
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Building Hypermedia APIs with
HTML5 and Node

Mike Amundsen

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Building Hypermedia APIs with HTML5 and Node
by Mike Amundsen

Copyright © 2012 amundsen.com, inc.. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Melanie Yarbrough

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-11-21 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449306571 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Hypermedia APIs with HTML5 and Node, the image of a rough-legged
buzzard, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30657-1

[LSI]

1321983647

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449306571
http://www.allitebooks.org

“The human mind ... operates by association.
With one item in its grasp, it snaps instantly to the

next that is suggested by the association of
thoughts, in accordance with some intricate web

of trails carried by the cells of the brain.”

—Vannevar Bush, 1945

“If computers are the wave of the future, displays
are the surfboards”.

—Ted Nelson, 1974

“HyperText is a way to link and access informa-
tion of various kinds as a web of nodes in which

the user can browse at will.”

—Tim Berners-Lee, 1992

“Hypermedia is defined by the presence of appli-
cation control information embedded within, or

as a layer above, the presentation of information.”

—Roy T. Fielding, 2001

“The WWW is fundamentally a distributed hy-
permedia application.”

—Richard Taylor, 2010

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword . ix

Preface . xi

1. Understanding Hypermedia . 1
HTTP, MIME, and Hypermedia 2

HTTP Is the Transfer Protocol 3
MIME Is the Media Type Standard 3
Hypermedia Is the Engine 5

Programming the Web with Hypermedia APIs 6
The Type-Marshaling Dilemma 7
The Hypermedia Solution 10

Identifying Hypermedia : H-Factors 13
Link Factors 15
Control Factors 17

Hypermedia Design Elements 20
Base Format 21
State Transfer 24
Domain Style 26
Application Flow 29

Summary 33
What’s Next? 34

2. XML Hypermedia . 35
Scenario 35
Designing the Maze XML Media Type 36

Identifying the State Transitions 36
Selecting the Basic Design Elements 37
The Maze+XML Document 38

Sample Data 42
The Server Code 43

v

www.allitebooks.com

http://www.allitebooks.org

The Collection State Response 43
The Item State Response 43
The Cell State Response 44
The Exit State Response 45

The Client Code 46
Maze Game Example 46
Maze Bot Example 51

Summary 56

3. JSON Hypermedia . 57
Scenario 57
Designing the Collection+JSON Media-Type 58

Identifying the State Transitions 58
Selecting the Basic Design Elements 59
The Collection+JSON Document 60

The Tasks Application Semantics 64
The Data Model 66
The Write Template 67
Predefined Queries 67

Sample Data 68
Task Documents 69
Design Document 69

The Server Code 71
The Collection Response 71
The Item Response 72
The Query Representations 73
Handling Template Writes 75

The Client Code 77
The Tasks SPI Example 77
The Tasks Command Line Example 88

Summary 92

4. HTML5 Hypermedia . 95
Scenario 95
Designing the Microblog Media Type 96

Expressing Application Domain Semantics in HTML5 96
Identifying the State Transitions 98
Selecting the Basic Design Elements 103
The Microblog Application Profile 104

Sample Data 110
User Documents 110
Message Documents 110
Follow Documents 111

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Design Document 111
The Server Code 113

Authenticating Users 113
Registering a New User 114
Message Responses 116
User Responses 119

The Client Code 122
The POSH Example 122
The Ajax QuoteBot Example 125

Summary 134

5. Documenting Hypermedia . 135
Requirements, Compliance, and RFC 2119 135

The RFC 2119 Keywords 136
Sample Documentation Using RFC 2119 Keywords 137
Defining Compliance 137

Documenting Media Type Designs 138
General Layout 138
Documenting XML Designs 143
Documenting JSON Designs 144
Documenting HTML Designs 146
Documenting Application Domain Specifics 148
Publishing Media Type Designs 152

Extending and Versioning Media Types 152
Extending 153
Versioning 154

Registering Media Types and Link Relations 157
Media Types 157
Link Relation Types 159

Design and Implementation Tips 162
Joshua Bloch’s Characteristics of a Good API 162
Roy Fielding’s Hypertext API Guidelines 163
Jon Postel’s Robustness Principle 164
Other Considerations 165

Afterword . 169

A. References . 171

B. Additional Reading . 177

C. Maze+XML Media Type . 179

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

D. Collection+JSON Media Type . 187

E. Microblogging HTML Semantic Profile . 199

F. IANA Media Type Registration Document . 209

G. IETF Link Relations Internet Draft . 211

H. Source Code, Software, and Installation Notes . 217

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

You can’t talk about something if you don’t have the words.

The World Wide Web is driven by hypermedia: the ability of a document to describe
its possible states, and its relationship to other documents. Hypermedia is not just a
way of making websites that average people can use; it’s a new style for distributed
computing, powerful and flexible.

There’s nothing new about the web technologies or the hypermedia concept: in another
world, we could have been using hypermedia for distributed computing since the
mid-1990s. Instead, we’ve been slow to adopt hypermedia for anything but consumer
use. It’s an easy concept to grasp intuitively—we all use the Web—but it’s difficult to
understand in a context of development.

Our problems stem from conceptual blocks. The Web invaded our everyday lives years
before its architecture was formally described. We’ve spent the twenty-first century
making gradual progress, coming up with new vocabulary to help developers come to
terms with the power of the Web—power that was there all along.

The description of hypermedia you’ll read in this book is, in my opinion, one of the
biggest conceptual advances since Roy Fielding first defined the REST architectural
style. Mike Amundsen has taken the blanket term “hypermedia” and taken it apart to
see exactly what it can mean and how it works.

What makes a data format useful for some applications and not others? Why is HTML
so versatile, even for nonconsumer applications, and where does it fall short? Under
Mike’s view of hypermedia, these questions have precise answers—answers that I hope
will drive the next generation of web services and web-based technologies.

Mike has not only found the words to describe hypermedia, he’s given voice to our
intuitions about how it works.

—Leonard Richardson, November 2011

ix

Preface

When you set out on your journey to Ithaca,
pray that the road is long, full of adventure,

full of knowledge.

- Constantine P. Cavafy

Hypermedia API Design
This book’s primary focus is on designing hypermedia APIs. That may seem a bit
strange to some readers. There are many books on programming languages, data stor-
age systems, web frameworks, etc. This is not one of those books. Instead, this book
covers the nature of the messages passed between client and server, and how to improve
the content and value of those messages. I, personally, find this to be an exciting and
fascinating area.

As of this writing anecdotal trends seem to indicate an ever-increasing reliance on APIs
in web development. In general, this is a good thing. It means more and more developers
are catching on to the notion that the World Wide Web is a great place to share not
only data, but also services, a goal of those who championed the web in its early days.

However, I believe that this explosion of web APIs may lead us down a troublesome
path. In my experience over the last few years, I have seen too many examples of im-
plementations that rely on concepts of APIs rooted in desktop and local area network
patterns that will not scale well at the WWW level, solutions still exhibiting brittleness
that can lead to costly and frustrating maintenance issues as time goes by. In short, I
don’t see enough hypermedia in API offerings for the web.

This book is an attempt to improve the chances that new APIs added to the WWW
will be easier to use and maintain over time, and that they will take their cue from those
who were responsible for the discovery of the value of hypermedia linking; the codifi-
cation of the HTTP protocol; and the implementation of HTML, Atom/AtomPub, and
other native hypermedia formats that still drive the growth of the web today.

xi

Intended Audience
The primary goal of this book is to increase both the quantity and quality of hypermedia
content in use on the web. To that end, the audience for this text is two-fold.

First, this book is offered as a guide to system architects. Hopefully the text can be a
valuable guide for those responsible for designing systems that rely on hypermedia to
improve the evolvability and stability of long-lived implementations. When viewed as
an integral part of system architecture, hypermedia provides a wealth of possibilities
to architects. Hopefully this book will illustrate that, by treating hypermedia data as a
key architectural component (rather than merely a payload to be pushed about by
clients and servers), architects can increase future stability and flexibility of their sys-
tems.

Second, readers tasked with implementing clients and servers will find valuable advice
and examples on how to deal with hypermedia messages themselves. Up to now, most
books on web implementations have focused too often on the role of servers in dealing
hypermedia. It is the author’s view that this oversight too often results in improper
client implementations that not only ignore, but often negate the value of hypermedia
messages on the web. One of the key advantages of hypermedia as an architectural
pillar is that hypermedia encourages clients to “code for the media type” instead of
writing applications that treat messages as simple data. Writing hypermedia-aware cli-
ents is a skill that takes time to master. And while this book does not focus solely on
writing hypermedia clients, the author hopes that it will show enough examples and
advantages as to spur other, more talented individuals to establish new practices and
techniques aimed at taking direct advantage of hypermedia.

What Is Not Covered
While the examples in this book use HTML5, Node.js, and CouchDB, this book should
not be used as a source for learning these technologies. Astute readers may find the
author’s use of these tools—HTML5, Node.js, CouchDB—somewhat stilted and pos-
sibly, to some, blasphemous. The author makes no claims at expertise in these tech-
nologies. Instead, in the context of this book, they are used as tools for illustrating
points about hypermedia design and implementation. The appendices list several good
books on the technologies used in the writing of this text that the reader is encouraged
to refer to for a more authoritative voice on these matters.

This book does not cover the details of the HTTP protocol and associated web stand-
ards. There is a wealth of writing available and the appendices reference important
RFCs and other standards documents used while preparing this text. The reader will
also find several book recommendations in the appendices well worth the time to read
and become acquainted.

xii | Preface

Finally, while the subject of the Representation State Transfer (REST) architectural
style comes up occasionally, this book does not explore the topic at all. It is true that
REST identifies hypermedia as an important aspect of the style, but this is not the case
for the inverse. Increasing attention to hypermedia designs can improve the quality and
functionality of many styles of distributed network architecture including REST. Read-
ers who want to learn more about Fielding’s style will find helpful recommendations
in the appendices.

Contents of This Book
The book is designed to allow readers to jump around to sections they find interesting;
you do not need to read it cover-to-cover in sequential order. There are a number of
links within the chapters to point the reader to related material that may have been
missed when skipping around in the text. Hopefully this format will also make the text
more useful as a reference when the reader wants to refer back to content at a later date.

The general layout of the book is as follows:

Chapter 1: Understanding Hypermedia
This is the conceptual chapter of the book. It provides some historical references
for hypermedia, HTTP, and HTML, and then goes on to lay out the basic premise
of the text including making a case for more hypermedia, offering an analysis of
existing hypermedia content, and a suggested methodology for creating new hy-
permedia designs.

Chapters 2, 3, and 4: Implementations
The middle chapters contain complete walk-throughs of fully functional hyper-
media examples. These chapters are meant to lead the reader through the process
of assessing an application scenario, selecting design elements, creating sample
data, and implementing complete server and client solutions that meet the use case
requirements. While the examples are kept relatively basic, they are still meant to
convey most of the details the reader is expected to encounter when creating real-
life production-ready solutions.

Chapter 5: Documenting Hypermedia
This is the housekeeping chapter of the book. It provides tips on documenting
media type designs and registering those designs with standards bodies such as the
IANA, IEFT, and WC3. There is a section covering the concepts of Versioning and
Extending hypermedia types as well as some general tips on good API and hyper-
media designs.

Appendices
This book contains a number of appendices. These are included as pointers to
quoted and referenced materials as well as to hold additional content that did not
fit well into the flow of the chapters. The information here may also be valuable
for future reference after the reader has already completed the body of the book.

Preface | xiii

Coding Style for This Book
One of the reasons Node.js and CouchDB were selected for this book is that, from the
beginning, these products are HTTP-aware. That means the software works well using
the existing HTTP application protocol and in a state-less environment like the World
Wide Web. As a result, there is very little friction between the components I created
using Node and CouchDB, and the protocol used to communicate with those compo-
nents.

It is also an advantage that these software systems all use the same front-facing pro-
gramming language for scripting (Javascript). While not all readers will be proficient
in Javascript, hopefully this single language format can reduce the need for mental
context-switching when moving between client code, server code, and data storage
implementation.

The important point, though, is that the software is not the focus for this book; it is
merely the medium for the hypermedia message. You will likely find that many of the
examples contain code that is either too brief or too fragile to run in a production
environment. This is mostly a matter of expediency; I’m anxious to illustrate the details
of the hypermedia, not the code used to implement that design. These designs will work
well when implemented for any platform, using any language, running on any operating
system. I suspect many readers will find better ways to implement these media type
designs using their own languages and platforms, and that’s all the better.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

xiv | Preface

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Hypermedia APIs with HTML5
and Node by Mike Amundsen (O’Reilly). Copyright 2012 O’Reilly Media, Inc.,
978-1-449-30657-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

Preface | xv

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920020530.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements

There are quite a number of people who deserve acknowledgement for the completion
of this book.

Several people volunteered to review early drafts of this book and provided excellent
feedback and suggestions. Thanks to Leonard Richardson, Erik Wilde, Ian Robinson,
Jan Algermissen, Mike Kelly, Will Hartung, William Martinez Pomares, Erlend Ham-
naberg, Darrel Miller, Glenn Block, David Zulke, Erik Morgensen, Kevin Burns Jr.,
Jonathan Moore, and Subbu Allamaraju. If the book is accurate, clear, and concise,
that is likely due to the contributions of these individuals. Any remaining shortcomings
are solely the responsibility of the author.

Julian Reschke, Mykyta Yevstifeyev, Frank Ellermann, and others were very helpful
and generous as I worked to learn the details of IETF and IANA procedures and pro-
cesses.

I’d like to thank Benjamin Young for introducing me to CouchDB and for all his efforts
to teach me how to improve my understanding and coding of CouchDB. His willingness
to spend one-on-one time to help me get past some hurdles was invaluable. If there are
shortcomings or errors in the CouchDB code, it’s most likely because I failed to grasp
what Benjamin tried to teach me; my apologies to the reader and to Benjamin Young.

Simon St. Laurent, my editor, has been a great champion of this book. Without his
tireless efforts, this book would never have seen the light of day. Thanks also to Melanie
Yarbrough for all her proofreading and editing work.

xvi | Preface

http://shop.oreilly.com/product/0636920020530.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I want to thank the organizers of CodeStock, Stir Trek, JAOO (aka Gotocon), and
OSCON. My presentations at these and other events over the last few years has given
me a chance to explore, refine, and correct initial concepts and methodologies.

I owe special thanks to all of the attendees of REST Fest 2010 and 2011. It was during
very productive and enjoyable weekends in lovely Greenville, South Carolina, that I
was able to first publicly describe and refine my ideas about analyzing and designing
hypermedia.

I’ve benefited quite a bit from the conversations on the REST IRC channel on free-
node.org. My thanks to all who hang out there for all of the great feedback and ideas.

Thanks, finally, to the moderators and members of the REST-Discuss list. Over the
years I’ve posted many questions, assertions, and comments to that list in an effort to
learn more about Fielding’s style and HTTP implementation in general. In most cases,
many of the correct things I learned about REST and HTTP were a result of my REST-
Discuss experience.

Preface | xvii

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Understanding Hypermedia

There is no end to the adventures that we can
have if only we seek them with our eyes open.

- Nehru

Designing scalable, flexible implementations that live on the web relies on many con-
cepts, technologies, and implementation details. Understanding the history behind the
way the World Wide Web (WWW) works today and the various standards and prac-
tices created to support it is an essential part of developing skills as a web architect and
hypermedia designer.

In addition to understanding the technologies behind the Web, designers also need to
be aware of the differences between implementing applications on a distributed net-
work that leverages coarse-grained message protocols like HTTP that span multiple
platforms, programming languages, and storage systems, and more traditional local
networked applications where most components in the network share similar storage,
programming, and operating details. Programming for distributed hypermedia envi-
ronments usually means that message transfers must carry more than just data; they
must carry additional information including metadata and higher-level application flow
control options. The Web thrives on this style of rich hypermedia, and it is important
to design APIs that support this method of sharing understanding of the data sent
between network participants.

The way in which hypermedia information is shared varies between data formats, but
the actual hypermedia concepts—links, templated queries, idempotent updates, etc.
—are the same across the Web. Having a clear understanding of the various hypermedia
factors that can be expressed within a message is an essential part of developing the
skills needed to implement successful hypermedia APIs.

Finally, the implementation details of creating hypermedia types include selecting an
appropriate data format and state transfer style, expressing the application domain
details properly within the format, and determining the way in which application flow

1

control options are exposed in responses. These basics of hypermedia design are similar
regardless of data to be shared or the application domain involved.

This chapter covers some key technologies that make the Web possible, the importance
of hypermedia as an architectural approach, and the concepts and details of hypermedia
designs. Armed with this understanding the reader will have the tools necessary to build
scalable, flexible implementations that do not simply run on the Web but that actually
exist in the web in a way that acknowledges, as stated by Richard Taylor, that the
“WWW is fundamentally a distributed hypermedia application.”

HTTP, MIME, and Hypermedia
Designing hypermedia applications for the Web is just that: a design process. This
process depends on a handful of important standards and technologies. Chief among
these are the protocols, message standards, and message content that allows partici-
pants to drive the system forward, often toward some designated goal (completing a
search, purchasing an item online, etc.).

The most commonly used protocol for transferring content on the Web today is HTTP.
Initially designed as a read-only protocol for exchanging HTML documents, HTTP
quickly expanded from a file-based transfer protocol into a more generalized protocol
that supports both read and write operations across multiple intermediaries that allow
real-time negotiation of representation formats for a wide range of information stored
on servers.

The ability to represent data instead of just mirror files derives from HTTP’s use of the
Multipurpose Internet Mail Extensions (MIME) media type system. Originally created
for supporting electronic mail transfers, the MIME typing standard allows HTTP trans-
fers to support a wide range of data formats including ones that are designed specifically
for transferring application-related requests such as search parameters and data storage
operations. Also important is the built-in ability to support new media types over time
in order to support new, unanticipated uses for data transfer on the Web.

The creation of the Web was heavily influenced by the notion of hypermedia and the
ability to link related material and easily follow these links in real time. To this end,
media types have been designed to natively support hypermedia controls as a way to
enable client applications to make selections found within responses and drive the state
of the application to the desired outcome. This allows client applications to discover
the specific controls within the media type message with which to modify the state of
the Web (or at least that client’s view of the Web). It is hypermedia, and the design and
implementation of it, that makes the Web a unique and powerful environment for
building distributed network applications.

2 | Chapter 1: Understanding Hypermedia

HTTP Is the Transfer Protocol
The first version of HTTP (documented in 1991 as HTTP/0.9) was a simple read-only
protocol. It allowed clients to send a request string made up of the letters GET followed
by a space and a document address (what we know as a URI today) and servers could
then respond by returning the associated document. HTTP/0.9 had no metadata head-
ers and the response was always assumed to be in HTML form.

By 1992, a Basic HTTP (considered a full specification) was documented. This version
included several new methods including HEAD, PUT, POST, and DELETE. Other
methods such as CHECKIN, CHECKOUT, LINK, UNLINK, SEARCH, and several
others are no longer in the specification today. This document included the concept of
response codes (1xx, 2xx, 3xx, 4xx, 5xx), an early form of content negotiation, and
meta-information (later known as HTTP Headers).

Although the 1992 document was never officially released through a governing body
(IETF, etc.), over the next few years, browser clients and web servers extended the read-
only features of HTTP/0.9 to include many of the headers and additional request
methods identified as Basic HTTP. The results of these additions were documented in
1996 in RFC1945 and named HTTP/1.0. Not long after RFC1945 was released, in
January of 1997, HTTP/1.1 was documented and released as RFC2068. This refined
many of the implementation details of HTTP as we know it today. An additional update
was released in June of 1999 as RFC2616. This is the version of HTTP that is most
commonly deployed today.

Throughout the history of specifying HTTP, the protocol was always designed to work
as a client-initiated, stateless protocol for transferring messages between parties run-
ning over TCP/IP. There are other transfer protocols including FTP, BitTorrent, and
rsync, but HTTP has remained the dominant transfer protocol for the Web. This focus
on stateless transfer as well as HTTP’s support for negotiating the format used to rep-
resent server data (via the Accept and Content-Type headers) are key to understanding
how to best utilize HTTP and design efficient and effective applications for the Web.
Architects and developers who create applications that run counter to these design
principles not only ignore the strengths of HTTP but also add unnecessary complexity
and complications to their implementations.

MIME Is the Media Type Standard
HTTP’s standard for defining the body of the message sent between parties is based on
the MIME standard (RFC2046). Although this standard was designed to support ex-
changing messages via email, MIME was adopted by HTTP in order to support the
notion of resource representations and to allow for future extensibility.

One of HTTP’s important concepts is the idea that responses are only representations
of the actual data. For example, under the FTP (File Transfer Protocol) specifications,
the goal is to send an exact copy of the data between parties. However in HTTP, servers

HTTP, MIME, and Hypermedia | 3

are free to represent the data in various ways and clients are encouraged to inform
servers which representation formats are preferred. In order to support this additional
feature, the MIME standard is used to indicate the current representation format.

MIME Type, Media Type, and Content Type
The terms MIME Type, Media Type, and Content Type as often used in similar ways.
The term MIME comes from the initial RFCs describing media type handling for SMTP.
Part two of that document collection regarding MIME (RFC2046) carries the sub-title
of “Media Type.” Subsequent RFC documents (e.g. RFC4288) refer to Media Type as
the object of public registration for use in MIME and other Internet protocols. “Content
Type” is the name of the HTTP Header that carries the media type information for the
response message. Usually, when people use any one of these three phrases, they are
referring to the media type registration string (e.g. application/xml, text/plain, etc.).
Throughout this book the phrase “Media Type” is most often used unless there is a
reference directly to the HTTP Header (Content-Type) or an historical reference to the
original standards (MIME).

HTTP’s support for varying response representations via a media type indicator opens
the door to using the message as a key component in web architecture. Messages no
longer need to be relegated to simply carrying raw data. Instead, designers and archi-
tects can leverage this opportunity to create new message formats and standards that
can allow responses and requests to convey not just the raw data, but also metadata
about the content. It also means that formats can be created to support very specific
purposes independent of the application in use or the data that is transferred between
parties.

For example, the same set of data points could be represented for use in a spreadsheet
(text/csv), for display in a tabular view (text/html), or as a graphical pie chart display
(image/png). Data sent from client to server can be represented as simple name-value
pairs (application/x-www-formurlencoded), as plain text (text/plain), or even as part
of a multiple-format collection (multipart/form-data).

There are more than a dozen multipart media types registered with the
Internet Assigned Numbers Authority (IANA). These types are designed
to support multiple unique media types within the same message body,
each separated by a boundary. The HTTP/1.1 spec also defines mes-
sage/http and application/http as similar container media types. These
container media types are not covered in this book, but their very exis-
tence and use is evidence of flexibility and extensibility of the MIME
media type standard.

The reliance on MIME media types also points to an important aspect of HTTP’s mes-
sage model: it was designed to send coarse-grained messages. Unlike some transfer

4 | Chapter 1: Understanding Hypermedia

protocols whose aim is to send the smallest data packets possible, HTTP is concerned
with including as much descriptive information as possible with each message, even if
this means the message is longer than it needs to be. While there are some efforts
underway to reduce message sizes (mostly by shortening or compressing HTTP Head-
ers), designers and architects are free to use the body of the message to carry whatever
is deemed important.

This freedom to design new message bodies for HTTP via the MIME standard leads to
another unique aspect of the use of HTTP on the Web: in-message hypermedia. HTTP
and MIME together make it not only possible, but common to include hypermedia
information such as links and forms directly in the body of the response message. It is
this ability to include hypermedia controls within messages that makes HTTP so well
suited for use in distributed networks like the World Wide Web.

Hypermedia Is the Engine
The concept of hypermedia has been with us for quite a while. Vannevar Bush’s 1945
article “As We May Think” envisioned a device (the “Memex”) that allowed researchers
to discover and follow links between topics and phrases in projected documents. Doug
Engelbart’s 1968 NLS (oN-Line System), one of the first graphical computer systems,
used a new mechanical pointer device dubbed “the mouse” and allowed users to click
on links to display related data on the screen. Similar examples of enabling links via
computer display cropped up in the 1970s and 1980s. Ted Nelson coined the terms
“hypertext” and “hypermedia” in the mid-1960s, and his work “Computer Lib/Deam
Machines,” published in 1974, is considered by many to be the first to establish the
notion of “surfing the ‘net” and cyberculture in general.

From links to controls

The initial concept for hypermedia was as a read-only link between related items and
to this day, this is the most common way hypermedia is used on the Web. For example,
many media types only support read-only links between elements. However, with the
introduction of graphical user interfaces based on the use of Englebart’s mouse as a
way to activate elements of the interface (including buttons), the idea of using links as
a way to perform other actions (sending a message, saving data, etc.) became accepted.

The development of HTTP mirrored this development from read-only (HTTP/0.9) to
read/write linking (HTTP/1.0 and 1.1). Along the way, the de facto media type for
HTTP (HTML) developed to include controls within messages that allowed users to
supply arguments and send this data to remote servers for processing. These hyper-
media controls included the FORM and INPUT elements among others. This ability to
support not only navigational links (HTML anchor tags) and in-place rendering of
related content (e.g. the IMG tag) but also parameterized queries and write operations
helped HTML be become the lingua franca of the Web.

HTTP, MIME, and Hypermedia | 5

Hypermedia types

HTML’s success as a media type on the web is due in large part to its unique status as
a media type that supports a wide range of hypermedia controls. Unlike plain text,
XML, JSON, and other common formats, HTML has native support for hypermedia.
HTML is, in effect, a Hypermedia Type. There are other media types that share this
distinction; ones that contain native support for some form of hypermedia linking.
Other well-known types include SVG (read-only), VoiceXML, and Atom.

A Hypermedia Type is a media type that contains native hyperlinking
elements that can be used to control application flow.

Media types that exhibit native hypermedia controls can be used by client applications
to control the flow of the application itself by activating one or more of these hyper-
media elements. In this way, hypermedia types become, as Fielding stated, “the engine
of application state.” This use of MIME media types to define how data is transferred
and also how application flow control is communicated, is an essential aspect to build-
ing scalable, flexible applications using HTTP on the Web.

Programming the Web with Hypermedia APIs
Knowing about HTTP, MIME, and hypermedia is the easy part. Using them to design
and implement stable, flexible applications on the Web is something else. The Web
poses unique challenges to building long-lived applications that can safely evolve over
time. Many web developers and architects have experienced these challenges firsthand:

• Updating server-side web APIs only to learn that client applications no longer work
as expected without undergoing code updates.

• Moving long-lived server applications to a new DNS name (e.g. from www.exam-
ple.org to www.new-example.org) and having to completely rewrite all of the API
documentation as well as update all existing client code.

• Implementing new or modified process flow within the server-side application and
discovering that existing clients break when encountering the new rules, ignore the
rules, or, worse, continue to execute their own code in a way that creates invalid
results on the server.

These challenges are sometimes mistakenly attributed to the nature of HTTP (the most
common transfer protocol in use on the Web to date). However, implementations that
rely on SOAP-based messages sent directly over TCP/IP are just as likely to experience
the failures listed here. Instead these difficulties, and others like them, stem from the
way information is shared between parties on the network.

6 | Chapter 1: Understanding Hypermedia

The most common pattern for crafting and shipping messages is to serialize existing
programming objects (e.g. classes and structures) into a common format (XML, JSON,
etc.) and send the content to another party. This results in an architecture based on
simple data and smart applications. Applications that must be constantly kept in sync
with each other to make sure their understanding of the data is always compatible.

Type-Marshaling vs. Object Serialization
Throughout this section of the text, you will see the phrases “Type-Marshaling” and
“Object Serialization” used interchangeably to mean converting an object’s state into
a byte-stream and shipping that byte-stream to another party that can then reconstitute
the bytes into a copy of the original object. For some programming environments (e.g.
Python), these phrases are considered equivalent. However, for others (e.g. Java) they
carry slightly different meaning. In Java, “Type-Marshaling” means not just converting
the state of the object, but also its basic coding.

