
www.allitebooks.com

http://www.allitebooks.org

Open Source Identity
Management Patterns and
Practices Using OpenAM 10.x

An intuitive guide to learning OpenAM
access management capabilities for web
and application servers

Waylon Kenning

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Open Source Identity Management Patterns and
Practices Using OpenAM 10.x

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-682-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Waylon Kenning

Reviewers
Peter Major

Bino Yohannan

Acquisition Editor
Vinay Argekar

Commissioning Editor
Yogesh Dalvi

Technical Editors
Anita Nayak

Aparna Chand

Project Coordinator
Deenar Satam

Proofreader
Samantha Lyon

Indexer
Rekha Nair

Priya Subramani

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Waylon Kenning is an Enterprise and Solutions Architect for a large Australasian
utility company with an interest in Identity Management. He currently evaluates
technologies and their applicabilities within large corporate organizations.

He has worked on one of the largest Identity Management projects in New Zealand
based on Sun Access Manager, which evolved into OpenAM.

I would like to thank my wife who was doubtful that I could
write a book, juggle a career, and help run an ICT not-for-profit
organization. You were only partially correct!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Peter Major is a true believer in open source who has been involved with OpenSSO
since 2009. Since then he's been an active member of both the OpenSSO and the
OpenAM community, and as from 2011 he's working at ForgeRock as a sustaining
engineer for OpenAM.

Bino Yohannan has more than 6 years of experience in Identity and Access
Management. He is very passionate on Web security. He has more than 10 years of
experience in Information Technology. He has done his graduation in Mathematics
and post graduation in Computer Applications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Identity Management Patterns and Principles	 7

Defining Identity Management	 7
How claims relate to identity	 8
Understanding identity contexts	 8

Why Identity Management is important?	 9
Examples of identity levels	 9

Pseudonymous identities	 9
Trusted identities	 10
Trusted identities with multiple contexts	 10
Federated identities	 10

How Identity Management works	 10
Key components of Identity Management	 12

Identity Service Providers	 12
Identity policy agents	 12
Identity providers	 12
Identity data stores	 13
Identity managers	 13

Summary	 13
Chapter 2: Installing OpenAM 10.x	 15

 Downloading OpenAM 10.x	 15
Prerequisites for OpenAM	 16

Creating a fully qualified domain name	 16
Installing the Java Runtime Environment	 17
Downloading the Tomcat application server	 18
Configuring Tomcat for OpenAM	 18

Installing OpenAM 10.1.0	 19
Summary	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Cross-Domain Single Sign On	 27
An introduction to Cross-Domain Single Sign On	 27
Securing an Apache 2.4 local domain website	 28

Creating an Apache Policy Agent profile in OpenAM	 28
Securing Apache with the OpenAM Policy Agent	 30

Securing a Tomcat 6 remote domain website	 31
Configuring Tomcat and creating a Tomcat
Policy Agent profile	 31
Securing Tomcat with the OpenAM Policy Agent	 33
Configuring a Tomcat Agent profile for
Cross-Domain Single Sign On	 35

Summary	 36
Chapter 4: Distributed Authentication	 37

Understanding distributed authentication	 37
How policy agents communicate with OpenAM	 37
Understanding defense-in-depth architectures	 38

Preparing OpenAM for distributed authentication	 38
Configuring the distributed authentication application server	 41
Configuring the distributed authentication application	 41
Testing distributed authentication	 44
Summary	 46

Chapter 5: Application Authentication with Fedlets	 47
Understanding Fedlets	 47

Advantages of Fedlets over policy agents	 47
Disadvantages of Fedlets over policy agents	 48

Configuring the Fedlet application server	 48
Creating a SAML hosted identity provider	 49
Creating a Fedlet	 50
Deploying Fedlet.zip onto our Java application server	 52
Validating the Fedlet setup	 53
More information about Fedlets	 55
Summary	 55

Chapter 6: Implementing SAML2 Federation Patterns	 57
Understanding SAML	 57

Understanding Identity Providers	 57
Understanding Service Providers	 58
Understanding a Circle of Trust	 58

Configuring OpenAM as a SAML Identity Provider	 58
Installing SimpleSAMLphp	 61

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Configuring SimpleSAMLphp as a Service Provider	 62
Configuring OpenAM to trust a SimpleSAMLphp SP	 65
Testing our SAML Circle of Trust	 66
Summary	 67

Chapter 7: OAuth Authentication	 69
Understanding OAuth	 69
Preparing Facebook as an OAuth Provider	 70
Configuring an OAuth authentication module	 70
Configuring Authentication Chaining	 75
Testing our OAuth Client against Facebook as an OAuth Provider	 76
Summary	 78

Chapter 8: Two Factor Authentication	 79
Understanding two factor authentication	 79
Understanding OATH and how it relates to OpenAM	 79
Configuring OpenAM for two factor authentication	 80

Configuring OpenAM to use additional LDAP attributes	 80
Installing an OATH HOTP token generator	 81
Populating our LDAP attributes with values	 82
Configuring the OATH authentication module	 83

Testing two factor authentication	 85
Summary	 87

Chapter 9: Adaptive Risk Authentication	 89
Understanding Adaptive Risk authentication	 89
Understanding how Adaptive Risk authentication works	 89
Adding the Adaptive Risk module	 90
Configuring the Adaptive Risk module	 91
Adding adaptive risk to the authentication chain	 96
Potential authentication patterns	 97
Summary	 97

Index	 99

www.allitebooks.com

http://www.allitebooks.org

Preface
Identity Management is increasingly becoming one of the cornerstones of the
Internet. As we interact with more and more systems, the burden of Identity
Management continues to increase on users. And as the number of systems
increase, the number of users increase, and the number of devices increase, and
the complexity of Identity Management systems increases exponentially. This
complexity of managing the authentication needs of multiple systems, federated
identity repositories, and different users with different levels of risk require a
centralized way of managing authentication and authorization.

Open Source Identity Management Patterns and Practices Using OpenAM 10.x shows
how authentication and authorization can be managed using OpenAM, guiding
you through the process of installing and configuring the application in a series of
prototypes. Key concepts and technologies are covered giving you broad knowledge
of the different areas of Identity Management, as well as specific examples of using
Identity Management technologies such as OAuth and OATH.

Open Source Identity Management Principles and Patterns using OpenAM 10.x was written
using OpenAM 10.1 using Windows 7. At the time of writing, OpenAM 10.2
is currently in testing and features specific to it are not incorporated into the book.

Preface

[2]

What this book covers
Chapter 1, Identity Management Patterns and Principles, serves as an introduction
for readers new to Identity Management by covering what Identity Management
is, why it is important, how it works, and what the key components of identity
management are.

Chapter 2, Installing OpenAM 10.x, serves as a quick installation reference for
readers new to OpenAM. This chapter covers downloading, installing, and running
OpenAM for the first time.

Chapter 3, Cross-Domain Single Sign On, serves as a quick primer on what
Cross-Domain Authentication is and how to achieve it with OpenAM, how it
differs from Single-Domain authentication, configuring OpenAM for Cross-Domain
Authentication, and cautions using the feature.

Chapter 4, Distributed Authentication, serves as a quick primer on what Distributed
Authentication is and how to achieve it with OpenAM. This chapter also discusses
how to prepare the DMZ for distributed authentication, deploying the Distributed
Authentication service, and configuring the Distributed Authentication service.

Chapter 5, Application Authentication with Fedlets, serves as a quick primer on what
Fedlets are and how to secure sites with Fedlets against OpenAM configuring Fedlets
in OpenAM, and testing Fedlets in OpenAM against a Java Web Application.

Chapter 6, Implementing SAML2 Federation Patterns, serves as a quick primer on what
SAML2 is and how to achieve it with OpenAM. This chapter also covers how to
configure SAML Identity Providers in OpenAM and testing OpenID in OpenAM
against a PHP SAML application.

Chapter 7, OAuth Authentication, serves as a quick primer on what OAuth is and how
to achieve it with OpenAM. The chapter covers configuring the OAuth authorization
service in OpenAM, registering OAuth clients in OpenAM, and testing OAuth in
OpenAM against Facebook.

Chapter 8, Two Factor Authentication, serves as a quick primer on what two factor
authentication is, as well as discussing configuring the two factor authentication
module, installing a one time password token generator on Android, and integrating
OpenAM with the one time password token generator.

Preface

[3]

Chapter 9, Adaptive Risk Authentication, serves as a quick primer on Adaptive
Risk authentication in OpenAM. This chapter includes what Adaptive Risk
authentication is, how to install Adaptive Risk authentication, what the Adaptive
Risk authentication filters are, and patterns for using Adaptive Risk authentication.

What you need for this book
This book has been written on Windows 7, however, most of the instructions are
equally applicable on your operating system of choice. As OpenAM is a java web
application, you will need a Java Runtime installed.

Who this book is for
This book is for technical consultants who would like to become familiar with
OpenAM to use for protecting their web applications. Familiarity with web
application servers like Tomcat and Apache is a bonus, but not a prerequisite.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Inside the tomcat\bin folder, create a text file called setenv.bat."

A block of code is set as follows:

set CATALINA_OPTS=-Xmx2048m -XX:MaxPermSize=512m

Any command-line input or output is written as follows:

INFO: Deploying web application archive path-to-apache-tomcat\webapps\
openam.war

INFO: Server startup in 80846 ms

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Identity Management
Patterns and Principles

Your interest in Identity Management is well placed—I believe Identity
Management will become the next frontier of the Internet as well as the digital
society. This chapter will cover the following areas:

•	 Defining Identity Management
•	 Why Identity Management is important
•	 How Identity Management works
•	 Key components of Identity Management

Defining Identity Management
I worked on the second largest Identity Management program in New Zealand,
and found it a challenge to explain to people what Identity Management was.
My description of "Imagine logging onto Hotmail, but without the email bit"
left something to be desired. So together, let's explore the meaning of Identity
Management. Wikipedia (http://en.wikipedia.org/wiki/Identity_
management) describes Identity Management as:

The management of individual identifiers, their authentication, authorization,
and privileges within or across system and enterprise boundaries with the goal
of increasing security and productivity while decreasing cost, downtime and
repetitive tasks.

I break that down into:

Understanding who someone claims to be, who they are, what they can do, and
where they can do it.

Identity Management Patterns and Principles

[8]

How claims relate to identity
Understanding who someone claims to be is important. We all make claims or
assertions about our lives. I claim to be a better blogger than I am. You might claim
to be a taller person than me. Your claim is more than likely to be correct. But we
need to determine whether these claims are relevant to ourselves, and then consider
whether we know these claims to be correct. A more practical example of a claim
is your username and password at your favorite shopping website. With these
credentials, you claim to be the person who is associated with that account, and that
you'd like to assert that identity. Why? So that you can continue the relationship you
have with that shopping website. That's what identities are all about; identifying
yourself, so you can continue that relationship where you left off. Without it, the
Internet would never remember you.

Of course, you have your claims. But the next step is to verify some of those claims.
We can see that your username and password are valid, but perhaps there are other
parts of our relationship we want to confirm. Banks often ask secret questions, or
send secret codes to verify that you know some shared secret.

Understanding identity contexts
The next step is to consider what a particular identity can do. You are you, but
depending on the context, you may be a business person, someone who enjoys
tennis, someone who only drinks green tea, or someone who lives in Tokyo.
These contexts in turn govern what your particular identity can do. So what you can
do is governed both by who you are, and the context of that relationship. This isn't a
surprise, though. I have a personal YouTube account, and another for making really
bad travel videos. I don't want those contexts to be associated with each other, even
though I'm the same identity.

Finally, this is where you can use your identity. Some identities you have are
specific to a certain context—for instance, your login ID for your computer at work
isn't likely to work anywhere other than work. But your e-mail login may allow you
to access other websites, such as a blogging website. In this instance, your identity is
shared between different websites that have a relationship between each other like
Star Trek, and are in federation with each other.

Chapter 1

[9]

Why Identity Management is important?
But why is Identity Management important? Well, it depends on the context.
On the project I was working on, a government agency wanted someone to have
a single username and password across multiple websites from different agencies.
The concept of sharing the same username and password across different websites
or web applications is known as Single Sign On (SSO).

