
www.allitebooks.com

http://www.allitebooks.org

Apache Axis2 Web Services

2nd Edition

Create secure, reliable, and easy-to-use web services

using Apache Axis2

Deepal Jayasinghe

Afkham Azeez

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Axis2 Web Services

2nd Edition

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008

Second Edition: February 2011

Production Reference: 1110211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-56-8

www.packtpub.com

Cover Image by Ed Maclean (edmaclean@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Deepal Jayasinghe

Afkham Azeez

Reviewer

Deepak Vohra

Development Editors

Ved Prakash Jha

Maitreya Bhakal

Technical Editor

Pooja Pande

Copy Editors

Leonard D'Silva

Lakshmi Menon

Indexers

Hemangini Bari

Tejal Daruwale

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Ashwin Shetty

Project Coordinator

Joel Goveya

Proofreader

Aaron Nash

Graphics

Nilesh R. Mohite

Production Coordinator

Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Deepal Jayasinghe is a Computer Science PhD student at Georgia Institute of
Technology and he is afiliated with Center for Experimental Research in Computer
Systems. Prior to joining Georgia Tech, he was a Technical Lead at WSO2 Inc., an
open source software development company that creates middleware platforms for
web services. Deepal has over six years of experience with SOA and web services
in addition to being a contributing member of the Apache Axis2 project since its
inception. He is a key architect and developer of the Apache Axis2 Web service
project and has led a number of releases. In addition to Axis2, he has made major
contributions to Apache Synapse, Apache Axiom, and Apache XMLSchema projects.

Deepal has written more than 30 technical magazine articles, written research papers,
and has delivered speeches at various SOA and web services conferences. He is an
Apache Member and PMC members at several Apache projects. His expertise lies
mainly in distributed computing, SOA and web services, Cloud computing, and
performance analysis. Deepal holds a B.Sc. Engineering degree from the University
of Moratuwa, Sri Lanka. He can be reached at deepalk@gmail.com.

First of all, I want to thank Apache Axis2 developers and the Axis2
community who has contributed towards making this web services
framework a world renowned success in a relatively short period of
time. Thank you!

I owe countless thanks to my dear wife and parents for always
being there and supporting me in so many ways. This book would
not have been possible without everything that they have done
for me. Special thanks to Srinath Hemapani, Ajith Ranabahu,
Eran Chinthaka, Sanjiva Weerawarana, Davanam Sirinivas, Glen
Daniels, Paul Fremantle, Chathura Herath, Jaliya Ekanayake,
and all the other key members of the Axis2 team without whose
tremendous contributions and wisdom, Axis2 would not have been
possible. For the creation of this work, I am blessed with a strong
team of technical reviewers and superior editorial and production
professionals from Packt Publishing. My sincere thanks to all of you
for your tireless efforts.

www.allitebooks.com

http://www.allitebooks.org

Afkham Azeez is a Member, Project Management Committee (PMC) member,
and a committer of the Apache Software Foundation. He works as a Senior
Software Architect and Senior Manager, Platform as a Service, at WSO2 Inc. His
specializations include distributed computing, Cloud computing, SOA and J2EE
technologies. He is a long time open source contributor and is the author of the
clustering implementation for Apache Axis2.

Azeez holds a Masters degree in Computer Science, specializing in Software
Architecture and B.Sc. irst class honors degree in Computer Science and
Engineering, from the University of Moratuwa, Sri Lanka. He is a regular
presenter at many open source conferences including the Apache Conferences.

Azeez is a petrolhead and an active member of the AutoLanka forum. He enjoys
a game of basketball and also loves spending time with his three kids.

I would like to express profound gratitude to the open source
communities backing the Apache Axis, Apache Web Services, and
Apache Synapse projects. Their contributions were the foundation
upon which work was built.

I would like to thank Asanka Abeysinghe, Director of Solutions
Architecture at WSO2, and SOA solutions and patterns expert, for
providing, guidance and some content for the Enterprise Integration
Patterns chapter.

I am as ever indebted to my parents specially, for their love and
support throughout my life. I also wish to thank my wife, who
supported me throughout my work.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certiied Java Programmer and Web Component
Developer, and has worked in the ields of XML and Java programming and J2EE for
over ive years. Deepak is the co-author of the Apress book Pro XML Development
with Java Technology and was the technical reviewer for the O'Reilly book WebLogic:
The Deinitive Guide. Deepak was also the technical reviewer for the Course Technology
PTR book Ruby Programming for the Absolute Beginner, and the technical editor for
the Manning Publications book Prototype and Scriptaculous in Action. Deepak is also
the author of the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE
Development, and Processing XML Documents with Oracle JDeveloper 11g.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support iles and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy & paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Apache Web Services and Axis2 7

Service Oriented Architecture (SOA) 8

Web service overview 10

How do organizations move into web services? 11

Web services model 12

Web services standards 13

XML-RPC 14

SOAP 14

Web Services Addressing (WS-Addressing) 15

Service description 15

Web Services Description Language (WSDL) 16

Web services lifecycle 16

Apache Web Service stack 18

Why Axis2? 19

Downloading and installing Apache Axis2 21

Binary distribution 22

WAR distribution 23

Source distribution 25

Document distribution 25

JAR distribution 25

Summary 26

Chapter 2: Looking inside Axis2 27

Axis2 architecture 27

Core modules 28

XML processing model 30

SOAP processing model 30

Information model 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Deployment model 33

Client API 34

Transports 36

Other modules 36

Code generation 37

Data binding 37

Extensible nature of Axis2 38

Service extension or the module 38

Custom deployers 39

Message receivers 39

Summary 39

Chapter 3: Axis 2 XML Model (AXIOM) 41

Overview of AXIOM and its features 41

What is pull parsing? 42

Architecture 43

Working with AXIOM 43

Creating Axiom 44

Creating Axiom from an input stream 44

Creating Axiom using a string 45

Creating Axiom programmatically 46

Adding child nodes and attributes 47

Working with OM namespaces 48

Working with attribute 48

Traversing the Axiom tree 48

Serialization 49

Advanced operations with Axiom 51
Xpath navigation 51

Accessing the pull parser 52

Axiom and SOAP 52

Summary 54

Chapter 4: Execution Chain 55

Handler 56

Writing a simple handler 57

Phase 58

Types of phases 60
Global phases 60

Operation phases 62

Phase rules 62

Characterizing a phase rule 62
Phase name 63

phaseFirst 63

phaseLast 63

Table of Contents

[iii]

before 63

after 64

after and before 64

Invalid phase rules 64

Flow 65

Module engagement and dynamic execution chain 66

Special handlers in the chain 67
Transport receiver 67

Dispatchers 67

Message receiver 68

Transport sender 69

Summary 69

Chapter 5: Deployment Model 71

What is new in Axis2 deployment? 72

Hot deployment and hot update 74

Hot deployment 74

Hot update 75

Repository 75

Change in the way of deploying handlers (modules) 76

Deployment descriptors 77

Global descriptor or axis2.xml 78

Service descriptor (services.xml) 78

Module descriptor or module.xml 79

Available deployment options 79

Archive-based deployment 80

Directory-based deployment 80

Deploying a service programmatically 80

POJO deployment 81

Deploying and running a service in one line 83

Summary 84

Chapter 6: Information Model 85

Axis2 static data 86

AxisConiguration	 88
Parameters 89

MessageReceiver 90

MessageFormatters and MessageBuilders 91

TransportReceiver and TransportSender 91

Flows and phaseOrder 92

AxisModule 93

Service description hierarchy 94

AxisServiceGroup 94

Table of Contents

[iv]

AxisService 95

AxisOperation 95

AxisMessage 96

Axis2 contexts 96

ConigurationContext	 97
ServiceGroupContext 98

ServiceContext 98

OperationContext 98

MessageContext 99

Summary 99

Chapter 7: Writing an Axis2 Service 101

Creating a web service 102

The code irst approach 104
Single class POJO approach 104

POJOs with packages 106

Deploying services using a service 108
Writing	the	services.xml	ile	 108
Service implementation class 109

Specifying the message receiver 109

Creating	a	service	archive	ile	 110
Different ways of specifying message receivers 110

Service group and single service 113

Adding third-party resources 114

Service WSDL and schemas 114

Contract irst approach – starting from the WSDL 116
Generating code 116

Filling in the service skeleton 117

Running	the	ant	build	ile	 117
Summary 117

Chapter 8: Writing an Axis2 Module 119

Brief history of the Axis2 module 120
Module concept 120

Module structure 121

Module	coniguration	ile	(module.xml)	 122
Handlers and phase rules 123

Module implementation class 125

Writing	the	module.xml	ile	 128
Deploying and engaging the module 129

Advanced module.xml 132

Parameters 132

Table of Contents

[v]

WS-Policy 132

Endpoints 133

Summary 134

Chapter 9: The Client API 135

Web service client 136

Blocking and non-blocking invocation 136

Looking into Axis2 client API 137
ServiceClient API 137

ServiceClient with working samples 140

Working with the OperationClient 147

Summary 150

Chapter 10: Session Management 151

Stateless nature of Axis2 152

The available type of sessions in Axis2 153

Session initializing and session invalidating 155

Java	relection	 155
Using the optional interface 156

Accessing MessageContext 156

Request session scope 157

SOAP session scope 158

Transport session scope 162

Option 1: Using the browser 162

Option 2: Using the service client 163

Application scope 163

Managing sessions using ServiceClient 164

Summary 164

Chapter 11: Developing JAX-WS Web Services 165

Writing a simple JAX-WS web service 166

JAX-WS annotations 166

JSR 181 (Web Service Metadata) annotations 167
javax.jws.WebService 167

javax.jws.WebMethod 169

javax.jws.OneWay 170

javax.jws.WebParam 171

name 171

targetNamespace 172

mode 172

header 172

partName 172

javax.jws.WebResult 172

javax.jws.soap.SOAPBinding 174

Table of Contents

[vi]

JSR 224 (JAX-WS) annotations 175
javax.xml.ws.BindingType 175

javax.xml.ws.RequestWrapper and javax.xml.ws.ResponseWrapper 176

javax.xml.ws.ServiceMode 177

javax.xml.ws.WebEndpoint 177

javax.xml.ws.WebFault 178

javax.xml.ws.WebServiceClient 178

javax.xml.ws.WebServiceProvider 179

javax.xml.ws.WebServiceRef 180

JSR 222 (JAXB) annotations 180
javax.xml.bind.annotation.XmlRootElement 181

namespace 181

name 181

javax.xml.bind.annotation.XmlAccessorType 182

javax.xml.bind.annotation.XmlElement 182
name 183

namespace 183

JSR 250 (Common Annotations) 183

javax.annotation.Resource 183

javax.annotation.PostConstruct 184

javax.annotation.PreDestroy 184

Code irst service development with JAX-WS 185
Contract irst development with JAX-WS 188

Client-side JAX-WS 193
The Dispatch client 194

The Dynamic Proxy client 196

MTOM with JAX-WS Services 196

Asynchronous invocation of JAX-WS services 198
Polling model 198

Callback model 198

Summary 200

Chapter 12: Axis2 Clustering 201

Setting up a simple Axis2 cluster 202

Writing a highly available clusterable

web service 203

Stateless Axis2 Web Services 204

Setting up a failover cluster 204

Increasing horizontal scalability 205

Setting up and coniguring Axis2 clusters in production 206
Clustering agent 206

Clustering agent parameters 206
AvoidInitiation 207

membershipScheme 207

domain 207

Table of Contents

[vii]

synchronizeAll 208

maxRetries 208

mcastAddress 208

mcastPort 208

mcastFrequency 208

memberDropTime 208

mcastBindAddress 209

localMemberHost 209

localMemberPort 209

preserveMessageOrder 209

atmostOnceMessageSemantics 209

properties 210

State management 210

Node management 211

Group management 211

Static members 212

Full	coniguration	 212
Membership schemes 214

Static membership 214

Dynamic membership 216

Hybrid membership 216

Cluster management 218

Highly available load balancing 220

The Axis2 clustering management API 220

org.apache.axis2.clustering.ClusteringAgent 221

org.apache.axis2.clustering.state.StateManager 222

org.apache.axis2.clustering.management.NodeManager 223

org.apache.axis2.clustering.management.GroupManagementAgent 223

Summary 223

Chapter 13: Enterprise Integration Patterns 225

Apache Synapse 226

WSO2 ESB 227
OpenESB 230
Protocol bridging 230

External authentication and authorization 231

Dynamic routing combined with auditing 233

Event Driven Architecture (EDA) with Master Data Management (MDM) for

Integrating Legacy Systems 234

Event Driven Architecture (EDA) 234

Master Data Management (MDM) 235

Adaptor layer 236

Integration server 236

Logic server 237

Table of Contents

[viii]

Registry 237

Push and pull 237

Fault tolerant autoscaling with dynamic load balancing 239

References 240

Summary 240

Chapter 14: Axis2 Advanced Features and Usage 243

Representational State Transfer (REST) 244

Features of REST 244

REST services in Axis2 244
REST web service with GET and POST 245

Message Transmission Optimization Mechanism (MTOM) 247

By value 247

By reference 247

MTOM on the client side 249

MTOM on the service side 250

Axis2 conigurator 251
Deploying Axis2 in various application servers 252

Asynchronous web services with Axis2 254

Client side asynchronous 254

Application-level asynchronous support 257

Transports-level asynchronous support 258

Summary 259

Chapter 15: Building a Secure Reliable Web Service 261
Reliable web services 262

Sample service 263

One way invocation 264

Request-reply invocation 266

Managing sequences 268
Creating a sequence without sending a message 269

Terminate a sequence 269

Secure web services 269
Sample service 270

Writing the password callback 270

Creating the policy element 271
Generating client stubs 273

Invoking the service without security 273

Invoking the service with security 273

Summary 274

Index 275

Preface
SOA, in practicality web services, is becoming the enabler for application integration.
Since the introduction of web services, Apache Software Foundation has played a
major role and produced several good web services frameworks. This book covers
the defector Java Web Service framework, also known as Apache Axis2. This book
covers several important facts that you would want to know about web services
and writing, from simple web services to complex web services. By the end of this
book, you will have learned about Axis2, its architectures and features, writing and
deploying a simple service, writing service extensions and quality of services, POJO
and JAX-WS services, clusters, and secure reliable web services.

What this book covers
Chapter 1, Apache Web Services and Axis2 - Gives you an introduction to web services
and the web service stack at Apache.

Chapter 2, Looking inside Axis2 - Learn about Axis2 architecture and the importance
of its components.

Chapter 3, Axis2 XML Model (AXIOM) - Learn about the heart of a web service
framework and learning more about XML processing in Axis2.

Chapter 4, Execution Chain - Learn how to extend the core functionality of the
framework though handlers.

Chapter 5, Deployment Mode - Learn about the new and user friendly deployment
model and several ways of deploying a service in Axis2.

Chapter 6, Information Model - Learn how Axis2 stores it static and dynamic data and
the importance of it.

Chapter 7, Writing an Axis2 Service - Learn how to write a simple-complex service
using Axis2 and how to deploy it.

Preface

[2]

Chapter 8, Writing an Axis2 Module - Learn how to extend Axis2 core functionality
through a self-contained package.

Chapter 9, The Client API - Learn how to use Axis2 to invoke other services, available
APIs, and how to use them.

Chapter 10, Session Management - Go beyond single invocation and learn how to use
Axis2 features to provide better and more eficient statefull service.

Chapter 11, Developing JAX-WS Web Services - Learn the fundamentals of developing
JAXWS based web services, the most popular web service development technology
used by Java developers.

Chapter 12, Axis2 Clustering - Learn about clustering Apache Axis2, which will allow
you to deploy Axis2 in large scale production deployments.

Chapter 13, Enterprise Integration Patterns - Learn about some enterprise SOA
deployment patterns that make use of the underlying Axis2 clustering infrastructure.

Chapter 14, Axis2 Advanced Features and Usage - Go beyond simple features and learn
about REST, MTOM, and several other advanced features.

Chapter 15, Building a Secure Reliable Web Service - Learn how to use Axis2 and related
components to make your service more secure and reliable.

What you need for this book
•	 Java 5 or above (Axis2 support only JDK 1.5 and above)

•	 Latest version of Axis2 (Axis2 1.5.4)

Who this book is for
This book is for Java developers who are interested in building web services using
Apache Axis2. Familiarity with web standards such as SOAP, WSDL, and XML
parsing is assumed.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "The AxisEngine or driver of Axis2 deines
two methods, send() and receive(), to implement these two pipes."

A block of code is set as follows:

//First, create the parser

XMLStreamReader parser = XMLInputFactory.newInstance().
createXMLStreamReader(new FileInputStream(file));

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

//the plain OMBuilder

 StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);

 //return the root element.

 OMElement root = builder.getDocumentElement();

 root.serialize(System.out);

New terms and important words are shown in bold: "Axis2 now comes handy with
the lexibility to support Message Exchange Patterns (MEPs) with in-built support
for basic MEPs deined in WSDL 2.0."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book

You can download the example code iles for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the iles e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[5]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Apache Web Services

and Axis2
Apache Axis2 is the next generation web service framework from Apache.
The Apache software foundation started Apache SOAP as its irst web service
framework. Next, they developed Apache Axis, which became one of the very
successful projects at Apache and is still used heavily in the industry. Due to rapid
changes in the industry and demands from the user community, Apache Axis alone
was not able to fulill those requirements, thus the Apache Web Service community
initiated Apache Axis2 project in 2004. In a short period of time, Apache Axis2 has
become the de facto open source Java Web Service framework, which is now heavily
used in both the industry and in academia. Axis2, the next generation of the Apache
Web Service stack, takes one more step closer to the irst production version, by
releasing another developer version.

In this chapter, we will learn more about web services, its history, standards, as well
as the components of web services. At the end of the chapter, we will discuss the
need for a new web service engine, and inally how to install and run Axis2.

Here, we focus more on the web services and related technologies. In particular,
we will cover:

•	 Service Oriented Architecture

•	 Overview of web services

•	 Web services standers and standard bodies

•	 Apache Web Service stack

•	 Getting started with Axis2

Apache Web Services and Axis2

[8]

Service Oriented Architecture (SOA)
The era of isolated computers is over. Now "connected we stand, isolated we fall" is
becoming the motto of computing. Networking and communication facilities have
connected the world in a way as never before. The world has hardware that could
support the systems that connect thousands of computers, and these systems have
the capacity to wield power that was once only dreamed of.

Yet, computer science lacked the technologies and abstraction to utilize the
established communication networks. The goal of distributed computing is to
provide such abstractions. RPC, RMI, IIOP, and CORBA are a few proposals that
provide abstractions over the network for the developers to build upon.

These proposals fail to consider one critical nature of the problem. The systems are
a composition of numerous heterogeneous subsystems, but these proposals require
all the participants to share a programming language or a few languages. Service
Oriented Architecture (SOA) provides the answer by deining a set of concepts
and patterns to integrate homogenous and heterogeneous components together.
SOA provides a better way to achieve loosely coupled systems, and hence more
extensibility and lexibility. In addition, similar to object-oriented programming
(OOP), SOA enables a high degree of reusability. There are three main ways one can
enable SOA capabilities in their systems and applications:

•	 Existing messaging systems: for example, IBM MQSeries, Tibco, JMS, and
so on

•	 Plain Old XML (POX): for example, XML/HTTP, REST, and so on

•	 Web services: for example, SOAP, WSDL, WS-*

Among the commonly used messaging systems, Java Messaging Service (JMS)
plays a major role in the industry and has become a common API for messaging
systems. We can ind a number of different message types of JMS, such as Text,
Bytes, Name-Value pair, Stream, and Object. One of the main disadvantages of
these types of messaging systems is that they do not have a single wire format
(serialization format). As a result, interoperability is a big issue: if two applications
are using JMS to communicate, then they must be on the same implementation.
Sonic, Tibco, and IBM are the leaders in the commercial markets, and JBoss, Manta,
and ActiveMQ are the commonly used open source implementations.

Chapter 1

[9]

Plain Old XML or POX is another way of exposing functionality and enabling SOA
in the system. With the widespread use of the Web, the POX approach has become
more popular. Most of the web applications expose the XML APIs, where we can
develop components and communicate with them. Google Maps, Auto complete,
and Amazon services are a few examples of applications that heavily use XML APIs
to expose the functionality. In most cases, POX is used in combination with REST
(Representational State Transfer). REST is a model of an underlying architecture of
the Web, and it is based on the concept that every URL identiies resources. GET,
PUT, POST, and DELETE are the verbs that are used in the REST architecture. REST
is often associated with the theoretical standpoints, and for this reason, REST is
generally not used for complex interactions.

Among the three commonly used methods to enable SOA, a web service can be
considered as the most standard and lexible way. Web services extend the idea of
POX and add additional standards to make the communication more organized
and standardized. There are several reasons behind the web services being the most
popular SOA-enabled mechanism, as stated here:

•	 Web services are described using WSDL, and WSDL can capture any
complex application and the required quality of services.

•	 Web services use SOAP as the message transmission mechanism, as SOAP is
a special type of XML. It gains all the extensibility features from XML.

•	 There are a number of standard bodies to create and enforce the standards
for web services.

•	 There are multiple open source and commercial web service
implementations. By using the standards and procedures, web services
provide application and programming language-independent mechanism to
integrate and communicate. Different programming languages may deine
different implementations for web services, yet they interoperate because
they all agree on the format of the information they share.

Apache Web Services and Axis2

[10]

Web service overview
The Internet is revolutionizing business by providing an affordable and eficient
way to link companies with their partners as well as customers. However, there are
issues that reduce the productivity of the Internet. Among the issues, incompatible
applications and frameworks that cannot interoperate or exchange business data are
major concerns. Particularly, when using REST-based application, marshalling and
unmarshalling data, as well as adding quality of support, is a major concern. Web
Service is a new model for e-business that is expected to change the way business
applications are developed, integrated and interoperate. Web Services are a self-
describing, self-contained, modular application accessible over the Web. It is exposed
as an XML interface, as well as it communicates with other services using XML
messages over standard web protocols.

The fundamental concept behind web services is the SOA where an application is
no longer a large monolithic program, but it is divided into smaller, loosely coupled
programs. The provided services are loosely coupled together with standardized
and well-deined interfaces. These loosely coupled programs make the architecture
very extensible due to the possibility to add or remove services with limited
costs. Therefore, new services can be created by combining existing services. To
understand loose coupling clearly, it is better to understand the opposite, which is
tight coupling, and its problems:

•	 Errors, delays, and downtime spread through the system

•	 The resilience of the whole system is based on the weakest part

•	 Cost of upgrading or migrating spreads

•	 It's hard to evaluate the useful parts from the dead weight

In web services, there are three main standard bodies that helped to improve the
interoperability, quality of service, and base standards:

•	 WS-I

•	 OASIS

•	 W3C

Chapter 1

[11]

The main functionality of WS-I is to provide standards and speciications to ensure
interoperability, composablity, and proiling. In other words, to create standards
and procedures to enforce the required level of interoperability among various web
service frameworks. OASIS's main goal is to improve the quality of services of web
services, which include security, reliability, transaction, and resource management.
W3C, one of the web services standard bodies, deines a web service as a software
system designed to support interoperable machine-to-machine interaction over
a network. It has an interface described in a format that can be processed by
machine and read by human. The format is known as Web Services Description
Language (WSDL). Other applications communicate with the web service in a
manner prescribed by its description using Simple Object Access Protocol (SOAP)
messages, typically conveyed using HTTP with an XML serialization, in conjunction
with other web-related standards.

A web service is a well-known open technology standard, which provides a number
of beneits as listed here:

•	 Increased interoperability, resulting in lower maintenance costs

•	 Increased reusability and composablity (for example, use publicly available
services and reuse them or integrate them to provide new services)

•	 Increased competition among vendors, resulting in lower product costs

•	 Easy transition from one product to another, resulting in lower training costs

•	 Greater degree of adoption and longevity for a standard, a large degree of
usage from vendors and users leading to a higher degree of acceptance

One can argue that the web service concept is the logical evolution from object-
oriented systems to systems of services. As in object-oriented systems, some of the
fundamental concepts in web services are encapsulation, message passing, and
dynamic binding. However, the service-based concept is extended beyond method
signatures, as information related to what the service does, where it is located, how
it is invoked, the quality of service, and security policy related to the service can also
be published in the service interface (WSDL).

How do organizations move into web

services?
There are three main ways in which an organization could possibly use to move into
the web services, listed next:

•	 Create a new web service from scratch. The developer creates the
functionalities of the services as well as the description.

Apache Web Services and Axis2

[12]

•	 Expose the existing functionality through a web service. Here the
functionalities of the service already exist. Only the service description needs
to be implemented.

•	 Integrate web services from other vendors or business partners. There
are occasions when using a service implemented by another is more cost
effective than building from the scratch. On these occasions, the organisation
will need to integrate others' or even business partners' web services.

The real usage of web service concepts is for the second and third methods, which
enables other web services and applications to use the existing applications.

Web services describe a new model for using the web; the model allows publication
of business functions to the Web and provide universal access to those business
functions. Both developers and end users beneit from web services. The web service
model simpliies business application development and interoperation.

Web services model
Web services model consists of a set of basic functionalities such as describe, publish,
discover, bind, invoke, update, and unpublish. In the meantime, the model also
consists of three actors—service provider, service broker, and service requester.
Both the functionalities as well as actors are shown in the next igure:

•	 Service provider is the individual (organisation) that provides the service.
The service provider's job is to create, publish, maintain, and unpublish their
services. From a business point of view, a service provider is the owner of
the service. From an architectural view, a service provider is the platform
that holds the implementation of the service. Google API, Yahoo! inancial
services, Amazon services, and weather services are some examples of
service providers.

Chapter 1

[13]

•	 Service broker provides a repository of service descriptions (WSDL). These
descriptions are published by the service provider. Service requesters will
search the repository to identify the required service and obtain the binding
information for these services. Service broker can be either public, where the
services are universally accessible, or private, where only a speciied set of
service requesters are able to access the service.

•	 Service requester is the party that is looking for a service to fulil its
requirements. A requester could be a human accessing the service or an
application program (a program could also be a service). From a business
view, this is the business that wants to fulil a particular service. From an
architectural view, this is the application that is looking for and invoking a
service.

Web services standards
So far we have discussed SOA, standard bodies of web services, and the web
service model. In this section, we are going to discuss more about standards,
which make web services more usable and lexible. In the past few years, there has
been a signiicant growth in the usage of web services as application integration
mechanism. As mentioned earlier, a web service is different from other SOA
exposing mechanisms because it consists of various standards to address issues
encountered in the other two mechanisms. The growing collection of WS-* (for
example, Web Service security, Web Service reliable messaging, Web Service
addressing, and others) standards, supervised by the web services governing bodies,
deine the web service protocol stack shown in the following igure. Here we will be
looking at the standards that have been speciied in the most basic layers: messaging
and description, and discovery.

www.allitebooks.com

http://www.allitebooks.org

Apache Web Services and Axis2

[14]

The messaging standards are intended to give the framework for exchanging
information in a distributed environment. These standards have to be reliable so
that the message will be sent only once and only the intended receiver will receive
it. This is one of the primary areas where research is being conducted, as everything
depends on the messaging ability.

Next, we are going to discuss some of these standards in details. Firstly, we will start
with XML-RPC, which later evolved into SOAP.

XML-RPC
The XML-RPC standard was created by Dave Winer in 1998 with Microsoft. The
existing RPC systems were very bulky. Therefore, to create a light-weight system, the
developer simpliied it by specifying only the essentials and deined only a handful
of data types and commands. This protocol uses XML to encode its calls to HTTP as
a transport mechanism. The message is sent as a POST request in which the body of
the request is in XML. A procedure is executed on the server and the value it returns
is also formatted into XML. The parameters can be scalars, numbers, strings, dates, as
well as complex record and list structures.

As new functionalities were introduced, XML-RPC evolved into what is now known
as SOAP, which is discussed next. Still, some people prefer using XML-RPC because
of its simplicity, minimalism, and the ease of use.

SOAP
Initially, SOAP was deined as Simple Object Access Protocol. However, the latest
version (SOAP 1.2) has moved beyond its original deinition. The SOAP standard
was originally designed by four developers with the backing of Microsoft as an
object-access protocol. The protocol speciies exchange of XML-based messages
over computer networks in transport independent manner. The developers had
chosen XML as the standard message format because of its widespread use by major
organizations and open source initiatives. Also, there is a wide variety of freely
available tools that ease the transition to a SOAP-based implementation.

The concept of SOAP is a stateless, one-way message exchange. However,
applications can create more complex interaction patterns—such as request-response,
request-multiple responses, and so on—by combining such one-way exchanges with
features provided by an underlying protocol and application-speciic information.
SOAP is silent on the semantics of any application-speciic data it conveys as it is on
issues such as routing of SOAP messages, reliable data transfer, irewall traversal,
and so on. However, SOAP provides the framework by which application-speciic
information may be conveyed in an extensible manner.

Chapter 1

[15]

Web Services Addressing (WS-Addressing)
It would have been quite useful if there was a standard way to express where a
message should be delivered in a web services network. This could reduce the work
load of the developers when they are able to simplify web services communication
and development, and avoid the need to develop costly solutions ad hoc that are
often dificult to interoperate across platforms. When interacting with human
applications, we enter the address (or URL) in the browser and then navigate the
page. We click on the internal links and it takes us to a new page. When it comes
to application-application communication, such as web services, there should
be a standard way of specifying those addresses. Thus, WS-Addressing enables
organizations to build reliable and interoperable web service applications by
deining a standard mechanism for identifying and exchanging Web Services
messages between multiple end points.

The standard provides transport independent mechanisms to address messages
and identiies web services, corresponding to the concepts of address and message
correlation described in the web services architecture. The standard deines XML
elements to identify web services endpoints and to secure end-to-end endpoint
identiication in messages. This enables messaging systems to support message
transmission through networks that include processing nodes such as endpoint
managers, irewalls, and gateways in a transport-neutral manner.

Service description
When we buy a product we can ind the operational manual for it or when we buy
a software application, we should have the manuals or documentation to use it.
When it comes to OOP, we have interfaces that describe the public operation and in
the same way Java docs provide information about the available methods and how
to use them. Hence, it is important to note that the description of a web service is
essential for classifying, discovering, and using a service. The description should be
understandable to both humans as well as for applications. They further mention
that the web service description is required to be at both semantic and syntactic
level. Semantic information has to contain details about the service provider, what
the service does, and characteristics such as reliability, security, and sequencing of
messages. The semantic information enables service requesters to decide whether a
service satisies their needs or not. Also, brokers can use the semantic information
to categorize the service. Syntactic information describes how to use the service and
may also concern non-functional requirements, such as reliability, security, and
transactions. Above all, service description becomes the external documentation to
read and understand more about the service.

Apache Web Services and Axis2

[16]

Web Services Description Language (WSDL)
WSDL, developed by IBM, Ariba, and Microsoft, is an XML-based language that
provides a model for describing web services. The standard deines services as
network endpoints or ports. WSDL is normally used in combination with SOAP and
XML schema to provide web services over networks. A service requester who connects
to a web service can read the WSDL to determine what functions are available in the
web service. Special data types are embedded in the WSDL ile in the form of XML
Schema. The client can then use SOAP to call functions listed in the WSDL.

The standard enables one to separate the description of the abstract functionality
offered by a service from the concrete details of a service description such as how
and where that functionality is offered. This speciication deines a language
for describing the abstract functionality of a service as well as a framework for
describing the concrete details of a service description. The abstract deinition of
ports and messages is separated from their concrete use, allowing the reuse of these
deinitions. A port is deined by associating a network address with a reusable
binding and a collection of ports deine a service. Messages are abstract descriptions
of the data being exchanged and port types are abstract collections of supported
operations. The concrete protocol and data format speciications for a particular port
type constitutes a reusable binding where the messages and operations are then
bound to a concrete network protocol and message format.

There are two main WSDL standards —WSDL 1.1 and WSDL 2.0. However, most of
the Web Service frameworks available today still use WSDL 1.1, and a framework
such as Apache Axis2 has support for both WSDL 1.1 and WSDL 2.0.

Web services lifecycle
As shown in the following igure, web services consist of a number of activities.
These activities can be divided into two layers: the basic layer, which consists of the
main activities that have to be supported by any web service, and the value-added
layer, which brings value and enhances the performance of the web service.

•	 Create: The irst activity in the service life cycle is the creation of the
web service. This can be achieved either by building from scratch or by
integrating existing web services.

•	 Describe: After creating the web service, it has to be described so that others
can access it.

•	 Publish: After the description, it has to be published on the Web.

Chapter 1

[17]

•	 Discover: Discovering a web service can be facilitated by a service broker,
which will support requirement analysis and description of requester's need,
matching needs to available web services, negotiation, and binding. As an
alternative to discovery, often commercial agreements are made based on a
supplied WSDL. This forms part of the contract between organizations.

•	 Invoke: Once the service is discovered, use tools and procedures to invoke
the service.

•	 Unpublish: Finally, the service can be unpublished if it is no longer
available or needed.

After the discovery is made and it is decided to use a certain web service, a number
of activities related to contracting take place. During the lifetime of a web service,
it will be updated and maintained throughout by the service provider. If the web
service description is changed, this will be updated at the service broker's end.

Apart from these basic activities some value added activities need to take place for a
web service to function effectively. Activities such as monitoring, billing, reliability,
and security have to be implemented.

These web service activities can take place only at different sites, that is, some of
these activities will take place at the service provider's site, while some will be at the
service broker's site and the rest will be at the service requester's site. This does not
mean that a particular site can only play one role; it can play multiple roles.

Apache Web Services and Axis2

[18]

Apache Web Service stack
In this section, we are going to discuss web service frameworks, particularly Web
Services frameworks at Apache. Increasing popularity of web services and their
usage have built a new competition in the market. This competition has led to
produce a set of good web service frameworks in the open source and commercial
domains. In the open source domain, especially when it comes to web services,
undoubtedly Apache has the most commonly used Web Service framework.
Over the years, Apache has produced four main Web Service frameworks, and
we are going to discuss three of them here. As far as the history of web services is
concerned, several generations are clearly visible. The irst generation web services
were highly controlled interactions and can be considered as mere tests of feasibility.
Apache SOAP was one of the notable SOAP engine in the irst generation, and
that was mainly meant to be "proof of concept" and not at all that concerned about
performance. Apache SOAP was initially developed at IBM and later they donated it
to Apache and started the Web Service project in Apache. The whole idea of the irst
generation SOAP engines was to convince the world that web services are feasible.

Soon the toll of these irst generation SOAP engines paid off. More companies started
showing their interest and the SOA started taking shape. This stage can be called as
the second generation of web services and required better SOAP engines that were
faster. Aspects such as discovery and deinition were already standardized and
SOAP engines also needed to support these standards. Apache Axis (Axis1) was
born as one of these second generation SOAP engines.

Apache Axis project is one of the most successful projects in Apache, and it
gained huge market awareness. A lot of companies use it as the core Web Service
framework. Apache Axis project introduces a number of new concepts into
Apache Web Services, and among them Handler framework can be considered as
one of the most important and useful features. Handler framework enables us to
extend core web service features and add additional quality of services, such as
security and reliability. Axis uses DOM as internal XML (SOAP) representation
mechanism, and it comes with comprehensive support for code generation and data
binding. Axis project has better support to quality of service, including reliability,
security, and transaction. Additionally, it has support for binary data. Axis has two
implementations, one for Java and the other for C++. Axis project is still popular and
very stable and a lot of companies use Axis as the web service framework.

Now the second generation of web services is also coming to an end. Web services
are becoming highly demanding and a large number of players have entered the web
service arena. Aspects governing different facets of web service interactions have
been standardized. The third generation of web services requires faster, far more
robust SOAP engines and the existing Axis is not enough for this. Axis2 was made to
ill this gap.

Chapter 1

[19]

Why Axis2?
As we discussed earlier, web services are moving rapidly and a lot of organizations
have moved to web services ield. As a result of this, new requirements are
encountered and new standards are deined. Especially, the widespread use of Cloud
computing also introduces a number of interesting challenges to the web service
world. Most of the commonly used commercial Clouds (for example, Amazon, EC2)
use a web service as the main management interface. Now people are looking for
web services, which perform fast, have reliability, security, and transaction, and
above all usability. In addition to the requirements, new WS-* speciications have
deined and web service engine need to support those.

As we discussed in the previous section, Apache Axis1 is one of the most stable and
commonly used web service frameworks. So changing Axis1 architecture to support
new requirements and new Web service standards was not a feasible option. In the
meantime, any software has its own lifecycle: it can evolve up to a certain point and
after that revolution is needed. Same theory was applicable for Axis1 as well. As a
result, Apache Web Service development project management team decided to start
a fresh project to support those new standards and user requirements.

Today, we live in fast moving society where time is very critical for all of us. At a
time when we start to improve time in nanosecond level, applications such as stock
market millisecond make a huge difference. As a result, performance is a critical
factor and having features and providing usability are not enough. Thus, in addition
to the new requirements and WS-* speciications, performance was a major concern
for Axis2. Axis1 uses DOM as its XML representation mechanisms. As a result of
that, complete messages need to load into memory before starting to process, which
slows down the system as well as increases the memory usage. Therefore, one of
the key challenges was to improve the XML processing and from that improve the
overall processing time and memory footprint. To provide better support and faster
processing of XML, Axis2 introduced new XML processing framework known as
Axiom. It uses pull parsing technology to achieve its requirements.

The Apache Web Service community discussed and agreed to introduce a new web
service framework called Axis2, with a number of new requirements as well as a
very lexible and easily extensible architecture, to support the current WS-* standards
as well as for future standards. That is how Axis2 or the Apache third generation
web service engine cames to the industry.

Apache Axis2 not only supports SOAP 1.1 and SOAP 1.2, but it also has integrated
support for the widely popular REST-style of web services. The same business logic
implementation can offer both a WS-* style interface as well as a REST/POX style
interface simultaneously.

Apache Web Services and Axis2

[20]

Apache Axis2 is more eficient, more modular, and more XML-oriented than
the older version. It is carefully designed to support the easy addition of plugin
"modules" that extend their functionality for features such as security and reliability:

•	 WS-ReliableMessaging: supported by Apache Sandesha2

•	 WS-Coordination and WS-Atomic Transaction: supported by
Apache Kandula2

•	 WS-Security: Supported by Apache Rampart

•	 WS-Addressing: module included as part of Axis2 core

Axis2 comes with many new features, enhancements, and industry speciication
implementations:

•	 Speed: Axis2 uses its own object model and StAX (Streaming API for XML)
parsing to achieve signiicantly greater speed than earlier versions of Apache
Axis.

•	 AXIOM: Axis2 comes with its own lightweight object model, AXIOM,
for message processing, which is extensible, performs highly, and is
developer-convenient.

•	 Hot deployment: Axis2 is equipped with the capability of deploying web
services and handlers while the system is up and running. In other words,
new services can be added to the system without having to shut down
the server. Simply drop the required web service archive into the services
directory in the repository, and the deployment model will automatically
deploy the service and make it available for use.

•	 Asynchronous web services: Axis2 now supports asynchronous web
services and asynchronous web services invocation using non-blocking
clients and transports.

•	 MEP support: Axis2 now comes handy with the lexibility to support
Message Exchange Patterns (MEPs) with in-built support for basic MEPs
deined in WSDL 2.0.

•	 Flexibility: The Axis2 architecture gives the developer complete freedom
to insert extensions into the engine for custom header processing, system
management, and anything else that you can imagine.

•	 Stability: Axis2 deines a set of published interfaces, which change relatively
slowly, as compared to the rest of Axis.

•	 Component-oriented deployment: You can easily deine reusable networks of
Handlers to implement common patterns of processing for your applications
or to distribute to partners.

Chapter 1

[21]

•	 Transport framework: Axis2 has a clean and simple abstraction for
integrating and using Transports (that is, senders and listeners for SOAP
over various protocols such as SMTP, FTP, message-oriented middleware,
and so on), and the core of the engine is completely transport-independent.

•	 WSDL support: Axis2 supports the Web Service Description Language
(versions 1.1 and 2.0), which allows you to easily build stubs to access remote
services, and also to automatically export machine-readable descriptions of
your deployed services from Axis2.

•	 Add-ons: Several web service speciications have been incorporated,
including WSS4J for security (Apache Rampart), Sandesha for reliable
messaging. Kandula is an encapsulation of WS-Coordination,
WS-AtomicTransaction, and WS-BusinessActivity.

•	 Composition and extensibility: Modules and phases improve support for
composability and extensibility. Modules support composability and can also
support new WS-* speciications in a simple and clean manner. They
are, however, not hot deployable, as they change the overall behavior of
the system.

Downloading and installing Apache Axis2
Apache Axis2 version 1.0 was released in 2006 and after that there were a number
of releases. The current stable release is 1.5. The previous version of this book,
"Quickstart Apache Axis", Deepal Jayasinghe, Packt Publishing, was based on version
1.2 of Axis2. This one is based on version 1.5. From 1.2 to 1.5, Axis2 introduced a
set of new features as well as API changes. One of the key changes was moving
from JDK 1.4 to 1.5. The current version of Axis2 only supports JDK 1.5 and higher.
Nevertheless, most of the commonly used APIs still remain the same.

There are three types of software: free software, open source software, and
commercial software. The main idea of free software is that you can download
the software for free; however, you do not get access to the source code or the
development work. On the other hand, open source software is designed and
developed by an open community; anyone can participate in the discussions and
contribute to the project, and inally, once the product is released, the user can have
access to both the product and the source code. The user can modify the source code,
ix issues, redistribute, and so on. As Axis2 is also an open source project, you can
download Axis2 and get access to both binary and source codes. However, in the
proprietary software, the license agreement is very restricted, and usually the user
does not get to see the source code; the user only gets the binary.

Apache Web Services and Axis2

[22]

You can download the latest version (or 1.5) from the Axis2 oficial website or any
mirror site. The download link is shown here:

http://ws.apache.org/axis2/download/1_5_1/download.cgi

Once you go the download page, you can ind four different distributions (artifacts):

•	 Binary distribution

•	 WAR distribution

•	 Source distribution

•	 Document distribution

In addition, you can also download IDE plugins from Axis2's oficial website (IDE
tools include both Eclipse and IntelliJ IDEA).

Binary distribution
Axis2 binary distribution consists of all the relevant third-party libraries, a set
of samples, and Axis2 runtime. Installing binary distribution is just a matter of
extracting ZIP archive iles into a location where you want. Once you download and
extract the binary distribution, you will be able to see a set of subdirectories inside
it (bin, lib, samples, repository, webapp, and conf). A typical structure of an
extracted binary distribution is shown below:

Axis2 binary distribution is a complete package where you can deploy services and
expose them using SimpleAxisServer. SimpleAxisServer is a fully functional server
that can be used as the backend server to expose the web service. It supports all the
features that the servlet version supports, including session management, thread
management, auto WSDL generation, and others.

We can also use Axis2 binary distribution to invoke remote services. For this you
need to add Axis2 and other related libraries into the class path and use Axis2
Client APIs to invoke the service. One of the commonly used approaches is to
add those libraries into your IDE and client applications developed from that.

Chapter 1

[23]

Binary distribution can also be used to generate Stubs and Skeleton from a given
WSDL or to generate WSDL from a given Java class. In the later chapters, we will
discuss how to use these tools to generate code.

Starting Axis2 as a standalone server is just a matter of running either .bat or a
script ile in the bin directory. Once we run the axis2server.sh (or .bat) and type
http://localhost:8080/axis2, we can see the list of available services in the
system, and these indicate the server is up and running.

WAR distribution
One of the easiest ways to expose a web service is to integrate it with an existing
application or enable the web service through an available application server. In
such scenarios, it is very useful to have a separate WAR (Web Archive) distribution,
which helps the users to download, deploy, and access very easily. Assume that you
have already downloaded Axis2 WAR distribution, and further assume you have
Apache Tomcat running. To deploy Axis2, you need to copy the axis2.war ile into
the webapps directory. Next, if Tomcat is running on port 8080, you can access Axis2
by going to the following URL:

http://localhost:8080/axis2

If everything has gone well, you will get the following page:

Next, we can try to invoke the version service (a default service comes with Axis2
distribution) using the following URL:

http://localhost:8080/axis2/services/Version/getVersion

www.allitebooks.com

http://www.allitebooks.org

Apache Web Services and Axis2

[24]

After this, it should display the version string of Axis2 you have downloaded. Once
you see the version number, we have successfully deployed Axis2 into Tomcat. Next,
you can upload or deploy a new service into Axis2.

In Axis2, to add a new web service, we need to add corresponding
resources (service archive ile) into the extracted location of the WAR
ile. However, most of the application servers do not unpack the WAR
ile. In those cases, you need to follow additional steps to conigure your
WAR ile. For that, you need to extract the WAR ile and do the required
modiications to the web.xml ile and recreate the WAR ile and deploy.
If your application server unpacks the WAR ile, we can drop our new
web service into the unpack location. This method is only used for quick
testing—real development and production use. It is recommended to use
Ant (or Maven) to produce WAR iles for speciic deployments, that is,
not manually adjusting the contents of WAR iles. We will learn about
Axis2 Web Service in detail later in this book. There, we will be able to
understand the meaning of adding a new web service.

Installing WAR distribution consists of the following few steps:

1. Install application server: If you do not have any application server in your
machine, then you need to download and install the application server.
Among the available application servers Apache Tomcat can be considered
as one of the best application servers (does not support all the features of
J2EE). So let's download Tomcat (5.x or above) and install.

2. Depending on the application server, you can ind the location where you
need to deploy the WAR iles. If you take Tomcat as an example, you need
to put the WAR ile into the webapps directory. So let's drop Axis2 WAR
distribution into the webapps directory of the application server.

3. As the inal step, open a browser and type http://localhost:8080/axis2.
We can see Axis2 web application (as shown in the previous igure) home
page (here the URL may differ, depending on the application server).

Chapter 1

[25]

Source distribution
As the name implies, source distribution consist of the source code that is used to
build binary distribution. As Apache Axis2 is released under Apache license, we can
do anything with the source code. The idea is that the user can use Axis2 and modify
to suit their requirements. Additionally, if they think that a modiication is useful for
other people, they can submit a patch and ask the project community to merge the
changes to the main source repository.

When we develop a real application, it is always useful to have the source
code around in addition to the documentation that helps to debug the
application as well. In the meantime, source distribution consists of Maven
scripts (http://maven.apache.org) and we can use them to create either
binary distribution, WAR distribution, or even JAR distribution.

Document distribution
The document distribution provides all the necessary resources to understand the
different features and functionality in the project. It provides Java documentation
and tutorials, explaining how to use different features,

JAR distribution
One of the key steps of a web service is developing the Services and Clients. In that
stage, we need to have access to the web service framework and their libraries. To
access the APIs and other relevant resources, it is a common practice to add the
required libraries into the Integrated Development Environment (IDE). Axis2 JAR
distribution provides a convenient way to download and embed Axis2 runtime into
the IDE. You can download Axis2 library iles separately from the following links, or
you can get those from Axis2 binary or WAR distribution:

http://people.apache.org/repo/m2-ibiblio-archived/org/apache/axis2/

Apache Web Services and Axis2

[26]

Summary
Is the web service concept a new revolutionary technology? The idea of splitting
large programs into small modules is an established principle of higher-level
programming languages. Even in the time of assembler programming, procedures
were separated from the other program parts for a better reusability. In fact, the
popularity of web services is caused by the standardisation of techniques and by
the standards that are open enough to be adapted to different situations. So the
developer is not committed to a concrete realisation of these concepts. There always
exist more solutions to realise the concepts of web services.

In this chapter, we discussed the main ways of enabling the SOA functionally in
your organization. There we discussed three main approaches—existing messaging
system, plain old XML, and web services. We then looked at the standard bodies
of web service and the web service model. Finally, we discussed Apache Axis2 and
how to download and use it.

In the next chapter, we will discuss Axis2 architecture, key components, and
key features.

Looking inside Axis2
There are a number of factors that make the process of understanding an application
much easier. When it comes to middleware application such as Apache Axis2,
having a good understanding of the underlying architecture, the key modules, and
how they are connected helps to use the application with a lot of conidence. Hence,
in this chapter, the main focus is to discuss Axis2 architecture and core components
in the application. In addition, lexibility and extensibility are the two main design
criteria that the software designers would like to have in their applications. Hence,
Axis2 also features extensibility and lexibility.

In this chapter, we will discuss more about Axis2 architecture, core components,
and how they are related. We will cover:

•	 Axis2 architecture

•	 Core modules

•	 Client API

•	 Extensibility

Axis2 architecture
Axis2 uses modular architecture and the advantages associated with it. In general,
modular architecture allows any of the components to be upgraded or replaced
independently as the requirements or the technologies change. Axis2 consists of a set
of core as well as a set of non-core modules. In addition, the Axis2 core system is a
pure SOAP-processing system with no JAX-PRC concept burnt into the core. Every
message coming into the system has to be transformed into a SOAP message before
it is handed over to the core engine. An incoming message can either be a SOAP
message or a non-SOAP message (REST, JSON). But at the transport level, it will be
converted into a SOAP message.

Looking inside Axis2

[28]

When Axis2 was designed, the following key rules were incorporated into its
architecture. These rules were mainly applied to achieve a highly lexible and
extensible SOAP processing engine:

•	 Separation of logic and state to provide stateless processing mechanism.
This is because web services are stateless.

•	 Single information model, in order to enable the system to suspend and
resume.

•	 Ability to extend support to newer web service speciications with minimal
changes made to the core architecture.

The following igure shows all the key components in Axis2 architecture (including
the core components as well as non-core components):

Core modules
The term core means to categorize key components of Axis2. The set of core modules
consists of the minimal number of modules that need to set up an Axis2 system. In
other words, once you have all the core modules (.jar iles) and other dependency
libraries, you can use Axis2 to deploy a service and to invoke a remote service. The
following is the list of core modules in Axis2:

Chapter 2

[29]

•	 XML processing model: One of the key components of any messaging system
is the message processing and manipulating system. System usability and
performance wholly depends on the eficiency of the message processing
component. As mentioned earlier, Axis2 was built as a SOAP processing
framework and SOAP is a specialized version of XML. Hence, any XML
processing framework can be employed to process SOAP messages. Axis1
uses DOM as its message representation mechanism. However, Axis2
introduced a fresh, XML InfoSet-based representation for SOAP messages.
It is known as AXIs Object Model (AXIOM). AXIOM encapsulates the
complexities of the eficient XML processing within the implementation.

•	 SOAP processing model: As mentioned in the previous item, SOAP is a
specialized version of XML. In other words, SOAP is XML, but comes with
a standard structure. In Axis2, the SOAP processing module involves the
processing of an incoming SOAP message. The model deines the different
stages (phases) that the execution will walk through. The user can then
extend the processing model to speciic places.

•	 Information model: It is always a good idea to keep that data and logic
separately. A classic example is DBMS (Database Management System),
which does this. Thus, one can change without affecting the other. In Axis2
domain, an information model keeps both static as well as dynamic states.
And there is a separate component to process the corresponding logic. The
information model consists of two hierarchies to keep static and runtime
information separate. Session management and Service lifecycle management
are two core features of the information model.

•	 Deployment model: The deployment model allows the user to easily deploy
the services, conigure the transports, and extend the SOAP processing
model. It also introduces newer deployment mechanisms in order to handle
hot deployment, hot updates, and J2EE-style deployment.

•	 Client API: This provides a convenient API for users to interact with the
web services using Axis2. The API consists of two sub-APIs, for average
users and for advanced users. Axis2 default implementation supports all the
eight Message Exchange Patterns (MEP) deined in WSDL 2.0. The API also
allows easy extension to support custom MEPs.

•	 Transports: Axis2 deines a transport framework that allows the user to
use and expose the same service in multiple transports. The transports it
into speciic places in the SOAP processing model. The implementation, by
default, provides a few common transports (HTTP, SMTP, JMS, TCP, and so
on). However, the user can write or plug in custom transports, if needed.

Looking inside Axis2

[30]

XML processing model
As mentioned in Chapter 1, Apache Web Services and Axis2, Axis2 is built on a
completely new architecture as compared to Axis 1.x. One of the key reasons for
introducing Axis2 was to have a better and an eficient XML processing model.
Axis 1.x used DOM as its XML representation mechanism, which required the
complete objects hierarchy (corresponding to incoming messages) to be kept in
the memory. This will not be a problem for small-sized messages. But when it
comes to large-sized messages, it becomes an issue. To overcome this problem,
Axis2 has introduced a new XML representation.