For the purposes of this discussion, the details of what is shipped across the wire are
not as important as the pattern of converting an internal object into a message and
recreating a copy of that object upon receipt of the message.

This method of marshaling internal types over HTTP can easily lead to brittle and
inflexible implementations on the Web. Often, introduction of new arguments for re-
questing data, new addressees to which requests must be targeted, and/or new data
elements in the response messages will cause a mismatch between parties that can only
be resolved by reprogramming one or more participants on the network. This is the
antithesis of how the Web was designed to work. Reprogramming participants on the
Web may be possible when there are only a few parties involved, but it does not scale
up to the thousands and millions of participants that interact on the Web today.

In this section, the drawbacks of various forms of type-marshaling are explored and an
alternative approach to message design based on hypermedia is identified.

The Type-Marshaling Dilemma
Probably the most common model for web programming today is to serialize internal
object types (“customer,” “order,” “product,” etc.) in a common data format (XML,
JSON, HTML, etc.) and pass them back and forth between client and server. Most of
the available web frameworks encourage this style of programming with built-in seri-
alizers and other helpers that make it easy to publish internal objects. Examples of these
type-marshaling helpers include schema documents that can be generated from existing
source code; run-time services that automatically respond to URIs that include type
names; response bodies that contain attributes or elements containing type names to
aid in automated serialization selection; and routing rules that use the HTTP Accept
and Content-Type headers as object type indicators.

Programming the Web with Hypermedia APIs | 7

While these patterns are convenient, they had a number of drawbacks. For example,
they are very server-centric; they meet the needs of server developers but usually leave
client programmers to fend for themselves. Also, by focusing on internal types kept on
the server, these patterns introduce risks to client code that is built independent of the
server code. Changes to any internal objects can easily introduce changes to public
interfaces (shared schema, URIs, payload details, and/or media type definitions).

Below is a short review of each of these popular approaches to sharing data over HTTP
along with some commentary on the appeal and shortcomings of these techniques.

Shared schema

Probably the best understood method is to publish a detailed schema document that
lists arguments and interaction details. This is the way SOAP was designed to work.
The advantage of this approach is that it provides clear description for all parties. The
downside is that it most often is used as a way to express the details of private objects
(almost always on the server). When these objects change, all previously deployed cli-
ents can become broken and must be rebuilt using the newly published schema docu-
ment. While it is true that this compile-time binding is not a requirement of the SOAP
model, to date no major web libraries exist for clients and servers that treat this schema
information in a dynamic way that scales for the Internet.

<?xml version="1.0"?>
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema
 targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
.....
</definitions>

URI construction

Another common solution is to try to make the URI carry type information. This is a
popular solution since most frameworks can easily generate these URIs from metadata
within the source code. This method also makes things relatively easy for frameworks
that use templating and other processing based on the type. Of course the biggest

8 | Chapter 1: Understanding Hypermedia

drawback is that you lose control of your public URI space. Typing via URIs means
private source code decides what your URIs look like and any change to source code
threatens to invalidate previously published (and possibly cached) URIs.

http://www.example.org/orders/123

http://www.example.org/customer/big-co/orders/123

http://www.example.org/users/mike/address/home

Payload decoration

Developers who want to remain in control of their URIs can opt for the another com-
mon typing option: decorating the payload. This is usually done by adding a type ele-
ment to the JSON or XML body or, in rare cases, adding a <meta> tag or profile attribute
to HTML documents. This approach has the distinct advantage of allowing frameworks
to sniff the contents of the payload in order to find the type hint and process the data
accordingly. The primary drawback of this method, however, is that the payload is now
tightly bound to source code and, again, changes to the source code on the server will
modify response payloads and may invalidate incoming request payloads from clients
who have no idea the server has changed the details of the typed object.

{
 "__type":"Circle:#MyApp.Shapes",
 "x":50,
 "y":70,
 "radius":10
}

Narrow media types

Another solution is to create a custom public media type for each private object on the
server. The advantage here is that you have full control over both the public URI and
the payload (although most frameworks link a private class to these custom media
types). The downfall of this approach is that it merely pushes the problem along; in
this scenario a single application could generate dozens of new media types. It would
be an incredible feat for an independent client application to try to keep up with rec-
ognizing and parsing the thousands of media types that might be produced in a single
year.

...
@PUT
@Consumes("application/stockquote+xml")
public void createStock(Stock stock) {
...
}
...
@Provider
@Produces("application/stockquote+xml")
Public class StockProvider implements MessageBodyWriter<Stock> {

Programming the Web with Hypermedia APIs | 9

...
}

As is probably evident to the reader, type-marshaling is a difficult challenge for dis-
tributed networks where client and server applications are built, modified, and main-
tained independently, and where public-facing connectors may be expected to be
maintained in production for a decade or more. The solutions illustrated above all fall
short of supporting this kind of environment because they all suffer from the same flaw:
they all attempt to solve the wrong problem.

The question architects and designers of distributed network applications need to ask
themselves is not, “How can a server successfully export its private objects in a way
that clients can see and use them?” Instead the question that should be asked is, “How
can a server and client share a common understanding of the payloads passed between
them?”

The short answer is to stop trying to keep clients and servers in sync by working out
ways to share private types. Instead what is needed is a technique for describing data
in a way that is not bound to any internal type, programming language, web framework,
or operating system.

And one answer is to look beyond payloads based on marshaled types and toward
payloads based on the principles of hypermedia.

The Hypermedia Solution
Relying on payloads based on hypermedia designs avoids the common pitfalls of the
type-marshaling dilemma. That’s because hypermedia payloads carry more informa-
tion than just the data stored on the server. Hypermedia payloads carry two types of
vital metadata: metadata about the data itself and metadata about the possible options
for modifying the state of the application at that moment. Both are important to ena-
bling stable and flexible distributed network applications.

By committing to message designs without the constraints of a particular internal type
system, designers are free to craft payloads to more directly address the needs of the
problem domain. By creating messages that contain not just data points but also in-
formation about the data (e.g. shared labels, hierarchies and relationships), both client
and server can increase the shared understanding of the information passed between
them.

Finally, by crafting responses that include data (and its metadata); information about
the current state of the application itself; and possible transitions available at the present
moment, distributed network applications can offer interfaces—interfaces that take
advantage of new state transitions and new information flows that may appear over the
lifetime of the application—to both human and machine-driven agents. This type of
message design places stability and flexibility at the forefront of the architecture.

10 | Chapter 1: Understanding Hypermedia

www.allitebooks.com

http://www.allitebooks.org

Metadata about the data

Hypermedia messages contain not only the data requested but also metadata. To make
this point clear, consider a server that offers data on users defined for a network ap-
plication. The server might return the data in the following form:

darrel,admin,active
mike,manager,suspended
...
whartung,user,pending

Note that the data contains no descriptive information, or no metadata. This works if
both the client and server have a complete shared understanding over all the possible
requests and responses ahead of time. It works if a human is assumed to be able to infer
the missing details. However, in a distributed network where independent individuals
might be able to create new applications to access this same data—individuals that
might not know all of the details of every shared request and response—this raw data
can be a problem.

Hypermedia designs can send additional metadata that describes the raw data. Here is
the same data marked up using the HTML hypermedia format:

...
<ul class="users">
 <li class="user">
 darrel
 admin
 active

 <li class="user">
 mike
 manager
 suspended

 ...
 <li class="user">
 whartung
 user
 pending

...

The example here is simplistic (this is just one possible way to add metadata to the
reponse), but it conveys the idea. Hypermedia designs include more than raw data;
they include metadata in a form easily consumed by both humans and machines. The
details of selecting an appropriate data format to carry the metadata is part of the design
process that will be explored later in this chapter (see “Hypermedia Design Ele-
ments” on page 20).

Programming the Web with Hypermedia APIs | 11

Metadata about the application

Marking up the raw data is only part of the process of designing hypermedia. Another
important task is to include metadata about the state of the application itself. It is the
availability of application metadata in the message that turns an ordinary media type
into a hypermedia type. This metadata provides information to clients on what possible
actions can be taken (“Can I create a new record?”, “Can I filter or sort the data?”, etc.).
This kind of application metadata allows the client to modify the state of the applica-
tion, and to drive the application forward in a way that gives the client the power to
add, edit, and delete content, compute results, and submit filters and sorts on the
available data. This is hypermedia. This is the engine of application state to which
Fielding refers in his dissertation.

Below are some examples of application metadata in an HTML message. You can see
a list of users (as in the previous example) along with navigation, filtering, and search
options that are appropriate for this response (and the identified user making the re-
quest).

...
<ul class="users">
 <li class="navigation">
 next-page

 <li class="navigation">
 last-page

 <li class="user">
 darrel
 admin
 active

 <li class="user">
 mike
 manager
 suspended

 <li class="user">
 whartung
 user
 pending

 ...

<!-- defined filters -->
<ul class="queries">
 <li class="query">admins
 <li class="query">pending
 <li class="query">suspended
 ...

<!-- user search -->
<form name="user-search" action="...">
 <input name="search-name" value="" />

12 | Chapter 1: Understanding Hypermedia

 <input type="submit" />
</form>
...

As can be seen in this example, a set of HTML anchor tags and an HTML form have
been included in the server’s response. This information lets the client application know
that there are ways to navigate through the list, filter the data, and search it by username.
Note that the navigation links only include “next” and “last” options since “previous”
and “first” are not appropriate at the start of the list. Good hypermedia designs make
sure the application metadata is context-sensitive. Just as human users can become
confused or frustrated when offered too many options, quality hypermedia design in-
cludes making decisions on the most appropriate metadata to provide with each re-
sponse.

Most of the examples in this section use the HTML media type, a well-
known format. But HTML is not the only possible way to provide hy-
permedia to clients. In fact, HTML is lacking in some key hypermedia
elements that might be important in your use cases. There are a handful
of hypermedia elements that you can use to express application meta-
data. HTML has many; others appear in different media types. In order
to allow clients to drive the application state, these elements must ap-
pear within the server responses. Fielding calls these “affordances.” In
this book they are called “Hypermedia Factors.” These factors are the
building blocks for hypermedia APIs.

Summary

This section identifies one of the common pitfalls of implementing applications on the
Web: the type-marshaling dilemma. Many web applications today suffer from this
problem, often because the programming languages, frameworks, and editors in use
today encourage it. However, a more stable and flexible approach is available using
hypermedia-rich messages as the primary way to share understanding between clients
and servers. Unlike data-only messages based on type-marshaling, hypermedia mes-
sages contain the raw data, metadata about that data, and metadata about the state of
the application.

The next section describes a set of abstract factors that make up a set of building blocks
for designing hypermedia messages. These building blocks are called H-Factors.

Identifying Hypermedia : H-Factors
Designing hypermedia messages involves deciding how to represent the requested data
(including metadata about the requested data) as well as deciding how to represent
application metadata such as possible filters, searches, and options for sending data to
the server for processing and storage. The details of representing the application met-
adata is handled by hypermedia elements within the message. The actual message el-

Identifying Hypermedia : H-Factors | 13

ements, attributes, etc. used to represent these options vary depending on the base
format and the registered media type in use. However, despite these variances, the
abstract options represented are the same across all media types and format. These are
referred to in this book as “Hypermedia Factors” or “H-Factors.”

Table 1-1. H-Factor Table

Links LE Embed Links

 LO Outbound Links

 LT Templated Links

 LI Idempotent Links

 LN Non-Idempotent Links

Control Data CR Read Controls

 CU Update Controls

 CM Method Controls

 CL Link Annotation Controls

There are nine H-Factors, and they can be placed into two groups: link factors (repre-
sented as LO, LE, LT, LI, and LN) and control factors (represented as CR, CU, CM,
and CL). The five link factors denote specific linking interactions between client and
server: Outbound, Embedded, Templated, Idempotent, and Non-Idempotent. The re-
maining four control factors provide support for customizing metadata details (e.g.
HTTP Headers) of the hypermedia interaction: Reads, Updates, Method, and Link
Annotations.

Each of the H-Factors provide unique support for hypermedia designs. In this way, H-
Factors are the building blocks for adding application hypermedia to messages. It is

Figure 1-1. H-Factor Diagram

14 | Chapter 1: Understanding Hypermedia

not important that your design use every one of these factors. In fact, to date, there is
no widely used hypermedia design that incorporates all of these factors. What is im-
portant, however, is knowing the role each factor plays and how it can be used to meet
the needs of your particular implementation.

Below are brief descriptions of each of these factors along with examples from existing
media types and formats.

Link Factors
Link factors represent opportunities for a client to advance the state of the application.
This is done by activating a link. Some links are designed to update a portion of the
display content with new material (LE) while other links are used to navigate to a new
location (LO). Some links allow for additional inputs for read-only operations (LT),
and some links are designed to support sending data to the server for storage (LI and
LN).

Below are examples of each of the link factors identified here.

Embedding Links (LE)

The LE factor indicates to the client application that the accompanying URI should be
de-referenced using the application level protocol’s read operation (e.g. HTTP GET),
and the resulting response should be displayed within the current output window. In
effect, this results in merging the current content display with that of the content at the
other end of the resolved URI. This is sometimes called transclusion. A typical imple-
mentation of the LE factor is the IMG markup tag in HTML:

In the above example, the URI in the src attribute is used as the read target and the
resulting response is rendered inline on the web page.

In XML, the same LE factor can be expressed using the x:include element:

<x:include href"..." />

Outbound Links (LO)

The LO factor indicates to the client application that the accompanying URI should be
de-referenced using the application level protocol’s read operation, and the resulting
response should be treated as a complete display. Depending on additional control
information, this may result in replacing the current display with the response or it may
result in displaying an entirely new viewport/window for the response. This is also
known as a traversal or navigational link.

An example of the LO factor in HTML is the A markup tag:

...

Identifying Hypermedia : H-Factors | 15

In a common web browser, activating this control would result in replacing the current
contents of the viewport with the response. If the intent is to indicate to the client
application to create a new viewport/window in which to render the response, the
following HTML markup (or a similar variation) can be used:

...

Templated Links (LT)

The LT factor provides a way to indicate one or more parameters that can be supplied
when executing a read operation. Like the LE and LO factors, LT factors are read-only.
However, LT factors offer additional information in the message to instruct clients on
accepting additional inputs and including those inputs as part of the request.

The LT element is, in effect, a link template. Below is an example LT factor expressed
in HTML using the FORM markup tag:

<form method="get" action="http://www.example.org/">
 <input type="text" name="search" value="" />
 <input type="submit" />
</form>

HTML clients understand that this LT requires the client to perform URI construction
based on the provided inputs. In the example above, if the user typed “hypermedia”
into the first input element, the resulting constructed URI would look like this:

http://www.example.org/?search=hypermedia

The details on how link templates (LT) are expressed and the rules for constructing
URIs depends on the documentation provided within the media type itself.

Templated links can also be expressed directly using tokens within the link itself. Below
is an example of a templated link using specifications from the URI Template Internet
Draft:

<link href="http://www.example.org/?search={search}" />

Idempotent Links (LI)

The LI factor provides a way for media types to define support for idempotent sub-
missions to the server. These types of requests in the HTTP protocol are supported
using the PUT and DELETE methods. While HTML does not have direct support for
idempotent submits within markup (e.g. FORM method="PUT"), it is possible to execute
idempotent submits within an HTML client using downloaded code-on-demand.

<script type="text/javascript">
function delete(id)
{
 var client = new XMLHttpRequest();
 client.open("DELETE", "http://example.org/comments/"+id);
}
</script>

16 | Chapter 1: Understanding Hypermedia

The Atom media type implements the LI factor using a link element with a relation
attribute set to “edit” (rel="edit"):

<link rel="edit" href="http://example.org/edit/1"/>

Clients that understand the Atom specifications know that any link decorated in this
way can be used for sending idempotent requests (HTTP PUT, HTTP DELETE) to the
server.

Non-Idempotent Links (LN)

The LN factor offers a way to send data to the server using a non-idempotent “submit.”
This type of request is implemented in the HTTP protocol using the POST method.
Like the LT factor, LN can offer the client a template that contains one or more elements
that act as a hint for clients. These data elements can be used to construct a message
body using rules defined within the media type documentation.

The HTML FORM element is an example of a non-idempotent (LN) factor:

<form method="post" action="http://example.org/comments/">
 <textarea name="comment"></textarea>
 <input type="submit" />
</form>

In the above example, clients that understand and support the HTML media type can
construct the following request and submit it to the server:

POST /comments/ HTTP/1.1
Host: example.org
Content-Type: application/x-www-form-urlencoded
Length: XX

comment=this+is+my+comment

It should be noted that the details of how clients compose valid payloads can vary
between media types. The important point is that the media type identifies and defines
support for non-idempotent operations.

Control Factors
Control factors provide support for additional metadata when executing link opera-
tions. The possible metadata elements (and their values) can vary between supported
protocols (FTP, HTTP, etc.) as does the details for communicating this link metadata.
For example, in HTTP, this is accomplished through HTTP Headers. Regardless of the
mechanism, control factors fall into four categories: Read, Update, Method, and Link
Annotation.

What follows is a brief discussion of Control Factors along with examples.

Identifying Hypermedia : H-Factors | 17

Read Controls (CR)

One way in which media types can expose control information to clients is to support
manipulation of control data for read operations (CR). The HTTP protocol identifies
a number of HTTP Headers for controlling read operations. One example is the Accept-
Language header. Below is an example of XInclude markup that contains a custom
accept-language attribute:

<x:include href="http://www.exmaple.org/newsfeed" accept-language="da, en-gb;q=0.8,
en;q=0.7" />

In the example above, the hypermedia type adopted a direct mapping between a control
factor (the accept-language XML attribute) and the HTTP protocol header (Accept-
Language). There does not need to be a direct correlation in names as long as the doc-
umentation of the hypermedia design provides details on how the message element and
the protocol element are associated.

Update Controls (CU)

Support for control data during send/update operations (CU) is also possible. For ex-
ample, in HTML, the FORM can be decorated with the enctype attribute. The value for
this attribute is used to populate the Content-Type header when sending the request to
the server.

<form method="post"
 action="http://example.org/comments/"
 enctype="text/plain">
 <textarea name="comment"></textarea>
 <input type="submit" />
</form>

In the above example, clients that understand and support the HTML media type can
construct the following request and submit it to the server:

POST /comments/ HTTP/1.1
Host: example.org
Content-Type: text/plain
Length: XX

this+is+my+comment

Method Controls (CM)

Media types may also support the ability to change the control data for the protocol
method used for the request. HTML exposes this CM factor via the method attribute of
the FORM element.

In the first part of the example below, the markup indicates a send operation (using
the POST method). The second part uses the same markup with the exception that the
GET method is indicated. This second example results in a read operation:

18 | Chapter 1: Understanding Hypermedia

<!-- update operation -->
<form method="post" action="..." />
 <input name="keywords" type="text" value="" />
 <input type="submit" />
</form>

<!-- read operation -->
<form method="get" action="..." />
 <input name="keywords" type="text" value="" />
 <input type="submit" />
</form>

Link Annotation Controls (CL)

In addition to the ability to directly modify control data for read and submit operations,
media types can define CL factors that provide inline metadata for the links themselves.
Link control data allows client applications to locate and understand the meaning of
selected link elements with the document. These CL factors provide a way for servers
to “decorate” links with additional metadata using an agreed-upon set of keywords.

For example, Atom documentation identifies a list of registered Link Relation Values
that clients may encounter within responses. Clients can use these link relation values
as explanatory remarks on the meaning and possible uses of the provided link. In the
example below, the Atom entry element has a link child element with a link relation
attribute set to “edit” (rel="edit"):

<entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content>Some text.</content>
 <link rel="edit" href="http://example.org/edit/1"/>
</entry>

Clients that understand the Atom and AtomPub specifications know (based on the
documentation) that the URI value of links decorated in this way can be used when
executing idempotent submits (HTTP PUT, HTTP DELETE) to the server.

Another example of using CL factors is HTML’s use of the rel="stylesheet" directive:

<link rel="stylesheet" href="..." />

In the above example, the client application (web browser) can use the URI supplied
in the href attribute as the source of style rendering directives for the HTML document.

Summary

This section has identified a limited set of elements (H-Factors) that describe well-
known protocol-related operations. These operations make up a complete set of hy-
permedia factors. These factors can be found, to some degree, in media types designed

Identifying Hypermedia : H-Factors | 19

to support hypermedia on the Web. H-Factors are the building blocks for designing
your own hypermedia APIs.

Hypermedia Design Elements
Along with knowing the set of hypermedia factors that can be expressed within a mes-
sage, there are a number of basic design elements that need to be addressed when
authoring hypermedia types. These elements are:

Base Format
Every hypermedia design relies on a base-level message format; it’s the format that
is used to express the hypermedia information. Typical base formats for hyperme-
dia messages sent over HTTP are XML, JSON, and HTML. They each have their
advantages and limitations, which will be covered in this section. It is also possible
to design hypermedia types using other base formats (CSV, YAML, Markdown,
Binary formats, etc.), but this book does not cover these additional base formats.

State Transfer
Many hypermedia types allow client-initiated state transfer (sending data from the
client to the server). In “Identifying Hypermedia : H-Factors” on page 13, several
hypermedia factors were identified as supporting state transfer. Hypermedia de-
signs typically have three styles of state transfer: None (i.e. read-only), Predefined
(via external documentation), and Ad-Hoc (via in-message hypermedia controls).

Domain Style
Hypermedia designs usually express some level of domain affinity. In this context,
“domain” refers to the application domain, or the problem space. Domain styles
can be categorized as Specific, General, or Agnostic.

Application Flow
Hypermedia designs may also contain elements that express possible application
flow options. This allows client applications to recognize and respond to possible
options that allow for advancing the application through state transitions at the
appropriate times. Application Flow styles for hypermedia can be identified as
None, Intrinsic, or Applied.

These hypermedia design elements (minus the Base Format element) can be viewed as
a matrix. (See Figure 1-2.)

All hypermedia types can be inspected for these design elements (Format, State Trans-
fer, Domain Style, and Application Flow) and their values identified. In this way, you
can analyze existing hypermedia types and use the same information in making selec-
tions for your own hypermedia type designs.

20 | Chapter 1: Understanding Hypermedia

www.allitebooks.com

http://www.allitebooks.org

Just as the previous section (“Identifying Hypermedia : H-Fac-
tors” on page 13) identified a set of factors or building blocks for hy-
permedia, this section describes a set of design elements or techniques
for applying those factors to a hypermedia design.

The following sections explore each of these design elements, provide examples, and
offer some guidance on their use in your hypermedia designs.

Base Format
A critical element in any hypermedia design is the base-level message format. As of this
writing, the most often used formats over HTTP are XML, JSON, and HTML. This
section explores the advantages and limitations of these common formats.

XML

The XML media type is a common base format for designing hypermedia. There are
several advantages to using XML as your base format. First, XML is a mature format
and there are a number of supporting technologies including transformation (XSLT),
querying (XPath, XQuery), validation (XSD, Schematron), and even transclusion
(XPointer, XInclude). XML data types are also standardized. Even better, almost all
programming environments support these technologies in a consistent way. It’s safe to
bet that you can count on XPath to work the same way across platforms and languages.

Another nice aspect of XML is its element + attribute design. Designers can take ad-
vantage of this pattern in many ways, including using elements to define top-level data
descriptors in the media type, and attributes as additional or metadata items.

One of the drawbacks of XML is that the original media type contains no native H-
Factors: no predefined links, forms, etc. There are some related XML standards (XLink,
XForms) that can be applied, but these may or may not be exactly what the use case
requires and these additional standards may not be widely supported on all target plat-
forms.

Figure 1-2. Hypermedia Design Matrix

Hypermedia Design Elements | 21

However, if your use cases require strong standardized support for your hypermedia
type across a wide range of platforms and environments, XML can be an excellent
choice as a base format.

JSON

The rise of the HTTP web as a platform has brought with it an increased use of Java-
Script. Today it is possible to find JavaScript as the default programming language for
clients (web browsers), servers (Node.js), data storage (CouchDB) and more. Java-
Script’s language model supports a very simple and portable data structure based on
name-value pairs and lists called JSON. This data structure has been standardized, and
parsers are available for a wide range of languages outside JavaScript, too. Another
advantage of JSON is that it is a very terse format. For example, unlike XML, whose
design can end up using more bytes for element names than for the data these elements
describe, JSON has relatively low overhead and this can make messages very small and
easy to move about.

While JSON is a standard, it is still relatively new. There are no RFC-level standards
for querying and validating JSON although there are some commonly used approaches.
For example, JSONPath is a query pattern similar to XPath and JSON Schema provides
an XSD-like validator service to JSON. Finding implementations of JSONPath and
JSON Schema may be difficult for environments where JavaScript is not the chosen
programming language.

Another downside for using JSON is that, like XML, JSON has no native H-Factors
and there are no established standards to rely upon for expressing links and forms.
Designing a hypermedia type with JSON requires the definition of all the H-Factor
elements from scratch, including figuring out the best way to express control data in-
formation such as language preferences and protocol method names, etc.

Despite these drawbacks, if your target audience is made up of web browsers and other
environments where JavaScript is common, JSON may be a good fit as the base format
for your hypermedia type design.

HTML

HTML can be an excellent choice as a base format for your hypermedia design for a
number of reasons. First, it is a mature and stable technology that is more than twenty
years old. Second, HTML has one of the most ubiquitous client applications (common
web browsers) available on almost any platform. Third, browsers support code-on-
demand via JavaScript, which adds a power dimension to delivering hypermedia via
HTML.

However, HTML (and its cousins, XHTML and HTML5) is often overlooked when
designing hypermedia types for a use case. This is probably because HTML suffers from
an unfair assumption that it is an old-school, bloated technology appropriate only for
cases where a human is driving a web browser client.

22 | Chapter 1: Understanding Hypermedia

HTML does have some drawbacks. As of this writing, HTML still only supports a subset
of the HTTP method set (GET, HEAD, and POST). If your use case relies on using
HTTP PUT and/or DELETE, plain HTML will not be a good fit. One of the biggest
downsides to using HTML as your base format is that it is domain-agnostic (see
“Agnostic” on page 28). That means it can be a bit more work to define elements and
attributes that match closely to your application domain, but it is certainly possible, as
you will see in Chapter 4.

But these limitations are usually outweighed by the advantages of HTML. HTML is
the only base format considered here that has a rich set of native hypermedia controls
to support LO H-Factors (via links), and LT and LN H-Factors (via forms). Since web
browsers can easily render HTML links and forms, defining your hypermedia API using
HTML usually means that humans can easily surf your API* by stepping through the
HTML as it is rendered in a browser. There are now a number of libraries capable of
parsing HTML, XHTML, and HTML5 that are available for several platforms and en-
vironments. That means it is relatively easy to use HTML for use cases that do not
require web browsers (e.g. command-line tools, desktop applications, etc.).

Since HTML can be used in wide number of client environments including web brows-
ers, HTML can be a very good choice as a base format for your hypermedia designs.

Others

As mentioned at the start of the section, XML, JSON, and HTML are not the only
possible base formats for hypermedia designs. Markdown, YAML, CSV, even binary
formats (i.e. Protocol Buffers) can be used in hypermedia designs. However, many of
these formats lack not only native hypermedia controls, but the document structure
needed to define them. For example, XML offers element names and attributes to hold
your application-specific metadata. JSON has hash tables and arrays that can be given
meaningful names to match your application domain. HTML has a number of attrib-
utes especially designed to hold domain-specific information. Most of the alternate base
formats mentioned here do not have these types of allowances. For the purposes of this
book, attention will remain on the three most commonly used base formats today. If
your use case calls for supporting hypermedia using one of these other formats, you
may have some additional challenges, but you should still be able to apply the same
design ideas shown here.