Examples of identity levels
So how could this single username and password work in practice? Well, let's
explore the different ways in which these identities can be used:

•	 A random user wants to bookmark a particular part of a website, so we have
to remember that user

•	 A known user wants to access the secure part of a website, so we have to
remember that user, who they are, and what permissions they have

•	 The above user who wants to access the same website above, but acts in a
different context, such as working for a different employer

•	 A user who has an identity with one website and wants to use that identity
for another website

Pseudonymous identities
In the first scenario, Identity Management is important because it allows us to
remember the relationship status between a system and a user. One example
could be your login ID with a news website. Their primary concern is not who you
are, but if you are the same person every time. This is useful because you may wish
to customize the news site and remove the sports section. And in return, the site
won't show you sports ads, which it can do, since it remembers your preference.
This example is known as pseudonymous authentication.

www.allitebooks.com

http://www.allitebooks.org

Identity Management Patterns and Principles

[10]

Trusted identities
The next level of Identity Management is caring about the person's identity.
This would be the relationship you have with your telecommunications company.
They care who you are because they want to charge you for using their services.
Identity Management is important in this scenario because of the financial
consequences of the relationship. If someone hacked into your mobile phone account
and added a whole bunch of premium services to your account, you would likely be
financially responsible, or at least angry. These sorts of relationships can be thought
of as community identities—identities you use in the community. For example,
your friends may call you Bob, your power bill is to a Bob, but your real name is
Robert. Here you have two identities, a Bob and a Robert, but only one is used in the
community. That's why when signing up for some government services, they want
to see evidence of the identity used in the community-on a power bill for instance.

Trusted identities with multiple contexts
A further type of Identity Management is dealing with identities in different
contexts. This is important when one identity can have different permissions
depending on the context they're using at the time. For example, you may be a
student in one class at a university, and a tutor in another class. You're the same
identity, but have a different context. This context determines what permissions
you have in the course management system. As a tutor, you can mark your students.
As a student, you can take tests that get marked by another tutor. But you could
never take a course, and then mark it yourself, because there is no context that suits
this situation.

Federated identities
Finally, you could want to take your identity with one system, and use that
same identity on other systems. An example of this is using Facebook. Once you
have a Facebook account, you can use your Facebook login to then associate
with your Yahoo Mail account. In other words, Facebook and Yahoo have an
identity federation together. Just like Star Trek, they're a collection of like-minded
entities that choose to trust each other's identity systems. Identity Management is
important in this context because it creates a trust relationship that allows different
organizations to work together and trust common identities.

How Identity Management works
So as you can see, Identity Management is everywhere. But how does Identity
Management work? Well, let's walk through the process together to think about a
login ID to a system. Let's pick a banking website.

Chapter 1

[11]

The first step is to access some secure content. Not all parts of a system are secure,
for instance, the homepage of the bank website. But the Internet Banking section is
secure and will ask for your identity credentials.

Entering identity credentials, such as a username or some other unique identifier
and a password, is the second step. This would identify that someone knows
your credentials.

The next step is to take those credentials and validate them against a directory.
A directory contains a list of users and other related identity information.
This list could be a SQL database, an LDAP directory, or even a flat file. Whatever
it is, the credentials entered will be validated against the directory and any other
authentication systems (such as the two factor authentication server, or a certificate
authority). This step is known as authentication. If the credentials are correct, then
it's on to the next step. If they're not correct, the system could choose to let the user
re-enter the credentials, or take another security action such as locking the account.

The fourth step is authorization, which is about determining the correct permissions
for the user. This depends on the context of the user, as discussed earlier in the
chapter. One identity may have access to business accounts and personal accounts.
These different accounts will have access to different parts of the banking website,
depending on the context the identity wants to use.

For high risk transactions, a higher level of authentication assurance may be
required, such as a special One Time Password (OTP) code sent to your mobile
phone. This is known as Two Factor Authentication (TFA).

The final step is accessing the secure resource, where the Identity Management
system allows the user to, well, access the secure resource. This could include
passing a token to any systems that the user is accessing, which describe the type
of access the user has, and any other conditions, such as how long that session is
valid for.

So that describes the happy path. But there's a bit more to Identity Management
than that. There is registering a new account, which could be done by the user or
by an administrator. There is also dealing with the exception flow, such as an
incorrect password, requesting access to the system the user does not have
permission to view, resetting a locked account, and resetting a user password
amongst other things. Suffice it to say, these will all be touched upon in more detail
in later chapters.

Identity Management Patterns and Principles

[12]

Key components of Identity Management
We briefly touched upon one component of an Identity Management system, the
directory. But there are a few more components. Let's go through some common
components and understand their purpose.

Identity Service Providers
The first component is the system with the secure resource that an identity is trying
to access. This is known as a Service Provider. Think of this as a system that is
providing a service to an identity, such as internet banking or online billing. In
smaller systems, you may find the system with the secure resource to also have
an Identity Management function. In fact, most systems these days have their
own in-built Identity Management functions, which is fine and well, but this
is the reason why some people have ten different logins to access ten different
systems. And so, while it seems like a simple idea for each system to have their
own Identity Management function, from a strategic perspective the total security
of all the systems decreases, because people can't remember multiple usernames
and passwords for multiple systems. So in larger systems, either the local Identity
Management function is turned off, or was never in place.

Identity policy agents
The second component is the policy agent. A policy agent can be thought of as
a gatekeeper protecting other systems that may not be compatible with an Identity
Management system. A policy agent is typically tied to an infrastructure platform,
such as a webserver that intercepts calls to applications, and instead redirects them
to the Identity Management system for authentication and authorization. Policy
agents aren't as popular as they used to be, since more systems become Identity
Management-aware, and are able to communicate directly with an Identity
Management system using a language such as Security Assertion Markup
Language (SAML).

Identity providers
The third component of the system is the authentication engine itself. For the rest of
this book, we'll be referring to this component as OpenSSO. This system looks after
the mechanics of authentication and authorization including talking to other related
identity systems such as the directory, and an Identity Manager. This is known as the
Identity Provider.

Chapter 1

[13]

Identity data stores
The fourth component in the system is the identity data store, which can be a
directory or a database. The data store holds all the identity information and is
generally designed to be able to quickly find and retrieve information, rather than
writing information. Lightweight Directory Access Protocol (LDAP) is a common
method for accessing directories, which are known as LDAP directories. Active
directory is an LDAP directory for those in the Windows world.

Identity managers
The fifth component in the system is an identity manager. Weirdly, this is a separate
component from the authentication and authorization engine, and looks after how
identities are created, related, and retired. For instance, when a user changes a
password, an identity manager can distribute that password change to multiple
systems so that each system stores that password. Think of an identity manager as
managing identities on behalf of a lot of different systems.

Summary
In this chapter we covered what Identity Management is, why Identity
Management is important, listed some examples of identity levels, how a typical
Identity Management system works, and described components of an Identity
Management system.

Installing OpenAM 10.x
In the previous chapter we talked about the broad concepts of Identity Management,
including authentication. In this chapter we'll be covering how to install OpenAM
10.x, an application used to do authentication. We'll be doing this installation on a
Windows 7 Home Premium 64-bit edition machine. The topics this chapter will
cover are:

•	 Downloading OpenAM 10.x
•	 Prerequisites for OpenAM 10.x
•	 Installing OpenAM 10.x

 Downloading OpenAM 10.x
The first step is to download OpenAM. Like most open source products, there are
two different flavors:

•	 OpenAM
•	 OpenAM Enterprise

So what's the difference? The OpenAM Enterprise Download Stack page
http://forgerock.com/download-stack/ states:

ForgeRock's Enterprise products are fully-productized, off-the-shelf IAM solutions
that are developed, tested and supported by the ForgeRock engineering, services
and support teams. Enterprise products are released under a commercial license
that allow developers to freely use them in development environments, POCs or to
simply "kick-the-tires." For production use a subscription is required.

Installing OpenAM 10.x

[16]

In effect, ForgeRock, the company that maintains OpenAM, have turned the open
source code for OpenAM into a precompiled binary that is freely available for
anyone to download and use in a non-production manner. However, anyone is
available to take the OpenAM source code and compile their own binaries to use as
they wish. The choice is theirs.

To Open Source or not to Open Source?
While it may appear cheaper to build your own binaries
from source code, there are other expenses when it comes
to software systems, such as support, maintenance, and
compatibility. Do consider these issues, and evaluate mitigating
risk by purchasing an Enterprise Subscription if suitable.

Now that we're aware of the different types of OpenAM, we're going to be
using the OpenAM Enterprise 10.1.0 stack available from http://forgerock.com/
openam-downloads/. Click on the ZIP link to download the file from
http://download.forgerock.org/downloads/enterprise/openam/
openam10/10.1.0/openam_10.1.0.zip.

What's the difference between the WAR and the ZIP file?
The WAR file contains only the deployable OpenAM file. The ZIP
file contains all information about the release, including the source
code. If in doubt, download the ZIP file.

Prerequisites for OpenAM
While we wait for OpenAM to download, let's discuss the OpenAM prerequisites.
One advantage to using the Enterprise version of OpenAM is access to the OpenAM
Install Guide available from http://docs.forgerock.org/en/openam/10.1.0/
OpenAM-10.1.0-Install-Guide.pdf.

Creating a fully qualified domain name
1.	 Click on the Start button, find Notepad, right-click on it, and select Run as

Administrator. This is important because if you try and edit system files as a
normal user, you will get a permission denied error.

2.	 Open the hosts file in the notepad by navigating to C:\Windows\System32\
drivers\etc\hosts file. If you don't see it, you'll need to change the
dropdown in the notepad from Text Documents (*.txt) to All Files (*.*).

Chapter 2

[17]

3.	 Once it is opened it will look like the following screenshot:

4.	 On a new line, type your computer's IP address (which can be the localhost
address – 127.0.0.1) and a domain name (I'm using openam.kenning.
co.nz).

5.	 From the File menu, click on Save and then close the file.
6.	 You should now be able to ping the address openam.kenning.co.nz.

Make sure your domain has at least a domain and a
subdomain; otherwise you'll run into trouble when
configuring cookie domains during the OpenAM install.

Installing the Java Runtime Environment
OpenAM requires Java, either the Java Runtime Environment (JRE) or the Java
Software Development Kit (JDK). These days, most computers will have the
JRE installed, otherwise it can be downloaded from http://www.java.com/en/
download/index.jsp.

Installing OpenAM 10.x

[18]

For OpenAM 10.1, the version must be greater than 1.6.0_10. To find this out, type
the following on a command prompt:

java –version

This returns Java version 1.6.0_25 on the machine.

Downloading the Tomcat application server
As a Java web application, OpenAM can be deployed in a variety of Java web
application servers. For OpenAM 10.1.0, the supported web application containers
can be found in the OpenAM 10.1.0 release notes available at http://docs.
forgerock.org/en/openam/10.1.0/release-notes/.

For our prototype, we'll be using the latest version of Apache Tomcat 6.0, which can
be downloaded from http://tomcat.apache.org/download-60.cgi.

Extract Tomcat to a directory, such as C:\tomcat.

Configuring Tomcat for OpenAM
Tomcat requires changes to its configuration files to support OpenAM, specifically
increasing the minimum JVM heap size to at least 1024 MB, and the permanent
generation size to at least 256 MB.

1.	 Inside the tomcat\bin folder, create a text file called setenv.bat. Add the
following line:
set CATALINA_OPTS=-Xmx2048m -XX:MaxPermSize=512m

This configures the maximum amount of memory that various parts of Java
can use. The minimum recommended is 1024m and 256m respectively.

2.	 Copy openam-server-10.1.0-Xpress.war to the webapps folder present at
C:\tomcat\webapps, and rename it as openam.war.

3.	 Next, run startup.bat. A Java command window should appear showing
the startup of Tomcat. Look for the lines:
INFO: Deploying web application archive path-to-apache-tomcat\
webapps\openam.war

INFO: Server startup in 80846 ms

4.	 In a web browser, go to http://openam.kenning.co.nz:8080/openam
(of course, substituting your domain name set up earlier in the chapter).

Chapter 2

[19]

It doesn't work! What do I do?
While researching for this book, I encountered all types of errors.
The first step is to explore what the Java command window
says. Often after configuring OpenAM, I would encounter out of
memory errors, which the Java command window stated. A second
step is to try an alternate configuration. Originally I tried Tomcat 7,
but the OpenAM console would not load. After reverting to Tomcat
6, the OpenAM console loaded perfectly. Finally, have a look inside
the Tomcat logs folder. Often, useful information will appear in
the logs regarding configuration errors, especially about syntax.

Installing OpenAM 10.1.0

There are two configuration options, default and custom, as shown in the preceding
screenshot. Default is used for setting up a prototype environment fast, and only
requires an admin account password and an agent account password.

www.allitebooks.com

http://www.allitebooks.org

Installing OpenAM 10.x

[20]

Custom is a bit more detailed, so let's explore those options:

1.	 On the first screen, enter the password for the default user, amAdmin,
and then click on Next. You will then see a screen as shown in the
following screenshot:

°° Server URL refers to the URL of the OpenAM server, and by default
populates itself with the URL you are using to access the site. This
could be different if you had set up a reverse proxy in the front, or if
you're using a different port.