AXIOM (AXIs2 Object Model) forms the basis of the XML representation for every
SOAP-based message in Axis2. The advantage of AXIOM over the other XML InfoSet
representations is that it is based on pull parser technique, whereas most others are
based on PUSH parser technique.

The main difference of pull over push is that in pull technique, the invoker has
full control over the parser, and it can request for the next event and act upon that,
whereas in the case of PUSH, the parser has limited control and delegates most of
the functionality to handlers that respond to the events that are ired during the
course of processing the document.

As AXIOM is based on pull parser technique, it has "on-demand-building" capability
wherein object model will be built only if it is asked to do so. If required, one can
directly access underline pull parser from AXIOM, and use that rather than build
an Object Model (OM).

SOAP processing model
Sending, receiving, and processing a SOAP message is one of the key jobs of the
SOAP-processing engine. The architecture in Axis2 provides two pipes (or lows) in
order to perform two basic actions. Old messaging systems such as RPC were built
around request and response. In Axis, it goes beyond that and introduces one-way
message processing. With this, there can be request without any responses.

The AxisEngine or driver of Axis2 deines two methods, send() and receive(),
to implement these two pipes. The two pipes are named InFlow and OutFlow.
The complex Message Exchange Patterns (MEPs) are constructed by combining
these two types of pipes. It should be noted that in addition to these two pipes,
there are two other pipes as well, which help in handling incoming and sending
fault messages.

Chapter 2

[31]

As mentioned earlier, the key job of the SOAP processing framework is to process
the SOAP message. However, just processing the message is not enough. It is
necessary to provide additional functionalities, such as quality of service. Thus,
it is required to have extensibility built onto the system. Extensibility of the SOAP
processing model is provided through handlers. When a SOAP message is being
processed, the handlers that are registered will be executed. The handlers can be
registered in global, service, or in operation scopes, and the inal handler chain is
calculated by combining the handlers from all the scopes.

The handlers act as interceptors and they process the parts of the SOAP message and
provide the quality of service features (a good example of quality of service could be
security or reliability). Usually handlers work on the SOAP headers, yet they may
access or change the SOAP body as well.

The concept of a low is very simple and it consists a series of phases wherein a
phase is referred as a collection of handlers. Depending on the MEP for a given
method invocation, the number of lows associated with it may vary.

In-Only MEP: In the case of an In-Only MEP, the corresponding method invocation
has only one pipe, that is, the message will only go through in-pipe (inlow).

In-Out MEP: On the other hand, in the case of an In-Out MEP, the message will go
through two pipes, that is, in-pipe (inlow) and out-pipe (outlow). When a SOAP
message is being sent, an OutFlow would begin.

Fault-Flow: The OutFlow invokes the handlers and ends with a transport sender that
sends the SOAP message to the target endpoint. The SOAP message is received by a
transport receiver at the target endpoint, which reads the SOAP message and starts
the InFlow. The InFlow consists of handlers and ends with the message receiver,
which handles the actual business logic invocation.

A phase is a logical collection of one or more handlers, and sometimes a phase itself
acts as a handler. Axis2 introduced the phase concept as an easy way of extending
core functionalities. In Axis 1.x, we needed to change the global coniguration iles
if we want to add a handler into a handler chain. But Axis2 makes it easier by
using the concept of phases and phase rules. Phase rules specify how a given set of
handlers inside a particular phase are ordered. The following igure illustrates a low
and its phases:

Looking inside Axis2

[32]

If the message has gone through the execution chain without having any problem,
the engine will hand over the message to the message receiver in order to do the
business logic invocation. After this, it is up to the message receiver to invoke the
service and send the response if necessary. The following igure shows how the
message receiver its into the execution chain:

The two pipes do not differentiate between the server and the client. The SOAP
processing model handles the complexity and provides two abstract pipes to the
user. The different areas or stages of the pipes are named as phases in Axis2. A
handler always runs inside a phase, and the phase provides a mechanism to specify
the ordering of handlers. Both pipes have built-in phases, and both deine the areas
for user phases, which can be deined by the user as well.

Information model
As shown in following igure, the information model consists of two hierarchies—
description hierarchy and context hierarchy. The description hierarchy represents
the static data that may come from different deployment descriptors. If the hot
deployment is turned off, the description hierarchy is not likely to be changed. If the
hot deployment is turned on, you can deploy the service while the system is up and
running. In this case, the description hierarchy is updated with the corresponding
data changes made by the services. The context hierarchy keeps the runtime data.
Unlike in the description hierarchy, the context hierarchy keeps on changing when
the server starts receiving messages.

These two hierarchies create a model that provides the ability to search for the
key-value pairs. When the values are to be searched at a given level, they are done
while moving up the hierarchy until a match is found. In the resulting model, the
lower levels override the values present in the upper levels. For example, when
a value has been searched in the message context and is not found, then it would
be searched in the operation context, and so on. The search is irst done up the
hierarchy, and if the starting point is a context, it would search in the description
hierarchy as well.

This allows the user to declare and override values, resulting in a very lexible
coniguration model. The lexibility could be the Achilles’ heel of the system,
as the search is expensive, especially for something that does not exist.

Chapter 2

[33]

We will discuss this igure in more detail in Chapter 6, Information Model, where we
will discuss each item separately and also provide a detailed description of how
they are connected.

Deployment model
The previous versions of Axis (Axis 1.x) addressed the requirements presented
on development stages of the product. However, once the SOA and web service
became popular, a number of new requirements came into the picture. Among them,
usability is one of the most important factors to be considered.

In Axis 1.x the user has to manually invoke the admin client and update the
server classpath. After this, the user needs to restart the server in order to apply
the changes. This burdensome deployment model was a deinite barrier for
beginners. Axis2 was engineered to overcome this drawback, and provided a
lexible, user-friendly, and easily conigurable deployment model.

www.allitebooks.com

http://www.allitebooks.org

Looking inside Axis2

[34]

Axis2 deployment introduced the notion of J2EE-like deployment mechanism,
wherein the developer can bundle all the class iles, library iles, resources iles,
and coniguration iles together as an archive ile, and drop it in a speciied location
in the ile system. In addition, Axis2 has also introduced the concept of deployer,
where it provides an easy way of deploying anything Axis2 (Data Service, Mashups,
and others).

The concept of hot deployment and hot update is not new to technical paradigm
and particularly to the web service platform. However, having a very good support
for hot-deployment is a new concept to the Axis community. Therefore, Axis2 was
developed by giving room for hot deployment features.

•	 Hot deployment: This refers to the capability of deploying service while the
system is up and running. In a real-time system or in a business environment,
the availability of the system is very important. If the processing of the system
is slow even for a moment, the loss might be substantial and it may affect the
business. In the meanwhile, it is required to add new services to the system.
If this can be done without having the need to shut down the servers, it
would be a great achievement. Axis2 addresses this issue and provides web
service hot deployment ability, wherein you do not need to shut down the
system to deploy a new web service. All that needs to be done is to drop the
required web service archive into the services directory in the repository. The
deployment model will automatically deploy the service and make it available.

•	 Hot update: This refers to the ability to make changes to an existing web
service without even shutting down the system. This is an essential feature
that is best suited in a testing environment. It is not advisable to use hot
updates in a real-time system, because a hot update could lead a system
into an unknown state. Additionally, there is the possibility of loosening the
existing service data of that service. To prevent this, Axis2 comes with the
hot update parameter set to FALSE by default.

Client API
Nowadays, asynchronous or non-blocking web service invocation is a key
requirement. A classic example is AJAX and Web 2.0 concept, where you have a
number of asynchronous components in the web page. There are currently a few
approaches to invoking a web service in a non-blocking manner. Two of them are
listed here:

•	 The client programming model, where a client invokes the service in a
non-blocking manner

Chapter 2

[35]

•	 The transport level non-blocking invocation where invocation occurs in two
transports (it could either be two single-channel transports, such as SMTP, or
two double-channel transports such as HTTP)

Axis2 client API supports both non-blocking invocation scenarios.

Axis2 introduces a very convenient client API for invoking a service that consists of
two classes called ServiceClient and OperationClient. ServiceClient. API is
intended for regular usage when you just require sending and receiving XML. On
the other hand, Operation client is meant for advanced usage, when there is a need to
work with SOAP headers and some other advanced tasks. With ServiceClient, you
can only access SOAP body or the pay load. Although we can add SOAP headers,
you do not have any way to retrieve the SOAP header by using the ServiceClient.
We need to use an operation client for such a function.

ServiceClient has the following API for invoking a service:

•	 sendRobust: The whole idea of this API is to send an XML request to the web
service and not care about its response. However, if something goes wrong,
you would be required to know that too. So this API invokes a service where
it does not have a return value but would throw an exception.

•	 ireAndForget: This API is for just sending an XML request and not caring
about neither the response, nor the exception. Hence, this is useful in
invoking an In-Only MEP.

•	 sendReceive: This invokes a service that has a return value. This is one of the
most commonly used APIs. Hence, this is used for invoking an In-Out MEP.

•	 sendReceiveNonBlocking: This invokes a service in a non-blocking manner.
This method can be used when the service has a return value. In order to
use this method, we have to pass a callback object that is called once the
invocation is complete.

As mentioned earlier, the OperationClient is for advanced users, and working with
OperationClient requires you to know Axis2 in depth. In ServiceClient, you do
not have to know anything about SOAP envelope, message context, and others. But
when it comes to OperationClient, the users have to create these by themselves
before invoking a service. Creating and invoking a service using OperationClient
involves the following steps:

1. Create a ServiceClient.

2. After that, create OperationClient with the use of ServiceClient
that you have created.

3. Create a SOAP envelop.

4. Create message context.

Looking inside Axis2

[36]

5. Add the SOAP envelope to the message context.

6. Add the MessageContext to OperationClient.

7. Invoke the OperationClient.

8. If there is a response, get the response message context from the
OperationClient.

Transports
In Axis2, each and every transport consists of two parts, namely transport senders
and transport receivers. You can deine transports along with senders and receivers
in Axis2 global coniguration. The transport receiver is the one through which the
AxisEngine receives the message, whereas the transport sender is the one that sends
out the message. One of the important aspects of Axis2 is that its core is completely
independent of the transport sender and receiver.

Axis2 is built in order to support the following transport protocols:

•	 HTTP/HTTPS: In HTTP transport, the transport listener is a servlet or org.
apache.axis2.transport.http.SimpleHTTPServer provided by Axis2.
The transport sender uses a common HTTP client for connection and sends
the SOAP message.

•	 TCP: This is the simplest transport and it needs WS-Addressing support in
order to be functional.

•	 SMTP: This requires a single e-mail account. The transport receiver is a
thread that checks for e-mails at ixed intervals of time.

•	 JMS: This provides a way to invoke a web service by using the JMS way.

•	 XMPP: This provides a standard way to communicate with the Jabber server
and to invoke web services using XMPP protocol.

Other modules
The idea of other modules is optional modules that provide additional functionalities
or utilities: for example, modules that need to generate Axis2 services and service
proxies. Axis2 does not use these modules at the runtime, and as mentioned earlier,
those are only to provide additional features. Axis2 uses them as tooling modules to
generate service-side code and client-side code.

•	 Code generation: Axis2 provides a code generation tool that generates server-
side (skeleton) and client-side code (stub or proxy) along with descriptors
and a test case. The generated code would simplify the service deployment
and the service invocation. This would increase the usability of Axis2.

Chapter 2

[37]

•	 Pluggable data binding: The basic client API of Axis2 lets the user process
SOAP at the XML InfoSet level, whereas data binding extends it to make
it more convenient for the users by encapsulating the InfoSet layer and
providing a programming language-speciic interface.

Code generation
In the traditional RPC system, there is a concept called proxy and skeleton
generation. The idea is to use the remote interface and generate proxy code to invoke
the remote service, thus local application talks to the proxy and proxy internally calls
to the remote service and gets the response. Java RMI is a good example for this.
One of the issues the proxy is that it is fully application-dependent. Thus, to write a
proxy, good knowledge about the application is required. With the code generation,
it resolves that issue by providing tools to generate proxy.

In Axis2 world, the code generation is simply to use WSDL document and generate
either (or both) Client proxy and Server skeleton. In Axis2, it uses a very extensible
approach by combining XSL technologies with the code generation.

Data binding
Data binding for Axis2 is implemented in an interesting manner. Data binding has
deliberately not been included in the core, and hence the code generation allows
different data binding frameworks to be plugged in. This is done through an
extension mechanism, where the codegen engine calls the extensions irst and then
executes the core emitter. The extensions plot a map of QNames versus class names,
which is passed to the code generator wherein the emitter operates.

Axis2 supports the following data binding frameworks, including its own data
binding framework called Axis2 Data Binding (ADB):

•	 ADB: This is a simple and lightweight framework that works off StAX
and is fairly performant

•	 XMLBeans: If we want to use full schema support, this is preferred,
as XMLBeans claims that it supports complete schema speciication

•	 JaxMe: JaxMe support has been added to XMLBeans, and it serves as
another option for the user

•	 JibX: This is the most recent addition to the family of data binding.

•	 JaxBRI: This provides additional Marshaller properties that are not
deined by the JAXB speciication

Looking inside Axis2

[38]

Extensible nature of Axis2
In Axis2, there are many ways to extend the functionalities. In this book, we will be
discussing a few of them, which are listed here:

•	 Service extension of the module

•	 Custom deployers

•	 Message receivers

Service extension or the module
Both Axis1 and Axis2 have the concept of handlers. But when compared to Axis 1.x,
there are few changes in the way Axis2 speciies and deploys handlers. In Axis 1.x, if
you want to add a handler, then you need to change the global coniguration ile and
then restart the system. In the meantime, it does not have a way to add or change
handlers dynamically.

To overcome this problem as well as to add new features, Axis2 introduced the
concept of web service extensions or a module where the main purpose of a module
is to extend the core functionality. It is similar to adding handler chains in Axis1.x.
The advantage of the Axis2 module over the Axis 1.x handler chain is that you can
add new modules without changing any global coniguration iles.

A module is a self-contained package that includes handlers, third-party libraries,
module-related resources, and a module coniguration ile.

A module can be deployed as an archive ile. Axis2 came up with a new ile
extension for modules called .mar. The most important ile in a module archive ile is
the module coniguration ile or module.xml. A module will not be functional unless
it has a module.xml ile. A module coniguration ile mainly speciies handlers and
their phase rules. So once we engage a module depending on the phase rule, the
handlers will be placed in different lows (inlow, outlow, and so on).

The idea of modules is very simple. To implement support for WS-Addressing
or WS-Security in our services, we need to download the corresponding module
and drop it into the modules directory of the Axis2 repository. We can engage the
module at the time of deployment by adding <module ref="module name"/>
to axis2.xml (global coniguration ile). In addition to that, if we want to engage
a module at runtime, we can do that in many ways, such as by using Axis2 web
admin, handlers, and so on.

Chapter 2

[39]

Custom deployers
We can deploy a service in many ways. One could deploy a service as an archive ile
(Axis2 default) by creating a service using a database or by creating a web service
using a text ile. The idea of custom deployers is to open avenues for supporting any
kind of deployment mechanisms. Axis2 has in-built support for:

•	 Archive-based deployment (.aar and .mar concept)

•	 POJO deployment (.class or .jar)

But if someone wants to deploy a service or a module, he or she can achieve that goal
with the use of custom deployers. We will discuss custom deployers in more detail in
Chapter 5, Hacking Deployment.

Message receivers
As we have discussed, the Axis2 execution chain is a collection of phases wherein
each phase is a logical group of handlers. The message receiver is a handler in itself.
But it is different from others because Axis2 treats it differently. If the message
has gone through the inlow with no issues, or in other words, no exceptions have
occurred in the middle of the chain, the engine hands over the message to the
message receiver so as to invoke the associated business logic.

Message receivers interact directly with both the actual service implementation class
and the AxisEngine. However, there can be some instances wherein there are no
service implementation classes and all the logic is handed to the message receiver.
The message receiver is the last component in the inlow process. Axis2 has got
nothing to do with it once the message is handed over to the message receiver.

Summary
Axis2 is enterprise-ready. Web service engine provides a better SOAP processing
model, with a considerable increase in performance of both speed as well as memory,
with respect to Axis 1.x and other existing web service engines. In addition, it
provides the user with a convenient API for deployment service, extending the core
functionality, and thus acting as a new client programming model. In this chapter,
we have learned about the internals and architecture of Axis2. We have learned how
Axis2 architecture helps in attaining a more lexible and extensible Axis2.

In the next chapter, we cover Apache Axiom, the XML processing, and manipulation
of the framework of Axis2. There we introduce Axiom and its features and discuss
how to use them by giving code samples.

Axis 2 XML Model (AXIOM)
AXIOM stands for AXis2 Object Model and refers to the XML InfoSet model
that was initially developed as part of Apache Axis2, but later it moved as a WS
commons project so that projects other than Axis2 were able to beneit from it. XML
InfoSet refers to the information included inside the XML, and for programmatic
manipulation it is convenient to have a representation of this XML InfoSet in a
language-speciic manner. For an object-oriented language, the obvious choice is a
model made up of objects. DOM and JDOM are two such XML models. AXIOM is
conceptually similar to such an XML model by its external behavior, but deep down
it is very much different. At the end of this chapter, you will understand the basics of
AXIOM and the best practices to be followed while using AXIOM.

This chapter will cover:

•	 AXIOM architecture

•	 Pull parsing

•	 Working with AXIOM

•	 Advanced operations with AXIOM

Overview of AXIOM and its features
Apache Axiom was designed to provide fast and better XML, which became the
heart of any given XML-processing system. Axiom is a lightweight implementation
built on deferred parsing technology. More concretely, it is an implementation of
StAX (JSR 173), the standard streaming pull parser API. One of the main intentions
of this was to provide a standard manipulation API. Thus the AXIOM object model
can be manipulated lexibly as any other object model (for example, JDOM), but
underneath, the objects will be created only when they are absolutely required (that
is, on-demand building). This leads to less memory-intensive programming.

Axis 2 XML Model (AXIOM)

[42]

Looking at the features of AXIOM, deferred building can be considered as one of the
best. In addition, providing deferred building was also one of the design goals. If
you look at Axis1, one of the drawbacks it had was its XML representation. In Axis1,
it uses Document Object Model (DOM) as the XML representation, thus needing to
load the complete message into the memory before the starting process. This leads to
memory and performance overhead. AXIOM was introduced to solve those issues,
and in addition to that, it has the following key features as well:

•	 Lightweight: Axiom was built using the previous experiences gained
through the Apache Axis1 project. Hence, one of the design goals was to
make it lightweight. This is achieved by reducing the depth of the hierarchy,
number of methods, and the attributes enclosed in the objects. This makes
the objects less memory intensive.

•	 Deferred building: This is one of the most important features that Axiom
provides. This means building the object model only when it is absolutely
needed. The objects are not made unless a need arises for them. This passes
the control (of building) over to the object model, rather than an external
builder. In other words, deferred building refers to the building the object
model only when it is required.

•	 Pull-based manipulation: In deferred building, Axiom uses pull parsing
APIs. As mentioned earlier, AXIOM is based on StAX, the standard pull
parser API. To provide more control to the user, AXIOM exposes pull API,
thus applications that use AXIOM can directly work with pull APIs.

What is pull parsing?
We encountered pull parsing several times in this chapter. It is essential to
understand the meaning and the concept of pull parsing. Pull parsing is a popular
technology for processing XML at the time Axiom was designed. In addition, pull
parsing has shown success in several academic and industrial works. Before pull
parsing, most of the XML processing frameworks such as DOM were push-based: in
other words, populating the object structure completely depends on the underlying
parser. There, irst the user creates the parser and starts the process. Then the parser
keeps on iring the events based on the elements (for example, start event for start
element, end event for end element). With the push-based techniques, the user does
not have control over the parser, and the user has to keep processing the events
generated by the parser and act accordingly. Push-based approaches are easy to use;
however, when it comes to applications that are dominated by XML processing,
eficient mechanisms are needed. For example, push-based parsing require
populating everything in the memory, but applications such as Enterprise Service
Bus (ESB) only require to process a single part of the message and forward that to
the appropriate target.

Chapter 3

[43]

With pull parsing, the user has full control over the parser. The user can ask for the
next event process and for the next event. In other words, in pull parsing, the parser
only proceeds at the user's command. The user can decide to store or discard events
generated from the parser. This is similar to a water tap where you open the tap, get
the water, and close the tap. When you want the water again, you open the tap again
and continue the process. Thus, the user has full control over the low and process
of the water. The same thing happens with pull parsing where the user creates the
parser and asks for the events and then it gives the event. The user processes the
events and asks for the next event, until it reaches the end of the ile.

Architecture
When we consider the AXIOM architecture, it is not as complex as you may
think. As mentioned earlier, many APIs are very similar to JDOM APIs. Notably,
AXIOM has native support for binary data and MTOM, which is important for a
SOAP processing framework such as Axis2. AXIOM also has full support for XML
processing and enhanced support for SOAP processing.

AXIOM is also known as Object Model (OM), and the OM Builder wraps the raw
XML character stream through the StAX reader API. Hence, the complexities of the
pull event stream are transparent to the user.

As mentioned previously, deferred building is one of the main features of AXIOM. In
addition, caching and non-caching can also be considered as another useful feature.
The idea of caching depends upon whether the object model is stored in the memory
or not. If the object model is stored in the memory, it is cached, otherwise it is non-
cached. The reason why this is so important is because caching can be turned off in
certain situations. If this happens, the parser proceeds without building the object
structure. Users can extract raw pull stream from AXIOM and use that instead of the
AXIOM. In this case, it is sometimes beneicial to switch off caching.

Working with AXIOM
You can either download AXIOM binary or you can build the binary using the
source distribution (or from source repository). As you already know, though
AXIOM was started as a part of Axis2, now it has its own release cycle. Therefore,
you can either download AXIOM binary from AXIOM release or you can ind
AXIOM binary in the Axis2 release.

Once you have AXIOM binary, the next step is to add the binary into your
classpath (and the dependent binary iles as well); only then can you start to work
with AXIOM. If your application has a build system such as Maven, you can add the
dependency to that and let it download AXIOM JARs automatically.

www.allitebooks.com

http://www.allitebooks.org

Axis 2 XML Model (AXIOM)

[44]

Creating Axiom
You can create AXIOM (instance of object model) in three ways, as shown in the
following igure. First, you can create Axiom using a pull event stream. Second,
you can create Axiom using a push event stream, or you can create AXIOM
programmatically. In this chapter, you will learn how to create Axiom using a pull
event stream and also programmatically because these are the two most common
methods you use to create Axiom.

First, let us look at how to create Axiom (we will be using AXIOM and Axiom
interchangeably) using a pull event stream. Axiom provides a notion of a factory
and a builder to create objects. The factory helps to keep the code at the interface
level and the implementations separately. Axiom is tightly bound to StAX API
(API for pull parser), thus a StAX-compliant reader should be created irst with
the desired input stream. One can then select one of the many builders available
in AXIOM. In Axiom, you can ind different types of builders as well, and those
are mainly for user convenience. Axiom has OM builders (pure XML processing)
as well as SOAP builders (SOAP processing optimized for SOAP), so you can use
the appropriate builder for your requirement. StAXOMBuilder will build a pure
XML InfoSet-compliant object model, while the SOAPModelBuilder returns
SOAP-speciic objects (such as the SOAPEnvelope, which are subclasses of the
OMElement) through its builder methods.

Creating Axiom from an input stream
The following piece of code shows the correct method of creating an Axiom
document from a ile input stream (input stream can be ile stream, socket
stream or any other stream):

//First, create the parser
XMLStreamReader parser = XMLInputFactory.newInstance().
createXMLStreamReader(new FileInputStream(file));
//create an OM builder, the most recommend approach is to use the //
factory, but here we simply create it

Chapter 3

[45]

StAXOMBuilder builder = new StAXOMBuilder(parser);
//get the root element (in this case the envelope)
OMElement documentElement = builder.getDocumentElement();

When you want to read an input stream using Axiom, the irst step is to create a
parser with the input stream (in this case, we create a FileInputStream). Next,
you need to create a builder by giving parser as an argument. The builder uses
parser internally to process the input stream. Finally, you can get the root element;
remember, when you ask for the document element from the builder, it will give you
the pointer to the Axiom wrapper. But the XML stream is still in the stream and no
object tree is created at that time. The object tree is created only when you navigate
or build the Axiom.

Creating Axiom using a string
Now let us try to create an Axiom document from a string, which is also very
straightforward.

String xmlString = "<book>" +

 "<name>Qucik-start Axis</name>" +

 "<isbn>978-1-84719-286-8</isbn>" +

 "</book>";

ByteArrayInputStream xmlStream = new
 ByteArrayInputStream(xmlString.getBytes());

 //create a builder. Since you want the XML as a plain XML, you can
 just use

 //the plain OMBuilder

StAXBuilder builder = new StAXOMBuilder(xmlStream);

 //return the root element.

builder.getDocumentElement();

As you can see here, when creating an Axiom from a string, irst you get an input
stream from that and then follow the same procedure stated here. By looking at
the example, it is clear that creating an Axiom from an input stream or from a
string is pretty straightforward. However, elements and nodes can also be created
programmatically to modify the structure of the AXIOM element you created here.
The recommended way to create Axiom objects programmatically is to use one of the
factory APIs that come with AXIOM.

The OMAbstractFactory.getOMFactory() method will return the proper factory
and the creator methods for each type that should be called.

Axis 2 XML Model (AXIOM)

[46]

Creating Axiom programmatically
Creating an Axiom programmatically requires a number of additional steps
compared to the mentioned approaches. The process of creating Axiom
programmatically involves the following steps:

//Obtain a factory

OMFactory factory = OMAbstractFactory.getOMFactory();

//use the factory to create two namespace object

OMNamespace axis2 = factory.createOMNamespace("axis2","ns");

//use the factory to create three elements to represent the book
element

OMElement root = factory.createOMElement("book",axis2);

OMElement name = factory.createOMElement("name",axis2);

OMElement isbn = factory.createOMElement("isbn",axis2);

As you can see, the factory has a set of factory.create methods. This is mainly
to cater to different implementations while keeping the programmer's code intact.
When you use Axiom, it is always good practice to use the factory for creating
Axiom objects. This will ease the switching of different Axiom implementations.
Several differences exist between a programmatically created OMNode and a
conventionally created OMNode. The most important difference is that the former
will have no builder object enclosed, whereas the latter always carries a reference
to its builder.

As we discussed earlier in this chapter, the object model is built as and when
required. Therefore, each and every OMNode should have a reference to its builder. If
this information is not available, it is due to the object created without a builder. This
difference becomes evident when the user tries to get a non-caching pull parser from
the OMElement.

The SOAP object hierarchy (see the following igure) is made in the most natural way
for a web service programmer. An inspection of the API will show that it is quite
close to the SAAJ API but with no bindings to DOM or any other model. The SOAP
classes extend basic OM classes (such as OMElement); hence, one can access a SOAP
document either with the abstraction of SOAP or drill down to the underlying XML
object model with a simple casting.

Chapter 3

[47]

Adding child nodes and attributes
So far you have learned how to create Axiom programmatically and by using StAX
API, but it is not enough to work with Axiom. You also need to learn how to create
and add child nodes to Axiom.

Addition and removal methods are primarily deined in the OMElement interface.
The following are the important methods for adding nodes:

public void addChild(OMNode omNode);

public void addAttribute(OMAttribute omAttribute);

Now let us try to complete the book element you previously created by adding
child elements name and isbn to the root element:

root.addChild(name);

root.addChild(isbn);

•	 The addChild method will always add the child as the last child of
the parent.

•	 A given node can be removed from the tree by calling the detach() method.
A node can also be removed from the tree by calling the remove method of
the returned iterator, which will also call the detach method of the particular
node internally.

•	 Namespaces are a tricky part of any XML object model and is the same in
Axiom. However, the interface to the namespace has been made very simple.
OMNamespace is the class that represents a namespace with intentionally
removed setter methods. This makes the OMNamespace immutable and allows
the underlying implementation to share the objects without any dificulty.

Axis 2 XML Model (AXIOM)

[48]

Working with OM namespaces
As we just discussed, namespace handling is one of the key parts of XML processing.
Hence Axiom provides a set of APIs to handle namespaces:

public OMNamespace declareNamespace(String uri, String prefix);

public OMNamespace declareNamespace(OMNamespace namespace);

public OMNamespace findNamespace(String uri, String prefix) throws
OMException;

As you can see there are two declareNamespace methods and they are fairly
straightforward. Note that a namespace declaration that has already been added will
not be added twice. findNamespace is a very handy method to locate a namespace
object higher up the object tree. It searches for a matching namespace in its own
declarations section and jumps to the parent if it's not found. The search progresses
up the tree until a matching namespace is found or the root has been reached.

During the serialization, a directly created namespace from the factory will only be
added to the declarations when that preix is encountered by the serializer.

You will learn how to serialize an Axiom element later in this chapter in the section
Serialization. However, if you serialize the element you created, then you get the
following output:

<ns:book xmlns:ns="axis2"><ns:name></ns:name><ns:isbn></ns:isbn></
ns:book>

Working with attribute
Let us now see how to create and add attributes to the book element:

OMAttribute type = factory.createOMAttribute("type",null,"web-
 services");

root.addAttribute(type);

 If you serialize the element again, then you will see following output:

<ns:book xmlns:ns="axis2" type="web-
 services"><ns:name></ns:name><ns:isbn></ns:isbn></ns:book>

Traversing the Axiom tree
In the previous sections, you learned how to create Axiom elements, to create and
add child nodes, to create namespaces, and to create attributes. Now let us try to
traverse the Axiom tree.

Chapter 3

[49]

When traversing an Axiom object, you can use the conventional way of navigating
the tree, where you get a node and look for its children, and then for each child node
you do the same. Notably, in Axiom you do not get a list, rather you get an iterator:
the idea is to encapsulate the deferred building by using an iterator. The following
code sample shows how the children can be accessed. The children are of the type
OMNode and can either be of type OMText or OMElement.

Iterator childNodes = root.getChildren();

while(childNodes.hasNext()){

 OMNode node = (OMNode) childNodes.next();

 }

This method shows how to access a list of children using an iterator; in addition
to this, once you process a particular element, you can get its siblings as well.
Moreover, you can access previous siblings and next siblings using nextSibling()
and previousSibling() methods respectively.

You can also ilter only a set of nodes (for example, elements with a
certain name) using getChildrenWithName(QName) methods, where
getChildrenWithName(QName) methods returns an iterator with all the child
nodes, which have the given Qname.

Serialization
Now you have a good understanding of creating and traversing the Axiom tree.
Therefore, the next most important part is to learn how to serialize or write Axiom
object model into an output stream.

Axiom can be serialized either as the pure object model (for example, a set of Java
objects) or the pull event stream (for example, writing to a ile or any other output
stream). The serialization uses an XMLStreamWriter object to write out the output
and hence the same serialization mechanism can be used to write different types
of outputs (such as text, binary, and others). Although not discussed in the book,
the current version of Axis2 uses this and provides a number of different message
formats (for example, REST, JSON, and so on).

Axis 2 XML Model (AXIOM)

[50]

In Axiom, it provides a way to navigate the tree with or without building the
object structure. A caching lag is provided by Axiom to control this behavior.
The OMNode has two methods: serializeAndConsume and serialize. When
serializeAndConsume is called, the cache lag is reset and the serializer does not
cache the stream. Hence, the object model will not be built if the cache lag is not
set. In this case, it serializes the XML stream directory to the output stream (without
creating object model). If you call the serializeAndConsume method, you can
serialize the Axiom tree only once, as it does not build the Axiom tree into memory.
However, you can call the serialize method any number of times. You will learn the
differences between the two later in this section. The following code segment shows
how to use the serializer and write output to the standard output:

//creating a writer to write into the standard output

XMLStreamWriter writer =
 XMLOutputFactory.newInstance().createXMLStreamWriter(System.out);

//write the content to the console with caching (i.e., build the //
tree)

 root.serialize(writer);

 writer.flush();

Now let us try to understand the difference between the methods
serializeAndConsume() and serialize(). First, let us try to call the serialize
method twice in the Axiom element, as shown in the following sample code:

String xmlStream = "<ns:book xmlns:ns=\"axis2\" type=\"web-
services\"><ns:name></ns:name><ns:isbn></ns:isbn></ns:book>";

 //Create an input stream for the string

 ByteArrayInputStream byteArrayInputStream = new
ByteArrayInputStream(xmlStream.getBytes());

 //create a builder. Since you want the XML as a plain XML, you
can just use

 //the plain OMBuilder

 StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);

 //return the root element.

 OMElement root = builder.getDocumentElement();

 root.serialize(System.out);

 root.serialize(System.out);

If you run this sample code, then you will see the following output in the console:

<ns:book xmlns:ns="axis2" type="web-services"><ns:name></
ns:name><ns:isbn></ns:isbn></ns:book>

<ns:book xmlns:ns="axis2" type="web-services"><ns:name></
ns:name><ns:isbn></ns:isbn></ns:book>

Chapter 3

[51]

However, if you call serializeAndConsume() irst and then call serialize(),
you will get an exception. This is because once you have called the
serializeAndConsume() method, the Axiom tree will not be built and the cache lag
is reset. So the next time you try to call serialize, you have nothing left to serialize
and you will get an exception.

String xmlStream = "<ns:book xmlns:ns=\"axis2\" type=\"web-
 services\"><ns:name></ns:name><ns:isbn></ns:isbn></ns:book>";

 //Create an input stream for the string

 ByteArrayInputStream byteArrayInputStream = new
 ByteArrayInputStream(xmlStream.getBytes());

 //create a builder. Since you want the XML as a plain XML, you
can just use

 //the plain OMBuilder

 StAXBuilder builder = new
 StAXOMBuilder(byteArrayInputStream);

 //return the root element.

 OMElement root = builder.getDocumentElement();

 root.serializeAndConsume(System.out);

 root.serialize(System.out);

Advanced operations with Axiom
Now you know how to create and serialize Axiom. However, that is not suficient if
you are going to do advance work with Axis2 or Axiom. There are a few more things
that you need to learn:

•	 Using OMNavigator for traversing

•	 Xpath navigation

•	 Accessing pull parser

•	 Using SOAP support

Xpath navigation
Axiom has Xpath navigation support through Jaxen, so you can write Xpath query
and invoke them in Axiom. Let us write an Xpath query to get the ISBN number
from the book element you created. If you run the following sample, you will get
56789 as output in the console:

String xmlStream = "<book type=\"web-services\"><name></
name><isbn>56789</isbn></book>";

 ByteArrayInputStream byteArrayInputStream = new
ByteArrayInputStream(xmlStream.getBytes());

 StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);

Axis 2 XML Model (AXIOM)

[52]

 OMElement root = builder.getDocumentElement();

 AXIOMXPath xpath = new AXIOMXPath("/book/isbn[1]");

 OMElement selectedNode = (OMElement) xpath.
selectSingleNode(root);

 System.out.println(selectedNode.getText());

Accessing the pull parser
As we discussed in the previous sections, Axiom is tightly integrated with pull
parsing techniques. In other words, Axiom is an implementation of StAX APIs. To
provide a high degree of control to the user, Axiom has exposed its internal pull
parser to the user through the following two APIs:

•	 getXMLStreamReader()

•	 getXMLStreamReaderWithoutCaching()

In the irst case, the user can get the parser, but when the user proceeds, it will
automatically build the object structure. However, in the second case, Axiom will
not build the object structure. So if the user misses some events, there is no way to
get them back. This XMLStreamReader instance has a special capability of switching
between the underlying stream and the Axiom object tree if the cache setting is off.
However, this functionality is completely transparent to the user.

As we mentioned previously, Axiom uses cache lag to control the building of in-
memory object tree. If the caching is on, then it should build the in-memory object
structure. On the other hand if the caching is off, it should not build the in-memory
data structure. As mentioned previously, this behavior is very useful in applications
such as message proxies or ESB2 because those applications only need to read a certain
part and building the object structure is not needed for forwarding the message .

Axiom and SOAP
As discussed, Axiom was developed as an XML representation mechanism in Axis2.
Therefore, as a SOAP-processing framework, Axis2 needs to work with SOAP. You
know that SOAP is also XML, but it has its own structure to be a special type of
XML. So it is easy if you can get SOAP level API from Axiom. Therefore, Axiom has
an in-built support for SOAP representation and navigation. You can create SOAP
1.1 and 1.2 documents easily with Axiom and navigate them. When you navigate
SOAP, Axiom has API to get the headers and body. Therefore, you do not need to
get an iterator and navigate. The following two samples show how to create SOAP
1.1 and 1.2 documents easily with Axiom.

Chapter 3

[53]

Creating a SOAP 1.1 document
As you can see in the following code, irst you create a book element as the body of
the SOAP message and then you create a default SOAP 1.1 envelope and add the
created book element as the body:

OMFactory factory = OMAbstractFactory.getOMFactory();
 OMNamespace axis2 = factory.createOMNamespace("axis2", "ns");
 OMElement root = factory.createOMElement("book", axis2);
 OMAttribute type = factory.createOMAttribute("type",null,"web-
services");
 root.addAttribute(type);
 OMElement name = factory.createOMElement("name", axis2);
 OMElement isbn = factory.createOMElement("isbn", axis2);
 root.addChild(name);
 root.addChild(isbn);

 SOAPFactory soapFactory = OMAbstractFactory.
getSOAP11Factory();
 //get the default envelope
 SOAPEnvelope env = soapFactory.getDefaultEnvelope();
 //add the created child
 env.getBody().addChild(root);
 System.out.println(env);

As you can see, irst you create book element as the body of the SOAP message
and then you create default SOAP 1.1 envelope and add the created book element
as the body.

Creating a SOAP 1.2 document
Creating a SOAP 1.2 document is almost the same as in the previous example,
except for the factory; here you need to use 1.2 factories instead of 1.1 factories:

OMFactory factory = OMAbstractFactory.getOMFactory();
 OMNamespace axis2 = factory.createOMNamespace("axis2", "ns");
 OMElement root = factory.createOMElement("book", axis2);
 OMAttribute type = factory.createOMAttribute("type",null,"web-
services");
 root.addAttribute(type);
 OMElement name = factory.createOMElement("name", axis2);
 OMElement isbn = factory.createOMElement("isbn", axis2);
 root.addChild(name);
 root.addChild(isbn);

 SOAPFactory soapFactory = OMAbstractFactory.
getSOAP12Factory();
 //get the default envelope
 SOAPEnvelope env = soapFactory.getDefaultEnvelope();
 //add the created child
 env.getBody().addChild(root);

 System.out.println(env);

www.allitebooks.com

http://www.allitebooks.org

Axis 2 XML Model (AXIOM)

[54]

Summary
In this chapter, we discussed a little history of Axiom, why it was introduced, and
the standard speciications it was built on. We then discussed some of the features it
provides and demonstrated them with code samples. Although we did not explicitly
mention it, Axiom was initially designed only to handle SOAP, but later it was
improved to handle any type of XML messages. Thus, currently Axiom is a complete
XML-processing framework, which you can use outside Axis2.

In the next chapter, we will discuss one of the fundamental features of Axis2—the
execution framework. There we will discuss the handler chain, handler, phase,
phase rules, and how everything provides extensible lavor to Axis2.

Execution Chain
The key functionality of any given web service framework is processing an incoming
message and delivering it to the targeted application (service), and once the result
is produced, delivering it to the client. Today, for business critical applications,
we need a lot more than just processing the messages. Thus, support, for example
reliability, security, transactions, and throttling is required. In addition, a framework
should also be easily extensible to support new customer requirements and other
quality services. To provide those features, most of the SOAP processing frameworks
utilize the concept of pipes, where any incoming or outgoing message goes through
the pipe and the extensible pipe is divided into small pieces. Such a piece is known
as an interceptor. One can add new interceptors, change them, or delete them, to
cope with the requirements.

In this chapter, we will discuss the following topics in more detail:

•	 Handlers

•	 Phase

•	 Phase rules

•	 Concept of lows
•	 Some of the default handlers that come with Axis2 distribution

Execution Chain

[56]

Handler
A handler is one of the most important and useful features introduced by the
Axis1 project. In fact, the idea of a handler has been used in the industry for a long
time. Some refer to handler as the message interceptor. In any messaging system,
the interceptor has its factual meaning in the context of messaging too, which
intercepts the messaging low and does whatever task it is assigned to do. In fact,
the interceptor is the smallest execution unit in a messaging system so that, as the
interceptor in Axis, handler does the same thing.

Handlers, in Axis, are stateless, meaning they do not keep their past execution states
in memory. A handler can be considered as a logic invoker with the input for the
logic evaluation taken only from the MessageContext. Handler has both read and
write access to MessageContext (MC) and to incoming SOAP messages. Thus,
a handler can read SOAP messages, remove elements from the message (mostly
headers), add new elements (headers), or modify elements as well as add, delete,
or modify content from the MessageContext.

For continuation purposes, we can consider MessageContext as a property bag that
keeps incoming or outgoing messages and other (maybe both) required parameters
and properties to carry the message through the execution chain. On the other
hand, via the MC, we can access the whole system, such as system runtime, global
parameters, properties services, and operations. We will discuss more operations
associated with MC in Chapter 6, Information Model.

In most of the cases, a handler only touches the header block of the SOAP message,
which will read a header (or headers), add header(s), or remove header(s). However,
it does not mean that the handler cannot touch the SOAP body. There are situations
where handlers also process the body; a good example is encryption. In the process
of reading, if a header is targeted to a handler and if it cannot execute properly
(message might be faulty), it should throw an exception and the next chain driver (in
Axis2, it is engine) would take the necessary action. A typical SOAP message with
some headers is shown in the following igure:

Chapter 4

[57]

Any handler in Axis2 has the capability to pause the message execution, meaning
that the handler can stop the message low if it cannot continue. Reliable Messaging
(RM) is a good example, or a use case for that scenario, that needs to pause the
low depending on some pre and post conditions. In the case of RM, it works on the
message sequence. If a service invocation consists of more than one message, and
if the second one comes before the irst, RM handler will stop (rather pause) the
execution of the message invocation corresponding to the second message until it
gets the irst message. When it gets the irst message, RM will invoke that, and then
after that, it will invoke (or resume) the second message.

Writing a simple handler
To understand the concept better, you need to put them into practice. Writing a
handler in Axis2 is very simple. The only thing we need to remember is that it has
to either extend from AbstractHandler or implement the Handler interface. A
simple handler that extends the AbstractHandler will look as follows:

public class SimpleHandler extends AbstractHandler {

 public SimpleHandler() {

 }

 public InvocationResponse invoke(MessageContext msgContext) throws
AxisFault {

 //Write the processing logic here

 // DO something

 return InvocationResponse.CONTINUE;

 }

}

One thing to note here is the return value of the invoke method, which determines
the continuation of the message low. We can have three values (described as
follows) as the return values of the invoke method:

•	 Continue: If you, as a handler, think that the message is ready to forward

•	 Suspend: A handler thinks that the message cannot be sent forward since
some conditions are not satisied yet, so suspend the execution

•	 Abort: A handler thinks that there is something wrong with the message
therefore it cannot allow the message to go forward

In most of the cases, handlers will return InvocationResponse.CONTINUE as the
return value.

Execution Chain

[58]

When a message is received by the Axis engine, it will call the invoke methods of
each handler by passing argument as the corresponding MessageContext. As a
result, you can implement all the processing logic inside that method. A handler
author has full access to a SOAP message and all the required properties to process
the message via the MessageContext. In addition to that, if the handler inds some
pre-condition and is not satisied with the invocation, the invocation can be paused,
as mentioned earlier (Suspend).

If some handler suspends the execution, it is its responsibility to store the message
context, and when the conditions are satisied, forward the message. As an example,
RM handler performs the exact same scenario.

Phase
The concept of a phase is introduced by Axis2 and it was mainly to support the
dynamic ordering of handlers to provide better extensibility, and better lexibility
of the handler chain. A phase can be deined in various ways:

•	 It can be considered as a logical collection of handlers

•	 It can be considered as a speciic time interval in the message execution
•	 It can be considered as a bucket into which one can put his/her handler

•	 One can consider a phase as a handler too

There is another term called low (pipe). A low is the message pipe where the
message enters from one end of the low and leaves from the other end of the low.
A low or execution chain can be considered as a collection of phases. Although it
has been mentioned earlier that the Axis engine will call the invoke method of a
handler. That is not totally correct. At a very high level, what the engine really does
is call the invoke method of each phase in a given low, and then the phase will
sequentially invoke all the handlers in it (the following igure illustrates how an
engine calls a phase and then a phase calls handlers). As you know, you can extend
AbstractHandler and create a new handler. In the same way, one can extend the
Phase class and create a new phase too. But remember, you do not always need to
extend the Phase class to create a new phase; you can do that by just adding an entry
into axis2.xml (adding a phase into axis2.xml is described in Chapter 6, Information
Model). A phase has two important methods—pre-condition checking and post-
condition checking. Therefore, if you are writing a custom phase, those are the two
methods you need to consider. However, writing a phase is a very rare scenario (user
requirements can be mostly satisied using default phases provided by Axis2); it is
handlers that are important.

Chapter 4

[59]

A phase is designed to support phase rules. Phase rules tell Axis2 where to put
handles in the execution chain. As we will see later, there are rules like phaseFirst
and phaseLast. So in a Phase, there are reserved slots to hold both the phase irst
and phase last handlers. The rest of the handlers will be kept in a different list. A
phase can be graphically represented as follows:

Once the engine calls the invoke method of the phase, it has the following
exception sequence:

1. First check whether the precondition is satisied.
	° If not, throw an exception and stop the message from processing

2. Then check whether the phase irst handler is there. If it is, invoke it.
3. Next, invoke the rest of the handlers, excluding the phase last handler.

4. If the phase last handler is there, then invoke it.

5. Finally, it will check whether the post condition is satisied to forward
the message.

	° If not, stop the execution and throw an exception

Execution Chain

[60]

Types of phases
There are two types of phases deined in axis2.xml. However, they are not different
in terms of the way they are implemented. The only difference is a semantic one,
based on the location of the message low; one type of phase gets executed for all the
messages and another type does not. The following are the two types of phases that
you can ind in Axis2:

•	 Global phase

•	 Operation phase

Global phases
Global phases are the phases that are invoked irrespective of the service. In simple
terms, whenever a message comes into the system, it will go through the global
phases. The whole idea of deining a set of global and operation phases in axis2.
xml is to make it easy for the module authors. As we shall see in Chapter 8, Writing an
Axis2 Module, the module's author will create his module with the module descriptor
ile, and that module descriptor will make assumptions about the phases deined in
the axis2.xml.

If we consider the default axis2.xml, which we can ind inside our download
directory, it has a set of global and operation phases. The splitting point of the global
and operation phases is the dispatch phase. All the phases up to the dispatch phase
(including the dispatch phase) are considered as global phases and the rest are
considered as operation phases.

The phase section of the default axis2.xml is as follows. It is a bit complicated, but
just focus on the phase keyword only.

<phaseOrder type="InFlow">

 <!-- System predefined phases -->

 <phase name="Transport">

 <handler name="RequestURIBasedDispatcher"

 class="org.apache.axis2.engine.
RequestURIBasedDispatcher">

 <order phase="Transport"/>

 </handler>

 <handler name="SOAPActionBasedDispatcher"

 class="org.apache.axis2.engine.
SOAPActionBasedDispatcher">

 <order phase="Transport"/>

 </handler>

 </phase>

 <phase name="Security"/>

Chapter 4

[61]

 <phase name="PreDispatch"/>

 <phase name="Dispatch" class="org.apache.axis2.engine.
DispatchPhase">

 <handler name="RequestURIBasedDispatcher"

 class="org.apache.axis2.engine.
RequestURIBasedDispatcher"/>

 <handler name="SOAPActionBasedDispatcher"

 class="org.apache.axis2.engine.
SOAPActionBasedDispatcher"/>

 <handler name="AddressingBasedDispatcher"

 class="org.apache.axis2.engine.
AddressingBasedDispatcher"/>

 <handler name="RequestURIOperationDispatcher"

 class="org.apache.axis2.engine.
RequestURIOperationDispatcher"/>

 <handler name="SOAPMessageBodyBasedDispatcher"

 class="org.apache.axis2.engine.
SOAPMessageBodyBasedDispatcher"/>

 <handler name="HTTPLocationBasedDispatcher"

 class="org.apache.axis2.engine.
HTTPLocationBasedDispatcher"/>

 </phase>

 <!-- System predefined phases -->

 <!-- After Postdispatch phase module author or service
author can add any phase he want -->

 <phase name="OperationInPhase"/>

 <phase name="soapmonitorPhase"/>

 </phaseOrder>

According to this XML segment, there are four global phases:

•	 Transport

•	 Security

•	 PreDispatch

•	 Dispatch

OperationInPhases and soapmonitorPhase are in the operation-speciic phases.

Execution Chain

[62]

All the global phases have semantic meanings from their names as well:

•	 Transport phase: This consists of a handler that performs tasks that depend
on the type of transport.

•	 Security phase: WS-security implementation will add their handlers, but they
are not limited to it, and any other modules or users can also add handlers.

•	 PreDispatch: As the name implies, this has a set of handlers that perform
tasks that are needed for dispatching. Handlers, like WS-addressing, will
always be in this phase.

•	 Dispatch phase: This is the phase that does the dispatching by simply inding
the corresponding service and the operation for the incoming message.
Therefore, the dispatch phase consists of dispatching handlers. We can also
add new global phases and then handlers into it, which requires modiication
of the axis2.xml ile.

Note that if necessary the user can easily add new phases by editing
axis2.xml.

Operation phases
Say, for instance, we have a handler and we do not need to run that for every
message coming to the system, but we need to run that for selected operations.
This is where the operation phase comes into the picture. Operational phases are
the phases that come after the dispatch phase, and the user can add any number
of phases. Adding operation phases does not change the structure of the other
operations in their chains.

Phase rules
The main idea of phase rules is to correctly locate a handler relative to the one inside
a phase, maybe at the deployment time or at the runtime. Axis1 did not have the
concept of phases or phase rules. What it had was a global coniguration ile where
you go and deine you handlers. But that had a number of limitations; in particular,
you lose the dynamic nature of the handler chain. Therefore, one aspect of phase
rules is to address the issues of dynamic execution chain building capability.

Characterizing a phase rule
Characterizing a phase rule can be based on one or more of the following properties:

•	 Phase name: Name of the phase that the handler must be placed in

•	 First phase (phaseFirst): The irst handler of the phase

Chapter 4

[63]

•	 Last phase(phaseLast): The last handler of the phase

•	 Before (before): Positions the handler before another handler

•	 After (after): Positions the handler after another handler

•	 Before and after: Places the handler between two handlers

Phase name
phase is a compulsory attribute for any phase rule which gives the name of the
phase in which the handler must it. In order for the rule to be a valid phase name,
it should be known to the system, which must be either a global phase name or an
operation speciic phase.

phaseFirst
As the name implies, if you want a handler to be invoked as the irst handler in a
given phase, irrespective of other handlers in the phase, you have to set phaseFirst
attribute to true. A handler which is having the phase rule only with phaseFirst
and a phase looks as follows:

<handler name="simple_Handler " class="org.apache.axis.handlers.
SimpleHandler ">
 <order phase="userphase1" phaseFirst="true"/>
</handler>

phaseLast
Like phaseFirst, if one wants the handler to be run last in a given phase,
irrespective of other handlers, one has to set phaseLast to true. So the handler
with phaseLast will look as follows:

<handler name="simple_Handler " class="org.apache.axis.handlers.
SimpleHandler ">
 <order phase="userphase1" phaseLast="true"/>
</handler>

If there is a phase rule with both phaseFirst and phaseLast set to true, then
that phase cannot have any more handlers. In other words, the phase has only
one handler.

before
There may be situations when a handler should always run before some other
handler, no matter what the exact location is. A real-time use case for this can be the
security handler that wants to run before the RM handler. The logic has to be written
as follows and the value of the before attribute is the referred handler name:

Execution Chain

[64]

<handler name="simple_Handler2 " class="org.apache.axis.handlers.
SimpleHandler2 ">
 <order phase="userphase1" before=" simple_Handler "/>
</handler>

The Axis2 phase rule processing logic is implemented in such a way that if the
handler referred by the before attribute is not available in the phase at the time rule
is been processed, it just ignores the rule and places the handler immediately after the
phaseFirst handler (if it is available, it will place the handler somewhere in the phase).

after
Like before, if a handler always runs after some other handler, phase rule can be
written using the after attribute and it should look like the example that follows.
The value of the after attribute is the referred handler name:

<handler name="simple_Handler3 " class="org.apache.axis.handlers.
SimpleHandler3 ">
 <order phase="userphase1" after=" simple_Handler2"/>
</handler>

after and before
If a handler needs to be run in between two different handlers, the phase rule can
be written using both before and after attribute. The values of both before and
after attributes are the names of referred handlers. The correct way of writing a
phase rule will be as follows:

<handler name="simple_Handler4" class="org.apache.axis.handlers.
SimpleHandler4">
 <order phase="userphase1" after=" simple_Handler1"
before=" simple_Handler2"/>
</handler>

Invalid phase rules
Validity of a phase rule is an important factor in Axis2. There can be many ways to get
the same handler order by using different kinds of phase rules. However, while writing
a phase rule, it is required to check whether the rule is a valid rule. There may be many
ways in which a phase rule becomes an invalid rule. Some of them are as follows:

•	 If there is a phase rule of a handler with either phaseFirst or phaseLast
attributes set to true, then the handler can have neither before nor after
appearing in the phase rule. If they do, then the rule is invalid.

