i,
Quick answers to common problems

Google Maps JavaScript
APl Cookbook

Over 50 recipes to help you create web maps and GIS web
applications using the Google Maps JavaScript API

Alper Dincer

Balkan Uraz PUBLISHING

http://www.allitebooks.org

Google Maps
JavaScript API
Cookbook

Over 50 recipes to help you create web maps and GIS
web applications using the Google Maps JavaScript API

Alper Dincer

Balkan Uraz

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Google Maps JavaScript APl Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013
Production Reference: 1191213

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-882-5
www . packtpub.com

Cover Image by Aniket Sawant (aniket sawant photography@hotmail . com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Alper Dincer

Balkan Uraz

Reviewers
Bramus Van Damme

Shreerang Patwardhan
Rodolfo Pereira

Rick Viscomi

Acquisition Editors
Edward Gordon

Ashwin Nair

Sam Wood

Lead Technical Editor
Balaji Naidu

Technical Editors
Tanvi Bhatt

Akashdeep Kundu
Edwin Moses

Siddhi Rane

Copy Editors
Sarang Chari

Mradula Hegde
Gladson Monteiro
Karuna Narayanan
Kirti Pai
Shambbhavi Pai

Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Alper Dincer is a civil engineer with an MS degree in Geographical Sciences. He has more
than 10 years of experience in developing web and mobile GIS/LBS projects.

Since the beginning of his career, he was always passionate about maps and geo stuff. He
started working as a research assistant at a university and then moved to a governmental
agency to work with maps. He is also the co-founder of a tech company named Mekansal.

He also has some achievements relating to geo web projects. In 2009, he got the first place
in the ESRI Developer Summit Mashup Challenge with his open source project ExtMap.
ExtMap was based on the Google Maps JavaScript API v2. He is one of the Google Qualified
Developers of the Google Maps JavaScript API program. In 2010, he also worked as a proctor
in the same program as a volunteer.

As a developer and entrepreneur, he still likes coding with JavaScript, PHP, and Objective-C on
different web and mobile projects. He completely agrees with Steve Jobs' quotes "Love what
you do" and "Stay hungry, stay foolish".

First, | would like to dedicate this book to my wife, Begum—the light of

my life—for understanding my passion for coding and the digital world. |
would like to thank God for having her in my life. Words cannot express my
gratitude and love to her.

Second, | wish to acknowledge my loving family, who are always there for
me.

[vww allitebooks.cond

http://www.allitebooks.org

Balkan Uraz is a city planner with an MS degree in Geographical Sciences. He has over
15 years of experience in the field of Geographic Information Systems (GIS).

Throughout his career, he has worked on several projects with one thing in common:

GIS. In the early days of his career, he worked on projects involving municipal GIS and city
information systems. He has also worked as a research assistant while he was conducting
the tedious work on his thesis on routing systems.

He has worked on major LBS projects for mobile operators in Turkey that involve both
software development and building the data inventory. He co-founded a tech company
that specialized in navigation data collection and navigation products. He has also
been a GIS consultant for major companies operating in the areas of field tracking
and real estate.

In all his projects, he has worked around the same passion: building up the
spatial infrastructure.

I would like to thank Esra for her love, support, and encouragement while
writing this book. | would also like to thank my fellow colleagues for their
enthusiasm and encouragement that lead to writing this book.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Bramus Van Damme is a web enthusiast from Belgium interested in "all Web things"
ever since he discovered the Internet back in 1997.

Professionally, after having worked as a web developer for several years at several web
agencies, he is now a lecturer of web technologjes at a technical university. Next to teaching
students basic HTML, CSS, and JavaScript, he also teaches them to write proper SQL
statements. In his job, he's also responsible for authoring and maintaining the server-side
web scripting (PHP) and web and mobile courses.

In his spare time, he likes to goof around with web-related technologies and keep his
blog bram.us up-to-date. He can be found attending and speaking at web meetups and
conferences. Seeing a nice piece of optimized and secure code can put a smile on his face.

He lives in Vinkt, Belgium, with his girlfriend Eveline, his son Finn, and his daughter Tila.
He prefers cats over dogs.

Shreerang Patwardhan completed his bachelor's degree in Computer Engineering

and has since been working on various technologies for the last three years. He started off
working for a small start-up in Pune, India, on an innovative solar-powered Linux-based hand-
held device. He has also worked extensively on the Google Maps API v3 and worked in the GIS
domain for more than a year.

He is currently employed with an MNC in Pune, India, as a Sr. Web Developer and works
on the frontend development of various web applications. When not working on a project,
he blogs about either Google Maps API v3 or the jQuery Mobile framework on his blog
"Spatial Unlimited".

When not working or blogging, he loves spending time with his family and friends. If not
on the Web, he can be found playing badminton on the weekends. He has been playing
badminton for the last 20 years and also takes a keen interest in Ufology.

You can reach him on his blog, LinkedlIn, or follow him on Twitter (eshreerangp).

[vww allitebooks.cond

http://www.allitebooks.org

Rodolfo Pereira is a web programmer specialized in backend programming. He believes
that programming is one of the best things in life, and so makes it one of his main hobbies.
After all, having fun while working is not a bad idea, don't you think?

Rick Viscomi is a frontend engineer with a background in web performance. He studied
Computer Science at the Binghamton University, where he created and sold a popular course
scheduling web application called BingBuilder. He is also an open source developer and has
open sourced two projects: trunk8, an intelligent text truncation plugin to jQuery, and Red
Dwarf, a Google Maps heatmap tool for visualizing the GitHub project popularity. Since 2013,
he has been a web developer at Google, where he works on improving the speed of YouTube
pages and strengthening the frontend infrastructure.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

a PACKT

http://PacktLib.PacktPub.com

(C]

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Google Maps JavaScript API Basics 5
Introduction 5
Creating a simple map in a custom DIV element 6
Creating a simple fullscreen map 11
Moving from the Web to mobile devices 13
Changing map properties programmatically 16
Changing base maps 21
Chapter 2: Adding Raster Layers 25
Introduction 25
Styling of Google base maps 26
Using different tile sources as base maps 33
Adding tile overlays to maps 40
Adding image overlays to maps 44
Changing the transparency of overlays 48
Creating a heat map 50
Adding the traffic layer 56
Adding the transit layer 58
Adding the bicycling layer 60
Adding the weather and cloud layers 62
Adding the Panoramio layer 65
Chapter 3: Adding Vector Layers 69
Introduction 69
Adding markers to maps 70
Adding popups to markers or maps 74
Adding lines to maps 77

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Adding polygons to maps

Adding circles/rectangles to maps

Adding animated lines to maps

Adding KML/GeoRSS layers

Adding GeoJSON to the Google Maps JavaScript API
Adding WKT to the Google Maps JavaScript API

Chapter 4: Working with Controls

80
83
88
94
98
104

111

Introduction

Adding and removing controls

Changing the position of controls

Creating and adding a geolocation control
Creating a table of contents control for layers
Adding your own logo as a control

Chapter 5: Understanding Google Maps JavaScript API Events

Introduction

Creating two synced maps side by side
Getting the coordinates of a mouse click
Creating a context menu on a map
Restricting the map extent

Creating a control that shows coordinates
Creating your own events

Chapter 6: Google Maps JavaScript Libraries

111
112
117
120
124
132

135

135
136
141
144
151
155
158

163

Introduction
Drawing shapes on the map

Calculating the length/area of polylines and polygons

Encoding coordinates

Searching for and showing nearby places
Finding places with the autocomplete option
Adding drag zoom to the map

Creating custom popups/infoboxes

Chapter 7: Working with Services

163
164
175
181
185
194
200
203

211

Introduction

Finding coordinates for an address

Finding addresses on a map with a click

Getting elevations on a map with a click

Creating a distance matrix for the given locations
Getting directions for the given locations

Adding Street View to your maps

211
212
219
224
229
238
247

Table of Contents

Chapter 8: Mastering the Google Maps JavaScript API

through Advanced Recipes 253
Introduction 253
Adding WMS layers to maps 254
Adding Fusion Tables layers to maps 261
Adding CartoDB layers to maps 267
Accessing ArcGIS Server with the Google Maps JavaScript API 276
Accessing GeoServer with the Google Maps JavaScript API 286

Index 295

Preface

Currently, there are both open source and proprietary alternatives to the Google Maps
JavaScript API, but what makes the API special for developers is that it is a complete solution
with base maps, overlays, and technical capabilities.

The API has been especially exciting for developers because it is very easy to build up generic
outcomes, and at the same time, it has its own tips and tricks and advanced functionalities
within the same box. Therefore, you can swim afloat or dive deep when you are working with
the API.

The Google Maps JavaScript APl v3 enabled the quick and easy development of mobile
scenarios, facilitating location-based solution developers to delve into the subject. Regarding
the growth of mobile development, especially location-based applications, the Google Maps
JavaScript API v3 has deserved rightful attention.

Last but not least, no mapping APl has ever been as successful as the Google Maps API
without the support of continuously updated and thoroughly handled vector and satellite data.
Google has dedicated immense resources to maintaining the unified structure of the vector
data and its cartographic quality, and this effort is paying off in terms of its APl usage.

What this book covers

Chapter 1, Google Maps JavaScript APl Basics, instructs you on how to create a simple Google
Maps application centered around a main recipe. The map object and its primary options,
including map types, will be introduced by adding details to the recipe.

Chapter 2, Adding Raster Layers, presents the addition of external raster data through a
series of recipes alongside Google layers such as the Tile, Traffic, Transit, and Weather layers.

Chapter 3, Adding Vector Layers, introduces you to drawing vector features together with the
display of external vector sources such as KML and GeoRSS.

Chapter 4, Working with Controls, explains controls in detail. Creating and customizing a
custom user interface for both the Web and mobile will be introduced in this chapter.

Preface

Chapter 5, Understanding Google Maps JavaScript APl Events, describes events in detail to
react to map, layer, or marker's behaviors such as zoom end, layer changed, or marker added.
Events will add more interactivity to mapping programming.

Chapter 6, Google Maps JavaScript Libraries, explains the libraries that will extend the
capabilities of the Google Maps JavaScript API in detail. These libraries have different abilities
to increase the power of the Google Maps JavaScript API.

Chapter 7, Working with Services, elaborates on services that will extend the Google Maps
JavaScript API. These services, including Geocoding and Street View, expose the real power
of mapping with the Google Maps JavaScript API.

Chapter 8, Mastering the Google Maps JavaScript API through Advanced Recipes, explains
the integration of external GIS servers and services with the Google Maps JavaScript API.
These includes ArcGIS Server, GeoServer, CartoDB, and Google Fusion Tables with OGC
services such as WMS.

What you need for this book

The Google Maps JavaScript API works with HTML, CSS, and JavaScript code. So, a text editor
with HTML, JavaScript, and CSS handling capabilities will be a good friend while exploring
this book.

For Mac users, there are lots of commercial or free text editors, such as TextWrangler, BBEdit,
Sublime Text, or WebStorm. They all handle HTML, JavaScript, and CSS beautifully.

For Windows users, there are different text editors as well, but Notepad++ is the most used
and recommended one.

Choosing an editor depends on your computer's habits, so there is no exact solution or
recommendation for users to select one editor. Everyone has a different perception that
affects these choices.

There is also need for an HTTP server to implement these recipes. There are a bunch of HTTP
servers including Apache, IIS, and so on. But the installation process of standalone servers
can be a problem for most users. We encourage you to use solutions that bundle HTTP Server,
Database Server, and a scripting language together. XAMPP and MAMP are these kinds of
solutions for the Windows and Mac OS X platforms respectively.

For better user experience, we have created a main application that allows the desired
recipe to run and show its source code. Suppose you have installed and configured a local
web server like XAMPP or MAMP, and the bundle code is copied within the HTTP server root
content folder in the googlemaps - cookbook folder, the user can run the main application
by accessing the http://localhost/googlemaps-cookbook/index.html URL in
the browser.

—21

Preface

Who this book is for

This book is great for developers who are interested in adding a simple contact map embedded
in their websites as well as for those who wish to develop real-world complex GIS applications.

It is also for those who want to create map-based info graphics, such as heat maps, from their
geo-related data. It's assumed that you will have some experience in HTML, CSS, and JavaScript
already, and also experience in simple concepts related to GIS and prior knowledge of some GIS
Servers or services.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<!DOCTYPE htmls>
<html>
<head>
<!-- Include Google Maps JS API -->
<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
key=INSERT YOUR MAP API KEY HERE&sensor=false">
</script

New terms and important words are shown in bold.

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

—a1

Google Maps
JavaScript APl Basics

In this chapter, we will cover:

» Creating a simple map in a custom DIV element
» Creating a simple fullscreen map

» Moving from the Web to mobile devices

» Changing map properties programmatically

» Changing base maps

Introduction

Location is becoming a very popular topic day by day, and Google is one of the main game
changers in this area. Most websites have a contact page with Google Maps showing the
location of the business. This is the simplest usage of the Google Maps JavaScript API.

There are also other advanced usages of it to show different information on maps. This whole
book contains multiple usage recipes on the Google Maps JavaScript API, from beginner to
advanced topics. There are different parts that make up the Google Maps JavaScript API
such as the raster/vector layers, controls, events, and services, which are all covered in the
following chapters.

There are both open source and commercial alternatives to the Google Maps JavaScript API,
such as OpenlLayers, Leaflet, Bing Maps, MapQuest, and Here Maps (formerly, Nokia Maps),
but the Google Maps JavaScript API has great support in base maps, satellite images, and
the API itself. For example, the APl can be used to show only one location or all the data of
a government agency on a map.

Google Maps JavaScript API Basics

The Google Maps JavaScript API is not a free tool to show maps, but its free usage limit is
enough for most developers. There is a limit of 25,000 map loads per day per site, which
is counted when a map is initialized on a web page.

Creating a simple map in a custom DIV

element

When you work with mapping applications, creating a map is the most important task you can
do. The map is the main part of the application with which the users interact and where all the
visualization occurs. This part may seem trivial, but all of the following chapters rely on this
part of the application.

This recipe will guide you through the process of creating a simple map view on a web page.

As described in the preface, we need a web server to host our HTML,
JavaScript, and CSS files and a web browser to interpret them on the
g client side.

Getting ready

As already stated, the Google Maps JavaScript APl works with HTML, CSS, and JavaScript
code. So a text editor with HTML, JavaScript, and CSS handling capabilities would be a good
friend to have on hand while exploring this book.

For Mac users, there are lots of commercial or free text editors such as TextWrangler, BBEdit,
Sublime Text, or WebStorm. They all handle HTML, JavaScript, and CSS beautifully.

For Windows users as well, there are different text editors, but Notepad++ is the most used
and recommended one.

Choosing an editor depends on your computer usage habits, so there is no exact solution
or recommendation to users to select a particular type of editor. Everyone has different
perceptions that affect these choices.

You can find the source code at Chapter 1/ch0l1_simple map.html.

Downloading the example code

\ You can download the example code files for all Packt books you
= have purchased from your account at http: //www.packtpub.
Q com. If you purchased this book elsewhere, you can visit http://
www . packtpub.com/support and register to have the files
e-mailed directly to you.

Chapter 1

How to do it...

Here are the steps we will use to create our first map using the Google Maps JavaScript API.

1. Create a new empty file named map.html and insert the following code block into
it. This block is required for every app that uses the Google Maps JavaScript API. You
must insert your Google Maps JavaScript API key into the URL in the following code.

<!DOCTYPE htmls>
<html>
<head>
<!-- Include Google Maps JS API -->
<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
key=INSERT YOUR MAP API KEY HERE&sensor=false">
</script>

Please ensure that you have your Google Maps JavaScript APl key from
u the Google APIs Console (http://code.google.com/apis/
~ console) and replace it with YOUR_API_KEY. If you do not change
Q that part of the code, your map cannot be seen due to Google's API
rules. Also make sure to change the API key before publishing your
map's document on another location or production environment.

2. The following part is required in order to place the map where needed. In the <head>
section, add the HTML styling code to create a map that is 800 px in width and 500
px in height with the <style> element as follows:

<style type="text/css">
#mapDiv { width: 800px; height: 500px; }
</style>

3. Add the following JavaScript lines to the code to run with the Google Maps JavaScript
API. Do not forget to define the map object outside the function in order to access it
from every part of the code.

<!-- Map creation is here -->
<script type="text/javascript"s>
//Defining map as a global variable to access from
//other functions
var map;
function initMap () ({
//Enabling new cartography and themes
google.maps.visualRefresh = true;

//Setting starting options of map

var mapOptions = {
center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,

vww allitebooks.conl

http://www.allitebooks.org

Google Maps JavaScript API Basics

mapTypeId: google.maps.MapTypeId.ROADMAP

b

//Getting map DOM element
var mapElement document .getElementById ('mapDiv') ;

//Creating a map with DOM element which is just

//obtained
map new google.maps.Map (mapElement, mapOptions) ;

}

4. Add the following lines to finish the code. This part defines the <html > tags where
the map will be added and when to initialize the map.

google.maps.event .addDomListener (window,
initMap) ;
</script>
</head>
<body>
My First Map
<div id="mapDiv"></div>

'load’',

</body>
</html>
5. Enter the URL of your local server, where your map . html file is stored, in your favorite
P
browser and take a look at the result. You will see a map with navigation controls at
the top-left corner and the base map control at the top-right corner.
L o o localhost/recipes/ch01_simple_map.htm|
My First Map
= 3 3 yurt
Gigdemei il Galdarp: Map | Satellite
¢ - % | Ortabereket Fethiye I ik imrendi Yesilova M »E:ﬁ!;?ﬁ?. Akyurt
v L Klshk’g‘, Orhaniye Balikhisar Ahmatad|
Yenikent ¥ i
Bawaf'h Muilk . iy ratipy Saray OED
Y Yenikent &
Badies Akgaire (0.4} F_’f.lrsak!ar B cenck
Ay 4 Yenikent "..SIiISI;.Z"--._ Yuva gy o ==, Altinova
. eniki \ - Senyuva .qfhantba Kavaki Hasanoglan YEs.ilqlere
Ostim Mh.)y = Fatih Mh. Fatih
Gokler { | Gkseyurt g Kayadibi
= Ankara * i
roin Tatlar ['il.‘l et Yildinm Elmadag
Yenipecenek { 2 EE] =i Kiligla
vapracik 4 [E90
- [Karacahasan
Temelli yukanyurtcu /' Yakupabdal
- Thirkohas o~
Temelli 3 o-20] Golbasi
Maliksy Ball kuyume s : Eveiler
Temelli Tulumtas ozs0] Yurtbeyi et
B pjagoz Temelli / g
wraz Temelli Higarkk Koparan
Olukpinar Temelli velinimmatti MU g ey peynam Gawuglu
Temelli Ueret Gitkgehiiyiik
Gokéren Map data £20] 3 Basarsoft, Google o Terms of Use

—e1]

Chapter 1

As evident from the preceding screenshot, we have created our simple map with the Google
Maps JavaScript API.

Let's start examining the code step by step. First, the HTML5 document is defined with
the code < IDOCTYPE html>. Then the <html> and <head> tags are added.

Before the <style> element, the Google Maps JavaScript API is included as a reference
using the <script> element as follows:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key= INSERT
YOUR_MAP_API_KEY HERE&sensor=false'>
</scripts>

Then a new <script> tag is added to the code. After the <head> section, the <body>
section starts.

<body>

The following line of code listens to the load of the document. This event triggers the initMap
function when the page is fully loaded. This prevents unpredictable behaviors that would arise
from DOM and its related elements.

google.maps.event.addDomListener (window, 'load', initMap) ;

Finally, we have the HTML tags to create our page. The <div> element with id="mapDiv" is
the place where our map will be shown. This element gets its style from the CSS tags defined
previously, which has a width of 800 px and a height of 500 px.

M The styling of the mapDiv element is directly related to CSS rules
Q that can be found on the W3Schools website (http://www.
w3schools.com/css) in detail

As stated previously, the main JavaScript code that initializes the map will be explained
in detail. First, the map object is defined as a global object to access the map from every
function that is added later.

var map;
Then the initMap function is defined as follows:

function initMap()

}

Google Maps JavaScript API Basics

Before creating a map, the following code is called to change the map's theme to the latest
one that was announced at Google 10 2013 in May 2013. This theme is the new look used
in the new Google Maps. Both the cartography and styles of components are fresh and

up to date; however, using this new feature is optional. If you don't use the following line

of code, you'd use the old theme.

google.maps.visualRefresh = true;

Then, the map options would be defined as follows:

var mapOptions = {
center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,

mapTypeld: google.maps.MapTypeld.ROADMAP

}i
There are three important parameters for the map options.

» center: This is the center of the map in latitudes and longitudes. The previously
defined parameters are the coordinates of Ankara, Turkey. If you don't know how to
get the coordinates of a place, refer to the recipes given in Chapter 5, Understanding
Google Maps JavaScript APl Events.

» zoom: This parameter is an integer that defines the level in which the map is shown.
Google Maps have zoom levels from O (world level) to 21+ (street level). Users see
more details but less area when the zoom level increases.

» mapTypeId: This parameter defines the types of base maps shown on the map.
The details of this parameter are given in the later recipes of this chapter.

Before creating the map object, it is necessary to get the div element to where the map
will be shown. This is done via the classic DOM method, getElementById, as follows:

var mapElement = document.getElementById('mapDiv') ;
Finally, we have everything in place to create a map object:
map = new google.maps.Map (mapElement, mapOptions) ;

This code gets the mapElement and mapOptions objects to create the map. The first
parameter is the div element where the map will be placed and the other is the mapOptions
object that holds the starting parameters of the map. The preceding line of code creates the
map with the given options at the given div element and returns the map object to interact
with the map later.

Chapter 1

This recipe is the simplest one in the book but also the most important
one to get started with the Google Maps JavaScript API. There are lots
of parameters or options of the map, which will be discussed in the
later chapters and recipes.

% Also remember that in the following recipes, the basic code will not
~- be included in the book in order to provide you with more recipes.
Only those lines of code that are changed or required are given in
the following chapters and recipes, but you will have access to the
complete code with all the omitted lines from the Packt Publishing
website (http://www.packtpub.com/support)

Creating a simple fullscreen map

Applications can be mapped in different formats. Some of them show a map after a mouse
click or an event, and some of them are shown directly in fullscreen mode.

This recipe will show you how to create a fullscreen map that will be used both in web or
mobile applications.

Getting ready

As stated before, some recipes will show only the changed lines in the code in order to make
way for more recipes. This recipe is the modified version of the previous recipe, Creating a
simple map in a custom DIV element.

You can find the source code at Chapter 1/ch01_ full screen map.html.

How to do it...

You can easily create a simple fullscreen map by following the given steps:
1. Let's start by creating a new empty file named full screen map.html. Then, copy
all of the code in the previous HTML file (map . html) and paste it into this file.
2. Find the following lines of code in the new file:

<style type="text/css">
#mapDiv { width: 800px; height: 500px; }
</style>

Google Maps JavaScript API Basics

3. Add the following lines and change them according to the new values stated. The
width and height values are changed to 100% in order to make the map full screen
in the browser viewport. Also, the margin value of the body element is changed to 0

to remove all the spaces around the map.

<style type="text/css">
html { height: 100% }
body { height: 100%; margin: 0; }
#mapDiv { width: 100%; height: 100%; }
</style>

4. Enter the URL of your local server, where your full screen map.html file
is stored, in your favorite browser and take a look at the result. You will see the

map with navigation controls at the top-left corner and the base map control at

the top-right corner that fills the entire browser area.

Thus we have successfully created a simple fullscreen map.

- c localhost/recipes/ch01_full_screen_map.html el - B LR L) g =
Gugul N\ 3 Ahi Akkuzulu o
K3zan btk |Map | Satelite
eC|
< ~ > S E;] Kumpinar Ga.agllu":' R
- Gigdemci \ lizelyu Gilldarp
| 4 i : Esenboda 0140
Ortabereket Fethiye |5, IMmrend! Yepllovahib: Merkez Mh. Akyurt
] Ulupinar % . r
Iy g KISFBk.@v Orhaniye Bahkhisar Ahmetadil Kalecik
Yenikent f
Bayram :\::illcn / Fatih Saray. DR
+ Yenikent ¢ Saray Memlik L
"eniken
Bagayag Akgatire [0-4] Pu.rsakiar Pegenek
Aya L "\ 05Uz - A i
fes! Yenikent \SUBIZ N Yuva gz 59"5‘“\'3"-31;3,.;": :
\ i % Kavakl Hasanoglan YESﬂf_:I’E
Y, i atil
ot Ostim Mh. "\ Fatih Mh.
Jitan { N £
~. . { Atatiick Forest Gokgeyuil = D200 |
Gidkler \ Farmand Zoo 4 | Kayadibi
=D ki Ortakiy
Tekke S] oman ik Ankara ks Eivadas Hacibal
} e /7 Beyazt Mh. [
Yenipdcunak s o] il 0- 20 Kiliglar
Yapracik E90 s -
AN { aracahasan
0200 [
: /' Yakupabdal
Temelli Yukanyurtgu f i &
Tiirkobas g 4
Temelli =2 m = _Gﬁ“}asl ;
Maliky Ballikuyumcu bl Evciler S
Temelli Tulumiag uaso} Yurtbeyi
Alagiz Temelli
Poyraz Temelli Hisarlk Koparan Hacilar
R, Yaviucuk X Cat o
Olukpinar Temelli vellhimmetli Ogulbey Beynam Gavusiu ol
Em Temli Ucret Gokeehdylk : Karaahmetl|
Gokiren f Ergin Keklicek
Macun Subaz Gayith Topakl Ea Tolkéy
00 § npa. : Glnalan
Tiirkgerefli
Afibaz Karakegili
juze0) Karagedik Msp data 82013 Basarsoft, Google Temms ofuse

Chapter 1

The Google Maps JavaScript API uses the div component of the HTML standard to show the
map. The div component gets its style and properties from CSS rules, which are defined at
the top, in the <head> element. The width and height attributes of #mapdiv show that
the div component will fill the entire browser space. You can easily modify these width
and height properties to change the map dimensions according to your needs.

There's more...

The size of the map is directly related to CSS styles, and there is no direct relation between
the map size and the Google Maps JavaScript API. The DIV element that holds the Google
Maps JavaScript API's base maps and overlays is just a blank container, and as the DIV
elements get larger, so does your map.

See also

» The Creating a simple map in a custom DIV element recipe

Moving from the Web to mobile devices

Mobile devices are getting more popular nowadays; all the popular websites are preparing
their mobile apps or sites in order for people to access them anywhere. Mapping applications
have also become more popular since accessing the location of a device with proper APIs
was introduced in HTML5.

In this recipe, we will prepare a mapping application that will run on mobile browsers in full
screen, and it will zoom to the location of a device with the help of the W3C Geolocation API.
This APl is also accessible from desktop browsers to get your location.

Getting ready

This code will be run on a mobile device or simulator, so make sure that your code will be
accessible from your mobile device or simulator. In this recipe, | suggest you upload the
code to a hosting server or website so that it could be accessed easily from your mobile
device or simulator.

You can find the source code at Chapter 1/ch0l1 mobile map.html.

[}

Google Maps JavaScript API Basics

How to do it...

If you want to create a map that is optimum for mobile devices, you should follow the
given steps:

1.

Let's start by creating a new empty file named mobile map.html. Then, copy all of
the code in the HTML file (map . html) that was introduced in the Creating a simple
map in a custom DIV element recipe, and paste it into the new file.

Find the following lines of code in the new file:

<!-- Include Google Maps JS API -->
<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
key=INSERT YOUR MAP API KEY HERE&sensor=false">
</scripts>

Insert the following line before the previous code block. This line tells mobile
browsers that the current web application is designed for mobile devices:

<meta name="viewport" content="initial-scale=1.0,
user-scalable=no" />

Add the following CSS styles in order to make the map fullscreen.

<style type="text/css">
html { height: 100% }
body { height: 100%; margin: 0; }
#mapDiv { width: 100%; height: 100%; }
</style>

Then, add the following code block after creating the map object. This code block will
check whether your browser supports the Geolocation APl and sets the center of the
map according to the coordinates of the device.

if (navigator.geolocation) ({
navigator.geolocation.getCurrentPosition (
function (position) ({
var lat = position.coords.latitude;
var lng = position.coords.longitude;
//Creating LatLng object with latitude and
//longitude.
var devCenter = new google.maps.LatLng(lat, 1lng);
map.setCenter (devCenter) ;
map.setZoom(15) ;

Chapter 1

6. Upload your file to a proper hosting site and check this URL on your mobile device or
simulator. You will be asked whether to allow the reading of your location or not. If you
allow it, you will see the map of your location.

“http//fwww_s=== com”
Would Like To Use Your

Current Location A R z

Baskanligi
Mill Kiitiphare

Don’t Allow oK Ismetindnl B¢

& Savinma Sarsyi
B piostepaehty

13 Basarsoht, Google Terms of Lise

This is how we achieve the goal of creating a simple map for mobile devices.

The <meta> tags are used by browsers and search engines, and they are not visible to
the users. They help browsers know how to behave. In our case, the following <meta>
tag is used to tell browsers that the current website is optimized for mobile browsers:

<meta name="viewport" content="initial-scale=1.0,
user-scalable=no" />

This <meta> tag solves zooming problems when the user pinches in or out, because
pinching in or out should zoom the map in or out respectively and not the document itself.

]

Google Maps JavaScript API Basics

In order to get the device location, the W3C Geolocation APl implemented by browsers

is used. There is a navigator namespace in the HTML5 standard, and the Geolocation
subnamespace is checked first if the browser has support for the Geolocation API. If
navigator.geolocation returns an object, we can get the coordinates with the help of the
getCurrentPosition function. The callback function gets the latitude and longitude of the
device and creates the google.maps . LatLng object. Then, the setCenter method of the
map object is triggered with the devCenter object that was created before. This will change
the center of the map according to the device location.

The last line of the callback function is used to set the zoom level of the map. This can be
changed according to your needs.

There's more...

The HTML5 standard is still in progress, and there can be changes in the W3 Geolocation API.
If you want to get more information about geolocation, refer to the W3C documentation site
(http://dev.w3.org/geo/api/spec-source.html).

See also

» The Creating a simple map in a custom DIV element recipe

Changing map properties programmatically

Until this recipe, the map has been interactive within itself. Users can zoom in/out, drag the
map, change the user interface, or enable/disable mouse interactivity. If you want to play with
the map outside of it, you should access the map and change the properties you want, or

you can change the properties programmatically in different cases. Changing map properties
programmatically is one of the important parts of the Google Maps JavaScript API. In most
mapping applications, a user searches for a place, and the application should focus on that
point on the map. This is possible with the map object's functions. There are lots of map
functions, but we will cover only the most used ones.

In this recipe, we will create a mapping application that a user can interact with outside the
map. Buttons are used in order to interact with the map.

Getting ready

Before you continue, a map object must be created in order to interact with it. If a map
object is not defined, you will get an error. These kinds of problems occur due to JavaScript's
asynchronous behavior in most cases.

You can find the source code at Chapter 1/ch0l1 interaction map.html.

6]

Chapter 1

How to do it...

Changing the map properties is quite easy if you follow the given steps:

1.

2.

Let's start by creating a new empty file named interaction map.html. Then,
copy all of the code in the HTML file (map . html) that was introduced in the Creating
a simple map in a custom DIV element recipe and paste it into the new file.

Add the following functions after the initmap () function. These functions are called
by the buttons defined in HTML, which are used to interact with the map. Functions
are explained later in this recipe.

function zoomToIstanbul () ({

var istanbul = new google.maps.LatlLng(41.0579,29.0340);
map.setCenter (istanbul) ;

function zoomToStreet () ({
map.setZoom(18) ;

function disableDrag ()
map.setOptions ({ draggable: false });

}

function setMaxZoom () {
map.setOptions ({ maxZoom: 12 });

function setMinZoom () {
map.setOptions ({ minZoom: 5 });

function changeUI () {
map.setOptions ({ disableDefaultUI: true });

}

function disableScroll ()
map.setOptions ({ scrollwheel: false });

[}

vww allitebooks.conl

http://www.allitebooks.org

Google Maps JavaScript API Basics

3.

Next, add the following function to listen to the click events of the buttons defined
in the HTML code in step 5.

function startButtonEvents ()

document .getElementById ('btnZoomToIst'
) .addEventListener ('click', function() {

zoomToIstanbul () ;
1)
document .getElementById ('btnZoomToStr'
) .addEventListener ('click', function() {

zoomToStreet () ;
1)
document .getElementById ('btnDisableDrag'
) .addEventListener ('click', function() {

disableDrag() ;
1)
document .getElementById ('btnMaxZoom'
) .addEventListener ('click', function() {

setMaxZoom () ;
P
document .getElementById ('btnMinZoom'
) .addEventListener ('click', function() {

setMinZoom () ;
P
document .getElementById ('btnChangeUI"
) .addEventListener ('click', function() {

changeUI() ;
|3
document .getElementById('btnDisableScroll’
) .addEventListener ('click', function() {

disableScroll () ;
13N
!

The startButtonEvents function must be called on initializing the map, so the
following line of code is added:

startButtonEvents () ;

Then, add the following HTML lines of code inside the <body> tag. These are
the <button> tags to be shown on the web page. Each button element listens
for the click event to fire the related function.

<input id="btnZoomToIst" type="button" value="Zoom To
Istanbul">

Chapter 1

<input id="btnZoomToStr" type="button" value="Zoom To
Street Level">
<input id="btnDisableDrag" type="button" value="Disable

Drag">

<input id="btnMaxZoom" type="button" value="Set Max Zoom to
12">

<input id="btnMinZoom" type="button" value="Set Min Zoom to
5">

<input id="btnChangeUI" type="button" value="Change UI">
<input id="btnDisableScroll" type="button" value="Disable
Scroll Zoom">

6. Enter the URL of your local server, where your interaction map.html file is stored,
in your favorite browser and take a look at the result. You will see the map with buttons
at the top. Each button triggers a different function to interact with the map.

Am c localhost/recipes/ch01_interaction_map.html w i“"
Interaction Map
Zoom To Istanbul Zoom To Street Level Disable Drag Set Max Zoom to 12 Set Min Zoom to 5 Change Ul Disable Scroll
¥ Gavundur
: o, Map | Satellite |
s Geltikei > 2
i Tahtayazi =
¢ > (Eas) . i\\-?
ot “ (D750 Gubuk &
Gudil “, Kazan Akkuzulu g
Bey 5 zar Cigdemci < Sulak:
» \ - yurt
Fethiye, Yesilova Mh. Akyurt 0140]
/ D180 Kalecik
+ Sélay
Oyfmaadag : Pursaklar
Aya i . P
yag Yenikent SHSUZ— Ty Hasanoglan
Oltan . Ostim Mh. Fatih Mh.
| \ v [
Tekke Ankara yidem Elmadag - B Baligeyh
(4 - /Beyazit Mh (0200 | Ge
= IZ’E] (0-20} Kirikkale
Temelli . _Golbasgi
Malikéy [ET - aitest
‘urtbeyi
Sabanbzil Temelli Hacilar
;. Beynam n
- Temell Gokgehdyik Karaahmetli ~ Keskin
Macun Gokbren Topakh :
&g Polath Ahiboz Karakegili _;é’
i Bala Pl
Ikizee &
Karaali
EET Boyalik Merkez o Celebi
Haymana Culuk ¥ - Akpin
' Emirler
wiizi
(D750 Kaman &
Map data ©2013 Basarsoft, Google TemmsofUse

As a result of the recipe, we can change map properties programmatically.

[}

Google Maps JavaScript API Basics

Each JavaScript function defined previously is used to change the different sides of the map.
The ones most used are to change the center and zoom level of the map. Most of the time,
people just move from one location to another on a map. For example, if you are showing
the locations of a coffee chain, the map should focus on each of the locations of the coffee
shops. The following code creates a google .maps . LatLng object that will be the input

of the setCenter () function. The 41.0579 and 29. 0340 values are the latitude and
longitude of Istanbul, Turkey respectively. You will replace these coordinate values with your
own coordinate values to change the center of the map. This function will only change the
center of the map, not the zoom level.

var istanbul = new google.maps.LatLng(41.0579,29.0340);
map .setCenter (istanbul) ;

If you want to zoom in or out of the map in order to cover/show an area, you should also play
with the zoom value. For example, your coffee shop location at zoom level 6 cannot provide
effective guidance to your customers. It should at least be at level 15 or more to see the
street names and the exact location. This can be done with the following code:

map .setZoom (18) ;

In some cases, you don't want users to interact with the map, such as fixing the map location,
by disabling mouse drags or wheel scrolls. These are some examples of the google .maps.
MapOptions object's properties. These properties are directly related to the properties of
the map. If you want to change one or more properties of the map, you should create a JSON
object and call the following map function:

map.setOptions ({
draggable: false,
maxzoom: 12

3N

With the setOptions () function, you can also enable or disable the default controls, but
this will be reviewed in Chapter 4, Working with Controls. You can set one or more properties
with the setOptions () function. You can find short explanations with comments next to
the properties:

map.setOptions ({
draggable: false, //Disables the map drag
maxZoom: 12, //Sets maximum zoom level
minZoom: 5, //Sets minimum zoom level
disableDefaultUI: true, //Removes the default controls
scrollwheel: false //Disables the mouse scroll wheel

Q

Accessing a map object

Be aware of defining a map object as a global object in order to access it
anywhere. This can be a problem in some cases while writing in JavaScript.
Please check the following link to get more information on JavaScript and
Scopes : http://coding.smashingmagazine.com/2009/08/01/
what-you-need-to-know-about-javascript-scope/.

The Creating a simple map in a custom DIV element recipe

Changing base maps

Base maps are one of the most important parts of the process of mapping the APIs. Base
maps show the roads, satellite images, or terrains, which can be used for different situations.
For example, a road map can be suitable for showing the location of your coffee shop, but a
satellite image cannot. Satellite images can also be suitable for showing parcel information
to check whether they are drawn correctly. The Google Maps JavaScript APl has four different
base maps such as ROADMAP, SATELLITE, HYBRID, and TERRAIN. All of these base maps
can be seen in the following screenshot wherein they can be compared to each other.

ROADMAR, _ ... '}

* Orakoyi .ej

i 1 | . f
i Istanbul

Seacof. L Zahw
Micrmara iy

In this recipe, we will go through the Google Maps base maps and learn how to change
them programmatically.

Chapter 1

s

Google Maps JavaScript API Basics

Getting ready

In this recipe, we will use the JavaScript arrays in order to make the input parameters of a
function readable. | suggest you check Google for the JavaScript arrays if you don't have

any experience.

You can find the source code at Chapter 1/ch0l base map.html.

How to do it...

1.
2.

4. The startButtonEvents function must be called upon initializing the map, so the

If you follow the given steps, you can change the base maps of your map.

Let's start by creating a new empty file named base _map.html. Then, copy all of the
code in the HTML file (map . html) that is introduced in the Creating a simple map in

a custom DIV element recipe and paste it into the new file.

Add the following function after the initMap () function. It will listen to the click
events of the buttons added to the HTML code in step 4. It simply sets the base map

according to the IDs of the buttons.

function startButtonEvents ()

}

document .getElementById ('btnRoad'’
) .addEventListener('click’', function(){
map . setMapTypeld (google.maps.MapTypeld.ROADMAP) ;
I3
document .getElementById ('btnSat'
) .addEventListener('click’', function(){
map . setMapTypeld (google.maps.MapTypeld.SATELLITE) ;
13N
document .getElementById ('btnHyb'
) .addEventListener('click’', function(){
map . setMapTypeld (google.maps.MapTypeld.HYBRID) ;
13N
document .getElementById ('btnTer'
) .addEventListener('click’', function(){
map . setMapTypeld (google.maps.MapTypeld.TERRAIN) ;

3N

following line of code is added after the map is initialized.

startButtonEvents () ;

Chapter 1

5. Then, add the following HTML lines of code before the map's div element. These are
the HTML buttons to change the base map:

<input
<input
<input
<input

id="btnRoad" type="button" value="RoadMap">
id="btnSat" type="button" value="Satellite">
id="btnHyb" type="button" value="Hybrid">
id="btnTer" type="button" value="Terrain"s>

6. Enter the URL of your local server, where your base map . html file is stored, in your
favorite browser, and take a look at the result. You will see the map with buttons
at the top. Each button changes the base maps according to their names.

€& - C] localhost/recipes/ch01_base_map.html

Changing Base Maps

Google

| RoadMap | | Satellite ‘J Hybrid | | Terrain

As shown in the preceding screenshot, you can easily change the base maps that are provided

by Google.

Google Maps JavaScript API Basics

Most of the magic is done by the API itself; you just choose the map type you want to switch to.

These map types are predefined, but there is a possibility to add your own base maps or
styled maps to the APl and switch to them. Adding your own base maps or styled maps are
introduced in Chapter 2, Adding Raster Layers.

You can also define the starting base map at the mapOptions object as follows:

var mapOptions = {
center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,
mapTypelId: google.maps.MapTypelId.TERRAIN

i

After changing the map options, your map will be opened with the TERRAIN base map type.

Changing base maps may seem to be an easy topic, but the math and tech behind them is not
as easy as using them. The base maps and overlays used in the Google Maps JavaScript API
are processed in the Web Mercator projection system. In this projection system, the angles
are preserved, but the size and shape of large objects change. As a result, the poles seem to
be bigger than North America, which is not true at all. This projection is a good way to show
the whole world in the same map.

Please check the later chapters for detailed information or check the Wikipedia article at
https://en.wikipedia.org/wiki/Mercator projection.

» The Creating a simple map in a custom DIV element recipe

Adding Raster Layers

In this chapter, we will cover:

» Styling of Google base maps

» Using different tile sources as base maps
» Adding tile overlays to maps

» Adding image overlays to maps

» Changing the transparency of overlays

» Creating a heat map

» Adding a traffic layer

» Adding a transit layer

» Adding a bicycling layer

» Adding weather and cloud layers

» Adding a Panoramio layer

Introduction

This chapter will cover everything about working with raster layers. The collection of recipes
is composed of the most common use cases of handling raster layers in the Google Maps
JavaScript API.

Raster is one of the prime data types in the GIS world. The Google Maps JavaScript API
presents an extensive set of tools to integrate external sources of imagery. Also, the API
enables application developers to change the styling of its base maps with a palette of
practically unlimited array of choices.

Adding Raster Layers

This chapter will introduce you to changing the styling of base maps and will then continue by
covering how to display raster data, focusing on external TMS (Tile Map Services), where the
raster layer is composed of organized tiles in the map display (for example, OpenStreetMap).
Lastly, there are a number of raster layers (traffic, transit, weather, bicycle, and Panoramio)
that can be presented on the map by integrating them with the Google Maps JavaScript API.

Styling of Google base maps

Google base maps show a variety of details such as water bodies (oceans, seas, rivers, lakes,
and so on), roads, parks, and built-up areas (residential, industrial, and so on). As you have
observed in the first chapter, all these are shown in predefined cartographic parameters. With
the styling capability of base maps, you have a virtually unlimited set of choices in terms of
the cartographic representation of base maps.

In your web or mobile applications, it is very beneficial to have a diversity of representations
(in all different color schemes with different emphasis) in order to keep your audience more
involved; maps blend neatly into your website design.

This recipe will guide you through the process of changing the styling of base maps.

Getting ready

We can continue from the Creating a simple map in a custom DIV element recipe from
Chapter 1, Google Maps JavaScript APl Basics, as we do not need to recall the basics
of creating the map.

How to do it...

The end product of the recipe will look like bluish Google Maps if you follow the given steps:

1. Create an array of styles as follows:
var bluishStyle = [

{
stylers: [
{ hue: "#009999" },
{ saturation: -5 },
{ lightness: -40 }

featureType: "road",
elementType: "geometry",
stylers: [

Chapter 2

{ lightness: 100 },
{ visibility: "simplified" }

featureType: "water",
elementType: "geometry",
stylers: [
{ hue: "#0000FF" },
{saturation:-40}

featureType: "administrative.neighborhood",
elementType: "labels.text.stroke",
stylers: [

{ color: "#E80000" },

{weight: 1}

featureType: "road",
elementType: "labels.text",
stylers: [

{ visibility: "off" }

featureType: "road.highway",
elementType: "geometry.fill",
stylers: [
{ color: "#FFOOFF" },
{weight: 2}

]

Add your style array to the initMap () function.

Within the initMap () function, create a styledMapType object with its name and
reference it with the style array:

var bluishStyledMap = new google.maps.StyledMapType (bluishStyle,
{name: "Bluish Google Base Maps with Pink Highways"});

e

vww allitebooks.conl

http://www.allitebooks.org

Adding Raster Layers
4. Add the mapTypeControlOptions object having the mapTypeIds property to your
original mapOptions object:

var mapOptions = {

center: new google.maps.LatLng(39.9078, 32.8252),

zoom: 10,
mapTypeControlOptions: {mapTypelds:

[google.maps.MapTypeId.ROADMAP, 'new bluish style'l]}
}i

5. Relate the new mapTypeId property to your styledMapType object:
map.mapTypes.set ('new_bluish style', bluishStyledMap) ;

6. And lastly, set this new mapTypeId property to be displayed:
map.setMapTypeId('new bluish style');

7. You can now observe the bluish-styled Google base maps as seen in the following
screenshot:

| ©® OO /127001 recipes/chz_st, % \5 i

« - |D 127.0.0.1/recipes/ch2_styledmaps.html
[ArcGIS_Network_An || Read It Later || Mark As Read || Reading List [L1] ASP.NET MVC

Styled Maps

| =
» [Other Bookmarks

Bluish Google Base Maps with Pink Highways
3 -

Map data ©2013 Basarsoft Gaogle:| Terms of Use

Chapter 2

Firstly, let's look at the bluishStyle array consisting of one or more google .maps.
MapTypeStyle objects arranged as shown in the following code:

var bluishStyle = [
{

featureType: '',

elementType: '!',

stylers: [
{hue: "'},
{saturation: ''},
{lightness: ''},

]
b
{

featureType: '',

]

In this array, you can include several styles for the different map features and their respective
elements such as their geometries, labels, and so on (all these are specified in google.
maps .MapTypeStyleElementType).

Map features embrace the types of geographic representations that are found in the base
maps. Administrative areas, landscape features, points of interest, roads, and water bodies
are examples of map features.

In addition to these general definitions of map features, the Google Maps JavaScript API
enables you to specify the subtypes of these features. For example, you may wish to change
the default style on specific poi types by giving them the featureType property as follows:

featureType: 'poi.school!'
Or, you can be more specific on the landscape map features:

featureType: 'landscape.man made'

More about the google.maps.MapTypeStyleFeatureType object

specification can be found at https://developers.google.com/
maps/documentation/javascript/reference#MapTypeStyle
FeatureType.

.\'Q A complete listing of the MapTypeStyleFeatureType object

Adding Raster Layers

Please note that the first element of our bluishstyle array does not include any
featureType property, making the styler options valid for the entire base map as
shown in the following code:

{

stylers: [
{ hue: "#009999" },
{ saturation: -5 },
{ lightness: -40 }

}

In addition to google.maps .MapTypeStyleFeatureType and its constants, you can

also detail each of its map features such as the geometries, geometry strokes and fills, labels,
label texts (also text fill and stroke), and label icons. Taking this opportunity, you can style

the geometries of roads in different settings than their related icons.

In our recipe, we have disabled the visibility of all the label texts of the roads, not touching
their geometry or label icons as shown in the following code:

{

featureType: "road",
elementType: "labels.text",
stylers: [

{ visibility: "off" }
]

More about the google.maps.MapTypeStyleElementType object

specification can be found at https://developers.google.com/
maps/documentation/javascript/reference#MapTypeStyl
eElementType

ii:l A complete listing of the MapTypeStyleElement Type object

For every feature type and its element type, you can specify a google .maps.
MapTypeStyler object that covers the options of hue, 1ightness, saturation, gamma
inverse lightness, visibility, and weight as an array. In our recipe, the styler option
that makes the highway road appear in pink is as follows:

{

featureType: "road.highway",
elementType: "geometry.fill",

stylers: [
{ color: "#FFOOFF" },
{weight: 2}

NED

Chapter 2

Here, the color option in the stylers array is an RGB Hex string of a pink tone, while
weight defines the weight of the feature in pixels.

. More about the google.maps.MapTypeStyler object
)
‘Q A complete listing of the MapTypeStyler object specification

can be found at https://developers.google.com/maps/
documentation/javascript/reference#MapTypeStyler.

After defining the style array in our initMap () function, we created a StyledMapType
object:

var bluishStyledMap = new google.maps.StyledMapType (bluishStyle,
{name: "Bluish Google Base Maps with Pink Highways"});

This object takes two arguments—the first one is the style array and the second one is a
google.maps.StyledMapTypeOptions object. Here, we have included only the name
property; however, you can additionally include the maxZoom and minZoom properties
between which the styledMapType object will be displayed. In the screenshot of this
recipe, you can see that the value we have assigned for the name property is displayed in
the interface.

After we created the StyledMapType object, we added an additional object called
mapTypeControlOptions, which takes the mapTypeIds array in the mapOptions object,
replacing the mapTypelId property:

var mapOptions = {
center: new google.maps.Latlng(39.9078, 32.8252),
zoom: 10,
mapTypeControlOptions: {mapTypelds:
[google.maps.MapTypeld.ROADMAP, 'new bluish style']}

}i
This enables us to add multiple styles in addition to the standard ROADMAP map type.

Next comes the step of linking the mapTypeId ('new bluish style') property
that we have specified in the mapTypeIds array with the StyledMapType object
(bluishStyledMap):

map.mapTypes.set ('new bluish style', bluishStyledMap) ;

After linking the mapTypeId property with the StyledMapType object, we can end with
the following line of code so that the map interface opens with a base map styled as per
our intentions:

map.setMapTypeId('new bluish style');

Es

Adding Raster Layers

In our recipe, we have covered how to style the base maps according to our taste. We

have made use of the google.maps.MapTypeStyle object to select the feature types
(google.maps.MapTypeStyleFeatureType) and the related elements (google .maps.
MapTypeStyleElementType) and styled them using the google .maps.MapTypeStyler
object. Then, we have added our StyledMapType object to the map, showing our own styling
of the base maps of Google Maps.

There's more...

Using the styledMapType object is only one of the ways of handling the user-defined styled
base maps in the Google Maps Javascript API.

Another simpler usage is specifying the style array in the styles property of the
mapOptions object:

var mapOptions = {
center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,
mapTypelId: google.maps.MapTypeId.ROADMAP,
styles: bluishStyle

Vi

Another alternative is that after defining our mapOptions object, we can add the styles
property later with the following code:

map.setOptions ({styles: bluishStyle });

There is an important difference between using the styledMapType object and the style
property of the mapOptions object. Using the StyledMapType object enables us to define
a number of (virtually infinite) styles as map types. In addition, these map types can be seen
in the map type control of the map interface, so it is very easy for the user to switch back and
forth between the map types.

However, if the styles are attached to the map by the mapOptions object's style property,
there is no way for the user to change multiple styles. In fact, in the map type control,

there will be an option for you to select new styles, because styles are not attached to a
StyledMapType object, and therefore cannot be identified as map types.

=

Chapter 2

You can get information on how to use the Styled Maps Wizard at
http://gmaps-samples-v3.googlecode.com/svn/trunk/
styledmaps/wizard/index.html.

Preparing the style arrays is a job with many cartographic details.
Finding the correct combination for each feature and the element type in
%@‘ stylers would take too much time, especially if the only way of editing is
in a text editor. Google has done a great job by creating the Styled Map
Wizard to ease this time-consuming task. It enables you to perform all
your styling tasks in an interface, so you can have an overview of what
you are changing in real time. After you finish your work, you can export
your styles as JSON to be used as a style array in your application.

Using different tile sources as base maps

Google base maps display an immense amount of content (local POl information,
road hierarchies, driving directions, and so on) and a large styling palette. In addition,
it provides tools to change the styling of its base maps in its JavaScript API.

Moreover, you can have your other map tile sources displayed as base maps in the Google
Maps interface. This feature enables you to display your tiled maps in the Google Maps
interface, utilizing most of the tools of the Google Maps JavaScript API.

In this recipe, we will go through displaying OpenStreetMap tiles as base maps in the
Google Maps interface, using the JavaScript API.

Getting ready

We can continue on from the Creating a simple map in a custom DIV element recipe from
Chapter 1, Google Maps JavaScript API Basics, as we do not need to reiterate the basics
of getting the map on screen.

How to do it...

With this recipe, you will see the OpenStreetMap tiles on top of Google Maps after completing
the given steps:

1. Inyour initMap () function, create an ImageMapType object with the following code:

var osmMapType = new google.maps.ImageMapType ({
getTileUrl: function(coord, zoom) {
return "http://tile.openstreetmap.org/" + zoom +
"/" + coord.x + "/" + coord.y + ".png";
b
tileSize: new google.maps.Size (256, 256),
name: "OpenStreetMap",

s

Adding Raster Layers

maxzoom: 18

3N

2. Addthe google.maps.mapTypeControlOptions object having the mapTypeIds
property to your original google .maps .MapTypeId object and the ImageMapType
object:
var mapOptions = {

center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,

{mapTypelds: [google.maps.MapTypeld.ROADMAP,
"OsM']}
}i
3. Relate the new mapTypeId array to your ImageMapType object:
map .mapTypes.set ('OSM', osmMapType) ;

4. And lastly, set this new google .maps.mapTypeId object to be displayed:
map.setMapTypeId ('OSM') ;

5. You can see the OpenStreetMap tiles on top of the Google base map tiles as shown
in the following screenshot:

= | = 22
[localhost/recipes/ch2 tile x

= C | [localhost/recipes/ch2_tiled_basemaps.htm e M9 B =
{7 ArcGIS_Network_An.. [% Readltlater [Mark AsRead | Readinglist (] ASP.NETMVC [GIS Business » [Other bookmarks
7

Tiled Basemaps

{;‘Eg IMap | OpenStreethap
< > ! Mt
@

Pursakiar

b

(0-20)%g

Krgjivem
sncn Veniriah e e
| Elimesaut

AnkaraMamak

m

e Eimadag o

AGoihagi

TermsofUse

S E

Chapter 2

You might have observed that there is indeed little difference between the structure of code
extracts of the Styling of the Google base maps recipe and this recipe. In the former, we have
used the styledMapType object to change the styles of the original base maps, while in this
recipe, we have used the ImageMapType object.

This is because both the styledMapType and ImageMapType objects are all special types of
the MapType object (google .maps .MapType), in addition to the original base map types such
as Roadmap, Satellite, Hybrid, and Terrain, which were introduced in the previous chapter.

Let's move step by step:

var osmMapType = new google.maps.lmageMapType({

getTileUrl: function (coord, =zoom) {
return "http://tile.openstreetmap.org/" + zoom + "/" +
coord.x + "/" + coord.y + ".png";

b

tileSize: new google.maps.Size (256, 256),

name: "OpenStreetMap",

maxzoom: 18

3N

This part of the recipe creates an osmMapType object of ImageMapType. To create
an ImageMapType object, we must supply two required properties: getTileUrl and
tileSize.

Before filling in these two parameters, we must make sure we have a tiled map service of
which we can use tiles. OpenStreetMap (http://www.openstreetmap.org/)is a kind
of a map service, built and existing thanks to the community efforts around the world.

Adding Raster Layers

Tiled map services are organized in a manner that the cartographic imagery is broken into
parts (tiles) for each predetermined zoom level. These tiles are to be located alongside
the x and y axis so that the tile map service consumers (such as the Google Maps API) can
recognize their respective locations as seen in the following diagram:

0,0) L0 2.0)

0, 1) L1 2.1

The upper-left tile's coordinate is (0,0), and it is called the origin tile. In Google Maps,
the origin is at the upper-left (northwest) corner of the map interface.

Remember that for the getTileUr1 property, we supply a function that has two parameters:
coord and zoom:

getTileUrl: function (coord, =zoom) {

return "http://tile.openstreetmap.org/" + zoom + "/" +
coord.x + "/" + coord.y + ".png";

Chapter 2

The coord parameter is exactly the coordinate pair that takes the value of the tile coordinates
introduced in the preceding screenshot. In other words, in the upper-left corner, coord. x
should be 0 and coord.y should be 0.

Assuming that we are at zoom level O, we can try and get a tile from the Openstreetmap
URL supplied for the getTileUr1 property:

"http://tile.openstreetmap.org/" + zoom + "/" + coord.x + "/" +
coord.y + ".png"

This will give the following output:
"http://tile.openstreetmap.org/0/0/0.png"

If you copy this URL to the address bar of your browser, you will get the output as shown
in the following screenshot:

This image is a single tile from Openstreetmap at zoom level O. It is understood that the
single OpenStreetMap tile at zoom level O covers the entire world.