°° Cookie Domain refers to the domain that is used for the OpenAM
session cookie, and will populate with the domain or subdomain in
the Server URL, excluding the server name. Since my server name
was openam.kenning.co.nz, the cookie domain will be .kenning.
co.nz.

Chapter 2

[21]

°° Platform Locale by default is set to en_US, and we'll leave that
for now.

°° Configuration Directory is where the confirmation information for
OpenAM should reside.

2.	 Click on Next. You will then see a screen as shown in the
following screenshot:

°° Configuration Data Store refers to where you want to store the
configuration data in a directory. Your choice is either to store it
in the embedded directory server of OpenAM, or an OpenDJ or
Oracle Directory Server Enterprise Edition server if you have one
available. Since we're setting up a prototype, we'll just pick the
OpenAM option.

Installing OpenAM 10.x

[22]

°° If you select OpenAM, some settings will be disabled, such as
whether the directory is SSL/TLS enabled, and what the hostname of
the directory server is, and so on. There are settings for Port, Admin
Port, JMX Port, Encryption Key, and Root Suffix which all revolve
around configuration settings for the directory server.

3.	 For our prototype we can leave them as they are and click on Next. You will
then see a screen as shown in the following screenshot:

4.	 The User Data Store Type refers to where user information will be stored. In
a production environment, this should be configured to use a robust LDAP
directory, such as OpenDJ, Oracle Directory Server Enterprise Edition, or
Active Directory with Host and Port, and so on. If so, various options on
how to connect to that directory are required. However, since we're creating
a prototype, we can select the OpenAM User Data Store.

Chapter 2

[23]

Don't use the OpenAM User Data Store in a Production environment.

5.	 Click on Next. You will then see a screen as shown in the
following screenshot:

6.	 If OpenAM is behind a load balancer it needs to be made aware of this,
specifically if it needs to be configured for high availability.

7.	 For our prototype we can click on Next.

Installing OpenAM 10.x

[24]

Do I need High Availability?
Like all good features it comes with a cost –– complexity. High
availability requires essentially a mirror environment so that if one
component fails, the end user will not notice the impact. However,
OpenAM is just one component in a chain between the browser and
the web servers. Each of those components needs to be engineered for
high availability to ensure users aren't impacted by failure.

8.	 Next, enter the Policy Agent password and then click on Next. You will then
see a screen as shown in the following screenshot:

9.	 Finally, a Configurator Summary Details page will appear, as shown in the
preceding screenshot, that will allow you to review your details. If they're
correct, click on the Create Configuration button to start the configuration.

10.	 When the configuration is complete, you should see a Configuration
Complete dialog box and a link to login to OpenAM.

Chapter 2

[25]

Summary
In this chapter we downloaded OpenAM 10.x, we installed and configured the
prerequisites required for OpenAM 10.x, and thus installed OpenAM 10.x.

Cross-Domain
Single Sign On

In the last chapter we covered installing OpenAM, which is great, but the next step
is to start securing multiple sites in multiple domains. This chapter will cover the
following points:

•	 Securing a web server on the same domain as OpenAM
•	 Securing an application server on a different domain to OpenAM

An introduction to Cross-Domain
Single Sign On
Cross-Domain Single Sign On (CDSSO) is a feature of OpenAM that allows
authentication to go between different domains. When OpenAM was installed
in our prototype, it was installed against openam.kenning.co.nz, which means
that OpenAM will function correctly against any .kenning.co.nz domain
because the OpenAM configurator sets the cookie domain to .kenning.co.nz.
But what if you own other domain names, such as .kenning.local? We'll need
to enable Cross-Domain Single Sign On to allow the other domain names to be
protected by OpenAM.

So how is Cross-Domain Single Sign On different from Federation? Cross-Domain
Single Sign On is about one instance of OpenAM securing sites on different domains.
Federation is about OpenAM trusting other Identity Management systems operating
on different domains. If the other domain is already secured, use Federation. If the
other domain has no security, use Cross-Domain Single Sign On.

Cross-Domain Single Sign On

[28]

Securing an Apache 2.4 local
domain website
The first step we want to take is to secure an installation of Apache 2.4 operating on
the same domain as OpenAM. OpenAM is running at http://openam.kenning.
co.nz:8080/openam, and our installation of Apache 2.4 will run at http://apache.
kenning.co.nz. To do this, we'll need to create an Agent profile in OpenAM, and
then download and install the Apache Policy Agent.

We'll be using some new domain names in this chapter, so as per the instructions
in the previous chapter, open your host file, create the domain names apache.
kenning.co.nz, and tomcat.kenning.local, and point them both to 127.0.0.1.

Creating an Apache Policy Agent profile
in OpenAM
In this section, we will create an Apache Policy Agent profile in OpenAM that will
define the settings for the site we will be protecting.

1.	 Log into OpenAM and click on the Access Control button at the top of
the page.

2.	 Next, click on the realm we want to protect. In our prototype, there's only
one realm, called Top Level Realm.

3.	 Click on the Agents button at the far right of the page.
4.	 Click on the New Agent button under the Web tab.
5.	 Give the agent a name. We'll call ours Apache24.
6.	 Give the agent a password. We'll use apachepassword.
7.	 Enter the OpenAM server URL. We'll use http://openam.kenning.

co.nz:8080/openam.
8.	 Enter the Apache URL we'll be protecting, including the port number

(the default being 80). We'll use http://apache.kenning.co.nz:80.
9.	 You can choose whether you want the configuration to be stored within the

agent or within the OpenAM server. I prefer storing configurations within
the OpenAM server, so we'll select the centralized option.

Chapter 3

[29]

10.	 Click on the Create button.
11.	 Now we need to go into the agent profile we just created and configure it

to only do authentication (or Single Sign On) and not authorization. This is
because we haven't defined any authorization roles yet, which means we
wouldn't be able to access resources (such as pages).

12.	 Click on the agent profile we just created, Apache24.
13.	 Scroll down and tick the SSO Only mode, which will force Single Sign On

only, and not apply authorization.
14.	 Click on the Save button.

www.allitebooks.com

http://www.allitebooks.org

Cross-Domain Single Sign On

[30]

Securing Apache with the OpenAM
Policy Agent
We now need to secure our Apache installation with the OpenAM Policy Agent.
This step presumes you have an Apache web server installed. If not, XAMPP is a
great way to get Apache installed on Windows, and can be downloaded from
http://www.apachefriends.org/en/xampp-windows.html. My Apache
install was located at C:\xampp\.

1.	 The first step is to download the Apache Policy Agent. I'm using Apache
2.4, so I'll download the Apache 2.4 Policy Agent. All the Community
OpenAM Policy Agents can be found at http://forgerock.org/openam.
html. The Enterprise Release OpenAM Policy agents can be found at
https://download.forgerock.com/#/openam. The specific policy agent
download I used was http://download.forgerock.org/downloads/
openam/webagents/nightly/WINNT/apache_v24_WINNT_agent_3.1.0-
Xpress.zip. This is a nightly build, so you should refer to the latest policy
agent download link available from the websites above.

2.	 Next, extract the download to a folder. We should extract it to C:\xampp\
apache24_agent\.

3.	 We now need to create a text file which will contain the password for the
agent, which we created when we created the Agent profile. Create a file
called C:\xampp\apache24_agent\apacheagentpassword.txt and save the
password apachepassword.

4.	 Open a command line. Navigate to the C:\xampp\apache24_agent\bin\
folder. Now, type agentadmin.bat --install which will start the Agent
installation process.

5.	 In the agent installation window, enter the path of your Apache
configuration folder; in my case it was C:\xampp\apache\conf.

6.	 Next, enter the URL to your OpenAM server. Mine was http://openam.
kenning.co.nz:8080/openam.

7.	 Now enter the URL to your Apache web server that the agent is protecting,
including the port number. Mine was http://apache.kenning.co.nz:80.

8.	 Enter the agent profile name that we created earlier, Apache24.
9.	 Type the path to the text file that contains the agent password. Mine was

C:\xampp\apache24_agent\apacheagentpassword.txt.
10.	 You're now given a chance to review the options. Once done, press 1 to

continue with the installation.

Chapter 3

[31]

11.	 Because our Apache web server wasn't started earlier, do that now and head
to http://apache.kenning.co.nz.

12.	 We should get redirected to the OpenAM login page. Enter your OpenAM
account details (preferably using the testing account with the username demo
and password changeit, or you could use the administrator details with
the username amAdmin and password adminpass). We should get redirected
back to our Apache content.

Securing a Tomcat 6 remote
domain website
In this section, we'll create another instance of Tomcat, create a Tomcat Policy Agent
profile, install the Tomcat Policy Agent, and configure it for Cross-Domain Single
Sign On, as per the Java EE Policy Agent Installation Guide that can be accessed at
http://openam.forgerock.org/openam-documentation/openam-doc-source/
doc/jee-install-guide/index.html.

Configuring Tomcat and creating a Tomcat
Policy Agent profile
In this step, we're going to be installing another instance of Tomcat, different from
the instance running OpenAM. We'll run this instance on a different domain,
tomcat.kenning.local.

1.	 Extract the Tomcat 6 download file. I extracted it to C:\tomcat.local.
2.	 We need to change the ports so they don't clash with the existing instance of

Tomcat. Open C:\tomcat.local\conf\server.xml in a text editor.
3.	 Change all the ports from the 8000 range to 9000 range, so that the main port

goes from 8080 to 9080 for instance. Save the file.
4.	 From the command line, run C:\tomcat.local\bin\startup.bat and see if

Tomcat starts.
5.	 In a browser, head to http://tomcat.kenning.local:9080/docs/ and you

should see the Tomcat documentation site.
6.	 Shutdown Apache by running C:\tomcat.local\bin\shutdown.bat.
7.	 In a browser, log in to OpenAM and click on the Access Control button.
8.	 Next, click on the Top Level Realm link.
9.	 Click on the Agents button.

Cross-Domain Single Sign On

[32]

10.	 Click on the J2EE tab.
11.	 Click on the New Agent button.
12.	 Give the Tomcat agent a name. We'll call ours Tomcat6.
13.	 Give the Tomcat agent a password. We'll use tomcatpassword.
14.	 Enter the OpenAM server URL. We'll use http://openam.kenning.

co.nz:8080/openam.
15.	 Enter the URL to the J2EE application that the agent protects, including

the port number (the default being 80) and the protected resource (or sub-
directory). We'll use http://tomcat.kenning.local:9080/docs.

16.	 Click on the Create button.
We now need to configure this agent to only do Single Sign On (or
authentication), rather do authorization, since we still haven't created any
authorization roles.

17.	 Go back to the newly created Agent settings.

Chapter 3

[33]

18.	 Under the General section, under the Agent Filter mode, select ALL in the
Current Values box, and click on the Remove button.

19.	 In the Corresponding Map Value box, type SSO_ONLY, and click on the Add
button.

What are hot swappable values?
Hot swappable values are settings that can be changed without having to
restart the web server or application server. The above value was not hot
swappable, so for it to apply, we would have to restart the Tomcat server
that has this policy agent instance installed.

20.	 Click on the Save button.

Securing Tomcat with the OpenAM
Policy Agent

1.	 Download the Tomcat Policy Agent. All the OpenAM Policy Agents can be
found at http://forgerock.org/openam.html. The Enterprise Release
OpenAM Policy Agents can be found at https://download.forgerock.
com/#/openam.

2.	 The specific policy agent download I used was http://download.
forgerock.org/downloads/openam/j2eeagents/nightly/tomcat_v6_
agent_3.1.0-Xpress.zip. This is a nightly build, so you should refer to
the latest policy agent download link available from the websites mentioned
earlier.

3.	 Extract the folder contents. I extracted to C:\tomcat.local\tomcat_v6_
agent.

4.	 Once again, we need to create a text file which will contain the password for
the agent, which we created when we created the agent profile. Create a file
called C:\tomcat.local\tomcat_v6_agent\tomcatagentpassword.txt
and save the password tomcatpassword.

5.	 Open a command line. Navigate to the C:\tomcat.local\tomcat_v6_
agent\bin\ folder. Now, type agentadmin.bat --install which will start
the agent installation process.

6.	 Enter the path to the Tomcat configuration folder. In my case, this was C:\
tomcat.local\conf.

7.	 Next, enter the URL to your OpenAM server. Mine was http://openam.
kenning.co.nz:8080/openam.

Cross-Domain Single Sign On

[34]

8.	 Enter the URL to your Tomcat installation, known as $CATALINA_HOME.
Ours should be C:\tomcat.local.

9.	 The agent will ask to install the agent filter in the global web.xml file. Press
Enter, as true was already selected.