What about RDF?
One well-known format that is not covered in this book is RDF (Resource Description
Framework). Technically, RDF is not format or media type. It is a data interchange
standard that leverages the tuples pattern, relies heavily in URIs, and uses well-defined
ontologies. While there have been a number of attempts to define hypermedia controls

* I first heard the term “surfing your API” from Jonathan Moore in his presentation at Oredev in 2010, where
he demonstrated using browsers to explore hypermedia types based on XHTML.

Hypermedia Design Elements | 23

for RDF (most notably RDF Forms), to date no ontology that supports a wide range of
H-Factors has emerged as a clear leader for RDF. There is an XML serialization for RDF
(RDF-XML) and a number of JSON variations, but none of those serializations of RDF
include strong support for H-Factors either. For those who want to use the RDF inter-
change standard and still need hypermedia support, the RDFa specification for ex-
pressing structured data using attributes (when applied to HTML) is probably the best
choice since it offers all the H-Factors of HTML (LO, LE, LT, LN) as well as the ability
to model RDF’s subject-predicate-object expressions.

State Transfer
Another key aspect of hypermedia design is supporting the transfer of information (i.e.
state) from the client to the server. This client-initiated state transfer is really the heart
of hypermedia messaging. There are many media type designs focused on efficient
transfer of data from servers to clients, but not many do a good job of defining how
clients can send data to servers. In some cases, read-only designs are appropriate for
the task. For example, bots that search for and index specific data on the Web usually
have no reason to send data to other servers. However, in cases where client applications
are expected to collect inputs (e.g. from human users or by other means) and store them
on a remote server; these same client applications will need to know how to locate and
use hypermedia-enabled link controls (the LT, LI, and LN H-Factors).

For the purposes of this book, we can divide the work of expressing client-initiated
state transfer for hypermedia types into three types: read-only, predefined, and ad-hoc.

Read-only

As was already mentioned, there are a number of scenarios where hypermedia types
do not need to support client-initiated state transfers. In these cases, the media types
are, essentially, read-only. That does not mean that the messages are devoid of hyper-
media controls. For example, the SVG [SVG11] media type is a read-only design that
uses outbound links (LO) and embedding links (LE). The CSS media type supports the
LE H-Factor.

If your use case does not require clients to transfer data directly to servers, using a media
type design that supports no client-initiated state transfer is a perfectly valid design
choice.

Predefined

Another common approach to handling client-initiated state transfer is to rely on pre-
defined transfer bodies that clients learn and then use when indicated. Media types that
rely on this design pattern usually provide documentation detailing the required and/
or optional elements for valid transfers, encoding rules, etc. The AtomPub (RFC5023)

24 | Chapter 1: Understanding Hypermedia

protocol relies on predefined state transfers to support creating and updating resources
via the Atom (RFC4287) media type.

The AtomPub/Atom RFC pair is an interesting example of one RFC
defining the format (RFC4287) and another, related RFC defining the
state-transfer rules (RFC5023).

One of the advantages of using predefined state transfers is that client-coding can be
relatively straightforward. Client applications can be pre-loaded with the complete set
of valid state transfer bodies along with rules regarding required elements, supported
data types, message encoding, etc. The only remaining task is to teach clients to rec-
ognize state transfer opportunities with response messages, and to know which transfer
body is appropriate.

In the case of the AtomPub protocol, there are two basic client-initiated state transfers
defined in the specification:

Entry resources
These transfers represent entries in an Atom feed document and can be treated as
a stand-alone resource.

Media resources
These transfers support binary uploads (images, etc.) to the server that are auto-
matically associated with an Entry Resource.

The details on how clients can recognize when state transfers are supported (e.g. iden-
tifying predefined rel attributes on link elements), how clients should compose valid
state transfer requests (e.g. which protocol method to use, etc.), and how servers should
respond to these requests are outlined in the AtomPub RFC.

In cases where your media type only needs to support a limited set of possible state
transfers from the client, it can be a good design choice to define these state transfer
bodies within documentation and encourage client applications to embed the rules for
handling this limited set directly in the client code.

Ad-Hoc

A very familiar method for handling client-initiated state transfers is to use an ad-hoc
design pattern. In this pattern, the details about what elements are valid for a particular
state transfer are sent within the hypermedia message itself. Since each message can
have one or more of these control sets, clients must not only know how to recognize
the hypermedia controls but also how to interpret the rules for composing valid trans-
fers as they appear. The HTML media type relies on this ad-hoc design pattern using
the form, input, and other elements to support LT and LN link H-Factors.

Hypermedia Design Elements | 25

The primary advantage of adopting the ad-hoc style is flexibility. Document authors
are free to include any number of transfer elements (inputs) needed to fulfill the im-
mediate requirements. This also means that client applications must be prepared to
recognize and support the state transfer rules as they appear in each response.

For human-driven clients, ad-hoc state transfers can be handled by ren-
dering the inputs and waiting for activation. However, for clients that
have no human to intervene, the ad-hoc style can be an added challenge.
If your primary use case is for automated client applications, the ad-hoc
state transfer style may not be the best design choice.

The HTML documentation identifies the hypermedia elements (e.g. form, input,
select, textarea, etc.) that client applications should support along with encoding rules
on how to convert values associated with these controls into valid state transfer bodies.
Once client applications know how to handle the designated elements, they will be
prepared to handle a wide range of hypermedia messages.

If your use case requires the power and flexibility of ad-hoc state transfers, this is prob-
ably the best choice for your media type design.

Domain Style
Hypermedia designs usually express some level of domain affinity. In this context,
“domain” refers to the application domain, or the problem space. The process of se-
lecting element and attribute names, deciding where hierarchies should exist, and so
on, is the essence of translating the problem domain into message form. Modeling the
problem domain focuses on the information that needs to be shared, stored, computed,
etc. There are many ways to accomplish this task, and the common approach is to
model domain data by declaring meaningful elements and/or attributes. These ele-
ments are then passed between parties where they can be processed, computed, stored,
and passed again when requested. Achieving a desirable domain model for messaging
is the art of hypermedia design.

The closer a design is to modeling the problem space, the easier it is to use the design
to accurately express important activities over a distributed network. However, the
more closely tied a message design is to a single problem domain, the less likely it is
that the design can be applied to a wide range of problems. This balance between
specificity and generality is at the core of hypermedia design.

It can be helpful to view this issue (like others covered here) in three broad categories:
specific, general, and agnostic.

Specific

It is very common to use a very domain-specific design when creating a custom message.
Domain-specific designs usually incorporate name and collection patterns that exist

26 | Chapter 1: Understanding Hypermedia

within the problem space itself. For example, consider a typical design for an Order in
a message:

<!-- domain-specific design -->
<order>
 <id>...</id>
 <shipping-address>...</shipping-address>
 <billing-address>...</billing-address>
 ...
</order>

In the example shown above, it is very easy to identify the domain-specific elements
(order, order-id, customer-name, shipping-address, etc.). The primary advantage of a
domain-specific design is that it is easy for humans working with the design to deter-
mine the meaning and infer the use of the various elements. This is one the many reasons
XML is a popular format for custom message implementations: XML does an excellent
job of supporting domain-specific designs.

There are drawbacks to this style of message design, too. The more specific your design,
the more closely tied it is to a single problem domain. If your problem domain is quite
large, your message design becomes very large, too. If your domain space changes fre-
quently over time, your message design must do the same. Finally, if your problem
domain is rather small and very specific, it’s not likely that your design can be applied
to many other use cases.

If your domain space is well-established and stable (not likely to change over time) or
if your use case is relatively short-lived, domain-specific style designs can be a good
choice.

General

An alternate approach to domain-specific designs is to adopt a domain-general style.
In this style, elements are given generally understood names. Optionally, elements are
decorated with attributes that qualify the general name with something more domain-
specific. In this way, general style designs strike a balance between specificity and gen-
erality.

Here is one possible domain-general style design for the Order message shown earlier:

/* domain-general design */
{
 "order":
 {
 "id" : "...",
 "address" : {"type" : "shipping", "street-address" : "..."},
 "address" : {"type" : "billing", "street-address" : "..."}
 }
}

You can see that the domain-specific address elements from the first example have been
replaced by general “address” elements carry a “type” indicator to provide additional

Hypermedia Design Elements | 27

domain-specific information. The advantage of this design style is that the “address”
elements could be applied to many other use cases within the problem domain (cus-
tomer address, user address, supplier address, etc.) without having to modify the actual
message design itself. In this way, your design takes on a level of modularity and reuse
that makes supporting new domain-specific elements easier over time. In addition,
client applications can create code that: 1) supports reusing these modular elements of
your message design, and 2) is able to adjust to evolving use cases in the domain space
more easily.

There are still downsides to this approach. First, creating domain-general designs adds
a level of indirection to implementations. It usually takes more coding logic to parse
both the element (“address”) and the domain-specific indicator (“type”). This can make
finding the right address element in a particular message a bit more complicated. On
the other hand, domain-general messages can still suffer from enough specificity to
limit their wide use and adoption.

Care should be taken when employing a domain-general style since it is
possible to design a message that takes on the limitation and frustrations
of both domain-specific and domain-agnostic styles.

In cases where your domain has a core set of reusable elements and relatively simple
messages that are not likely to make for complicated parsing due to a high level of reuse
in the same message, a domain-general approach can be the best selection.

Agnostic

The most flexible and evolveable domain style is domain-agnostic. In this style, all the
element names are generic (i.e. “data” or “item,” etc.) and there is a strong reliance on
context-setting values (usually attributes) to establish the meaning of these generic
elements. The following example of a domain-agnostic design should look familiar to
the reader:

<!-- domain-agnostic design -->
<ul class="order">
 <li class="id">...
 <ul class="shipping-address">
 <li class="street-address">...
 ...

 <ul class="billing-address">
 <li class="street-address">...
 ...

 ...

The primary advantage of the domain-agnostic style is that you can usually express a
wide range of domain-specific information using every few elements. A domain-ag-

28 | Chapter 1: Understanding Hypermedia

nostic message design can usually get by with just a few key elements used to express
collections, individual items in a collection, and one or more properties of a single item.
The trick to designing domain-agnostic messages is to employ a rich set of decorators
(attributes) that can be applied to almost any element in the design. HTML, for exam-
ple, supports the id and class attributes on almost all elements. HTML also uses the
name and rel attributes on key state transition elements.

An important aspect of HTML design is that some decorators support
only a single value (id="this-element") and others support multiple
values (class="important order pending"). This distinction in decora-
tors can be very handy when designing domain-agnostic hypermedia
types.

Of course, the domain-agnostic style has its limitations. Chief among these is that overly
generic markup can pose a challenge to clients attempting to parse the message. This
includes humans, too. We naturally desire clear statements of meaning in messages
and using an agnostic approach that relies on one or more levels of indirection via
attribute decorators can be confusing and frustrating at times. There is also the possi-
bility that a design can be too agnostic, where there is almost no meaning in the elements
themselves and all interesting information is tucked out of the way in decorators. This
can lead to overly complex coding for applications creating the messages as well as
those receiving, parsing, and rendering the results.

Ultimately, domain-agnostic messages require a slightly different approach to hyper-
media design; one that separates the semantics of the data with the message markup
itself. This notion of a dual-level design (the message markup and the domain-specific
design) will be explored more fully in Chapter 4.

For use cases where a single message design needs to be used across a wide range of
problem domains and/or where the problem domain is likely to change and evolve over
time, a domain-agnostic style can be very effective.

Application Flow
Hypermedia designs may also contain elements that express possible application flow
options. This allows client applications to recognize and respond to possible options
that allow for advancing the application through state transitions at the appropriate
times. Designing support for application flow in hypermedia types is more than just
including links and forms in responses. Application flows require identifications for
the various possible options for changing the state of the application.

In many existing media types, this is done using decorators on links (rel="edit" in
AtomPub) and forms (name="payment" in HTML). However, in VoiceXML, a domain-
specific design for telephony services, there are a number of application flow elements
such as goto, exit, return, help, log, and others. Other logical applications flow iden-

Hypermedia Design Elements | 29

tifiers could be “write”, “update”, “remove”, “add”, “save”, and a whole host of nouns
and activities that are domain-specific (e.g. payment, order, customer, etc.).

Some media types define application flow identifiers as native to the media type (e.g.
HTML’s link relation values). Other designs rely on a public registry of values such as
the IANA Link Relation Registry, Microformats Existing Rel Values, and Dublin Core
Terms.

Whether the application flow is identified using unique elements, attributes, or unique
values for existing attributes, application flow styles for hypermedia can be categorized
into three general groups:

None
This hypermedia type contains no identifiers for application flow. Designs that are
read-only and/or cover a very limited domain may not support any application
flow identifiers.

Intrinsic
The application flow identifiers are defined within the hypermedia type itself. Atom
and AtomPub define a small set of link relations to indicate application flow (“edit”,
“edit-media”, and “self”).

Applied
The application flow identifiers are not part of the hypermedia type, but the type
designs contain allowances (usually element decorators or attributes) for applying
external values to indicate application flow. HTML supports a number of attributes
that can be used to add application flow information including the profile, id,
name, rel, and class attributes.

None

There are several cases where your hypermedia design does not require any application
flow identifiers. Usually this is when the problem space covered is rather limited and/
or read-only in nature. Hypermedia type designs for automated services (bots, machine-
to-machine interactions, etc.) are a good candidate for designs that do not contain
application flow identifiers.

For example, the text/uri-list media type is designed to hold a list of URIs only. It is a
read-only media type that supports the LO H-Factor and can be used for presenting
lists of URIs to bots and other automated services. There is no need for application flow
since the only work is to resolve the list of presented URIs.

urn:isbn:0-201-08372-8
http://www.huh.org/books/foo.html
http://www.huh.org/books/foo.pdf
ftp://ftp.foo.org/books/foo.txt

Another hypermedia type that has no need for application flow is the OpenSearch
specification. Designed to support searching web indexes, the OpenSearch specifica-
tion uses the XML base format and supports only the LO H-Factor in responses.

30 | Chapter 1: Understanding Hypermedia

www.allitebooks.com

http://www.allitebooks.org

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Web Search</ShortName>
 <Description>Use Example.com to search the Web.</Description>
 <Tags>example web</Tags>
 <Contact>admin@example.com</Contact>
 <Url type="application/rss+xml"
 template="http://example.com/?
q={searchTerms}&pw={startPage?}&format=rss"/>
</OpenSearchDescription>

If your use case covers a relatively narrow problem domain and/or your hypermedia
will be used primarily by automated systems, a design that has no application flow can
be a good option.

Intrinsic

If you want to design a hypermedia type that supports application flow, one way to do
this is to define the application flow identifiers as part of your media type directly. This
can be done in two primary ways: 1) by identifying specific elements or attributes in
your design that represent options for application flow (e.g. <update>...</update> or
<store type="update">...</store>); and 2) by identifying unique decorator values that
can be applied to existing elements and attributes (e.g. <link rel="update" ... />). In
these examples, the rules for application flow are intrinsic to the media type definition
itself.

The AtomPub media type uses this intrinsic style of application flow. The specification
identifies a few elements and link relations that clients can use to activate application
flow. For example, the AtomPub spec identifies the href attribute of the app:collec
tion element as the URI to use to create new entries:

<?xml version="1.0" encoding='utf-8'?>
<service xmlns="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom">
 <workspace>
 <atom:title>Main Site</atom:title>
 <collection
 href="http://example.org/blog/main" >
 <atom:title>My Blog Entries</atom:title>
 <categories
 href="http://example.com/cats/forMain.cats" />
 </collection>
 </workspace>
 ...
</service>

It also states that the href attribute of the atom:link element marked with rel="edit"
contains the URI for use when updating or deleting individual entries:

<?xml version="1.0"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <title>Atom-Powered Robots Run Amok</title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>

Hypermedia Design Elements | 31

 <updated>2003-12-13T18:30:02Z</updated>
 <author><name>John Doe</name></author>
 <content>Some text.</content>
 <link rel="edit" href="http://example.org/edit/first-post.atom"/>
</entry>

Intrinsic application flow works well when you want your design to stand alone and
not depend on any external specifications or definitions, and when your application
flow options can be expressed with a limited set of elements, attributes, and/or values.
This works well for hypermedia types that cover a relatively limited set of use cases
where the options are not likely to change over time, or types that provide support for
a general use case (e.g. writing blog entries, etc.). Intrinsic application flow is also very
helpful if you are working to define a hypermedia type that might be implemented by
a wide range of servers all attempting to support the same use cases.

Applied

When your hypermedia design needs to support application flow that can change over
time, or has a wide range of possible use cases, you may need to consider a design that
relies on external identifiers that can be applied consistently to specific elements and
attributes of your hypermedia type.

The HTML media type uses this approach to support application flow. There are a
handful of HTML attributes that can be used to define application flow options in-
cluding rel, class, name, and id. By supplying predefined values to these attributes,
designers can apply details about application flow options that may appear in a mes-
sage.

The key to making the applied style work is to publish a set of predefined values along
with their meaning and purpose at a stable URI. This external application flow speci-
fication can then be accessed and used by client and server implementors to guide the
creation, parsing, and interpretation of hypermedia messages using the specified rules.
A pointer to this specification can be shared as a link header and/or as a part of the
entity body. This can be done in HTML using the profile attribute or the meta element.

In the following HTML example, the response indicates the application flow specifi-
cation in use (see the meta tag). You can see several places in the document where
elements are decorated with rel, and name attributes indicating application flow op-
tions:

<html>
 <head>
 <title>Payment Options</title>
 <meta name="profile" content="http://www.example.com/profiles/payment.html" />
 </head>
 <body>
 <h1>Payment Options</h1>
 <p>
 Cancel Order
 </p>

32 | Chapter 1: Understanding Hypermedia

 <form href="..." name="credit-card" method="post">
 <input name="card-number" value="" />
 ...
 <input type="submit" />
 </form>
 <form href="..." name="purchase-order" method="post">
 <input name="po-number" value="" />
 ...
 <input type="submit" />
 </form>
 <form href="..." name="bank-draft" method="post">
 <input name="routing-number" value="" />
 ...
 <input type="submit" />
 </form>
 ...
</html>

The applied style of application flow offers the most flexibility since it allows designers
an almost unlimited number of possibilities. This also allows designers to define ap-
plication flow specifications that are independent of a particular media type; the rules
can be applied to any base format (XML, JSON, etc.) or existing hypermedia type that
supports it (similar to the way CSS and XSLT work for HTML today).

There are also a number of drawbacks to the applied style. First, by creating an external
document that holds the application flow details, clients and servers will be required
to support not only the primary media type but also a second rule document. This can
put an added burden on client and server implementors. Second, clients and servers
may ignore the rule specifications completely, which can cause problems, especially
for server implementors who may have to deal with clients who are not following the
rules laid out in the application profile. Additionally, when the profile document is
updated over time with new application flow options, there is no guarantee that clients
using that profile will recognize and honor the changes without additional coding up-
dates. There are ways to mitigate these problems, but there are no standards for doing
so.

Despite these drawbacks, in cases where your design must support a wide-ranging,
flexible set of applications flow options that can change over time, the applied style
may be your best option.

Summary
In this chapter, four key topics were discussed: 1) the underlying technologies behind
the Web, 2) the importance of adopting hypermedia as the basis for sharing data on
the Web, 3) the identification of nine H-Factors used in all hypermedia designs, and 4)
four basic design elements used in implementing a functioning hypermedia type.

Today the Web relies on HTTP as the transfer protocol for sending messages. These
messages are used to represent data using MIME media types. The representation

Summary | 33

model for the Web allows clients and servers to negotiate for preferred data formats
including support for future extensibility through the design of new data formats. The
development of the Web follows the introduction of hypermedia links as a method of
not only navigating between documents but also through the use of hypermedia con-
trols that support sending parameterized queries and write instructions to remote serv-
ers.

The essence of programming the Web is designing hypermedia-rich messages that can
be understood and passed between parties on the network. Unlike object-serialization
patterns that simply convert internal private data structures into bytes that can be
passed between client and server, the Web encourages the use of coarse-grained mes-
sages that include metadata that describes not only the data being passed but also the
state of the application at time of the request. The set of hypermedia elements that can
be used to communicate application state changes (H-Factors) is the same regardless
of the data format used to transfer the message. The design of these hypermedia mes-
sages depends on four key elements including data format, state transfer style, appli-
cation domain style, and flow control.

What’s Next?
The following three chapters illustrate the process of designing and implementing hy-
permedia APIs. Each chapter is devoted to a particular application domain and shows
how choices are made in the process of the hypermedia design (which H-Factors are
needed, what data format is selected, etc.) in order to achieve the desired outcome. The
hypermedia designs that follow are all based upon the concepts and techniques de-
scribed in this chapter.

Let’s design some hypermedia APIs!

34 | Chapter 1: Understanding Hypermedia

CHAPTER 2

XML Hypermedia

They that mistake life’s accessories for life itself are like
them that go too fast in a maze: their very haste confuses

them.

- Seneca

In this first hands-on design chapter, a simple read-only, XML-based media type will
be used to show how to convert a use case scenario into a successful design. Once the
design is completed, example server and client implementations will be explored in-
cluding one client example that shows how an autonomous web bot can successfully
choose from the available hypermedia links in order to reach a final goal.

Scenario
For the first project, what is needed is a web-enabled “Maze Game.” In this game, clients
should be able to request a maze to play and then be able to navigate from a predeter-
mined starting point through the maze to the exit. Clients should be able to use the
cardinal directions (north, south, east, and west) to move through a two-dimensional
space. Mazes could be of any size or shape; use any configuration of rooms and door-
ways.

What is needed is a media type that can express the state of a given client’s traversal
through the maze from start to finish. A minimum set of requirements for this media
type design should allow client applications (given an initial starting URI) to:

• Discover a list of available mazes

• Select one of the available mazes to play

• Recognize the existing doorways in each cell of the maze

• Navigate through a selected doorway into the next cell

• Recognize and navigate through the exit when it appears

35

Note that the requirements are expressed in terms of what clients can do. Hypermedia
designs almost always start with a focus on what clients will be doing. One of the
reasons for this is that in client-server transfer protocols like HTTP, all requests are
initiated by the client. Client-centered design also reinforces the notion that the repre-
sentation (message) received by the client must contain the next possible steps availa-
ble. For example, in the current project (the Maze Game), each response from the server
must include indications of where the doors are in the current room. The doors repre-
sent the next possible steps for the client application.

For the sake of the exercise, the server will generate what are called perfect mazes. These
are mazes that have rooms of equal sizes (four equal-length walls) with doors possible
on one or more sides. The mazes used in this example will always have one entrance
and one exit, too. However, it should be noted that these server limitations are imma-
terial to the media type design used to express mazes and that client’s current location
within a given maze. These restrictions are only to reduce the complexity of the code
used on the server to generate the maze, and to make it easier to write client code that
can solve the maze.

With these basic requirements in mind, a hypermedia design can be created.

Designing the Maze XML Media Type
The process of coming up with the actual design of a hypermedia type is just as much
art as science; there is no single way to approach the problem. However, the method-
ology outlined in this book is based on the notion that server responses will always
represent the state of the application from the client’s point of view. In other words,
each server response is a state representation. With this in mind, designers can start by
identifying a state of the application and crafting a representation of that state using
the elements, attributes, properties, values, etc. appropriate to the selected base format
(XML, JSON, HTML, etc.).

In this Maze Game example, the possible states of the application are relatively easy to
identify and model. In other, more extensive designs, it may be difficult to model all of
the possible states ahead of time. The reader will see other ways to approach the hy-
permedia design process in later chapters.

Identifying the State Transitions
For this project, there are only a few states of the application that need to be represented:

• A list of available mazes

• A single maze (selected from the previous list)

• A single room in the maze (including the available doorways and/or the entrance
or exit)

• The details of an error, if encountered along the way

36 | Chapter 2: XML Hypermedia

You’ll notice that the list of states includes error details. All hypermedia
designs should include the ability to render details about a particular
error. While HTTP supports returning response codes to indicate pos-
sible error states (4xx and 5xx codes), these are protocol-level indicators
and are usually inadequate for expressing the details of the application-
level error itself or any possible suggestions for remediation of the error,
retry options, etc.

Along with identifying the possible states for the application, hypermedia designs rely
on information for state transitions. Below is a modified list of the application states
along with the appropriate transitions for each identified state.

Collection State
In this state, the response represents a list of mazes. The possible transitions are:
1) select a maze (Item State), or 2) reload the list (Collection State).

Item State
In this state, the response represents details on a single maze. The possible transi-
tions are: 1) start into the maze, 2) return to the maze list (Collection State), or 3)
reload the maze (Item State).

Cell State
In this state, the response represents the details of a single room or cell in the maze.
The possible transitions are: 1) continue through one of the doorways to the next
room (Cell State), 2) return to the maze detail (Item State), 3) return to the maze
list (Collection State), or 4) reload the cell (Cell State).

Error State
In this state, the response represents the details on an error condition. For this
design there are no transitions supported.

Using the set of application states and possible valid transitions for each
is a very good way to approach hypermedia design. This is especially
true when using a Domain-Specific style of design.

Selecting the Basic Design Elements
One of the first things to do when creating a media type design is to review each of the
four basic design elements outlined in Chapter 1 (see “Hypermedia Design Ele-
ments” on page 20):

• Base Format

• State Transfer

• Domain Style

• Application Flow

Designing the Maze XML Media Type | 37

By settling these design questions early, the remaining process will go more smoothly.

For this project, the base format selected will be XML. XML is a widely supported
format on almost any platform and programming environment. That means we can
expect a wide range of client applications to be able to parse and process our Maze
Game design. In truth, almost any format will work. For example, there are libraries
for the JSON format in a wide range of programming languages, too. However, for this
project XML will be used anyway.

Since the requirements listed for this design do not include clients sending any data to
the server (i.e. no opportunities to write data), this design can adopt the Read-Only
state transfer style. By implementing this as a read-only design, client applications will
not need to understand how to parse parametrized queries or input form elements.
That means the media type need only support LO (Outbound Links) and possibly LE
(Embed Links), but does not need to support LT, LN, or LI H-Factors (see “Identifying
Hypermedia : H-Factors” on page 13). This will simplify both the design and imple-
mentation details, especially for the client.

The Domain Style for this design will be Specific. That means the design will contain
elements and attributes that apply directly to the problem domain: mazes. For example,
the root element in the XML document could be a <maze/> element, and each room
could be a <cell/>, etc. This will limit the applicability of this hypermedia design to
other problem domains (it will not make sense to try to use this design to handle card
games, for example), but it will also present a rather logical document model to anyone
attempting to render mazes for clients or servers.

Finally, there is the matter of Application Flow. For this design, the application flow
style will be Intrinsic, one that is built right into the media type itself. The design re-
quires only a small set of application flow options (get a list of mazes, select a maze,
start in the first room, navigate to the next room, pass through the exit). Like the Do-
main Style decision, this design will use elements and attributes that communicate the
possible actions in domain-specific language (north, south, east, west, start, exit, etc.).

With these design elements out of the way, it is time to work up the actual XML docu-
ment to represent mazes.

The Maze+XML Document
Designing the actual XML document to represent mazes requires deciding on the exact
elements and attributes needed to support the requirements of the domain space. XML
Elements names will be used to represent the various states of the application. These
XML elements will usually contain child elements to express the details of that partic-
ular state, too. Below are the high-level elements in the design:

<maze />

This element is the root element and will appear in every response, even the error
responses.

38 | Chapter 2: XML Hypermedia

<collection />

This element will represent the list of mazes available to the client. It will have one
or more child elements, each representing a selectable maze.

<item />

This element will represent a single maze, usually one selected by the client appli-
cation. It will have at least one child element that represents the starting point of
the maze.