Eis

vww allitebooks.conl

http://www.allitebooks.org

Adding Raster Layers

Now, let's continue with zoom level 1:

http://tile.openstreetmap.org/1/0/0.png

You might have noticed that the level of detail has increased as the zoom level has increased
from O to 1. Also, the coverage area for each tile has been dramatically reduced (one-fourth
in this case).

You can see the complete tile layout at zoom level 1 in the following screenshot:

Chapter 2

An important property of the tiled map services is that at each zoom level, each tile of the
previous zoom level is tiled again to possess the level of detail required for the current
zoom level.

Returning to our osmMapType creation, the function for the getTileUrl property works

for placing the tiles of an external source (OpenStreetMap in our recipe). The two arguments
named coord and zoom are handled by the Google Maps API itself. The APl detects the
bounding box of the map and builds up the tile layout for each zoom level. Therefore, the API
recognizes which tile coordinate should be requested at which zoom level. The only thing that
is left for you to do is to present the tile URLs of the external tiled map source, which is what
you have done in the getTileUr1 property.

The second property is the tileSize property, which accepts a google.maps.Size
object. As its name implies, this property defines the width and height of each tile in terms of
pixel values. The Google Maps tile layout is outlined for 256 px by 256 px tiles; so we supply
google.maps.Size (256,256), where the first parameter stands for width and the second
parameter stands for height.

The maxZoom property sets the maximum zoom level of display for the tiled map service. The
external base maps will not be shown at zoom level 19 as maxZoom is set at 18 in this recipe.

The name property is set for the name of your choice for the tiled map service. It is directly
seen in the mapTypeControl object at the upper-right corner of the map interface.

The final two lines are the same as the ones in the previous recipe; the first one relates to the
osmMapType object of ImageMapType with OSM set for the mapTypeID object specified in
the mapTypeControlOptions property of mapOptions

map .mapTypes.set ('OSM', osmMapType) ;
map.setMapTypeId('OSM') ;

Detailed explanations of tile coordinates, pixel coordinates, and world coordinates in
conjunction with projection details will be covered in the oncoming chapters.

Furthermore, using tiled map services as overlays to base maps will be covered in the
next recipe.

s

Adding Raster Layers

Adding tile overlays to maps

Google Maps has a selection of base maps as street maps and satellite imagery, which we
discussed in the previous chapter; we will now discuss how additional base maps can be
introduced to the Google Maps interface.

We can also use tiled map services as overlays to the base maps. By overlay, you can think
of a separate sheet of map tiles put over the base maps. You can observe the details of
the overlaid layer together with the base map. Examples of overlay layers might be of the
boundaries of areas of interest, special POls that are not found in the Google Maps' base
maps, statistical results to be presented with aerial or point styling, and so on.

The tile map services that are used as base maps can technically be used as overlays in the
Google Maps JavaScript API. However, using these tile map services (such as OpenStreetMaps)
as overlays results in blocking the original base maps of Google Maps, as there would be no
blank space in the map of overlaid tile map services (originally aimed to be base maps). This is
because both the Google Maps base maps and the overlaid tile map services are designed to be
base maps. Therefore, it is not recommended to use another tile map service that is meant for
base maps as an overlay layer on top of the Google Maps base maps.

In this recipe, we will cover how to show the OpenStreetMap tiles as overlay layers in the
Google Maps interface using the JavaScript API.

Getting ready

We can use the previous recipe's code and change it a bit for this recipe in order to eliminate
the need of rewriting the osmMapType object details.

How to do it...

In this recipe, you will see the OpenStreetMap tiles as an overlay layer if you follow the
given steps:

1. Inyour initMap () function, leave the osmMapType object as it is:

var osmMapType = new google.maps.ImageMapType ({
getTileUrl: function(coord, zoom) {
return "http://tile.openstreetmap.org/" +
zoom + "/" + coord.x + "/" + coord.y + ".png";
b
tileSize: new google.maps.Size (256, 256),
name: "OpenStreetMap",
maxzoom: 18

3N

2. Change the google.maps.mapTypeControlOptions object having mapTypeIds
of both google.maps .MapTypeId.ROADMAP and google.maps.MapTypeId.
SATELLITE in your mapOptions object:

=)

Chapter 2

var mapOptions = {
center: new google.maps.Latlng(39.9078, 32.8252),
zoom: 10,

mapTypeControlOptions:

{mapTypelds: [google.maps.MapTypeld.ROADMAP,
google.maps .MapTypeld.SATELLITE] }

}i

3. Delete the following line of code (as no other base maps were specified in the
preceding step):

map .mapTypes.set ('OSM', osmMapType) ;

4. Setthe ROADMAP map type to be displayed as the base map:
map . setMapTypeld (google.maps.MapTypeld.ROADMAP) ;

5. Overlay the osmMapType map type on top of the base map:
map.overlayMapTypes.insertAt (0, osmMapType) ;

=|E Y
|9 localhost/recipes/ch2_tile x
&« C [localhost/re 3ps.htm A ™M P B =
(] ArcGIS Metwork An.. | Readltlater |5 MarkAsRead | ReadingList [ASP.NETMVC [T] GIS Business »] Other bookmarks
Tiled Basemaps =
I:'-a,:_ ___D.penStreetI'-.‘lap_
< > N
]
J Pursakdar
i+ N
Krifron
Sincan [fenimaliale o]
'\ Etivesqut F
AnikaraMarmar %
Cancays 5, e o 2

Golbogt

Tems of Use

6. You now have the OpenStreetMap tiles as an overlay layer, as shown in the preceding
screenshot.

@l

Adding Raster Layers

There is little difference between the preceding recipe and this recipe as you might have noticed.
We have used the same custom osmMapType object of google . maps . imageMapType. We
have used another tiled map service, but the structure remains the same.

The modifications have begun with the used mapTypes object in the
mapTypeControlOptions property of the mapOptions object:

mapTypeControlOptions:

{mapTypelds: [google.maps.MapTypeld.ROADMAP,
google.maps .MapTypeld.SATELLITE] }

We have included both the ROADMAP and SATELLITE map types to be selected as base maps.
Step 3 is important; we delete the following line:
map .mapTypes.set ('OSM', osmMapType) ;

We are deleting this because we do not want the osmMapType object to be considered as a
base map. We will just use it as an overlay.

In the next step, we are selecting our default base map as ROADMAP. You can change the
code line for SATELLITE or you can make the switch from the mapTypeControl object in
the map interface.

The final line is the line where our overlay operation happens:
map.overlayMapTypes.insertAt (0, osmMapType) ;

Here, the overlayMapTypes property is an array (google .maps .MVCArray). The
insertAt method of MVCArray inserts objects at the specified index, and we have inserted
our imageMapType object at index O.

More on google.maps.MVCArray

\ The google.maps.MVCArray array is a Google implementation of
~ the ordinary JavaScript array. You can construct an MVC Array from
Q an array. More details can be found at https://developers.
google.com/maps/documentation/javascript/
reference#MVCArray.

You can have multiple overlays over the Google Maps base maps. You must use the
overlayMapTypes property to set the associated orders for the overlay maps with the first
parameter of the insertAt method as follows:

map.overlayMapTypes.insertAt (1, anotherMapTypel) ;
map.overlayMapTypes.insertAt (2, anotherMapType2) ;

=

There's more...

Overlay layers are placed on top of the base maps, and it is a good practice to turn them
on and off to see the base maps. If you need to turn the overlay off, you need to include
the following code:

map.overlayMapTypes.setAt (0, null);

This makes the overlay layer go off the map interface, but remember that the slot in

the overlayMapTypes array is already allocated by the insertAt method. Therefore,
if you want to present your user with the opportunity to toggle the overlay layers on and
off (by means of a checkbox or so on), you can follow the given steps (copy the code of
your current recipe before proceeding):

1. Inthe <body> tag of your HTML code, add a checkbox:

<input type="checkbox" id="OSM" class="overlayMaps"
onclick="toggleOverlayMaps ()" />

<label
for="0SM">OpenStreetMap Layer</label>

2. Make osmMaptype a global variable outside the initMap () function:

var osmMapType;

3. Change the osmMapType declaration in your initMap () function to assign
the new global variable:
osmMapType = new google.maps.lmageMapType({
getTileUrl: function (coord, =zoom) {
return "http://tile.openstreetmap.org/" + zoom +
"/" + coord.x + "/" + coord.y + ".png";

b

tileSize: new google.maps.Size (256, 256),
name: "OpenStreetMap",
maxzoom: 18

1)
4. Replace the insertAt method with the pull (null) method:
map .overlayMapTypes.push(null) ;

5. Add an overlay layer toggling function:

function toggleOverlayMaps () {
var OSMLayer = document.getElementById ("OSM") ;
if (OSMLayer.checked)

{
}

map.overlayMapTypes.setAt (0, osmMapType) ;

Chapter 2

Adding Raster Layers

else

{
}

map.overlayMapTypes.setAt (0, null) ;

}

6. The main trick of the preceding code extract is to first open a space in the
overlayMapTypes array of the initMap () function. After that, you can call the
setAt () method to turn the overlay layer on or off.

Adding image overlays to maps

Overlaying tiled map services is a big capability on hand. It enables a variety of tiled map
services that come into the scene using the Google Maps API. The existing stock of tiled map
services are, in general, global map services, which means that they cover the whole world or
at least some continent/country.

We may be interested, for instance, to overlay a map for a university campus, having its rough
plan on hand. Or, we may have found some map of a historical sheet and want to make use of
it. Or, we may have an internal building plan of a particular building and we would like to see
this building plan on top of Google Maps.

Is it possible to overlay these microscale images on top of Google Maps? Yes, certainly! In
fact, technically, there would be no difference between using campus plans or building plans
instead of tiled map services as overlays. The important thing to note is that those plan
sheets should be aligned as tiles similar to the tiled map services on top of base maps.

In this recipe, we will not go through the details of preparing the tiles, but using them by
means of the Google Maps JavaScript API. For convenience, we will use the plan of Google
1/0's 2010 venue at Moscone Center, San Francisco.

There are tools to prepare image tiles which can be used as overlays.
The most prominent ones are MapTiler (www.maptiler.org)and

GDAL2Tiles (http://www.klokan.cz/projects/gdal2tiles/).
g With these tools, you can georeference, rectify, and tile your images for the
zoom levels of your choice.

Getting ready

We can use the code from the Using different tile sources as base maps recipe, as very few
modifications are required.

Chapter 2

How to do it...

You will have an overlay layer—a building—on top of the Google Maps base maps if you follow
the following steps:

1. Insert a bounds object:

var bounds = {
17: [[20969, 20970], [50657, 5065811,
18: [[41939, 41940], [101315, 10131711,
19: [[83878, 838811, [202631, 202634]],
20: [[167757, 167763], [405263, 405269]]

}i

2. Replace the osmMapType object with the buildPlanMapType object:

var buildPlanMapType = new google.maps.ImageMapType ({
getTileUrl: function (coord, =zoom) {
if (zoom < 17 || zoom > 20 ||
bounds [zoom] [0] [0] > coord.x ||
coord.x > bounds[zoom] [0] [1] ||
bounds [zoom] [1] [0] > coord.y ||
coord.y > bounds[zoom] [1] [1]) {
return null;

}

return
['http://www.gstatic.com/i02010maps/tiles/5/L2 '
, zoom, ' ', coord.x, ' ', coord.y,
'.png'l.join('");

'

tileSize: new google.maps.Size (256, 256),
name: "Google IO Building Plan",

maxzoom: 20

3N

3. Change the last line to:
map.overlayMapTypes.insertAt (0, buildPlanMapType) ;

=]

Adding Raster Layers

4. Center the map on the Moscone Center:

map.setCenter (new google.maps.LatLng(37.78320, -
122.40421)) ;

== =
[localhost/recipes/ch2_im: x \
« C [localhost/recipes/ch2_image_overlays.htm 7| @ r QP 8 =
[ArcGIS_Network_An.. | '] Readltlater [MarkAs Read ['] ReadingList (] ASP.NET MVC (] GIS Business » [C] Other bookmarks | f
=
Image Overlays —
MEtreon | & Samovar - . A
e Tea Lounge V)| Map | Satellite il
S > - . Yerba Buena
' W = Chronicle Gardens Festival -~
Lever T Cancierge Nova Books
Nail 5;
v =S New York
comingﬁ].e's & Shades
lagzes T~ g
+ |
&
%
=) ;
P child
&) Creal
2 Muse
&) Sprint =
=y A " Budget San =
Francisco (n -
Rent-A-Car Todco g]{;ﬁ.ﬁ
)
Yerba Buena
Square A
The Green Shopping Center o
Door =y
- Rassak
o Experience i
Lk InterContinental s = | &
& San Fraheisoe v Map data §2013 Gaogle Sanbom TermsofUse Reparta map emor

You can see the building floor plan supplied as an image organized in tiles on top of the
Google Maps base maps in the preceding screenshot.

You may have observed that the main structure stays the same as in the previous recipe.
First, you define a google .maps . ImageMapType object and then overlay it on top of
base maps by using the overlayMapTypes . insertAt array of the map object.

The only change introduced in this recipe is due to the example building plan's boundaries
(bounding box). In the previous recipe, the boundaries of the overlaid tiled map service were
of the world, whereas in this recipe, we have limited it to the building, comparably on a much
higher scale.

=)

Chapter 2

Therefore, we have included the bounds object defining the boundaries in terms of tile
coordinates for each zoom level. We have limited the zoom level from 17 to 20 as lower zoom
levels (<17) would not show the building in a sensible fashion. The building would be just a small
rectangle in zoom levels 16 and 15, and it would not show up in zoom levels lower than 14.

For each zoom level property in the bounds object, we have an array of x and y tile
coordinates, x being the first and y being the second. Inside these arrays, the lower and upper
bounds for the tile coordinates are found.

At this point, you may be wondering how these specific numbers are found:

var bounds = {
var bounds = {
17: [[20969, 20970], [50657, 5065811,

}

These numbers are actually the tile coordinates that intersect with the boundaries of the
Moscone Center as shown in the following screenshot:

7] Z =
= 5
-

X (2 2 ~
17.(20969;50657) % |17 (20970, 50657) = centertor |1
llig Bt W@ =% O the Arts

& mithste & P
) 8 Market 5t _2’;\‘3 o
(= .::.\é’.:
Appirio -
A *
Stfo) < (=) TRUSTe o Yerba Buena
_-\DQ s Gardens
& - 7
R . 1 ") Moscon
logmingdale’s 3 05Cone
City College of San fiyh Center North
Francisco-Downtown |
Campus 4 e
stifeld San - ‘fp“
ncfpco Centre = Ko
Samovar Tea -
o Lounge: Yerba /
= Buena Gardens
- - =
1720969, 50658) = |17 (20976; 50658) 1
) W& S o
%, < a8 & cleat
Children’s
Creativity
2 Museum
Artists Alley
- ! o3 Yerba Buena
oo ’ ,\}b Square
i\\‘\\ 6:'*' Shopping Center
e @ &
& o
p = o
InterContinental > 2
San/Francisco .\\\\(\ \'.
<~
L ¥
-
A)\5} Lulu (11
T MN0a0 SNAS0ON oo AT INVOYVTE SNELESON 17

vww allitebooks.conl

http://www.allitebooks.org

Adding Raster Layers

You can observe that in the 17th zoom level, the x coordinate must be between 20969 and
20970, and the y coordinate must be between 50657 and 50658 for our image overlay.

The bounds object is used to create constraints for a restricted number of zoom levels to
fetch tiles in the definition of the buildPlanMapType object's getTileUr1l function. The
function for the getTileUr1 property checks each tile coordinate against the bounds
object's items, so that the API does not try to fetch tiles that do not intersect with the
boundaries of the building plan.

Changing the transparency of overlays

The Google Maps JavaScript API supports third-party tiled map services or images to

be overlaid on top of base maps. However, there is a problem with the overlay layers; they
come on top of base maps and make them invisible. Of course, you can turn them on or
off according to your choice; however, this is not a solution if you want to see the base
maps together with the overlay layers.

In fact, you can just modify the opacity of the overlay layers to see the base maps and
the overlay layers.

This recipe is focused on changing the transparency of the overlay layers introduced in
the last two recipes.

Getting ready

We can use the code introduced in the Adding tile overlays to maps recipe of this chapter
and modify it a little to achieve the result. Be sure to copy the code of the recipe first.

How to do it...

You will be able to make your overlay layer transparent after completing the one-step
operation presented in the following code:

1. Just change the osmMapType object:

var osmMapType = new google.maps.ImageMapType ({
getTileUrl: function(coord, zoom) {
return "http://tile.openstreetmap.org/" + zoom +
"/" +coord.x + "/" + coord.y + ".png";},
tileSize: new google.maps.Size (256, 256),
name: "OpenStreetMap",
maxzoom: 18,
opacity:0.6

=

Chapter 2

2. You can adjust the transparency of your overlay layers as shown in the following

screenshot:
/[localhost/recipes/ch2_ove % |
- C | [3 localhost/recipes/ch2_overlay_transparency.htm 7| A q] 9P 3=
7 ArcGIS_MNetwork_An.. | ReadItLater || Mark As Read [") ReadingList (T ASP.NET MVC (] GIS_Business » (T Other bookmarks
L1 L1 L] g
A
Overlay Transparency o
2 gl \; Map | Satellite
7 3 : e
< > JriabEreke iw Ayplert
W A k!
tiglakey
i
Basa
S "e
- ik
ki¢ { = geyr Kay
o . kargamak I
= A0 L] fﬁ%dra K Flemmdiy B E
- Tane i Cankaya o’ - 1cliry
r i
A ct i
‘v T
:])| ,// :
- rKODas i’ ; ./.ow"‘\"‘
amel -7 S
i At S [
= | i 1 4
Femell Hiserl ._
y Julbey - Beyr :
1 b
| Map data ©2013 Basarsoft. Google : TemsofUse —

Changing the transparency of overlay layers is very simple. Adding the following code to the
imageMapType object does our work:

opacity:0.6

The opacity property of the imageMapType object makes the incoming tiles transparent
according to the values supplied. The value for the opacity property must be between 1 and
0, where 1.0 stands for fully opaque overlays, while O stands for fully transparent overlays.

@]

Adding Raster Layers

Creating a heat map

The Google Maps API lays the foundation for several map-based analysis, including heat
maps. A heat map is a form of visualization that shows the concentration of points through
gradient color scales.

Points, in this respect, may be the representation of any geographically represented items
such as hospitals, houses, schools, measured values of sea pollution tagged with coordinates,
the location of waste collection bins, and so on. The list is practically infinite.

Heat maps are very important inputs for geostatistics. In a map display, you capture the
intensity in a moment compared to the sole display of the locations of points:

Google
3

The preceding screenshot depicts the location of the OpenStreetMap points layer in istanbul,
Turkey, as of July. You might just get an idea of where the concentration of points is from

the preceding screenshot, but the following screenshot shows it more clearly. The most
intensely concentrated locations are colored in red, whereas lesser concentrated locations
are in yellow. And, as you might have guessed, the green-colored locations are the least
concentrated ones.

SNED

Chapter 2

-
Google s el L. = I
= Map data £2012 Basarsoft Google Imagery £2013 TemaMatrics | Terms of Use

In this recipe, we will create a heat map from a set of points using the Google Maps JavaScript
API. It is worth noticing that this feature is not available within the standard Google Maps API;
you need to load the visualization library to the APl as shown in this recipe.

Getting ready

We can use the first recipe of Chapter 1, Google Maps JavaScript API Basics, as a base,
because we do not need to reiterate the code for the map display. Please do not forget
to copy the code from the original recipe before editing for this recipe.

How to do it...

You will have a heatmap overlay from the set of points you use if you follow the given steps:

1. Reference the visualization libraries where you reference the Google Maps API:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
sensor=false&libraries=visualization">

</scripts>

Adding Raster Layers

2.

Open up a new text file in the same directory that contains our HTML file and name it
ch2 heatMapPoints.js

Create an array of google.maps . LatLng objects (the complete array consists
of 217 objects, which you can get from the downloaded code) in the newly created
JavaScript file from the previous step:

var heatmapPoints = [
new google.maps.LatLng .0182827999113,28.973224999734) ,
.0150707003526,28.9764445996386) ,
new google.maps.LatLng .01140130003,28.9831846001892) ,

(41
new google.maps.LatLng (41
(41
new google.maps.LatlLng(41.0148609002104,28.9764469999292
(41
(41
(41

’

new google.maps.LatLng .0149687001455,28.9764550002981
.0148247996249,28.9757389996552

.0020956002318,28.9736237995987

’

new google.maps.LatLng

’

)

)

)
new google.maps.LatLng)
1:

’

Reference the ch2 _heatMapPoints. js file in your HTML code:
<script type="text/javascript"
src="ch2 heatMapPoints.js"></script>
Create the heatmap layer:

var heatmap = new
google.maps.visualization.HeatmapLayer ({
data: heatmapPoints

13N
Add the heatmap layer to the map:

heatmap.setMap (map) ;

Chapter 2

7. You should now have your heatmap overlay from your set of points, as shown in the
following screenshot:

T — =T o

-

; [localhost/recipes/ch2_he: x o e el

& - @ |[Y localhost/recipes/ch2_heatmaps.htm 7 @ ™ =
= \
|1'| Mark As Read ﬁ Reading List] ASP.MET MVC (] GIS_Business » [] Other bookmarks

T ArcGIS_Metworlk_An... D Read It Later

Heatmaps

-

m

SHIRIKIELCEI

E..:ustanu
Kadikiiy. yap,
dikiiy-y Em.kapa-ﬂah-arﬁ v
Ky Deniy o
t

Joogle gt 4
G '€ et Map data @2013 ft GoogleImagery /5 2 Digital i

Firstly, creating a heatmap layer in the Google Maps JavaScript API requires the
visualization library of the API to be added to the section where the Google Maps

JavaScript API is referenced:

&libraries=visualization

-

Adding Raster Layers

With this addition, you can use the google .maps.visualization.HeatmapLayer object
to create the heatmap layers.

The google.maps.visualization.HeatmapLayer object needs a JavaScript array or
the google .maps.MVCArray object (an array) in which its elements are the google .maps.
LatLng objects:

var heatmap = new google.maps.visualization.HeatmapLayer ({
data: heatmapPoints

3N

The google.maps.LatLng object is constructed with two parameters with a longitude
and latitude coordinate pair, to mention a point:

new google.maps.LatLng(41.0182827999113,28.973224999734)

We have created the array object and its contents with 217 points in another JavaScript file,
because it would take too much space in our original HTML file. Also, it is a good practice
to have our data and related objects in another file to avoid potential structural problems.

Finally, we can add our heatmap layer to our current map with the following code:
heatmap.setMap (map) ;

As you can toggle the overlay layers introduced in the previous recipes, you can also toggle
the heatmap layers with the following:

heatmap.setMap (null) ;

There's more...

Heat maps are created from a set of points, and these points can be at different places as
well as the same places. In other words, multiple google . maps . LatLng objects may be
placed at the same place. The following code is an example:

new google.maps.LatLng(41.0182827999113,28.973224999734) ,
new google.maps.LatLng(41.0182827999113,28.973224999734) ,
new google.maps.LatLng(41.0182827999113,28.973224999734)

This will increase the intensity of this point; it will be likely to be seen in red in the heat map.

But what if the instances of the google .maps . LatLng objects sharing the same coordinate
pair increases? One method is to copy the lines as shown in the preceding code. However,
there is another smarter way:

{location: new
google.maps.Latlng41.0182827999113,28.973224999734) ,
weight: 3

b
=

Chapter 2

This object is google.maps.visualization.WeightedLocation, and it takes two
properties: one is the google .maps . LatLing object, and the other one is weight. This
weight parameter takes any numeric value representing the occurrence count of the points.

By default, the LatLng object itself has a weight of 1. Therefore, having a
WeightedLocation object with the weight property set to 3 is equivalent to having the
same LatLng object.

The WeightedLocation and LatLng objects may be used together in the array supplied
for the heatmap layer's data property.

The heatmap layer's object possesses a range of options including gradient, radius,
opacity, maxIntensity, and dissipating.

The gradient option takes an array of colors:

var gradientScheme = [
'rgba (0, 0, 255, 0)',
'rgba (0, 60, 200, 1)'
'rgba (0, 120, 120, 1)°',
'rgba (125, 125, 125, 0)',
'rgba (125, 120, 60, 0)',
'rgba (200, 60, 0, 0)',
'rgba (255, 0, 0, 1)

1;
You can set the gradient property by adding a property to the HeatmapLayer constructor:

var heatmap = new google.maps.visualization.HeatmapLayer ({
data: heatmapPoints,
gradient: gradientScheme

13N
Alternatively, you can set the options later:

heatmap.setOptions ({
gradient: gradientScheme
1)

The dissipating option is for adjusting the pixels needed to show intensity across zoom
levels. Its default value is false, and this allows more pixels to be colored per point for
intensity when the zoom level is increased.

By using the maxIntensity property, you can scroll up or down the heatmap layer:

heatmap.setOptions ({
maxIntensity: 2
1)

s

Adding Raster Layers

The preceding code makes this recipe's output greenish because the intensity is increased.
More points at the same location are required to make the heat map look reddish.

You can tweak the radius property to adjust the radius of the intensity for each point.
The unitis in pixels.

You can create heat maps using Fusion Tables in the cloud, which will be introduced later in
the book. There are pros and cons when creating a heat map in either a browser or the cloud;
this will be discussed in detail later in the book.

Details on the LatLng object and its use to create point vector overlays will be covered in
the next chapter.

Adding the traffic layer

In today's world, the condition of traffic is very important information in cities. If there is an
accident on the way or a recent construction that blocks an important street, it affects your
whole day. How useful would it be to have real-time traffic information directly on your maps?

The Google Maps JavaScript API has a very handy aspect that lets you have traffic information
fed on a real-time basis on top of your base maps.

In this recipe, we will cover how to display traffic information on your Google Maps.

Getting ready

We can use the first recipe of Chapter 1, Google Maps JavaScript APl Basics, as a
base for the basic map display. After copying the code of the original recipe, you can
proceed forward.

How to do it...

Here are the steps to show the traffic layer:

1. Firstly, change the center of your map to a location where the traffic layer is served
(details will be available in the How it works... section). For instance, for Barcelona,
Spain, use the following values:

center: new google.maps.LatLng(41.3854, 2.1822),

2. Construct the TrafficLayer object:

var trafficlLayer = new google.maps.TrafficLayer() ;

5]

Chapter 2
3. Addthe TrafficLayer object to the map:
trafficLayer.setMap (map) ;

4. You can see the traffic layer colored according to the density of the real-time
traffic condition as shown in the following screenshot:

| = |EBl| &
[localhost/recipes/ch2_trai x
\ = : —T - R 5 = |
&« C | [localhost/recipes/ch2_trafficLayer.htm v @ M@ 3=
[ArcGIS_Network_An... || ReadItLater | | Mark Az Read Q Reading List O] ASP.MET MVC [GIS_Business » [Other bookmarks
-
Traffic Layer —
i | Map | satellice |
ﬂ'r’n 1rr|0 I
__\ Parc GueH ’. Clot
El Baix Provengals
\ Suinarde’ /‘r' Pohlen LGk
.. frsi 4 Gracia
anava (R
\ e Vilade / I!(
- latie AGlories
b'»p = Gracia®

%
A
. !
S NEaL
e e

[Les Corts

|
//" i Villarsdel 3
a5 Corts La Nova Es: 11?1/
R -: de PEixamafle
3} / 8
ﬁk_ \ BN
| N
“=—— ! 3ants-Hada| = _m'sa_:%.d'? — A
= 2\ 7
\ / W £l Poble-sec s
3
i a Boggleta + - 2
\\5 L — Parc de =
=\ | Nfontie . .
et] =5 < a2l e ppoyalh ¥ cel
R = - o =, o & €
; y(& !“D* ':!wna
/ :) e
i v
@ o awmm@jm
\ Sants - égl B
o | 4
/_ Montjuic / e Map data ©2013 Google basado en 50N IGN Espafia | TemsoflUse Reports map emor

In the first step, you might have noticed that we have switched to Barcelona, Spain, because
in some countries, the traffic layer is not available. For the list of countries with the availability
of traffic layers, you must view the spreadsheet at http://gmaps-samples.googlecode.

com/svn/trunk/mapcoverage filtered.html. You can filter the traffic column to see
all the countries with traffic layers.

The construction of the TrafficLayer object and its addition to the map is straightforward.
There is no property involved in the construction of the TrafficLayer object.

You can toggle the TrafficLayer object off with the following code:

trafficLayer.setMap (null) ;

vww allitebooks.conl

http://www.allitebooks.org

Adding Raster Layers

Adding the transit layer

Public transit lines have immense importance in cities, especially for tourists and foreigners
in the city. Mapping these transit lines (bus, underground, and so on) onto the base maps of
several cities is a tedious task, and this is what the Google Maps JavaScript API offers through
its special objects.

In this recipe, we will add transit layers to the Google Maps map interface.

Getting ready

Continuing from the previous recipe, Adding the traffic layer, will simplify our work, as we will
only replace the TrafficLayer object with TransitLayer classes. Remember to copy the
code of the original recipe.

How to do it...

Here are the steps to show public transit lines as an overlay:

1. Delete TrafficLayer related lines (the last two lines).

2. |Instead of the TrafficLayer object, use the TransitLayer object:

var transitLayer = new google.maps.TransitLayer () ;

3. Addthe TransitLayer object to the map:

transitLayer.setMap (map) ;

4. You can see the public transit lines as an overlay on Google Maps in your
area of preference as shown in the following screenshot:

NED

Chapter 2

- [=]=] =&]
/[localhost/recipes/ch2_trar % | =
(: — —— =]
| & C | [3 localhost/recipes/ch2_transitLayer.htm v @ E’b = |
[ArcGIS_Network_An... |j Read Tt Later |_"| IMark As Read m Reading List (] ASP.MET MVC (] GIS_Business » [Other bookmarks
| i -
Transit Laver =il
[A ol | e [ap | Sacelite |
P i) (2 L“lnn'er] :
(< > % Parc Giiell d
N - FI Baix b 1 e
| 5 . Gracia .) jamaide /
[¢ Vila De / SfGres Y
SL Gracia® \ \ _/'
| I £ £l Poblenou
[/
A £
| %%v 8 Ia\ |2 Olimpica
ol q el Poblenoll
] P N
Clutadella , Port'Dlimpie =
25 Corts
) LaBarcelonetal
-'-"-'—.
El Pable-sec U’% Balearic Sea
o . Parc de =3
N 5
. Montjuic ' o i
o™ G tEstd z i gt £
genei® _garcelon®
et] \;wuﬂ“"“
; w
& s (I8 g5
Sants - ’;',* 4 pasce™™
i o A
_MOHUUIC O\o’“ e Map data £2013 Google basado en BCNIGN Espafia | Termsoflse | Reporta map emor =

The transit layer is offered in certain cities around the world, and you can find the complete
listing of these cities at http://www.google.com/intl/en/landing/transit/.

The TransitLayer object can bring multiple colored public transit lines. The color choices
are not random; they are selected based on distinct transit line operators.

The construction and display of the TransitLayer object is the same as the
TrafficLayer object.

s

Adding Raster Layers

Adding the bicycling layer

It is good to have the information about the cycling paths and common routes on top of
base maps; Google Maps offers this as an overlay layer.

In this recipe, we will introduce the bicycling layer and its usage as an overlay in the Google
Maps JavaScript API.

Getting ready

Continuing from the previous recipe, Adding the traffic layer, will simplify our work, as we will
only replace the TransitLayer object with the BicyclingLayer classes. Remember to
copy the code of the original recipe.

How to do it...

The steps required for showing the cycling paths and routes are presented as follows:

1. Change the two lines containing TransitLayer, supplanting the BicyclingLayer
object instead of the TransitLayer object:
var bicyclingLayer = new google.maps.BicyclingLayer () ;
bicyclingLayer.setMap (map) ;

2. You can observe the cycling paths and routes on top of the Google Maps base
maps as shown in the following screenshot:

&)

Chapter 2

. e - T s P [o5 e]
/ [localhost/recipes/ch2_bic k% =
[3 localhost/recipes/ch2_bicyclinglayer.htm o =
< C' [localhost 2 t w e ™
3 ArcGIS_Metwork_An... [ReadIt Later |j Mark As Read || Reading List (C7] ASP.NET MVC (] GIS_Business » [Other bookmarks
Bicycling Laver =
- - , - -
‘e i Navas . | map | sarsliie |
o ;"- Guinfrdo
< 2 Pafe Giiell Clot” /
v = El Baix o Is
: N /‘.r:;z

Vilaf)e & Glories
(‘rwla- G |

o
. d.U\acz\“‘

Dretade
I'Eixample
% 2 + B
el
e Y =5
}/ o LesCorts e Y‘ a8 =
Py : Villarroe 7
H La Nova Esquerra A
e EDTt: de [Eixample
B 3
~ n\ u‘\ :
ParC e’ r
Sants-Badal Jaan Mird—t—:zy-Paral lg|————
- i3 L) .
El Poble-sec ’% Balearic Sea
La Bordeta > o
Pasc de =
Monfilge . €3
e de et gt
] cat™ ol 4 AR i a,ES
Y z 5 i parcel®”
et - it
g o : oo Tie e
¢ & _gendi®
o z\pna.?—s
I Sants - = Bal® I
ol £ ¥ A
> ! Montjuic o e Map data 2013 Google basado en BGN IGN Espafia | TermsofUse | Repora map emor s

The bicycling layer has its own subdivisions reflected in its styles; the dark green routes
represent the paths dedicated for cycling, while the light green ones represent streets with

bike lanes. Lastly, the dashed routes represent the bicycle paths and streets recommended
for use, but are not dedicated.

The steps to display the bicycling layer are totally identical to the transit or traffic layers, so
there is no additional detail for the specifics of the bicycling layer.

[ei-

Adding Raster Layers

Adding the weather and cloud layers

Information on the temperature and weather conditions coupled with a map display
is very common in weather reports on TVs; Google has put a feature in its API so that
we can have this information in our own maps.

In this recipe, we will learn how to display weather-related information on top of base
maps as overlays.

Getting ready

We can continue on from the Creating a simple map in a custom DIV element recipe from
Chapter 1, Google Maps JavaScript API Basics, as we do not need to go into detail for the
basic map display.

How to do it...

Here are the steps to show the respective temperatures and cloud conditions in your maps:

1. Add the weather library to the end of the reference for the Google Maps
JavaScript API:
<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
sensor=false&libraries=weather">
</scripts>

2. Change the center and zoom of the map in the mapOptions object so that
we can make use of the related layers:

center: new google.maps.LatLng(38.0, 20.4),
zoom: 5,

3. Construct an instance of the google .maps.weatherLayer object named
weatherLayer:

var weatherLayer = new google.maps.weather.WeatherLayer

({
temperatureUnits:
google.maps.weather.TemperatureUnit.CELCIUS

3N

4. Add weatherLayer to the map:

weatherLayer.setMap (map) ;

&

5. Construct an instance of google.maps.weather.cloudLayer hamed
cloudLayer:

var cloudLayer = new google.maps.weather.CloudLayer () ;
6. Add cloudLayer to the map:

cloudLayer.setMap (map) ;

7. You can see the respective temperatures and cloud conditions in your Google Maps
application as shown in the following screenshot:

Chapter 2

= | = 22
| 7] localhost/recipes/ch2_we: x "* Google Maps x
| « C [} localhost/recipes/ch2_weatherLayerhtm w e M3 BE =
| ArcGIS_Metwork_fin... | ReadltLater || Mark AsRead || Reading List ASP.MET MVC GIS_Business » Other bockmarks
(] | | [g 5] [" J
| Weather Lavers 2
c 220G T ; 23°C__" | s T —
oges L3 Evzof‘t_ 1,.26°C ~ i Zagrebjlt ™ Sl Map | Satellite
-~ J = Milan e 2 i LY
<318 e, 2 270
) \ / - o L
~ L \‘\ o V&; -:-".-gﬁc:l:areat & Eevastonay
oc 7) 25°C N (o TARS P e T
% 23°C i 3 -.T(’SSara]evn \ ks
ulouse = E’; s by e n
| @ Marseille & AR
| md AT
RS e
| 23°C o R 1 25°C
27°C | + A Rome T 4 D et Abana
Barcelora R iy | g d w2 R 27°C
& Ban T / Lo lstanbul
4 arc - & i
+ Paima de Mallorca R 2TC
<= Cagliari 28°C r
5 27° -, 28°C i Tl - (=
b alsgna £ Patoa . g |
'.‘ o & 27°C Y 28°C
e o Avtalya =
G Constanting -, 26°C el g:
j,) % Mosta -, 28°C ~
i { % 27°C b Iraklion e 27°C ;
| e n.Cr‘ Sfax \%—\' Limassol 5
- 28°C (Y
= Laghouat \ £
Y [e 58
s L) st Tripoli . 27°C IR
T - 28°C
(a gﬁaﬁ]la B b A Benghazi e Lo Tel Aviv_—
AT 3 ! N
) \ == Iersa Matruh 3
{26°c (e\ 7
| Gadamis \ < e Cairo ! A
1 e 1 23°C) 355 Boti s Tonforhition: [|

In order to see weather-specific layers, we have to reference the weather libraries exactly in
the same way we have referenced the visualization libraries for the heatmap overlays.

We have changed the center and zoom of the map for a purpose. The zoom is set to 5 as
cloud layers are only visible between the zoom levels of O and 6. Also, we have arranged

the center of the map in the Mediterranean to view a couple of countries with the weather
information of their big cities.

(&5}

Adding Raster Layers

It is important to note that together with the weather layers, administrative labels such as
street and city names are not shown. Also, the weather layer is applicable between the zoom
levels of O and 12.

In the construction of the google .maps.weather.weatherLayer object, you can specify
the temperature units through the temperatureUnits property. The possible values are
defined in google .maps.weather.TemperatureUnit:

google.maps.weather.TemperatureUnit .CELCIUS
google.maps.weather.TemperatureUnit . FAHRENHEIT

You can add the weatherLayer and cloudLayer layers to the map by calling their
respective setMap () method and supplying the map object as the only argument.

Displaying the weather layer, you view the cities' weather conditions with the temperature
information fed by http://www.weather.com. The icons displayed on top of the cities will
change according to the real-time weather, whether it is the sun, clouds, or rain. Also, clicking
on an icon will open a detailed popup showing the weather conditions for the next four days.

You can tweak additional properties besides temperatureUnits for the weatherLayer
object. You can suppress the detailed pop-up window or you can set the units for the wind
speed and so on.

. More about WeatherLayerOptions
)

~ The complete listing on WeatherLayerOptions can be found at
https://developers.google.com/maps/documentation/
javascript/reference#fWeatherLayerOptions.

Chapter 2

Adding the Panoramio layer

Panoramio is a geotagged photo-sharing website. This means you can upload your photos
provided you geotag (georeference) them. Geotagging involves attaching a coordinate pair
to the target object, whether it is a photo, video, or any other resource. You can find detailed
information on how to use Panoramio at http://www.panoramio.com/.

You can view Panoramio photos on Google Maps, and this recipe will cover the basics of how
to do it.

Getting ready

We can continue on from the Creating a simple map in a custom DIV element recipe
from Chapter 1, Google Maps JavaScript APl Basics, as map display basics are already
covered here.

As always, please copy the original recipe before proceeding.

How to do it...

You can overlay the variety of Panoramio image stocks on top of Google Maps if you follow
the steps presented:

1. Add the Panoramio library to the referenced libraries:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
sensor=false&libraries=panoramio">

</scripts>

2. Construct a new google.maps .panoramio.PanoramioLayer () object named
panoramioLayer after the creation of the map object:

var panoramiolLayer = new
google.maps.panoramio.PanoramioLayer () ;

]

Adding Raster Layers

3. Add the panoramiolLayer object to the map:

panoramiolayer.setMap (map) ;

4. You can now have the Panoramio images overlaid on top of Google Maps as shown
in the following screenshot:

ﬁ o|E] =
[localhost/recipes/ch?_par %

- [localhost/recipes/ch2_panoramiolayer.htm = |
&« C' [localhost 2 ht 7 @ (70 |

reGIS_Metwork_An... | Read It Later [arl ea [eading List ¥ . Business » er bookmarl

1 ArcGIS_N kA Read It L Mark As Read ['] Reading List [ASP.NET MVC [CJ GIS_Bi [Other book ks|
Panoramio Layer o
5 - Cig s = Y g | | Suzewungg
|

| Map | Satellite | |
-g%r-rp-_ltr-,n!.ql::.\
T ol m

g -. x ._._.\._-_!a'r!!*! 4
< > Orlaﬁgreke{ i Feth.',lé T i
G A - S Ahm gradil L 1 |
=

Kislakoy a v = |

miE .gnimk'-'l

m

Evciler
=1 .|

= L}
L1
|, i =
adl - i =
= Bragei
= &)
, -'
L4 mz-Map data ©2013 Basarsoft, Google:-Ferms of Use L&

Adding the Panoramio layer is technically no different from what we did in the previous
recipe. We add the related reference library, construct the layer, and add it to the map
in the same pattern.

You can click on the thumbnail photos and a detailed pop-up window will open. In this popup,
you can view the photo in a larger size along with its name and the username of the person
who uploaded the photo.

(&)

Chapter 2

There's more...

The Panoramio layer provides extra capability to customize the overlay layer. For instance,
you can restrict the photos by filtering tags using the setTag () method:

panoramiolLayer.setTag ("Eiffel") ;

This will filter the displayed thumbnails to the ones that include the Ei ffel keyword in
their tags.

Also, you can filter according to the user ID by calling the setUserId () method, supplying
the userId string as an argument.

You can also suppress the detailed pop-up window that opens by using the
suppressInfoWindows property that the PanoramioLayer object takes:

var panoramiolLayer = new
google.maps.panoramio.PanoramiolLayer ({

suppressInfoWindows:true

More about PanoramioLayer

~ The complete listing on PanoramioLayer can be found at
https://developers.google.com/maps/documentation/
javascript/reference#PanoramioLayerOptions.

Adding Vector Layers

In this chapter, we will cover:

» Adding markers to maps

v

Adding popups to markers or maps

» Adding lines to maps

» Adding polygons to maps

» Adding circles/rectangles to maps

» Adding animated lines to maps

» Adding the KML/GeoRSS layer

» Adding GeoJSON to the Google Maps JavaScript API
» Adding WKT to the Google Maps JavaScript API

Introduction

This chapter is about vector layers, which are completely different from raster layers. This
chapter gives you the most common and important recipes that you may need while working
with the Google Maps JavaScript API.

In the GIS world, both the vector and raster layers are used in different cases. Vectors are
used for representing the Earth's features in most cases. For example, Points of Interest
(POI), such as coffee shops or restaurants, are shown with points; rivers or roads are shown
with polylines; and parks or buildings are shown with polygons. As it is seen here, there are
three different vector types: point, polyline, and polygon. Remember that all vectors consist
of points, which are the building blocks of vectors.

In the Google Maps JavaScript API, all types of vectors are called overlays. In addition to
vectors, popups and symbols are also included in overlays. All the recipes related to them
are included in this chapter.

Adding Vector Layers

Maps are mostly used for visualization, so static maps are not enough in some cases. Some
animations added to polylines make a difference. For example, showing the flow direction with
rivers is remarkable for scientists. The Google Maps JavaScript APl also supports animated
polylines, which is one of the recipes in this chapter.

The Google Maps JavaScript API is a great APl with support for KML and GeoRSS, but some of
the industry de facto standards are not supported out of the box, such as GeoJSON and WKT.
GeoJSON and WKT are the most used vector publishing formats in the industry, especially in
open source libraries. These formats will be supported by additional libraries, which are also
included in this chapter.

Let's start to explore the recipes.

Adding markers to maps

Maps are used for many cases in websites, but the most used one shows the location of a
company or business. The location of a company or business can be called a POl in the LBS or
GIS sector and this is a point type of the vector layer. In the Google Maps JavaScript API, POls
or points are shown as markers.

This recipe shows how to add markers to maps using the google.maps . LatLng and
google.maps.Marker classes.

Getting ready

In Chapter 1, Google Maps JavaScript API Basics, you learned how to create a map. So, only
the additional code lines that will add markers are covered in this recipe.

You can find the source code at Chapter 3/ch03_adding markers.html.

How to do it...

The following are the steps we need to add both standard and icon markers to maps:

1. Let's add the minimum and maximum values of latitudes and longitudes of bounding
box (BBOX) to limit our random markers' area. This bounding box almost defines the
area that Turkey covers. Also markerId is defined to name the random markers. All
variables must be defined outside the function:

var minlLat = 36,
maxLat = 42,
minlng = 25,
maxlng = 44,
markerId = 1;

Chapter 3

2. Add the following function after the initMap () function. This function starts
listening to the click events of the buttons:

function startButtonEvents () {
document .getElementById ('addStandardMarker') .
addEventListener ('click', function()
addStandardMarker () ;
1)

document .getElementById('addIconMarker').
addEventListener ('click', function()
addIconMarker () ;
1)

}

3. Add the following function after the startButtonEvents () function. This function
creates a random latitude and longitude according to the values given at the
beginning of this section and returns the google.maps . LatLng object.

function createRandomLatLng() {
var deltalat = maxLat - minLat;
var deltalng = maxLng - minLng;
var rndNumLat = Math.random() ;
var newLat = minLat + rndNumLat * deltalat;
var rndNumlng = Math.random() ;
var newlng = minLng + rndNumlLng * deltalng;
return new google.maps.LatLng (newLat, newlLng) ;

}

4. Then, the addstandardMarker () function is added. This function creates the
standard Google Maps red marker. It gets the random LatLng object value from the
function created in the preceding step. There is a commented line in the code block
that will be explained later:

function addStandardMarker () {
var coordinate = createRandomLatLng() ;
var marker = new google.maps.Marker ({
position: coordinate,
map: map,
title: 'Random Marker - ' + markerId
1)
// If you don't specify a Map during the initialization
//of the Marker you can add it later using the line
//below
//marker.setMap (map) ;
markerId++;

}

5. There is also another function named addIconMarker () described in this step.
This is used for adding random markers with random images:

7}

Adding Vector Layers

function addIconMarker () ({
var markerIcons = ['coffee', 'restaurant fish',
'walkingtour', 'postal', 'airport'];

var rndMarkerId = Math.floor (Math.random() *
markerIcons.length) ;

var coordinate = createRandomLatLng() ;

var marker = new google.maps.Marker ({
position: coordinate,

map: map,
icon: 'img/' + markerIcons [rndMarkerId] + '.png'
title: 'Random Marker - ' + markerId

|3

markerId++;

}

6. Finally, we will add HTML tags to finish the code. These links will help to trigger the
functions defined in event listeners:

Add Standard Marker
Add Icon Marker

7. Go to your local URL where your HTML file is stored in your favorite browser and see the

result. Initially, you will see an empty map. Then click on the links on the map to add
random markers. The final map can be seen as shown in the following screenshot:

=

L o c localhost/recipes/ch03_adding_markers.html

Chapter 3 - Adding Markers
Add Standard Marker Add Icon Marker

ST / ‘Moldova . Zaporizhzhya Rg¥tov-on-Don Wen T Satellite
ey § i Mykolaiv tei O S SEeN
#~ % Hungary Cluj-Napoca ik o N
az’, 7y o qnsmau » ; R)\
J Vs i |i Odesa
\L Romania !
Bucharesl Se\rasmpol'
N Serbia
5 Black Sea
- Ty fla I
i (\ KOM Bulgaria
Monte iegro
Macednnlar Plovdiv j-d;\" B B i
[Tiranao {(FYROM i _g\\/
Albania
oThessa) s
| Ak Azerbaijan 2B
ursa y
1 Greece
d Tu \
mr Athens - o
£ ! Tabriz
: ana k
nia - , nlglya o %
= a Eu po
v A v
Mediterranean C!plw - Syfia
Sea Lehanun }
_J/‘o Damasc us/ Bagh{lado
h_/ .
Ben%hazi ,\mmano
(2 00gle Alpxandria k) Jorda
it Map data ©2013 AutoNevi, Basaraoft Geo s s DE/EKS (82009), Gaogle, Mapa GISmel, ORION-ME. basado en BCN IGN Espsia Termaof Use

Chapter 3

As seen in the preceding screenshot, we created a map with both the standard and icon markers.

Google Maps uses the Web Mercator projection system for its tile system, but the coordinates
are still in GPS coordinates based on WGS 84 Datum. Coordinates are based on latitudes and
longitudes that are between -90 to 90 and -180 to 180 degrees respectively. The combination
of a latitude and longitude defines a point on Earth. The Google Maps JavaScript API uses

the google .maps.LatLng class to create a point. This class is also used in Chapter 1,
Google Maps JavaScript API Basics, to set the center of a map. The following line defines the
coordinates of Istanbul, Turkey:

var istanbul = new google.maps.LatLng(41.038627, 28.986933);

The google.maps.Marker class creates the marker with one required parameter, google.
maps .MarkerOptions. The MarkerOptions class also has one required parameter that
is named as position. This parameter gets the google .maps . LatLng object to define
the coordinates of the marker. In the code, there are also the map and title parameters
that are not required, but they are needed to show the marker on the map and set the title of
the marker respectively. If you want to show the marker immediately after the creation of the
marker, you should use the map parameter. But in some cases, you want to create markers
and show them on the map later. In such a case, you should use the setMap method of
marker with your map reference.

var marker = new google.maps.Marker ({
position: new google.maps.LatLng(41.038627, 28.986933)

13N

marker.setMap (map) ;

If you want to remove the marker from the map, you must set the map value to null. Do not
forget to keep a reference of your markers in order to remove them from the map:

marker.setMap (null) ;

Default markers with red icons are not suitable for all cases. The Google Maps JavaScript

API lets you customize the icon of a marker. Basically, you should add the icon parameter to
google.maps.MarkerOptions to customize the marker icon. This parameter accepts three
different types: String, the google.maps. Icon object, or the google.maps.Symbol
object. If you have a simple icon image, you will use the string type with a path to the image.
Otherwise, you will create the icon or symbol objects to set a complex visualization for the
marker. Showing an icon via a String parameter can be done as follows:

var marker = new google.maps.Marker ({
position: coordinate,
icon: 'img/coffeeshop.png',

title: 'My Coffee Shop'

1) s

(75}

Adding Vector Layers

There's more...

In this recipe, random coordinates are used to show markers. If you have a data source

that includes coordinates, you could easily add them to the map with JavaScript techniques
without changing anything while creating the marker. Please be sure about the JavaScript
asynchronous behavior while adding markers to the map from external sources because your
data will not be available when you need it due to asynchronous behavior.

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript APl Basics

Adding popups to markers or maps

Almost every mapping application has an ability to display information related to the features
shown on it. Showing all the related information on the map at the same time is an impossible
mission for a developer and it is also useless for users. Instead of showing all the information
on the map, developers add interaction to points, polylines, or polygons that show the related
information with different techniques such as popups or info windows.

Popups or info windows can hold anything that can be written in HTML tags, such as pictures,
videos, or standard text.

You will see something like the following screenshot, if you get through to the end of the recipe:

= [localhost/recipes/ch03_adding_popups.him|
Chapter 3 - Adding Popups
Add Standard Marker with Popup
P e i & \Moldova Zaporithzhya Rgétov-on-Don e
H £ ciuj-Mapoca NCELN] | Mykolany gt © DO S
st S cl,‘ :.:1\5:\ =} i =
w) (3" desa P
] Romania
‘-.g ey
LB & jiaand) Al Bucharest Sevastopol
Hi' rgovina- i A It
N4 5 Serbia (2~ " PopupContent:
~ o .
2 ARosovor 1 %ua Bulgaria This popups show the center of Ty
Montefegro {5 st ° | map,which is Ankara, Turkiye Georgia
L Macedonia) Plovdiv o ",
Tranac {(FYAoM) L~ 3] N Tblish
Albania T g qpagsatoniki. w "; 2
i Ritsa AMAra Marker Info Window - 1D:2 % NI"\:_““
Greece 5 AR
e Turkey !
Athens b
© Kngya i
nia Antalya Adana
= »ﬂ‘l_égliﬁ s
\.J- ey
g
Mediterranean Cypris : Syria) o
Sea 4 {
Baghdad
ighdac 2 .
Irag f\
Benghaz: Amni) - b "1\
. Alsxandria .7 Jordan— S g
Map fata ©2013 AutaNav., Basarsof. GeoBasis-DE/BKG (S2009) Goog)e Mapa GiSrael, ORION-ME. basado en BCNIGN Espafia | Temsof Use

7

Chapter 3

Getting ready

This recipe is the modified version of the previous recipe named Adding markers to maps.

You can find the source code at Chapter 3/ch03_ adding popups.html.

How to do it...

You can easily add popups to markers or maps by performing the following steps:

1.

First, the initMap () function is modified by adding the following code lines after
creating the map object. This will open an info window or popup at the center of the
map when the map first initializes:

var infowindow = new google.maps.InfoWindow ({
content: '<div style="width:200px; height:100px;
">Popup Content :

This popups show
the center of map, which is Ankara, Turkiye</divs>',

position: new google.maps.LatLng(39.9078, 32.8252)

13N
infowindow.open (map) ;

Next, add the following function to listen to the click events of the button defined
in the HTML:

function startButtonEvents () ({
document .getElementById ('addStandardMarker!') .
addEventListener('click', function(){
addStandardMarker () ;

3N
}

The startButtonEvents () function must be called on initializing the map,
so the following line is added to the initMap () function after map is initialized:

startButtonEvents () ;

Then, the addStandardMarker () function is modified by adding the following
code lines after the creation of the marker:

var infowindow = new google.maps.InfoWindow ({
content: 'Marker Info Window - ID : ' + markerId

3N

google.maps.event.addListener (marker, 'click', function() {
infowindow.open (map, marker) ;

3N

Adding Vector Layers

5. Goto your local URL where your HTML file is stored in your favorite browser and take a
look at the result. You will see an info window at the beginning of the map. You will also
click on the link on the map to add random markers, but these markers are different
from the ones before because they will open a popup when the user clicks on them.

The Google Maps JavaScript APl has a default InfoWindow class to create info windows or
popups. This class can be initialized in two ways. One way is to give a location at info windows
options with the LatIng object. By using this, you can open a popup on the map wherever you
want. This can be attached to a function or an event. For example, you can attach the click
event to the map to query something from the server and show the result in the popup. This is
common for the Google Maps JavaScript API. The following code creates an info window at the
location of 39.9078 (latitude) and 32.8252 (longjtude) with the HTML content. Its open method
with the map input shows the info window attached to the given map reference:

var infowindow = new google.maps.InfoWindow ({
content: '<div style="width:200px; height:100px; ">Popup
Content :

This popups show the center of map,
which is Ankara, Turkiye</divs>',
position: new google.maps.LatLng(39.9078, 32.8252)

13N

infowindow.open (map) ;

Another way to use popups is by binding them to markers. Instead of giving a location,
info windows will be anchored to a marker object. The infoWindow object given in the
following code does not have a position property, which means it will be anchored to a
marker object. Remember that marker objects are subclasses of the MVCObject class
in Google Maps JavaScript API. They are a type of anchor parameter of the open method
of the InfoWwindow class:

var infowindow = new google.maps.InfoWindow ({
content: 'Marker Info Window - ID : ' + markerId

P
google.maps.event .addListener (marker, 'click', function() {
infowindow.open (map, marker) ;

13N

There is an event attached to marker in the preceding code, which is the subject of Chapter
5, Understanding Google Maps JavaScript APl Events. So use the code as it is written; this will
be explained in detail later, but basically this code snippet listens to the marker object and
opens the created infowindow object on the click event.

As it is seen in this recipe, you can use both simple strings and complex HTML content
within the info windows. This means you can even add YouTube videos or Flash content
inside info windows.

7@

Chapter 3

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript APl Basics

» The Adding markers to maps recipe

Adding lines to maps

Lines or polylines in GIS are an array of points connected to each other to show features on
Earth such as roads, paths, or rivers. The properties of polylines on maps are similar to the
properties of features represented on Earth. For example, a road is differentiated on Earth by
its color and width. The same properties are also defined in the Google Maps JavaScript API to
exactly represent the road on the map.

This recipe is focused on showing lines/polylines on a map to show a route from Istanbul
to Ankara.