10.	 Enter the agent URL including the deployment folder. In my case, this was
http://tomcat.kenning.local:9080/docs.

11.	 Enter the agent profile name we created earlier, Tomcat6.
12.	 Enter the path to the password file we created earlier, which should ideally

be C:\tomcat.local\tomcat_v6_agent\tomcatagentpassword.txt.

13.	 Review your configuration settings, and if you agree, type 1 to continue
the install.
Our installation should be done, with the changes detailed in C:/tomcat.
local/tomcat_v6_agent/installer-logs/audit/install.log.

14.	 Since this is the first time we will be using this Tomcat instance, start Tomcat
from the command line by running C:\tomcat.local\bin\startup.bat.

15.	 In a browser, try and access http://tomcat.kenning.local:9080/docs.
After logging in, your browser should detect infinite loops and not display a
page. This is because Cross-Domain Single Sign On has not been enabled.

Chapter 3

[35]

Configuring a Tomcat Agent profile for
Cross-Domain Single Sign On

1.	 In a browser, log in to OpenAM and click on the Access Control button.
2.	 Next, click on the Top Level Realm link.
3.	 Click on the Agents button.
4.	 Click on the J2EE tab.
5.	 Select the Tomcat6 agent profile that we created earlier.
6.	 Click on the SSO tab.

Cross-Domain Single Sign On

[36]

7.	 Tick the Enabled box for the Cross Domain SSO option.

8.	 In the CDSSO Domain List section, in the New Value box, add .kenning.
local (note the leading dot). In this step, we're saying that all sessions from a
kenning.local domain name are valid, because the agent should create the
session cookie with this cookie domain.

9.	 Click on the Save button.
10.	 In a browser, try and access http://tomcat.kenning.local:9080/

docs. After logging in, your browser should redirect you to the Tomcat
documentation site.

Summary
In this chapter we created two sites: one Apache based and the other Tomcat based,
and secured them with Policy agents using authentication only. The Tomcat site
was on a different domain, so we enabled Cross-Domain Single Sign On to enable
OpenAM to secure that site. In the next chapter, we'll be covering distributed
authentication, which allows us to protect our OpenAM installation and expose
services using a component deployed to the DMZ.

Distributed Authentication
In the last chapter we covered cross-domain authentication, where policy agents
talk to OpenAM to verify authentication. But how do we protect OpenAM from
exposure? In this chapter we'll:

•	 Install distributed authentication on a separate DMZ server to protect
OpenAM from direct access

•	 Configure a distributed authentication server
•	 Configure a distributed authentication application
•	 Test a distributed authentication

Understanding distributed authentication
Distributed authentication revolves around two key concepts: how policy agents
work and a defense-in-depth architecture.

How policy agents communicate with
OpenAM
When a user accesses a URL that is protected by a Policy Agent, the policy agent will
intercept that request to the application or web server. It will examine the request
and look for information to see if that user is already authenticated and authorized.
Typically that information will be inside a cookie or a session variable.

If the user is not already authenticated, the policy agent will force a redirect from the
protected URL to the OpenAM login page. The user then accesses the OpenAM login
page, enters their credentials, and is then redirected back to the protected URL. The
policy agent will once again look at the request will see a valid credential to log in,
and will allow the request to reach the application or web server.

Distributed Authentication

[38]

But in all of this, there is a relationship between the policy agents and OpenAM.
How does the policy agent know that a credential is valid? It asks OpenAM.

While this is useful for the policy agents, exposing OpenAM to the world increases
the likelihood of it being targeted for vulnerabilities and attacks.

Understanding defense-in-depth architectures
Defense-in-depth architectures refers to having multiple different barriers between
systems. For instance, a user computer could be directly connected to the Internet, as
could a web server. But either of these machines could be hacked through known or
unknown vulnerabilities, misconfigurations, or other typical security exploits.

That's why for systems connecting across organization boundaries (or to the
Internet), there is often the concept of a Demilitarized Zone (DMZ). This is a lower
trust network from the primary network separated through the use of Firewalls and
other networking devices. This is the same concept as protecting a castle with both a
moat and wall and a door. Even if one barrier is crossed, there are still multiple other
different barriers.

So when a user tries to authenticate against OpenAM, their request would first hit a
Firewall or other networking device, which would inspect the request and allow it if
it met certain criteria. Then the request would be served by an application server in a
DMZ which would inspect the request. If the request was valid, the DMZ application
server would talk through another Firewall to OpenAM on the primary network.

Preparing OpenAM for distributed
authentication
The first step is to configure the cookie domains and realms within OpenAM. This is
especially important if using different domain names.

1.	 Log in to OpenAM.
2.	 Next click on the Configuration tab, then the System subtab, and finally click

on the Platform link.
The following screenshot shows the cookie domains configured in OpenAM,
and is the location within OpenAM where you would configure for alternate
or additional cookie domains.

Chapter 4

[39]

3.	 Under Cookie Domains, make sure that the domain you're using is listed
as a domain. Since my distributed authentication server will be called dmz.
kenning.co.nz, which is still the same as my OpenAM domain, I don't need
to change the values here.

When would you use different cookie domain values?
A good example is domain names assigned to externally facing servers
versus internally facing servers. Externally facing servers will need
domain names valid on the Internet, such as dmz.kenning.co.nz.
Internally facing servers may not have a valid domain name, such
as openam.kenning.local. Hence both .kenning.co.nz and
.kenning.local would need to be added as cookie domains.

www.allitebooks.com

http://www.allitebooks.org

Distributed Authentication

[40]

4.	 If any changes have been made, click on the Save button. Next, click on the
Back to Service Configuration button.

5.	 Click on the Access Control tab, then click on the name of your realm (mine
is / (Top Level Realm).
The following screenshot shows OpenAM configured to use multiple DNS
aliases for a particular realm:

6.	 Add the realm or DNS alias of your distributed authentication server. Mine
will be dmz.kenning.co.nz, so enter the value in the New Values box, then
click on the Add button and then on the Save button.

Chapter 4

[41]

Configuring the distributed
authentication application server
In this step we're going to be installing another instance of Tomcat separate from the
instance running OpenAM. We'll run this instance in the DMZ with a new domain
name, dmz.kenning.co.nz.

1.	 We'll be using a new domain name in this chapter. So as per the instructions
in the previous chapter, open your hosts file and create the domain name
dmz.kenning.co.nz and point it to 127.0.0.1.

2.	 Extract the Tomcat 6 downloaded file. I extracted it to C:\tomcat.dmz.
3.	 We need to change the ports so they don't clash with the existing instance of

Tomcat. Open C:\tomcat.local\conf\server.xml in a text editor.
4.	 Change all the ports from the 8000 range to the 10000 range, so the main

port will go from 8080 to 10080 for example. Save the file.
5.	 From the command line, run C:\tomcat.dmz\bin\startup.bat and see if

Tomcat starts.
6.	 Copy the file openam-distauth-10.1.0-Xpress.war to C:\tomcat.dmz\

webapps folder, and rename it to openam-distauth.war.
7.	 Head to your distributed authentication application server URL, in my case

this was http://dmz.kenning.co.nz:10080/openam-distauth/.

Configuring the distributed
authentication application
Once you've executed the previous step, you should be redirected to a URL similar to
http://dmz.kenning.co.nz:10080/openam-distauth/distAuthConfigurator.
jsp which will allow you to configure your distributed authentication application.

Distributed Authentication

[42]

The following screenshot shows the OpenAM distributed authentication
application settings:

•	 Server Protocol refers to whether your OpenAM server will be using HTTPS
or HTTP. For our prototype, we'll use HTTP.

•	 Server Host refers to the host name of your OpenAM server. Mine was
openam.kenning.co.nz.

•	 Server Port refers to the port of your OpenAM server. Mine was 8080.
•	 Server Deployment URI refers to where the OpenAM application was

deployed to. Mine was deployed to /openam.

Chapter 4

[43]

The next few fields should be pre-populated
for you, and do not need to be changed.

•	 DistAuth Server Protocol refers to the protocol of the distributed
authentication server. For our prototype we'll use HTTP.

•	 DistAuth Server Host refers to the host name of the distributed
authentication server. Mine was dmz.kenning.co.nz.

•	 DistAuth Server Port refers to the port number of the distributed
authentication server. Mine was 10080.

•	 DistAuth Server Deployment URI refers to where the OpenAM distributed
authentication application was deployed to. Mine was deployed to /openam-
distauth.

•	 DistAuth Cookie Name refers to the cookie name set by the distributed
authentication application. By default mine was AMDistAuthCookie.

•	 OpenAM LB Cookie Name refers to the cookie name set by OpenAM for
load balancers. By default mine was amlbcookie.

•	 DistAuth LB Cookie Name refers to the cookie name set by the OpenAM
distributed authentication application for load balancers. By default mine
was DistAuthLBCookieName.

•	 DistAuth LB Cookie Value refers to the cookie value set by the OpenAM
distributed authentication application for load balancers. By default mine
was DistAuthLBCookieValue.

•	 Debug directory refers to the directory where log files will be written. On
Windows these should be written with a forward slash. The location for my
log files was c:/tomcat.dmz/logs.

•	 Debug level refers to the level of detail written to the log files. The default
option is error, another more detailed option is debug. Other possible
options are message, warning, error, or off.

•	 Encryption Key refers to the encryption key used to encrypt the application
user password. This should not be changed.

•	 Application user name refers to the user, who should be used to authenticate
this application against OpenAM. The user I used was UrlAccessAgent,
however a more robust option would be to create a specific policy agent user
for this purpose.

•	 Application user password refers to the password for the preceding user
account. This password is configured during the OpenAM installation
process. Mine was agentpass.

•	 Click on the Configure button.

Distributed Authentication

[44]

You should receive the following information on screen:

DistAuth application is successfully configured.
AMDistAuthConfig.properties created at C:\Users\Waylon\FAMDistAuth_
tomcat.dmz_webapps_openam-distauth_AMDistAuthConfig.properties

Testing distributed authentication
We need to create a specially crafted URL to test if distributed authentication is
working successfully. This URL will look like:

PROTOCOL://DISTAUTH:PORT/DEPLOYMENT-URI/UI/
Login?goto=PROTECTEDCONTENT

Chapter 4

[45]

A more practical example is http://dmz.kenning.co.nz:10080/openam-
distauth/UI/Login?goto=http://apache.kenning.co.nz/xampp/phpinfo.
php. This will log in a user at the distributed authentication application and then
immediately (or with another redirect to cdcservlet, if the policy agent is running
on a different domain) redirect them to a protected page on a policy agent protected
web server.

It just so happens that our protected page is a page that displays all the information
received from the server such as the GET and POST variables, as well as sessions
and any cookies set. As you can see in the preceding screenshot some variables are
passed to the application, such as the logged in user at the variable _SERVER["PHP_
AUTH_USER"].

A way of verifying whether these requests went straight between the distributed
authentication application and the policy agent-protected web server is to look at the
HTTP requests between the two systems.

Distributed Authentication

[46]

The following screenshot shows a useful Firefox extension called Tamper Data. One
useful feature of Tamper Data is to view HTTP requests in the browser for tracing
and diagnostics.

As you can see in the preceding screenshot, requests go from the distributed
authentication application at dmz.kenning.co.nz and once authenticated,
users are redirected to the value in the GOTO portion of the URL, in our case,
apache.kenning.co.nz.

Summary
In this chapter we learned how to install the remote authentication application for
OpenAM, and configure it to work with OpenAM. In the next chapter we'll cover
application authentication with Fedlets.

Application Authentication
with Fedlets

In the last chapter we covered distributed authentication as a way of protecting our
OpenAM server. In this chapter we'll look at securing a Java application without
installing a policy agent. Instead, we'll provide authentication and authorization
information directly to the application using a Fedlet.

Understanding Fedlets
Fedlets are small deployable web applications that allow you to easily integrate
your existing web application with OpenAM without having to write a lot of
authentication and authorization code.

Advantages of Fedlets over policy agents
In our earlier chapters, we discussed policy agents, which, are installed against
specific web servers and application servers, intercept requests to protected
content, redirect users to OpenAM for authentication and authorization, and
briefly covered how we could send that information to applications in the form
of headers or session variables.

The limitation to this approach however, is the policy agent. There needs to be a
specific policy agent install available for the particular web or application server
you are using. If you're using a mainstream application server such as Tomcat, you're
in luck. But what about if you're using something a little different, such as Nginx for
serving web content? You could always install Tomcat or Apache as a reverse proxy,
do authentication there with a policy agent, and then forward the requests onto your
different web server, but then you've made your deployment
a little more complex.

Application Authentication with Fedlets

[48]

Fedlets allow you to move your authentication and authorization away from the
application server layer into the application layer. As a deployable application,
Fedlet sits alongside your application and looks after authentication and
authorization by exchanging SAML protocol messages with OpenAM. This means
no more installs against the operating system, and no more worries about whether
there is a policy agent for your specific application server.