Chapter 4

[65]

•	 If there is a phase rule of a handler with both phaseFirst and phaseLast
set to true, then that particular phase cannot have more than one handler.
If someone tries to write a phase rule that inserts a handler into the same
phase, then the second phase rule is invalid.

•	 There cannot be two handlers in one phase with their phaseFirst attribute
set to true.

•	 There cannot be two handlers in one phase with their phaseLast attribute
set to true.

•	 If the rule is such that the before attribute is referred to as the phaseFirst
handler, then the rule is invalid.

•	 If the rule is such that the after attribute is referred to as the phaseLast
handler, then the rule is invalid.

<handler name="simple_HandlerError " class="org.apache.axis.
handlers.SimpleHandlerError ">

 <order phase="userphase1" before=" simple_Handler"
phaseFirst="true"/>

</handler>

Phase rules are deined per basic handler, and any handler in the system must it into
a phase in the system.

Flow
Flow is simply a collection of phases, and the order of phases inside a low is deined
in axis2.xml. As a phase is a logical collection and, which is, in fact, a virtual
concept, a low can be assumed as the execution chain (a collection of handlers).
There are four types of lows in Axis2:

•	 InFlow: When a message comes in (request message), the message has to go
via the InFlow. Then all the handlers in the InFlow will be invoked. InFlow
is somewhat different from the OutFlow. A low consists of two parts. The
irst part is from the beginning to the dispatcher (up to and including the
dispatch phase). The second part will be there only if a corresponding service
is found at the end of the dispatch phase. Therefore, the second part of the
low is InFlow of the corresponding operation for the incoming message. So
the InFlow consists of a global part and an operation part.

•	 InFaultFlow: This low will be invoked if the incoming request is faulty
(request with HTTP status code 500).

•	 OutFlow: When a message is moving out from the server (say a response),
this is invoked. As a result, the outgoing message is always bound to an
operation, and there is nothing similar to dispatching in the out path.

Execution Chain

[66]

•	 OutFaultFlow: If something goes wrong in the out path, then this will
be invoked.

The following igure shows different lows and how they combine at runtime. For
example, the lower part of the igure shows how global low and operational low
are combined to complete the low.

Module engagement and dynamic

execution chain
In Chapter 8, Writing an Axis2 Module, we will learn that an Axis2 module can be
considered as a collection of handlers. So by engaging a module either globally to
a service or to an operation, handlers will be placed in the corresponding phases,
depending on the phase rules. If a module is engaged globally, all the services in
the system will be affected, and there is a probability of changing both global and
operations lows (every operation in all the services). If a module is engaged to
a service, lows belonging to all the operations in that particular service will be
changed. If a module is engaged to an operation, every low in that operation may
be changed.

Chapter 4

[67]

The only way of changing a low is by adding a handler(s) to a phase in the
low. Therefore, module engagement will cause a change to the handler chain
dynamically. A module can be engaged dynamically (at runtime) or statically
(at deployment time). If you want to engage a module statically, you need to
specify it in the description iles. If it is to be a service or to be an operation,
then do so in services.xml. If it is to be engaged globally, then in axis2.xml.

Special handlers in the chain
When you consider the execution chain, you can ind four types of special handlers
in the execution chain:

•	 Transport receiver

•	 Dispatcher(s)

•	 Message receiver

•	 Transport sender

Transport receiver
Whenever a message comes into a system irst, it will reach a transport receiver.
A transport receiver can be considered as something that is waiting to accept an
incoming message (in the case of the application server, a transport receiver could
be Servlet). Therefore, InFlow of an execution chain always starts with the
transport receiver.

Dispatchers
As we discussed earlier, one of the fundamental goals of a SOAP processing
framework is to deliver an incoming message to the targeted application. The
process of inding the correct targeted application is called dispatching. In Axis2,
dispatching will be taking place in the middle of the incoming execution chain.
So, dispatchers are handlers in the chain. In Axis2, there are a number of ways to
perform the dispatching:

•	 Using transport headers and transport level data

•	 Using WS-Addressing information

•	 Using an incoming SOAP message

Execution Chain

[68]

To cater to the mentioned types of dispatching, Axis2 has a set of default dispatchers,
and you can change the order of their execution using axis2.xml. If you look at the
InFlow element, which we have discussed in the Global phases section, you can ind
the set of available dispatchers in the dispatch phase.

•	 RequestURIBasedDispatcher: Try to ind a service and operation using
transport URI

•	 SOAPActionBasedDispatcher: Try to ind the operation using the
SOAP action

•	 AddressingBasedDispatcher: Uses addressing information in the
WS-A header to ind the service and operation

•	 SOAPMessageBodyBasedDispatcher: Uses and navigates the SOAP
message, especially the body to ind the operation.

•	 HTTPLocationBasedDispatcher: This will be used to dispatch WSDL
2.0-related SOAP messages

Message receiver
The message receiver is a handler in itself, but the only difference is that Axis2
treats this handler differently than others. If the message has gone through the
execution chain without having any problem (no exceptions have occurred in the
middle of the chain), the engine will hand over the message to the message receiver
to do the business logic invocation. The following igure shows the location of the
MessageReceiver in the execution chain:

On the other hand, the message receiver is the one who directly interacts with both
the actual service implementation class and Axis Engine (there may be instances
where a service would be a message receiver). Axis 1.x has the concept of pivot
point, where the request path and response path are met together and where actual
service invocation takes place. As mentioned earlier, the message receiver is the
end of InFlow that interacts with the service impl class. Therefore, Axis2 does not
care about the message after handing it over to the message receiver. Notably, it is
up to the message receiver to process the message and decide whether to send the
response message or not, if there is any.

Chapter 4

[69]

Axis2 distribution consists of a set of message receivers to support XML in XML
out cases as well as to support the JavaBeans case.

•	 RawXMLINOnlyMessageReceiver: XML in only scenario

•	 RawXMLINOutMessageReceiver: XML in XML out scenario

•	 RPCInOnlyMessageReceiver: Java bean in only scenario

•	 RPCMessageReceiver: Java bean in out scenario

Transport sender
As we discussed earlier, the transport receiver is the starting handler of the inlow.
In contrast, transport sender is the one that runs in the OutFlow as the last handler
of the outlow. You can have different types of transport senders for different
transports. For example, Axis2 has transport senders for HTTP, SMTP, TCP, and
others. When you send the message in HTTP transport, the HTTP sender will be
invoked. On the other hand, if you are sending the message via SMTP, the SMTP
transport sender will be invoked.

Summary
Axis2 is good enough to provide web service interaction with dynamic and lexible
execution frameworks. Flexibility is achieved using the concepts of phases and phase
rules, and the dynamic nature of the execution chain has been achieved by runtime
module engagement. In this chapter, we discussed the concept of handlers, phases,
and how to use them (with an example). We also discussed the phase rules, how one
can use them to locate a handler in a given low, relatively or absolutely. At the end
of the chapter, we discussed the special types of handlers in Axis2 called transport
receivers, dispatches, message receivers, and transport senders.

The next chapter is one of the most interesting ones, where we discuss the Axis2
deployment model. The Axis2 deployment model provides several new features
compared to Axis1, and the new deployment model is highly extensible and user
friendly.

Deployment Model
Now the trend is not just to have features, but to have them in a very user-friendly
manner. Time is the only thing they care about, and no one likes to spend days doing
a small thing. In the previous versions of Apache Axis, user friendliness did not
have a high priority because those were mainly to prove the web service concepts.
Therefore, in Axis 1.x, the user has to invoke the admin client manually, update the
server classpath, and then restart the server to apply the changes. This burdensome
deployment model was a deinite barrier for beginners. Therefore, Axis2 was
engineered to overcome this drawback and provide a lexible, user-friendly, and an
easily conigurable deployment model.

In this chapter, we will be discussing:

•	 The Axis2 deployment model, speciically the archive-based deployment
model

•	 Hot deployment and hot update

•	 The concept of repository

•	 The different deployment descriptors

•	 A few hands on examples

Deployment Model

[72]

What is new in Axis2 deployment?
As mentioned in Chapter 1, Apache Web Services and Axis2, one of the main goals of
the Axis2 design is to provide more user friendliness; in the meantime, providing
better extendibility and lexibility to the system. When it comes to user friendliness,
service deployment is one area where the user needs less work. As a result, Axis2
supports a very convenient deployment model with a number of new features,
compared to Apache Axis1. Some of the commonly used and useful sets of features
are shown here:

•	 J2EE-like deployment mechanism (archive-based)

•	 Hot deployment and hot update

•	 Idea of repository

•	 Change in the way of deploying handlers (modules)

•	 Deployment descriptors

•	 Deployment options

The following igure shows the J2EE-like deployment mechanism:

In any J2EE application server, you can deploy an application as a self-contained
package, where you can bundle all your resources, coniguration iles, and binary
iles together into one ile, and deploy it.

Chapter 5

[73]

Isn't that easy and useful? Well, the obvious answer is yes, it is useful.

This is why Axis2 has introduced the same mechanism to deploy services (and
modules) as well in a very convenient manner.

Let's think about a scenario where you have a service with several third-party
dependencies and a number of property iles. Further, assume that you do not
have a J2EE-like deployment mechanism. Then what you have to do is put all those
dependent JAR iles and property iles into the application classpath. This work
is doubled if you have one or two servers, but what will happen if you are in a
clustered environment with hundreds of replicates? In that case, it won't be practical
to go and add the dependent JAR iles and other resources into the classpath of
each and every replica. So when you have the J2EE-like deployment mechanism,
you do not need to worry about such issues. You can just drop the self-contained
package—in this case, the service archive ile—into the replicates. This deinitely
reduces your work and prevents common human errors as well.

The internal structure of the Axis2 self-contained package (or archive ile) is as
shown in the following igure. Both the Axis2 services archive and the module
archive have a very similar structure, with only minor disparities.

In the case of the Axis service archive, the descriptor.xml ile becomes
services.xml, and in the other case, it becomes module.xml.

File extension for the Axis2 service archive is .aar and that for the module is .mar
(the service archive or module archive is just a ZIP ile with a changed ile extension
to .aar or .mar).

Deployment Model

[74]

As mentioned earlier, in the case of a service the descriptor.xml ile would be
services.xml. So in the service archive ile, you can ind a ile called services.xml
inside the META-INF directory. On the other hand, for the module archive, META-INF
will have a ile called module.xml.

•	 For a service archive: descriptor.xml ---> services.xml

•	 For a module archive: descriptor.xml ---> module.xml

Hot deployment and hot update
Availability is a big concern when it comes to enterprise-level applications, and in
such a situation, even a fraction of time is highly valuable. Therefore, restarting a
server is not a realistic option, and what is required is to update and change the
system without shutting it down. This is where the hot deployment and hot update
come into the picture. When your application has those features, you do not need to
shut the system down in order to update the system.

Though the concepts of hot deployment and hot update are not new terminologies to
the technical paradigm, these are new features in the Apache web service stack Axis.

In Axis2, hot deployment and hot update work by constantly monitoring the
changes in the repository by a timer. More speciically, when the user changes the
last modiied date of a given ile, it will treat it as a hot update. In contrast, when it
inds a new ile it treats it as a hot deployment. The architecture of hot deployment
is shown in the igure in the next section.

Hot deployment
Hot deployment is the capability of deploying new services while the system is
up and running. As an example, let's say that you have two services, service1 and
service2, up and running, and you deploy a new service called service3 without
shutting the system down. The system then makes service3 a running service as well.
This particular scenario is called hot deployment.

Chapter 5

[75]

As a system administrator, if you do not like the hot deployment of a service,
you can turn that off easily by changing the Axis2 global coniguration ile called
axis2.xml. Changing the global coniguration is just changing a parameter, shown
as follows:

<parameter name="hotdeployment">false</parameter>

Hot update
A hot update is the ability to make changes to an existing web service without
shutting down the system. This is an important feature and is required in a testing
environment. However, it is not advisable to use a hot update in a real-time system,
because a hot update could result in the system leading into an unknown state.
Additionally, there is a possibility of loosening the existing service data of that
service. To prevent this, Axis2 comes with the hot update parameter set to FALSE
by default, and if you want to have this feature, you could do that by changing the
coniguration parameter as follows:

<parameter name="hotupdate">true</parameter>

Repository
The Axis2 repository is just a directory in the ilesystem with a speciic structure.
On the other hand, the repository can be located locally or in a remote machine. The
idea of a repository was introduced to support archive-based deployment and hot
deployment features in a very convenient manner.

Deployment Model

[76]

The repository directory consists of two main sub directories called services and
modules. Also, you may have an optional sub directory called lib as well. If you
want to deploy a service, you need to drop the service archive ile into the services
directory. Similarly, if you want to deploy a module, then you need to drop a
module archive ile into the modules directory. The idea behind the lib directory is
to store the third-party libraries that are going to be shared across both services and
modules. Refer to the next screenshot to see the directory structure:

If one or more modules in the modules directory are required to share some
resources, then they can add those resources into the lib directory inside the
modules directory. Similarly, if the services in the services directory want to
share some common resources, the proper place is the lib directory inside the
services directory.

Change in the way of deploying handlers

(modules)
The concept of service extension is a new feature to the Apache Axis paradigm, but
the developers have achieved the same goal doing a hard job in Axis 1.x. So the idea
is to extend the core functionality of the system or to provide quality of services. In
the case of Axis 1.x, if you need to extend its core functionality, you need to write a
handler (the smallest unit in the execution chain), change the global coniguration
iles to add the handler, and inally restart the system.

Chapter 5

[77]

A module does the same bit of work, but reduces the amount of work you need to
do. In the meantime, a module can have one or more handlers alone with a module
descriptor called module.xml. Most of the time, a module is an implementation
of a speciic WS speciication. For example, an Axis2 addressing module is an
implementation of WS addressing; Sandesha is an implementation of WS-Reliable
Messaging.

As mentioned earlier, you can deploy a module as an archive ile, and the structure
of the module archive ile is shown in the following screenshot:

Deployment descriptors
The lexibility and extensibility of Axis2 is focused on its deployment descriptors
as well. Rather than working with one coniguration ile, Axis2 has different
coniguration iles for different levels of coniguration. For example, let's say that
you want to have different types of coniguration for different levels; then, having
multiple coniguration iles for different levels solves the problem for you. There
are three types of descriptors or coniguration iles in Axis2, namely:

•	 Global descriptor (axis2.xml)

•	 Service descriptor (services.xml)

•	 Module descriptor (module.xml)

Deployment Model

[78]

Global descriptor or axis2.xml
As mentioned earlier, the coniguration in Axis2 can be speciied using XML
descriptors. This gives you much more lexibility for extending and changing Axis2.
No need to go and change the code to have a different coniguration. Even for core
functionality, it's the same. If you consider Axis2's global coniguration ile—axis2.

xml—it has all the minimal conigurations that are needed to run Axis2. Axis2's
minimal coniguration includes:

•	 Coniguration parameters
•	 Transport senders

•	 Transport listeners

•	 Execution chains and phases

•	 Default dispatchers

•	 Default message receivers

•	 Default client-side conigurations
•	 Global modules

•	 WS-Policy (global level policy)

Some of the given terms are not familiar to you, but you do not need to worry about
them now. We will discuss these terms in the following chapters. Axis2 comes with
default axis2.xml, and it has the minimum coniguration required for starting
Axis2. However, you can change it as you wish and can start Axis2 with your own
axis2.xml. The key thing to remember here is that if you make any changes to
axis2.xml, you have to restart the system in order to make those changes effective.

Service descriptor (services.xml)
As we discussed in the previous section, axis2.xml speciies the coniguration that
affects the whole system. However, services.xml is for coniguring a particular
service or a service group. In the next section, we will look at the available ways
of deploying services in Axis2. Archive-based deployment and directory-based
deployment can be considered as the two most commonly used techniques. In these
two cases, for a service to be a valid service, it is required to have a services.xml
ile. A service descriptor is used to specify the following types of conigurations
(some of these are optional):

•	 Name of the service

•	 Target name spaces of the service

•	 Session scope

Chapter 5

[79]

•	 Expose transports

•	 Service level and operation level parameters

•	 Message receivers

•	 Service level modules

•	 Operations—expose operations as well as non expose operations

•	 Bean mapping

•	 Object suppliers

•	 Service and operation level policy

We will learn more about services.xml and how to write and create services in
Chapter 7, Writing an Axis2 Service.

Module descriptor or module.xml
It is so obvious now that module.xml is for coniguring Axis2 modules; so it also has
different types of conigurations:

•	 Handlers and their phase rules

•	 Module parameters

•	 End points

•	 WS-Policy

In Chapter 8, Writing an Axis2 Module, we will learn more about Axis2 modules and
how to write them.

Available deployment options
In the initial stage of Axis2, it only had archive-based deployment. However, later it
introduced a number of convenient deployment options. This relay made the service
authors' jobs easier. Adding them all together, Axis2 has the following deployment
options for service deployment:

•	 Archive-based deployment

•	 Directory-based deployment

•	 Deploying programmatically using archive iles
•	 Programmatically making the Java class into a web service

•	 Plain Old Java Object (POJO) deployment support alone with annotation

•	 Deploy and start Axis2 in one line

Deployment Model

[80]

Archive-based deployment
The most common and recommended approach for deploying a service in Axis2 is
archive-based deployment. There you get many coniguration options and more
lexibility compared to other types. In this chapter, we will discuss more about
archive-based deployment with samples.

Directory-based deployment
Directory-based deployment is almost identical to archive-based deployment; the
only difference is that rather than creating an archive ile, you can deploy a service
as a directory. The structure of the directory is identical to that of an archive ile.

Deploying a service programmatically
To deploy a service programmatically using an archive ile is not really a user
requirement; rather it is module author's requirement, where some modules require
a web service to be deployed at runtime in order to provide the full functionality of
that particular module.

To create a service (ServiceGroup) programmatically, you need to have the ile
object representing the service archive ile and a pointer to an Axis2 runtime or
ConfigurationContext. Once you have those two, we can create a web service, as
shown in the following code fragment. The advantage of this approach is that you do
not need to copy your service archive ile into the repository and it is only visible at
the runtime of your service.

//Need to have a reference to ConfigurationContext

ConfigurationContext configContext = getConfigurationContext();

File serviceArchiveFile = new File("Location of the file");

//Now let's create AxisServiceGroup which contains the service we want
to have

AxisServiceGroup serviceGroup = DeploymentEngine.loadServiceGroup(

 serviceArchiveFile,

 configContext);

Once you have created a service, the next step is to add the service into the system.
You can do that as follows:

//Getting a pointer to AxisConfiguration

AxisConfiguration axiConfiguration = configContext.
getAxisConfiguration();

//Adding the created service

axiConfiguration.addServiceGroup(serviceGroup);

Chapter 5

[81]

POJO deployment
To continue the discussion on the other deployment options, irst you need to create
a Java class, which you want to expose as a service. Let's assume that you have a
web service with two methods, namely, sayHello and add, then your service Java
class will look like this:

public class MyService {

 public String sayHello(String name) {

 return "Hello " + name;

 }

 public int add(int a, int b) {

 return a + b;

 }

}

Making a Java class into a web service is a very handy feature in Axis2 and it is very
useful when debugging in developing web services. In this case, you do not need to
know anything about the archive ile concept, services.xml; you just need to have
a pointer to AxisConfiguration. You can then make a web service using the Java
class as follows:

//Need to have a pointer to AxisConfiguration

AxisConfiguration axiConfiguration = getAxisConfiguration();

//Creating a service using java class

AxisService service = AxisService.createService(

 MyService.class.getName(),

 axiConfiguration);

// Adding the created Service in to AxisConfiguration

axiConfiguration.addService(service);

The given deployment mechanism is one way of doing POJO deployment. There
are other ways of deploying POJO, for example by copying .class iles into the
repository or pojo directory. One thing to note here is that you can deploy a
service as mentioned if, and only if, you have a pointer to an AxisConfiguration.

Deployment Model

[82]

However, in order to use this mechanism, you need to have AxisConfiguration,
otherwise you cannot use this mechanism. Instances where you do not have a way
to access the AxisConfiguration, you need to ind some other way of achieving
your goal. So, the other type of POJO deployment mechanism will help you in this
case. One easy way is to deploy .class iles into a directory called pojo in the Axis2
repository. Then Axis2 will process that .class ile and make that into a web service
for you. Now compile your Java class to get the MyService.class ile. You irst
need to create a directory inside the repository (a repository directory inside the
place where you unpack the Axis2 binary distribution) called pojos and that should
be in the same level as services and the modules directory. So now you have the
repository as follows:

Axis2

 -repository

 -services

 -modules

 -pojos

Now drop the MyService.class ile into the pojo directory. If the server is not
running, you need to start Axis2 and enter the following URL in the browser and
see what you get:

http://localhost:8080/service

This gives you a hint that your service is up and running. Now let's try to invoke
the service and see whether it is working. As you have not learnt about the Axis2
client programming model, let's try to invoke the service in the REST way. Enter the
following in a browser and see what you get:

http://localhost:8080/axis2/services/MyService/sayHello?name=Axis2

Chapter 5

[83]

You will see the following:

<ns:sayHelloResponse>
 <return>Hello Axis2</return>
</ns:sayHelloResponse>

This simply tells you that you have actually invoked the service. Let's try to invoke
the add method and see:

http://localhost:8080/axis2/services/MyService/add?a=10&b=15

<ns:addResponse>
 <return>25</return>
</ns:addResponse>

This is the exact addition of the two given numbers. Now you are sure that we
expose and invoke our Java class as a web service.

If you want to test this with the Axis2 web distribution, then you can do that by
copying the MyService.class ile in the path TOMCAT_HOME/webapps/axis2/WEB-
INF/pojo.

After this, you need to follow the steps and see what you get.

Deploying and running a service in one line
Among all the mentioned deployment options, this option can be considered as the
most convenient way of deploying a service and starting the server. You do not need
to have a repository, services.xml, or anything else of the sort. The only thing you
need to have is the Axis2 library ile (axis2-1.3.jar) and its dependent libraries.
You can then deploy and start the Axis2 server as follows. This way of deploying
and running the server is very useful when you're debugging and developing a
service.

new AxisServer().deployService(MyService.class.getName());

When you start AxisServer, it will start SimpleHttpServer in the port speciied in the
Axis2 default coniguration ile and that would be port 6060.

So now if we type http://localhost:6060, we will see the following:

If you run the following URLs in the browser, you will get the same result as
seen earlier:

http://localhost:6060/axis2/services/MyService/sayHello?name=Axis2
<ns:sayHelloResponse>
 <return>Hello Axis2</return>
</ns:sayHelloResponse>

Deployment Model

[84]

Now, if you try to access the add method using the following URL, you should get
the same results as before:

http://localhost:6060/axis2/services/MyService/add?a=10&b=15

<ns:addResponse>

 <return>25</return>

</ns:addResponse>

Summary
In this chapter, we discussed how Axis2 deployment works, the available types of
deployment descriptors, and their structures. In addition, we also discussed the
different types of coniguration iles available in Axis2. At the end of the chapter, we
learned the most important thing, that is, the available deployment options in Axis2.
We tested those options with a sample as well. The next step would be to create a
few more services and see what happens.

In the next chapter, we will discuss more about the Axis2 information model. There
we will discuss about static and dynamic data hierarchies, different entities in the
hierarchy, how they are created, and which descriptors are responsible for the
different entities.

Information Model
Since the last decade, Service Oriented Architecture (SOA) has been gaining a lot
of popularity in the information technology industry. In today's industry, most of
the applications try to enable SOA APIs on their applications, for example, Google
APIs and Amazon Web Services to name a few. There are a number of reasons
behind this trend:

•	 SOA is easy to use

•	 There are standard bodies that help to improve every type of application
to interoperate well

•	 Free and open source SOA frameworks

The web service landscape is changing very rapidly, and hence, to support
these changes and to facilitate user requirements, a web service framework has
to be lexible and extensible enough. Applications, such as Internet commerce
(e-commerce), need to manage two types of data:

•	 Static data (for example, information, product information)

•	 Dynamic data (for example, transaction data, shipping information)

As a result, most applications need to have better support for static and dynamic
data. Furthermore, having static and dynamic data separate leads to better lexibility
and extensibility in the system. Notably, most web service frameworks (for example,
Axis2) have the notion of stateless, which means those frameworks do not maintain
the sessions. Nevertheless, building complex systems is a tedious task in the absence
of session support. Thus, Axis2 tries to provide stateless as well statefull services in a
convenient manner, by having two data hierarchies—one to manage static data and
the other to manage dynamic data.

Information Model

[86]

In this chapter, we will discuss the Axis2 information model, and in particular, two
data hierarchies, namely, static data and dynamic data. We will discuss more about
the following topics:

•	 The concepts of Axis2 static and dynamic data

•	 Axis2 static data and their types

•	 Parameters and their hierarchy

•	 Formatting and building messages through MessageFormatters and
MessageBuilders

•	 Transport senders and transport receivers

•	 Static data hierarchy focusing on AxisOperating, AxisService,
AxisServiceGroup, and AxisModule

•	 Dynamic data hierarchy, including ConfigurationContext,
MessageContext, OperationContext, and ServiceContxt

Axis2 static data
As mentioned earlier, for any given application, it is common to have two types of
data called static and dynamic. A classic example of this is a banking application.
It needs to keep the data such as user information (for example, name, address,
date of birth, phone number, and other such information) static (changes that
are infrequent). Now, let's consider an application that provides XML-based
coniguration (for example, Apache Tomcat, Apache Axis2, and so on). At the time
of system initialization, it is required to load these conigurations and store them in
some structure (or use them to conigure the application). Once the application stores
all the coniguration information in a static structure, it can use that information
whenever it's required with minimum or zero cost. In contrast, if the application is
written in such a way that, whenever it needs to read some information, it reads the
XML ile and retrieve data, it leads to higher performance issues.

Performance is a major consideration when it comes to web services, loading
coniguration data at runtime from a secondary storage (when required) is not an
option. So it may be better to keep such data in memory, ready for use whenever
required. On the other hand, if we have to contain all the coniguration data in one
large object, it can also add to the performance overhead (Hot pots). To address
this problem in a more eficient manner, Axis2 has an object hierarchy to store
coniguration data more organized manner. Some of the objects in the hierarchy will
be created at deployment time and some at runtime, depending on the deployment
options employed. Now let us discuss the different types of objects in this hierarchy
and try to understand how and when they are created.

Chapter 6

[87]

Axis2 has three types of coniguration iles (deployment descriptors) that populate
and conigure the object hierarchy. Those types are as follows:

•	 Global level coniguration ile – axis2.xml
•	 Service level coniguration ile – services.xml
•	 Module or service extension coniguration ile – module.xml

The global coniguration ile is called axis2.xml and contains the bare minimum
coniguration data that is needed to start an Axis2 Web Service framework, either as a
server or as a client. As we will discuss in this chapter, a user can modify axis2.xml
to suit the user requirements and start Axis2 with the modiied ile. This is the whole
point of providing a coniguration ile. In the web service domain, there are a large
number of parameters that users wish to conigure such as the default SOAP version
to be used, default HTTP version, namespaces, platform-speciic conigurations, other
user data, data binding information, and so on. Being a very conigurable web service
framework, this holds true for Axis2. A typical axis2.xml that we can use to run Axis2
has the following set of coniguration options:

•	 Deployment coniguration data
•	 Transport senders

•	 Transport receivers

•	 Execution chains

•	 Phases

•	 Parameters

•	 Message formatters and message builders

We have already encountered some of the mentioned terms and the rest will be
discussed soon in this chapter as well as throughout this book.

Information Model

[88]

The following igure shows the relationship among various types of descriptions or
metadata in Axis2:

As we can see, the top-most component in the hierarchy is AxisConfiguration
that keeps track of all the coniguration data, either directly or indirectly. There are
three major types of objects shown in the igure. Firstly, AxisModule originates from
a descriptor ile called module.xml, so that when we deploy a module in Axis2,
there will be a new AxisModule object to keep track of that particular module's
coniguration data. Secondly, the middle object hierarchy is created when we deploy
a service in Axis2. Finally, there are the transports and other data that are read
directly from axis2.xml.

AxisConiguration
AxisConfiguration is the top-most component of the static data hierarchy.
Nevertheless, it should be noted that although we call AxisConfiguration as a static
hierarchy, it does not mean that it is immutable. There are a number of instances
where it changes the content, but these changes are very infrequent. The whole
AxisConfiguration object is effectively a collection of data coming from axis2.
xml, a set of module.xml iles, and a set of services.xml iles. There are many ways
to create AxisConfiguration as well. One could create an AxisConfiguration
using the local ilesystem, using a remote repository, or even by using a database.
We will discuss these options in Chapter 15, Building a Secure Reliable Web Service. In
this chapter, the focus will be on creating an AxisConfiguration using the default
axis2.xml ile from the local ilesystem. A typical axis2.xml, which has the bare
minimum coniguration data to start an Axis2 server, is shown in the following
igure (a detailed explanation of the element structure is given after the igure):

Chapter 6

[89]

Parameters
As you can see in the previous igure, the axis2.xml ile has parameters, and
these can be deined at different levels in the document as well. As illustrated,
we have parameters at the top level as well as inside the transports. The main use
of parameters is to conigure the system and to provide coniguration data that
is needed at runtime. For example, if we need to log some request to a particular
location, that location can be provided using a parameter. Parameters are designed
to store primitive data types (for example, string, int, double, and so on) and
OMelements, but not any type of objects. The following code snippet shows how to
deine a parameter in any of the coniguration iles in Axis2.

Each parameter has an optional attribute called locked, as shown here:

<parameter name="name" locked="true/false"> value </parameter>

The idea of the locked attribute is to provide a control mechanism to make sure
that none of the child nodes override that parameter. For example, let's say
we have a parameter, as mentioned here, as an immediate child of axis2.xml:

 <axisconfig name="AxisJava2.0">

 <parameter name="port" locked="true">6060</parameter>

</axisconfig>

This will ensure that any other description in Axis2 cannot have a parameter with
the same name, here port. This phenomenon is illustrated in the following section.
Here, axis2.xml becomes invalid, as it tries to override a locked parameter.
Furthermore, we cannot have the parameter with the name port in any of the
other two descriptors, which are services.xml and module.xml. If they exist, they
become invalid.

<axisconfig name="AxisJava2.0">

 <parameter name="port" locked="true">6060</parameter>

 <transportReceiver name="http"

Information Model

[90]

 class="o.a.a.t.h.SimpleHTTPServer">

 <parameter name="port">6060</parameter>

 </transportReceiver>

</axisconfig>

There is a scope associated with a parameter. A parameter deined in axis2.
xml as an immediate child can be accessed by any of the descriptors in the system.
If a parameter is deined inside a irst level child of axis2.xml (for example,
transportSender), then that parameter can only be accessed inside that particular
child, in this case that speciic transportSender.

When accessing a parameter, Axis2 irst checks whether the parameter is deined
in the current description where we are. If not, it checks the immediate parent to
see whether the parameter exists there. If found, the parameter will be returned;
otherwise, the parent's parent will be checked, and so on. In this manner, it will
search the hierarchy when a request for a parameter is made.

MessageReceiver
In Chapter 4, Execution Chain, we discussed more about MessageReceiver and its
usage. All the message receivers we are going to use for our services should be
speciied in axis2.xml. You can have as many message receivers as you want and
use the right one at the services.xml. The way to specify the message receiver in
axis2.xml is shown next:

 <messageReceivers>

 <messageReceiver mep="MPE"

 class="o.a.a.r.RawXMLINOnlyMessageReceiver"/>

 </messageReceivers>

Note: In the preceding XML element, MEP stands for the Message Exchange
Patterns that the MessageReceiver can handle. Class attribute is to specify the
actual implementation class of the MR. You can register any number of message
receivers alone with a unique MEP. For example, WSDL 2.0 allows 8 types of MEPs.

Chapter 6

[91]

MessageFormatters and MessageBuilders
In HTTP, we use a content-type header to specify the type of data in the message
body. Moreover, depending on the content type, the wire format of the message
varies, for example, XML, JSON, base64, and so on. Axis2 also supports a number
of different message types, thus it requires serializing and deserializing a message
into the correct format. To facilitate, Axis2 has introduced MessageFormatters and
MessageBuilders; the irst one is to serialize the message into the wire format and
the second one is to build the SOAP message from the incoming message stream. We
already know that any kind of message is represented in Axis2 using Axiom, and
when we serialize the message, it needs to be formatted, based on the content type.
MessageFormatters exist to do that job for us. We can specify MessageFormatters
along with the content type in axis2.xml. On the other hand, a message coming
into Axis2 may or may not be XML. However, for it to go through Axis2, an Axiom
element needs to be created. Therefore, MessageBuilders are employed to construct
the message, depending on the content type.

These two types of descriptions can be considered complex, and as users are not
likely to change them, users can happily live with the default axis2.xml, as it will
have conigured all the commonly used content types along with their corresponding
builders and formatters. The structure of XML elements in axis2.xml is shown next:

 <messageFormatters>

 <messageFormatter contentType="application/x-www-form-
 urlencoded"

 class="o.a.a.t.h.XFormURLEncodedFormatter"/>

 </messageFormatters>

 <messageBuilders>

 <messageBuilder contentType="application/xml"

 class="o.a.a.b.ApplicationXMLBuilder"/>

 </messageBuilders>

As shown here, you can specify message builders and formatters with content type
and the implementation class. At runtime, Axis2 picks the right one to serialize and
de-serialize the message.

TransportReceiver and TransportSender
Axis2 is transport independent, and hence one can communicate with Axis2 using a
number of transports. For example, Axis2 has inbuilt support for HTTP, TCP, SMTP,
and JMS. All of these are conigurable through axis2.xml.

Information Model

[92]

The job of a transport sender is to serialize and handle the message exchanges,
depending on the underlying protocol. On the other hand, the transport receiver's
job is to deserialize an input stream into Axiom and respond to the client according
to the protocol. Axis2 comes with a better coniguration for all the transport.
However, transport such as SMTP requires some user involvement to provide correct
server names, for example, POP and SMTP. Other than that, a user does not need to
change the original transport deinition. The structure of XML elements in axis2.
xml is shown next:

 <transportReceiver name="http"

 class="o.a.a.t.h.SimpleHTTPServer">

 <parameter name="port">6060</parameter>

 </transportReceiver>

 <transportSender name="http"

 class="o.a.a.t.h.CommonsHTTPTransportSender">

 <parameter name="PROTOCOL">HTTP/1.1</parameter>

 <parameter name="Transfer-Encoding">chunked</parameter>

 </transportSender>

As shown here, you can add new transport senders and receivers by specifying name
(a.k.a protocol) and the implementation class. In addition, you can also add transport
speciic parameters.

Flows and phaseOrder
In Chapter 4, Execution Chain, when we discussed the Axis2 execution chain, we
talked about the use of lows and phaseOrders. As mentioned, Axis2 comes with a
set of predeined phases and lows such as in-low, out-low, and so on. A user does
not need to change them unless they have some speciic requirements. However, if
it is necessary to change the conigurations, you have learned how to do that as well
in Chapter 4. The structure of four different lows and the way to specify them in
axis2.xml is shown here:

 <phaseOrder type="InFlow">

 <phase name="Transport">

 <handler name="RequestURIBasedDispatcher"

 class="o.a.a.d.RequestURIBasedDispatcher">

 <order phase="Transport"/>

 </handler>

 ..

 </phase>

 <phase name="Security"/>

Chapter 6

[93]

 ..

 </phaseOrder>

 <phaseOrder type="OutFlow">

 <phase name="OperationOutPhase"/>

 ..

 </phaseOrder>

 <phaseOrder type="InFaultFlow">

 <phase name="PreDispatch"/>

 ..

 </phaseOrder>

 <phaseOrder type="OutFaultFlow">

 <phase name="OperationOutFaultPhase"/>

 ..

 </phaseOrder>

So far, we have discussed the different types of coniguration data that comes from
the axis2.xml. Now let us look at the other types of descriptions.

AxisModule
In simple terms, an AxisModule is a runtime representation of a module.xml. So all
the coniguration data found in module.xml is in AxisModule. A typical module
coniguration ile or module.xml contains the following data:

•	 Module name

•	 Module description

•	 Handlers and phase rules

•	 End point and operations

•	 WS-Policy

•	 Parameters

At the time of deployment, an AxisModule is populated using the data from
a module.xml. At runtime, any part of this data can be retrieved via the same
AxisModule. Once the data is populated and the module is complete, the parent
description of the AxisModule becomes the AxisConfiguration.

Information Model

[94]

Service description hierarchy
As we can see in the irst igure, in the middle we have an object hierarchy called the
AxisService hierarchy. This particular hierarchy is created using a services.xml
ile or the service descriptor and the hierarchy contains four types of descriptions.

When we deploy a service into Axis2, an object hierarchy will be created and
added to AxisConfiguration. Therefore, unless we have services deployed in
Axis2, we do not have the service objects hierarchy in the AxisConfiguration.
Unlike AxisModules and other descriptions (for example, transports and message
formatters), the service description hierarchy is likely to be changed at runtime,
depending on the deployment options. A typical services.xml is shown next to
help explain the object hierarchy in a more speciic manner better:

 <serviceGroup>

 <parameter name="name">value</parameter>

 <service name="Foo">

 <parameter name="name">value</parameter>

 <operation name="bar">

 <parameter name="name">value</parameter>

 <message label="in"></message>

 </operation>

 </service>

 <service name="XYZ">

 </service>

</serviceGroup>

AxisServiceGroup
AxisServiceGroup is the top-most component of the service description hierarchy
and is the child of AxisConfiguration. AxisServiceGroup can be considered as
the parent of a set of AxisServices that are deined in services.xml. Once we
deine a parameter in AxisServiceGroup, that parameter can be accessed from any
AxisService, AxisOperation, or AxisMessage, lower in the hierarchy. In addition
to parameters, an AxisServiceGroup may contain collections of modules engaged to
this particular AxisServiceGroup.

Note: The idea of a service group is a logical concept; the main goal of having service
group is to deploy a set of related services together and share static and dynamic
data across the services in the group.

Chapter 6

[95]

AxisService
An AxisServiceGroup should contain one or more AxisServices as
children. Therefore, any conigurations (for example, parameters) deined in
AxisServiceGroup or AxisConfiguration are accessible inside an AxisService.

AxisService has the following data and conigurations:

•	 AxisOperation

•	 Parameters

•	 Exposed transports

•	 Engaged modules

•	 Namespaces

•	 Exposed transports

•	 Description about the service

•	 Message receivers

•	 WS-Policy

In the next chapter, we will discuss these terms in detail and explain how to create
and deploy services in Axis2.

AxisOperation
AxisOperation is the runtime description representation of an exposed web service
operation. As an example, let's say we have published an operation called bar in the
Web service Foo. Then there should be an AxisService object called Foo and that
object should have an AxisOperation object called bar. The parent description of
an AxisOperation is the AxisService, and any parameter deined in the parent's
descriptions can be accessed inside the child, in this case, the AxisOperation. So any
parameter in AxisConfiguration, AxisServiceGroup, and AxisService can be
accessed and used inside AxisOperation. In addition to parameters, AxisOperation
contains:

•	 AxisMessage

•	 Engaged modules

•	 Operation name

•	 Soap actions

•	 WS-Policy

Information Model

[96]

AxisMessage
AxisMessage is the leaf element of the service hierarchy, and the immediate parent
of the AxisMessage is an AxisOperation. As we discussed, AxisService can
have any number of AxisOperation. However, AxisOperation cannot have any
number of AxisMessage elements. The number of AxisMessages in an operation
is determined by the message exchange pattern. As an example, if the operation
is in-out, there will be only two AxisMessage elements in it, one to represent the
in message coniguration and another to represent the out message coniguration.
AxisMessage has the following set of data:

•	 Parameters

•	 WS-Policy

•	 Message label

•	 Element Qname of the corresponding schema element (optional)

Note: A message element is an optional element, thus, we can have
operation elements with zero message elements. You need to add
message elements only if you are going to override the message, such as
adding a new policy.

Now, we have a good understanding of Axis2 static data and how to change them,
hence the next step is to learn about dynamic data hierarchy and the relationship
between static data and runtime data. The following igure shows the relationship
between the descriptions hierarchy and the contexts or the runtime data hierarchy.

Axis2 contexts
The Axis2 context hierarchy is the runtime data representation of Axis2. Runtime
data comes into the picture only when Axis2 receives a message, (unlike
descriptions). The runtime data is used to share data across multiple invocations or
among the handlers in one invocation. When we were discussing the description
hierarchy, we talked about how parameters act as the main coniguration
mechanism. In context, the main coniguration or data sharing mechanism is the use
of Properties. Unlike parameters, we do not need to deine properties anywhere,
as we can create them on-the-ly and use them. Properties are stored as name-value
pairs in the context hierarchy. Hence, if we add a property to the context, then that
property can be accessed and overridden by any other of its child contexts.

The following igure shows the relationship between static data and runtime data
in Axis2:

Chapter 6

[97]

As you can see on the left-hand side, the top most component of the hierarchy
is ConfigurationContext. The only difference, when ConfigurationContext
is compared to other contexts, is that it is the only context that exists in the
system before receiving a message. ConfigurationContext has a reference to an
AxisConfiguration, and to create ConfigurationContext, it is required to have an
AxisConfiguration available.

ConigurationContext
A ConfigurationContext is a runtime representation of the whole system. To start
Axis2, you need to have a coniguration context. The lifetime of the coniguration
context will be the lifetime of the system, so if we store a state (a property), it stays
there forever (that is, until the system is shut down). ConfigurationContext is not
only the parent of all other context, it can also be considered as an originator element
of the entire Axis2 system.

Information Model

[98]

ServiceGroupContext
When a message is received by Axis2, a ServiceGroupContext is created to store
and shared data. To create a ServiceGroupContext, it is required to have an
AxisServiceGroup object available. One AxisServiceGroup may have one or
many ServiceGroupContext. Nevertheless, there is only one AxisServiceGroup
associated with the context. The lifetime of the ServiceGroupContext depends on
the service scope (for example, application, transport, SOAP session, and request). If
the service scope is application, then the lifetime will be the same as system lifetime.
However, if the service scope is "request", then there will be a ServiceGroupContext
created for each and every invocation. If we want to share data across multiple
services in one service group at runtime, then the ServiceContext provides the
means to do so.

ServiceContext
A ServiceContext represents the runtime data for a given service. To create
a ServiceContext, we need to have a ServiceGroupContext object and an
AxisService object available. The lifetime of the ServiceContext depends on the
scope of the service. If we want to share data across multiple invocations of the same
service, then ServiceContext can be used as the placeholder to store that data.

For example, let's say we have a service with three operations—login, doSomething,
and logout. Also, assume that we need to share data across these three operations.
Here, ServiceContext can be used to achieve these objectives. The number of
ServiceContexts in one ServiceGroupContext is dependent on the number of
AxisServices in the corresponding AxisServiceGroup.

OperationContext
An OperationContext represents the lifetime of an MEP. More often than not, the
lifetime of an operation context is less than the lifetime of the service context. We can
use OperationContext to share data among messages in an MEP. For example, if
we want to share data between a request and the response, then OperationContext
can be used to achieve that. The number of OperationContext contexts in a
ServiceContext is not related to the number of AxisOperation operations in
an AxisService; it only depends on the number of invocations, for example, one
OperationContext for each invocation.

Chapter 6

[99]

MessageContext
When a message is received by any transport, the irst thing it does is create a
MessageContext to represent the incoming message. To create a MessageContext,
we need to have ConfigurationContext available. The lifetime of the message
context is the same as the processing time of the message, for example, the lifetime
of an incoming MessageContext is the time taken for a message to travel from the
transport receiver to the message receiver. In the case of an outgoing message, the
lifetime will be the time taken by a message to reach the transport sender, from the
moment it left the message receiver.

Although we can see a hierarchy in the second igure in the case of incoming
messages, the hierarchy will not be complete until the message has passed the
dispatchers. Until that happens, it has only the ConfigurationContext. In the
case of outgoing messages, the complete hierarchy is available.

Summary
In this chapter, we discussed the Axis2 runtime data hierarchy and static data
hierarchy. We discussed how and when these are created. Most of the things we
discussed here are important, if you plan to create a complex service such as a
session-aware service or when writing handlers. If you are going to use Axis2 to
simply deploy and invoke a service, you do not need to worry too much about the
facts discussed here.

Now that we have gained a good understanding of the Axis2 concepts' usefulness,
it is time to use these concepts practically. In the next chapter, we will discuss how
to use Axis2 in your web service application. It also covers writing web services
using Axis2.

Writing an Axis2 Service
In the previous chapters, we introduced and discussed various Axis2 concepts and
highlighted the importance of them. Starting from this chapter, we are going to
discuss how to use those concepts in the real world. Each chapter provides you with
a comprehensive set of examples, which help you to understand the concepts clearly.
Repeating the example in your own environment would help you to gain the most
out of each chapter. Axis2 introduces several new features to its web services. For
example, annotation support, session support, and ways to store session-aware data
in the information hierarchy, POJO, and Spring-based web services.

As we have already discussed in the previous chapters, there are two main aspects
to any given web service framework; irstly, to provide a hosting environment for
web services, and secondly, to provide an invocation framework to access a remote
service. Hosting a service includes implementing a service, deployment of the
service, and lifecycle management of the service. In Chapter5, we briely discussed
a number of different ways to deploy a service. Here, in this chapter, we are going
to discuss how to implement a service and deploy it on the Axis2 Web Service
hosting environment. Moreover, in this chapter, we will cover the two fundamental
approaches that are commonly used in the industry to create web services. At the
end of this chapter, you will have a good understanding of how to create a web
service and deploy it in Axis2. In Chapter 9, The Client API, we will discuss how to
consume a web service deployed in Axis2 or elsewhere.

Writing an Axis2 Service

[102]

Creating a web service
When it comes to problem solving, there are two main approaches that we
commonly use—the top-down approach and the bottom-up approach. Not
surprisingly, those approaches are applicable in the web service world as well. In
the web service world, the two approaches have been given different names but the
concepts remain the same:

•	 Code irst approach: It is the same as the bottom-up approach, where we
irst start with the source code and eventually expose our source code
as a web service. More concretely, the code irst approach helps to easily
convert an existing application into a web service. In general, this approach
reduces the learning curve, where a user does not need to have a very good
understanding of the web service concepts, having a fair understanding of
how a speciic framework works would help to easily achieve the goal. POJO
or Plain Old Java Object is one of the very good examples of the code irst
approach. Notably, with the code irst approach, you might not be able to get
the full power of the framework and web service, but you can still achieve
your goal.

•	 Contract irst approach: As we discussed in the previous section, the code
irst approach is analogous to the bottom-up approach. In contrast, the
contract irst approach is analogous to the top-down approach. In this
process, we irst write the Web Service Description Language (WSDL)
document according to the service contract, its meaning, and so on. Entities
participating in the service invocation come up with a set of APIs and then
map that into the WSDL document. Once we have the WSDL document,
we can use the tool supported by the web service framework to convert the
WSDL document in the framework-dependent code (skeleton) and then
complete the business logic.

Considering both the approaches together, we can get an idea of the pros and cons
associated with each. By the end of this chapter, you will be able to understand why
one approach may be picked over the other, depending on the scenario at hand.

Chapter 7

[103]

As mentioned before, in the code irst approach, we irst write the service
implementation class and other relevant classes. The important factor to note here
is that with the code irst approach, we do not need to have an understanding of the
concepts behind the web services beforehand (for example WSDL, XML, SOAP, and
so on). All you need to do is write your service implementation class with a set of
public methods that you are planning to expose as web service operations. So using
this approach, even someone who has no knowledge of WSDL or SOAP can deploy a
service and easily access it as a web service. Sometimes, this approach is also known
as the POJO approach. One of the key advantages of this approach is that you can
change your service class as and when you wish to, as you do not need to worry too
much about method parameters, methods names, and so on. So the key objective is
to meet a customer's requirements very conveniently.

On the other hand, in the contract irst approach, we irst start with an agreement
between the two or more parties who come up with one or more mutually agreed
upon contracts. These contracts might be based on underlying protocols, security
considerations, and other factors such as policies. In most web service frameworks,
the contract is written using WSDL. Using the prepared WSDL document, one party
can create a service while others can use the same document to create clients to
invoke that service.

In almost all the web service frameworks available today, you can ind integrated
tools to create both client-side and server-side code using the given WSDL
document. The process of creating a service and client code using a WSDL document
is called code generation and the generated classes are called data bound classes. In
this approach, the advantage is that you can use the tools available in the distribution
to create service skeletons or the service proxies (stub), which you can ill in to
implement the desired business logic. Therefore, manual code writing is greatly
reduced. The major disadvantage here is that if ever you needed to change the WSDL
document, then you will have to generate code again; whereas in the code irst
approach, changing a service class is a pretty straightforward task. However, once
two parties agree upon a set of policies and come up with the WSDL document, it is
not likely that the WSDL will undergo changes.

If you are new to the web services area, then it might be best to start with the POJO
approach, as all it involves is writing Java code (e.g., in the case of Java based Web
services). Despite this fact, the end result is a service which can be exposed and
consumed universally. So let us irst discuss the code irst approach and see how you
can start writing an Axis2 compatible web service using a plain old Java class.

Writing an Axis2 Service

[104]

The code irst approach
In the code irst approach, we start by writing the service implementation class, that
is, the class that provides the service. We will begin by writing a simple web service
that says Hello <name> when invoked. Note that <name> here will be your name
given as an input parameter to the service.

Single class POJO approach
Let us irst write our service implementation class. Since Axis2 is a Java-based
web service framework, we are going to use Java as the primary language for
implementing the service. Hence, the Java code for your service class should be
somewhat like the following. In this case, let us assume that the class does not have
any package name declared, that is, the class is in the default package.

public class HelloWorld {

 public String sayHello(String name) {

 return "Hello " + name;

 }

}

As you can see, even this minimal amount of code is enough to be a service on its
own. We already discussed in Chapter 5, Deployment Model, more about the available
deployment options in Axis2. As we discussed, there are a number of ways of
deploying a service. More importantly, even for POJO deployment, there are a few
ways in which you can make your Java class into a web service.

Let us start with the simplest approach; here, we assume that you are going to
deploy the service in the Tomcat application server. If you are using some other
application server, then you need to change the following path accordingly. Once
you've followed the steps listed here, you will have deployed and invoked the
service as well:

1. Compile the Java class, which will produce the HelloWorld.class ile.
2. Go to <TOMCAT_HOME>/webapps/axis2/WEB-INF.

3. Create a directory named pojo inside the WEB-INF directory.

4. Then copy the HelloWorld.class into the pojo directory, created in the
previous step.

5. Start Tomcat.

6. Go to http://localhost:8080/axis2/services/listServices, where
you will be able to ind a service named HelloWorld listed.

Chapter 7

[105]

•	 Now open your browser and type the following URL and see what you get.
It should be noted here that depending on the port that you have speciied in
Tomcat, you need to change 8080.

http://localhost:8080/axis2/services/HelloWorld/
sayHello?name=Axis2""

Now you should be able to see Hello Axis2 in the browser. You can experiment by
changing the name parameter, and you will ind that the service responds with a
Hello to any name entered.

What all of this means is that you have successfully deployed your service more
concretely; you have invoked the service in a REST (Representational State Transfer)
manner.