<cell />

This element will represent a single cell or room within the maze, usually the cell
to which the client has navigated on its traverse through the maze. It will have one
or more child elements, each representing a possible doorway through which the
client can pass.

<error />

This element will represent the details of any error that has been encountered (e.g.
the client has attempted to pass through a wall, the server is unable to accept any
more requests, etc.). It will contain one or more elements to communicate various
details including possible ways to fix the problem and repeat the request.

With these high-level elements defined, it is possible to create a basic map of the hy-
permedia design at this point:

<maze>
 <collection />
 <item />
 <cell />
 <error />
</maze>

The next step is to complete the details for each of the top-level elements in the hyper-
media design. These details include data elements and attributes as well as H-Factors
(links) to express the state transitions.

The design walk-through here covers only the highlights. A complete
documentation of the Maze+XML media type can be found at the back
of this book (See Appendix C).

The collection element

The collection element will be used to represent the Collection State of the application.
This state supports a transition to a single maze representation (Item State) or to simply
reload the list. This design will represent both transitions using LO H-Factors.

For the Item State transitions, this design will use a <link/> element with href and
rel attributes to hold the URI and transition identifier respectively:

<link href="..." rel="maze" />

Designing the Maze XML Media Type | 39

The transition that supports reloading the list is actually a transition to the Collection
State. To support that, the design will include an href attribute on the <collection/>
element itself:

<collection href="...>...</collection>

With these added features, it is possible to fully represent that Collection State:

<maze>
 <collection href="...">
 <link href="..." rel="maze" />
 <link href="..." rel="maze" />
 ...
 </collection>
</maze>

Required, Optional, and Hypermedia Design
You may have noticed that, to this point, no elements or attributes have been indicated
as required or optional. In general, it is good practice to allow all design elements to be
treated as optional for representations. This provides for possible future changes in the
design without breaking existing clients.

There is a section in Chapter 5 (see “The RFC 2119 Keywords” on page 136) that
covers additional details on how to use a special set of standardized keywords (from
RFC 2119) to indicate the status of design elements.

The item element

The Item State of the application will be represented using the item element. This state
can be used to supply details about a single maze. For this project, the only detail will
be a link that points to the entrance of the maze. Other details that might be interesting
could be the name of the maze, its dimensions, etc.

The Item State supports starting into the maze (Item State), returning to the maze list
(Collection State), or reloading the maze details (Item State). Again, LO H-Factors will
be used to indicate these transitions. Using the previous description for the Collection
State as a guide, the following shows the design of the item element:

<maze>
 <item href="..." >
 <link href="..." rel="collection">
 <link href="..." rel="start" />
 </item>
</maze>

Note the placement of the href attribute on the <item/> element to support the Item
State transition (reloading the maze details). Also note the <link/> element with the
rel="collection" attribute to support the Collection State transition as well as the
<link/> element with the rel="start" attribute to support the first transition to the
Cell State.

40 | Chapter 2: XML Hypermedia

www.allitebooks.com

http://www.allitebooks.org

The cell element

Representation of the Cell State is the task of the cell element in this design. All possible
transitions such as moving through doorways (Cell State), returning to the maze details
(Item State), returning to the maze list (Collection State), or reloading the cell (Cell
State) will all be represented using LO H-Factors.

Below is a map of all the possible transitions for this element:

<maze>
 <cell href="...">
 <link href="..." rel="north" />
 <link href="..." rel="south" />
 <link href="..." rel="east" />
 <link href="..." rel="west" />
 <link href="..." rel="exit" />
 <link href="..." rel="maze" />
 <link href="..." rel="collection" />
 </cell>
</maze>

It is not likely that all the transitions listed above would be valid at the same time. Some
cell walls will not have doors and only one cell is likely to be the exit. However, the
example <cell/> element above shows all the possible transitions that clients must be
ready to handle.

You may have noticed that none of the design examples here contain
values for the href attribute. In fact, none of the hypermedia designs in
this book will contain static URIs or suggested resource names. Good hy-
permedia design focuses on properly representing application states and
possible transitions that should be available to the client. This allows
each server implementation to determine their own URI scheme, re-
source model, and any other details needed to support an application
that uses the target hypermedia type. The rationale behind this con-
straint on hypermedia designs was outlined in 2008 by Roy Fielding in
his blog post “REST APIs must be hypertext driven” (see “Roy Fielding’s
Hypertext API Guidelines” on page 163).

The error element

Finally, the error element will be used to represent the Error State of the application.
For this design, this element will contain only the data elements <title/>, <code/>, and
<message/>. These elements can be used by the server to pass any additional information
that is appropriate:

<maze>
 <error>
 <title>...</title>
 <code>...</code>
 <message>...</message>

Designing the Maze XML Media Type | 41

 </error>
</maze>

Sample Data
In order to validate the hypermedia design, you need a running server implementation.
Before you can implement the server, you need valid sample data. For this example,
the maze data is stored in CouchDB as a simple JSON object composed of 25 cells.
Each cell in the maze represents a room and each room as four walls, some of which
have doors. The walls with doors are represented by “0”s and the other walls are rep-
resented by “1”s. Below is the 5x5 maze used for validating this hypermedia design.

Below is the maze document stored in CouchDB that will be used for testing:

{
 "_id" : "five-by-five",
 "cells" : {
 "cell0":[1,1,1,0],
 "cell1":[1,1,1,0],
 "cell2":[1,1,0,0],
 "cell3":[0,1,0,1],
 "cell4":[0,1,1,0],
 "cell5":[1,0,1,0],
 "cell6":[1,0,0,1],
 "cell7":[0,0,1,0],
 "cell8":[1,1,0,0],
 "cell9":[0,0,1,1],
 "cell10":[1,0,0,1],
 "cell11":[0,1,1,0],
 "cell12":[1,0,1,1],
 "cell13":[1,0,0,1],
 "cell14":[0,1,1,0],
 "cell15":[1,1,1,0],
 "cell16":[1,0,1,0],
 "cell17":[1,1,0,0],
 "cell18":[0,1,0,1],
 "cell19":[0,0,1,0],
 "cell20":[1,0,0,1],
 "cell21":[0,0,0,1],
 "cell22":[0,0,1,1],
 "cell23":[1,1,0,1],
 "cell24":[0,0,1,1]
 }
}

See “Source Code” on page 217 for details on how to download the book’s source code
including the script for creating this CouchDB database.

42 | Chapter 2: XML Hypermedia

The Server Code
With the hypermedia design sketched out and sample data available, it’s time to im-
plement a server that emits responses for our new media type. This step makes it pos-
sible to validate the hypermedia design and make any adjustments that might be nee-
ded.

For the examples in this book, the servers will be implemented using the Express
framework for Node.js. See “Source Code” on page 217 for details on how to obtain
the full source code for this book. For brevity, and to focus on key portions of the
implementation, only selected portions of the code appear in this section of the chapter.
In this case, the server implementation has four code blocks, each corresponding to the
four top-level elements of the design (see “The Maze+XML Document” on page 38).
The code blocks represent the four possible states of the maze game. Along with the
code block, the Express framework uses an associated EJS template to render the actual
Maze+XML representation.

The Collection State Response
The Collection State lists the available mazes the server can share with the client ap-
plication. Below is the code block along with the rendering template:

// handle collection
app.get('/maze/', function(req, res){
 res.header('content-type',contentType);
 res.render('collection', {
 title : 'Maze+XML Hypermedia Example',
 site : 'http://localhost:3000/maze',
 });
});

<collection href="<%=site%>/maze/">
 <link rel="maze" href="<%=site%>/maze/five-by-five/" />
</collection>

For this example, just one maze is returned for the list. Here is an example runtime
representation of the collection state:

<maze version="1.0">
 <collection href="http://localhost:3000/maze/maze/">
 <link rel="maze" href="http://localhost:3000/maze/maze/five-by-five/"/>
 </collection>
</maze>

The Item State Response
The Item State represents details on a single (selected) maze. Below is the Node.js code
and EJS template for representing a single maze:

// handle item
app.get('/maze/:m', function (req, res) {

The Server Code | 43

 var mz;

 mz = (req.params.m || 'none');

 db.get(mz, function (err, doc) {
 res.header('content-type',contentType);
 res.render('item', {
 site : 'http://localhost:3000/maze',
 maze : mz,
 debug : doc
 });
 });
});

<item href="<%=site%>/<%=maze%>/">
 <link rel="start" href="<%=site%>/<%=maze%>/0:north" />
 <link rel="collection" href="<%=site%>/" />
 <debug>
 <%=debug%>
 </debug>
</item>

Note that the Item State returns three possible links: 1) the Item’s URI, 2) the start URI,
and the collection URI. At runtime, a valid Item response looks like this:

<maze version="1.0">
 <item href="http://localhost:3000/maze/five-by-five/">
 <link rel="start" href="http://localhost:3000/maze/five-by-five/0:north"/>
 <link rel="collection" href="http://localhost:3000/maze/"/>
 </item>
</maze>

The Cell State Response
The Cell State represents any of the standard cells within the maze. Below is Node.js
code and the EJS template for rendering standard cells:

// handle cell
app.get('/maze/:m/:c', function (req, res) {
 var mz, cz, x, ex, i, tot, sq;

 mz = (req.params.m || 'none');
 cz = (req.params.c || '0');

 db.get(mz, function (err, doc) {
 i = parseInt(cz.split(':')[0], 10);
 x = 'cell' + i;

 tot = Object.keys(doc.cells).length;
 ex = (i === tot-1 ? '1' : '0');
 sq = Math.sqrt(tot);

 res.header('content-type', contentType);
 res.render('cell', {
 site : 'http://localhost:3000/maze',

44 | Chapter 2: XML Hypermedia

 maze : mz,
 cell : cz,
 total : tot,
 side : sq,
 ix : [i-1, i + (sq*-1), i+1, i+sq],
 debug : doc.cells[x],
 exit : ex
 });
 });
});

This code is where the only computation for the server occurs. The line that computes
the next possible moves is the array that initializes the ix template variable. Below is
the template to match. You can see that this template uses <% if %> macros to see
whether a doorway should be rendered in the response. In this way, only the valid next
step links are presented to the client application:

<cell href="<%=site%>/<%=maze%>/<%=cell%>" rel="current">
 <% if(debug[0]=='0') { %>
 <link href="<%=site%>/<%=maze%>/<%=ix[0]%>:north" rel="north"/>
 <% } %>
 <% if(debug[1]=='0') { %>
 <link href="<%=site%>/<%=maze%>/<%=ix[1]%>:west" rel="west"/>
 <% } %>
 <% if(debug[2]=='0') { %>
 <link href="<%=site%>/<%=maze%>/<%=ix[2]%>:south" rel="south"/>
 <% } %>
 <% if(debug[3]=='0') { %>
 <link href="<%=site%>/<%=maze%>/<%=ix[3]%>:east" rel="east"/>
 <% } %>
 <% if(exit=='1') { %>
 <link href="<%=site%>/<%=maze%>/999" rel="exit" />
 <% } %>
 <link href="<%=site%>/" rel="collection" />
 <link href="<%=site%>/<%=maze%>/" rel="maze" />
</cell>

Here is an example of runtime representation of a cell in the maze:

<maze version="1.0">
 <cell href="http://localhost:3000/maze/five-by-five/5:east" rel="current">
 <link href="http://localhost:3000/maze/five-by-five/0:west" rel="west"/>
 <link href="http://localhost:3000/maze/five-by-five/10:east" rel="east"/>
 <link href="http://localhost:3000/maze/" rel="collection"/>
 <link href="http://localhost:3000/maze/five-by-five/" rel="maze"/>
 </cell>
</maze>

The Exit State Response
Although it is a cell representation, the Exit State response is treated as a special case
in this server implementation. The exit cell has different links (including one to allow
the client application to start the same maze over again). For this reason, there are
separate code and template blocks for the exit state:

The Server Code | 45

// handle exit
app.get('/maze/:m/999', function (req, res) {
 var mz, cz;

 mz = (req.params.m || 'none');
 cz = (req.params.c || '0');

 res.header('content-type', contentType);
 res.render('exit', {
 site : 'http://localhost:3000/maze',
 maze : mz,
 cell : cz,
 total : 0,
 side : 0,
 debug : '999',
 exit : '0'
 });
});

<cell href="<%=site%>/<%=maze%>/<%=cell%>" rel="exit">
 <link href="<%=site%>/<%=maze%>/0:north" rel="start" />
 <link href="<%=site%>/<%=maze%>/" rel="maze" />
 <link href="<%=site%>/" rel="collection" />
</cell>

And a valid runtime response that renders the exit state looks like this:

<maze version="1.0">
 <cell href="http://localhost:3000/maze/five-by-five/0" rel="exit">
 <link href="http://localhost:3000/maze/five-by-five/0:north" rel="start"/>
 <link href="http://localhost:3000/maze/five-by-five/" rel="maze"/>
 <link href="http://localhost:3000/maze/" rel="collection"/>
 </cell>
</maze>

The Client Code
Now that the server implementation is completed, it’s time to build some hypermedia
client applications that understand the Maze media type. For this example, two clients
will be developed: 1) a simple user interface modeled on classic adventure games of the
1990s, and 2) a web bot that automatically navigates and completes the maze without
any human intervention.

Both client applications will be implemented using HTML5, CSS, and JavaScript.

Maze Game Example
This example interface will prompt the user to navigate the maze, step-by-step, and
record their moves along the way. Attempts to make illegal or unknown moves will
result in a short message of confusion from the application. When the user has reached
the exit, the application will send out a congratulatory greeting.

46 | Chapter 2: XML Hypermedia

A screenshot of the Maze Game in action can be seen in Figure 2-1.

HTML5 Markup

The markup for this example is rather simple. It consists of a handful of div tags, a few
span elements, and one form. All the details of populating the UI via the server responses
are handled by the JavaScript. Below is the complete HTML5 markup for this example
(maze-game.html):

<!DOCTYPE html>
<html>
 <head>
 <title>Maze Game</title>
 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
 <link rel="stylesheet" href="/stylesheets/maze-game.css">
 <script type="text/javascript" src="/javascripts/ajax.js"></script>
 <script type="text/javascript" src="/javascripts/mozxpath.js"></script>
 <script type="text/javascript" src="/javascripts/maze-game.js"></script>
 </head>
 <body>
 <h1>Maze Game</h1>
 <div id="play-space">
 <div id="history"></div>
 <div id="display">
 You have the following options:

 </div>
 <form name="interface" action="#" method="post">
 <fieldset>

Figure 2-1. Maze Game Screenshot

The Client Code | 47

 <legend>What would you like to do?</legend>
 <input type="text" name="move" value="">
 <input type="submit" value="Go">
 </fieldset>
 </form>
 </div>
 </body>
</html>

JavaScript

The client-side scripting for this example needs to handle only a few details including:

• Initializing the UI and loading the first Maze+XML response

• Displaying the possible options to the user based on the hypermedia links sent by
the server

• Accepting (and validating) the user’s next move

• Processing the valid move request and retrieving the next set of options from the
server

• Repeat these steps until the user reachers the exit (or gives up trying)

When the page first loads, the application handles some initialization work (registering
the event sink), sends a request for a maze representation to the server, and processes
the response. Below is the relevant JavaScript code:

var g = {};
g.moves = 0;
g.links = [];
g.mediaType = "application/vnd.amundsen.maze+xml";
g.startLink = "http://localhost:3000/maze/five-by-five/";
g.sorryMsg = 'Sorry, I don\'t understand what you want to do.';
g.successMsg = 'Congratulations! you\'ve made it out of the maze!';

function init() {
 attachEvents();
 getDocument(g.startLink);
 setFocus();
}

function attachEvents() {
 var elm;

 elm = document.getElementsByName('interface')[0];
 if(elm) {
 elm.onsubmit = function(){return move();};
 }
}

function getDocument(url) {
 ajax.httpGet(url,null,processLinks,true,'processLinks',{'accept':g.mediaType});
}

48 | Chapter 2: XML Hypermedia

function setFocus() {
 var elm;

 elm = document.getElementsByName('move')[0];
 if(elm) {
 elm.value = '';
 elm.focus();
 }
}

You should notice that the script for this example contains only one
hardcoded URI: the one needed to start the game. All the other links
come directly from the server responses. There is no code in the client
to construct new URIs or call pages directly. This is one important aspect
of writing hypermedia clients: limit the number of URIs coded directly
into the application to, if at all possible, just one.

The details of processing the response from the client and displaying the options is the
next step. In this example, the application finds all the link elements in the response
and displays the rel values from each of those links to the user. These rel values rep-
resent the list of valid commands available to the user as possible next steps in the game.

The rel Attribute and Space-Separated Values
The HTML 4.01 spec defines the value of the rel attributes as “a space-separated list
of link types.” That means rel="very important invoice" is a syntactically correct
rel attribute. You’ll notice the client-side code in this example correctly parses the
rel value as a collection of space-separated values when it populates the link collection
for each server response. This is an example of good hypermedia client coding. Even
though the hypermedia design described earlier in this chapter did not indicate the
rel values could contain more than one word, the client is coded to match the generally
understood specification of a rel attribute.

function processLinks(response) {
 var xml, link, i, x, i, j, rels, href;

 g.links = [];
 xml = response.selectNodes('//link');
 for(i = 0, x = xml.length; i < x; i++) {
 href = xml[i].getAttribute('href');
 rels = xml[i].getAttribute('rel').split(' ');
 for(j = 0, y = rels.length; j < y; j++) {
 link = {'rel' : rels[j], 'href' : href};
 g.links[g.links.length] = link;
 }
 }
 showOptions();
}

The Client Code | 49

function showOptions() {
 var elm, i, x, txt;

 txt = '';
 elm = document.getElementsByClassName('options')[0];
 if(elm) {
 for(i = 0, x = g.links.length; i < x; i++) {
 if(i>0){
 txt += ', ';
 }
 if(g.links[i].rel === 'collection') {
 txt += 'clear';
 }
 else {
 txt += g.links[i].rel;
 }
 }
 elm.innerHTML = txt;
 }
}

Once the options are displayed, the UI simply waits for the user to submit a command.
Each command is validated against the current list (the ones for this representation)
and, if valid, is processed and executed. Command processing includes validating the
command, incrementing the number of moves executed by the user, updating the user’s
history, and then executing the command by selecting the associated href of the selec-
ted link to the server:

function move() {
 var elm, mv, href;

 elm = document.getElementsByName('move')[0];
 if(elm) {
 mv = elm.value;
 if(mv === 'clear') {
 reload();
 }
 else {
 href = getLinkElement(mv);
 if(href) {
 updateHistory(mv);
 getDocument(href);
 }
 else {
 alert(g.sorryMsg);
 }
 }
 setFocus();
 }
 return false;
}

function reload() {
 history.go(0);
}

50 | Chapter 2: XML Hypermedia

www.allitebooks.com

http://www.allitebooks.org

function getLinkElement(key) {
 var i, x, rtn;

 for(i = 0, x = g.links.length; i < x; i++) {
 if(g.links[i].rel === key) {
 rtn = g.links[i].href;
 break;
 }
 }
 return rtn || '';
}

function updateHistory(mv) {
 var elm, txt;

 elm = document.getElementById('history');
 if(elm) {
 txt = elm.innerHTML;
 g.moves++;
 if(mv==='exit') {
 txt = g.moves +': ' + g.successMsg + '
' + txt;
 }
 else {
 txt = g.moves + ':' + mv + '
' + txt;
 }
 elm.innerHTML = txt;
 }
}

That is the complete set of markup and coding for this example application. You should
notice that the application is a simple state machine that retrieves a document from the
server, scans the document for links, updates the UI to reflect the returned links, and
waits for the user to initiate the process again. This is the essence of hypermedia client
implementation.

The author was able to reach the exit of this maze in just twelve steps.

Maze Bot Example
Since the maze application domain has a clear start and exit point, it is relatively easy
to write an autonomous web bot to traverse the maze. It also helps that this hypermedia
design is read-only and will not require the client to maintain any state to send back to
the server. All the client needs to do is select links and make requests until the exit is
reached.

Figure 2-2 shows the results of one run of the web bot.

The Client Code | 51

HTML5 Markup

The HTML5 markup for the web bot is very simple: just some text, a button, and a
DIV to display the bot’s progress through the maze. Below is the complete HTML5 for
the maze-bot.html page:

<!DOCTYPE html>
<html>
 <head>
 <title>maze-bot</title>
 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
 <link rel="stylesheet" href="/stylesheets/maze-bot.css">
 <script type="text/javascript" src="/javascripts/ajax.js"></script>
 <script type="text/javascript" src="/javascripts/mozxpath.js"></script>
 <script type="text/javascript" src="/javascripts/maze-bot.js"></script>
 </head>
 <body>
 <h1>maze-bot</h1>
 <div id="display-space">
 <div id="notes">
 <p>
 This is a simple autonomous maze bot.
 Click the button to traverse the maze on the server.
 </p>
 <p>
 <button id="go">Go</button>
 </p>
 </div>
 <div id="game-play"></div>
 </div>
 </body>
</html>

Figure 2-2. Maze Bot Screenshot

52 | Chapter 2: XML Hypermedia

JavaScript

The client-side script for the web bot is also relatively simple. The most interesting part
of the script is the part that makes the decision of which link to follow for each move
through the maze.

The first code block shows the initialization, including an array to hold the rules for
selecting links, and the setup routine to ready the bot for traveling through the maze:

var g = {};
g.idx = 1;
g.links = [];
g.facing = '';
g.done = false;
g.start = false;
g.mediaType = "application/vnd.amundsen.maze+xml";
g.startLink = "http://localhost:3000/maze/five-by-five/";

// simple right-hand wall-following rules:
// if door-right, face right
// else-if door-forward, face forward
// else-if door-left, face left
// else face back
g.rules = {
 'east' : ['south', 'east', 'north', 'west'],
 'south' : ['west', 'south', 'east', 'north'],
 'west' : ['north', 'west', 'south', 'east'],
 'north' : ['east', 'north', 'west', 'south']
};

function init() {
 attachEvents();
 setup();
}

function attachEvents() {
 var elm;

 elm = document.getElementById('go');
 if(elm) {
 elm.onclick = firstMove;
 }
}

function setup() {
 var elm;

 g.done = false;
 g.start = false;

 elm = document.getElementById('game-play');
 if(elm) {
 elm.innerHTML = '';
 }
}

The Client Code | 53

The second code block shows the first call to the server (to retrieve the item state of a
maze) along with some support routines for locating a link in the current collection and
displaying the bot’s progress on the screen:

function firstMove() {
 if(g.done === true) {
 setup();
 firstMove();
 }
 else {
 g.idx = 1;
 getDocument(g.startLink);
 }
}

function getDocument(url) {
 ajax.httpGet(url, null, processLinks, true, 'processLinks', {'accept' :
g.mediaType});
}

function getLinkElement(key) {
 var i, x, rtn;

 for(i = 0, x = g.links.length; i < x; i++) {
 if(g.links[i].rel === key) {
 rtn = g.links[i].href;
 break;
 }
 }
 return rtn || '';
}

function printLine(msg) {
 var elm, txt, x;

 elm = document.getElementById('game-play');
 if(elm) {
 txt = elm.innerHTML;
 txt = g.idx++ + ': ' + msg + '
' + txt;
 elm.innerHTML = txt;
 }
}

The last code block is the one that shows the bot’s decision tree for selecting the pre-
ferred link from those returned in the representation by the server. You can see that,
after collecting all the links from the representation, the bot first looks to see if there is
an exit link (indicating the end of processing). If there is no exit, the bot checks to see
if there is a start link (indicating the start of a maze traversal). Finally, if there is no
exit or start link, the bot uses the right-hand wall, following rules to select the most
advantageous link (based on the direction the bot is facing) as the next step in the maze.

54 | Chapter 2: XML Hypermedia

Note that the bot never checks the value of the URIs in each link, just
the rel values associated with the link. This is another key to imple-
menting successful hypermedia clients. Servers may change the actual
URIs for links at any time. But, in good hypermedia designs, the rel
values are predefined and static. Client applications that target rel val-
ues for processing will be successful even when servers need to change
the actual URIs associated with those static rel values.

function processLinks(response) {
 var xml, i, x, j, y, rels, href, link, flg, rules;

 flg = false;
 rules = [];
 g.links = [];

 // get all the links in the response
 xml = response.selectNodes('//link');
 for(i = 0, x = xml.length; i < x; i++) {
 href = xml[i].getAttribute('href');
 rels = xml[i].getAttribute('rel').split(' ');
 for(j = 0, y = rels.length; j < y; j++) {
 link = {'rel' : rels[j], 'href' : href};
 g.links[g.links.length] = link;
 }
 }

 // is there an exit?
 href = getLinkElement('exit');
 if(href !== '') {
 g.done = true;
 printLine(href + ' *** DONE!');
 alert('Done in only ' + --g.idx + ' moves!');
 return;
 }

 // is there an entrance?
 if(flg === false && g.start === false) {
 href = getLinkElement('start');
 if(href !== '') {
 flg = true;
 g.start = true;
 g.facing = 'north';
 printLine(href);
 }
 }

 // ok, let's "wall-follow"
 if(flg === false) {
 rules = g.rules[g.facing];
 for(i = 0, x = rules.length; i < x; i++) {
 href = getLinkElement(rules[i]);
 if(href !== '') {
 flg = true;

The Client Code | 55

 g.facing = rules[i];
 printLine(href);
 break;
 }
 }
 }

 // update pointer, handle next move
 if(href !== '') {
 getDocument(href);
 }
}

Wall-Following and Mazes
The algorithm used in the web bot example is called the wall-follower or right-hand or
left-hand rule. It works for this test data because the maze described in the test data is
a two-dimensional, simply connected maze (each wall in the maze is connected to at
least one other wall). The solution is based on the principle that, in these types of mazes,
if you place your hand on one wall as you travel through the maze you will eventually
find an exit. Of course, there are also ways to construct mazes such that the wall-
follower rule does not guarantee success.

Also, if you compare the results of the web bot’s progress through the maze (the author’s
bot took 34 steps before reaching the exit), you will find that the wall-follower rule,
while effective, is not very efficient.

Finally, there are ways to improve this bot’s performance. That task is left to the reader.

Summary
This chapter used the scenario of representing a two-dimensional maze to illustrate a
read-only, domain-specific hypermedia design with intrinsic application flow using the
XML data format. The process of identifying top-level elements in the design as well
as appropriate link relations for each state was outlined.

Some test data was generated and a simple server was implemented using the top-level
design elements as guides to representing the set of possible states for the application.

Lastly, two example client implementations were shown. One based on humans mak-
ing selections and traversing the maze, and one based on an autonomous web bot using
a simple algorithm to select the appropriate links in order to reach the maze exit.

In the next chapter, a JSON-based hypermedia design that supports both read and write
operations will be explored.

56 | Chapter 2: XML Hypermedia

CHAPTER 3

JSON Hypermedia

I have the world’s largest collection of seashells. I keep
it on all the beaches of the world; perhaps you’ve seen it.

- Stephen Wright

The second example chapter explores the challenges and advantages of using JSON as
a base for designing a hypermedia type. The scenario includes requirements for basic
read/write semantics for managing simple lists (friends, tasks, blog entries, etc.). This
scenario relies on generic design that supports the ability to create customized imple-
mentations that reflect specific application domains not considered during the initial
design. After designing the type and documenting the application domain, a sample
server is built using test data and two clients are to be implemented: one that employs
a single-page interface (SPI) model for HTML browsers and one that offers a quick
command-line interface built using only Node.js.

Scenario
Unlike the Maze+XML media type, which was designed to support a very specific sce-
nario, this example needs to support a range of similar implementations, that of man-
aging lists such as contacts, tasks, bookmarks, blog entries, comments, etc. Also, unlike
the last example, this one requires support for full read/write access to the data. The
hypermedia design should contain enough application control information to allow
clients to know how (and when) to add, edit, and delete data from the list. Finally,
users should be able to discover and execute predefined queries to filter the server
responses.

