cookie if you select the Cookies tab within the

application. In PHP, this fcauth cookie can be retrieved using the following code:

$cookieIdentifier = "fcauthXXXXXXXXXXXXXXXXXXXX";

$cookie = (isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier]

: null);

The code checks to see whether the fcauth cookie has been set, and if so, it assigns its

value to the $cookie parameter; otherwise, $cookie is set to null.You now know that if

a cookie is available, and more important valid, you can start requesting OpenSocial data.

The advantage of this method is that the presence of a cookie can be checked every time

a request is to be made, but the major disadvantage is that it is not suitable for offline pro-

cessing through which actions are performed in the absence of the user. For this, you can

utilize the standard two-legged OAuth authentication method.

Standard Two-Legged OAuth

There are two flavors of OAuth: two-legged authentication and three-legged authentica-

tion.When the term OAuth is used, it is most frequently used to describe the three-

legged version through which users go through a “dance” when they start on an OAuth

“consumer” site and are then redirected to the OAuth “provider,” site where they are

asked to approve access by the consumer site to their data. If approval is given, they are

then bounced back to the OAuth consumer site, where it can start using their authenti-

cated credentials to access data.Two-legged OAuth, on the other hand, does not require

this dance. Instead, is can perform its “signed fetch” or “phone home” authentication

without needing the additional steps for three-legged OAuth.

196 Chapter 10 Server-Side Authentication and OpenSocial Integration

Two-Legged OAuth Request Anonymity

When you are requesting a specific user’s details, such as using the @me syntax, you need to

explicitly set the identity of the user who is requesting the data. In OAuth terms, this is done

by setting the xoauth_requestor_id parameter to the user ID along with using the @me

syntax or by replacing @me directly with the user ID. If the parameter is not set, it will execute

as an anonymous user.

In Google Friend Connect, developers are provided with a consumer key and secret

that they use to “sign” requests.You can find these under the REST API tab of the Plug-

ins and APIs section within the main Google Friend Connect administration page for

your site.These OAuth credentials never expire, but you will notice an option to regener-

ate your consumer secret should the security of your application become compromised.

This makes OAuth ideal for requesting user data offline; all you need to store is their user

ID and your consumer key and secret.This particular functionality is used in the walk-

through described in Chapter 13,“Integrating Twitter, Facebook, and Google Friend

Connect,” to allow user activities to be created “offline.”

While the creation of a valid OAuth request is quite complex because each request

must be digitally signed by the container, this is handled elegantly via the OpenSocial

client libraries. In comparison to the authentication cookie method, OAuth requires the

storage of user IDs or for offline requests to be iterated over the site owner’s friends

(members) using the relevant OpenSocial API method.Any data that is stored about the

user should be noted in your site’s privacy policy. For security, it is recommended that this

is limited to a single user ID, because other information such as name or URLs may

change over time.

OpenSocial Client Libraries

A number of OpenSocial client libraries are available in PHP, Java, Ruby, and Python as an

alternative to the OpenSocial JavaScript API. New libraries are also available for .NET and

ActionScript 3.0 for Adobe Flex or Adobe Flash applications. Each library is open sourced

under an Apache 2.0 license that welcomes and encourages user contributions and patch

submissions. Both the Ruby and Python libraries include fully featured sample applica-

tions that you can customize and use as templates for your own containers.An issue

tracker is also available, as are source downloads and SVN access.The OpenSocial Client

Library Google group is also a great place to search for issues and through which to

receive notifications about new SVN code submissions.

The client libraries provide a simple way to access the OpenSocial RESTful and RPC

protocols by taking care of the complex authentication processes, creation of data models,

and provision of services to fetch, update, and delete people, activities, and app data. For

other OpenSocial containers, there is also support for other features such as groups, media

items, and messages. It is recommended that you use the source code from your chosen

client’s SVN directory; this is generally a more up-to-date version than that provided in

the Downloads section. For example, support for fcauth cookie does not exist in version

197Using the PHP OpenSocial Client Library with Google Friend Connect

1.01 of the PHP client library.Through the Source Checkout functionality, you can view

changes and browse the code before checking out the latest version.

Using the PHP OpenSocial Client Library with
Google Friend Connect
The best way to understand the details of the server-side implementation of Google

Friend Connect and OpenSocial is to work through a sample code snippet.Two main

issues are faced: the changeover from the client-side login authentication provided by

Google Friend Connect to the server-side requests made via OpenSocial; and the fact that

Google Friend Connect does not function in the Opera web browser.The key to working

with this transition is to understand the workflow of the client-side authentication

process.

Google Friend Connect Authentication Workflow

You will remember that in Chapter 9 two container setup methods, google.

friendconnect.container.setParentUrl() and google.friendconnect.

container.initOpenSocialApi(), were used to initialize the Google Friend Connect

JavaScript library. In the second method, an onload function was supplied. It was to be

called every time a user’s state changed, such as signing in or out.When updating the page

dynamically using client-side JavaScript and innerHTML, it was sufficient that this page

“refresh” did not affect the workflow of the application. However, if you want to perform

server-side requests, you must act on this page refresh accordingly.This is made possible

through a modified onload function, which would look like the following:

1 google.friendconnect.container.initOpenSocialApi({

2 site: "XXXXXXXXXXXXXXXXXXXX",

3 onload: function(securityToken) {

4 if (!window.timesloaded) {

5 window.timesloaded = 1;

6 } else {

7 window.timesloaded++;

8 }

9 if (window.timesloaded > 1) {

10 // User signed in or out

11 } else {

12 initAllData();

13 }

14 }

15 });

The use of the window.timesloaded counter means that when the page is initially

loaded the counter is set to 1, and then subsequent refreshes which occur when a user

signs in or out increment the counter. If the counter is greater than 1, the workflow

begins on line 10. For now, this contains a simple comment. In production, however, this

198 Chapter 10 Server-Side Authentication and OpenSocial Integration

would contain a server redirect to an authentication page or function that handles the

authentication process.

Setting Up a Server-Side Application

Let’s begin by creating a new file called test.php that you’ll upload to your web server

under the same location as set in Chapter 9. Initially, this page will contain the following

lines of PHP code:

1 <?php

2 $SITE_ID = "XXXXXXXXXXXXXXXXXXXX";

3 $PARENT_URL = "/";

4 $FILE_NAME = "test.php";

5 if(isset($_REQUEST["authenticate"])) {

6 $request = $_REQUEST["authenticate"];

7 switch ($request) {

8 case "login":

9 header("Location: ".$PARENT_URL.$FILE_NAME."?loggedin");

10 break;

11 case "logout":

12 header("Location: ".$PARENT_URL.$FILE_NAME."?loggedout");

13 break;

14 default:

15 header("Location: ".$PARENT_URL.$FILE_NAME);

16 }

17 } else {

18 $cookieIdentifier = "fcauth".$SITE_ID;

19 $cookie = isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier] : null;

20 $isLoggedIn = $cookie ? true : false;

21 $userAgent = $_SERVER["HTTP_USER_AGENT"];

22 $unsupportedBrowsers = array("Opera");

23 $isBrowserSupported = true;

24 foreach ($unsupportedBrowsers as $unsupportedBrowser) {

25 $isBrowserSupported = preg_match("/".$unsupportedBrowser."/i",

$userAgent) ? false : true;

26 }

27 }

28 ?>

Line 5 tests to see whether the authenticate parameter has been set and branches

appropriately depending on whether the application should redirect the user to the

“logged in” or “logged out” page. On lines 18 to 20, you store three new variables:

$cookie, containing the value of the authentication cookie; $isLoggedIn, which is a

Boolean indicating whether a user is logged in; and $isBrowserSupported, which is

another Boolean indicating whether the user’s browser is supported by Google Friend

199Using the PHP OpenSocial Client Library with Google Friend Connect

Connect.To extend the code above, you should also translate these server-side variables

into client-side variables in the next HTML code snippet:

29 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

30 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

31 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

32 <head>

33 <title>My OpenSocial Test Page</title>

34 <!-- Load the Google AJAX API Loader //-->

35 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

36 <!-- Load the Google Friend Connect javascript library. //-->

37 <script type="text/javascript">

38 google.load("friendconnect", "0.8");

39 </script>

40 <!-- Initialize the Google Friend Connect OpenSocial API. //-->

41 <script type="text/javascript">

42 <?php

43 if ($isBrowserSupported) { echo "var isBrowserSupported = true;"; }

else { echo "var isBrowserSupported = false;"; }

44 if ($isLoggedIn) { echo " var isLoggedIn = true;"; } else {

echo " var isLoggedIn = false;"; }

45 ?>

46 google.friendconnect.container.setParentUrl("<?php echo $PARENT_URL;

?>");

47 // Initialize OpenSocial

48 </script>

49 </head>

You can replace the comment on line 47 with the code created in the previous section,

and you can also replace the line 10 comment from that snippet with the following:

window.location = '<?php echo $PARENT_URL.$FILE_NAME; ?>?

authenticate=<?php echo !$isLoggedIn ? "login" : "logout"; ?>';

What this line does is redirect users depending on whether they are logged in or not. If

they are not logged in, the authenticate parameter will be set to login; otherwise, it will

be set to logout.These two values correspond directly to the two case switches on lines

9 and 12 of the code above. Note also on lines 43 and 44 that the client-side variables

isLoggedIn and isBrowserSupported are set to match the server-side code.You are now

left with two final tasks to complete: defining the <body> HTML and creating the

initAllData() JavaScript function.With these two tasks completed, you can then start

exploring how to fetch and update data using the client library:

50 <body>

51 <h1>An OpenSocial Test Page</h1>

52 <div id="viewerControlPanel">

53 <p id="gfcButton"></p>

200 Chapter 10 Server-Side Authentication and OpenSocial Integration

54 </div>

55 <?php

56 if($cookie) {

57 echo "<p>We have the Google Friend Connect authentication

cookie.</p>";

58 } else {

59 echo "<p>We don't have the Google Friend Connect authentication

cookie.</p>";

60 }

61 ?>

62 <script type="text/javascript">

63 function initAllData() { onData(); }

64 function onData() {}

65 </script>

66 </body>

67 </html>

To keep this OpenSocial example simple, there are just two <body> elements: the

“viewer control panel” on lines 52 to 54, which will include the Google Friend Connect

login button when not signed in and an edit settings and sign out links for when they are

signed in; and a simple PHP echo statement on lines 55 to 61 indicating whether you

have an authentication cookie. Remember, an authentication cookie exists only when a

user is logged in.The initAllData() function points directly to the onData() function

to remain consistent with code examples in Chapter 9.To reduce client-side server calls,

the onData() function looks like this:

1 var viewerControlPanelHtml = document.getElementById(

"viewerControlPanel");

2 if (isBrowserSupported) {

3 if (!isLoggedIn) {

4 viewerControlPanelHtml.innerHTML = '<p id="gfcButton"></p>';

5 google.friendconnect.renderSignInButton({

6 "id": "gfcButton",

7 "style": "standard"

8 });

9 } else {

10 html = "<p>";

11 html += '<a href="#" onclick="google.friendconnect.

requestSettings();">Settings | ';

12 html += '<a href="#" onclick="google.friendconnect.

requestSignOut();">Sign Out';

13 html += "</p>";

14 viewerControlPanelHtml.innerHTML = html;

15 }

16 } else {

17 viewerControlPanelHtml.innerHTML = "<p>We're sorry, but your

current browser is not supported by Google Friend Connect.</p>";

18 }

201Using the PHP OpenSocial Client Library with Google Friend Connect

Two conditional statements on lines 2 and 3 are used to test that the user’s browser is

supported and if the user is logged in or out. Because the authentication cookie is being

used as a test of whether a user is logged in, you do not need to make any calls to the

OpenSocial API to retrieve data.You will have noticed that as of yet there has been no real

server-side processing of user data, just stating that you have access to an authentication

cookie.The next section demonstrates how to use this authentication cookie to set up the

Google Friend Connect provider object.

OpenSocial Data Extraction Principles

Having downloaded the PHP OpenSocial client library, you should find a directory called

osapi.You want to upload this to a suitable location on your web server. For this exam-

ple, it is placed in the same directory as the test.php file and can be loaded with the fol-

lowing code:

require_once "osapi/osapi.php";

To save on resources, it is recommended that this library be loaded only when you

have an authentication cookie. In the code covered in the preceding section, you replace

line 57, which contains a simple echo statement indicating that you had access to the

authentication cookie.You can create the Google Friend Connect provider object with

three lines of code:

1 $provider = new osapiFriendConnectProvider();

2 $authentication = new osapiFCAuth($cookie);

3 $opensocial = new osapi($provider, $authentication);

On line 2, an $authentication parameter is created that could also be an

osapiSecurityToken($securitytoken) for gadgets or an

osapiOAuth2Legged($consumerKey, $consumerSecret, $userId) for standard two-

legged OAuth.The latter would be used for offline processing if you had stored a list of

user identifiers or were programmatically iterating over your site’s members. If you are

unsure as to how to get the user ID for a Google Friend Connect user, you can use the

cookie-based method to initially log the user in and then user $viewer->getID() to

extract the user’s parameter to be stored in your file store.

Inside the OpenSocial Client Directory

Within the osapi directory are several other directories that detail the supported authentica-

tion methods (auth), OpenSocial component definitions (models and service), and each of

the supported providers (providers). The client library also supports a simple storage

mechanism (storage) for XRDS and three-legged OAuth implementations.

With the $opensocial object created, you can now start accessing some data.You do

this through a process whereby all requests are batched together, which is similar to

client-side requests in Chapter 9.A batch is created using $batch = $opensocial-

>newBatch();, and then requests are added using $batch->add($request, "key");,

202 Chapter 10 Server-Side Authentication and OpenSocial Integration

where $request could be anything from getting all members or creating an activity to

updating application data.The key is a placeholder for referencing the $request data

after it has been returned. Finally, a $response = $batch->execute(); will execute all

the requests and save them in a $response variable. It is important that if you are intend-

ing to use batching that you do not create the $batch parameter several times.You should

be able to create it once, add all your requests that you require for the page, and then exe-

cute the command.To request the viewer’s data, you may use the following code:

1 $batch = $opensocial->newBatch();

2 $viewerParameters = array(

3 "userId" => "@me",

4 "groupId" => "@self",

5 "fields" => "@all"

6);

7 $getViewer = $opensocial->people->get($viewerParameters);

8 $batch->add($getViewer, "viewer");

9 $response = $batch->execute();

10 $viewer = $response["viewer"];

11 if ($viewer instanceof osapiError) {

12 $code = $viewer->getErrorCode();

13 $message = $viewer->getErrorMessage();

14 // Process OpenSocial API Error

15 } else {

16 $viewerName = htmlentities($viewer->getName());

17 $viewerThumbnailUrl = htmlentities($viewer->getThumbnailUrl());

18 echo "<p>Hello, ".$viewerName.".</p>";

19 }

Most of the code should appear familiar.The userId on line 3 is set to @me for the

current viewer, but could also be set to a specific user ID. groupId on line 4 can be set to

@self or @friends depending on whether you want to return a single person or group

of people. fields is set to @all to retrieve all fields but could be set to an array of sup-

ported person fields, including the following:

id

name

displayName

profileUrl

thumbnailUrl

You will also find that within the $viewer parameter is the ability to access photos and

URLs that the user has associated with his account.These can be accessed as follows:

echo "<p>Profile URL: ".$viewer->profileUrl."</p>";

echo "<p>Thumbnail URL: ".$viewer->thumbnailUrl."</p>";

echo "<h2>Photos</h2>";

echo "";

foreach($viewer->photos as $photo) {

203Using the PHP OpenSocial Client Library with Google Friend Connect

echo "".$photo["type"].": ".$photo["value"]."";

}

echo "";

echo "<h2>URLs</h2>";

echo "";

foreach($viewer->urls as $url) {

echo "".($url["type"] ? $url["type"] : "none").':

'.(!empty($url["linkText"]) ?

$url["linkText"] : "Unknown")."";

}

echo "";

Optional parameters such as start and startIndex have been excluded but can be

used for paging through multiple results. For example, if you want to extract the first

three members of your site (fixed ordering by user ID), you can use the following code:

$batch = $opensocial->newBatch();

$memberParameters = array(

"userId" => "@owner",

"groupId" => "@friends",

"fields" => "@all",

"count" => 3,

"startIndex" => "3"

);

$getMembers = $opensocial->people->get($memberParameters);

$batch->add($getMembers, "members");

$response = $batch->execute();

$members = $response["members"];

if ($members instanceof osapiError) {

$code = $members->getErrorCode();

$message = $members->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "";

foreach($members->list as $member) {

echo "".htmlentities($member->getName())."";

}

echo "";

echo "<p>Total Results: ".$members->totalResults."</p>";

}

The use of the count and startIndex parameters enables you to extract specific sets

of users rather than returning the full list.The $members->totalResults value can then

be used to display the total number of members on your site who have connected via

Google Friend Connect.This number can then be used to ensure that you extract all

users from the list. Unfortunately, the sortBy and sortOrder parameters do not appear to

204 Chapter 10 Server-Side Authentication and OpenSocial Integration

Table 10.2 Additional Parameters to userId and groupId Required by activities

and App Data Requests (All requests must also use "appId" => "@app" to set the

application identifier).

Request

Required

Parameters Example

Fetch Activities None See Below

Create activity activity $activity = new

osapiActivity(null, null);

$activity->setTitle("Test

Title");

$activity->setBody("This is a

test.");

Fetch and delete app data fields array("key", ...)

Create and update app

data

data array(

"key" => "value"
)

work with Google Friend Connect, although it could be used to sort the results by name

or updated in ascending or descending order.

For fetching and creating activities or fetching, creating, updating, and deleting app

data, the client library works slightly different than with people data.Table 10.2 summa-

rizes the subtle differences in these methods, which are discussed in further detail using

live code examples building on the Color Picker application created in Chapter 9.

Successful responses to creating, updating, or deleting data are denoted by the response

not being an instance of osapiError. Using the Color Picker application as an example

from Chapter 9, you should be able to request the recent activities for the logged-in user

by using the following code, which extends the test.php code described in the previous

section, ensuring that the osapi library is included:

$provider = new osapiFriendConnectProvider();

$authentication = new osapiFCAuth($cookie);

$opensocial = new osapi($provider, $authentication);

$batch = $opensocial->newBatch();

$viewerParameters = array(

"userId" => "@me",

"groupId" => "@self",

"fields" => "@all"

);

$getActivities = $opensocial->activities->get($viewerParameters);

$batch->add($getActivities, "activities");

$response = $batch->execute();

205Using the PHP OpenSocial Client Library with Google Friend Connect

$activities = $response["activities"];

if ($activities instanceof osapiError) {

$code = $activities->getErrorCode();

$message = $activities->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "";

foreach($activities->list as $activity) {

echo "".htmlentities($activity->getTitle())."";

}

echo "";

}

This code shows how to retrieve a list of activities that a user has performed on your

site.To iterate over results requires using the list element of the $activities object

because multiple activities are being returned.After these results have been retrieved, you

can then easily extract the title or body of the activity by using $activity->getTitle()

or $activity->getBody().Another potentially useful element of the Activity object is

the post time, which you can retrieve via $activity->getPostedTime(), which returns a

UNIX time stamp (which can then be reformatted).

Creating an activity is a similar process to that when using the client-side library: an

Activity object is created, and then the activity creation method is called, passing in the

object.To re-create a “dummy” choice of picking the color black, you could use the fol-

lowing code, which will be executed each time that you refresh the test.php page:

$activity = new osapiActivity(null, null);

$activity->setTitle("You picked black as your favorite color.");

$batch = $opensocial->newBatch();

$activityParameters = array(

"userId" => "@me",

"groupId" => "@self",

"activity" => $activity

);

$setActivity = $opensocial->activities->create($activityParameters);

$batch->add($setActivity, "activity");

$response = $batch->execute();

$activity = $response["activity"];

if ($activity instanceof osapiError) {

$code = $activity->getErrorCode();

$message = $activity->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "<p>The activity was created successfully.</p>";

}

The code adds the create activity request to the batch request, and if no errors

occurred you can assume that the activity was created successfully.You should notice that

206 Chapter 10 Server-Side Authentication and OpenSocial Integration

if you save the new code and refresh the page, the fetch activities request now contains

the new activity. Note that you cannot delete activities programmatically via the client

library, but they can be removed via the Administration panel on the Google Friend

Connect website.

Retrieving app data is similar to retrieving activities, apart from the fact that you must

add a fields (if you require a specific field to be returned) and an appId parameter to

the initial request, as follows:

$batch = $opensocial->newBatch();

$appDataParameters = array(

"userId" => "@me",

"groupId" => "@self",

"appId" => "@app"

);

$getAppData = $opensocial->appdata->get($appDataParameters);

$batch->add($getAppData, "appdata");

$response = $batch->execute();

$appdata = $response["appdata"];

if ($appdata instanceof osapiError) {

$code = $appdata->getErrorCode();

$message = $appdata->getErrorMessage();

// Process OpenSocial API Error

} else {

// Process Returned App Data

}

Unfortunately, it appears that at the time of this writing the client-side and server-side

versions of the Persistence API handle data in different ways for Google Friend Connect.

This means that the two time fields that were stored in Chapter 9 are not retrieved by

this method call. However, you can add your own server-side app data using the follow-

ing code:

$batch = $opensocial->newBatch();

$appDataParameters = array(

"userId" => "@me",

"groupId" => "@self",

"appId" => "@app",

"data" => array(

"test" => "1"

)

);

$setAppData = $opensocial->appdata->create($appDataParameters);

$batch->add($setAppData, "appdata");

$response = $batch->execute();

$appdata = $response["appdata"];

if ($appdata instanceof osapiError) {

207Summary

$code = $appdata->getErrorCode();

$message = $appdata->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "<p>The App Data was stored successfully.</p>";

}

If, having stored this app data, you run the retrieval method again, you should have

returned a multidimensional array containing the user ID as the key and an array of app

data items.To retrieve this specific test item, you could add a "fields" =>

array("test") parameter to $appDataParameters before retrieving the results. If you

change the userId parameter to @owner and the groupId to @friends, you can retrieve

all app data for the members of your site.Although you cannot delete app data, you can

update it using the same method as adding data, except that you just replace the value of

the key that you want to change with new data.

Summary
The client-side Google Friend Connect JavaScript API and OpenSocial API are not the

only ways to access people, activity, and app data from OpenSocial containers. Server-side

access through the OpenSocial RESTful and RPC protocols enables deep integration

onto your Internet-enabled applications, where your code logic can be hidden away from

site visitors.This chapter explored the workflow of a server-side Google Friend Connect

implementation and the various ways that authentication is performed using authentica-

tion cookies and standard two-legged OAuth.And now that you’ve seen the principles of

the PHP OpenSocial client library demonstrated, you should have enough knowledge to

begin transforming your application into a fully functioning OpenSocial container.

Chapter 11,“Developing OpenSocial Gadgets with Google Friend Connect,” explores

how to create an OpenSocial gadget with Google Friend Connect.

This page intentionally left blank

11

Developing OpenSocial Gadgets
with Google Friend Connect

With your experience with the Google Friend Connect JavaScript API and

OpenSocial API and server-side using the OpenSocial RESTful and RPC protocols,

how about expanding your social reach even further through gadgets? Gadgets are self-

contained applications that can be rendered on any Google Friend Connect container or

in a standalone service like iGoogle. Data processing can be performed client side using

JavaScript, or secure, authenticated requests can be made to retrieve server-side resources.

Built-in JavaScript libraries make it easy to create gadgets that include tabs,Adobe Flash

content, persistent storage, dynamic resizing, preferences, skins, and more. Gadgets pro-

mote the reach of your service because they can be installed by anyone and listed in the

Google Friend Connect Gadget Directory.

This chapter explores the fundamentals of creating, testing, and submitting Google

Friend Connect gadgets. Many of the skills you will learn in this chapter will draw on

those you have already learned in Chapter 9,“An Overview of Google Friend Connect,”

and Chapter 10,“Server-Side Authentication and OpenSocial Integration.” Being

OpenSocial compatible, Google Friend Connect gadgets work in much the same way as

ones from other containers, such as orkut, LinkedIn, and Ning.Therefore, once you grasp

the fundamentals, they are transferable across all OpenSocial platforms with little modifi-

cation.The best way to learn about gadgets is by exploring a worked example and being

pointed to further resources for expansion and personalization.

An Overview of Google Gadgets
Google gadgets are applications that are built using HTML with JavaScript,Adobe Flash,

or Microsoft Silverlight for dynamic features.They are structured as XML and can be

made more interactive using feature extensions such as Maps, Calendar, and of course,

OpenSocial which can be included in a gadget through the <ModulePrefs> tag.The

simplest gadget comprises just a few lines of code:

210 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

<?xml version="1.0" encoding="UTF-8" ?>

<Module>

<ModulePrefs title="Hello, World!">

// Feature Extensions

// User Preferences

</ModulePrefs>

<Content type="html" view="default">

<![CDATA[

Hello, World!

]]>

</Content>

</Module>

This section explains what makes up a gadget and examines some of the features avail-

able.As with the majority of the examples in this book, it is impossible to cover the entire

breadth of the subject, but this chapter touches on the fundamentals and provides refer-

ences to resources to further your understanding.

Anatomy of an OpenSocial Google Gadget

Google gadgets contain several “compartments” that you can use to extend their func-

tionality: module preferences, feature extensions, user preferences, and the content itself.

The OpenSocial Gadgets API Specification, alongside the common Gadgets API

Reference, describes the built-in features and core JavaScript API functionality, including

processing inputs and outputs, JSON, tabbed content, and internationalization.The core

JavaScript features are as follows:

n gadgets.io for retrieving remote content

n gadgets.json for translating objects to and from JSON

n gadgets.Prefs for handling and storing gadget preferences

n gadgets.util for providing utilities such as a HTML escaping a string via

gadgets.util.escapeString(<<STRING>>) and un-escaping strings with

gadgets.util.unescapeString(<<STRING>>)

The best way to explore these features is to use and experiment with them and under-

stand how they can be implemented in different situations.This chapter will be focusing

on the newer gadgets.* API and not on the deprecated Legacy API.All the JavaScript

functionality should be used within <Content> sections, such as programmatically getting

and setting user preferences.