As mentioned, the previous approach can be considered as one of the easiest ways to
write and deploy services in Axis2. Though the sample we chose was quite simple,
that is not to say you can't write very complicated services in this manner. However,
the only limitation is that you cannot have the service class in any package other
than the default package. If you want to have the service class in your own package
structure, you will have to follow a slightly different path, which we will discuss
soon, later in this chapter.

Considering the POJO support provided by Axis2, you should know that you can
deploy both annotated Java classes and non annotated (plain) Java classes. It should
be mentioned here that Axis2 has support for the JSR 181 annotation speciication. If
you are not familiar with Java annotations, it would sufice to say that annotations
are a mechanism that provides metadata when using POJOs. A simple Java class
with basic JSR 181 annotation can be written as follows, and it should be noted that
it is possible to provide large amounts of data and create complicated applications
using this feature.

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;

@WebService (targetNamespace = "http://sample.org/helloWorld", name =
"HelloWorld")

public class HelloWorld {

Writing an Axis2 Service

[106]

 @WebMethod (action = "urn:sayHello" ,operationName = "sayHello")

 public String sayHello(@WebParam (partName = "name") String name)
{

 return "Hello " + name;

 }

}

Annotation is only supported in JDK 1.5 or higher. Also, a lack of expertise in
the usage of annotations should not be a concern for you at this point. Your
main objective here should be learning the Axis2 concepts, after which, applying
annotations should be pretty straightforward.

POJOs with packages
As we discussed in the previous section, when deploying a POJO as a single .class
ile, you cannot have the Java class declared inside a custom package. But if you need
it to be so, or if there are several classes that are required for the working of your
POJO, and you cannot use the single class POJO approach any longer, then you need
to follow the approach we are going to discuss here.

Now let us consider a class like the following:

package book.sample

import javax.jws.WebService;

@WebService

public class AddressService {

 public Address getAddress(String name) {

 Address address = new Address();

 address.setStreet("Street");

 address.setNumber("Number 15");

 return address;

 }

}

You can see that we have annotated the AddressService class. The corresponding
Address class is given here:

package book.sample

public class Address {

 private String street;

 private String number;

 public String getStreet() {

 return street;

 }

Chapter 7

[107]

 public void setStreet(String street) {

 this.street = street;

 }

 public String getNumber() {

 return number;

 }

 public void setNumber(String number) {

 this.number = number;

 }

}

Now you have to compile the source code and create a Java ARchive ile (JAR), that
is, a .jar ile from the .class iles. There are multiple ways to create a JAR ile. You
can use Java APIs or you can use some of the third-party archive tools to accomplish
this task.

Next, you will need to edit your axis2.xml to add a deployer to handle .jar iles.
You can do this by adding the following entry to the axis2.xml ile in:

<TOMCAT_HOME>/webapps/axis2/WEB-INF/conf/axis2.xml

<!--.jar handler-->

<deployer extension=".jar" directory="pojo" class="org.apache.axis2.
deployment.POJODeployer"/>

The next step is to drop the .jar ile into <TOMCAT_HOME>/webapps/axis2/WEB-
INF/pojo.

A .jar ile will, more often than not, contain more than one .class ile in it. So there
should be a way to identify the service class (or classes) in it. That is why we have
annotated the POJO class with @WebService. Provided this annotation is applied,
Axis2 will identify that class as the service implementation class and expose it as a
web service.

To see what has happened (remember to restart Tomcat if it is already running), go
to http://localhost:8080/axis2/services/listServices, where you should
ind a service called AddressService listed.

If you have turned hot deployment on, you can change either the
.class iles or the .jar ile and redeploy it. Axis2 will pick up
the changes you made.

Writing an Axis2 Service

[108]

Deploying services using a service
The POJO deployment method, though the simplest, cannot be considered the most
suitable or the most lexible method when considering the different options available
in the code irst approach. As we already discussed, when you have a service with
its own package names, the POJO-based deployment becomes a little complicated.
As a solution to this, Axis2 has introduced yet another deployment mechanism
called archive-based deployment. It should also be noted here that the most
recommended approach for deploying a service in Axis2 is not the POJO approach,
it is the archive-based deployment approach. However, you can feel free to use
the POJO approach as the initial stage of the service development, as it can be very
convenient. Now let's see how you can go about creating a service archive ile from
the HelloWorld.java class.

Writing the services.xml ile
When deploying your service as an archive ile, in order for it to be a valid service
in Axis2, you need to have a service deployment descriptor document named
services.xml inside the service archive. This service deployment descriptor will
tell the deployment module how to conigure and deploy the service. Writing a
services.xml for the service you developed previously is very simple and pretty
straightforward.

There are a few things that you have to keep in mind when writing iles such as
services.xml:

•	 The fully qualiied class name of the service implementation class (for
example, if you have a class called MyService inside the foo.bar package,
the fully qualiied name becomes foo.bar.MyService)

•	 Message receiver or receivers that you are going to use

Axis2 has a set of inbuilt message receivers. Some of these can only handle
XML-in/XML-out scenarios and are called RawXML message receivers. Also,
there are message receivers that can handle any kind of JavaBeans/simple Java
types/XML and these are called RPC message receivers. According to the earlier
sample code, it may be obvious to you that you cannot use any of the RawXML
message receivers for this particular service. So, RPC message receivers would be
the order of the day here.

There are different methods you can use when writing a services.xml, and the
one you choose may vary depending on the way you specify the message receivers,
operation overriding, and so on. Let's start with a very basic services.xml to get
an understanding of the concepts. The services.xml corresponding to the given
service can be written as follows:

Chapter 7

[109]

<service name="HelloService">

 <description>

 This is my first service, which says "Hello!"

 </description>

 <parameter name="ServiceClass">HelloWorld</parameter>

 <operation name="sayHello">

 <messageReceiver

 class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>

 </operation>

</service>

As you can see, I have highlighted a few lines in the given XML snippet. Those
are the important XML tags that you need to remember to include when writing
a services.xml.

Service implementation class
To specify the corresponding service implementation class, you need to add a
parameter with the name ServiceClass and the value of that parameter should be
the fully qualiied name of the service implementation class. In this case, it is just
HelloWorld (class is declared in the default package).

Specifying the message receiver
There are a few ways to specify the message receiver for a given service. One of
them is to add an operation tag with the actual Java method name and include the
message receiver inside this <operation> tag. The services.xml, mentioned earlier,
has followed this approach. As you can see, the service implementation class has a
method called sayHello, and the services.xml has an operation tag with the same
name. Inside the operation element, we have added the message receiver element.

Writing an Axis2 Service

[110]

Creating a service archive ile
The next step is to create a service archive ile containing the compiled bytecode of
the service implementation class and the services.xml. The inner folder structure
of a service archive ile should look like the following screenshot:

Deploying the service is just a matter of dropping the service archive ile into the
axis2/WEB-INF/services directory in your aixs2 server's repository. In addition,
you can also upload your service archive ile using Axis2's administration console.
Irrespective of the way you deploy your service, the name of the service becomes
HelloService.

Different ways of specifying message

receivers
As mentioned earlier, there are several ways of specifying message receivers for
a given service:

•	 Specify the message receiver at the operation level for each operation

•	 Specify all the message receivers at the service level for the whole service

•	 Specify a service level message receiver and override it for individual
operations as and when required

Specifying the message receiver at the operation level
The example we discussed earlier used this approach, where the message receiver
was speciied at the operation level. The advantage of this approach is that you
can have different message receivers for different operations; for example, you can
have an operation which uses a simple Java class and some other operations using
OMElements. In that case, you can conigure one operation with the RPC message
receiver and another with the XML message receiver.

Chapter 7

[111]

Specifying message receivers at the service level for the

whole service
Think of a scenario where you have a large number of operations to be published
in the services.xml ile. In this case, adding message receivers for each and every
operation seems like a headache. However, if you can specify a message receiver for
the whole service, it would make the service author's job easier and would simplify
the services.xml as well.

Axis2 has inbuilt support for all of the eight Message Exchange Patterns (MEPs)
deined in W.S.D.L. 2.0. In a services.xml, you can specify an MEP and the
corresponding message receiver, and then, depending on the MEP the operation
belongs to, Axis2 will automatically pick up the message receiver and set it to the
operation.

Inside the operation tag, you can add an attribute to specify the MEP of the
operation as follows:

<operation name="sayHello" mep="http://www.w3.org/2004/08/wsdl/in-out"
/>

An example of deining service level message receivers for a given service is
shown here:

<service>

 <Description>

 This is my first service, which will say Hello.

 </Description>

 <messageReceivers>

 <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-only"
class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"/>

 <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-out"
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

 </messageReceivers>

<parameter name="ServiceClass" locked="false">HelloWorld</parameter>

<operation name="sayHello" mep="http://www.w3.org/2004/08/wsdl/in-out"
/>

</service>

Writing an Axis2 Service

[112]

According to the services.xml, org.apache.axis2.rpc.RPCMessageReceiver is the
message receiver for all of the in-out operations (any operation that belongs to the in-out
MEP will assign this message receiver as its message receiver) in the service. Whereas,
the service level message receiver for an in-only MEP is RPCInOnlyMessageReceiver.
If you redeploy the HelloWorld service with the new services.xml, you will deinitely
get the same result when you invoke the service again.

Specifying the service level message receiver and

overriding them through operations
There may be an instance where a service author wants to use different message
receivers for some of the operations while he/she has already deined service level
message receivers. The overriding of a service level message receiver by an operation
can be easily achieved by just adding a message receiver element to the operation
that you want to assign a different message receiver to. A sample services.xml that
follows this technique is shown next:

<service>

 <Description>

 This is my first service, which will say Hello.

 </Description>

 <messageReceivers>

 <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-only"

 class="org.apache.axis2.rpc.receivers.
RPCInOnlyMessageReceiver"/>

 <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-out"

 class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>

 </messageReceivers>

 <parameter name="ServiceClass" locked="false">HelloWorld</
parameter>

 <operation name="sayHello">

 <messageReceiver class="org.apache.axis2.receivers.
RawXMLINOutMessageReceiver"/>

 </operation>

</service>

Operation sayHello uses a different message receiver than its service level
message receivers.

All the public methods in the service implementation class are exposed whether you
specify them in the services.xml or not. Axis2 calculates the MEP of an operation
by checking its corresponding Java method. If the method's return type is void, then
the MEP will be in-only, or else it will be in-out. Depending on the MEP, the correct
message receiver will be set.

Chapter 7

[113]

Note: If you do not want to expose some of the operations in your
service class, you can also do that by adding the following tag:

<excludeOperations>

 <operation>op1</operation>

</excludeOperations>

Service group and single service
There are many instances where you might want to deploy multiple services
(logically related or otherwise) together in a single service archive ile. For that,
Axis2 has the concept of a service group. Here you can have multiple service
implementation classes and only one services.xml ile to describe all the services.
The only difference is that the root element of the services.xml is changed to
serviceGroup instead of service. As an example, say you want to deploy two
services together in a single service archive ile and further assume that their names
are MyService1 and MyService2 respectively. Then the services.xml can be
written as follows:

<serviceGroup>

 <service name="MyService1">

 </service>

 <service name="MyService2">

 </service>

</serviceGroup>

Comparing this services.xml with the services.xml from the earlier example
(HelloWorld), the only difference in the service elements is that here the service
element has an additional attribute called name. If you want to have multiple service
elements in the services.xml ile, then it is compulsory to have a name attribute in
each and every service element.

Writing an Axis2 Service

[114]

Adding third-party resources
There are many instances where you will want to use third-party libraries in your
web service. Also, by now, you should know that each service and module in Axis2
is isolated. So each service gets its own class loader. When you have third-party
libraries that you want to include with your web service, Axis2 has a mechanism to
do just that. This is done by simply creating a folder named lib inside the service
archive ile and dropping the libraries or resources inside it.

Imagine you have a service that needs to use libraries named foo.jar and bar.jar
and a resource named xyz.properties in your service. Your service archive ile
should then look like the following screenshot:

Service WSDL and schemas
When you start writing relatively more complex applications, you will feel the
need for having a WSDL document and schema iles inside the service archive ile.
When considering enterprise level applications, you cannot let clients rely on an
auto-generated WSDL document. In order to have a solid and well deined WSDL
document, it is necessary to deploy the service along with the WSDL document
ile and the corresponding XML Schema iles. Therefore, when you want to add a
WSDL document ile, the place to put it would be inside the META-INF directory
of a service archive. The only thing you have to remember when doing so is that the
service name given in the services.xml and the service name deined in the WSDL
document should be the same. A service archive ile with the included WSDL ile
will have the following structure:

Chapter 7

[115]

When you have a WSDL ile and services.xml, the relationship between them will
be as follows:

WSDL ile

<wsdl:definitions xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/ …..>

<wsdl:types>

<xs:schema targetNamespace="http://org.apache.axis2" … >

</xs:schema>

</wsdl:types>

<wsdl:portType name="MyPort">

</wsdl:portType>

<wsdl:binding name="MyBiding" type="tns: MyPort">

</wsdl:binding>

<wsdl:service name="MyService">

 <wsdl:port name=" MyPort " binding="tns: MyBiding ">

 <soap:address location="http://127.0.0.1:8080/axis2/services/
MyService " />

 </wsdl:port>

</wsdl:service>

Services.xml

<service name="MyService">

 ...

</service>

Writing an Axis2 Service

[116]

Contract irst approach – starting from
the WSDL
The easiest and a more suitable way of creating a web service is to start from the
WSDL document. This is the method most followed when it comes to most of the
enterprise level applications. As enterprise level applications usually have well deined
business scenarios and corresponding business contracts, which can be presented in
the form of a WSDL document, it makes sense to start from there. The point to note
here is that once the client and the producer (service) have the WSDL document, it acts
as a contract according to which the development should take place.

Axis2 has inbuilt support for the generation of service and client code, once you
have the WSDL document. So in this case, as a service author, you only need to do
the following:

1. Generate the service code (service skeleton).

2. Fill in the service skeleton according to the business logic.

3. Run the generated Ant build ile.
4. Deploy the service archive ile created by Ant into your application server

where the Axis2 is running.

Generating code
Axis2 comes with a set of tools and IDE plugins for code generation (WSDL2Code) in
order to make web services' development work easier. So you can choose from any
of these code generation tools to generate the service skeleton. In addition, there is a
set of databinding frameworks that are supported, and out of which, you can select
one, depending on your requirements. To name a few, you can use XMLBeans, ADB,
or any other available databinding frameworks such as JiBX, JaxMe, and others.

When you generate server-side code, it creates the following artifacts:

•	 Service skeleton class

•	 Message receivers (most of the time one or two)

•	 services.xml

•	 services.wsdl

•	 Ant build ile (build.xml)

Chapter 7

[117]

Filling in the service skeleton
Axis2 generates a service skeleton class with methods that can throw
UnsupportedOperation. All that we have to do is implement the service
skeleton class according to the business logic you want to provide.

Running the ant build ile
After completing the service skeleton, the next step is to create a service archive ile
using the modiied generated code. To make this job simple, Axis2 generates an Ant
build ile to create the service archive ile for you. What you have to do is open a
command line console and go to the folder where you output the generated code and
then type ant build in the console to run the Ant build ile. The service archive will
now be created for you.

In this chapter, we only skimmed through the contract irst approach. You will learn
more about code generation and databinding in detail later in this book. We will also
be covering a number of samples as well as the available tools.

Summary
Turning a Java class into a web service is very straightforward in Axis2. Once you
know how to write a services.xml ile correctly, you can create more complex
applications rather than just POJOs. Deploying a service is just a matter of creating
a service archive ile and dropping it into the services directory in the Axis2
repository. WSDL's irst approach is the easiest way of creating a service since Axis2
has inbuilt support for code generation and it has a set of tools to make the job even
easier.

In this chapter, we discussed how to convert a simple class ile into a web service and
how to access that in a REST manner. We discussed what happens when the service
becomes a little complex by adding a package name. We also discussed how to use
the archive-based deployment mechanism. Finally, we briely discussed the contract
irst approach.

In the next chapter, we will discuss how to extend Axis2's core functionality and
provide additional service quality using the Axis2 module.

Writing an Axis2 Module
Web services are gaining a lot of popularity in the industry and have become one of
the major enabler for application integration. In addition, due to the lexibility and
advantages of using web services, everyone is trying to enable web service support
for their applications. As a result, web service frameworks need to support new and
more custom requirements. As we have already discussed in the previous chapters,
one of the major goals of a web service framework is to deliver incoming messages
into the target service. However, just delivering the message to the service is not
enough; today's applications are required to have reliability, security, transaction,
and other quality services.

Due to the popularity of web services, standard bodies are producing new web service
standards, and it is hard to support those new standards if the web service framework
is not lexible enough. From the very beginnings of Axis2, lexibility and extensibility
were the two main design considerations. The idea of Axis2 modules is to extend the
core functionality of the system without performing any changes to the core system.
For example, Axis2 supports reliability and security as two separate modules, and the
core engine is fully independent of those two qualities of service modules.

In this chapter, we will discuss the power of Axis2 modules and how to use them to
extend Axis2 to support for your own requirements. In particular, we will discuss
the following items:

•	 Brief history of the Axis2 module

•	 Introducing module concept

•	 Structure of the module

•	 Module coniguration ile (module.xml)

•	 Optional module implementation class

•	 Steps to writing a module.xml ile
•	 Deploying and engaging a module

•	 Brief overview of the WS-Policy and its usage in modules

Writing an Axis2 Module

[120]

In our approach, we will be using code sample to help us understand the
concepts better.

Brief history of the Axis2 module
Looking back at the history of Apache Web Services, the Handler concept can be
considered as one of the most useful and interesting ideas. Due to the importance
and lexibility of the handler concept, Axis2 has also introduced it into its
architecture. Notably, there are some major differences in the way you deploy
handlers in Axis1 and Axis2. In Axis1, adding a handler requires you to perform
global coniguration changes and for an end user, this process may become a little
complex. In contrast, Axis2 provides an easy way to deploy handlers. Moreover, in
Axis2, deploying a handler is similar to deploying a service and does not require
global coniguration changes.

At the design stage of Axis2, one of the key considerations was to have a mechanism
to extend the core functionality without doing much. One of the main reasons
behind the design decision was due to the lesson learned from supporting WS
reliable messaging in Axis1. The process of supporting reliable messaging in Axis1
involved a considerable amount of work, and part of the reason behind the complex
process was due to the limited extensibility of Axis1 architecture. Therefore, learning
from a session in Axis1, Axis2 introduced a very convenient and lexible way of
extending the core functionality and providing the quality of services. This particular
mechanism is known as the module concept.

Module concept
In Chapter 4, Execution Chain, we introduced and discussed the handler concepts and
how to use handlers. As we discussed there, one of the main ideas behind a handler
is to intercept the message low and execute speciic logic. In Axis2, the concept of a
module is to provide a very convenient way of deploying service extension. We can
also consider a module as a collection of handlers and required resources to run the
handlers (for example, third-party libraries). One can also consider a module as an
implementation of a web service standard speciication. As an illustration, Apache
Sandesha is an implementation of WS-RM speciication. Apache Rampart is an
implementation of WS-security; likewise, in a general module, is an implementation
of a web service speciication. One of the most important features and aspects of the
Axis2 module is that it provides a very easy way to extend the core functionality
and provide better customization of the framework to suit complex business
requirements. A simple example would be to write a module to log all the incoming
messages or to count the number of messages, if requested.

Chapter 8

[121]

Module structure
As mentioned a few times before in previous chapters, Axis1 is one of the most
popular web service frameworks and it provides very good support for most of the
web service standards. However, when it comes to new and complex speciications,
there is a signiicant amount of work we need to do to achieve our goals. The
problem becomes further complicated when the work we are going to do involves
handlers, coniguration, and third-party libraries. To overcome this issue, the
Axis2 module concept and its structure can be considered as a good candidate. As
we discussed in the deployment section, both Axis2 services and modules can be
deployed as archive iles. Inside any archive ile, we can have coniguration iles,
resources, and the other things that the module author would like to have.

It should be noted here that we have hot deployment and hot update
support for the service; in other words, you can add a service when the
system is up and running. However, unfortunately, we cannot deploy
new modules when the system is running. You can still deploy modules,
but Axis2 will not make the changes to the runtime system (we can drop
them into the directory but Axis2 will not recognize that), so we will
not use hot deployment or hot update. The main reason behind this is
that unlike services, modules tend to change the system conigurations,
so performing system changes at the runtime to an enterprise-level
application cannot be considered a good thing at all.

As we discussed earlier, adding a handler into Axis1 involves global coniguration
changes and, obviously, system restart. In contrast, when it comes to Axis2, we can add
handlers using modules without doing any global level changes. There are instances
where you need to do global coniguration changes, which is a very rare situation
and you only need to do so if you are trying to add new phases and change the phase
orders. You can change the handler chain at the runtime without downer-starting the
system.

As mentioned earlier, changing the handler chain or any global
coniguration at the runtime cannot be considered a good habit. This is
because in a production environment, changing runtime data may affect
the whole system. However, at the deployment and testing time this
comes in handy.

Writing an Axis2 Module

[122]

The structure of a module archive ile is almost identical to that of a service archive
ile, except for the name of the coniguration ile. We know that for a service archive
ile to be a valid one, it is required to have a services.xml. In the same way, for
a module to be a valid module archive, it has to have a module.xml ile inside
the META-INF directory of the archive. A typical module archive ile will take the
structure shown in the following screenshot. We will discuss each of the items in
detail and create our own module in this chapter as well.

Module coniguration ile (module.xml)
As we have already discussed, the module archive ile is a self-contained and
self-described ile. In other words, it has to have all the coniguration required to
be a valid and useful module. Needless to say, that is the beauty of a self-contained
package. The Module coniguration ile or module.xml ile is the coniguration ile
that Axis2 can understand to do the necessary work.

A simple module.xml ile has one or more handlers. In contrast, when it comes to
complex modules, we can have some other conigurations (for example, WS policies,
phase rules) in a module.xml. First, let's look at the available types of conigurations
in a module.xml. For our analysis, we will use a module.xml of a module that counts
all the incoming and outgoing messages. We will be discussing all the important
items in detail and provide a brief description for the other items:

•	 Handlers alone with phase rules

•	 Parameters

•	 Description about module

•	 Module implementation class

•	 WS-Policy

•	 End points

Chapter 8

[123]

Handlers and phase rules
As we discussed, a module is a collection of handlers, so a module could have one
or more handlers. Irrespective of the number of handlers in a module, module.
xml provides a convenient way to specify handlers. Most importantly, module.
xml can be used to provide enough coniguration options to add a handler into the
system and specify the exact location where the module author would like to see the
handler running. In Chapter 4, Execution Chain, we learnt more about phase rules as
a mechanism to tell Axis2 to put handlers into a particular location in the execution
chain, so now it is time to look at them with an example.

Before learning how to write phase rules and specifying handlers in a module.xml,
let's look at how to write a handler. There are two ways to write a handler in Axis2:

•	 Implement the org.apache.axis2.engine.Handler interface

•	 Extend the org.apache.axis2.handlers.AbstractHandler abstract class

In this chapter, we are going to write a simple application to provide a better
understanding of the module. Furthermore, to make the sample application easier,
we are going to ignore some of the dificulties of the Handler API. In our approach,
we will extend the AbstractHandler. When we extend the abstract class, we only
need to implement one method called invoke. So the following sample code will
illustrate how to implement the invoke method:

public class IncomingCounterHandler extends AbstractHandler implements
CounterConstants {

public InvocationResponse invoke(MessageContext messageContext) throws
AxisFault {
 //get the counter property from the configuration context
 ConfigurationContext configurationContext = messageContext.
getConfigurationContext();
 Integer count =
 (Integer) configurationContext.getProperty(INCOMING_
MESSAGE_COUNT_KEY);
 //increment the counter
 count = Integer.valueOf(count.intValue() + 1 + «»);
 //set the new count back to the configuration context
 configurationContext.setProperty(INCOMING_MESSAGE_COUNT_KEY,
count);
 //print it out
 System.out.println(«The incoming message count is now « +
count);
 return InvocationResponse.CONTINUE;

 }
}

Writing an Axis2 Module

[124]

As we can see, the method takes MessageContext as a method parameter and
returns InvocationResponse as the response. You can implement the method
as follows:

1. First get the configurationContext from the messageContext.

2. Get the property value speciied by the property name.
3. Then increase the value by one.

4. Next set it back to configurationContext.

5. In general, inside the invoke method, as a module author, you have to do
all the logic processing, and depending on the result you get, we can decide
whether you let AxisEngine continue, suspend, or abort. Depending on your
decision, you can return to one of the three following allowed return types:

	° InvocationResponse.CONTINUE

 Give the signal to continue the message

	° InvocationResponse.SUSPEND

 The message cannot continue as some of the conditions are not
 satisied yet, so you need to pause the execution and wait.

	° InvocationResponse.ABORT

 Something has gone wrong, therefore you need to drop the message
 and let the initiator know about it

6. The message cannot continue as some of the conditions are not satisied yet,
so you need to pause the execution and wait.

7. InvocationResponse.ABORT.

8. Something has gone wrong, therefore you need to drop the message and let
the initiator know about it.

The corresponding CounterConstants class a just a collection of constants and will
look as follows:

public interface CounterConstants {
 String INCOMING_MESSAGE_COUNT_KEY = "incoming-message-count";
 String OUTGOING_MESSAGE_COUNT_KEY = "outgoing-message-count";
 String COUNT_FILE_NAME_PREFIX = "count_record";

}

As we already mentioned, the sample module we are going to implement is for
counting the number of request coming into the system and the number of messages
going out from the system. So far, we have only written the incoming message
counter and we need to write the outgoing message counter as well, and the
implementation of the out message count hander will look like the following:

Chapter 8

[125]

public class OutgoingCounterHandler extends AbstractHandler implements
CounterConstants {
 public InvocationResponse invoke(MessageContext messageContext)
throws AxisFault {
 //get the counter property from the configuration context
 ConfigurationContext configurationContext = messageContext.
getConfigurationContext();
 Integer count =
 (Integer) configurationContext.getProperty(OUTGOING_
MESSAGE_COUNT_KEY);
 //increment the counter
 count = Integer.valueOf(count.intValue() + 1 + «»);
 //set it back to the configuration
 configurationContext.setProperty(OUTGOING_MESSAGE_COUNT_KEY,
count);
 //print it out
 System.out.println(«The outgoing message count is now « +
count);
 return InvocationResponse.CONTINUE;
 }
}

The implementation logic will be exactly the same as the incoming handler
processing, except for the property name used in two places.

Module implementation class
When we work with enterprise-level applications, it is obvious that we have to
initialize various settings such as database connections, thread pools, reading
property, and so on. Therefore, you should have a place to put that logic in your
module. We know that handlers run only when a request comes into the system
but not at the system initialization time. The module implementation class provides
a way to achieve system initialization logic as well as system shutdown time
processing. As we mentioned earlier, module implementation class is optional. A
very good example of a module that does not have a module implementation class
is the Axis2 addressing module. However, to understand the concept clearly in our
example application, we will implement a module implementation class, as shown
below:

public class CounterModule implements Module, CounterConstants {

 private static final String COUNTS_COMMENT = "Counts";

 private static final String TIMESTAMP_FORMAT = "yyMMddHHmmss";

 private static final String FILE_SUFFIX = ".properties";

 public void init(ConfigurationContext configurationContext,

Writing an Axis2 Module

[126]

 AxisModule axisModule) throws AxisFault {

 //initialize our counters

 System.out.println("inside the init : module");

 initCounter(configurationContext, INCOMING_MESSAGE_COUNT_KEY);

 initCounter(configurationContext, OUTGOING_MESSAGE_COUNT_KEY);

 }

 private void initCounter(ConfigurationContext
configurationContext,

 String key) {

 Integer count = (Integer) configurationContext.
getProperty(key);

 if (count == null) {

 configurationContext.setProperty(key, Integer.
valueOf("0"));

 }

 }

 public void engageNotify(AxisDescription axisDescription) throws
AxisFault {

 System.out.println("inside the engageNotify " +
axisDescription);

 }

 public boolean canSupportAssertion(Assertion assertion) {

 //returns whether policy assertions can be supported

 return false;

 }

 public void applyPolicy(Policy policy,

 AxisDescription axisDescription) throws
AxisFault {

 // Configuure using the passed in policy!

 }

 public void shutdown(ConfigurationContext configurationContext)
throws AxisFault {

 //do cleanup - in this case we'll write the values of the
counters to a file

 try {

 SimpleDateFormat format = new SimpleDateFormat(TIMESTAMP_
FORMAT);

 File countFile = new File(COUNT_FILE_NAME_PREFIX + format.
format(new Date()) + FILE_SUFFIX);

 if (!countFile.exists()) {

 countFile.createNewFile();

 }

Chapter 8

[127]

 Properties props = new Properties();

 props.setProperty(INCOMING_MESSAGE_COUNT_KEY,

 configurationContext.getProperty(INCOMING_MESSAGE_
COUNT_KEY).toString());

 props.setProperty(OUTGOING_MESSAGE_COUNT_KEY,

 configurationContext.getProperty(OUTGOING_MESSAGE_
COUNT_KEY).toString());

 //write to a file

 props.store(new FileOutputStream(countFile), COUNTS_
COMMENT);

 } catch (IOException e) {

 //if we have exceptions we'll just print a message and let
it go

 System.out.println("Saving counts failed! Error is " +
e.getMessage());

 }

 }

}

As we can see, there are a number of methods in the previous module
implementation class. However, notably not all of them are in the module interface.
The module interface has only the following methods, but here we have some other
methods for supporting our counter module-related stuff:

•	 init

•	 engageNotify

•	 applyPolicy

•	 shutdown

At the system startup time, the init method will be called, and at that time, the
module can perform various initialization tasks. In our sample module, we have
initialized both in-counter and out-counter.

When we engage this particular module to the whole system, to a service, or to an
operation, the engagNotify method will be called. At that time, a module can decide
whether the module can allow this engagement or not; say for an example, we try to
engage the security module to a service, and at that time, the module inds out that
there is a conlict in the encryption algorithm. In this case, the module will not be
able to engage and the module throws an exception and Axis2 will not engage the
module. In this example, we will do nothing inside the engageNotify method.

Writing an Axis2 Module

[128]

As you might already know, WS-policy is one of the key standards and plays a major
role in the web service coniguration. When you engage a particular module to a
service, the module policy should be applied to the service and should be visible
when we view the WSDL of that service. So the applyPolicy method sets the
module policy to corresponding services or operations when we engage the module.
In this particular example, we do not have any policy associated with the module, so
we do not need to worry about this method as well.

As we discussed in the init method, the method shutdown will be called when the
system has to shut down. So if we want to do any kind of processing at that time,
we can add this logic into that particular method. In our example, for demonstration
purposes, we have added code to store the counter values in a ile.

Writing the module.xml ile
So far, we have written two handlers and module implementation classes. Now,
the only remaining thing to do is to write the module descriptor ile. When writing
module.xml, we have to use phase rules to specify the location of handlers and we
have discussed phase rules before (it is time to refresh our mind about the phase
rule). The most simple module.xml ile for our module is shown here:

<module name="counterModule" class="org.apache.axis2.sample.module.
request.CounterModule">

 <Description>

 Counts the incoming and outgoing messages

 </Description>

 <InFlow>

 <handler name="IncomingMessageCountHandler"

 class="org.apache.axis2.sample.module.request.
IncomingCounterHandler">

 <order phase="Transport" after="RequestURIBasedDispatcher"

 before="SOAPActionBasedDispatcher"/>

 </handler>

 </InFlow>

 <OutFlow>

 <handler name="OutgoingMessageCountHandler"

 class="org.apache.axis2.sample.module.request.
OutgoingCounterHandler">

 <order phase="MessageOut"/>

 </handler>

 </OutFlow>

</module>

Chapter 8

[129]

In the ile module.xml, we have speciied the description of the module as "Counts
the incoming and outgoing messages"; in the meantime, it has speciied the two
handlers we implemented earlier with phase rules.

As you can see, we try to put our incoming message counter into the transport
phase and the exact location is after RequestURIBasedDispatcher and before
SOAPActionBasedDispatcher. If you look at the default axis2.xml ile, you can see
the two handlers in the inFlow. Meanwhile, in the outgoing message, a counter is
added to the message-out phase and this does not specify the exact location.

If you look carefully, you can see in the root element that there is an attribute called
"class", which speciies the module interface class. We need to remember that this
attribute is an optional one and some modules may or may not have this attribute.

There are instances where the module author needs to use a new phase
for the module. In such a situation, one can edit the axis2.xml and
specify the new phase(s) one wants. Once speciied, phases can be used
inside the module.xml.

In the module.xml ile, we have not discussed how to add the fault handlers,
as we already know, there are two lows for fault processing: InFaultFlow and
OutFaultFlow. The InFaultFlow is executed when there is an incoming fault.
Similarly, OutFaultFlow is executed when there is an outgoing message. If you
want to add handler(s) to any of those phases, you can do that just like you did
with the other two lows.

Deploying and engaging the module
Now we have written everything you need for a valid module, the only remaining
thing is to create the module archive ile and deploy it to the repository. First we
compile our source code and then, as we know, it creates .class iles.

Assuming org.apache.axis2.sample.module.request is the package name of
our source ile, we can ind all the .class iles under classes/org/apache/axis2/
sample/module/request.

Writing an Axis2 Module

[130]

Now create a directory called META-INF under the classes directory and copy the
module.xml ile into it. Then our classes directory should look like the following
screenshot:

Now create a ZIP ile from the classes directory and rename the ZIP ile into the
counter-module.mar.

Deploying the module is as simple as dropping the ile into the TOMCAT_HOME/
webapps/axis2/WEB-INF/modules or repository/modules directory. In this case,
let's focus on deploying the module in Tomcat or your favorite web application
server. As we know, Axis2 does not support module hot deployment, so just
dropping the module will not make any changes to the runtime system. To deploy
our module and apply the necessary changes to runtime, we need to restart Axis2;
in other words, we need to restart the application server.

It should be noted that just deploying a module does not add its handlers into the
handler chain; to add handlers into the system, it is necessary to engage the module.
Now, let's see how we engage a module in Axis2. For this purpose, we can use the
Axis2 web administration console. Moreover, to make the story simple, let's try to
engage the module to all the services in the system using the web administration
console (we can engage to a single service also using the administration console).
We can engage the module to the system by carrying out the following steps:

1. Go to http://localhost:8080/axis2/.

2. Click on the Administration tab. This will open up a new page and ask for
the username and password.

Chapter 8

[131]

3. Enter admin as the username and axis2 as the password. This will open up
the administration console.

4. After that, click on the Available Modules in the side navigation menu on
the left-hand side. There we will ind our Counter module as
counterModule: Counts the incoming and outgoing messages.

5. Now go to Engage Module\For all Services and this will open up a new
page with a drop-down menu.

6. Select counterModule from that and click engage.

7. Now we should see the message counterModule module engaged globally
successfully.

8. Go to Global Chains and you will be able to see the
IncomingMessageCountHandler handler in the transport phase between
RequestURIBasedDispatcher and SOAPActionBasedDispatcher.

Now, this simply tells us that we have engaged the module successfully and we
have added the handler into the correct phases to invoke the version server, enter
the following into your browser:

http://localhost:8080/axis2/services/Version/getVersion

Then, in the console, you will see the following:

This simply tells us that the request has gone though the incoming counter handler
and the response has gone though the outgoing counter handler. Now, let's invoke the
service one more time and see what we get in the console. We will see the following:

Now we know how to write a very simple module, deploy it, and engage it. As an
exercise, we can change the module.xml and see what happens. Also, we can change
the phase rules and see whether it puts the handlers into the correct locations. In the
meantime, we can restart Tomcat, without engaging the module. Here, we should
not see any output in the console. This will help us to understand that handlers are
invoked only when we engage the module.

Writing an Axis2 Module

[132]

There are other ways of engaging a module, for example, to engage a
module globally, a user can edit axis2.xml and add the <module
ref="modulename"/> element. Moreover, if a user wants to engage it
to particular services, he/she can do that by editing the services.xml
and adding the same tag mentioned earlier.

Advanced module.xml
Here, we looked at a very simple module.xml, but when it comes to very complex
applications, we need to have many more conigurations in a module.xml ile. We
might need to have parameters, WS-Policy, and endpoints. Now let's look at them
one at a time in brief.

Parameters
Adding a parameter here is the same as adding a parameter in services.xml or
axis2.xml. We just need to add the following tag into module.xml and Axis2 will
do the right thing for us:

<parameter name="foo">bar</parameter>

We can have any number of parameters in a module.xml, and when we want to
access the parameter, we can do that by carrying out the following steps:

•	 First we need to get the AxisModule. We can do that either by using the init
method (Axis2 passes the AxisModule) or we need to get the corresponding
AxisModule from the ConfigurationContext (inside the Module
implementation class) or from messageContext (inside a handler).

•	 After this, we can ask for the parameter from the AxisModule.

WS-Policy
Specifying a WS-Policy element in module.xml is one way of coniguring a module.
We can add WS-Policy element inside a module.xml. If we consider the Sandesha2
(reliable message implementation) module, we can ind the following policy element:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:sandesha2="http://ws.apache.org/sandesha2/
policy" wsu:Id="RMPolicy">
 <sandesha2:RMAssertion>
 [REST OF THE FILE]
 </sandesha2:RMAssertion>
</wsp:Policy>

Chapter 8

[133]

Endpoints
In Axis2, an endpoint is an operation of a web service. So, adding an endpoint is
the same as adding an operation. The key question is—why do we need to add an
endpoint to a module? To understand this, let's assume that we have a module and
this module has a set of control operations. The most suitable example is reliable
messaging, as it has a number of control messages (for example, create sequence,
last message, terminate sequence). Say, we need to invoke a service in a reliable
manner. It irst needs to set up a sequence with the service. For this, it will send
the control message called createSequence to the service we need to access. But
that service does not have that method, so if we try to send the createSequence
message without adding the method, Axis2 will throw an exception saying Unable
to dispatch. Therefore, adding an endpoint will solve that issue. Hence, when we
engage Sandesha, it adds a method called createSequence to the service at the time
we engage the module (or all the services, if we engage that to the whole system).
When a request comes, Axis2 will dispatch without having any problem. This
operation or the endpoint has its own message receiver to do the right thing.

So, it is obvious that when a module needs control operations exchange, it is required
to add endpoint to represent those operations. Adding an endpoint is very simple.
What we need to do is add an operation element(s) along with a message receiver
and a set of action mapping. To get an idea about that, let's take the Sandesha module
as a reference. Its module.xml has the following operation tag to add the control
operations. Remember, when we have the operation tag in module.xml, Axis2 will do
all the processing, including creating AxisOperation and adding that. As a module
author, all we need to do is specify them in the module.xml ile:

<operation name="Sandesha2OperationInOut" mep="http://www.
w3.org/2006/01/wsdl/in-out">

 <messageReceiver class="org.apache.sandesha2.msgreceivers.
RMMessageReceiver"/>

 <!-- namespaces for the 2005-02 spec -->

 <actionMapping>http://schemas.xmlsoap.org/ws/2005/02/rm/
CreateSequence</actionMapping>

 <actionMapping>http://schemas.xmlsoap.org/ws/2005/02/rm/
AckRequested</actionMapping>

 </operation>

Writing an Axis2 Module

[134]

If we look at the Sandesha module.xml, we will be able to learn and ind out more
about writing a module.xml ile.

Summary
In this chapter, you learned about the importance of the Axis2 module. We also
learned that the Axis2 module provides a very lexible way to extend the Axis2 core
functionality and provides quality service. Moreover, we discussed the module
and related concepts by writing a sample module and demonstrating most of the
commonly used coniguration settings. In our sample application, we discussed how
to write handlers, how to write module implementation classes, and inally, how
to put everything together and deploy the module. At the end of the chapter, we
learned how to engage a module to Axis2.

In this chapter, we discussed how to write and deploy services and how to write and
deploy modules. In the next chapter, we are going to discuss how to invoke a remote
service. There, we will discuss how to use Axis2 as a client and invoke services in a
number of ways.

The Client API
Web service is one of the commonly used approaches for applications integration
(composition), when integrating applications; an application can act as either a
consumer (client) or a producer (server). A web service framework should be able
to deploy services as well as access the services. So far, we have discussed the
deployment side of it. Thus, in this chapter, we will focus on the client side and how to
use Axis2 to access remote services. In high level, Axis2 runtime does not differentiate
between the client side and the server side. Moreover, it uses the same execution
framework at the server side as well as the client side. As we already discussed, in the
server side, we have services. Thus, to keep the symmetry in the client side as well,
Axis2 creates a dummy service when we use the client API. In this chapter, we will
look at the various aspects of the client API, with the example use case.

In this chapter, we will discuss most of the commonly used APIs of the Axis2 client,
as well as explaining how to use them with sample code. First, we will discuss the
various ways of creating the Axis2 client instance. Then, we will discuss the available
APIs and inally, we will discuss the more advanced uses of Axis2 client APIs.
Particularly, we will be covering the following items in detail:

•	 The idea of the web service client

•	 Synchronous and asynchronous service invocation

•	 Axis2 client APIs, namely, ServiceClient and OperationClient

•	 Demonstrate ServiceClient APIs with examples

•	 Demonstrate OperationClient APIs with examples

The Client API

[136]

Web service client
What is special about the web service client? How is it different from the usual
web page? In the case of accessing a web page by using the web browser, a human
interacts with it and clicks the page and navigates. In contrast, when application-
application communication occurs, the application has to perform the action that the
human performs. In a web service, the client can be considered as the component
that lets us click and navigate the service.

As we have discussed earlier, one of the key advantages of web services is that they
provide a way to achieve application-to-application communication. Hence, web
service client plays a major role in the application integration. In addition, when it
comes to web service clients, there are multiple factors we need to consider. Among
them, invoking a service in a non-blocking, asynchronous manner is very useful and
a critical feature that most people are looking for. In the past, most of the web service
frameworks have only focused on blocking the invocation pattern (rather RPC-centric).
Now the trend is totally different. What users are looking for is an asynchronous
or non-blocking way when invoking the service—not only in web services, but
also in web-based applications—they used techniques such as AJAX to have the
asynchronous invocation support. In Axis2, we have two types of asynchronous
manner as well, while it has support for WSDL 2.0 basic MEPs.

Blocking and non-blocking invocation
As we just discussed, there are two main ways of utilizing a web service—in a
synchronous manner and asynchronous manner (blocking and non-blocking). In
case of synchronous, the user invokes the service and waits until he/she gets the
response. From a programming point of view, the application blocks until the user
gets the response. The following igure illustrates how synchronous web service
utilization takes place:

Chapter 9

[137]

In the case of asynchronous type invocation, the user application (for example, GUI)
does not block, so the user can continue working. Axis2's way of utilizing a service in
asynchronous is shown in the following igure:

The preceding igure shows how a typical asynchronous message works, where the
application uses Axis2 client and asks to send the message. When calling the Axis2
client, the application creates a callback object and passes that to the call. Axis2 uses the
callback and returns the control back to the client. Thus, the client does not get blocked.
When the reply comes, the Axis2 client uses the callback and notiies it, by which, the
application gets to know about the message arrival as well and acts upon it.

Looking into Axis2 client API
In today's world, people do not like and do not want to waste time to get a simple
thing done. Thus, user friendliness is one of the key considerations for any product.
In Axis2, one of the key designs of the Axis2 client API is to provide asynchronous
web service invocation support. Meantime, Axis2 has the key consideration of user
friendliness, so combining both together, the new client API is very convenient to
work with. To make the web consumer's or the end user's job easier, the Axis2 client
API consists of two sub APIs called ServiceClient and OperationClient, one for
average users and the other for advanced users, respectively.

ServiceClient API
As we mentioned earlier, ServiceClient is mainly designed for average users or
the users who have just moved to the web services ield. Nevertheless, it has the
notion of interacting with a service and providing all the necessary support to invoke
any complex type of web service. Let's assume a calculator as an example of a web
service, and further assume that the service has operations such as "add", "deduct",
"multiply", and "divide. So the idea of a service client is to provide an API to invoke
any of those operations in a very convenient manner.

The Client API

[138]

Available options to create a ServiceClient
There are multiple ways to create a ServiceClient instance, and of course, we
can choose the most suitable constructors for us. No matter how we create a
ServiceClient, it is required to have an an Axis2 runtime (ConfigurationContext)
to invoke the service. Either user explicitly provides an instance of coniguration
context or Axis2 creates it internally.

Earlier, we discussed ConfigurationContext and how to create it. So we can use
those techniques to create ConfigurationContext when creating a ServiceClient,
or as we will see, we can create ServiceClient with ConfigurationContext as null
and let Axis2 create ConfigurationContext for us.

Type 1: Creating a ServiceClient using its default constructor
The easiest way to create a ServiceClient is to use its default constructor, as shown
below. In this case, it creates a ConfigurationContext using the Axis2 default
coniguration ile, which is available in the Axis2 JAR ile. In the meantime, it creates
an anonymous (dummy service) service with three operations (three operations to
support WSDL 2.0 MEPs). Even though we create a service client this manner, we
can use the created client to asses any web service.

ServiceClient serviceClient = new ServiceClient();

When we are trying to create serviceClient inside an Axis2 system (as an example,
a handler tries to create a ServiceClient to invoke a service, or if service tries to
invoke some other service), then it is created using server's ConfigurationContext.
In this case, all the properties, transports, and modules in the server are accessible to
the ServiceClient, and that scenario is called as a client running inside a server.

Type 2: Creating a ServiceClient with your own

ConigurationContext
When we want to create a ServiceClient with our own coniguration data, we can
use the following constructor. As we know by now, there are a number of ways to
create ConfigurationContext. At the same time, there are many instances where
we want to create ServiceClient with our own AxisService, which might have
conigured with custom QoS (Quality of Service), parameters, WS-Policy, and so on.

ServiceClient serviceClient =
 new ServiceClient (configContext, axisService);

Chapter 9

[139]

In this case, either (or both) of the arguments can be null. If both are null, that
is obviously equivalent to the default constructor case of ServiceClient. If
ConfigurationContext is null, depending on the location you are trying to create
the ServiceClient, either a new one will be created using the Axis2 default
coniguration or a server's ConfigurationContext will be used. Similarly, if
AxisService is null, an anonymous service is created.

Type	3:	Creating	a	dynamic	client	(client	on	the	ly)
The idea behind a dynamic client is to create a ServiceClient on the ly, or simply
create a client for a given WSDL at runtime and use the created ServiceClient
to invoke the corresponding service. When we create the ServiceClient in this
manner, the corresponding AxisService object is conigured according to the WSDL
document. We will see the advantages of the dynamic client in the middle of this
chapter. The constructor for creating a dynamic client is given as follows:

ServiceClient dynamicClient =new ServiceClient(
 configContext,wsdlURL, wsdlServiceName, portName);

•	 configContext: configurationContext can be null; if it is null, the logic
mentioned in Option 2 will be applied.

•	 wsldURL: This argument should not be null as it speciies the URL for the
WSDL ile.

•	 wsdlServiceName: As you know, the WSDL document might have multiple
service elements. So if you want to pick a speciic service element, you can
pass the QName of that service element. The value of this argument can be
null. If it is null, the irst one from the service element list will be considered
as the service element.

•	 portName : As you know, a service element in a WSDL ile might have
multiple ports as well. So if you want to select a speciic port, you can pass
the name of the port as the value of this argument. Then, if the value is null
again, the irst one from the port list will be selected as the port.

A sample WSDL to understand what the mentioned service elements can be is
shown here (the ports are shown here as well):

<wsdl:service name="MyService">

 <wsdl:port name="ServicePort1" binding="axis2:ServiceBinding1">

 <soap:address location="http://127.0.0.1:8080/axis2/services/
 MyService"/>

 </wsdl:port>

 <wsdl:port name="ServicePort2" binding="axis2: ServiceBinding2 ">

The Client API

[140]

 <soap12:address location="http://127.0.0.1:8080/axis2/services/
 MyService"/>

 </wsdl:port>

</wsdl:service>

ServiceClient with working samples
Now we know the available ways for creating a service client, but there is nothing
like code to explain those. So the best way to understand ServiceClient API is to
write a few real samples. But irst, we need to start the Axis2 server and deploy the
following sample service in the server. Only after that can we write a useful client to
invoke the service. We can create and deploy a service by using the following steps:

1. Open your favorite IDE and write the following Java class or the service
implementation class.

public class MyService {
 //method which has a return value
 public String echo(String value) {
 return value;
 }
 // does not have a return value
 public void update(int value) {
 System.out.println("value is :" + value);
 }
}

Sample service implementation class has two methods—one has a return
value and the other does not.

2. Writing the services.xml ile for the service, your services.xml
will look like the following. See the references section to learn about
Axis2 deployment.

<serviceGroup>
 <service name="MyService">
 <messageReceivers>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
 class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"/>
 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>
 </messageReceivers>
 <parameter name="ServiceClass" locked="false">
 MyService
 </parameter>
 </service>
</serviceGroup>

Chapter 9

[141]

3. Create a service archive ile and deploy the service in Axis2 server.
The irst step of creating the service archive ile is to compile the source code.
Next, go to the compile directory and create a directory called META-INF, and
copy the created services.xml ile into it. Next, use any of the archive tools
and create a ZIP archive (you can also use the JAR ile creation), and name it
as myservice.aar.

Axis2 comes with IDE tools and Maven plugins that help you to
create a service archive ile.

Once you have the service archive ile, you can deploy it using any of the mechanism
we discussed in the Deployment section.

Now that we have deployed the service in the server, what remains is to invoke the
service. Here we will look at a number of scenarios to understand the concept clearly.

Scenario 1: Invoking a service in a blocking manner

(sendReceive())
The most commonly used service invocation pattern is the request response
invocation pattern (in-out MEP in WSDL 2.0 terminology). Most of the services are
written in a manner such that they have an input(s) and an output. So we need to
use a request response invocation pattern. In Axis2, that can be done in two ways—a
blocking manner or non-blocking manner. The irst sample demonstrates invoking a
service in the blocking manner:

1. Create a ServiceClient using any of the constructors we mentioned earlier.

2. Create an OMElement for payload (irst child of SOAP body). In Axis2, XML
representation is built on AXIOM. That is why you need to create OMElement
(See the references section to learn about AXIOM).

We can use the following code snippet to create the payload that we need to
invoke the service. If you look at the service WSDL, then you can understand
how to create the request element.

public OMElement createPayLoad() {

 OMFactory fac = OMAbstractFactory.getOMFactory();

 OMNamespace omNs = fac.createOMNamespace(
 "http://ws.apache.org/axis2", "ns1");

 OMElement method = fac.createOMElement("echo", omNs);

 OMElement value = fac.createOMElement("value", omNs);

 value.setText("Hello , my first service utilization");

 method.addChild(value);

The Client API

[142]

 return method;

}

3. Before invoking the service, we need to create a metadata (property bag)
object called Options and set that to ServiceClient. Options object
contains properties such as target EPR (End Point Reference), SOAP
Action, transport data, and so on, to conigure the client side for the service
invocation. The following code snippet shows how to create an Option object
and ill it:
ServiceClient sc = new ServiceClient();

// create option object

Options opts = new Options();

//setting target EPR

opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));

//Setting action

opts.setAction("urn:echo");

//setting created option into service client

sc.setOptions(opts);

If we create a ServiceClient as a dynamic client, we do not need to worry
about creating the Options object. It will automatically create everything for
us.

4. sendReceive is the API for invoking a service in a blocking manner.
When we use this API, the program blocks until it gets the response.

OMElement res = sc.sendReceive(createPayLoad());

System.out.println(res);

So once we run this sample code, we will get the following output:

<ns:echoResponse

 xmlns:ns="http://ws.apache.org/axis2/xsd">

 <return>

 Hello This is my first service

 </return>

</ns:echoResponse>

Chapter 9

[143]

5. sendReceive is the API for invoking a service in a blocking manner.
Remember that sc.sendReceive(createPayLoad()) only works if we
create ServiceClient using either its default constructor or passing a null
value as the AxisService parameter for any other constructors. When we
create ServiceClient using our own AxisService or when we create it
as a dynamic client, we have to use the following method with the correct
operation name:

sendReceive(QName operation, OMElement elem);

For example, if we create ServiceClient using the service WSDL as shown,
we have to use the operation name as shown in the code:

ServiceClient sc = new ServiceClient(null, new URL("http://
localhost:8080/axis2/services/MyService?wsdl"),null,null);

sc.sendReceive(new QName("http://ws.apache.org/axis2","echo"),cre
atePayLoad());

As we can see, we only need two lines here to conigure and invoke a service.