As the reader may recall from the last example, the basic scenario is expressed from the
point of view of the user or client-side application. This allows the hypermedia design
to adopt the client-centered view and creates a design that will support the use case
regardless of the available server-side components (file systems, databases, etc.). Ide-
ally, the resulting design should be workable no matter what technologies, languages,
or frameworks are available to server or client implementors.

57

As in all the examples in this book, the data will be stored in CouchDB and the server
will be hosted in Node.js. The client applications will be written using HTML and
JavaScript (for a browser sample) and using Node.js (for a command line sample).

Designing the Collection+JSON Media-Type
Since the clients will be coded using JavaScript, the data format for this hypermedia
design will be JSON. Along with settling the other basic element decisions, it is also
important to identify the state transitions for this scenario and then proceed to map
out the solution.

Identifying the State Transitions
Since the use case calls for simple list management, there are just a few possible states
that need to be represented:

• The collection of items

• A single item in the list

• A list of possible queries that can be executed against the item list

• A template or blueprint for adding or editing items

• Details of an error, if encountered along the way

For the states listed above, there are really only three interesting cases:

Collection State
In this state, the response represents a set of items from the list. The response may
also include details on the available queries and the template to use for writing
items to the list. The possible transitions are: 1) select a single item (Item State), 2)
add a new item (Item State), 3) execute one of the available queries (Collection
State), or 4) reload the list (Collection State).

Item State
In this state, the response represents a single item from the list. The response may
include the list of available queries and/or the write template for editing this item.
The possible transitions are: 1) update this item (Item State), 2) delete this item
(Collection State), reload this item (Item State), or return to the list (Collection
State).

Error State
In this state, the response represents details on the most recent error encountered
on the server. For this design there are no transitions supported.

Most all work can be done using only the two primary states (Collection and Item).
However, as an additional design feature for this example, two more possible states
will be added. Since it is possible that the list of queries could be long or not always

58 | Chapter 3: JSON Hypermedia

applicable (some users may not be able to see all possible queries), a new state will be
added;

Query State
In this state, the response represents the list of possible queries that can be executed
against the collection. The possible transitions are: 1) execute a query (Collection
State), 2) return to the list (Collection State), or 3) reload the list of queries (Query
State).

It might also be necessary to allow clients to request a representation of only the tem-
plate used to add/edit items. This can be handy since some users may not be allowed
to add/edit the items or the template may not be available at all times (there may be
times when no new items are allowed in the list, or the list cannot be edited, etc.). So
there will be one more state for this design:

Template State
In this state, the response represents the template that should be used to add or
edit items. The possible transitions are: 1) Add a new item (Item State), 2) edit an
existing item (Item State), return to the list (Collection State), or reload the template
(Template State).

Selecting the Basic Design Elements
Just as in Chapter 2, the initial process of mapping out the design involves selecting the
basic design elements.

For this example, since both clients will be written using JavaScript (the HTML and
Node.js applications), the JSON data format is a good fit. It’s also important to point
out that the JSON data format is supported on many other platforms and languages.
Even if we were implementing clients that did not rely on JavaScript, JSON could still
be a viable choice. In this case, since the scenario calls for a design based on lists of
links and data elements, the JSON data format’s strong support for hash tables and
arrays makes it a good fit for our design.

The scenario calls for the ability to support CRUD-style operations along with prede-
fined filters or queries. This limited style of state transfer means the use of the Predefined
State Transfer pattern would be a good fit. By establishing the mapping of HTTP meth-
ods against the collection URI (for POST[create]) and the item URI (for PUT[update]
and DELETE), clients can easily support the full range of editing for the collection.
Clients can also easily map HTTP GET to the collection, item, and query URIs to
support the filters.

Since the design calls for creating a hypermedia type that can be applied to a range of
related solutions (lists of friends, tasks, shopping items, etc.) adopting a Generic Do-
main style is a logical choice. That means the names for the objects, arrays, and prop-
erties can remain rather general (e.g. collection, item, data, link, etc.). Applying ad-

Designing the Collection+JSON Media-Type | 59

ditional semantic information can be done via the values applied to links (e.g. rel="shop
ping-list"), and the values for data elements (e.g. name="first-name", etc.).

Finally, the application flow for this design can be built directly into the media type
design: Intrinsic. The design calls for simple read/write and filtering so there does not
need to be any detailed application flow described within the design. This is another
case where coding client applications to recognize the state transfer elements (the col-
lection and item URIs along with the query URIs) is relatively easy and reliable for a
wide range of possible uses.

With these design decisions settled, it’s time to map out the actual JSON document
that can be used to represent a wide range of lists and related queries.

The Collection+JSON Document
For this design, instead of using the possible states and transitions as a starting point,
the work will start with a single top-level layout of the possible elements in a Collection
State response. From that point, additional details can be added as the design drills
down into the lowest level of properties in the hypermedia type.

Below is a brief rendering of the possible contents of that Collection State of a Collection
+JSON document.:

// sample colleciton.json map
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "links" : [ARRAY],
 "items :
 [
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" : [ARRAY]
 },
 ...
],
 "queries" : [ARRAY],
 "template" :
 {
 "data" : [ARRAY]
 },
 "error" : {OBJECT}
 }
}

There are two simple properties in the collection object (href and version), two top-
level arrays (links to hold collection-level URIs and items to hold the actual data in the

60 | Chapter 3: JSON Hypermedia

list), and two child objects (template and error). The items array has an href property,
and two child arrays (data and links), and the template object as a child array (data).

That outlines the basics of this design. It is capable of representing a relatively wide
range of list types. It can support add, edit, and delete actions using the URIs from the
list, and each item along with a write template supplied to the server. It also supports
representing a list of available queries that can be executed by the client application as
needed.

Below is a more detailed set of design descriptions for the high-level objects and arrays
in this JSON-based media type.

A complete set of documentation for this design can be found at the
back of this book (See Appendix D).

Objects

In JSON documents, an object is an unordered collection of zero or more name/value
pairs, where a name is a string and a value is a string, number, boolean, null, object, or
array. The following elements are represented as objects in Collection+JSON docu-
ments: collection, error, and template.

The collection object contains the items in the representation. It is
a top-level document property. It has an href property that is the URI of the collection.
This value can be used to load the collection document and, if supported by the server,
can be used as the target URI for adding new items to the collection using HTTP POST.

The collection object may have the following child elements: links, items, queries,
template. It is also possible that the collection response will contain an error object:

// sample collection object
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "links" : [ARRAY],
 "items : [ARRAY],
 "queries" : [ARRAY],
 "template" : {OBJECT},
 "error" : {OBJECT}
 }
}

The error object contains additional information on the latest error
condition reported by the server. It is a top-level document property. The following
elements can appear as child properties: code, message, and title.

The collection object.

The error object.

Designing the Collection+JSON Media-Type | 61

// sample error object
{
 "error" :
 {
 "title" : STRING,
 "code" : STRING,
 "message" : STRING
 }
}

The template object contains all of the input elements used to add or
edit collection items. It is a top-level document property and should contain a list of
one or more data elements. Essentially, the template object is the equivalent in this
design of the HTML FORM and INPUT elements. The template object has a variable
number of data elements, each representing a name/value pair to be sent to the server
for processing. Whenever a client wants to compose a payload for adding a new item,
this is the guide. It should also be used when updating an existing item:

// sample template object
{
 "template" :
 {
 "data" :
 [
 {"name" : "full-name", "value" : "", "prompt" : "Your Full Name"},
 {"name" : "email", "value" : "", "prompt" : "Your Email Address"}
]
 }
}

Arrays

In JSON, an array is an ordered sequence of zero or more values. The following elements
are always represented as arrays in Collection+JSON documents: items, data, links,
and queries.

The data array is a child property of the items array and the template
object. It contains one or more anonymous data objects. Each object can have any of
three possible properties: name (REQUIRED), value (OPTIONAL), and prompt (OP-
TIONAL).

Below is an example of a data array within an item. This item has two data elements
(full-name and email):

// example of a data array
"items" :
[
 {
 "href" : "http://example.org/friends/jdoe",
 "data" :
 [
 {"name" : "full-name", "value" : "J. Doe", "prompt" : "Full Name"},
 {"name" : "email", "value" : "jdoe@example.org", "prompt" : "Email"}

The template object.

The data array.

62 | Chapter 3: JSON Hypermedia

]
 }
]

The items array represents the list of records in the Collection+JSON
document. It is a child property of the collection object.

Each element in the items array has an href property with a URI. This URI can be used
to retrieve a response representing the associated item. It may also be used to edit (via
HTTP PUT) or delete (via HTTP DELETE) the associated item. Typically item elements
have a data array and a link array:

// sample items array
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "items" :
 [
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" : [ARRAY]
 },
 ...
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" : [ARRAY]
 }
]
 }
}

The links array is an optional child property of the items array. It contains
one or more anonymous objects, each with five possible properties: href (REQUIRED),
rel (REQURIED), name (OPTIONAL), render (OPTIONAL), and prompt (OP-
TIONAL).

Below is an item with the links collection illustrated:

// sample links array
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "items" :
 [
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" :
 [

The items array.

The links array.

Designing the Collection+JSON Media-Type | 63

 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING, "render" :
"image"},
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING}, "render" :
"link",
 ...
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING}
]
 }
]
 }
}

The render property is optional. If it is set to “image” then the link should be treated
as an embeddable image (e.g. the HTML IMG tag). If it is missing or set to “link,” the
link should be treated as a navigation link (e.g. the HTML A tag).

The queries array is an optional top-level property. It contains one or
more anonymous objects; each object composed of five possible properties: href (RE-
QUIRED), rel (REQUIRED), name (OPTIONAL), prompt (OPTIONAL), and a data
array (OPTIONAL). If present, the data array represents query parameters for the as-
sociated href property of the same object:

// query template sample
{
 "queries" :
 [
 {
 "href : "http://example.org/search",
 "rel" : "search",
 "prompt" : "Enter search string",
 "data" :
 [
 {"name" : "search", "value" : ""}
]
 }
]
}

When the query object contains one or more data elements, those data elements are
treated as a template for assembling queries. This is similar to the way HTML FORMs
work when the method attribute is set to GET. In the above example, if a user entered
“JSON” in the “search” data element, the client should construct a GET URI that looks
like this:

http://example.org/search?search=JSON

The Tasks Application Semantics
In cases where the media type design is not Domain-Specific, additional information
will be needed in order for clients and servers to share proper understanding of the
messages passed between them. This additional information is sometimes called Do-
main Semantics or Application-Level Semantics. This added semantic information can

The queries array.

64 | Chapter 3: JSON Hypermedia

be documented, and that documentation can be used when implementing client and
server applications that will use the media type to which the semantics are applied.

The details of Application-Level Semantics is covered in detail later in
this book (see Chapter 4).

The process of documenting an application’s domain semantics involves identifying
data elements that are important for the domain (name, address, phone, etc.), the states
to represent (a list of names, a single person, etc.), and the state transfers or data-passing
operations (send a search string, etc.) needed to support the domain.

Application Semantics vs. Transfer Protocol
In this book, the phrases “Application Semantics” and “Domain Semantics” are used
interchangeably. These phrases refer to the application-specific interactions of the tar-
get domain. For example, the ability to read and write users’ records and query the list
of existing users are application-specific. Some of these app-specific operations may
require inputs (a search string, etc.), others may not. The exact data that is written to
storage for a user record (name, email, address, etc.) are also application-specific. De-
scribing the needed operations and data passed between parties can be viewed as the
application semantics. These will be the same no matter what data format, media-type,
or network protocol is used when implementing them.

The transfer protocol used for most web implementations is HTTP (Hypertext Transfer
Protocol). However, there are other viable transfer protocols such as FTP (File Transfer
Protocol), XMPP (Extensible Messaging and Presence Protocol), and others. Each pro-
tocol has its own set of interaction rules (methods, status codes, etc.) that are inde-
pendent of any application. Just as application semantics are the same no matter the
data format or media type, protocol rules are the same no matter the application that
is implemented.

It is important to keep the semantics of the application and the rules of the protocol
separate when implementing a design. This is especially handy if you want to be able
to apply the same design details to a new protocol (e.g. implement a user search using
XMPP or HTTP) or implement the same application semantics using a new media type
(e.g. release an XML version of user search and a JSON version of user search).

How you go about designing the application semantic details is closely tied to the style
of the target media type. For example, in a domain-generic design such as Collection
+JSON the options for transferring state are limited to the CRUD+Query model. For
Collection+JSON, documenting the application-level semantics means identifying the
data model, populating the write template, and identifying the list of queries to support
the problem domain.

The Tasks Application Semantics | 65

The Data Model
For this chapter, a simple task management application will be implemented using the
Collection+JSON media type. Below are the data model elements needed for a simple
task list application:

Description
The description of the task

Completed
A simple flag (yes/no, true/false) to indicate the task has been completed

Date created
Date the task was created (full day, month, year)

Date due
Date the task is due (full day, month, year)

While the above fields may not cover all of the possibilities of a full-featured task man-
agement application, they are enough to illustrate the process of designing and imple-
menting a domain-generic hypermedia type.

To translate this data model into Collection+JSON, the data properties shown above
need to be expressed as an item in the Collection+JSON format. Below is a typical
example:

// expressing the "tasks" data model in Collection.JSON
"items" :
[
 {
 "href" : "...",
 "data" :
 [
 {"name" : "description]", "value" : "this is my first task", "prompt" :
"Description"},
 {"name" : "completed", "value" : "true", "prompt" : "Completed"},
 {"name" : "dateCreated", "value" : "2011-09-01", "prompt" : "Date Created"},
 {"name" : "dateDue", "value" : "2011-09-03", "prompt" : "Date Due"}
]
 }
]

Notice that there is no value supplied in this example for the href property. The “tasks”
data model will use this value as the unique identifier for the task item. The value of
this property will be left to the server implementation.

A good media type design does not constrain servers’ ability to deter-
mine their own resource identities. Resource identifiers are the respon-
sibility of server implementors, not media type designers.

66 | Chapter 3: JSON Hypermedia

The example shown above also includes use of the Collection+JSON prompt property.
This is an optional property in Collection+JSON, but will be handy in case client ap-
plications want to provide prompts to human users when rendering the data.

The Write Template
Another key element in the Collection+JSON hypermedia type is the Write Template.
This template allows servers to tell clients the properties that can be written to the server
at any given time. In the case of the tasks implementation example, the following write
template can work for both create and update operations:

// write template for "tasks" application
{
 "template" :
 {
 "data" :
 [
 {"name" : "description]", "value" : "", "prompt" : "Description"},
 {"name" : "completed", "value" : "", "prompt" : "Completed"},
 {"name" : "dateDue", "value" : "", "prompt" : "Date Due"}
]
 }
}

The data array in the template above looks almost identical to the one shown in the
previous section. The only difference is the dateCreated element that appears in the
first array and not the second. This is a example of a read-only property implementation
in the Collection+JSON media type.

Predefined Queries
The Collection+JSON design allows servers to return a list of possible queries when
returning response representations to clients. The queries can be simple links or may
allow clients to supply one or more optional arguments (similar to the way HTML form
elements work).

For the task management implementation, four different queries will be used:

All
Returns all of the records in the system

Open
Returns all of the records where the completed property is set to “false”

Closed
Returns all of the records where the completed property is set to “true”

Date Due
Returns all of the records where the dateDue property is within the supplied date
range; accepts two optional arguments: dateStart and dateStop

The Tasks Application Semantics | 67

With these four queries defined, the next step is to express them using the Collection
+JSON media type:

// query template sample
{
 "queries" :
 [
 {
 "href" : "...",
 "rel" : "all",
 "prompt" : "All tasks"
 },
 {
 "href" : "...",
 "rel" : "open",
 "prompt" : "Open tasks"
 },
 {
 "href" : "...",
 "rel" : "closed",
 "prompt" : "Closed tasks"
 },
 {
 "href : "..",
 "rel" : "date-due",
 "prompt" : "Date due",
 "data" :
 [
 {"name" : "dateStart", "value" : "", "prompt" : "Start Date"},
 {"name" : "dateStop", "value" : "", "prompt" : "Stop Date")
]
 }
]
}

As was seen in earlier examples, the href property is left blank in these designs to allow
servers to determine the appropriate URIs for their own implementations.

This completes the task of defining the Task Management application-level semantics
for the Collection+JSON hypermedia type. With the media type design completed and
the application semantics defined, it is now possible to create a server that can render
sample task data in response representations that Collection+JSON-aware clients can
understand.

Sample Data
In order to validate both the hypermedia design and the application-level semantics,
live data is needed. For this chapter, a simple starter data set will be created in CouchDB.
It will support create/update/delete operations using simple validation rules. It will also
provide four views to match the predefined queries identified in the previous section.

68 | Chapter 3: JSON Hypermedia

Once the data store is created, configured, and populated with data, we can move on
to creating working server and client implementations that use the Collection+JSON
media type.

Task Documents
In this implementation, each task will be stored as a document in CouchDB. Below is
a sample task document:

{
 "_id" : "task1",
 "description" : "This is my first task.",
 "completed" : false,
 "dateCreated" : "2011-06-01",
 "dateDue" : "2011-12-31"
}

Note that the document matches the details of the data model previously outlined (see
“The Data Model” on page 66). The _id property is the internal unique identifier re-
quired by CouchDB. Server implementations are free to use this value to create a public
unique identifier (URI) for the data record.

Design Document
CouchDB uses a design document to hold a number of important aspects of a database
including the validation routines for adding/updating records and a list of views that
can be used to filter data lists for queries. Since the Collection+JSON media type allows
for creating and updating records, this CouchDB implementation has a validation
function as part of its design:

// couchdb input validation function
...
"validate_doc_update": "function(newDoc, oldDoc, userCtx) {

 function require(field, message) {
 message = message || field + ' is required';
 if (!newDoc[field]) {
 throw({forbidden : message});
 }
 };

 function unchanged(field) {
 if(oldDoc && toJSON(oldDoc[field]) !== toJSON(newDoc[field])) {
 throw({forbidden : field + ' is read-only'});
 }
 };

 require('description');
 require('dateCreated');
 require('dateDue');

Sample Data | 69

 unchanged('dateCreated');

}"
 ...

In addition to the validation function, this database also has a set of predefined views
to support the application semantics identified earlier (see “Predefined Quer-
ies” on page 67). Below is the list of view functions in the test database for this example:

// couchdb views for the "tasks" app
...
"views" : {

 "all" : {
 "map" : "function(doc){
 emit(doc.dateDue,doc);
 }"
 },

 "open" : {
 "map" : "function(doc) {
 if(doc.description && doc.dateCreated && doc.dateDue) {
 if(doc.completed===false) {
 emit(doc.dateDue,doc);
 }
 }
 }"
 },

 "closed" : {
 "map" : "function(doc) {
 if(doc.description && doc.dateCreated && doc.dateDue) {
 if(doc.completed===true) {
 emit(doc.dateDue,doc);
 }
 }
 }"
 },

 "due_date" : {
 "map" : "function(doc) {
 if(doc.description && doc.dateCreated && doc.dateDue) {
 emit(doc.dateDue,doc);
 }
 }"
 }
},
...

You may notice that the last view listed above (due_date) has no arguments even though
the application semantics call for two optional arguments (dateStart and dateStop).
CouchDB has a set of predefined query parameters for use for any views. For this ex-
ample, CouchDB’s startkey and endkey parameters will be used to support the
due_date query.

70 | Chapter 3: JSON Hypermedia

The Server Code
With a test set of data in place, the next step is to implement a server that supports the
Collection+JSON media type with the Tasks profile. As in Chapter 2 on XML designs,
the server code shown here will only cover the highlights of the implementation. See
“Source Code” on page 217 for details on how to obtain the full source code for this
book.

The Collection Response
The collection response is, for this media type, the most common response. Our server
implementation will always return a full Collection+JSON response including any col-
lection links, queries, the write template, and the list of items. Below is the Node.js
code to handle the response:

/* handle default task list */
app.get('/collection/tasks/', function(req, res){

 var view = '/_design/example/_view/due_date';

 db.get(view, function (err, doc) {
 res.header('content-type',contentType);
 res.render('tasks', {
 site : 'http://localhost:3000/collection/tasks/',
 items : doc
 });
 });
});

Along with the above code, Node.js uses a layout and a template for the task list. Below
are both of those templates.

First, the layout. Note the inclusion of the profile link at the top of the representation.
While not required, it is a good idea to include a unique URI that identifies the app-
level profile expressed by the representations:

{
 "collection" : {
 "href" : "<%=site%>",
 "version" : "1.0",

 "links" : [
 {"rel" : "author", "href" : "mailto:mamund@yahoo.com", "prompt" : "Author"},
 {"rel" : "profile", "href" : "http://amundsen.com/media-types/collection/
profiles/tasks/", "prompt" : "Profile"}
],

 "queries" : [
 {"rel" : "all", "href" : "<%=site%>;all", "prompt" : "All tasks"},
 {"rel" : "open", "href" : "<%=site%>;open", "prompt" : "Open tasks"},
 {"rel" : "closed", "href" : "<%=site%>;closed", "prompt" : "Closed tasks"},
 {"rel" : "date-range", "href" : "<%=site%>;date-range", "prompt" : "Date Range",

The Server Code | 71

 "data" : [
 {"name" : "date-start", "value" : "", "prompt" : "Start Date"},
 {"name" : "date-stop", "value" : "", "prompt" : "Stop Date"}
]
 }
],

 "template" : {
 "data" : [
 {"name" : "description", "value" : "", "prompt" : "Description"},
 {"name" : "dateDue", "value" : "", "prompt" : "Date Due (yyyy-mm-dd)"},
 {"name" : "completed", "value" : "", "prompt" : "Completed (true/false)?"}
]
 },
 <%-body%>
 }
}

Next, the template for handling the task items. You can see the unique database id
(_id) is used to create a unique URI for each item in the collection:

"items" : [
 <%for(i=0,x=items.length;i<x;i++) {%>
 {
 "href" : "<%=site%><%=items[i].value._id%>",
 "data" : [
 {"name" : "description", "value" : "<%=items[i].value.description%>",
"prompt" : "Description"},
 {"name" : "completed", "value" : <%=items[i].value.completed%>, "prompt" :
"Completed"},
 {"name" : "dateDue", "value" : "<%=items[i].value.dateDue%>", "prompt" :
"Date Due"}
]
 }
 <% if(i<items.length-1){%>,<% } %>
 <% } %>
]

The Item Response
The Collection+JSON media type also supports representing a single item in the col-
lection. To reduce the size of the response for single items (and to show off some of the
flexibility of the Collection+JSON media type design), this server implementation uses
an alternate layout when representing single items.

Here is the Node.js code that formulates the response for a single task item:

/* handle single task item */
app.get('/collection/tasks/:i', function(req, res){

 var view = '/'+req.params.i;

 db.get(view, function (err, doc) {
 res.header('content-type',contentType);

72 | Chapter 3: JSON Hypermedia

 res.header('etag',doc._rev);
 res.render('task', {
 layout : 'item-layout',
 site : 'http://localhost:3000/collection/tasks/',
 item : doc,
 });
 });
});

You can see in the above code the item-layout is used to craft the response represen-
tation. Below is the item layout:

{
 "collection" : {
 "href" : "<%=site%>",
 "version" : "1.0",

 "links" : [
 {"rel" : "author", "href" : "mailto:mamund@yahoo.com", "prompt" : "Author"},
 {"rel" : "profile", "href" : "http://amundsen.com/media-types/collection/
profiles/tasks/", "prompt" : "Profile"},
 {"rel" : "queries", "href" : "<%=site%>;queries", "prompt" : "Queries"},
 {"rel" : "template", "href" : "<%=site%>;template", "prompt" : "Template"}
],
 <%-body%>
 }
}

In this layout, the links collection contains two added members: the queries and
template URIs. By including the links here, instead of the full query and template col-
lections, the representation size can be reduced and client applications can still find the
data they need by following these known links.

Below is the template for a single task item. The only difference between this template
and the one used to render the full collection is that this template contains no loop
implementation for multiple tasks:

"items" : [
 {
 "href" : "<%=site%><%=item._id%>",
 "data" : [
 {"name" : "description", "value" : "<%=item.description%>", "prompt" :
"Description"},
 {"name" : "completed", "value" : <%=item.completed%>, "prompt" : "Completed"},
 {"name" : "dateDue", "value" : "<%=item.dateDue%>", "prompt" : "Date Due"}
]
 }
]

The Query Representations
The application-level semantics for the tasks implementation identified four queries:
all, open, closed, and date-range. All the queries can be executed using a simple static

The Server Code | 73

URI except for the last one (date-range), which has two arguments: date-start and
date-stop. Below are the routing routines in Node.js to handle these four query re-
quests.

Note the handling of the two input arguments (date-start and date-stop) in the last
routine:

/* filters */
app.get('/collection/tasks/;all', function(req, res){

 var view = '/_design/example/_view/all';

 db.get(view, function (err, doc) {
 res.header('content-type',contentType);
 res.render('tasks', {
 site : 'http://localhost:3000/collection/tasks/',
 items : doc
 });
 });
});

app.get('/collection/tasks/;open', function(req, res){

 var view = '/_design/example/_view/open';

 db.get(view, function (err, doc) {
 res.header('content-type',contentType);
 res.render('tasks', {
 site : 'http://localhost:3000/collection/tasks/',
 items : doc
 });
 });
});

app.get('/collection/tasks/;closed', function(req, res){

 var view = '/_design/example/_view/closed';

 db.get(view, function (err, doc) {
 res.header('content-type',contentType);
 res.render('tasks', {
 site : 'http://localhost:3000/collection/tasks/',
 items : doc
 });
 });
});

app.get('/collection/tasks/;date-range', function(req, res){

 var d1 = (req.query['date-start'] || '');
 var d2 = (req.query['date-stop'] || '');

 var options = {};
 options.startkey=String.fromCharCode(34)+d1+String.fromCharCode(34);
 options.endkey=String.fromCharCode(34)+d2+String.fromCharCode(34);

74 | Chapter 3: JSON Hypermedia

 var view = '/_design/example/_view/due_date';

 db.get(view, options, function (err, doc) {
 res.header('content-type',contentType);
 res.render('tasks', {
 site : 'http://localhost:3000/collection/tasks/',
 items : doc,
 query : view
 });
 });
});

Handling Template Writes
Along with supporting representations of the collection, items, and one or more pre-
defined queries, the Collection+JSON media type supports performing create, update,
and delete actions for individual items. Below are the three Node.js routines to handle
the HTTP POST, PUT, and DELETE requests per the media type documentation:

/* handle creating a new task */
app.post('/collection/tasks/', function(req, res){

 var description, completed, dateDue, data;

 // get data array
 data = req.body.template.data;

 // pull out values we want
 for(i=0,x=data.length;i<x;i++) {
 switch(data[i].name) {
 case 'description' :
 description = data[i].value;
 break;
 case 'completed' :
 completed = data[i].value;
 break;
 case 'dateDue' :
 dateDue = data[i].value;
 break;
 }
 }

 // build JSON to write
 var item = {};
 item.description = description;
 item.completed = completed;
 item.dateDue = dateDue;
 item.dateCreated = today();

 // write to DB
 db.save(item, function(err, doc) {
 if(err) {
 res.status=400;

The Server Code | 75

 res.send(err);
 }
 else {
 res.redirect('/collection/tasks/', 201);
 }
 });
});

/* handle updating an existing task item */
app.put('/collection/tasks/:i', function(req, res) {

 var idx = (req.params.i || '');
 var rev = req.header("if-match", "*");
 var description, completed, dateDue, data;

 // get data array
 data = req.body.template.data;

 // pull out values we want
 for(i=0,x=data.length;i<x;i++) {
 switch(data[i].name) {
 case 'description' :
 description = data[i].value;
 break;
 case 'completed' :
 completed = data[i].value;
 break;
 case 'dateDue' :
 dateDue = data[i].value;
 break;
 }
 }

 // build JSON to write
 var dt = new Date();
 var item = {};
 item.description = description;
 item.completed = completed;
 item.dateDue = dateDue;
 item.dateCreated = today();

 db.save(idx, rev, item, function (err, doc) {
 // return the same item
 res.redirect('/collection/tasks/'+idx, 302);
 });
});

/* handle deleting existing task */
app.delete('/collection/tasks/:i', function(req, res) {
 var idx = (req.params.i || '');
 var rev = req.header("if-match", "*");

 db.remove(idx, rev, function (err, doc) {
 if(err) {
 res.status=400;

76 | Chapter 3: JSON Hypermedia

 res.send(err);
 }
 else {
 res.status= 204;
 res.send();
 }
 });
});

In the above code, both the app.post and app.put routines expect a valid Collection
+JSON template object as the body. This data is parsed and processed into a new
internal item object and stored in the database. Notice also that the app.put and
app.delete routines expect an "if-match" header, which is used as a concurrency check
(revision) value by CouchDB. Finally, each routine has a simple response (redirection
to a new URI) or simply a 204 - No Content response.