Module Preferences

The <ModulePrefs> tag specifies characteristics of the gadget such as title, title_url,

author, author_email, description, screenshot, and thumbnail. Users cannot change

211An Overview of Google Gadgets

these attributes, although they can be automatically rendered using user preference substi-

tution variables using the __UP_userpref__ syntax within <ModulePrefs> or the

gadgets.Prefs() JavaScript function within <Content> sections. For example:

<ModulePrefs title="__UP_title__" />

<UserPref name="title" display_name="Title" default_value="Test" />

</ModulePrefs>

For clarity, if you submit to any of the gadget directories, you should also provide a

directory_title, which is the default title for your gadget if you plan on allowing users

to change titles.This can be set programmatically using the JavaScript

gadgets.window.setTitle(_hesc(newTitle)) function of the gadgets.window library

and adding the <Require feature="settitle" /> feature.

Top iGoogle Developers Directory

If you plan on submitting to the iGoogle Directory (http://www.google.com/ig/directory), you

can also supply author_photo (a 70px by 100px image), author_aboutme, author_link,

and author_quote parameters. Setting these will mean that you will also appear in the

iGoogle Developers Directory (http://www.google.com/ig/directory?type=authors).

Other attributes such as screenshot and thumbnail have specific requirements such

as being 280px wide and 120px by 60px, respectively. It is important when setting these

attributes that special characters such as an ampersand (&) are HTML escaped and URLs

encoded and that no ISO 8859-1 symbols are used.The _hesc(string) or

gadgets.util.escapeString(string) JavaScript functions can be used to facilitate

special HTML-character encoding, but this does not need to be performed within

CDATA blocks.

The tag also serves as a container for other elements such as feature extensions, icons,

OAuth, preloads, links, and locale.

Feature Extensions

Feature extensions are dependencies that can be loaded alongside the gadget to provide

additional functionality. For example, you have already used the <Require

feature="settitle" /> tag to support the setting of the gadget title. Including these

features loads an additional JavaScript library that is hidden away but that can be refer-

enced using the supported methods of that feature.Two types of feature can be included

using <Require ... /> or <Optional ... /> and must have a name attribute.The core

gadgets.* API provides features such as setprefs for user preferences, dynamic-height

for controlling the height of gadgets, tabs for tabbed content, minimessage for temporary

messages, and flash for Adobe Flash rendering. Other third-party feature extensions also

exist, including skins, which are supported by Google Friend Connect.

Skins

Skins are an essential feature that enables color personalization of your gadgets.This means

that when users install your gadget, they can select which colors they want to use (or stick

http://www.google.com/ig/directory
http://www.google.com/ig/directory?type=authors

212 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

with the default palette). Using <Optional feature="skins" /> will enable this func-

tionality, which requires a number of skin parameters. Skin colors can be extracted by

using gadgets.skins.getProperty(property), where property is one of the available

skin parameters, such as CONTENT_TEXT_COLOR or CONTENT_BG_COLOR.The Google Friend

Connect version of the skins feature extends from the OpenSocial specification, which

supports four parameters: ANCHOR_COLOR, BG_COLOR, BG_IMAGE, and FONT_COLOR.

User Preferences

For gadgets that require a bit of extra personalization, such as a weather gadget requesting

a user’s location, a <UserPref> can be used to support user input. User preferences require

a unique name attribute, which is used as both the request reference and label that is dis-

played to the user unless the display_name attribute is set. Other attributes include

datatype, which can be one of string, bool, enum, hidden (users are not permitted to

change these values) or list; required, which can be set to true or false; and

default_value, for if no user value is set. User preferences can be retrieved and set using

the JavaScript gadgets.Prefs class within <Content> sections. Using the title example,

you could use the following:

var userPrefs = new gadgets.Prefs();

var title = userPrefs.getString("title");

Storing JSON Values as Strings

When storing user preferences, you can take advantage of the two gadgets.json functions

for parsing (parse) and “stringifying” (stringify) values. Remember to convert back to

JavaScript values for processing and note that OpenSocial performs automatic HTML escap-

ing on app data, so you must “unescape” stringified JSON objects before parsing via

gadgets.util.unescapeString().

The enum and list data types function slightly differently to the string, bool, and

hidden data types.The enum data type is presented to the user as a drop-down menu of

choices, which are constructed within an <EnumValue>. For example:

<UserPref name="size" display_name="Drink Size" datatype="enum"

default_value="2">

<EnumValue value="1" display_value="Small" />

<EnumValue value="2" display_value="Medium" />

<EnumValue value="3" display_value="Large" />

</UserPref>

Each <EnumValue> must contain a value attribute, and an optional display_value is

used within the interface as a user-friendly name. Unlike the list data type, the enum

should be used for predefined values because there is no method to programmatically

change their values.The list data type should be used if you want to allow users to

supply an arbitrary list of values, which can be retrieved as an array using the

userPrefs.getArray(list) function or as a string where values are separated using the

213An Overview of Google Gadgets

pipe (|) character using userPrefs.getString(list) if you were to use the userPrefs

variable demonstrated earlier. By using <Require feature="setprefs" />, you can set

this list by providing an array as the second parameter to the userPrefs.

setArray(name, list) function. For example, here’s a code snippet:

<UserPref name="destinations" display_name="Destinations" datatype="list"

default_value="Leeds|Sydney" />

</ModulePrefs>

<Content type="html">

var userPrefs = new gadgets.Prefs();

userPrefs.setArray("destinations", ["New York","London"]);

var destinations = userPrefs.getArray("destinations");

User preferences are also great for saving state, because by including <Require

feature="setprefs" />, you can set preferences using the userPrefs.set(key,

value) function.The only other important feature of user preferences is that they can be

made shareable with other gadget users by including <Optional feature="shareable-

prefs" />. For example, this could be used to define a “to do” list across a set of room-

mates or to share a reading list across classmates.Adding the feature extension enables the

user to share the gadget with friends and allows them to view and edit content dynami-

cally. Note that this is available only to friends who have been authorized to edit user

preferences.

Module Content and Views

Finally, <Content> sections are where the gadget attributes and user preferences are com-

bined with programming logic to render the display to the user.These sections can either

hold the content itself, which is set using the type="html" attribute, or can link to exter-

nal content using the type="url" and setting the href attribute, or via proxied content,

which is explored in the next section. It is possible to provide multiple <Content> sec-

tions, which are known as “views” and which have different characteristics, such as being

shown on a default or canvas page. In Google Friend Connect, you can pass data into a

gadget by using <Require feature="views" /> and setting "view-params": {"name":

"value"} within the google.friendconnect.container.renderOpenSocialGadget()

method.These parameters can be accessed by using the following:

var params = gadgets.views.getParams();

var value = params["name"];

For Google Friend Connect, it is recommended that you stick to the single

type="html" view because a special “lightbox” version of the canvas view is provided,

although you could use the canvas and default views to navigate through the content

should you want.The introduction of the lightbox is a move to simplify the Google

Friend Connect install process for beginners, which used to require uploading two files

(but that is now being phased out). If you want to use a custom canvas.html file, you can

set the useLightBoxForCanvas attribute as false within the render method shown

above. If you do not supply a default view, no content will be shown if you explicitly set a

214 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

canvas or default view.The best way around this is to either use <Content

type="html"> on its own to cover all cases or to combine it with multiple views by using

<Content type="html" view="canvas,default">.

URL Content Types

The gadget content type can also be set to url, which means that any other content within

the <Content> tag is ignored. Use of this content type is similar to how a “ping” works in

network communications. The gadget assumes that all the programming logic is performed

server side, and so no actual response data will be rendered. This could prove useful if you

want to track any usage statistics of your gadget without using the <Link> tag.

If you include the views feature, you can navigate through them by using the following:

1 function getViewName() {

2 return gadgets.views.getCurrentView().getName();

3 }

4 function navigateTo(view, params) {

5 var supported_views = gadgets.views.getSupportedViews();

6 gadgets.views.requestNavigateTo(supported_views[view], params);

7 }

8 if (getViewName() == "canvas") {

9 document.write('

10 Go To Default View');

11 } else {

12 document.write('

13 Go To Canvas View');

14 }

By utilizing the gadgets.views class, you can easily navigate between views and also

pass data between instances. Because the requestNavigateTo() function on line 6

requires a view as its first parameter, you must use the getSupportedViews() function on

line 5 to extract all the views currently used in the container gadget. Note that Google

Friend Connect supports only the canvas and default views and not profile.

OpenSocial v0.9 Specification

The OpenSocial v0.8 specification is being used as of this writing because it is the current

version supported by Google Friend Connect. However, for gadgets, you can take advan-

tage of the new features supported by the OpenSocial v0.9 specification, including the

following:

n A lightweight JavaScript API that makes requesting and parsing data simpler by

making the code more intuitive and smaller. For example, to request the viewer, you

use osapi.people.getViewer().execute(callback). Batching is also supported,

and so multiple requests can be strung together to reduce server calls.A separate

namespace is used for backward compatibility and can be activated by using

215An Overview of Google Gadgets

<Require feature="osapi"> or <Require feature="opensocial-0.9"> for the

old APIs.

n Proxied content, which reduces latency by enabling the display of an external web

page within a gadget and thus eliminates the need to use excessive HTML and

JavaScript to re-create content. Data can also be cached to provide minimum

render time.

n Data pipelining eliminates the process whereby a gadget has to be loaded fully

before data is requested from OpenSocial. In this instance, the user may receive a

“Loading...” message while content is fetched. Data pipelining works hand in hand

with proxied content and OpenSocial templates to make data available as soon as

the gadget is loaded.

n OpenSocial templates provide a simpler mechanism for rendering data within

gadgets using OpenSocial Markup Language (OSML) tags. OSML is also extensible,

which means that developers can also create their own tags for use in their applica-

tions and gadgets.

Other minor additions can be found in the OpenSocial Specification Release Notes

and include content rewriting, upload support, international formatting, and messaging

support.There are no incompatible changes from the OpenSocial v0.8 specification, and

so it should be fairly painless to update a gadget to support this new specification.When

newer versions of OpenSocial become available, the Release Notes provide a useful

overview and pointers for finding out information about changes and issues that may

affect your legacy applications. Unfortunately, at the time of this writing, Google Friend

Connect did not support this version of the specification, and so some elements such as

data pipelining will not function correctly.

The final addition to OpenSocial is the release of the OpenSocial App Directory

(http://directory.opensocial.org/gadgets/directory), which is a centralized container for

developers to submit, review, and share OpenSocial applications.There is no specific

Google Friend Connect category because this is provided externally by Google, but all of

the gadget specifications are made available should you want to explore the inner work-

ings of the most popular gadgets.This highlights an important issue: gadgets are public by

their nature, and so you shouldn’t store any sensitive information such as passwords within

your specification. If you want your gadget to remain as elusive as possible (for example,

for testing), do not submit it to any directories or link to it from an external web page.

Proxied Content

In its simplest form, proxied content enables the gadget developer to specify an external

URL to be rendered for a <Content> section. For example:

<Content view="canvas" href="http://example.com/canvas.html"></Content>

Setting the refreshInterval attribute to the number of seconds you want your con-

tent to be cached can prove useful in development if set to 0, but for production-level

http://directory.opensocial.org/gadgets/directory

216 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Figure 11.1 The four stages of a data pipelining

and proxied content request for OpenSocial data.

applications, caching provides significant benefits for scaling and latency. Proxied content

can also be used to make unsigned requests to content (as discussed later in this chapter in

the “Advanced OpenSocial Gadget Development” section). Because Google Friend

Connect does not always having access to the viewer of the gadget, this means that signed

requests using data pipelining cannot be performed.

Data Pipelining and OpenSocial Templates

Data pipelining is a declarative syntax for OpenSocial data requests that you can use to

retrieve proxied content for sending a POST request to a third-party server or OpenSocial

data such as owners, viewers, and activities, which can be rendered through OpenSocial

templates or the OpenSocial JavaScript API. Data pipelining reduces the number of

requests to your server, thus reducing the render time of gadgets.A simple process flow is

shown in Figure 11.1:A client requests an application view from a container (1), which

sends social data to the remote server (2), which combines the social data with application

data and returns it back to the container (3), ready to be rendered by the client (4).

A data pipelining example of retrieving a list of songs for use in the OpenSocial tem-

plate detailed below is as follows:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/

2008/markup">

<os:HttpRequest key="songs" href="http://example.com/songs.json"

format="json" />

</script>

At the time of this writing, many of the data pipelining features were still in draft and

were not fully implemented in Google Friend Connect containers. For this reason, it will

not be used for accessing social data, although it will be an essential feature in the future.

The alternative is to use the OpenSocial JavaScript API methods for batches and requests.

Their use requires a <Require feature="osapi" /> feature extension in place of

<Require feature="opensocial-data" />. However, data pipelining can be used

alongside OpenSocial templates for external application data using authentication and

signed requests (as detailed in the next section).

217An Overview of Google Gadgets

OpenSocial templates are a way of generating a user interface without manipulating a

DOM element’s innerHTML and/or dynamically creating elements.The feature can be

added using <Require feature="opensocial-templates" /> and works inside any

content section. By separating markup and programming logic, OpenSocial templates

create cleaner code that is more streamlined, reusable, and much easier to maintain.

OpenSocial templates support looping and conditional display, giving you the flexibility

to create more elaborate elements with less code. For example, if you have an array of

songs requested using data pipelining, you can use a template to iterate and render them

onscreen:

1 <script type="text/os-template" xmlns:os="http://ns.opensocial.org/

2008/markup" require="songs">

2

3 <li repeat="${songs.content}" var="song">

4

${song.title} by ${song.artist} from ${song.album}

5

6

7 </script>

In this example, the repeat function was used on line 3, and each subsequent refer-

ence was prefixed by song, which was set by the var parameter.An alternative to the

OpenSocial template approach is to use

opensocial.data.getDataContext().getDataSet("songs") to take advantage of the

OpenSocial JavaScript API to handle the requested data. It is a matter of preference

which you use (although OpenSocial templates are the preferred method because of their

render speed).

Advanced OpenSocial Gadget Development

With the basics under your belt, it’s time to start looking at the more advanced features

supported by Google gadgets. Up until now, you have not looked at how to extract any

OpenSocial data or work with remote content.

Working with OpenSocial Data

Google Friend Connect enables you to work with people, activities, and app data within

gadgets just like the client- and server-side applications explored in Chapters 9 and 10.

This data can be accessed via data pipelining (currently not supported) or via OpenSocial

JavaScript API requests.A request to retrieve the owner of the gadget can be made by

using <Require feature="osapi" /> and the following code inside a <Content> section:

1 <p id="owner"></p>

2 <script type="text/javascript">

3 gadgets.util.registerOnLoadHandler(init);

4 function init() {

218 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

5 initAllData();

6 }

7 function initAllData() {

8 var batch = osapi.newBatch();

9 batch.add("owner", osapi.people.getOwner());

10 batch.execute(onData);

11 }

12 function onData(data) {

13 if(!data.owner.error) {

14 var owner = data.owner;

15 var ownerName = owner.displayName;

16 document.getElementById("owner").innerHTML = ownerName;

17 } else {

18 // Process Error

19 }

20 }

21 </script>

Line 3 registers the init() callback function to be executed when the gadget is

loaded, which in this instance calls another function initAllData() on line 5, which

contains data-retrieval commands.The init() function is a useful place to call other func-

tions, such as setting your gadget’s skin or requesting other external data. It is often useful

to separate out all your functions so that they can be called individually when required.

Google Friend Connect Owner and Viewer

Unlike other containers, in Google Friend Connect the owner represents the site’s profile infor-

mation and not the owner who created it. Site administrators can be extracted by setting the

groupId to ADMINS. Remember that unlike containers such as orkut, often your gadget view-

ers will not be logged in, and so your gadget should be capable of dealing with this use case.

Inside the initAllData() function, an osapi.BatchRequest is created to retrieve the

owner data, which is the most efficient way to request data because multiple requests can

be executed within the batch. On line 10, the request is executed and data is fed back into

the onData() function.The displayName of the owner is then extracted on lines 15 and

6, and rendered inside the <p> tag on line 1.

Working with Remote Content

You may want your gadget to request or manipulate data that is held externally where

some server-side processing is performed and data is returned back to the viewer. In cases

where you want to send identifiers to your server, it is imperative that you “sign” requests,

because they could be vulnerable to manipulation by malicious gadget users. For example,

a user could execute an external gadgets.io.makeRequest() method passing custom

opensocial_owner_id and opensocial_viewer_id parameters to spoof those used in

your application. OpenSocial provides a convenient way to sign requests in a way that

219An Overview of Google Gadgets

transmits these values via OAuth to your server-side code. For this, you will require a

server-side validation file called sign.php and available within this book’s resources that

signs requests and client-side JavaScript to invoke that script.The validation file uses a file

that is contained within the PHP OpenSocial client library (http://code.google.com/p/

opensocial-php-client/), so it is assumed that this file exists in your directory structure

along with the osapi client directory.The contents of sign.php are as follows:

1 <?php

2 require_once("osapi/external/OAuth.php");

3 class FriendConnectSignatureMethod extends

OAuthSignatureMethod_RSA_SHA1 {

4 protected function fetch_public_cert(&$request) {

5 return <<<EOD

6 -----BEGIN CERTIFICATE-----

7 MIICSjCCAb...

8 ...Pq1pUdWig=

9 -----END CERTIFICATE-----

10 EOD;

11 }

12 }

13 $request = OAuthRequest::from_request(null, null, array_merge(

$_GET, $_POST));

14 $signature_method = new FriendConnectSignatureMethod();

15 @$signature_valid = $signature_method->check_signature($request,

null, null, $_GET["oauth_signature"]);

16 $payload = array();

17 if ($signature_valid == true) {

18 $payload["validated"] = true;

19 } else {

20 $payload["validated"] = false;

21 }

22 $payload["query"] = array_merge($_GET, $_POST);

23 $payload["rawpost"] = file_get_contents("php://input");

24 print(json_encode($payload));

25 ?>

On line 7, you need to paste in the remainder of the Google Friend Connect signed

request public key (http://www.google.com/friendconnect/certs/friendconnect.pem),

which has been cut out from the code. Lines 12 to 14 are used to validate the request, and

this is passed as the $payload["validated"] parameter back to the application.The code

on lines 21 and 22 is used for debugging and returns the concatenation of GET and POST

requests along with the raw POST data. Instead of passing all of these values back to the

gadget, you could also do some further processing using the $_POST["token"] gadget

authentication token parameter, such as creating an OpenSocial object to update app data

or an activity.You could also look to pass back an entire view to display inline. In the

client-side code, this would be invoked by using the following code:

http://www.google.com/friendconnect/certs/friendconnect.pem
http://code.google.com/p/opensocial-php-client/
http://code.google.com/p/opensocial-php-client/

220 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

1 var token = shindig.auth.getSecurityToken();

2 makeRequest("http://example.com/sign.php", {"token" : token});

3 function makeRequest(url, postdata) {

4 var postdata = gadgets.io.encodeValues(postdata);

5 var params = {};

6 params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.SIGNED;

7 params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;

8 params[gadgets.io.RequestParameters.METHOD] =

gadgets.io.MethodType.POST;

9 params[gadgets.io.RequestParameters.POST_DATA]= postdata;

10 params[gadgets.io.RequestParameters.REFRESH_INTERVAL] = 60;

11 gadgets.io.makeRequest(url, response, params);

12 }

13 function response(payload) {

14 alert(payload.data.validated);

15 }

The code on line 1 extracts the gadget authentication token, which is passed as a

parameter to the makeRequest() function on line 2, where the POST data is encoded on

line 4.The response parameter is the name of the callback function, which accepts the

data request, and this just creates an alert box stating whether the request was validated.

You can optimize your call by adding the URL to your sign request to a <Preload> tag

within module preferences:

<Preload href="http://www.example.com/sign.php" authz="signed"

sign_owner="true" sign_viewer="true" views="canvas" />

If you do not need to use owner or viewer details, you can prevent sending them dur-

ing the signing process by setting the sign_owner or sign_viewer parameters to false.

You can restrict preloads to specific views by setting the views parameter. In this instance,

data is preloaded only for the canvas. Preloads that do not take advantage of signed

requests can omit the authz parameter or replace signed with none.

“Don’t Be Evil”

When debugging your makeRequest, you might come across the following response: throw

1; < "don't be evil" >, which suffixes your data calls. This is known as an

“Unparseable Cruft” and is used to create an illegal JavaScript syntax that defeats XSRF

attacks and does not affect your code.

As you will appreciate, there are multiple ways to access data, such as data pipelining,

proxied content, and using the OpenSocial JavaScript API with the

gadgets.io.makeRequest() method. It is recommended that if you are working with

any OpenSocial data such as people, activities, or app data that you use the OpenSocial

JavaScript API as Google Friend Connect doesn’t support some of the more advanced

221An Overview of Google Gadgets

data-retrieval features.Therefore, any signed requests must also use this method.Any

unsigned requests such as retrieving standard data could be made using data pipelining,

OpenSocial templates, and proxied content.

Gadget Internationalization (i18n) and Localization (L10n)

Because your gadget may be used worldwide, English might not be your user’s first lan-

guage.Translations are achieved fairly easily using message bundles for all your user-visible

text and are stored as external XML files that support UTF-8 encoding. Internationali-

zation is the process of structuring your gadgets so that they can be localized. Localization

is the process of making your gadget accessible based on a user’s country/language.A sam-

ple message bundle would look like this:

<?xml version="1.0" encoding="UTF-8" ?>

<messagebundle>

<msg name="red">Red</msg>

<msg name="orange">Orange</msg>

<msg name="green">Green</msg>

</messagebundle>

Each message bundle should contain only a single language translation and should be

stored using a <<LANGUAGE>>_<<COUNTRY>>.xml naming convention. For example,

en_ALL.xml applies to all English-speaking users independent of their country.The default

or “fallback” message bundle is set to ALL_ALL.xml if no exact match can be found.

Languages should be one of the two-character ISO 639-1 codes, and countries should be

one of the two-character ISO 3166-1-apha-2 codes.You initialize a message bundle by

setting the <Locale> tag inside <ModulePrefs>, as follows:

<Locale messages="http://example.com/ALL_ALL.xml" />

<Locale lang="en" messages="http://example.com/en_ALL.xml" />

An optional country attribute can be set for cases such as distinguishing U.K. or U.S.

English. Using the colors message bundle, you can use substitution variables, and thus

<p>__MSG_red__</p> would display the “Red” text within a paragraph.Alternatively, you

can use a gadgets.Prefs object:

var prefs = new gadgets.Prefs();

var red = prefs.getMsg("red");

var orange = prefs.getMsg("orange");

var green = prefs.getMsg("green");

You can use a message as your gadget’s title, but remember that if you allow the user to

set this manually, you may lose out on this functionality. Consider localizing the

directory_title instead, because this is the one that will appear if you submit to the

gadget directory.You should also consider localizing your gadget description. It might

be best to get a native speaker to translate this for you, instead of relying on an online

translation tool.

222 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Detecting Country and Language

You can detect a user’s country and language by using a gadgets.Prefs object and then

calling the prefs.getCountry() or prefs.getLanguage() methods. These can prove

useful if sent as POST variables for server-side processing and rendering.

Gadgets also support bidirectional text, which reads from right to left (for languages

such as Hebrew and Arabic).This is achieved by specifying a language_direction="rtl"

attribute within <Locale> for the specific language. Four special substitution variables are

made available by the BIDI (Bi-Directional) API and can prove useful for setting padding

and alignment of characters: __BIDI_START_EDGE__ and __BIDI_END_EDGE__, which rep-

resent the start and endpoints of the letters that are set to left or right; and __BIDI_DIR__

and __BIDI_REVERSE_DIR__, which are set to rtl or ltr for the two modes.To set the mar-

gin of an element you could use the following style element:

style="margin-__BIDI_START_EDGE__: 10px;"

Because the __BIDI_START_EDGE__ will be updated to reflect the user’s preference, this

will change either the right or the left margin.

Creating a Google Gadget
To bring this chapter together, a simple OpenSocial gadget has been created that does

some basic retrieval of social data using some of the techniques explored in this chapter.

The Color Picker application that was created in Chapter 9 has been adapted to suit a

gadget container.The client-side implementation of Google Friend Connect enabled

viewers to pick their favorite color, which was then submitted as a site activity.The gadget

also displays a section with the five most recent members, along with their thumbnail

photos.This section also includes some tips for testing and submitting your gadget and for

adding Google Analytics for user tracking.

Color Picker, Revisited

The quickest and easiest way to get your gadget up and running is to use the Google

Gadget Editor (http://gadgeteditor.appspot.com/editor) created by Arne Roomann-

Kurrik. It provides a convenient place for testing your gadget with Google Friend

Connect and other containers (see Figure 11.2). (The link requires a Google account to

access.) Although not suited for production gadget storage, it will give you a good idea of

how your gadget will function in the Google Friend Connect environment.

The gadget source code (gadget.xml) is split into several pieces, which can be edited

directly in a new Google Gadget Editor page:

1 <?xml version="1.0" encoding="utf-8"?>

2 <Module>

3 <ModulePrefs author="Mark Hawker" author_email="mark@example.com"

description="A test Google Gadget." title="Color Picker"

directory_title="Color Picker" height="100" scrolling="true">

4 <Require feature="opensocial-0.9" />

http://gadgeteditor.appspot.com/editor

223Creating a Google Gadget

Figure 11.2 The Google Gadget Editor.