Disadvantages of Fedlets over policy agents
It's not all roses with Fedlets however. While policy agents are relatively brittle
by having tight integration to a particular version of a web or application server,
they do make authentication and authorization dead simple for applications.
Essentially, applications shouldn't need to focus so much on authentication or
authorization, rather they can focus on receiving user variables injected from the
policy agent into the headers. As long as the application can read from the headers,
that's all that is required.

Fedlets, being deployable web applications, instead have a reliance on what
containers they can deploy to. There are two types of OpenAM Fedlets, a Java Fedlet,
and a .NET Fedlet. So if you're deploying applications to Java or .NET containers,
you're in luck. If you're deploying against a different language such as Ruby or PHP,
you'll have to look towards third party SAML libraries to do your authentication
(and turn elsewhere for authorization).

Configuring the Fedlet application server
For these instances we'll be focusing on the Java Fedlet rather than the .NET Fedlet.
Once again, we're going to be installing another instance of Tomcat separate from
the instance running OpenAM. We'll run this instance with a new domain name,
fedlet.kenning.co.nz, which is not essential, but we'll use it for clarity with
explanations in the chapter.

We'll be using a new domain name in this chapter, so as per the instructions in
Chapter 3, Cross-Domain Single Sign On open your hosts file and create the domain
name fedlet.kenning.co.nz and point it to 127.0.0.1.
Extract the Tomcat 6 download file. I extracted it to C:\tomcat.fedlet.

We need to change the ports so they don't clash with the existing instance of Tomcat.
Open C:\tomcat.local\conf\server.xml in a text editor.

Change all the ports from the 8000 range to the 11000 range, so the main port will go
from 8080 to 11080 for instance. Save the file.
From the command line, run C:\tomcat.fedlet\bin\startup.bat and see if
Tomcat starts.

Chapter 5

[49]

Creating a SAML hosted identity provider
The steps for creating the identity provider are as follows:

1.	 Log into OpenAM. Because a Fedlet uses SAML to communicate between
the application and OpenAM, we'll need to create a SAML Hosted Identity
Provider.

2.	 Under Common Tasks in OpenAM, click on the Create Hosted
Identity Provider button and you should see a screen as shown in
the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Application Authentication with Fedlets

[50]

3.	 For our prototype, we have no existing file that describes the metadata to be
transferred between OpenAM and an application, so leave the Do you have
metadata for this provider option on the No radio button.

4.	 In the metadata section, the first option is to enter the deployment URL of
OpenAM. This will be pre-populated with your OpenAM deployment URL.
Mine was http://openam.kenning.co.nz:8080/openam.

5.	 SAML communications need to be signed. This will be explained in more
detail in the SAML chapter, but for now, select the test option under
Signing Key.

6.	 In the Circle of Trust section, type a name for this relationship between
OpenAM and the application, or circle of trust. I'll call mine 'fedlet'.

7.	 In the Attribute Mapping section we can rename variables between
different systems. For instance, a variable known as cn for Common Name
(or username) in OpenAM might be known to the application as UserName.

8.	 We need to enter values here which will be transferred between OpenAM
and the Fedlet. Enter cn in the textbox on the left, cn in the textbox on the
right, and select cn from the dropdown and click on the Add button.

9.	 Click on the Configure button.
10.	 A confirmation page will appear stating Your Identity Provider has been

configured. On this page click on the link to create a Fedlet.

Creating a Fedlet
The steps for creating a Fedlet are as follows:

1.	 Because we're creating the Fedlet immediately after creating a
Hosted Identity Provider, selecting the Circle of Trust and Identity
Provider options have already been pre-populated as shown in the
following screenshot.

Chapter 5

[51]

2.	 Under Fedlet information, enter the name and destination URL where the
Fedlet will be located. These can both have the same value, which in my case
will be http://fedlet.kenning.co.nz:11080/fedlet.

3.	 Once again, in the Attribute Mapping section we can rename variables
between the different systems. For instance, a variable known as cn
for Common Name (or username) in OpenAM might be known to the
application as UserName.

Application Authentication with Fedlets

[52]

4.	 We still need to enter values here which will be transferred between
OpenAM and the Fedlet. Enter cn in the text box on the left, cn in the textbox
on the right, and select cn from the dropdown and click on the Add button.

5.	 Click on the Create button.

Inside the browser a message will appear saying your Fedlet.zip has
been created and saved to an opensso folder as shown in the following
screenshot. For me this location was C:/Users/Waylon/openam/myfedlets/
httpfedletkenningconz11080fedlet/Fedlet.zip.

Deploying Fedlet.zip onto our Java
application server
Extract from Fedlet.zip, the fedlet.war file. Copy fedlet.war to C:\tomcat.
fedlet\webapps. Tomcat will automatically start deploying the web
application Fedlet.

In a browser, go to the Fedlet deployment URL. For me, this is http://fedlet.
kenning.co.nz:11080/fedlet/.

This page will state that the Fedlet configuration home directory does not exist
and provides you with a link to create this directory. For me, this link was
http://fedlet.kenning.co.nz:11080/fedlet/index.jsp?CreateConfig=true.

Clicking on the link will return a message that a Fedlet configuration has been
created in a folder, which was C:\Users\Waylon\fedlet (for my application).
Click on the link on the page, which was http://fedlet.kenning.co.nz:11080/
fedlet/index.jsp (for my application), to continue.

Chapter 5

[53]

Validating the Fedlet setup
The following page allows us to validate that our Fedlet can communicate and
authenticate against our OpenAM server.

There are four links:

•	 Fedlet initiated SSO using HTTP POST binding
•	 Fedlet initiated SSO using HTTP Artifact binding
•	 Identity Provider (OpenAM) initiated SSO using HTTP POST binding
•	 Identity Provider (OpenAM) initiated SSO using HTTP Artifact binding

There are two key differences in these links. The first is whether SSO is initiated from
the Fedlet, or OpenAM.

If SSO is initiated from the Fedlet, the request goes to the Fedlet first, which redirects
it to OpenAM, which then redirects it back to the Fedlet.

If SSO is initiated from OpenAM, the request goes to OpenAM first, which then
redirects it to the Fedlet.

Application Authentication with Fedlets

[54]

The second key difference is around the type of binding used to communicate the
SAML messages. These can either be via an HTTP POST request using a hidden field,
or by locating a SAML response at a particular URL known as an HTTP Artifact.

Clicking on these links should return a confirmation page saying Single Sign On
successful as shown in the following screenshot:

Chapter 5

[55]

You can see that the attribute we wanted, cn, is listed as an attribute. cn happens to
be the username of the currently logged in user. You can click on any of the links to
view various XML used in the transaction in more detail.

On this page you can also test Single Logout using either Fedlet initiated SSO,
or OpenAM initiated SSO, using a variety of bindings.

More information about Fedlets
The OpenAM documentation about Fedlets contains a lot of great detail about
customizing the Fedlet package into your Java application. This documentation
can be found at http://openam.forgerock.org/openam-documentation/
openam-doc-source/doc/dev-guide/index/chap-fedlet-java.html.

Summary
In this chapter we created another Tomcat installation, created a Hosted Identity
Provider, created a Fedlet which trusts our Hosted Identity Provider, deployed it to
our new Tomcat installation, configured the Fedlet, and tested Single Sign On and
Single Sign Out.

Implementing SAML2
Federation Patterns

In the last chapter we covered setting up authentication at the application level using
Fedlets. Fedlets rely on SAML as their communication method to OpenAM. This
chapter will cover:

•	 Understanding SAML
•	 Configuring SAML in OpenAM
•	 Testing our SAML connection between OpenAM and a PHP-enabled

SAML application

Understanding SAML
SAML stands for Security Assertion Markup Languagewhich is a protocol used to
exchange authentication and authorization messages between two parties using an
XML format.

The two types of parties in SAML are called Service Providers (SP) and Identity
Providers (IdP). These two parties are aware of each other and have a relationship
known in OpenAM as a Circle of Trust.

Understanding Identity Providers
An Identity Provider is the party that provides identity to a user within a security
realm. Google Accounts would be an example of an Identity Provider.

In our example, OpenAM will act as an Identity Provider, providing the identities
stored within the directory (which for us are the identities contained within the
embedded OpenDJ instance).

Implementing SAML2 Federation Patterns

[58]

Understanding Service Providers
A Service Provider provides a service to a user. Google Plus or Gmail are Service
Providers which rely on an Identity Provider, Google Accounts, to provide identity
information to the Service Provider.

Understanding a Circle of Trust
Not any Identity Provider is trusted by any Service Provider. I can't sign into Gmail
using my Facebook username and password, and my bank doesn't trust my work
username and password. So we know that there needs to be a relationship between
the Service Provider and the Identity Provider, which will be formally defined as a
Circle of Trust.

Configuring OpenAM as a SAML Identity
Provider
The steps for configuring OpenAM are as follows:

1.	 Sign into the OpenAM console.
2.	 Under the Common Tasks tab, click on the Create Hosted Identity Provider

button and you will see a screen as shown in the following screenshot:

Chapter 6

[59]

3.	 For advanced configurations of OpenAM as a SAML Identity Provider we
may already have metadata about this Identity Provider pre-configured,
which can be loaded into OpenAM. However, for our install we'll leave the
option Do you have metadata for this provider? as No.

4.	 Under the metadata section we need to define the name of the Identity
Provider. This should be your OpenAM deployment URL. Mine was
http://openam.kenning.co.nz:8080/openam.

One thing to note in our prototype is we're using HTTP rather
than HTTPS connections. Generally it is always preferable to use
HTTPS connections. However, one of the features of SAML 2.0
is the introduction of encryption of SAML. Even though we're
serving our SAML content over an unencrypted HTTP connection,
we've encrypted the SAML message itself.

5.	 We need to select a Signing Key to sign our certificate against. By default,
there is only one key available, that is, test. This is a self-signed certificate
and isn't suitable for a production environment, however, for our prototype
it'll do just fine.

Understanding certificates and Java
Certificates used for encryption are generally found inside a Java
Key Store (JKS). The creation of a certificate is beyond the scope
of this book but can be found at http://docs.oracle.com/
javase/1.5.0/docs/tooldocs/solaris/keytool.html.
Once a certificate is created, it needs to be imported into the JKS used
by OpenAM, located in the installation directory of OpenAM. Portecle
is a GUI-based open source application that can easily do this, and is
found at http://portecle.sourceforge.net/.

www.allitebooks.com

http://www.allitebooks.org

Implementing SAML2 Federation Patterns

[60]

6.	 Next, we need to create a Circle of Trust. This Circle of Trust defines
the relationship between an Identity Provider (OpenAM), and a Service
Provider (SimpleSAMLphp for our prototype). I named my Circle of Trust
SimpleSAMLphp.

7.	 Next, we need to map the attributes. These are the values that we pass
between OpenAM and our third-party system. Select from the attributes
available in the drop-down box, which will populate the textbox on the right.
Type the name of the attribute you would like. For example, I had sn selected
on the right, but gave the attribute the name of surname instead.

8.	 Click on the Configure button at the top of the page.

Chapter 6

[61]

Installing SimpleSAMLphp
We need to integrate a SAML Service Provider with OpenAM acting as a SAML
Identity Provider. For Java or .NET applications, we could use Fedlets like in the last
chapter. But let's use a non-OpenAM technology, SimpleSAMLphp.

SimpleSAMLphp is a lightweight SAML Identity Provider
and Service Provider written in PHP, and can be deployed
to any web server, such as Apache.

1.	 Download the latest version of SimpleSAMLphp from
http://simplesamlphp.org/download. The version I'm using is 1.10.0.

If you're going to use the web server we installed the
Apache Policy Agent on earlier, don't forget to uninstall
the Apache Policy Agent.

2.	 Since I'm going to use the same Apache web server as used earlier in the
book, I'm extracting the contents of the archive to c:\xampp\simplesaml.

There is a problem with XAMPP 1.8 and OpenSSL.
At the time of writing, XAMPP 1.7 works correctly.

3.	 Add the following contents to your httpd-vhosts.conf file, which for
me was located at the path: C:\xampp\apache\conf\extra\
httpd-vhosts.conf:
<VirtualHost apache.kenning.co.nz:80>
 DocumentRoot "C:/xampp/simplesaml"
 ServerName apache.kenning.co.nz
 ErrorLog "logs/simplesaml.local-error.log"
 CustomLog "logs/simplesaml.local-access.log" combined
 Alias /simplesaml "c:/xampp/simplesaml/www"
 ServerAlias apache.kenning.co.nz
 <Directory "C:/xampp/simplesaml">
 AllowOverride All
 Order Allow,Deny
 Allow from all
 Require all granted
 </Directory>
</VirtualHost>

Implementing SAML2 Federation Patterns

[62]

4.	 Restart your Apache Web Server for these settings to take effect. These
settings allow us to access SimpleSAMLphp by the URL http://apache.
kenning.co.nz/simplesaml/.