Getting ready

This recipe uses the same map creation process defined in Chapter 1, Google Maps
JavaScript API Basics, but there are some minor changes in the zoom level and center
coordinates to show the route in detail.

You can find the source code at Chapter 3/ch03 adding lines.html.

How to do it...

If you want to add line-type geometries to your map, you should perform the following steps:

1. Let's open our first recipe's source code mentioned in Chapter 1, Google Maps
JavaScript API Basics, and save it as adding lines.html.

2. Then, add the following lines of code after defining the map object at the beginning of
the JavaScript part of the code. The array defined in this step is the route coordinates
in latitudes and longitudes from Istanbul to Ankara:

var lineCoordinates = [
[41.01306,29.14672], [40.8096,29.4818],
[40.7971,29.9761], [40.7181,30.4980],
[40.8429,31.0253], [40.7430,31.6241],
[40.7472,32.1899], [39.9097,32.8216]

1

Adding Vector Layers

3. Then, create the addpolyline function:

function addPolyline () {

}

We need to create a new array composed of LatLng objects from the array defined
at the beginning in the function:

//First we iterate over the coordinates array to create a
// new array which includes objects of LatLng class.
var pointCount = lineCoordinates.length;
var linePath = [];
for (var i=0; i < pointCount; i++)
var tempLatlng = new google.maps.LatLng (
lineCoordinates[i] [0] , lineCoordinates[i] [1]

)
linePath.push (tempLatLng) ;

}

Then, we need to create the polyline object as follows:

//Polyline properties are defined below
var lineOptions =
path: linePath,
strokeWeight: 7,
strokeColor: '#FF0000',
strokeOpacity: 0.8

}

var polyline = new google.maps.Polyline(lineOptions) ;

Let's add the polyline object to map:

//Polyline is set to current map.
polyline.setMap (map) ;

Now, call the addPolyline () function at the end of the initMap () function
as follows:

addpolyline () ;
Go to your local URL where your HTML file is stored in your favorite browser and see

the result. You will see a red route from Istanbul to Ankara on the map, as shown in
the following screenshot:

@

Chapter 3

ocalhost/recipes/ch03_adding_lines.htm
localhost/recipes/ch03_adding_lines.htm!
Chapter 3 - Adding Lines
- . jJunbosial | Map | Satellite |
A-\J\\:”.M h ineigolu TAyancik” ®
¢ » s Gatalzeytin *
lirne. :
il s akirklareli Bartin Devrekani
1 g ebyrgaz Sar Zonggidk castamany Tk
1 f Karadeniz -
it = Lok Karabiik Arag
° chlu Kavakl $'§|| Eregli Dewrek 9 ;
+ Mu{r)ath = e Karasu® o Akgakoca 3 Tosya Dsmancik
Cesan [Tekirdag ; Diizce 98z o
3 exirdag Gebze it Sakarya olu
IZe =
Yal?.wa ; Golcik Gankine COLUITI
Bandirmaﬂ'K b Bursa
kale SLACANEY o=l Z Sungurlu
y |ne§ol rsaklar i
Mustafakemalpaga< 2
Eskisehir [irkkale . Sorgt
uk © Ediemit Balikesir 3 Polathi Golbas: Keskin Yozgat
4 o Dursunbey = ! L o
Kiitahya | Seyitgazi
- Q o % Kar;'lan
ifteler
sogna ¢ : kil Klrsoehir Bogaz
L Emirdadg : TR o
Bergama | Akhisar 5 e Sereflikoghisar Tu
- Afyonkarahisar Ortakaoy
Foga". " Manisa Heak) >Bolvadin 1 Nevgehir,
b . 75 it A
Menemen 5*‘2“" e $U°U ay. A Eskil
-] Sy I < Aksehir skil” Aksaray
T lzmir Odemis Giyril Sandiklig= 4, aie lgin w
H a5 a - Yalvag N
O 57 Dinar Map data 2013 Basarsoft, Google, Mapa GiSrael, ORION-ME , Terms of Use

Thus, we have successfully created a map with a line-type geometry on it, which is the route
from one place to another in this case.

As stated before, polylines consist of points. Points are defined by the LatLng class in the
Google Maps JavaScript API, so an array of latitudes and longitudes should be converted to
the LatLng array. The following code block creates a new array composed of LatLng objects.
To do this, a classic approach of iterating an array via a loop is used as follows:

var pointCount
var linePath =

for (var 1=0;

var tempLatLng

lineCoordinates.length;

[1;

i < pointCount;

i++) |
= new google.maps.LatlLng(lineCoordinates[i] [0],

lineCoordinates[i] [1]) ;
linePath.push (tempLatLng) ;

(7]

Adding Vector Layers

A route will be created by the Polyline class that takes the instance of the
PolylineOptions class as a parameter. There are many properties of the
PolylineOptions class, but we only added the most used ones.

The path property that defines the route feature contains an array of LatLng objects.
The strokeWeight property is used in order to define the width of the line in pixels. The
strokeColor property defines the color of the line in the String type as a HEX format
with a leading # symbol.

The strokeOpacity property usage can be optional, but it can be useful while showing
multiple layers. This parameter gets a value from 0.0 to 1.0. 0.0 means your line is invisible
and 1.0 means your line is not transparent. If you have multiple layers, you should define the
opacity of your lines to show other features or layers.

This recipe shows the static route defined in the HTML; but in some cases, you can load
data from a remote source. In this case, you should change the path array via the method
of the Polyline class setPath (). This method gets the same array defined in the
PolylineOptions class. For example, you create a new path array named newRoute.
To change the coordinates to the new route, you should call the following:

polyline.setPath (newRoute) ;

If you want to remove polyline completely from the map, then you should set the map
property to null or call the setMap (null) method of the Polyline class.

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Adding polygons to maps recipe

Adding polygons to maps

Polygons are similar to polylines that are an array of points connected to each other. However,
polygons are closed loops to show Earth features such as parks, parcels, or regions. In
addition to the properties of polylines, polygons have a fill region inside.

This recipe is focused on showing polygons on a map to show a region around Ankara.

Getting ready

This recipe uses the same map-creation process defined in Chapter 1, Google Maps
JavaScript API Basics, but there are some minor changes in the zoom level and center
coordinates to show the region in detail.

You can find the source code at Chapter 3/ch03 adding polygons.html.

(&)

Chapter 3

How to do it...

If you perform the following steps, you can add polygon-type geometries to your map:

1. Let's open our first recipe's source code mentioned in Chapter 1, Google Maps
JavaScript API Basics, and save it as adding polygons.html.

2. Then, add the following lines of code after defining the map object at the beginning of
the JavaScript part. The array defined in this step is the area coordinates of a random
region in latitudes and longitudes around Ankara:
var areaCoordinates = [

[40.0192,32.6953], [39.9434,32.5854],

[39.7536,32.6898], [39.8465,32.8106],

[39.9139,33.0084], [40.0318,32.9260],

[40.0402,32.7832],[40.0192,32.6953]
1;

3. Then create the addPolygon function:
function addPolygon () ({

}

4. We need to create a new array composed of LatLng objects from the array defined
at the beginning in the function:

//First we iterate over the coordinates array to create a
// new array which includes objects of LatLng class.
var pointCount = areaCoordinates.length;
var areaPath = [];
for (var i=0; i < pointCount; i++) {
var tempLatlng = new google.maps.LatLng (
areaCoordinates[i] [0] , areaCoordinates[i] [1]) ;
areaPath.push (tempLatLng) ;

}

5. Then, we need to create the polygon object as follows:

//Polygon properties are defined below
var polygonOptions = {
paths: areaPath,
strokeColor: '#FF0000 ,
strokeOpacity: 0.9,
strokeWeight: 3,
fillColor: '#FFFFOO',
fillOpacity: 0.25
}

var polygon = new google.maps.Polygon (polygonOptions) ;

s

Adding Vector Layers

6. Let's add the polygon object to map:
//Polygon is set to current map.
polygon.setMap (map) ;

7. Now, call the addPolygon () function at end of the initMap () function as follows:
addPolygon () ;

8. Go to your local URL where your HTML file is stored in your favorite browser and see

the result. You will see a yellow region surrounded by a red boundary around Ankara,
as shown in the following screenshot:

L2 > localhost/recipes/ch03_adding_polygons.html
Chapter 3 - Adding Polygons
Cigdemci \ i Gilldarp
- | e Map | Satellite |
A . \ : . ; senboga ——
< Ortabiereket Fethiye IIJ'fBitik imrendi Yesilova Mh. Pkl Akyurt
Ulupinar A\ L i
v Kiglakgy Orhaniye Balikhisar Ahmetadil
Bayran) Yenikent /
Miilk J ih Sara
: { Saray Memlik Fatih y
] Yenikent m-' Pursaklar
Bagayas Akgadre -+ Pegenek
Aya ¥ N\ ST I -2 | A
+] /Y8 Yenikent T MER Eog Seryod Itl:zﬁv: \
) A9 Kavakl Hasanoglan YE;"?EFE
i atnl
i Ostim Mh \ Fatih Mh.
an N
Atatiirk Forest 8,
Gikler Farm and Zoo 13 iGokceyun \
E3 Atatiirk Qriakiy D200
Chrman Gifthigi Ankara
Tekke
Tatlar = vildinm Elmadag
. Beyazit Mh.
Yenipegenek 5
Yapracik]
2 L\ I Karacahasan
|
; F v |
Temelli Yukariyurtgu § ,-:Vr akupebda
- Tiirkobas L~
Temelli o200} _Golbasgi
Malkdy Ballikuyumcu Evciler
I Deliler
Temelli pushla Yurtbeyi
; Alagdz Temelli
Poyraz Temelli Hisarlik Koparan R
e . Yavrucuk
& {
Olukpinar Temell Velihimmetli Ogulbey Beynam Cavuslu
200 Temelli Ucret Gokgehdyiik 4
fo} Gokdren L Map data £2013 Basarsoft, Google TerngofUse

9. This is how we add polygon-type geometry to our map.

The Polygon class is much like the Polyline class in the Google Maps JavaScript API.
There are minor differences between the Polyline and Polygon classes, so we will get
into the details of these differences only in this recipe. Please refer to the previous recipe
for more details.

[

Chapter 3

As stated in the previous recipe, the Polygon class creates objects with the help of the
PolygonOptions class that includes many parameters for polygons. There are path,
strokeWeight, strokeColor, and strokeOpacity parameters shared with the
PolylineOptions class. The usage and purpose of these parameters are the same for both
polygons and polylines. The main difference is that polygons fill an area. There must be some
new parameters to define the polygon fill.

The fillcColor property defines the color of the fill area in the String type as a HEX format
with a leading # symbol. The £i110pacity property usage can be optional, but it can also be
useful while showing multiple layers at the same time. This parameter gets a value from 0.0 to
1.0. 0.0 means your polygon is invisible and 1.0 means your polygon is not transparent. This
parameter is more important in polygons than in polylines because polygons fill areas, which
can be an obstacle for some markers or polylines.

Adding or removing the polygons has the same APl usage as polylines, so there is no need
to talk about it here.

One last thing to mention is that polygons are a closed version of polylines, so we add the
same coordinates both at the start and end. This is a good usage but not necessary. Even if
you do not add the end coordinates, which are the same as the start coordinates, the Google
Maps JavaScript APl will close the polygon without any errors.

» The Creating a simple map in a custom DIV element recipe in Chapter 1,
Google Maps JavaScript API Basics

» The Adding lines to maps recipe

Adding circles/rectangles to maps

Circles and rectangles are similar to polygons in that they have stroke and fill colors, weights,
and opacities. The main difference between them and polygons is in defining the geometry.
As seen in the previous recipes, the PolygonOptions class has a path parameter that
consists of an array of LatLng objects. On the other side, the CircleOptions class has
the center and radius parameters, and the RectangleOptions class has bounds
parameters for defining the geometry of the Circle and Rectangle classes respectively.

In this recipe, we will go through adding circles according to the population of cities and a
rectangle to map bounding to Turkey. The result map will show the bounding box of Turkey
and major cities' population in a graph.

&)

Adding Vector Layers

Getting ready

In this recipe, we will use the first recipe defined in Chapter 1, Google Maps JavaScript API
Basics, as a template in order to skip map creation.

You can find the source code at Chapter 3/ch03 circle rectangle.html.

How to do it...

Adding circles or rectangles to your map is quite easy if you perform the following steps:

1. Let's start by creating a new empty file named circles rectangles.html. Then,
copy all the code in the HTML file that was introduced in the Creating a simple map in
a custom DIV element recipe of Chapter 1, Google Maps JavaScript API Basics, and
paste it into a new file.

2. Add the following lines for defining the global variables used in the functions:

// Defining coordinates and populations of major cities in
// Turkey as Ankara, Istanbul and Izmir
var cities = [{
center: new google.maps.LatLng(39.926588, 32.854614),
population : 4630000

2

{

center: new google.maps.Latlng(41.013066, 28.976440),
population : 13710000

1

{
center: new google.maps.Latlng(38.427774, 27.130737),
population : 3401000

}

1

// Defining the corner coordinates for bounding box of

// Turkey

var bboxSouthWest = new google.maps.LatLng(35.817813,
26.047461) ;

var bboxNorthEast = new google.maps.LatlLng(42.149293,
44.774902) ;

3. Then, add the addCircle () and addRectangle () functions before the
initMap () function:

function addCircle() {

}

function addRectangle() {

}

Chapter 3

Now, add the following code block into the addCircle () function to initialize
the circles:

// Iterating over the cities array to add each of them to // map
for (var i=0; i < cities.length; i++) {
var circleOptions = {
fillColor: '#FFFF00',
fillOpacity: 0.55,
strokeColor: '#FF0000',
strokeOpacity: 0.7,
strokeWeight: 1,
center: cities[i].center,
radius: cities[i] .population / 100
Vi
cityCircle = new google.maps.Circle(circleOptions) ;
cityCircle.setMap (map) ;

}

Next, add the following lines to the addRectangle () function to initialize
the rectangle:
var bounds = new google.maps.LatLngBounds (bboxSouthWest,
bboxNorthEast) ;
var rectOptions = ({
fillColor: '#A19E98',
fillOpacity: 0.45,
strokeColor: '#FF0000',
strokeOpacity: 0.0,
strokeWeight: 1,
map: map,
bounds: bounds

Vi
var rectangle = new google.maps.Rectangle (rectOptions) ;

Then, change the zoom level and center of the map according to your needs
inthe initMap () function. This example uses the following parameters:
var mapOptions = {

center: new google.maps.LatLng(39.9046, 32.75926),

zoom: 5,

mapTypelId: google.maps.MapTypeId.ROADMAP

Vi
Finally, add the addRectangle () and addCircle () functions at the end of
the initMap () function as follows:

addRectangle () ;
addCircle() ;

Adding Vector Layers

8. Gotoyour local URL where your circles rectangles.html file is stored in your
favorite browser and take a look at the result. You will see the map with three circles
and a grey rectangle behind them, as shown in the following screenshot:

LS c localhost/recipes/ch03_circle_rectangle.html

Chapter 3 - Addmg Circles and Rectanglus

R - A N
| OBudapest ! Mcldovj\ Mykolaiv Zaporizhzhya anslovbon-[‘lnn Map | Satellte
r:gr ~ CIu]-Noapoca chlg L‘,ﬂ?’l 5
Bl 2
s _ (r} Ddesa Q\\
ffozb,.ca Romania
ia v
f\\/; m" Buchcaresl Seue %‘0[’0'
L"-\— EG"‘"“‘? Serbia RESa
+F Black Sea "
Sofia
(LK“WG { o Bulgaria
Montenegro — Georgia
Macedonia Plcwdw R b 9 o st
Tiranao | (FYROM) H \ Thilisi~_
Albania aThessaloniki "l /
| Ll \ _ Antxa Armenia~ Azerbaijan °F
el \ J
Greece et ?TQ’
i Turkey i
T Athens O/ K
' =3 ugya 4 ; «\ Tagriz
mia | Antalya g —)
o 2 [iepro e / Mosul
e P \x_~<
Mediterranean Cy‘_pm ~a Sy /
Sea Lebandn
o ODamascu§/ Baghdado
i = \ Iraq
Benghazi Amimian)
-] ==
L00gle Alexandria by Jordan

Map data 3’201 3 AutoNavi, Basarsoft, GeoBasis-DE/BKG [MOOQJ Google MapaGlSrael ORION-ME, basado en BCM IGN Espafia_ Terms of Use

This is the result of the recipe that shows both the circles and rectangles at the same time on
the map. This can be a good example to visualize your tabular data on maps.

First, let's talk about the circles. Circles are types of polygons, except they are defined by a
center in the LatLng object with a radius in meters instead of paths. Other parameters are
the same as the PolygonOptions class.

In this recipe, first three cities of Ankara, Istanbul, and lzmir, are selected. The center and
the population of these cities are defined using JSON objects in the array. The centers of cities
are defined in LatLng objects, so there is no need for extra conversion. The following code
block iterates over the cities' array and creates a circle with a center parameter defined in
the JSON object:

var citiesLen = cities.length;
for (var i=0; i < citiesLen; i++) {

~[ee]

Chapter 3

var circleOptions = {

fillColor: '#FFFFO0O',

fillOpacity: 0.55,

strokeColor: '#FF0000',

strokeOpacity: 0.7,

strokeWeight: 1,

center: cities[i] .center,

radius: cities[i] .population / 100
Vi
cityCircle = new google.maps.Circle(circleOptions) ;
cityCircle.setMap (map) ;

}

The radius parameter is defined as a parameter of population, that is, population divided by
100; it shows the magnitude of a population. As seen on the map, the higher the population,
the larger the circle. This can be used as a visualization of the population distribution

without knowing the exact numbers. As seen, the other parameters, such as fillColor,
fillOpacity, strokeColor, strokeOpacity, and strokeWeight, are used in the same
way as in the PolygonOptions class. The setMap () function is also used as it is used in
the polygon or polyline recipes.

The other element, the rectangle, is also a type of polygon, except that its geometry is defined
by the LatLngBounds object. In theory, the LatLngBounds object is composed of two
LatLng objects that are defined as the southwest and northeast coordinates of a rectangle.
These coordinates can also be defined as the minimum and maximum points of latitudes
and longitudes. In this recipe, the rectangle defined shows the bounding box of Turkey. BBOX
can be used for simple geometric calculations such as "point in polygon" or "intersection".
Using BBOX in calculations gives fast results because of the simple geometry, but there is
always an error in this calculation. As seen in the preceding screenshot, some areas are not
on the border of Turkey, but they are in the bounding box. If you want to get the geometries
to intersect with Turkey using the BBOX method, you can easily get other geometries that are
outside the real geometry object of Turkey. As you can see, using the BBOX approach gets
some geometries at the intersection of BBOX that can be outside the real area. The usage of
the Rectangle class is as follows:

var bounds = new google.maps.LatLngBounds (bboxSouthWest,
bboxNorthEast) ;

var rectOptions =
fillColor: '#A1l9E98',
fillOpacity: 0.45,
strokeColor: '#FF0000',
strokeOpacity: 0.0,
strokeWeight: 1,
map: map,
bounds: bounds

}i

var rectangle = new google.maps.Rectangle (rectOptions) ;

7}

Adding Vector Layers

The Google Maps JavaScript API gives many opportunities to developers that can make their
life easier. Circles and rectangles can both be used for geometries or other visualization
techniques in your applications.

There's more...

In this recipe, we add circles and rectangles without any order. The most recently added one

is shown in the preceding map. In this example, a rectangle is added first in order to show

the circles better. If you want to change the display order of markers, info windows, polylines,
polygons, circles, or rectangles, you should change the zIndex parameter of the option classes
or change them via the setZIndex (3) or setOptions ({ zIndex: 3 }) methods.

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Adding lines to maps recipe
» The Adding polygons to maps recipe

Adding animated lines to maps

Polylines are the representations of Earth's features on the Earth, but sometimes, they are
not enough to show the mobility of Earth features. For example, a river can be shown with
the help of polylines, but the flow direction of the river can't be demonstrated by the polylines
alone. Animating polylines can be a solution to show the mobility of Earth features. The flow
direction of a river can be shown with the help of animated polylines.

The Google Maps JavaScript APl has a symbol feature that can add vector-based images
to a polyline in the form of a symbol. You can create your own symbol with the help of the
Symbol class, or you can also use the predefined symbols that are accessed from the
SymbolPath class.

In this recipe, we will create an animated polyline from the previous recipe. This animation
shows that a car is moving from Istanbul to Ankara.

Getting ready

In this recipe, we will use the fourth recipe of this chapter as a template.

You can find the source code at Chapter 3/ch03 animating line.html.

Chapter 3

How to do it...

The following are the steps that are needed to add animated line-type geometries to your map:

1.

First, start by copying the contents of ch03 adding lines.html to your new
HTML file.

Then, add the following line after the map object to make it global. This is used while
animating the line:

var polyline;
Change the function name from addPolyline () t0 addAnimatedPolyline ()
and add the following code block to define your symbol:

// Defining arrow symbol

var arrowSymbol = {
strokeColor: '#000',
scale: 3,

path: google.maps.SymbolPath.FORWARD CLOSED ARROW

b

Next, change the polyline options as follows:

var lineOptions =
path: linePath,
icons: [{
icon: arrowSymbol,
offset: '100%'

1,
strokeWeight: 3,
strokeColor: '#FF0000',

strokeOpacity: 0.8

}

Now, add the following function call to start the animation that will be defined right
after the following step:

// Calling the arrow animation function

animateArrow () ;

Add the following function block before the initMap () function:

function animateArrow() {

var counter = 0;

var accessVar = window.setInterval (function() {
counter = (counter + 1) % 200;
var arrows = polyline.get('icons');
arrows [0] .offset = (counter / 2) + '%';
polyline.set ('icons', arrows);

}, 50);

Adding Vector Layers

7. Finally, change the function call from addPolyline () t0 addAnimatedPolyline ()
in the initMap () function to add the new animated polyline:
addAnimatedPolyline () ;
8. Go to your local URL where your HTML file is stored in your favorite browser and
take a look at the result. You will see an arrow animating animating the route from
Istanbul to Ankara on the map, as shown in the following screenshot:
[e localhost/recipes/ch03_animating_line.html
Chapter 3 - Adding Animated Lines
oma Uzunbodjak Map | Satellite
pchiz A Yaynbonxax 4 Inebolu ~pyarek™ R
,j@, ¢ :'\v-ﬂ’"" 2ol Gatalzeytin
1gne V oKirklareli Bartin Devrekani
Liileburgaz Saray Zonguldak Kastaitong STeabpin
\ Karadeniz | o i
GO avaidi - Sisli Eiegyy o Kbtk c A
Murath © = & Karasu® “Akgak Devek
‘ Qo B0 kiidar Gakoca ligaz Tosya Osmancik
epan Tekirdag Diizce 3
Gebzec
| Ya!%va Gankire COLum
Bandirma® Bursa
Be Kara ga_bey o Beypazan Sungurlu
i ursaklar =
Mustafakemalpaga© ¥ o
Eskisehir \ K'"Iéka!_e o Sorgu
:ik Edl.gmit Balikesir " R Polath Gdlbagr ° Keskin Yozgat .
@ Dursunbey = . . - a
Kitahya | Seyitgazi 5
- a x s Karg'nan
iftel 5
Sogna G t.e-er S I<1r$°ehil Bogag
Bergama | Akhisar Emifeag *Serefikoghisar Tu
; Afyonkarahisar Ortakd
goca Manisa U%Bk = =Bolvadin s Nevsehir "
Rienomar Saﬂhli' Suhut o ; N
o = ° Aksehir Eskil™ Aksaray
| 1zmir Odemis Givril — Sandikh vaf 5 llgn °
MG ; < : alva
e - ER nga" % Map data ©2013 Basarsoft, Google, Mapa GiSrael, ORION-ME , Terms of Use

As a result of this recipe, we can add the animated line-type geometry to our map, which
shows the movement of a vehicle on a route.

Animating polylines includes a trick with the JavaScript set Interval method and the
Google Maps JavaScript API's icons property of the PolylineOptions class. As stated,
you can create your own symbol or use the predefined ones.

5]

Chapter 3

Predefined symbols can be accessible via the SymbolPath class, which is shown in the
following screenshot, as it is in the Google Maps JavaScript APl document:

Name Description Example
google.maps.SymbolPath.CIRCLE A circle. O
google.maps.SymbolPath. BACKWARD_CLOSED_ARROW A backward-pointing arrow that is closed on all sides. V
google.maps.SymbolPath. FORWARD CLOSED_ARROW A forward-pointing arow that is closed con all sides. A
google.maps.SymbolPath. BACKWARD_OPEN_ARROW A backward-pointing arrow that is open on one side. v
google.maps.SymbolPath. FORWARD OPEN_ARROW A forward-pointing arow that is open on one side. A

In this recipe, we will use the FORWARD CLOSED_ ARROW type. This symbol is defined
as follows:

var arrowSymbol =
strokeColor: '#000',
scale: 3,

path: google.maps.SymbolPath.FORWARD CLOSED ARROW

Vi

The strokeColor property is used to define the color of the symbol. The path property is
used for defining the symbol type and the scale property is used for the size of the symbol.
You can also change the fillColor and £i110pacity properties of predefined symbols
like in polygons.

As seen in the preceding screenshot, the predefined symbols are limited. If you need more
types of symbols, you should define them yourself in the Symbol class. You need to define
custom symbols via the path property of the Symbol class with the SVG path notation.

The SVG path notation is the definition of the shape in SVG commands such as moveto (M),
lineto (L), or closepath (Z). For example, the following path notation defines a triangle:

var triangle = 'M 100 100 L 300 100 L 200 300 Z';

The explanation of the path notation is as follows: move to point (100,100), draw a horizontal
line from 100,100 to 300, 100, and draw a second line from (300,100) to (200, 300). This
shape appears as a triangle. Finally, the Z command is used to close the path. You can draw
any shape with this notation, but you should be aware of the area that will be available for the
map use. The Google Maps JavaScript APl allows a 22 x 22 px square area to show a defined
shape. If the shape is larger than this area, you should use the scale parameter to fit the
shape into the area. The following code block will change the predefined arrow shape to a
yellow triangle moving on the same route:

i

Adding Vector Layers

var arrowSymbol = {
path : 'M 100 100 L 300 100 L 200 300 Z',
anchor: new google.maps.Point (175,175),
scale: 0.15,
fillColor: '#FFFFOO',
fillOpacity: 0.8,
strokeColor: '#000000',
strokeWeight: 3

Vi
- & localhost/recipes/ch03_animating_line.html|
Chapter 3 - Adding Animated Lines
oma Uzunbodjak May :

A :: | p | Satellite
bt OGRS e
j < ? - Catalzeytin
fimne Y _eKirklareli Bartin Deviekari
1 - |_|'.‘|Ieb;.|rgaz Saray Zongouldak Kastamonu ° Taskoprd

M Karadeniz = ¥
T =10 Karabiik Arag
o C"J'” Kavakh Sisli Eregli Devrek 9 :
+ Murath 4 £80 00- Qi ar Karasu® > Akgakoca Tosya Oamar b
v Q 5 ligaz 2 3
{esan Tekirdag s Diizce :
) Gebze mit Sakgrya
o
valova Gankirie Gﬂng
Bandirmac b Bursa
Kale Karat::a ey o i Sungurlu
Mt negol ursaklar 2
ustafakemalpagas b
Eskiét;ehir X I(m!ékale , Sorg
3 i i 5 Keski
uk ~ Ediemit Ballke;ﬂ : Polath Golbas! Tein Yozgat
B ursunbey © = ST o
Kiitahya ' Seyitgazi
- o g b Kaman
Gifteler = 5
. Soma S i Kirgehir Boga:
mirda 0 !
Bergama | Akhisar A Sereflikoghisar T u
L iy
Afyonkarahisar Ortakdy
Foca ' Manisa Usak 4 >Balvadin o Nevsehir
o | © ihli hut o
Menemen SaL'h" o s . A Eskil Ak
o} W coril ~ Sandikh Aksehir oy saray
== lzmir Gdemis Giyril, ".5an o ligin 2
b E : Yalvag =
i gt £51 Dinar Map data ©2013 Basarsoft, Google, Mapa GiSrael, ORION-ME , Terms of Use

If you noticed, there is an additional parameter named anchor. This parameter is used to
define the position of the symbol relative to the polyline. If you do not add this parameter,
your symbol will be pinned to the polyline from the (0,0) point as a default. In general, using
the center of the symbol as an anchor point gives the best result. The anchor parameter
accepts the Point class. It also gets its x and y parameters in pixels.

The trickiest part of this recipe is the animation. In the animateArrow () function, we define
a trigger that animates the symbol defined before via the window. setInterval method at
every 50 milliseconds. An anonymous function is defined in this trigger as follows:

[

Chapter 3

function()
counter = (counter + 1) % 200;
var arrows = polyline.get('icons');
arrows [0] .offset = (counter / 2) + '%';
polyline.set ('icons', arrows);

}

This function gets the first object of the icons array and changes the of fset parameter of
the defined icon with the changing parameter according to the counter variable. Running
this function every 50 milliseconds moves the symbol over the polyline.

In the anonymous function, you may have noticed that the polyline object has the get ()

and set () methods, which are not defined in the documentation. Since the Polyline class
extends the MVCObject class, we can also use the methods of the MVCObject class. So,
we can use the get () and set () methods of the parent class.

Using symbols and timers can make different visualizations on the map without the need
of an extra library in addition to the Google Maps JavaScript API.

There's more...

SVG is the abbreviation of Scalable Vector Graphics. It is an XML-based vector image format
for two-dimensional graphics that support interactivity and animation. SVG is supported by
all modern browsers. It can be a good solution for mapping platforms in some cases, like this
one. SVG is a completely different subject, which is out of the scope of this book.

More about SVG path notation

More details can be found on the W3C site (http://www.w3.org/TR/
SVG/paths.html#PathData). There is also some editing software to

%‘ get path notations without learning the language. The following address
can be used for creating SVG and getting the path notation: http://
svg-edit.googlecode.com/svn/branches/2.6/editor/svg-
editor.html.

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript APl Basics

» The Adding lines to maps recipe

55}

Adding Vector Layers

Adding KML/GeoRSS layers

Keyhole Markup Language (KML) has been introduced in Google Earth, which was originally
named Keyhole Earth Viewer before Google bought it. KML became an OGC standard in
2008. It is an XML notation for showing features in geo-enabled viewers. GeoRSS is also an
emerging standard for sharing Earth features to show in geo-enabled viewers mostly used

by web feeds or services. Both these standards can be consumable with the Google Maps
JavaScript API.

In this recipe, dynamic services will be consumed via the Google Maps JavaScript API. We will
use the U.S. Geological Survey (USGS) web services to show recent earthquakes on maps.
These services are updated regularly to reflect recent events.

Getting ready

In this recipe, we will use the simple map recipe introduced in Chapter 1, Google Maps
JavaScript API Basics, as a template.

The source code of this recipe is at Chapter 3/ch03 kml georss.html.

How to do it...

You can add your KML/GeoRSS files to your map if you perform the following steps:

1. First, start by copying the contents of ch01_simple map.html to our new
HTML file.

2. Next, define the following variables as global variables:

var georsslLayer, kmlLayer;

3. Add the following function after defining the global variables. This function triggers
the adding of the GeoRSS feed to the map:

function addGeoRSSLayer () {
georssLayer = new google.maps.KmlLayer (
'http://earthquake.usgs.gov/earthquakes/feed/v1.0/
summary/4.5 month.atom') ;
georssLayer.setMap (map) ;

}

4. Then, add the other function after the previous one. This function also triggers
adding the KML feed to the map:

function addKMLLayer () {
kmlLayer = new google.maps.KmlLayer ('
http://earthquake.usgs.gov/
earthquakes/feed/v1.0/summary/2.5 month depth.kml');
kmlLayer.setMap (map) ;

}

=

Chapter 3

5. Now, add the following function, clearMap () , before the initMap () function:

function clearMap()
if (georssLayer != undefined)
georssLayer.setMap (null) ;
georsslLayer = null;

}

if (kmlLayer != undefined) ({
kmlLayer.setMap (null) ;
kmlLayer = null;

}

6. Next, add the following function to listen to the click events of the buttons defined
in the HTML in step 8:

function startButtonEvents () {
document .getElementById ('linkGeoRSS'
) .addEventListener ('click', function() {
addGeoRSSLayer () ;
1)
document .getElementById ('linkKML'
) .addEventListener ('click', function() {
addKMLLayer () ;
1)
document .getElementById('linkClearMap'
) .addEventListener ('click', function() {
clearMap () ;
1)
}

7. The startButtonEvents function must be called on initializing the map,
so the following line is added to the HTML file after the map gets initialized:

startButtonEvents () ;

8. Finally, add the following lines to the HTML body tag to trigger functions on clicking
the links:

<a 1d="1inkGeoRSS" href="#">Add GeoRSS Layer
<a 1d="1inkKML" href="#">Add KML Layer
Clear Map

[55]-

Adding Vector Layers

9. Go to your local URL where your HTML file is stored in your favorite browser and take
a look at the result. You will see an empty map at the beginning. When you click on
the links on the map, you will see two different layers on the map as follows:

& = localhost/recipes/ch03_kml_georss.html|

Chapter 3 - Adding KML/GeoRSS Layers
Add GeoRSS Layer | Add KML Laver | Clear Map

Map | Satellite

h $ %

+ o5 % o

Atlantic Atlantic
Ocean

AUSTRALIA Heatd

ANTARCTICA

ANTARCTICA

Terms of Use

As seen in the preceding screenshot, you can easily add your GeoRSS files or services to the
map with the Google Maps JavaScript API.

Chapter 3

- = localhost/recipes/ch03_kml_georss.html

Chapter 3 - Adding KML/GeoRSS Layers

Map | Satellite |
Hudson
Bay

NL

ON ac

NE bt SMA C
dnited Sigtes N O é‘\\n.
M s \
j‘\\u: L] North
WD Atlantic
ALMMEE 5C Ocean

NM

U LA
California A\ FL

“~— Gulfof
E @
= Carnbbean
ua

Mexico Mexico
Sea

O Map data £2013 Google, INEGI, MapLink = Tems of Use

This is the result of adding the KML layer to your map. With Google Maps JavaScript API, you
can easily add your KML files or services to the map.

Adding the KML/GeoRSS layer is the simplest one. There is only one class for adding both
the layers, named KmlLayer. This class reads the KML or GeoRSS feed from local or remote
locations and decides what to render. The usage of the class is very simple:

var vectorLayer = new google.maps.KmlLayer ('URL TO FEED') ;

After creating the layer, you must set the map with the setMap (map) method to show
the layer on the map. If you want to remove the layer from the map, you must use the
setMap (null) method as described earlier in the chapter.

Remember that Google Maps JavaScript API v3 does not have any function to clear all layers
or overlays like in v2. All the responsibility to handle the layer states is on your shoulders. In
practice, the Google Maps JavaScript APl documentation suggests you hold all layers in an
array and manage your own add/remove functions via the setMap () method. As we did in
the clearMap () function, we check if a layer is defined. If it is, we remove it; otherwise we do
nothing, so that we do not get an error.

o7}

Adding Vector Layers

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript APl Basics

Adding GeoJSON to the Google Maps

JavaScript API

XML is the first hero of services in the Web 2.0 zone. With the help of XML, services or
machines can easily communicate between them. XML can also be readable by humans. But
after browser evolution, JSON has become much more popular due to its native readability
for JavaScript and its lightweight compared to XML. GeoJSON is a form of JSON that includes
collections of simple features such as points, polylines, or polygons. GeoJSON is not a
standard of OGC, but it is a new de facto standard used by most GIS software or services.

The Google Maps JavaScript API does not support GeoJSON natively, but GeoJSON support will
be added with a few lines of coding or with some additional libraries. With coding, we will go
through the JSON format and read the coordinates one by one. Then, we will show the feature
on the map according to its type, which can be point, polyline, or polygon.

In this recipe, we will read GeoJSON from a local file via the jQuery functions and show them
on the map. This GeoJSON file is composed of a simplified version of the Ankara province
border, a sample river, and some POls.

Getting ready

In this recipe, we will use the simple map recipe introduced in Chapter 1, Google Maps
JavaScript API Basics, as a template.

You can find the source code at Chapter 3/ch03 adding geojson.html.

How to do it...

If you perform the following steps, you can add your GeoJSON files to your map:

1. First, start by copying the contents of ch01_simple map.html to our new
HTML file.

2. Next, we will add a jQuery JavaScript library to make it easy to access local or remote
GeoJSON files. In this recipe, we will add the library from Google CDN. This block will
be added in the <head> section before the Google Maps JavaScript API.

<script src="//ajax.googleapis.com/
ajax/libs/jquery/1.10.2/jquery.min.js"></scripts>

Chapter 3

3. Then, add the following drawGeometry () function after defining the global map
variable. This function draws each geometry read from the GeoJSON file. We have
three types of geometries, so we will switch blocks for each type:

function drawGeometry (geom) {

}

4. Now, add the following if block in the new function. This block will add geometry if
its type is Point:
if (geom.type == 'Point') {
var coordinate = new

google.maps.LatLng (geom.coordinates [1],
geom.coordinates [0]) ;

var marker = new google.maps.Marker ({
position: coordinate,
map: map,
title: 'Marker’'
I
}

5. Next, the if block is for LineString that shows polylines on the map:

else if (geom.type == 'LineString') {
var pointCount = geom.coordinates.length;
var linePath = [];
for (var i=0; i < pointCount; i++) ({
var tempLatlng = new

google.maps.Latlng (geom.coordinates [i] [1],
geom.coordinates [1] [0]) ;

linePath.push (tempLatLng) ;

var lineOptions =
path: linePath,
strokeWeight: 7,
strokeColor: '#19A3FF',
strokeOpacity: 0.8,
map: map
Vi
var polyline = new google.maps.Polyline(lineOptions) ;

}

6. Finally, the i £ block is used for showing the polygons as follows:

else if (geom.type == 'Polygon') {
var pointCount = geom.coordinates[0].length;

s

Adding Vector Layers

var areaPath = [];
for (var i=0; i < pointCount; i++) {
var tempLlatlng = new google.maps.LatLng (
geom.coordinates [0] [i] [1],
geom.coordinates [0] [i] [0]) ;

areaPath.push (tempLatlng) ;

var polygonOptions = {
paths: areaPath,
strokeColor: '#FF0000',
strokeOpacity: 0.9,
strokeWeight: 3,
fillColor: '#FFFFOO',
fillOpacity: 0.25,
map: map

}i

var polygon = new google.maps.Polygon (polygonOptions) ;

}

7. Then, add the following function to read the GeoJSON file and iterate over
the geometries:
function parseGeoJSON() {
$.getJSON ('geojson.js', function(data)
$.each(data.features, function(key, wval) {
drawGeometry (val.geometry) ;

8. Finally, call the parseGeodSON () function at the end of the initMap () function:
parseGeoJSON () ;

9. Go to your local URL where your HTML file is stored in your favorite browser and see
the result. You will see three different types of geometries on the map with their
styles as follows:

100

Chapter 3

[2] = localhost/recipes/ch03_adding_geojson.html
Chapter 3 - Adding GeoJSON to Map
Bartin Dorrelcani Bafra. |Map | Satellite |
y A i s . ©
(< > 2ongsiidak Kastamonu ° Taskopr
\ v 4 i £t i o
: $_|$1 Kalagreergﬁ_o ; Kar%buk Arag ¢ Samsun® garsamba o
L 3 evrek 1]
,-"‘b T Karasu® o Akcakaca : - Tosy, Sematioir ; Kayak
ﬁl T Diizce &) - Ngaz =V Merzifon . 7 K
L Sehe o= lzmit Sakarya o lu . i - {
=3 o i g S o ~IET— ‘Amasya Erlgaz«le
|"‘_¥a|%va:_ Gb’lc_.i.'lk Gankirfo Coroum e el
Biffea- - O “Turhal royat
bey o e 9
= 4 Ineogol Pursaklar
Eskigehir Ankaraoo kale Sorgun Shas
: oolatl; Golbast Keskin Yozgat °
ey= = " < > o 3
Kiitahya = Seyitgazi
@ o
: Gifteler Kir%ehii Bogazlyan < Gayrralan =Sarkigla "
Emirdag : Thark
; : ; Ahm!’-)rahisal Ortakdy y : a
Usoak S «Balvadin Sy ngehir o Pinarbag: Gii
Suhut oo y . Kayseri
L} ay. / = vy 7
R ° P Aksehi Eskil” Aksara ~ ' Develi o
Q,gm.. Sandikh T ; R "%“" 0 Y Y w ° Sanz. Afsin
~Dinar R o=t Elbis
[o 2 ey Konya ' Emirgazi I% 5
s DEI;I:IZII = - éJSPgna 3 Bhyschic Karapinar ; /
r ‘Burdur g Map data ©2013 Basarsoft Google, Mapa GiSrael, ORION-ME" -Terms of Use

Thus, we have successfully added our GeoJSON files to the map with multiple types
of geometries.

GeolJSON is a vector format that we described earlier. It is a form of JSON. The GeoJSON
format can consist of different types of the same file as follows:

{ "type": "FeatureCollection",
"features": [
{ "type": "Feature",
"geometry": {"type": "Point", "coordinates": [102.0, 0.5]},
"properties": {"prop0": "valueO"}

{ "type": "Feature",
"geometry":
"type": "LineString",
"coordinates": [
[102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]

Adding Vector Layers
¥

"properties": {
"propO": "valueO",
"propl": 0.0
}
I
{ "type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[[100.0, 0.0], [101.0, O0.0], [101.0, 1.01,
(100.0, 1.0], [100.0, 0.0]]

b

"properties": {
"propO": "valueO",
"propl": {"this": "that"}

}
}

}

The sample GeoJSON is taken from the www . geojson. org site. As seen from the code,

it is composed of point, polyline, and polygons in the same file separated by the feature
keywords. Each feature has JavaScript objects named geometry and properties. The
geometry part stores the geometry of the object and the properties part stores the
related information. The geometry part is based on the geographic coordinate reference
system using WGS84 Datum as default, and the coordinates are in longitudes and latitudes
of decimal degrees until it is defined in the crs object. The type object stores the type of
geometry such as Point, Polyline, or Polygon. The coordinates array is the actual
part that stores the array of point coordinates. The order of coordinates in GeoJSON is
different from the Google Maps JavaScript API in terms of its longitudes and latitudes.

More about GeoJSON

More details can be obtained from GeoJSON's unofficial site (http://www.
. geojson.org). There are also some tools to view or edit the GeoJSON
% without any coding. GitHub (http://www.github.com) can easily display
~ your GeoJSON files on the map. The http://www.geojson. io site is also
a tool from MapBox that displays and edits your GeoJSON files on browsers
without the need for any software or coding. Please check these sites to
understand GeoJSON in detail.

In this recipe, we will read the local GeoJSON file with the help of the jQuery method,
getJSON (). jQuery is used in order to focus on coding for the Google Maps JavaScript API.
Otherwise, we will have to deal with remote file reading on multiple browser platforms.

102

Chapter 3

This method gets the contents of the geojson. js local file and puts them in the data
variable. Then, we will iterate over the GeoJSON features with the jQuery method, each ().
Finally, we get each feature's geometry part and send it to the drawGeometry () function,
which will be examined later:

$.getJSON ('geojson.js', function(data)
$.each(data.features, function(key, val) {
drawGeometry (val.geometry) ;
1)
3N

The code written in the drawGeometry () function may seem complex, but it is not because
we will use all the code written for adding markers, lines, and polygons in this chapter. This
function first checks for the type of geometry, then prepares the appropriate options and
coordinate(s) for the point, polyline, or polygon.

In polylines or polygons, there is a need to iterate over the coordinates array
of the geometry field to create a path or paths for the PolylineOptions or
PolygonOptions classes.

var pointCount = geom.coordinates.length;
var linePath = [];
for (var i=0; i < pointCount; i++) ({
var tempLatlng = new google.maps.LatLng (
geom.coordinates [i] [1], geom.coordinates[i] [0]) ;
linePath.push (tempLatLng) ;

}

In this recipe, we will process GeoJSON with our functions and these functions can't draw all
kinds of GeoJSON geometries. We are only dealing with the simple ones to show you how to
deal with GeoJSON on your own. If you need to do a more complex GeoJSON process, there
are two ways. One way is to read the full specification of GeoJSON and add it to your functions.
The other way, which is also easy, is to use a library that is dedicated to this job. There is a
library named GeoJSON to Google Maps written by Jason Sanford on GitHub (https://
github.com/JasonSanford/geojson-google-maps). With the help of this library, you
do not need to deal with GeoJSON specs. You can just add geometries with your own styles.

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Adding markers to maps recipe

» The Adding lines to maps recipe

» The Adding polygons to maps recipe

» The Adding WKT to the Google Maps JavaScript API recipe

Adding Vector Layers

Adding WKT to the Google Maps

JavaScript API

Well-known Text (WKT) is a text markup language for representing vector geometry objects
on the map according to Wikipedia. This format was originally defined by the Open Geospatial
Consortium (0GC), which is also a standard.

Apart from XML or JSON, WKT is a defined text format that only defines geometries without
properties compared to GeoJSON. It was an old and outdated format, but there are still
software or services supporting this format. There are 18 distinct geometric objects that
represent Earth features, but simple ones are observed in this recipe.

The Google Maps JavaScript APl does not support WKT natively, but WKT support will be added
with a few lines of coding or with some additional libraries. With coding, we will go through the
WKT format, split them into arrays, and read the coordinates one by one. Then, we will show the
feature on the map according to its type, which can be point, polyline, or polygon.

In this recipe, we will read a WKT from a local file via jQuery functions and show them on
the map. The WKT geometries are within JSON attributes to make iteration easy. This WKT
file is composed of a simplified version of the Ankara province border, a sample river, and
some POls.

Getting ready

In this recipe, we will use the simple map recipe introduced in Chapter 1, Google Maps
JavaScript API Basics, as a template.

You can find the source code at Chapter 3/ch03 adding wkt.html.

How to do it...

You can easily add your WKT geometries to the map after performing the following steps:

1. First, start by copying the contents of ch01 _simple map.html to our new HTML file.

2. Next, we will add a jQuery JavaScript library to make it easy to access local or remote
JSON files with WKT geometries. In this recipe, we will add the library from Google CDN.
This block will be added in the <head> section before the Google Maps JavaScript API:

<script src="//ajax.googleapis.com/ajax/
libs/jquery/1.10.2/jquery.min.js"></script>

3. Then, add the following drawGeometry () function after defining the global map
variable. This function draws each WKT geometry read from the JSON file. We have
three types of geometries, so we will switch blocks for each type:

Chapter 3

function drawGeometry (geom) {

}

var slices = geom.split (' (');
var geomType = slices[0];

4. Now, add the following i f block in the new function. This block will add the geometry
if its type is POINT:

if

}

(geomType == 'POINT') ({
var coords = slices[1].split(')') [0].split(',");
var finalCoords = coords[0].split(' ');

var coordinate = new google.maps.LatLng(finalCoords[1],
finalCoords[0]) ;
var marker = new google.maps.Marker ({
position: coordinate,
map: map,
title: 'Marker'

3N

5. Next, add the if block for LINESTRING that shows polylines on the map:

else if (geomType == 'LINESTRING') {
var coords = slices[1].split(')') [0].split(',");
var pointCount = coords.length;
var linePath = [];
for (var i=0; i < pointCount; i++) {
if (coords([i].substring(0,1) == ' ') {
coords [i] = coords[i] .substring(1l) ;
}
var finalCoords = coords[i] .split(' ');

var templLatlng = new google.maps.LatLng(finalCoords[1],
finalCoords[0]) ;
linePath.push (tempLatlng) ;

var lineOptions =
path: linePath,
strokeWeight: 7,
strokeColor: '#19A3FF',
strokeOpacity: 0.8,
map: map

}

var polyline = new google.maps.Polyline(lineOptions) ;

Adding Vector Layers

6. Finally, the i £ block is used for showing the polygons as follows:

7.

106

else if (geomType == 'POLYGON') {

var coords = slices[2].split(')') [0].split(',");
var pointCount = coords.length;
for (var i=0; i < pointCount; i++) ({
if (coords[i].substring(0,1) == ' ') {
coords [1] = coords[i] .substring (1) ;
}
var finalCoords = coords[i] .split (' ');
var tempLlLatlng = new google.maps.LatLng(finalCoords[1],
finalCoords [0]) ;
areaPath.push (tempLatLng) ;

var polygonOptions = {
paths: areaPath,
strokeColor: '#FF0000',
strokeOpacity: 0.9,
strokeWeight: 3,
fillColor: '#FFFF00',
fillOpacity: 0.25,
map: map

var polygon = new google.maps.Polygon (polygonOptions) ;
}

Then, add the following function to read the JSON file and iterate over the
WKT geometries:
function parseWKT () {
$.getJSON ('wkt.js', function(data) ({
$.each(data.objects, function(key, val) {
drawGeometry (val.geom) ;

Finally, call the parseWKT () function at the end of the initMap () function:
parseWKT () ;
Go to your local URL where your HTML file is stored in your favorite browser and see

the result. You will see three different types of geometries on the map with their
styles, as shown in the following screenshot:

Chapter 3

= {5 localhost/recipes/ch03_adding_wkt.html
Chapter 3 - Adding WKT to Map
Mips Mangalia Lazarevakiy r-T‘M Sarellt
— 3 Dobrich— ap atellite
-~ 5whlu'?mm- f
< > Shumen Vaéna Black Sea s \
\ N A
= Sukhumi
Bulgaria Burgas 5
Plovf,?;'
Ch g 0
di Silkasia Bat
Edirne E 3
vat + CunKocHA Zonguldak Bagra "!
BaT g i o
Gorlu isli Karabiik a Unye
! ° Sé 9 Samsun 2.
| Gebzeoy..o. Dlzced Amasya
loniki fzmit Gorum ™o
! Bl g Tokat
o o
Balikesir Borsg Eskigeh Sivas Erzincan Erz%ﬂ“
o kale 5 =
,r T o
Kuta\‘v
Aetlean Sea 5
Manisa Usoak Turkey 'Era§|g
g S
p Aksaran Malatya
[- ; o 5 oty
s — Zmir Nagil %a =1 Konya Diya[}bakir
o o o
i o o Kahramanmaras
Aydin penizli o Balman
Karaman Gaziantep Urfa Kiziltepe
! Antalya % ".“‘dg“a O & O,u =
Oa‘gca o Marmaris Q © Manavgat o g
Rhodes = ©. a Icel
o Fethiye Alanya
nia’ Map data @201 3 Basarsoft, GeoBasis-DE/BKG (82009), Google, Mapa GlSrael, ORION-ME Temms of Use

This is how we add WKT geometries to the map with multiple types of geometries.

WAKT is a vector format that we defined earlier, which is different from GeoJSON. GeoJSON
defines both the geometry and properties of Earth features, but WKT is only used for defining
the geometry. Simple types of WKT examples are shown in the following table:

Geometry type WKT example
POINT POINT(31.541742 40.730608)
LINESTRING(35.24414 41.742627, 34.859619
POLYLINE 41.586688, 34.7717285 41.508577, 34.832153
41.364441)
POLYGON((33.759299 38.779907, 33.73552
POLYGON 38.758208, 33.73187 38.748987, 33.703537

38.723535, 33.677514 33.800384 38.876017,
33.783532 38.842548, 33.759299 38.779907))

Adding Vector Layers

WKT geometries are exactly the same as used in the Adding GeoJSON to Google Maps
JavaScript API recipe, but they are formatted in WKT geometries. WKT geometries are not
alone due to their text format. So we put them in a JSON file with the geom attribute. This is
used for easy parsing. If you have different types of formats that include WKT geometries,
you should parse them with JavaScript.

First, we will read the JSON file to get the WKT geometries. We will read the local JSON file
with the help of the jQuery method, getJSON () . jQuery is used for focusing on the Google
Maps JavaScript API instead of writing and fixing JavaScript code for each browser. Otherwise,
we will have to deal with a remote file reading on multiple browser platforms. This method gets
the contents of the wkt . js local file and puts them in the data variable. Then, we will iterate
over the JSON objects with a jQuery method, each () . Finally, we get each object's geom part
and send it to the drawGeometry () function, which will be examined later:

$.getJSON ('wkt.js', function(data)
$.each(data.objects, function(key, val) {
drawGeometry (val.geom) ;
1)
1)

Parsing of WKT is much harder than GeoJSON because we need to deal with text parsing. With
the drawGeometry () function, we will split the WKT text into smaller arrays and make them
significant. Before parsing each type, we need to get the type of their geometry. Since they
have no separate attribute for defining the type, we need to extract the type from the WKT text.
As seen from the examples, the type is separated with the (character from the coordinates.

If we slice string from the (character, the first array element is the type of geometry. This is
done as follows:

var slices = geom.split('(');
var geomType = slices[0];

The contents of geomType can be POINT, LINESTRING, or POLYGON. Then, we will check
each type of geometry in different blocks. Let's go through each geometry type starting with
point.

Point is the simplest WKT geometry to parse with JavaScript. First, we get the second element
of the s1ice array and slice it from the) character to only get the coordinates separated by
a comma. Then, we will split the result text by a comma into an array. This array has only one
element, so we will easily access the coordinates. To access the coordinates, we must slice
the final text with the space character. This final array contains the latitude and longitude. The
Google Maps JavaScript API uses latitude and longitude in order to define a point, but WKT
uses longitude and latitude order to define a point. As described in the Adding GeoJSON to
Google Maps JavaScript API recipe, the order of coordinates is also the same for WKT, which
is in the reverse order of the Google Maps JavaScript API as longitudes and latitudes:

var coords = slices[1].split(')') [0].split(',"');
var finalCoords = coords[0] .split(' ');

108

Chapter 3

var coordinate = new google.maps.LatLng(finalCoords[1],
finalCoords[0]) ;

The second type is the polyline that is defined as LINESTRING in WKT. Parsing polylines is
much more complex than points. First, we get the arrays of coordinates by splitting) and
comma as described earlier. Then, we will iterate in this array to get each coordinate. Before
splitting the text with a space, we must check if there is a space at the beginning of the text.
If there is a space, we will get the rest of the text to get only numbers for valid latitudes and
longitudes.

var coords = slices[1].split(')') [0].split(',"');
var pointCount = coords.length;
var linePath = [];
for (var i=0; i < pointCount; i++) {
if (coords[i].substring(0,1) == ' ') {
coords [i] = coords[i] .substring(1) ;
}
var finalCoords = coords[i] .split (' ');

var tempLatLng = new google.maps.LatLng(finalCoords[1],
finalCoords[0]) ;

linePath.push (tempLatlng) ;

}

The last, simple type is polygon that is also defined as POLYGON in WKT. Parsing polygon is
very similar to parsing polylines, except that the polygon definition has two parentheses, which
is one more than polylines. We will get the third element of the array instead of the second,
because WKT can contain multiple polygon geometries so in this case we have only one. If you
have multiple geometries then you should iterate over the geometries. The only difference is
written as follows:

var coords = slices[2].split(')') [0].split(',"');

The code blocks written in the drawGeometry () function may seem complex, but they are
not because we will use all the codes written for adding markers, lines, and polygons in this
chapter. The result of this recipe is exactly the same as the Adding GeoJSON to the Google
Maps JavaScript API recipe, which is the expected result. We do not imagine we will get
different outputs on changing the vector formats.

In this recipe, we will process WKT with our own functions, and these functions can't draw all
kinds of WKT geometries defined in its standard. We are only dealing with the simple ones to
show you how to deal with WKT on your own. If you need to do more complex WKT geometries,
then there are two ways. One way is to read the full specification of WKT and add them to
your functions. The other, easier way is to use a library that is dedicated for this job. There

is a library named Wicket written by K. Arthur Endsley on GitHub (https://github.com/
arthur-e/Wicket). With the help of this library, you do not need to deal with WKT specs.
You can just add geometries with your own styles.

Adding Vector Layers

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1,
Google Maps JavaScript API Basics

» The Adding markers to maps recipe

» The Adding lines to maps recipe

» The Adding polygons to maps recipe

» The Adding GeoJSON to the Google Maps JavaScript API recipe

Working with Controls

In this chapter, we will cover:

» Adding and removing controls

» Changing the position of controls

» Creating and adding a geolocation control

» Creating a table of contents control for layers

» Adding your own logo as a control

Introduction

This chapter covers the controls that are found in the Google Maps JavaScript API. Generally
speaking, controls are Ul elements that interact with the user. At a very basic level, they
comprise of simple HTML elements or a combination of them.