Every Google gadget is initiated via a <Module> element, which must contain

<ModulePrefs> and <Content> child elements. Inside the module preferences are details

such as the author’s name and e-mail address along with information about the gadget

such as its name and description. Specific gadget requirements are also set in this opening

code block, which is for including the OpenSocial libraries and skin capabilities.With all

the preferences now set, you can start building the gadget content:

9 <Content type="html" view="default">

10 <![CDATA[

11 <html>

12 <head>

13 <title>Color Picker</title>

14 <style type="text/css">

15 body { padding: 2px; margin: 2px; }

16 p { font-size: 10px; padding: 2px; margin: 2px; }

17 h1 { font-size: 12px; }

18 h2 { font-size: 11px; }

19 h3 { font-size: 10px; }

20 #gadget { width: 250px; }

21 #colorTable { width: 100%; }

22 #colorPicker { margin: 20px 40px; }

23 #redCell { border: 3px solid #666666; }

24 .color { width: 20px; height: 20px; border: 3px solid #e5ecf9; }

25 .red { background-color: red; }

26 .orange { background-color: orange; }

5 <Require feature="osapi" />

6 <Require feature="dynamic-height" />

7 <Optional feature="skins" />

8 </ModulePrefs>

224 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

27 .green { background-color: green; }

28 .yellow { background-color: yellow; }

29 .blue { background-color: blue; }

30 .pink { background-color: pink; }

31 .memberPhoto { width: 46px; height: 46px; border: 0;

padding-right: 2px; }

32 </style>

33 </head>

This initial code block sets the header of the gadget, which utilizes the default view

and includes a number of style sheet elements. Instead of referencing an external file, they

have been included inline, but it is possible that you could use an external style sheet if

required.The next block of code is for displaying a welcome message to the gadget view-

ers and enables those who have logged in to Google Friend Connect to pick a color for

submission:

34 <body>

35 <div id="gadget">

36 <h1>Welcome to </h1>

37 <p>This application demonstrates <a href="http://www.google.com/

friendconnect/">Google Friend Connect and its Google Gadget

38 capabilities.</p>

39 <h2>Recent Members</h2>

40 <p id="recentMembers"></p>

41 <p>Once you've signed in you can generate an activity by clicking

a color below and pressing the "Pick" button:</p>

42 <div id="colorPicker">

43 <table id="colorTable" cellspacing="10">

44 <tr>

45 <td><div class="color red" onclick="pickColor(this, 'red');"

id="redCell"></div></td>

46 <td><div class="color orange" onclick="pickColor(this,

'orange');"></div></td>

47 <td><div class="color green" onclick="pickColor(this,

'green');"></div></td>

48 <td style="width: 10px;" rowspan="2"><button

onclick="createActivity();" id="button" disabled="disabled">

Pick</button></td>

49 </tr>

50 <tr>

51 <td><div class="color yellow" onclick="pickColor(this,

'yellow');"></div></td>

52 <td><div class="color blue" onclick="pickColor(this, 'blue');">

</div></td>

53 <td><div class="color pink" onclick="pickColor(this, 'pink');">

</div></td>

54 </tr>

225Creating a Google Gadget

55 </table>

56 </div>

57 <h2>Recent Activities</h2>

58 <p id="recentActivities"></p>

59 </div>

The code above is very similar to that discussed in Chapter 9, in that it contains a

placeholder on line 40 for displaying recent members, a color picker between lines 42 and

56, and recent activities to be rendered on line 58.The Submit button is initially disabled

on line 48 because you cannot guarantee that you’ll have a logged-in viewer available.

Clicking each of the colors will run the pickColor() function, which is created on lines

152 to 157 below. No further content is to be shown to the viewer of the gadget, so the

remainder of the code is to define specific JavaScript functionalities of Color Picker:

60 <script type="text/javascript">

61 var viewer;

62 gadgets.util.registerOnLoadHandler(init);

63 function init() { skin(); initAllData(); }

64 function skin() {

65 var borderColor = gadgets.skins.getProperty("BORDER_COLOR");

66 var endcapBgColor = gadgets.skins.getProperty("ENDCAP_BG_COLOR");

67 var endcapTextColor = gadgets.skins.getProperty(

"ENDCAP_TEXT_COLOR");

68 var endcapLinkColor = gadgets.skins.getProperty(

"ENDCAP_LINK_COLOR");

69 var alternateBgColor = gadgets.skins.getProperty(

"ALTERNATE_BG_COLOR");

70 var contentBgColor = gadgets.skins.getProperty(

"CONTENT_BG_COLOR");

71 var contentLinkColor = gadgets.skins.getProperty(

"CONTENT_LINK_COLOR");

72 var contentTextColor = gadgets.skins.getProperty(

"CONTENT_TEXT_COLOR");

73 var contentSecondaryLinkColor = gadgets.skins.getProperty(

"CONTENT_SECONDARY_LINK_COLOR");

74 var contentSecondaryTextColor = gadgets.skins.getProperty(

"CONTENT_SECONDARY_TEXT_COLOR");

75 var contentHeadlineColor = gadgets.skins.getProperty(

"CONTENT_HEADLINE_COLOR");

76 html = new Array();

77 html.push('<style type="text/css">');

78 html.push(' body { color: " + contentTextColor + ';

background-color: " + contentBgColor + "; }');

79 html.push("</style>");

80 document.write(html.join(""));

81 }

226 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

As with previous Google Friend Connect examples, the main functionality of the

application is contained within the initAllData() and onData() functions, which gather

and render data. However, unlike web pages, which can load JavaScript when a page is

loaded, you need to explicitly tell a Google gadget to execute a function on load.This is

achieved by setting the code on line 62 that executes the init() callback function on line

63.The init() function calls two functions for constructing the gadget’s skin and for

extracting data.The skin() function accepts the colors that a user has set when rendering

the gadget on the user’s site (for example, in the following JavaScript, which could be ren-

dered on another web page):

var skin = {};

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_TEXT_COLOR"] = "#333333";

google.friendconnect.container.renderOpenSocialGadget({

id: "colorPicker",

url: ".../gadget.xml",

height: 250,

site: SITE_ID,

}, skin);

The url given in the example above is not complete and should point to the absolute

reference to your gadget hosted on your server. Note that only a few of these properties

are actually rendered as gadget styles on lines 76 to 80, and you could’ve used any number

of them in your own gadgets:

82 function initAllData() {

83 var buttonHtml = document.getElementById("button").

disabled = true;

84 var batch = osapi.newBatch();

85 var viewerParams = {"fields": [opensocial.Person.Field.NAME]};

86 var membersParams = {

87 "count": 5,

88 "fields": [

opensocial.Person.Field.ID,

opensocial.Person.Field.NAME,

opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL

]

89 };

90 var activitiesParams = {

91 "userId": "@owner",

92 "groupId": "@friends",

93 "count": 2

94 }

95 batch.add("owner", osapi.people.getOwner());

96 batch.add("viewer", osapi.people.getViewer(viewerParams));

97 batch.add("members", osapi.people.getOwnerFriends(

227Creating a Google Gadget

membersParams));

98 batch.add("activities", osapi.activities.get(activitiesParams));

99 batch.execute(onData);

100 }

The initAllData() function is used to collect all the data to be rendered by the

gadget.The parameters for a viewer and members are set on lines 85 to 89, which define

which fields to return, and those for an activity are set on lines 90 to 94, ensuring that

only two activities for the site’s members are shown by the gadget.The request batch is

split into owner, viewer, members, and activities data, which are executed and passed to

the callback function on line 99.The content of the onData() function have been split

into groupings that parse each of the batch requests:

101 function onData(data) {

102 if(!data.owner.error) {

103 var owner = data.owner;

104 var ownerName = owner.displayName;

105 document.getElementById("owner").innerHTML = ownerName;

106 } else {

107 document.getElementById("owner").innerHTML = "this site";

108 }

The owner is the one parameter that should be available irrespective of whether users

are signed in with Google Friend Connect.This parameter will set the name of the site in

which the gadget is placed or will use a standard placeholder if an error has occurred:

109 if(!data.viewer.error) {

110 viewer = data.viewer;

111 var buttonHtml = document.getElementById("button").

disabled = false;

112 } else {

113 // data.viewer.error.code

114 // data.viewer.error.message

115 }

The viewer parameter will return an error if the user is not logged in. In this case, no

further processing is required. However, you could use the space on lines 113 and 114 to

display a warning message to the user. If the viewer is available, the Submit button on line

48 can be enabled.

116 var membersHtml = document.getElementById("recentMembers");

117 if (!data.members.error) {

118 var members = data.members;

119 membersHtml.innerHTML = "";

120 if (members.totalResults > 0) {

121 for (var i in members.list) {

122 membersHtml.innerHTML += '<a href="' +

members.list[i].profileUrl + '" title="' +

members.list[i].displayName + '"><img class="memberPhoto"

228 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

src="' + members.list[i].thumbnailUrl + '" height="65"

width="65" alt="' + members.list[i].displayName + '" />

';

123 }

124 } else {

125 membersHtml.innerHTML = "There are no site members.";

126 }

127 } else {

128 membersHtml.innerHTML = "There was an error retrieving

members.";

129 }

The members data set is slightly more complex that owner and viewer in that it con-

tains an array of elements.A test is made on line 120 to determine whether the gadget has

any members associated with it. If so, the list is iterated over, and a link is created on line

122 containing the member’s name, thumbnail photo, and profile URL.The members are

sent automatically to the HTML element created on line 40, along with appropriate error

messages if no members were returned or if there was an exception.The final JavaScript

code that needs to be created is for handling activities:

130 var recentActivitiesHtml = document.getElementById(

"recentActivities");

131 if (!data.activities.error) {

132 var activities = data.activities;

133 recentActivitiesHtml.innerHTML = "";

134 if (activities.totalResults > 0) {

135 var title, body;

136 for (var i in activities.list) {

137 title = unescape(activities.list[i].title);

138 body = unescape(activities.list[i].body);

139 recentActivitiesHtml.innerHTML += "<p>" + title + body +

"</p>";

140 }

141 } else {

142 recentActivitiesHtml.innerHTML = "There are no site

activities.";

143 }

144 } else {

145 recentActivitiesHtml.innerHTML = "There was an error retrieving

site activities.";

146 }

147 adjustHeight();

148 }

149 function adjustHeight() { gadgets.window.adjustHeight(); }

229Creating a Google Gadget

On line 130, the activities are associated with the HTML element on line 58, which

iterates over the two requested activities and displays their title and body values.All that

remains to do is to create a new activity via the gadget itself:

150 var color = "red";

151 var lastColorDiv = document.getElementById("redCell");

152 function pickColor(div, newColor) {

153 color = newColor;

154 div.style.border = "3px solid #666666";

155 lastColorDiv.style.border = "3px solid #e5ecf9";

156 lastColorDiv = div;

157 }

158 function createActivity() {

159 if (viewer) {

160 var activity = opensocial.newActivity({

"title": viewer.displayName + " picked " + color + " as their

favorite color."

});

161 opensocial.requestCreateActivity(activity, "HIGH",

function() { setTimeout(initAllData, 1000); });

162 } else {

163 alert("There was an error creating an activity.");

164 }

165 }

166 </script>

167 </body>

168 </html>

169]]>

170 </Content>

171 </Module>

The code on line 150 and 151 ensures that the red cell is selected by default, which

can then be used by the pickColor() function.An activity is created in much the same

way as via the client-side and server-side libraries.This activity consists of creating an

Activity object on line 160 and sending the request on line 161. On success, the

initAllData() function is called, but could also be used to update other gadget elements

or to display a message to the user depending on whether the activity was created success-

fully or not.The final part of this code is for closing the appropriate <Content> and

<Module> elements ready for the gadget to be saved.

Click “Save Gadget”, and then click the “View on Google Friend Connect” link.You

should see a developer’s sandbox that enables you to sign up to the container and then test

out the gadget’s functionalities for both an anonymous and named viewer (see Figure 11.3).

230 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Figure 11.3 The completed Color Picker

Google gadget.

Because you are writing to the site’s activities register, it’s possible that if the site

administrators have other gadgets running that they, too, will be added to the activity

stream.Why not implement the Color Picker functionality using app data instead? Or add

internationalization? Or add a different canvas page view showing what colors the

viewer’s friends have picked? The possibilities are endless.

Testing, Tracking, and Directory Submission

Before submitting your gadget to a directory, test it for common coding errors and ensure

that is it optimized for heavy traffic.A common misconception with Google Friend

Connect gadgets is that you will always have the viewer details.You should test your gadg-

ets both with and without the viewer details available using a browser extension such as

Firebug or with other similar development tools.You can use these tools to test gadget

latency in many interesting ways.

Google Gadget Checker

Google has its own Gadget Checker, which runs inside iGoogle and checks for common errors

such as client-side latency, correct syntax, and XML well-formedness. This is useful for check-

ing the simpler bugs within your gadgets and offers quick fixes to the issues it identifies.

231Creating a Google Gadget

The Google Speed project (http://code.google.com/speed/) provides some useful tips

for ensuring your gadget is as optimized as possible for high traffic.This includes “minify-

ing” your internal JavaScript and CSS and reducing the number of browser fetches of con-

tent by combining JavaScript files.You could also use image “sprites” to combine multiple

images together, distribute connections across multiple servers, and use cache tools such as

the gadgets.io.getProxyUrl() method.This method works by passing in the URL of

an image or JavaScript file, which will return the cached URL of the file. For example:

var imgUrl = "http://example.com/logo.png";

var cachedImgUrl = gadgets.io.getProxyUrl(imgUrl);

Adobe Flash developers can also use the gadgets.flashembedCachedFlash() method

to achieve the same effect with their content.

Google AJAX Libraries API

If you want to use dynamic content libraries such as jQuery or Prototype, it is recommended

that you include them using the methods provided by the Google AJAX Libraries API (http:/

/code.google.com/apis/ajaxlibs/). Not only do they provide minified versions of each library,

but the API also handles caching and loading automatically.

A great resource for general information about gadget publishing is the Google

Gadget Center (http://www.google.com/webmasters/gadgets/about/), which provides

details about promoting, tracking, and optimizing your gadget.

Installing and Configuring Gadget Analytics

For in-depth analytics, you can install the Google Analytics feature for Google gadgets.

Unlike with regular websites, gadgets are all hosted as a subdomain of gmodules.com.

Therefore, for each gadget that you are tracking, you need a unique Google Analytics

identifier. Creating an identifier requires you to visit https://www.google.com/analytics/

and either sign up for a new account or log in using an existing account.You should then

proceed to add a new site profile.The required website URL is only a string that the

Google Analytics software pairs with the identifier, and so this URL can be set to any

valid URL string, whether fabricated or real.An appropriate URL may be your domain if

you have not already created a Google Analytics account for that URL. Because you are

installing the tracking code on a gadget and not a web page, you will not need access to

the website URL that you set.After completing the registration process, you will be given

a web property ID that will be in the form UA-123456789-1 and should be stored within

your gadget.To enable Google Analytics using the Color Picker example above, you must

make the following changes:

n Add a <Require feature="com.google.gadgets.analytics" /> element within

the module’s preferences to enable tracking.

http://www.google.com/webmasters/gadgets/about/
https://www.google.com/analytics/
http://code.google.com/speed/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/

232 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

n Create the Tracker object by adding a var ga = new _IG_GA("UA-123456789-1");

line at the top of the JavaScript code block.This should be your own web property

ID because the example is simply a placeholder.

Google Analytics provides two ways to track user interactions for different situations:

virtual URL, for gadget statistics such as special page views; and event tracking.When you

are using virtual URL, each call is recorded as a page request for the string that you pro-

vide as a parameter to the method.This is typically a fabricated string that can be used if

you have multiple gadgets or want to track separate views by using different string param-

eters.You can use event tracking to log user interactions (for example, the user picking a

color or submitting a new activity).At the time of this writing, this feature was in closed

beta. So, until this has been fully released, you should use the virtual URL method. Here

are a few examples of using the virtual URL method within the Color Picker gadget:

ga.reportPageview("/view/colorPicker");

This method call would be placed right underneath the creation of the tracker object

and would be called each time the gadget was rendered. If you want to track when a user

submits his choice of color, you can update the createActivity() function to include

the following:

ga.reportPageview("/colorpicker/link/submit");

Using the event tracking method, you can track which colors are being clicked the

most by adding the following to the pickColor() method:

ga.reportEvent("Color Picker", "Pick", color);

It is best practice to set the first parameter as the name of your gadget and then the

action as the second parameter.The final parameter is for adding another categorical layer

to events so that you can then segment by color. For example, if you also have an

“Unpick” action, this would group both events together for each color.These parameters

are just guides, and you can actually use any string combination within your event report-

ing, but it does help if you apply the relevant groupings shown.

Submitting Your Google Gadget

Remember that you do not have to publish your gadget anywhere! You can use it pri-

vately without letting anybody know where to find it. But, if you want to submit your

creation, you can use either the iGoogle Directory (http://www.google.com/ig/

directory) or the Google Friend Connect Directory (http://www.google.com/

friendconnect/submitgadget) and thus allow others to see, build upon, and use your

gadget.With the iGoogle Directory, you must integrate specific Google Friend Connect

functionality into your gadget, such as signing in, because a user’s iGoogle home page

does not include that facility.

http://www.google.com/ig/directory
http://www.google.com/ig/directory
http://www.google.com/friendconnect/submitgadget
http://www.google.com/friendconnect/submitgadget

233Summary

When submitting to the Google Friend Connect Directory, you must ensure that you

have set the title, description, author, author_email, screenshot, thumbnail, and

directory_title elements in the module preferences and ensure that your gadget han-

dles having a viewer’s details both available and unavailable.

Summary
Google gadgets present another opportunity to showcase your newly found skills with

Google Friend Connect and OpenSocial.The applications are limited only by your imag-

ination, and this chapter just scratches the surface of what is possible with the extensible

format afforded by the various gadget specifications.This chapter explored the anatomy of

a Google gadget, including setting gadget and user preferences, and discussed feature

extensions such as skinning and dynamic heights.The chapter also explored content types

and views and then looked at more advanced features provided by the OpenSocial v0.9

specification.Although data pipelining, proxied content, and OpenSocial templates do not

work perfectly using Google Friend Connect, they will be a major feature in the future.

Remote content using signed requests was explored, and then some internationalization

features for creating multilanguage gadgets were highlighted.The Color Picker example

from Chapter 9 was revisited and transformed into a gadget, and to conclude, gadget test-

ing and analytics were referenced and developed.

This page intentionally left blank

12

Building a Microblog Tool
Using CodeIgniter

In Part I, you were given an overview of Twitter and how it can be used for user authen-

tication via “Sign in with Twitter,” which allows you to post updates, send direct messages,

and perform other functionalities on behalf of a user. In Part II, Facebook Platform inte-

gration for websites was described, which you can use for user authentication, content

sharing, commenting, and stream publishing. Google Friend Connect was explored in

Part III, using client- and server-side technologies. It can be used for posting activities,

storing application data, and fetching people and profiles. In isolation, each of these tech-

nologies can make an application more social, but when used together, you can create

rich solutions that are more accessible and interactive for your users and their friends.

In this chapter, you will learn how to create a “social programming microblog” called

Sprog from scratch using a PHP framework called CodeIgniter.The final version of Sprog

will implement many of the features that have been described in this book, including user

authentication, status updates, commenting,“likes,” and social context through Twitter,

Facebook, and Google Friend Connect integration.This chapter is split into two sections:

looking at elements of the CodeIgniter framework, and building the bare bones of the

microblog. Chapter 13,“Integrating Twitter, Facebook, and Google Friend Connect,”

incorporates many of the social features described in Parts I, II, and III of this book.

An Overview of CodeIgniter
CodeIgniter (http://codeigniter.com/) is a community-driven PHP framework with a

very small footprint and is built for programmers who need a simple and elegant toolkit

to create rich web applications.The beauty of CodeIgniter lies in its vibrant user commu-

nity and extensive help documentation, which enables you to focus on creating your

applications rather than struggling with messy command-line solutions.You will also

find a wealth of video tutorials on the CodeIgniter website (http://codeigniter.com/

tutorials/) containing many more features than are discussed in this chapter.These fea-

tures include sending e-mails to users, working with images, performing unit tests, and

uploading files.

http://codeigniter.com/
http://codeigniter.com/tutorials/
http://codeigniter.com/tutorials/

236 Chapter 12 Building a Microblog Tool Using CodeIgniter

Handling GET Parameters

The one downside to using CodeIgniter is its inability to handle GET parameters without seri-

ously affecting the complexity of the framework. This is particularly important when using

Twitter because it sends an oauth_token parameter back to your applications. A

workaround will be used that just reformats the Twitter callback as a POST parameter to

work with inside your applications.

CodeIgniter uses the Model-View-Controller (MVC) architectural pattern, which sep-

arates application logic from presentation and database extraction. In case you have not

used MVC before, this section includes a brief overview with examples and prompts of

how to set up the first stages of Sprog. Even for beginners, it will take only a matter of

hours before you start to appreciate the benefits of MVC and wonder why you have never

used it before! For experienced programmers, you can use the more advanced features of

CodeIgniter, such as benchmarking, File Transfer Protocol (FTP), and caching, to increase

performance of large-scale applications.

The Model-View-Controller Architectural Design

The MVC pattern is one of the most commonly used architectures used in web applica-

tions today.The clearest benefit of MVC is its separation of presentation and application

logic, which is akin to the separation of HTML and CSS. For example, although your

data-retrieval functionality might be the same you may want to present content to a num-

ber of devices from laptops to cell phones.What MVC enables is the ability to make max-

imum reuse of existing code that is easier to test and build upon.Applications are divided

into three components:

n The model (or models) is the conduit between a controller and your application’s

data store.

n The controller (or controllers) manages user requests such as GET or POST opera-

tions and in turn requests data from a model and then sends it to a view for presen-

tation. In practice, a controller will contain all the logic for handling form inputs or

requests to view specific pages.You may want to use a master controller, which con-

nects to multiple other controllers to handle requests from multiple devices.

n The view (or views) handles data passed via the controller, and then presents the

data onscreen or to the requesting device.A view should be parsing only prefetched

data and should not make requests to your data store (because that is the role of a

model). Often, you can use a template engine such as Smarty (http://www.smarty.

net/) to promote greater reuse of views across multiple devices.

The remainder of this chapter and Chapter 13 focus on MVC using a web application

framework called CodeIgniter.The benefits of a framework are that most of the complex-

ity of using common features such as working with databases, sessions, and form handling

are already coded for you.All that you then need to do is configure the framework to

your specific needs without worrying about creating your own potentially error-prone

http://www.smarty.net/
http://www.smarty.net/

237An Overview of CodeIgniter

functions. Many of the frameworks available today have been tested extensively and are

updated continually when new vulnerabilities are discovered.

Installing, Configuring, and Exploring CodeIgniter

You can download CodeIgniter from http://codeigniter.com/downloads/. It requires

PHP 4.3.2+ and supports MySQL (4.1+), MySQLi, MS SQL, Postgres, Oracle, SQLite,

and ODBC database platforms. Because you are using the twitter-async library, it is

assumed that you are working with PHP 5.2+.The latest version of CodeIgniter at the

time of this writing, and that is included with source code examples, is 1.7.2.After you have

downloaded the framework, unzipped it to a location of your choice, and renamed the base

folder to codeigniter, you will notice a directory structure similar to the following:

n system

The system directory contains all the files required to make CodeIgniter work. It

includes directories for saving an application cache, for storing logs, and for storing

core helpers and libraries. Each helper file is just a collection of functions in a par-

ticular category that help you with specific tasks. For example, URL Helpers assist

with creating links, Form Helpers help you create form elements, and Text Helpers

perform various text-formatting routines. Libraries, on the other hand, are suites of

functions that perform tasks such as maintaining a database, uploading files, and

sending e-mails.You will also see a plug-in directory, which is used for installing

code created by the CodeIgniter community to use in your applications.

n system\application

One of the most important directories in system is application.This directory

stores all the models, views, and controllers used in your applications. It also stores

configuration and error page details.Although not explored in this book, it is possi-

ble to have multiple applications running from a single CodeIgniter installation.

n user_guide

The user_guide directory should be exactly the same as the one that can be found

at http://codeigniter.com/user_guide/, and so you can delete this if you want to

save space on your web server.

n index.php

This is the main file that runs all the CodeIgniter functions and is where you can

change the names of the system and application directories for enhanced security.

n license.txt

The license associated that must be adhered to when using the framework.

The system directory contains all the CodeIgniter functionality, such as libraries and

helpers, which are explored later in this section.You will also notice an application

directory, which is where all the models, views, and controllers are stored. For security rea-

sons, this directory should be moved up one level alongside the system and user_guide

directories. Because you cannot place static files such as images, JavaScript, or CSS within

http://codeigniter.com/downloads/
http://codeigniter.com/user_guide/

238 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.1 Screen shot of the default CodeIgniter application.

the application directory, you should create another directory called static to be used

to host such files in the future.Your new directory structure should look like this:

n application

n static

n system

n index.php

n license.txt

For added security, you might also consider renaming the system directory and updat-

ing $system_folder variable within the index.php file with the new name you’ve

chosen. For the examples in this chapter, this will remain as system. If you upload all the

CodeIgniter files to your server and then visit the URL of your new codeigniter folder,

you should be prompted with a screen similar to that shown in Figure 12.1.

With the framework successfully installed on your web server, you can open the two

local files application\controllers\welcome.php and application\views\welcome_

message.php to glimpse at what a simple CodeIgniter application looks like.This is

explained in more detail in the “Building the Basic Sprog Application” section, and so you

are not expected to look at these files in too much detail (although they should be self-

explanatory).The next section covers how to set your application configuration, such as

your base URL and database settings.

You can find the CodeIgniter configuration within the application\config\config.

php file. It contains a number of important settings related to your application or applica-

tions.This includes setting your base URL, so if you uploaded to http://sprog.com/

codeigniter/, that is what this parameter should be set to.Although you could theoretically

use a localhost connection for the initial steps within this chapter, it will not be suitable

when interacting with the Twitter, Facebook, and Google Friend Connect resources. In

this case, it is recommended that you install CodeIgniter in a “world-facing” location.

http://sprog.com/codeigniter/
http://sprog.com/codeigniter/

239An Overview of CodeIgniter

Removing index.php from Site URLs

CodeIgniter prefixes all URLs with index.php. Therefore, if you create a new directory

called sprog on the domain http://sprog.com/codeigniter/, its URL will be

http://sprog.com/codeigniter/index.php/sprog/. If your web server supports

mod_rewrite, you can fix this by ensuring the $config["index_page"] parameter is

blank and adding the following to an .htaccess file and uploading it to the codeigniter

directory:

DirectoryIndex index.php
RewriteEngine on
RewriteCond $1 !^(index\.php|static)
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$./index.php/$1 [L,QSA]

This .htaccess file should work for almost every Apache web server irrespective of

whether your application is placed within a subdomain or across multiple directories.