The Client Code
With the server implementation completed, it’s time to move on to building clients
that understand the Collection+JSON hypermedia type. For this chapter, two clients
will be implemented.

The first will be a browser-based Single Page Interface or SPI client. It relies on a small
set of HTML and a script that is capable of parsing, rendering, and processing Collec-
tion+JSON messages. In other words, it is a Collection+JSON browser.

The second example application is a simple command line app implemented directly
in Node.js. This shows that it is possible to build very simple apps that need not be
full-blown hypermedia clients that offer 100% coverage for a custom media type.

The Tasks SPI Example
The SPI example shows that it is relatively easy to build a full-featured client that knows
a custom hypermedia type. In this case, the client will render the data from the tasks
profile described earlier in this chapter. However, the implementation details of this
client are generic; they are targeted to the Collection+JSON media type, not a tasks
media type. This means that this client will work just fine for any problem domain
expressed in Collection+JSON messages. As long as the response representations
match the rules defined in the Collection+JSON media type documentation, this client
application will work just fine.

The client implementation shown here is rather basic from the UI per-
spective. The point here is to illustrate the work of building a client that
understands the semantics of a custom media type, in this case, a Col-
lection+JSON engine. There are many shortcuts taken here to reduce
the amount of code and focus on only the key operations.

The Client Code | 77

A screenshot of the Collection+JSON SPI screen can be seen in Figure 3-1.

HTML5 markup

As already mentioned, the markup for this example is very simple. The HTML5 page
sets out important blocks in the UI and adds links to external JavaScript and CSS files.
The JavaScript will do most all the work in the SPI example. The markup also includes
a meta tag that points to the Task profile used in this implementation.

Here’s the complete HTML5 markup:

<!DOCTYPE html>
<html>
 <!--
 /* 2001-05-25 (mca) : index.html */
 /* Designing Hypermedia APIs by Mike Amundsen (2011) */
 -->
 <head>
 <title>Collection+JSON</title>
 <meta name="profile" content="http://www.example.com/profiles/collection.json">
 <link rel="stylesheet" href="/stylesheets/collection.css" />
 <script type="text/javascript" src="/javascripts/collection.js"></script>
 </head>
 <body>
 <h1>Collection+JSON</h1>
 <div id="left">
 <div id="links" class="block"></div>
 <div id="write-template" class="block"></div>
 <div id="collection" class="block"></div>
 <div class="clear"> </div>
 </div>
 <div id="right">
 <div id="queries" class="block"></div>

Figure 3-1. Collection+JSON SPI Screenshot

78 | Chapter 3: JSON Hypermedia

 <div id="results" class="block"></div>
 <div class="clear"> </div>
 </div>
 </body>
</html>

JavaScript

The client-side scripting for this example is, essentially, a Collection+JSON parser en-
gine. The code needs to understand the Collection+JSON media type well enough to
render responses on screen, handle inputs when needed, process requests for the col-
lection, single items, queries, etc. The parser should also be able to understand the
create, update, and delete rules for Collection+JSON representations.

While completing a Collection+JSON engine will take some detailed work, the good
news is that it only needs to be written once. By the time this parser engine is complete,
it will be able to handle any Collection+JSON representations, no matter what the
problem domain (tasks, blogs, contact lists, etc.).

The basics of the Collection+JSON engine are as follows:

• Make a request to the server

• Process the response representation by loading the response and parsing it as JSON

• Render any link objects in the representation

• Render any query objects in the representation

• Render any item objects in the representation (might be a list, one, none)

• Use the template object to build up an input form (could be used for “create” or
“update”, possibly even for “delete”)

• Wait for the user to take an action that results in a request to the server and go
back to the start of this list

The code that handles the initial requests and processing the response representation
includes handling requests for lists, a single item, and making query calls. Below are
the routines involved:

 function init() {
 g.filterUrl = getArg('filter');
 if(g.filterUrl!='') {
 loadList(unescape(g.filterUrl));
 }
 else {
 loadList();
 }
 showLinks();
 showItems();
 showQueries();
 buildTemplate();
 }

The Client Code | 79

 function loadList(href) {
 var ajax;
 var url = (href || g.collectionUrl);

 ajax=new XMLHttpRequest();
 if(ajax) {
 ajax.open('get',url,false);
 ajax.send(null);
 if(ajax.status===200) {
 g.data = JSON.parse(ajax.responseText);
 }
 }
 }

 function loadItem(href) {
 var ajax;

 ajax=new XMLHttpRequest();
 if(ajax) {
 ajax.open('get',href,false);
 ajax.send(null);
 if(ajax.status===200) {
 g.etag = ajax.getResponseHeader('etag');
 g.item = JSON.parse(ajax.responseText);
 }
 }
 }

 function filterData(href, rel) {
 var url, coll, i, x, a, args, data, part;

 coll = document.getElementsByTagName('a');
 for(i=0,x=coll.length;i<x;i++) {
 if(coll[i].rel===rel) {
 a = coll[i];
 break;
 }
 }

 url = window.location.href
 if(url.indexOf('?')!=-1) {
 url = url.substring(0,url.indexOf('?'))
 }

 args = (a.getAttribute('args') || '');
 if(args==='') {
 window.location = url + "?filter="+encodeURIComponent(href.replace('http://
localhost:3000',''));
 }
 else {
 data = JSON.parse(unescape(args));
 for(i=0,x=data.length;i<x;i++) {
 data[i].value = prompt(data[i].name);
 }

80 | Chapter 3: JSON Hypermedia

 url = url + "?filter="+encodeURIComponent(href.replace('http://localhost:
3000','')+'?');

 for(i=0,x=data.length;i<x;i++) {
 if(i>0) {
 url += encodeURIComponent('&');
 }
 url += encodeURIComponent(data[i].name+'='+data[i].value);
 }
 window.location = url;
 }
 }

Notice that the last routine (filterData) includes code to handle possible argument
inputs for some queries. All the code here is generic enough so that any static or dynamic
queries that appear in a response representation can be handled by this same code. This
is a good example of a hypermedia engine.

The details of processing and rendering links, queries, and the actual item objects is
covered in the following code routines:

 function showLinks() {
 var dst;

 dst = document.getElementById('links');
 if(dst) {
 dst.appendChild(processLinks(g.data.collection.links));
 }
 }

 function showItems() {
 var dst, coll, dl, dt, dd, i, x;

 dst = document.getElementById('collection');
 if(dst) {
 dl = document.createElement('dl');

 coll = g.data.collection.items;
 if(coll) {
 // handle items
 for(i = 0, x = coll.length; i < x; i++) {
 dt = document.createElement('dt');
 dt.appendChild(processItemLink(coll[i], true, i));

 dd = document.createElement('dd');
 dd.title = coll[i].href;
 dd.appendChild(processData(coll[i].data));
 dd.appendChild(processLinks(coll[i].links));

 dl.appendChild(dt);
 dl.appendChild(dd);
 }
 }
 dst.appendChild(dl);
 }

The Client Code | 81

 }

 function showQueries() {
 var dst;

 dst = document.getElementById('queries');
 if(dst) {
 dst.appendChild(processLinks(g.data.collection.queries));
 }
 }

 function processLinks(coll) {
 var ul, li, i, x, a, args

 ul = document.createElement('ul');

 if(coll) {
 for(i = 0, x = coll.length; i < x; i++) {
 a = document.createElement('a');
 a.href = coll[i].href;
 a.rel = coll[i].rel;
 a.className = coll[i].name || '';
 a.title = coll[i].name || '';

 if(coll[i].data) {
 args = JSON.stringify(coll[i].data);
 a.setAttribute('args',escape(args));
 }

 if(coll[i].rel!=='profile' && coll[i].rel!=='author') {
 a.onclick = function(){filterData(this.href, this.rel); return false;};
 }

 a.appendChild(document.createTextNode(coll[i].prompt || coll[i].rel));

 li = document.createElement('li');
 li.appendChild(a);
 ul.appendChild(li);
 }
 }
 return ul;
 }

 function processItemLink(item, editable, x) {
 var a, edit;
 edit = editable || true;

 a = document.createElement('a');
 if(item) {
 a.className = 'item-link';
 a.href = item.href;
 a.title = 'item-link';
 a.appendChild(document.createTextNode('Item '+x));
 if(edit === true) {
 a.onclick = function(){showItem(item.href); return false;};

82 | Chapter 3: JSON Hypermedia

 }
 }
 return a;
 }

 function processData(coll) {
 var i, x, ul, li, sp;

 ul = document.createElement('ul');

 if(coll) {
 for(i = 0, x = coll.length; i < x; i++) {
 if(coll[i].name && coll[i].value) {
 li = document.createElement('li');
 sp = document.createElement('span');
 sp.className = coll[i].name;
 sp.title = coll[i].name;
 sp.innerHTML = coll[i].value;
 li.appendChild(sp);
 ul.appendChild(li);
 }
 }
 }
 return ul;
 }

The code above does all of the work to process the links, queries, and items returned
in a response representation. The version shown here is very rudimentary; all item
objects are rendered using HTML DL, DT, and DD elements, and the data collection
within each item object is rendered using the HTML UL and LI elements. While not
very pretty, it works well and consistently.

The final task for handling responses is constructing an input form using the tem
plate object passed in the representation. The code below handles this last chore:

 function buildTemplate() {
 var dst, coll, i, x, form, fset;

 dst = document.getElementById('write-template');
 if(dst) {
 form = templateForm();
 fset = document.createElement('fieldset');

 coll = g.data.collection.template.data;
 for(i = 0, x = coll.length; i < x; i++) {
 fset.appendChild(processInputElement(coll[i]));
 }

 fset.appendChild(templateButtons());
 form.appendChild(fset);

 dst.appendChild(templateLink());
 dst.appendChild(form);
 }
 }

The Client Code | 83

 function templateForm(href) {
 var form,action;
 action = href || g.collectionUrl;

 form = document.createElement('form');
 form.method="post";
 form.action=action;
 form.style.display='none';
 form.id = 'input-form';
 form.onsubmit = function(){submitInputForm();return false;};

 return form;
 }

 function processInputElement(item) {
 var lbl, inp, p;

 if(item) {
 lbl = document.createElement('label');
 lbl.for = item.name;
 lbl.innerHTML = item.prompt || item.name;

 inp = document.createElement('input');
 inp.type="text";
 inp.name = item.name;
 if(inp.value!='') {
 inp.value = item.value;
 }
 else {
 inp.placeholder = item.name;
 }

 p = document.createElement('p');
 p.appendChild(lbl);
 p.appendChild(inp);
 }
 return p;
 }

 function templateButtons() {
 var inp, p;

 inp = document.createElement('input');
 inp.type = 'submit';
 inp.value = 'Save';
 inp.name = 'save';
 p = document.createElement('p');
 p.className = 'buttons';
 p.appendChild(inp);

 inp = document.createElement('input');
 inp.type = 'button';
 inp.value = 'Delete';
 inp.name = 'delete';

84 | Chapter 3: JSON Hypermedia

 inp.onclick = function(){deleteItem(false);};
 inp.style.display='none';
 p.appendChild(inp);

 inp = document.createElement('input');
 inp.type = 'button';
 inp.value = 'Cancel';
 inp.name = 'cancel';
 inp.onclick = function(){toggleInputForm(false);};
 p.appendChild(inp);

 return p;
 }

 function templateLink() {
 var a, p;

 a = document.createElement('a');
 a.href='#';
 a.onclick = function(){toggleInputForm(); return false;};
 a.appendChild(document.createTextNode('Add Task'));
 p = document.createElement('p');
 p.className='input-block';
 p.appendChild(a);

 return p;
 }

The last code block of interest in this example is the code that handles user actions
once the representation has been rendered. The code for handling query links was
already covered earlier in this section. The remaining code is the set of routines that
renders the template object as an input form and processes the inputs into valid rep-
resentations to send to the server. This handles the “create”, “update”, and “delete”
semantics of the Collection+JSON media type:

 function showItem(href) {
 loadItem(href);
 showEditForm(href);
 }

 function showEditForm(href) {
 var coll, dd, i, x, str;
 str = '';

 form = document.getElementById('input-form');
 if(form) {
 form.action = href;
 form.setAttribute('etag',g.etag);
 }

 coll = g.item.collection.items[0].data;

 for(i = 0, x = coll.length; i < x; i++) {
 name = coll[i].name;
 inp = document.getElementsByName(name)[0];

The Client Code | 85

 if(inp) {
 inp.value = coll[i].value;
 }
 }

 for(i = 0, x = coll.length; i < x; i++) {
 name = coll[i].name;
 inp = document.getElementsByName(name)[0];
 if(inp) {
 inp.value = coll[i].value;
 }
 }

 inp = document.getElementsByName('delete')[0];
 if(inp) {
 inp.style.display = 'inline';
 }
 toggleInputForm(true);
 }

 function toggleInputForm() {
 var elm, coll, i, x;

 elm = document.getElementById('input-form');
 if(elm) {
 if(g.inputForm===true) {
 elm.style.display='block';
 g.inputForm=false;
 }
 else {
 elm.style.display='none';
 g.inputForm=true;
 coll = document.getElementsByTagName('input');
 for(i = 0, x = coll.length; i < x; i++) {
 if(coll[i].type === 'text') {
 coll[i].value = '';
 }
 }
 inp = document.getElementsByName('delete')[0];
 if(inp) {
 inp.style.display = 'none';
 }
 }
 }
 }

 function submitInputForm() {
 var item, form, coll, nam, val, i, x, z, etag, href;

 form = document.getElementById('input-form');
 if(form) {
 coll = form.getElementsByTagName('input');
 item = '{"template" : {"data" : [';
 z=0;
 for(i=0,x=coll.length;i<x;i++) {

86 | Chapter 3: JSON Hypermedia

 if(coll[i].type=="text") {
 if(z>0) {
 item +=",";
 }
 item += '{"name" : "'+coll[i].name+'", ';
 item += '"value" : '+(coll[i].value==='true'||coll[i].value==='false'?
coll[i].value+'}':'"'+coll[i].value+'"}');
 z++;
 }
 }
 item += "]}}";

 href = form.action;
 etag = form.getAttribute('etag');

 if(href)
 {
 ajax=new XMLHttpRequest();
 if(ajax) {
 if(etag && etag!=='') {
 ajax.open('put',href,false);
 ajax.setRequestHeader('if-match',etag);
 }
 else {
 ajax.open('post',href,false);
 }
 ajax.setRequestHeader('content-type',g.contentType)
 ajax.send(item);
 if(ajax.status>399) {
 alert('Error sending task!\n'+ajax.status);
 }
 else {
 window.location = window.location;
 }
 }
 }
 }
 }

 function deleteItem() {
 var form,href,etag,ajax;

 form = document.getElementById('input-form');
 if(form) {
 href = form.action;
 etag = form.getAttribute('etag');
 if(href) {
 ajax=new XMLHttpRequest();
 if(ajax) {
 ajax.open('delete',href,false);
 ajax.setRequestHeader('if-match',etag);
 ajax.send(null);
 if(ajax.status>399) {
 alert('Error deleting task!/n'+ajax.status+'\n'+ajax.statusText);
 }

The Client Code | 87

 else {
 window.location = window.location;
 }
 }
 }
 }
 return false;
 }

That’s all the code for this example. There were a few minor elements not shown (some
configuration details, etc.), but it should be noted that the completed working example
implements a fully functional Collection+JSON hypermedia engine in less than 500
lines of well-commented JavaScript. It’s true that this implementation could benefit
greatly from a more detailed UI treatment, but it is encouraging to know that a single
set of 500 lines of JS code is all that is needed in order to support any and all servers
that represent their resource responses as Collection+JSON.

The Tasks Command Line Example
As an example of another client implementation, a simple command-line interface can
be created to allow users to quickly add tasks to their list. This example is implemented
directly in Node.js and does not require a browser. It also shows how a client that
understands a target hypermedia type need not always be written as a complete hy-
permedia engine for that media type. In this case, the client has been written to know
how to do one thing well: add tasks to a list on the server.

A screenshot of the add-tasks command-line app in action can be seen in Figure 3-2.

Figure 3-2. Add Tasks Command-line App Screenshot

88 | Chapter 3: JSON Hypermedia

The general approach

The general approach for this sample client is very simple: support writing tasks to a
list on the server using the Collection+JSON hypermedia type. In this case, it is not
important for the client to know how to render list and item responses or support
queries. It only needs to write new tasks (not even edit or delete existing ones).

The reader might assume this means the client only needs to support one HTTP request:
that of doing a POST to the server. But, in fact, this client makes two requests: one to
retrieve the server’s write template, and one to actually send data to the server using
that template. In this way, the client is protected from a number of future changes to
the server’s template.

It’s always a good idea to design client code to take advantage of hy-
permedia features, such as links and forms, within a media type design
in order to future-proof the implementation as much as possible.

In order to simplify the coding and the requirements for typing on the command line,
this application will have the initial URI (host, port, and path) written into the code.
An alternate approach would be to use a configuration file to abstract these connection
details from the code and/or force the user to supply them on every request. For this
example, a more expedient route was taken: hardcode the initial URI.

The add-task.js application

The processing for this app is simple:

• Accept the user’s input (show a help screen if they fail to supply the proper data)

• Retrieve the write template from the server (using an initial call to get the collection)

• Use the inputs from the user to populate the template with data

• Send the completed template to the server using HTTP POST as described in the
Collection+JSON documentation

Below is the code to initialize the app and validate the user inputs:

var http = require('http');

// set the vars
var client, host, port, path, args, help;
host = 'localhost';
port = 3000;
path = '/collection/tasks/'
hdrs = {};
args = {};

help = '*** Usage:\n' +
 'node add-task.js "<description>" "<dueDate>" [<completed>]\n' +
 ' Where:\n' +

The Client Code | 89

 ' <description> is text of task (in quotes)\n' +
 ' <dueDate> is YYYY-MM-DD (in quotes)\n' +
 ' <completed> is true|false';

// check args and fire off processing
if(process.argv.length<4 || process.argv.length>5) {
 console.log(help);
}
else {
 args.description = process.argv[2];
 args.dateDue = process.argv[3];
 args.completed = (process.argv[4]||false);

 client = http.createClient(port,host);
 getTemplate();
}

Note that the code is written to allow users to skip the completed argument and allow
the app to supply the value of false as a default. In a production implementation, the
inputs should also be validated for data type (string, date, boolean).

Once the inputs are validated, it’s time to retrieve the Collection+JSON template object
from the server:

// get the server's write template
function getTemplate() {
 // request the template
 var req = client.request('GET', path, {'host':host+':'+port});

 // event handlers
 req.on('response', function(response) {
 var body = ''
 response.on('data', function(chunk) {
 body += chunk;
 });
 response.on('error', function(error) {
 console.log(error);
 });
 response.on('end', function() {
 var data = JSON.parse(body);
 buildTask(data.collection.template);
 });
 });

 req.on('error', function(error) {
 console.log(error);
 });

 req.end();
}

The code above assumes that a call to the initial UI will always return a representation
that contains the Collection+JSON template object. While this is true for the imple-
mentation we are testing, that might not be true for all servers. It is possible that servers
will send only a link to the template object or maybe no template object at all (if the

90 | Chapter 3: JSON Hypermedia

data is read-only). This example skips over this detail in order to keep the code short
and simple.

It is important to review the semantic requirements of the target media
type carefully in order to account for any possible variances in the way
representations may be presented by compliant servers. Never assume
all servers will implement the media type the same way.

After collecting the template object from the server, the user’s inputs can be added and
a completed payload can be passed to the routine that will send the data to the server:

// write the task data to the server
function buildTask(template) {
 var coll, i, x, msg;

 // populate the template
 coll = template.data
 for(i=0,x=coll.length;i<x;i++) {
 switch(coll[i].name) {
 case 'description':
 coll[i].value = args.description;
 break;
 case 'dateDue':
 coll[i].value = args.dateDue;
 break;
 case 'completed':
 coll[i].value = args.completed;
 break;
 }
 }
 msg = '{"template" : '+JSON.stringify(template)+"}";
 sendData(msg);
}

Note that the code above loops through the template in order to match the user’s inputs
with the data elements in the template. This code will work no matter the order of the
elements in the template. It will also work if the template has additional optional ele-
ments not supplied by the user. However, if the template has been modified to include
new required elements or has changed the name of existing elements, this code is likely
to break. A production implementation should keep track of the user’s inputs and alert
the user when new template elements are found or when the user’s inputs are not
applied.

Extending and versioning media type designs is covered in Chapter 5.

The Client Code | 91

The final step is to take the new data and send it to the server using an HTTP POST
request:

// send the data to the server for storage
function sendData(msg) {
 // set up request
 var hdrs = {
 'host' : host+':'+port,
 'content-type' : 'application/collection+json',
 'content-length' : (msg.length)
 };

 // pass data to the server
 var req = client.request('POST', path, hdrs);
 req.write(msg);

 // event handlers
 req.on('response', function(response) {
 var body = ''
 response.on('data', function(chunk) {
 body += chunk;
 });
 response.on('error', function(error) {
 console.log(error);
 });
 response.on('end', function() {
 console.log('*** task added!');
 });
 });

 req.on('error', function(error) {
 console.log(error);
 });

 req.end();
}

Summary
This chapter introduced the idea of a general media type design that can be used for
similar problem domains. In this case, the general use case of managing a list was used
as the motivation for the hypermedia design. JSON was used as the data format for a
design with a Generic Domain style, Predefined State Transfers (using a CRUD+Query
pattern), and Intrinsic application flow. The media type (Collection+JSON) not only
supports representing lists and single items, but also allows servers to return a set of
links for the collection, one or more queries (including ones that allow additional user
input at runtime), and a template for indicating how client apps should format “create”
and “update” operations against the list and its members.

Once the design was completed, a problem domain was selected (in this case, managing
a list of tasks) and application-level semantics were defined for the problem domain.

92 | Chapter 3: JSON Hypermedia

This profile was documented in order to allow developers to write clients that not only
understand the generic type but also target their implementations to the application
semantics of the selected problem domain.

Test data was generated (some task data plus views to support the identified filter
requests) and a server was implemented that supports the problem domain using Col-
lection+JSON as the representation format.

Finally, two clients were built. The first one was a generic Single Page Interface (SPI)
browser app that serves as a fully functional Collection+JSON engine that not only
supports the test data target domain (managing tasks) but any other problem domain
implemented using Collection+JSON for resource representations. A second client app
(a command line interface) was also created to show how a hypermedia type can be
used by applications that do not wish to implement a complete hypermedia engine for
the media type.

The design and implementations for this chapter were more generic and a bit more
abstract than the Domain Specific example shown in Chapter 2. In the next chapter,
an even more generic media type design will be employed, using HTML5 as the base
format, that relies solely on the application-level semantic profile to distinguish itself
from other implementations using the same media type.

Summary | 93

CHAPTER 4

HTML5 Hypermedia

The only usefulness of a map or a language depends on
the similarity of structure between the empirical world

and the map-languages.

- Alfred Korzybski

This last hands-on design chapter covers the techniques involved when using HTML5
as the base media type for your design. Since HTML already has a rich set of hypermedia
controls (A, LINK, FORM, INPUT, etc.), the process of designing hypermedia types
with HTML focuses on expressing the domain semantics within the existing elements
and attributes of HTML.

The scenario here involves expressing common microblogging semantics (Twitter,
Identi.ca, etc.) in a hypermedia type. After capturing the semantics and completing the
design, a simple server will be built that emits the hypermedia responses along with
two distinct client implementations. One client relies on only the HTML responses (no
JavaScript support), and the other takes advantage of the Ajax style to build a web bot
that knows enough about the hypermedia type to register as a new user (if needed) and
begin posting into the data stream.

Scenario
For this example, a functional microblog hypermedia type is needed. This design should
allow users to:

• Create, update, and delete accounts

• Add new messages and share existing messages

• Create and remove relationships to other users

• Search for existing users and messages

Since the design will be based on HTML5 (an existing hypermedia type), the imple-
mentation should provide basic functionality without the need for client-side scripting

95

(e.g. JavaScript). However, the design should also allow scripted clients (e.g. Ajax-style
browser clients) to implement a rich user interface, too. As in the previous examples,
data will be stored using CouchDB, the server will be implemented using Node.js, and
the client applications will be implemented using HTML5 and JavaScript.

Designing the Microblog Media Type
The aim of this example is to illustrate the process of designing hypermedia types using
HTML5 as the base format. Unlike the previous examples, which were based on XML
and JSON (both formats devoid of native hypermedia controls), this example starts
with a format that already supports basic hypermedia factors.

Starting with HTML5 provides both advantages and drawbacks when designing a hy-
permedia solution. The good news is the details of document design (which elements
are valid, etc.), the specific hypermedia controls, and the method of expressing state
transitions are already decided. This means designers do not need to worry about how
to define and document much of the hypermedia type. However, with so many details
already decided, there is less room for expressing the problem domain in ways clients
can easily understand.

This duality of well-defined hypermedia controls and a limit on the options for ex-
pressing the problem domain is the key challenge behind working with existing hy-
permedia types and is, in part, the reason so few new APIs use HTML5 as the base. For
many, it seems easier to start from zero using a non-hypermedia type such as XML or
JSON and create all of the details from the beginning. But sometimes this option is not
available to designers. Instead, designers often must be sure their implementations
work well with existing clients (e.g. web browsers) with little or no support from custom
scripting or other client-side plug-ins.

Expressing Application Domain Semantics in HTML5
In cases where the design needs to rely on existing hypermedia types like HTML5, a
different approach is needed to express domain semantics. Instead of creating new
elements (as in XML) or objects (as in JSON), domain semantics must be expressed
using existing HTML5 elements (<article>, <section>, <p>, , etc.). Instead of
creating new state transition and process flow elements, designers need to use those
already available in HTML5 (<form>, <input>, <a>, etc.).

However, it is still important to know the semantic value (the meaning in relation to
the problem domain) of each of these already-defined elements. Instead of creating an
<email> element or <update-user> transition block, designers need to use existing fea-
tures of HTML5 to add semantic meaning to the representations. The way to do this
is to use key HTML5 attributes to decorate the existing elements. These attributes are:

96 | Chapter 4: HTML5 Hypermedia

id

Used to identify a unique data element/block within the representation

name

Used to identify a state transition element (i.e. input) within the representation

class

Used to identify a non-unique data element/block within the representation

rel

Used to identify a non-unique process flow element within the representation

The id attribute can be applied to any element in the document, is a single string value
(no spaces allowed), and must be unique in a document:

...