5.	 PHP OpenSSL support is required for SimpleSAMLphp. If you're using
XAMPP like me, open the file C:\xampp\php\php.ini and remove the
semicolon on the line extension=php_openssl.dll.

6.	 Edit the file C:\xampp\simplesaml\config\config.php and change the line
containing auth.adminpassword from 123 to password. Also change the line
referring to secretsalt from defaultsecretsalt to secretsalt.

7.	 Inside the folder C:\xampp\simplesaml\modules create a new blank
file called enable. This will enable the modules we need to set up
SimpleSAMLphp as a Service Provider.

8.	 If things are going well, accessing http://apache.kenning.co.nz/
simplesaml/module.php/core/frontpage_config.php should show
all required modules with a green tick. If not, read the SimpleSAMLphp
install notes located at http://simplesamlphp.org/docs/stable/
simplesamlphp-install.

Configuring SimpleSAMLphp as a
Service Provider
Now we need to add the metadata about our OpenAM IdP to SimpleSAMLphp.
But first, we need to convert the OpenAM IdP metadata into a format usable by
SimpleSAMLphp.

Chapter 6

[63]

1.	 Inside OpenAM, click on the Federation tab at the top, and note the name of
your Entity Provider as shown in the following screenshot. This will be used
as the value at the end of the string in the next URL.

2.	 We now need to provide OpenAM's IdP Metadata to SimpleSAMLphp so
the two systems know to trust each other. Head to http://openam.
kenning.co.nz:8080/openam/saml2/jsp/exportmetadata.
jsp?entityid=http://openam.kenning.co.nz:8080/openam which
should return an XML result similar to the following screenshot:

Implementing SAML2 Federation Patterns

[64]

3.	 Copy that XML and paste into http://apache.kenning.co.nz/
simplesaml/admin/metadata-converter.php then click on Parse.
You should then be returned with a formatted list of metadata as shown
in the following screenshot:

4.	 Copy that formatted metadata and paste into the bottom of the file C:\
xampp\simplesaml\metadata\saml20-idp-remote.php and save the file.
This lets SimpleSAMLphp know about our OpenAM IdP.

Chapter 6

[65]

Configuring OpenAM to trust a
SimpleSAMLphp SP
Next we need to take our SimpleSAMLphp SP metadata and provide that back to
OpenAM. After this, SimpleSAMLphp will be aware of OpenAM as a valid IdP, and
OpenAM will be aware of SimpleSAMLphp as a valid SP.

1.	 Inside SimpleSAMLphp click on the Federation tab, and then click on
Show metadata. This will redirect you to the URL http://apache.kenning.
co.nz/simplesaml/module.php/saml/sp/metadata.php/default-
sp?output=xhtml which lists the metadata for our SimpleSAMLphp SP.
We're also provided all that metadata in a URL http://apache.kenning.
co.nz/simplesaml/module.php/saml/sp/metadata.php/default-sp so
we should copy this URL.

2.	 In the OpenAM console under Common Tasks, click on the Register
Remote Service Provider button. You will then see a screen as shown in
the following screenshot:

Implementing SAML2 Federation Patterns

[66]

3.	 Copy the metadata link into the URL where metadata is located, then click
on the Configure button. You will then see a screen as shown in the
following screenshot:

Our Circle of Trust will show both the OpenAM IdP and the SimpleSAMLphp SP as
shown in the preceding screenshot.

Testing our SAML Circle of Trust
The steps for testing SAML are as follows:

1.	 Head to http://apache.kenning.co.nz/simplesaml/module.php/core/
frontpage_welcome.php and click on the Authentication tab, and then the
Test configured authentication sources link.

2.	 On the Test authentication sources page, click on the default-sp link.
3.	 On the Select your identity provider page, select the OpenAM IdP we

configured and click on the Select button.

This will then show all the SAML identity attributes passed from OpenAM to
SimpleSAMLphp.

Chapter 6

[67]

Summary
In this chapter we talked about the terminology of SAML, created a SAML IdP
in OpenAM, created a SAML SP using SimpleSAMLphp, and configured them to
work together in an OpenAM Circle of Trust. In the next chapter we'll be covering
OAuth authentication.

OAuth Authentication
In the last chapter we covered SAML which is used to communicate identity
information between Identity Providers and Service Providers. In that instance we
used OpenAM as the Provider of the identity information. But that won’t always be
the case, we might want to allow authentication against Facebook or Google. This
chapter will explain how to:

•	 Use Facebook as OAuth provider
•	 Configure OAuth module
•	 Configure authenticating chaining
•	 Test OAuth Client

Understanding OAuth
OAuth has the concept of Providers and Clients. An OAuth Provider is like a
SAML Identity Provider, and is the place where the user enters their authentication
credentials. Typical OAuth Providers include Facebook and Google.

OAuth Clients are resources that want to protect resources, such as a SAML Service
Provider. If you have ever been to a site that has asked you to log in using your
Twitter or LinkedIn credentials then odds are that site was using OAuth.

The advantage of OAuth is that a user’s authentication credentials (username and
password, for instance) is never passed to the OAuth Client, just a range of tokens
that the Client requested from the Provider and which are authorized by the user.

OpenAM can act as both an OAuth Provider and an OAuth Client. This chapter
will focus on using OpenAM as an OAuth Client and using Facebook as an
OAuth Provider.

OAuth Authentication

[70]

Preparing Facebook as an OAuth
Provider
Head to https://developers.facebook.com/apps/ and create a Facebook App.
Once this is created, your Facebook App will have an App ID and an App Secret.
We’ll use these later on when configuring OpenAM.

Facebook won’t let a redirect to a URL (such as our OpenAM installation) without
being aware of the URL. The steps for preparing Facebook as an OAuth provider are
as follows:

1.	 Under the settings for the App in the section Website with Facebook Login
we need to add a Site URL. This is a special OpenAM OAuth Proxy URL,
which for me was http://openam.kenning.co.nz:8080/openam/oauth2c/
OAuthProxy.jsp as shown in the following screenshot:

2.	 Click on the Save Changes button on Facebook.

My OpenAM installation for this chapter was directly available on the
Internet just in case Facebook checked for a valid URL destination.

Configuring an OAuth authentication
module
OpenAM has the concept of authentication modules, which support different ways
of authentication, such as OAuth, or against its Data Store, or LDAP or a Web
Service. We need to create a new Module Instance for our Facebook OAuth Client.

1.	 Log in to OpenAM console. Click on the Access Control tab, and click on the
link to the realm / (Top Level Realm).

2.	 Click on the Authentication tab and scroll down to the Module Instances
section. Click on the New button.

Chapter 7

[71]

3.	 Enter a name for the New Module Instance and select OAuth 2.0 as the Type
and click on the OK button. I used the name Facebook. You will then see a
screen as shown:

4.	 For Client Id, use the App ID value provided from Facebook. For the Client
Secret use the App Secret value provided from Facebook as shown in the
preceding screenshot.

5.	 Since we’re using Facebook as our OAuth Provider, we can leave the
Authentication Endpoint URL, Access Token Endpoint URL, and User
Profile Service URL values as their default values.

OAuth Authentication

[72]

6.	 Scope defines the permissions we’re requesting from the OAuth Provider
on behalf of the user. These values will be provided by the OAuth Provider,
but we’ll use the default values of email and read_stream as shown in the
preceding screenshot.

7.	 Proxy URL is the URL we copied to Facebook as the Site URL. This needs to
be replaced with your OpenAM installation value.

8.	 The Account Mapper Configuration allows you to map values from your
OAuth Provider to values that OpenAM recognizes. For instance, Facebook
calls emails email while OpenAM references values from the directory it is
connected to, such as mail in the case of the embedded LDAP server. This
goes the same for the Attribute Mapper Configuration. We’ll leave all these
sections as their defaults as shown in the preceding screenshot.

Chapter 7

[73]

9.	 OpenAM allows attributes passed from the OAuth Provider to be saved to
the OpenAM session. We’ll make sure this option is Enabled as shown in the
preceding screenshot.

OAuth Authentication

[74]

10.	 When a user authenticates against an OAuth Provider, they are likely to not
already have an account with OpenAM. If they do not have a valid OpenAM
account then they will not be allowed access to resources protected by
OpenAM. We should make sure that the option to Create account if it does
not exist is Enabled as shown in the preceding screenshot.

Forcing authentication against particular authentication modules
In the writing of this book I disabled the Create account if it does not
exist option while I was testing. Then when I tried to log into OpenAM
I was redirected to Facebook, which then passed my credentials to
OpenAM. Since there was no valid OpenAM account that matched my
Facebook credentials I could not log in. For your own testing, it would
be recommended to use http://openam.kenning.co.nz:8080/
openam/UI/Login?module=Facebook rather than changing your
authentication chain.
Thankfully, you can force a login using a particular authentication
module by adjusting the login URL. By using http://openam.
kenning.co.nz:8080/openam/UI/Login?module=DataStore,
I was able to use the Data Store rather than OAuth authentication
module, and log in successfully.

11.	 For our newly created accounts we can choose to prompt the user to create
a password and enter an activation code. For our prototype we’ll leave this
option as Disabled.
The flip side to Single Sign On is Single Log Out. Your OAuth Provider
should provide a logout URL which we could possibly call to log out a user
when they log out of OpenAM. The options we have when a user logs out of
OpenAM is to either not log them out of the OAuth Provider, to log them out
of the OAuth Provider, or to ask the user.
If we had set earlier that we wanted to enforce password and activation
token policies, then we would need to enter details of an SMTP server, which
would be used to email the activation token to the user. For the purposes of
our prototype we’ll leave all these options blank.

12.	 Click on the Save button.

http://openam.kenning.co.nz:8080/openam/UI/Login?module=Facebook
http://openam.kenning.co.nz:8080/openam/UI/Login?module=Facebook

Chapter 7

[75]

Configuring Authentication Chaining
In the following screenshot we show all the authentication modules available for us
to use:

You’ll notice that we have a lot of authentication modules. We don’t have to use
just one authentication module, we can have multiple options. But then how do we
determine which ones we want to use, and how important are they to us?

We do this in the section Authentication Chaining, where we chain authentication
modules together. For our prototype we’re going to change the default
authentication chain, but in a production environment it would be recommended to
create a new authentication chain.

1.	 In the Authentication Chaining section click on the ldapService link as
shown in the following screenshot:

OAuth Authentication

[76]

2.	 Click on the Add button to add another Authentication Instance. Select the
OAuth authentication module we created earlier. Mine is named Facebook
as shown in the following screenshot:

Authentication instances can have different levels of importance:
i.	 Required means if valid credentials are not provided then

authentication will fail.
ii.	 Optional means if valid credentials are not provided, then

authentication is not marked as failed, but can be passed to
another authentication module.

iii.	 Requisite means if valid credentials are provided then
authentication will pass to the next authentication module.
If valid credentials are not presented then authentication will
fail without the option to try another authentication module.

iv.	 Sufficient means if valid credentials are provided, then
authentication has been successful, and no other modules
will be processed.

3.	 For our prototype we’ve switched both of the instances to SUFFICIENT,
as shown in the preceding screenshot, which means that either of these
authentication modules are enough by themselves to authenticate a user.

4.	 There are also options to redirect users to either a Successful Login URL or a
Failed Login URL. For our prototype we’ll leave them blank.

5.	 Click on the Save button and then the Back to Authentication button.

Testing our OAuth Client against
Facebook as an OAuth Provider
Now that we’ve configured everything, we should test our configuration as follows:

1.	 First step is to head to a Policy Agent protected URL, for me this was
http://tomcat.kenning.local:9080/docs/.

Chapter 7

[77]

2.	 We should be redirected from there to Facebook as per our Authentication
Chaining to use Facebook as the first authentication module. The URL I
was redirected to was https://www.facebook.com/login.php?api_
key=187529064617026&skip_api_login=1&display=page&cancel_
url=http%3A%2F%2Fopenam.kenning.co.nz%3A8080%2Fopena
m%2Foauth2c%2FOAuthProxy.jsp%3Ferror_reason%3Duser_
denied%26error%3Daccess_denied%26error_description%3DT
he%2Buser%2Bdenied%2Byour%2Brequest.&fbconnect=1&next=
https%3A%2F%2Fwww.facebook.com%2Fdialog%2Fpermissions.
request%3F_path%3Dpermissions.request%26app_
id%3D187529064617026%26client_id%3D187529064617026%26redirect_
uri%3Dhttp%253A%252F%252Fopenam.kenning.co.nz%
253A8080%252Fopenam%252Foauth2c%252FOAuthProxy.
jsp%26display%3Dpage%26response_type%3Dcode%26perms%3Demail%252
Cread_stream%26fbconnect%3D1%26from_login%3D1&rcount=1.