You can also use this configuration file if you want to enable encryption or control

cookie or session data.You may also want to set the $config["global_xss_filtering"]

parameter to TRUE, which will enable XSS filtering on all user inputs. Other configuration

files located within the application\config directory that you may want to modify

include the following:

n autoload.php

When an application is loaded, you can also set CodeIgniter to include libraries,

helpers, and plug-ins automatically. In this chapter, the main libraries that are used

are database, pagination, and session, which should be added to the

$autoload["libraries"] array.As for helpers, the url and form helpers will be

essential for handling inputs and URL parsing.You can also load models automati-

cally, as well as multiple configuration files, if you have more than one application

using CodeIgniter.

n constants.php

This file contains parameters that are addressable within your applications. For

example, a Twitter consumer key and consumer secret could be added to this file

alongside your Facebook API key and other details added to the config.php file

used in Chapters 5–8. In the sample code for this chapter, prompts in this file

remind you of what parameters you should be adding.

n database.php

All database parameters should be added in this file to be used by CodeIgniter to

connect to your database. It is possible to add multiple database connections to this

file if you intend to use a local and production database by following the array nam-

ing conventions and updating the $active_group parameter to the appropriate

array. For this chapter, you will be required to create a database and ensure that you

can connect to it through CodeIgniter.

http://sprog.com/codeigniter/
http://sprog.com/codeigniter/index.php/sprog/

240 Chapter 12 Building a Microblog Tool Using CodeIgniter

n routes.php

The final important configuration file is used for loading the default controller and

setting up URI routing.You may have noticed that when you navigated to your live

CodeIgniter folder that you were redirected to the Welcome page.This can be

found within the $route["default_controller"] parameter, which corresponds

to application/controllers/welcome.php.This parameter will be modified later

in this chapter to point to Sprog. URI routing is explored in a little more detail in

the “URI Class” section and more within this chapter’s sample code.

Before starting on the Sprog application, it is worth first exploring some of the libraries

and helpers provided by CodeIgniter.The next two sections are not meant to be exten-

sive, but should give you an impression of the extensibility of the framework and how

simple it is to perform tasks that would be very mundane to have to create from scratch.

CodeIgniter Libraries

Libraries contain a suite of functions for performing tasks such as uploading files, validat-

ing forms and handling sessions. In the CodeIgniter User Guide these can be found in the

Class Reference section.The four libraries that will be used within the Sprog application

are the Database Class, URI Class, Pagination Class, and the Session Class. Most libraries

need to be loaded explicitly via autoload.php with the exception of a handful of core

libraries such as the URI Class, Config Class, and Loader Class. It is assumed that you have

loaded the database, pagination and session classes within the

$autoload["libraries"] array.

Database Class

The Database class can be used to perform the four CRUD (create, read, update, and

delete) operations and to handle transactions and caching.There are three ways in which

you can manipulate records using the Database class:

n Standard Structured Query Language (SQL) can be used to formulate requests and

then execute them based on your query parameters.

n A technique known as query binding can be used. It combines standard SQL with

PHP variables that are automatically escaped by CodeIgniter.This is required if you

want to execute safe queries in your applications.An example query is to set a $sql

variable to “SELECT * FROM test WHERE id = ?” and then use $this->db-

>query($sql, array(3)) to extract the user whose id was set to the number 3.

n The Active Records class enables you to formulate queries using PHP-like methods

for performing each of the CRUD operations. Using active records means that SQL

is generated “on-the-fly” and is customized depending on which database platform

you are using.As with query binding, all queries are automatically escaped.

In this chapter, active records are used because they provide the greatest flexibility and

are structured in a logical manner. Here are some examples assuming the database table

241An Overview of CodeIgniter

Table 12.1 Sample data Used to Demonstrate Functionality of Active Records

id screen_name full_name

1 johndoe John Doe

2 janedoe Jane Doe

3 richardroe Richard Roe

structure shown in Table 12.1 and that you have correctly set your database parameters in

database.php. Copy the data into your own database and save the table as test.

The simplest way to retrieve results from the test table is to use the following:

$query = $this->db->get("test", 2, 0);

if ($query->num_rows() > 0) {

foreach($query->result() as $row) {

echo $row->screen_name;

echo $row->full_name;

}

}

The $query variable will return results from the test table and has had optional LIMIT

and OFFSET parameters added. Using the data from Table 12.1, the code above would

echo the screen_name and full_name of John and Jane Doe.The $query->num_rows()

method is used to test whether results have been received; otherwise, the $query-

>result() object is iterated over.To retrieve specific fields from a table, you use this:

$this->db->select("screen_name");

This would be placed above the $this->db->get("<<TABLE>>") method and could

also be set to select_max("<<FIELD>>"), select_min("<<FIELD>>"), select_sum

("<<FIELD>>") or select_avg("<<FIELD>>") to perform arithmetic operations on

numeric fields. Specifying $this->db->distinct() before running a query will only

return unique rows from your database. If you have multiple tables, you can also perform

joins by using a combination of $this->db->from("<<TABLE 1>>") and $this->db-

>join("<<TABLE 2>>", "<<TABLE 1>>.<<ID>> = <<TABLE 2>>.<<ID>>") methods to

amalgamate results based on a shared identifier.

Query Helper Functions

A number of “query helper” functions exist for extracting the number of rows within a table

by using $this->db->count_all("<<TABLE>>"), within a returned query using $this-

>db->num_rows() or $this->db->affected_rows() to count the number of rows

affected by an insert, update, or delete operation. To free up system memory, you can also

call the $query->free_result() method after processing query results, which deletes the

result’s associated PHP resource ID.

242 Chapter 12 Building a Microblog Tool Using CodeIgniter

To select a particular record you can use the $this->db->get_where("<<TABLE>>",

array("<<FIELD>>" => "<<VALUE>>")) method.This requires an array just after the

table name such as array("id" => 1) and is followed by the LIMIT and OFFSET parame-

ters. It is also possible to use $this->db->where("id", 3) to perform the same function.

In this instance, however, you can use id != to find users whose id was not equal to 3 or

to combine multiple methods to combine results with an AND. Other restriction methods

include or_where(), where_in(), or_where_in(), where_not_in(), or_where_

not_in(), like(), or_like(), not_like(), or_not_like(), group_by("<<FIELD>>"),

having("<<FIELD>>", "<<VALUE>>"), or_having("<<FIELD>>", "<<VALUE>>"), and

order_by("<<FIELD>>", "<<DIRECTION>>"). In the order_by() method, you can use

either asc, desc, or random to order your results randomly.

Inserting data into a table can be achieved by using the following:

$data = array(

"screen_name" => "babydoe",

"full_name" => "Baby Doe",

);

$this->db->insert("test", $data);

echo $this->db->insert_id();

This query could also be assembled using the set("<<FIELD>>", "<<VALUE>>")

method:

$this->db->set("screen_name", "babydoe");

$this->db->set("full_name", "Baby Doe");

$this->db->insert("test");

Updating works in a similar way to the first insert example except that a

$this->db->where() method is first called and then the $data array is passed into a

$this->db->update("<<TABLE>>", <<DATA>>) method. Finally, data can be deleted in

three ways:

n You can use the $this->db->delete("<<TABLE>>", array("<<FIELD>>" =>

"<<VALUE>>")) or use a combination of $this->db->where() methods to first

specify what data should be deleted and then call $this->db->delete() method

omitting the second parameter.

n If you want to delete the same identifier from multiple tables, you can use a combi-

nation of $this->db->where() methods and specify an array of tables as the only

parameter to the $this->db->delete() method.

n Deleting all the data from a table can be achieved by using either $this->db-

>empty_table("<<TABLE>>") or $this->db->truncate("<<TABLE>>"). If the

TRUNCATE operation is not available on the database platform that you are using, a

DELETE operation will be performed.

As you can see, even for a seemingly simple function of manipulating data in a data-

base, multiple use cases are available. CodeIgniter aims to satisfy all these use cases and

243An Overview of CodeIgniter

more. Don’t worry if you think you’ve missed some of the finer details of the Database

class; some of these methods are used in practice when we create the Sprog application.

URI Class

By default, CodeIgniter uses segmenting to link a URL to a corresponding controller

class/function. For example, the URL http://sprog.com/codeigniter/sprog/profile/

johndoe would call the profile() function of the test controller passing in johndoe as

the identifier.The URI class can be used to extract the identifier component of the URL

through $this->uri->segment(3, "unknown").The second parameter sets the default

value for the method call if the segment does not exist. If you want to override the default

mapping between the URL and functions, you can use the routes.php configuration file

to assign new mappings. For example, the link above could be changed to http://sprog.

com/codeigniter/profile/johndoe and set $route["profile/(:any)"] = "sprog/

profile_lookup/$1" to call the profile_lookup function of the sprog controller

passing in the value johndoe. In this instance, you would use $this->uri->rsegment(3,

"unknown") to extract the screen_name.The sample code and example for this chapter

use the URI class, so its uses will become more apparent.

Pagination Class

Pagination is used to split database records into “chunks” that can be navigated using fully

customizable links. CodeIgniter provides a Pagination class that makes this as simple as

specifying three parameters and that can be integrated with the Database and Table classes

as follows:

$this->load->library("table");

$config["base_url"] = site_url("/sprog/members");

$config["total_rows"] = $this->db->get("test")->num_rows();

$config["per_page"] = 2;

$this->pagination->initialize($config);

$results = $this->db->get("test", $config["per_page"],

$this->uri->segment(3, 0));

echo $this->table->generate($results);

echo $this->pagination->create_links();

The $config["base_url"] includes the site_url() of the application, which will be

appended with the page that is currently being viewed, so this would be the members

function of the sprog controller. For example, if the user has clicked the third page, this

would produce sprog/members/3.The $config["total_rows"] parameter is set to the

total number of rows in the test table, and the $config["per_page"] parameter dictates

how many results are shown per “page.”The $results variable is where the appropriate

results are extracted from your database and uses the LIMIT and OFFSET parameters to

extract the appropriate number of records.The records are then passed into the Table class

http://sprog.com/codeigniter/sprog/profile/johndoe
http://sprog.com/codeigniter/profile/johndoe
http://sprog.com/codeigniter/profile/johndoe
http://sprog.com/codeigniter/sprog/profile/johndoe

244 Chapter 12 Building a Microblog Tool Using CodeIgniter

to generate a table of results, which is then followed by the pagination links.A number of

optional configuration options for the Pagination class can be used:

n $config["num_links"]

Sets the number of “digit” links you would like before and after the selected page

number. For example, the number 2 will place two digits on either side.

n $config["full_tag_open"] and $config["full_tag_close"]

If you would like to surround the entire pagination with some markup, you can set

this here (for example, wrapping the pagination inside a <div> or <p>).

n $config["first_link"], $config["first_tag_open"],

$config["first_tag_close"], $config["last_link"],

$config["last_tag_open"], $config["last_tag_close"],

$config["next_link"], $config["next_tag_open"],

$config["next_tag_close"], $config["prev_link"],

$config["prev_tag_open"] and $config["prev_tag_close"]

These parameters can be used to customize the “first,”“last,”“next,” and “previous”

links and related opening and closing tags.

n $config["cur_tag_open"], $config["cur_tag_close"],

$config["num_tag_open"] and $config["num_tag_open"]

To customize the display of the current page or other numbers, you can wrap them

with tags supplied in these parameters.

Note that this sample code has not been introduced into the MVC architecture and is

demonstrated in the “Building the Basic Sprog Application” section.

Session Class

CodeIgniter provides a Session class that permits you to maintain a users’“state” and track

their activity while they browse your site. Session information is serialized (and optionally

encrypted) within a cookie.You can also store the session data in a database for added

security by matching the session ID in the cookie to one stored in your database. By

default, only the cookie is saved. If you choose to use the database option, you must create

the session table as indicated in the CodeIgniter User Guide for the Session class (http:/

/codeigniter.com/user_guide/libraries/sessions.html).

Session Cookies Update Time

Session cookies are updated only every five minutes to reduce processor load, even if a

page is repeatedly reloaded. If you want to update this more regularly, you can set

$config["time_to_update"] in the config.php file.

Within a session you have access to four variables alongside any others that you want

to store: session_id; ip_address; user_agent; and last_activity, which is a time

http://codeigniter.com/user_guide/libraries/sessions.html
http://codeigniter.com/user_guide/libraries/sessions.html

245An Overview of CodeIgniter

stamp when the cookie was last written. For added security, you can load the Encryption

class and set the $config["encryption_key"] within the config.php file.This encryp-

tion key should be at least 32 characters in length and is very similar to the keys provided

by Twitter and Facebook.You can then use $this->encrypt->encode(<<TEXT>>) and

$this->encrypt->decode(<<ENCRYPTED TEXT>>) to reveal the original text. If you have

enabled encryption, you access session data as follows:

$session_id = $this->encrypt->decode($this->session->

userdata("session_id"));

Sometimes you might want to store custom session data, such as a user’s e-mail

address, username, or logged-in status.You can do so as follows:

$user = array(

"username" => $this->encrypt->encode("johndoe"),

"logged_in" => true

);

$this->session->set_userdata($user);

To “unset” or remove session data, you can use $this->session->unset_user-

data(<<KEY>>), where <<KEY>> in the example above would be username or

logged_in. If you want to destroy all data at once, you can use the $this->session-

>sess_destroy() (for example, when a user logs out of your application). CodeIgniter

also supports “flashdata,” which is session data that will be available only for the next

server request and is then automatically cleared.These can be manipulated using three

methods:

n $this->session->set_flashdata("<<KEY>", "<<VALUE>>");

n $this->session->flashdata("<<KEY>>");

n $this->session->keep_flashdata("<<KEY>>");

The example in this chapter uses sessions and encryption.

CodeIgniter Helpers

Helpers are sets of functions that perform a particular task such as working with URLs or

forms.You have already come across one of the methods of the URL Helper, which gath-

ered your site_url(). Unlike libraries, you don’t need to use the $this syntax to initial-

ize helper methods.The URL Helper also includes these useful methods:

n base_url().

n current_url().

n uri_string(), which returns the segments after the base_url().

n For creating links, you can use anchor("sprog/profile/johndoe", "John Doe",

array("title" => "John Doe's Profile")) to render a hyperlink.

246 Chapter 12 Building a Microblog Tool Using CodeIgniter

The URL Helper contains a number of other methods, which you can find in the

CodeIgniter User Guide (http://codeigniter.com/user_guide/helpers/url_helper.html).

The Form Helper, as the name suggests, can be used to create form elements such as

input boxes, hidden fields, and buttons.The following example uses most of the methods

from the Form Helper:

$this->load->helper("form");

$hidden = array("time" => microtime());

echo form_open("sprog/login", array("id" => "login"), $hidden);

$username_input = array(

"name" => "username",

"id" => "username",

"maxlength" => 128,

"style" => "width: 50%;"

);

echo form_input($username_input);

echo form_password("password");

echo form_submit("submit", "Log In", 'onsubmit="function() {}"');

echo form_close();

This generates the following in HTML:

<form action="sprog/login" method="post" id="login">

<input type="hidden" name="time" value="0.06839700 1267274117" />

<input type="text" name="username" value="" id="username" maxlength="128"

style="width: 50%;" />

<input type="password" name="password" value="" />

<input type="submit" name="submit" value="Log In" onsubmit="function() {}"

/>

</form>

The Form Helper contains a number of other methods, which you can find in the

CodeIgniter User Guide (http://codeigniter.com/user_guide/helpers/form_helper.html).

The example in this chapter uses both of these helpers and some of their associated

methods.

Building the Basic Sprog Application
Now that you understand a bit about CodeIgniter and some of its libraries and helpers, it

is time to start creating our Sprog application.The application itself will be similar to

Twitter (and other microblog tools) in functionality and will contain the following core

components:

n It will enable users to register an account and sign in using a Sprog username and

password, or to authenticate using their Twitter, Facebook, or Google Friend

Connect credentials.

http://codeigniter.com/user_guide/helpers/url_helper.html
http://codeigniter.com/user_guide/helpers/form_helper.html

247Building the Basic Sprog Application

n It will enable users to post short status updates. In later sections, these updates will

also be posted to their Twitter/Facebook or linked to Google accounts.

n It will enable users to post a comment on or “like” another user’s status updates

from a profile page.

The aim of this section is to build a simple prototype that satisfies these basic applica-

tions, which will be extended when adding Twitter, Facebook, and Google Friend

Connect functionality in Chapter 13.The prototype will adhere as closely as possible to

the MVC architectural pattern to ensure that presentation, application logic, and data

extraction and manipulation are separated (which increases scalability and code reusabil-

ity). Models are used to interact with your database or other file store, reading and writing

to files, and many other tasks that manipulate data.Views, on the other hand, are used to

present data back to your users and should not contain any data processing at all apart

from iterating over a results set.The logic that binds these two components together is the

controller.The controller is the main hub of your application. It requests data from the

model and then “feeds” it into a view. It is possible to have more than one controller for

your applications, although in this example only one will be used. Multiple models will

be defined for specific functionalities for Twitter, Facebook, and Google Friend Connect.

Stage 1: Creating the Registration, Login, and Home Pages

First, we must set up the CodeIgniter environment to support the new Sprog application.

To do this, you will need to complete the following:

1. Using the CodeIgniter files that you downloaded earlier, edit autoload.php to load

the following libraries: database, session, pagination, table, and encrypt; the

url and form helpers; and a sprog_model model, which will be created later in this

section.Your config.php should have the full path to your web server added to

$config["base_url"], and if you intend to use the .htaccess “fix” to remove

index.php from URLs, you should ensure that $config["index_page"] is blank.

In this file, you should also set your $config["encryption_key"] to at least a

32-character random string and ensure that $config["global_xss_filtering"]

and $config["sess_encrypt_cookie"] are set to TRUE.You should add your data-

base configuration to the database.php file, which will be used throughout the

remainder of this chapter. Finally, set the $route["default_controller"] variable

in routes.php to sprog, which will be created shortly.

2. Add empty Sprog model and controller files, named sprog_model.php and

sprog.php, to the application\controllers and application\models directo-

ries. In the application\views directory, add a new directory called sprog.

3. Ensure that you have a static directory located in the root of your server along-

side your application and system directories.

248 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.2 Screen shot of the Sprog index page.

4. Upload the new files to your web server and visit your CodeIgniter URL.

For example, if you have uploaded your files to a local host, you would use

http://localhost/codeigniter/. Because no further data has been added to the

controller, a “404 Page Not Found” error will display.

The first page that will be created is the index page and will look something like

Figure 12.2, which shows a logo, header, and a log in or create a new account prompt.

A page will also be created for a new user to register, and a simple page will be generated

upon successful login. Other features that will be added include form validation, storing

values inside a session, database manipulation, and exception handling.

A number of steps will lead you to the application shown in Figure 12.2, which is only

the beginning.The first step is to create a template that contains standard header and

footer code for your application. Navigate to the application\views\sprog\ directory

and create a directory in there called includes. Inside the includes directory, create

three new files: templates.php, header.php, and footer.php.The templates.php

should contain the following code:

<?php

$data["title"] = $title;

$this->load->view("sprog/includes/header", $data);

$this->load->view($content);

$this->load->view("sprog/includes/footer");

?>

Both the $title and $content variables are explained later because these are passed

from the application controller.You can see that three views are loaded.These correspond

http://localhost/codeigniter/

249Building the Basic Sprog Application

to header.php, footer.php, and a variable tat is used to pass in dynamic content that

will enable the reuse of this template.Again, this is explored further by way of example.

Your header.php file should contain the following code, which accepts a $data array

that contains a title variable:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title><?php echo $title; ?> - Sprog</title>

<link rel="stylesheet" href="<?php echo base_url(); ?>static/style.css"

type="text/css" />

</head>

<body>

<div id="header">

<h1 class="title"><img src="<?php echo base_url(); ?>static/logo.png" />

 Sprog a social programming blog</h1>

<div id="description">

<p><?php echo $title; ?></p>

</div>

</div>

<div id="wrap">

<div id="content">

Notice that the title element is now accessed via the $title variable and used as

both the title of the window and is displayed in the description bar shown in Figure 12.2

with the text “Log In, Please!”A reference is also made to an external style sheet,

style.css, which is located inside the static directory.You can find the contents of this

file in this book’s code repository.The corresponding footer.php file, which is located in

the includes directory alongside template.php and header.php, should contain the fol-

lowing code:

</div>

<div id="footer">

<p>Themed by markhawker using

original theme by <a href="http://www.tumblr.com/themes/by/

sparo">sparo.</p>

</div>

</div>

</body>

</html>

This file simply closes the content <div> element and displays some standard footer

information. Upload the new includes directory, and then we’re on to creating the

Welcome screen, which displays a form and a button to create a new account.The first

thing to do is to create the register view.The register view is what users see when they

first visit the application and is supported by a simple controller.You should store this

250 Chapter 12 Building a Microblog Tool Using CodeIgniter

view inside the application\views\sprog directory and name it login.php.This file

contains the code for constructing a username and password input box and two buttons

for submitting the form and creating a new account and utilizes the Form helper:

<div id="login">

<?php

if(!empty($error)) { echo '<p class="error">'.$error."</p>"; }

echo form_open("sprog/login");

echo form_label("User Name", "username");

echo form_input("username");

echo form_label("Password", "password");

echo form_password("password");

echo form_submit("submit", "Log In");

echo anchor("sprog/register", "Create an Account");

echo form_close();

?>

</div>

The $error variable is utilized if a user supplies invalid login credentials or leaves the

form blank.The form submits to the login() function, which must be created inside the

sprog.php file alongside the register() function.The contents of this file are wrapped

inside the template, so that is why no header and footer information is required. Finally,

you should open the sprog.php file located within application\controllers and add

the code in Listing 12.1, which includes the index() function (the default controller).

Listing 12.1 The sprog.php File Demonstrating the Default index() Function

1 <?php

2 class Sprog extends Controller {

3 function Sprog() {

5 parent::Controller();

6 }

7 function index($error = false) {

8 $data["error"] = ($error == "error" ? "The username or password

you supplied was incorrect, please try again." : false);

9 $data["content"] = "sprog/login";

10 $data['title'] = "Log In, Please!";

11 $this->load->view("sprog/includes/template", $data);

12 }

13 }

14 ?>

The code in Listing 12.1 shows a standard CodeIgniter controller architecture, which

is initiated on lines 2 to 6. Note that the class name and constructor must be the same

name as your filename, which in this instance is sprog.php. Lines 7 to 12 define the

index() function, which sets up three variables to add to the $data array: error,

251Building the Basic Sprog Application

content, and title.These variables are then passed to the template view for parsing. In

particular, the content is used to render the application\views\sprog\login.php file.

If you save sprog.php and upload it to your web server within application\

controllers, you should be presented with the page illustrated in Figure 12.2, assuming

that you have also added style.css and logo.png to the static directory. Clicking either

of the “Log In” or “Create an Account” options should present you with a warning mes-

sage from CodeIgniter (because these controllers have not been set up yet).

Before we continue and add the login() and register() functions, a database table

should be created that will contain all the user data.This can be created with the follow-

ing SQL:

CREATE TABLE IF NOT EXISTS "user" (

"username" varchar(24) NOT NULL,

"password" varchar(32) NOT NULL,

"fullname" varchar(64) NOT NULL

PRIMARY KEY ("username")

);

Because passwords are to be encrypted using an md5(), this will give a length of 32

characters, and the username and fullname fields are to be restricted via the front-end

code to the appropriate lengths.After your database has been created, you’re ready to add

the first bit of advanced functionality: inserting a user to the database. Inside the

sprog.php file, add the following code, which is similar to the index() function:

function register($error = false) {

$data["error"] = ($error == "error" ? "The username you supplied already

exists, please choose another." : false);

$data["content"] = "sprog/register";

$data["title"] = "Register, Please!";

$this->load->view("sprog/includes/template", $data);

}

The only difference here is that the error message has been updated and a reference is

made to a sprog/register view, which hasn’t been created yet.This view should look

something like Figure 12.3.

The main features of the registration page will be form validation using the Form

Helper, which can be used to perform multiple checks on the submitted data. Because

the XSS filtering option has already been set, this is something that does not have to be

checked in your application.As with the index page, the Form Helper is used to con-

struct a form that also uses its set_value() methods in case there are validation errors

and the form needs to be prepopulated with data that the user previously submitted:

<div id="register">

<?php

if(!empty($error)) { echo '<p class="error">'.$error."</p>"; }

echo validation_errors('<p class="error">');

echo form_open("sprog/create");

252 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.3 The Sprog registration page.

echo form_label("User Name", "username");

echo form_input(array("name" => "username", "value" =>

set_value("username")));

echo form_label("Full Name", "fullname");

echo form_input(array("name" => "fullname", "value" =>

set_value("fullname")));

echo form_label("Password", "password");

echo form_password(array("name" => "password", "value" =>

set_value("password")));

echo form_label("Confirm Password", "confirm_password");

echo form_password(array("name" => "confirm_password", "value" =>

set_value("confirm_password")));

echo form_submit("submit", "Create Account");

echo anchor("sprog/index", "Cancel");

echo form_close();

?>

</div>

The code above constructs appropriate form labels and inputs that post to the

create() function, which has not been created yet.Another feature is the validation_

errors() method.This method shows any errors with the form input and is initiated

from within the controller as per the rules of MVC. Save this code as register.php

253Building the Basic Sprog Application

within application\views\sprog and upload it to your web server.You should now be

able to visit your home page and navigate to the registration page, as shown in Figure

12.3.The create() function will be the first instance in which the sprog_model is initi-

ated to insert a record into the database but also to validate form output, update a user’s

session data with encrypted details, and redirect to the home page. Listing 12.2 shows the

code for this function.