Controls enable the user to pan the map, zoom in or out, measure distances or areas, and
so on. Complex controls involve the administration of multiple overlay layers (introduced

in Chapter 2, Adding Raster Layers) in the form of a table of contents (ToC) control, or an
editing toolbar for drawing vector features.

The Google Maps JavaScript API presents developers with the opportunity to use and
customize built-in controls as well as build custom controls from the ground up.

This chapter will first focus on dealing with built-in controls and their configurations in detail,
including the customization of the Ul. Then, creating custom controls from very basic to
complex ones (such as ToCs) will be covered.

Working with Controls

Adding and removing controls

The Google Maps default Ul has several controls that are displayed by default or if certain
conditions are met. These include:

» Zoom control

» Pan control

» MapType control

» Scale control

» Street View control

» Rotate control

» Overview Map control

The Google Maps JavaScript API presents the opportunity for developers to opt in or out of
these controls or customize them in terms of functionality or look.

In this recipe, we will cover ways to alter the Ul by adding or removing built-in controls and
how to change their properties through presented options.

Getting ready

The first recipe of Chapter 1, Google Maps JavaScript API Basics, will do our work. We will
alter it for this recipe.

How to do it...

You will opt for the appearance of the built-in controls if you perform the following step:

1. Alter the mapOptions object as follows:

var mapOptions = {
center: new google.maps.LatLng(43.771094,11.25033),
zoom: 13,

mapTypelId: google.maps.MapTypeId.ROADMAP,
panControl: true,
scaleControl: false,

112

Chapter 4
zoomControl: true,

zoomControlOptions:

style: google.maps.ZoomControlStyle.SMALL
I
overviewMapControl: true,
overviewMapControlOptions: {

opened: true

b

mapTypeControl: false

= | = b
[localhost/recipes/chd_ch: »
= @ | [localhost/recipes/ch4_changing_default_ui.htm il I v | &M D =
(O ArcGIS_Network_An... KJ ReadItLater [Mark As Read [Reading List (T ASP.MET MYC (] GIS_Business » [] Other bookmarks
” -
Changing Default UL —
e 5 o s % i
B Df,? @@e Cat
A Viale Ales &
san,
< > G 3
v, Y Jlese Viy gy =
“ay
@ Oy * a
et o | = £ - Parca Willa .
@ & Vi Fabbricorti
2 gy g} =
T e, * c]
o a Glarding
+ £y b Ortieoitura
. - Le Cascine p* 567
gy,
" Cang a
| &
Viale Etruria —
Via
Livormd " Pisan, Florence
5}
: 5867 *
@e?oc"‘ o Villa'Favar
o i t;ardggf : s 0
¥ o of Boholi Yiala . L
S B Vel o
i Boboli ZW\?.O g.
;’}‘ via oian R
Scandicci ato {
& Jat
5
A [y
b= 2 Medicean Villa of
s Poggio Imperiale
o vilia Foggio
® Imperiaie EE
Map datz 22012 Google Terms ofUsze | Repotta mapemor 3an Casciano o

You can have your built-in controls On or Off according to your taste as displayed in the
preceding screenshot.

Working with Controls

You might have observed that we have added a lot to the mapOptions object. This is because
you can make the controls visible or invisible in the google . maps . mapOptions object:

panControl: true,
scaleControl: false,
zoomControl: true,
mapTypeControl: false,

overviewMapControl: true

By assigning Boolean (true/false) values, you can display panControl, zoomControl,
and overviewMapControl, while scaleControl and mapTypeControl are hidden.

Some controls appear by default. For instance, we have not mentioned streetViewControl
in our mapOptions object; however, it is displayed in the interface because it is there by
default. The built-in controls and their default presence in the Ul are as follows:

Control name Default presence

Zoom conttrol Yes

Pan control Yes

Scale control No

MapType control Yes

Street View control Yes

Rotate control Yes (for oblique imagery)
Overview Map control No

Although rotateControl is displayed by default, you might have noticed that it is not
found in the interface because it appears only when oblique imagery is shown. Tweaking
the mapOptions object as follows, we can view the control:

1. Enable mapTypeControl so that you can select satellite imagery in the Ul,
as shown in the screenshot following the code:

mapTypeControl: true

Map | 5 Elt.!:"_ltl'_‘_ ,

You can see mapTypeControl in the preceding screenshot.

114

Chapter 4

Oblique imagery (45 degree imagery) is served in certain locations, and wherever present,
mapTypeControl updates itself to include a submenu toggle for displaying oblique imagery.

The RotateControl control is displayed between the Pan and Zoom controls. It allows
users to rotate the oblique imagery at 90 degree intervals. Also, the Pan control is altered
to have a ring, letting us change the heading of the oblique imagery when it is displayed:

[=[@] =]

! [localhost/recipes/chd_ch: x |
| € = C' | [localhost/recipes/ch4_changing_default_ui.html e I v | ﬂ] D = :
‘ T ArcGIS_Metwork_An... _|_"| Read It Later D Mark 4s Read D Reading List (T ASP.METMVC [GIS_Business » (O] Other bookmarks |
-

Changing Default UL

4&§Q i,
F

Map | Satellite [§

m

There's more...

The Google Maps JavaScript API allows us to not only toggle the built-in controls between On
and Off, but also customize their properties and styles. For instance:

overviewMapControlOptions:
opened: true

Working with Controls

This sets the Overview Map control in the opened state. Please remember that the Overview
Map control's default state is collapsed, and this setting sets the control to opened at the
start of your application. You can collapse or open the control whenever you want by pressing
the small arrow in the lower-right corner of the control.

For the Zoom control, the options presented in the recipe are as follows:

zoomControlOptions: {
style: google.maps.ZoomControlStyle.SMALL

}

This option sets the Zoom control to be styled as small, comprising of two small buttons,
one for zoom in and the other for zoom out. Other options for the style property for
zoomControlOptions are:

google.maps.ZoomControlStyle.LARGE
google.maps.ZoomControlStyle.DEFAULT

The LARGE option sets the Zoom control to be seen as a long stick where you can traverse
between zoom levels. The DEFAULT option decides whether to display either the large Zoom
controls or the small Zoom controls according to the screen size.

You might have noted that options for controls are handled by objects with the Options
suffix. In the same manner, there are options for mapTypeControl as well within the
MapTypeControlOptions object. Adding the following lines to the code will make
some alterations:

mapTypeControl: true,
mapTypeControlOptions: {
mapTypelds: [google.maps.MapTypelId.ROADMAP,
google.maps.MapTypeId.HYBRID],
style: google.maps.MapTypeControlStyle.DROPDOWN MENU

}

The settings in the mapTypeControlOptions property make mapTypeControl offer
only the ROADMAP and HYBRID map types, so you will not be able to select the SATELLITE
and TERRAIN map types. As you would recall from Chapter 2, Adding Raster Layers, the
mapTypeIds property not only accepts built-in map types, but also styled map types
through a styledMapType object and any tiled image source—either as a base map

or overlay map—through the ITmageMapType object.

Chapter 4

The second property, style, sets mapTypeControl to be displayed as a drop-down
menu instead of a standard horizontal bar. The other options for the style property of
mapTypeControlOptions are:

google.maps.MapTypeControlStyle.HORIZONTAL BAR
google.maps.MapTypeControlStyle.DEFAULT

The DEFAULT option is for dynamically picking the Zoom control as either a horizontal bar
or a drop-down menu according to the screen estate.

Complete options list for controls

% The complete options list for controls can be found at the Google Maps
A JavaScript API Reference documentation URL https://developers.
google.com/maps/documentation/javascript/reference.

Changing the position of controls

Google Maps controls have their default positions, and the Google Maps JavaScript API offers
a level of flexibility over changing these default positions. You can also position your custom
controls according to the places in the Ul that are offered as in the following screenshot:

Pear o Ha

Vil ;E%O artalethespEaria

SreRtii TOP CENTER P RIGHT
%
= ;
s i RIG
3 | SPE3
i il - FSpes FESEE L,',
=
3
Al ak Lt
TED.
i 1i
Uanano
*

T CENI | :

) A L} A LS B SRS
| i EiA il = i Hi
L UL i grence 2. acopa

2 w . T 5507
arden i T
Ho =
= aF i
3 | oeandico) i Hadgnon
? ain Martin]
r liaPalma ﬂ) e
HsPizr
&
s
- .
& 2
Wiogciar
'EFT B [
B Y T
E ol

Working with Controls

The preceding screenshot depicts the possible locations where you can place your controls. It is
noteworthy that TOP_LEFT is not equal to LEFT_TOP, with TOP_LEFT the first one on the top.

In this recipe, we will describe how to specify the corresponding positions of controls in the
Google Maps Ul.

Getting ready

This recipe is based on the previous recipe's code; therefore, having that will do most of
our work.

How to do it...

You can flush the positioning of the controls with the following step:

2. Completely renew the mapOptions object as follows:

var mapOptions = {
center: new google.maps.LatLng(43.771094,11.25033),
zoom: 13,

mapTypeld: google.maps.MapTypeId.ROADMAP,
panControl: true,
panControlOptions: {
position:google.maps.ControlPosition.TOP_RIGHT
zoomControl: true,
zoomControlOptions: {
style: google.maps.ZoomControlStyle.SMALL,
position: google.maps.ControlPosition.BOTTOM CENTER
mapTypeControl: true,
mapTypeControlOptions:
position: google.maps.ControlPosition.LEFT TOP
streetViewControlOptions: {
position: google.maps.ControlPosition.LEFT CENTER

}
Vi

Chapter 4

[localhost/recipes/chd_ch: x

€& = C | [} localhost/recipes/ch4_changing_position_of_controls.html

[ArcGIS_Metwork_An... || Read It Later || Mark AsRead || ReadingList (] ASP.NET MVC (C] GIS_Business » [Other bookmarks

Changing Position of Controls
3

s e [ik
{ Map | Satellite | Ei% R
- Viale s A
Sandy,
Sy
Via Pistoles®
)

< :) 2
T e — \ / * Parca villa
a1 \

Fabbricotti < |~

s
Wt G
L]

N,

|§, - Viale Evuria="
| £
| o
T H L iaBacciodaMoREl®

e Y
3 Giardino | = - —— o, 7
i Fersut] () 7 Willa Favan
\ Torrigiani '~ Y |

Flazza
Gavinana

.~ Mapdata 82013 Google TermsofUse Feporta map emor

You can change your controls' positions in the map Ul as per your taste as you can observe
in the preceding screenshot.

In the mapOptions object, we have specified each control's position by its position
property in its own options as you can see in the following code snippet:

mapTypeControlOptions: {
position: google.maps.ControlPosition.LEFT_ TOP

}

Working with Controls

The following code directs mapTypeControl to be placed in the left-top corner of the map's
div element, while panControl is placed in the top-right corner:

panControlOptions: {
position: google.maps.ControlPosition.TOP_ RIGHT

b

Complete listing for control positions
* The complete listing for control positions can be found at the Google
% Maps JavaScript APl Reference documentation URL (https://
developers.google.com/maps/documentation/
javascript/reference#ControlPosition).

Creating and adding a geolocation control

The Google Maps Ul has many built-in controls introduced in previous recipes. These controls
serve numerous needs, such as panning, zooming, and changing the map type. However,
the user needs are infinite, and the user might be very creative. It is impossible to present

a built-in control for every need.

Instead, the Google Maps JavaScript APl has presented a path for creating custom controls for
every specific need. Custom controls are basically simple HTML elements wrapped in a single
element, mostly the <div> element.

In this recipe, we will go over the basics of creating a custom control, placing it on the Google
Maps Ul, and using it through event-handling routines.

Getting ready

This recipe will be based on the Moving from Web to mobile devices recipe introduced in
Chapter 1, Google Maps JavaScript API Basics. Our recipe will utilize the geolocation code
extract from this recipe; therefore, it will be helpful to revisit this recipe.

How to do it...

You will have a brand new custom geolocation control if you perform the following steps:

1. First, create a JavaScript object that will be our custom control at the end (the
constructor will take two parameters that will be explained in the later steps):

function GeoLocationControl (geoLocControlDiv, map) {

}

120

Chapter 4

Inside the GeoLocationControl class, set the class property to contain the div
element referenced as the first argument in the constructor:

geoLocControlDiv.className = 'controlContainer';

Inside the GeoLocationControl class, set the internal HTML div element details,
including its class attribute, so that this element looks like a button:

var controlButton = document.createElement ('div') ;
controlButton.className = 'controlButton';
controlButton.innerHTML = 'Geolocate';

Add this internal div element (controlButton) to the container div element
as follows:

geoLocControlDiv.appendChild (controlButton) ;

Add the click event listener for controlButton inside the
GeoLocationControl class:
google.maps.event .addDomListener (controlButton, 'click',
function()
if (navigator.geolocation) ({

navigator.geolocation.
getCurrentPosition (function (position)

var lat = position.coords.latitude;

var lng = position.coords.longitude;

var devCenter = new google.maps.LatLng(lat, 1ng);
map.setCenter (devCenter) ;

map.setZoom(15) ;

var marker = new google.maps.Marker ({
position: devCenter,
map: map,

3N

Now, in the ordinary initMap () function that we have used over all the recipes,
add the container HTML div element in addition to the standard definition of the
map and mapOptions objects

var geolLocationControlDiv = document.createElement ('div') ;

Working with Controls
7.

Instantiate the custom control class, the GeoLocationControl class inside

initMap (), supplying two arguments: the container div element created in
the previous step and the map object itself:

var geoLocationControl

new

GeoLocationControl (geoLocationControlDiv, map) ;

Place the custom control among other controls in the map Ul:

map.controls [google.maps.ControlPosition.RIGHT CENTER] .push
(geoLocationControlDiv) ;

[localhost/recipes/ch(d_cr »

b

[ArcGIS_Network_An... [Read It Later

C' | [3 localhost/recipes/ch04_creating_adding_geolocation_control.html

@w| »| =
[Mark As Read [Reading List ("] ASP.NET MVC » [Other bockmarks
= & = S
. il .;‘_ | Map | satellite ||
Girakh & ey
gl Ve Yaygin Ankara ‘t-& Ankary Gy
1€ > fim, %) giim Mg =) e University
RV - Gazi Universitesi fictizadi dar] Ankara Uny é’,-ga
o Sanat Ve Tasarim Bilimler Falilres) (=) [Tandogan o 53
b Fakullesi) ; ANITTERE oy b o
(@l GAZ] Dy, SANAT VE S b LS MH Qg;,
| | TASARIM FAKCLTES] L e qo\ Mebusevleri c
1| a\“'qy hvis : 94,
wye Ugok Cd MEBUSEVLERI ’rcf% %
n / « MH % i
+ et [Begevler — : o
m 3 S sk G sk 1) Malte o
A5 35 Sk (54 Sk % 16;& et sk Ozel Kent Kulak pe
nE:;:r;ity éf () Bahgelievier & @ O o W EI‘JUJIL'I'I:I Er?c?a?.iz =
4 TR -) - rig
Hospital \-Jué) = Bahcelievier i R L o™ 4o Dzl Kant Kulak Bunin £ o
atih vy AN % MNebahat Keskin i 2 pt¥ Bogaz Dal Merkezi & o
astanesi | & oo IIkogretim Okulu 0 o o LN ; £
My Al & & Hahcelisvier Mebahat ~ 2 s VehbiKog 2o
| _-;?-’ o Kezkin [kogratim Gkulu = G(\“ Yurdu =
7 (- (=T
=l |";\ o = £ %5
< 49, 5k (42, Sk.) 3 (h! &, 7
§ ! = 48 sk (41:5%) e o =
Gulen Muharrem %,
Pakoglu %
llkogretim Okulu 2,
=| m‘eﬁﬂﬁﬁﬁl"m Cengizhan Cd [5'0‘” .‘:_\(a'%?u‘gh %
il gretimn Okulu Z Gankaya % Demirte
o Belediyes: Yilmaz (=)
ko 225 (&7 Sk 54 Cd (6. cd) o T;HB. 1 % 2 Gliney Salonu 7
i 218k 5. g 2 |\ =g = S %, &>
el A 2 |5 % | sahsliede 5. % o — £ :
T Emek 20:8k {705k) T e % Deneme Lisesi < o r o e
| og | g |\ e— B as W S
EMEKIL_— P = 3 (21, 5% 2 g %, 3 5 & =™
M2 B 0 Lol o L A W S
‘ £ @ & in = %_ o
b 5 o) e 3k
7skmask)| o £ F T SN g5 e e N
0% N 2 o B 7 =P e T YUCETEPE
L 5= = Lom E 2 .1,55 MH
T = % =% i be;:\‘ @ Cankaya
) : R - } = Anittepe Lisesi
GSk(B1-Sk) | @ =2 L% = w site - 2 ca,.ke,,fj
Lt = L 28 © . Anittepe Lisesi
Cil i = Map data 2013 Bazarsoft. Google TemsofUse

You should have a custom control functioning as a geolocation control as seen in the
preceding screenshot.

122

Chapter 4

This recipe might seem confusing compared to the preceding recipes, but in essence, there is
just one important point to create custom controls in the Google Maps JavaScript API; you can
utilize any HTML element to be used as a custom control. In fact, the following simple code
extract is sufficient to have a custom control:

var controlDiv = document.createElement ('div') ;

map.controls [google.maps.ControlPosition.RIGHT CENTER] .push
(controlDiv) ;

This code creates an HTML div element and then adds it to the controls array of the map
object. The controls array is a two-dimensional array, the first dimension being the available
positions defined in the google .maps.ControlPosition class and the second dimension
being the controls. This transparent control with no label inside will do anything as there is no
event-handling code for the div element; however, this reality does not change the fact that
this is a custom control.

Other details, such as CSS styling, filling in attributes, and event handling, are necessary for
a professional custom control to be used for map Ul users.

In our recipe, we have chosen to create a JavaScript class to wrap all these details in order
to be structural:

function GeoLocationControl (geoLocControlDiv, map)

{
}

Our class constructor makes use of two elements: the container div element and the
map object. It needs the reference for the container div element to add the child element
controlButton to it:

geoLocControlDiv.appendChild (controlButton) ;

The controlButton object (an HTML div element) has to respond to some user-originated
events for the custom control to be useful and meaningful:

google.maps.event .addDomListener (controlButton, 'click',
function()

3N

The google.maps.event .addDomListener method acts as an event handler
registration, and it works in the same way on every browser. These method- and event-related
subjects will be covered in Chapter 5, Understanding Google Maps JavaScript APl Events.

For now, it is alright to be aware of the c1ick event, which will be listened to by the
controlButton object.

Working with Controls

The geolocation code extract from Chapter 1, Google Maps JavaScript APl Basics, resides
inside the addbomIListener method, making use of the Geolocation API of the browser.

If there is support for the Geolocation APl and if the location is retrieved, a marker is added
to the map for this location:

var marker = new google.maps.Marker ({
position: devCenter,
map: map,

13N

This whole creation of child elements and event-handling logic is enveloped in one JavaScript
class constructor, which is called by the following:

var geoLocationControl = new
GeoLocationControl (geoLocationControlDiv, map) ;

The following is the only other code snippet required to accomplish this task:

map.controls [google.maps.ControlPosition.RIGHT CENTER] .
push (geoLocationControlDiv) ;

It is worth noting that the controls array takes the container div element as the custom
control. Also, bear in mind that controls [google.maps.ControlPosition.RIGHT
CENTER] might already have other controls in other scenarios. We are using push so that
the existing controls are not replaced.

Creating a table of contents control for

layers

Table of Contents (ToC) controls such as Ul elements are very common in desktop GIS
software, such as ArcGIS Desktop, Mapinfo, and Geomedia. Also, their web counterparts
make use of ToCs intensively in their Ul, including ArcGIS and .Net web components.

The main use of ToCs is to turn On and Off the various raster or vector layers so as to overlay
and view multiple strata of data. For vector layers, the options might be enriched by allowing
the users to change the symbology of the vector layer with respect to ToCs.

The Google Maps Ul does not have a built-in ToC control; however, with the flexibility of
building up a custom control, there are virtually infinite possibilities.

The Google Maps JavaScript API allows developers to utilize the third-party base maps such as
OpenStreetMaps or display the overlay raster layers on top of base maps (discussed in detail
in Chapter 2, Adding Raster Layers). Also, in Chapter 3, Adding Vector Layers, various kinds

of vector data has been overlaid in the respective recipes.

124

Chapter 4

In this recipe, we will only take base maps to be shown on our ToC in order to have an
understanding of the structure, including keeping the state of the control and having multiple
event handlers for multiple HTML elements wrapped in one control. This structure might be,
of course, enriched with the addition of overlay and vector layers.

Getting ready

This recipe will make use of the Using different tile sources as base maps recipe in Chapter
2, Adding Raster Layers. It would be extremely helpful to review this recipe before beginning
our current recipe. Also, to understand how a simple custom control is created, the previous
recipe will be key.

How to do it...

The following are the steps to create a working ToC control inside the Google Maps Ul:

1. Create a JavaScript class that will contain all our child controls and event handlers
(up to step 12, all code will be embedded in this class constructor):

function TableOfContentsControl (tocControlDiv, map) {

}

2. Have this as a variable as it will be out of scope in the event handlers:

var tocControl = this;

3. Set the CSS properties of the container div element inside the class constructor:

tocControlDiv.className ='tocControl';

4. Set the title of the ToC:

var tocLabel = document.createElement ('label');

tocLabel.appendChild (document .createTextNode ('Base
Layers'));

tocControlDiv.appendChild (tocLabel) ;

5. Create a radio button for the OpenStreetMap Base Map:

var osmStuffDiv = document.createElement ('div') ;

var osmRadioButton = document.createElement ('input') ;
osmRadioButton.type = 'radio';

osmRadioButton.name 'BaseMaps';

osmRadioButton.id = 'OSM';

osmRadioButton.checked = false;

Working with Controls

var osmLabel = document.createElement ('label') ;
osmLabel .htmlFor = osmRadioButton.id;

osmLabel . appendChild (document .createTextNode ('OpenStreetMap
Base Map')) ;

osmStuffDiv.appendChild (osmRadioButton) ;
osmStuffDiv.appendChild (osmLabel) ;

6. Create a radio button for the Google Roadmap base map:

var roadmapStuffDiv = document.createElement ('div') ;

var roadmapRadioButton = document.createElement ('input') ;

roadmapRadioButton.type = 'radio';
roadmapRadioButton.name = 'BaseMaps';
roadmapRadioButton.id = 'Roadmap';

roadmapRadioButton.checked = true;

var roadmapLabel = document.createElement ('label!');
roadmapLabel .htmlFor = roadmapRadioButton.id;

roadmapLabel . appendChild (document .createTextNode ('Google
Roadmap')) ;

roadmapStuffDiv.appendChild (roadmapRadioButton) ;
roadmapStuffDiv.appendChild (roadmapLabel) ;

7. Create a radio button for the Google Satellite base map:

var satelliteStuffDiv = document.createElement ('div') ;

var satelliteRadioButton = document.createElement ('input') ;

satelliteRadioButton.type = 'radio';
satelliteRadioButton.name = 'BaseMaps';
satelliteRadioButton.id = 'Satellite’;

satelliteRadioButton.checked = false;

var satelliteLabel = document.createElement ('label') ;
satellitelLabel . htmlFor = roadmapRadioButton.id;

satellitelLabel.appendChild (document.createTextNode ('Google
Satellite'));

satelliteStuffDiv.appendChild (satelliteRadioButton) ;
satelliteStuffDiv.appendChild (satelliteLabel) ;

126

10.

11.

12.

Chapter 4

Put all the radio buttons and their labels in the parent div element:

tocControlDiv.appendChild (osmStuffDiv) ;
tocControlDiv.appendChild (roadmapStuffDiv) ;
tocControlDiv.appendChild (satelliteStuffDiv) ;

Create the click event handler for osmRadioButton (the setActiveBasemap
and getActiveBasemap methods will be clarified in the following code):

google.maps.event .addDomListener (osmRadioButton, 'click',
function()
if (osmRadioButton.checked) ({
tocControl.setActiveBasemap ('OSM') ;
map . setMapTypeld (tocControl.getActiveBasemap()) ;

3N

Create the click event handler for roadmapRadioButton as follows:

google.maps.event .addDomListener (roadmapRadioButton,
'click', function() {
if (roadmapRadioButton.checked) {
tocControl.setActiveBasemap
(google.maps.MapTypeId.ROADMAP) ;
map . setMapTypeld (tocControl.getActiveBasemap()) ;

13N

Create the click event handler for satelliteRadioButton:

google.maps.event .addDomListener (satelliteRadioButton,
'click', function() {
if (satelliteRadioButton.checked) ({
tocControl.setActiveBasemap
(google.maps.MapTypeId.SATELLITE) ;
map . setMapTypeld (tocControl.getActiveBasemap()) ;

13N

Outside the TableOfContentsControl class constructor, define a property for
keeping the active base map:

TableOfContentsControl.prototype. activeBasemap = null;

Working with Controls

13. Define the getter and setter methods for the _activeBasemap property:

14.

15.

16.

17.

128

TableOfContentsControl.prototype.getActiveBasemap
function()
return this. activeBasemap;

Vi

TableOfContentsControl.prototype.setActiveBasemap
function (basemap) {
this. activeBasemap = basemap;

Vi

Inthe initMap () function, define the mapOptions object as follows:

var mapOptions = {

center: new google.maps.LatLng(39.9078, 32.8252),

zoom: 10,
mapTypeControlOptions: {

mapTypelds: [google.maps.MapTypeId.ROADMAP,
google.maps.MapTypeId.SATELLITE, 'OSM']

b

mapTypeControl: false
Vi
Define the osmMapType object as ImageMapType:

var osmMapType = new google.maps.ImageMapType ({
getTileUrl: function(coord, zoom) {

return 'http://tile.openstreetmap.org/' + zoom +

coord.x + '/' + coord.y + '.png';
I
tileSize: new google.maps.Size (256, 256),
name: 'OpenStreetMap',
maxzoom: 18

13N

Relate the 'OSM' mapTypeId object to the osmMapType object:

map.mapTypes.set ('OSM', osmMapType) ;

Set mapTypeId for startup:
map . setMapTypeld (google.maps.MapTypeld.ROADMAP) ;

l/l

+

Chapter 4

18. Create the container div element, instantiate the TableOfContentsControl
class, and position the container div element as a custom control:

var tableOfContentsControlDiv =
document .createElement ('div') ;

var tableOfContentsControl = new

TableOfContentsControl (tableOfContentsControlDiv, map) ;

map.controls [google.maps.ControlPosition.TOP_RIGHT] .push
(tableOfContentsControlDiv) ;

[localhost/recipes/chid tz

€& - C [localhost/recipes/ch04_tableOfContents.html

w2l =
[ArcGIS_Network_An... |1| Read It Later D Mark As Read D Reading List (T3 ASP.NET MVC (] GIS_Business

» [Other bookmarks
TOC Control

ES

BaselLayers

(®) Cpenstrestiap Base Map
® Google Roadmap
® Google Satellite

BT 3 ¥

7 TemsofUse

You should have your own ToC control as a custom control in your map's Ul as observed
in the preceding screenshot.

Working with Controls

This recipe actually carries the same structure as the previous recipe; however, there are
HTML elements in the custom control that make it seem more complex. We will take a look
at the details bit by bit so that things will become clearer. As in the previous recipe, we have
started by creating a JavaScript class constructor that embeds all the details, including the
necessary radio buttons and their event handlers:

function TableOfContentsControl (tocControlDiv, map) {

}

The radio button section for osmRadioButton embedded in TableOfContentsControl
is as follows:

var osmRadioButton = document.createElement ('input') ;

osmRadioButton.type = 'radio';
osmRadioButton.name = 'BaseMaps';
osmRadioButton.id = 'OSM';

osmRadioButton.checked = false;

var osmLabel = document.createElement ('label!') ;

osmLabel .htmlFor = osmRadioButton.id;

osmLabel . appendChild (document .createTextNode ('OpenStreetMap Base
Map')) ;

tocControlDiv.appendChild (osmRadioButton) ;
tocControlDiv.appendChild (osmLabel) ;

google.maps.event .addDomListener (osmRadioButton, 'click',
function()
if (osmRadioButton.checked)
tocControl.setActiveBasemap ('OSM') ;
map . setMapTypeld (tocControl.getActiveBasemap()) ;

3N

The preceding code extract for osmRadioButton is the same for roadmapRadioButton
and satelliteRadioButton. The code creates the radio button and its associated
label, adds it to the container div element (that is referenced as the first argument of the
constructor), and then registers the c1ick event for the radio button.

The click event checks whether the radio button is checked or not, then—if checked—it sets
the active base map as an OSM base map. Then, it uses the active base map information to
set mapTypeId for the map; this is referenced as the second argument of the constructor.

130

Chapter 4

To set and get the active base map information, two methods are used:

setActiveBasemap ('OSM')
getActiveBasemap ()

These methods are defined outside the constructor as:

TableOfContentsControl.prototype.getActiveBasemap = function() {
return this. activeBasemap;

Vi

TableOfContentsControl.prototype.setActiveBasemap
function (basemap) {
this. activeBasemap = basemap;

Vi
Here, the activeBasemap local variable is defined as:
TableOfContentsControl.prototype. activeBasemap = null;

There is just one tiny but important detail here. For the c1ick event handler to see getter
and setter methods of the TableOfContentsControl object, we have added a single line:

var tocControl = this;
Here, this would be out of scope inside the event handler.

The OpenStreetMap base map section is located in the initMap () function. The details of
how to display external base maps are covered in Chapter 2, Adding Raster Layers, so there
is no need to go over specific bits and pieces on this.

The final piece of work is actually running the control in the Ul. As we do not call the constructor
of TableOfContentsControl, nothing will be shown as a custom ToC control. But, before
having the ToC control, we have to reserve some estate in the mapOptions object:

mapTypeControlOptions: {
mapTypelds: [google.maps.MapTypelId.ROADMAP,
google.maps.MapTypeId.SATELLITE, 'OSM']

b

mapTypeControl: false

In mapTypeControlOptions, we list the possible map type IDs for the map in the
mapTypelds property.

However, we do not need maptypeControl anymore as we would have a ToC control instead;
therefore, we set the mapTypeControl property to false.

Working with Controls
Then the last phase comes: placing the custom ToC control:

var tableOfContentsControlDiv = document.createElement ('div') ;

var tableOfContentsControl = new
TableOfContentsControl (tableOfContentsControlDiv, map) ;

map.controls [google.maps.ControlPosition.TOP_RIGHT] .push
(tableOfContentsControlDiv) ;

First, we create an arbitrary div that will act as a container div element for our custom
control. Then, we call the constructor of the TableOfContentsControl class supplying the
container div element and the map object as arguments. After that, the curtain closes with
adding the container div element to the two-dimensional controls array that controls the map
object in its default place in mapTypeControl; thatis, google.maps.ControlPosition.
TOP_ RIGHT.

Adding your own logo as a control

The Google Maps JavaScript API has designed the addition of custom controls in a very flexible
manner so that you can have a variable type of HTML elements in one HTML div element.

Adding your own logo of choice, such as adding your company's logo on top of the map Ul
in your own application, is a good sign for customization and shows off your work.

In this recipe, we will show a logo as a control in the map Ul using the Google Maps
JavaScript API.

Getting ready

This recipe will make use of the very first recipe of Chapter 1, Google Maps JavaScript AP/
Basics, as we only need the basics to develop this recipe.

How to do it...

The following are the steps to display a logo as a custom control in the Google Maps Ul:
1. After creating the map object in the initMap () function, create the container
div element:

var logoDiv = document.createElement ("div") ;

2. Then, create the HTML img element that contains your logo of preference:

var logoPic = document.createElement ("img") ;
logoPic.src = "ch04 logo.PNG";
logoPic.id = "CompanyLogo";

132

Chapter 4

3. Insert the img element into the container div element:
logoDiv.appendChild (logoPic) ;

4. Add the container div element to the controls array of the map object:

map.controls [google.maps.ControlPosition.LEFT BOTTOM] .
push (logoDiv) ;

[localhost/recipes/chid_ac »

= /reciy X ing_ —own_| tr ! =
[= C' | [localhost/recipes/ch04_adding_your_own_logo.htm vl =l
reGlS,| ork_An... ea ater ark As Rea eading Li: : _Business » er bookmar
[ArcGIS_Network_A Read it Lat Wark As Read Reading List "] ASP.NET MVC [GISB (] Other bookmarks
. ~
My First Map
= ; Luzelyurt =
C!?demcl Gllldarp Map | Satellite |
" - Esenboga T
£ 3y Ortabereket Fethiye Imrerldl {Esinia MiE Merkez Mh. Akyurt Gy
& K|$Iakoy Drhamye Balikhisar Kinctadi
Ba Yenikent
e Miilk Fatih Saray
Venibant Salay Memlik
| Aligaors Pursaklar 5 i
Bagayas | ey egene|
Ay + Yenikent 'SUEE\JH!@ EOD ray Senyuv “gl}:nova
TRN9R Kavaki Hasanoglan Yesildere
rast a5 FatihMh, Fatih
- Atatiirk Forest H
Gokler Fanm and 700 4. Gokgeyurt Keyadiibi
f’t‘w""{ Y i Ortakiy
1L Tekk st nkara Y g
= S Tatlar 4 Yildwim Hlimadég
. = A Beyazit Mh.
Yenipegenel - Kilicla
Yapracik _§
X [Karacahasan
. ' Vakupabdal
| Temelli Yukariyurtgu f =i
- Tirkobas —
Temelli EE Golbas)
Malikay Ballikuyumeu - 3 Evciler =
i Tk Deliler
Temelli " il 4 Yurtbeyi b
i Alagoz Temelli " g
i Hisarlk oparan
el Velihimmetsi -~ Yaviucuk Odulbey Beynam Gavuslu
Temelli ~ Ucret Gakeehoyik | .
Gokoren 5 Map data 2013 Basarsoft, Gdogle: Terms of Use
v

You can have the logo of your taste as a custom control in your map's Ul as seen in the
preceding screenshot.

The code of this recipe is actually the simplest form of custom controls in the Google Maps
JavaScript API. There is no event handler for the control, and there is no state information
in conjunction with the control. The only thing that exists is the control itself, which is the
container div LogoDiv element.

Working with Controls

The logoPic element and the img element keep a reference to the logo file and are
embedded in logoDiv:

var logoPic = document.createElement ("img") ;
logoPic.src = "ch04 logo.PNG";
logoDiv.appendChild (logoPic) ;

Lastly, logoDiv is added to the controls array in the LEFT_BOTTOM position. When
you open your application, you can see your logo in your map Ul in its designated position.

Understanding Google
Maps JavaScript
APl Events

In this chapter, we will cover:

» Creating two synced maps side by side

» Getting the coordinates of a mouse click
» Creating a context menu on a map

» Restricting the map extent

» Creating a control that shows coordinates

» Creating your own events

Introduction

If you have ever worked on JavaScript programming, you should know the importance of
events. Events are the core of JavaScript. There are events behind interactions in web pages.
There can be user interactions or browser actions that can be handled with the help of events.

For example, in every code from the beginning of this book, we have wrote something like the
following line of code:

google.maps.event.addDomListener (window, 'load', initMap) ;

Understanding Google Maps JavaScript APl Events

This line is a simple form of event definition. This line tells the browser to call the initMap ()
function when all the contents are loaded. This event is required to start mapping functions
after loading all DOM elements.

This chapter is about using events in the Google Maps JavaScript API to interact with maps in
different ways. The Google Maps JavaScript API has the google.maps.event namespace
to work with events. This namespace has static methods to listen to events defined in the API.
You should check the supported event types of objects in the API via the Google Maps API
reference documentation.

Creating two synced maps side by side

Maps are useful to human beings. With the help of maps, people explore or compare their
surrounding area. Sometimes they need to compare two maps side by side to see the
difference in real time. For example, you might want to check a satellite imagery side by side
with terrain maps to see where the mountains are.

This recipe shows you how to add two maps in the same page and sync them together to show
the same area and compare them with the help of Google Maps JavaScript API events.

Getting ready

You already know how to create a map from the previous chapters. So, only additional code
lines are written.

You can find the source code at Chapter 5/ch05 sync maps.html.

How to do it...

If you want to create two maps that are synced together, you should perform the following
steps:

1. First, add the CSS styles of the div objects in the header to show them side by side:

.mapClass { width: 500px; height: 500px; display:
inline-block; }

2. Then define two global map variables to access them within event callbacks:

var mapl, map2;

3. Next create the function that initializes the left map:

function initMapOne () {
//Setting starting options of map
var mapOptions = {

center: new google.maps.LatLng(39.9078, 32.8252),

136

Chapter 5

zoom: 10,
maxzoom: 15,
mapTypelId: google.maps.MapTypeId.ROADMAP

bi

//Getting map DOM element
var mapElement = document.getElementById('mapDiv') ;

//Creating a map with DOM element which is just obtained
mapl = new google.maps.Map (mapElement, mapOptions) ;

//Listening center changed event of map 1 to
//change center of map 2
google.maps.event.addListener (mapl, 'center changed',
function()
map?2.setCenter (mapl.getCenter()) ;

3N

//Listening zoom changed event of map 1 to change
//zoom level of map 2
google.maps.event.addListener (mapl, 'zoom changed',
function()
map?2 .setZoom (mapl.getZoom()) ;
1
}

4. Now, add the second function that initializes the right map. The contents of the
functions created before are almost the same, except for variable names, the div ID,
the map type, and timers in event handlers:

function initMapTwo () {
//Setting starting options of map
var mapOptions2 = {
center: new google.maps.LatLng(39.9078, 32.8252),
zoom: 10,
maxzoom: 15,
mapTypelId: google.maps.MapTypeId.TERRAIN

}i

//Getting map DOM element
var mapElement2 = document.getElementById('mapDiv2') ;

//Creating a map with DOM element which is just
//obtained
map2 = new google.maps.Map (mapElement2, mapOptions2) ;

Understanding Google Maps JavaScript APl Events

138

//Listening center changed event of map 2 to
//change center of map 1
google.maps.event .addListener (map2, 'center changed',
function()
setTimeout (function() {
mapl.setCenter (map2.getCenter()) ;
},o10);

3N

//Listening zoom changed event of map 2 to change
//zoom level of map 1

google.maps.event.addListener (map2, 'zoom changed',
function()
setTimeout (function() {

mapl.setZoom (map2.getZoom()) ;
},o10);
1)
}

We now have two maps, and we must initialize both of them at the start, so we need
a single function to call the previous functions:

//Starting two maps

function initMaps()
initMapOne () ;
initMapTwo () ;

}

Call the initMaps () function when everything has been loaded on the 1oad
event of the window element:

google.maps.event .addDomListener (window, 'load', initMaps) ;

Do not forget to add the two div objects in HTML tags:

<div id="mapDiv" class="mapClass"></div>
<div id="mapDiv2" class="mapClass"></div>

Go to your local URL where your HTML file is stored in your favorite browser and see
the result. You will see two maps side by side. When you drag or zoom in on one map,
then the other map is also changed based on the changed one. The final map will
look like the following screenshot:

Chapter 5

s o Inrslhner iracipes /ch05_sync_maps.htmil
Click ta go back, hold to see histary

Chapter 5 - Synced Maps . -
) ot P Sy
T Map | Satellit T {747 oM Satellit
mE et p | Sowelite | RN Do D g
¢ >m bluret £ ¢ 55w o _@/\/xuwj.l 2w { 1 r
i : - y L N 4
; i J - =
v ' @& . e 5 N Oy VIl . ST e h?vg,g joma
3 & % "‘; | é & J ;’.{1 A
Kadelen 3 F 4 gk T ; e : $
i 3 gat Mot LT ar) o Doty
Osimmh £ = ul E’M e - 5 N \ E
e + sl 7 — o
> s B e Bil=, e
iy ',J.:.: b Tergu s f { i = e | o Tyt Bl .
- i N Genghk e 20
arsian e et - Fatin Sulan Mehmet B % _P.elirhr e Q.‘,g('. ; /ﬂ

) £ i
fi { . Atatirvk Forest . 1

Atatlirk Fovest ; -
Farm and 260 Farmand 266 |4\) AT P ol
% A Ankara b Anaelrk Ankara N Ly
£ Eiey o B Erler - L pothals 3 d. Frned
B £ 2 E \ Evtugenr Yohs {Durphpnar 815 T T }
2 N | iy i S8 'I P
2 ; - | £ =) @%
£ o S -0 s y P . o
b = & % o o £ ! -‘.S;’ AoA 1
\ 4 i 3 s : & 3 "
Ea » o+ ! s / e 4
s 2 £ 7 1rif)
) & 'y -i & ‘#.(A
A o G . et (m:nﬁ"""} (7
Vakupabdal ! 4*,5 o Yakupabdal
| = (A% by
e g '0-20 08t T \r‘-‘)‘f ; Karatag - =
gy '
GRS 100y 2 _4 4

Map data £2013 Basersoft | Temsof Use

Galhasgi Baria:)
Mp data 2013 Baswsof, Google Tems of Use A\ .-—/'_'—_“‘/

As a result of the recipe, we can create two maps that are synced together to show the
same area of different map types.

The important point in this recipe is to keep two maps in synchronization at the same position
and zoom level. To achieve this goal, we need to know when the map has moved and when

the zoom level has changed.

The map object has different events to trigger. The center changed and zoom changed
events are two of those events. The center changed event is triggered every time the map
center is changed. There are also bounds_changed, drag, dragstart, and dragend
events that can be used to achieve our goal, but center changed is the simplest one to
handle. The zoom_changed event is triggered when there is a change in the zoom level.

To listen for the events, we need to register these events with the google .maps.event
namespace as follows:

google.maps.event.addListener (mapl, 'center changed', function() {
map2 .setCenter (mapl.getCenter()) ;

I3F;

Understanding Google Maps JavaScript APl Events

The addListener () method gets three parameters; an object to listen, an event type,

and an event handler. The event handler can be a function that has been defined earlier or
an anonymous function used only here. In this example, we listen for the left map object—
mapl—for the center changed event and set the center of the right map to the center of
the left map. The zoom part also works in the same way. When the zoom level of the left map
changes, the event handler of zoom_changed sets the zoom level of the right map to the
zoom level of the left map.

This should be the same for the right map, but the code used for event handling in the right
map is a bit different from that of the left one because of an infinite event loop. If we use the
same code for event handling, we create an infinite loop between the two maps. This loop
will cause your browser to crash in most cases. To avoid this infinite loop, we create a small
break (10 milliseconds) between events. This break will solve all the problems and users

will not recognize the difference. This break is created with the setTimeout () function of
JavaScript. There is also a better version to use instead of using timeouts, which is explained
in the There's more... section of this recipe. The recipe covers the ways to use map events in
these cases:

google.maps.event.addListener (map2, 'zoom changed', function() {
setTimeout (function() {
mapl.setZoom(map2.getZoom()) ;
}, 10);

3N

There's more...

In this recipe, our events are being listened for continuously, which is as expected. But what
if you need to listen for an event for a limited time? There are two options. One option is that
of storing the returning google .maps .MapEventListener object of the addListener ()
function and removing it when needed as follows:

var eventObj = google.maps.event.addListener (mapl,
'center changed', function() {

map2 .setCenter (mapl.getCenter()) ;

P

function removeListener () {
google.maps.event.removelistener (eventObj) ;

140

Chapter 5

Another option to remove event listeners is to use the clearInstancelListeners () or
clearListeners () functions of the google.maps.event namespace, which are used for
removing all listeners for all events for the given instance or removing all listeners for the given
event for the given instance, respectively. You can look at the following code for example usages:

var eventObj = google.maps.event.addListener (mapl,

'center changed', function() {

map2.setCenter (mapl.getCenter()) ;

3N
//This one removes all the listeners of mapl object
google.maps.event.clearInstanceListeners (mapl) ;
//This one removes all center changed listeners of mapl object
google.maps.event.clearListeners (mapl, 'center changed');

The Google Maps JavaScript API also provides other methods to listen for DOM events,
named addDomListener () under the google.maps.event namespace. There is also the
addListenerOnce () method to listen for events once.

There is also an alternate method to sync maps. The following code block just syncs two
maps' events:

map2.bindTo ('center', mapl, 'center');
map2.bindTo ('zoom', mapl, 'zoom');

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

Getting the coordinates of a mouse click

The mouse has been the most effective input device for computers for a long time. Nowadays,
there is an attempt to change it with touchscreens, but nothing can be compared to the ease
of use that a mouse provides.

The mouse has different interactions on maps, such as click, double-click, right-click, move,
and drag. These events can be handled in different ways to interact with users.

Understanding Google Maps JavaScript APl Events

In this recipe, we will get the coordinates of a mouse click on any point on the map. Users
will see an info window upon a mouse click, which can be seen in the following screenshot:

L] C | localhost/recipes/ch05_getting_coordinates.html
Chapter 5 - Getting Coordinates of a mouse click
iz : 3\ Guzelyurt ..
Sidemc o Edlidarpt Map | Satellite
~ 2 3 Esenboga D140 ' e
¢) | Ortabereket Fethiye |0 Imrendi Yestovamb: Merkez Mh. Akyurt
ar ;
> Kiglaky Orhaniye Balikhisar Ahmetadil
Baivia Yenikent
u Miilk ih Sara
#, Yenikent Saray Memlik Fath y
i) eniken {
! £ Pursaklar
: Bagayas Aizatic EHA m = Pegenek
¥ + Yenikent 'Susuz s _.YL_J_va E_:g Senyuva _le}_llnova
y rea Kavakh Hasanoglan Yesildere
Ostim Mh. | £20 | FatihMh, Fatih
5 z Gokgeyurt =
Gokler et Mouse Coordinates : 2 G Kayadibi
Tk Hiirriye Latitude : 39.86442543413277 Ortakoy
ekke 5 =
= Tatlar Longitude: 32812042236326125 1 Yidiim tlifedag
2 . - Beyazit Mh.
Yenipecenek : \ / Kiligla
Yapracik J
Ezenler P @ E%0) Karacahasan
o ¢ Yakupabdal
Temelli Yukarnyurtcu 2:upaoe) Hisarkdy
- Tirkobas =
Temelli D200 Golbasi
Malkay | Evciler
Ballikuyumcu N Delile:
Eg Temel viumiag Yurtbeyi
Alagtiz Temelli
syraz Temelli Hisarlk Koparan
s - Yavrucuk =
Olukpinar Temell elihimmeti Ogulbey Beynam Gavusly
Temelli Ucret Gokeehdyiik {0750
Cokiren Map data £2013 Basarsoft, Google - -Terms of Use

This is how we achieve the creation of a map that is listening for each mouse click to
get coordinates.

Getting ready

We assume that you already know how to create a simple map. We will only cover the code
that is needed for showing an info window upon mouse clicks.

You can find the source code at Chapter 5/ch05 getting coordinates.html.

142

Chapter 5

How to do it...

If you perform the following steps, you can get the coordinates of each mouse click on the map:

1. First, we must add an infowindow variable at the beginning of the JavaScript code
to use as a global object:

var infowindow = null;

2. Then, add the following lines to the initMap () function after the initialization of the

map object:
google.maps.event.addListener (map, 'click', function(e) {
if (infowindow != null)

infowindow.close () ;

infowindow = new google.maps.InfoWindow ({

content: 'Mouse Coordinates :

Latitude : ' + e.latLng.lat() + '

Longitude: ' + e.latlLng.lng(),

position: e.latLng

3N

infowindow.open (map) ;

3N

3. Go to your local URL where your HTML is stored in your favorite browser and click
on the map to see the result. Each mouse click opens an info window with the
coordinate information.

After initializing the map, we create an event listener to handle mouse clicks on the map:

google.maps.event.addListener (map, 'click', function(e) {

3N

The click event type has a different handler than other events. The handler has an input
parameter that is an object derived from the google .maps .MouseEvent class. This object
has a property named LatLng, which is an instance of the google .maps. latLng class.
This property gives us the coordinates of the mouse click.

Understanding Google Maps JavaScript APl Events

We want to show an info window upon each mouse click, and we want to see only one info
window. To achieve this, we create infowindow as a global variable at the beginning of the
JavaScript code and check whether it is still defined or not. If there is an infowindow object
from previous clicks, then we will close it as follows:

if (infowindow != null)
infowindow.close() ;

Upon each mouse click, we will create a new infowindow object with new contents,
coordinates, and position from the e . latLng object. After creating infowindow, we will just
open it on the map defined previously:

infowindow = new google.maps.InfoWindow ({
content: 'Mouse Coordinates :
Latitude
'" + e.latlng.lat() + '<brs>
Longitude: ' + e.latlng.lng(),
position: e.latlng
1)

infowindow.open (map) ;

There's more...

As already mentioned, some event types have different event handlers that can get a
parameter. This parameter is an object derived from the google . maps .MouseEvent class.
The google.maps.Map class has the following events that return MouseEvent objects to
the handlers: click, dblclick, mousemove, mouseout, mouseover, and rightclick.

See also

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

Creating a context menu on a map

Using menus in a user interface is a way to communicate with users. Users select a menu
item to interact with web applications. Some of the menu types can be accessible from a
visible place, but some of them can be accessible with some extra actions, such as context
menus. Context menus usually appear on applications with a right-click of the mouse.

In this recipe, we will create a context menu on the map that opens when we right-click on
the map. This menu includes zoom in, zoom out, and add marker functions. You will also get
the position of the right-click to use it in some geo methods such as adding a marker in this
example.

Chapter 5

Getting ready

This recipe is also like the other recipes in that we assume you already know how to create a
simple map. So, we will only show extra lines of code to add the context menu.

You can find the source code at Chapter 5/ch05 context menu.html.

How to do it...

The following are the steps we need to create a map with a context menu to show
extra commands:

1. Let's start by adding CSS styles of the context menu to the header of HTML:

.contextmenu
visibility: hidden;
background: #ffffff;
border: 1lpx solid #8888FF;
z-index: 10;
position: relative;
width: 100px;
height: 50px;
padding: 5px;

}

2. The next step is to define the global variables for the context menu and coordinates:

var contextMenu, lastCoordinate;

3. Then, we will add lines that define the context menu class. The details will be
explained later:

//Defining the context menu class.
function ContextMenuClass (map) {
this.setMap (map) ;
this.map = map;
this.mapDiv = map.getDiv () ;
this.menuDiv = null;

¥

ContextMenuClass.prototype = new google.maps.OverlayView() ;
ContextMenuClass.prototype.draw = function() {};
ContextMenuClass.prototype.onAdd = function()

var that = this;

this.menuDiv = document.createElement ('div"') ;

this.menuDiv.className = 'contextmenu';

Understanding Google Maps JavaScript APl Events

146

this.menuDiv.innerHTML = 'Create Marker
Here
Zoom
In
Zoom
Out
"';

this.getPanes () .floatPane.appendChild (this.menuDiv) ;

//This event listener below will close the context menu
//on map click
google.maps.event.addListener (this.map, 'click',
function (mouseEvent) {
that.hide () ;
1
}i

ContextMenuClass.prototype.onRemove = function() {
this.menuDiv.parentNode.removeChild (this.menuDiv) ;

}i

ContextMenuClass.prototype.show = function(coord) {
var proj = this.getProjection() ;
var mouseCoords = proj.fromLatLngToDivPixel (coord) ;
var left = Math.floor (mouseCoords.x) ;
var top = Math.floor (mouseCoords.y) ;
this.menuDiv.style.display = 'block';
this.menuDiv.style.left = left + 'px';
this.menuDiv.style.top = top + 'px';
this.menuDiv.style.visibility = 'visible';

}i

ContextMenuClass.prototype.hide = function(x,y) {
this.menuDiv.style.visibility= 'hidden';

}

Now, add the functions to be used in the context menu:

//Defining context menu functions
function zoomIn() {
map.setZoom(map.getZoom() + 1);

}

function zoomoOut () {
map.setZoom(map.getZoom() - 1);

}

function createMarker ()
var marker = new google.maps.Marker ({
position: lastCoordinate,

Chapter 5

map: map,
title: 'Random Marker'
1)
}

5. Add the following code block after initializing the map object. This block will create an
object from the ContextMenuClass class and start listening in the map object for
the right-click to show the contextMenu object created:

//Creating a context menu to use it in event handler
contextMenu new ContextMenuClass (map) ;

//Listening the map object for mouse right click.
google.maps.event.addListener (map, 'rightclick',
function(e)

lastCoordinate e.latlng;
contextMenu.show(e.latlLng) ;

3N

6. Go to your local URL where your HTML is stored in your favorite browser and right-click
to see the context menu.
&= c localhost/recipes/ch05_context_menu.html
Chapter 5 - Creating a context menu on a map
- : \ Ayd yuzelyurt g
Gigdemei ydin Gldarp Map | Satellite
A - Yesil Esenboga (D140
¢ % Ortabereket Fethiye | Imrendi exlcva Mk Merkez Mh Akyurt
r A -
v 4 islakéy Orhaniye Baliknisar Ahmetadil
Bayram Yenikent f
Al Miilk e
[] S /Saray Memiik Fetin Y
i jrenibant Pursa
Basayas Akpatee £ @ Pecenek
Y + Yenikent _:__.SUSI.IZ T I 50 | Senyuv \St;.:-'\o\'a
-] anga Kavakh Hasanoglan Yegiidere
? BTN | £30 FatihMh. Fatih
Atatiirk Forest \ s E |
= Gokgeyurt 2
Gl o s, L I
 Tekke IH”""'Q orman Ciftigi_~ | Ankara oLy Elmadag
Tatlar . ildirim
i Ea m Beyazit Mh
Yenipegenek k B Kiligla
Esenler Yapracik Create Marker Here Karacahasan
'Es0 i 0-20] Zoom In
Temelli Yukaryurigu | Zoom Out Hisarkdy
- Turkobas J =
Temelli [Dz00] Gaolbast
Malikiiy Ballikuyumcu Evciler
I Deliler
=0 Temelli Tulumtag Yurtbeyi
Y Alagsz Temelli
wraz Temelli Hisarhk Koparan
iy ke .
Olukpinar Temell Velinimmeti Y gguibey Beynam Gavusiu
Temeli Ucret Gkgehoylk
Gokdren Map data ©201 3 Basarsoft, Google - Terms of Use

As it can be seen in the preceding screenshot, we created our simple map with the

context menu.

Understanding Google Maps JavaScript APl Events

JavaScript is a prototype-based scripting language that supports object-oriented programming
in a different way compared to classical server-side programming languages. There isn't any
classic class definition, but you have prototypes to create classes or inherit other classes. This
book is not a JavaScript book. If you have any questions about these concepts of JavaScript,
you should google it to learn the details.

The Google Maps JavaScript APl has a google.maps.OverlayView class to create your own
custom types of overlay objects on the map. We will inherit this class to create our own context
menu class. First, we will define the ContextMenu class with its constructor as follows:

function ContextMenuClass (map) {
this.setMap (map) ;
this.map = map;
this.mapDiv = map.getDiv() ;
this.menuDiv = null;

}i

Then, we will set a prototype of the ContextMenu class to an object created from the
google.maps.OverlayView class:

ContextMenuClass.prototype = new google.maps.OverlayView() ;

The google.maps.OverlayView class has three methods to be implemented in our newly
created class: onadd (), draw (), and onRemove (). In addition to these methods, we add two
methods to show or hide the context menu. Each method's mission is explained as follows:

» onAdd (): The creation of DOM objects and appending them as children of the panes
is done in this method. We will create a div object with the CSS class defined at the
top of the HTML. Menu items are also added to this div object with the innerHTML
property. We will also create an event listener of map clicks to remove the context
menu from other actions:

ContextMenuClass.prototype.onAdd = function () {
var that = this;
this.menuDiv = document.createElement ('div') ;
this.menuDiv.className = 'contextmenu';

this.menuDiv.innerHTML = '<a href=
"javascript:createMarker () ">Create Marker Here

Zoom In

Zoom Out
';

this.getPanes () .floatPane.appendChild (this.menuDiv) ;

148

Chapter 5

//This event listener below will close the context menu
// on map click

google.maps.event.addListener (this.map, 'click',
function (mouseEvent) {

that.hide () ;
3N
Vi

draw () : The positioning of created elements is done via this method, but we skip
steps to fill this method. We create show () and hide () methods instead of adding
or removing the context menu each time:

ContextMenuClass.prototype.draw = function() {};

onRemove (): Removing the created elements is done in this method:

ContextMenuClass.prototype.onRemove = function() {
this.menuDiv.parentNode.removeChild (this.menuDiv) ;

}i

show (coord) : Showing the context menu when we right-click on the mouse is done
in this method. The input parameter is a 1atLng object, so we have to convert it to
pixel coordinates in the div element. To achieve this, we need extra objects created
from the google .maps.MapCanvasProjection class. This class has a method
named fromLatLngToDivPixel to convert the 1atLng object to simple google.
maps . Point objects. This object is used to set the x and y coordinates of the
context menu from the top-left corner of the map. We also change the visibility style
of div to show on the map:

ContextMenuClass.prototype.show = function(coord) {
var proj = this.getProjection() ;
var mouseCoords = proj.fromLatLngToDivPixel (coord) ;
var left = Math.floor (mouseCoords.x) ;
var top = Math.floor (mouseCoords.y) ;
this.menuDiv.style.display = 'block';
this.menuDiv.style.left = left + 'px';
this.menuDiv.style.top = top + 'px';
this.menuDiv.style.visibility = 'visible';

}i

hide () : Hiding the context menu is done in this method. We just change the visibility
property of the context menu div to hidden to hide it:

ContextMenuClass.prototype.hide = function(x,y) {

this.menuDiv.style.visibility 'hidden';

Understanding Google Maps JavaScript APl Events

The ContextMenuClass class has been defined earlier, but there isn't any object created
from this class. We created a contextMenu object from our new class as follows:

contextMenu = new ContextMenuClass (map) ;

In order to use this contextMenu object, we should listen for the map object's rightclick
event and show the context menu in its handler. We will also update the global variable
lastCoordinate to keep the last right-click coordinate to use it in the createMarker ()
function:

google.maps.event.addListener (map, 'rightclick', function(e)
lastCoordinate = e.latlng;
contextMenu.show(e.latLng) ;

3N

Context menu functions are covered in previous chapters, so they are not explained here. You
can also create other types of overlays like in this recipe with the help of the google .maps.
OverlayView class.