Scenario 2: Utilizing a service in a non-blocking manner

(sendReceiveNonBlocking())
To invoke an in-out MEP in an asynchronous manner, we can use this API. There
are two mechanisms of implementing asynchronous type invocation—callback
and pooling. Axis2 uses callback mechanism to provide asynchronous support.
Therefore, in order to use non-blocking API, we need to implement org.apache.
axis2.client.async.AxisCallback and pass that object as the method parameter.

In this case, we can follow step 1 through step 3 in Scenario 1, without any
modiication. But we need to change step 4 to the following:

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));
opts.setAction("urn:echo");
sc.setOptions(opts);

//creating callbakc object
AxisCallback callback = new AxisCallback() {
 public void onMessage(MessageContext msgContext) {
 System.out.println(
 msgContext.getEnvelope().getBody().getFirstElement());
 complete = true;
}

 public void onFault(MessageContext msgContext) {
 System.err.print(msgContext.getEnvelope().toString());
}

The Client API

[144]

 public void onError(Exception e) {
 e.printStackTrace();
}

 public void onComplete() {
 complete = true;
 }
};

//invoking the service
sc.sendReceiveNonBlocking(createPayLoad(), callback);

System.out.println("-------Invoke the service---------");
int index = 0;

//wait till you get the response, in real applications you do not need
//to do this, since once the response arrive axis2 will notify //
callback,
// then you can implement callback to do whatever you want, may be to
//update GUI
while (!complete) {
 Thread.sleep(1000);
 index++;
 if (index > 10) {
 throw new AxisFault("Time out");
 }
}

Key differences in Scenario 1 and Scenario 2 are as follows:

•	 It's necessary to create the Axiscallback object

•	 sendReceiveNonBlocking is a void operation

Once you run the code sample, you would get the following output:

-------Invoke the service---------

<ns:echoResponse
 xmlns:ns="http://ws.apache.org/axis2/xsd">

<return>

 Hello , my first service utilization

</return>

</ns:echoResponse>

Similar to Scenario1, if we create ServiceClient using our own AxisService or as a
dynamic client, then we need to use the following method with a qualiied operation
name.sendReceiveNonBlocking

(QName operation, OMElement elem,AxisCallback callback);

Chapter 9

[145]

Scenario 3: Utilizing a service using two transports

In this case, the request goes through one transport and is received through another
transport. For example, request can go though HTTP and come through TCP; or thr
request can go though one HTTP connection and come via another HTTP connection.
To invoke a service in the given manner, we need to have WS-Addressing support.
Therefore, we need to engage the addressing module in both client and server sides.
In Scenario 2, what we had was only application-level asynchronous support, but
here we have transport level asynchronous support.

By changing step 3 in Scenario 2 in the following manner, we can invoke the service
via two transports. Let's send request via HTTP and try to get the response via TCP:

ServiceClient sc = new ServiceClient();

Options opts = new Options();

opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));

//engaging addressing module

sc.engageModule(new QName("addressing"));

//I need to use separate listener for my response

opts.setUseSeparateListener(true);

// Need to receive via TCP

opts.setTransportInProtocol(Constants.TRANSPORT_TCP);

opts.setAction("urn:echo");

sc.setOptions(opts);

It should be noted here that we can send a message using HTPP and receive a
message via HTTP as well. In this case, Axis2 will start up a new HTTP listener to
receive the incoming message.

The Client API

[146]

Scenario 4: Utilizing an in-only MEP (ireAndForget)
If we want to send data to a server but we worry neither about response nor
exceptions, then we could use this API. In WSDL 2.0 terminology, this API is to
invoke an in-only MEP. Let's try to invoke the update operation in MyService.

1. Create a ServiceClient.

2. Create the payload OMElement , you need to create a new payload since the
method name is different in this case.

public OMElement createPayLoad() {

 OMFactory fac = OMAbstractFactory.getOMFactory();

 OMNamespace omNs = fac.createOMNamespace(
 "http://ws.apache.org/axis2", "ns1");

 OMElement method = fac.createOMElement("update", omNs);

 OMElement value = fac.createOMElement("value", omNs);

 value.setText("10");

 method.addChild(value);

 return method;

}

3. When we run the following code, you can see the value is :10 in the
server's console, and we don't get any response or exception even if
something goes wrong in the server:

 ServiceClient sc = new ServiceClient();

 Options opts = new Options();

 opts.setTo(new EndpointReference(

 "http://127.0.0.1:8080/axis2/services/MyService"));

 opts.setAction("urn:update");

 sc.setOptions(opts);

 sc.fireAndForget(createPayLoad());

Replace setTo with an invalid one and see whether you are getting any exception;
obviously, you will get nothing.

Scenario 5: Utilizing an in-only MEP (sendRobust)
This API is also used to invoke a one way operation, but the only difference from
Scenario 4 is if something goes wrong in the server, the client will be informed about
that. We can use the Scenario 4 code with minor changes to invoke the service in a
robust manner, step 1 and step 2 remain unchanged; however, step 3 needs to change
in the following manner:

 ServiceClient sc = new ServiceClient();

 Options opts = new Options();

Chapter 9

[147]

 opts.setTo(new EndpointReference(

 "http://127.0.0.1:8080/axis2/services/MyService"));

 opts.setAction("urn:update");

 sc.setOptions(opts);

 sc.sendRobust(createPayLoad());

Replace setTo with an invalid one and see whether you are getting any exception.

Working with the OperationClient
As we already know, with ServiceClient, we have only access to payload in both,
the sending and receiving sides. But that is not enough if we are trying to implement
the enterprise level web applications. There, we need to have more control. In those
cases, we might want to add custom headers into an outgoing SOAP message as well
as we need to access the incoming SOAP process directly or we would be required
to access incoming and outgoing message contexts. With ServiceClient, we can
do none of these (however, we can get the current OperationContext once we
invoke the service, and from this, we can access both, the request and the response
MessageContexts). The solution is to use the operation client for these scenarios.
Let's invoke the echo operation using the operation client to understand the API:

1. Create a ServiceClient instance.

ServiceClient sc = new ServiceClient();

2. Create an OperationClient (to create an operation client, we need to pass the
full qualiied operation name , as it is in the dynamic client case)
OperationClient opClient = sc.createClient(
 ServiceClient.ANON_OUT_IN_OP);

When we create a service client using its default constructor, it creates the
antonyms service with three operations, and the constant ServiceClient.
ANON_OUT_IN_OP is one of them.

3. Create a message context and set properties to its Option object:

//creating message context

MessageContext outMsgCtx = new MessageContext();

//assigning message context's option object into instance variable

Options opts = outMsgCtx.getOptions();

//setting properties into option

opts.setTo(new EndpointReference(
 "http://127.0.0.1:8000/axis2/services/MyService"));

opts.setAction("urn:echo");

The Client API

[148]

4. Create SOAPEnvelope and add that to the message context (not how we
added in the previous cases). Here, you need to create a full SOAP envelop.

outMsgCtx.setEnvelope(creatSOAPEnvelop());

The creatSOAPEnvelop method will look like the next snippet of code:

public SOAPEnvelope creatSOAPEnvelop() {

 SOAPFactory fac = OMAbstractFactory.getSOAP11Factory();

 SOAPEnvelope envelope = fac.getDefaultEnvelope();

 OMNamespace omNs = fac.createOMNamespace(
 "http://ws.apache.org/axis2", "ns1");

 OMElement method = fac.createOMElement("echo", omNs);

 OMElement value = fac.createOMElement("echo", omNs);

 value.setText("Hello");

 method.addChild(value);

 envelope.getBody().addChild(method);

 return envelope;

}

In this sample, what we have is the default SOAPEnvelop with a sample
payload, but we can create a complex SOAPEnvelop, depending on our
requirements.

5. Add a message context into the operation client:

opClient.addMessageContext(outMsgCtx);

6. To send the message, we need to call the execute method in the operation
client:

opClient.execute(true);

The Boolean method argument is to say whether we want to invoke it in a
blocking manner or a non-blocking manner. If the value is true, invocation
will be a blocking one.

7. To access a response message context and response SOAPEnvelop:

//pass message label as method argument

MessageContext inMsgtCtx = opClient.getMessageContext("In");

SOAPEnvelope response = inMsgtCtx.getEnvelope();

System.out.println(response);

When we are invoking an in-out MEP, as in this sample, the message label of the
request is Out and value of the response is In; that is why we have to pass In as
the message label value to get the response message context.

Chapter 9

[149]

Once we have the message context, we can use that to access the SOAPEnvelop,
properties, transport headers, and so on. And when we run this code sample, we
should get the following as the console output:

 <?xml version='1.0' encoding='utf-8'?>

 <soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Header />

 <soapenv:Body>

 <ns:echoResponse

 xmlns:ns="http://ws.apache.org/axis2/xsd">

 <return>

 Hello

 </return>

 </ns:echoResponse>

 </soapenv:Body>

 </soapenv:Envelope>

Here, we discussed OperationClient as the means of accessing the incoming
and outgoing MessageContext. One of the most useful use cases of accessing
outgoing MessageContext or the SOAPEnvelop is to add headers. However, the
ServiceClient API can also be used to add SOAP headers, as shown here:

sc.addHeader(SOAPHeaderBlock);

Or we could add headers, as shown here:

sc.addStringHeader(new QName("http://sample.org/header","MyHeader"),
"headervalue");

If we intercept the message using the TCP monitor or similar mechanisms, we can
see the SOAP header in the SOAP message:

<soapenv:Header>

 <axis2ns1:MyHeader xmlns:axis2ns1=
 "http://sample.org/header">headervalue</axis2ns1:MyHeader>

</soapenv:Header>

In the meantime, we can access the last OperationContext using ServiceClient,
as shown here:

OperationContext operationContext = sc.getLastOperationContext();

From operationContext, we can get either In messageContexts or Out
messageContexts.

The Client API

[150]

Summary
In this chapter, we discussed one of the key components of Axis2 known as Axis2
client API. We discussed how to create the Axis2 client instances in multiple ways
as well as various ways of coniguring them.

Next, we discussed the most commonly used APIs and we used code samples to
explain the scenarios better. The Axis2 client API is very convenient and it has a
number of cool features such as asynchronous web service invocations, multiple
transport selection, and so on. After running the sample, we can easily understand
the basis of the Axis2 client API; understating the rest of the API required us to write
complex samples.

Session Management
By design, web services are said to be stateless, so there is no notion of keeping state
in a web service. From the programming point of view, having one or more instances
does not make any difference at execution. Though web services are stateless, when
it comes to complex or enterprise applications, it is hard to support the required
functionality without maintaining state or having the session management support.
As an example, consider a banking application where you go to an ATM, insert the
ATM card, and start performing some transaction. Internally, it maintains a secure
session for you. So operations in a given transaction belong to the same secure
session. As mentioned in previous chapters, the Axis2 Web Service framework
provides better support for any type of enterprise application. Hence, Axis2 has
better support for session management at different levels, which we will discuss
during this chapter.

In this chapter, we will discuss Axis2 session management and how to use it. In
particular, we will cover the following items:

•	 Stateless nature of Axis2

•	 Available session types

•	 Session-related operations

•	 Request session

•	 SOAP session

•	 Transport session

•	 Application session

•	 How to use session support at the client side

Session Management

[152]

As stated earlier, by design, web services are said to be stateless. However, it is
dificult to implement complex applications without having session management
support. To understand the neediness of session support, let us consider a typical
bank application. If we consider the sequence of events associated with a typical
banking application, we get an idea as to why we need sessions:

•	 First the user logs in to his/her account (invoking the login method)

•	 Withdraw money (invoking some operation on his/her account)

•	 Log out (complete the transaction)

We can easily understand that the three operations stated earlier are interrelated
and the same user does all those invocations. So this means that someone needs to
keep a track of the user and the user data throughout the invocation of the methods.
This simply indicates the requirement of session management to implement the
banking application in the web-services way. Of course, there will be alternative
ways of implementing the same application; then there is a need to have some other
mechanism in place to identify and authenticate the user.

Stateless nature of Axis2
As we know by now, Axis2 architecture keeps logic and data separate. In the
meantime, Axis2 has two types of data models—static data and runtime data. We
have already discussed these in detail. In this chapter, we will discuss more about
Axis2 dynamic data hierarchy because session management fully depends on the
runtime data. The samples in this chapter will help you understand more about
runtime and static data, and most importantly, where to use what.

In Axis2 framework, each individual component is said to be stateless. In other
words, service implementation class or handlers should not try to store any
local variable. Having stateless instances provides better support to reduce the
concurrency control issues; this is due to the race conditions. In Axis2 handlers,
MessageReceivers, TransportSenders, TransportReceivers, and even
AxisEngine, are said to be stateless. So they do not keep any state in those classes.
As a result of that, we do not mind whether we have one instance or a number
of instances of the same handlers. As Axis2 has the notion of stateless nature in
handlers, when you write handlers you need to write it in such a way that it does
not keep any state in it. For example, we cannot consider the following handler
implementation as a good approach. As we can see, it has a class variable to store the
messageContext. So when we deploy Axis2 in a concurrent environment, we will
deinitely have issues. So, as the best practice, we need to keep in mind not to use
any class variables inside our code.

Chapter 10

[153]

public class InvalidHandler extends AbstractHandler {

 //Class variable to keep current MC

 private MessageContext currentMessageContext;

 public InvocationResponse invoke(MessageContext msgContext) throws
AxisFault {

 currentMessageContext = msgContext;

 //We need to write whatever the log we need to have here

 return InvocationResponse.CONTINUE;

 }

}

The preceding code sample shows that the handler that keeps the class variable calls
currentMessageContext. This has serious issues when multiple concurrent requests
are being handled. Thus the correct approach would be to not use class variables.
You can solve this by either using a method variable or by storing it in some
other context; we will discuss this later in this chapter. The following code sample
demonstrates the correct way of handling variables:

 public InvocationResponse invoke(MessageContext msgContext) throws
AxisFault {

 MessageContext currentMessageContext = msgContext;

 //We need to write whatever the log we need to have here

 return InvocationResponse.CONTINUE;

 }

}

This does not mean that we cannot maintain state in Axis2; it simply tells us that
keeping states in an implementation class is not the right approach. The most
recommended way is to use the context hierarchy to store necessary data and
manage sessions.

The available type of sessions in Axis2
As mentioned earlier, it is very dificult to implement enterprise level applications
using a web service without having proper session management support. On the
other hand, it is not a mandatory requirement to have session management support
in a web service framework. We might have services that do not require session
management at all.

Session Management

[154]

In most cases, adding so many features tends to slow down the overall system
performance. For example, if we have to check ten conditions as opposed to checking
thousand conditions, it would show low performance. Hence, adding a new
feature should make sure to add a minimum cost to the overall system runtime. it
is the same with session management support. Not that when we need to keep the
session-related data in the memory, it deinitely increases the memory footprint.
Nevertheless, we know that memory is not a big issue in the computer industry
today. However, keeping so much data on memory causes a number of issues. If the
memory footprint is too large, it will cause the collection of additional garbage and
then that will reduce the system performance. As a result, it is required to have a
tradeoff, keep data in the memory but for a pre-deined interval of time. That is one
of the main design goals of the context hierarchy, where each level has a different
life span.

When we consider session management, we see the requirement for different types
of sessions and the lifetime of the session needs to vary from one to another. Some
sessions last for a few seconds while some others last for the lifetime of the whole
system. Axis2 architecture has been designed to support four types of sessions, and
obviously, there are minor differences from one type to another. Considering the
different types of use cases, Axis2 has the following four types of session scopes:

•	 Request

•	 SOAPSession

•	 Application

•	 Transport

When we were discussing Axis2 runtime data, we mentioned that we need to check
the runtime data or context hierarchy for session management. Therefore, we need to
memorize what we learn here to get a better understanding of session management.

Here we will learn about the ive types of contexts in the hierarchy, which have been
listed below with a brief explanation:

•	 ConfigurationContext: This is the runtime representation of the whole
system. To start the Axis2 system, we need to have the coniguration
context. The lifetime of the coniguration context will be the lifetime of
the system, so if we store some state (a property), it will last forever
(until system shutdown).

•	 ServiceGroupContext: In Axis2, we can deploy multiple services together
as a service group, and then the runtime representation of that is called as a
ServiceGroupContext.

Chapter 10

[155]

•	 ServiceContext: This will represent the runtime of one service and the
context lifetime will be the lifetime of the session. There can be one or
many service contexts in the system, depending on the session scope of
the corresponding service.

•	 OperationContext: This context is to represent the life time of a MEP
(Message Exchange Patterns). The lifetime of an operation context is mostly
less than the lifetime of the ServiceContext.

•	 MessageContext: The lifetime of an incoming message is represented by
the message context. If two handlers in a given execution chain want to
share data, then the best way is to store them in the message context. One
OperationContext may have one or more MessageContexts.

Session initializing and session

invalidating
When talking about the session management, one thing that comes to mind is the
lifetime of the session. Most of the Web applications, like e-commerce, banking, hotel
reservation, and so on, have a predeine lifetime. If you are not active for that time,
it will automatically terminate your session and prompt you to log in again. Hence,
there is a particular time when a session gets started and another when the session
inishes. So whoever writes a session aware service might need to know when
a session starts and when it inishes. To facilitate this, Axis2 uses Java relection
and optional interfaces to inform the service implementation class. Actually, there
are two ways that a service author is notiied when a session starts and inishes,
irrespective of the session scope.

Java relection
In this case, the service author has to implement the following two methods in
his/her service implementation class, if he/she wants to be notiied as to when
the session starts and inishes. At runtime, when a session starts, Axis2 looks to
see whether the following methods are there in the service implementation class;
if so, it calls the right method:

//This method will be called when a session start
public void init(ServiceContext serviceContext) {
 // Our code goes here
}

//This method will be called when a session finishes.
public void destroy(ServiceContext serviceContext) {
 // Our code goes here
}

Session Management

[156]

Using the optional interface
When we use Java relection, there is a very slight probability of making mistakes
in the method's name and parameters, so it is good to user interface. That
would lead you to use the method in the correct manner and avoid mistakes.
The corresponding interface that Axis2 provides is called org.apache.axis2.
service.Lifecycle, which has the same two methods we discussed earlier. If
you want to get a notiication as to when a session starts, you should write your
service implementation class to implement that particular interface; then Axis2 will
automatically call the right method. So we can write our service implementation
class as shown below:

public class MyService implements Lifecycle {

 public void init(ServiceContext context) throws AxisFault {

 }

 public void destroy(ServiceContext context) {

 }
}

Accessing MessageContext
In the irst part of the chapter, we discussed that keeping class variables anywhere in
Axis2 is not a good practice (for example, service implementation class, handler class).
There, we also mentioned the fact that keeping local variables also leads to issues in
the concurrent environments. Hence, it is not a good idea to keep variables inside the
service implementation class. When managing sessions, the right way is to store the
data in one of the context and access them whenever needed. Though Axis2 passes
ServiceContext when the session starts, storing it inside the service implementation
is not the right approach (storing as a class variable). Therefore, we need to have
a mechanism to access those contexts. As we learned before, if you have access to
MessageContext, then you can access the entire context hierarchy using that. Thus, if
we can get access to the current MessageContext, we can consider accessing the entire
context hierarchy. So the next question is how do we get the current MessageContext
inside to the service class? That is very straightforward; Axis2 sets MessageContext
into ThreadLocal, so from that, we can access the MessageContext. Let's say that we
want to access the MessageContext inside the method called foo. We can do that as
follows:

public void foo(){

 MessageContext messageContext = MessageContext.
getCurrentMessageContext();

 }

Chapter 10

[157]

This can be used to access the current MessageContext, irrespective of the session
scope we use.

Having discussed all the necessary pieces of session management, now it is time to
discuss about the different types of available sessions in Axis2. As mentioned above,
there are four different types of sessions. We will discuss all of them in detail here.

Request session scope
Request session scope is the default session scope in Axis2. When we deploy a
service without knowing anything about session management, our service will
be deployed in the request session scope. The lifetime of this session is limited to
the method invocation lifetime or the request processing time. When we deploy a
service in the request scope, it simply means that we are not going to worry about
the session management at all. So it is like having no session management.

Once we deploy a service in the request session scope, for each and every invocation,
a new service implementation class will be created. Say we have to deploy a service
called Foo in the request scope; then if a client invokes the service ten times, 10
instances of the service class will be created.

If we want to specify the scope explicitly, we can still do that by adding a scope
attribute to the service element in services.xml, as follows. However, as mentioned
earlier, deploying a service in the request scope does not require any modiications
(the following is optional):

<service name="Foo" scope=" request">

</service>

To get an understanding about request scope, create a service using the following
service class, deploy it, and invoke it:

public class MyService implements Lifecycle {

 public void init(ServiceContext context) throws AxisFault {

 System.out.println("I'm inside init method ");

 }

 public void destroy(ServiceContext context) {

 System.out.println("I'm inside destroy method");

 }

 public String foo(String foo) {

 return foo;

 }

}

Session Management

[158]

To invoke the service, we just type the following in the browser:

http://localhost:8080/axis2/services/MyService/foo?foo=foo

We will see the following in the server console:

If we continue to do so, we will see it getting printed every time we invoke
the service.

It should be noted here that even if we deploy a service in a request scope, there
are many ways of keeping our service as a state full service. One way is to store
the state in Axis2 global runtime (ConfigurationContext) and retrieve whenever
necessary. Notably, this will add more overhead to the system, as there is only one
ConfigurationContext, and if everything tries to access it, it will be a bottleneck.

SOAP session scope
The idea of SOAP session is to have a transport-independent way of managing a
session between two SOAP nodes; obviously, between the client and the server.
Here, Axis2 uses SOAP headers in order to manage the session. In the SOAP session
scope, it has a slightly longer lifetime than the request session scope, and deploying
a service in a SOAP session is required to change services.xml as well. Managing a
SOAP session requires both the client and the service to be aware of the sessions, that
is, the client has to send the session-related data if he/she wants to access the same
session and the service has to validate the user using the session-related data.

SOAP-based session management is not interoperable; part of the reason
is that there's no agreement upon a standard speciication to manage the
session. There is a standard speciication called WS-Context, but none of
the commonly used web service frameworks have implemented it.

Chapter 10

[159]

In order to manage a SOAP session, a client has to send an additional reference
parameter in the SOAP header, which is named as serviceGroupId (it will be sent
to the client when he invokes a service that deploys in SOAP session the irst time).
In the meantime, a SOAP session has to provide a way to manage sessions across
not only a single service invocation, but also for multiple services in a service group.
As long as we are in the same SOAP session, we can manage service related data in
ServiceContext and if we want to share data across other services in the group,
then we can use ServiceGroupContext to store the session-related data.

When we deploy a service in a SOAP session and when a client tries to access the
service the irst time, Axis2 will generate serviceGroupId and send that to the
client as a reference parameter in wsa:ReplyTo, as shown next. However, we should
mention here that to have SOAP session support both the client and the server, it has
to have WS-addressing support.

<wsa:ReplyTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</
 wsa:Address>

 <wsa:ReferenceParameters>

<axis2:ServiceGroupId xmlns:axis2="http://ws.apache.org/namespaces/axi
s2">urn:uuid:65E9C56F702A398A8B11513011677354</axis2:ServiceGroupId>

 </wsa:ReferenceParameters>

 </wsa:ReplyTo>

So if a client wants to live in the same session, then he/she has to copy that reference
parameter and send it back to the server when he/she invokes the service the second
time. As long as a client sends the valid ServiceGroupId, he/she can use the same
session, and a service can maintain the session-related data. Unlike request session
scope, SOAP session has a default timeout period, if the client does not touch the
service for a period of 30 seconds, then the session will expire, and if the client sends
the old serviceGroupId, he/she will get an AxisFault. We can change the default
timeout period by changing the server's axis2.xml ile as follows:

<parameter name="ConfigContextTimeoutInterval">30000</parameter>

By changing the parameter value, we can have a timeout interval that we want.

As mentioned earlier, deploying a service in a SOAP session requires that we change
services.xml as follows:

<service name="MyService" scope=" soapsession">

</service>

Session Management

[160]

It should be noted here that though we discussed about copying the
references parameter, once we use the Axis2 client, we can conigure it
to copy the parameter automatically, and we do not need to worry about
doing it manually.

Just to get an idea about the SOAP session management, let's write the following
service class and deploy it. If you look at it carefully, what the service class does add
the current passes value to the previous value and sends the result. So once we keep on
doing that, we should get the incrementing values. First write the service and deploy
that in the SOAP session while doing the necessary changes to services.xml:

public class MyService {

 public int add(int value) {

 MessageContext messageContext = MessageContext.
getCurrentMessageContext();

 ServiceContext sc = messageContext.getServiceContext();

 Object previousValue = sc.getProperty("VALUE");

 int previousIntValue = 0;

 if (previousValue != null) {

 previousIntValue = Integer.parseInt((String)previousValue);

 }

 int currentValue = previousIntValue + value;

 sc.setProperty("VALUE","" + currentValue);

 return currentValue;

 }

}

Now let's use the following code to invoke the service. As you can see, we have
engaged the addressing module but we have not done anything to manage the sessions:

ServiceClient sc = new ServiceClient();

sc.engageModule("addressing");

Options opts = new Options();

opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));

opts.setAction("urn:add");

sc.setOptions(opts);

OMElement ele = sc.sendReceive(createPayLoad(10));

System.out.println(ele.getFirstElement().getText());

ele = sc.sendReceive(createPayLoad(10));

System.out.println(ele.getFirstElement().getText());

Chapter 10

[161]

The createPayLoad method is shown here:

public static OMElement createPayLoad(int intValue) {

 OMFactory fac = OMAbstractFactory.getOMFactory();

 OMNamespace omNs = fac.createOMNamespace(
 "http://ws.apache.org/axis2", "ns1");

 OMElement method = fac.createOMElement("add", omNs);

 OMElement value = fac.createOMElement("args", omNs);

 value.setText("" + intValue);

 method.addChild(value);

 return method;

 }

Once we run the code, we will see following output on the client side:

This means though that we invoke the service twice as we have gotten the same
output. This simply means no session has taken place, so now let's change our client
code a bit and see what we are getting. Just add the following line of code and run
the client again:

opts.setManageSession(true);

sc.setOptions(opts);

Now you should see the following output on the client side:

So this simply tells us that we have invoked the service in a session-aware manner.

Session Management

[162]

Transport session scope
Transport session management is very similar to session management in Web
domain, where as long as you keep the browser open or as long as you have the
cookies, you can stay in the same session. In the case of transport session, Axis2 uses
transport related session management techniques to manage session, as an example
in the case of HTTP, it uses HTTP cookies to manage a session. One of the important
factors with transport level session management is the lifetime of the session control
by the transport, and not by Axis2. What Axis2 does is it stores service context and
ServiceGroupContext in the transport session object, so that a service can access
those contexts as long as the session lives.

One of the key advantages of a transport session over other sessions is that we can
talk to multiple service groups within one transport session. In a SOAP session,
we don't have a way to communicate between two service groups, but with the
transport session, we have that capability too. In this case, the number of service
instances created depends on the number of transport sessions created.

Deploying a service in the transport session requires us to change services.xml
as follows:

<service name="MyService" scope=" transportsession">

</service>

Now, let's change our previous sample to have the scope as transport and redeploy
the service. Next we'll look at several ways to invoke the service.

Option 1: Using the browser
http://localhost:8000/axis2/services/MyService/add?value=10

If we keep on typing that, we will get the following output:

Chapter 10

[163]

Option 2: Using the service client
When we use the service client, once we set the session management lag to true, it
will send back the transport cookie as well. So if we run the following code, we will
see the following outcome:

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(
 "http://127.0.0.1:8000/axis2/services/MyService"));
opts.setAction("urn:add");
opts.setManageSession(true);
sc.setOptions(opts);
OMElement ele = sc.sendReceive(createPayLoad(10));
System.out.println(ele.getFirstElement().getText());
ele = sc.sendReceive(createPayLoad(10));
System.out.println(ele.getFirstElement().getText());

It simply tells us that we have to invoke the service deployed in the transport
session (invoked in a session-aware manner). In this case, we do not need to have
the addressing module.

Application scope
Application scope has the longest lifetime compared to all the others and the lifetime
of the application session is equal to the lifetime of the system. If we deploy a service
in the application scope, there will be only one instance of that service and obviously
there will be only one ServiceContext for that service too. In the world of Axis2, if
we consider the memory footprint and if we don't want to manage a session, then a
good idea is to deploy the service in the application scope.

When we deploy a service in the application scope, a client does not need to send
any additional data to use the same session.

To deploy a service in the application scope, we need to change axis2.xml, as
shown here:

<service name="foo" scope=" application">

</service>

Service deployed in the application session scope is not guaranteed to
be threading-safe.

Session Management

[164]

Managing sessions using ServiceClient
As we know by now, managing a session in the client side involves bit of a work.
As mentioned earlier, both in the SOAP session and transport session, a client has
to send the session-related data, if he/she wants to live in the same session. Maybe
he can do that for a SOAP session by coping with the required reference parameters.
However, with transport session, how can a user get access to transport, to copy, and
send cookies?

To make life easier, Axis2 has the inbuilt capability of managing sessions in the client
session by just setting a lag, and we have used that already. Then, depending on the
service-side session, it will send the corresponding data as long as we use the same
service client. So, the main requirement is to use the same service client to invoke the
service if you want to live in the same session.

If we want to live in the same session, we can create a service client, shown as
follows, and re-use the created service client object to invoke the service:

Options options = new Options();

options.setManageSession(true);

ServiceClient sender = new ServiceClient();

sender.setOptions(options);

Once we create the ServiceCient, as shown here, if the service deploys in a SOAP
session, it will copy the serviceGroupId and send that from the second invocation
onwards. If the server sends the session ID, such as HTTP cookies, it will copy that
to ServiceContext (in the client side) and send it back to the server when the client
invokes the service for the second time.

Summary
Stateless nature is one of the main characteristics of web services. However, this is a
limitation for the advanced web services developers. Developing an enterprise level
application using web services is not easy, unless we have a session management
layer. Axis2 has the level four of sessions to address enterprises level web service
development issues. In this chapter, we discussed different types of sessions
available in Axis2. After that, we used a sample service and a sample client to
demonstrate the different sessions and how they work.

In the next chapter, we will focus on another very good web service speciication,
called JAXWS. There, we covered the JAXWS annotations, deployment, and some
examples to illustrate how to use it.

Developing JAX-WS Web

Services
Java API for XML-based web services is a popular standard, targeting Java
developers who write web services and web service clients. The conventional
contract irst approach, which consists of deining the web service contract in a
WSDL and then generating the appropriate code from those WSDLs, is not the
most natural way of programming for Java developers. The JAX-WS speciications
allow you to write a regular Java code and annotate the code appropriately, in
order to make them into web services. Therefore, JAX-WS is a code irst approach
for developing web services and clients in Java. The ease of development is
achieved through writing everything as Java classes and not having to write any
speciic deployment descriptor ile such as services.xml iles utilized by Axis2
AAR services. Older Java Web Service speciications such as JAX-RPC required
the web service classes to implement a speciic interface. With JAX-WS, there is no
such restriction and regular POJOs can be made into web services with minimal
changes. JAX-WS also allows contract irst development. You will see how JAX-WS-
annotated web services can be generated starting from WSDL using the wsimport
tool later in this chapter. At the time of writing, Axis2 only supports the JAX-WS 2.0
speciication.

In this chapter, we will be looking at:

•	 JAX-WS Annotations

•	 Server-side JAX-WS

•	 Client-side JAX-WS

By the end of this chapter, you will have a good understanding about JAX-WS
annotations and how to develop JAX-WS services and clients in Apache Axis2.

Developing JAX-WS Web Services

[166]

Writing a simple JAX-WS web service
First, let us look at how easy it is to write a simple web service using
JAX-WS annotations:

import javax.jws.WebService;

import javax.jws.Oneway;

import javax.jws.WebMethod;

@WebService

public class HelloWorld {

 public String hello(String name) {

 return "Hello " + name;

 }

}

As you can see, the simplest method to make a Java class into a web service is by
adding the WebService annotation. The @WebService annotation will mark the
HelloWorld class as a web service. The hello method will be transformed into a web
service operation that takes in a single parameter. This class can be compiled and
archived as a JAR (Java ARchive) ile, and then can be deployed on an Axis2 server.

Let us go through the widely used JAX-WS annotations in detail.

JAX-WS annotations
The JAX-WS speciications deine a number of annotations. In this section, you
will see the purpose and usages of some of the widely used JAX-WS annotations.
Annotations can be categorized into two types—annotations that are used in
mapping Java to WSDL and schema and annotations that are used at runtime to
control how the JAX-WS runtime processes and responds to web service invocations.
We will be looking at a set of annotations coming from several speciications:

•	 JSR 181 (Web Service Metadata)

•	 JSR 224 (JAX-WS)

•	 JSR 222 (JAXB)

•	 JSR 250 (Common Annotations)

Chapter 11

[167]

JSR 181 (Web Service Metadata) annotations
In this section, we will be looking at the annotations introduced in the JSR 181 (Web
Service Metadata) speciication. We will be looking at the following annotations:

•	 javax.jws.WebService

•	 javax.jws.WebMethod

•	 javax.jws.OneWay

•	 javax.jws.WebParam

•	 javax.jws.WebResult

•	 javax.jws.soap.SOAPBinding

javax.jws.WebService
This annotation marks a Java class as deining a web service interface. By default,
all public methods in this Java class will be exposed as web service operations. Web
service implementation classes must have a WebService annotation. This annotation
is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)

@Target({TYPE})

public @interface WebService {

 String name() default "";

 String targetNamespace() default "";

 String serviceName() default "";

 String wsdlLocation() default "";

 String endpointInterface() default "";

 String portName() default "";

}

Let us look at the properties of the WebService annotation.

name
This property deines the name of the wsdl:portType in the WSDL 1.1 document.
The default value of this property is the unqualiied name of the relevant Java class
or interface annotated with the WebService annotation.

Developing JAX-WS Web Services

[168]

targetNamespace
This property deines the XML namespace of the WSDL and some of the XML
elements generated from this Java class or interface annotated with the WebService
annotation. The default value is the namespace derived from the package name of
this web service. For example, if the web service is part of the org.apache.axis2.
sample package, the default namespace will be http://sample.axis2.apache.org.

serviceName
This property deines the name of the wsdl:service in the WSDL 1.1 document.
The default value is the unqualiied name of the annotated Java class or interface,
sufixed with the string "service".

endpointInterface
This property deines the qualiied name of the Service Endpoint Interface
(SEI). This annotation allows the separation of the interface contract from the
implementation. The endpoint implementation class is not required to implement
the endpointInterface.

If endpointInterface property is speciied, all other WebService
properties are ignored as are all other JSR 181 annotations. Only
the annotations on the service endpoint interface will be taken into
considerations.

portName
This property deines the wsdl:portName in the WSDL 1.1 document. The default
value of this property is WebService.name sufixed with the string "port".

wsdlLocation
This property is a WSDL URL that points to an existing WSDL 1.1 document. This
property is used only if an existing WSDL is in use. In a pure code irst approach,
this property will not be used.

Let us look at a simple example where the WebService annotation is used along with
some of its attributes. The following code will declare CalculatorImpl to be a web
service with the name Calculator and the targetNamespace of that web service
will be http://axis.apache.org:

@WebService(name = "Calculator", targetNamespace = "http://axis.

apache.org")

public class CalculatorImpl {

Chapter 11

[169]

 public int add(int a, int b) {
 return a + b;
 }
}

If you wish to separate the interface from the implementation class, you can do it as
shown here using the endpointInterface property. Here, the endpointInterface
is declared to be org.apache.axis2.jaxws.sample.ICalculator.

@WebService(endpointInterface = "org.apache.axis2.jaxws.sample.

ICalculator")

public class CalculatorImpl {

 public int add(int a, int b) {
 return a + b;
 }
}

The ICalculator interface is declared to be a web service with the name
Calculator and targetNamespace http://axis.apache.org:

@WebService(name="Calculator", targetNamespace = "http://axis.apache.

org")

public interface ICalculator{
 int add(int a, int b);
}

javax.jws.WebMethod
This annotation can be used to customize a method which is exposed as a web
service operation. This annotation is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)

@Target({METHOD})

public @interface WebMethod {

 String operationName() default "";

 String action() default "";

 boolean exclude() default false;

}

Let us look at the properties of the WebMethod annotation.

Developing JAX-WS Web Services

[170]

operationName
This property deines the name of the wsdl:operation in WSDL 1.1 corresponding
to this method. The namespace of this name is taken from the value WebService.
targetNamespace or its default value. The default value of this property is the name
of the annotated Java method.

action
This property deines the action of this method's web service operation. It defaults to
"" (an empty string).

exclude
This property is used for excluding certain methods from a web service. Such
methods will not show up as web service operations. The default value is false.

Let us look at an example where the WebMethod annotation is used along with some
of its attributes. In this example, the add method will be exposed as a web service
operation with the name addInt and the action will be set to urn:addInt. The
print method will not be exposed as a web service, as the exclude attribute of the
WebMethod annotation has been set to false.

@WebService
public class CalculatorImpl {

 @WebMethod(operationName="addInt", action="urn:addInt")

 public int add(int a, int b) {

 print(a, b);
 return a + b;
 }

 @WebMethod(exclude="true")

 public void print(int a, int b) {

 System.out.println("a=" + a + ", b=" + b);

 }
}

javax.jws.OneWay
This annotation is used for marking a method as a one-way method. The
corresponding web service operation will be an in-only operation. This annotation
has no properties and is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)

@Target({METHOD})

 public @interface Oneway {

}

Chapter 11

[171]

Let us look at a simple example that demonstrates the usage of the OneWay
annotation. Here, the process operation has been declared as an in-only operation
using the OneWay attribute.

@WebService
public class Processor {
 @WebMethod(operationName="process", action="urn:process")

 @OneWay

 public void process(String id) {
 System.out.println("Processing " + id);
 }
}

javax.jws.WebParam
You can use this annotation for customizing the mapping of a single parameter to
a WSDL message part or an XML element. This annotation is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)

@Target({PARAMETER})

public @interface WebParam {

 public enum Mode {

 IN,

 OUT,

 INOUT

 };

 String name() default "";

 String targetNamespace() default "";

 Mode mode() default Mode.IN;

 boolean header() default false;

 String partName() default "";

}

Let us take a look at the properties of the WebParam annotation.

name
For RPC bindings, this is the name of the wsdl:part representing the parameter.
For document/literal wrapped bindings, this is the local name of the XML element,
representing this parameter. This property is not used for document/literal bare
bindings.

Developing JAX-WS Web Services

[172]

targetNamespace
This is the namespace of this operation parameter. It is only used with document/
literal wrapped bindings. The default value of this property is the targetNamespace
of the web service.

mode
This property represents the parameter low direction for this method. Possible
values are IN, INOUT, and OUT.

header
This property deines whether the annotated parameter should be carried in the
SOAP header. The default value is false.

partName
This property deines the wsdl:part for the annotated parameter with RPC or
document/bare operations. The default value is WebParam.name.

The following example illustrates how the WebParam annotation is used in practice.
The add operation has been declared to have two web service parameters with the
names intA and intB:

@WebService(name = "Calculator", targetNamespace = "http://axis.
apache.org")
public class CalculatorImpl {

 @WebMethod(operationName="addInt", action="urn:addInt")

 public int add(@WebParam(name="intA") int a,

 @WebParam(name="intB") int b) {
 return a + b;
 }
}

javax.jws.WebResult
If you wish to customize the mapping of the return value of a web service method
to a wsdl:part or an XML element, you should use the WebResult annotation. This
annotation is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)

@Target({METHOD})

public @interface WebResult {

Chapter 11

[173]

 String name() default "return";

 String targetNamespace() default "";

 boolean header() default false;

 String partName() default "";

}

Let us look at the properties of the WebResult annotation.

name
This property deines the name of the return value in the WSDL. For RPC bindings,
this is the part name of the return value in the response message. For document
bindings, this is the local name of the XML element representing the return value.

targetNamespace
This is the XML namespace of the return value and defaults to the targetNamespace
of the web service.

header
This property speciies whether the return value needs to be carried in the SOAP
header and the default value is false.

partName
This property speciies the wsdl:part of the return value. It defaults to
WebResult.name.

The following examples illustrate the usage of this annotation. The WebResult
annotation declares that the name of the return type should be return:

@WebService(name = "Calculator", targetNamespace = "http://axis.
apache.org")
public class CalculatorImpl {

 @WebMethod(operationName="addInt", action="urn:addInt")

 @WebResult(name="return")

 public int add(@WebParam(name="intA") int a,

 @WebParam(name="intB") int b) {
 return a + b;
 }
}

Developing JAX-WS Web Services

[174]

javax.jws.soap.SOAPBinding
This annotation speciies how the web service is mapped to the SOAP message
or the wire format. This annotation is deined as follows:

@Retention(value=RetentionPolicy.RUNTIME)
@Target({TYPE, METHOD})
public @interface SOAPBinding {
 public enum Style {
 DOCUMENT,
 RPC,
 };
 public enum Use {
 LITERAL,
 ENCODED,
 };
 public enum ParameterStyle {
 BARE,
 WRAPPED,
 };
 Style style() default Style.DOCUMENT;
 Use use() default Use.LITERAL;
 ParameterStyle parameterStyle() default ParameterStyle.WRAPPED;
}

Let us look at the usages of the annotation properties.

style
This property deines the style for messages used in a web service. The value can
be either DOCUMENT or RPC, and the default value is DOCUMENT.

use
This property deines the encoding used for messages in a web service, and the
default value is LITERAL. JAX-WS 2.0 and newer speciications only allow LITERAL.

parameterStyle
This property determines whether the method's parameters represent the entire
message body or whether the parameters are wrapped in a body element named
after the web service operation. The possible values are WRAPPED or BARE. The BARE
parameter style can only be used with the DOCUMENT style bindings. The default
value of this property is WRAPPED.

Let us look at a simple example:

@WebService(name = "Calculator", targetNamespace = "http://axis.
apache.org")

Chapter 11

[175]

@SOAPBinding(style=SOAPBinding.Style.RPC, use=SOAPBinding.Use.LITERAL)

public class CalculatorImpl {

 public int add(int a, int b) {
 return a + b;
 }
}

JSR 224 (JAX-WS) annotations
In this section, we will be looking at some of the useful annotations introduced in the
JSR 224 (JAX-WS) speciication. These are additional annotations that supplement the
JSR-181 annotations. We will be looking at the following annotations:

•	 javax.xml.ws.BindingType

•	 javax.xml.ws.RequestWrapper

•	 javax.xml.ws.ResponseWrapper

•	 javax.xml.ws.ServiceMode

•	 javax.xml.ws.WebEndpoint

•	 javax.xml.ws.WebFault

•	 javax.xml.ws.WebServiceClient

•	 javax.xml.ws.WebServiceProvider

•	 javax.xml.ws.WebServiceRef

javax.xml.ws.BindingType
The BindingType annotation is used to specify the binding to use for a web service
endpoint implementation class. It has a single attribute, value, which is a binding
URI, and the default value is SOAP 1.1 / HTTP. Let us look at a simple example:

@WebService

@BindingType(value="http://www.w3.org/2003/05/soap/bindings/HTTP/")

public class AddNumbers {

 public int add(int a, int b) {

 …

 }

}

Developing JAX-WS Web Services

[176]

The deployed endpoint would use SOAP1.2 over HTTP binding, as indicated by the
value property of the BindingType annotation.

javax.xml.ws.RequestWrapper and javax.xml.

ws.ResponseWrapper
The javax.xml.ws.RequestWrapper annotation annotates methods in the
SEI with the request wrapper bean to be used at runtime. The javax.xml.
ws.ResponseWrapper annotation annotates the methods in the SEI, with the
response wrapper bean to be used at runtime. These annotations have three
properties, namely, localName, targetNamespace, and className.

localName
This property deines the localName of the XML Schema element representing
this request/response wrapper and defaults to the operationName, as deined
by javax.jws.WebMethod.

targetNamespace
This property deines the namespace of the request/response wrapper element
and the default value is targetNamespace of the SEI.

className
This property deines the name of the class representing the request/response
wrapper.

Let us look at the following example:

public interface AddNumbersImpl {

 @WebMethod

 @WebResult(targetNamespace = "")

 @RequestWrapper(localName = "addNumbers",

 targetNamespace = "http://axis.apache.org/axis2/jaxws,

 className = "org.apache.axis2.jaxws.sample.AddNumbers")

 @ResponseWrapper(localName = "addNumbersResponse",

 targetNamespace = "http://server.fromjava/",

 className = " org.apache.axis2.jaxws.sample.AddNumbersResponse")

 public int addNumbers(

 @WebParam(name = "arg0", targetNamespace = "")

 int arg0,

Chapter 11

[177]

 @WebParam(name = "arg1", targetNamespace = "")

 int arg1);

}

javax.xml.ws.ServiceMode
Web service endpoints may choose to work at the XML message level by
implementing the Provider interface. This is achieved by implementing either
Provider<Source>, Provider<SOAPMessage>, or Provider<DataSource>. The
endpoint accesses the message or message payload using this low-level, generic API.
All the Provider endpoints must have the @WebServiceProvider annotation. The @
ServiceMode annotation is used to convey whether the endpoint wants to access the
message (Service.Mode.MESSAGE) or payload (Service.Mode.PAYLOAD). If there is
no @ServiceMode annotation on the endpoint, the payload is the default value. This
annotation contains a single attribute value, which conveys whether the Provider
endpoint wants to access the entire message (MESSAGE) or just the payload (PAYLOAD),
and the default value is PAYLOAD. The following example demonstrates the usage of
this annotation:

@ServiceMode(value=Service.Mode.PAYLOAD)

public class AddNumbersImpl implements Provider<Source> {
 public Source invoke(Source source) throws RemoteException {
 }
}

javax.xml.ws.WebEndpoint
This annotation is used to annotate the getPortName() methods of a generated
service interface. The information speciied in this annotation is suficient to uniquely
identify a wsdl:port element inside a wsdl:service. It has a single attribute, name,
which deines the local name of the XML element representing the corresponding
port in the WSDL and defaults to "" (an empty string). The following example
demonstrates this annotation:

@WebServiceClient(name = "AddNumbersImplService",

targetNamespace = "http://axis.apache.org/axis2/jaxws", wsdlLocation =
"http://localhost:8080/services/addnumbers?wsdl")

public class NumberAdder {

 ...

 @WebEndpoint(name = "AddNumbersImplPort")

 public AddNumbersImpl getAddNumbersImplPort() {

 ...

 }

}

Developing JAX-WS Web Services

[178]

javax.xml.ws.WebFault
This annotation is generated by the JAX-WS tools into service-speciic exception
classes generated from a WSDL to customize the local and namespace name of
the fault element and the name of the fault bean and to mark the service-speciic
exception as one generated from WSDL. It contains three attributes—name,
targetNamespace, and faultBean.

name
This property deines the local name of the XML element representing the
corresponding fault in the WSDL, and the default value is "" (an empty string).

targetNamespace
This property deines the namespace of the XML element representing the
corresponding fault in the WSDL, and the default value is "" (an empty string).

faultBean
This property deines the qualiied name of the Java class that represents the details
of the fault message, and the default value is an empty string "".

The following example shows the usage of this annotation:

@javax.xml.ws.WebFault(name="AddNumbersException",

 targetNamespace="http://axis.apache.org/axis2/

jaxws")

public class AddNumbersException_Exception extends Exception {
 private org.apache.axis2.jaxws.AddNumbersException fault;

}

javax.xml.ws.WebServiceClient
The information speciied in this annotation is suficient to uniquely identify a
wsdl:service element inside a WSDL document. This wsdl:service element
represents the web service for which the generated service interface provides a client
view. This annotation can contain three attributes—name, targetNamespace, and
wsdlLocation.

name
This property deines the local name of the wsdl:serviceName in the WSDL,
and the default value is "".

Chapter 11

[179]

targetNamespace
This property deines the namespace for the wsdl:serviceName in the WSDL,
and the default value is "".

wsdlLocation
This property deines the location of the WSDL that deines this service, and the
default value is "".

Let us look at an example:

@WebServiceClient(name = "AddNumbersClient",

 targetNamespace = "http://axis.apache.org/axis2/jaxws/",

 wsdlLocation = "http://localhost/services/

 AddService?wsdl")

public class AddNumbersClient {

}

javax.xml.ws.WebServiceProvider
This annotation is used to annotate a Provider implementation class.

targetNamespace
This is the XML namespace of the WSDL and some of the XML elements generated
from this web service. Most of the XML elements will be in the namespace according
to the JAXB mapping rules.

serviceName
This is the service name of the web service: wsdl:service, and the default value is
an unqualiied name of the Java class or interface + service.

portName
This is the wsdl:portName.

wsdlLocation
This is the location of the WSDL description of the service.

Let us look at an example:

@ServiceMode(value=Service.Mode.PAYLOAD)

@WebServiceProvider(wsdlLocation="WEB-INF/wsdl/AddNumbers.wsdl")

public class AddNumbersImpl implements Provider {
 public Source invoke(Source source) {
 …

Developing JAX-WS Web Services

[180]

 }

}

javax.xml.ws.WebServiceRef
This annotation is used to deine a reference to a web service and, optionally, an
injection target for it. Web service references are resources in the Java EE 5 sense.
It can have the following properties:

name
This property deines the JNDI name of the resource. For ield annotations, the
default value is the ield name. For method annotations, the default is the JavaBeans
property name corresponding to the method. For class annotations, there is no
default and this must be speciied.

type
This property deines the Java type of the resource. For ield annotations, the
default value is the type of the ield. For method annotations, the default is the
type of the JavaBeans property. For class annotations, there is no default and this
must be speciied.

mappedName
This property deines the product-speciic name that this resource should be
mapped to.

value
This property deines the service class and is always a type extending javax.xml.
ws.Service. This element must be speciied whenever the type of the reference is
a service endpoint interface.

wsdlLocation
This property deines the location of the WSDL description for the service.

JSR 222 (JAXB) annotations
In this section, we will be looking at some of the useful annotations introduced in the
JSR 222 (JAXB) speciication. JAXB is a speciication which deines how JavaBeans
can be data bound to XML. We will be looking into the following annotations:

Chapter 11

[181]

•	 javax.xml.bind.annotation.XmlRootElement

•	 javax.xml.bind.annotation.XmlAccessorType

•	 javax.xml.bind.annotation.XmlElement

javax.xml.bind.annotation.XmlRootElement
This annotation is used for mapping a top-level class to a global element in the
WSDL's XML schema. This annotation is deined as follows:

@Retention(RUNTIME)
@Target({TYPE})
public @interface XmlRootElement {
 String namespace() default "##default";
 String name() default "##default";
}

This annotation contains two properties—namespace and name.

namespace
This is the namespace of the XML element representing the annotated class and the
default is the namespace derived from the package containing the relevant class.

name
This is the local name of the XML element representing the annotated class and the
default is the name of the relevant class.

Let us look at a simple example:

@WebService(name = "Calculator", targetNamespace = "http://axis.
apache.org/axis2")
public class CalculatorImpl {
 public int add(Add add) {
 return add.a + add.b;
 }

}
@XmlRootElement(name="Add", namespace="http://axis.apache.org/axis2")

public class Add {
 ...

}

Developing JAX-WS Web Services

[182]

javax.xml.bind.annotation.XmlAccessorType
This annotation is used to specify whether ields or properties are serialized by
default. This annotation contains a single property, value, which speciies whether
ields or properties are serialized by default. The value can be AccessType.FIELD
or AccessType.PROPERTY, and the default value is AccessType.PROPERTY. The
following example demonstrates the usage of this annotation:

@XmlRootElement(name="addNumbers", namespace="http://axis.apache.org/
axis2/jaxws")

@XmlAccessorType(AccessType.FIELD)

public class AddNumbers {

 @XmlElement(namespace="", name="number1")

 @ParameterIndex(value=0)

 public int a;

 @XmlElement(namespace="", name="number2")

 @ParameterIndex(value=1)

 public int b;

 public AddNumbers (){}

}

javax.xml.bind.annotation.XmlElement
This annotation is used to map a property contained in a class to a local element in
the XML Schema complex type to which the containing class is mapped. This can be
best understood by looking at the following example:

@WebService(name = "Calculator", targetNamespace = "http://axis.
apache.org/axis2")
public class CalculatorImpl {

 public int add(Add add) {
 return add.a + add.b;
 }
}

@XmlRootElement(name="Add", namespace="http://axis.apache.org/axis2")

public class Add {

 @XmlElement(namespace="http://axis.apache.org/axis2",

name="numberA")

 public int a;

 @XmlElement(namespace="http://axis.apache.org/axis2",

name="numberB")

 public int b;

}

The two signiicant properties of this annotation are namespace and name.