Listing 12.2 The create() Function within the Main Controller

1 function create() {

2 $this->load->library("form_validation");

3 $this->form_validation->set_rules("username", "User Name",

"trim|required|min_length[4]|max_length[24]");

4 $this->form_validation->set_rules("fullname", "Full Name",

"trim|required|max_length[64]");

5 $this->form_validation->set_rules("password", "Password",

"trim|required|min_length[4]|max_length[32]");

6 $this->form_validation->set_rules("confirm_password", "Confirm

Password", "trim|required|matches[password]");

7 if($this->form_validation->run() == false) {

8 $this->register();

9 } else {

10 $username = $this->input->post("username");

11 $fullname = $this->input->post("fullname");

12 $password = md5($this->input->post("password"));

13 $user = $this->sprog_model->create($username, $fullname, $password);

14 if(!empty($user)) {

15 $data = array(

16 "username" => $this->encrypt->encode($user["username"]),

17 "fullname" => $this->encrypt->encode($user["fullname"]),

18 "is_logged_in" => true,

19 "source" => $this->encrypt->encode("s")

20);

21 $this->session->set_userdata($data);

22 redirect("sprog/home");

23 } else {

24 $this->register("error");

25 }

26 }

27 }

The complexity of this controller lies in the multiple paths that need to be covered

from all data being correct and a value being added to the database to invalid details or

attempts to re-register an existing username. Form validation is performed on lines 3 to 6

on each of the input fields after first loading the Form Validation Helper on line 2.The

first parameter of the set_rules() method corresponds to the input field name, the

254 Chapter 12 Building a Microblog Tool Using CodeIgniter

second its “friendly” name, and the third is the validation to be performed. In the exam-

ples in Listing 12.2, this includes trimming whitespace, testing required elements, maxi-

mum and minimum length, and checking that the confirm_password matches the

password field.The validation is then executed on line 7. true is returned if there are

none, and false if any have been found. If errors are found, the registration page is re-

loaded, and the errors will be shown by the validation_errors() method.

On lines 10 to 12, the data from the form is extracted and the password is hashed.

These fields are then passed into the create() function, which is shown in Listing 12.3.

On success, the function returns an array of a username and fullname, which is

encrypted alongside is_logged_in and source parameters, which are stored in a session

on lines 15 to 21.The source parameter will be important in the future because it stores

the authentication mechanism used to log in.The user is then redirected to the home

page, or, if the create() function is unsuccessful, the user is redirected to the registration

page, where an error will be shown.The contents of the home page, which you want to

upload to application\views\sprog as home.php, will simply contain the following,

which will be extended in the next section:

<h1>Success!</h1>

<p><?php echo anchor("sprog/logout", "Logout"); ?></p>

In the sprog.php file, a controller should be added for both logout() and home(), as

shown here:

function home() {

$this->is_logged_in();

$fullname = $this->encrypt->decode($this->session->userdata("fullname"));

$data["content"] = "sprog/home";

$data["title"] = "Welcome, ".$fullname."!";

$this->load->view("sprog/includes/template", $data);

}

function logout() {

$this->session->sess_destroy();

redirect("sprog/index");

}

function is_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$uri_segment = $this->uri->segment(2);

if((isset($is_logged_in) && $is_logged_in == true) &&

($uri_segment == "index" || $uri_segment == "register")) {

redirect("sprog/home");

}

elseif((!isset($is_logged_in) || $is_logged_in != true) &&

$uri_segment != "index" && $uri_segment != "register") {

redirect("sprog/index");

}

}

255Building the Basic Sprog Application

Because you do not want users who are not logged in to access the home page, an

extra is_logged_in() function has been included that tests for the existence of the ses-

sion value. If the session value does not exist, the user is redirected to the index.You

should also add a $this->is_logged_in() call to the first line of the index() and

register() controllers, because if users have already logged in and they visit these pages,

they should be redirected to the home page.The home page decodes the fullname vari-

able, which is stored within the session, and also presents a logout link to destroy the ses-

sion and return the user to the index page. In your application\views\sprog folder,

add a new file called home.php and which contains the following code:

<div id="update">

<p>You are logged in!</p>

</div>

<p><?php echo anchor("sprog/logout", "Logout"); ?></p>

This code above just presents a message to the user saying that he or she has logged in

(alongside a link to log out). In the next section, this is greatly extended. Just as with the

controller, setting up a model requires a constructor and class name that match the name

of the file, sprog_model.php, and must be named differently to your controller. Listing

12.3 shows the create() function, which tests whether a username is already stored in

the database on line 7, and if so, the function returns false on line 25. Otherwise, a

$user array is created consisting of the variables passed to the function from the con-

troller and then inserted into the database.

Listing 12.3 The Sprog Model and the create() Function

1 <?php

2 class Sprog_Model extends Model {

3 function Sprog_Model() {

4 parent::Model();

5 }

6 function create($username, $fullname, $password) {

7 $query = $this->db->get_where("user", array("username" =>

$username));

8 if($query->num_rows() == 0) {

9 $user = array(

10 "username" => $username,

11 "fullname" => $fullname,

12 "password" => $password

13);

14 $query = $this->db->insert("user", $user);

15 if($query) {

16 $data = array(

17 "username" => $username,

18 "fullname" => $fullname

19);

256 Chapter 12 Building a Microblog Tool Using CodeIgniter

20 return $data;

21 } else {

22 return false;

23 }

24 } else {

25 return false;

26 }

27 }

28 }

The result of the query will return true or false, and if true, a $data array is con-

structed containing the username and fullname, which is processed by the controller.

Again, this function will return false if there was an error. If you save the sprog_model.

php into the application\models directory and upload it to your web server, you

should now be able to register your own account! Test that validation works as expected

and that when you register an account the appropriate data is being added to your data-

base.The final part of this section is to create the login() function of the index page for

returning users.The login() function takes some of its code from the registration con-

troller because you want to test whether the user exists in your database and redirect as

appropriate.Add the following code to the sprog.php controller:

function login() {

$username = $this->input->post("username");

$password = md5($this->input->post("password"));

$user = $this->sprog_model->validate($username, $password);

if(!empty($user)) {

$data = array(

"username" => $this->encrypt->encode($user["username"]),

"fullname" => $this->encrypt->encode($user["fullname"]),

"is_logged_in" => true,

"source" => $this->encrypt->encode("s")

);

$this->session->set_userdata($data);

redirect("sprog/home");

} else {

$this->index("error");

}

}

The difference in this code is that it calls the validate() function of the model

before storing the user data within a session and redirecting as appropriate.This final

model function consists of the following code:

function validate($username, $password) {

$this->db->where("username", $username);

$this->db->where("password", $password);

$query = $this->db->get("user");

257Building the Basic Sprog Application

if($query->num_rows() == 1) {

$data = array(

"username" => $query->row()->username,

"fullname" => $query->row()->fullname

);

return $data;

} else {

return false;

}

}

In this code, the $username and $password are cross-checked against the database. If a

match is found, the user’s username and fullname is passed back to the controller; other-

wise, the function returns false.This final piece of code should be saved within the

sprog_model.php file and uploaded to your web server alongside all the files that have

been modified in this section, which are also available within the stageone directory of

the code repository.This directory should be renamed codeigniter and include your

customized configuration files. If all is well, you should have created the following files

and functions and added the static directory, which includes logo.png and style.css

from the code repository:

n applications\controllers\sprog.php: index(), login(), register(),

create(), home(), logout(), and is_logged_in()

n applications\models\sprog_model.php: create() and validate()

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

n applications\views\sprog\includes\template.php

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

The next section extends the Sprog application to include the ability to post status

updates, view profiles, comment, and “like” other user’s updates.

Stage 2: Extending the Sprog Application with Updates,

Comments, and Likes

The next step in creating the Sprog application is to add the functionality that enables

users to post and delete short updates, comment on updates, and “like” updates.To keep

this application fairly simple, users will not be able to “unlike” or delete their comments,

but will be able to delete their updates. Users will also be given a simple profile with their

latest updates listed. By the end of this section, you should have something resembling the

home page shown in Figure 12.4.

258 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.4 The Sprog home page.

In addition to the home page, there will be a page listing all the updates made by all

users; this page can be commented on or liked. In the future, you could add the ability to

search for updates or other users. Before getting started on coding the application, you

need to create three new database tables:

n update

This table will store all the updates made by users and contains five fields: id, which

is a BIGINT(30) and is set to auto_increment; text, which is a TEXT field that

contains the update text; datetime, containing the date and time that the update

was made; username, for storing the user who posted the update; and source, for

storing which method was used to post the update, which is a CHAR(1) and which

can be set to s for Sprog, t for Twitter, f for Facebook, and g for Google Friend

Connect.

n comment

This table is almost identical to update except that a new field is added called

update_id, which is a BIGINT(30) and is used to link comments to an original

update.

n like

The like table contains only two fields: an update_id that references the update

table; and a count, which is a simple INT(12) for counting the number of times an

update is liked.

259Building the Basic Sprog Application

You can create these tables using the following SQL:

CREATE TABLE IF NOT EXISTS "update" (

"id" bigint(20) NOT NULL auto_increment,

"text" text NOT NULL,

"datetime" datetime NOT NULL default "0000-00-00 00:00:00",

"username" varchar(12) NOT NULL,

"source" char(1) NOT NULL,

PRIMARY KEY ("id")

)

CREATE TABLE IF NOT EXISTS `comment` (

"id" bigint(20) NOT NULL auto_increment,

"update_id" bigint(20) NOT NULL default "0",

"text" text NOT NULL,

"datetime" datetime NOT NULL default "0000-00-00 00:00:00",

"username" varchar(12) NOT NULL,

"source" char(1) NOT NULL,

PRIMARY KEY ("id")

)

CREATE TABLE IF NOT EXISTS "like" (

"update_id" bigint(20) NOT NULL default "0",

"count" int(12) NOT NULL default "0",

PRIMARY KEY ("update_id")

);

There is no need to add any records to these tables yet because methods will be cre-

ated to insert, update, and delete values.This section focuses on the creation of four new

views, which should be stored within application\views\sprog and which will per-

form the following functions:

n The home.php view will display an update form which will be validated and posts

to the update table.This view will also display the user’s latest update, which can be

deleted alongside the user’s recent comments.This page will also contain links to

the user’s profile and to the global page for user updates.

n The latest.php view displays the latest updates made by all users and grants the

ability to like and comment on updates. Unlike home.php, this view will not let

users delete their updates.

n The profile.php is very similar to the latest.php view, although it will be used

to display a specific user’s updates. For now, no further profile information is sup-

plied to this view.

n The comments.php view presents users with a form to submit their comment and

to view other comments.This form will be validated and will redirect the com-

menter back to the home.php view on success.

260 Chapter 12 Building a Microblog Tool Using CodeIgniter

These four new views are supported by various controller methods that make further

use of the application’s mode. In all cases, there is a corresponding controller that will be

added to sprog.php and some helper functions for updating and deleting an update, lik-

ing, and commenting.The accompanying style sheet for this new stage will be included

within the source code for this chapter and is not included here.The best place to start

this section is with the hub of our application, home(), where you should add the follow-

ing code to the sprog.php controller:

1 function home() {

2 $this->is_logged_in();

3 $fullname = $this->encrypt->decode($this->session->

userdata("fullname"));

4 $username = $this->encrypt->decode($this->session->

userdata("username"));

5 $config["base_url"] = site_url("/sprog/home");

6 $config["total_rows"] = $this->db->get_where("update", array(

"username" => $username))->num_rows();

7 $config["per_page"] = 15;

8 $config["full_tag_open"] = '<div id="pagination">';

9 $config["full_tag_close"] = "</div>";

10 $this->pagination->initialize($config);

11 $data["updates"] = $this->sprog_model->updates($username,

$config["per_page"], $this->uri->segment(3, 0));

12 $data["comments"] = $this->sprog_model->my_comments($username);

13 $data["pagination"] = $this->pagination->create_links();

14 $data["username"] = $username;

15 $data["content"] = "sprog/home";

16 $data["title"] = "Welcome, ".$fullname."!";

17 $this->load->view("sprog/includes/template", $data);

18 }

This function first makes sure that issuers are logged in and then extracts their user-

name and full name from the encrypted session on lines 3 and 4. Because you don’t want

to show all the user’s updates at once, the Pagination class is initiated on lines 5 to 10 and

passed to the view on line 13.To ensure that the page links can be styled using the exter-

nal style sheet, you just wrap the pagination controls within a <div>.The next two lines

call specific functions within the sprog_model.php file, which extracts a user’s updates,

passing in the pagination variables, and extracts the user’s comments, which are then stored

in the $data array passed to the template view. Listing 12.4 shows these two functions.

Listing 12.4 The updates() and my_comments() Functions

1 function updates($username, $limit, $offset) {

2 $this->db->select("*")->from("update")->join("like", "like.update_id =

update.id", "left")->where("username", $username)->order_by(

"datetime", "desc")->limit($limit, $offset);

3 $query = $this->db->get();

261Building the Basic Sprog Application

4 if($query->num_rows() > 0) {

5 $updates = array();

6 foreach($query->result() as $row) {

7 $comment_count = $this->comment_count($row->id);

8 $updates[] = array("id" => $row->id, "text" => $row->text,

"source" => $row->source, "time" => strtotime($row->datetime),

"like_count" => $row->count, "comment_count" => $comment_count);

9 }

10 return $updates;

11 } else {

12 return array(array("id" => -1, "text" => "There are no updates,

yet.", "source" => "n", "time" => -1, "like_count" => -1,

"comment_count" => -1));

13 }

14 }

15 function my_comments($username) {

16 $this->db->where("username", $username)->order_by("datetime",

"desc")->limit(10, 0);

17 $query = $this->db->get("comment");

18 if($query->num_rows() > 0) {

19 $my_comments = array();

20 foreach($query->result() as $row) {

21 $my_comments[] = array("id" => $row->update_id, "text" =>

$row->text, "source" => $row->source, "time" => strtotime(

$row->datetime));

22 }

23 return $my_comments;

24 } else {

25 return array(array("id" => -1, "text" => "There are no comments,

yet.", "source" => "n", "time" => -1));

26 }

27 }

Both functions shown in Listing 12.4 demonstrate how the Database class can be used

to extract data from your database.“Chaining” is used to string together the components

of the query, which is then tested using the $query->num_rows() method on lines 4 and

18.The updates() function also iterates over each update and searches for related com-

ments, on line 7, which contains the following code:

function comment_count($update_id) {

$query = $this->db->get_where("comment", array("update_id" =>

$update_id));

return $query->num_rows();

}

Results from the updates() and my_comments() functions are stored within arrays,

which are then passed back to the controller. If no updates or comments are found, a

262 Chapter 12 Building a Microblog Tool Using CodeIgniter

dummy array is created with appropriate error messages.You should update the

sprog_model.php and sprog.php files and save them to the application\models and

application\controllers directories. Before you can run the application, update the

home.php view to correspond to the data that has just been added to the controller:

<div id="update">

<?php

echo validation_errors('<p class="error">');

echo form_open("sprog/update");

echo form_label("Update Me?", "update", array("style" => "font-size:

2em;"));

echo form_input(array("name" => "update"));

echo form_submit("submit", "Update");

echo form_close();

?>

</div>

This first section constructs the update form, which requires the creation of the

update() function in the main controller, which is shown in Table 12.2 below, alongside

its corresponding model functions:

<div id="latest">

<h2>My Updates</h2>

<?php

foreach($updates as $update) {

echo '<div class="update '.$update["source"].'">';

echo "<p>".($update["time"] != -1 ? ''.date("m-d-Y",

$update["time"])."" : " ").$update["text"]."</p>";

echo '<div class="controls">';

if($update["like_count"] != -1) {

echo 'Likes: '.($update["like_count"] ?

$update["like_count"] : 0)."";

}

if($update["comment_count"] != -1) {

echo 'Comments: '.($update["comment_count"]

? $update["comment_count"] : 0)."";

}

if($update["id"] != -1) {

echo ''.anchor("sprog/delete/".$update["id"],

"Delete")."";

}

echo "</div>";

echo "</div>";

}

echo $pagination;

?>

<h2>My Latest Comments</h2>

263Building the Basic Sprog Application

Table 12.2 Controller and Model Functions for Deleting and Posting an Update

Controller Model

function update() {
$this->load->library(
"form_validation");
$this->form_validation->
set_rules("update",
"Update", "trim|
required");
if($this->
form_validation->
run() == false) {
$this->home();

} else {
$username = $this->
encrypt->decode(
$this->session->
userdata("username"));
$update = $this->input->
post("update");
$source = $this->
encrypt->decode(
$this->session->
userdata("source"));
$this->sprog_model->
update($username,
$update, $source);
redirect("sprog/home");

}
}

function update($username,
$update, $source) {
$data = array(
"id" => null,
"text" => $update,
"datetime" => date(
"Y-m-d H:i:s",
time()),
"username" =>
$username,
"source" => $source

);
$this->db->insert(
"update", $data);
return $this->db->
insert_id();
}

<?php

foreach($comments as $comment) {

echo '<div class="update '.$comment["source"].'">';

echo "<p>".($comment["time"] != -1 ? ''.date("m-d-Y",

$comment["time"])."" : " ").($comment["id"] != -1 ?

anchor("sprog/view_comment/".$comment["id"], $comment["text"]) :

$comment["text"])."</p>";

echo "</div>";

}

?>

</div>

<p><?php echo anchor("sprog/profile/".$username, "My Profile"); ?> |

<?php echo anchor("sprog/latest", "Latest Updates"); ?> | <?php echo

anchor("sprog/logout", "Logout"); ?></p>

264 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.5 The Sprog Latest Updates page.

The remainder of this code is used to iterate over both the $updates and $comments

variables and to display links to the delete() function and to redirect users to the

profile and latest views. Save this code as home.php and upload it to your web server,

where you should be able to log in and view this page.

The three views that still need to be created are profile and latest, plus a comments

view for submitting responses to updates.These are saved in the

application\views\sprog directory as profile.php, latest.php, and comments.php.

Because these views contain similar methods and controllers, these are not described in

detail here, but are included in the sample code for this chapter.The latest updates view is

shown in Figure 12.5, which, unlike the home page, allows a user to like an update and

links to the comments view.The code for this page is produced by the latest() con-

troller function, supported by the like() function and model functions

latest_updates() and like().

Table 12.2 Controller and Model Functions for Deleting and Posting an Update

Controller Model

function delete() {
$update_id = $this->uri->
segment(3);
$this->sprog_model->
delete($update_id);
redirect("sprog/home");
}

function delete(
$update_id) {
$this->db->where(
"id", $update_id);
$this->db->delete(
"update");
$tables = array(
"like", "comment");
$this->db->where(
"update_id",
$update_id);
$this->db->delete(
$tables);

return true;
}

The final comments view is shown in Figure 12.6, which shows a comments box

and the latest comments posted by other users.This view is supported by the

265Building the Basic Sprog Application

Figure 12.6 The Sprog Comments page.

view_comment() controller function, which requires the get_comments() model func-

tion, alongside the comment() controller function, for posting a comment, which

requires the post_comment() model function and get_original() for retrieving the

details of an update.

After saving the newly created controller, model, and views files to your web server

and ensuring that you have created the specified databases, you should be able to visit

your fully functional Sprog application.You can find the files in the github code reposi-

tory inside the stagetwo directory.This directory should be renamed codeigniter and

include your customized configuration files. If all is well, you should have created or

modified the following files and functions and updated the static directory with the

new style.css file from the repository:

n applications\controllers\sprog.php: home(), update(), delete(),

profile(), latest(), like(), comment(), and view_comment().

n applications\models\sprog_model.php: updates(), my_comments(),

comment_count(), update(), delete(), latest_updates(), like(),

get_comments(), post_comment(), and get_original().

n applications\views\sprog\comment.php

n applications\views\sprog\latest.php

n applications\views\sprog\profile.php

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

266 Chapter 12 Building a Microblog Tool Using CodeIgniter

With the framework for the microblog tool complete, the next chapter looks at how to

add Twitter, Facebook, and Google Friend Connect functionality to the Sprog application.

Summary
This chapter described how you can use the CodeIgniter web application framework

to create your very own microblog tool.The tool enables users to register, log in, post up-

dates, leave comments, and “like” updates.The extensibility and simplicity of CodeIgniter

makes it an excellent resource suitable for beginners through to advanced programmers.

The next chapter looks at how to incorporate social features into Sprog, such as authenti-

cation via Twitter, Facebook, and Google Friend Connect, as well how to post updates,

comments, and likes to each of the services.

13

Integrating Twitter, Facebook,
and Google Friend Connect

This chapter extends Chapter 12,“Building a Microblog Tool Using CodeIgniter,”

which built a “social programming microblog” from scratch using CodeIgniter.The final

version of Sprog, which you will build in this chapter, will implement some of the fea-

tures that have been described in this book, including user authentication, status updates,

commenting, and “likes” through Twitter, Facebook, and Google Friend Connect.The

chapter is split into three sections for each technology platform, giving examples of how

to first integrate them with CodeIgniter and then how to extend the functionality that

was created in Chapter 12.At the end of this chapter, you will understand how to incor-

porate social features into your own web applications. However, don’t think of this sample

application as production ready.You would still need to modify it appropriately to ensure

that it was secure enough to be released in the wild.The best strategy to adopt while

developing is to continually test it with your own Twitter, Facebook, and Google

accounts to gauge how it will function in the real world.

As with all code examples in this book, be aware that any one of the Twitter,

Facebook, or Google Friend Connect services could update their libraries to add or

remove features. Following the appropriate developer forums and blogs will help you

identify the breaking changes to your applications.You should also follow the book’s blog

http://www.socialprogramming.info/ and code repository, which will be updated with

new code as time progresses.

Implementing Twitter Functionality
The two main ways in which Twitter will be used is to provide login functionality using

“Sign in with Twitter,” which will create a new user account or will update an existing

account with Twitter credentials, and to post updates to their stream. For this to work,

another table needs to be created in your database, twitter, which will store the user’s

http://www.socialprogramming.info/

268 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Twitter ID, access token, and token secret, plus a reference to a record in the user table (if

one already exists).To create the twitter table, just execute the following SQL:

CREATE TABLE IF NOT EXISTS "twitter" (

"id" bigint NOT NULL,

"access_token" varchar(50) NOT NULL,

"token_secret" varchar(50) NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, once they have logged in with Twitter

they will be prompted to link their accounts.Those users who do not already have a

Sprog account are prompted to create one after authenticating with Twitter. Other

changes that will be required are adding a twitter_id field to the update table.This will

store the status ID of an update posted when logged in via Twitter and is required to be a

bigint. For this example, comments are not included (but would function in exactly the

same way as regular updates).

Setting Up Twitter and Twitter-async Support

Before proceeding, you must first register a Sprog application on Twitter by visiting

http://twitter.com/apps/new and submitting the following:

n Application icon:This can be any image of your choosing, but you could use the

logo.png located within the static directory.

n Application Name:An appropriate name for this application would be Sprog,

although this can be anything that you want.

n Description:This can be left blank or you could add the following:‘A test application

for @markhawker’s book entitled:“The Developer’s Guide to Social Programming”’.

n Application Website:You can set this to your own URL or use the book’s URL,

which is http://www.socialprogramming.info/.

n Organization and Website:These can be set to your own company name and

URL, if required.

n Application Type:For this example, this should be set to “Browser.”

n Callback URL:As CodeIgniter does not readily support GET operations, which are

how Twitter responds to a successful authentication.This should be set to a URL

outside of the application directory. For now, set this to point to your static direc-

tory in a new subdirectory called php. For example, if your URL is http://sprog.

com/codeigniter/, this should be set to http://sprog.com/codeigniter/static/php/.

Create a new file in this directory called index.php and add the following code:

<?php header("Location: http://sprog.com/codeigniter/sprog/twitter/".
$_GET["oauth_token"]); ?>

http://www.socialprogramming.info/
http://twitter.com/apps/new
http://sprog.com/codeigniter/
http://sprog.com/codeigniter/
http://sprog.com/codeigniter/static/php/

269Implementing Twitter Functionality

This code should redirect the user back inside your application to the twitter

function of the sprog controller, which will expect a token appended to the URL.

Note that this URL should be located on your own server!

n Default Access Type:Because this application will be updating a user’s Twitter

profile, this will need to be set to “Read & Write” so that we can support this

functionality.

n Use Twitter for Login:Again, because “Sign in with Twitter” is to be used, you

should check this option.

After all of these details have been submitted, you are given a consumer key and con-

sumer secret.These should be added to your constants.php configuration file using the

following names:

define("TWITTER_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXXXX");

define("TWITTER_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXXXX");

By adding these two constants you ensure that they are both addressable within the

application, instead of having to worry about storing them as an external reference.The

final step is to download the twitter-async library from http://github.com/jmathai/

twitter-async and upload it to the application\libraries directory.To make this a

pseudo-CodeIgniter library, a twitter.php class must be created that will include the

twitter-async library and includes some standard functions such as creating an EpiTwitter

Object and checking responses, which were explored in Chapter 3,“Authentication with

Twitter OAuth,” when creating the Test Tube application:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "twitter-async/EpiCurl.php";

include "twitter-async/EpiOAuth.php";

include "twitter-async/EpiTwitter.php";

class Twitter {

function init($oauth_token = null, $oauth_token_secret = null) {

return new EpiTwitter(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET,

$oauth_token, $oauth_token_secret);

}

function get_url() {

$twitter = $this->init();

try {

return $twitter->getAuthenticateUrl(null, array("force_login" =>

true));

}

catch(EpiOAuthException $e) { return "oauthexception"; }

catch(EpiTwitterException $e) { return "twitterexception"; }

}

function verify($twitter) {

if (is_object($twitter)) {

$response = $twitter->get_accountVerify_credentials();

http://github.com/jmathai/twitter-async
http://github.com/jmathai/twitter-async

270 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

return $this->check($response);

} else {

return false;

}

}

function check($payload) { return ($payload->code == 200) ? $payload :

false; }

}

?>

Within this file, you directly import the twitter-async library so that whenever the

$this->load->library("twitter") method is called, these files are immediately

loaded. By constructing the library in this way, you can then access $this->twitter-

>init() to initialize a session as well as the get_url(), verify(), and check() func-

tions. Because you will be using this library throughout the application, it should be

loaded automatically by adding twitter to the $autoload["libraries"] variable in

autoload.php.You can create any number of libraries in the way that was just described,

which is the basis for the Facebook and Google Friend Connect sections.

Stage 3: Extending the Sprog Application with Twitter

Functionality

This stage builds on the two previous stages from Chapter 12, which included creating

the skeleton of the Sprog application using CodeIgniter.You might want to revisit that

chapter to refresh your mind on the basic functionalities of Sprog and use the CodeIgniter

references if any of the libraries or helper functions are not readily apparent to you.

The goal of adding Twitter functionality is to enable users to log in using Twitter cre-

dentials so that they can post their Sprog updates to their Twitter stream easily and conve-

niently.There is one major issue in how this needs to be implemented, which is illustrated

via an example scenario. Suppose a user has created an account,“markhawker,” via Sprog,

but then wants to log in via Twitter, too.The user will click the “Sign in with Twitter”

button, shown in Figure 13.1, authenticate, and then be returned to the callback URL

that has already been set.