More on JavaScript prototype-based inheritance

If you are interested in the details of JavaScript prototype-based

inheritance, please get more details from the following page: http://
@@@‘\ javascript.crockford.com/prototypal.html.

This article is written by Douglas Crockford, who is the guru of JavaScript

and the father of the JSON format. | suggest you read his popular JavaScript

book JavaScript: The Good Parts to delve deeper into JavaScript.

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

» The Changing map properties programmatically recipe of Chapter 1, Google Maps
JavaScript API Basics

» The Adding markers to maps recipe of Chapter 3, Adding Vector Layers

150

Chapter 5

Restricting the map extent

Google Maps has a worldwide extent that shows almost every street on the earth. You can use
the Google Maps JavaScript API for the whole earth, but sometimes you need to show only the
related area in the mapping application. You can zoom to a fixed location, but this doesn't stop
users from moving to another place that is not in the extent of your application.

In this recipe, we will listen for map events to check if we are in an allowed extent. If we are
not in the allowed extent, then we move the map to the allowed center within the extent. We
used Turkey's geographic extent in this recipe.

Getting ready

This recipe is still using the same map creation process defined in Chapter 1, Google Maps
JavaScript API Basics, but there are some additional code blocks to listen for map events and
to check for the restricted extent.

You can find the source code at Chapter 5/ch05 restrict extent.html.

How to do it...

Restricting the map extent is quite easy if you perform the following steps:

1. First, we must add the allowedMapBounds and allowedZoomLevel variables
as global variables after defining the map variable. This is the geographic boundary
of Turkey:
var allowedMapBounds = new google.maps.LatLngBounds (

new google.maps.LatLng(35.817813, 26.147461),
new google.maps.LatLng(42.049293, 44.274902)
)i
var allowedZoomLevel = 6;

2. The next step is to listen for the drag and zoom changed events of the map after
initializing the map:
google.maps.event.addListener (map, 'drag', checkBounds) ;

google.maps.event.addListener (map, 'zoom changed',
checkBounds) ;

3. Then, we create a checkBounds () function to handle events when they are fired.
The first part of the function is to check for zoom levels. We choose 6 to minimize
the zoom level of the map for this recipe:
function checkBounds () ({

if (map.getZoom() < allowedZoomLevel)
map . setZoom(allowedZoomLevel) ;

Understanding Google Maps JavaScript APl Events

4. The following lines of code will add to the checkBounds () function to get the
allowed bounds, recent bounds, and recent center of the map:

if (allowedMapBounds) {

var allowedNELng = allowedMapBounds.getNorthEast () .1lng() ;
var allowedNELat = allowedMapBounds.getNorthEast () .lat () ;
var allowedSWLng = allowedMapBounds.getSouthWest () .1lng() ;
var allowedSWLat = allowedMapBounds.getSouthWest () .lat () ;

var recentBounds = map.getBounds () ;

var recentNELng = recentBounds.getNorthEast () .1lng()

var recentNELat = recentBounds.getNorthEast () .lat ()

var recentSWLng = recentBounds.getSouthWest () .1lng() ;
))

var recentSWLat = recentBounds.getSouthWest () .lat(

7

7

7

var recentCenter = map.getCenter() ;
var centerX = recentCenter.lng() ;
var centerY = recentCenter.lat();

var nCenterX = centerX;

var nCenterY = centeryY;

}

5. The important part of the checkBounds () function is the comparing of allowed
bounds with recent bounds. If there is a difference between centerX and centeryY
with the nCenterX and nCenterY variables, then we move the map to the center
that is within the allowed bounds:

if (recentNELng > allowedNELng) centerX = centerX-
(recentNELng - allowedNELng) ;

if (recentNELat > allowedNELat) centerY = centerY-
(recentNELat - allowedNELat) ;

if (recentSWLng < allowedSWLng) centerX = centerX+
(allowedSWLng - recentSWLng) ;

if (recentSWLat < allowedSWLat) centerY = centerY+
(allowedSWLat recentSWLat) ;

if (nCenterX != centerX || nCenterY != centerY) {

map .panTo (new google.maps.Latlng(centerY, centerX)) ;
else {

return;

}

6. Go to your local URL where your HTML is stored in your favorite browser and try to
move the map of other countries near Turkey. You will see that the map moves back
to its previous position that is allowed within the boundaries defined at the top.

152

Chapter 5

LS ot localhost/recipes/ch05_restrict_extend.html
Chapter 5 - Restricting the map extent
I= ﬂf\r
TN | Map | Satellite
__Es“:[r' ~ Bartin Bafra Batgml
b) o o i ._
)/- ~ .,%tlu $|(?I| Zonguldak oo Sar‘l?sun Unye Pazar
Gebzep...o. Dizceo Amasya s
2 lzmit Bolu C“L”“‘ g 4
g °) oTokat
Bursa e Ankara ! Erzurum
+ |Balikesir Esklgehlr o g Sivas Erzincan o Karakise
o Kirikkale § X o
e Qa
Kiitahya
Nlanisa Usak Tu rkey Elazig
o o o Van
o Aksaray Malatya o
o o
lzinir e ; . -
Nazill Diyarbakir Siirt
o sk Isparta K"S‘—"a z o o Q
£ aydin Deﬁizli o Kahramgnmaras Batman
Karaman Gaziantep Urfa Kiziltepe
Antalya 2 Adgna o 4 s> —
DaEW o Marmaris [#] oManavgat o Al Qamishli
Rhad o Icel
i Fethiye Ala% a Mosul
Y (o]
Latakia]
g Deirez-Zur
ia Hamah 2]
O ey =
“Cyprise- Hadyah — 9 Syria
1 Forest (& oH Tik
s A ale oms [
Sal
Lebanohn
BeirutQ azdhla
Map data 2013 Basarsoft, GeoBasis-DE/BKG (82009), Google, Mapa GlSrael, ORION-ME Terms of Lise

As it can be seen in the preceding screenshot, you can easily restrict the map extent by events
provided by the Google Maps JavaScript API.

As it is stated in previous event recipes, the Google Maps JavaScript API gives the developer
many events that are related to mapping activities. The drag and zoom_changed events
are the ones we are using in this recipe to listen for. This time, we do not create anonymous
event handlers because we use the same event handler for two event listeners, named
checkBounds () :

google.maps.event.addListener (map, 'drag', checkBounds) ;
google.maps.event.addListener (map, 'zoom changed',6 checkBounds) ;

The Google Maps JavaScript API has the google . maps . LatLngBounds class for defining
geographical bounds. This class' constructor gets two objects as parameters created from
the google .maps.LatLng class. The parameters are the geographical coordinates of the
south-west and north-east corners respectively. This creates a geographical boundary for
our application. South-west has the minimum latitude and longitude while on the other side,
north-east has the maximum latitude and longitude:

Understanding Google Maps JavaScript APl Events

var allowedMapBounds = new google.maps.LatLngBounds (
new google.maps.LatLng(35.817813, 26.147461),
new google.maps.LatLng(42.049293, 44.274902)

) ;

The main trick in this recipe is in the checkBounds () function. First, we get the minimum and
maximum latitudes and longitudes of the allowed bounds and recent bounds. The NE label is
the maximum value and the sw label is the minimum value of latitudes and longitudes:

var allowedNELng = allowedMapBounds.getNorthEast () .1lng() ;
var allowedNELat = allowedMapBounds.getNorthEast () .lat() ;
var allowedSWLng = allowedMapBounds.getSouthWest () .1lng() ;
var allowedSWLat = allowedMapBounds.getSouthWest () .lat() ;

var recentBounds map .getBounds () ;

var recentNELng = recentBounds.getNorthEast () .1lng() ;
var recentNELat = recentBounds.getNorthEast () .lat();
var recentSWLng = recentBounds.getSouthWest () .1lng() ;
var recentSWLat = recentBounds.getSouthWest () .lat();

The center of the map is used for both checking the difference and centering the map
according to this value. The nCenterX and nCenterY values are used for checking if there
is a change in the centerX and centerY values. The if statement checks for the recent
values and allowed values. If the map is going out of the allowed bounds, it will change the
centerX or centerY values:

var recentCenter = map.getCenter () ;
var centerX = recentCenter.lng() ;
var centerY = recentCenter.lat () ;

var nCenterX = centerX;
var nCenterY = centeryY;

if (recentNELng > allowedNELng) centerX = centerX -
(recentNELng - allowedNELng) ;

if (recentNELat > allowedNELat) centerY = centerY -
(recentNELat - allowedNELat) ;

if (recentSWLng < allowedSWLng) centerX = centerX +
(allowedSWLng - recentSWLng) ;

if (recentSWLat < allowedSWLat) centerY = centerY +
(allowedSWLat recentSWLat) ;

Chapter 5

If there is a change in the centerX or centerY values, then we must keep the map in the
bounds with the help of the panTo () method; otherwise, do nothing using return:

if (nCenterX != centerX || nCenterY != centerY) {

map .panTo (new google.maps.LatLng (centerY, centerX)) ;
else {

return;

}

There may be different ways to check the allowed bounds, such as only checking the center of
the map, but this method will not limit the exact bounds you want.

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

» The Changing map properties programmatically recipe of Chapter 1, Google Maps
JavaScript API Basics

Creating a control that shows coordinates

Geographical coordinates are very important for showing where you are on the earth.
Latitudes and longitudes come together to create a two-dimensional grid that simulates the
earth's surface. Showing the latitude and longitude in a control on the map while you are
moving the mouse can be a good usage of controls and events together.

In Chapter 4, Working with Controls, we have seen recipes such as Adding your own logo as

a control, and we have also seen how to use map events in this chapter. In this recipe, we will
create a control with the help of the mousemove event of the map that shows the coordinates
in real time.

Getting ready

In this recipe, we will use the first recipe defined in Chapter 1, Google Maps JavaScript API
Basics as a template in order to skip the map creation.

You can find the source code at Chapter 5/ch05 coordinate control.html.

Understanding Google Maps JavaScript APl Events

How to do it...

You can easily create a simple control to show the coordinates on mouse moves by performing
the following steps:

1. First, we will add a CSS class at the style part of the head section. This will
decorate the coordinate control:

.mapControl
width: 165px;
height: 1lé6px;
background-color: #FFFFFF;
border-style: solid;
border-width: 1px;
padding: 2px 5px;

}

2. After initializing the map, we will define the control parameters:

//Defining control parameters
var controlDiv = document.createElement ('div') ;

controlDiv.className = 'mapControl';
controlDiv.id = 'mapCoordinates';
controlDiv.innerHTML = 'Lat/Lng: 0.00 / 0.00';

3. Then, add a control to the map with the following line:

//Creating a control and adding it to the map.
map.controls [google.maps.ControlPosition.LEFT BOTTOM] .
push (controlDiv) ;

4. Now, we add an event listener to the map to handle the mousemove event and
update the coordinates on each mousemove event:

//Listening the map for mousemove event to show it in control.
google.maps.event .addListener (map, 'mousemove', function(e)
var coordinateText = 'Lat/Lng: ' +
e.latlng.lat () .toFixed(6) + ' / ' +
e.latlng.lng() .toFixed (6) ;
controlDiv.innerHTML = coordinateText;

3N

5. Go to your local URL where your HTML is stored in your favorite browser and try to
move the mouse. You will see the coordinate control changes in the left-bottom
corner of the map.

156

Chapter 5

= c localhost/recipes/ch05_coordinate_control.html
Chapter 5 - Creating a control that shows coordinates
? A Guzelyurt =
Gigdemci ydin Giildarp: Map | Satellite
A~ 4 x Yesil Esenboga (D140
¢ 3 | Ortabereket Fethiye | Imrendi eqilova Mt Merkez Mh. Akyurt
r s :
b ; Kiglakpy Orhaniye Balikhisar Ahmetadil
Yenikent
Baycam Millk ; Fatih Saray
[Ifi Yenkant Saray Memlik gl
Basayas Ahcadle = Pegenek
A A \ . - "
Y + Yenikent \SUSUZ S Yuva gy Senyuva __OAltr:nova
(0.4 anga Kavakh Hasanoglan Yesildere
et M E90 Fatih Mh. Fatih
Atatlirk Forest - E3
Gakler Yenikent Farm and Zoo :GORC'!W" (D200} Kayadibi
s Ataliirk Ortakisy
Tekke Hiirriye Orman Ciftligi Ankara ; Elmada
= Tatlar e EEEI Yildinm
: = g Beyazit Mh.
enpechnek Kilila
Yapracik 4
Eeetile DI'::] o-20 (ESO Karacahasan
Temelli yukanyurtgu / Yakupapdal Hisarky
- Tirkobas .
Temelli (D200 \ Gdlbasi
Mahkdy Ballikuyumcu S Evciler s
eliler
" Tulumtas .
- Temelli Yurtbeyi
> E30) Alagiz Temelli
wyraz Temelli Hisarlik Koparan
i i Yavrucuk ;.
Lat/Lng: 40.163133 / 32.391815 |ll Yeltummetl Oguibey Beynam Gavuslu
Temelli V° Gokgehdylk
Cokiren X Map data ©2013 Basarsoft, Google ;- Terms of Use

We have successfully created a simple control that shows coordinates on mouse moves.

This recipe is a combination of two chapters: Chapter 4, Working with Controls, and this
chapter. More detailed information about controls can be gathered from Chapter 4, Working
with Controls.

As it has been stated earlier, the Google Maps JavaScript API gives us different events to listen
for, for different purposes. In this recipe, we will use the mousemove event of the map to get
the coordinates of the mouse. The mousemove event handler has an input parameter to get
coordinates. We will get the latitude and longitude from the e . 1atLng object with the help

of the 1at () and 1ng () functions, respectively. Then, we will fix their decimals to 6 digits in
order to make an ordered view in the coordinate control with the Math function toFixed ():

//Listening the map for mousemove event to show it in control.
google.maps.event .addListener (map, 'mousemove', function(e)
var coordinateText = 'Lat/Lng: ' + e.latLng.lat().
toFixed(6) + ' / ' + e.latlng.lng() .toFixed(6) ;
controlDiv.innerHTML = coordinateText;

3N

Understanding Google Maps JavaScript APl Events

The remaining part of the code is related to simple map creation and creating a custom
control, which is not the scope of this chapter.

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

» The Adding your own logo as a control recipe of Chapter 4, Working with Controls

Creating your own events

Events are very important for JavaScript programming, and all JavaScript frameworks and APIs
give developers access to some predefined event types related to their classes. The Google
Maps JavaScript API is doing the same, and it gives us the most used event types with their
classes. But what if you need a custom event type?

The Google Maps JavaScript API has a base class named google .maps .MVCObject that
is the top class that most of the classes inherit. The class is ready for using in custom events
with the google.maps.event namespace.

In this recipe, we will create a custom object with the google . maps .MVCObject class and
bind it to a custom event to create your own events. The usage of the custom event cannot be
a real-world case, but it will give you an idea about listening and firing your own events.

Getting ready

This recipe is still using the same map creation process defined in Chapter 1, Google Maps
JavaScript API Basics, but there are some additional code blocks to create a table of contents
(ToC) control and the custom event.

You can find the source code at Chapter 5/ch05 custom events.html.

How to do it...

If you perform the following steps, you can add and create your own types of events:

1. First, we add the CSS class of our custom control:

.mapControl
width: 165px;
height: 55px;
background-color: #FFFFFF;
border-style: solid;
border-width: 1px;
padding: 2px 5px;

158

Chapter 5

Now, we create a customObject variable as a global variable after the map variable:

var customObject;

Then, we create createTOCControl () to create our table of contents control
as follows:

function createTOCControl () {

var controlDiv = document.createElement ('div') ;

controlDiv.className = 'mapControl';

controlDiv.id = 'layerTable';

map.controls [google.maps.ControlPosition.RIGHT TOP] .push
(controlDiv) ;

var html = 'Map Layers
';

html = html + '<input type="checkbox"
onclick="checkLayers (this)" value="geojson">
GeoJSON Layer
';

html = html + '<input type="checkbox"
onclick="checkLayers (this)" value="marker">
MarkerLayer';

controlDiv.innerHTML = html;

}

The next step is adding another function, named checkLayers (), that is
the function calling from the onc1ick event of the checkboxes:

function checkLayers (cb) {
//Firing customEvent with trigger function.

google.maps.event.trigger (customObject, 'customEvent',
{layerName: cb.value, isChecked: cb.checked}) ;

}

All the functions are ready to be added to the initMap () function. Add the
following lines after initialization of the map:

//Creating Table of Contents Control.
createTOCControl () ;

//Creating custom object from Google Maps JS Base Class
customObject = new google.maps.MVCObject () ;

//Start listening custom object's custom event
google.maps.event.addListener (customObject,
'customEvent', function (e)
var txt = '';
if (e.isChecked)
txt = e.layerName + ' layer is added to the map';

Understanding Google Maps JavaScript APl Events

else {
txt = e.layerName + ' layer is removed from the map';

}

alert (txt) ;

3N

6. Go to your local URL where your HTML is stored in your favorite browser and see the
map. When you click on one of the checkboxes in the table of contents control, you
will see an alert box with the name of the layer and its status as to whether it has
been added or removed.

€« (& localhost/recipes/ch05_custom_events.html
Chapter 5 - Creating your own events
: 5 \ GUZelyurt %
Cigdemi | Aygin Gilldarp: Map = Satellite
~ | 4 : : Esenboga - . —
¢ | Onabereket Fethiye I{:Bilik Imrendi Yesilova M Merkez Mh. Akyurt | Map Layers
ap dr \ - _ -V-’GeodSON Layer
Kiglakay Orhaniye Balikhisar
8 Yenikent 7 Marker Layer
ayram, Miilk J ih Sara
B Vement ..'é53la)f Memlik Fatib Y
' eniken !
] ; S Pursaklar
Bagayas Axgatce IEB o Pecenek
1 Yenikent N i E00 | Senyﬁv""---s:‘r:";ﬁ;; .
@ \ Kavakli Hasanodlan Yegtlt{._iﬁre
i ati
Ostim Mh EI% Fatih Mh.
Atatiirk Forest N7 [E88 |
Gikler Yenikent | Farm and Zoo 3 ti Gokgeyurt (0200 Kayadibi
Hilrriye X Atatirk Ortakiy
Tekke \ Ovrman Giftligi Ankafa 7 AN
p Tatlar ' Yildinm
Yenipegenek !\31} : BeyezitM, 3
peg ~, * Kiligla
Esenler Yaprack ™ |
oo ff0-20 g
Teoll. yixaryislon { The page at localhost says:
- Tiirkobas | geojson layer is added to the map
Temelli CE N
Malikéy Ballikuyumecu -
. Tulumtas
Temelli
fa Alagoz Temelli
syraz Temelli Hisarlik Koparan
s . Yav .
Olukpinar Temelli Velinimmett - 0gu ,
Temelli Ucret Gokcehoyik Fremy :
Gokéren) Map data ®201 3 Basarsoft, Google : Terms of Use

This is the result of the recipe that shows both triggering and listening for the custom events
defined by yourself.

JavaScript has an inheritance that is one of the core concepts of object-oriented
programming. This makes your life easier in order not to write the same methods
again and again.

160

Chapter 5

The Google Maps JavaScript API uses the inheritance of JavaScript both for itself and API
developers. There are core classes that are the bases for other classes. The Google Maps
JavaScript API has a base class named google .maps .MVCObject that all other classes
are produced from.

If you want to create a custom class as in previous recipes, you should create a class from
the google .maps.MVCObject class. In this recipe, we just create an object from the
MVCObject class instead of creating a new class. Then, we will listen for customEvent
of this created object just like other events:

//Creating custom object from Google Maps JS Base Class
customObject = new google.maps.MVCObject () ;

//Start listening custom object's custom event

google.maps.event.addListener (customObject, 'customEvent',
function (e) {

var txt = '';
if (e.isChecked)
txt = e.layerName + ' layer is added to the map';

}

else {

txt = e.layerName + ' layer is removed from the map';
}
alert (txt) ;

13N

Firing the custom event is much easier than listening for it. We use the google .maps.
event.trigger () function to fire the event with additional parameters. Parameters
should be in the JSON object format to send it to the event handler:

//Firing customEvent with trigger function.

google.maps.event.trigger (customObject, 'customEvent',
{layerName: cb.value, isChecked: cb.checked}) ;

Creating a custom event in this recipe cannot be directly used in real-life cases, but this
should give you an idea about how to use them. Events should be used carefully in order
to use memory efficiently.

» The Creating a simple map in a custom DIV element recipe of Chapter 1, Google
Maps JavaScript API Basics

» The Adding your own logo as a control recipe of Chapter 4, Working with Controls

Google Maps
JavaScript Libraries

In this chapter, we will cover:

» Drawing shapes on the map

» Calculating the length/area of polylines and polygons
» Encoding coordinates

» Searching for and showing nearby places

» Finding places with the autocomplete option

» Adding drag zoom to the map

» Creating custom popups / infoboxes

Introduction

This chapter delves into the additional JavaScript libraries that are part of the Google Maps
JavaScript API. These libraries are not added to your application by default when you reference
the Google Maps API; however, these can be added manually.

These libraries are classified into the following six categories:

» drawing

» geometry

» places

» panoramio

» visualization

» weather

Google Maps JavaScript Libraries

The last three libraries in the preceding list—panoramio, visualization, and weather—
have been discussed thoroughly in Chapter 2, Adding Raster Layers, with respect to their
related topics and usages. In this chapter, we will learn in detail about Drawing and
Geometry libraries. We will also use two external libraries.

The intention of these libraries, as extensions to the core AP, is to ensure that the Google
Maps JavaScript API is self-sufficient in order to provide all of the tasks that it offers to
accomplish. That means, without these extra libraries, you can develop using the API
without any problem.

In addition, these libraries are somehow autonomous. They have very well-defined and
designed objectives and boundaries, so adding them will provide additional functionality,
but removing them will not take away any functionality from the core API.

This optionality of the extra libraries definitely accounts for faster loads of the API. Unless
you request these libraries explicitly, they are not loaded. This componential structure lets
you have the option of including the cost of loading these libraries or not.

This chapter will first deal with the drawing library, which will enable you to draw vector
overlays on top of your base maps. Then, it will deal with the geometry library and get the
properties of the vector overlays, such as the length and areas. Finally, the places library
will explain in detail how to search for places and show the details of these places in the
Google Maps JavaScript API.

Drawing shapes on the map

You have probably explored vector overlays in Chapter 3, Adding Vector Layers. Without getting
into details, you can add markers, lines, and polygons programmatically using the Google
Maps JavaScript API. But if you wanted to draw these vector overlays—not programmatically,
but with mouse clicks or touch gestures, like in AutoCAD or ArcGIS for Desktop—what would
you do?

The drawing library handles this job, enables you to draw vector shapes as per your
preference, and shows them on top of your base maps.

In this recipe, we will go over the details of how to draw shapes, deal with their extensive
set of options, and how to handle their specific events.

Getting ready

The first recipe of Chapter 1, Google Maps JavaScript API Basics, will do our work. We will
alter the Google Maps API bootstrap URL to have this recipe.

Chapter 6

How to do it...

The following steps show how you can have the drawing control and draw some shapes
using that control:

1. Alter the Google Maps API bootstrap URL adding the 1ibraries parameter:
<script type="text/javascript"

src="https://maps.googleapis.com/maps/api/js? libraries=drawin
g&sensor=false">

</script>
2. Create the drawingManager object:
var drawingManager = new google.maps.drawing.DrawingManager () ;

3. Enable the drawing functionality:

drawingManager.setMap (map) ;

; - - B = i
[localhost/recipes/ch6_dra » \\-

€ = C | [} localhost/recipes/ch6_drawingShapes.html el I | % @

(1 ArcGIS_MNetwork_An.. [Read It Later [Mark As Read [Reading List ("] ASP.NET MVC [GIS_Business » (] Other bookmarks

-
Drawing Shapes Ee
Q—@J—T—é—f Eathi 5 guimina S eI ARyurt - . = .
gl L N E G w: £ lap atellite |
» |——- 'mﬂgkﬁy Orhaniye Balikhisar Ahmieeran
< 2> Yenikent
o o Memlik Fatih - Saray
Yenikent
a Pursaklar
A@'B Balsavas Akgaore - L Seganal
LS Yenikent \ e - ST Altinova
.._ 2 JOrhanga ayaki Hasanoiian Yesildere
3 FatihMh. Fatih

,\
D200} Kayadibi

Géikler Gokgeyurt

Tekke Elmadaﬁ
f
= S K =
an :}
Tetnehiy Hidarkay
Tirkobas i
!
Temelli |
Malkay Ballikuyumcu Eveil Y
“Temelli Tulumtas - Lt]
BT agsz Temelli : o
ayraz. Temelli Hisarlik Koparan 8 3)
: Velihimmetli arEcll o‘uj ! Gavuglu
Olukpinar Temelli g l
J:Felli Ucret Gokgehoyiik ._I KER;“ .
oren ; | s cek
Macun Subagi i D250 = Tolkay Ergin i
Coeieyri e Gayirh Topakh Ginalan . =
et Al - Map data ©2013 Basarsoft Google Terms of Use

In the previous screenshot, you can see the varieties of shapes you can draw by clicking on
the buttons in the top-left corner.

Google Maps JavaScript Libraries

Adding the drawing functionality to your application using the Google Maps JavaScript APl is
easy. First, you have to include the 1ibraries parameter to your Google Maps JavaScript API
URL with the drawing value inside to include the drawing library into your application:

&libraries=drawing

Next, you can use the drawing library's supported functions and objects in addition to the
standard Google Maps JavaScript API.

To draw your vector shapes, it is necessary to have a DrawingManager object:
var drawingManager = new google.maps.drawing.DrawingManager () ;

Having a DrawingManager object, you have all your drawing functionalities, but you have
to attach it to the current map instance in order to make use of it:

drawingManager.setMap (map) ;

After this, you will see a drawing control containing the marker, polyline, rectangle, circle, and
polygon drawing buttons. By using these buttons, you can draw any vector overlay you want.
In the toolset, you can also see a pan tool to go out of the drawing mode to use the pan and
zoom controls. If you want to draw a vector shape again, press the related button (marker,
polyline, and so on) and draw on the map.

There's more...

Until this point, having the drawing functionality is so simple that you can implement it by
adding two lines of code. However, there is an extensive set of options you can make use of,
which are related to the DrawingManager object and vector shapes you draw. It's worth
going over them, because they enrich your drawing experience in your application.

The settings of DrawingManager can be modified either in its initialization or through
its setOptions method. All the settings that pertain to the DrawingManager class are
properties of the DrawingManagerOptions class.

Let's alter our recipe to include the DrawingManager options:

var drawingManager = new google.maps.drawing.DrawingManager ({
drawingControl: true,

3N

166

Chapter 6

The drawingControl property enables or disables the drawing control seen in the map Ul:

Setting the drawingControl property to false will hide the drawing control. Its default is
true; therefore, although it is not included in our original recipe code, it is shown in the map.

It is important to note that the drawing functionality comes with attaching the
DrawingManager class to the map.

drawingManager.setMap (map) ;

Therefore, hiding the drawing control is not related to the drawing functionality. In fact,
you can create your own user controls to use DrawingManager instead of the standard
drawing controls.

The drawing control has its own options embedded in the drawingControlOptions
property. Remember from Chapter 4, Working with Controls, that you can position your
controls at the predefined places in the Google Maps Ul whether they be the default controls
or the controls you actually develop.

The drawingControl property is no exception. You can position drawingControl
by using the following code snippet:

var drawingManager = new google.maps.drawing.DrawingManager ({
drawingControl: true,
drawingControlOptions: {
position: google.maps.ControlPosition.BOTTOM CENTER
}
1

Google Maps JavaScript Libraries

The preceding code is reflected in the map Ul in the following manner:

A="REIN)
| localhost/recipes/chb_dra x
<« [3 localhost/recipes gShapes_options.htm s M. =
g e 7]
[ArcGIS_Metwork_An.. || Readltlater [MarkAsRead | ReadingList (] ASP.NET MVC (] GIS_Business » [Other bookmarks
-
Drawing Options
Gigdemci Aydin i Guldarpt Map | satellite
Py . ; T Esenboda : Bl
Ortabereket Fethiye _ /Imrendi ke Merkez Mh. Akyurt o
£ 2> Bitik
T » A
adV Kiglakéy Orhaniye Balikhisar hmetadil
Yenikent y
anraEI Miilk > Fatih - Saray
Nerlbant Saray Memlik = Y
o ursaklar
Bagayasg Aeatte 2 Pegenek
A v 5
(E: venikent N o = RS L _
IE! Kavakli Hasanodglan Y9|§'|F§’9 |
i Falil
Ostim Mh. =3 Fatih Mh.
Atatiirk Forest 2 -
USer Yenikent Farand Zoo iy Sogemyil (0200} Kayadibi
Hiirriye Ortakay
1l Tekke v Ankara i Elmadag ‘
atlar ildinim =
: " [Eae) o-20) Beyazit Mh.
Yenipegenel > Kaligla
£ Yapracik =
ek o 20} [E3c] Karacahasan
Yakupabdal
Temelli Yukarmyurtgu Flha Hisarkay
- Tiirkobas
Temelli {0200 Golbasg !
Malikay Ballikuyumcu Evciler =
Tuluritag Deliler
Temelli il Yurtheyi
] Alagoz Temelli
syraz Temelli Hisarlk Kaparan
s - Yavrucuk ! .
Olukpinar Termelli WVelihimmetli T8VTUEY Odulbey Beynam Gavuslu
Temelli ~ Ueret Gokgehoy e
Cokdren -~ — Map data 82013 Basarsoft Googlé - Termsof Use

Notice that the drawingControl property is placed at the bottom center, as we have
mentioned in the position property of the drawingControlOptions property.

UAS

Complete listing for google.maps.ControlPosition

The complete listing for control positions can be found in the

Google Maps JavaScript API reference documentation at the
following link:

https://developers.google.com/maps/
documentation/javascript/reference

Apart from the position property, you can also select which type of shape you would like to

draw, in other words, which buttons you would like to include in drawingControl:

168

Chapter 6

var drawingManager = new google.maps.drawing.DrawingManager ({
drawingControl: true,
drawingControlOptions: {
position: google.maps.ControlPosition.BOTTOM CENTER,
drawingModes: [
google.maps.drawing.OverlayType .MARKER,
google.maps.drawing.OverlayType.POLYGON,
google.maps.drawing.OverlayType.POLYLINE

3N

We have apparently selected three drawing shape types listed in an array in the
drawingModes property:

» Marker
» Polygon
» Polyline

These are reflected in the drawingControl property:

avIUCUE

By default, all vector shape buttons are available in drawingControl. This means that, in
addition to the three types listed in our example, the following shapes are also available:

» Rectangle
» Circle

If you have followed the recipe up to this point, you may have realized that at the start of your
application you can zoom and pan your map as usual. Then, you have to click a vector overlay
button in the drawingControl property to start drawing your shape.

However, you can change this programmatically through a setting. For instance:

var drawingManager = new google.maps.drawing.DrawingManager ({
drawingMode: google.maps.drawing.OverlayType.POLYGON,

3N

Google Maps JavaScript Libraries

The drawingMode property takes the vector shape type google.maps.drawing.
OoverlayType, as the APl implies, as its data type and sets that vector shape type so that
it can be drawn. In our example, when the user clicks on the map, they immediately start
drawing the POLYGON vector overlays.

But what happens if it becomes necessary to change the drawingMode programmatically
in the program flow? Luckily, there is a solution to this:

drawingManager.setDrawingMode (null) ;

Setting the property to null makes the drawingMode property turn to its default value,
allowing the end user to use the Google Maps JavaScript Ul as usual. This means that
clicking on the map does not draw any vector shape overlay.

You can also use the setOptions method of drawingManager for the same purpose:

drawingManager.setOptions ({
drawingMode: google.maps.drawing.OverlayType.POLYGON,

3N

Until now, we have dealt with the drawingManager and drawingControl property options.
But what about the shapes and their styles that we will draw? As you may have expected,

you can set the properties of the vector shapes you draw in google .maps.drawing.
DrawingManagerOptions:

var drawingManager = new google.maps.drawing.DrawingManager ({

polylineOptions: {
strokeColor: 'red',
strokeWeight: 3

|

polygonOptions:
strokeColor: 'blue',
strokeWeight: 3,
fillColor: 'yellow',
fillOpacity: 0.2

170

Chapter 6

We can now draw our shapes as shown in the following screenshot:

€ - C |[3 localhost/recipes/ch6_drawingShapes_options.html ae o2 =
[T ArcGIS_Metwork_An.. [Read ItLater ['| Mark AsRead ['] ReadingList (] ASP.NET MVC [T GIS_Business » [Other bookmarks
. . ~
Drawing Options
i DILIK Ahmetadil | L ” =
1 i i Map | Satellite
A } Kiglaky Orhaniye Balikhisar I} Sl
<)Yel{"l‘l_l_f.linl A
L Ml . ih Sara
Yenikent Sargy Mermilk i 7
.. Pursaklar
aeavas Akgaore Pecenek
0-20,
@ Yenikent 's'ﬁ?\wﬂeg‘}:" i
| 0-4 . Kavakh n Yesildere
= 2 = Fatih
n Ostim Mh.
o i fatiirk Forest g pe
Gokler Yenikent Kayadibi A
Huirri :
kke o ve Elmadag - Hacibal
atlar fEss |
Yenipegenek Kiliglar
Yo
Esenler Karacahasan
:I'ernelli Yukanyurtgu Hi-‘-lﬂl'kb‘f
Tlirkobas. Bat
Temelli
uallkoy_ Ballikuyum b,
= F
= Ternelli Tulumtas
B plagoz Temell
i Hisarlk Koparan Hacilar
- K s
Temelli Ogulbey Beynam m:_};,:},'
Terfllelli Ucret Gikgehdylk . e . Karaahmetli
Gokoren ; Ergin - — Keklicek
Subagi [Ean | Tolkoy
Gayirli Topakl Q
Ciuoale i { L Atad /!
s rkgerefli Ahhﬂ' — Map data 2013 Basarsoft, Google Terms ofUse
v

You may have observed that the styles of the polyline and polygon shapes have changed
completely. The polylines have become red in color, because their strokeColor property
is set as red, whereas the strokeColor property for polygons is set as blue, their
fillColor as yellow, and their opacity being near transparent—o0 . 2—so that you can
see the base map through them.

For each vector overlay type, there is an options property for drawingManager:

>

markerOptions
polylineOptions
polygonOptions
circleOptions

rectangleOptions

Google Maps JavaScript Libraries

There is a bunch of interesting properties for vector overlays, most of them being common
for all overlay types. We have already touched on the stroke and fill properties for customizing
the styles according to your taste.

For instance, you can try the editable and draggable properties, which are worth
commenting on:

polygonOptions:
strokeColor: 'blue',
strokeWeight: 3,
fillColor: 'yellow',
fillOpacity: 0.2,
editable: true,
draggable: true

}

The preceding code snippet makes the polygons drawn on Google Maps Ul editable, as shown
in the following screenshot (you have to go out of polyline drawing mode by clicking the pan
button in the drawing control):

Pegen
I5UZ Altinova
Orhanga
I g
=R
€
il
Giolbas

Observe the white dots that represent the nodes (LatLng objects) comprising the entire
polygon. You can change the location of these dots by clicking and dragging the dots; this
will allow you to change the shape of the polygon, as shown in the following screenshot:

172

Chapter 6

T T

. Altinova
‘Orhanga

G
 Bs
1
hmtag e IE:Ji
hoparan

You may have spotted that the white dot located in the middle of the south edge has been
dragged downwards, and thus, the shape of the polygon has changed.

In addition to changing the original shape, you can also drag the shape, as shown in the
following screenshots:

’l Memllk TALIT T
lar
Pegenek
BUSUZ_yyva. . Altinova
n Orhangﬁ Kavalkh HESE!’IDI;'BH 'f'eé.”;:_lﬁ(e
g ati
Dot bb: [ﬁl Fatih Mh.
tattirk Forest \
arm-and Zoo g | ClokmyEr Kayadibi
ALETIE Ortakay
(41 Crman Ciftiigi nnkara Elmadas o Hacibal
[0-20 Yilchrim 4 / O
] v Beyazit Mh.
Kiliglar
20 Karacahasan
| al Hisarkoy
Bahg)
Evciler
Deliler Hal
lumtag Yurtbeyi
Kaparan Hacilar

Google Maps JavaScript Libraries

As you can see, the shape has moved to the east in the second screenshot.

@y TAETETITR
Pursaklar
Pegenek
Susuz T I o 0-20) S ey Slgnwa
B rhanga X = P
0-4 | £ av Hasanoglan Y“I-‘-“"f_'lf -
a0 ; atih
Ostirm Mh: Em Fatih Mh
Atatiirk Forest st
Farm and-Zoo Goke 4o [D200] Kayadibi
Atatlirk Ortakdy =
i Ankara i Eimadag Hacibal
) AL ERE
18 | [E"' Beyazit 3
Kiliglar
3 90 | Karacahasan
Yakupabdal Hidati
Bah:
Golbasg
Evciler ;
Dkt ALl H

When the draggable property is set to true and your mouse is on the shape, you can

drag your shape wherever you want on the map.

options can be found in the Google Maps JavaScript API reference
L documentation at the following link:

javascript/reference#DrawingManager

Complete listing for google.maps.drawing.DrawingManager properties
The complete listing for the DrawingManager properties and related

https://developers.google.com/maps/documentation/

DrawingManager is not limited to its properties and options; it also has some events

associated with it. These events are fired when you finish drawing a shape:

google.maps.event.addListener (drawingManager, ' polygoncomplete!',

function (polygon)
polygon.setEditable (true) ;
polygon.setDraggable (true) ;

13N

You may notice that the type of the event is polygoncomplete, and there is a callback

function taking the polygon, which has been completed, as an argument.
There is an event for every type of shape:

» markercomplete

» linestringcomplete

Chapter 6

» polygoncomplete
» rectanglecomplete

» circlecomplete
There is one additional event type that covers all of these shape types:

google.maps.event.addListener (drawingManager, 'overlaycomplete',
function (event)
if (event.type == google.maps.drawing.OverlayType.POLYGON) {
event .overlay.setEditable (true) ;
event .overlay.setDraggable (true) ;

13N

The preceding event behaves in the same way as the previous example. Instead of the
shapecomplete pattern there is an overlaycomplete argument for the event. This event
is particularly useful for all the shape events, regardless of their type. However, being a
generic event for all shapes, you can also get the shape type from event . type, and you can
get the reference for the shape drawn from event . overlay. Utilizing these, you can have
conditional statements for different shape types in one event handler.

Calculating the length/area of polylines and

polygons

As described in the first recipe of this chapter—Drawing shapes on the map—you can draw
your shapes as per your taste. But how about getting some information about these shapes,
for instance, information about their length and area?

The Google Maps JavaScript API places the opportunity to gather this information in the
geometry library. From this library, you can access the static utility functions that give
information on the length/area calculations and so on.

This recipe will show us how to get the length and area information of the arbitrary
shapes drawn.

Getting ready

Having a sneak preview at the Drawing shapes on the map recipe will ease your work,
as much detail on drawing shapes and their background is needed.

Google Maps JavaScript Libraries

How to do it...

You can view the area and length information of your shapes by carrying out the following steps:

1.

176

Add the drawing and geometry libraries to the bootstrap URL:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
libraries=drawing, geometry&sensor=false">
</script>

Create a drawingManager object with the following settings:

var drawingManager = new google.maps.drawing.DrawingManager ({

drawingMode: null,

drawingControl: true,

drawingControlOptions: {

position:
google.maps.ControlPosition.BOTTOM CENTER,

drawingModes: [
google.maps.drawing.OverlayType.POLYGON,
google.maps.drawing.OverlayType.POLYLINE
]

b

polylineOptions:
strokeColor: 'red',
strokeWeight: 3

b

polygonOptions:
strokeColor: 'blue',
strokeWeight: 3,
fillColor: 'yellow',
fillOpacity: 0.2

}
1)

Enable the drawing functionality:

drawingManager.setMap (map) ;

Add an event listener for the completion of your polygons:

google.maps.event.addListener (drawingManager,
'polygoncomplete', function(polygon) {
var path = polygon.getPath() ;
var area =
google.maps.geometry.spherical.computeArea (path) ;
var length =
google.maps.geometry.spherical.computeLength (path) ;
console.log('Polygon Area: ' + area/1000000 + ' km
sgs');

console.log('Polygon Length:
kms') ;

+

7

3]

Add an event listener for the completion of your po

length/1000 +

Chapter 6

lylines:

google.maps.event.addListener (drawingManager,

'polylinecomplete’,
var path
var length

function (polyline)
polyline.getPath() ;

{

google.maps.geometry.spherical.computeLength (path) ;

console.log('Polyline Length:
kms') ;

+

[localhost/recipes/chf_cal. %

length/1000 +

€ - C [localhost/recipes/ch6_calculate_length_area.html ol 2 =
O3 ArcGIS_Metwork_An... D Read It Later D Mark As Read D Reading List (T ASP.NET MVC (O] GIS_Business » [Other bookmarks
Calculating Length and Area ~
= Imrendi - TEFHUVE ML A [UTST L
ol Ortabereket Fethiye ik Merkez Mh. Akyurt f MapL satellite |
upinar . — Ahmetadil
~ 3 Kislakgy COrhaniye Balikhisar N
Ba Yenikent
yram Miilk . " Fatih Saray
Yerikont Memlik
il Pursaklar
(3l Besdvas Akgaore Pegenek
@. Ayas Yanikent SM‘Y Altinova
. FQrhanga Kavakl Hasanoglan Ve;-”td_ﬁle
i atil
ot + bostir b Fatih Mh.
Atdjiirk Forest - |Eda |
G = Gokgeyurt
Gikler Yenikent manﬂgg{i *) : [n200]
Hiirriye rman Ciftiig] Ankara Ctaldy
Tekke a
Tatlar Yildinm Elmadag
‘ Beyazit Mh.
Ezenker | Karacahasan
Temelli Yukghiyurtou WL Hisi
Tiirkobas a
f
Temelli \
- Mahkay Ballikuyumcu Evciler ‘
Tulumtas DeilEn /|
i {hayi /
e] TTI'H?I“I i Yur }
Alagoz Temelli
i Koparan ~
Poyraz Temelli Hisarlik P Oy
i Yavrucuk L t
Olukpinar Temelli Velihimmetli Ogulbey Beynam Gavuglu)
Tell(nelli Ucret Gakgehdyilk (D750} .J re
Gokoren T Keklice
— - Ergin —=-
Subag Ed Tolkay
Ciogal LA ! Cayrh Topakdi | &7 | b o~ . o
£} R L _ Gunalan Mao data 2013 Basarsoft Gooale Terms ofUse
Elements Resources Metwork Sources Timeline Profiles Audits 'Cnnsnl:‘ *
Polygon Area: 629.8443754836493 km sqs ché calculate length area.html:97 A
Polygon Length: 187.8953718566965 kms ché calculate length area.html:98
Polyline Length: 19.857774429693115 kms ch6 calculate length area.html:183
] v
|E|‘ = Q@ <topframe> ¥ <pagecontext> v % | Al | Errors Warnings Debug #

As shown in the preceding screenshot, you can view the area
console window.

and length information in the

Google Maps JavaScript Libraries

To use the drawing and geomet ry utilities in the Google Maps JavaScript API, we have
added two libraries—drawing and geometry—to the Google Maps JavaScript APl bootstrap
URL at the top of the code:

libraries=drawing, geometry

It is important to note that you can add multiple libraries with a comma separating each list,
as in this case.

We have added the drawingManager object, after the usual mapping details, in the
initMap () function itself. In this drawingManager object, we set the properties so that
we can only draw polylines and polygons:

drawingModes :
[
google.maps.drawing.OverlayType.POLYGON,
google.maps.drawing.OverlayType .POLYLINE
1

We do not need any marker drawing as there will be no length and area information related
to markers.

At the start of the application, we implied that the users can use standard mapping controls
(zoom, pan, and so on) instead of drawing shapes:

drawingMode:null,

This control on the user input is particularly useful in professional applications, because even
if the application is the sole drawing application, users may need to specify their drawing
areas by using the pan and zoom controls first hand.

We have placed the drawingControl object at the bottom center of the map Ul:
position: google.maps.ControlPosition.BOTTOM CENTER,

It is up to you where to place drawingControl; we just selected BOTTOM CENTER
as an example.

We have finally attached the drawingManager object to the map instance to enable
the functionality:

drawingManager.setMap (map) ;

After all this setting up, users can open their application and draw polylines and polygons
as per their wish. But, how do we get the length and area info of their shapes?

178

Chapter 6

We have to add event handlers to be aware that they have finished drawing shapes. The
calculation of the length and area must be performed for every polygon and polyline.
Therefore, we have used the polygoncomplete and polylinecomplete events. First,
let's perform the calculations for the polygons:

google.maps.event.addListener (drawingManager, 'polygoncomplete',
function (polygon) {
var path = polygon.getPath() ;
var area = google.maps.geometry.spherical.computeArea (path) ;
var length =
google.maps.geometry.spherical.computeLength (path) ;
console.log('Polygon Area: ' + area/1000000 + ' km sgs');
console.log('Polygon Length: ' + length/1000 + ' kms');

13N

In the polygoncomplete event handler that gets fired when the users finish drawing each
of their polygons, we first get the path of the polygon they draw:

var path = polygon.getPath() ;

The getPath () method returns an MVCArray of the object of type LatLng being latitude
and longitude pairs comprising the polygon itself. For instance, for an imaginary polygon
that we have drawn, calling polygon.getPath () .getArray () .toString() ;

gives the following result:

"(39.92132255884663,

32.7337646484375), (39.75048953595117,

32.754364013671875), (39.78110197709871,
33.061981201171875), (39.98132938627213, 33.0084228515625)"

It is now clear that the imaginary polygon that is drawn comprises four latitude and
longitude pairs.

Why did we need the path of the polygons? We needed it because the computearea ()
function that we use does not take the polygon, but its path as an argument:

var area =
google.maps.geometry.spherical.computeArea (path) ;

What does this spherical namespace stand for?

As you have observed, maps are 2D surfaces. However, the Earth's surface is not. To reflect
the Earth's surface on a 2D canvas, projections are used. However, this reflection is not as
smooth as it first seems. It comes with a cost; distortion of the Earth's shapes and properties
occurs. To handle these side effects, spherical geometry calculations are needed, and
google.maps.geometry.spherical exists exactly for this purpose.

Google Maps JavaScript Libraries

When you call the computeArea () or computeLength () method, the area calculations
are performed as if the shapes are warped to the Earth's surface, taking the earth curvature
into account.

The unit of the return values of the two methods is meters. We have converted them to square
kilometers and kilometers respectively in order to have more meaningful values while printing
them in the console window:

console.log('Polygon Area: ' + area/1000000 + ' km sgs');
console.log('Polygon Length: ' + length/1000 + ' kms');

The event handlers for the polygoncomplete and polylinecomplete events are
identical, except in polylinecomplete, where there is no area calculation.

There's a strong possibility that having the length and area information attached to the
shapes would be nice. You can extend the Polygon and Polyline JavaScript classes to
have them. But bear in mind that extending JavaScript objects may lead to unexpected errors;
you may clobber a different library's object extension. Therefore, think twice before extending
the JavaScript classes:

google.maps.Polygon.prototype.getArea = function ()

{

return
google.maps.geometry.spherical.computeArea (this.getPath()) ;

Vi

google.maps.Polygon.prototype.getLength = function()

return
google.maps.geometry.spherical.computeLength (this.getPath()) ;

Vi

google.maps.Polyline.prototype.getLength=function () {

return
google.maps.geometry.spherical.computeLength (this.getPath()) ;

Vi

Having extended the Polygon and Polyline classes, you can call the getArea () and
getLength () methods directly from their objects:

polygon.getArea () ;
polyline.getLength() ;

180

Chapter 6

See also

» The Drawing shapes on the map recipe in this chapter

Encoding coordinates

The polylines and polygons that you draw using the Google Maps JavaScript APl consist of
arrays of LatLng objects in latitude and longitude pairs.

The length of these arrays increases substantially, especially when you have shapes with too
many nodes, in the case of long polylines or polygons that have too much detail.

Dealing with these arrays (that can be retrieved by the getPath () methods of polylines and
polygons) is a major problem, especially when you have to save the shape to a DB. Serializing
and deserializing lengthy arrays is frequently hulky.

However, you can compress the paths of the shapes with Google's polyline encoding
algorithm.

Detailed information on Google's polyline encoding algorithm
You can find detailed information about the polyline encoding algorithm

% . atthe following link:
A

https://developers.google.com/maps/documentation/
utilities/polylinealgorithm

By using the geometry library, you can encode and decode the paths of polylines
and polygons.

This recipe will show you how to encode and decode the paths of the polylines and polygons.

Getting ready

It would be handy to have a quick glance at the first recipe—Drawing shapes on the map—of this
chapter, as it covers every detail on how to draw a shape using the Google Maps JavaScript API.

Google Maps JavaScript Libraries

How to do it...

Here are the steps you can use to view the encoded and decoded versions of your paths:

1. Addthe geometry and drawing libraries to the bootstrap URL:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
libraries=drawing, geometry&sensor=false">
</script>

2. Organize your HTML so that you can view the original, encoded, and decoded
coordinates of your shapes in a div element:

<div>
<H3>0riginal, Encoded and Decoded Coordinate Pairs:<H3>
<div id="loggingDiv"></div>

</div>

3. Keep a reference to the 1loggingDiv div elementin your initMap () function:
loggingDiv = document.getElementById('loggingDiv') ;

4. Create apolylinecomplete event handler in your initMap () function after
creating drawingManager and attaching it to the map instance:

google.maps.event.addListener (drawingManager,
'polylinecomplete', function(polyline)
var path = polyline.getPath() ;
var coords = path.getArray() ;

var text = 'Original Coordinates: ' + coords;

var encodedCoords =
google.maps.geometry.encoding.encodePath (path) ;

text += '
Encoded Coordinates: ' +
encodedCoords;

var decodedCoords =
google.maps.geometry.encoding.decodePath
(encodedCoords) ;

text += '
Decoded Coordinates: ' +
decodedCoords;

loggingDiv.innerHTML = text;

182

Chapter 6

|1 localhost/recipes/ché_coc x

Map dats €2013 Basarsoft, Google TemsofUse

Original, Encoded and Decoded Coordinate Pairs:

Original Coordinates: (39.81592026602056, 32.9864501953125),(39.71880717209066, 32.963104248046875),
(39.64799732373418, 33.004302978515625),(39.573939343591896. 33.05511474609375),(39.54217596171196,
33.182830810546875).(39.54958871848275, 33.2611083984375).(39.6025139495577, 33.320159912109375).
(39.62896140981413, 33.254241943359375),(39.681826010893644, 33.25836181640625),(39.70401 708565211,
| 33.30780029206875),(39.74521015328602, 33.3380126053125).(39.80115102364286, 33.322006494140625),
| (39.83595916247957, 33.256988525390625),(39.842286020743394, 33.1402587890625).(39.83068633533497.
33.061981201171875).(39.79904087286648, 33.02490234375),(39.7526011757416. 33.0413818359373),
| (39.776880380637024, 33.169097900300625).(39. 74837783143 156, 33 204803466706875),(30.67125632523973,
33.127899169921875)
Encoded Coordinates:
op_rFitihE|} QlpCpyLo’ GzmMg HneEg} Wim@ ghNwilapJidD-zKmilwXuiC_tHm' Gv{Ds|[j} AqxE-zK qf @ pxUngAthNxdEviFfaH_fBwvCg} WhgDe~E~"Nr_ N
Decoded Coordinates: (39.815920000000006, 32.986430000000005),(39.718810000000005, 32.963100000000004).
(39.648. 33.0043).(39.57394, 33.055110000000006).(39.54218, 33.18283).(39.54959, 33.26111),(39.60251, 33.32016).
(39.628960000000006. 33.25424).(39.681830000000005, 33.25836).(39.70402. 33.3078).(39.74521, 33.338010000000004).
(39.80115, 33.32291).(39.83596. 33.25699),(39.842290000000006, 33.140260000000005),(39.830690000000004.
33.061980000000005).(39.799040000000005, 33.0249),(39.7526. 33.041380000000004).(39.776880000000006, 33.1691),
(39.748380000000004. 33.204800000000006).(39.671260000000004, 33.127900000000004)

&« C | [localhost/recipes/ch6_coordinateEncoding.htm . | l"LlJ
(O ArcGIS_Network_An.. [ReadItLater | Mark AsRead [ReadingList (] ASP.METMVC (] GIS Business (] Misc_Sources » [Other bookmarks
Coordinate Encoding
e Guayeyu Kayadib
Ll (Mt 5. O Onakey [0200] aygciol Map | Satellite
[Ankara ki Eimadag Ragionk Balig:
| b | m Beyazit Mh. =
Kiliglar .
= EET Kimeski
m (3 Karacahasan Kirikkale
L|_|J Yakupabdal rkiy
Bahgilr
+ Golbasi
" Hasandede
ulumtay Yurtbeyi
Koparsn Haailar
0765]
. L Yavrucuk 1
lihimmi — Ogulbey Beynam
Gokgehdyiik Karaahmetls Keskin
EA Tolkay
Topakh Ginalan
- Aoz Karakegili Veniyapan
Karagedik Kapritko:
Aydin R =
Dikilitag Mahmath Abazh
Kkl N
Yoreli
Karaali Yenikoy
Merk
Boyalik erker Gelebi
Afsar
cigil iso 0w

m

You can view the original, encoded, and decoded versions of your paths as shown in the
preceding screenshot.

The polylinecomplete event is fired when you finish drawing your polyline. You can get the
MVCArray of the object of type LatLng that comprises your polyline in the following manner:

var path = polyline.getPath() ;

Google Maps JavaScript Libraries
Having the path object at hand, you can encode it easily by using the encodePath () method:

var encodedCoords =
google.maps.geometry.encoding.encodePath (path) ;

The encodePath () method takes either the MvVCArray of the object of type LatLng objects
or an array of LatLng objects. So, here in our recipe, this will also be possible:

var encodedCoords =
google.maps.geometry.encoding.encodePath (coords) ;

The encodePath () method returns a string that is perfectly fit for saving to a DB and
potentially saves a considerable amount of time that would be spent serializing and
deserializing operations:

op_rFitihE|}Q|pCpyLo GzmMg|HneEg}WimeghNwilapJidD~zKmiIwXuiC tHm G
y{Ds|1j}AgxE~zKgfepxUngAfhNxdEvEFfaH fBwvCg}WbgDc~E~"Nr N

Without encoding, the coords array would look like this:

(39.81592026602056, 32.9864501953125), (39.71880717209066,
32.963104248046875), (39.64799732373418,
33.004302978515625), (39.57393934359189¢6,
33.05511474609375), (39.54217596171196,
33.182830810546875), (39.54958871848275,
33.2611083984375), (39.6025139495577,

33.320159912109375), (39.62896140981413,
33.254241943359375), (39.681826010893644,
33.25836181640625), (39.70401708565211,
33.30780029296875), (39.74521015328692,

33.3380126953125), (39.80115102364286,
33.322906494140625), (39.83595916247957,
33.256988525390625), (39.842286020743394,
33.1402587890625), (39.83068633533497,
33.061981201171875), (39.79904087286648,

33.02490234375), (39.7526011757416,

33.0413818359375), (39.776880380637024,
33.169097900390625), (39.74837783143156,
33.204803466796875), (39.67125632523973, 33.127899169921875)

Encoding polylines and polygons is not a one-way operation. You can decode the encoded
coordinate pairs as follows:

var decodedCoords =
google.maps.geometry.encoding.decodePath (encodedCoords) ;

The decodePath () method takes encoded coordinates in the form of a string and returns
an array of LatLng objects.