Chapter 11

[183]

name
This is the local name of the XML element representing the property of the annotated
JavaBean and the default value is the name of the annotated Java attribute.

namespace
This is the namespace of the XML element representing the property of the
annotated JavaBean, and the default value is the namespace of the class containing
the Java attribute.

JSR 250 (Common Annotations)
In this section, we will be looking at some of the useful annotations introduced in the
JSR 250 (Common Annotations) speciication. We will be looking into the following
annotations:

•	 javax.annotation.Resource

•	 javax.annotation.PostConstruct

•	 javax.annotation.PreDestroy

javax.annotation.Resource
This annotation is used to mark a WebServiceContext resource that is needed by a
web service. It is applied to a ield or a method for JAX-WS endpoints. The container
will inject an instance of the WebServiceContext resource into the endpoint
implementation when it is initialized. This annotation is illustrated in the following
example:

@WebService

public class HelloImpl {

 @Resource

 private WebServiceContext context;

 public String echo(String name) {

 ...

 }

}

Developing JAX-WS Web Services

[184]

javax.annotation.PostConstruct
This annotation is used on a method that needs to be executed after a dependency
injection is done to perform any initialization. This method must be invoked before
the class is put into a service. This annotation is illustrated in the following example:

@WebService

public class HelloImpl {

 @PostConstruct

 private void initialize() {

 ...

 }

 public String echo(String name) {

 ...

 }

}

javax.annotation.PreDestroy
The PreDestroy annotation is used on methods as a callback notiication to signal
that the instance is in the process of being removed by the container. The method
annotated with PreDestroy is typically used to release resources that it has been
holding. This annotation is illustrated in the following example:

@WebService

public class HelloImpl {

 public String echo(String name) {

 ...

 }

 @PreDestroy

 private void preDestroy() {

 ...

 }

}

Now that you have a good understanding of the JAX-WS annotations, let's get our
hands dirty by writing some code.

Chapter 11

[185]

Code irst service development with
JAX-WS
We already have looked at several code segments, involving the code irst JAX-
WS development. But for the sake of completeness, let us look at a complete
sample. In this example, the StudentMarksService class contains two operations
called computeAverage and computeHighestMarks. Both these methods take in
a Student object as a parameter. You can see how we can customize the WSDL
service interface using the annotations. The sample code for this sample is shown
here. The @WebService annotation speciies that the name of this service should be
StudentMarksService with the namespace http://apache.org/jaxws/sample.
The WSDL style is declared as document-literal, and the parameters are wrapped.

StudentMarksService.java class

package org.apache.jaxws.sample;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.soap.SOAPBinding;

@WebService(

 name = "StudentMarks",

 serviceName = "StudentMarksService",

 targetNamespace = "http://apache.org/jaxws/sample"

)

@SOAPBinding(

 style = SOAPBinding.Style.DOCUMENT,

 use = SOAPBinding.Use.LITERAL,

 parameterStyle = SOAPBinding.ParameterStyle.WRAPPED

)

public class StudentMarksService {

 public double getAverage(); // see details below

 public int getHighestMarks();// see details below

}

Developing JAX-WS Web Services

[186]

The JAX-WS Web Service operation, getAverage, is shown next. This method
calculates the average marks of the speciied student. The @WebMethod annotation
declared that the web service operation name should be computeAverage and the
action of this operation is urn:getAverage:

 @WebMethod(

 operationName = "computeAverage",

 action = "urn:getAverage"

)

 @WebResult(

 name = "average",

 targetNamespace = "http://apache.org/jaxws/sample"

)

 public double getAverage(

 @WebParam(name = "student", targetNamespace =
 "http://apache.org/jaxws/
sample")

 Student student) {

 double totalMarks = 0;

 for (int i = 0; i < student.getMarks().length; i++) {

 totalMarks += student.getMarks()[i];

 }

 return totalMarks / student.getMarks().length;

 }

JAX-WS Web Service operation, getHighestMarks, is shown next. This
method returns the highest marks obtained by the speciied student. The @
WebMethod annotation declared that the web service's operation name should be
computeHighestMarks and the action of this operation is urn:getHighestMarks:

 @WebMethod(

 operationName = "computeHighestMarks",

 action = "urn:getHighestMarks"

)

 @WebResult(

 name = "highest",

 targetNamespace = "http://apache.org/jaxws/sample"

)

 public int getHighestMarks(

 @WebParam(name = "student", targetNamespace =
 "http://apache.org/jaxws/sample")

 Student student) {

 int highest = 0, temp;

 for (int i = 0; i < student.getMarks().length; i++) {

Chapter 11

[187]

 temp = student.getMarks()[i];

 if (temp > highest) {

 highest = temp;

 }

 }

 return highest;

 }

The Student class is a simple JavaBean containing the name, age, and marks of the
respective students. It is declared as follows:

Student.java class

package org.apache.jaxws.sample;

public class Student {

 private String name;

 private int age;

 private int[] marks;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public int[] getMarks() {

 return marks;

 }

 public void setMarks(int[] marks) {

 this.marks = marks;

 }

}

Compile the given classes, create a JAR ile out of the compiled code, and deploy
it in the Axis2 repository/servicejars directory. Start Axis2 and check out
the WSDL by visiting the URL http://localhost:8080/axis2/services/
StudentMarksService?wsdl.

Developing JAX-WS Web Services

[188]

Contract irst development with JAX-WS
The primary purpose of JAX-WS is to allow the Java developers to develop web
services with the convenience provided by the Java language. However, there
may be situations where the contract or WSDL has already been designed and you
are forced to use that WSDL. In this section, you will see how an existing WSDL
document can be used for developing a JAX-WS service or client. You will be using
the wsimport tool that is shipped with the JDK.

The Java artifacts created using the wsimport tool are:

•	 Service Endpoint Interface (SEI)

•	 Service class

•	 Exception class that is mapped from the wsdl:fault class (if any)

•	 JAXB generated type values (that are Java classes mapped from XML
schema types)

This is what you will see if you run wsimport -help:

Usage: wsimport [options] <WSDL_URI>

where [options] include:
-b <path> specify jaxws/jaxb binding files or additional schemas
(Each <path> must have its own -b)
-B<jaxbOption> Pass this option to JAXB schema compiler
-catalog <file> specify catalog file to resolve external entity
references supports TR9401, XCatalog, and OASIS XML Catalog
format.
-d <directory> specify where to place generated output files
-extension allow vendor extensions – functionality not specified
by the specification. Use of extensions may result in
applications that are not portable or may not interoperate
with other implementations
-help display help
-httpproxy:<host>:<port> specify a HTTP proxy server (port defaults to
8080)
-keep keep generated files
-p <pkg> specifies the target package
-quiet suppress wsimport output
-s <directory> specify where to place generated source files
-target <version> generate code as per the given JAXWS specification
version. version 2.0 will generate compliant code for JAXWS
2.0 spec.
-verbose output messages about what the compiler is doing
-version print version information
-wsdllocation <location> @WebServiceClient.wsdlLocation value

Examples:
 wsimport stock.wsdl -b stock.xml -b stock.xjb

Chapter 11

[189]

 wsimport -d generated http://example.org/stock?wsdl

As shown in the second example, generate .java iles as well, if you want to create
a service out of this. There is a generated interface of your web service among these
generate classes. Just implement that interface and that will be your web service
class. Then add the @WebService annotation at the top as follows.

We will see how to generate a service for the following WSDL 1.1 document
(StudentsMarksService.wsdl):

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://apache.org/jaxws/sample1"
 name="StudentMarksService"

 targetNamespace="http://apache.org/jaxws/sample1">

 <types>…</types>

 <message>*

 <portType>…</portType>

 <binding>

 <service name="StudentMarksService">

 <port name="StudentMarksPort" binding="tns:StudentMarksPort
Binding">

 <soap:address location=
 "https://localhost/services/StudentMarksService.
StudentMarksPort/"/>

 </port>

 </service>

</definitions>

The XML Schema type deinitions for this WSDL are shown next:

 <types>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://apache.org/jaxws/sample1"
 attributeFormDefault="unqualified"

 elementFormDefault="unqualified"

 targetNamespace="http://apache.org/jaxws/sample1">

 <xs:element name="computeAverage"
type="tns:computeAverage"/>

 <xs:element name="computeAverageResponse"
 type="tns:computeAverageResponse"/>

 <xs:element name="computeHighestMarks"

Developing JAX-WS Web Services

[190]

 type="tns:computeHighestMarks"/>

 <xs:element name="computeHighestMarksResponse"
 type="tns:computeHighestMarksResponse"/>

 <xs:complexType name="computeAverage">

 <xs:sequence>

 <xs:element form="qualified" minOccurs="0"
name="student"
 type="tns:student"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="student">

 <xs:sequence>

 <xs:element name="age" type="xs:int"/>

 <xs:element maxOccurs="unbounded" minOccurs="0"
name="marks"
 nillable="true"
type="xs:int"/>

 <xs:element minOccurs="0" name="name"
type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="computeAverageResponse">

 <xs:sequence>

 <xs:element form="qualified" name="average"
type="xs:double"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="computeHighestMarks">

 <xs:sequence>

 <xs:element form="qualified" minOccurs="0"
name="student"
 type="tns:student"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="computeHighestMarksResponse">

 <xs:sequence>

 <xs:element form="qualified" name="highest"
type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </types>

Chapter 11

[191]

The message deinitions of this WSDL are shown next:

 <message name="computeHighestMarks">

 <part name="parameters" element="tns:computeHighestMarks">

 </part>

 </message>

 <message name="computeAverage">

 <part name="parameters" element="tns:computeAverage">

 </part>

 </message>

 <message name="computeHighestMarksResponse">

 <part name="parameters" element="tns:computeHighestMarksRespo
nse">

 </part>

 </message>

 <message name="computeAverageResponse">

 <part name="parameters" element="tns:computeAverageResponse">

 </part>

 </message>

The portType deinition of this service in the WSDL is shown here:

 <portType name="StudentMarks">

 <operation name="computeAverage">

 <input message="tns:computeAverage">

 </input>

 <output message="tns:computeAverageResponse">

 </output>

 </operation>

 <operation name="computeHighestMarks">

 <input message="tns:computeHighestMarks">

 </input>

 <output message="tns:computeHighestMarksResponse">

 </output>

 </operation>

 </portType>

The binding deinition in this WSDL is as follows:

 <binding name="StudentMarksPortBinding" type="tns:StudentMarks">

 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="computeAverage">

 <soap:operation soapAction="urn:getAverage"/>

 <input>

 <soap:body use="literal"/>

Developing JAX-WS Web Services

[192]

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 <operation name="computeHighestMarks">

 <soap:operation soapAction="urn:getHighestMarks"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

Let us generate the code for this WSDL using the wsimport tool, as shown here:

wsimport -s wsdl2java StudentsMarksService.wsdl

This will generate the org.apache.jaxws.sample1.StudentMarksPort and
org.apache.jaxws.sample1.Student classes. Now we will write a sample
web service using those generated classes:

package org.apache.jaxws.sample1.service;

import org.apache.jaxws.sample1.StudentMarksPort;

import org.apache.jaxws.sample1.Student;

import javax.jws.WebService;

@WebService(

 serviceName = "StudentMarksService",

 portName = "StudentMarksPort",

 targetNamespace = "http://apache.org/jaxws/sample1",

 endpointInterface = "org.apache.jaxws.sample1.
StudentMarksPort",

 wsdlLocation = "StudentMarksService.wsdl"

)

public class StudentMarksImpl implements StudentMarksPort {

 public double computeAverage(Student student) {

 double totalMarks = 0;

Chapter 11

[193]

 for (int i = 0; i < student.getMarks().size(); i++) {

 totalMarks += student.getMarks().get(i);

 }

 return totalMarks / student.getMarks().size();

 }

 public int computeHighestMarks(Student student) {

 int highest = 0, temp;

 for (int i = 0; i < student.getMarks().size(); i++) {

 temp = student.getMarks().get(i);

 if (temp > highest) {

 highest = temp;

 }

 }

 return highest;

 }

}

Now compile your project and create the JAR archive to be deployed. Note that
you have to include your WSDL ile at the root level of your JAR archive (ind the
completed JAR archive under attachments). Finally, deploy the service in Axis2 by
copying the JAR ile into the repository/servicejars directory and invoking it.

Client-side JAX-WS
In this section, we will look at how to write Web service clients using JAXWS
annotations. The dynamic client API for JAX-WS is called the dispatch client
(javax.xml.ws.Dispatch). The dispatch client is an XML messaging-oriented
client. The data is sent in either the PAYLOAD or MESSAGE mode. When using
the PAYLOAD mode, the dispatch client is only responsible for providing the
contents of the <soap:Body> and JAX-WS adds the <soap:Envelope> and
<soap:Header> elements. When using the MESSAGE mode, the dispatch client is
responsible for providing the entire SOAP envelope including the <soap:Envelope>,
<soap:Header>, and <soap:Body> elements, and JAX-WS does not add anything
additional to the message. The dispatch client supports asynchronous invocations
using a callback or polling mechanism. The static client programming model for
JAX-WS is called the proxy client. The proxy client invokes a web service based on
a Service Endpoint interface (SEI), which must be provided.

Let us look at the Dispatch client and the Proxy client in detail.

Developing JAX-WS Web Services

[194]

The Dispatch client
You will be using this client when you want to work at the XML message level or
when you want to work without any generated artifacts at the JAX-WS level. The
Dispatch client API requires application clients to construct messages or payloads as
XML, which requires a detailed knowledge of the message or message payload. The
Dispatch client supports the following types of objects:

•	 javax.xml.transform.Source: You will use Source objects to enable clients
to use XML APIs directly. You can use Source objects with SOAP or HTTP
bindings.

•	 JAXB objects: You will use JAXB objects so that clients can use JAXB objects
that are generated from an XML schema to create and manipulate XML with
JAX-WS applications. JAXB objects can only be used with SOAP or HTTP
bindings.

•	 javax.xml.soap.SOAPMessage: You will use SOAPMessage objects so that
clients can work with SOAP messages. You can only use SOAPMessage
objects with SOAP bindings.

•	 javax.activation.DataSource: You will use DataSource objects so
that clients can work with Multipurpose Internet Mail Extension (MIME)
messages. DataSource can be used only with HTTP bindings.

The following example demonstrates how the JAX-WS Dispatch Client APIs can
be used. This client talks to a HelloService, which contains a single operation,
namely, greet. This option takes in a single string parameter. Pay special attention to
the highlighted code. As you can see, the client has to construct the SOAP envelope,
header, body, and body contents since the Message Service mode is used:

package org.apache.jaxwsclient;

import javax.xml.namespace.QName;

import javax.xml.soap.*;

import javax.xml.ws.Dispatch;

import javax.xml.ws.Service;

import javax.xml.ws.soap.SOAPBinding;

public class DispatchClient {

 public static void main(String[] args) {

 try {

 String endpointUrl = "http://localhost:8080/axis2/
services/HelloService";

 QName serviceName = new QName("http://apache.org/
types","HelloService");

 QName portName = new QName("http://apache.org/types",
 "HelloServiceHttpSoap11Endpoint");

Chapter 11

[195]

 /** Create a service and add at least one port to it. **/

 Service service = Service.create(serviceName);

 service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING,
endpointUrl);

 /** Create a Dispatch instance from a service.**/

 Dispatch<SOAPMessage> dispatch =
 service.createDispatch(portName, SOAPMessage.class,
Service.Mode.MESSAGE);

 /** Create SOAPMessage request. **/

 // compose a request message

 MessageFactory mf =
 MessageFactory.newInstance(SOAPConstants.SOAP_1_1_
PROTOCOL);

 // Create a message. This example works with the
SOAPPART.

 SOAPMessage request = mf.createMessage();

 SOAPPart part = request.getSOAPPart();

 // Obtain the SOAPEnvelope and header and body elements.

 SOAPEnvelope env = part.getEnvelope();

 SOAPHeader header = env.getHeader();

 SOAPBody body = env.getBody();

 // Construct the message payload.

 SOAPElement operation = body.addChildElement("greet",
"ns2",
 "http://apache.org/types");

 SOAPElement age = operation.addChildElement("name");

 age.addTextNode("Packt");

 request.saveChanges();

 /** Invoke the service endpoint. **/

 SOAPMessage response = dispatch.invoke(request);

 System.out.println(response.getSOAPBody().getFirstChild().
toString());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

You will need JDK 1.5 or higher to compile the abovementioned class.

Developing JAX-WS Web Services

[196]

The Dynamic Proxy client
The static client programming model for JAX-WS is the called the dynamic proxy
client. The dynamic proxy client invokes a Web service based on a service endpoint
interface that is provided. After you create the proxy, the client application can
invoke methods on the proxy just like a standard implementation of those interfaces.
For JAX-WS Web service clients using the dynamic proxy programming model,
use the JAX-WS tool, wsimport, to process a WSDL ile and generate portable Java
artifacts that are used to create a Web service client.

In the following example, the org.apache.types.HelloService and org.
apache.types.HelloServicePortTye classes have been generated by using the
wsimport tool that ships with the JDK. The example shows how the generated
classes can be used in the ProxyClient class. As you can see, unlike in the case of the
DispatchClient, the number of lines of code is much less, but you have less control
over what goes on underneath the hood:

package org.apache.jaxwsclient;

import org.apache.types.HelloService;

import org.apache.types.HelloServicePortType;

public class ProxyClient {

 public static void main(String[] args) {

 HelloService service = new HelloService();

 HelloServicePortType portType = service.
getHelloServiceHttpSoap11Endpoint();

 System.out.println(portType.greet("Packt"));

 }

}

MTOM with JAX-WS Services
Message Transmission Optimization Mechanism (MTOM) is a method of
eficiently sending binary data to and from the web services. To use MTOM in
JAX-WS services, irst of all, you will have to use the BindingType annotation to
set the binding type to SOAP11 MTOM. You will be using javax.activation.
DataHandler to represent your binary data in your parameters or return types. Let
us look at an example MTOM enabled JAX-WS service. The uploadFile web service
operation shows how binary data is used as the input parameter to an operation. The
following getBinaryTestData operation illustrates how binary data can be used as
output from an operation:

Chapter 11

[197]

package org.apache.jaxws.service;

import com.sun.xml.internal.ws.util.ByteArrayDataSource;

import javax.activation.DataHandler;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.xml.ws.BindingType;

import javax.xml.ws.soap.SOAPBinding;

import java.io.File;

import java.io.IOException;

import java.io.InputStream;

@WebService(serviceName = "MTOMSampleService",
 targetNamespace = "http://mtom.jaxws.apache.org")

@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING)

public class MTOMService {

 @WebMethod(action = "urn:uploadFile")

 public String uploadFile(DataHandler data) {

 try {

 InputStream is = data.getInputStream();

 String msg = "File " + data.getName() + " of type " +
data.getContentType() + " successfully received";

 return msg;

 } catch (IOException e) {

 e.printStackTrace();

 }

 return null;

 }

 @WebMethod(action = "urn:getTestData")

 public DataHandler getBinaryTestData(String stmtId) {

 byte[] testData = new byte[10240];

 for (int i = 0; i < testData.length; i++) {

 testData[i] = 0x7f;

 }

 ByteArrayDataSource bds =

 new ByteArrayDataSource(testData, "application/octet-stream");

 return new DataHandler(bds);

 }

}

Developing JAX-WS Web Services

[198]

The highlighted ields show the BindingType being set to SOAP11HTTP_MTOM_
BINDING and DataHandler. Java bean type classes can also contain DataHandlers.
You will need JDK 1.5 or higher to compile the mentioned class.

Asynchronous invocation of JAX-WS services
JAX-WS supports asynchronous invocation of services from clients. JAX-WS
provides support for both a callback and polling model when calling web services
asynchronously. Both the callback model and the polling model are supported by the
Dispatch client and the Proxy client.

An asynchronous invocation of a web service sends a request to the service endpoint
and then immediately returns control to the client without waiting for the response
to return from the service. JAX-WS asynchronous web service clients consume web
services using either the callback approach or the polling approach.

Polling model
In the polling model, a client can issue a request and receive a response object
that is polled to determine if the server has responded. When the server responds,
the actual response is retrieved. The response object returns the response content
when the get method is called. The client receives an object of type javax.xml.
ws.Response from the invokeAsync method. That Response object is used to
monitor the status of the request to the server, determine when the operation has
completed, and to retrieve the response results.

Callback model
In the callback model, the client provides a callback handler to accept and process
the inbound response object. The handleResponse method of the handler is called
when the result is available. In order to implement an asynchronous invocation that
uses the callback model, the client provides an AsynchHandler instance to accept
and process the inbound response object. The client callback handler implements
the javax.xml.ws.AsynchHandler interface, which contains the application code
that is executed when an asynchronous response is received from the server. The
javax.xml.ws.AsynchHandler interface contains the handleResponse(java.xml.
ws.Response) method that is called after the runtime has received and processed
the asynchronous response from the server. The response is delivered to the callback
handler in the form of a javax.xml.ws.Response object. The response object returns
the response content when the get() method is called.

Chapter 11

[199]

Additionally, if an error is received, an exception is returned to the client during that
call. The response method is then invoked according to the threading model used
by the executor method, java.util.concurrent.Executor, on the client's java.
xml.ws.Service instance that was used to create the Dynamic Proxy or Dispatch
client instance. The executor is used to invoke any asynchronous callbacks registered
by the application. Use the setExecutor and getExecutor methods to modify and
retrieve the executor conigured for your service.

Both these models enable the client to focus on continuing with its course of action
without having to wait for a response from the service. By default, asynchronous
client invocations do not have asynchronous behavior of the message exchange
pattern on the wire. The programming model is asynchronous, but the exchange of
request and response messages is not asynchronous. To use a truly asynchronous
message exchange, the org.apache.axis2.jaxws.use.async.mep property must be
set on the client request context with the value true. When this property is enabled,
the messages exchanged between the client and server are different from the
messages exchanged synchronously. With an asynchronous exchange, the request
and response messages have WS-Addressing headers added that provide additional
routing information for the messages.

Let us look at some sample code which demonstrates these concepts.

The following code segment illustrates a web service interface with methods for
asynchronous requests from the client:

@WebService

public interface CreditRatingService {

 // Asynchronous operation with polling.

 Response<Score> getCreditScoreAsync(Customer customer);

 // Asynchronous operation with callback.

 Future<?> getCreditScoreAsync(Customer customer,
AsyncHandler<Score> handler);

}

The callback method requires a callback handler that is shown in the following
code segment. When using the callback procedure, after a request is made, the
callback handler is responsible for handling the response. The response value is a
response or possibly an exception. The Future<?> method represents the result of
an asynchronous computation and is checked to see if the computation is complete.
When you want the application to ind out if the request is completed, invoke the
Future.isDone() method. Note that the Future.get() method does not provide a
meaningful response and is not similar to the Response.get() method.

Developing JAX-WS Web Services

[200]

CreditRatingService svc = ...;

Future<?> invocation = svc.getCreditScoreAsync(customer,

 new AsyncHandler<Score>() {

 public void handleResponse (Response<Score> response) {

 score = response.get();

 ...

 }

 }

);

The following code segment illustrates an asynchronous polling client:

CreditRatingService svc = ...;

Response<Score> response = svc.getCreditScoreAsync(customerTom);

while (!response.isDone()) {

 // Do something while we wait.

}

score = response.get();

Summary
In this chapter, we looked at developing web services and web service clients using
the JAX-WS standard. We had an in-depth look at the different JAX-WS annotations
and their usages. We also looked at several code samples that demonstrated how
easy it is to develop web services and clients using JAX-WS.

In the next chapter, we will be looking at clustering Apache Axis2, which will allow
you to deploy Axis2 in large scale production deployments.

Axis2 Clustering
Clustering for high availability and scalability is one of the main requirements of
any enterprise deployment. This is also true for Apache Axis2. High availability
refers to the ability to serve client requests by tolerating failures. Scalability is the
ability to serve a large number of clients sending a large number of requests without
any degradation to the performance. Many large scale enterprises are adapting
to web services as the de facto middleware standard. These enterprises have to
process millions of transactions per day, or even more. A large number of clients,
both human and computer, connect simultaneously to these systems and initiate
transactions. Therefore, the servers hosting the web services for these enterprises
have to support that level of performance and concurrency. In addition, almost
all the transactions happening in such enterprise deployments are critical to the
business of the organization. This imposes another requirement for production-ready
web services servers, namely, to maintain very low downtime. It is impossible to
support that level of scalability and high availability from a single server, despite
how powerful the server hardware or how eficient the server software is. Web
services clustering is needed to solve this. It allows you to deploy and manage
several instances of identical web services across multiple web services servers
running on different server machines. Then we can distribute client requests among
these machines using a suitable load balancing system to achieve the required level
of availability and scalability.

Axis2 Clustering

[202]

Axis2 has extensive support for clustering. State replication amongst members
in the same group as well as cluster management is supported in Axis2. Cluster
management refers to managing a single group or several groups of Axis2 nodes. It
is also noteworthy that third-party software such as Apache Synapse, which builds
on Apache Axis2, also automatically beneits from Axis2 clustering capabilities.

In this chapter, we will be covering the following areas:

•	 Axis2 cluster coniguration language
•	 Membership management schemes

•	 Cluster management

By the end of this chapter, you will learn the iner details of coniguring an Axis2
cluster in a production deployment.

Setting up a simple Axis2 cluster
Enabling Axis2 clustering is a simple task. Let us look at setting up a simple two
node cluster:

1. Extract the Axis2 distribution into two different directories and change the
HTTP and HTTPS ports in the respective axis2.xml iles.

2. Locate the "Clustering" element in the axis2.xml iles and set the enable
attribute to true. Start the two Axis2 instances using Simple Axis Server. You
should see some messages indicating that clustering has been enabled. That
is it! Wasn't that extremely simple?

3. In order to verify that state replication is working, we can deploy a stateful
web service on both instances. This web service should set a value in the
ConfigurationContext in one operation and try to retrieve that value in
another operation. We can call the set value operation on one node, and next
call the retrieve operation on the other node. The value set and the value
retrieved should be equal.

Next, we will look at the clustering coniguration language in detail.

Chapter 12

[203]

Writing a highly available clusterable

web service
In general, you do not have to do anything extra to make your web service
clusterable. Any regular web service is clusterable in general. In the case of stateful
web services, you need to store the Java serializable replicable properties in the
Axis2 ConfigurationContext, ServiceGroupContext, or ServiceContext. Please
note that stateful variables you maintain elsewhere will not be replicated. If you
have properly conigured the Axis2 clustering for state replication, then the Axis2
infrastructure will replicate these properties for you. In the next section, you will be
able to look at the details of coniguring a cluster for state replication. Let us look at a
simple stateful Axis2 web service deployed in the soapsession scope:

public class ClusterableService {

 private static final String VALUE = "value";

 public void setValue(String value) {

 MessageContext.getCurrentMessageContext().getServiceContext();

 serviceContext.setProperty(VALUE, value);

 }

 public String getValue() {

 MessageContext.getCurrentMessageContext().getServiceContext();

 return (String) serviceContext.getProperty(VALUE);

 }

}

You can deploy this service on two Axis2 nodes in a cluster. You can write a client
that will call the setValue operation on the irst, and then call the getValue
operation on the second node. You will be able to see that the value you set in
the irst node can be retrieved from the second node. What happens is, when you
call the setValue operation on the irst node, the value is set in the respective
ServiceContext, and replicated to the second node. Therefore, when you call
getValue on the second node, the replicated value has been properly set in the
respective ServiceContext. As you may have already noticed, you do not have to do
anything additional to make a web service clusterable. Axis does the state replication
transparently. However, if you require control over state replication, Axis2 provides
that option as well. Let us rewrite the same web service, while taking control of the
state replication:

public class ClusterableService {

 private static final String VALUE = "value";

 public void setValue(String value) {

Axis2 Clustering

[204]

 MessageContext.getCurrentMessageContext().getServiceContext();

 serviceContext.setProperty(VALUE, value);

 Replicator.replicate(serviceContext);

 }

 public String getValue() {

 MessageContext.getCurrentMessageContext().getServiceContext();

 return (String) serviceContext.getProperty(VALUE);

 }

}

Replicator.replicate() will immediately replicate any property changes in the
provided Axis2 context. So, how does this setup increase availability? Say, you sent a
setValue request to node 1 and node 1 failed soon after replicating that value to the
cluster. Now, node 2 will have the originally set value, hence the web service clients
can continue unhindered.

Stateless Axis2 Web Services
Stateless Axis2 Web Services give the best performance, as no state replication
is necessary for such services. These services can still be deployed on a load
balancer-fronted Axis2 cluster to achieve horizontal scalability. Again, no code
change or special coding is necessary to deploy such web services on a cluster.
Stateless web services may be deployed in a cluster either to achieve failover
behavior or scalability.

Setting up a failover cluster
A failover cluster is generally fronted by a load balancer and one or more nodes that
are designated as primary nodes, while some other nodes are designated as backup
nodes. Such a cluster can be set up with or without high availability. If all the states
are replicated from the primaries to the backups, then when a failure occurs, the
clients can continue without a hitch. This will ensure high availability. However, this
state replication has its overhead. If you are deploying only stateless web services,
you can run a setup without any state replication. In a pure failover cluster (that is,
without any state replication), if the primary fails, the load balancer will route all
subsequent requests to the backup node, but some state may be lost, so the clients
will have to handle some degree of that failure. The load balancer can be conigured
in such a way that all requests are generally routed to the primary node, and a
failover node is provided in case the primary fails, as shown in the following igure:

Chapter 12

[205]

Increasing horizontal scalability
As shown in the igure below, to achieve horizontal scalability, an Axis2 cluster
will be fronted by a load balancer (depicted by LB in the following igure). The
load balancer will spread the load across the Axis2 cluster according to some load
balancing algorithm. The round-robin load balancing algorithm is one such popular
and simple algorithm, and works well when all hardware and software on the nodes
are identical. Generally, a horizontally scalable cluster will maintain its response
time and will not degrade performance under increasing load. Throughput will also
increase when the load increases in such a setup. Generally, the number of nodes in
the cluster is a function of the expected maximum peak load. In such a cluster, all
nodes are active.

Axis2 Clustering

[206]

Setting up and coniguring Axis2 clusters
in production
This section will describe in detail how Axis clusters are set up and conigured in
production systems. The Axis cluster coniguration is used for coniguring a cluster.
Understanding of the Axis2 cluster coniguration language is very important when
it comes to coniguring different clustering setups as well as coniguring and ine
tuning an Axis2 cluster in production. The clustering coniguration section in the
axis2.xml ile has six main parts. They are as follows:

•	 Clustering agent

•	 Parameters

•	 State management

•	 Node management

•	 Group management

•	 Members

Let us take a look at the semantics and usage of each of these coniguration sections
in detail.

Clustering agent
The clustering agent is responsible for initializing all clustering-related functionality
of an Axis2 member or node. Typically, the initialization of a node in a cluster is
handled here. It is also responsible for getting a node to join the cluster. In the default
Axis2 clustering implementation, which is based on Apache Tribes, we use org.
apache.axis2.clustering.tribes.TribesClusteringAgent.

Clustering agent parameters
In order to initialize the clustering agent, we require some parameters. Here are the
parameters that are used in the current implementation.

Chapter 12

[207]

AvoidInitiation
This parameter indicates whether the cluster has to be automatically initialized when
the AxisConfiguration is built. If set to true, the initialization will not be done
at that stage, and some other party will have to explicitly initialize the cluster. In
the case where Axis2 is embedded by third parties, they may need to take control
over the cluster initialization process. Hence this parameter has been provided. For
example, we can set this parameter to true so that the cluster can be initialized after
the server has completely started and the relevant transports have been initialized.

membershipScheme
The membership scheme is used in this setup. The only values supported at the
moment are multicast and WKA.

•	 multicast: Multicast-based membership management. Membership is
automatically discovered using multicasting. In order for this to work,
multicasting should be allowed in the network and all members in the cluster
should use the same multicast address (as deined by the mcastAddress
parameter) and the exact multicast port (as deined by the mcastPort
parameter).

•	 Well-known address (WKA): Membership management based on well-
known address. Membership is discovered with the help of one or more
nodes running at a well-known address. New members joining a cluster will
irst connect to a well-known node, register with the well-known node, and
get the membership list from it. When new members join, one of the well-
known nodes will notify the others in the group. When a member leaves the
cluster, or is deemed to have left the cluster, it will be detected by the Group
Membership Service (GMS) using a TCP ping mechanism. WKA-based
membership is necessary when multicast-based membership discovery is not
possible. For example, on Amazon EC2, multicasting is not allowed and there
is no control over the IP address assigned to EC2 instances. Hence, in such a
scenario, WKA-based membership discovery tends to be used.

domain
The clustering domain/group: Note that the words 'domain' and 'group' are used
synonymously. There will not be any interference between nodes in different groups.
Messages received from members outside the group will generally be ignored.
However, special messages, such as cluster management messages or membership
messages from members outside the group will be allowed.

Axis2 Clustering

[208]

synchronizeAll
When a web service request is received, and processed, should we update the states
of all members in the cluster prior to the response being sent to the client? If the value
of this parameter is set to true, the response to the client will be sent only after all the
members have been updated. Obviously, this can be time consuming. In some cases,
where this overhead may not be acceptable, the value of this parameter should be set
to false. The risk in this case will be that all members will not be in the same state
when the response is sent to the client. This condition will have to be handled by the
user. In summary, this parameter deines whether or not we should synchronize the
state of all members in the group before we send the response to the client.

maxRetries
This deines the maximum number of times we need to retry to send a message to
a particular member before giving up and considering that node to be faulty. After
reaching the maxRetries number of retries, we give up.

mcastAddress
This is the multicast address to be used. This parameter will only be taken into
consideration when the membershipScheme is set to multicast.

mcastPort
This is the multicast port to be used. This parameter will only be taken into
consideration when the membershipScheme is set to multicast.

mcastFrequency
This deines the frequency of sending membership multicast messages. The
value should be speciied in milliseconds. This parameter will only be taken
into consideration when the membershipScheme is set to multicast.

memberDropTime
This deines the time interval within which, if a member does not respond,
the member is deemed to have left the group. The value should be speciied in
milliseconds.

Chapter 12

[209]

mcastBindAddress
This deines the IP address of the network interface to which the multicasting has to
be bound to. Multicasting would be done using this interface. This parameter will
only be taken into consideration when the membershipScheme is set to multicast.
Note that this can be different from the localMemberHost parameter. So we can
listen for point-to-point messages on the localMemberHost network interface,
while listening for multicast messages on the network interface bound to the
mcastBindAddress.

localMemberHost
This deines the hostname or IP address of this member. This is the IP address
advertised by this member when it joins the group and sends messages. This should
be set to a valid value other than localhost or 127.0.0.1. In most cases, it would
sufice to set it to the IP address bound to the network interface, which is used for
communicating with members in the group.

localMemberPort
This deines the TCP port used by this member. This is the port through which other
members will contact this member. The default value for this port is 4000.

preserveMessageOrder
This parameter indicates that message ordering should be preserved. This will be
done according to the sender order. The default value for this parameter is true.

atmostOnceMessageSemantics
This parameter indicates that atmost once message processing semantics need to be
maintained. It guarantees that a given clustering message will be delivered at most
once to the target process or node. The default value for this parameter is true.

Axis2 Clustering

[210]

properties
There are properties speciic to this member. These properties are simply name-value
pairs. When a member joins groups, these properties are bound to this member
so that other members in the group can detect these properties. These properties
can be used in cases where central cluster management needs to be carried out.
For example: Let's think of a situation where an Axis2 cluster can be managed by a
separate server. Each Axis2 member will provide two member properties, namely,
backendServerURL and mgtConsoleURL. The backendServerURL property is used
to connect to the backend management web services of a member. Similarly, if this
member wishes to expose its own management console, it can do so by providing
the "mgtConsoleURL" property. The backendServerURL property is speciied using
the <property name="backendServerURL" value="https://${hostName}:${ht
tpsPort}/services/"/> entry. Here, ${hostName} signiies the hostName member
property and ${httpsPort} denotes the httpsPort member property. hostName
and httpsPort are two implicit member properties. httpPort is another implicit
member property. Properties that have been previously declared can be used in
subsequent property deinitions. For example, we may deine a new property as
follows: <property name="foo" value="${backendServerURL}/foo"/>

State management
The stateManager element needs to be enabled if you are required to synchronize
state across members in a cluster group. An implementation of the org.apache.
axis2.clustering.state.StateManager needs to be provided as the value of the
class attribute. In the default Apache Tribes-based implementation, we provide the
org.apache.axis2.clustering.state.DefaultStateManager class. The user can
choose not to replicate certain properties. This is done by providing a property name
pattern. Let us look at the following example:

<stateManager class="org.apache.axis2.clustering.state.
 DefaultStateManager" enable="true">
 <replication>
 <defaults>
 <exclude name="local_*"/>
 <exclude name="LOCAL_*"/>
 </defaults>

 <context class="org.apache.axis2.context.ConfigurationContext">
 <exclude name="UseAsyncOperations"/>
 <exclude name="SequencePropertyBeanMap"/>
 </context>

 <context class="org.apache.axis2.context.ServiceGroupContext">
 <exclude name="my.sandesha.*"/>
 </context>

Chapter 12

[211]

 <context class="org.apache.axis2.context.ServiceContext">
 <exclude name="my.sandesha.*"/>
 </context>
 </replication>

</stateManager>

In the preceding example, specifying <exclude name="local_*"/> will exclude all
properties having the names preixed with local_ from replication and <exclude
name="*_local"/> will exclude all properties having the name sufixed with _local
from replication. It follows that <exclude name="*"/> excludes all properties from
replication. Excluding all properties from replication may be useful when one needs
to replicate only the properties in a certain contexts. For example, if a user wishes
to replicate properties only in the serviceContext, under the exclusion entries of
org.apache.axis2.context.ConfigurationContext and org.apache.axis2.
context.ServiceGroupContext, the <exclude name="*"/> entry should be added.

The exclusion patterns under the defaults element will be applicable to all contexts.
Hence <exclude name="local_*"/>, under the defaults element, means that all
the properties preixed with local_ in all the properties having names preixed
with local_ will be excluded from replication. Shown next is a sample
stateManager entry.

Node management
The nodeManager element needs to be enabled in order to have node management
functionality. An implementation of the org.apache.axis2.clustering.
NodeManager interface needs to be provided as the value of the class attribute, as
shown next:

<nodeManager class="org.apache.axis2.clustering.management.
DefaultNodeManager"
 enable="true"/>

Group management
When this member is deployed as a cluster manager, the groupManagement element
needs to be enabled. A group management agent, which is an instance of the org.
apache.axis2.clustering.management.GroupManagementAgent interface, needs
to be speciied for each group (applicationDomain) that is being managed. The
example coniguration shows how cluster management has been enabled for two
groups—group1 and group2:

<groupManagement enable="true">
 <applicationDomain name="group1" description="This is the first

Axis2 Clustering

[212]

group" agent="org.apache.axis2.clustering.management.
 DefaultGroupManagementAgent"/>

 <applicationDomain name="group2" description="This is the second
 group" agent="org.apache.axis2.clustering.management.
 DefaultGroupManagementAgent"/>
</groupManagement>

Static members
The members element is used for specifying static or well-known members.
The hostName and the primary port of these members need to be speciied.
The sample member coniguration shows two static members with different
IP addresses and ports:

<members>
 <member>
 <hostName>10.100.1.202</hostName>
 <port>4000</port>
 </member>

 <member>
 <hostName>10.100.1.154</hostName>
 <port>4001</port>
 </member>
</members>

Full coniguration
Shown next is a typical clustering coniguration in Axis2, which uses the Apache-Tribes-
based implementation. In this coniguration, we have enabled clustering by setting the
value of the enable attribute of the clustering element to true. We are using multicast-
based membership management scheme. The value of the synchronizeAll parameter
has been set to true; hence the responses to web service requests will only be sent after
the state changes have been updated on all the nodes. Even though static members
have been deined, they will be ignored as we are using a multicast-based scheme.
However, if we were using the well-known address-based scheme (WKA), then the
static members will be looked up during cluster initialization. Similarly, the parameters
pertaining to multicast-based membership such as mcastAddress, mcastPort, and
mcastFrequency are applicable only in the case of multicast-based membership
management. Group management is only relevant to a node that acts as a cluster
manager, hence is disabled in this coniguration. We have enabled state replication by
enabling the stateManager element.

Chapter 12

[213]

<clustering class="org.apache.axis2.clustering.tribes.
TribesClusteringAgent" enable="true">
 <parameter name="AvoidInitiation">true</parameter>
 <parameter name="membershipScheme">multicast</parameter>
 <parameter name="domain">apache.axis2.domain</parameter>
 <parameter name="synchronizeAll">true</parameter>
 <parameter name="maxRetries">10</parameter>
 <parameter name="mcastAddress">228.0.0.4</parameter>
 <parameter name="mcastPort">45564</parameter>
 <parameter name="mcastFrequency">500</parameter>
 <parameter name="memberDropTime">3000</parameter>
 <parameter name="mcastBindAddress">10.100.1.20</parameter>
 <parameter name="localMemberHost">10.100.1.20</parameter>
 <parameter name="localMemberPort">4000</parameter>
 <parameter name="preserveMessageOrder">true</parameter>
 <parameter name="atmostOnceMessageSemantics">true</parameter>
 <members>
 <member>
 <hostName>10.100.1.21<hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>10.100.1.22</hostName>
 <port>4001</port>
 </member>
 </members>

 <groupManagement enable="false">
 <applicationDomain name="apache.axis2.application.domain"
 description="Axis2 group"
agent="org.apache.axis2.clustering.management.
DefaultGroupManagementAgent"/>
 </groupManagement>

 <nodeManager class="org.apache.axis2.clustering.management.
DefaultNodeManager"
 enable="false"/>

 <stateManager class="org.apache.axis2.clustering.state.
DefaultStateManager"
 enable="true">
 <replication>
 <defaults>
 <exclude name="local_*"/>
 <exclude name="LOCAL_*"/>
 </defaults>
 <context class="org.apache.axis2.context.ConfigurationContext">
 <exclude name="UseAsyncOperations"/>
 <exclude name="SequencePropertyBeanMap"/>
 </context>
 <context class="org.apache.axis2.context.ServiceGroupContext">
 <exclude name="my.sandesha.*"/>
 </context>

Axis2 Clustering

[214]

 <context class="org.apache.axis2.context.ServiceContext">
 <exclude name="my.sandesha.*"/>
 </context>
 </replication>
 </stateManager>
</clustering>

Membership schemes
The term membership scheme refers to the manner in which group membership
is managed in a cluster. A cluster consists of several processes, and each of these
processes is known as a member. In the context of Axis2, each member is an Axis2
process. The Axis2 clustering implementations support several membership
schemes. Next, we will take a look at the three membership schemes supported by
Axis2, and how the clusters are conigured to support these membership schemes.
We will be looking at:

•	 Static membership

•	 Dynamic membership

•	 Hybrid membership

Static membership
In this scheme, only a deined set of members can be in a group. The Group
Membership Service (GMS) will detect members joining or leaving the group.
External members cannot join the group. Each node may obtain group member
details from a central repository or coniguration ile.

Chapter 12

[215]

In the igure, S1 up to S5 are static members. These static members can join or leave
the group at any time. However, these members need to be speciied in the axis2.
xml ile. A new member, N, which is not speciied in the axis2.xml ile, cannot
join the group in general. Later, we will look at hybrid membership, where the new
member, N, will be allowed to join the group, if it knows the details of at least one
static member. The members coniguration section in the axis2.xml of each member
will look like this:

<members>
 <member>
 <hostName>S1</hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>S2</hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>S3</hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>S4</hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>S5</hostName>
 <port>4000</port>
 </member>
</members>

All the members should belong to the same group or domain. This will be speciied
using the domain parameter in the axis2.xml clustering coniguration section. For
example:

<parameter name="domain">Group S<parameter>

Axis2 Clustering

[216]

Dynamic membership
In this scheme, membership is not predeined. Members can join a group by
specifying the appropriate group name, and also leave the group. The Group
Management Service (GMS) will detect new members joining or leaving. Group
membership information may be obtained from the GMS.

The members in a dynamic group need not be speciied in the axis2.xml ile.
Membership will be discovered using multicasting. However, all members should
use the same multicast IP address, multicast port, and domain name, in order to
belong to the same group. As shown in the previous igure, a new member, N, can
join the group by multicasting its details to the multicast socket of the group and
specifying that it belongs to the same group, which is Group D.

The multicast address and multicast port are speciied using the following
parameters in the axis2.xml clustering coniguration section:

<parameter name="mcastAddress">228.0.0.4</parameter>
<parameter name="mcastPort">45564</parameter>

The domain is speciied as follows:

<parameter name="domain">Group D</parameter>

Hybrid membership
This scheme is also called well-known-addressed- or WKA-based membership. In
this scheme, there are a set of well-known members. We can consider these members
as belonging to a static group. External members can join this group by notifying one
of the well-known members. These external members can then get the current group
membership from this well-known member. When new members join the group,
well-known members will notify all other members. When members leave the group,
the GMS can detect this event.

Chapter 12

[217]

The static members are speciied in the axis2.xml ile of each member as follows:

<members>
 <member>
 <hostName>S1</hostName>
 <port>4000</port>
 </member>
 <member>
 <hostName>S2</hostName>
 <port>4000</port>
 </member>
</members>

As shown in the preceding igure, a new member, N, belonging to the domain
Group H and having knowledge about at least one static member in the group,
can join the group. This new member will irst contact one of the static members
and learn about the group membership. The static member will inform N about the
group membership {S1, S2, D1, D2, D3} and then notify each member in the group
about N joining the group, as shown in the following sequence diagram:

Axis2 Clustering

[218]

An alternative way is for N to inform everyone in the group that it has joined, once
it receives the membership details from the static member, as shown in the following
sequence diagram:

Typically, there should be at least two static members to avoid the single point of
failure scenario. If there is only a single static member and that member fails, no new
members will be able to join the group. However, a dynamic remapping of the IP
address of the failed static member can be done. Suppose there is only a single static
member; on failure of this static member, another member in the group can remap
the IP address of the failed static member to itself, thereby becoming the new sole
static member.

Cluster management
Axis2 can run as a cluster manager for managing several groups in a cluster, as
depicted in the following igure. If multicast-based membership discovery is used,
the Cluster Manager (CM) needs to be running on the same multicast domain and
use the same multicast address and port used by members in all the groups.

Chapter 12

[219]

The cluster manager needs to have the following coniguration in order to manage
the two groups, Group H and Group D, as shown in the previous igure:

<groupManagement enable="true">
 <applicationDomain name="GroupH"
 description="This is the first group" agent="org.apache.
axis2.clustering.management.DefaultGroupManagementAgent"/>

 <applicationDomain name="GroupD"
 description="This is the second group" agent="org.apache.
axis2.clustering.management.DefaultGroupManagementAgent"/>
</groupManagement>

Axis2 Clustering

[220]

Highly available load balancing
In order to avoid single points of failure, the worker Axis2 clusters—Group H and
Group D—can be fronted by a load balancer cluster, Group LB, as shown in the
following igure. One load balancer in Group LB will be the primary load balancer.
The Apache Synapse load balancer can be deployed in this manner, and uses the
underlying Axis2 clustering mechanism. The web service clients will talk to the
endpoints in the primary load balancer and will be unaware of the backend worker
node Axis2 clusters.

The Axis2 clustering management API
Axis2 clustering is designed in a way that all functionality is abstracted out by a set
of interfaces. By implementing these interfaces and providing the implementation
classes in the clustering coniguration section, any different clustering
implementation can be plugged in. The default clustering implementation in Axis2
is based on Apache Tribes (Apache Tribes n.d.), the popular group management
framework used by Apache Tomcat (Apache Tomcat n.d.). One may be required
to use a group management framework of one's choice, in which case, he/she can
implement these interfaces and then plug them using the clustering coniguration
section in the axis2.xml ile. We will be taking a look at the usages of these
interfaces later in this chapter.

Chapter 12

[221]

The Axis2 clustering APIs address two concerns—state replication and management.
State replication refers to the synchronizing of states related to different members
in a cluster group. Management can again be divided into two aspects—group
management and node management.

The four interfaces that may be used by an Axis2 clustering implementation are:

•	 org.apache.axis2.clustering.ClusteringAgent

•	 org.apache.axis2.clustering.state.StateManager

•	 org.apache.axis2.clustering.management.NodeManager

•	 org.apache.axis2.clustering.management.GroupManagementAgent

Let us take a look at these four interfaces in detail.

org.apache.axis2.clustering.ClusteringAgent
This is the main interface in the Axis2 clustering implementation. In order to plug
in a new clustering implementation, this interface has to be implemented. It is
mandatory to provide an implementation of this interface.

The ClusteringAgent is responsible for initializing all clustering-related
functionalities of an Axis2 member or node. Generally, the initialization of a node in
a cluster is handled here. It is also responsible for getting this node to join the cluster.
This Axis2 node should not process any web services requests until it successfully
joins the cluster. Generally, this node will also need to obtain state information and/
or coniguration information from a neighboring node. State information needs to be
obtained, as prior to joining the group this new member needs to be in sync with the
other members with respect to the state. It is also possible that coniguration changes
have taken place. For example, new service deployments or service undeployments
may have taken place after nodes in a group were initialized. Hence, it is essential
that all coniguration changes are kept in sync across a group. This interface is also
responsible for properly initializing the org.apache.axis2.clustering.state.
StateManager, org.apache.axis2.clustering.management.NodeManager,
and org.apache.axis2.clustering.management.GroupManagementAgent
implementations. In the case of a static membership scheme, members are read from
the axis2.xml ile and added to the ClusteringAgent. Later in the chapter, we will
take a look at different membership schemes supported by Axis2.

In the axis2.xml ile, the instance of this interface is speciied using the clustering
class attribute.

Axis2 Clustering

[222]

There can also be several parameter elements, which are children of the clustering
element in the axis2.xml ile. Generally, these parameters will be speciic to
the ClusteringAgent implementation. In the default Apache Tribes-based
implementation, there are several parameters that are required to initialize the Tribes
Channel properly.

org.apache.axis2.clustering.state.

StateManager
This interface is responsible for handling state replication. This is an optional
interface and if state replication is not required, then this interface can be omitted.
The word 'state' here means the serializable values stored in the Axis2 context
hierarchy which need to be kept in sync across all the members of a cluster group.
Property changes (state changes) in the Axis2 context hierarchy in the node that
runs this StateManager will be propagated to all other nodes in its group. In
the default Axis2 clustering implementation, we have only enabled replication
of serializable objects stored in the Apache Axis2 ConfigurationContext,
ServiceGroupContext, and ServiceContext. Hence, if a user requires state
replication, it is this user's responsibility to store these values in the proper Axis2
contexts. Generally, web services authors do not have to handle state replication,
as it is handled by the clustering implementation just before request completion.
This is done at the Axis2 MessageReceivers. However, if the developer writes his
own MessageReceiver, he will need to call the org.apache.axis2.clustering.
state.Replicator#replicate() method. Also, note that at any point, org.
apache.axis2.clustering.state.Replicator#replicate() can be called, if the
developer wishes to force state replication.

It is not mandatory to have a StateManager in a node. If we are not interested in
high availability, we may disable state replication. In such a scenario, in general,
the purpose of a clustered deployment is to achieve scalability. In addition, one
may also enable clustering without state replication simply to utilize the group
communication capabilities of the underlying Group Communication Framework
(GCF). In such a case, the purpose of a clustered deployment may also be
management of the cluster using the underlying GCF. The implementation of this
interface is set by reading the stateManager element in the axis2.xml clustering
section.

Chapter 12

[223]

org.apache.axis2.clustering.management.

NodeManager
This interface is responsible for handling management of a particular member.
It is not mandatory to have a NodeManager in a node. Node management is
generally used for deploying or undeploying services across a cluster group. The
implementation of this interface is set by reading the nodeManager element in the
axis2.xml ile.

org.apache.axis2.clustering.management.