Which username would you use? Suppose that the user logged in using the Twitter

account “markhawker.”Would you assume that this account was held by the user who

created the markhawker Sprog login? In this event, you can’t assume that these two are

linked, and so an intermediate stage needs to be added that acknowledges that a user has

logged in via Twitter but it is unknown which Sprog account is the user’s (or even

whether the user has created one).This will occur only once because as soon as the user’s

accounts have been linked, you will have stored this in your database for future reference.

Although this might sound complex, it can be achieved by modifying the original Sprog

files to account for having a Twitter login.

271Implementing Twitter Functionality

Figure 13.1 Screen shot of the Sprog index page with

Twitter functionality.

The first step that needs to be addressed is populating the twitter() function inside

the main sprog.php controller, which was referenced via the callback URL and which

appends an access token to the third segment of the URL.This function is similar to

login() function created in Chapter 3, in that the token is parsed and if available an

EpiTwitter Object is created and initialized.The difference in this function is that the

access token and token secret are being stored in encrypted sessions rather than simple

cookies:

1 function twitter() {

2 $token = $this->uri->segment(3);

3 $oauth_token = $this->encrypt->decode(

$this->session->userdata("oauth_token")

);

4 $oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

5 if (!empty($token)) {

6 $session = $this->twitter_model->set_tokens($token);

7 $this->check_link(

$this->encrypt->decode($session["oauth_token"]),

$this->encrypt->decode($session["oauth_token_secret"])

);

8 } else if(empty($oauth_token) && empty($oauth_token_secret)) {

9 $this->session->set_userdata("oauth_token", "");

10 $this->session->set_userdata("oauth_token_secret", "");

11 redirect("sprog/index");

12 } else {

13 $this->check_link($oauth_token, $oauth_token_secret);

14 }

15 }

272 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Lines 3 and 4 are used just in case a user has already been authenticated, which will

execute the check_link() function on line 13 using the stored credentials. If a token is

available, the branch on lines 5 to 7 is executed.This sets the tokens using a function that

needs to be created in a new twitter_model.php model file and that then parses its out-

put and executes the check_link() function. If neither of the tokens is available, the user

is redirected back to the index page on line 11.

Autoloading Models

Don’t forget to autoload commonly accessed models within the autoload.php configura-

tion file (for example, twitter_model) that is created in this section. This ensures all avail-

able functions within the model are accessible to your application.

Create a new twitter_model.php file.This will be stored alongside sprog_model.php

in the application\models directory and should be autoloaded by your application.This

model will host the specific functionality for interacting with the twitter library and

updating Twitter-specific tables.The first function that is required is set_tokens(), which

accepts the oauth_token sent from Twitter as its only parameter:

<?php

class Twitter_Model extends Model {

function Twitter_Model() {

parent::Model();

}

function set_tokens($oauth_token) {

$twitter = $this->twitter->init();

try {

$twitter->setToken($oauth_token);

$token = $twitter->getAccessToken();

$twitter->setToken($token->oauth_token, $token->oauth_token_secret);

$data = array(

"oauth_token" => $this->encrypt->encode($token->oauth_token),

"oauth_token_secret" => $this->encrypt->encode(

$token->oauth_token_secret)

);

$this->session->set_userdata($data);

return $data;

}

catch(EpiOAuthException $e) { redirect("sprog/index/oauthexception"); }

catch(EpiTwitterException $e) { redirect("sprog/index/

twitterexception"); }

}

}

The set_tokens() function is used to extract the access token and token secret for

the authenticated user, which is then stored within an encrypted session.These two vari-

ables will be accessible for the duration of the time that the user is logged in and will be

273Implementing Twitter Functionality

used to access the numerous Twitter methods. If an error occurs during processing of the

token, the user is redirected to the index page.The next step in this process now that a

user’s tokens have been stored is to validate the user’s Twitter credentials and to check

(via the check_link() function within the main controller) whether the user has already

created a Sprog account. If so, the user is redirected to the home page with the source

parameter set to “t” for Twitter. If not, the user is redirected to the home page, but this

time you will have saved the user’s account ID and tokens within a session so that the

user can be “remembered” when the application is linking accounts:

function check_link($oauth_token, $oauth_token_secret) {

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$twitter_user = $this->twitter_model->get_user($twitter);

$check_user = $this->twitter_model->check_user($twitter_user["id"]);

if(!$twitter_user) {

redirect("sprog/index/twitterexception");

} else {

$this->session->set_userdata("twitter_id",

$this->encrypt->encode($twitter_user["id"])

);

if($check_user) {

$data = array(

"username" => $this->encrypt->encode($check_user["user_username"]),

"fullname" => $this->encrypt->encode($twitter_user["fullname"]),

"is_logged_in" => true,

"source" => $this->encrypt->encode("t")

);

$this->session->set_userdata($data);

redirect("sprog/home");

} else {

redirect("sprog/index");

}

}

}

The aim of this function is to extract the User object of authenticated users and to

check whether they already exist in the database. If they do, their details are stored in the

session, and they are redirected to the home page. If they have not authenticated, they are

redirected to the home page, where they must create a Sprog account or log in as normal.

Remember, because the twitter_id has been stored within the session, it is accessible in

other methods when linking accounts.The get_user() and check_user() should be

placed within the twitter_model.php model file and contain the following code:

function get_user($twitter) {

$twitter_user = $this->twitter->verify($twitter);

if (!empty($twitter_user)) {

$user = array(

"id" => $twitter_user->id,

274 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

"fullname" => $twitter_user->name

);

return $user;

} else {

return false;

}

}

function check_user($id) {

$query = $this->db->get_where("twitter", array(

"id" => $id, "user_username !=" => "")

);

if($query->num_rows() == 0) {

return false;

} else {

return array("id" => $id, "user_username" => $query->

row()->user_username);

}

}

These two functions make use of the Twitter library as well as the Database class for

extracting user details from the twitter table.The next step is to reconfigure the index

page to acknowledge that users have authenticated via Twitter so that when they log in or

register, an entry is added to both the user table and the twitter table.Your index()

function should be updated to include the following lines, which create an authenticate

URL and display a simple message to the user:

$data["twitter_url"] = $this->twitter->get_url();

if($this->session->userdata("twitter_id")) {

$data["has_twitter"] = "You are signed in with Twitter, but you must

login or register with us to link accounts. You will only have to do

this once.";

}

In the login.php view, you then need to toggle this message and either show or hide

the “Sign in with Twitter” button (depending on whether you have an active session):

if(!empty($has_twitter)) { echo '<p class="twitter_message">'.

$has_twitter."</p>"; }

if(empty($has_twitter)) {

echo "<h2>Alternative Logins</h2>";

echo '<p><img src="'.base_url().

'static/siwt-darker.png" height="24" width="151" alt="Sign in with

Twitter" />

</p>';

}

Similar code should be added to the register() function in the controller and the

register view to show the information message. No “Sign in with Twitter” button

275Implementing Twitter Functionality

should be shown on this page, and the authentication URL is also not required.The final

steps in this process are to validate the user details against your database and to link both

of the accounts.After all this has been completed the details are stored within the session.

The modified query within the validate() method of the sprog_model.php file should

be as follows:

$this->db->select("*")->from("user")->join("twitter",

"twitter.user_username = user.username", "left");

This query is used to join the user and twitter tables, and also return all results from

the user table that do not have a related record in the twitter table.This is important

because not all of your users will have linked a Twitter account.What also needs to be

added within this function is to return users’ access tokens and token secrets within the

$data array so that if they log in via their Sprog account, their Twitter credentials will be

automatically included:

"oauth_token" => $query->row()->access_token,

"oauth_token_secret" => $query->row()->token_secret

The new login() function within the main controller now contains the following:

1 function login() {

2 $username = $this->input->post("username");

3 $password = md5($this->input->post("password"));

4 $user = $this->sprog_model->validate($username, $password);

5 if(!empty($user)) {

6 $source = "s";

7 $data = array();

8 if($this->session->userdata("twitter_id")) {

9 $this->twitter_model->link($this->session->userdata("twitter_id"),

$username);

10 $source = "t";

11 } else {

12 $data["oauth_token"] = $this->encrypt->encode($user["oauth_token"]);

13 $data["oauth_token_secret"] = $this->encrypt->encode(

$user["oauth_token_secret"]);

14 }

15 $data["username"] = $this->encrypt->encode($user["username"]);

16 $data["fullname"] = $this->encrypt->encode($user["fullname"]);

17 $data["is_logged_in"] = true;

18 $data["source"] = $this->encrypt->encode($source);

19 $this->session->set_userdata($data);

20 redirect("sprog/home");

21 } else {

22 $this->index("error");

23 }

24 }

276 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

This modified login() function now enables the $source variable to be changed to

either an “s” or a “t,” depending on the authentication model, which is then encoded on

line 18. If the user has already authenticated with Twitter, on line 8, their details are linked

using the link() method, which needs to be created in the twitter_model.php file.

Otherwise, the user’s pre-existing tokens are stored on lines 12 and 13, which are then set

within the session on line 19.Within the create() function of the main controller, lines

6 and 8 to 11 should be added within the if(!empty($user)) conditional. On line 8,

however, you don’t need to open the else case because you already have the user’s Twitter

tokens stored within a session.

The final method, link(), is the method that actually stores a user’s credentials within

a database:

function link($id, $username) {

$id = $this->encrypt->decode($id);

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

$user = array(

"id" => $id,

"access_token" => $oauth_token,

"token_secret" => $oauth_token_secret,

"user_username" => $username

);

$query = $this->db->insert("twitter", $user);

return true;

}

Now that the Twitter login process has been tweaked to enable users to link their

Twitter and Sprog accounts together, it’s time to allow them to post updates to their

newly linked accounts.

Updating a User’s Twitter Account

The ability to post updates to a user’s Twitter account is much simpler than the authenti-

cation process.This is because you already have access to an access token and token secret,

which can now be passed into the init() function of the Twitter library. First, the

home() function in the main controller needs to be updated to test whether a user has

linked a Twitter account.You can do so by adding the following line:

$data["has_twitter"] = $this->twitter_model->has_twitter($username);

The associated model function is as follows:

function has_twitter($username) {

$query = $this->db->get_where("twitter", array("user_username" =>

277Implementing Twitter Functionality

$username));

return ($query->num_rows() > 0 ? true : false);

}

This simple function tests whether a user can be found in the twitter table and

returns either true or false.Within the sprog\home view, the following can then be

added within the form. It will display a check box with which users can choose whether

to also post the update to their Twitter account:

if($has_twitter) {

echo form_label("Post to Twitter?", "twitter");

echo form_checkbox("twitter", 1, true);

echo "

";

}

When the user submits the form, a twitter parameter is passed to the update() func-

tion of the main controller, which must be modified to include the following:

$id = $this->sprog_model->update($username, $update, $source);

if($this->input->post("twitter") == 1) {

$this->twitter_model->update($update, $id);

}

This addition stores the recently added update identifier to the $id variable, which is

then passed a new function called update() in the twitter_model.php file.The reason

for this is to set the value of the newly created Twitter status to a new field in the update

table called twitter_id, which must be a bigint. By doing this, it is then possible to

reference an update to a Twitter status seamlessly.The update() function should be as

follows:

function update($text, $id) {

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$response = $twitter->post_statusesUpdate(array("status" => $text));

if($this->twitter->check($response)) {

$this->db->set("twitter_id", $response->id);

$this->db->where("id", $id);

$this->db->update("update");

}

}

In this function, the statuses/updateTwitter method is called, and then the identifier

of the Status object is set to the update table. Figure 13.2 shows an example of a status

posted to Twitter.

278 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Figure 13.2 Screen shot of Sprog update posted to

Twitter.

It is also important that when users logs out of Sprog their Twitter session should also

be terminated.You can achieve this by extending the logout() function in the controller

to include the following:

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

if(!empty($oauth_token) && !empty($oauth_token_secret)) {

$this->twitter_model->logout($oauth_token, $oauth_token_secret);

}

And change the logout() function of the twitter_model.php file to the following:

function logout($oauth_token, $oauth_token_secret) {

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$twitter->post_accountEnd_session();

}

You can find the files for this section in the online github code repository inside the

stagethree directory.This directory should be renamed codeigniter and include your

customized configuration files. If all is well, you should have created or modified the fol-

lowing files and functions and updated the static directory with the new style.css file

and added the siwt-darker.png image and the static\php\index.php file from the

code repository:

n applications\controllers\sprog.php: twitter(), check_link(), index(),

register(), login(), create(), home(), update() and logout()

n applications\models\sprog_model.php: validate().

n applications\models\twitter_model.php: set_tokens(), get_user(),

check_user(), link(), has_twitter(), update() and logout()

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

279Implementing Facebook Functionality

In addition, you should have also uploaded the twitter-async library to application\

libraries\twitter-async and added the twitter.php file. Extensions to this code

would be to also post comments to Twitter that link back to the original update, handling

when users revoke access to your application and providing support for “liking” updates,

which would add them as a Twitter favorite.The possibilities are almost limitless.The next

section looks at how to add Facebook functionality alongside Twitter to increase the

reach of your application even further.

Implementing Facebook Functionality
Because Facebook uses a JavaScript library to detect status, this makes the implementation

of this technology slightly easier than Twitter.This section details how to add the func-

tionality to sign in using Facebook, link accounts, and then post updates, comments, and

likes back to Facebook.You will also add a little more social context through highlighting

what a user’s friends have updated on Sprog.As with the “Implementing Twitter

Functionality” section, you will have to create a new table in your database, facebook, for

storing user credentials, but also extend other tables to include Facebook functionality,

such as tying an update to a Facebook update.The Facebook PHP client library will also

be translated to work with CodeIgniter, and a new model will be created,

facebook_model.php, to contain code specific to Facebook.

The facebook table will store the user’s Facebook ID and session key plus a reference

to a record in the user table (if one already exists).The following SQL should be exe-

cuted to create this table:

CREATE TABLE IF NOT EXISTS "facebook" (

"id" bigint NOT NULL,

"session_key" varchar(50) NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, after they have logged in with Facebook

they are prompted to link their accounts. If users do not already have a Sprog account,

they will be prompted to create one after authenticating with Facebook. Other tables will

be modified, as indicated throughout this section.The next stage is to register an applica-

tion with Facebook and to reference the various Facebook libraries within Sprog.

Registering a Facebook Application and Adding Facebook Support

Before proceeding, you must first register a Sprog application on Facebook by visiting

http://www.facebook.com/developers/createapp.php and submitting the following:

n Application Name:An appropriate name for this application would be Sprog,

although this can be anything that you want.

http://www.facebook.com/developers/createapp.php

280 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

n Description:This can be left blank or you could add the following:‘A test application

for @markhawker’s book entitled:“The Developer’s Guide to Social Programming”’.

n Icon and Logo:A sample application icon and logo have been included in the

static directory but these can be modified as appropriate.

n Post-Authorize Callback URL and Post-Remove Callback URL:These param-

eters are located within the Authentication tab and should reference your

CodeIgniter base URL plus sprog/facebook/authorize and sprog/facebook/

remove, which are functions that need to be created within the main controller.

n Connect URL:This parameter is located in the “Connect” tab and should be set to

your CodeIgniter base URL plus sprog.

n Base Domain:If your CodeIgniter base URL were http://sprog.com/codeigniter/,

the base domain would be sprog.com.This parameter will vary depending on

whether you have installed CodeIgniter on a subdomain or not.

n Facebook Logo:As with the icon and logo, a logo has been included in the static

directory or can be left blank for this example.

After all these details have been saved, you will be given an application ID,API key,

and secret alongside the path to your xd_receiver.htm file, which should be added to

your constants.php configuration file using the following names:

define("APP_ID", "XXXXXXXXXXXX");

define("API_KEY", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("SECRET", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("XD_RECEIVER", "...\xd_receiver.htm");

By adding these constants, you ensure that they are addressable within the application,

instead of having to worry about storing them as an external reference. Note that this

application is going to utilize just a subset of the entire Facebook library, so possible

extensions include adding a canvas page, application tab, or a Publisher interface.

The final step is to download Facebook PHP client library and upload it to the

application\libraries directory.To make this a pseudo-CodeIgniter library, a

facebook_library.php class will need to be created that will include the library plus

some standard functions, such as creating the Facebook object:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "facebook-platform/php/facebook.php";

class Facebook_Library {

function get_facebook() {

return new Facebook(API_KEY, SECRET);

}

}

?>

http://sprog.com/codeigniter/

281Implementing Facebook Functionality

Within this file, you directly import the library so that whenever the $this->load-

>library("facebook_library") method is called, these files are immediately loaded. By

constructing the library in this way, you can then access $this->facebook_library-

>get_facebook() to initialize a Facebook session. Because you will be using this library

throughout the application, it should be loaded automatically by adding facebook_

library to the $autoload["libraries"] variable in autoload.php.

Stage 4: Extending the Sprog Application with Facebook

Functionality

The goal of adding Facebook functionality is to enable users to log in using their

Facebook credentials so that they can post their Sprog updates to their Facebook stream

easily and conveniently.As with the complexities encountered in adding Twitter function-

ality, you have to handle cases in which users already have a Sprog account and want to

“link” this with their Facebook account. In this instance, it is required that they log in via

Facebook and then log in using their Sprog credentials to create the link that will then be

automatic the next time they authenticate.The first hurdle is to add the Facebook library

to the template files to ensure that they are loaded on each page. Inside the

application\views\sprog\includes directory, you should open the global template

file, template.php, and add the following:

$source = $this->encrypt->decode($this->session->userdata("source"));

switch($source) {

case "s":

$data["via"] = "Sprog";

break;

case "t":

$data["via"] = "Twitter";

break;

case "f":

$data["via"] = "Facebook";

break;

case "g":

$data["via"] = "Google Friend Connect";

break;

default:

$data["via"] = false;

}

This code snippet will pass a variable to the header.php that will be used to display a

simple prompt to users letting them know which authentication mechanism was used to

log them in.This is important because if users have not logged out from Facebook and

visit your site, they will automatically be logged in.The code to display the prompt inside

header.php should be placed just below the description container:

282 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

<?php if($via) { ?>

<div id="logged_in_via">

<p>You are currently logged in via <?php echo $via; ?>.</p>

</div>

<?php } ?>

As with all the styles used in this chapter, the accompanying style.css file is included

within the code repository.The final template file that needs to be modified is

footer.php, which will contain the references to the Facebook library.These should be

placed just above the closing </body> tag:

<script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php" type="text/javascript"></script>

<script type="text/javascript">

FB.init("<?php echo API_KEY; ?>", "<?php echo XD_RECEIVER; ?>",

{"reloadIfSessionStateChanged":true});

</script>

This addition makes use of the constants that were saved earlier and should reference

the xd_receiver.htm file, which should be uploaded to the static directory and given

644 permissions. So far, all that has been achieved is to reference the Facebook files and

not to detect whether users have authenticated or linked their account to Sprog.To

begin, the main controller should be updated with the reference to the facebook() func-

tion to support the post-authorize and post-remove callback URLs:

function facebook() {

$function = $this->uri->segment(3);

switch($function) {

case "authorize":

break;

case "remove":

$this->facebook_model->remove();

break;

case "logout":

$this->session->set_userdata("facebook_logout", true);

redirect("sprog/index");

break;

}

}

In this application, the first authorize case is not used because it is already part of the

process to add a user’s details to the database. Because Facebook simply “pings” this func-

tion, you could use it to store authorization attempts to your database if you suspect that a

user might not fully complete the linking of their accounts.The remove case accesses a

remove() function, which needs to be created within a new model, facebook_

model.php, and which will contain all your Facebook functionality.The final case is used

to clear a Facebook-specific session variable that will be created after a user has logged in

283Implementing Facebook Functionality

to detect his status.Your initial facebook_model.php should be stored within

application\models and will contain the single remove() function for deleting a user

from the facebook table:

<?php

class Facebook_Model extends Model {

function Facebook_Model() {

parent::Model();

}

function remove() {

$facebook = $this->facebook_library->get_facebook();

$facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

if (!empty($facebook_parameters) && $facebook->fb_params['uninstall']

== 1) {

$this->db->delete("facebook", array("id" => $facebook->

fb_params["user"]));

}

}

}

?>

The two main view files that need to be modified are login.php and register.php,

which must be able to detect Facebook connectivity.Their related controller functions,

index() and register(), should include the following two code blocks, which should

be placed at the top of each function:

$this->facebook_model->is_facebook_logged_in();

if($this->facebook_model->get_user()) {

$data["has_facebook"] = "You are signed in with Facebook, but you

must log in or register with us to link accounts. You will only have

to do this once.";

}

As with the $data["has_twitter"] variables, a related entry should be added to the

two views for displaying the message itself:

if(!empty($has_facebook)) {

echo "<p class="facebook_message">".$has_facebook."</p>";

}

Within the login.php file, you also want to show the Facebook login button as an

alternative login option alongside the “Sign in with Twitter” button created in the

“Implementing Twitter Functionality” section, earlier in the chapter:

if(empty($has_twitter) && empty($has_facebook)) {

echo "<h2>Alternative Logins</h2>";

echo '<p><img src="'.base_url().

284 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

'static/siwt-darker.png" height="24" width="151" alt="Sign in with

Twitter" /> <fb:login-button></fb:login-button></p>';

}

Before you can run your application, the facebook_model.php needs to be updated

with the is_facebook_logged_in(), get_user() and related methods.These methods

are used to test whether a Facebook session has been initiated and to check whether the

users have already linked their Facebook and Sprog accounts. Of course, this functionality

has not been added yet, and so they will not be able to log in fully but will be shown the

message that they have authenticated via Facebook.

function get_user() {

$facebook = $this->facebook_library->get_facebook();

return $facebook->get_loggedin_user();

}

This helper method is used to test whether a Facebook ID is available via the client

library. Remember, both the client-side and server-side Facebook libraries work in uni-

son, and so if issuers are logged in via clicking the Facebook button, their session will be

made available to you:

function check_user($facebook_id) {

$this->db->select("*")->from("user")->join("facebook",

"facebook.user_username = user.username", "left");

$this->db->where("id", $facebook_id);

$query = $this->db->get();

if($query->num_rows() == 0) {

return false;

} else {

$user = $query->row();

$data = array(

"username" => $this->encrypt->encode($user->username),

"fullname" => $this->encrypt->encode($user->fullname),

"is_logged_in" => true,

"source" => $this->encrypt->encode("f")

);

$this->session->set_userdata($data);

return true;

}

}

Another helper method, this will check whether users have already authenticated their

account and will store their details within the active session if they have.These two helper

methods are tied together in the main is_facebook_logged_in() method:

function is_facebook_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$facebook_logout = $this->session->userdata("facebook_logout");

$facebook_user = $this->get_user();

285Implementing Facebook Functionality

if($facebook_user && !$is_logged_in && !$facebook_logout) {

$this->check_user($facebook_user);

}

$this->session->set_userdata("facebook_logout", false);

}

This function tests whether issuers are already logged in or have just logged out of

the application and will update their session accordingly.After saving this model and

uploading it with the amended views and controller, you should be able to click the

Facebook button and be presented with the message stating that you have logged in via

Facebook.This final step is to integrate this within the login() and create() controller

functions so that details are stored within the database and made accessible in future ses-

sions. Both functions require the following code to be added within the

if(!empty($user)) conditional:

if($this->facebook_model->get_user()) {

$this->facebook_model->link($this->facebook_model->get_user(), $user

name);

$source = "f";

}

This simple addition shows the true power of the MVC architecture in that no major

changes were required to customize the login functionality.All that remains is to create

the link() method within the model:

function link($facebook_id, $username) {

$query = $this->db->get_where("facebook", array("id" => $facebook_id));

if($query->num_rows() == 0) {

$user = array(

"id" => $facebook_id,

"session_key" => "",

"user_username" => $username

);

$query = $this->db->insert("facebook", $user);

return true;

} else {

return false;

}

}

This method is simple, in that all that needs to be done is to check whether users have

already been added to the facebook table. If not, they should be added as appropriate.The

rest of the functionality has already been created in previous iterations to handle other

complexities.The final addition is to flesh out the logout() function within the con-

troller to log a user out of Facebook, too, which can be achieved by using the following:

if($this->facebook_model->get_user()) {

$this->facebook_library->get_facebook()->logout(

base_url()."sprog/facebook/logout");

286 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Figure 13.3 Screen shot of Sprog home page with

Facebook permissions prompt.

} else {

redirect("sprog/index");

}

This code tests whether a Facebook user is present, and if so, the logout() method of

the client library is executed, which requires a parameter instructing Facebook where to

redirect the user after he or she has been logged out (in this instance, referencing the

facebook() function detailed at the beginning of this section). Now that you have access

to Facebook users’ credentials, it’s time to add some functionality to post updates, com-

ments, and likes to their stream, which requires three extended permissions: read_stream,

publish_stream, and offline_access.

When users visit their home page for the first time, they will be prompted with the

message shown in Figure 13.3, which will invite them to grant Sprog access to their

stream and an “infinite” session key.To achieve this, you need to add a mixture of client-

side code to prompt them for the permissions and server-side code for displaying controls

based on what permissions they have granted.When they click the link to grant permis-

sions, the FB.Connect.showPermissionDialog() function will be called and open a dia-

log box for them to confirm the application’s access to their stream.They will not be

shown the message on subsequent visits to this page because their permissions will have

already been retrieved from Facebook.