The name attribute is also a single string value (without spaces). It can be assigned to a
limited set of elements (those associated with input), and multiple elements within the
same document can share the same value:

<label>Enter first invioce:</label><input name="invoice">...</input>
<label>Enter second invoice:</label><input name="invoice">...</input>

The class attribute can be applied to any element in the document, can appear on
several elements within the document, and allows multiple values to be applied as long
as they are separated by a space. This makes it possible to mark several document
elements with the same value as well as mark the same element with several values:

...
...

The rel attribute has features of both the class and name attributes. Like the name at-
tribute, a rel can only appear on a limited set of elements (those associated with links)
and need not be unique within the document. Also, like the class attribute, the rel
supports multiple strings separated by spaces:

...
...

Through the proper application of these four attributes to a wide range of existing
HTML5 elements, it is possible to adequately express any problem domain details
within a hypermedia type design. It is worth noting that each of the above attributes
has slightly different rules in HTML5.

Microformat, Microdata, and RDFa
The process of expressing application semantics using the id, name, class, and rel at-
tributes of HTML5 described here is based loosely on the Microformat design princi-
ples. Microformat design patterns rely primarily on the class attribute, but also use the
id, name, rel, and rev attributes. The author’s method, while similar to Microformats,
does not always follow the design patterns used in many published Microformats.

Designing the Microblog Media Type | 97

There are additional ways to add semantic information to HTML representations. At
the time of this writing, the W3C has a draft specification for Microdata. Microdata
consists of a group of items, each with a set of name-value pairs. These items can be
nested, too. RDFa is a W3C specification that uses attributes to embed semantic data
within markup languages, including the HTML family. As the name suggests, RDFa is
a way to apply the principles of the Resource Description Framework to markup via
attributes.

The primary aim here is to introduce the reader to the notion of adding semantic details
to existing media types. It is beyond the scope of this text to cover these various stand-
ards for adding semantic information to documents. Instead these specifications are
mentioned here in order to encourage the reader to explore them, and any other related
standards, and learn the strengths and shortcomings of each. In the end, which method
is used to add application domain semantics to a media type design choice is influenced
by the preferences of both the media type author and the community (client and server
developers, end users, etc.) for which the media type is created.

Identifying the State Transitions
Just as in other base formats, a key step in implementing a hypermedia design using
HTML5 is the process of identifying the needed state transitions. As has already been
stated above, this example implements the basic features of a microblogging applica-
tion. Below is a set of states that need to be represented:

• The list of users

• A single user

• The list of messages

• A single message

• The list of possible queries (search users, view the user’s list of followers, etc.)

• A template for creating a new user

• A template for updating an existing user

• A template for following an existing user

• A template for searching for existing users

• A template for adding a new message

• A template for replying to an existing message

• A template for searching for existing messages

As may be evident to the reader at this point, the above list identifies three unique block
types within a representation (users, messages, queries) and seven transition blocks
(create user, update user, follow user, search user, add message, reply to a message,
and search messages). The unique blocks can be expressed using HTML5’s <div> ele-

98 | Chapter 4: HTML5 Hypermedia

ment and the transition blocks can be expressed using the <form> element. Each of these
blocks will have a number of child elements.

The usual error representation has been left out of this design to save
time and reduce repetition of the same material. When creating a com-
plete design for production use, you should always include an error
representation.

The details of these element blocks can easily be expressed in short HTML5 examples.
These examples will serve as reference material when creating the application profile
later in this chapter (see “The Microblog Application Profile” on page 104).

State blocks

This example identifies three main types of content that may appear within a repre-
sentation: users, messages, and queries. These can be expressed as HTML5 <div> ele-
ments with unordered lists (,) and other child elements. Below are examples
of each of the three main content blocks.

There are two ways to represent users within this design: as a list of users and as
a single user.

The list of users is represented using an HTML5 unordered list:

<!-- representing a list of users -->
<div id="users">
 <ul class="all">

 User1
 profile
 messages

 ...

 UserN
 profile
 messages

</div>

A single user is represented in a similar way:

<!-- representing a single user -->
<div id="users">
 <ul class="single">

 User One

Users.

Designing the Microblog Media Type | 99

 I am known to all as User One

 User1's web site

 messages

</div>

Messages can also be represented in two ways (as a list and as a single mes-
sage).

Here is the list representation:

<!-- representing a list of messages -->
<div id="messages">
 <ul class="all">

 this is a message

 @

 2011-08-17 04:04:09

 by

 User1

 ...

 this is also a message

 @

 2011-08-17 04:10:13

 by

 UserN

</div>

And here is the way a single message is represented:

<!-- representing a single message -->
<div id="messages">

Messages.

100 | Chapter 4: HTML5 Hypermedia

 <ul class="single">

 This is a message

 @

 2011-08-17 04:04:09

 by

 User1

</div>

This design uses a small set of simple queries. These are just links that return
the list of messages, users, or the registration page:

<!-- representing the queries list -->
<div id="queries">

 Home
 Users
 Register

</div>

Note that the first link in the list has two values for the rel attribute.

Transfer blocks

This example identifies seven client-initiated state transfers. Each of them can be ex-
pressed as HTML5 <form> elements with <input> child elements. Below are each of the
transfer blocks along with the details for each child element.

The server will include this block in the representation to allow clients
to create a new microblog user:

<!-- state transfer for adding a new user -->
<form method="post" action="..." class="user-add">
 <input type="text" name="name" value="" required="true"/>
 <input type="text" name="email" value="" required="true"/>
 <input type="password" name="password" value="" required="true" />
 <textarea name="description"></textarea>
 <input type="file" name="avatar" value="" />
 <input type="text" name="website" value="" />

 <input type="submit" value="Send" />
</form>

Queries.

Create new user.

Designing the Microblog Media Type | 101

Notice that some fields are grouped under the SHOULD keyword and others are under
the MAY keyword. These are just comments to indicate which fields “should” be re-
turned by the server and which ones “may” be returned by the server. These annotations
will be used later when writing up the documentation.

Once a user has been created, it should be possible to update that
user account:

<!-- state transfer for updating an existing user -->
<form method="post" action="..." class="user-update">
 <input type="text" name="name" value="" required="true"/>
 <input type="text" name="email" value="" required="true"/>
 <input type="password" name="password" value="" required="true"/>
 <textarea name="description"></textarea>
 <input type="file" name="avatar" value="" />
 <input type="text" name="website" value="" />

 <input type="submit" value="Send" />
</form>

It is likely that update transitions will be prepopulated with existing data. It is also
possible that one or more of the <input /> elements will be marked as read-only by the
server. These details will be left up to each server implementation to determine.

Following a user is as simple as sending the identifier of the user you wish
to follow:

<!-- state transition to follow an existing user -->
<form method="post" action="..." class="user-follow">
 <input type="text" name="user" value="" required="true"/>

 <input type="submit" value="Send" />
</form>

You may notice that there is nothing in the above transition to indicate the current user
that wants to follow the identity in the user input element. For all of the transition
examples shown here, the server is assumed to be able to know (when it is important)
the identity of the current (or logged-in) user. This can be done via information in the
action URI or via control data (HTTP Headers) such as the Authorization header or
the Cookie header (see “Current user and state data” on page 104 for details).

Here is the transition block for searching for users:

<!-- state transfer for searching users -->
<form method="get" action="..." class="user-search">
 <input type="text" name="search" value="..." required="true"/>

 <input type="submit" value="Send" />
</form>

Since this is a search action, the method attribute is set to GET, not POST.

Adding a new message is also a simple state transfer:

Update existing user.

Follow a user.

Search for users.

Add a new message.

102 | Chapter 4: HTML5 Hypermedia

<!-- state transfer for adding a message -->
<form method="post" action="..." class="message-post">
 <textarea name="message" requried="true"></textarea>

 <input type="submit" value="Send" />
</form>

Replying to an existing message involves sending both the
original user identifier and any reply text, which may include the original message text,
to the server:

<!-- state transfer for replying to a message -->
<form method="post" action="..." class="message-reply">
 <input type="hidden" name="user" value="..." requried="true"/>
 <textarea name="message"></textarea>

 <input type="submit" value="Send" />
</form>

The message search transfer block is almost identical to the one used
for user searches:

<!-- state transfer for searching messages -->
<form method="get" action="..." class="message-search">
 <input type="text" name="search" value="..." requried="true"/>

 <input type="submit" value="Send" />
</form>

Selecting the Basic Design Elements
Since the point of this chapter is to cover implementation details when using HTML5,
the remaining standard design elements have already been decided. However, it is still
valuable to go over each of them here.

Using HTML5 as the base format means that the State Transfer style will be ad hoc.
HTML5 Forms will be used to make all client-imitated transfers via GET (read-only)
or POST (add/update). Even though the ad hoc style is used in HTML5, designers can
still establish required and optional inputs in their hypermedia design. In this example,
the design uses both.

The domain style of HTML5 is agnostic. The element and attribute names are all in-
dependent of any domain semantics. However, as mentioned earlier in this chapter (see
“Expressing Application Domain Semantics in HTML5” on page 96), HTML5 supports
domain semantic expression using common attribute values (id, name, class). Finally,
the Application Flow style for HTML5 is applied via values for the rel attribute on
href tags.

Reply to an existing message.

Search for messages.

Designing the Microblog Media Type | 103

Usually hypermedia designs use the rel attribute (or its equivalent in
the data format) to mark all state transitions, including ones that require
arguments. However, HTML5 does not support the rel attribute on the
form element. For this reason, transitions that require arguments (e.g.
forms) will be marked with a class attribute instead.

Although HTML5 is a domain-agnostic base format, the built-in state transfer and
application flow elements make most of the design details very easy. The only creative
work that needs to be done is arranging existing HTML5 elements (article, section,
div, p, span, etc.) and decorating them with the necessary attributes (id, name, class,
rel).

The application of these attribute decorations is covered in the next section.

The Microblog Application Profile
Since HTML5 is a domain-agnostic media type, all domain-specific information (both
the data elements and the transition details) needs to be specified as additional infor-
mation in each representation. As has already been pointed out earlier in this chapter
(see “Expressing Application Domain Semantics in HTML5” on page 96), in HTML5
you can express domain-specific information using a set of attributes (id, name, class,
and rel).

Also, this implementation will require users to log in before posting new messages.
That means the implementation will need to be able to identify the current logged-in
user.

Current user and state data

This example implementation will rely on HTTP’s Authorization header to identify the
currently logged-in user. That means this example server will use HTTP Basic Authen-
tication for selected state transitions (Update a User, Follow a User, Add a New Mes-
sage, and Reply to a Message). It is important to point out that user identification is
not specified in the media type design; it is an implementation detail left to servers and
clients to work out themselves.

The decision to leave user authentication independent of the media type has a number
of advantages. First, this allows clients and servers to negotiate for an appropriate au-
thentication scheme at runtime (the HTTP WWW-Authenticate head is used to advertise
supported authentication schemes). Second, leaving it out of the media type means that
servers are free to establish and transition details on their own. For example, Open
Auth (OAuth) has a set of requirements for interacting with more than one web server
in order to complete authentication. Finally, leaving authentication details out of the
media type design allows servers to take advantage of whatever means may become
available in the future.

104 | Chapter 4: HTML5 Hypermedia

ID attribute values

This design relies on three unique identifiers for representations:

messages
Applied to a div tag. The list of messages in this representation. This list may
contain only one message.

queries
Applied to a div tag. The list of valid queries in this representation. This is a list of
simple queries (represented by the HTML anchor tag).

users
Applied to a div tag. The list of users in this representation. This list may contain
only one user.

Class attribute values

There are a number of class attributes that can appear within a representation. Clients
should be prepared to recognize the following values:

all
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages" it MAY have one or more LI.class="message" descendant ele-
ments. When this element is a descendant of DIV.id="users" it MAY have one or
more LI.class="user" descendant elements.

date-time
Applied to a SPAN tag. Contains the UTC date-time the message was posted. When
present, it SHOULD be valid per RFC3339.

description
Applied to a SPAN tag. Contains the text description of a user.

friends
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages" it contains the list of messages posted by the designated user’s
friends and MAY have one or more LI.class="message" descendant elements.
When this element is a descendant of DIV.id="users" it contains the list of users
who are the friends of the designated user and MAY have one or more
LI.class="user" descendant elements.

followers
Applied to a UL tag. A list representation of all the users from the designated user’s
friends list. MAY have one or more LI.class="user" descendant elements.

me
Applied to a UL tag. When this element is a descendant of DIV.id="messages" it
contains the list of messages posted by the designated user and MAY have one or
more LI.class="message" descendant elements. When this element is a descendant

Designing the Microblog Media Type | 105

of DIV.id="users" it SHOULD contain a single descendant LI.class="user" with
the designated user’s profile.

mentions
Applied to a UL tag. A list representation of all the messages that mention the des-
ignated user. It MAY contain one or more LI.class="message" descendant ele-
ments.

message
Applied to an LI tag. A representation of a single message. It SHOULD contain the
following descendant elements:

SPAN.class="user-text"

A.rel="user"

SPAN.class="message-text"

A.rel="message"

It MAY also contain the following descendant elements:

IMG.class="user-image"

SPAN.class="date-time"

message-post
Applied to a FORM tag. A link template to add a new message to the system by the
designated (logged-in) user. The element MUST be set to FORM.method="post" and
SHOULD contain a descendant element:

TEXTAREA.name="message"

message-reply
Applied to a FORM tag. A link template to reply to an existing message. The element
MUST be set to FORM.method="post" and SHOULD contain the following descend-
ant elements:

INPUT[hidden].name="user" (the author of the original post)
TEXTAREA.name="message"

single
When this element is a descendant of DIV.id="messages" it contains the message
selected via a message link. SHOULD have a single LI.class="message" descendant
element. When this element is a descendant of DIV.id="users" it contains the user
selected via a user link. SHOULD have a single LI.class="user" descendant ele-
ment.

messages-search
Applied to a FORM tag. A link template to search of all the messages. The element
MUST be set to FORM.method="get" and SHOULD contain the following descend-
ant elements:

INPUT[text].name="search"

106 | Chapter 4: HTML5 Hypermedia

message-text
Applied to a SPAN tag. The text of a message posted by a user.

search
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages" it contains a list of messages and MAY have one or more
LI.class="message" descendant elements. When this element is a descendant of
DIV.id="users" it contains a list of users and MAY have one or more
LI.class="user" descendant elements.

shares
Applied to a UL tag. A list representation of all the messages posted by the desig-
nated user that were shared by other users. It MAY contain one or more
LI.class="message" descendant elements.

user
Applied to an LI tag. A representation of a single user. It SHOULD contain the
following descendant elements:

SPAN.class="user-text"

A.rel="user"

A.rel="messages"

It MAY also contain the following descendant elements:

SPAN.class="description"

IMG.class="avatar"

A.rel="website"

user-add
Applied to a FORM tag. A link template to create a new user profile. The element
MUST be set to FORM.method="post" and SHOULD contain the following descend-
ant elements:

INPUT[text].name="user"

INPUT[text].name="email"

INPUT[password].name="password"

It MAY also contain the following descendant elements:

TEXTAREA.name="description"

INPUT[file].name="avatar"

INPUT[text].name="website"

user-follow
Applied to a FORM tag. A link template to add a user to the designated user’s friend
list. The element MUST be set to FORM.method="post" and SHOULD contain the
descendant element:

INPUT[text].name="user"

Designing the Microblog Media Type | 107

user-image
Applied to an IMG tag. A reference to an image of the designated user.

user-text
Applied to a SPAN tag. The user nickname text.

user-update
Applied to a FORM tag. A link template to update the designated user’s profile. The
element MUST be set to FORM.method="post" and SHOULD contain the following
descendant elements:

INPUT[hidden].name="user"

INPUT[hidden].name="email"

INPUT[password].name="password"

It MAY also contain the following descendant elements:

TEXTAREA.name="description"

INPUT[file].name="avatar"

INPUT[text].name="website"

users-search
Applied to a FORM tag. A link template to search of all the users. The element MUST
be set to FORM.method="get" and SHOULD contain the descendant element:

INPUT[text].name="search"

Name attributes values

HTML5 uses the name attribute to identify a representation element that will be used
to supply data to the server during a state transition. Clients should be prepared to
supply values for the following state transition elements:

description
Applied to a TEXTAREA element. The description of the user.

email
Applied to an INPUT[text] or INPUT[hidden] element. The email address of a
user. When supplied, it SHOULD be valid per RFC5322.

message
Applied to a TEXTAREA element. The message to post (for the designated user).

name
Applied to an INPUT[text] element. The (full) name of a user.

password
Applied to an INPUT[password] element. The password of the user login.

search
Applied to an INPUT[text]. The search value to use when searching messages
(when applied to FORM.class="message-search") or when searching users (when
applied to FORM.class="users-search").

108 | Chapter 4: HTML5 Hypermedia

user
Applied to an INPUT[text] or INPUT[hidden] element. The public nickname of a
user.

avatar
Applied to an INPUT[file] element. The image for the user.

website
Applied to an INPUT[text]. The URL of a website associated with the user profile.
When supplied, it SHOULD be valid per RFC 3986.

Rel attribute values

This design also identifies a number of possible simple state transitions, or static links,
that may appear within representations. These will appear as HTML anchor tags with
the following rel attribute values:

index
Applied to an A tag. A reference to the starting URI for the application.

message
Applied to an A tag. A reference to a message representation.

message-post
Applied to an A tag. A reference to the message-post FORM.

message-reply
Applied to an A tag. A reference to the message-reply FORM.

message-share
Applied to an A tag. A reference to the message-share FORM.

messages-all
Applied to an A tag. A reference to a list representation of all the messages in the
system.

messages-search
Applied to an A tag. A reference to the messages-search FORM.

user
Applied to an A tag. A reference to a user representation.

user-add
Applied to an A tag. A reference to the user-add FORM.

user-follow
Applied to an A tag. A reference to the user-follow FORM.

user-update
Applied to an A tag. A reference to the user-update FORM.

users-all
Applied to an A tag. A reference to a list representation of all the users in the system.

Designing the Microblog Media Type | 109

users-friends
Applied to an A tag. A reference to list representation of the designated user’s friend
users.

users-followers
Applied to an A tag. A reference to list representation of the users who follow the
designated user.

users-search
Applied to an A tag. A reference to the users-search FORM.

website
Applied to an A tag. A reference to the website associated with a user.

Sample Data
The test data for this example design can be represented using three different docu-
ments in CouchDB: the User, Message, and Follows documents. This implementation
also relies on a CouchDB design document that includes a handful of views and a
validation routine for writing documents into the data store.

User Documents
For this implementation, users will be represented in the data store as follows:

{
 "_id" : "mamund",
 "type" : "user",
 "name" : "Mike Amundsen",
 "email" : "mamund@yahoo.com",
 "password" : "p@ssW0rd",
 "description" : "learnin hypermedia",
 "imageUrl" : "http://amundsen.com/images/mca-photos/mca-icon-b.jpg",
 "websiteUrl" : "http://amundsen.com",
 "dateCreated" : "2011-06-21"
}

Message Documents
Each message document in the data store looks like this:

{
 "type" : "post",
 "text" : "My first message!",
 "user" : "mamund",
 "dateCreated" : "2011-06-29"
}

110 | Chapter 4: HTML5 Hypermedia

Follow Documents
The system will also track which users follow each other using a Follow document:

{
 "type" : "follow",
 "user" : "mamund",
 "follows" : "lee"
}

Design Document
The predefined views and validation routines for the CouchDB data for this imple-
mentation are:

{
 "_id" : "_design/microblog",

 "views" : {

 "users_search" : {
 "map" : "function(doc){
 if(doc._id && doc.type==='user') {
 emit(doc._id,doc);
 }
 }"
 },
 "users_by_id" : {
 "map" : "function(doc){
 if(doc._id && doc.type==='user') {
 emit(doc._id,doc);
 }
 }"
 },

 "posts_all" : {
 "map" : "function(doc) {
 if(doc._id && doc.type==='post') {
 emit(doc.dateCreated.split('-'),doc);
 }
 }"
 },
 "posts_by_id" : {
 "map" : "function(doc) {
 if(doc._id && doc.type==='post') {
 emit(doc._id,doc);
 }
 }"
 },
 "posts_by_user" : {
 "map" : "function(doc) {
 if(doc._id && doc.type==='post') {
 emit(doc.user, doc);
 }
 }"

Sample Data | 111

 },
 "posts_search" : {
 "map" : "function(doc) {
 if(doc._id && doc.type==='post') {
 emit(doc.user, doc);
 }
 }"
 },
 "posts_by_user" : {
 "map" : "function(doc) {
 if(doc.user && doc.type==='post') {
 emit(doc.dateCreated.split('-').concat(doc.user),doc);
 }
 }"
 },

 "follows_user_is_following" : {
 "map" : "function(doc) {
 if(doc.user && doc.type==='follow') {
 emit(doc.user, {_id:doc.follows});
 }
 }"
 },
 "follows_is_following_user" : {
 "map" : "function(doc) {
 if(doc.follows && doc.type==='follow') {
 emit(doc.follows, {_id:doc.user});
 }
 }"
 }
 },

 "validate_doc_update": "function(newDoc, oldDoc, userCtx) {

 function require(field, message) {
 message = message || field + ' is required';
 if (!newDoc[field]) {
 throw({forbidden : message});
 }
 };

 function unchanged(field) {
 if(oldDoc && toJSON(oldDoc[field]) !== toJSON(newDoc[field])) {
 throw({forbidden : field + ' is read-only'});
 }
 };

 if(newDoc._deleted) {
 return true;
 }
 else {
 switch(newDoc.type) {
 case 'user':
 require('name');
 require('email');

112 | Chapter 4: HTML5 Hypermedia

 require('password');
 break;
 case 'post':
 require('text');
 require('user');
 require('dateCreated');
 break;
 case 'follow':
 require('user');
 require('follows');
 break;
 }
 }
 }"
}

The Server Code
With sample data in place, the next step is to implement server code to test the design.
Since this example application has quite a few state transitions, the server-side code is
a bit more involved than previous examples. However, an advantage of using HTML5
as the base media type is that it is rather easy to test since the server output will easily
render within common web browsers.

Authenticating Users
This implementation relies on HTTP Basic Authentication to identify users. Below is
the top-level routine to handle requesting the username and password and then com-
paring the results to information stored in a CouchDB User document:

/* validate user (from db) via HTTP Basic Auth */
function validateUser(req, res, next) {

 var parts, auth, scheme, credentials;
 var view, options;

 // handle auth stuff
 auth = req.headers["authorization"];
 if (!auth){
 return authRequired(res, 'Microblog');
 }

 parts = auth.split(' ');
 scheme = parts[0]
 credentials = new Buffer(parts[1], 'base64').toString().split(':');

 if ('Basic' != scheme) {
 return badRequest(res);
 }
 req.credentials = credentials;

 // ok, let's look this user up

The Server Code | 113

 view = '/_design/microblog/_view/users_by_id';

 options = {};
 options.descending='true';
 options.key=String.fromCharCode(34)+req.credentials[0]+String.fromCharCode(34);;

 db.get(view, options, function(err, doc) {
 try {
 if(doc[0].value.password===req.credentials[1]) {
 next(req,res);
 }
 else {
 throw new Error('Invalid User');
 }
 }
 catch (ex) {
 return authRequired(res, 'Microblog');
 }
 });
};

In the above routine, the code first checks for the presence of the Authorization header.
If it does not exist, the server sends a response that asks the client to supply credentials
before continuing (the authRequired method call). Once an Authorization header is
supplied by the client, the code first ensures that it uses the Basic authentication scheme
and then proceeds to parse the header into its two key parts (username:password). The
first part (username) is used to perform a look up against the data store and, if a record
is found, the second part (password) is compared against the data store in the User
document. If there is a match, then the user has been authenticated and the code exe-
cution continues as usual (the next method call).

Registering a New User
Since this implementation supports adding new users, there is a view for rendering the
state transition form and code to handle both returning the form and processing the
posted data (using POST).

First, here is the code to return the input form:

/* get user register page */
app.get('/microblog/register/', function(req, res){

 res.header('content-type',contentType);
 res.render('register', {
 title: 'Register',
 site: baseUrl,
 });
});

And the view template to render that form:

<h2 id="page-title"><%= title %></h2>
<form class="user-add" action="<%=site%>users/" method="post">

114 | Chapter 4: HTML5 Hypermedia

 <fieldset>
 <h4>Account</h4>
 <p class="input">
 <label>Handle:</label>
 <input name="user" value=""
 placeholder="coolhandle" required="true"/>
 </p>
 <p class="input">
 <label>Password:</label>
 <input name="password" type="password" value=""
 placeholder="mys3cr3t" required="true" />
 </p>
 </fieldset>
 <fieldset>
 <h4>User Info</h4>
 <p class="input">
 <label>Email Address:</label>
 <input name="email" type="email" value=""
 placeholder="user@example.com" required="true"/>
 </p>
 <p class="input">
 <label>Full Name:</label>
 <input name="name" value="" placeholder="Jane Doe"/>
 </p>
 <p class="input">
 <label>Description:</label>
 <textarea name="description"></textarea>
 </p>
 <p class="input">
 <label>Avatar URL:</label>
 <input name="avatar" type="url" value=""
 placeholder="http://example.com/images/my-avatar.jpg"/>
 </p>
 <p class="input">
 <label>Website URL:</label>
 <input name="website" type="url" value=""
 placeholder="http://example.com/my-blog/"/>
 </p>
 </fieldset>
 <p class="buttons">
 <input type="submit" value="Submit" />
 <input type="reset" value="Reset" />
 </p>
</form>

In the above template, you can see that some fields are marked as required="true" and
some have placeholder values included to give users a hint on how to fill out the various
inputs.

Below is the server code that runs when users submit the state transition form:

/* post to user list page */
app.post('/microblog/users/', function(req, res) {

 var item,id;

The Server Code | 115

 id = req.body.user;
 if(id==='') {
 res.status=400;
 res.send('missing user');
 }
 else {
 item = {};
 item.type='user';
 item.password = req.body.password;
 item.name = req.body.name;
 item.email = req.body.email;
 item.description = req.body.description
 item.imageUrl = req.body.avatar;
 item.websiteUrl = req.body.website;
 item.dateCreated = today();

 // write to DB
 db.save(req.body.user, item, function(err, doc) {
 if(err) {
 res.status=400;
 res.send(err);
 }
 else {
 res.redirect('/microblog/users/', 302);
 }
 });
 }
});

Message Responses
There are two responses for representing messages: the message list and message de-
tails. There is also a state transition for adding a new message to the data store.