Chapter 6

Searching for and showing nearby places

Google Maps is not only about beautiful base maps with an immense cartographic quality or
regularly updated satellite images. In your daily life, not as a programmer but as an ordinary
user of Google Maps, you will have no doubt used Google Maps to search for places; be it The
Metropolitan Museum of Arts in New York, or a commonplace farmacia in Rome.

This information is in Google Maps, but how can you reach and serve this information through
the Google Maps JavaScript API?

The places library is there exactly for this purpose, and it enables you to look for places by
using certain search parameters.

You can perform nearby searches where place results would be near the location that you
have provided, most commonly, the user's location. You can search within a radius, or you
can just specify a search string. You can even request for additional details, such as related
photos, review ratings, phone numbers, and opening hours for particular places.

This recipe will focus on nearby searches by using the places library of the Google Maps
JavaScript API.

Getting ready

This recipe will make use of the drawing library, therefore, it is advised to go over the first
recipe—Drawing shapes on the map—of this chapter and refresh your understanding on the
subject matter.

How to do it...

You can draw a circle, search for places within this circle with a keyword, and get detailed
information on each of the places by following the ensuing steps:

1. Addthe drawing and places libraries to the bootstrap URL:

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?
libraries=drawing, places&sensor=false">
</scripts>

2. Addthe circles and markers global variables to push and pop the respective
overlays outside the initMap () function:

var circles;
var markers;

Google Maps JavaScript Libraries

3.

10.

186

Add a popup global variable to hold the value of the infoWindow object:

var popup;

Initialize the circles and markers arrays and the infoWwindow object in the
initMap () function:

circles = new Array();
markers = new Array();
popup = new google.maps.InfoWindow() ;

Create a circlecomplete event handler in your initMap () function after creating
the drawingManager object and attaching it to the map instance (items from
number 6 to number 12 will be in this event handler):

google.maps.event.addListener (drawingManager,
'circlecomplete', function(circle)

3N

Inside the circlecomplete event handler, set drawingMode to null:

drawingManager.setDrawingMode (null) ;

Add the latest drawn circle to the circles array and then reverse the order inside
the array:

circles.push(circle) ;
circles.reverse() ;

Pop the previous circle and set its map handle to null so that only the last drawn
circle is shown:

while (circles[1])
circles.pop () .setMap (null) ;

}

Clear all previously drawn markers:

while (markers [0]) {
markers.pop () .setMap (null) ;

}

Create nearby search settings, setting the location as the circle center and the radius
as the circle radius. Also, add a keyword property to return the places containing
that keyword:

var nearbyPlacesRequest =
location: circle.getCenter(),
radius: circle.radius,
keyword: 'pizza'

Chapter 6

11.

12.

13.

14.

15.

16.

Get the handle for the PlacesService service object:

var placesService = new
google.maps.places.PlacesService (map) ;

Send the request with a callback function:

placesService.nearbySearch (nearbyPlacesRequest,
resultsCallback) ;

Outside the initMap () function, create a callback function for the nearbySearch
request, using the following code snippet:

function resultsCallback (results, status)
if (status ==
google.maps.places.PlacesServiceStatus.OK)
for (var i = 0, l=results.length; i < 1; i++) {
pinpointResult (results[i]) ;

}

Create a function to create a marker per the places result (the steps from number
15 to number 17 will be in this function):

function pinpointResult (result)

}

Create the marker inside the pinpointResult () function:

var marker = new google.maps.Marker ({
map: map,
position: result.geometry.location

13N

Add a click event handler to the marker so that when it is clicked, the infoWindow
object pops up:
google.maps.event .addListener (marker, 'click', function() {
var popupContent = 'Name: ' + result.name +
'
' + 'Vicinity: ' + result.vicinity +
'
Rating: ' + result.rating;
popup . setContent (popupContent) ;
popup.open (map, this);

Google Maps JavaScript Libraries
17. Push the marker to the markers array:

markers.push (marker) ;

B [==8] =]
4 [localhost/recipes/ch6_plz: x X
€& — C [} localhost/recipes/ch6_places_nearbySearch.html i I | E\]] @ =
T ArcGIS_Metwork_An... D Read It Later |—_"| IMark Az Read D Reading List 3 ASP.MET MVC (T GIS_Business » (] Other bookmarks

-

| Places Nearby Search

s g] Spinta In Sazsa Pantheor e e
=3 Map | Satellite
A Viaburelia i —TTE"
< > AUHE_IDQ@GWQDHDW El |
v : @ !
Wy £
G’EQQ o %&
e il Villa Betania s [
@ | Casa di Cure a G ROME
| H - Tiber (zland
||| i SN (i N _an:nla_1 @
+ | Comune Di Name: Ristorante || Focolars Di Stagnetia Robero & C. Snc X | Arch of
=% v | ea o (=
T Roma Circ. Xv | Vicinity: Via G. Rosseti, 40, Romsa 3 Longtaline
| Servizio Giardini wil = |/ Comune
= = Rating: 3.5 | DilRoma
| =3 R N T = i yy
£ L o
- < 8
o,
= @
> Ce
|| e
% s %
| s - § g Z
\-"'B\"m“\ ;?. gg
[t s Ly =X
\ = %
Aia 8| = stri g
< i
< W = @ L
: !é “%
a = v \ a 1z
@ 5 (4] ‘:’/OG
= Fatroiohis & The Protestant -
GIANICOLENSE E-_ sar::ama” 5] § Cemetery £l %
g z e of Rome
= & : e Comui
E o {—? Eataly Homa (& Aip.TF
o Associezione = £ Motc
| S Ne, 5 | - C‘g =
Clolejrile | @ . ©
Y £ ﬂl— - Mapdata 22012 Google | Termsoflize Reparta map emar

i AL

As shown in the preceding screenshot, you can draw a circle, search for places within this
circle with a keyword, and get detailed information on each of the places found.

The steps for this recipe require you to work a bit longer; however, the essence is simple. For a
moment, forget about the details on the circles and markers arrays and the related logic;
just concentrate on the nearby search:

var nearbyPlacesRequest = {
location: circle.getCenter(),
radius: circle.radius,
keyword: 'pizza'

Vi

188

Chapter 6

Inthe circlecomplete event handler (this is fired after we finish drawing our circle), we
place a nearbyPlacesRequest object. This object should be of the type google.maps.
places.PlaceSearchRequest.

The 1location property sets the LatLng object that should be the center of the search for
the places. Usually, in nearby searches, this property is set as per the user's location. But for
this recipe, we have tied it to the drawn circles' centers, as you can draw and search multiple
times as per your needs.

The distance from location is set by the radius property so that the places are returned
within this distance from the center of the circle. In our recipe, we have set the radius of the
circle drawn.

Lastly, the keyword property filters the places so that the ones containing the keyword will

be returned. Note that all the information not only includes the name or type of the place, but
also the address and reviews, which will be matched against the keyword. So, be prepared for
a place that is a cafeteria whose reviews include the keyword "pizza" in return of this request.

After preparing the request parameters, the next step is to send the request. First, we create
a PlacesService object, taking our current map instance as a parameter:

var placesService = new
google.maps.places.PlacesService (map) ;

By using the placesService object, we can send our request:

placesService.nearbySearch (nearbyPlacesRequest,
resultsCallback) ;

The nearbySearch method takes two parameters, the first parameter being our old request
parameters embedded in the nearbyPlacesRequest object and the second parameter
being the callback function that returns the results. In our recipe, the second parameter is the
resultsCallback function:

function resultsCallback (results, status)
if (status == google.maps.places.PlacesServiceStatus.OK) {
for (var i = 0, l=results.length; i < 1; i++) {
pinpointResult (results[i]) ;

}

This callback function takes two arguments here (in fact, it has a third parameter, which is
related to search pagination): the array of the places found in the search and the service
status. In the callback function, we first check if the service status is OK or not. Then we
iterate through results, which is an array of the PlaceResult class type, to create the
markers and fill in the infoWwindow objects for each returned place.

Google Maps JavaScript Libraries

We can create an associated marker for each place, as seen in the following code snippet:

var marker = new google.maps.Marker ({
map: map,
position: result.geometry.location

13N

The geometry property of the result object embeds a 1ocation property, which is of the
LatLng class type. This is perfectly fit for the position property of the Marker class.

We can reach the details of the places in our popup object attached in the c1ick event
handler for the marker:

google.maps.event .addListener (marker, 'click', function() {
var popupContent = 'Name: ' + result.name + '
' +
'Vicinity: ' + result.vicinity + '
Rating: '
+ result.rating;

popup . setContent (popupContent) ;
popup.open (map, this);

1) s

You may have observed that we are using the name, vicinity, and rating properties
of the place as the content for the popup. name represents the name of the place,
vicinity returns a portion of the address information, and the rat ing value is the
review rating of the place, 0.0 being the lowest and 5.0 being the highest.

The details and options for searching nearby places is not limited to the options presented
in this recipe. We will just dig a little more here. First comes the nearbyPlacesRequest
object. The properties presented inside this object are: 1ocation, radius, and keyword.

However, the PlaceSearchRequest class, of which our object is a type, has much more
than what we saw in this recipe. For instance, you can supply a LatLngBounds object
instead of the location and radius:

var requestBounds = new google.maps.LatLngBounds (
new google.maps.LatLng(39.85, 32.74),
new google.maps.LatLng(40.05, 32.84)

var nearbyPlacesRequest = {
bounds: requestBounds,
keyword: 'pizza'

190

Chapter 6

Please bear in mind that one option is to use bounds, and another option is to
use the 1location and radius couple. Using one of them is compulsory for the
PlaceSearchRequest class.

To filter the place results, using keyword is not the only solution. You can try the name
property to directly match against the names of the places. For instance, the following code
gives the places that have Buckingham in their name:

var nearbyPlacesRequest =
location: circle.getCenter(),
radius: circle.radius,
name: 'Buckingham'

Vi

If your drawn circle is in London, it will possibly bring up Buckingham Palace as well as a
bunch of hotels nearby.

You can select the type of place to be returned by using the types property. This property
takes an array of types such as:

var nearbyPlacesRequest =
location: circle.getCenter(),
radius: circle.radius,
types: ['stadium', 'car_ rental',
'library', 'university', 'administrative_area level 3']

Vi

There is really an immense range of types that Google Maps has been covering. You can
just insert which place type you want, from car rentals to universities, just as we have done.

Complete list of place types

You can find the complete list of place types at:
o

https://developers.google.com/places/documentation/
supported_types

Other than types, name, and bounds, there are many more properties in the
PlaceSearchRequest class such as openNow, which is a very handy property to show only
the places that are open at the time of the search.

Google Maps JavaScript Libraries

Complete list of properties for the PlaceSearchRequest class
* You can find the complete list of properties for the
% PlaceSearchRequest class at:
https://developers.google.com/maps/documentation/
javascript/reference#PlaceSearchRequest

Apart from the pool of options that appear while giving the request for a nearby search,
there is also another bunch of properties in returning the results; in other words, the places

represented by the PlaceResult class.

For example, an icon property of the PlaceResult class that we can use in the following
code block inside our pinpointResult () function:

var placeIcon = {
url: result.icon,
scaledSize: new google.maps.Size (30, 30)

var marker = new google.maps.Marker ({

map: map,
position: result.geometry.location,

icon: placelIcon
1) i

This code block will return the places together with their respective icons:

= 13 _q-.rn - SUTTEE FIET & , bl
bl Field & " i S8
o & s
= Penmark ;‘?
Realty = s
Lo Sl
70
pat
wn A Eo
Vicinity: “Gr,
5 e A i
Rating: 47 pe B
Park Avenue

Christian Church =~ g,
ey

Obelisk
5 Py P i b
rtle Fond e L Aozt T
7 e 7o o7

King o
Jagiello <3,_'-:,)rr i E:_,
&z 0
£y
A &
S S
& &
) - é\
- L g
o gl € OFs
o s T -

192

Chapter 6

Notice the painter's palette icon in the preceding screenshot, incorporated with the returned
place, which is The Metropolitan Museum of Art in New York.

You can also access the types to which the place belongs. The types property of the
PlaceResult class returns the types in a string array. Therefore, the Result . types
property returns the following parameters for The Metropolitan Museum of Art in New York:

["art_gallery",

"museum", "establishment"]

You can also get information on whether a place is open or closed at the time of search
if you change the click handler of the marker, as shown in the following code snippet:

google.maps.event.addListener (marker,

3N

'click',
'Name: '
+ result.vicinity;

var popupContent =
'Vicinity: '
if (result.opening hours) {
if (result.opening hours.open now) {
popupContent +=
+ 'YES'
}
else {
popupContent +=
+ 'NO'

}

popup . setContent (popupContent) ;
popup.open (map, this);

+ result.name +

'
Is Open Now:

'
Is Open Now:

function()

'
' +

 !

 !

Using the preceding code, you would have come up with information such as the following;:

Name: Museu Egipcl o2 Barcelona
Vicinity: Calls Valencia, 284, Barcslona
Is Open Now: VES

\J

La finoteca /@ : /
o
q” 1
7 P

: Mjaj'e;tic ‘-"‘
) Hotel and Spa ./ Barcelona ffity

4
El-ﬂrcelona_' 7

Reshaurant

Google Maps JavaScript Libraries

Complete list of properties for the PlaceResult class
You can find the complete list of properties of the P1laceResult class

at

https://developers.google.com/maps/documentation/
javascript/reference#PlaceResult

Finding places with the autocomplete option

The Google Maps JavaScript API offers a variety of ways to search for places and additional
information. You can apply nearby searches and have detailed information about places
together with their geometry, as you have observed in the recipe named Searching and
showing nearby places in this chapter.

How about having a text field control with an autocomplete feature for searching places? You
can hardcode it, but there is no need to do so, as Google already has a feature exactly for this.

In this recipe, we will go over the autocomplete feature of the places library for the Google
Maps JavaScript API.

Getting ready

This recipe will make use of the concepts related to the places library introduced in the
Searching and showing nearby places recipe of this chapter. It is advised to go over this
recipe to have a general understanding of places and their properties.

How to do it...

You can add the text field and search for places with the autocomplete feature by carrying
out the following steps:

1. Insertan input HTML element that will be used as the autocomplete field:

<div id="searchDiv"s>
<input id="autocomplete searchField" type="text"
size="40" placeholder="Search for Places">

</div>

2. Define the markers and pop-up variables as global outside the initMap () function:

var markers;

var popup;

Chapter 6

10.

Initialize the global variables in initMap ():

markers = new Array () ;
popup = new google.maps.InfoWindow () ;

Get the div tag with its ID as searchDiv and push it as a custom control after
creating the map with its initMap () options:
var searchDiv =

document .getElementById('autocomplete_searchField') ;

map.controls [google.maps.ControlPosition.TOP_CENTER] .push (
searchDiv) ;

Get the handle for the input element:

var searchField =
document .getElementById('autocomplete searchField') ;

Supply the properties for the autocomplete search request:
var searchOptions = {
bounds: new google.maps.LatLngBounds (
new google.maps.LatLng(8.54, 17.33),
new google.maps.LatLng(39.67, 43.77)

),
types: new Array ()

Vi
Get the autocomplete object by supplying the input HTML element to be used,
namely searchField, and the searchOptions:

var autocompleteSearch = new
google.maps.places.Autocomplete (searchField,
searchOptions) ;

Create a place_ changed event handler for the autocomplete object (steps 9 to
11 will be in this event handler):

google.maps.event.addListener (autocompleteSearch,
'place _changed', function() {

13N
In the event handler, clear the previous markers first:

while (markers[0])
markers.pop () .setMap (null) ;

}

Get the PlaceResult object in response to the autocompleted search:

var place = autocompleteSearch.getPlace() ;

Google Maps JavaScript Libraries

11. If the place has a geometry, call a function to create the associated marker:

if (place.geometry) {
pinpointResult (place) ;

}

12. Create a function for creating a marker and adding a click event handler for
the marker:

function pinpointResult (result)
var placelcon = {
url: result.icon,
scaledSize: new google.maps.Size (30, 30)

var marker = new google.maps.Marker ({
map: map,
position: result.geometry.location,
icon: placelIcon

13N

map.setCenter (result.geometry.location) ;
map.setZoom(16) ;

google.maps.event.addListener (marker, 'click',
function()
var popupContent = '<bs>Name: ' + result.name +
'
'" + 'Vicinity: ' + result.vicinity;

popup . setContent (popupContent) ;
popup.open (map, this);

3N

markers.push (marker) ;

196

Chapter 6
= | = ﬂ

/|1 localhost/recipes/ch6_plz. % \

& C | [localhost/recipes/ch6_places_autoComplete.htm e MO =
T3 ArcGIS_Metwork_An... |5 ReadItlater [Mark AsRead | Reading List] ASP.MET MVC [GIS_Business » [Other bookmarks
Places - Autocomplete Search
ne wilius Caesar C°|°559uml Map | Satellite ‘
. (< s =} = Colosseum, Piazza del Colosseo, Rom. .. 5
. Vi e Set!
“ L. Colosseum, Queensland. Australia ia gelle S .4
% T o
%, Colosseum, Altendorfer Strafie. Essen, ... 5: %, &
. ¥ &
% Colosseum Drive, Rockford. IL & Y o
[ﬁ] g n Colosseum Kino, Fridtjof Nansens vei.. .. s 3 v % a®
% wCooale Parca Del AN
. & Q’o Google gy \9‘5\\ e
7 i i3 L2
n - [a 3
Doy, 5 >4
\,,0,\ % Yeng,, h Colossen Um a i‘ Deriiamor 9%
& s i Via dej pgr; 2% Colosseo
- K] - LEL " 3
F L] Settimio g m
& Severds Arch - (= Viale della Domus Aurea /
& Roman Ferums » Vi Rug
3 Vi Jerg
2o Colosseun = 4 Labn
3 ican,
o - Arch of B3 =&
Constantine = =] Aklesia B&B -
3 = 3
i ! Suite Colosseo B Vi
I j celio Vibenna LANDIMENSION alg
4 | guco el Celio TRAVEL
- - .. B&B Colosseum
= = Capo D'Africa Eats Afd. B X
Via pgg, Sheets big
ey Ol
& =268 B 0 Auresy, Q’@a” @
ng,
I/’Cf < . QU'?{.»,.
= tre
B, B a
G, e Yia 4y,
o, e/ =B T3 “
g’ hied e
% £ o 5] H
) O e
/f;,, r“-"_t & Clivo di Scaurn Mapdata 2013 Google TermsofUse Reportamap emor

You can make use of the autocomplete search features as shown in the preceding screenshot.

In this recipe, we first created an input element with some placeholder text (beware that
this is not supported in older browsers) that will serve as our text field for searching places:

<input id="autocomplete searchField" type="text"
size="40" placeholder="Search for Places">
</input>

Then, we added the div container tag as a custom control for the Google Maps JavaScript
API to have the text field inside the Google Maps Ul:

var searchDiv = document.getElementById('searchDiv') ;
map.controls [google.maps.ControlPosition.TOP_CENTER] .push (
searchDiv) ;

Google Maps JavaScript Libraries

We set the properties for the autocomplete search in an AutocompleteOptions object
named searchOptions:

var searchOptions =
bounds: new google.maps.LatLngBounds (
new google.maps.LatLng(8.54, 17.33),
new google.maps.LatLng(39.67, 43.77)

),
types: new Array ()

Vi

In the preceding code snippet, bounds serves to define the boundaries for the places to
be found. Here, we are setting it to a large predefined boundary; you can set it to another
LatLngBounds object of your taste.

The types array is empty for this recipe; actually this array is for restricting the types of
places to be found, whether it be a business, city, or region. In our example, it is empty, so our
searches will return every type of PlaceResult object.

We created our autocomplete object with two ingredients: searchField being the input
element and searchOptions having the bounds and types properties:

var autocompleteSearch = new
google.maps.places.Autocomplete (searchField,
searchOptions) ;

Then, we create our place changed event handler for our Autocomplete object, which
gets fired when the user selects the P1laceResult provided:

google.maps.event.addListener (autocompleteSearch,
'place_changed', function() {
while (markers[0])
markers.pop () .setMap (null) ;
}

var place = autocompleteSearch.getPlace() ;
if (place) {
if (place.geometry) ({
pinpointResult (place) ;
}

}
13N

In the event handler, we detach the marker previously mapped on the map; then, we call the
getPlace () method to get the Place object of type PlaceResult in this context. If the
place exists and if it has geometry (meaning that, a proper PlaceResult instance is found),
we call the pinpoint () function to create a marker from PlaceResult and attach a click
event handler for the marker to popup the associated InfoWindow object:

198

Chapter 6

There's more...

In our recipe, we set the bounds property in the searchOptions object to a predefined
boundary:

bounds: new google.maps.LatLngBounds (
new google.maps.LatLng(8.54, 17.33),
new google.maps.LatLng(39.67, 43.77)
)

This line sets the autocomplete operation to find the searched places primarily within, but not
limited to, the specific LatLLngBounds object. Therefore, do not get surprised if you happen
to give a small boundary and find results outside the boundary.

We're setting the boundary to a Lat LngBounds object, such as boundary of the map, and
you can change it afterwards:

autocompleteSearch. setBounds (map.getBounds ()) ;

But what happens if you need to set the bounds to the current viewport, which gets updated
as you pan and zoom in/out the map? There is a way, as follows:

autocompleteSearch.bindTo ('bounds', map)

By using this bindTo () function, the bounds property is bound to the current viewport
boundary and gets updated when it changes.

Apart from the bounds property, there is a types property that we have set as an
empty array, but it does not need to be empty to filter out the predictions done by
our autocompleteSearch object:

types: ['(regioms) ']

This renders the autocompleteSearch object, searching only for administrative regions
instead of all places. So when you type colos, the Colosseum in Rome does not come up,
as only administrative regions are permitted to be displayed in the autocompleteSearch
object; you can observe this in the following screenshot:

colos|
Colosimi, Cosenza, Italy

Colosseum, Queensland, Australia
Fo

E Coloso - Sucre, Colombia
93 Colosova, Moldova

Coles, Portugal

adt Google

Monterotondo

Google Maps JavaScript Libraries
Complete list of entries for the types property in the google.maps.

places.AutocompleteOptions class

You can find the complete list of entries for the types property in the
L AutocompleteOptions class at:

https://developers.google.com/maps/documentation/
javascript/reference#AutocompleteOptions

Adding drag zoom to the map

Google Maps has a zoom control and the JavaScript APl makes use of this control to offer a
variety of options for programmers. It is a very useful and easy-to-use control. But there are
other ways for zooming; for instance, by drawing an area of interest by dragging a box, so that
the map zooms to that area.

This functionality does not exist in the standard Google Maps JavaScript APl and any of its
libraries; you have to code it. Or, you can make use of the utility libraries, developed by the
good guys, at the following link:

https://code.google.com/p/google-maps-utility-library-v3/wiki/
Libraries

One of their libraries, KeyDragZoom, is exactly for this zoom functionality, and we will use this
library in this recipe.

Getting ready

You have to download the keydragzoom. js JavaScript source file from the following link (the
latest release is 2.0.9 as of the time of writing this book) and place it in the same directory as
our recipe source code:

http://google-maps-utility-library-v3.googlecode.com/svn/tags/
keydragzoom/

How to do it...

Here are the steps to perform zoom by dragging a box and zooming into the area inside
the box:

1. Use a reference for the keydragzoom.js file:

<script type="text/javascript"
src="keydragzoom.js">
</script>

200

Chapter 6

2. Enable the functionality after setting all the map-related options in the
initMap () function:

map . enableKeyDragZoom ({
visualEnabled: true,
visualPosition: google.maps.ControlPosition.LEFT,
visualPositionOffset: new google.maps.Size (35, 0),
visualPositionIndex: null,
visualSprite:
'http://maps.gstatic.com/mapfiles/ftr/controls/
dragzoom btn.png',
visualSize: new google.maps.Size (20, 20),
visualTips: {
off: "Turn on",
on: "Turn off"

] <« = g [D localhost/recipes/ch6_drag_zoom.html
@7 [:l, T

5]

You can make use of zooming by dragging a box as shown in the preceding screenshot.

201

Google Maps JavaScript Libraries

You can perform drag zooms either by pressing the control button and drawing a box, or simpler
than that, holding the Shift key and drawing the box to zoom into the area inside the box.

To do this, we first added the JavaScript source file of the drag zoom library in our recipe.
After setting the map options and using the map instance we can enable the drag zoom
functionality by using the enableKeyDragZoom () method of the map instance.

This extension method is not a part of the Google Maps JavaScript APl and comes with the
keydragzoom library. There are a few associated options that are embedded under the
KeyDragZoomOptions class.

Keep in mind that, in its simplest form, you can use the key drag zoom functionality by
enabling it:

map . enableKeyDragZoom () ;

The only difference would be that you would have to use the Shift key as your only way
because there would be no drag zoom control button.

The properties embedded in the KeyDragZoomOptions class are all about the control
button that is placed below the standard zoom control:

H’en'qjln'r

K.-,:|_ B o i

+

ikent =
Tiye

atlar

- | Yenip

202

Chapter 6

The visualEnabled property sets the control to be seen or not, so if this property is false,
there is no need for other properties as well. The visualPosition property sets the control
position; we have placed it to the left. A detailed description on control positions can be found
in the Changing the position of controls recipe of Chapter 4, Working with Controls.

Complete list of properties in the KeyDragZoomOptions class
_ You can find the complete list of properties in the
% KeyDragZoomOptions class at the following link:
~ http://google-maps-utility-library-v3.
googlecode.com/svn/tags/keydragzoom/2.0.9/
docs/reference.html

» You can review the Google Maps JavaScript API controls and their use in Chapter 4,
Working with Controls

Creating custom popups/infoboxes

We have already created popups or infoboxes in Chapter 3, Adding Vector Layers. As it is
stated there, almost every mapping application has the ability to display information that

is related to the features shown on it. This information can be related to a marker or a map.
Instead of showing all the information on the map, popups or info boxes are used only
when needed.

The Google Maps JavaScript APl has a google.maps . InfoWindow class to create a default
infobox for developers. In some cases, you need custom infoboxes to show information. There
are two ways to do this:

» The first way is to create a custom class that inherits from the google . maps.
OverlayView class and fill the methods to show/hide infoboxes with custom
CSS styles.

» The other, easier way is to use a library created for you. There is a project on Google
Code named google-maps-utility-library-v3 that holds the number of
libraries extending the Google Maps JavaScript API. Here's the link:

https://code.google.com/p/google-maps-utility-library-v3/wiki/
Libraries

This project has a library named InfoBox that makes it possible to create custom
infoboxes or map labels.

203

Google Maps JavaScript Libraries

In this recipe, we will use the previously mentioned library to create custom infoboxes that can
be bound to a marker and a map. The same infobox shows different information according to
its binding. We will also add a simple map label at a fixed place, if extra information needs to
be added to the map.

Getting ready

The first recipe of Chapter 1, Google Maps JavaScript APl Basics, will do our work. We will
add to it in this recipe.

How to do it...

You can get custom infoboxes by completing the following steps:

1. First, go to the following address to get the latest InfoBox source code and save it
into a file named infobox.js under the 1ib directory. We used the /1.1.9/src/
infobox packed. js file under the following URL:

http://google-maps-utility-library-v3.googlecode.com/svn/tags/
infobox/

2. Then, we get the codes by creating a simple map recipe, and add the following code
to add our library to the page:

<script type="text/javascript"
src='1lib/infobox.js'></script>

3. The next step is to create the contents of the infobox with the help of a div element:

//Creating the contents for info box

var boxText = document.createElement ('div');

boxtext.className = 'infoContent';

boxText .innerHTML = 'Marker Info Box
 Gives
information about marker';

4. Now we create an object that defines the options of the infobox:

//Creating the info box options.
var customInfoBoxOptions = {
content: boxText,
pixelOffset: new google.maps.Size(-100, 0),
boxStyle: {
background: "url('img/tipbox2.gif') no-repeat",
opacity: 0.75,
width: '200px’

b

204

Chapter 6

closeBoxMargin: '1l0px 2px 2px 2px',
closeBoxURL: 'img/close.gif',
pane: 'floatPane'

}i
We can initialize our custom infobox in the following manner:

//Initializing the info box
var customInfoBox = new InfoBox(customInfoBoxOptions) ;

Also, we create a JSON object that defines the options of a map label:

//Creating the map label options.

var customMapLabelOptions = {
content: 'Custom Map Label',
closeBoxURL: "",

boxStyle:
border: 'lpx solid black’',
width: '110px'

1
position: new google.maps.LatLng(40.0678,
33.1252),

pane: 'mapPane',
enableEventPropagation: true

}i

Then, we initialize the map label and add it to the map in the following manner:
//Initializing the map label

var customMapLabel = new InfoBox (customMapLabelOptions) ;

//Showing the map label
customMapLabel . open (map) ;

Create a simple marker that will be bound to the infobox:

//Initializing the marker for showing info box
var marker = new google.maps.Marker ({

map: map,

draggable: true,

position: new google.maps.LatLng(39.9078,
32.8252),

visible: true
13N
When the map is ready, we will open the infobox attached to the marker:
//Opening the info box attached to marker

customInfoBox.open (map, marker) ;

205

Google Maps JavaScript Libraries

10.

11.

12.

We should create event listeners for the marker and map for their click events to
show the infobox. An infobox will appear at the bottom of the marker when the marker
is clicked or when the map is clicked on at some point:

//Listening marker to open info box again with contents

//related to marker

google.maps.event.addListener (marker, 'click', function (e)

{

boxText .innerHTML = 'Marker Info Box <brs>
Gives information about marker';

customInfoBox.open (map, this);

13N

//Listening map click to open info box again with
//contents related to map coordinates
google.maps.event.addListener (map, 'click', function (e)

{

boxText .innerHTML = 'Map Info Box <brs>
Gives information about coordinates

Lat: ' + e.latlng.lat() .toFixed(6) + " -
Ing: ' + e.latlng.lng() .toFixed(6) ;

customInfoBox.setPosgsition(e.latlng) ;
customInfoBox.open (map) ;

13N

You can also listen to events of infoboxes. We will add a listener to the click event
of the close button of the infobox:

//Listening info box for clicking close button
google.maps.event.addListener (customInfoBox,
'closeclick', function () {

console.log('Info Box Closed!!!");

3N

Go to your local URL where your HTML file is stored in your favorite browser; you will see
a popup with an infobox below. If you click on the map, you will see the coordinates of
the mouse click inside the infobox, or if you click on the marker, you will see the infobox
with the contents related to the marker. There is also a fixed map label at the top right
of the map with some content; it says Custom Map Label.

206

Chapter 6

= c localhost/recipes/ch06_custom_infobox.html
(C.Click to go back, hold to see history 'opups / Info Boxes
- 3 Ayd usuzelyurt =
G \ ol Giildarpi Map | Satellite
~ \ : ; Esenboga D140 s e
¢) Ortabereket Fethiye Yoo Imrendi Vesiovd My Merkez Mh Akyurt
ar i
o Ktslak"éy COrhaniye Balikhisar Ahmetadil
Yenikent Y/
Bayiem Milk . Fatih Saray
B Yenlkant .\-' Saray Memlik ustom Map Label
U AKGaRie (E30 Pursaklar
Basayag ¢ N, = o Pegenek
\ SUEuz™ — T,
Y+ Yenikent NSOz vuvs] SenyGayALIOV
el Kavakli Hasanoglan Yesildere
] Ostim Mh [=o] FatihMh. Fath
4 N\
I Atatlirk Forest b o EA
Gikler vanlkent Farmand Zoo (4, | Stligeyurt 5200 Kayadibi
Hiirriye | o "é’}l‘;,'".“ ; Ortakiy
L herrtann Giftligi] =
| Tekke S b ¥ nkara Elmadag
atlar o Yildirim
£ . Fm Beyazit Mh.
Yenipegenek Marker Info Box . ¢ Kiligla
Esen Yapracik J Gives information about marker |
ki —— Karacahasan
i / Vakupabdal)
.] / R g
Temelli Yukanyurtgu { by Hisarkdy
- Turkobas | Y y
Temelli (0200 | ____Golbasgi :
Malikiy Ballikuyumcu - Evciler Delie:
= Temelli Tulumtag Yurtbeyi
Alagdz Temelli
wraz Temelli Hisarlik Koparan
i ¥ k
Glukginar Temelli Velihimmetlj TEVIUCY 0gulbey Beynam Cavuglu
Temelli Ucret Gokgehdylk prrm :
Gokiren Map data £2013 Basarsoft, Google - Terms of Use

You can get your custom infobox as shown in the preceding screenshot.

Using libraries in your web applications is common. The use of libraries saves development
and debugging time for developers. Compared to your limited cases, libraries are tested
in different environments for different cases.

As stated earlier, you can also write your own custom class to show custom infoboxes or map
labels, but this is not a suggested way to discover America from the beginning. We used the
library named InfoBox, which is written for this purpose. The documentation of this library
is similar to the Google Maps JavaScript APl documentation (found at http://google-
maps-utility-library-v3.googlecode.com/svn/tags/infobox/1.1.9/docs/
reference.html). The latest version of the library is 1.1.9 at the time this book was being
written. Please update the library if there is a new version when you are using it.

207

Google Maps JavaScript Libraries

The InfoBox library is built on the Google Maps JavaScript API base class named google.
maps .OverlayView, which is used for adding extra layers or views to the map.

As expected, there is a need for content, which is defined in the div elements.

//Creating the contents for info box

var boxText = document.createElement ('div');

boxtext.className = 'infoContent';

boxText .innerHTML = 'Marker Info Box
 Gives
information about marker';

The InfoBox library can be initialized to show an infobox with its constructor, with a
parameter created from the InfoBoxOptions class, as follows:

//Creating the info box options.
var customInfoBoxOptions = {
content: boxText,
pixelOffset: new google.maps.Size(-100, 0),
boxStyle:
background: "url ('img/tipbox2.gif') no-repeat",
opacity: 0.75,
width: '200px'
b
closeBoxMargin: 'l0px 2px 2px 2px',
closeBoxURL: "img/close.gif",
pane: 'floatPane'

bi

The InfoBox library can be initialized to create a map label with its constructor with a
parameter created from the InfoBoxOptions class, as follows:

//Creating the map label options.

var customMapLabelOptions = {
content: 'Custom Map Label',
closeBoxURL: '',

boxStyle:
border: 'lpx solid black',
width: '110px'
b
position: new google.maps.LatlLng(40.0678, 33.1252),
pane: 'mapPane',
enableEventPropagation: true

208

Chapter 6

The parameters for the InfoBoxOption class are explained in the following list:

» content: This can be a string or an HTML element. In our example, we used HTML
div elements to create a beautiful decorated infobox. You can use the CSs style
elements to create your custom infobox.

» pixelOffset: This is the offset in pixels from the top-left corner of the infobox. In this
recipe, we want to center the infobox, so we used half the width of the infobox.

» boxStyle: This defines the CSS styles used for the infobox. The background style
property used in this recipe shows the upper-headed arrow image. This image is a
customized image to be placed in the middle of the infobox. The names of the width
and opacity style properties suggest how they are used.

» closeBoxMargin: This is used to define where the close box will be placed in the CSS
margin style value. In this recipe, we used the upper-headed arrow at the top of the
infobox, so we must move the close box below the arrow image.

» closeBoxURL: This is the image URL of the close box. Google's standard close box
image is used here. If you do not want to add a close box, set this property to empty.

» pane: This is the pane where the infobox will appear. If you are using it as an infobox,
then use floatPane. If you are using it as a map label, use mapPane.

» position: This is the geographic location of the infobox or map label defined in
the objects created from google .maps.LatLng class.

» enableEventPropagation: This is used to propagate the events. If you are using
the InfoBox class for map labels, you don't need to get the events of the label.
The map's events are more important in this case.

It doesn't matter whether it is an infobox or map label, you can show InfoBox objects
with the open () method. If there isn't an anchor point, such as a marker, it only gets one
parameter as a map; otherwise you should add the second parameter as an anchor object.
Two usage examples are as follows:

//Showing the map label
customMapLabel . open (map) ;

//Opening the info box attached to marker
customInfoBox.open (map, marker) ;

If you need to change the position of the infobox like in the event handlers, you should use the
setPosition () method of the class. This method gets objects created from the google.
maps . LatLng class.

//Changing the position of info box
customInfoBox.setPosgsition(e.latlng) ;

209

Google Maps JavaScript Libraries

The events used in this recipe were the topic of Chapter 5, Understanding Google Maps
JavaScript API Events. We did not go into detail, but for some purposes, there are also events
of the InfoBox class to handle. The following code block will listen to the clicking of the close
button that will result in the closing of the infobox. The event handler of the listener will log
only a message to the console for demonstration:

//Listening info box for clicking close button

google.maps.event.addListener (customInfoBox, 'closeclick',
function () {
console.log('Info Box Closed!!!"');

3N

As you can see, in the preceding code, the Google Maps JavaScript API has a lot of potential
that can be extracted with the help of extra libraries. The Google Maps JavaScript API gives
you the base, and you can build whatever you want on it.

» The Creating a simple map in a custom DIV element recipe in Chapter 1,
Google Maps JavaScript API Basics

» The Getting the coordinates of a mouse click recipe in Chapter 5,
Understanding Google Maps JavaScript APl Events

Working with Services

In this chapter, we will cover:

» Finding coordinates for an address

» Finding addresses on a map with a click

» Getting elevations on a map with a click

» Creating a distance matrix for the given locations
» Getting directions for the given locations

» Adding Street View to your maps

Introduction

This chapter focuses on the various services offered by the Google Maps JavaScript API.
These services add significant functionality that largely differentiates Google Maps from its
competitors. The reliability and the quality of the underlying data makes these services even
more appreciated, as this allows applications making use of Google Maps to provide added
functionalities.

These services generally follow an asynchronous pattern in which a request is sent
to an external server and a callback method is provided to process the responses.

These services are not available all over the world; there are restrictions
or quotas—even if it is available—to prevent the abuse of these services.
Detailed information will be given on these services in related recipes.

The good part of these services is, as they are part of the Google Maps JavaScript API, they
are fully compatible with the classes and objects of the API.

Working with Services

For instance, you can find directions between two addresses using the Google Maps API
Directions Service. Firstly, you make the request supplying the necessary parameters. Then,
by using your callback function, you will get the directions if everything goes on track. But,

for a time lapse, you may have to think of ways to overlay these directions on the base maps.
Luckily, the API provides the infrastructure for this so that with one line of additional code, you
can observe your requested directions on top of your base maps.

This chapter will describe each of the service types in detail, including geocoding, directions,
elevation, distance matrix, and Street View, with each recipe consisting of a related scenario.

Finding coordinates for an address

Locating an address or place on the map has always been a tedious task, and the Google
Maps JavaScript API eases this task with the geocoding service. Geocoding, in its simplest
definition, is to associate geographic coordinates with the address information, be it only
a street name, the detailed building number and zip code, or only a locality name.

By having the coordinates of your respective addresses, you can easily overlay them in your
map applications.

In this recipe, you will succeed in entering your holiday places and addresses and then map
them as markers on top of your base maps in your application.

Getting ready

This recipe will make use of the concepts related to adding vector layers, particularly markers,
introduced in the Adding markers to maps recipe in Chapter 3, Adding Vector Layers. It is
advised to go through this recipe to have a general understanding of vector layers and

their properties.

How to do it...

You can locate your addresses by following the given steps:

1. Create HTML markup so that you can enter your addresses and search for them:

<input id="addressField" type="text" size="30"
placeholder="Enter your Address" />

<input type="button" id="listAddressBtn" value="Pin Address
Oon Map" />

<p id="placesText"></p>

<ul id="addressList" class="addressList">

212

Chapter 7

Define the global geocoder object:

var geocoder;

Initialize the geocoder object in your initMap () function:

geocoder = new google.maps.Geocoder () ;

Get the 1istAddressBtn button element and add a c1ick event listener:

var listAddressBtn =
document .getElementById('listAdressBtn') ;

listAddressBtn.addEventListener ('click', function() {
listAddresses|() ;

3N

Create a function for listing addresses on the addressList element and send the
geocoding request:

function listAddresses() {
//get text input handler
var addressField =
document .getElementById('addressField') ;
//get addressList element handle

var addressList =

document .getElementById ('addressList') ;

if (addressList.children.length === 0) {
var placesText =
document .getElementById('placesText') ;
placesText.innerHTML = 'Places You Have Visited
(Click on the place name to see on map):';

}

//create a list item

var listItem = document.createElement ('li');

//get the text in the input element and make it a

//1list item

listItem.innerHTML = addressField.value;

listItem.addEventListener('click', function() ({
geocodeAddress (listItem.innerHTML) ;

1)

//append it to the <uls> element

addressList.appendChild(listItem) ;

//call the geocoding function

geocodeAddress (addressField.value) ;

Working with Services

6. Create a function for geocoding the addresses entered:

function geocodeAddress (addressText) {
//real essence, send the geocoding request
geocoder.geocode ({'address': addressText},
function (results, status)
//if the service is working properly...
if (status == google.maps.GeocoderStatus.OK) {
//show the first result on map
pinpointResult (results[0]) ;
} else {
alert ('Cannot geocode because: ' + status);

13N
}

7. Place a marker on the map and attach an InfowWwindow object to display its details:

function pinpointResult (result)
var marker = new google.maps.Marker ({
map: map,
position: result.geometry.location

3N

map.setCenter (result.geometry.location) ;
map.setZoom(16) ;

//infowindow stuff
google.maps.event.addListener (
marker, 'click', function() ({
var popupContent = 'Address: ' +
result.formatted address;
popup . setContent (popupContent) ;
popup.open (map, this);

13N

214

Chapter 7

8. You will have your addresses pinned on your map as shown in the following

screenshot:
- - LJ - . - | = IEI B
/[localhost/recipes/ch7_ge: x '
/
~ |
| & C' | [localhost/recipes/ch7_geocoding.html DI - e = |
2% Apps (O] ArcGIS Metwork_An.. [ReadIt Later [Mark AsRead [Reading List [T ASP.NET MVC » [Other bookmarks
Geocodi :
eocodin; =
gt}“ o ey, = = § a o Piazzs Gaelano. i |
| e & g & Via dei Corso == Borgo Albizi Piszzadisan. | Map | Satellite |
~ ‘\\Qﬁ" =] 5 I 5 Pier Maggiore — ——"T 17—
e) Via degli Anselmi . badia £ _— ! 5 |
Augd Via i as Fiorentina “— D Via dei Pandolfini &
\\v Efiomne = g -~ v d |
— i L .
o, 7 BT Vi cmaor Via Ghibelling Q?f JaEﬁre'rf"‘isrm.r
a Ty, —— =2 & - B L1
0) Laloggia & & & Yia G
Or, - z & r— Casa del o ibeyy;
% Four Rooms ™) 5 Piazza della L) e arbo b AN L 13
5 Signoria Via e Lo & A
g 4 +"il pi. oy, 2 Sl el Gong; s g
i il
| © 6y, . Address: Uffizi Gallery, Piazzale degli Uffizi, 6, 50122 Florence, Italy % gre.; T
i, . S . . .
real: qu? 40["6;'(, | safio Stefena Vig Wy e i
£ & B 0l N “oig
T et . :
& 5 8 o , De' Benci Bed =
I (43 Or, & Florence Tower 3
g L45] B s i & Breakfast
i & '::% San Jag, & - Apartment] = Cloister of the
Gialfine - Opa b Holy Cross
Di Plazzo A BB Casa Santa Croce,
Guiee ardini \,'9 &@ FI]‘;][E”%E Il Putto - Holiday dei Tintori CO’SD chipstro Grande (
3 <3§ Old Bridge Studio'in Florence dej i‘;'”{o
I & ™ S ri
. A 1=
Eonsignor (ke _2;@ Cogya o % Rf‘!‘ Lungarno delle Grazje
P & s % i Lur
vV 2% g ‘U <
| Z BRBeatrice Plazza u»-?l.ﬂ:,i ‘4 \:‘% hygf;% E:?
"3:1_1 Affittacamere 4o pitti o = o B~
6,’% 8% Il Magnifico (i Lungarng Serristori
(=] - n -
2 =1 Vi dej Renaj . a8
A X
oo o O} % i Via gi san Niccalg Giardino
| Garden B 0 Ol Palazzal, i San Mict L4
Caasils of Baboli @ Nt Sermistori
. Giarding. i D_fj:'{ Map data 2013 Google TemsofUse Reportamap emor
Map vour Holiday Places
Pin Address On Map
Places You Have Visited (Click on the place name to see on map):
|
o Colosseum
© Via del Corso Rome
¢ Viale Europa 22
o Uthizi Gallery Florence

Making a geocoding request is in fact quite simple. Firstly, you create a Geocoder object:

geocoder

new google.maps.Geocoder () ;

Working with Services

Then, you call the geocode () method from the geocoder object, supplying its address
parameter with an address, place, or locality name:

geocoder.geocode ({'address': addressText},
function (results, status) {..}):

This method takes the address, sends it to the Google servers to be geocoded, and by a
callback function, gets back the results in the form of the GeocoderResult object array.

The responses come in an array in order of the most relevant matches. For instance, when
you search for Colosseum, the formatted address property of the first GeocoderResult
object is:

Colosseum, Piazza del Colosseo, 1, 00184 Rome, Italy
The second is:
Colosseum, Enschede, The Netherlands

You can quickly grasp that the ancient and highly touristic Colosseum in Rome is more
popular than the second result. You can, of course, bias results through the restriction of
map boundaries and country codes (we will review this in detail in the upcoming sections).
However, without any intervention, you will see the geocoded results of high popularity at the
top through various countries and continents.

The GeocoderResult object has its geometry property so that you can view it via a marker
overlay on top of base maps. In our recipe, the pinpointResult () function makes use of
this, where it takes the GeocoderResult object named result as its only parameter:

function pinpointResult (result)
var marker = new google.maps.Marker ({
map: map,
position: result.geometry.location

3N
}.'

There's more...

The geocoding service request and response has an extensive set of options and properties.
Let's start with the request first. In addition to the address parameter, which is the primary
and required parameter of the GeocodeRequest object (supplied as the first parameter for
the geocode () method of the Geocoder object), there is a bounds property that you can
use to specify the returning geocoded results, as shown in the following code:

Chapter 7

geocoder.geocode ({
'address': addressText,
'bounds': new google.maps.LatLngBounds (

new google.maps.LatLng (
25.952910068468075, -15.93734749374994),
new google.maps.LatLng(57.607047845370246,
54.37515250625006)

)

b

function (results, status) {...}

)i

When you supply the bounds property, such as the one used in the preceding code covering
Europe, and then when you search for Sun Street, the first result is the UK. This is because
the bounds property biases the geocoding results present inside the LatLngBounds object
supplied. When you delete the bounds property, the first result from the same search comes
from the USA.

In addition, you can bias the results by using the region parameter, in which an IANA
language region subtag is accepted.

The complete listing for IANA language region subtags can be found at
http://www.iana.org/assignments/language-subtag-
registry/language-subtag-registry.
S Detailed information on the GeocodeRequest object can be found at
https://developers.google.com/maps/documentation/
javascript/reference#fGeocoderRequest

For instance, supplying the region parameter with 've' for Venezuela as shown in
the following code and searching for 'vValencia' returns the city of 'Valencia' in
Venezuela in the first place:

geocoder .geocode ({
'address': addressText,
'region':'ve'},
function (results, status) {...}

)i

Without the region parameter, this would return the city of 'Valencia' in Spaininthe
first place.

Passing the returned results and their properties to the GeocoderResult object, this object
carries an accuracy indicator since certain geocoding processes are about interpolation and
matching and not about one-to-one equality.

Working with Services

The value of the result is stored in the geometry property of the GeocoderResult object,
which contains the location_ type property. These values are in the order of their highest
to lowest accuracies:

» google.maps.GeocoderLocationType.ROOFTOP

» google.maps.GeocoderLocationType.RANGE INTERPOLATED

» google.maps.GeocoderLocationType.GEOMETRIC CENTER

» google.maps.GeocoderLocationType.APPROXIMATE
In the preceding code, the ROOFTOP value represents the exact address, RANGE
INTERPOLATED represents that there is an interpolation between certain sections of the

road, GEOMETRIC_ CENTER represents the geometric center of the road or region, and finally
APPROXIMATE tells us that the returned result's location is an approximation.

For instance, when we search for 'Wwilliam Village', the first result's formatted
address is:

"Bremerton, WA, USA"

The location_ type property of the geometry of the result is APPROXIMATE. This generally
happens when there is no direct linkage between the search phrase and the returned result,
as itis in our case.

Apart from the accuracy of the geocoding process, we can get the type of the
GeocoderResult object through its types property. The types property is an array that is
of the category to which the returned result belongs.

For instance, for the Colosseum in Rome, the types property is:
["point_of interest", "establishment"]
While for Via del Corso, Rome, it is:
["route"]
For Uffizi Gallery, Florence, it is:

["museum", "point of interest", "establishment"]

. The complete listing for the possible values of the types property of the
GeocoderResult object can be found at https://developers.
s google.com/maps/documentation/javascript/geocoding
#GeocodingAddressTypes

Chapter 7

It is important to note that the callback function through which we get our results of the
geocoding request requires another parameter, which is about the status of the request. The
most prominent possible values for this parameter are:

» google.maps.GeocoderStatus.OK

» google.maps.GeocoderStatus.ZERO_ RESULTS

» google.maps.GeocoderStatus.OVER QUERY LIMIT
» google.maps.GeocoderStatus.REQUEST DENIED

» google.maps.GeocoderStatus.INVALID REQUEST

The values except GeocoderStatus.OK point to a problem. Among all, GeocoderStatus.
OVER_QUERY LIMIT requires special attention. In the introduction of this chapter, we have
mentioned that all of these Google Maps services are subject to limited use in terms of
geography and request rates. And, this status code is fired when you go beyond the limit

of the usage of the geocoding services.

A detailed explanation of the OVER_QUERY_ LIMIT status code
can be found at https://developers.google.com/
maps/documentation/business/articles/usage_

limits#limitexceeded.

~ The complete listing for the possible values of the GeocoderStatus

object can be found at https://developers.
google.com/maps/documentation/javascript/
geocoding#GeocodingStatusCodes.

» The Adding markers to maps recipe in Chapter 3, Adding Vector Layers

Finding addresses on a map with a click

In the previous recipe, we had the address in our hand and our aim was to find the map
location; in other terms, the coordinates of the address on earth. But, what happens if we
have the exact coordinates and try to find the address that matches these exact coordinates?

This process is known as reverse geocoding, and it is the process of converting coordinates
to human-readable addresses.

In this recipe, we will make use of the reverse geocoding capabilities of the Google Maps
JavaScript APl. When the user clicks on the map, we will find the address where the user
clicked and imminently display it to him/her.

Working with Services

Getting ready

Reviewing the recipe Drawing shapes on the map in Chapter 6, Google Maps JavaScript
Libraries, will ease your work because greater detail on drawing shapes and their background
is required for this recipe.

How to do it...

Here are the steps to allow your user to click on the map and find the address of the place
that he/she clicked on:

1. Define the geocoder object as global:

var geocoder;

2. Define the popup object as global:

var popup;

3. Initialize the geocoder and popup objects, inside the initMap () function:

geocoder = new google.maps.Geocoder () ;
popup = new google.maps.InfoWindow () ;

4. Create the drawingManager object inside initMap ():

var drawingManager = new
google.maps.drawing.DrawingManager (
{
//initial drawing tool to be enabled, we want to be in
//no drawing mode at start
drawingMode:null,
//enable the drawingControl to be seen in the UI
drawingControl:true,
//select which drawing modes to be seen in the
//drawingControl and position the drawingControl itself
drawingControlOptions: {
//select a control position in the UI
position: google.maps.ControlPosition.TOP CENTER,
//selected drawing modes to be seen in the control
drawingModes: [
google.maps.drawing.OverlayType .MARKER

220

Chapter 7

Enable the drawing functionality:

drawingManager.setMap (map) ;

Add an event listener for the completion of the user-drawn marker, perform the
reverse geocoding task, and find the address:

google.maps.event.addListener (drawingManager,
'markercomplete', function (marker) {

//get the Latlng object of the marker, it is necessary

//for the geocoder

var markerPosition = marker.getPosition() ;

//reverse geocode the LatLng object to return the

//addresses

geocoder.geocode ({'latlng': markerPosition},

function (results, status)

//if the service is working properly...

if (status == google.maps.GeocoderStatus.OK) {
//Array of results will return if everything
//is OK

if (results) {
//infowindow stuff
showAddressOfResult (results [0] ,marker) ;

}

//if the service is not working, deal with it
else {
alert ('Reverse Geocoding failed because: ' +
status) ;

13N
13N

Create a function for displaying the address on the InfoWwindow object of the
marker drawn:

function showAddressOfResult (result, marker) {
//set the center of the map the marker position
map.setCenter (marker.getPosition()) ;
map.setZoom(13) ;

//create the InfoWindow content
var popupContent = 'Address: ' +
result.formatted address;

//set the InfoWindow content and open it

popup . setContent (popupContent) ;
popup.open (map, marker) ;

221

Working with Services

8. You can now click on and get the address information in the info window as shown in

the following screenshot:
866 . /n : - 0y
! |7 localhost/recipes/ch7_rev x W \
4 C' | [} localhost/recipes/ch7_reversegeocoding.html Tl =
3% Apps [ArcGIS_Network_Ar- || Read It Later || Mark As Read || Reading List [L] ASP.NET MVC » [Other Bookmarks
Finding Address on Map Chck
g_‘-‘ & East Harlem /
&
’ 4 &
NN @ & Guitenberg & J I d
1< > E""—‘.s' y - slan
v West = 8 & N
&7 & Mew York § Q}-'f'
£/ g & &
.ﬁ] (A / \'a': <&
19§ 2 !
(] ” o y
BTl Union City y J)
Astoria F’a:k ’l =
Address: 764768 5th Avenue, New York, NY 10018, USA = =
..... S = ‘m i oy
DE DEWit " mﬂfﬂ: A Q:
Chmon Park & 3 .
() £ o Iy i g
- e o & Jchn “ A
N Sy & JayPark _@Q" ey
ells [28 &5 £ AL,
Kitchen & {71 ool o Hoosevalt
’ e, ‘?6‘;” = QP\& T Astoria
— = Theater District *) P LA
$? - Times Square & & e d"’-i',
] N
< > 4
27 Garment g > 4 = Dwyer
X %5 District b i ‘é& Turtle Ra}:f é‘b & Sq‘lgre A odthern
[= a7 S‘? o+ £ ot Bivd ’ Wot
¢ Chelsea B a & ,c,_/ £ = £ o
< +) 7 M gy Hill = Tathp, = Sunnyside 2
_-g The High {Gan[ry Plaza 0 e (25) & Garden Park . &
fipipanalt cc: Line VS_, S / State Park Island City, a7 Sunnyside
i) Jackson & E Kips Bay i th Ave ik
‘é’, Square: ™ Flatiron & 5 ‘ﬁ:% & @
(4 District = .
3 # 2 £ = ,,9 5
B @ g ‘;:\— fj [+ fsl‘and E\‘ 2 %‘Q
el & o F 5 DY, —
o .. West Village = o § & “w% e
- ;‘:' B Q;?) Stuyvesant -
= a g £ & Town| Map data ©2013 Google anmsnfuse Reportamap emor

If you have looked at the Finding coordinates for an address recipe in this chapter, you may

have realized that we are again using the same geocoder object as shown

new google.maps.Geocoder () ;

geocoder
However, this time we are supplying the coordinate pairs in the form of the LatLng object

instead of the address text for the familiar geocode () method of the geocoder object
markerPosition},

(

geocoder.geocode ({'latLng
function (results, status)

b

222

Chapter 7

In fact, there was another property that the geocode () method has which we have not
discussed in the previous recipe; that is, the 1at1ng property that accepts the LatLng object.