The first edit that needs to be made is within the JavaScript inside footer.php.A new

function will need to be created called get_permissions() with a callback function

parse_permissions(), which will check to see that all three were granted and will

refresh the page.This code should be placed just after the FB.init() call:

function get_permissions() {

FB_RequireFeatures(["Connect"],

function() {

FB.Connect.showPermissionDialog("publish_stream,read_stream,

offline_access", parse_permissions, false, null);

287Implementing Facebook Functionality

}

);

}

function parse_permissions(response) {

var permissions = new Array();

permissions = response.split(",");

if(permissions.length == 3) {

document.getElementById("facebook_permissions").style.display = "none";

window.location.reload();

}

}

The parse_permissions() function splits the string returned by the get_

permissions() function and tests whether it has three elements. If so, the prompt is hid-

den and the page is refreshed.The next step is to update the home.php view file, but first

the home() function within the main controller needs to be updated with two new

$data items:

$data["has_facebook"] = $this->facebook_model->has_facebook($username);

$data["has_facebook_permissions"] = $this->facebook_model->

has_permissions($username);

These two items first check that the users have connected their Facebook details and

then will check that they have allowed access to the three permissions requested in the

call to FB.Connect.showPermissionDialog() above. Both requests utilize a username to

look up values from your database and return Boolean true or false values.The two

functions should be added to facebook_model.php:

function has_facebook($username) {

$query = $this->db->get_where("facebook", array("user_username" =>

$username));

return ($query->num_rows() > 0 ? true : false);

}

function has_permissions($username) {

$facebook = $this->facebook_library->get_facebook();

$user = $facebook->get_loggedin_user();

if($user) {

try {

$data = $facebook->api_client->fql_query(

'SELECT uid, publish_stream, read_stream, offline_access FROM

permissions WHERE uid = "'.$user.'"');

if(is_array($data)) {

$permissions = array(

"publish_stream" => $data[0]["publish_stream"],

"read_stream" => $data[0]["read_stream"],

"offline_access" => $data[0]["offline_access"]

);

}

288 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

if($permissions["publish_stream"] && $permissions["read_stream"] &&

$permissions["offline_access"]) {

$session_key = (isset($_COOKIE[API_KEY."_session_key"]) ?

$_COOKIE[API_KEY."_session_key"] : false);

$expires = (isset($_COOKIE[API_KEY."_expires"]) ?

$_COOKIE[API_KEY."_expires"] : -1);

if($expires == 0 && $session_key) {

$this->db->set("session_key", $session_key);

$this->db->where("id", $user);

$this->db->update("facebook");

}

return true;

} else { return false; }

}

catch (Exception $e) { return false; }

} else {

$query = $this->db->get_where("facebook", array("user_username" =>

$username, "session_key !=" => ""));

return ($query->num_rows() == 1 ? true : false);

}

}

The complexity of the has_permissions() function is due to the fact that you want

to display the option to post to Facebook even if users have not logged in via Facebook

(for example, if they have linked accounts and then logged in via Twitter). By granting the

offline_access permission, you are able to retrieve the session key located within the

Facebook cookie and then store it within your database.This session key will remain valid

unless they revoke access to your application, which would be an extension for this appli-

cation because in this example it is not checked.The results of both functions are then

passed to the home.php view for displaying the permissions prompt but also the option to

post to Facebook:

<?php if($has_facebook && !$has_facebook_permissions) { ?>

<p id="facebook_permissions">To fully-utilize this application you must

grant extended Facebook

permissions to publish to and read from your stream.</p>

<?php } ?>

The option to post to Facebook should be placed alongside the option to post to

Twitter and can be added with the following code:

echo "<table><tr>";

if($has_twitter) {

echo "<td>";

echo form_label("Post to Twitter?", "twitter");

echo form_checkbox("twitter", 1, true);

echo "</td>";

}

289Implementing Facebook Functionality

if($has_facebook && $has_facebook_permissions) {

echo "<td>";

echo form_label("Post to Facebook?", "facebook");

echo form_checkbox("facebook", 1, true);

echo "</td>";

}

echo "</tr></table>";

This simple addition will send a value within the form as to whether to post to

Facebook or not.The next function that needs to be amended is update() within the

controller. It will check for this value and then execute the update() function of the

Facebook model.This test should be placed within the controller just underneath the test

for the twitter value:

if($this->input->post("facebook") == 1) {

$this->facebook_model->update($username, $update, $id);

}

The associated update() function within facebook_model.php has to extract the

user’s Facebook details from the database, set the correct session, post the update, and then

set the returned Facebook identifier to a new facebook_id field within the update table.

The field should be a varchar(64) and can be NULL (because not all updates relate to

Facebook):

function update($username, $update, $id) {

$query = $this->db->get_where("facebook", array("user_username" =>

$username));

$user = $query->row();

$facebook = $this->facebook_library->get_facebook();

$facebook->set_user($user->id, $user->session_key);

try {

$post_id = $facebook->api_client->stream_publish($update);

$this->db->set("facebook_id", $post_id);

$this->db->where("id", $id);

$this->db->update("update");

return true;

}

catch (Exception $e) { return false; }

}

The $facebook->set_user() method is extremely useful because you can mimic the

“presence” of users irrespective of how they have logged in.The update is published to

their stream and the record is updated.The reason why the Facebook identifier is stored is

that you can then extract the post from Facebook and get its likes and comments. In this

application, you will only be posting data to Facebook rather than extracting data from it,

which could be an addition, should you want to show comments made inside Facebook

in your applications.

290 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The like() and comment() functions within the main controller need to be updated

so that they are also posted to Facebook. Both functions require you to test whether the

user has appropriate permissions but also to extract the relevant Facebook identifier (if

available) for an update:

$has_facebook_permissions = $this->facebook_model-

>has_permissions($username);

$facebook_id = $this->facebook_model->get_facebook_id($update_id);

The like() function then requires an if($has_facebook_permissions &&

$facebook_id) { $this->facebook_model->like($facebook_id); } to be added

which calls the like() function within the Facebook model:

function like($facebook_id) {

$facebook = $this->facebook_library->get_facebook();

$user = $facebook->get_loggedin_user();

if($user) {

try {

$like = $facebook->api_client->stream_addLike($facebook_id);

return $like;

}

catch (Exception $e) { return false; }

} else { return false; }

}

Because this function requires a valid Facebook identifier, this can be extracted from

$update_id within the following function:

function get_facebook_id($update_id) {

$query = $this->db->get_where("update", array("id" => $update_id,

"facebook_id !=" => ""));

return ($query->num_rows() == 1 ? $query->row()->facebook_id : false);

}

Comments are slightly more complex, in that it’s good practice to store the returned

Facebook identifier within your database, and so the controller function should be modi-

fied with this code:

if($has_facebook_permissions && $facebook_id) {

$comment_id = $this->facebook_model->comment($facebook_id, $comment);

} else {

$comment_id = null;

}

$this->sprog_model->post_comment($update_id, $username, $comment, $source,

$comment_id);

Here, the returned Facebook identifier is passed into the post_comment() function,

which should be updated to accommodate the final parameter.Again, the comment table

should be updated with a facebook_id field, which is a varchar(64).The comment()

291Implementing Facebook Functionality

Figure 13.4 Screen shot of an update, comment,

and like submitted to Facebook.

function within the Facebook model is similar to the like() function, although uses the

$facebook->api_client->stream_addComment($facebook_id, $comment) method. If

all is successful and you submit an update, comment, or like to Facebook, you should be

greeted with a screen shot similar to Figure 13.4.

You can find the files for this section in the online github code repository inside the

stagefour directory.This directory should be renamed codeigniter and include your

customized configuration files. If all is well, you should have created or modified the fol-

lowing files and functions and updated the static directory with the new style.css file

and added the xd_receiver.htm file and updated the following files and functions:

n applications\controllers\sprog.php: facebook(), index(), register(),

login(), create(), home(), update(), logout(), like() and comment()

n applications\models\sprog_model.php: post_comment()

n applications\models\facebook_model.php: remove(), get_user(),

check_user(), is_facebook_logged_in(), link(), has_facebook(),

has_permissions(), update(), get_facebook_id(), like() and comment().

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

n applications\views\sprog\includes\template.php

In addition, you should have also uploaded the Facebook API PHP client library to

application\libraries\facebook-platform and added the facebook_library.php

file. Extensions to this code would be to retrieve comments and likes from Facebook,

display a user’s friends’ updates and comments more prominently using $facebook-

>api_client->friends_getAppUsers(), and more efficient handle details of whether

292 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

users revoke access to their account.The final section shows how to add Google Friend

Connect functionality alongside Twitter and Facebook to increase the reach of your

application further.

Implementing Google Friend Connect
Functionality
As with Twitter and Facebook, you can use Google Friend Connect to authenticate users

and to post updates.Widgets such as Comments and the Social Bar can be used to good

effect to maintain a members list but also to surface updates and replies to users who do

not have a Sprog account.The combination of client-side and server-side technologies

makes the integration of Google Friend Connect similar to that of Facebook, where you

can use a combination of cookie-based authentication and OAuth for “offline” updates.

A new table needs to be created in your database, google, for storing user credentials.

The OpenSocial client library will also be translated to work with CodeIgniter, and a

new model will be created, google_model.php, to contain code specific to Google

Friend Connect.

The google table will store the user’s Google account ID plus a reference to a record

in the user table (if one already exists). Because Google Friend Connect uses only two-

legged OAuth, no other keys are required to authenticate a user.The following SQL

should be executed to create this table:

CREATE TABLE IF NOT EXISTS "google" (

"id" bigint NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, after they have logged in with Google

Friend Connect they will be prompted to link their accounts. If users do not already have

a Sprog account, they will be prompted to create one after authenticating with Google

Friend Connect.The next stage is to register an application with Google and to reference

the client- and server-side OpenSocial libraries within Sprog.

Registering and Adding Google Friend Connect Support

Before you can add Google Friend Connect functionality, you must first register a Sprog

application by logging in to your Google account and visiting http://www.google.com/

friendconnect/admin/site/setup and entering the following details:

n Website Name:An appropriate name for this application would be Sprog, although

this can be anything that you want.

n Website URL:This should be set to the domain (or subdomain) where you have

installed CodeIgniter. For example, if you have installed your application at

http://sprog.com/codeigniter/, this should be set to http://sprog.com/.

http://www.google.com/friendconnect/admin/site/setup
http://www.google.com/friendconnect/admin/site/setup
http://sprog.com/codeigniter/
http://sprog.com/

293Implementing Google Friend Connect Functionality

After all these details have been saved, you will be able to access a site ID from the

address bar and a consumer key and secret within the REST API tab of the Plug-ins &

APIs section.You should add these to your constants.php configuration file using the

following names:

define("GFC_SITE_ID", "XXXXXXXXXXXX");

define("GFC_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("GFC_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("GFC_PARENT_URL", "/");

By adding these constants, you ensure that they are addressable within the application,

instead of having to worry about storing them as an external reference. In particular, if

the GFC_PARENT_URL is set incorrectly, the Google Friend Connect gadgets will not be

loaded.Therefore, you must ensure that this is configured appropriately. In the examples

in this section, this should be set to “/” because your domain (or subdomain) was set as

the website URL.

The final step is to download OpenSocial PHP client library and upload it to the

application\libraries directory.To make this a pseudo-CodeIgniter library, a

google.php class will need to be created that will include the library plus some standard

functions such as creating the OpenSocial object:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "osapi/osapi.php";

class Google {

function get_google_oauth($userId) {

$provider = new osapiFriendConnectProvider();

$authentication = new osapiOAuth2Legged(GFC_CONSUMER_KEY,

GFC_CONSUMER_SECRET, $userId);

return new osapi($provider, $authentication);

}

function get_google_cookie($cookie) {

$provider = new osapiFriendConnectProvider();

$authentication = new osapiFCAuth($cookie);

return new osapi($provider, $authentication);

}

}?>

Within this file, you import the library so that whenever the $this->load->library

("google") method is called, these files are immediately loaded. By constructing the

library in this way, you can then initialize a Google Friend Connect session via either an

authentication cookie or via OAuth. Because you will be using this library throughout

the application, it should be loaded automatically by adding google to the

$autoload["libraries"] variable in autoload.php.

294 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Stage 5: Extending the Sprog Application with Google Friend

Connect Functionality

As with Facebook, the Google Friend Connect workflow can be handled using client-

side code to display the sign-in button and then via server-side code to detect the pres-

ence of login credentials such as an authentication cookie.The first two files that need to

be modified are the header.php and footer.php views, which will include the client-

side library and attempt to extract user data. In the header.php file, you should add the

following code into the <head> element of the page:

<script type="text/javascript" src="http://www.google.com/jsapi"></script>

<script type="text/javascript">

google.load("friendconnect", "0.8");

</script>

<script type="text/javascript">

google.friendconnect.container.setParentUrl("<?php echo

GFC_PARENT_URL; ?>");

google.friendconnect.container.initOpenSocialApi({

site: "<?php echo GFC_SITE_ID; ?>",

onload: function(securityToken) { initAllData(); }

});

</script>

This simple snippet includes the library using the constants that were defined in the

section above and finally calls the initAllData() function, which should be placed

within footer.php:

<script type="text/javascript">

var viewer;

function initAllData() {

var params = {

"profileDetail": [opensocial.Person.Field.ID,

opensocial.Person.Field.NAME, opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL]

};

var req = opensocial.newDataRequest();

req.add(req.newFetchPersonRequest("VIEWER", params), "viewer");

req.send(onData);

}

function onData(data) {

var gfcButtonHtml = document.getElementById("gfcButton");

if (data.get("viewer").hadError()) {

google.friendconnect.renderSignInButton({

"id": "gfcButton",

"style": "standard"

});

gfcButtonHtml.style.display = "block";

295Implementing Google Friend Connect Functionality

Figure 13.5 Screen shot of the index page with

Google Friend Connect button.

} else {

gfcButtonHtml.style.display = "none";

window.location.reload();

}

}

</script>

The code above is used to try to retrieve a Google Friend Connect viewer’s details

and will then show or hide the sign-in button depending on whether the request is suc-

cessful or not. If successful, the button is hidden and the page is then refreshed, where the

authentication cookie can then be extracted.The final modification in terms of views is

to add the gfcButton element to the index page, which will produce the screen shot

shown in Figure 13.5.

Like the code added to the login.php view for authenticating via Twitter and

Facebook, a message needs to be displayed if a user has signed in to Google Friend

Connect but not linked his accounts.You can do so as follows:

if(!empty($has_google)) {

echo '<p class="google_message">'.$has_google."</p>";

}

The small snippet of code above should also be added to the register.php view.The

conditional for displaying the alternative login options should also be updated to include

the following:

if(empty($has_twitter) && empty($has_facebook) && empty($has_google)) {

...

$userAgent = $_SERVER["HTTP_USER_AGENT"];

$unsupportedBrowsers = array("Opera");

$isBrowserSupported = true;

296 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

foreach ($unsupportedBrowsers as $unsupportedBrowser) {

$isBrowserSupported = preg_match("/".$unsupportedBrowser."/i",

$userAgent) ? false : true;

}

if($isBrowserSupported) { echo '<p id="gfcButton"></p>'; }

}

Because the Google Friend Connect functionality doesn’t appear to work correctly

within the Opera browser, it must be omitted as an option for those users.The code to

create the $has_twitter variable should be added to both the index() and register()

functions of the main controller, which reference a Google model, which is created next:

if($this->google_model->get_viewer()) {

$data["has_google"] = "You are signed in with Google Friend Connect, but

you must log in or register with us to link accounts. You will only have

to do this once.";

}

This conditional calls the get_viewer() function of the Google model, which will

return a viewer’s details if successful and return false if not. Create a new file called

google_model.php and save it into application\models and add it to the

autoload.php configuration file:

<?php

class Google_Model extends Model {

function Google_Model() {

parent::Model();

}

function get_viewer() {

$cookieIdentifier = "fcauth".GFC_SITE_ID;

$cookie = isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier] :

null;

if ($cookie) {

$opensocial = $this->google->get_google_cookie($cookie);

$batch = $opensocial->newBatch();

$viewerParameters = array("userId" => "@me", "groupId" => "@self",

"fields" => "@all");

$getViewer = $opensocial->people->get($viewerParameters);

$batch->add($getViewer, "viewer");

$response = $batch->execute();

$data = $response["viewer"];

if ($data instanceof osapiError) { return false; }

else {

$data = array("id" => $data->getId(), "name" => htmlentities(

$data->getName()), "thumbnailUrl" => htmlentities($data->

getThumbnailUrl()));

return $data;

297Implementing Google Friend Connect Functionality

}

} else { return false; }

}

}

?>

This code attempts to extract the authentication cookie using the site ID parameter

and then creates the OpenSocial object to access a user’s details.These details are then

returned via a $data array; otherwise, the function will return false. One of the benefits

of Google Friend Connect and the OpenSocial library is that you can create the

OpenSocial object either via the authentication cookie or via two-legged OAuth.With

the cookie, you can then store the user’s identifier within the database for future use.This

next step is supported by the is_google_logged_in() function within the model, which

is called right at the top of index() and register():

function is_google_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$google_user = $this->get_viewer();

if($google_user && !$is_logged_in) {

return $this->check_user($google_user);

} else { return false; }

}

This method calls the check_user() function, passing in a user’s Google Friend

Connect details, which are then verified against your database to check whether users

have previously authenticated their account. If so, their session is saved and they are

logged in, otherwise they are prompted to link their accounts:

function check_user($google_user) {

$this->db->select("*")->from("user")->join("google",

"google.user_username = user.username", "left");

$this->db->where("id", $google_user["id"]);

$query = $this->db->get();

if($query->num_rows() == 0) { return false; }

else {

$user = $query->row();

$data = array(

"username" => $this->encrypt->encode($user->username),

"fullname" => $this->encrypt->encode($user->fullname),

"is_logged_in" => true,

"source" => $this->encrypt->encode("g")

);

$this->session->set_userdata($data);

return true;

}

}

298 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The next step is to add code to both the login() and create() controller methods to

link a user’s accounts together, which is achieved by adding the following just below

where the Facebook code was added:

if($this->google_model->get_viewer()) {

$this->google_model->link($this->google_model->get_viewer(), $username);

$source = "g";

}

The final step in the authentication process is to create the link() function within

google_model.php, which creates a reference in the google table in your database:

function link($google_user, $username) {

$query = $this->db->get_where("google", array("id" =>

$google_user["id"]));

if($query->num_rows() == 0) {

$user = array("id" => $google_user["id"], "user_username" => $username);

$query = $this->db->insert("google", $user);

return true;

} else { return false; }

}

You will notice that only a single identifier is required for a Google Friend Connect

user because two-legged OAuth requests their individual identifier. If you save and upload

the following files to your web server, you should now be able to sign in via Google

Friend Connect:

n applications\controllers\sprog.php: index(), register(), login() and

create()

n applications\models\google_model.php: get_viewer(),

is_google_logged_in(), check_user() and link()

n applications\views\sprog\login.php

n applications\views\sprog\register.php

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

In addition, you should have also uploaded the OpenSocial PHP client library to

application\libraries\google and added the google.php file. Now that you have an

authenticated user, you can now add a Comments gadget for users to reply to updates and

also post original updates to their Google Friend Connect accounts.The first addition

requires a new parameter to be added to the view_comment() controller function:

$data["is_google"] = ($this->encrypt->decode($this->session->

userdata("source")) == "g" ? true : false);

With this piece of additional information, a user will be shown a Google Friend

Connect Comments gadget rather than the standard comments form in the

299Implementing Google Friend Connect Functionality

comments.php view.Alongside the conditional test, you also need to add a snippet of

JavaScript to render the gadget:

<?php if($is_google) { ?>

<div id="google_comments" style="width: 610px; border: 1px solid

#ccc;"></div>

<?php } else { ?>

<div id="comment">

...

</div>

<?php } ?>

<script type="text/javascript">

var skin = {};

skin["BORDER_COLOR"] = "#cccccc";

skin["ENDCAP_BG_COLOR"] = "#e0ecff";

skin["ENDCAP_TEXT_COLOR"] = "#333333";

skin["ENDCAP_LINK_COLOR"] = "#0000cc";

skin["ALTERNATE_BG_COLOR"] = "#ffffff";

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_LINK_COLOR"] = "#0000cc";

skin["CONTENT_TEXT_COLOR"] = "#333333";

skin["CONTENT_SECONDARY_LINK_COLOR"] = "#7777cc";

skin["CONTENT_SECONDARY_TEXT_COLOR"] = "#666666";

skin["CONTENT_HEADLINE_COLOR"] = "#333333";

skin["DEFAULT_COMMENT_TEXT"] = "- add your comment here -";

skin["HEADER_TEXT"] = "Comments";

skin["POSTS_PER_PAGE"] = "5";

google.friendconnect.container.renderWallGadget({

id: "google_comments",

site: "<?php echo GFC_SITE_ID; ?>",

"view-params":{

"disableMinMax":"true", "scope":"PAGE", "features":"video,comment",

"startMaximized":"true"

}

}, skin);

</script>

By using the Comments gadget, you do not have to store any of the comments in

your own database, which makes this quite a useful replacement for those who log in via

Google Friend Connect. However, for original updates, you might want them to be

stored and posted as activities to a user’s linked Google accounts.This can be achieved by

updating the update() controller function, which then points to the Google model to

execute the update:

$has_google_id = $this->google_model->get_google_id($username);

if($has_google_id) { $this->google_model->update($username, $update, $id);

}

300 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The code that must be added to google_model.php consists of the get_google_id()

function for extracting a user’s connected Google identifier as well as the update()

function itself:

function get_google_id($username) {

$query = $this->db->get_where("google", array("user_username" =>

$username));

return ($query->num_rows() == 1 ? $query->row()->id : false);

}

function update($username, $update, $id) {

$google_id = $this->get_google_id($username);

$opensocial = $this->google->get_google_oauth($google_id);

$batch = $opensocial->newBatch();

$activity = new osapiActivity($id, $google_id);

$activity->setTitle($username);

$activity->setBody($update);

$parameters = array("userId" => "@me", "groupId" => "@self",

"activity" => $activity);

$addActivity = $opensocial->activities->create($parameters);

$batch->add($addActivity, "activity");

$response = $batch->execute();

$data = $response["activity"];

return ($data instanceof osapiError ? false : true);

}

The update() function attempts to construct an OAuth session and then create an

Activity object, which must be passed a unique identifier ($id) plus the user’s identifier

($google_id).The title of the activity is set to their username, and the body is the update

itself. On success, an activity will be published, and then the function will return true.

Alongside comments, you can view activities and members by adding the Social Bar to

footer.php, as shown in Figure 13.6.

The final addition to the code is to modify the logout anchor in home.php to also sign

a user out of Google Friend Connect by adding array("onclick" =>

"google.friendconnect.requestSignOut();") as the third parameter to the anchor()

helper function.As with the additions of Twitter and Facebook, only a small portion of

the many Google Friend Connect functionalities is demonstrated by this application.

Additions could include posting likes as activities; improving user profiles by prepopulat-

ing them with data available via each of the services; adding handling for expired

accounts and removals; and highlighting updates, comments, and likes specific to a user’s

social graph.The opportunities for building on top of the Sprog application are endless.

As with the other sections, code for this section is available from the online code reposi-

tory within the stagefive directory.This directory should be renamed codeigniter and

include your customized configuration files.

301Summary

Figure 13.6 Screen shot of the home page demonstrating the

Social Bar with comments, members, and activities.

Summary
This final chapter, along with Chapter 12, provided an example of how to integrate Twit-

ter, Facebook, and Google Friend Connect into a real-world web application. By incor-

porating the authentication workflows of each platform, you can then quickly and easily

build social features on top of a preexisting infrastructure.Through building a sample ap-

plication, you should have picked up how this can be achieved easily and be left with nu-

merous ideas about how to improve it!