GroupManagementAgent
This is the interface through which group management events are notiied and
messages are sent to members in a particular group. This will only be used when
a member is running in group management mode. In group management mode,
a member is special and belongs to all groups that it is managing. Hence, any
membership changes in the groups it manages will be notiied by the underlying
group management framework to the group management agent. A group
management agent should be speciied for each group that has to be managed by
the member. In Axis2 cluster management, the cluster manager node needs to deine
group management agents for each group.

Apache Synapse is capable of dynamic load balancing. Here, new members can join
and leave the application group, and this will be relected in the membership-aware
dynamic load balancer. The clustering coniguration for the dynamic load balancer
needs to be conigured with group management to allow group membership
discovery.

Summary
In this chapter, we looked at how Axis2 clusters can be conigured. We also
described in detail how the Axis2 cluster coniguration language can be used for
coniguring production clusters. Several membership schemes, which can be used in
different scenarios, were also introduced. Towards the end of the chapter, we looked
at the Axis2 clustering API, which can be used for writing your own clustering
mechanism, which may be based on a different group communications framework.

In the next chapter, we will be looking at some enterprise SOA deployment patterns
that make use of the underlying Axis2 clustering infrastructure.

Enterprise Integration

Patterns
In today's world, integrating multiple business systems in an enterprise is a critical
requirement. Applications are no longer monolithic systems from a single vendor.
Over the years, enterprise software architects have igured out a number of recurring
patterns when it comes to integrating such applications. This led to the development
of enterprise integration patterns. A pattern is a tried and tested solution for a
known problem. These patterns are well documented along with the problem they
are trying to solve, so that architects can identify such patterns in a given problem
and apply these well known solutions, instead of having to reinvent the wheel. SOA
and web services are the de facto standard when it comes to integrating disparate
systems. Most of these patterns have been derived from experience gained from
deployment and integration scenarios of SOA customers. Hence, a number of
well-known SOA integration patterns have been developed over the years. It is
noteworthy that 'SOA integration patterns' is a relatively new area.

In this chapter, we will look at some SOA enterprise integration fundamentals and
patterns. An Enterprise Service Bus (ESB) is a widely used middleware component
that is used in SOA integration. Although there is no industry-wide accepted
deinition of ESB, the following is a commonly accepted deinition: Any to any data
connectivity and transformation (including web services) built on an advanced,
proven, reliable middleware infrastructure. We will see how Apache Axis2 and
the Apache Synapse Enterprise Service Bus (ESB) can be used in realizing these
integration patterns. An ESB is used in all of the integration patterns we will be
discussing here, as an ESB provides a central location for mediation, control, policy
enforcement, auditing, routing, and mainly because with an ESB, such integration
patterns can be realized with simple coniguration and zero coding.

Enterprise Integration Patterns

[226]

In this chapter, we will be looking at the following:

•	 Several open source Enterprise Service Buses (ESBs), including
Apache Synapse, WSO2 ESB, and OpenESB

•	 Several widely used Enterprise Integration Patterns

Apache Synapse
Apache Synapse is an Enterprise Service Bus (ESB), built on top of Axis2. In
fact, Apache Synapse can be deployed as an Axis2 module within Axis2. It has
been designed to be simple to conigure, very fast, and effective at solving many
integration and gatewaying problems. Synapse has support for HTTP, SOAP,
SMTP, JMS, FTP and ile system transports, Financial Information eXchange
(FIX) and Hessian protocols for message exchange, as well as irst class support for
standards such as WS-Addressing, Web Services Security, Web Services Reliable
Messaging, and eficient binary attachments (MTOM/XOP). Synapse can transform
messages using key standards such as XSLT, XPath, and XQuery, or simply by
using Java. Synapse supports a number of useful functions out-of-the-box without
programming, but it also can be extended using popular programming languages
such as Java, JavaScript, Ruby, Groovy, and so on.

The preceding igure shows the high level architecture of Synapse. Similar to the
Axis2 message lows, there is an In-Flow and Out-Flow. Once a message is received
on the incoming transport, the message will go through the In-Flow, which in turn
will call several mediators. The igure shows the log mediator, XSLT mediator, and
send mediator, in that order. So, this message will be logged, transformed, and then
sent out to a third party. Once the response to that message comes back, it will go
through the Out-Flow, and again will be logged, transformed, and sent out to the
original client that sent the message.

Chapter 13

[227]

WSO2 ESB
WSO2 ESB is an open source Enterprise Service Bus (ESB) released by the open source
middleware company, WSO2 Inc. It is shipped under the Apache Software License
v2.0. The runtime of WSO2 ESB has been designed to be completely asynchronous,
non-blocking, and streaming, based on the Apache Synapse mediation engine. This
also means that WSO2 ESB has been built on top of Apache Axis2, as Apache Synapse
is based on Apache Axis2. This ESB allows system administrators and SOA architects
to simply and easily conigure message routing, virtualization, intermediation,
transformation, logging, task scheduling, load balancing, failover routing, event
brokering, and many enterprise integration patterns.

WSO2 ESB supports many application layer protocols and messaging standards,
collectively known as transports, including HTTP, HTTPS, e-mail, Java Message
Service (JMS), and Virtual File System (VFS). It also supports a range of domain-
speciic protocols such as Financial Information eXchange (FIX), Advanced Message
Queuing Protocol (AMQP), and Health Layer 7 (HL7). New transports can be
easily plugged into the server due to the extensibility offered by the Axis2 transports
framework. The following igure illustrates how the different transports can be
plugged into the ESB and how the Apache Synapse runtime its into the WSO2 ESB:

Enterprise Integration Patterns

[228]

WSO2 ESB provides a comprehensive mediator library that provides various
message processing and intermediation capabilities. Using this mediator library, you
can implement all the widely used Message Exchange Patterns (MEP) and Enterprise
Integration Patterns (EIP). There are simple mediators that provide fundamental
message processing capabilities such as logging and content transformation, as well
as advanced mediators that can be used to access databases, add security to message
lows, and so on. In situations where the built-in mediators are not suficient to
implement a given scenario, you can write your own custom mediators using the
APIs provided by WSO2 ESB. Such custom mediators can be implemented by using
a variety of technologies including Java, scripting, and Spring, all of which are
considered as extension points to the WSO2 ESB.

Tasks in WSO2 ESB provide you with the ability to conigure scheduled jobs in your
ESB and they allow the execution of internal and external commands for mediation.
Qualities of Service components that implement reliable messaging and security
for the proxy services and for mediation come with the Apache implementations of
those two modules for Axis2, namely, Apache Rampart and Apache Sandesha2.

WSO2 ESB contains enterprise deployment features such as clustering, load balancing,
high availability, monitoring, and GUI- and JMX-based management. GUI-based
components provide comprehensive management, coniguration, and monitoring
capabilities to the ESB. The GUI is built on a layered architecture by separating the
backend and frontend concerns. This allows the user to connect to multiple backends
using a single GUI console. The component-based architecture of the WSO2 ESB has
enhanced its loosely coupled nature with the usage of OSGi. All the components are
built as OSGi bundles, which even allow advanced users to extend the capabilities of
the ESB by developing and deploying their own OSGi bundles.

The WSO2 ESB can be deployed in a clustered manner in collaboration with a
number of other products, as shown in the following igure:

Chapter 13

[229]

Enterprise Integration Patterns

[230]

OpenESB
OpenESB is an open source Java Business Integration (JBI) standard-centric
Enterprise Service Bus, originally from Sun Microsystems, now Oracle Inc. JBI is built
on a web services model and provides a pluggable architecture for a container that
hosts service producer and consumer components. Services connect to the container
via binding components or can be hosted inside the container as part of a service
engine. The services model used is Web Services Description Language (WSDL)
2.0. Open ESB consists of a runtime, a design time, and a management console. The
runtime consists of a lightweight JBI core and several components. OpenESB comes
with several components for data transformation, orchestration, and connectivity.
There is support for HTTP and web services, JMS, databases, MQ Series, SAP, IMS,
HL7, and others. Logic can be expressed in BPEL, EJBs, or POJOs.

In the rest of this chapter, we will be looking at the following SOA integration patterns.
Please note that Apache Synapse has been shown as the ESB in the diagrams, but it can
be replaced by any of the ESBs we have discussed in this chapter:

•	 Protocol bridging

•	 External authentication and authorization

•	 Dynamic routing combined with auditing

•	 Event Driven Architecture (EDA) with Master Data Management (MDM)

•	 Push and pull

•	 Fault tolerant autoscaling with dynamic load balancing

Protocol bridging
Protocol bridging refers to the request coming on one transport protocol, and being
sent in for processing on a different protocol. For example, the corporate policy may
dictate that all incoming trafic should be on HTTPS. Some web services may exist
that are exposed only via a transport such as JMX. In such a case, there should be a
way of bridging from HTTPS to JMX. Furthermore, the backend web services, which
may be deployed on Axis2, may be highly secured within a High Security Zone
(HSZ), and the policies may dictate that only certain calls from the Demilitarized
Zone (DMZ) can be made to those web services. We may also implement message
validation and request throttling outside the highly secured LAN. This scenario is
shown in the following igure. External web service clients talk to the endpoints on
the ESB in the DMZ. This ESB will run validations and other Qualities of Service
(QoS) functionality on these incoming messages, and if those messages meet the
requirements, it will switch to a protocol that is compatible with the backend service
deployment, and send the message into the LAN.

Chapter 13

[231]

In the following igure, we have shown another optional ESB deployment, which can
further deal with things such as transformations. However, that ESB can be omitted,
if required, and the request can be directly routed to Axis2. Once Axis2 receives the
request, it will dispatch it to the relevant web service and send the response back.
The ESB in the DMZ will again perform a protocol transformation, and send the
response back to the client that originated the request.

External authentication and authorization
In medium to large scale enterprise deployments, authentication and authorization
are handled by an external identity management server such as WSO2 Identity
Server. The web service client or the server can participate in authentication and
authorization.

Enterprise Integration Patterns

[232]

As shown in the following igure, the web service client sends a request along with
its credentials to Synapse, and the authentication and authorization mediator will
talk to the identity management server and verify these credentials. Thereafter, the
request will be passed on to Axis2 for processing, and Axis2 will send the response
to Synapse, which will forward it to the service client that originated the request.

The second pattern is where the service client itself can talk to the identity
management server, as shown in the igure below. Here, WS-Trust or some
other security token-based protocol is used. The low sequence is as follows:

1. The service client sends a Request Security Token (RST) message to
the identity management server along with its credentials.

2. The Identity Server responds with a token (RSTR) if the credentials are
successfully veriied.

3. The service client then sends a request to the ESB endpoint along with
the token obtained in step 2.

4. The ESB veriies the token by consulting the Identity Server.
5. If the token is accepted, the ESB forwards the request to Axis2.

6. Axis2 processes the request and sends back the response.

7. The ESB sends the response to the service client.

Chapter 13

[233]

In these two scenarios, authentication and authorization handling can be done within
a pure Axis2 instance as well, but the reason for bringing in an ESB into the picture
is to handle all authentication and authorization functionality in one central place.
Otherwise, if there are multiple Axis2 instances in an enterprise deployment, each
of those Axis2 instances would have to separately talk to the identity management
server. In addition, additional mediation steps can be introduced in the ESB, when
the system evolves over time.

Dynamic routing combined with auditing
In some enterprise deployments, there is a requirement to route the request to
different Axis2 service implementations or different Axis2 servers, depending
on certain criteria or other parameters such as the time of the day. For example,
during the peak hours, requests may be routed to a server having more resources
in terms of memory and processing power. In some cases, the requests may need
more processing power, depending on the input parameter values. Requests are
dynamically routed in order to optimize resource usage and maintain throughput.
Note that the service contracts will not change and only the service implementation
or deployment location will change. Hence this is transparent to the client.

Dynamic routing may be combined with auditing. In this case, each of the requests,
along with other relevant metadata, will be asynchronously logged into a ile or
database for future auditing purposes.

As shown in the following igure, the Synapse ESB is used as a dynamic router
and the central point for auditing. The Synapse coniguration is loaded from a
coniguration repository and this coniguration can change over the course of the day
so that requests are dynamically routed to different Axis2 service implementations
or Axis2 servers. A log mediator is used for logging the incoming requests and
outgoing responses to a database. In the case where the Synapse coniguration is
changed at preconigured times of the day, the server is put into maintenance mode
using the JMX management API.

Enterprise Integration Patterns

[234]

In maintenance mode, a server will temporarily stop accepting new requests, but will
continue to serve the requests that have already been received. Once all the existing
requests are served, the new coniguration will be loaded, and the Synapse server
will be initialized with the new coniguration. Reloading the coniguration can either
be done manually or can be automated using a Cron job or task that runs a script.

Event Driven Architecture (EDA) with

Master Data Management (MDM) for

Integrating Legacy Systems
This pattern is a combination of Event Driven Architecture (EDA) and Master Data
Management (MDM). You will see how legacy systems can be SOA-enabled and
integrated using this pattern.

Event Driven Architecture (EDA)
Event Driven Architecture (EDA) is a software architecture pattern where the system
runs based on the creation, consumption, and reaction to events. Eventing is one of
the popular ways of decoupling SOA systems. In fact, an event-driven architecture
is extremely loosely coupled and well distributed. An event can be anything; any
message can be considered an event.

Chapter 13

[235]

Master Data Management (MDM)
Master data refers to the information that is key to the operation of a business. This
information may include data about customers, products, employees, suppliers,
and so on. Master data is non-transactional in nature, but can support transactional
processes and operations. Master data is often used by several functional groups
and stored in different data systems across an organization and may or may not be
referenced centrally. Therefore, the possibility exists for duplicate and/or inaccurate
master data. MDM comprises a set of processes and tools that consistently deines
and manages the master data. The objective of MDM is to provide processes for
collecting, aggregating, matching, consolidating, quality-assuring, persisting, and
distributing master data throughout an organization to ensure consistency and
control in the ongoing maintenance and application use of this information.

Most legacy systems in an organization have different representations of the same
master data. This is one of the main challenges in integrating these legacy systems.
We will look at how EDA with MDM can be used for integrating such legacy systems.

Enterprise Integration Patterns

[236]

We will demonstrate EDA with MDM using the example scenario illustrated in the
preceding igure. Systems 1-3 are legacy systems that have different representations
of the master data of the organization. For example, a Person entity is represented in
one format in System 1 and in a different format in Systems 2 and 3. These systems
have their own databases to store the master data. When new master data is added
or existing master data is changed in one system, all other systems have to be
notiied so that they can correspondingly update their databases. Let us look into
each of the subsystems in detail.

Adaptor layer
We use Axis2 Web Service-based adaptors to integrate these systems. The adaptors
play a dual role; they natively communicate with the respective backend legacy
systems and publish events when a change in the master data of the corresponding
legacy system takes place. These adaptors can also be considered as converters
that convert Generic Business Objects (GBO) into Application Speciic Business
Objects (ASBO). Each adaptor is interested in changes only to speciic master
data types. Hence, each of these adaptors will subscribe to speciic event types,
represented by different topic spaces. The Axis2 Savan module-based WS-Eventing
is used here. When events to these speciic topics are published by the event server,
they will be picked up by the relevant adaptors. Similarly, when master data
changes, each adaptor will publish events to the relevant topic. The adaptor web
services are deployed on the same logical Axis2 server, which can physically be
deployed as a cluster.

Integration server
The Integration server is a Synapse server that acts as an event broker. This server
is responsible for managing WS-Eventing subscriptions. The adaptors deployed on
the adaptor server will be the subscribers. When a particular event is received, this
server will consult the logic server, and if it is a new event, it will convert that into a
GBO and publish it to the relevant topics.

Chapter 13

[237]

Logic server
This server determines which events are logically equivalent, hence the name. This
server is introduced to deal with the 'feedback problem'. Consider this scenario: A
Person is added to System 1. System 1 will publish an event. All other systems that
are interested in Persons will get this event, and add it to their respective legacy
systems. Since the legacy systems are unaware about how the Person got added to
their systems, the corresponding adaptors will once again get triggered and will
think that a new Person has been added. This will trigger another series of events.
Over time, this will lead to a large number of events and eventually the entire system
will crash. This is known as the feedback problem. The logic server acts as a central
authority that determines whether a particular event has been already seen or not.
It maintains a master data repository to keep track of events that have been already
seen. The logic server is an Axis2 server.

Registry
A central registry is used for storing all metadata that is required by the Adaptor
server, Integration server, and Logic server. The registry also helps in loose coupling
between the systems. The topics and topic ilters are used by the adaptors and
integration servers for subscription. The endpoints are used for event dispatching.

Push and pull

Enterprise Integration Patterns

[238]

Synapse supports tasks that can be run periodically. A task can be written in Java
and conigured in the synapse.xml ile.

To demonstrate this integration pattern, we will use the example scenario shown
in the previous igure. In this scenario, we try to reconcile the data in two different
systems, namely, a trading system and clearance system, periodically. These two
systems are web-service-enabled using connector services written using Axis2. In
fact, these services are data services, which is a special type of service handled by the
Axis2 data services deployer.

1. A Synapse message injector task periodically runs and injects a message into
the Synapse main sequence.

2. This sends out a call to a trading Axis2 service, which is a data service, to
obtain the trading data from the trading system.

3. The trading service sends back a response.

4. The trading response from the trading service is received by the Synapse
trading out sequence, and a corresponding message is initiated and fed into
the clearance in sequence.

5. The clearance in sequence sends that message to the clearance service.

6. The clearance service responds and the response is received by the clearance
out sequence.

7. Reconciliation happens in the clearance out sequence and a message is sent
into the trading response sequence.

8. The trading response sequence sends out a message to the trading service,
the trading database is updated, and the two systems are reconciled.

As can be seen in this scenario, a task pushes or initiates the entire low. In response
to this, data gets pulled in from different systems, reconciled, and pushed back to the
relevant systems.

Chapter 13

[239]

Fault tolerant autoscaling with dynamic

load balancing
Fault tolerance, high availability, and scalability are essential prerequisites for
any enterprise application deployment. One of the major concerns of enterprise
application architects is avoiding single points of failure. Autoscaling refers to the
behavior where the system scales up when the load increases and scales down when
the load decreases. Such an approach is essential for cloud deployments such as
Amazon EC2 where the charge is based on the actual computing power consumed.
Ideally, from the clients' point of view, in an autoscaling system, the response
time should be constant and the overall throughput of the system should increase.
Dynamic load balancing refers to a mechanism where the load balancer itself uses
group communication and group membership mechanisms to discover the domains
across which the load is distributed. In a traditional setup, a single load balancer
fronts a group of application nodes. In such a scenario, the load balancer can be a
single point of failure. Traditionally, techniques such as Linux HA have been used to
overcome this. However, such traditional schemes have quite a bit of overhead and
also require the backup system to be in close proximity to the primary system.

As shown in the following igure, the clients directly talk to the primary Synapse
ESB. Synapse can be conigured to run as a load balancer. This load balancer will
route the requests to the Axis2 worker nodes according to a preconigured load
balancing algorithm. The load balancer is itself deployed in its own cluster. The
primary and backup load balancers belong to the same Axis2 clustering domain.
Remember, Synapse is built on Axis2, hence uses Axis2's built in clustering
mechanism. If the primary load balancer fails, the backup load balancer will take
over, and will become the primary load balancer. It will also start another backup
load balancer. On the cloud, well-known address-based membership management
is used, as multicasting is not possible. The primary load balancer will be the well-
known member. Group management has also been enabled in the primary and
backup load balancers, so they can detect membership changes in the Axis2 worker
node cluster.

Enterprise Integration Patterns

[240]

When the load exceeds beyond a certain threshold, the primary load balancer will
start new Axis2 instances on the cloud. Similarly, when the load drops below a
speciied threshold, extra Axis2 nodes will be terminated. Ideally, the number of
running Axis2 instances will be proportional to the load.

References
•	 Apache Synapse, http://synapse.apache.org

•	 WSO2 ESB, http://wso2.com/products/enterprise-service-bus/

•	 OpenESB, http://open-esb.dev.java.net/

Summary
In this chapter, we looked at SOA integration patterns, which can be realized using
Apache Axis2 and Apache Synapse. Apache Synapse is an enterprise service bus
built using Axis2 technology. We looked at six popular integration patterns that
have been tried and tested in real world production deployments. The patterns
we discussed were protocol bridging, external authentication and authorization,
dynamic routing combined with auditing, Event Driven Architecture (EDA) with
Master Data Management (MDM), push and pull, and fault tolerant autoscaling with
dynamic load balancing.

Chapter 13

[241]

In the next chapter, we will be discussing some advanced features of Apache Axis2,
including REST (Representational State Transfer) support in Axis2, MTOM (Message
Transfer Optimization Mechanism), understanding the Axis2 classloader hierarchy,
and deploying Axis2 on various other application servers.

Axis2 Advanced Features

and Usage
In the preceding chapters, we discussed how to install Axis2, write a simple web
service, write a simple module, invoke a web service, and many other things. If you
followed them thoroughly along with the samples, you should now be in a good
position in terms of the Axis2 basics. So, in this chapter, we will be thrown in at the
deep end, so to speak, with more advanced features of Axis2. But there's no need to
panic! You have being using most of the advanced features of Axis2 already without
knowing it in the previous chapters. Now it's time to learn them in a proper manner
and use them in your applications. Axis2 offers a number of interesting features that
you need to know when you want to develop a complex web service application.

In this chapter, we will discuss several advanced features of Axis2, which you will
need when you go beyond the basic web service invocation. Particularly, we will
discuss the following:

•	 Representational State Transfer (REST) and its features

•	 Use of REST in Axis2

•	 Message Transmission Optimization Mechanism (MTOM)

•	 MTOM support on the client side

•	 MTOM support on the server side

•	 AxisConfigurators for creating more customized Axis2

•	 Invoking and processing web services in an asynchronous manner

In this chapter, we will discuss several different features and their usage. However,
it should be noted that each individual section has its own meaning and application.
Moreover, you will need these features when you want to do complex or more
customized works.

Axis2 Advanced Features and Usage

[244]

Representational State Transfer (REST)
We start this chapter by introducing Representational State Transfer (REST) and
its features. REST is a term introduced by Roy Fielding in his Ph.D. dissertation to
describe an architectural style of networked systems. The motivation behind REST
was to capture the characteristics of the Web that made it a success. Subsequently,
these characteristics are being used to guide the evolution of the Web. REST is not a
standard but an architectural style, which accounts for the fact that you cannot ind
any speciication in W3C.

Features of REST
The Web consists of resources. Simply put, a resource is any item which holds some
interest. For example, the Amazon online store may deine a resource for their
new Canon camera (DSLR), and the client may access the resource page using the
following URL: http://www.amazon.com/canon/dslr.

Upon clicking the link, a representation of the resource is returned (for example,
canon_dslr.html). The representation places the client application in a state.
The result of the client traversing a hyperlink in canon_dslr.html is it accesses
another resource. The new representation places the client application in yet another
state. Thus, the client application changes (transfers) state with each resource
representation it accesses, and hence, we have Representational State Transfer!

Here is Roy Fielding's explanation of the meaning of Representational State Transfer:

"Representational State Transfer is intended to evoke an image of how a well-
designed web application behaves: a network of web pages (a virtual state-
machine) where the user progresses through an application by selecting links
(state transitions), resulting in the next page (representing the next state of the
application) being transferred to the user and rendered for their use."

The Web is a REST system! Many of those web services that you have been using
these many years—book-ordering services, search services, online dictionary
services, and so on—are REST-based web services, which goes to show that you
have been using REST and building REST services without even knowing it.

REST services in Axis2
Web Service Description Language (WSDL), especially WSDL 2.0 HTTP Binding
deines a way to support REST APIs in web services. Axis2 implements most of
what is deined in the HTTP binding speciication. The Axis2 REST implementation
assumes the following properties:

Chapter 14

[245]

•	 REST web services are synchronous and request some response in nature.

•	 When REST web services are accessed through GET, the service and the
operations are identiied based on the URL. The parameters are assumed
as parameters of the web service (name values pairs in HTTP GET request
name=Axis2&value=1.5). In this case, the GET-based REST web services
support only simple types as arguments and it should adhere to the IRI style.

•	 POST-based web services do not need a SOAP envelope or a SOAP body. It
only sends the XML payload or URL parameters, as in GET.

In Axis2, by default, any given web service is exposed as both SOAP and REST. The
result is that as a service author, you do not need to do additional work. However,
it should be noted that for some services that are exposed using REST API will not
work. For example, if the application takes a complex object, it is hard to expose
that using REST GET API. Hence, there are situations where the user is required
to change the auto-generated WSDL ile to provide the correct information. Axis2
generates REST binding for both WSDL 1.1 and WSDL 2.0, and more importantly,
with WSDL 2.0, users get more features to customize the REST binding, as WSDL 2.0
is more focused on REST than WSDL 1.1.

REST web service with GET and POST
A service deployed in Axis2 can be accessed through an HTTP POST or a GET
request. However, in the case of a GET, you have to send the request as URL
parameters (remember the IRI style). The IRI style has some limitations when
encoding or serializing complex objects, thus, in reality, you can only invoke only
a set of service using the REST GET method, but you can invoke almost all the
services using the REST POST method. For example, if the web service method
takes a complex type as its method parameter, then you cannot use the HTTP GET
method. Therefore, a service like the following cannot be accessed using HTTP GET:

public class Man {

 String name;

 int age;

 Address address;

}

public String getName(Man man) {

 //processing logic

}

Axis2 Advanced Features and Usage

[246]

As shown in the preceding code segment, the Man object contains two
simple type attributes (name and age) and one complex type attribute
(address). Hence the Man class can be considered as a complex object.

However, a service like the following can be easily accessed using the HTTP
GET method:

public String getName(String id, int age){

}

To invoke a service like this, you can send the request as follows:

http://localhost:8080/axis2/services/ServiceName/getName?id=ID&age=10

With the HTTP POST method, there is no limitation, like in HTTP GET. You can
send the request as an encoded URL or as a request body (in a POX message).
When sending the message as the request body with HTTP POST, you only send
the SOAP body.

You can use any given HTTP client to invoke a web service hosted in Axis2 in REST
manner, using either the GET or the POST method. However, as we discussed
earlier, you will have to make a judgment call, depending on the method signature
of the web service operation, on whether to use GET or POST. You can even use
ServiceClient to invoke a remote service in REST manner (with either GET or
POST). The following code demonstrates invoking a service in REST manner using
POST:

ServiceClient client = new ServiceClient();

Options opts = new Options();

opts.setTo(new EndpointReference("address of the service "));

opts.setAction("soap action ");

opts.setProperty(Constants.Configuration.ENABLE_REST, Boolean.TRUE);

client.setOptions(opts);

OMElement res = client.sendReceive(createPayLoad());

When you invoke this code, if you send the request via a TCP monitor, you will see
that it only sends the request payload (only the SOAP body) and you will get only
the payload for the response as well.

To send the request as a GET request, you need to set the following lag:

opts.setProperty(Constants.Configuration.HTTP_METHOD_GET, Boolean.
TRUE);

This will send the request in a URL-encoded format (if it can be URL encoded).

Chapter 14

[247]

Message Transmission Optimization

Mechanism (MTOM)
Regardless of the lexibility, interoperability, and global acceptance of XML, there
are times when serializing data into XML just does not make sense. Web services
users may want to transmit binary attachments of various sorts such as images,
drawings, XML documents, and so on. together with a SOAP message. Such data
is often originally available in a particular binary format.

There are two traditional approaches to dealing with the sending of binary data
in XML.

By value
Sending binary data by value is achieved by embedding opaque data (after some
form of encoding has taken place of course) as an element or an attribute content
of the XML component of data. The main advantage of this technique is that it
gives applications the ability to process and describe data based only on the XML
component of the data. XML supports opaque data as content through the use of
either base64 or hexadecimal text encoding. Unfortunately, both of these techniques
bloat the size of the data. For underlying text encoding of UTF-8, base64 encoding
increases the size of the binary data by a factor of nearly 1.33 of the original size,
while hexadecimal encoding expands data by a factor of about 2. The above factors
will be doubled if UTF-16 text encoding is used. Also of concern is the overhead
in processing costs (both real and perceived) for these formats, especially when
decoding back into raw binary data.

By reference
Sending binary data by reference is achieved by attaching pure binary data as
external unparsed general entities outside the XML document and then embedding
reference URIs to those entities as elements or attribute values in the XML. This
prevents the unnecessary bloating of data and the waste of processing power. The
primary obstacle for using these unparsed entities is their heavy reliance on DTDs,
which impedes modularity as well as the use of XML namespaces. There were
several speciications introduced in the web services world to deal with this binary
attachment problem using the "by reference" technique; SOAP with Attachments
(SWA) is one such example. Since SOAP prohibits document type declarations (DTD)
in messages, this leads to the problem of not representing the data as part of the
message infoset, thereby creating two data models. This scenario is akin to sending
attachments with an e-mail message. Even though these attachments are related
to the message content, they are not contained inside the message. This causes the

Axis2 Advanced Features and Usage

[248]

technologies that process and describe the data based on the XML component of the
data to malfunction. One such example is WS-Security.

MTOM is another speciication that focuses on solving the 'attachments' problem.
MTOM tries to leverage the advantages of the above two techniques by attempting to
merge them. MTOM is clearly a 'by reference' method. The wire format of an MTOM
optimized message is the same as a SOAP with Attachments message, which makes
it backward compatible with SwA endpoints. The most notable feature of MTOM is
the use of the XOP: Include element, which is deined in the XML Binary Optimized
Packaging (XOP) speciication to refer to the binary attachments (external unparsed
general entities) of the message. With the use of this exclusive element, the attached
binary content logically becomes inline (by value) with the SOAP document, even
though it is actually attached separately. This merges the two realms by making it
possible to work only with one data model. This allows the applications to process
and describe the data by only looking at the XML part, making the reliance on DTDs
obsolete. On another note, MTOM has standardized the referencing mechanism of
SwA.

AXIOM (see Chapter 3, Axis 2 XML Model (AXIOM)), used in Axis2, is an Object
Model that has the ability to hold binary data. It has this ability since OMText can
hold raw binary content in the form of a javax.activation.DataHandler class.
OMText has been chosen for this purpose for two reasons. One is that XOP (MTOM)
is capable of optimizing only base64-encoded Infoset data that is in the canonical
lexical form of XML Schema base64Binary datatype. The other reason is to preserve
the infoset in both the sender and receiver (to store the binary content in the same
kind of object, regardless of whether it is optimized or not). MTOM allows you
to selectively encode portions of the message, which facilitates the sending of
base64encoded data as well as externally attached raw binary data referenced by the
'XOP' element (optimized content) to be sent in a SOAP message. You can specify
whether an OMText node that contains raw binary data or base64encoded binary
data is qualiied to be optimized at the time of construction of that node or later. For
optimum eficiency of MTOM, a user is advised to send smaller binary attachments
using base64encoding (non-optimized) and larger attachments as optimized content.

OMElement imageElement = fac.createOMElement("image", omNs);

// Creating the Data Handler for the file. Any implementation of

// javax.activation.DataSource interface can fit here.

javax.activation.DataHandler dataHandler = new javax.activation.
DataHandler(new FileDataSource("SomeFile"));

//create an OMText node with the above DataHandler and set optimized
to true

OMText textData = fac.createOMText(dataHandler, true);

imageElement.addChild(textData);

Chapter 14

[249]

//User can set optimized to false by using the following

//textData.doOptimize(false);

Also, a user can create an optimizable binary content node using a base64 encoded
string, which contains encoded binary content, given with the MIME type of the
actual binary representation.

String base64String = "some_base64_encoded_string";

OMText binaryNode = fac.createOMText(base64String,"image/jpg",true);

Axis2 uses javax.activation.DataHandler to handle the binary
data. All the optimized binary content nodes will be serialized as Base64
Strings if MTOM is not enabled. You can also create binary content nodes,
which will not be optimized in any case. They will be serialized and sent
as Base64 Strings.

//create an OMText node with the above DataHandler and set "optimized"
to false

//This data will be sent as Base64 encoded strings regardless of
whether MTOM is enabled or not

javax.activation.DataHandler dataHandler = new javax.activation.
DataHandler(new FileDataSource("SomeFile"));

OMText textData = fac.createOMText(dataHandler, false);

image.addChild(textData);

MTOM on the client side
To enable MTOM on the client side, you need to set the enableMTOM property in the
options object to True when sending messages.

ServiceClient serviceClient = new ServiceClient ();

Options options = new Options();

options.setTo(targetEPR);

options.setProperty(Constants.Configuration.ENABLE_MTOM, Boolean.

TRUE);

serviceClient.setOptions(options);

When this property is set to True, any SOAP envelope, regardless of whether it
contains optimizable content or not, will be serialized as an MTOM-optimized
MIME message.

Axis2 serializes all binary content nodes as Base64 encoded strings, regardless of
whether they are qualiied to be optimized or not.

Axis2 Advanced Features and Usage

[250]

The following code demonstrates getting binary data as the web service response:

ServiceClient sender = new ServiceClient();
Options options = new Options();
options.setTo(targetEPR);
// enabling MTOM
options.set(Constants.Configuration.ENABLE_MTOM, Boolean.TRUE);

OMElement result = sender.sendReceive(payload);
OMElement ele = result.getFirstElement();
OMText binaryNode = (OMText) ele.getFirstOMChild();

//Retrieving the DataHandler & then do whatever processing required to
the data
DataHandler actualDH;
actualDH = binaryNode.getDataHandler();

DataHandler is the standard way of accessing and representing binary
data in Java. A user can create a DataHandler by giving a ile location,
and then the API lets us read and write to the speciied ile.

MTOM on the service side
The Axis2 server automatically identiies incoming MTOM optimized messages
based on the content-type and de-serializes them accordingly. The user can enable
MTOM on the server side for outgoing messages.

To enable MTOM globally for all services, users can set the enableMTOM parameter
to True in the axis2.xml. When it is set, all outgoing messages will be serialized and
sent as MTOM optimized MIME messages. If it is not set, all the binary data in the
binary content nodes will be serialized as Base64 encoded strings. This coniguration
can be overridden in services.xml on a per service and per operation basis.

<parameter name="enableMTOM">true</parameter>

Note that you must restart the server after setting this parameter (if you set the
parameter in axis2.xml).

You can write a service, like the one that follows, to perform binary data handling:

public class MTOMService {

 public void uploadFileUsingMTOM(OMElement element) throws Exception
{

 OMText binaryNode = (OMText) (element.getFirstElement()).

getFirstOMChild();

Chapter 14

[251]

 DataHandler actualDH;

 actualDH = (DataHandler) binaryNode.getDataHandler();

 ... Do whatever you need with the DataHandler ...

 }

 public void uploadBinary(DataHandler data) throws Exception {

 // write the code to handle the data handler

 }

 }

As shown, a service author can use either OMElement or DataHandler to expose a
service, which takes binary data as the input parameters (or output parameters).
Once a user has the DataHandler, he can process it and read or write to a speciied
location.

Axis2 conigurator
So far, you have learned how to start Axis2 and work with Axis2 both on the client
side and on the server side. However, we did not discuss how the underlying logic
works. When you start Axis2, it creates an AxisConiguration object from your
local machine, which is considered as the repository. In the case of the Axis2 WAR
distribution, the repository is <TOMCAT_HOME>webapps/axis2/WEB-INF (if you
are using Tomcat), so that when you start Axis2 in an application server, Axis2
automatically picks the WEB-INF directory as the repository. This approach is known
as ile-system-based Axisconigurators, where the Axis2 coniguration is created
using a ilesystem.

In the same way, you can create Axis2 using a remote location as well, or by even
using a database. In the Axis2 distribution, there is inbuilt support for URL-based as
well as ile-based Axis2 coniguration creations. The following code illustrates how
to create an Axis2 system using the ilesystem:

ConfigurationContext configCtx = ConfigurationContextFactory.
createConfigurationContextFromFileSystem(

"E:\\urlrepo","");

 SimpleHTTPServer simpleServer = new SimpleHTTPServer(configCtx,
8070);

simpleServer.start();

The following code demonstrates creating an Axis2 system using a URL repository:

ConfigurationContext configCtx =

 ConfigurationContextFactory.createConfigurationContextFromURIs(null,

 new URL("http://urlrepo/")

);

Axis2 Advanced Features and Usage

[252]

 SimpleHTTPServer simpleServer = new SimpleHTTPServer(configCtx,
8070);

simpleServer.start();

One thing you need to remember when using a URL repository is that the services
directory has to have a ile named services.list, listing all the services archive
iles. For example, if you have services named foo.aar and bar.aar, then the
services.list will look like the following:

foo.aar

bar.aar

In the same way, the modules directory should contain a ile named modules.list
listing all the modules.

Deploying Axis2 in various application

servers
As we discussed in Chapter 1, Apache Web Services and Axis2, Axis2 is available in the
form of several distributions. The application server distribution is one of them. You
can download the Axis2 application server distribution or the WAR distribution
from the Axis2 website or build them from the binary distribution. Once you have
the WAR distribution, deploying it is just a matter of copying the WAR ile into the
webapps directory of the application server. In the case of Apache Tomcat, it is the
webapps folder, whereas in the case of Sun Glassish, it is the autodeploy folder, and
so on. So, depending on the application server, you have to igure out the correct
location to drop the WAR ile.

There are some application servers that will help in unpacking the WAR distribution
to a permanent or temporary location. For example, Apache Tomcat will unpack
the WAR ile to a permanent location. You can make changes there, and when the
application server restarts, all of those changes will be available. However, there are
some application servers that do not do this. Also, there are application servers that
will not unpack the WAR ile. Even in Apache Tomcat, you can conigure whether
you want to unpack or not. Depending upon the application server coniguration, hot
deployment and hot update also vary. For example, if the application server is not
going to unpack the WAR ile, you do not have the hot deployment available at all.

Chapter 14

[253]

Irrespective of the application server, you can get Axis2 to work from a custom
repository by editing the web.xml ile of the Axis2.war distribution. Once this is done,
you do not need to worry about whether the application server will unpack the WAR
or not, and if it is, where it is going to unpack and so on. You can even conigure the
application-server-based Axis2 to start up with a remote repository. First, let's look at
how to conigure Axis2.war to work with a local ilesystem. Here, you need to add the
following init parameters to the servlet section of the web.xml ile:

<servlet>

 <servlet-name>AxisServlet</servlet-name>

 <display-name>Apache-Axis Servlet</display-name>

 <servlet-class>org.apache.axis2.transport.http.AxisServlet</servlet-
 class>

 <init-param>

 <param-name>axis2.xml.path</param-name>

 <param-value>path to custom axis2.xml (you need this only if you
 want to override the default axis2.xml)</param-value>

 <param-name>axis2.repository.path</param-name>

 <param-value>full path the custom repository</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

As mentioned earlier, you can conigure the web.xml ile to start Axis2 from a URL
repository. In this case, you need to add the following two parameters:

<servlet>

 <servlet-name>AxisServlet</servlet-name>

 <display-name>Apache-Axis Servlet</display-name>

 <servlet-class>org.apache.axis2.transport.http.AxisServlet</
servlet-class>

 <init-param>

 <param-name>axis2.xml.url</param-name>

 <param-value>http://localhot/myrepo/axis2.xml</param-value>

 <param-name>axis2.repository.url</param-name>

 <param-value>http://localhot/myrepo</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

As shown here, we have added two parameters called axis2.xml.url and axis2.
repository.url. You can modify the values to suit your environment settings.

Axis2 Advanced Features and Usage

[254]

Asynchronous web services with Axis2
The concept of an asynchronous web service is a very important feature, where a
user can invoke one web service and continue his/her work until he/she gets the
reply. In a traditional synchronous model, a client has to wait (or block) until he
gets the response. More importantly, in Axis2, you get asynchronous support both
on the client side and the server side. In the client side, we can invoke the service
in a blocking or non-blocking manner. Selecting which way to invoke is very
straightforward. In the server side, we can have services that take a long time to
process. In such a situation, a service can be processed in a non-blocking manner,
where once the message is received, it will send the acknowledgment, and at a later
time, send the response. Axis2 supports asynchronous web service invocations on
the client side in two different ways; one of them needs WS addressing support and
the other does not. We will discuss each of them separately with code sample.

What is a synchronous web service?
As we discussed earlier, a synchronous web service is a blocking service
invocation, where the application gets blocked until it receives the
response. With this type of invocation, the user will have to wait until he/
she gets the response he/she wants. If this is a GUI application, then the
application becomes non-responsive until it receives the reply.

What is an asynchronous web service?
In the previous section, we discussed about synchronous web services.
An asynchronous web service is the opposite of that. An asynchronous
web service is a non-blocking invocation, where the user can invoke the
service without blocking the user application.

Client side asynchronous
One of the main design goals of Axis2 is to have very good support for asynchronous
web service support, and asynchronous support is much more useful for the client
side. Thus, Axis2 has very good support for asynchronous service invocation on the
client side. Axis2 supports two types of asynchronous invocation on the server side:

•	 Application level asynchronous support: In this case, we only have application
level asynchronous support. However, at the transport (transport sender),
we have blocking behavior. In other words, when we invoke the service, we
provide a callback object and then Axis2 registers that with transport. Once
the transport gets the response, it invokes the callback. To have this type of
asynchronous support, it does not need to have WS-Addressing support,
because we do not have any asynchronous behavior at the transport level.

Chapter 14

[255]

•	 Transport level asynchronous support: With this type of asynchronous
support, we have non-blocking behavior both at the application level and
the transport level. One of the big advantages with this type of invocation is
that we can invoke the service using HTTP and ask it to send the response on
SMTP. With this type of invocation, we have the callback, we register that with
Axis2, and we specify the types of transport we want (sending and receiving).
Then Axis2 sends the request with the wsa:replyTo address. The server
then immediately sends the acknowledgment and sends the reply using the
replyTo address. The following igure represents this type of invocation:

We have discussed the different types of asynchronous support in Axis2. Now it's
time to actually use them. So irst, let's write a service and deploy it in Axis2. You can
use any of the deployment mechanisms you want.

Sample service:

 public class EchoService {
 public String echo(String value){
 return value;
 }
 }

Deploy service (here we deploy the service programmatically):

public class EchoServer {
 public static void main(String[] args) {
 new AxisServer().deployService(EchoService.class.getName());
 }
 }

Now our service runs on the following address: http://localhost:6060/.

If it lists your service, then our service is up and running. The irst step to
implementing an asynchronous client is to implement a callback interface. A callback
interface consists of four methods, and two of them are very important. The irst
one is what to do when the response is ready and the second one is what happens if
something goes wrong.

Axis2 Advanced Features and Usage

[256]

public class MyCallBack implements AxisCallback {

 public void onMessage(MessageContext messageContext) {

 SOAPBody msg = messageContext.getEnvelope().getBody();

 System.out.println(msg);

 }

 public void onFault(MessageContext messageContext) {

 messageContext.getFailureReason().printStackTrace();

 }

 public void onError(Exception e) {

 System.err.println(e.getMessage());

 }

 public void onComplete() {

 System.out.println("Invocation is complete");

 //In real application you do not need to terminate the program

 System.exit(0);

 }

}

As we can see here, there are four methods in the interface. Now let's look at each
one-by-one:

•	 onMessage: As we discussed previously, WSDL 2.0 deined MEP or message
exchange patterns. The idea behind it is that of the message invocation
patterns between the client and the server. The client can send two messages
and get one response (in-in-out), or the client sends the request and gets the
response (in-out), and so on. The idea behind onMessage is to invoke user
action when a message is received. In our implementation, we have to print
the message, but depending on the requirements, we can implement our
code inside the method.

•	 onFault: Sometimes we may receive a fault as part of the service invocation,
and a user might be interested in that. So this method helps to achieve it.

•	 onError: While invoking the service, if something went wrong at the client
side, it will use this method to let the user know about it.

•	 onComplete: When the MEP is complete, the user will be notiied using this
method. In this example, we terminate the application when Axis2 calls the
onComplete method. However, in a real application, we can implement our
user action there.

Chapter 14

[257]

Application-level asynchronous support
Now, we have the service up and running as well as an implementation of the
callback class. Next, we can use our callback class and invoke the service in an
asynchronous manner. In the irst example, we are going to invoke the service using
application-level asynchronous support. In our example, we use the ServiceClient
and the following is our client code to invoke the service:

public class EchoClient {
 public static void main(String[] args) throws Exception {
 ServiceClient client = new ServiceClient();
 Options opts = new Options();
 opts.setTo(new EndpointReference
 ("http://localhost:6060/axis2/services/EchoService"));
 opts.setAction("urn:echo");
 client.setOptions(opts);
 client.sendReceiveNonBlocking(createPayLoad(), new MyCallBack());
 System.out.println("send the message");
 while (true) {
 Thread.sleep(100);
 }
 }

 public static OMElement createPayLoad() {
 OMFactory fac = OMAbstractFactory.getOMFactory();
 OMNamespace omNs = fac.createOMNamespace(
 "http://sample.org", "ns");
 OMElement method = fac.createOMElement("echo", omNs);
 OMElement value = fac.createOMElement("value", omNs);
 method.addChild(value);
 value.setText("Axis2");
 return method;

 }
 }

Note that in the preceding code segment, we have a while [CIT] loop with Thread.
sleep(100). The main idea behind that is to prevent the main thread termination.

We irst create an instance of ServiceClient and then we create an Option object.
To conigure Axis2 in the client side, we need to have an Option object. For more
information about using ServiceClient and Option object, please refer to the
resources section. Next, we set the end point reference of the service or the service URL
and then we set the SOAPAction. Next, we invoke the service using an asynchronous
manner. As you can see there, we pass two parameters, an object created from the
createPayLoad method and an instance of the MyCallBack class. To invoke a service in
an asynchronous manner, we need to use sendReceiveNonBlocking in the client API.

Axis2 Advanced Features and Usage

[258]

When we run the previous code, we will get following output:

send the message

<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/"><ns:echoResponse xmlns:ns="http://sample.
org"><return>Axis2</return></ns:echoResponse></soapenv:Body>

Invocation is complete

Transports-level asynchronous support
Now let's use full asynchronous support in Axis2. For that, we need to have
addressing support for both the client and the server side. We can engage the
addressing module at the server side using any of the available ways of engaging
a module. However, in this example, we will use the following source code to start
Axis2 and engage in addressing. The source code for starting and engaging the
addressing module is as follows. We do not need to worry about the source code,
because in real life, we are not going to use the following code to start Axis2:

public class AddressingEnableServer {

 public static void main(String[] args) throws Exception{

 ConfigurationContext configurationContext =
ConfigurationContextFactory.createConfigurationContextFromFileSystem(
null, null);

 SimpleHTTPServer smt = new SimpleHTTPServer(configurationContext,
 8080);

 AxisService service1 =
 AxisService.createService(EchoService.class.getName(),
 configurationContext.getAxisConfiguration());

 configurationContext.getAxisConfiguration().
engageModule("addressing");

 configurationContext.getAxisConfiguration().
addService(service1);

 smt.start();

 }

}

http://localhost:8080/axis2/services/EchoService

As we mentioned before, we also need to engage in addressing at the client side. We
can do that as follows:

public class EchoClient {

 public static void main(String[] args) throws Exception {

 ServiceClient client = new ServiceClient();

 Options opts = new Options();

 opts.setTo(new EndpointReference

Chapter 14

[259]

 ("http://localhost:8080/axis2/services/EchoService"));

 opts.setAction("urn:echo");

 client.engageModule("addressing");

 opts.setUseSeparateListener(true);

 client.setOptions(opts);

 client.sendReceiveNonBlocking(createPayLoad(), new MyCallBack());

 System.out.println("send the message");

 while (true) {

 Thread.sleep(100);

 }

 }

}

The irst highlighted line shows how we have engaged the addressing module, and
the second highlighted line shows how to enable a separate listener in the client side
by setting the Option value in the Option object.

Summary
In this chapter, we have discussed a number of the advanced features of Axis2,
with examples. In particular, REST and MTOM are very useful in the context of
web services. You can use REST as a way of optimizing the wire format of the
message and you can use MTOM to send binary data in an eficient manner. Then
we discussed creating Axis2 using a custom repository, which may be located locally
or remotely. Next, we looked into deploying Axis2 in various application servers.
Finally, we discussed how to use Axis2 to invoke services in an asynchronous
manner.

Now we have covered most of the necessary concepts and features of Axis2.
We have discussed how to use Axis2, both as a server and a client.

In the next chapter (the last chapter of the book), we will discuss how to add quality
of services to your web service. Particularly, we will discuss security and reliability
and how to use them with code examples.

Building a Secure Reliable

Web Service
As we discussed in Chapter1, Apache Web Services and Axis2, when Apache introduced
its irst web service framework—known as Apache SOAP—one of the main ideas
was to show the usefulness of the technology. When people started to use it, they
wanted to have several new features in it. As a result, Apache introduced Apache
Axis1 and inally, Apache Axis2. In the meantime, there were a number of changes
in the web service landscape; people demanded better quality of service support,
including security and reliability. As a result, standard bodies around web services
(for example, W3C and OASIS) introduced a set of web services standards. Most of
the existing web services frameworks support three main QoS standards, namely,
security, reliability, and addressing. Interestingly, different frameworks have to be
implemented in different manner. In Apache Axis2, due to its lexibility, adding
a new quality of service support is as simple as adding a module. In contrast, in
Apache Axis, the process is to write one or more handlers and specify them in the
global coniguration ile.

In this chapter, we will introduce both security and reliability and discuss how
to use them in Axis2. Particularly, we will discuss the following topics:

•	 Reliable web services and concepts

	° One way invocation

	° Request response invocation

	° Managing sequences

•	 Secure web services

Building a Secure Reliable Web Service

[262]

Reliable web services
Reliability of a web service is a major concern in most enterprise applications. It is
widely believed that adding reliability has an impact on the performance. However,
some services become useless if they don't have proper support for reliability. As you
know, UDP and TCP are two good protocols to understand the importance of the
reliable delivery and performance characteristics. UDP is not a realizable protocol;
meaning once you send a message using UDP, it is not guaranteed that the recipient
is going to receive it (the recipient may not acknowledge it or the UDP message
may get lost). In contrast, once you use TCP, the protocol guarantees the message
delivery. Providing the reliability for the guarantee of the delivery of message does
not come for free. It needs to transmit a number of headers and acknowledgments,
which adds additional communication cost.

TCP and UDP are very low level message transmission protocols. However, when
it comes to web services, sending SOAP message involves sending more than one
TCP packet and more than one SOAP message. Thus, it is required to make sure
that the receiver receives all the messages and in the right order. Reliable messaging
provides those requirements. In Axis2, Apache Sandesha2 provides reliability by
implementing WS-ReliableMessaging speciications.

Apache Sandesha2 is a separate project in Apache and it has its one release cycle.
However, it always tries to follow the same release cycle as Axis2 to release the
compatible version with the Axis2 release. In this section, we will discuss how to
install and use Apache Sandesha2 and build reliable web services.

You can download the latest version of Apache Sandesha2 from the following link:

http://ws.apache.org/sandesha/sandesha2/download.cgi

Once you inish downloading, extract it and ind sandesha-version.mar. Deploy
that in to your AXIS2-HOME/modules directory (here Axis2 home is the location
where you have extracted Axis2 binaries). If you have deployed Axis2 into Apache
Tomcat or any other application server, then deploy it to the right location (we
discussed more about module deployment in Chapter 8, Writing an Axis2 Module).

Even though Sandesha2 is a self-contained package, it needs a small modiication in
the Axis2 global coniguration ile (axis2.xml). Notably, the later version of Axis2
does not require this modiication because it provides the required feature on the
ly. To provide full functionality of Sandesha2, it needs to add a new phase called
RMPhase. You can make the changes by editing your axis2.xml as follows:

<axisconfig name="AxisJava2.0">

<!-- REST OF THE CONFIGURATION-->

 <phaseOrder type="InFlow">

Chapter 15

[263]

 <!-- REST OF THE PHASE ORDER-->

 <phase name="RMPhase"/>

 </phaseOrder>

 <phaseOrder type="OutFlow">

 <phase name="RMPhase"/>

 <!-- REST OF THE PHASE ORDER-->

 </phaseOrder>

 <phaseOrder type="InFaultFlow">

 <phase name="PreDispatch"/>

 <!-- REST OF THE PHASE ORDER-->

 <phase name="RMPhase"/>

 </phaseOrder>

 <phaseOrder type="OutFaultFlow">

 <phase name="RMPhase"/>

 <!-- REST OF THE PHASE ORDER-->

 </phaseOrder>

<!-- REST OF THE CONFIGURATION-->

</axisconfig>

Once you extract Sandesha2 binary distribution, you can ind Sandesha2-policy-
<VERSION>.jar. Copy that in the AXIS2_HOME/lib directory. Reliability is a key
quality of service and some of its functionality should relect in the generated WSDL
ile. Hence, it needs to provide the necessary resources to generate the WSDL and
WS-policy. Once you copy the mentioned JAR ile, it will provide the necessary
requirements.