Therefore, the geocode () method of the geocoder object can be used bi-directionally, both

for geocoding and reverse geocoding. For geocoding, we must use the address property to fill
in the address for which we want to have the location. For reverse geocoding, we must use the
latlng property to fill in the LatLng object for which we want the address information.

We get the LatLng object of the marker that the user draws by using the getPosition ()
method of the marker:

var markerPosition = marker.getPosition() ;

In our callback function, which we have to supply for our reverse geocoding request, we have
two parameters that get their values when we get the replies of our request:

function (results, status)

}

The first parameter is an array of the GeocoderResult objects, and the second one is an
array of the GeocoderStatus object.

You can review the available for the GeocoderStatus object as
a well-detailed breakdown on the GeocoderResult object in the
T~ Finding coordinates for an address recipe of this chapter.

After testing the service status, we can work with our array of the GeocoderResult objects if
everything is OK:

if (status == google.maps.GeocoderStatus.OK) {
//Array of results will return if everything //is //OK
if (results)
//infowindow stuff
showAddressOfResult (results [0], marker);

}

We have picked the first object because it is the most precise one. For instance, for the
marker position in our recipe, the complete array of address information is:

results[0] .formatted address: "764-768 5th Avenue, New York,
NY 10019, UsA"

results[1l] .formatted address: "5 Av/West 60 - 59 St, New York,
NY 10019, UsA"

223

Working with Services

results[2] .formatted address: "New York, NY 10153, USA"

results[3].formatted address: "5 Av/59 St, New York, NY 10022,
USA"

results[4] .formatted address: "New York, NY 10019, USA"
results[5] .formatted address: "Midtown, New York, NY, USA"
results[6] .formatted address: "Manhattan, New York, NY, USA"
results[7] .formatted address: "New York, NY, USA"

results[8] .formatted address: "New York, NY, USA"

results[10] .formatted address: "New York, USA"
results[11l] .formatted address: "United States"

You can observe that iterating from the start of the array to the end, we end up in "United
States™", the least precise address information for our reverse geocoding request.

See also

» The Finding coordinates for an address recipe in this chapter

» The Drawing shapes on the map recipe in Chapter 6, Google Maps JavaScript
Libraries

Getting elevations on a map with a click

The Google Maps JavaScript API provides information on elevation data, returning positive
values on the terrain relative to the sea surface. It also gives information on the depth of
ocean floors in negative values.

Using the ElevationService object, we can get elevation information on individual
locations as well as paths.

In this recipe, firstly we will show how to get an elevation data from a single point that the
user selects, and then we will go over the same scenario with the paths.

Getting ready

It is a good idea to have a quick glance at the Drawing shapes on the map recipe in Chapter
6, Google Maps JavaScript Libraries, as the recipe covers every detail on how to draw a shape
using the Google Maps JavaScript API.

Chapter 7

How to do it...

You can view the elevation data of a location of your choice if you follow the given steps:

1. Define the elevator object as global:

var elevator;

2. Define the popup object as global:

var popup;

3. Initialize the elevator and popup objects, inside the initMap () function:

elevator = new google.maps.ElevationService() ;
popup = new google.maps.InfoWindow() ;

4. Create the drawingManager object inside initMap ():

var drawingManager = new google.maps.drawing.DrawingManager (

{

//initial drawing tool to be enabled, we want to be in
//no drawing mode at start

drawingMode:null,
//enable the drawingControl to be seen in the UI
drawingControl:true,

//select which drawing modes to be seen in the
//drawingControl and position the drawingControl itself

drawingControlOptions: {
//select a control position in the UI
position: google.maps.ControlPosition.TOP CENTER,
//selected drawing modes to be seen in the control
drawingModes: [
google.maps.drawing.OverlayType .MARKER
]

3N

5. Enable the drawing functionality:

drawingManager.setMap (map) ;

225

Working with Services

6.

226

Add an event listener for the completion of the user-drawn marker, send the
request using the elevator object, and find the elevation data for the location
of the marker:

google.maps.event.addListener (drawingManager,
'markercomplete', function (marker) {
//get the Latlng object of the marker, it is necessary
//for the geocoder
var markerPosition = marker.getPosition() ;
//embed the marker position in an array
var markerPositions = [markerPosition];
//send the elevation request and get the results in the
//callback function
elevator.getElevationForLocations ({'locations':
markerPositions}, function(results, status) {
//if the service is working properly...

if (status == google.maps.ElevationStatus.OK) {
//Array of results will return if everything
//is OK

if (results) {
//infowindow stuff
showElevationOfResult (results[0], marker) ;

}

//if the service is not working, deal with it
else {
alert ('Elevation request failed because: ' +
status) ;

13N
13N

Create a function for displaying the elevation data on the Infowindow object of the
marker drawn:
function showElevationOfResult (result, marker) {

//set the center of the map the marker position

map.setCenter (marker.getPosition()) ;

map.setZoom(13) ;

//create the InfoWindow content
var popupContent = 'Elevation: ' +
result.elevation;

//set the InfoWindow content and open it
popup . setContent (popupContent) ;
popup.open (map, marker) ;

Chapter 7

8. You will now get the elevation of the point that you have clicked on, as shown in the
following screenshot:

8 00 /| localhost/recipes/ch7_ele. x

=

% Apps

!

[ArcGIS_Network_An

|] Read It Later

L

A
e

[Y localhost/recipes/ch7_elevation.html

|| Mark As Read

‘_, Reading List

e

[AsP.NET MvC » [Other Bookmarks

Finding Elevation on Map Click
- Vel K Map | Satelite |
G215]
" Elevation: 5111.365234375 x|
4 A J Zhongba
G215
Kt aptad Bai (%)
Natitinal Park 3 Shey Phoksundo L)
| [Dholagohe Natiopal Park |
= 9] ~TRTRIE] 58
Jipayal | Chandika AfE = Za
silgadhi s Pakha b3
Bfguli
- Elhairagrsthan
Dhorpatan s G

i : 3 Conservation
i Chisapani= Birendranagar Agragaun om:‘:l;k:;a Fz?ram._e_rmﬁﬂ'l Area el anasi
Tikapur Bame L S 1 " ~ Conservation
¥ b Hlean, ' Area
Bhalchaur Adhikanchaur 5
o e] TR A3
"% National Park z—a\

= Pratappur
Bela
5
LS vie

&Iiriya

Khalg nga

C 3 P e

Hunting Reserve

Baglung

Annapurna

N epa | Besisahar
nvmpdmazzalsaummavi,snoglc Terms of Use

We get the elevation data using the ElevationService object:

elevator = new google.maps.ElevationService() ;

The elevator object has the getElevationForLocations () method that takes an array
of LatLng objects to return the elevation data for each position that the specific LatLng
object is standing for. In other words, if you allocate three LatLng objects in your array, you
get three ElevationResult objects as an array in your callback function:

elevator.getElevationForLocations ({'locations':
markerPositions}, function(results, status)

b

227

Working with Services

However, bear in mind that the accuracy of the elevation is lowered when the number of
the LatLng objects are embedded in the array. Therefore, if you want to have high accuracy,
you must opt for the LatLng array containing a single element, as seen in our case.

The LatLng object array is given for the locations property of the
getElevationForLocations () method. However, we have one marker object in hand
to handle the markercomplete event when it is fired upon the drawing of the marker by
the user:

google.maps.event.addListener (drawingManager,
'markercomplete’, function (marker)

{...0;

Therefore, we are converting the single marker position to an array containing only
one element:

var markerPosition = marker.getPosition() ;
var markerPositions = [markerPosition];

In the callback function, we get the status of the service together with the ElevationResult
object array:

function (results, status)
//if the service is working properly...
if (status == google.maps.ElevationStatus.OK) {
//Array of results will return if everything //is OK
if (results) {
//infowindow stuff
showElevationOfResult (results[0] ,marker) ;

}

//if the service is not working, deal with it
else {
alert ('Elevation request failed because: ' + status);

}

The status parameter is of the type ElevationStatus, and it is very similar to the
GeocoderStatus object in terms of its constants, which are listed as follows:

» google.maps.ElevationStatus.OK

» google.maps.ElevationStatus.UNKNOWN ERROR

» google.maps.ElevationStatus.OVER_QUERY LIMIT

» google.maps.ElevationStatus.REQUEST DENIED

» google.maps.ElevationStatus.INVALID REQUEST

228

Chapter 7

Apart from ElevationStatus.OK, all the status values point to a problem. Other values are
self-explanatory within their names.

. The complete listing and details for the possible values of the
% ElevationStatus object can be found at https://developers.
s google.com/maps/documentation/javascript/reference#
ElevationStatus.

The results parameter is of the type ElevationResult. The ElevationResult object
has three properties called elevation, location, and resolution. We are making use of
the elevation property in our showElevationOfResult () function:

var popupContent = 'Elevation: ' + result.elevation;

The elevation data is the positive number for the terrain and the negative number for the
ocean floor.

The location property is the LatLng object of ElevationResult, and the resolution
property is the distance in meters between the sample points that is used to generate/
interpolate this elevation data. The higher the resolution, the less accurate the elevation data.

» The Drawing shapes on the map recipe in Chapter 6, Google Maps JavaScript Libraries

Creating a distance matrix for the given

locations

The Google Maps JavaScript API carries some interesting and particularly helpful properties,
one of them being the Distance Matrix Service. Using this service, you can compute the travel
time and distance between multiple origins and destination locations.

This is especially useful when you want to have a one-to-one report of your travel nodes, be it
a delivery business or only a summertime holiday. This service gives you the travel time and
distances within your choice of travel mode (driving, walking, and cycling); you can see the
results oriented for each origin and destination.

It is worth noting that the output of this service cannot be mapped onto the base maps;

you can have the information about the travel time and duration, but for the directions, you
have to use the Directions service, explained in detail in the Getting a direction for the given
locations recipe later in this chapter.

In this recipe, we will locate the origin and destination locations and get the distance matrix
result for our locations.

229

Working with Services

Getting ready

This recipe will make use of the drawing library; therefore, it is advisable to go through
the Drawing shapes on the map recipe in Chapter 6, Google Maps JavaScript Libraries,
and gain some understanding on the subject matter.

How to do it...

You can draw your origin and destination points and then request for a distance matrix
by clicking on the button. You can see how to do this by following the given steps:

1. Addthe HTML input element of the but ton type to kick off the distance
matrix request:

<input type="button" id ="generateDistanceMatrix"
value="Generate Distance Matrix" />

2. Define the global variables:

//define an array that includes all origin LatLng objects

var originLatLngs;

//define an array that includes all destination LatLng objects
var destinationLatLngs;

//define a global DistanceMatrixService object

var distanceMatrixService;

//define a global markerCount variable

var markerCount;

//define a global matrixResultDiv variable

var matrixResultDiv;

3. Initialize the global variables in the initMap () function:

//initialize originLatLngs array

originLatlngs = [];

//initialize destinationLatlngs array

destinationLatLngs = [];

//initialize markerCount - the count of markers to be drawn
markerCount = 0;

//assign matrixResultDiv to the specific div element
matrixResultDiv =

document .getElementById ('matrixResultDiv') ;

4. Getthe button element and add a click event handler:
var generateDistanceMatrixBtn = document.getElementById('generateD
istanceMatrix') ;
generateDistanceMatrixBtn.addEventListener ('click’', function(){
makeDistanceMatrixRequest () ;

3N

230

Chapter 7

Initialize the distanceMatrixService object in the initMap () function:

distanceMatrixService = new
google.maps.DistanceMatrixService () ;

Create the drawingManager object inside initMap ():

var drawingManager = new google.maps.drawing.DrawingManager (

{

//initial drawing tool to be enabled, we want to be in
//no drawing mode at start
drawingMode: null,
//enable the drawingControl to be seen in the UI
drawingControl: true,
//select which drawing modes to be seen in the
//drawingControl and position the drawingControl itself
drawingControlOptions: {
//select a control position in the UI
position: google.maps.ControlPosition.TOP CENTER,
//selected drawing modes to be seen in the control
drawingModes: [
google.maps.drawing.OverlayType.MARKER
]

13N

Enable the drawing functionality:

drawingManager.setMap (map) ;

Add an event listener for the completion of the user-drawn marker, set the marker
icons based upon the positions they are pointing towards, whether origin or
destination, and limit the total number of markers:
google.maps.event.addListener (drawingManager, 'markercomplete',
function (marker) ({

//count the number of markers drawn

markerCount++;

//1limit the number of markers to 10
if (markerCount > 10)
alert ('No more origins or destinations allowed');
drawingManager.setMap (null) ;
marker.setMap (null) ;
return;

231

Working with Services

//distinguish the markers, make the blue ones be
//destinations and red ones origins
if (markerCount % 2 === 0) {
destinationLatLngs.push (marker.getPosition()) ;
marker.setIcon('icons/b' +
destinationLatLngs.length + '.png');
}
else {
originLatLngs.push (marker.getPosition()) ;
marker.setIcon('icons/r' + originLatLngs.length +
'.png');

3N

9. Create a function for preparing the request properties and sending the request
for the distanceMatrixService object by using the getDistanceMatrix ()

method:

function makeDistanceMatrixRequest () {
distanceMatrixService.getDistanceMatrix (
origins: originLatLngs,
destinations: destinationLatLngs,
travelMode: google.maps.TravelMode.DRIVING,
getDistanceMatrixResult
) ;

10. Create a callback function named getDistanceMatrixResult for the
getDistanceMatrix () method call of the distanceMatrixService object:

function getDistanceMatrixResult (result, status) {
//clear the div contents where matrix results will be
//written
matrixResultDiv.innerHTML = '';

//if everything is OK

if (status == google.maps.DistanceMatrixStatus.OK) {
//get the array of originAddresses
var originAddresses = result.originAddresses;
//get the array of destinationAddresses

var destinationAddresses =
result.destinationAddresses;

232

11.

}

else {

}

//there are two loops, the outer is for origins,
//the inner will be for destinations,

//their intersection will be the element object
//itself

for (var i = 0, 1= originAddresses.length; 1 < 1;
iv+) |

//get the elements array

var elements = result.rows[i] .elements;
for (var j = 0, m= elements.length; j < m;
30 |

var originAddress = originAddresses[i];

var destinationAddress =
destinationAddresses[j];
//get the element object
var element = elements[j];

//get distance and duration properties for
//the element object

var distance = element.distance.text;
var duration = element.duration.text;

//write the results to the div for each
//element object

writeDistanceMatrixResultOnDiv (
originAddress, destinationAddress,
distance, duration, i, j);

alert ('Cannot find distance matrix because: ' +
status) ;

Chapter 7

Create a function to be called by the callback function listed earlier to write the
results to the matrixResultDiv object:

function writeDistanceMatrixResultOnDiv (originAddress,
destinationAddress, distance, duration,
originAddressCount, destinationAddressCount) {

//get the existing content

var existingContent = matrixResultDiv.innerHTML;

233

Working with Services

var newContent;
//write the Origin Address and Destination Address
//together with travel distance and duration

newContent = 'Origin ' +

letterForCount (originAddressCount) + ' :
';
newContent += originAddress + '
';
newContent += '<bs>Destination ' +

letterForCount (destinationAddressCount) + ' :

';

newContent += destinationAddress + '
';
newContent += '<bs>Distance: ' + distance +
'
';

newContent += '<bs>Duration: ' + duration +
'
';

newContent += '
';

//add the newContent to the existingContent of the
//matrixResultDiv

matrixResultDiv.innerHTML = existingContent +
newContent;

}

12. Create a function for converting counts to letters; the aim is to match the counts
with the marker icons:

function letterForCount (count)

{

switch (count)

{
case 0:
return 'A';
case 1:
return 'B';
case 2:
return 'C';
case 3:
return 'D';
case 4:
return 'E';
default:
return null;

Chapter 7

13. You will now have the distance matrix between the points of your selection, as shown
in the following screenshot:

8006 localhost/recipes fch7_dist % '\ | e
< C' [localhost/recipes/ch7_distancematrix.html % =
= Apps [ArcGIS_Network_An Read It Later Mark As Read Reading List (L] ASP.NET MVC [] GIS_Business [] Misc_Sources [GIS_Algorithms (1] Misc » (] Other Bookmarks
. Finding Distance Matrix Through Origins and
Do e = — o Destinations
oM s w9l i 7_’"*_(\ Viigo| Map, | Satelite | Generate Distance Mavix)
o Hamburg | You- 2 Origin A :
o \ " &
Liv. ¥ 1 i men Bialystok Belatis 32311, Dolany, Czech Republic
i Amsterdam ¢/ Belin Poland Destination A :
ifningham g o £ o AT Freiburger Straie 16, 79859 Schluchsee, Germany
Netherlands Fezan ~— Distance: 755 km
il London Ly A T 1ce: .
i o ologne Wraglaw o \ * Duration: 6 hours 55 mins
+ 1 Belgiomps °8 Germany ;
T " Oriein A :
s Fraé]ue *)\;\.{M Kmlmw va Origin A : .
AN / 32311, Dolany, Czech Republic
e e Czech Republic Destination B +
I Y SNV f L D306,72200 La Fleche, France
Huich Vienna 0 %Bratlslxvs\’ J":m\“’_, Distance: 1,393 km .
| Napes N o Risti 2] E' \‘!‘\‘""""ﬂ. Duration: 12 hours 18 mins
o g
i France éﬁu"i';\:iﬁ" AL X G'“ AR ARG Shicay Origin A +
A I3 :
L Geneva\ s| , (1770 32311, Dolany, Czech Republic
er g q‘;u‘ri“ Milan ig 'j:"?oz;qg.eh Romania I/ Destination C :
e~ il Glcaluq/ ot 6066 Tiszaalpar, Katona Jézsef Strect, Hungary
@ ;;;';”‘;:‘,1 VE e Distance: 596 km
Toulouse i . o Sebiali S~ SR Duration: 6 hours 14 mins
Bilbao s o MRS Italy 5 o
‘Andorra Hars2lle] { (meq (s%ﬁa Bulgaria Origin A :)
dolid Zarag g Mterdars \Mlcadunu, Plovdiv %zsml»l ’BI;ELM]‘;),(’.CM}, Republic
i e 054 22015 Basarsot Geaasis DE/BKG (52003) Google Map 1§08, 0R 101 ME,babidy BN BCI G Repata” Termaof e | AeportSroah r N-260a, 22639 Yésero, Huesca, Spain
Distance: 1,979 km
Duration: 18 hours 44 mins
Origin B :
Auf dem Kriimpel 11, 31633 Leese, Germany
Destination A :
Freiburger StaBe 16, 79859 Schluchsee, Germany
Distance: 697 km

In our recipe, we are allowing the users to point the markers downward at the location of their
choice. However, we are just following a scheme such that the first marker will point to the first
origin, the second will point to the first destination, the third will point to the second origin, the
fourth will point to the second destination location, and so on. In addition, we are limiting the
number of markers that have to be drawn to 10.

This was about drawing markers. Then, we will prepare the origin and destination locations to
be supplied to the distanceMatrixService object. The object is initialized as shown in the
following code:

distanceMatrixService = new
google.maps.DistanceMatrixService () ;

The user pressed the input button element and we fire the request via the
getDistanceMatrix () method:

function makeDistanceMatrixRequest () {
distanceMatrixService.getDistanceMatrix(

{

235

Working with Services

origins: originLatLngs,
destinations: destinationLatlLngs,
travelMode: google.maps.TravelMode.DRIVING,

b

getDistanceMatrixResult
) ;

Here, we supply originLatLngs to the origins property, where originLatLngs is an
array of the LatLng objects collected out of user-drawn markers—the odd-numbered ones—in
the markercomplete event listener for the drawingManager object:

if (markerCount % 2 === 0) {
destinationLatLngs.push (marker.getPosition()) ;

}

else {
originLatLngs.push (marker.getPosition()) ;

}

The destinations property is set for the dest imationLatLngs array in the same logic.

As a quick reminder, the destinations and origins properties can take an array of
address strings as well as an array of LatLng objects, as in our case.

The third property that we have used in our request is the travelMode property, which is
used to set the mode of travel. The options other than TravelMode .DRIVING available
for this property are:

» TravelMode.WALKING

» TravelMode.BICYCLING
In addition to the DistanceMatrixRequest object carrying the origins,
destinations, and travelMode properties, we are supplying a callback function
named getDistanceMatrixResult for the getDistanceMatrix () method call. The

getDistanceMatrixResult function has two parameters: one is for the response of the
service and the other one is for the status of the service. It is shown in the following code:

function getDistanceMatrixResult (result, status)

{...}
In this function, firstly we check whether the service is working properly:

if (status == google.maps.DistanceMatrixStatus.OK)

{...)

236

Chapter 7

i The complete listing and details for the possible values of the
% DistanceMatrixStatus object can be found at https://
i developers.google.com/maps/documentation/
javascript/reference# DistanceMatrixStatus.

Then, we process the results of the type DistanceMatrixResponse object, which

carries the originAddresses and destinationAddresses arrays of strings and a
DistanceMatrixResponseRow array called rows. Firstly, we get the originAddresses
and destinationAddresses arrays:

var originAddresses = result.originAddresses;
var destinationAddresses = result.destinationAddresses;

The rows array consists of another array called elements, in which its children are of the
type DistanceMatrixResponseElement. Therefore, we have to have two loops to iterate
through the DistanceMatrixResponseElement objects:

for (var i = 0, l=originAddresses.length; i < 1; i++) {
//get the elements array

var elements = result.rows[i].elements;
for (var j = 0, m=elements.length;j < m; j++) {
var element = elements([j];

}

The DistanceMatrixResponseElement object has two prominent properties that we
have used in our recipe: one is distance and the other is duration. They are elaborated in the
following code:

var distance = element.distance.text;
var duration = element.duration.text;

By using these properties, we reach the particular distance and duration properties of the
corresponding origin address and destination address.

» The Drawing shapes on the map recipe in Chapter 6, Google Maps JavaScript Libraries

237

Working with Services

Getting directions for the given locations

Having directions between two or more locations has always been a favorite among users,
car drivers, tourists, and so on. The need for navigation products either for driving, walking,
or any other transit options is qualified by the sales of these products.

A good Directions service would need comprehensive road data with several attributes filled
in such as the direction of traffic flow, turn restrictions, bridges, and underground tunnels.
Hopefully, Google Maps has this data in the background; therefore, it is very natural for
Google to include this functionality in Google Maps.

In Google Maps, directions is perhaps one of the most used features. It is also included
in the Google Maps JavaScript API, giving developers the ability to generate directions
programmatically between locations of their choice with a broad range of options.

In this recipe, firstly we will have the user enter an address or any location of a place, map
them using the Geocoder service, and then provide the directions between them in the order
of their entrance.

Getting ready

This recipe will make use of concepts related to the Geocoder service introduced in the Finding
coordinates for an address recipe at the beginning of this chapter. It is highly advisable to go
through this recipe to have a general understanding of Geocoder and its usage.

How to do it...

You can enter your addresses and get directions between them by executing the following steps:

1. Inserta ContainerDiv element of HTML that will be placed on the right-hand side
of the div element of the map:

<div id="DirectionsContainerDiv">
<div id="PlacesContainerDiv"s>
Get Directions Between your Places</br>
<input id="addressField" type="text" size="30"
placeholder="Enter your Address" />
<input type="button" id ="pinAddressOnMapBtn"
value="Pin Address On Map"

onclick="1listAddresses ()" />

<input type="button" id = "getDirectionsBtn"
disabled value="Get Directions"
onclick="getDirections ()" />

238

Chapter 7

<p id="placesText"></p>
<ul id="addressList" class="addressList">

</div>

<div id="DirectionsListContainerDiv">
<div id="DirectionsListDiv">
</div>

</div>

</div>

Define the global variables:

//define global marker popup variable
var popup;

//define global geocoder object

var geocoder;

//define global markers array

var markers;

//define global DirectionsService object
var directionsService;

//define global DirectionsRenderer object
var directionsRenderer;

Initialize the global variables in the initMap () function:

//initialize geocoder object

geocoder = new google.maps.Geocoder () ;

//initialize markers array

markers = [];

//initialize directionsService object

directionsService = new google.maps.DirectionsService() ;
//initialize directionsRenderer object

directionsRenderer = new google.maps.DirectionsRenderer () ;

Give the instructions on directionsRenderer so that it will draw the directions on
the map and will list the directions on the right-hand side of the map:

//directionsRenderer will draw the directions on current
/ /map
directionsRenderer.setMap (map) ;

//directionsRenderer will list the textual description of
//the directions

//on directionsDiv HTML element

directionsRenderer.setPanel (document.getElementById (
'DirectionsListDiv')) ;

239

Working with Services

5. Create a function for listing the addresses the user has entered and calling
the function that does the geocoding;:

function listAddresses() {
//get text input handler
var addressField =
document .getElementById('addressField') ;
//get addressList element handle
var addressList =
document .getElementById ('addressList') ;
if (addressList.children.length == 0)
var placesText =
document .getElementById('placesText"') ;
placesText.innerHTML = 'Places You Have Visited
(Click on the place name to see on map):';
}
//create a list item
var listItem = document.createElement ('li');
//get the text in the input element and make it a list
//item
listItem.innerHTML = addressField.value;
listItem.addEventListener('click', function() {
pinAddressOnMap (listItem.innerHTML) ;
1)
//append it to the <uls> element
addressList.appendChild(listItem) ;
//call the geocoding function
pinAddressOnMap (addressField.value) ;
if (addressList.children.length > 1) ({
//get getDirectionsBtn button handler
var getDirectionsBtn =
document .getElementById('getDirectionsBtn') ;
//enable the getDirectionsBtn
getDirectionsBtn.disabled = false;

}

addressField.value = '';

}

6. Create a function that does the real geocoding task:

function pinAddressOnMap (addressText) {
//real essence, send the geocoding request

geocoder.geocode ({'address': addressText},
function (results, status)

//if the service is working properly...

240

Chapter 7

}

3N

if (status == google.maps.GeocoderStatus.OK) {
//show the first result on map
pinpointResult (results[0]) ;

} else {
alert ('Cannot geocode because: ' + status);

7. Create a function for placing a marker for the geocoding result of the user-entered
address information and attaching an InfoWindow object to display its details:

function pinpointResult (result)

}

var

3N

marker = new google.maps.Marker ({
map: map,

position: result.geometry.location,
zIndex: -10

map.setCenter (result.geometry.location) ;

map.setZoom(16) ;

//infowindow stuff
google.maps.event.addListener (marker, 'click',
function()

3N

var popupContent = 'Address: ' +
result.formatted address;

popup . setContent (popupContent) ;
popup.open (map, this);

markers.push (marker) ;

8. At last, the real directions can be called upon by using the getDirectionsBtn
button handler. Create a function for sending the request to the
directionsService object, ensuring that the results are drawn and listed

on the map:

function getDirections () ({
//define an array that will hold all the waypoints
var waypnts = [];

//define a directionsRequest object
var directionRequest;

241

Working with Services

//if there are stops other than the origin and the
//final destination
if (markers.length > 2) {
for (i=1;i<=markers.length-2;i++) {
//add them to the waypnts array
waypnts.push ({
location: markers[i] .getPosition(),
stopover: true

3N

//prepare the directionsRequest by including
//the waypoints property
directionRequest = {
origin:markers[0] .getPosition(),
destination: markers|[
markers.length-1] .getPosition(),
waypoints: waypnts,
travelMode: google.maps.TravelMode.DRIVING
}i
}
else {
//this time, do not include the waypoints property as
//there are no waypoints
directionRequest = {
origin:markers[0] .getPosition(),
destination:markers [
markers.length-1] .getPosition(),
travelMode: google.maps.TravelMode.DRIVING

//send the request to the directionsService
directionsService.route (directionRequest,
function(result, status) {
if (status == google.maps.DirectionsStatus.OK) ({
directionsRenderer.setDirections (result) ;

}

else

{

alert ('Cannot find directions because: ' +
status) ;

242

Chapter 7

9. You will now have the directions mapped between the points of your selection,
as shown in the following screenshot:

eoo localhostrecipes/chi_d . s
- c localhost/recipes fch?_dlrections.himl ~o=
£ apps [Arecrs_wetwork Eact 1 Later Mark Ax Boad Reaging List [0 ASemET Mve (O GiS_museness (G0 Mise Seuwrees (O 618 _algoeienms [0 mise [0 m_man = [Crhar Rockmarks
Directions Get Directions Between your Places
4 " i
o b Amplouders ¢ e B, =, Fhtag T sstatise Pirs Address O Map | (Gt Direstions |
e Nethedands o ornen TWa
¥..9 Brgol London 5 L 1 Places You Have Visited (Click on the place nume 1o sec on map):
b V- Wroclw
. L Rome
L Belgump 57 Germany bR * Rom
~p L8 o = A
T T Ry Madsid

' Czseh Rapublic Yt

s 7 AT skovakia_

¢ Vienin0. sl
~ OBudapest |

Hungary 1,427 ko - about 13 hours 6 mins

@ Wia defle Tre Pile, 1-2, D0186 Rome, ltaly

1. Head northeast on Via delie Tre Pile toward Piazza 0.1 km
del Campidoglio

" 2 Twn left onto Via di San Pietro in Carcere 01 km
3. Take the 15t left 1o stay on Via di San Pietro in 0.1 km
Carcere

4. Slight right to stay on Via di San Pietro in Carcere 51 m

P 5 Tum Aght onto Via dei Fori Imperiali 0.3km

In this recipe, we are making use of both GeocoderService and DirectionsService.
However, in order to avoid redundancy (it is strongly recommended to go through the
Finding coordinates for an address recipe of this chapter), we will mostly concentrate on
DirectionsService, preparing the request properties, sending and getting back the
results to draw on the map, and also its step-by-step textual descriptions.

At first, we are waiting for the user to enter addresses to be geocoded and shown on the map.
These are the places that we will generate directions for. We are collecting all the markers
that are the results of the user's geocoding requests so that we can use them for directions:

function pinpointResult (result) {

markers.push (marker) ;

}

As soon as the numbers of the geocoded addresses are more than 1, the button labeled
Get Directions gets enabled so that users can request for directions between their
geocoded addresses:

function listAddresses ()

{

243

Working with Services

if (addressList.children.length > 1) {
//get getDirectionsBtn button handler

var getDirectionsBtn =
document .getElementById('getDirectionsBtn') ;

//enable the getDirectionsBtn
getDirectionsBtn.disabled = false;

}

After this, everything is ready for generating directions provided that we have prepared the
infrastructure, so use the following code:

directionsService = new google.maps.DirectionsService() ;
directionsRenderer = new google.maps.DirectionsRenderer () ;

The DirectionsService object is responsible for sending the DirectionsRequest
object to the service servers at Google, while the DirectionsRenderer object, as its name
implies, renders the DirectionsResult object onto the map and its textual description.

An origin and a destination are compulsory for DirectionsRequest logically; however,
there may be waypoints in between the origin and the destination. If the user geocodes two
addresses and presses the Get Directions button, there is no place for waypoints, and the
first address becomes the origin, while the second becomes the destination.

If there are more than two addresses on the list of the geocoded addresses, the first will be
the origin and the last will be the destination again. In addition to this, the waypoints will be
present in between the addresses. We are preparing the DirectionsRequest parameters
considering these factors, as shown in the following code:

function getDirections() ({

//if there are stops other than the origin and the
//final destination

if (markers.length > 2)

{
for (var i=1, markers.length;i<=1-2;i++)
{
//add them to the waypnts array
waypnts.push ({
location: markers[i] .getPosition(),
stopover: true

3N

Chapter 7

//prepare the directionsRequest by including
//the waypoints property
directionRequest = {
origin:markers[0] .getPosition(),
destination:markers [
markers.length-1] .getPosition(),
waypoints: waypnts,
travelMode: google.maps.TravelMode.DRIVING

else

//this time, do not include the waypoints property as
//there are no waypoints

directionRequest = {
origin:markers[0] .getPosition(),
destination:markers [
markers.length-1] .getPosition(),
travelMode: google.maps.TravelMode.DRIVING

}

You may have realized that we are supplying the LatLng objects for the origin and
destination properties of the directionsRequest object. This does not have to be the
case: you can also provide addresses as strings for the origin and destination properties,
as well as the location property of the DirectionsWaypoint object that we are adding to
our waypnts array. Also, there is a stopover property for the DirectionsWaypoint object.
It specifies that the waypoint is actually a stop and splits the route. Another property for the
DirectionsRequest objectis travelMode, where we have opted for DRIVING.

R The complete listing and details for the possible values
% of the TravelMode object can be found at https://
i developers.google.com/maps/documentation/
javascript/reference#TravelMode.

We have included a few properties that are mostly required; however, the
DirectionsRequest object has a lot more.

245

Working with Services

The complete listing of the properties of the DirectionsRequest

object can be found at https://developers.google.com/maps/

documentation/javascript/reference#DirectionsRequest.

After preparing our directionsRequest object, we can send the request using our
directionsService object through its route () method:

function getDirections() ({

//send the request to the directionsService

directionsService.route (directionRequest, function (
result, status) {

if (status == google.maps.DirectionsStatus.OK) {
directionsRenderer.setDirections (result) ;

}

else

{

alert ('Cannot find directions because: ' +
status) ;

13N
}

The route () method takes two parameters: one is the DirectionsRequest object and the
other is the callback function that has the DirectionsResult and DirectionsStatus
objects as parameters in return.

We test whether everything is on track using our status object, which is of the type
DirectionsStatus.

. The complete listing of constants of the DirectionsStatus
% object can be found at https://developers.
s google.com/maps/documentation/javascript/
reference#fDirectionsStatus.

Then, we map the results and have textual descriptions on a div element using our old
directionsRenderer object:
directionsRenderer.setDirections (result) ;

But how did the directionsRenderer object know where to map the results, or which div
to write the step-by-step instructions to? Hopefully, we have given the instructions earlier to
the DirectionsRenderer object in our initMap () function:

246

Chapter 7

directionsRenderer.setMap (map) ;

directionsRenderer.setPanel (document.getElementById (
'DirectionsListDiv')) ;

The setMap () method of the DirectionsRenderer object maps the DirectionsResult
object to the selected map object. And, similarly, the setPanel () method is used for
selecting an HTML div element to have the step-by-step instructions written on it. This is so
that we can have both our directions mapped in our map instance. The map imminently gets
zoomed out to show the entire route, and we can see the order of our journey with the help

of additional markers with letters on each.

See also

» The Finding coordinates for an address recipe in this chapter

Adding Street View to your maps

Google Maps already has good map data updated continuously with the ultimate cartographic
quality. In addition, there comes the up-to-date satellite imagery. Although these were
sufficient for Google Maps to be so popular and successful, there is another view that takes
much interest—Street View.

Street View is the 360-degree panorama view from the roads that are covered under
this service.

The complete listing of countries and cities where Street View is available

can be found at http://maps.google.com/intl/ALL/maps/
’ about/behind-the-scenes/streetview/.

In this recipe, we will go over how to add Street View panoramas to the current view, switch
between the map view and Street View, and set the panorama properties.

Getting ready

In this recipe, we will make use of the concepts related to the geocoding service introduced in
the Finding coordinates for an address recipe in this chapter. It is highly advisable to read this
recipe to have a general understanding of Geocoder and its usage.

247

Working with Services

How to do it...

The following steps will enable your geocoded addresses to be seen on Street View:

1.

248

Firstly, use the HTML markup:

<div id="addressDiv">

Map your Holiday Places

<input id="addressField" type="text" size="30"
placeholder="Enter your Address" />

<input type="button" id="pinAddress" value="Pin Address
On Map" onclick="listAddresses()">

<input type="button" value="Show Map"
onclick="showMap () ">

<input type="button" value="Show StreetView"
onclick="showStreetView() ">

<p id="placesText"></p>
<ul id="addressList" class="addressList">

</div>

Define the global objects:

var geocoder;
var streetView;

Initialize the global objects in the initMap () function:

geocoder = new google.maps.Geocoder () ;
//initialize streetView object of type StreetViewPanorama
streetView = map.getStreetView() ;

Create a function for listing addresses on the addressList element and for calling
the geocoding function:

function listAddresses() ({
//get text input handler

var addressField =

document .getElementById ('addressField') ;

//get addressList element handle

var addressList =

document .getElementById ('addressList') ;

if (addressList.children.length == 0) {
var placesText =
document .getElementById('placesText"') ;
placesText.innerHTML = 'Places You Have Visited
(Click on the place name to see on map):';

Chapter 7

//create a list item
var listItem = document.createElement ('li') ;

//get the text in the input element and make it
// a list item

listItem.innerHTML = addressField.value;

listItem.addEventListener('click', function/() {
pinAddressOnMapOrStreetView (listItem.innerHTML) ;

1)

//append it to the element

addressList.appendChild(listItem) ;

//call the geocoding function

pinAddressOnMapOrStreetView (addressField.value) ;

}

5. Create a function for geocoding the addresses:

function pinAddressOnMapOrStreetView (addressText) {
//send the geocoding request

geocoder.geocode ({'address': addressText},
function(results, status) {

//if the service is working properly...

if (status == google.maps.GeocoderStatus.OK) {
//show the first result on map, either on
showAddressMarkerOnMapOrStreetView (results [0]) ;
if (streetView.getVisible())

{

//set the streetView properties, its
//location and "Point Of View"

setStreetViewOptions (
results[0] .geometry.location) ;

!
} else {
alert ('Cannot geocode because: ' + status);

3N
}

6. Create a function for placing the marker in the map for the geocoded addresses:

function showAddressMarkerOnMapOrStreetView (result)
var marker = new google.maps.Marker ({
map:map,
position: result.geometry.location
1)
map.setCenter (result.geometry.location) ;
map.setZoom(16) ;

249

Working with Services

7. Create a function for setting the Street View panorama properties:

function setStreetViewOptions (location)
{
//set the location of the streetView object
streetView.setPosition(location) ;
//set the "Point Of View" of streetView object
streetView.setPov ({
heading: O,
pitch: 10
1)
}

8. Create a function for displaying the familiar map view, which is called by the
HTML click button labeled Show Map:

function showMap ()

{
var pinAddressBtn =
document .getElementById ('pinAddress"') ;
pinAddressBtn.value = 'Pin Address On Map';
streetView.setVisible (false) ;

}

9. Create a function for displaying the Street View panorama taking the location
as the map's center location, which is called by the HTML click button labeled
Show StreetView:

function showStreetView() {
var pinAddressBtn =
document .getElementById ('pinAddress"') ;
pinAddressBtn.value = 'Pin Address On StreetView';
setStreetViewOptions (map.getCenter()) ;
streetView.setVisible (true) ;

}

10. You will now have the geocoded addresses with Street View, as shown in the
following screenshot:

250

Chapter 7

= - #
8006 | 1 localhost/recipes/ch7_str * W i =
€& — C | [} localhost/recipes/ch7_streetview.html i d—
== Apps ﬁ ArcGIS_Network_An. m Read It Later |j Mark As Read i_'] Reading List ﬁ ASP.NET MVC » h Other Bookmarks
Street View
INJ -
/'\ Trafalgar Square
(() \ Addressis approximate
i -~ —
L4

[+]
i

Google ©2013 Google | TemsofUse | Reportaproblem
Map your Holiday Places

Trafalgar Square

| | Pin Address On StreetView | | Show Map | | Show StreetView |

Places You Have Visited (Click on the place name to see on map):
o Trafalgar Square

In our recipe, our aim is to perform the ordinary task of geocoding addresses, in addition to
providing the availability of the Street View feature of the Google Maps JavaScript APl in the
same map's div element. To do this, we need the StreetViewPanorama object available:

streetView = map.getStreetView() ;

251

Working with Services

This object enables us to display the Street View either within our map's div element
or within a separate div element of our will.

. The complete description of properties and methods of the
% StreetViewPanorama class can be found at https://
s developers.google.com/maps/documentation/

javascript/reference#StreetViewPanorama.

Then, we can display the Street View when the button labeled Show Street View is clicked,
providing the map object's center location as the LatLng object:

setStreetViewOptions (map.getCenter()) ;

Then, we set the properties of the StreetViewPanorama object by specifying the position
and setting the point of view of the streetView object:

function setStreetViewOptions (location) ({
//set the location of the streetView object
streetView.setPosition (location) ;
//set the "Point Of View" of streetView object
streetView.setPov ({
heading: 0,
pitch: 10
1)
}

The setPosition () method takes the LatLng object as its parameter, and we are
providing either the map center or the geocoded address' location. By using the setPov ()
method, we are arranging the camera view of the Street View. To have a camera view, the
object must have an angle towards both true north and the street view origin—the street
vehicle mostly.

The heading property of the StreetVviewPov object is for the angle in reference to
true north, where O degrees is true north, 90 degrees is east, 180 degrees is south, and
270 degrees is west. In our recipe, we have set the heading property to O degrees.

The pitch property is for the angle in reference to the Street View vehicle. This means that
90 degrees is totally upwards, viewing the sky or clouds, whereas -90 degrees is totally
downwards, viewing the road ground in most cases.

252

Mastering the Google
Maps JavaScript API
through Advanced
Recipes

In this chapter, we will cover:

» Adding WMS layers to maps

» Adding Fusion Tables layers to maps

» Adding CartoDB layers to maps

» Accessing ArcGIS Server with the Google Maps JavaScript API
» Accessing GeoServer with the Google Maps JavaScript API

Introduction

The Google Maps JavaScript APl may seem like a simple library that only shows basic geo-
related features, but there are a lot of capabilities that could be explored. The Google Maps
JavaScript API gives developers many foundation classes to build complex solutions for
different cases, especially for Geographical Information Systems (GIS).

The Google Maps JavaScript API has a lot of potential with GIS services and tools. Most of the
GIS solutions need base maps and services to support the tool itself and the Google Maps
JavaScript API is the best solution with its base maps and services.

Mastering the Google Maps JavaScript API through Advanced Recipes

There are different GIS solutions from proprietary software and services to open source
ones, such as Google Fusion Tables, CartoDB, ArcGIS Server, or GeoServer. In this chapter,
we will integrate these servers or services with the Google Maps JavaScript APIl. Some of
the GIS service creation processes are skipped due to space constraints. If you need more
information, please check other books by Packt Publishing to dive into details.

Adding WMS layers to maps

Web Map Service (WMS) is an Open Geospatial Consortium (OGC) standard for publishing
georeferenced map images over the Internet that are generated by a map server using data
from various geospatial sources such as shapefiles or geospatial databases. There are
various versions used in WMS services but the most used ones are 1.1.1 or 1.3.0. WMS
has two required request types: GetCapabilities and GetMap.

This recipe shows how to add a WMS layer to the Google Maps JavaScript API by extending
the google .maps.OverlayView class.

Getting ready

By now, you should already know how to create a map, so only additional code lines are
explained in this recipe.

You can find the source code at Chapter 8/ch08 wms map.html.

How to do it...

Adding WMS layers to the map is quite easy if you perform the following steps:

1. First, create a wms. js file to include in the HTML later. This JavaScript file has a
WMSUntiled class that is written as follows:

function WMSUntiled (map, wmsUntiledOptions) {

this.map = map;

this.options = wmsUntiledOptions;
this.div_ = null;

this.image_ = null;

this.setMap (map) ;
!

2. Then, extend our base class by inheriting the google .maps.OverlayView class:
WMSUntiled.prototype = new google.maps.OverlayView() ;

3. The next step is to implement three methods of the OverlayView class.

WMSUntiled.prototype.draw = function()
var overlayProjection = this.getProjection() ;

}i

var sw = overlayProjection.fromLatLngToDivPixel
(this.map_ .getBounds () .getSouthWest());

var ne = overlayProjection.fromLatLngToDivPixel
(this.map_ .getBounds () .getNorthEast ()) ;

var div = this.div_;

if (this.image_!= null)
div.removeChild(this.image) ;

// Create an IMG element and attach it to the DIV.

var img = document.createElement ('img') ;
img.src = this.prepareWMSUrl () ;

img.style.width = '100%';
img.style.height = '100%"';
img.style.position = 'absolute';

img.style.opacity = 0.6;
this.image = img;
div.appendChild(this.image) ;

div.style.left = sw.x + 'px';
div.style.top = ne.y + 'px';
div.style.width = (ne.x - sw.x) + 'px';
div.style.height = (sw.y - ne.y) + 'px';

WMSUntiled.prototype.onAdd = function()

}i

var that = this;
var div = document.createElement ('div') ;

div.style.borderStyle = 'none';
div.style.borderWidth = '0Opx';
div.style.position = 'absolute';
this.div_ = div;

this.getPanes () .floatPane.appendChild(this.div_);

google.maps.event.addListener (this.map , 'dragend'
function()

that.draw() ;

3N

WMSUntiled.prototype.onRemove = function() {

}i

this.menuDiv.parentNode.removeChild (this.div_);
this.div_ = null;

Chapter 8

255

Mastering the Google Maps JavaScript API through Advanced Recipes

4. Finally, add the following methods to finish the wMSUntiled class:

WMSUntiled.prototype.prepareWMSUrl = function() {
var baseUrl = this.options.baseUrl;
baseUrl += 'Service=WMS&request=GetMap&CRS=EPSG:3857&';
baseUrl += 'version=' + this.options.version;
baseUrl += '&layers=' + this.options.layers;
baseUrl += '&styles=' + this.options.styles;
baseUrl += '&format=' + this.options.format;

var bounds = this.map_.getBounds() ;
var sw = this.toMercator (bounds.getSouthWest ()) ;
var ne = this.toMercator (bounds.getNorthEast ()) ;

var mapDiv = this.map_ .getDiv();

baseUrl += '&BBOX=' + sw.x + ',' + sw.y + ',' + ne.x
+ ','" + ne.y;

baseUrl += '&width=' + mapDiv.clientWidth +
'&height=' + mapDiv.clientHeight;

return baseUrl;

Vi

WMSUntiled.prototype.toMercator = function(coord) {
var lat = coord.lat();
var lng = coord.lng() ;
if ((Math.abs(lng) > 180 || Math.abs(lat) > 90))
return;

var num = lng * 0.017453292519943295;
var X = 6378137.0 * num;
var a = lat * 0.017453292519943295;

var merc_lon = x;
var merc_lat 3189068.5 * Math.log((1.0 + Math.sin(a)) /
(1.0 - Math.sin(a)));

return { x: merc_lon, y: merc lat };

Vi

WMSUntiled.prototype.changeOpacity = function (opacity)
if (opacity >= 0 && opacity <= 1){
this.image .style.opacity = opacity;
}
Vi

5. Now this JavaScript class file must be added to the HTML after adding the Google
Maps JavaScript API:

256

Chapter 8

<script type="text/javascript" src="lib/wms.js">
</script>

6. After initializing the map, we create our WMS options as follows:

var wmsOptions = {
baseUrl:
'http://demo.cubewerx.com/cubewerx/cubeserv.cgi?"',
layers: 'Foundation.gtopo30',
version: '1.1.1"',
styles: 'default',
format: 'image/png’

}i
7. Atthe end, we initialize the WMS layer with the WMS options created in steps 1 to 4:

var wmsLayer = new WMSUntiled (map, wmsOptions) ;

8. Go to your local URL where your HTML file is stored in your favorite browser and see
the result. The following topological map coming from WMS is shown on the satellite
base map of Google Maps:

€& ~— C | localhost/recipes/ch08_wms_map.html

As you can see in the preceding screenshot, we added a WMS layer to our map.

257

Mastering the Google Maps JavaScript API through Advanced Recipes

WMS is a standard for serving georeferenced images. The main idea behind WMS is serving
the image according to the width/height and bounding box of the map with additional
parameters such as projection type, layer names, and return format.

Most of the WMS classes for the Google Maps JavaScript APl around the Web are based on a
tiled structure, which is the base for most mapping APIs. This tiled structure gets the bounding
box of each tile and sends it to the server. This can be a good usage for user interactivity
wherein users only get missing tiles when dragging the map, but there is a problem with

map servers. Getting lots of tiles instead of a single image causes a big load on map

servers if there isn't a caching mechanism with a high volume of usage.

In this recipe, we used the untiled structure to get WMS images from the server. This
approach is getting one image from the server on each user interaction that can be useful in
some cases. There isn't much information about this approach, so we encourage you to read
and implement both approaches for your geo-web applications.

The JavaScript class named WMSUntiled is created in a different file in order to make the
HTML file readable. This class is created with functional style and methods are added to the
prototype of the constructor function:

function WMSUntiled (map, wmsUntiledOptions) {

this.map = map;

this.options = wmsUntiledOptions;
this.div_ = null;

this.image = null;

this.setMap (map) ;

}i

The Google Maps JavaScript API has a base class to extend in these cases named as
google.maps.OverlayView. The WMSUntiled class extends this class to create a
WMS overlay on top of the map:

WMSUntiled.prototype = new google.maps.OverlayView() ;

The OverlayView class has three methods to implement in order to show the overlays

as draw (), onAdd (), and onRemove (). The onAdd () and onRemove () methods are
called during initialization and removal respectively. The div element is created and added
to the map with the help of the appendcChild function in the onAdd () method. Also, the
drag event of the map is started to listen and draw the WMS layer on each user drag in
this method. The onRemove () method removes the div element created earlier:

WMSUntiled.prototype.onAdd = function()
var that = this;

258

Chapter 8

var div = document.createElement ('div') ;

div.style.borderStyle = 'none';
div.style.borderWidth = '0Opx';
div.style.position = 'absolute';
this.div_ = div;

this.getPanes () .floatPane.appendChild(this.div_);

google.maps.event.addListener (this.map_, 'dragend', function() {
that.draw() ;
1)
}i

WMSUntiled.prototype.onRemove = function() {
this.menuDiv.parentNode.removeChild (this.div_);
this.div_ = null;

}i

The most important part of the class is the draw () method. This method creates an img
element and attaches this element to the created div element in the onaAdd () method.
If there is an img element created before, it is removed from the div element. The img
source is obtained from another method of the class named prepareWMsUr1 () :

var div = this.div_;

if (this.image_ != null)
div.removeChild(this.image) ;

var img = document.createElement ('img') ;

img.src = this.prepareWMSUrl () ;

img.style.width = '100%';
img.style.height = '100%"';
img.style.position = 'absolute';

img.style.opacity = 0.6;
this.image = img;
div.appendChild(this.image) ;

We need pixel coordinates to place the div element. We get a projection of the

layers in order to locate the div and img elements in the right place on the map. The
fromLatLngToDivPixel () method converts the LatLng coordinates to screen pixels,
which are used for placing the div element in the correct place:

var overlayProjection = this.getProjection() ;

var sw = overlayProjection.fromLatLngToDivPixel
(this.map_ .getBounds () .getSouthWest ()) ;

var ne = overlayProjection.fromLatLngToDivPixel
(this.map_ .getBounds () .getNorthEast ()) ;

259

Mastering the Google Maps JavaScript API through Advanced Recipes

WMS has a bounding box parameter (BBOX) that defines the boundaries of a georeferenced
image. The BBOX parameter must be in the same unit defined in the CRS parameter. Google
Maps is based on the Web Mercator projection, which is defined as EPSG:900913 or
EPSG:3857. The Google Maps JavaScript APl used Web Mercator as a base projection, but
gives us the LatLng objects in geographic projection defined as EPSG:4326. In order to get
the right WMS image on Google Maps, there is a need for transformation of coordinates from
EPSG:4326 to EPSG:3857. This transformation can be done via the toMercator () method
of the class.

The prepareWMSUrl () method gets most of the parameters from the wmsoptions object
and creates a WMS URL to get the georeferenced image. The BBOX and width/height
parameters are gathered from the map functions:

WMSUntiled.prototype.prepareWMSUrl = function()
var baseUrl = this.options.baseUrl;
baseUrl += 'Service=WMS&request=GetMap&CRS=EPSG:3857&"';
baseUrl += 'version=' + this.options.version;
baseUrl += '&layers=' + this.options.layers;
baseUrl += '&styles=' + this.options.styles;
baseUrl += '&format=' + this.options.format;
var bounds = this.map_ .getBounds() ;
var sw = this.toMercator (bounds.getSouthWest ()) ;
var ne = this.toMercator (bounds.getNorthEast()) ;

var mapDiv = this.map_ .getDiv () ;

baseUrl += '&BBOX=' + sw.x + ',' + sw.y + ',' + ne.x +
', ' + ne.y;

baseUrl += '&width=' + mapDiv.clientWidth + '&height=' +
mapDiv.clientHeight;

return baseUrl;

Vi

The WMSUntiled class handles almost everything. In order to add WMS layers to the Google
Maps JavaScript API, you need to define the parameters of WMS layers and create an object

from the WMSUntiled class. Since we give map as a parameter, there is no need to add the

WMS layer to the map object:

var wmsOptions = {
baseUrl: 'http://demo.cubewerx.com/cubewerx/cubeserv.cgi?',
layers: 'Foundation.gtopo30',
version: '1.1.1"',
styles: 'default',
format: 'image/png'
Vi

var wmsLayer = new WMSUntiled(map, wmsOptions) ;

260

Chapter 8

There are lots of parameters to get WMS from the server, but that is out of the scope of this
book. The sample WMS server used in this example cannot be available when you want to use
it, so please use your own WMS servers in order to be sure of the availability of the services.

There's more...

As stated at the beginning of the recipe, we create an overlay class to add WMS layers to
the Google Maps JavaScript API without using the tiled structure. This is just a use case for
developers. You should check for both tiled and untiled structures for your cases. There is
an example use of the tiled structure in the Accessing GeoServer with the Google Maps
JavaScript API recipe in this chapter.

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Accessing GeoServer with the Google Maps JavaScript API recipe

Adding Fusion Tables layers to maps

Fusion Tables (http://tables.googlelabs.com/) is an experimental tool provided by
Google to store different types of tabular data. Fusion Tables is important for geo developers
because it supports feature types such as points, polylines, and polygons. There is also
support for geocoding of the address, place names, or countries that make Fusion Tables

a powerful database for your features. Fusion Tables also has an API so that developers can
connect it to different applications. There are some limitations in Fusion Tables but these
limitations are enough for most developers.

The OpenStreetMap POI database can be downloaded via different sources. We downloaded
the restaurant POl database of Switzerland in the KML format and imported it into Fusion
Tables. There are 7967 points in this table. In this recipe, we will use this table as a sample
to help us visualize.

261

Mastering the Google Maps JavaScript API through Advanced Recipes

The map view of the Switzerland POI database of restaurants can be seen using Fusion Tables
as shown in the following screenshot:

gmapcookbocki@gmail.com =

RestaurantCafe Swilch [newiok | Getbnk | | Shams

File View Edit Visualize Merge Labs

Showing all rows options

Location | geometry : Display as heat map Configure info windew Confiqure styles Download KML Downdoad KML link Get ambeddable lnk
0 " X -

wa Dl L - @ TN
BV, Saint Dizier Toul -+ Strasbourg Reutlingen gy ¢ B Landshit Map | Selie 1
“] Freising
< ’m Troyes = i Ul Augeburgs L |2 edm U
;g Em v Epinal Koatelal Afaha En nokiels el
“EE._ Chaumont L] = oMunich .
i 60 § Tm e m LY Vocklabruck Sy
W i Starnberg | Rosenheimy 7 pGmund
L Auerre . y 1 o jiligy Salghtirg 1§]
Gien Belfort é enned_GKempten Bad Tolz Ll
+ Toucy = ik eemeas i
Avalion - Garmigeh-Partenkisohen Aust]
s Gray ; e
Clamecy Dijon 3 3 ; =]
[A e | gl Besaorbwn A ir_vr_!_sgruck
purges | Beais Dole M
s Nevers Aitin - oL 2
5| < o Spittal an
o P Chalon-sur-Sadne. - der Brau
T — 5uM
i T Bolzano®
AN e Moulins i Lens le-Saunier Hozen _Cortina T
= dAmpezzo ;

Montlu;on €3 Ea (
Corr _ wntry Vichy Bourg-en-Bresse Gagl)

Riom

o Lyon L300 | Aririecy : S 7 T e S
'S] \ y Treviso v Triggte
Clermont-Ferrand e Chambes < Biell Legnang B L g o
S Bodthan VENISSIEUX. ambery heila i 6.0 %5 Mahea Btegcra 4 \l'rc%nza 1 e
> . ovara <1 Verona i "
Saint-Etiennes ~ VIENNE ygiran T FSe /| Paduac B erife Koper ™~
3 Grénoble 3 /.~ Vigevanos Legnago g "eral S
P 2 AT 2 < L aEste A]
illarde L?f“!' p =] ;i mt‘gm E.El Paviae Fiaccgg!za i P nu:'m] Labi
purillac ! e . Alessandria LE75 |
B Val:m:! Moncalieri-. - B Reqgio Ferrara o
o Parmas Emilia e Pula
O d [az] B
ies 92013 Google - Map data €201 3 GeoBasis DE/BKG (92009 e besado en BN IGN S0kme 1 Termsof Use Reportamap eror

This is how we achieve adding a Fusion Tables layer to the map that shows thousands of
points without a problem.