3.	 So what does all that mean? Let’s put it through a URL decoder and format it
nicely:

°° https://www.facebook.com/login.php

°° api_key=187529064617026

°° skip_api_login=1

°° display=page

°° cancel_url=http://openam.kenning.co.nz:8080/
openam/oauth2c/OAuthProxy.jsp?error_reason=user_
denied&error=access_denied&error_description=The+user+de
nied+your+request.&fbconnect=1

OAuth Authentication

[78]

°° next=https://www.facebook.com/dialog/permissions.
request?_path=permissions.request&app_
id=187529064617026&client_id=187529064617026&redirect_
uri=http%3A%2F%2Fopenam.kenning.co.nz%3A8080%2Fopenam%2F
oauth2c%2FOAuthProxy.jsp

°° display=page

°° response_type=code

°° perms=email%2Cread_stream

°° fbconnect=1

°° from_login=1

°° rcount=1

4.	 Some key values are listed as follows:
°° api_key is the value provided to us by Facebook from our App and

loaded into our OAuth authentication module.
°° cancel_url will return us to our Site URL with some error codes as

GET variables that we could parse and process.
°° next forwards us to a Facebook dialog permission page which

would request the Facebook App to have permission to access our
information if we hadn’t already agreed. This will then redirect us to
our Site URL.

°° perms lists the permissions we requested, email, and read_stream.

5.	 Finally after logging in we should be directed to our protected content.

Summary
In this chapter we learned about OAuth Providers and Clients, created a Facebook
App, configured the Facebook App to be an OAuth Provider, configured OpenAM
to be an OAuth Client, and used authentication chaining to allow us to access our
Policy Agent protected content using a Facebook login. In the next chapter we will
cover Two Factor Authentication.

Two Factor Authentication
In the last chapter we covered OAuth as a way of integrating our OpenAM
installation to an existing cloud based identity provider. This is a great way of
providing a good experience to users, especially on mobile devices. But sometimes
there is a requirement for a higher standard of authorization requiring the use of two
factor authentication. This chapter will describe setting up two factor authentication
in OpenAM.

Understanding two factor authentication
Two factor authentication refers to the use of a secondary identity credential
used for authentication. Typically this is a unique token generated by hardware or
software.

Two factor authentication is used when there is a requirement for greater than
normal authentication confidence. A typical example is Internet banking. Perhaps
viewing your account balance requires just a normal username and password, but
paying someone online requires two factor authentication.

Understanding OATH and how it relates
to OpenAM
OATH is the method used to do two factor authentication in OpenAM. Because it
is a common standard, there are many OATH token generators available, including
clients for iPhone and Android.

OATH can either use a static token that increments each time it is used (known as
HOTP), or a token that changes after a predetermined amount of time (known as
TOTP). A popular example of a TOTP token generator is the Google Authenticator.

Two Factor Authentication

[80]

Configuring OpenAM for two factor
authentication
We’ll need to configure OpenAM to access two new attributes from our LDAP
directory, populate the directory with values for those attributes, and then configure
the OATH authentication module, as well as changing our authentication chain.

Configuring OpenAM to use additional LDAP
attributes

1.	 Log in to OpenAM Console. Click on the Access Control tab on the top and
then click on the link to / (Top Level Realm).

2.	 Click on the Data Stores tab and then click on the embedded link to access
the embedded OpenDJ LDAP server:

3.	 Scroll down to the LDAP User Attributes section. We need locations to store
two values, a shared secret, and a shared counter value.
Because these values must be stored inside an LDAP directory, we need to
conform to the schema that is applied to the LDAP directory. Therefore we
must use attributes that already exist in the schema, unless we modify the
schema ourselves.

4.	 For our prototype we’ll use two existing attributes called carLicense for our
shared secret and roomNumber for our shared counter.

5.	 Enter the attribute name into the New Value box and click on the Add
button. Repeat for the other attribute.

6.	 Scroll to the top of the page and click on the Save button.

Chapter 8

[81]

Installing an OATH HOTP token generator
Install an OATH token generator by searching your phone’s application store:

1.	 Since I use Android, I searched for OATH and found the Android Token
application as shown in the following screenshot, and installed it:

2.	 Enter a token name, which should be the name of the user account. I used the
value demo as shown in the preceding screenshot. For the value Serial No or
Counter, I used the value 2 but feel free to use any other value. Set the OTP
Length option to 6. Click on the Next button and you will be presented by
the following screenshot:

Two Factor Authentication

[82]

3.	 Next, we need to generate a shared secret. Copy that value, as well as the
value of the counter in the previous step. Click on the Complete button.

Populating our LDAP attributes with values
Now that OpenAM is aware of additional attributes in our LDAP directory, we need
to populate those attributes.

1.	 Download an LDAP Browser. I used the open source LDAP Admin
available for free download from http://sourceforge.net/projects/
ldapadmin/?source=dlp.

Chapter 8

[83]

2.	 In your LDAP Browser, set the hostname to the name of your OpenAM
instance. I used localhost as shown in the preceding screenshot. Set the
port to 50389, which is a specific port for the embedded instance of OpenDJ
that comes with OpenAM. If you’re using a standalone LDAP server you’ll
likely use port 389. For the username use the value cn=Directory Manager.
For the password use the password for the amAdmin account. My password
as adminpass. You should be able to connect to the LDAP server as long as
your OpenAM server is running.

3.	 Locate the user you want to log in with. For me it was the demo user.
Add two values, carLicense which will be storing our shared secret, and
roomNumber which will be storing our shared counter as shown in the
preceding screenshot.

4.	 Populate those values with the values we gained from our token generator
application.

Configuring the OATH authentication module
1.	 In OpenAM from the main page, click on the Access Control tab, then click

on the link to / (Top Level Realm). Click on the Authentication tab and scroll
down to Module Instances.

Two Factor Authentication

[84]

2.	 Click on the link to the OATH module.

3.	 One of the values that needs changing is the Secret Key Attribute Name
which is what we configured at the start of the chapter. Enter the value
carLicense as shown in the preceding screenshot.

4.	 The other value that needs changing is Counter Attribute Name. Set this
to roomNumber. Click on the Save button, then the Back to Authentication
button.

5.	 Next, scroll to the Authentication Chaining section and click on the
ldapService chain.

Chapter 8

[85]

Do note that it is recommended to create a new authentication chain in production
environments.

6.	 Add the two authentication modules as shown in the preceding screenshot,
with DataStore at the top as a requisite module, and OATH as a required
module, specifically in this order. Click on the Save button, then the Back to
Authentication button.

Testing two factor authentication
Now we will test our two factor authentication by logging in.

1.	 Head to the OpenAM login page.
2.	 Enter your demo username and password. Click on the Log In button.

Two Factor Authentication

[86]

The OATH page should appear as shown in the preceding screenshot.

3.	 Enter the one time password value as presented in your token application as
shown in the preceding screenshot.

If everything has gone well, we should see information about our demo user
as shown in the preceding screenshot.

Chapter 8

[87]

Summary
In this chapter we learned about two factor authentication, specifically the OATH
protocol used by OpenAM. We then configured OpenAM to use OATH to access one
time passwords. We installed an OATH token generator on an Android phone, and
then configured OpenAM to use the shared secret and counter from that application.
In the next and final chapter we will cover Adaptive Risk authentication.

Adaptive Risk Authentication
In the last chapter we covered two factor authentication as a way of providing a
higher level of authentication to our users. However, we shouldn’t always burden
users with additional authentication if it isn’t needed. OpenAM can determine
the risk of particular access requests and then provide higher or lower levels of
authentication using Adaptive Risk authentication.

Understanding Adaptive Risk
authentication
Adaptive Risk authentication allows OpenAM to determine the risk of a particular
authentication, and decide whether additional authentication steps are required due
to the risk.

A popular example is banking. If a user has logged in for the first time using a
valid username and password then that’s fine. But what if it’s the first time from a
particular IP address? That introduces a higher level of risk that can be mitigated
by requesting two factor authentication. However, once that IP address has been
validated with two factor authentication, it should become a trusted IP. This would
mean we wouldn’t request two factor authentication the next time the user logs in
from that IP address.

Understanding how Adaptive Risk
authentication works
The Adaptive Risk module has a risk threshold that is set manually, and by default
is set to 1. There are a variety of different authentication risks which are each
given a score. If the value of the score meets or exceeds the risk threshold, then the
authentication fails.

Adaptive Risk Authentication

[90]

If the Adaptive Risk module was set up to be a sufficient authentication module,
and if the risk does not reach the risk threshold, then it will be a valid authentication
and will allow the user, access to the resource. If the risk meets or exceeds the risk
threshold, then the authentication fails and moves on to the next authentication
method, typically two factor authentication.

Adding the Adaptive Risk module
1.	 Log in to the OpenAM console.
2.	 On the Access Control tab, click on the link / (Top Level Realm).
3.	 On the Authentication tab, scroll down to Module Instances and click on the

New button and you will see a screen as follows:

Chapter 9

[91]

Enter a name for your Adaptive Risk module. I called mine AdaptiveRisk.
Select Adaptive Risk as the module type and click on the OK button.

Configuring the Adaptive Risk module
1.	 Click on the link to the Adaptive Risk module you created.

°° Risk Threshold is the value required to be met or exceeded for
authentication to fail. By default this is set to 1 which means only one
of the checks ahead has to fail before the user needs to use another
type of authentication.

Adaptive Risk Authentication

[92]

°° Failed Authentications examines if the account has failed
authentication in the past. This will only work if Account Lockouts
are enabled. Invert Result means apply the opposite for the rule,
which would mean trigger this check if the user had not had a failed
authentication.

°° IP Address Range checks to see if the request came from a certain IP
address range. If it does, then add the score of 1 to the check, which
by default will trigger the threshold. The Invert Result option here is
useful because we can say, unless results are coming from this known
good IP range, then force users to do two factor authentication.

Chapter 9

[93]

2.	 Configure these values to be your IP address range and select the Invert
Result tick box. This will mean that if your IP address is in the above range
then the risk score should increase by one, and therefore cause authentication
to fail.

°° IP Address History looks at the IP Address history of previous
logins. This would be useful in using the Inverted Result option,
which would mean if we hadn’t seen this address before, add
a score of 1 to the check. Once the user has done the two factor
authentication for that IP once, then no longer burden the user for
two factor authentication.

°° Known Cookie would be examining a cookie on the user’s machine.
This could be a value set by another web application on the same
domain.

Adaptive Risk Authentication

[94]

°° Device Cookie is a check to see if a user is from a known and trusted
device, which is determined by use of a per-device cookie.

°° Time Since Last Login would be a method of reducing the risk
temporarily based on when the user last logged in. Do note that this
check is done on a per day basis.

°° Profile Attribute looks at the risks associated with a user’s particular
profile. An example of this being used would be for an administrator
account. Because an administrator account can do more, it is of
higher risk, so administrators should always be forced to use two
factor authentication.

Chapter 9

[95]

°° Geo Location uses a geolocation database that is provided by
Maxmind at http://www.maxmind.com/app/country. Do note that
looking at locations based on IP is easily gotten around through
the use of VPNs and other technologies so shouldn’t be relied on
in isolation. This is where chaining multiple checks together with
different scores would provide you with a more sophisticated risk
profile.

°° The final check available is Request Header. This looks to see if an
HTTP header contains a known value.

3.	 Once these settings have been configured, click on the Save button.

Adaptive Risk Authentication

[96]

Adding adaptive risk to the
authentication chain
Now we will add our Adaptive Risk module to the default Authentication Chain.

On the Authentication tab, scroll down to Authentication Chaining and click on the
link to your Authentication Chain. Mine is called ldapService.

Do note that it is recommended to create a new authentication
chain in production environments.

In the preceding screenshot the first authentication method is the DataStore which will
ask the user for a username and password. This is a required authentication method,
which means the user must enter this correctly to move on to the next section.

The Adaptive Risk module is set as sufficient. This means that if the risk in the
module is less than the risk score, then the authentication is successful and the
user is granted access to the resources. If the risk is higher than the risk score, then
authentication fails and the next authentication module is invoked, in this case
OATH or two factor authentication.

With all this configured, a user accessing a protected resource should be asked to
enter a username and password. If their IP address was in the list we specified,
then authentication should fail, and the user is prompted as part of the OATH
authentication module to enter their one time password.

Chapter 9

[97]

Potential authentication patterns
The great thing about authentication chaining is that you can create very specific
profiles to suit very specific authentication requests.