Now, you have created everything you need to have reliability support to your
web services. The last step remaining now is to engage the module globally or
to a particular service.

WS-Reliable messaging needs to have support of WS-addressing. Thus,
before using Sandesha2, you need to have addressing module in your
AXIS2_HOME/modules.

Sample service
The irst step of our sample is to create a simple service with two methods and
deploy the service in Axis2. Our simple service looks like the following snippet
of code, which has an echo method and a ping method:

public class RMSampleService {

 public OMElement echoString(String in) {

 System.out.println("Received text:" + in);

 return in;

Building a Secure Reliable Web Service

[264]

 }

 public void ping{String in}{

 System.out.println("Received text:" + in);

 }

}

Next, create a services.xml ile, using the RPC message receiver, as shown in the
following code snippet:

<service name="RMSampleService">

 <parameter name="ServiceClass">RMSampleService</parameter>

 <description>

 My Sample service for RM.

 </description>

 <module ref="sandesha2" />

 <module ref="addressing" />

 <messageReceivers>

 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
class="org.apache.axis2.rpc.receivers.RPCInOlnyMessageReceiver"/>

 </messageReceivers>

</service>

Now, create a service archive ile and deploy the service. As you can see in the
services.xml ile, we have engaged the Sandesha2 module to this service. Go to
the web console and try to access the service WSDL. If you can access it, you have
successfully deployed your service and the Sandesha2 module.

You also need to deploy Sandesha2 and the addressing module into
your client classpath before we go to the next step. If you have an Axis2
repository for the client, copy the downloaded Sandesha2 module into the
modules directory. Remember to add the RM phases into the client-side
axis2.xml as well. In addition, copy the JAR ile of Sandesha2 into the
client classpath.

One way invocation
The idea behind one way invocation is to send messages reliability to the receiver
and the sender does not need an application reply, but needs a reliable delivery of
the messages. Here we use the following client to send three messages.

Chapter 15

[265]

Global coniguration:

public class PingClient {

 private static final String tns = "http://ws.axis2.apache.org";

 private static String toEPR =
 "http://127.0.0.1:8070/axis2/services/RMSampleService";

 private static String CLIENT_REPO = "location to client repository";

 public static void main(String[] args) throws AxisFault {

 String axis2_xml = CLIENT_REPO + File.separator + "client_axis2.xml";

 ConfigurationContext configContext = ConfigurationContextFactory.crea
teConfigurationContextFromFileSystem(CLIENT_REPO,axis2_xml);

Creating and coniguring the client:

Options clientOptions = new Options ();
clientOptions.setTo(new EndpointReference (toEPR));

ServiceClient serviceClient = new ServiceClient (configContext,null);
clientOptions.setAction("urn:wsrm:Ping");
serviceClient.setOptions(clientOptions);

serviceClient.engageModule(new QName ("sandesha2"));
serviceClient.engageModule(new QName ("addressing"));

serviceClient.fireAndForget(createElement("ping1"));
serviceClient.fireAndForget(createElement("ping2"));

clientOptions.setProperty(SandeshaClientConstants.LAST_MESSAGE,
 "true");
serviceClient.fireAndForget(createElement("ping3"));
serviceClient.cleanup();

}

Creating the payload:

 private static OMElement createElement(String text) {

 OMFactory fac = OMAbstractFactory.getOMFactory();

 OMNamespace namespace = fac.
createOMNamespace(tns,"ns1");

 OMElement pingElem = fac.createOMElement("ping",
namespace);

 OMElement textElem = fac.createOMElement("in",
namespace);

 textElem.setText(text);

 pingElem.addChild(textElem);

 return pingElem;

 }

}

Building a Secure Reliable Web Service

[266]

When you use Sandesha2, it irst creates a sequence (reliable messaging-speciic
session) and sends the messages, and when the client marks the last message,
it terminates the sequence. In the preceding code sample, the ping1 and ping2
messages are in the Sandesha2 session, while ping3 is not in the session. Sandesha2
provides the reliable delivery to ping1 and ping2, but not to ping3.

Request-reply invocation
Here, we provide how to use request-reply message invocation with Sandesha2. Just
like the preceding example, echo1 and echo2 are in the Sandesha2 session and they
get the reliable support. echo3 does not get the reliable support because prior to
sending echo3, it sends the last message.

public class EchoClient {

 private static final String tns = "http://ws.axis2.apache.org";

 private final static String echoString = "echoString";

 private static String toEPR =
 "http://127.0.0.1:8070/axis2/services/RMSampleService";

 private static String CLIENT_REPO = "Location of Client repository";

 public static void main(String[] args) throws Exception {

 String axis2_xml = CLIENT_REPO + File.separator
 +"client_axis2.xml";

 ConfigurationContext configContext =
 ConfigurationContextFactory.createConfigurationContextFromFileSystem
 (CLIENT_REPO,axis2_xml);

Creating the client:

ServiceClient serviceClient = new ServiceClient (configContext,null);

Options clientOptions = new Options ();

clientOptions.setTo(new EndpointReference (toEPR));

clientOptions.setUseSeparateListener(true);

serviceClient.setOptions(clientOptions);

serviceClient.engageModule(new QName ("sandesha2"));

serviceClient.engageModule(new QName ("addressing"));

Callback callback1 = new TestCallback ("Callback1");

Invoking the service (irst time):

serviceClient.sendReceiveNonBlocking (createElement("echo1"),callba
ck1);

Callback callback2 = new TestCallback ("Callback2");

Chapter 15

[267]

Invoking the service (second time):

 serviceClient.sendReceiveNonBlocking(createElement("ec
ho2"),callback2);

Sending the last message:

clientOptions.setProperty(SandeshaClientConstants.LAST_MESSAGE,
"true");

Callback callback3 = new TestCallback ("Callback3");

Invoking the service (third time):

serviceClient.sendReceiveNonBlocking(createElement("echo3"),callba
ck3);

while (!callback3.isComplete()) {

 Thread.sleep(1000);

}

Thread.sleep(2000);

}

Creating the payload :

private static OMElement createElement(String text) {

OMFactory fac = OMAbstractFactory.getOMFactory();

OMNamespace applicationNamespace = fac.createOMNamespace(tns,"ns1");

OMElement echoStringElement = fac.createOMElement(echoString,
applicationNamespace);

OMElement textElem = fac.createOMElement("in",applicationNamespace);

textElem.setText(text);

echoStringElement.addChild(textElem);

return echoStringElement;

}

Implementing the Callback class:

static class TestCallback extends Callback {

String name = null;

public TestCallback (String name) {

this.name = name;

}

public void onComplete(AsyncResult result) {

SOAPBody body = result.getResponseEnvelope().getBody();

Building a Secure Reliable Web Service

[268]

 System.out.println("Callback '" + name + "'
got result:" + body);

}

public void onError (Exception e) {

System.out.println("Error reported for test call back");

 e.printStackTrace();

}

 }

}

If you run the given code and observe it through The TCP monitor, you will see that
only the irst two messages are in the RM session and the last one is not invoked
inside the RM session.

Managing sequences
In the previous section, we discussed Sandesha2 sequences, and we mentioned
that it internally creates a sequence and sends the messages until the user speciies
the last message. Here, we will discuss how to manage sequences using Sandesha2
API. Sandesha2 provides a utility class called SandeshaClient that internally
uses instances of ServiceClient. Hence, creating an instance of SandeshaClient
requires an instance of ServiceClient.

By default, Sandesha2 assumes that messages going to the same endpoint
should go in the same RM sequence. Messages will be sent in different
RM sequences only if their WS-Addressing To address is different.
However, if required, you can instruct Sandesha2 to send messages that
have the same WS-Addressing To address in two or more sequences. To
do this, you will have to set a property called Sequence Key.

The following line represents how to use the sequence ID to differentiate
between sequences:

clientOptions.setProperty(SandeshaClientConstants.SEQUENCE_
KEY,<sequnce id>);

Chapter 15

[269]

Creating a sequence without sending a message
In some of the applications, you need to start a sequence without sending any
application messages to the server. In that case, you can use the following API. When
you ask for this, Sandesha2 will do a Create Sequence message exchange and obtain
a new sequence ID from the server. The sequenceKey value of the newly created
sequence will be returned from this method, which could be used do message
invocations with it. This method also has a boolean parameter, which tells whether
to offer a sequence for the response side.

String sequenceKey = SandeshaClient.createSequence (serviceClient,

booleanoffer);

Terminate a sequence
You can terminate the sequence by using the following code; there Sandesha2 will
send the required control messages and remove the sessions from both the client and
the server:

SandeshaClient.terminateSequence (serviceClient);

Sandesha2 provides many other features that you can use to conigure
and achieve better customization; however, we are not going to
discuss them here. I encourage you to refer to online documentation to
understand them better.

Secure web services
In the previous section, we discussed how to add the reliability to your service. In
this section, we will discuss how to provide the security to your service. In Axis2, we
use Apache Rampart to provide the security support.

Download the latest version of Apache Rampart and extract it. Copy the rampart-
version.mar ile into the module directory of your AXIS2_HOME directory. Next,
copy the other's JAR iles from the extracted location to the lib directory (for
example, TOMCAT_HOME/axis2/WEB-INF/lib). Now, restart Axis2 and log in to the
administrative console and engage the Rampart module. After a few seconds, if you
see the Rampart module under the engaged module, then you have successfully
added the security support to your web service framework.

Building a Secure Reliable Web Service

[270]

Sample service
First, create the service class that we are going to use for our security sample. Here,
we are going to use a similar service as in the reliable messaging case:

public class SecureService {

 public String echo(String in) {

 return in;

 }

}

Writing the password callback
We need to have a password callback object to authenticate the user. We can
store the information about username and password in any location we want (for
example, database, LDAP, and so on). At runtime, use the password callback class
to authenticate the user, as shown:

import org.apache.ws.security.WSPasswordCallback;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;

import java.io.IOException;

public class PWCBHandler implements CallbackHandler {

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException {

 for (int i = 0; i < callbacks.length; i++) {

 WSPasswordCallback pwcb = (WSPasswordCallback)callbacks[i];

 if(pwcb.getIdentifer().equals("axis2uers") &&
 pwcb.getPassword().equals("password")) {

 //If authentication successful, simply return

 return;

 } else {

 throw new UnsupportedCallbackException(callbacks[i],
 "check failed");

 }

 }

 }

}

Chapter 15

[271]

The preceding code snippet has the password callback class we will be using for
this sample. As you can see, we have hardcoded the password; but when you write
complex callback classes, you can retrieve the logic and set the correct password.

Creating the policy element
Rampart uses policy-based coniguration for its server and client side. So to
conigure the service, we need to provide the required WS-policy coniguration. Here
we are not going to discuss the WS-policy in detail. We simply provide the required
policy coniguration for the service, as shown in the following code snippet:

<wsp:Policy wsu:Id="UsernameTokenOverHTTPS"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
 wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

 <wsp:ExactlyOne>

 <wsp:All>

 <sp:TransportBinding
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:TransportToken>

 <wsp:Policy>

 <sp:HttpsToken

 </wsp:Policy>

 </sp:TransportToken>

 <sp:AlgorithmSuite>

 <wsp:Policy>

 <sp:Basic256/>

 </wsp:Policy>

 </sp:AlgorithmSuite>

 <sp:Layout>

 <wsp:Policy>

 <sp:Lax/>

 </wsp:Policy>

 </sp:Layout>

 <sp:IncludeTimestamp/>

 </wsp:Policy>

 </sp:TransportBinding>

 <sp:SignedSupportingTokens xmlns:sp="http://schemas.xmlsoap.org/
ws/2005/07/securitypolicy">

 <wsp:Policy>

 <sp:UsernameToken sp:IncludeToken="http://schemas.xmlsoap.
org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient" />

 </wsp:Policy>

 </sp:SignedSupportingTokens>

Building a Secure Reliable Web Service

[272]

 <ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/
policy">

 <ramp:passwordCallbackClass>PWCBHandler</
ramp:passwordCallbackClass>

 </ramp:RampartConfig>

 </wsp:All>

 </wsp:ExactlyOne>

 </wsp:Policy>

If you are familiar with WS-security and WS-policy, you can see that it contains
two main security assertions—transport binding assertion and signed supporting
token assertion. Transport binding assertion deines the requirement of using an
SSL transport using the HTTPS transport token assertion. Signed supporting token
deines the requirement of a username token that should be integrity-protected at the
transport level.

Now we have everything. Next, we need to create the services.xml ile for our
sample service with the following code:

<service>

 <module ref="rampart"/>

 <parameter name="ServiceClass"> SecureService</parameter>

 <messageReceivers>

 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

 <messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
 class="org.apache.axis2.rpc.receivers.RPCInOlnyMessageReceiver"/>

 </messageReceivers>

 <wsp:Policy wsu:Id="UsernameTokenOverHTTPS"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-wssecurity-utility-1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

 </wsp:Policy>

</service>

Now compile the service class and the callback object and create the service
archive ile by using the services.xml ile mentioned. You can validate the
service deployment by logging in to the web administrative console. If you
follow the preceding procedure correctly, you should be in good shape.

Chapter 15

[273]

Generating client stubs
In this case, we are going to use our WSDL2Java code generator and generate client
stubs to invoke the service. As our service has WS-Security, writing a service using
ServiceClient is not a trivial task; WSDL2Code tool has better support for WS-Policy
and generates the right stub to invoke the service. We use the following command to
generate a client stub (make sure the service is up and running):

[Linux]

$ sh WSDL2Java.sh -uri http://localhost:8080/axis2/services/
SecureService?wsdl -p client -uw -o /out-path/

[Windows]

WSDL2Java.bat -uri http://localhost:8080/axis2/services/
SecureService?wsdl -p client -uw -o /out-path/

Invoking the service without security
First, you need to copy the generated source code into your project (if you have not
done so already). Next, use the following code to invoke the service:

public class SecureServiceCGClient {

 public static void main(String[] args) throws Exception {

 SecureServiceStub stub = new SecureServiceStub(null,"https://
localhost:8443/axis2/services/SecureService");
 String result = stub.echo("MyMesage");

 System.out.println(result);
 }

}

Here we invoked the service without sending any security information. You can
understand it by sending the message through the TCP monitor.

Next, we are going to invoke the service with security support. Here you need
to make sure that you have deployed and engaged the Rampart modules into
the client repository as well (need to put into the repository).

Invoking the service with security
We can use the following code to invoke the service with security support. We
provide the username and password.

ConfigurationContext ctx = ConfigurationContextFactory.createConfigura
tionContextFromFileSystem("path/to/client/repo", null);

 SecureServiceStub stub = new SecureServiceStub(ctx,"https://
localhost:8443/axis2/services/SecureService");

Building a Secure Reliable Web Service

[274]

 ServiceClient sc = stub._getServiceClient();

 sc.engageModule("rampart");

 Options options = sc.getOptions();

 options.setUserName("axis2user");

 options.setPassword("password");

 String result = stub.echo("MyMesage")

 System.out.println(result);

As we are going to use Rampart, we need to create the service client with the
repository which contains the Rampart module; we provide the username and
password and invoke the service. You can see the difference in the messages by
sending them through the TCP monitor. In addition, as an exercise, send the
message with a wrong username or password and observe the difference.

WS-security, in particular, Apache Rampart, provides a number of features and we
cannot discuss everything here. We will just provide a simple introduction to Apache
Rampart. If you need to learn more, go to the oficial website (http://axis.apache.
org/axis2/java/rampart/) and search for online articles and tutorials (http://
axis.apache.org/axis2/java/rampart/articles.html).

Summary
In this chapter, we discussed the two most important and useful 'quality of services'
for a web service, namely, reliable messaging and security. We introduced the two
speciications briely and then provided a complete sample as to how to use them on
the server side and in the client side. We did not go into more detail, as it is out of the
scope of this chapter. If you want to learn more about them, you can go to the oficial
websites and search for online articles and tutorials.

In this book, we have tried to get a basic understanding of the Axis2 web service
framework. There we used sample code to explain the concept well. We discussed a
number of new features of Axis2 and how to use them. Additionally, we discussed
various advanced features of Axis2, and inally, two important QoS speciications for
web services.

We hope you enjoyed the book.

Good Luck.

Index

Symbols

.jar iles 28
 javax.xml.bind.annotation.XmlRoot

Element annotation, properties
name 181
namespace 181

.mar extension 38
@WebService annotation 166

A

adaptor layer, EDA with MDM 236
ADB 37
addChild method 47
AddressingBasedDispatcher 68
Advanced Message Queuing Protocol

(AMQP) 227
advanced operations, AXIOM

pull parser, accessing 52
Xpath navigation 51

annotations
about 166
types 166

annotations, JAX-WS 166
annotations, JAX-WS speciications

JSR 181 (Web Service Metadata) 166
JSR 222 (JAXB) 166
JSR 224 (JAX-WS) 166
JSR 250 (Common Annotations) 166

annotations, JSR 181 (Web Service
Metadata)

about 167
javax.jws.OneWay 170, 171
javax.jws.soap.SOAPBinding 174
javax.jws.WebMethod 169

javax.jws.WebParam 171
javax.jws.WebResult 172
javax.jws.WebService 167

annotations, JSR 222 (JAXB)
about 180
javax.xml.bind.annotation.Xml

AccessorType 182
javax.xml.bind.annotation.XmlElement 182
javax.xml.bind.annotation.XmlRootElement

181
annotations, JSR 224 (JAX-WS)

about 175
javax.xml.ws.BindingType 175, 176
javax.xml.ws.RequestWrapper 176
javax.xml.ws.ResponseWrapper 176
javax.xml.ws.ServiceMode 177
javax.xml.ws.WebEndpoint 177
javax.xml.ws.WebFault 178
javax.xml.ws.WebServiceClient 178
javax.xml.ws.WebServiceProvider 179
javax.xml.ws.WebServiceRef 180

annotations, JSR 250 (Common
Annotations)

about 183
javax.annotation.PostConstruct 184
javax.annotation.PreDestroy 184
javax.annotation.Resource 183

ant build ile
running 117

Apache Axis2. See Axis2 202
Apache Rampart 120
Apache Sandesha 120
Apache SOAP 7
Apache Synapse

about 223, 226
features 226

[276]

application scope 163
Application Speciic Business Objects

(ASBO) 236
applyPolicy method 128
archive-based deployment 80, 108
asynchronous invocation 137
asynchronous invocation, JAX-WS services

about 198
callback model 198-200
polling model 198

asynchronous service invocation, on client
side

about 254
application level asynchronous support

254, 257
transport level asynchronous support

 255, 258
asynchronous web services

about 254
client side asynchronous 254, 255
onComplete method 256
onError method 256
onFault method 256
onMessage method 256

atmostOnceMessageSemantics parameter
209

attributes
adding, to AXIOM 47, 48

authentication and authorization 231-233
autoscaling 239
AvoidInitiation parameter 207
AXIOM

about 29, 30, 41, 141, 248, 249
advantage 30
architecture 43
attributes, adding 47, 48
Axiom tree, traversing 48, 49
child nodes, adding 47
creating 44
features 41-43
need for 41
OM namespaces 48
serialization 49, 50
working with 43

AXIOM architecture 43
AXIOM, creating

about 44

input stream, used 44
programmatically 46
string, used 45

AXIOM, features
caching 43
deferred building 42
lightweight 42
pull-based manipulation 42

Axiom tree
traversing 48, 49

Axis1 18
Axis2

about 7, 21
advanced features 243
architecture 27
asynchronous web services 254
cluster management 218
coniguration iles 87
contexts 96-99
custom deployers 39
deploying, in various application servers

252, 253
deployment descriptors 77, 78
deployment model 72
deployment options 79
downloading 22
dynamic data 86
endpoints 133
enhancements 20, 21
features 20, 21
history 120
industry speciications 20, 21
MessageContext (MC), accessing 156
message receivers 39
module 38, 120
module structure 121, 122
need for 19
new web service, adding 24
org.apache.axis2.service.Lifecycle interface

156
plugin modules 20
repository 75
REST services 244, 245
service description hierarchy 94, 96
service extension 38
session scopes 153, 154
stateless nature 152, 153

[277]

static data 86
Axis2 architecture

about 27
core modules 28-34
working 27, 28

Axis2 client API
about 137
OperationClient 137, 147
ServiceClient 137

Axis2 clustering
enabling 202

Axis2 clustering capabilities 202
Axis2 clustering implementation

interfaces 221
Axis2 clustering management API

about 220
management 221
state replication 221

Axis2 clusters, in production systems
coniguring 206
setting up 206

Axis2 conigurator 251, 252
Axis2 Data Binding. See ADB
Axis2, features

add-ons 21
asynchronous web services 20
AXIOM 20
component-oriented deployment 20
composition 21
extensibility 21
lexibility 20
hot deployment 20
MEP support 20
speed 20
stability 20
transport framework 21
WSDL support 21

Axis2, installing
binary distribution 22
document distribution 25
JAR distribution 25
source distribution 25
WAR distribution 23, 24

AXis2 Object Model. See AXIOM
Axis2 Savan module-based WS-Eventing

about 236
Axis2 worker node cluster 239

axis2.xml 60, 65, 67, 78
axis2.xml ile 87
Axis cluster coniguration

about 212, 214
clustering agent 206
clustering agent parameters 206
group management 211
state management 210, 211
static members 212

AxisConiguration
about 88
creating, ways 88

AxisEngine
about 30, 39, 152
methods 30

AxisEngine, methods
receive 30
send 30

AxisMessage 96
AxisModule 93

AXIs Object Model. See AXIOM
AxisOperation 95
AxisService 95
AxisServiceGroup 94

B
binary distribution, Axis2 22
binding deinition

for WSDL 191

blocking invocation. See synchronous
invocation

C

Callback class
implementing 267

callback mechanism 143
callback model 198-200
child nodes

adding, to AXIOM 47
Client API 29, 34, 35
client-side JAX-WS

about 193
dispatch client 194, 195
dynamic proxy client 196

client stubs
generating 273

[278]

cloud computing 19
ClusteringAgent 221
clustering agent parameters

about 206
atmostOnceMessageSemantics 209
AvoidInitiation 207
domain 207
localMemberHost 209
localMemberPort 209
maxRetries 208
mcastAddress 208
mcastBindAddress 209
mcastFrequency 208
mcastPort 208
memberDropTime 208
membershipScheme 207
preserveMessageOrder 209
properties 210
synchronizeAll 208

cluster management 218
code irst approach

about 102, 104, 165
message receivers, specifying ways 110
POJOs, with packages 106, 107
schemas 114, 115
service archive ile, creating 110
service group 113
services, deploying 108
service WSDL 114, 115
single class POJO approach 104, 105
single service 113
third-party resources, adding 114

code irst service development
with JAX-WS 185-187

codegen engine 37
code generation 103
code generation module 37
commercial software 21
conigContext argument 139
ConigurationContext 97, 98

about 154, 203
ServiceClient, creating 139

coniguration iles, Axis2
about 87
axis2.xml 87
module.xml 87
services.xml 87

context hierarchy 32
contexts, Axis2

about 96, 97
ConigurationContext 97, 98
MessageContext 99
OperationContext 98

contract irst approach
about 102, 103, 116, 165
ant build ile, running 117
code, generating 116
service skeleton class 117

contract irst development
client side JAX-WS 193
with JAX-WS 188-192

CORBA 8
core modules, Axis2 architecture

about 28
Client API 29, 34, 35
deployment model 29, 33, 34
information model 29, 32
SOAP processing model 29-32
transports 29, 36
XML processing model 29, 30

createPayLoad method 161
createSequence message 133
Cron job 234
custom deployers 39

D

data binding frameworks, Axis2
about 37
ADB 37
JaxBRI 37
JaxMe 37
JibX 37
XMLBeans 37

data bound classes 103
default constructor

ServiceClient, creating 138
Demilitarized Zone (DMZ) 230
deployment descriptors, Axis2

about 77
axis2.xml 78
module.xml 79
services.xml 78

[279]

deployment model, Axis2
about 29, 33, 34, 72
hot deployment 34, 74, 75
hot update 34, 75

deployment options, Axis2
about 79
archive-based 80
directory-based 80
POJO deployment 81, 83

description hierarchy 32
detach() method 47
directory-based deployment 80
dispatch client

about 194
javax.activation.DataSource object 194
javax.xml.soap.SOAPMessage object 194
javax.xml.transform.Source object 194

dispatchers
about 67
AddressingBasedDispatcher 68
HTTPLocationBasedDispatcher 68
RequestURIBasedDispatcher 68
SOAPActionBasedDispatcher 68
SOAPMessageBodyBasedDispatcher 68

dispatching 67
dispatch phase 60, 62
document distribution, Axis2 25

Document Object Model. See DOM
DOM 41, 42
domain parameter 207
dynamic client

creating 139
dynamic data, Axis2 86
dynamic load balancing 239
dynamic membership 216
dynamic proxy client 196
dynamic routing combined with auditing

233

E

Eclipse 22
EDA 234
EDA with MDM

about 234
adaptor layer 236
demostrating 236

Integration server 236
logic server 237
registry 237

e-mail 227
endpoint 133

End Point Reference. See EPR
engagNotify method 127
Enterprise Integration Patterns (EIP) 228
Enterprise Service Bus. See ESB
EPR 142
ESB 42, 225

Event Driven Architecture. See EDA
eventing 234

F

failover cluster
about 204
setting up 204

Fault-Flow 31
fault processing 129
fault tolerant autoscaling

with dynamic load balancing 239, 240
feedback problem 237
ile-system-based Axisconigurators 251
Financial Information eXchange (FIX) 226,

227
ireAndForget API 35
low

about 58, 65, 92
types 65, 66

low, types
InFaultFlow 65
InFlow 65, 92
OutFaultFlow 66
OutFlow 65, 92

Foo 157
free software 21

G

Generic Business Objects (GBO) 236
getBinaryTestData operation 196
getValue operation 203

global coniguration ile. See axis2.xml ile
global descriptor. See axis2.xml

[280]

global phases
about 60
types 61

global phases, types
dispatch 62
PreDispatch 62
security 62
transport 62

Group Communication Framework (GCF)
 222

group management 211, 221
group management agent 223
GUI-based components 228

H

handler
about 120
features 56
Reliable Messaging (RM) 57
working 56
writing 57, 58

handlers, execution chain
dispatchers 67, 68
message receiver 68, 69
transport receiver 67
transport sender 69

Health Layer 7 (HL7) 227
high availability 201
highly available clusterable web service

writing 203
highly available load balancing 220
High Security Zone (HSZ) 230
horizontal scalability

increasing 205
hot deployment 74, 75
hot update 75
HTTP 227
HTTP/HTTPS 36
HTTPLocationBasedDispatcher 68
HTTPS 227
hybrid membership 216-218

I

IDE 25
IIOP 8
InFlow pipe 30

information model 29, 32
init method 127
In-Only MEP 31
in-only MEP (ireAndForget)

utilizing 146
in-only MEP (sendRobust)

utilizing 146
In-Out MEP 31
input stream

AXIOM, creating 44
installation, Axis2

binary distribution 22
document distribution 25
source distribution 25
WAR distribution 23, 24

Integrated Development Environment. See
IDE

Integration server, EDA with MDM 236
IntelliJ IDEA 22
interceptor 55
interfaces, Axis2 clustering implementation

org.apache.axis2.clustering.Clustering
Agent 221

org.apache.axis2.clustering.management.
GroupManagementAgent 223

org.apache.axis2.clustering.management.
NodeManager 223

org.apache.axis2.clustering.state.State
Manager 222

J

J2EE-like deployment mechanism 72, 73
JAR distribution, Axis2 25
JAR ile 107
Java ARchive ile. See JAR ile
Java artifacts

creating, wsimport too used 188
Java Business Integration (JBI) 230
Java Message Service (JMS) 227

Java Messaging Service. See JMS
java.util.concurrent.Executor 199
javax.activation.DataHandler 196
javax.activation.DataSource object 194
javax.annotation.PostConstruct annotation

184

[281]

javax.annotation.PreDestroy annotations
184

javax.annotation.Resource annotation 183
javax.jws.OneWay annotation 170, 171
javax.jws.soap.SOAPBinding annotation

about 174
properties 174

javax.jws.soap.SOAPBinding annotation,
properties

parameterStyle 174
style 174
use 174

javax.jws.WebMethod annotation
about 169
properties 169, 170

javax.jws.WebMethod annotation,
properties

action 170
exclude 170
operationName 170

javax.jws.WebParam annotation
about 171
properties 171

javax.jws.WebParam annotation, properties
header 172
mode 172
name 171
partName 172
targetNamespace 172

javax.jws.WebResult annotation
about 172
properties 173

javax.jws.WebResult annotation, properties
header 173
name 173
partName 173
targetNamespace 173

javax.jws.WebService annotation
about 167
properties 167-169

javax.jws.WebService annotation, properties
endpointInterface 168
name 167
portName 168
serviceName 168
targetNamespace 168
wsdlLocation 168, 169

javax.xml.bind.annotation.Xml
AccessorType annotation 182

javax.xml.bind.annotation.XmlElement
annotation

about 182
properties 183

javax.xml.bind.annotation.XmlElement
annotation, properties

name 183
namespace 183

javax.xml.bind.annotation.XmlRootElement
annotation

about 181
properties 181

javax.xml.soap.SOAPMessage object 194
javax.xml.transform.Source object 194
javax.xml.ws.BindingType annotation

 175, 176
javax.xml.ws.RequestWrapper annotation

about 176
properties 176

javax.xml.ws.RequestWrapper annotation,
properties

className 176
localName 176
targetNamespace 176

javax.xml.ws.Response object 198
javax.xml.ws.ResponseWrapper annotation

about 176
properties 176

javax.xml.ws.ResponseWrapper annotation,
properties

className 176
localName 176
targetNamespace 176

javax.xml.ws.ServiceMode annotation 177
javax.xml.ws.WebEndpoint annotation 177
javax.xml.ws.WebFault annotation

about 178
properties 178

javax.xml.ws.WebFault annotation,
properties

faultBean 178
name 178
targetNamespace 178

javax.xml.ws.WebServiceClient annotation
about 178

[282]

properties 178, 179
javax.xml.ws.WebServiceClient annotation,

properties
name 178
targetNamespace 179
wsdlLocation 179

javax.xml.ws.WebServiceProvider
annotation

about 179
properties 179

javax.xml.ws.WebServiceProvider
annotation, properties

portName 179
serviceName 179
targetNamespace 179

javax.xml.ws.WebServiceRef annotation
about 180
properties 180

javax.xml.ws.WebServiceRef annotation,
properties

mappedName 180
name 180
type 180
value 180
wsdlLocation 180

JaxBRI 37
JaxMe 37
JAX-WS services

asynchronous invocation 198
with MTOM 196, 198

JAX-WS speciications
about 165
code irst service development 185-187
contract irst development 188-192

JAX-WS speciications, annotations
about 166
JSR 181 (Web Service Metadata) 166, 167
JSR 222 (JAXB) 166
JSR 224 (JAX-WS) 166
JSR 250 (Common Annotations) 166

JDOM 41
JibX 37
JMS 8, 36
JMX management API 233
JSR 181 (Web Service Metadata),

annotations
javax.jws.OneWay 170, 171

javax.jws.soap.SOAPBinding 174
javax.jws.WebMethod 169
javax.jws.WebParam 171
javax.jws.WebResult 172
javax.jws.WebService 167

JSR 222 (JAXB) speciications, annotations
about 180
javax.xml.bind.annotation.XmlAcces-

sorType 182
javax.xml.bind.annotation.XmlElement 182
javax.xml.bind.annotation.XmlRootElement

181
JSR 224 (JAX-WS) speciications,

annotations
about 175
javax.xml.ws.BindingType 175, 176
javax.xml.ws.RequestWrapper 176
javax.xml.ws.ResponseWrapper 176
javax.xml.ws.ServiceMode 177
javax.xml.ws.WebEndpoint 177
javax.xml.ws.WebFault 178
javax.xml.ws.WebServiceClient 178
javax.xml.ws.WebServiceProvider 179
javax.xml.ws.WebServiceRef 180

JSR 250 (Common Annotations) annotations
about 183
javax.annotation.PostConstruct 184
javax.annotation.PreDestroy 184
javax.annotation.Resource 183

L

lib directory 76
localMemberHost parameter 209
localMemberPort parameter 209
locked attribute 89
logic server, EDA with MDM 237
loose coupling 10

M

Master Data Management. See MDM
maven scripts 25
maxRetries parameter 208
mcastAddress parameter 208
mcastBindAddress parameter 209
mcastFrequency parameter 208
mcastPort parameter 208

[283]

MDM 234, 235
memberDropTime parameter 208
members element 212
membership scheme

about 214
dynamic membership 216
hybrid membership 216-218
static membership 214, 215

membershipScheme parameter
about 207
multicast 207
Well-known address (WKA) 207

memory-intensive programming 41
MEP 29
MessageBuilders 91
MessageContext (MC) 56, 99

about 155
accessing 156

message deinitions
for WSDL 191

Message Exchange Patterns. See MEP
MessageFormatters 91
message receiver

about 31, 39, 68, 90
RawXMLINOnlyMessageReceiver 69
RawXMLINOutMessageReceiver 69
RPCInOnlyMessageReceiver 69
RPCMessageReceiver 69
specifying 109
specifying, ways 110-112
working 68

MessageReceivers 152
Message Transmission Optimization

Mechanism. See MTOM
messaging system

disadvantages 8
examples 8
issues 8
JMS 8

META-INF directory 122
module

about 38, 77, 120
deploying 129-132
engaging 129-132
structure 121, 122
working 38

module descriptor. See module.xml

module engagement 67
module implementation class

about 125
methods 127

modules, Axis2 architecture
code generation 37
data binding frameworks 37

modules directory 76
module structure 121, 122
module.xml 77, 79
module.xml ile 38

about 122
fault processing 129
handlers 123, 124
parameters, adding 132
phase rules 123, 124
writing 128, 129

MTOM
about 247, 248
enabling, on client side 249, 250
enabling, on service side 250
features 248
SwA 248
with JAX-WS services 196, 198
XML Binary Optimized Packaging (XOP)

speciication 248

N

nextSibling() method 49
node management 221
nodeManager element 211

non-blocking invocation. See asynchronous
invocation

O

OASIS
functionality 11

Object Model (OM) 30, 43
OMAbstractFactory.getOMFactory() method

45
one way invocation 264, 265
OpenESB 230
open source software 21
OperationClient

about 137
working with 147-149

[284]

OperationClient class 35
OperationContext 98 155
OperationInPhases 61
operation phase 62
organizations

moving, into web services 11
org.apache.axis2.clustering.ClusteringAgent

221
org.apache.axis2.clustering.management.

GroupManagementAgent 223
org.apache.axis2.clustering.management.

NodeManager 223
org.apache.axis2.clustering.state.State

Manager 222
org.apache.axis2.service.Lifecycle interface

using 156
OSGi bundles 228
OutFlow pipe 30

P

parameters
about 89
adding, in module.xml ile 132
beneits 89
locked attribute 89

password callback
writing 270, 271

pattern 225
phase

about 31, 32, 58
rules 59
types 60

phase rules
about 59, 62
characterizing 62, 64
sinvalidity 64, 65

phase rules, characterizing
about 62
before 63, 64
phaseFirst 63
phaseLast 63
phase name 63

phase, types
about 60
global 60
operation 62

pivot point 68
Plain Old Java Object. See POJO

Plain Old Java Object deployment. See
POJO deployment

Plain Old XML. See POX
plugin modules, Axis2 20
POJO

about 102
with packages 106, 107

POJO approach 103
POJO deployment 81, 83
policy element

creating 271, 272
policy element, creating

about 271, 272
client stubs, generating 273
service, invoking without security 273
service, invoking with security 273

polling mechanism 143
polling model 198
portName argument 139
portType deinition

for WSDL 191
POX

about 9
examples 8

PreDispatch 62
preserveMessageOrder parameter 209
previousSibling() method 49
properties, clustering agent

about 210
backendServerURL 210
mgtConsoleURL 210

protocol bridging 230
pull parser

accessing 52
PULL parser technique

versus PUSH parser technique 30
pull parsing

about 19, 42
working 43

push and pull integration pattern
about 238
demonstrating 238

PUSH parser technique
versus PULL parser technique 30

[285]

Q

Qualities of Service (QoS) functionality 230

R

Rampart 271
RawXMLINOnlyMessageReceiver 69
RawXMLINOutMessageReceiver 69
RawXML message receivers 108
receive() method 30
references, Enterprise Integration

patterns 240
registry 237
registry, EDA with MDM 237
Reliable Messaging (RM) 57
reliable web services

about 262, 263
one way invocation 264, 265
request-reply invocation 266-268
sample service 263, 264

Replicator.replicate() 204
repository, Axis2

about 75
modules 76
services 76

Representational State Transfer. See REST
request-reply invocation 266-268
Request Security Token (RST) message 232
request session scope 157, 158
RequestURIBasedDispatcher 68
REST

about 9, 105, 244
features 244

REST services, in Axis2 244, 245
REST web service, with GET and POST

245, 246
RMI 8
RMPhase 262
round-robin load balancing algorithm 205
RPC 8
RPCInOnlyMessageReceiver 69
RPCMessageReceiver 69
RPC message receivers 108
runtime data 152

S

sample service
creating 263, 264

Sandesha 77
Sandesha2 262, 268
SandeshaClient utility class 268
scalability 201
secure web services

about 269
password callback, writing 270, 271
sample service 270

security phase 62
send() method 30
sendReceive API 35
sendReceiveNonBlocking API 35
sendRobust API 35
Sequence Key property 268
sequences

creating, without sending message 269
managing 268
terminating 269

serialization
about 49
serializeAndConsume method 50
XMLStreamWriter object 49

server-side code
generating 116

service
deploying 83
deploying, programmatically 80
invoking, without security 273
invoking, with security 273
running 83

service archive
message receiver, specifying 109
service implementation class 109
services, deploying 108

service archive ile
creating 110

service broker 13
service client

using 163

[286]

ServiceClient
about 137
creating, ConigurationContext used 139
creating, default constructor used 138
creating, ways 138, 139
session, managing 164
with working samples 140, 141

ServiceClient class
about 35
APIs 35

ServiceClient class, APIs
ireAndForget 35
sendReceive 35
sendReceiveNonBlocking 35
sendRobust 35

ServiceContext 155, 203
service description hierarchy, Axis2

about 94
AxisMessage 96
AxisOperation 95
AxisService 95
AxisServiceGroup 94

service descriptor. See services.xml
Service Endpoint Interface (SEI) 168
service extension 76
ServiceGroupContext 154, 203
Service Oriented Architecture (SOA)

about 8, 85
applications 8
capabilities 8
enabling, methods 9

service provider 12
service requester 13
services directory 76
service skeleton class 117
services.xml 67, 78
services.xml ile

about 122, 165
writing 108

session
initializing 155
invalidating 155
managing, ServiceClient used 164

session scopes, Axis2
about 153, 154
application 163
request 157, 158

SOAP 158-161
transport 162, 163

setValue operation 203
shutdown method 128
signed supporting token 272
simple Axis2 cluster

setting up 202
SimpleAxisServer 22
simple JAX-WS Web Service

writing 166

Simple Object Access Protocol. See SOAP
single class POJO approach

about 104
example 105

SMTP 36
SOA integration patterns

about 225
dynamic routing combined with auditing

233
EDA with MDM 234
external authentication and authorization

231, 233
fault tolerant autoscaling with dynamic

load balancing 239, 240
protocol bridging 230
push and pull 238

SOAP
about 14
working 14

SOAP 1.1 document
creating 53

SOAP 1.2 document
creating 53

SOAPActionBasedDispatcher 68
SOAPMessageBodyBasedDispatcher 68
SOAP messages 56
SOAPModelBuilder 44
soapmonitorPhase 61
SOAP processing frameworks 55
SOAP processing model 29-32
soapsession scope 203
SOAP session scope 158-161
software, types

commercial software 21
free software 21
open source software 21

source distribution, Axis2 25

[287]

stateless 152
stateless Axis2 Web Services 204
stateManager element 210, 222
state replication 221
static data, Axis2 86 152
static membership 214, 215
StAX 41
StAXOMBuilder 44
string

AXIOM, creating 45
SwA 248
Synapse coniguration 233
Synapse ESB 233
synchronizeAll parameter 208
synchronous invocation 136
synchronous web service 254

T

TCP 36 262
transport binding assertion 272
transport phase 62
transport protocols, Axis2

HTTP/HTTPS 36
JMS 36
SMTP 36
TCP 36
XMPP 36

transport receiver 31, 67
TransportReceivers 152
transports 227
transport sender 31

about 69, 91
examples 69
working 92

TransportSenders 152
transport session scope 162, 163
transports module 29, 36

U

UDP 262

V

Virtual File System (VFS) 227

W

W3C
functionality 11

WAR distribution, Axis2 23, 24
web service

creating, approaches 102
web service client 136

Web Service Description Language. See
WSDL

web service framework 55, 135
web service model

about 12
service broker 13
service provider 12
service requester 13

web services
about 119, 135, 151
asynchronous invocation 137
beneits 11
description 15
examples 8
invoking, in asynchronous manner 143, 144
invoking, in synchronous manner 142, 143
lifecycle 16, 17
organizations, moving into 11
overview 10
reliabilty feature 262, 263
standard bodies 10
standards 13
synchronous invocation 136
utilizing, via transports 145
utilizing, ways 136

Web Services Addressing. See
WS-Addressing

Web Services Description Language. See
WSDL

web services lifecycle 16, 17
web services, standards

about 13
SOAP 14
WS-Addressing 15
WSDL 16
XML-RPC 14

WKA-based membership 216

[288]

WS-Addressing
about 15
working 15

WSDL
about 16, 102, 165
binding deinition 191
message deinitions 191
portType deinition 191
standards 16
working 16

wsdlServiceName argument 139
WS-I

functionality 11
wsimport tool

Java artifacts, creating 188
wsldURL argument 139
WSO2 ESB

about 227
deploying 228
features 227, 228
tasks 228

WS-Policy
specifying 132

WS Reliable messaging 120
WS-Reliable messaging 263
WS-Trust 232

X

XML
binary data, sending by reference 247
binary data, sending by value 247

XMLBeans 37
XML Binary Optimized Packaging (XOP)

speciication 248
XML InfoSet model 41
XML processing model 29, 30
XML-RPC standard

about 14
working 14

XMLStreamWriter object 49
XMPP 36
Xpath navigation, AXIOM 51
XSLT mediator 226

Thank you for buying
Apache Axis2 Web Services

2nd Edition

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Quickstart Apache Axis2
ISBN: 978-1-847192-86-8 Paperback: 180 pages

A practical guide to creating quality web services

1. Complete practical guide to Apache Axis 2

2. Using Apache Axis2 to create secure, reliable
web services quickly

3. Write Axis2 modules to enhance web
servicesâ€™ security, reliability, robustness and

transaction support

Apache CXF Web Service

Development
ISBN: 978-1-847195-40-1 Paperback: 336 pages

Develop and deploy SOAP and RESTful Web Services

1. Design and develop web services using
contract-irst and code-irst approaches

2. Publish web services using various CXF
frontends such as JAX-WS and Simple frontend

3. Invoke services by coniguring CXF transports

4. Create custom interceptors by implementing
advanced features such as CXF Interceptors,
CXF Invokers, and CXF Features

Please check www.PacktPub.com for information on our titles

Alfresco 3 Web Services
ISBN: 978-1-849511-52-0 Paperback: 436 pages

Build Alfresco applications using Web Services,
WebScripts and CMIS

1. Gain a comprehensive overview of the
speciications of Web services

2. Implement the Alfresco speciic Web Services

3. Get to grips with the Alfresco WebScripts and
the Alfresco extensible RESTful API

4. Manipulate contents in Alfresco using different
operations and APIs

RESTful Java Web Services
ISBN: 978-1-847196-46-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and lexible RESTful web
services in Java using the most popular Java
RESTful frameworks to date (Restlet, JAX-RS
based frameworks Jersey and RESTEasy, and
Struts 2)

2. Master the concepts to help you design and
implement RESTful web services

3. Plenty of screenshots and clear explanations to
facilitate learning

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Web Services and Axis2
	Service Oriented Architecture (SOA)
	Web service overview
	How do organizations move into web services?

	Web services model
	Web services standards
	XML-RPC
	SOAP
	Web Services Addressing (WS-Addressing)
	Service description
	Web Services Description Language (WSDL)

	Web services lifecycle
	Apache Web Service stack
	Why Axis2?
	Downloading and installing Apache Axis2
	Binary distribution
	WAR distribution
	Source distribution
	Document distribution
	JAR distribution

	Summary

	Chapter 2: Looking inside Axis2
	Axis2 architecture
	Core modules
	XML processing model
	SOAP processing model
	Information model
	Deployment model
	Client API
	Transports

	Other modules
	Code generation
	Data binding

	Extensible nature of Axis2
	Service extension or the module
	Custom deployers
	Message receivers

	Summary

	Chapter 3: Axis 2 XML Model (AXIOM)
	Overview of AXIOM and its features
	What is pull parsing?
	Architecture

	Working with AXIOM
	Creating Axiom
	Creating Axiom from an input stream
	Creating Axiom using a string
	Creating Axiom programmatically
	Adding child nodes and attributes
	Working with OM namespaces
	Working with attribute
	Traversing the Axiom tree
	Serialization
	Advanced operations with Axiom
	Xpath navigation
	Accessing the pull parser
	Axiom and SOAP

	Summary

	Chapter 4: Execution Chain
	Handler
	Writing a simple handler

	Phase
	Types of phases
	Global phases
	Operation phases

	Phase rules
	Characterizing a phase rule
	Phase name
	phaseFirst
	phaseLast
	before
	after
	after and before

	Invalid phase rules

	Flow
	Module engagement and dynamic execution chain
	Special handlers in the chain
	Transport receiver
	Dispatchers
	Message receiver
	Transport sender

	Summary

	Chapter 5: Deployment Model
	What is new in Axis2 deployment?
	Hot deployment and hot update
	Hot deployment
	Hot update

	Repository
	Change in the way of deploying handlers (modules)
	Deployment descriptors
	Global descriptor or axis2.xml
	Service descriptor (services.xml)
	Module descriptor or module.xml
	Available deployment options
	Archive-based deployment
	Directory-based deployment
	Deploying a service programmatically
	POJO deployment
	Deploying and running a service in one line

	Summary

	Chapter 6: Information Model
	Axis2 static data
	AxisConfiguration
	Parameters
	MessageReceiver
	MessageFormatters and MessageBuilders
	TransportReceiver and TransportSender
	Flows and phaseOrder
	AxisModule

	Service description hierarchy
	AxisServiceGroup
	AxisService
	AxisOperation
	AxisMessage

	Axis2 contexts
	ConfigurationContext
	ServiceGroupContext
	ServiceContext
	OperationContext
	MessageContext

	Summary

	Chapter 7: Writing an Axis2 Service
	Creating a web service
	The code first approach
	Single class POJO approach
	POJOs with packages
	Deploying services using a service
	Writing the services.xml file
	Service implementation class
	Specifying the message receiver

	Creating a service archive file
	Different ways of specifying message receivers
	Service group and single service
	Adding third-party resources
	Service WSDL and schemas

	Contract first approach – starting from the WSDL
	Generating code
	Filling in the service skeleton
	Running the ant build file

	Summary

	Chapter 8: Writing an Axis2 Module
	Brief history of the Axis2 module
	Module concept
	Module structure
	Module configuration file (module.xml)
	Handlers and phase rules
	Module implementation class

	Writing the module.xml file
	Deploying and engaging the module
	Advanced module.xml
	Parameters
	WS-Policy
	Endpoints

	Summary

	Chapter 9: The Client API
	Web service client
	Blocking and non-blocking invocation
	Looking into Axis2 client API
	ServiceClient API
	ServiceClient with working samples

	Working with the OperationClient

	Summary

	Chapter 10: Session Management
	Stateless nature of Axis2
	The available type of sessions in Axis2
	Session initializing and session
invalidating
	Java reflection
	Using the optional interface
	Accessing MessageContext

	Request session scope
	SOAP session scope
	Transport session scope
	Option 1: Using the browser
	Option 2: Using the service client

	Application scope
	Managing sessions using ServiceClient

	Summary

	Chapter 11: Developing JAX-WS Web Services
	Writing a simple JAX-WS web service
	JAX-WS annotations
	JSR 181 (Web Service Metadata) annotations
	javax.jws.WebService
	javax.jws.WebMethod
	javax.jws.OneWay
	javax.jws.WebParam
	name
	targetNamespace
	mode
	header
	partName
	javax.jws.WebResult
	javax.jws.soap.SOAPBinding

	JSR 224 (JAX-WS) annotations
	javax.xml.ws.BindingType
	javax.xml.ws.RequestWrapper and javax.xml.ws.ResponseWrapper
	javax.xml.ws.ServiceMode
	javax.xml.ws.WebEndpoint
	javax.xml.ws.WebFault
	javax.xml.ws.WebServiceClient
	javax.xml.ws.WebServiceProvider
	javax.xml.ws.WebServiceRef

	JSR 222 (JAXB) annotations
	javax.xml.bind.annotation.XmlRootElement
	namespace
	name

	javax.xml.bind.annotation.XmlAccessorType
	javax.xml.bind.annotation.XmlElement
	name
	namespace

	JSR 250 (Common Annotations)
	javax.annotation.Resource
	javax.annotation.PostConstruct
	javax.annotation.PreDestroy

	Code first service development with
JAX-WS
	Contract first development with JAX-WS
	Client-side JAX-WS
	The Dispatch client
	The Dynamic Proxy client

	MTOM with JAX-WS Services
	Asynchronous invocation of JAX-WS services
	Polling model
	Callback model

	Summary

	Chapter 12: Axis2 Clustering
	Setting up a simple Axis2 cluster
	Writing a highly available clusterable
web service
	Stateless Axis2 Web Services
	Setting up a failover cluster
	Increasing horizontal scalability
	Setting up and configuring Axis2 clusters in production
	Clustering agent
	Clustering agent parameters
	AvoidInitiation
	membershipScheme
	domain
	synchronizeAll
	maxRetries
	mcastAddress
	mcastPort
	mcastFrequency
	memberDropTime
	mcastBindAddress
	localMemberHost
	localMemberPort
	preserveMessageOrder
	atmostOnceMessageSemantics
	properties

	State management
	Node management
	Group management
	Static members
	Full configuration

	Membership schemes
	Static membership
	Dynamic membership
	Hybrid membership

	Cluster management
	Highly available load balancing
	The Axis2 clustering management API
	org.apache.axis2.clustering.ClusteringAgent
	org.apache.axis2.clustering.state.StateManager
	org.apache.axis2.clustering.management.NodeManager
	org.apache.axis2.clustering.management.GroupManagementAgent

	Summary

	Chapter 13: Enterprise Integration Patterns
	Apache Synapse
	WSO2 ESB
	OpenESB
	Protocol bridging
	External authentication and authorization
	Dynamic routing combined with auditing
	Event Driven Architecture (EDA) with Master Data Management (MDM) for Integrating Legacy Systems
	Event Driven Architecture (EDA)
	Master Data Management (MDM)
	Adaptor layer
	Integration server
	Logic server
	Registry

	Push and pull
	Fault tolerant autoscaling with dynamic load balancing
	References
	Summary

	Chapter 14: Axis2 Advanced Features and Usage
	Representational State Transfer (REST)
	Features of REST
	REST services in Axis2
	REST web service with GET and POST

	Message Transmission Optimization Mechanism (MTOM)
	By value
	By reference
	MTOM on the client side
	MTOM on the service side

	Axis2 configurator
	Deploying Axis2 in various application servers
	Asynchronous web services with Axis2
	Client side asynchronous
	Application-level asynchronous support
	Transports-level asynchronous support

	Summary

	Chapter 15: Building a Secure Reliable Web Service
	Reliable web services
	Sample service
	One way invocation
	Request-reply invocation

	Managing sequences
	Creating a sequence without sending a message
	Terminate a sequence

	Secure web services
	Sample service
	Writing the password callback

	Creating the policy element
	Generating client stubs
	Invoking the service without security
	Invoking the service with security

	Summary

	Index