Getting ready

We assume that you already know how to create a simple map. We will only cover the code
that is needed for adding a Fusion Tables layer.

You can find the source code at Chapter 8/ch08 fusion tables.html.

How to do it...

If you want to add Fusion Tables layers to the map, you should perform the following steps:

1. First, add the following line for jQuery to simplify our work after the Google Maps
JavaScript API is added:

<script src="http://code.jquery.com/jquery-
1.10.1.min.js"></script>

262

Chapter 8

Then, add the following HTML code before the map's DIV element for interactivity
with the Fusion Tables layer:
<input type="checkbox" id="status"/>HeatMap Enabled

<input type="text" id="query"/>

<input type="button" id="search" value="Search"/>

Now, create the Fusion Tables layers and add it to the map after the initialization
of the map object as follows:

var layer = new google.maps.FusionTablesLayer ({
query: {
select: 'geometry',
from: 'l 1TjGKCfamzW46TfgEBS7rXppOe]jpa6NK-FsXOg'
I
heatmap: {
enabled: false

}
13N

layer.setMap (map) ;

The next step is to listen to the c1ick event of the checkbox to switch between
the normal view and the heat map view:

$('#status') .click (function()
if (this.checked) {
layer.setOptions ({
heatmap: { enabled: true } });
}
else {
layer.setOptions ({
heatmap: { enabled: false } });
}
13N

Add the following lines to listen to the c1ick event of the Search button to filter
the Fusion Tables layer according to the value entered in the textbox:

$ ('#search') .click (function() {
var txtValue = $('#query') .val();
layer.setOptions ({query: {
select: 'geometry',

from:
'l 1TjGKCfamzW46TE£QEBS7rXppOe]jpa6NK-FsXOg',
where: 'name contains "' + txtValue + '"' } });

263

Mastering the Google Maps JavaScript API through Advanced Recipes

6. Go to your local URL where your HTML is stored in your favorite browser and click on
the map to see the result. If you click on the heat map checkbox, the Fusion Tables
layer will change into a heat map. You can also search for the names of restaurants
with the Search button:

L) 4 | localhost/recipes/ch08_fusion_tables.html

Chapter 8 - Adding Fusion Tables Layers

HeatMap Enabled | ai Search
Emempi = PR ; s
L & Map | Satellite
To" A N = (E41] Uiom Augsburg o T =
T Epinal Kostgel =Dachau
v A Chaumont 7 Colma R 51] v ~__ OMunich
EH o {E531 | [£54] of A
f reiburg Starnberg | Rosenheim
g o * -
1 o TINStaNZ grindlnied OKempten i
[’T] | E54 | Belgo_ description: ® .'r o - Rijlseemnons p-. Bad Tolz
alon/e Gray name: Restaurant Sagali - . ’L\\ Galm-&clg\-igfr?}ushen o
Dijon - £ type: , . -@Saint Gallen
% Besangon i . [In_nstozruck
B | s Npaia o iel/Bienngy |\ A 2""_;0""3 Liechtenstein | .o
Actun Beaune X " Alyss [[& 9 3
H Ppgmead Lucerne] . PEAs |

runic
Chalon-sur-Sadne . fi it s Bruneck
il SWEZe,rlaﬂd © Chur Davos-Plaj & D\l\
I 1l gt g J o) Bolzano >
iganne Parc naturel 1 Bozen _Corting

a
B Lons-le-Saunier 40 o
/ N;rwﬁ‘r 251 Moritz o d'Ampt

e Ot e Lisgil Vot - bt
Bourg-en-Bresse Gwa 5 iy
pes i E}\'? o
7o Mg Lyon 9 L 0
) Annec Varesec “~o !
5 ¥ 5 f Bergamo Treviso
| LA , ; Legnano } ;
Bouthéon YENissieux Chambéry. Biella 50 oMonza - Brescia Vicenza
b SR £ Novara_+ F 2 Verona “lpagqia. .
t-Etiennes © Vienne yqirgn o i -] o eVer
i EH /. Vigevanoo Milan
(E15 | Grenooble / e Legnago , gqpe
P ; A I h
1 Puy . " E70) Tl.gln Ea Pavia : Placoe_nza . 4
y NG i ;
o Moncalieri- AIe_ssgnd_rla [E35] Radnio Ferrara
Valence Map data ©201 3 GeoBasis-DE/BKG (£2009), Google, basado en BCN IGN Espana . Temsof Use | “Report amap emor

The preceding screenshot is also showing a filtered Fusion Tables layers added to a map.

As stated earlier, Fusion Tables is an experimental tool to use and classes related to Fusion
Tables that are under the Google Maps JavaScript API are also experimental according to the
documentation. As far as we have used them, both Fusion Tables and classes under Google
Maps JavaScript API are stable and can be ready for production environments, but it is at
your own risk to use them in your geo-web application.

By the way, please make sure that your tables do not pass 100,000 rows in order to use
them properly, because there is a limitation written in the API.

264

Chapter 8

Fusion Tables supports the importing of various data types such as CSV, TSV, TXT, or KML with
coordinates of geometries. Fusion Tables geometry columns can be in different formats, such
as a geometry column in the KML format, address column, or latitude/longitude coordinates

in single column or two separate columns. If you have addresses or city names, these columns
can also be geocoded in order to be used in your applications. We uploaded a KML file to Fusion
Tables gathered from OpenStreetMap that is full of restaurant points with names.

There is also a REST API for Fusion Tables to access and manipulate the data within tables
with/without OAuth regardless of the Google Maps JavaScript API.

There is a google.maps.FusionTablesLayer class in the Google Maps JavaScript API

to access and visualize the data from Fusion Tables. We need the table ID and name of

the geometry column to access the Fusion Tables layer in the Google Maps JavaScript API.
Remember that your table must be shared as public or unlisted in order to be accessible from
the Google Maps JavaScript API. Developers can get the table ID by navigating to File | About
in the Fusion Tables web interface. The following code block is needed to add Fusion Tables to
the Google Maps JavaScript API:

var layer = new google.maps.FusionTablesLayer ({
query: {
select: 'geometry',
from: 'l 1TjGKCfamzW46TfgEBS7rXppOe]jpa6NK-FsXOg'
I
heatmap: {
enabled: false
}
1)

layer.setMap (map) ;

If you want to enable the heat map option at the beginning of the API, you should set the
enabled option to true under the heatmap parameter. We will switch these parameters with
the checkbox options in our recipe as follows:

$('#status') .click (function () {
if (this.checked) {
layer.setOptions ({heatmap: { enabled: true } });
}
else {
layer.setOptions ({heatmap: { enabled: false } });

}
3N

265

Mastering the Google Maps JavaScript API through Advanced Recipes

Using heat maps is a good way to summarize the data you have and show where most of
the points are gathered. Heat maps are mostly used in various fields in order to show the
important places such as most dense crime spots in crime mapping. If users enable the
heat map, you will see the following results in the application. The following map shows
in red where the restaurant population is crowded:

L c localhost/recipes/ch08_fusion_tables.html

Chapter 8 - Adding Fusion Tables Layers
#HeatMap Enabled | Search

EB12

Turin

Fusion Tables also supports filtering rows with SQL-like queries. SQL queries can be added

to the query parameter with the where field. This can be a starting value or added later to
filter the visualized data. In this recipe, we filter our data according to the value entered in the
textbox. The following code listens to the Search button and when a click occurs, it gets the
value of the textbox and set the options of the Fusion Tables layer according to the textbox
value. The filtered data is immediately shown on the map:

$ ('#search') .click (function() {
var txtValue = $('#query') .val();
layer.setOptions ({
query: {
select: 'geometry',
from: 'l _1TjGKCfamzW46TfgEBS7rXppOejpa6NK-FsXOg',
where: 'name contains "' + txtValue + '"' } });
I3F;

266

Chapter 8

The google .maps.FusionTablesLayer class also has the ability to change the style of
the map according to filters. You can change the marker type of points, line color of polylines,
or fill color of polygons consistent with the values of columns.

Fusion Tables can be a good candidate to store, analyze, and visualize your data if developers
know the limitations. Also, developers do not forget that Fusion Tables are still in the
experimental stage, so Google can change something in Fusion Tables in the future that

can cause your application to stop.

More about data

The data used in this application can be downloaded from http://

%j%‘ poi-osm.tucristal.es/, which uses OpenStreetMap as a source.
The data used in this recipe is available with the code. The data is also
available from Fusion Tables as a public share.

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Creating a heat map recipe in Chapter 2, Adding Raster Layers

Adding CartoDB layers to maps

CartoDB is a geospatial database on the cloud that allows for the storage and visualization
of data on the Web. Using CartoDB will allow you to quickly create map-based visualizations.
According to the CartoDB website (www . cartodb . com), you can use CartoDB in the
following ways:

» Upload, visualize, and manage your data using the CartoDB dashboard

» Quickly create and customize maps that you can embed or share via public URL
using the map-embedding tool

» Analyze and integrate data you store on CartoDB into your applications using the
SQL API

» For more advanced integrations of CartoDB maps on your website or application,
use CartoDB.js

CartoDB is an open source project for which you can fork the code from GitHub and start
your own CartoDB instance on your own hardware, but the power of CartoDB is the cloud
backend. CartoDB is based on PostgreSQL, PostGIS, and Mapnik, which are the most
popular and powerful open source geo tools nowadays.

There is a free tier for developers to explore the power of CartoDB, which has a limit of
up to 5 MB storage and five tables.

267

Mastering the Google Maps JavaScript API through Advanced Recipes

In this recipe, the simplified version of world borders is imported from the CartoDB dashboard
to play with. The following screenshots show both the tabular and map view of the world
borders. This data will be published on the Google Maps JavaScript APl with the help of the
CartoDB. js library:

A A AAM 1563 Armenia

z
3
i
i

AL A AL Astan

[o PR moe 0% Bahain { =
B e e Barbacon |

a0 B B 8700 Berud oirs a ’ 1310 R
BF s [Baharas

And now the map view of the world border is shown in the following screenshot:

= (I tm_world_borders simpl 0_3 GIID | womes

268

Chapter 8

Getting ready

In this recipe, we assume you already know how to create a simple map. So, we will only
show the extra code lines to add CartoDB layers on top of the Google Maps base maps.

You can find the source code at Chapter 8/ch08 cartodb layer.html.

How to do it...

If you perform the following steps, you can add CartoDB layers to the map:

1.

First, CartoDB-related files are added to the HTML document:

<link rel="stylesheet"
href="http://libs.cartocdn.com/
cartodb.js/v3/themes/css/cartodb.css" />

<!--[if 1lte IE 8]>

<link rel="stylesheet"
href="http://libs.cartocdn.com/
cartodb.js/v3/themes/css/cartodb.ie.css" />

<! [endif]-->

<script
src="http://libs.cartocdn.com/
cartodb.js/v3/cartodb.js"></script>

Then, the jQuery file is added after CartoDB files:
<script src="http://code.jquery.com/jquery-

1.10.1.min.js"></script>

The next step is to add a global variable to access from everywhere after the
map variable:

var cartolLayer;
After initialization of the map, the following lines are added to define the cartography

of the layers. This can be single line string, but it is separated into multiple lines in
order to improve readability:

var cartoStyle = '#world borders { ' +
'polygon-£fill: #1a9850; ' +
'polygon-opacity:0.7; ' +

l} [

'#world borders [pop2005 > 10000000] { ' +
'polygon-£fill: #8cce8a ' +

l} [

269

Mastering the Google Maps JavaScript API through Advanced Recipes

'#world borders [pop2005 > 40000000] { ' +
'polygon-£fill: #fedeb0 ' +
o
'#world borders [pop2005 > 70000000] { ' +
'polygon-£fill: #d73027 ' +
o
5. The important part of the code is the initialization of the CartoDB layer as follows:

//Creating CartoDB layer and add it to map.
cartodb.createlayer (map, {
user name: 'gmapcookbook',
type: 'cartodb',
sublayers: [{
sgl: 'SELECT * FROM world borders',
cartocss: cartoStyle,
interactivity: 'cartodb id, name, pop2005, area',
}]
1)
.addTo (map)
.done (function (layer) {
cartolLayer = layer;

//Enabling popup info window
cartodb.vis.Vis.addInfowindow (map, layer.getSubLayer (0),
['name', 'pop2005', 'area'l);

//Enabling UTFGrid layer to add interactivity.
layer.setInteraction (true) ;

layer.on('featureOver', function(e, latlng, pos, data) {
S('#infoDiv') .html ('Info : ' + data.name +
' (Population : ' + data.pop2005 + ')');

3N
3N

6. Now, add the following part to listen to the c1ick event of the Search button in order
to update the map contents according to the textbox value:

//Listening click event of the search button to filter the
//data of map
$ ('#search') .click (function() {
var txtValue = $('#query') .val();
cartolLayer.setQuery ('SELECT * FROM world borders WHERE
name LIKE \'$%' + txtValue + '%\'');
if (txtvalue == '') {
cartolayer.setCartoCSS (cartoStyle) ;

}

270

Chapter 8

else {
cartoLayer.setCartoCsSs ('#world borders {
polygon-£fill: #00000d; polygon-opacity:0.7; }');
}
1) i

7. Do not forget to add the following lines before and after the map's div element:
<input type="text" id="query"/> <input type="button"
id="search" value="Search"/>

<div id="mapDiv"></div>
<div id="infoDiv">--</div>

8. Go to your local URL where your HTML is stored in your favorite browser and take
a look at the CartoDB layer on top of the Google Maps base map. When you move
on the map, the bottom line of the map changes according to where your mouse
is placed. When you click on the map, you will also see an info window about that
country as shown in the following screenshot:

€ - C | localhost/recipes/ch08_cartodb_layer.html
Chapter 8 - Adding CartoDB Layers

Spain

43397491

Atlantic
Ocean

" Afoda retieg
ap data ©2013 Google, INEGI, MapLink ~ Terms of Use

Coogle
Info : Spain (Population : 43397491)

As a result of this recipe, we can add CartoDB layers to the map, which gets live data from
your data source.

271

Mastering the Google Maps JavaScript API through Advanced Recipes

As mentioned earlier, CartoDB is based on PostGIS and Mapnik technologies, so you can use
CartoCSS as a styling language of the layer. CartoCSS is much like CSS with some additional
tags to define the cartography. In this recipe, we will define a choropleth cartography
according to population values. Using population values seems to be simple for cartography
but this is the most easiest way to understand CartoCSS:

var cartoStyle = '#world borders { ' +
'polygon-£fill: #1a9850; ' +
'polygon-opacity:0.7; ' +

oy

'#world borders [pop2005 > 10000000] { ' +
'polygon-£fill: #8cce8a ' +
oy

'#world borders [pop2005 > 40000000] { ' +
'polygon-£fill: #fedébo
oy

'#world borders [pop2005 > 70000000] { ' +
'polygon-£fill: #d73027

!} '

The #world borders layer is the name of the layer defined in the CartoDB dashboard.

The first brackets include all the features in the layer with a polygon-fill and a polygon-opacity.
The second brackets target the features with a population of more than 10 million with a
different color. The third brackets and fourth brackets target the features with a population
of more than 40 and 70 million respectively with different colors. So, we have four different
categories defined in this CartoCSS tag according to the population of countries. Each
CartoCSS rule overwrites the one written before.

+

+

Now that we have the cartography of the layer, it is time to create the layer and add it
to the map:

cartodb.createlayer (map, {
user name: 'gmapcookbook',
type: 'cartodb',
sublayers: [{
sgl: 'SELECT * FROM world borders',
cartocss: cartoStyle,
interactivity: 'cartodb id, name, pop2005, area'
1]
P

.addTo (map)

272

Chapter 8

We have used chaining methods to create the layer and add it to the map. The following part
is explained later. There is a user name field to define your CartoDB account. The important
part to define the layer is the sublayers field. You can define more than one layer but we
will add only one layer at this time. The JavaScript object within the sublayers field is very
important. The sql field defines, which features to be shown on the map. You can even write
very complex SQL queries here like your own PostGIS database. The cartocss field is the
part where you define the cartography of your layer. This is defined before, so just pass that
variable to this field.

The next field is the interactivity field. This is important due to the technology behind it
called UTFGrid. UTFGrid is a specification for rasterized interaction data. According to MapBox,
who introduced this standard, UTFGrid's solution to this problem is to rasterize polygons and
points in JSON as a grid of text characters. Each feature is referenced by a distinct character
and associated to JSON data by its character code. The result is a cheap, fast lookup that
even Internet Explorer 7 can do instantly.

With UTFGrid, you can load some attribute data to the client with the loading of layer tile
images and you can show this attribute data while your mouse is moving without sending
any requests to the server. This is the quickest way to interact with users and remove the
load from servers. You can still get detailed information from the server when it is really
needed. Most of the time, users are very happy with this fast data interaction and there
is no need to get more information from the server.

More about UTFGrid
If you are interested in more technical details of UTFGrid, the following web

addresses are suggested for further reference:

» https://github.com/mapbox/utfgrid-spec
» https://www.mapbox.com/developers/utfgrid/

As we have previously covered, there is a field named interactivity. This should be filled
with the column names that will be used for interactivity; it is important to make sure that
interactivity is quick for users. So, adding complex text columns to show on interactivity is not
advised in order to increase the loading of UTFGrids. Then we add this layer to the map with
the chaining method.

We added the CartoDB layer to the map but there are still missing pieces to activate the
interactivity. We add another chaining method to add the necessary functionality as follows:

.done (function (layer) {
cartolayer = layer;
//Enabling popup info window
cartodb.vis.Vis.addInfowindow (map, layer.getSubLayer (0),
['name', 'pop2005', 'area'l);

3N

273

Mastering the Google Maps JavaScript API through Advanced Recipes

This done () method is called when the layer is created and added to the map. First, we
assign the local variable 1ayer to the global variable cartoLayer to manipulate the SQL
query of the layer variable later. Then, we activate the info window with the cartodb.
vis.Vis.addInfoWindow () method. But there are still required code parts for activating
UTFGrid, which are given as follows:

layer.setInteraction(true) ;
layer.on('featureOver', function(e, latlng, pos, data)
$('#infoDiv') .html ('Info : ' + data.name +
' (Population : ' + data.pop2005 + ')');

13N

The first line activated the UTFGrid interaction, but we still need to know where and when to
show the data. With the featureOver event of the layer, we catch each mouse move, get the
related data from UTFGrid, and show it on the div element defined. We only show the name
and pop2005 fields of the layer on each mouse move.

The final part of the recipe is to search for the countries by typing their names. This part is
like writing the SQL query. On each c1ick event of the Search button, we get the value of
the textbox and assign it to a local variable named txtvalue:

$ ('#search') .click (function() {
var txtValue = $('#query').val();

3N

When we have the txtvalue variable, we set the query of the CartoDB layer by using the
setQuery () method:

cartoLayer.setQuery ('SELECT * FROM world borders WHERE
name LIKE \'%' + txtValue + '3\'');

If the txtValue variable is empty, we recover the defined cartography; otherwise, we change
the cartography of the layers to a black color to see which countries are selected by using the
setCartoCSS () method:

if (txtvalue == '') {
cartolLayer.setCartoCSS (cartoStyle) ;
}
else {
cartolLayer.setCartoCSS ('#world borders {
polygon-fill: #00000d; polygon-opacity:0.7; }');

274

Chapter 8

The following screenshot is taken after searching countries whose names include Turk:

€ C© [} localhost/recipes/ch08_cartodb_layer.html

Chapter 8 - Adding CartoDB Layers
[Turk

| Search
Al

Googlc carTons,

Info : Turkey (Population : 72969723)

As we have seen in this recipe, CartoDB is a complete solution for everyone, from basic map
visualization to complex GIS analysis. You can use the complete power of PostGIS behind

your geo-web applications.

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript APl Basics

275

Mastering the Google Maps JavaScript API through Advanced Recipes

Accessing ArcGIS Server with the Google

Maps JavaScript API

ArcGIS Server is the mapping and spatial server developed by ESRI. It is a proprietary
software, but the capabilities and integration with desktop software make ArcGIS Server
better than other spatial server products. ArcGIS Server is a complete spatial server solution
for enterprise corporations or institutions. ArcGIS Server is used for creating and managing
GIS web services, applications, and data. ArcGIS Server is typically deployed on-premises
within the organization's Service-oriented Architecture (SOA) or off-premises in a

cloud computing environment.

ESRI releases APIs for the ArcGIS Server to use in multiple platforms, but ESRI does not
support the Google Maps JavaScript APl v3. There was an extension for the Google Maps
JavaScript API v2, but it does not work with the new API. There is an open source library to
extend the Google Maps JavaScript APl v3 to work with ArcGIS Server.

In this recipe, we will use the open source library to work with ArcGIS Server. We will add both
a tiled and dynamic layer to the Google Maps JavaScript APl. We also identify the dynamic
layer with mouse clicks and show the underlying information.

More about the open source ArcGIS Server library
. ArcGIS Server link for the Google Maps JavaScript API v3 is an open
% source library and can be found the following web address. It is advised to
S download and check the library at https://google-maps-utility-
library-v3.googlecode.com/svn/trunk/arcgislink/docs/
reference.html.

Getting ready

This recipe is still using the same map creation process defined in Chapter 1, Google Maps
JavaScript API Basics, but there are some additional code blocks to add ArcGIS tiled/dynamic
layers and listen for mouse clicks to identify the dynamic layer.

You can find the source code at Chapter 8/ch08 arcgis layer.html.

How to do it...

The following are the steps we need to access ArcGIS Server with the Google Maps
JavaScript API:

1. First, download the ArcGIS Server link for the Google Maps JavaScript APl v3
from the following address: https://google-maps-utility-library-v3.
googlecode.com/svn/trunk/arcgislink/docs/reference.html.

276

Chapter 8

The next step is to add the downloaded library to your HTML file:

<script src="lib/arcgis.js"></script>

The jQuery library is also needed in this recipe:

<script src="http://code.jquery.com/jqueryl.10.1.min.js">
</scripts>

We also need some global variables as follows:

var overlays = [];
var infowindow = null;

Now, create a tiled map layer named tiledMap with an opacity of 0. 6:

//Creating a tiled map layer

var topoMapURL =
'http://server.arcgisonline.com/ArcGIS/
rest/services/World Topo Map/MapServer';

var tiledMap = new gmaps.ags.MapType (topoMapURL, {
name: 'TopoMap',
opacity: 0.6

13N

Then, create a dynamic map layer named dynamicMap with an opacity of 0. 8.
Also, a copyright control is added to the map:

//Creating a dynamic map layer

var dynamicMapURL =
'http://sampleserverl.arcgisonline.com/ArcGIS/rest/
services/Demographics/ESRI_Census_USA/MapServer';

var copyrightControl = new gmaps.ags.CopyrightControl (map) ;

var dynamicMap = new gmaps.ags.MapOverlay (dynamicMapURL, {
opacity: 0.8

1)

We also need a map service for identifying with the same URL used in the dynamic

map layer:

//Creating a map service layer

var mapService = new gmaps.adgs.MapService (dynamicMapURL) ;

Now, start listening to the map object for each mouse click event:

//Listening map click event for identifying

google.maps.event.addListener (map, 'click', identify);

Let's create the function that is called on each mouse click event:

//Function that is called on each mouse click
function identify(evt) ({

277

Mastering the Google Maps JavaScript API through Advanced Recipes

mapService.identify ({
'geometry': evt.latlng,

'tolerance': 3,
'layerIds': [5],
'layerOption': 'all',

'bounds': map.getBounds (),
'width': map.getDiv () .offsetWidth,
'height': map.getDiv () .offsetHeight
}, function(results, err) ({
if (err) {
alert (err.message + err.details.join('\n'));
} else {
showResult (results.results, evt.latlng);

3N

10. Afterward, we will show the results in an info window:

278

//Function that is showing the result of identify
function showResult (results, position) {

if (infowindow != null) {
infowindow.close () ;

var info = 'State Name : ' +
results[0] .feature.attributes.STATE NAME +
'
2007 Population : ' +
results[0] .feature.attributes.POP2007;

infowindow = new google.maps.InfoWindow ({
content: info,
position: position

13K
infowindow.open (map) ;

removePolygons () ;

for (var j=0; j < results[0] .geometry.rings.length;

addPolygon (results[0] .geometry.rings[j]) ;

J++) {

Chapter 8

11. Next, we add the function used for showing polygons. This function is used in the
previous recipes:

//Function that is used for adding polygons to map.
function addPolygon (areaCoordinates) {

}

//First we iterate over the coordinates array to create

// new array which includes objects of LatLng class.

var pointCount = areaCoordinates.length;

[1;
i < pointCount;

var areaPath =
for (var i=0; i++) |
var tempLatlng = new
google.maps.LatlLng (areaCoordinates [i] [1]
areaCoordinates[i] [0]) ;
areaPath.push (tempLatLng) ;
}
//Polygon properties are defined below
var polygonOptions = {
areaPath,
'"#FF0000"',

0.9,

paths:
strokeColor:
strokeOpacity:
strokeWeight: 3,
fillColor: '#FFFF00',
fillOpacity: 0.25

Vi
var polygon =

//Polygon is set to current map.
polygon.setMap (map) ;

overlays.push (polygon) ;

’

new google.maps.Polygon (polygonOptions) ;

12. Now, add the following function for removing all the polygons:

//Function that is used for removing all polygons

function removePolygons () {
if (overlays) {
for (var i = 0; 1 < overlays.length; i++)

overlays[i] .setMap (null) ;

}

overlays.length = 0;

{

279

Mastering the Google Maps JavaScript API through Advanced Recipes

13. The following code block listens to the checkboxes and switches the visibility of both

14.

15.

280

tiled and dynamic layers:

//Start listening for click event to add/remove tiled map layer
$('#statusTile') .click (function () {
if (this.checked) {
map .overlayMapTypes.insertAt (0, tiledMap) ;
}
else {
map .overlayMapTypes.removeAt (0) ;
}
P

//Start listening for click event to add/remove dynamic map layer
$ ('#statusDynamic') .click (function () {
if (this.checked) {
dynamicMap.setMap (map) ;
}
else {
dynamicMap.setMap (null) ;
}
i

The last step is to add the necessary HTML tags for checkboxes:
<input type="checkbox" id="statusTile"/>
Add Topo Map Overlay <br/s>

<input type="checkbox" id="statusDynamic"/>
Add Dynamic Map

Go to your local URL where the HTML is stored in your favorite browser and enable
Add Topo Map Overlay by clicking on the checkbox nearby. The following topological
map is shown on the satellite base map:

Chapter 8

€& - C | localhost/recipes/ch08_arcgis_layer.html

Chapter 8 - Accessing ArcGIS Server
 Add Topo Map Overlay
|| Add Dynamic Map

Imagery ©2013 NASA TemaMetrics, | Tems ofUse.

Thus, we have successfully created a map that accesses the ArcGIS Server layers with the
Google Maps JavaScript API.

ArcGIS Server has different capabilities to use with the Google Maps JavaScript API. The
library used to access ArcGIS Server in this recipe has almost every method for the REST API
of the ArcGIS Server. The library is created on the Google Maps JavaScript API base classes,
so using it is not as difficult as expected.

The service URLs used in this recipe are serving by ESRI, so you can use them for developing
purposes without any problems. If you want to use them in a production environment, please
contact ESRI to get valid licenses.

281

Mastering the Google Maps JavaScript API through Advanced Recipes

In the first step, we will add a tiled map showing the topology of the world on the satellite
base map. With the help of the gmaps.ags.MapType class, you can easily create a tiled
map with a URL to the map service:

var topoMapURL =
'http://server.arcgisonline.com/ArcGIS/rest/services/
World Topo Map/MapServer';

var tiledMap = new gmaps.ags.MapType (topoMapURL, {
name: 'TopoMap',
opacity: 0.6

3N

Adding and removing the tiled map is done in the the same way as we did in Chapter 2,
Adding Raster Layers. Please get the index of the layer. This index is used when removing
the layer from map:

// Adding layer to the map.

map .overlayMapTypes.insertAt (0, tiledMap) ;
// Removing layer from the map

map .overlayMapTypes.removeAt (0) ;

Creating a dynamic layer is also very easy thanks to the library. The library handles all the
code for drawing the dynamic layer. The sample dynamic layer used in this recipe is the
CENSUS data layer, which has the demographic information about states, counties,

or census blocks of the U.S.:

var dynamicMapURL = 'http://sampleserverl.arcgisonline.com/ArcGIS
/rest/services/Demographics/ESRI_Census_USA/MapServer';

var dynamicMap = new gmaps.ags.MapOverlay (dynamicMapURL, {
opacity: 0.8

13N
The following is the screenshot of the CENSUS layer:

282

Chapter 8

€& - C | localhost/recipes/ch08_arcgis_layer.html

Chapter 8 - Accessing ArcGIS Server
Add Topo Map Overlay
 Add Dynamic Map

-

Imagery ©2013 NAS&T_- Terms of Use

Coogle

Adding and removing the dynamic layer are the same as overlays because the gmaps . ags.
MapOverlay class is extended from the google .maps.OverlayView base class:

// Adding layer to the map.
dynamicMap.setMap (map) ;

// Removing layer from the map
dynamicMap.setMap (null) ;

Identifying a map layer is a very important task for most geo-web applications. This gives
information to users about the layer at known points. To achieve this, we need to define a map
service as follows. The gmaps . ags . MapService class only gets the URL parameters, which
are defined for the dynamic layer before:

var mapService = new gmaps.ags.MapService (dynamicMapURL) ;

283

Mastering the Google Maps JavaScript API through Advanced Recipes

When a map click event occurs, we need to handle it with a function named identify.
This function gets the 1atLng object and trigger the identify method of the gmaps.ags.
MapService class:

function identify(evt) ({
mapService.identify ({
'geometry': evt.latlng,
'tolerance': 3,
'layerIds': [5],
'layerOption': 'all"',
'bounds': map.getBounds (),
'width': map.getDiv () .offsetWidth,
'height': map.getDiv () .offsetHeight
}. function(results, err) {
if (err) {
alert (err.message + err.details.join('\n'));
} else {
showResult (results.results, evt.latlng);

13N
}

The identify method gets some parameters as follows:

» geometry: This gets LatLng, Polyline, or Polygon objects.
» tolerance: This is the distance in screen pixels where the mouse is clicked.

» layerIds: This array contains layer IDs. The value 5 in this recipe defines the
state's layer.

» layerOption: These options can be top, visible, orall.

» bounds: This gets an object created from the LatLngBounds class. This defines
the current bounds of the map.

» width: This is the width of the map div element.

» height: This is the height of the map div element.
The return of the function contains an array of features that contains both the attribute and
geometry data. The result function can iterate over this array and show the attribute data in

an info window. The geometry of each feature can also be shown on the map. The result of
the identify operation is shown in the following screenshot:

Chapter 8

e G localhost/recipes/ch08_arcgis_layer.html
Chapter 8 - Accessing ArcGIS Server
Add Topo Map Overlay
Add Dynamic Map
% BREN or | Sateliite b
A 0 ap L. oadelive:
< > s
w Wyoring w_
=1 =
e’ j 2] o
o .
T State Name : California b 4
2007 Population : 37483448 o i |
—— ; 3 T I %
T
I
1
{
ugrgue 1
| EEE
New i 171
| R 2
ik |1 i
P iudad 1 Fi
Liskaz
Chihuahua Sanfm
o

US Bureau of the Census: hitp:/lwww.census.gov Map data ©2013 Google, INEGI Terms of Use

\

ArcGIS Server is a powerful tool to use with the Google Maps JavaScript API if you have
the license. There are also other GIS functionalities such as geoprocessing, geocoding,
or geometry service, which are not included in this recipe due to the scope, but their usage

is no different from the identify operation.

The Google Maps JavaScript APl is a perfect mapping tool and is powerful with this kind

of service and libraries.

There's more...

In this recipe, we focused on the ArcGIS Server, but ESRI also has an alternative cloud
solution named ArcGIS Online (www.arcgis.com). It is the cloud version of the ArcGIS
Server and the usage of its services are almost the same as ArcGIS Server's services.

Mastering the Google Maps JavaScript API through Advanced Recipes

See also

» The Creating a simple map in a custom DIV element recipe in Chapter 1,
Google Maps JavaScript API Basics

» The Adding popups to markers or maps recipe in Chapter 3, Adding Vector Layers
» The Adding polygons to maps recipe in Chapter 3, Adding Vector Layers

» The Getting coordinates of a mouse click recipe in Chapter 5, Understanding Google
Maps JavaScript APl Events

Accessing GeoServer with the Google Maps

JavaScript API

GeoServer is an open source map server written in Java that allows users to share and edit
geospatial data. It is one of the popular open source map servers that can publish OGC
compliant services such as WMS and WFS. Web Map Service (WMS) is used for publishing
georeferenced images and simple querying. On the other side, Web Feature Service (WFS)
is used for publishing vector data to any kind of GIS clients. WFS is mostly used for data
sharing purposes.

In this recipe, we will use one of GeoServer's standard published service named
topp:states in WMS format. As stated in the Adding WMS layers to maps recipe

of this chapter, WMS has different request types such as GetMap or GetCapabilities.
We will also use a GetFeatureInfo addition to the GetMap request. This new request
gets the information of the point on the map. Also, we used a tiled structure in this recipe
to get WMS images in order to make a comparison between the untiled structure in the
Adding WMS layers to maps recipe and the tiled structure in this recipe.

Getting ready

In this recipe, we will use the first recipe defined in Chapter 1, Google Maps JavaScript API
Basics, as a template in order to skip the map creation.

You can find the source code at Chapter 8/ch08 geoserver.html.

How to do it...

You can easily access GeoServer with the Google Maps JavaScript API after performing the
following steps:

1. First, we create a wms-tiled. js file to include in the HTML later. This JavaScript
file has the WMSTiled and WMSFeatureInfo classes. Let's add the wMSTiled
class as follows:

286

Chapter 8

function WMSTiled (wmsTiledOptions) {

var options = {
getTileUrl: function (coord, =zoom) {
var proj = map.getProjection() ;
var zfactor = Math.pow(2, zoom) ;

// get Long Lat coordinates

var top = proj.fromPointToLatLng (new
google.maps.Point (coord.x * 256 / zfactor,
coord.y * 256 / zfactor));

var bot = proj.fromPointToLatLng (new
google.maps.Point ((coord.x + 1) * 256 / zfactor,
(coord.y + 1) * 256 / zfactor));

//create the Bounding box string

var ne = toMercator (top) ;

var sw = toMercator (bot) ;

var bbox = ne.x + ',' + sw.y 4+ ',' + sw.x + ',
+ ne.y;

//base WMS URL
var url = wmsTiledOptions.url;
url += '&version=' + wmsTiledOptions.version;
url += '&request=GetMap';
url += '&layers=' + wmsTiledOptions.layers;
url += '&styles=' + wmsTiledOptions.styles;
url += '&TRANSPARENT=TRUE';
url += '&SRS=EPSG:3857';
url += '&BBOX='+ bbox;
url += '&WIDTH=256";
url += '&HEIGHT=256";
url += '&FORMAT=image/png’;
return url;
b
tileSize: new google.maps.Size (256, 256),
isPng: true

}i
return new google.maps.ImageMapType (options) ;

}

2. Then, create the WMSFeatureInfo class and its getUrl method:

function WMSFeatureInfo (mapObj, options) {
this.map = mapObj;

287

Mastering the Google Maps JavaScript API through Advanced Recipes

this.url = options.url;
this.version = options.version;
this.layers = options.layers;
this.callback = options.callback;

this.fixedParams = 'REQUEST=CGetFeatureInfo&EXCEPTIONS=
application%2Fvnd.ogc.se xml&SERVICE=
WMS&FEATURE COUNT=50&styles=&srs=
EPSG:3857&INFO_FORMAT=text/javascript&format=
image%2Fpng' ;

this.overlay = new google.maps.OverlayView() ;
this.overlay.draw = function() {};
this.overlay.setMap (this.map) ;

WMSFeatureInfo.prototype.getUrl = function(coord) {

var pnt = this.overlay.getProjection() .
fromLatLngToContainerPixel (coord) ;

var mapBounds = this.map.getBounds() ;
var ne = mapBounds.getNorthEast () ;
var sw = mapBounds.getSouthWest () ;

var neMerc = toMercator (ne) ;

var swMerc = toMercator (sw) ;

var bbox = swMerc.x + ',' + swMerc.y + ',' +
neMerc.x + ',' + neMerc.y;

var rUrl = this.url + this.fixedParams;

rUrl += '&version=' + this.version;

rUrl += '&QUERY LAYERS=' + this.layers + '&Layers='
+ this.layers;

rUrl += '&BBOX=' + Dbbox;

rUrl += '&WIDTH=' + this.map.getDiv () .clientWidth +
'&HEIGHT=' + this.map.getDiv () .clientHeight;

rUrl += '&x=' + Math.round(pnt.x) + '&y=' +
Math.round (pnt.y) ;

rUrl += '&format options=callback:' + this.callback;
return rUrl;

}i

288

Chapter 8

3. Thelast step in the wms-tiled. js file is to add the toMercator () method:
function toMercator (coord) ({
var lat = coord.lat();
var lng = coord.lng() ;
if ((Math.abs(lng) > 180 || Math.abs(lat) > 90))

return;

var num = 1lng * 0.017453292519943295;
var x = 6378137.0 * num;
var a = lat * 0.017453292519943295;

var merc_lon = x;
var merc_lat = 3189068.5 * Math.log((1.0 + Math.sin(a))
/ (1.0 - Math.sin(a)));

return { x: merc_lon, y: merc lat };

}

4. Now, we have our JavaScript class file; add the following line after adding the Google
Maps JavaScript API:

<script src="lib/wms-tiled.js"></script>

5. We also need to add a jQuery library to the HTML file:

<script src="http://code.jquery.com/jquery-1.10.1.min.js">
</scripts>

6. Now, create a tiled WMS from the class written in the wms-tiled. js file:

//Creating a tiled WMS Service and adding it to the map
var tiledWMS = new WMSTiled ({

url:
'http://localhost:8080/geoserver/topp/wns?service=WMS',

version: '1.1.1"',
layers: 'topp:states',
styles: '!

3N

map.overlayMapTypes.push (tiledWMS) ;

289

Mastering the Google Maps JavaScript API through Advanced Recipes

7. The next step is to create an object from the WMSFeatureInfo class to be used
later in the event listener:

//Creating a WMSFeatureInfo class to get info from map.
var WMSInfoObj = new WMSFeaturelInfo (map, ({
url: 'http://localhost:8080/geoserver/topp/wms?"',
version: '1.1.1"',
layers: 'topp:states',
callback: 'getLayerFeatures'

3N

8. The last step is to listen to the c1ick event of the map to get information from
the map:

google.maps.event.addListener (map, 'click', function(e)

//WMS Feature Info URL is prepared by the help of
//getUrl method of WMSFeatureInfo object created before
var url = WMSInfoObj.getUrl (e.latlng) ;
$.ajax ({

url: url,

dataType: 'jsonp',

jsonp: false,

jsonpCallback: 'getLayerFeatures'
}) .done (function (data) {

if (infowindow != null) {

infowindow.close () ;

var info = 'State Name : ' +
data.features [0] .properties.STATE NAME +
'
Population : ' +
data.features[0] .properties.SAMP_POP;

infowindow = new google.maps.InfoWindow({
content: info,
position: e.latLng

13N

infowindow.open (map) ;
1
1

9. Go to your local URL where the HTML is stored in your favorite browser and try
to click on the map where you want to get info.

290

Chapter 8

L C | localhost/recipes/ch08_geoserver.html

Chapter 8 - Accessing GeoServer

T — e ———
—"——'—LL Satellit
/’A-\\‘ L, T S
£ 2

State Name : California »
Population : 3792553

‘Albuguerque
QQ q

- NM
New Mexico

Ciudad
J oo

- T Chihuahua
Google - ; . o)
&, r. - g ' Map data®2013 Google, INEGI Terms of Use

The previous screenshot is the result of the recipe that shows WMS layers created by
GeoServer on the Google Maps JavaScript API.

Accessing GeoServer is not much different from accessing a WMS server because they share
the same standards. With GeoServer, you can publish your data on your own servers with your
security standards.

In this recipe, we installed a fresh GeoServer to our Mac OS X and its sample data is ready
for serving WMS and WFS. We used the sample states data of the U.S. on WMS to show
the interaction.

In our case, we are serving HTML files from 1ocalhost on port 80, but GeoServer is working
from localhost on port 8080. This is a problem for our case, because we cannot access
GeoServer when getting information due to the cross-site scripting security limitation of HTML.
The solution is using a JSONP format to pass over the limitation. GeoServer can give the
JSONP format, but you should activate it from the options.

291

Mastering the Google Maps JavaScript API through Advanced Recipes

In the Adding WMS layers to maps recipe of this chapter, we used the untiled structure

to get WMS images, but this time, we are using the tiled structure to get WMS images.

The difference can be seen in the screenshot of untiled and tiled usage of WMS that the
abbreviation of states' names occurring more than once on tiled WMS because the geometry
of the same state can be seen in different images of tiled WMS. As said, the choice is yours
whether it is tiled or untiled according to your geo-web application's needs.

Creating a tiled structure in WMS is done in exactly the same way as we did in the Adding
tile overlays to maps recipe in Chapter 2, Adding Raster Layers. The important part here
is to create the URL for each tile. The BBOX parameter for each tile is calculated as follows:

var proj = map.getProjection() ;
var zfactor = Math.pow(2, zoom) ;
// get Long Lat coordinates
var top = proj.fromPointToLatlLng (new google.maps.Point (coord.x
* 256 / zfactor, coord.y * 256 / zfactor));
var bot = proj.fromPointTolLatLng(new google.maps.Point (
(coord.x + 1) * 256 / zfactor, (coord.y + 1) * 256 / zfactor));
//create the Bounding box string
var ne = toMercator (top) ;
var sw = toMercator (bot) ;

var bbox = ne.x + ',' + sw. + ', + sw.x + ',' + ne.y;
Y

There is a need for projection transformation to get tiles that will fit exactly on the Google
Maps' base map. Google Maps has a Web Mercator projection so the overlays need to be
in this projection.

One of the other parameters needed for URL is the WMS standard parameter, but be sure
about the difference of parameters according to the WMS versions.

The SRS parameter used in this recipe is EPSG: 3857, which is the equivalent of
EPSG:900913,ESRI:102113,0r ESRI:102100. All SRS parameters mentioned here
define the Web Mercator projection systems.

The WMSFeatureInfo class is written for creating WMS get info requests. The parameters
of the URL are important, which are as follows:

» x: Thisis the x coordinate of the mouse in pixels.

» y: Thisis the y coordinate of the mouse in pixels.

» width: This is the width of the map div element.

» height: This is the height of the map div element.

» info format:This is a string that describes the return format of information.
In this case, Text/JavaScript is used for getting info in the format of JSONP.

» query layers: This is the comma-separated list of layers to be queried.

292

Chapter 8

» layers: This is the comma- separated list of layers to be shown (coming from the
GetMap request).

» Dbbox: This is the bounding box of the map shown.

» format options: This is required for JSONP to define the name of the callback
function. The callback function's name must be the same as in the jQuery AJAX
request to get information without any errors.

The getUrl method gets the LatLng object as an input, but there is a need for screen
coordinates in the GetFeatureInfo request. We came up with a trick in order to convert
LatLng to screen coordinates in the getUrl method. In the constructor, we create an overlay
with the google.maps.OverlayView class and use its functions to convert LatLng to
screen coordinates:

var pnt = this.overlay.getProjection ().
fromLatLngToContainerPixel (coord) ;

rUrl += '&x=' + Math.round(pnt.x) + '&y=' + Math.round(pnt.y);

The google.maps.Projection class has a method hamed fromLatLngToPoint () to
convert the LatLng object to screen coordinates but this does not work as it is expected to.
This converts the LatLng coordinates to screen coordinates in world scale, but we need to
get the screen coordinates in the map's div reference. To achieve this, we use the google.
maps .MapCanvasProjection class method hamed fromLatLngToContainerPixel ().

We didn't go into detail with listening to the map c1ick event and showing popups. Also,
we used the ajax method of jQuery to get a JSONP request, which is also out of the scope
of this book. If you want to get details of these topics, please refer to previous recipes of
related chapters.

» The Creating a simple map in a custom DIV element recipe in Chapter 1, Google
Maps JavaScript API Basics

» The Adding popups to markers or maps recipe in Chapter 3, Adding Vector Layers

» The Getting coordinates of a mouse click recipe in Chapter 5, Understanding Google
Maps JavaScript API Events

» The Adding WMS layers to maps recipe

293

A

addiconMarker() function 71
address
coordinates, finding for 212-216
finding, on map with click 219-224
addStandardMarker() function 71
animated lines
adding, to maps 88-93
ArcGIS 164
ArcGIS Desktop 124
ArcGIS Online
URL 285
ArcGIS Server
about 254, 276
accessing, with Google Maps JavaScript API
276-285
area
calculating, of polygons 175-180
calculating, of polylines 175-180
AutoCAD 164
autocomplete option
places, finding with 194-198

base maps

about 21

modifying 21-24

tile sources, using as 33-39
BBEdit 6
bicycling layer

adding 60, 61
Bing Maps 5
bounding box (BBOX) 70
bounds_changed event 139

Index

C

CartoDB 254, 267
CartoDB layers

adding, to maps 267-275
center_changed event 139
circles

adding, to maps 83-88
context menu

about 144

creating, on maps 145-150
controls

about 111

adding 112-114

creating, for coordinates display in

real time 155-158

logo, adding as 132, 133

position, modifying 117-119

removing 112-114
coordinates

encoding 181-184

finding, for address 212-216

obtaining, of mouse click 141-144
custom DIV element

map, creating in 6-10
custom infoboxes

creating 204-208

D

decodePath() method 184
directions

obtaining, for locations 238-247
distance matrix

creating, for locations 229-237

dragend event 139
drag event 139
dragstart event 139
drag zoom

adding, to map 200-202
drawingControl property 167
drawing library 164
DrawingManager object 166
DrawingManager options 167-174
DrawingManagerOptions class 166
drawingMode property 170
drawingModes property 169

E

elevations, on map

obtaining, with click 224-229
enableKeyDragZoom() method 202
encodePath() method 184
events

about 135, 158

creating 158-160

F

fullscreen map
creating 11-13

Fusion Tables 261

Fusion Tables layers
adding, to maps 261-267

G

GDAL2Tiles
URL 44
geocode() method 216
geocoding 212
geocoding service request
options 216-219
geocoding service response
options 216-219
geographical coordinates 155
Geographical Information Systems. See GIS
GeoJSON
about 70
adding, to Google Maps JavaScript APl 98,
99-103
geolocation control

296

adding 120-124

creating 120-124
GeolLocationControl class 121
Geomedia 124
geometry library 175
GeoRSS 94
GeoRSS files

adding, to map 94-97
GeoServer

about 254, 286

accessing, with Google Maps JavaScript API

286-293

GIS 25,253
Google 5
Google base maps

about 26

styling 26-32
Google Fusion Tables 254
Google Maps

about 151, 200

traffic information, displaying on 56, 57
Google Maps default Ul 112
google.maps.event namespace 136
google.maps.InfoWindow class 203
Google Maps JavaScript API

about 69, 111-116, 132, 163

ArcGIS Server, accessing with 276-285

GeoJSON, adding to 98-103

GeoServer, accessing with 286,-293

WKT, adding to 104-109
google.maps.LatLng class

used, for adding maps, to markers 70-73
Google Maps map interface

transit layers, adding to 58, 59
google.maps.MapTypeStyleElementType

object 30

google.maps.Marker class

used, for adding maps, to markers 70-73
google.maps.MVCArray 42
google.maps.OverlayView class

about 203

draw() method 149

hide() method 149

onAdd() method 148

onRemove() method 149

show(coord) method 149
Google Maps Ul 120

H

heat map
about 50
creating 51-55
Here Maps 5

image overlays
adding, to maps 44-48
InfoBoxOption class
parameters 209
initMap() function 132

J

JavaScript
about 148
prototype-based inheritance 150

K

Keyhole Markup Language (KML) 94
KML files
adding, to map 94-97

L

layers
table of contents (ToC) control, creating for
124-132
Leaflet 5
length
calculating, of polygons 175-180
calculating, of polylines 175-180
lines
adding, to maps 77-80
locations
about 5
directions, obtaining for 238-247
distance matrix, creating for 229-237
logo
adding, as control 132, 133

map extent
restricting 151-155
Mapinfo 124
mapOptions object 114
map properties
modifying, programmatically 16-20
MapQuest 5
maps
about 70, 136
animated lines. adding to 88-93
CartoDB layers, adding to 267-275
circles, adding to 83-88
context menu, creating on 145-150
creating, for mobile devices 14-16
creating, in custom DIV element 6-10
drag zoom, adding to 200-202
Fusion Tables layers, adding to 261-267
GeoRSS files, adding to 94-97
image overlays, adding to 44-48
KML files, adding to 94-97
lines, adding to 77-80
markers, adding to 70-73
polygons, adding to 80, 82
popups, adding to 74-76
rectangles, adding to 83-88
shapes, drawing on 164-174
Street View, adding to 247-252
tile overlays, adding to 40-44
WMS layers, adding to 254-261
MapTiler
URL 44
markers
about 70
adding, to maps 70-73
popups, adding to 74-76
methods, OverlayView class
draw() 258
onAdd() 258
onRemove() 258
mobile devices
about 13
map, creating for 14-16
mouse click
coordinates, obtaining for 141-144

291

nearby places
searching for 185-193
showing 185-193

Notepad++ 6

0

Open Geospatial Consortium (0GC) 104, 254

OpenlLayers 5
OpenStreetMap
about 35
URL 35
OpenStreetMaps 124
overlays
about 69
transparency, modifying 48, 49
OverlayView class
methods 258

P

Panoramio
about 65
URL, for info 65
Panoramio layer
adding 65-67
parameters, InfoBoxOption class
boxStyle 209
closeBoxMargin 209
closeBoxURL 209
content 209
enableEventPropagation 209
pane 209
pixelOffset 209
position 209
pinpointResult() function 192
places
finding, with autocomplete option 194-198
places library 185
Point Of Interests (POIl) 69
polygons
adding, to maps 80, 82
area, calculating of 175-180
length, calculating of 175-180

298

polyline encoding algorithm 181
polylines

area, calculating of 175-180

length, calculating of 175-180
popups

adding, to maps 74-76

adding, to markers 74-76
position

modifying, of controls 117-119
prepareWMSUrl() method 260
prototype-based inheritance, JavaScript 150

raster 25
raster layers 25, 69
rectangles

adding, to maps 83-88
RotateControl control 115

S

Scalable Vector Graphics. See SVG
Service-oriented Architecture (SOA) 276
shapes

drawing, on map 164-174
startButtonEvents() function 71
Street View

adding, to maps 247-252
Styled Maps Wizard

URL 33
Sublime Text 6
SVG 93
SVG path notation 91
synced maps

creating, side by side 136-140

T

table of contents (ToC) control
about 111, 124
creating, for layers 124-132
TextWrangler 6
Tile Map Services. See TMS
tile overlays
adding, to maps 40-44

tile sources
using, as base maps 33-39
TMS 26
traffic information
displaying, on Google Maps 56, 57
transit layers
adding, to Google Maps map interface 58, 59
transparency
modifying, of overlays 48, 49

U

U.S. Geological Survey (USGS) 94
UTFGrid 273

V

vector layers 69
visualEnabled property 203

W

WeatherLayerOptions 64
weather-related information
displaying, on base maps 62-64
Web Feature Service. See WFS
Web Map Service. See WMS
WebStorm 6
Well-known Text. See WKT
WFS 286
WKT
about 70, 104
adding, to Google Maps JavaScript
APl 104-109
WMS 254
WMS layers
adding, to maps 254-261

X
XML 98

y4

zoom_changed event 139

299

Thank you for buying
rusLisnined Google Maps JavaScript API
Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authorepacktpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

Google Visualization API
Essentials
ISBN: 978-1-84969-436-0 Paperback: 252 pages

Make sense of your data: make it visual with the Google
Visualization API

1. Wrangle all sorts of data into a visual format,
without being an expert programmer

Google Vls!.lallzatlon 2. Visualize new or existing spreadsheet data
API Essentials through charts, graphs, and maps

3. Full of diagrams, core concept explanations, best
practice tips, and links to working book examples

Instant Google Map Maker
Starter
ISBN: 978-1-84969-528-2 Paperback: 50 pages

Learn what you can do with Google Map Maker and get
started with building your first map

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

Short | Fast | Focused

Google Map Maker 2. Understand the basics of Google Map Maker

Starter _
D 3. Add places of interest such as your hotels,
) A cinemas, schools, and more

Limoke Oscar RERT 4. Edit and update details for existing places

Please check www.PacktPub.com for information on our titles

PUBLISHING

Short | Fast | Focused

OpenlLayers Starter

Alessio Di Lorenzo Giovanni Allegri

Instant OpenLayers Starter
ISBN: 978-1-78216-510-1 Paperback: 58 pages

Web Mapping made simple and fast!

Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

Visualize your geographical data

Integrate with third party map services to create
mash-ups

Stylize and interact with your maps

R oy A Y e, T RN X
B e S NG

OpenlLayers Cookbook

ISBN: 978-1-84951-784-3 Paperback: 300 pages

60 recipes to create GIS web applications with the open
source JavaScript library

1.

Understand the main concepts about maps,
layers, controls, protocols, events, and so on

Learn about the important tile providers and
WMS servers

Packed with code examples and screenshots
for practical, easy learning

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Google Maps JavaScript API Basics
	Introduction
	Creating a simple map in a custom DIV element
	Creating a simple fullscreen map
	Moving from the Web to mobile devices
	Changing map properties programmatically
	Changing base maps

	Chapter 2: Adding Raster Layers
	Introduction
	Styling of Google base maps
	Using different tile sources as base maps
	Adding tile overlays to maps
	Adding image overlays to maps
	Changing the transparency of overlays
	Creating a heat map
	Adding the traffic layer
	Adding the transit layer
	Adding the bicycling layer
	Adding the weather and cloud layers
	Adding the Panoramio layer

	Chapter 3: Adding Vector Layers
	Introduction
	Adding markers to maps
	Adding popups to markers or maps
	Adding lines to maps
	Adding polygons to maps
	Adding circles/rectangles to maps
	Adding animated lines to maps
	Adding KML/GeoRSS layers
	Adding GeoJSON to the Google Maps JavaScript API
	Adding WKT to the Google Maps
JavaScript API

	Chapter 4: Working with Controls
	Introduction
	Adding and removing controls
	Changing the position of controls
	Creating and adding a geolocation control
	Creating a table of contents control for layers
	Adding your own logo as a control

	Chapter 5: Understanding Google Maps JavaScript
API Events
	Introduction
	Creating two synced maps side by side
	Getting the coordinates of a mouse click
	Creating a context menu on a map
	Restricting the map extent
	Creating a control that shows coordinates
	Creating your own events

	Chapter 6: Google Maps JavaScript Libraries
	Introduction
	Drawing shapes on the map
	Calculating the length/area of polylines and polygons
	Encoding coordinates
	Searching for and showing nearby places
	Finding places with the autocomplete option
	Adding drag zoom to the map
	Creating custom pop ups / infoboxes

	Chapter 7: Working with Services
	Introduction
	Finding coordinates for an address
	Finding addresses on a map with a click
	Getting elevations on a map with a click
	Creating a distance matrix for the given locations
	Getting directions for the given locations
	Adding Street View to your maps

	Chapter 8: Mastering the Google Maps JavaScript API through Advanced Recipes
	Introduction
	Adding WMS layers to maps
	Adding Fusion Tables layers to maps
	Adding CartoDB layers to maps
	Accessing ArcGIS Server with the Google Maps JavaScript API
	Accessing GeoServer with the Google Maps JavaScript API

	Index