This page intentionally left blank

Index

A

accessing responses, Test Tube application

(Twitter), 51

accessor methods, Twitter API, 3-5

account methods, Twitter API, 3-5

accounts, Twitter, updating, 276-279

action links, Open Stream API, 125-126

activities

Color Picker sample application,
posting and retrieving, 187-189

Google Friend Connect, fetching, 177

activity streams, Dashboard API, 139-143

administration methods, Facebook Platform,

86-87

animation library, Facebook, 157-160

Apache Shindig, OpenSocial API, 173

API methods, FQL (Facebook Query

Language), 95

APIs (Application Programming Interface), 1

Facebook, 77-97

Open Stream API, 123-134

Google Friend Connect

JavaScript API, 167-173

OpenSocial API, 173-177

Twitter, 1-19

accessing, 11-19

authorized connections, 12

direct message objects, 28-29

error handling, 18-19

extending, 61-62

Geolocation API, 68-71

hash objects, 33

ID objects, 30-31

Lists API, 2-3, 61-68

location-based APIs, 61

methods, 3-33

parameters, 6-10

rate limiting, 17

relationship objects, 31-32

response objects, 32

REST (Representational State
Transfer) API, 2-14

return formats, 10-11

Retweets API, 61-64

saved search objects, 29-30

Search API, 3-43

status objects, 26-28

Streaming API, 74-75

user objects, 22-26

versioning, 3

application data, Color Picker sample

application, storing and retrieving, 189-190

Application Edit page (Facebook Platform),

79-81

application tabs

configuring and installing, 146-147

extending, 149-156

applications

Color Picker sample application
(Google Friend Connect), 181-191

configuring, 183-185

creating, 222-233

posting and retrieving activities,
187-189

registering, 183-185

retrieving site members, 187

sign-in functionality, 186

storing and retrieving application
data, 189-190

Facebook

referencing, 81-82

registering, 79-81

tags, 145-156

Sprog application, building, 246-266

building, 246-266

comments, 257-266

create() function, 253

Facebook, 279-292

Google Friend Connect, 292-300

home pages, 247-257

index() function, 250

index page, 248

likes, 257-266

logins, 247-257

registering, 247-257

Twitter, 268-279

Updates, 257-266

Test Tube application (Twitter), 50

class methods, 50-51

Translations for Facebook, preparing,
111-113

entry elements, 36-37

feed elements, 35-36

Atom syndication format

Search API (Twitter), 34-38

versus JSON, 37-38

authentication, 45

Facebook, 99-107

Facebook Platform, 87

Google Friend Connect, 194-196

cookies, 195

standard two-legged OAuth,
195-196

Twitter, OAuth, 45-59

304 APIs (Application Programming Interface)

Authentication tab (Application Edit

page), 80

authentication workflow, Google Friend

Connect, 197-198

authorized connections, Twitter API, 12

B

Basic Authentication, twitter-async client

library, 16-17

Basic tab (Application Edit page), 80

block methods, Twitter API, 4-5

C

callback parameter (Twitter API), 8

character limit, Twitter, 2

class methods, twitter-async client library,

50-51

client libraries

OpenSocial client libraries, 196-197

PHP OpenSocial client library,
Google Friend Connect, 197-207

code listings

3.1 (functions.php file), 52

3.2 (index.php file), 53-54

3.3 (master.php file), 55-56

4.1 (printRetweets function), 63

4.2 (printFollowers function), 72

5.1 (Simple Facebook Platform Page),
82

6.1 (Sample Facebook Page), 103-104

6.2 (Sample Facebook Post-Authorize
Callback URL), 107

6.3 (Sample Facebook Post-Remove
Callback URL), 108

7.1 (get_write_permission method),
128

8.1 (index.php File Demonstrating a
Simple Facebook Canvas Page), 147

8.2 (Example for the tab.php File
Demonstrating a Simple Application
Tab), 150

8.3 (Example post.php File
Demonstrating Adding a Comment
and Returning Data Back to an
Application Tab), 155

12.1 (sprog.php File Demonstrating
the Default index() Function), 250

12.2 (create() Function within the
Main Controller), 253

12.3 (Sprog Model and create()
Function), 255

12.4 (updates() and my_comments()
Function,)264

CodeIgniter, 235-266

configuring, 237-240

directory structue, 237-238

GET parameters, handling, 236

helpers, 245-246

installing, 237-240

libraries, 240-244

Database class, 240-243

pagination class, 243-244

session class, 244-245

URI class, 243

MVC (Model View Controller)
architectural design, 236-237

Sprog application

building, 246-266

comments, 257-266

create() function, 253

home pages, 247-257

index() function, 250

index page, 248

likes, 257-266

logins, 247-257

registering, 247-257

updates, 257-266

305CodeIgniter

Color Picker sample application (Google

Friend Connect), 181-191

activities, posting and retrieving,
187-189

application data, storing and
retrieving, 189-190

configuring, 183-185

creation, 222-233

registering, 183-185

sign-in functionality, 186

site members, retrieving, 187

commands, cURL, REST API access, 12-14

comments

Open Stream API, adding and
removing, 129

Sprog application, 257-266

Comments Box widget (Facebook), 120-123

communities, Twitter, 71

future directions, 74-76

platform translations, 71

spam reporting, 72-74

configuration

application tabs, 146-147

CodeIgniter, 237-240

Color Picker sample application
(Google Friend Connect), 183-185

JavaScript Library, Google Friend
Connect, 169-170

Twitter, 268-270

Connect tab (Application Edit page), 81

connecting Facebook friends, 109-110

consumers, OAuth, 47

container setup methods, Google Friend

Connect, 171

content types, URLs, 214

content-sharing, Facebook, 115-120

contributions, Twitter, 75-76

cookies, Google Friend Connect, 195

count parameter (Twitter API), 8

counters, Games and Application counters,

143-144

coverage, Twitter API parameters, 7

create() Function within the Main Controller

listing (12.2), 253

cURL, Twitter API, accessing, 12-14

cursor parameter (Twitter API), 9

custom tags API methods, Facebook

Platform, 93

D

Dashboard API, 137-164

methods, Facebook Platform, 89

naming conventions, 140

news and activity streams, 139-143

data extraction principles, OpenSocial,

201-207

Database class, CodeIgniter, 240-243

DataRequest object, OpenSocial API,

174-175

data-retrieval methods, Facebook

Platform, 87

depreciation

Twitter API methods, 21-22

Twitter API parameters, 7

description parameter (Twitter API), 7

dialogs, Facebook, 160-162

direct message objects, Twitter API, 28-29

direct messages methods, Twitter API, 4-6

direct publishing, Open Stream API, 127-129

directory structure, CodeIgniter, 237-238

disconnecting, Facebook accounts, 107-109

dynamic content, FBJS (Facebook

JavaScript), 157-164

306 Color Picker sample application (Google Friend Connect)

E

email parameter (Twitter API), 7

entry elements, Atom syndication

format, 36-37

error handling, Twitter API, 18-19

Event Listener (FBJS), handling events,

162-164

events, handling, FBJS Event Listener,

162-164

events API methods, Facebook Platform,

90-93

Example for the tab.php File Demonstrating

a Simple Application Tab listing (8.2), 150

Example post.php File Demonstrating

Adding a Comment and Returning Data

Back to an Application Tab listing

(8.3), 155

extending

application tabs, 149-156

Sprog application

Facebook, 281-292

Google Friend Connect, 294-300

Twitter, 270-276

F

Facebook

adding support, 279-281

animation library, 158-160

API, 77-97

Open Stream API, 123-134

applications

registering, 79-81

tabs, 145-156

content-sharing, 115-120

dashboards, Games and Application
dashboard, 139-143

dialogs, 160-162

disconnecting accounts, 107-109

Facebook Platform, 77-98

developers, 77-78

Open Stream API, 123-134

referencing applications, 81-84

website integration, 78-84

Facebook Share, 116-118

FQL (Facebook Query Language),
118

multimedia content, 117

Facebook Widgets, 119-120

Comments Box widget, 120-123

FQL (Facebook Query Language),
77-97

friends, connecting and inviting,
109-110

functionality, 279-292

implementing, 279

live conversation, 115-120

logging out accounts, 107-109

Open Graph, 85-86

reclaiming accounts, 107-109

Sprog application

extending, 281-292

registering with, 279-281

state changes, detecting and handling,
102-105

status detection, 101-107

Translations for Facebook, 111-114

administering and accessing
translations, 113-114

preparing applications, 111-113

registering text, 111-113

user authentication, 99-107

user registration, post-authorize
callback URL, 105-107

XFBML (Facebook Markup
Language), 77-98

307Facebook

Facebook JavaScript (FBJS). See FBJS

(Facebook JavaScript)

Facebook Markup Language (XFBML),

77-98

Facebook Platform, 77-98. See also

Facebook

administration methods, 86-87

Application Edit page, 79-81

applications, referencing, 81-84

authentication methods, 87

custom tags API methods, 93

Dashboard API, 137-144

methods, 89

news and activity streams, 139-143

data-retrieval methods, 87

developers, 77-78

events API methods, 90-93

FQL (Facebook Query Language),
93-97

friends, connecting and inviting,
109-110

login methods, 87

mobile methods, 89

Open Stream API, 123-134

action links, 125-126

adding and removing comments,
129

direct publishing, 127-129

feed forms, 127-129

Publisher, 131-134

reading data from streams, 130-134

removing stream posts, 128

stream attachments, 125-126

writing data to stream, 125

photos API methods, 89-90

publishing methods, 88

Translations for Facebook, 111-114

user authentication, 99-107

website integration, 78-84

XFBML (Facebook Markup
Language), 97-98

Facebook Query Language (FQL). See FQL

(Facebook Query Language)

Facebook Share, 116-118

FQL (Facebook Query
Language), 118

multimedia content, 117

Facebook Widgets, 119-120

Comments Box widget, 120-123

favorites methods, Twitter API, 4-6

FBJS (Facebook JavaScript), 137-164

animation library, 158-160

dialogs, 160-162

dynamic content, 157-164

Event Listener, handling events,
162-164

Test Console, 158

FBML (Facebook Markup Language),

elements, adding application tabs to, 145

feature extensions, OpenSocial gadgets, 211

feed elements, Atom syndication format,

35-36

feed forms, Open Stream API, 127-129

field names, Open Stream API, 174

follow parameter (Twitter API), 7

FQL (Facebook Query Language), 85-97

API methods, relationships, 95

Facebook Share, 118

friends, connecting and inviting, Facebook,

109-110

friendships methods, Twitter API, 4-6

functionality

Facebook, implementing, 279-292

Google Friend Connect,
implementing, 292-300

Twitter, implementing, 267-279

308 Facebook JavaScript (FBJS)

functions

create(), 253

index(), 250

functions.php file listings (3.1), 52

G

gadget-interaction methods, Google Friend

Connect, 172

gadgets

Google Friend Connet, 166

Google gadgets, 209-233

creating, 222-233

submitting, 232-233

testing, 230-233

OpenSocial gadgets, developing, 209

Games and Application dashboard

(Facebook), 139-143

Geolocation API (Twitter), 68-71

GET parameters, CodeIgniter, handling, 236

get_write_permission() method listing

(7.1), 128

Google. See also Google Friend Connect

gadgets, 209-233

creating, 222-233

submitting, 232-233

testing, 230-233

iGoogle Directory, 211

Google Friend Connect, 165-193

authentication methods, 194-196

cookies, 195

standard two-legged OAuth,
195-196

authentication workflow, 197-198

Color Picker sample application,
181-191

configuring, 183-185

posting and retrieving activities,
187-189

registering, 183-185

retrieving site members, 187

sign-in functionality, 186

storing and retrieving application
data, 189-190

container setup methods, 171

functionality, implementing, 292-300

gadget-interaction methods, 172

gadgets, 166

index page, 295

JavaScript API, 167-173

methods, 171

JavaScript Library, installing and
configuring, 169-170

OpenSocial API, 173-177

DataRequest object, 174-175

fetching activities, 177

fetching persistence, 178-181

fetching profiles, 176-177

field names, 174

methods, 173-174

OpenSocial client libraries, 196-197

OpenSocial gadgets, 210-214

creating, 222-233

developing, 209

feature extensions, 211

gadget internationalization and
localization, 221-222

module content, 213-214

module preferences, 210-211

module views, 213-214

OpenSocial v.0.9 specification,
214-217

remote content, 218-221

skins, 212

user preferences, 212-213

working with data, 217-218

309Google Friend Connect

OpenSocial RESTful endpoints, 194

PHP OpenSocial client library,
197-207

data extraction principles, 201-207

setting up server-side applications,
198-201

plug-ins, 169

post-registration methods, 172

pre-registration methods, 171-172

RPC protocol endpoints, 194

server-side integration, 167-169

server-side OpenSocial protocols,
193-197

Sprog application

adding support, 292-293

extending, 294-300

registering, 292-293

Google Gadget Editor, 223-230

Google Gadget Tester, 230

H

hash objects, Twitter API, 33

help methods, Twitter API, 4

helpers, CodeIgniter, 245-246

home pages, Sprog application, 247-257

HTTP operation, Lists API, 2

I

ID objects, Twitter API, 30-31

id parameter (Twitter API), 9

iGoogle Directory, 211

image parameter (Twitter API), 7

in_reply_to_status_id parameter

(Twitter API), 7

index() function, Sprog application, 250

index page, Sprog application, 248

index.php File Demonstrating a Simple

Facebook Canvas Page listing (8.1), 147

index.php file listings (3.2), 53-54

installing

application tabs, 146-147

CodeIgniter, 237-240

JavaScript Library, Google Friend
Connect, 169-170

internationalization, Google gadgets,

221-222

inviting, Facebook friends, 109-110

J

JavaScript API, Google Friend Connect,

167-173

methods, 171

JavaScript Library, Google Friend Connect,

installing and configuring, 169-170

JSON (JavaScript Object Notation)

versus Atom, 37-38

strings, saving values as, 212

Twitter API, 10

L

landing pages

Test Tube application (Twitter),
creating, 53-54

lang parameter (Twitter API), 9

lat parameter (Twitter API), 8-9

libraries, CodeIgniter, 240-244

Database class, 240-243

pagination class, 243-244

session class, 244-245

URI class, 243

like box, Facebook Widgets, 119

310 Google Friend Connect

likes

Open Stream API, adding and
removing, 129

Sprog application, 257-266

listings

3.1 (functions.php file), 52

3.2 (index.php file), 53-54

3.3 (master.php file), 55-56

4.1 (printRetweets function), 63

4.2 (printFollowers function), 72

5.1 (Simple Facebook Platform Page),
82

6.1 (Sample Facebook Page), 103-104

6.2 (Sample Facebook Post-Authorize
Callback URL), 107

6.3 (Sample Facebook Post-Remove
Callback URL), 108

7.1 (get_write_permission method),
128

8.1 (index.php File Demonstrating a
Simple Facebook Canvas Page), 147

8.2 (Example for the tab.php File
Demonstrating a Simple Application
Tab), 150

8.3 (Example post.php File
Demonstrating Adding a Comment
and Returning Data Back to an
Application Ta), 155

12.1 (sprog.php File Demonstrating
the Default index() Function), 250

12.2 (create() Function within the
Main Controller), 253

12.3 (Sprog Model and create()
Function), 255

12.4 (updates() and my_comments()
Function), 260

Lists API (Twitter), 2-3, 61-68

live conversation, Facebook, 115-120

live stream box, Facebook Widgets, 119-120

localization, Google gadgets, 221-222

location parameter (Twitter API), 7

location-based APIs, Twitter, 61

logging out, Facebook accounts, 107-109

login methods, Facebook Platform, 87

logins

Facebook, authentication, 101-107

Sprog application, 247-257

long parameter (Twitter API), 8

M

mas_id parameter (Twitter API), 9

master page, Test Tube application (Twitter),

creating, 55-57

methods

container setup methods, 171

Facebook Platform

administration methods, 86-87

authentication methods, 87

custom tags API methods, 93

dashboard API methods, 89

data-retrieval methods, 87

events API methods, 90-93

login methods, 87

mobile methods, 89

photos API methods, 89-90

publishing methods, 88

gadget-interaction methods, 172

Google Friend Connect, 173-174

authentication, 194-196

JavaScript API, 171

OpenSocial API (Google Friend
Connect), 173-174

post-registration methods, 172

pre-registration methods, 171

Twitter API, 3-33

accessor methods, 3-5

depreciation, 21-22

311JavaScript API

mutator methods, 5-6

Search API, 38-43

microblog tools. See Sprog application

Migrations tab (Application Edit page), 81

mobile methods, Facebook Platform, 89

module content, OpenSocial gadgets,

213-214

module preferences, OpenSocial gadgets,

210-211

module views, OpenSocial gadgets, 213-214

multimedia content, Facebook Share, 117

mutator methods, Twitter API, 5-6

MVC (Model View Controller) architectural

design, CodeIgniter, 236-237

N

name parameter (Twitter API), 7

naming conventions, Dashboard API, 140

news streams, Dashboard API, 139-143

notifications methods, Twitter API, 6

O

OAuth

Google Friend Connect, 195-196

Twitter, 45-59

benefits, 46

consumers, 47

implementing, 48-57

protected resources, 47

protocol parameters, 47

service providers, 47

Test Tube application, 50-57

Test Tube application (Twitter),
57-58

tokens, 47

users, 47

workflow, 48-50

twitter-async client library, 14-15

objects, Twitter API

direct message objects, 28-29

hash objects, 33

ID objects, 30-31

relationship objects, 31-32

response objects, 32

saved search objects, 29-30

status objects, 26-28

user objects, 22-26

Open Graph, Facebook, 85-86

Open Stream API (Facebook), 123-134

action links, 125-126

comments, adding and removing, 129

direct publishing, 127-129

feed forms, 127-129

Publisher, 131-134

stream attachments, 125-126

stream posts, removing
programatically, 128

streams

reading data from, 130-134

writing data to, 125

OpenSocial, v.0.9 specifications, 214-217

OpenSocial API (Google Friend Connect),

173-177

DataRequest object, 174-175

fetching

activities, 177

persistence, 178-181

profiles, 176-177

field names, 174

methods, 173-174

OpenSocial client libraries, Google Friend

Connect, 196-197

OpenSocial gadgets, Google Friend Connect,

210-214

creating, 222-233

developing, 209

312 JavaScript API

feature extensions, 211

gadget internationalization and
localization, 221-222

module content, 213-214

module preferences, 210-211

module views, 213-214

OpenSocial v.0.9 specification,
214-217

remote content, 218-221

skins, 212

user preferences, 212-213

working with data, 217-218

OpenSocial RESTful endpoints, Google Friend

Connect, 194

P

page parameter (Twitter API), 8

pagination class, CodeIgniter, 243-244

parameters, Twitter API, 6-10

coverage, 7

depreciation, 7

people, Google Friend Connect, fetching,

176-177

per page parameter (Twitter API), 9

persistence, Google Friend Connect, fetching

and updating, 178-181

photos API methods, Facebook Platform,

89-90

PHP OpenSocial client library, Google Friend

Connect, 197-207

data extraction principles, 201-207

setting up server-side applications,
198-201

platform translations, Twitter, 71

plug-ins, Google Friend Connect, 169

post-authorize callback URL, user

registration, Facebook, 105-107

posting activites, Color Picker sample

application (Google Friend Connect),

187-189

post-registration methods, Google Friend

Connect, 172

pre-registration methods, Google Friend

Connect, 171-172

printFollowers() function listing (4.2), 72

printRetweets() function listing (4.1), 63

profile_background_color parameter (Twitter

API), 8

profile_link_color parameter (Twitter API), 8

profile_sidebar_border parameter (Twitter

API), 8

profile_text_border parameter

(Twitter API), 8

profiles, Google Friend Connect, fetching,

176-177

Profiles tab (Application Edit page), 81

protected resources, OAuth, 47

protocol parameters, OAuth, 47

Publisher (Facebook Platform), 131-134

publishing methods, Facebook Platform, 88

PUT operation, Lists API, 2

Q

q parameter (Twitter API), 9

query parameter (Twitter API), 8

R

rate limiting, Twitter API, 17

Really Simple Syndication (RSS), Twitter

API, 10

reclaiming, Facebook accounts, 107-109

referencing, Facebook Platform applications,

81-84

registering

Color Picker sample application
(Google Friend Connect), 183-185

313registering

Facebook applications, 79-81

Sprog application, Google Friend
Connect, 292-293

Facebook, 279-281

Twitter, 268-270

Test Tube application (Twitter), 52-53

relationship objects, Twitter API, 31-32

remote content, OpenSocial gadgets,

218-221

response objects, Twitter API, 32

responses, accessing, Test Tube application

(Twitter), 51

REST (Representational State Transfer) API,

Twitter, 2-3

CURL commands, 12-14

return formats, Twitter API, 10-11

Retweets API (Twitter), 61-64

RPC protocol endpoints, Google Friend

Connect, 194

RSS (Really Simple Syndication), Twitter

API, 10

S

Sample Facebook Page listing (6.1),

103-104

Sample Facebook Post-Authorize Callback

URL listing (6.2), 107

Sample Facebook Post-Remove Callback

URL listing (6.3), 108

saved search objects, Twitter API, 29-30

saved searches methods, Twitter API, 4-6

screen_name parameter (Twitter API), 10

Search API (Twitter), 3-43

Atom syndication format, 34-38

entry elements, 36-37

feed elements, 35-36

JSON (JavaScript Object Notation)
outputs, 37-38

methods, 38-43

search methods

Search API (Twitter), 38-40

Twitter API, 4

server-side applications, Google Friend

Connect, setting up, 198-201

server-side integration, Google Friend

Connect, 167-169

server-side OpenSocial protocols, Google

Friend Connect, 193-197

service providers, OAuth, 47

session class, CodeIgniter, 244-245

show_user parameter (Twitter API), 10

sign-in functionality, Color Picker sample

application (Google Friend Connect), 186

Simple Facebook Platform Page listing

(5.1), 82

site members, Color Picker sample

application (Google Friend Connect),

retrieving, 187

skins, OpenSocial gadgets, 212

social graph methods, Twitter API, 4

source parameter (Twitter API), 8

source_id parameter (Twitter API), 10

spam reporting, Twitter, 72-74

Sprog application

building, CodeIgniter, 246-266

comments, 257-266

Facebook

adding support, 279-281

extending, 281-292

registering with, 279-281

Google Friend Connect

adding support, 292-293

extending, 294-300

registering, 292-293

home pages, 247-257

index() function, 250

314 registering

index page, 248

likes, 257-266

logins, 247-257

main controller, create() function, 253

registering, 247-257

Twitter

extending with, 270-276

registering with, 268-270

updating accounts, 276-279

updates, 257-266

Sprog Model and create() Function listing

(12.3), 255

sprog.php File Demonstrating the Default

index() Function listing (12.1), 250

standard two-legged OAuth, Google Friend

Connect, 195-196

state changes, Facebook, detecting and

handling, 102-105

status detection, Facebook, 101-107

status methods, Twitter API, 4

status objects, Twitter API, 26-28

status parameter (Twitter API), 8

statuses methods, Twitter API, 6

storing application data, Color Picker sample

application, 189-190

stream attachments, Open Stream API,

125-126

Streaming API (Twitter), 74-75

streams

Dashboard API, news and activity
streams, 139-143

reading data from, Open Stream API,
130-134

strings, JSON (JavaScript Object Notation),

saving values as, 212

submitting, Google gadgets, 232-233

support, Facebook, 279-281

T

tabs, Facebook applications, 145-156

configuring and installing, 146-147

extending, 149-156

Test Console (FBJS), 158

Test Tube application (Twitter), 50

accessing responses, 51

creating, 51-52

landing pages, creating, 53-54

master page, creating, 55-57

registering, 52-53

testing, 58

testing

Google gadgets, 230-233

Test Tube application (Twitter), 58

text, registering, Translations for Facebook,

111-113

text parameter (Twitter API), 8

tile parameter (Twitter API), 8

timeline methods, Twitter API, 4

tokens, OAuth, 47

Translations for Facebook, 111-114

applications, preparing, 111-113

registering text, 111-113

translations, administering and
accessing, 113-114

trends methods

Search API (Twitter), 40-43

Twitter API, 5

Twitter, 76

accounts, updating, 276-279

API, 1-19

accessing, 11-19

authorized connections, 12

direct message objects, 28-29

error handling, 18-19

315Twitter

extending, 61-62

Geolocation API, 68-71

hash objects, 33

ID objects, 30-31

Lists API, 2-3, 61-68

location-based APIs, 61

methods, 3-6, 21-33

parameters, 6-10

rate limiting, 17

relationship objects, 31-32

response objects, 32

REST (Representational State
Transfer) API, 2-14

return formats, 10-11

Retweets API, 61-64

saved search objects, 29-30

Search API, 3, 34-43

status objects, 26-28

Streaming API, 74-75

user objects, 22-26

versioning, 3

character limit, 2

community, 71

future directions, 74-76

spam reporting, 72-74

configuring, 268-270

contributions, 75-76

functionality, implementing, 267-279

Geolocation API, 68-71

Lists API, 61-68

location-based APIs, 61

OAuth, 45-59

benefits, 46

consumers, 47

implementing, 48-57

protected resources, 47

protocol parameters, 47

service providers, 47

tokens, 47

users, 47

workflow, 48-50

platform translations, 71

Retweets API, 61-64

Search API

Atom syndication format, 34-38

methods, 38-43

Sprog application

extending with, 270-276

registration, 268-270

Streaming API, 74-75

Test Tube application, 50

accessing responses, 51

class methods, 50-51

creating, 51-52

landing pages, 53-54

master page, 55-57

registering, 52-53

testing, 58

Twitter @anywhere, 76

twitter-async client library

accessing responses, 51

class methods, 50-51

configuring, 268-270

creating, 51-52

registering, 52-53

two-legged OAuth, Google Friend Connect,

195-196

U

updates, Sprog application, 257-266

updates() and my_comments() Function

listing (12.4), 264

316 Twitter

updating

activities, Google Friend Connect, 177

persistence, Google Friend Connect,
178-181

Twitter accounts, 276-279

URI class, CodeIgniter, 243

url parameter (Twitter API), 7

URLs, content types, 214

user authentication, Facebook, 99-107

user methods, Twitter API, 5

user objects, Twitter API, 22-26

user preferences, OpenSocial gadgets,

212-213

user registration

Facebook, post-authorize callback
URL, 105-107

V

values, JSON (JavaScript Object Notation),

saving as strings, 212

versioning, Twitter API, 3

W

website integration, Facebook Platform,

78-84

Widgets tab (Application Edit page), 81

woeid parameter (Twitter API), 10

workflow, OAuth, 48-50

X

XFBML (Facebook Markup Language),

77-98

XML (eXtensible Markup Language), Twitter

API, 11

317XML (eXtensible Markup Language), Twitter API,

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top

technology publishers, including Addison-Wesley Professional, Cisco Press,

O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,

Safari’s extensive collection of video tutorials lets you learn from the leading

video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst

to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content

created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of The Developer’s Guide to Social Programming includes access to a

free online edition for 45 days through the Safari Books Online subscription service.

Nearly every Addison-Wesley Professional book is available online through Safari Books

Online, along with more than 5,000 other technical books and videos from publishers

such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste

code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: BMEFHBI.

STEP 2: New Safari users, complete the brief registration form.

Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,

please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Table of Contents
	I: Twitter
	1 Working with the Twitter API
	Twitter API Essentials
	Accessing the Twitter API
	Summary

	2 Diving Into the Twitter API Methods
	Twitter API Methods
	Twitter Search API
	Summary

	3 Authentication with Twitter OAuth
	Introducing Twitter OAuth
	Implementing Twitter OAuth
	Summary

	4 Extending the Twitter API: Retweets, Lists, and Location
	Extending Twitter’s Core Functionality
	Twitter Community Evolution
	Summary

	II: Facebook Platform
	5 An Overview of Facebook Platform Website Integration
	Facebook Platform for Developers
	Facebook Platform
	Facebook API, FQL, and XFBML
	Summary

	6 Registration, Authentication, and Translations with Facebook
	User Authorization and Authentication
	Connecting and Inviting Friends
	Translations for Facebook
	Summary

	7 Using Facebook for Sharing, Commenting, and Stream Publishing
	Content-Sharing and Live Conversation
	Social Commenting and Stream Publishing
	Summary

	8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library
	Application Dashboards and Counters
	Navigating and Showcasing Your Application Using Tabs
	Dynamic Content and the Facebook JavaScript (FBJS) Library
	Summary

	III: Google Friend Connect
	9 An Overview of Google Friend Connect
	Components of Google Friend Connect
	Using the Google Friend Connect JavaScript API
	An Overview of the OpenSocial API
	Summary

	10 Server-Side Authentication and OpenSocial Integration
	Server-Side OpenSocial Protocols and Authentication Methods
	Using the PHP OpenSocial Client Library with Google Friend Connect
	Summary

	11 Developing OpenSocial Gadgets with Google Friend Connect
	An Overview of Google Gadgets
	Creating a Google Gadget
	Summary

	IV: Putting It All Together
	12 Building a Microblog Tool Using CodeIgniter
	An Overview of CodeIgniter
	Building the Basic Sprog Application
	Summary

	13 Integrating Twitter, Facebook, and Google Friend Connect
	Implementing Twitter Functionality
	Implementing Facebook Functionality
	Implementing Google Friend Connect Functionality
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