One example could be an Intranet. The Intranet could use Windows authentication in
the first instance, then an Adaptive Risk module triggered to fail if requests are from
outside a certain IP address range, which would then invoke LDAP authentication as
well as two factor authentication.

Also note it is possible to have multiple Adaptive Risk modules in the same
Authentication Chain. This would allow for the layered creation of authentication
which becomes more burdensome as the risk increases.

However, it is important to note that authentication is a burden for users, and
especially in the mobile world, we should strive towards the least possible
authentication for the least possible risk, and only request additional authentication
where necessary to reduce risk to an acceptable level.

Summary
In this chapter we learned about the Adaptive Risk module, which allows us to craft
authentication that changes depending on the risk profile of the access request. We
looked at the different types of filters available, and configured the IP address one
as an example. Finally we looked at some potential patterns, and raised a caution
around introducing too much authentication burden to your users.

We’re now at the end of our book Open Source Identity Management Principles and
Patterns using OpenAM 10.x. We learned to install OpenAM, configure it, created
multiple instances of Tomcat, Apache, and authenticated against different data
sources including Facebook.

OpenAM is professional enterprise quality software. The skills you’ve learned
by touching and experiencing this software are using in enterprises as Identity
Management becomes increasingly more important, especially with the trends of
enterprise single sign on, and the growth of multiple devices.

Congratulations for learning, well done, and just remember that this is a taster on the
Identity Management. I look forward to reading your blogs, books, and vlogs on the
Identity Management one day.

Index
A
Access Control tab 80, 83, 90
Adaptive Risk authentication

about 89
working 89, 90

Adaptive Risk module
adding 90, 91
adding, to authentication chain 96
configuring 91-95

Add button 80
Apache 2.4 local domain website

Apache Policy Agent profile, creating in
OpenAM 28

securing 28
securing, OpenAM Policy Agent used 30

api_key value 78
authentication chain

Adaptive Risk module, adding to 96
Authentication Chaining

configuring 75, 76
levels, optional 76
levels, required 76
levels, requisite 76
levels, sufficient 76

Authentication Chaining section 75
authentication patterns 97
Authentication tab 96

B
Back to Authentication button 85

C
cancel_url value 78
CDSSO 27
CDSSO Domain List section 36
Circle of Trust 58
Complete button 82
Configuration Complete dialog 24
Configuration Directory 21
Configure button 50, 66
Cookie Domain 20
Create Hosted Identity Provider button 49
Cross Domain Single Sign On

Tomcat Agent Profile, sharing 35
Cross-Domain Single Sign On. See CDSSO
Cross Domain SSO option 36

D
Demilitarized Zone (DMZ) 38
device cookie 94
distributed authentication

about 37
defense-in-depth architectures 38
OpenAM, preparing 38-40
policy agents communication, with

OpenAM 37
testing 44-46

distributed authentication application
configuring 41-44
screenshot 42

[100]

distributed authentication
application server

configuring 41
downloading

OpenAM 10.x 15

F
Facebook

preparing, as OAuth Provider 70
failed authentication 92
Federation tab 63
Fedlet application server

configuring 48
Fedlets

about 47, 55
creating 50-52
comparing, with Policy Agents 47, 48

Fedlet setup
validating 53, 55

Fedlet.zip
deploying, onto Java application server 52

G
geo location 95
Google Authenticator 79

H
High Availability 24
HOTP 79
hot swappable values 33

I
identity data stores 13
identity levels, examples

federated identities 10
pseudonymous identities 9
trusted identities 10
trusted identities, with multiple contexts 10

Identity Management
about 7
claims, relating to 8
components 12
defining 7
identity contexts 8
identity levels, examples 9

importance 9
working 10, 11

Identity Management, components
identity data stores 13
identity managers 13
identity policy agents 12
identity providers 12
identity service providers 12

identity managers 13
identity policy agents 12
identity providers 12, 57
installation

OpenAM 10.1.0 19-24
Inverted Result option 93
Invert Result option 92
IP address history 93
IP address range 92

J
Java Key Store (JKS) 59
Java Runtime Environment (JRE) 17
Java Software Development Kit (JDK) 17

K
known cookie 93

L
LDAP Admin

URL 82
LDAP attributes

OpenAM, configuring to use 80
populating, with values 82, 83

ldapService 96
Lightweight Directory Access Protocol

(LDAP) 13
Log In button 85

M
Maxmind

URL 95

N
New button 90
Next button 81

[101]

next value 78

O
OATH 79
OATH authentication module

configuring 83, 84
OATH HOTP token generator

installing 81, 82
OAuth

about 69
clients 69
providers 69

OAuth authentication module
configuring 70-74

OAuth Client
 testing, as OAuth Provider 76-78

OAuth Provider
Facebook, preparing as 70

OK button 91
One Time Password (OTP) 11
OpenAM

Apache Policy Agent profile,
creating 28, 29

configuring, as SAML Identity
Provider 58-60

configuring, for SimpleSAMLphp
SP trust 65, 66

configuring, for two factor
authentication 80

configuring, to use additional
LDAP attributes 80

LDAP attributes, populating
with values 82, 83

OATH authentication module,
configuring 83, 84

OATH HOTP token generator,
installing 81, 82

preparing, for distributed authentication 38
prerequisites 16
used, for policy agent communication 37

OpenAM, prerequisites
fully qualified domain name,

creating 16, 17
JRE, installing 17
Tomcat application server, downloading 18
Tomcat for OpenAM, configuring 18, 19

OpenAM 10.1.0
installing 19-24

[102]

Service Providers 58
SimpleSAMLphp

configuring, as Service Provider 62, 64
installing 61, 62

Single Sign On (SSO) 9

T
Time Since Last Login 94
Tomcat

configuring 31-33
securing, with OpenAM Policy

Agent 33, 34
Tomcat 6 remote domain website

securing 31
Tomcat, configuring 31
Tomcat Policy Agent profile, creating 31

Tomcat Agent Profile
configuring, for Cross Domain

Single Sign O 35
Tomcat Policy Agent profile

creating 31, 32
Top Level Realm link 31
TOTP 79
two factor authentication

about 79
OpenAM, configuring for 80
testing 85, 86

W
WAR

differentiating, with ZIP file 16

OpenAM 10.x
downloading 15

OpenAM Enterprise Download
Stack page 15

OpenAM Policy Agent
used, for Apache securing 30, 31

OTP Length option 81
out of memory errors 19

P
perms value 78
Platform Locale 21
Portecle 59
prerequisites, OpenAM

fully qualified domain name,
creating 16, 17

JRE, installing 17
Tomcat application server, downloading 18
Tomcat for OpenAM, configuring 18, 19

profile attribute 94

R
risk threshold 91

S
SAML

about 57
Circle of Trust 58
Identity Providers 57
Identity Providers (IdP) 57
Service Providers 58
Service Providers (SP) 57

SAML Circle of Trust
testing 66

SAML hosted identity provider
creating 49, 50

SAML Identity Provider
OpenAM, configuring as 58-60

Save button 80, 85, 95
Security Assertion Markup Language. See

SAML
Server URL 20
Service Provider

about 12
SimpleSAMLphp, configuring as 63, 64

Thank you for buying
Open Source Identity Management

Patterns and Practices Using
OpenAM 10.x

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenAM
ISBN: 978-1-849510-22-6 Paperback: 292 pages

Written and tested with OpenAM Snapshot 9—the
Single Sign-On (SSO) tool for securing your web
applications in a fast and easy way

1.	 The first and the only book that focuses on
implementing Single Sign-On using OpenAM

2.	 Learn how to use OpenAM quickly and
efficiently to protect your web applications
with the help of this easy-to-grasp guide

3.	 Written by Indira Thangasamy, core team
member of the OpenSSO project from which
OpenAM is derived

Oracle Identity and Access
Manager 11g for Administrators
ISBN: 978-1-849682-68-8 Paperback: 336 pages

Administer Oracle Identity and Access Management,
installation, cofiguration and day-to-day tasks

1.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real time examples

2.	 Understand how to Integrate OIM/OAM with
E-Business Suite, Webcenter, Oracle Internet
Directory and Active Directory

3.	 Learn various techniques for implementing
and managing OIM/OAM with
illustrative screenshots

Please check www.PacktPub.com for information on our titles

Microsoft Windows Identity
Foundation Cookbook
ISBN: 978-1-849686-20-4 Paperback: 294 pages

Over 30 recipes to master claims-based identity and
access control in .NET applications, using Windows
Identity Foundation, Active Directory Federation
Services, and Azure Access Control Services.

1.	 Gain a firm understanding of Microsoft’s
Identity and Access Control paradigm with
real world scenarios and hands-on solutions.

2.	 Apply your existing .NET skills to build
claims-enabled applications.

3.	 Includes step-by-step recipes on
easy-to-implement examples and
practical advice on real world scenarios

Oracle Fusion Middleware
Patterns
ISBN: 978-1-847198-32-7 Paperback: 224 pages

10 unique architecture patterns enabled by Oracle
Fusion Middleware

1.	 First-hand technical solutions utilizing
the complete and integrated Oracle
Fusion Middleware Suite in hardcopy
and ebook formats

2.	 From-the-trenches experience of leading
IT Professionals

3.	 Learn about application integration and how
to combine the integrated tools of the Oracle
Fusion Middleware Suite - and do away with
thousands of lines of code

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Identity Management Patterns and Principles
	Defining Identity Management
	How claims relate to identity
	Understanding identity contexts

	Why Identity Management is important?
	Examples of identity levels
	Pseudonymous identities
	Trusted identities
	Trusted identities with multiple contexts
	Federated identities

	How Identity Management works
	Key components of Identity Management
	Identity Service Providers
	Identity policy agents
	Identity providers
	Identity data stores
	Identity managers

	Summary

	Chapter 2: Installing OpenAM 10.x
	 Downloading OpenAM 10.x
	Prerequisites for OpenAM
	Creating a fully qualified domain name
	Installing the Java Runtime Environment
	Downloading the Tomcat application server
	Configuring Tomcat for OpenAM

	Installing OpenAM 10.1.0
	Summary

	Chapter 3: Cross-Domain
Single Sign On
	An introduction to Cross-Domain
Single Sign On
	Securing an Apache 2.4 local
domain website
	Creating an Apache Policy Agent profile
in OpenAM
	Securing Apache with the OpenAM
Policy Agent

	Securing a Tomcat 6 remote
domain website
	Configuring Tomcat and creating a Tomcat Policy Agent profile
	Securing Tomcat with the OpenAM
Policy Agent
	Configuring a Tomcat Agent Profile for Cross Domain Single Sign On

	Summary

	Chapter 4: Distributed Authentication
	Understanding distributed authentication
	How policy agents communicate with OpenAM
	Understanding defense-in-depth architectures

	Preparing OpenAM for distributed authentication
	Configuring the distributed authentication application server
	Configuring the distributed authentication application
	Testing distributed authentication
	Summary

	Chapter 5: Application Authentication with Fedlets
	Understanding Fedlets
	Advantages of Fedlets over Policy Agents
	Disadvantages of Fedlets over policy agents

	Configuring the Fedlet application server
	Creating a SAML hosted identity provider
	Creating a Fedlet
	Deploying Fedlet.zip onto our Java application server
	Validating Fedlet setup
	More information about Fedlets
	Summary

	Chapter 6: Implementing SAML2 Federation Patterns
	Understanding SAML
	Understanding Identity Providers
	Understanding Service Providers
	Understanding a Circle of Trust

	Configuring OpenAM as a SAML Identity Provider
	Installing SimpleSAMLphp
	Configuring SimpleSAMLphp as a Service Provider
	Configuring OpenAM to trust a SimpleSAMLphp SP
	Testing our SAML Circle of Trust
	Summary

	Chapter 7: OAuth Authentication
	Understanding OAuth
	Preparing Facebook as an OAuth Provider
	Configuring an OAuth Authentication Module
	Configuring the Authentication Chaining
	Testing our OAuth Client against Facebook as an OAuth Provider
	Summary

	Chapter 8: Two Factor Authentication
	Understanding two factor authentication
	Understanding OATH and how it relates to OpenAM
	Configuring OpenAM for two factor authentication
	Configuring OpenAM to use additional LDAP attributes
	Installing an OATH HOTP token generator
	Populating our LDAP attributes with values
	Configuring the OATH authentication module

	Testing two factor authentication
	Summary

	Chapter 9: Adaptive Risk Authentication
	Understanding adaptive risk authentication
	Understanding how adaptive risk authentication works
	Adding the Adaptive Risk module
	Configuring the Adaptive Risk module
	Adding adaptive risk to the authentication chain
	Potential authentication patterns
	Summary

	Index