Below is the code that returns the message list:

/* starting page */
app.get('/microblog/', function(req, res){

 var view = '/_design/microblog/_view/posts_all';

 var options = {};
 options.descending = 'true';

 ctype = acceptsXml(req);

 db.get(view, options, function(err, doc) {
 res.header('content-type',ctype);
 res.render('index', {
 title: 'Home',
 site: baseUrl,
 items: doc
 });
 });
});

116 | Chapter 4: HTML5 Hypermedia

And the view template that renders the message list:

<h2 id="page-title"><%= title %></h2>
<form class="message-post" action="<%=site%>messages/" method="post">
 <fieldset>
 <h4>What's Up?</h4>
 <textarea name="message" cols="50" rows="1" size="140" required="true"></textarea>

 <input type="submit" value="Submit" />
 <input type="reset" value="Reset" />

 </fieldset>
</form>

<div id="messages">
 <ul class="all">
 <% for(i=0,x=items.length;i<x;i++) { %>

 <%=items[i].value.text%>

 @
 <a rel="message" href="<%=site%>messages/<%=items[i].value._id%>"
title="message">

 <%=items[i].value.dateCreated%>

 by
 <a rel="user" href="<%=site%>users/<%=items[i].value.user%>" title="<
%=items[i].value.user%>">
 <%=items[i].value.user%>

 <% } %>

</div>

Note that this view template also includes the state transition block for adding a new
message to the system (message-post). Below is the server code that handles the mes-
sage-post state transition:

// add a message
app.post('/microblog/messages/', function(req, res) {

 validateUser(req, res, function(req,res) {

 var text;

 // get data array
 text = req.body.message;
 if(text!=='') {
 item = {};
 item.type='post';
 item.text = text;
 item.user = req.credentials[0];

The Server Code | 117

 item.dateCreated = now();

 // write to DB
 db.save(item, function(err, doc) {
 if(err) {
 res.status=400;
 res.send(err);
 }
 else {
 res.redirect('/microblog/', 302);
 }
 });
 }
 else {
 return badReqest(res);
 }
 });
});

Finally, here is the code to handle representing a single message. This can be reached
by activating the rel="message" links in the message list:

/* single message page */
app.get('/microblog/messages/:i', function(req, res){

 var view, options, id;
 id = req.params.i;

 view = '/_design/microblog/_view/posts_by_id';
 options = {};
 options.descending='true';
 options.key=String.fromCharCode(34)+id+String.fromCharCode(34);

 db.get(view, options, function(err, doc) {
 res.header('content-type',contentType);
 res.render('message', {
 title: id,
 site: baseUrl,
 items: doc
 });
 });
});

Below is the template for rendering a single message response:

<div class="message-block">
 <div id="messages">
 <ul class="single">
 <% for(i=0,x=items.length;i<x;i++) { %>

 <%=items[i].value.text%>

 @
 <a rel="message" href="<%=site%>messages/<%=items[i].value._id%>"
title="message">

118 | Chapter 4: HTML5 Hypermedia

 <%=items[i].value.dateCreated%>

 by
 <a rel="user" href="<%=site%>users/<%=items[i].value.user%>" title="<
%=items[i].value.user%>">
 <%=items[i].value.user%>

 <% } %>

 </div>

</div>

User Responses
This sample implementation has two representations for user responses: the user list
and the user details. Below is the user list server code:

/* get user list page */
app.get('/microblog/users/', function(req, res){

 var view = '/_design/microblog/_view/users_by_id';

 db.get(view, function(err, doc) {
 res.header('content-type',contentType);
 res.render('users', {
 title: 'User List',
 site: baseUrl,
 items: doc
 });
 });
});

And the user list view to match:

<h2 id="page-title"><%= title %></h2>
<div id="users">
 <ul class="all">
 <% for(i=0,x=items.length;i<x;i++) { %>

 <%= items[i].value.name %>
 <a rel="user" href="<%=site%>users/<%=items[i].value._id%>"
 title="profile for <%=items[i].value._id%>">profile
 <a rel="messages" href="<%=site%>user-messages/<%=items[i].value._id%>"
 title="messages by <%=items[i].value._id%>">messages

 <% } %>

</div>

There is also code to return a single user record:

The Server Code | 119

/* single user profile page */
app.get('/microblog/users/:i', function(req, res){

 var view, options, id;
 id = req.params.i;

 view = '/_design/microblog/_view/users_by_id';
 options = {};
 options.descending='true';
 options.key=String.fromCharCode(34)+id+String.fromCharCode(34);

 db.get(view, options, function(err, doc) {
 res.header('content-type',contentType);
 res.render('user', {
 title: id,
 site: baseUrl,
 items: doc
 });
 });
});

Along with the view template for rendering single user responses:

<h2 id="page-title"><%= title %></h2>
<div id="users">
 <ul class="single">

 <% if(items[0].value.imageUrl) { %>
 <img class="avatar" src="<%=items[0].value.imageUrl%>" />
 <% } %>

 <a rel="user" href="<%=site%>users/<%=items[0].value._id%>"
 title="profile for <%=items[0].value._id%>">
 <%= items[0].value.name %>

 <% if(items[0].value.description) { %>

 <%=items[0].value.description%>

 <% } %>

 <% if(items[0].value.websiteUrl) { %>
 <a rel="website" href="<%=items[0].value.websiteUrl%>" title="website">
 <%=items[0].value.websiteUrl%>

 <% } %>

 <a rel="messages" href="<%=site%>user-messages/<%=items[0].value._id%>"
 title="messages by <%=items[0].value._id%>">messages

</div>

Note that the single user template will optionally include the user’s profile image (user-
image), description, and website URL if they have been supplied. You should also notice

120 | Chapter 4: HTML5 Hypermedia

that this representation includes a link to see all of the messages created by this user
(rel="messages”). The server code and view template for that response are:

/* user messages page */
app.get('/microblog/user-messages/:i', function(req, res){

 var view, options, id;

 id = req.params.i;

 view = '/_design/microblog/_view/posts_by_user';
 options = {};
 options.descending='true';
 options.key=String.fromCharCode(34)+id+String.fromCharCode(34);;

 db.get(view, options, function(err, doc) {
 res.header('content-type',contentType);
 res.render('user-messages', {
 title: id,
 site: baseUrl,
 items: doc
 });
 });
});

<h2 id="page-title">Messages from <%=title%></h2>
<div class="user-message-block">
 <div id="messages">
 <ul class="search">
 <% for(i=0,x=items.length;i<x;i++) { %>

 <%=items[i].value.text%>

 @
 <a rel="message" href="<%=site%>messages/<%=items[i].value._id%>"
 title="message">

 <%=items[i].value.dateCreated%>

 by
 <a rel="user" href="<%=site%>users/<%=items[i].value.user%>"
 title="<%=items[i].value.user%>">
 <%=items[i].value.user%>

 <% } %>

 </div>

</div>

The Server Code | 121

The Client Code
Once the server is implemented, it’s time to work through example clients. As was
already mentioned, using HTML5 as the based media type means that the implemen-
tation will just run within common web browsers without any modification. However,
plain HTML5 (without a Cascading Style Sheet, or CSS) is not very pleasing to the eye.
It is a rather easy process to create a CSS stylesheet to spiff up plain HTML5 into a
decent looking client. This results in a client that supports all of the required function-
ality without relying on any client-side scripting. This is sometimes called a Plain Old
Semantic HTML or POSH client.

It is also possible to treat well-formed HTML5 as an XML document and render the
responses using an Ajax-style user interface. This does, however, require that the
HTML5 be rendered as valid XML. Lucky for our case, the view templates already meet
this requirement.

The POSH Example
The basic HTML5 that is rendered by the server is fully functional, but a bit unappealing
to view as can be seen in Figure 4-1.

However, with just a bit of CSS work, this view can be turned into a much more inviting
user interface (see Figure 4-2).

Figure 4-1. Microblog Plain POSH Client Screenshot

122 | Chapter 4: HTML5 Hypermedia

The CSS file for this rendering includes rules for rendering the home page and message
lists:

body {
 background-color: #FFFFCC;
 font-family: sans-serif;
}

div#queries {
 width:500px;
 float:right;
}

div#queries ul {
 margin:0;
 list-style-type:none;
}
div#queries ul li {
 float:left;
 padding-right: .4em;
}

div#messages ul {
 margin:0;
 list-style-type:none;
}
div#messages ul li {
 margin-top: .3em;
}

Figure 4-2. Microblog CSS POSH Client Screenshot

The Client Code | 123

div#messages ul.single li span.message-text {
 font-size:large;
 font-weight:bold;
}

div.message-block {
 border: 1px solid black;
 padding:.5em;
 width:500px;
 margin:auto;
 -moz-border-radius: 25px;
 border-radius: 25px;
}

div#messages ul.single li a,
div#messages ul.single li span.single {
 float:left;
 margin-right: .3em;
}

ul.single {
 margin:0;
 list-style-type:none;
}

ul.single a,
ul.single span,
ul.single img
{
 display:block;
}

The CSS document also includes details for rendering state transition blocks (HTML
forms):

form.message-post {
 width:600px;
}
form.message-post textarea {
 display:block;
 float:left;
}
span.message-buttons {
 display:block;
 float:left;
}

fieldset {
 margin-top: 1em;
 -moz-border-radius: 25px;
 border-radius: 25px;
 background-color: #CCCC99;
}
fieldset h4 {
 margin:0;

124 | Chapter 4: HTML5 Hypermedia

}

form.user-add {
 width:300px;
}

p.input {
 margin-top:0;
 margin-bottom:0;
}
p.input label {
 display:block;
 width:150px;
}
p.input input,
p.input textarea {
 float:left;
 width:200px;
}

span.message-buttons input {
 background-color: #ffffcc;
 -moz-border-radius: 15px;
 border-radius: 15px;
}
p.buttons input {
 background-color: #cccc99;
 -moz-border-radius: 15px;
 border-radius: 15px;
}

Quite a bit more work could be done in this area, too. The CSS specification offers a
wide range of options that make rendering POSH responses very easy and straightfor-
ward. The example here is given as just a starter for those who want to explore the area
of user interface design via CSS.

The Ajax QuoteBot Example
In this example, a small Ajax client that knows enough about the microblogging hy-
permedia profile to interact with any server that supports this media type will be im-
plemented. The bot shown here is able to determine if it needs to register as a new
account on the server and then post quotes into the data stream at regular intervals.
This example application shows that HTML can be successfully used as a machine-to-
machine media type. It also provides guidance on one way to write stand-alone client
applications for machine-to-machine scenarios.

Below is an example run of the QuoteBot Figure 4-3.

The Client Code | 125

The QuoteBot scenario

For this example, the QuoteBot client will have the job of writing quotes to the micro-
blogging server. If needed, this bot will also be able to register a new account on the
target server. In order to accomplish these tasks, the QuoteBot will need to understand
enough of the microblogging profile to perform a handful of low-level tasks such as
loading the server’s home page, getting a list of users, finding and completing the user
registration form, posting new messages, etc. Below is a list of these tasks along with
notes on how the bot can use the microblogging profile specification to accomplish
them:

• Load an entry page on the server (the starting URI)

• Get a list of registered users for this server (find the @rel="users-all" link)

• See if the bot is already registered (find the @rel="user" link with the value of the
bot’s username)

• Load the user registration page (find the @rel="register" link)

• Find the user registration form (locate the @class="user-add" form on the page)

• Fill out the user registration form and submit it to the server (find the input fields
outlined in the spec, populate them, and send the data to the server)

• Load the message post page (@rel="message-post" link)

• Find the message post form (locate the @class="message-post" form on the page)

• Fill out the message post form and submit it to the server (find the input fields
identified in the spec, populate, and send)

As the list above illustrates, the process of coding a machine-to-machine client for hy-
permedia interactions involves identifying two types of elements in response represen-
tations: links and forms. Clients need to be able to activate a link (i.e. follow the link)
and fill in forms and activate them, too (i.e. submit the data to the server). Essentially,

Figure 4-3. Microblog QuoteBot Screenshot

126 | Chapter 4: HTML5 Hypermedia

the client application needs to understand links and forms in general as well as the
semantic details of the particular hypermedia profile.

Reachable Links and Forms
It is important to point out that hypermedia clients depend on servers to make these
links and forms available (or reachable). In other words, the bot must be able to suc-
cessfully find them. It is also possible to write client applications that can use multilevel
searching and backtracking in order to find target links and forms buried at various
locations in the Web, then track these links and forms for future use. This is very much
what a link spider does when traversing and indexing the WWW.

In this example implementation, all the links needed for this work are presented either
on the home page (or starting URI) or on a page reachable from that home page. This
makes the task of finding links and forms relatively easy for machine clients and sim-
plifies the illustration for this chapter.

QuoteBot HTML5

The HTML5 for the QuoteBot example is very minimal. All of the activity on the page
is driven by the associated JavaScript. Below is the complete HTML5 markup:

<!DOCTYPE html>
<html>
 <head>
 <title>MB QuoteBot</title>
 <script type="text/javascript" src="javascripts/base64.js"></script>
 <script type="text/javascript" src="javascripts/mbclient.js"></script>
 <style>
 h1 {margin:0;}
 h2,h3,h4 {margin-bottom:0;}
 p {margin-top:0;}
 div#side {float:left;margin:auto 1em auto auto;}
 div#main {float:left;}
 </style>
 </head>
 <body>
 <sidebar>
 <div id="side">

 </div>
 </sidebar>
 <article>
 <div id="main">
 <header>
 <h1>MB QuoteBot</h1>
 </header>
 <section>
 <p>
 This bot understands the Microblogging profile enough to
 register a new user account and
 start posting quotes to the stream.

The Client Code | 127

 </p>
 </section>
 <section>
 <h3>Progress</h3>
 <p id="status"></p>
 </section>
 </div>
 <div id="output">
 </div>
 </article>
 </body>
</html>

QuoteBot JavaScript

The JavaScript for the QuoteBot looks as if it is complicated, but is actually rather
simple. The code can be separated into a handful of sections:

Setup
This code contains the initialization code, the variables used to fill out expected
forms, and the list of quotes to send to the server.

Making requests
This is a short bit of general code used to format and excecute an HTTP request.
The code is smart enough to include a body and authentication information, if
needed.

Processing responses
This section contains all of the methods used to process the response representa-
tions from the server. This includes parsing the response, looking for links, and
looking for and filling in forms. These routines either conclude with an additional
request or, in case of an error, stop and report the status of the bot and stop.

Supporting routines
These are utility functions to inspect arguments in the URI, format a URI for the
next request, and look for elements in the response.

The setup code includes details on shared state variables, details on forms
to fill out, error messages, and a list of quotes to send to the server:

 var g = {};

 /* state values */
 g.startUrl = '/microblog/'
 g.wait=10;
 g.status = '';
 g.url = '';
 g.body = '';
 g.idx = 0;

 /* form@class="add-user" */
 g.user = {};
 g.user.user = 'robieBot5';

Setup code.

128 | Chapter 4: HTML5 Hypermedia

 g.user.password = 'robie';
 g.user.email = 'robie@example.org';
 g.user.name = 'Robie the Robot';
 g.user.description = 'a simple quote bot';
 g.user.avatar = 'http://amundsen.com/images/robot.jpg';
 g.user.website = 'http://robotstxt.org';

 /* form@class="message-post" */
 g.msg = {};
 g.msg.message = '';

 /* errors for this bot */
 g.errors = {};
 g.errors.noUsersAllLink = 'Unable to find a@rel="users-all" link';
 g.errors.noUserLink = 'Unable to find a@rel="user" link';
 g.errors.noRegisterLink = 'Unable to find a@rel="register" link';
 g.errors.noMessagePostLink = 'Unable to find a@rel="message-post" link';
 g.errors.noRegisterForm = 'Unable to find form@class="add-user" form';
 g.errors.noMessagePostForm = 'Unable to find form@class="message-post" form';
 g.errors.registerFormError = 'Unable to fill out the form@class="add-user" form';
 g.errors.messageFormError = 'Unable to fill out the form@class="message-post" form';

 /* some aesop's quotes to post */
 g.quotes = [];
 g.quotes[0] = 'Gratitude is the sign of noble souls';
 g.quotes[1] = 'Appearances are deceptive';
 g.quotes[2] = 'One good turn deserves another';
 g.quotes[3] = 'It is best to prepare for the days of necessity';
 g.quotes[4] = 'A willful beast must go his own way';
 g.quotes[5] = 'He that finds discontentment in one place is not likely to find
happiness in another';
 g.quotes[6] = 'A man is known by the company he keeps';
 g.quotes[7] = 'In quarreling about the shadow we often lose the substance';
 g.quotes[8] = 'They are not wise who give to themselves the credit due to others';
 g.quotes[9] = 'Even a fool is wise-when it is too late!';

When the page first loads, a set of state variables are populated based
on data in the query string. This data is then used to fire off a request to the micro-
blogging server:

 function init() {
 g.status = getArg('status')||'start';
 g.url = getArg('url')||g.startUrl;
 g.body = getArg('body')||'';
 g.idx = getArg('idx')||0;

 updateUI();
 makeRequest();
 }

 function newQuote() {
 g.idx++;
 nextStep('start');
 }

Making requests.

The Client Code | 129

 function updateUI() {
 var elm;

 elm = document.getElementById('status');
 if(elm) {
 elm.innerHTML = g.status + '
' + g.url + '
' + unescape(g.body);
 }
 }

 function makeRequest() {
 var ajax, data, method;

 ajax=new XMLHttpRequest();
 if(ajax) {
 ajax.onreadystatechange = function() {
 if(ajax.readyState==4 || ajax.readyState=='complete') {
 processResponse(ajax);
 }
 };

 if(g.body!=='') {
 data = g.body;
 method = 'post';
 }
 else {
 method = 'get';
 }

 ajax.open(method,g.url,true);

 if(data) {
 ajax.setRequestHeader('content-type','application/x-www-form-urlencoded');
 ajax.setRequestHeader('authorization','Basic '+Base64.encode(g.user.user
+':'+g.user.password));
 }

 g.url='';
 g.body='';

 ajax.setRequestHeader('accept','application/xhtml+xml');
 ajax.send(data);
 }
 }

Processing responses is the heart of this example application. Each
response representation from the server can potentially contain links and/or forms of
interest for this bot. The code needs to know what is expected in this response (e.g.
“There should be a ‘register’ link in this response somewhere...”) and know how to
find it (e.g. “Give me all of the links in this response and see if one is marked rel='re
gister'”). This first code snippet shows the routine used to route response represen-
tations to the proper function for processing:

 /* these are the things this bot can do */
 function processResponse(ajax) {

Processing responses.

130 | Chapter 4: HTML5 Hypermedia

 var doc = ajax.responseXML;

 if(ajax.status===200) {
 switch(g.status) {
 case 'start':
 findUsersAllLink(doc);
 break;
 case 'get-users-all':
 findMyUserName(doc);
 break;
 case 'get-register-link':
 findRegisterLink(doc);
 break;
 case 'get-register-form':
 findRegisterForm(doc);
 break;
 case 'post-user':
 postUser(doc);
 break;
 case 'get-message-post-link':
 findMessagePostForm(doc);
 break;
 case 'post-message':
 postMessage(doc);
 break;
 case 'completed':
 handleCompleted(doc);
 break;
 default:
 alert('unknown status: ['+g.status+']');
 return;
 }
 }
 else {
 alert(ajax.status)
 }
 }

The following function looks for a link and responds accordingly:

 function findMyUserName(doc) {
 var coll, url, href, found;

 found=false;
 url=g.startUrl;

 coll = getElementsByRelType('user', 'a', doc);
 if(coll.length===0) {
 alert(g.errors.noUserLink);
 }
 else {
 for(i=0,x=coll.length;i<x;i++) {
 if(coll[i].firstChild.nodeValue===g.user.user) {
 found=true;
 break;
 }

The Client Code | 131

 }

 if(found===true) {
 g.status = 'get-message-post-link';
 }
 else {
 g.status = 'get-register-link';
 }
 nextStep(g.status,url);
 }
 }

This bot is also able to locate a form and fill it in based on data already in memory:

 function findRegisterForm(doc) {
 var coll, url, msg, found, i, x, args, c, body;

 c=0;
 args = [];
 found=false;

 elm = getElementsByClassName('user-add','form',doc)[0];
 if(elm) {
 found=true;
 }
 else {
 alert(g.errors.noRegisterForm);
 return;
 }

 if(found===true) {
 url = elm.getAttribute('action');

 coll = elm.getElementsByTagName('input');
 for(i=0,x=coll.length;i<x;i++) {
 name = coll[i].getAttribute('name');
 if(g.user[name]!==undefined) {
 args[c++] = {'name':name,'value':g.user[name]};
 }
 }
 coll = elm.getElementsByTagName('textarea');
 for(i=0,x=coll.length;i<x;i++) {
 name = coll[i].getAttribute('name');
 if(g.user[name]!==undefined) {
 args[c++] = {'name':name,'value':g.user[name]};
 }
 }
 }

 if(args.length!=0) {
 body = '';
 for(i=0,x=args.length;i<x;i++) {
 if(i!==0) {
 body +='&'
 }
 body += args[i].name+'='+encodeURIComponent(args[i].value);

132 | Chapter 4: HTML5 Hypermedia

 }
 alert(body);
 nextStep('post-user',url,body);
 }
 else {
 alert(g.errors.registerFormError);
 }
 }

There are a number of other processing routines in the working example. See for
“Source Code” on page 217 details on how to locate and download the full source for
this book.

This implementation contains a few routines used to support the high-
level processing outlined in previous sections. For example, below is a function to parse
the query string of the current document and a function used to assemble the URI for
the next request in the task chain:

 function getArg(name) {
 var match = RegExp('[?&]' + name + '=([^&]*)').exec(window.location.search);
 return match && decodeURIComponent(match[1].replace(/\+/g, ' '));
 }

 function nextStep(status,url,body) {
 var href,adr;

 href = window.location.href;
 href = href.substring(0,href.indexOf('?'));
 adr = href + '?status=' + status;
 adr += '&idx=' + g.idx;
 if(url) {adr += '&url=' + encodeURIComponent(url);}
 if(body) {adr += '&body=' + encodeURIComponent(body);}

 window.location.href = adr;
 }

This last routine handles parsing a response representation to find elements that match
a specific link-relation value. This is very similar to looking for elements with specific
values in the class attribute:

 function getElementsByRelType(relType, tag, elm)
 {
 var testClass = new RegExp("(^|\\s)" + relType + "(\\s|$)");
 var tag = tag || "*";
 var elements = (tag == "*" && elm.all)? elm.all : elm.getElementsByTagName(tag);
 var returnElements = [];
 var current;
 var length = elements.length;
 for(var i=0; i<length; i++){
 current = elements[i];
 if(testClass.test(current.getAttribute('rel'))){
 returnElements.push(current);
 }
 }

Support routines.

The Client Code | 133

 return returnElements;
 }

Summary
This chapter covered the topic of using HTML5 as a base media type. This has the
advantages of a fully-functional hypermedia type (supports almost all the H-Factors
identified in “Identifying Hypermedia : H-Factors” on page 13). Using HTML5 also
means that implementing the basic server will result in a working client implementation
that can run in common web browsers without the need for client-side scripting. This
is a great way to build quick sample implementations to test server transition details
and media type design aspects.

Since HTML5 is a domain-agnostic media type, it has no built-in domain specific
markup elements and no predefined transitions as does Atom/AtomPub and the Col-
lection+JSON example in Chapter 3. This example showed how designers can use
HTML5 attributes (id, name, class, and rel) to apply domain-specific details to re-
sponses.

A server implementation of a simple CouchDB data model was created that included
support for HTTP Basic Authentication. This showed that user authentication details
can be implemented independently of the actual media type design. And finally, two
sample clients were reviewed. The first was simply a CSS restyling of the plain HTML5
rendered by the server (the POSH client). The second client was an Ajax-style web bot
implementation that parsed the HTML5 responses looking for desired links and forms
in order to post messages to the server.

This implementation showed that it is possible to use an already-existing hypermedia
type as the basis for your own unique design. It also showed the importance of docu-
menting domain-specific details in ways that both server and client implementors can
understand. The next (and final) chapter explores the role of documentation in more
detail.

134 | Chapter 4: HTML5 Hypermedia

CHAPTER 5

Documenting Hypermedia

We think in generalities, but we live in detail.

- Alfred North Whitehead

Documenting and publishing hypermedia designs makes it possible for the design to
gain wider adoption. The process of publishing also can mean attracting expert review
that will result in an improved, possibly more useful design. There are a number of
organizations that may become involved in the review process including the IANA,
W3C, IETF, etc.

This chapter covers a number of the mechanical details of documenting, publishing,
and registering media type designs and link relation types. First, a standard for docu-
menting requirements and compliance levels based on the guidelines in RFC 2119 is
covered.

Next, the details of writing solid documentation for media type designs of various
formats (XML, JSON, HTML) are reviewed. This includes the process of recording the
mapping of domain-specific information to media types.

The difference between extending and versioning media types is covered along with
the steps for registering media types and link relations with various standards bodies.
Finally, a set of design and documentation tips are provided.

Requirements, Compliance, and RFC 2119
When documenting media types, you often need to indicate both to the author and
consumers of that type, which elements, if any, are required in a representation (which
are optional, etc.). Expressing these requirement levels in a manner that readers can
easily understand will go a long way toward making your documentation easy to read
and in turn, making your media type easier to implement.

The IETF (Internet Engineering Task Force), responsible for many of the Internet
standards documents in use today, recognized the need for a consistent method for

135

communicating requirements levels. To that end, the IETF published “Key words for
use in RFCs to Indicate Requirement Levels” (RFC 2119). This document outlines
several keywords for use in indicating levels of requirement. The document also sets a
standard for indicating compliance. These keywords, combined with the compliance
standard, comprise an excellent set of tools for use in documenting media types, too.

The RFC 2119 Keywords
The keywords defined in RFC 2119 can be used to indicate requirements levels from
absolutely required to recommended to optional. It also has standards for indicating
negative requirements such as “must not” and other similar phrases. Since these key-
words and phrases are already defined by the IETF and their meaning is well-estab-
lished, they are an excellent tool for documenting your media type. Using these key-
words throughout the media type definition document provides clear directions to both
server and client developers.

Below are the words and phrases defined in RFC 2119 along with the meaning associ-
ated:

The established method for using the RFC 2119 keywords is to represent
them in ALL CAPS. This makes it clear to the reader that the documen-
tation is invoking the RFC 2119 meaning of that word. It is also impor-
tant that you do not attempt to redefine the meaning of RFC 2119 key-
words. If you want to indicate some other level of requirement for your
documentation, you need to establish your own keywords with their
own meaning and use.

MUST, SHALL, REQUIRED
The referenced feature or element of the specification is absolutely required.

SHOULD, RECOMMENDED
There may be valid reasons for not implementing/support the referenced feature
or element of the specification, but implementors should consider carefully before
deciding not to support this feature/element.

MAY, OPTIONAL
The referenced feature or element of the specification is optional; not all imple-
mentations should be expected to support it. Implementations should continue to
function in cases where this feature/element is missing.

MUST NOT, SHALL NOT
The referenced feature or element is absolutely prohibited.

SHOULD NOT, NOT RECOMMENDED
There may be valid reasons for implementing/supporting the referenced feature or
element of the specification, but implementors should consider carefully before
supporting this feature/element.

136 | Chapter 5: Documenting Hypermedia

Sample Documentation Using RFC 2119 Keywords
Once you understand the use and meaning of the RFC 2119 keywords, it is easy to put
them into practice in your own documentation. Below are a few simple examples:

All valid response representations MUST begin with <root> as the first element.

Servers SHOULD return a response code of 204 if the HTTP DELETE request was suc-
cessful.

Clients MAY include the Accept" HTTP header when sending a request to the server.

The “userid” is a REQUIRED.

Clients MUST NOT store responses returned via HTTPS.

Servers SHOULD NOT include the user’s secret key in clear-text responses.

Defining Compliance
One of the key benefits of using the RFC 2119 keywords is to clearly establish compli-
ance rules for implementors of your media types. Typically this is done by including
text that: 1) indicates the use of RFC 2119 keywords in your document and, 2) tells
implementors how to achieve levels of compliance such as:

• Unconditionally Compliant

• Conditionally Compliant

• Non-Compliant

Below is a common text block (typically appearing early in the document) to include
in your documentation to tell readers that RFC 2119 words are used within the text:

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119.

In addition to the text above, authors can include a paragraph to indicate levels of
compliance. This helps client and server developers know what it takes to create “un-
conditionally compliant” or “conditionally compliant” implementations. It also helps
parties recognize “non-compliant” implementations and make necessary changes. Be-
low is sample text that indicates compliance levels:

An implementation is “non-compliant” if it fails to satisfy one or more of the MUST or
REQUIRED level requirements. An implementation that satisfies all of the MUST or
REQUIRED and all of the SHOULD level requirements is said to be “unconditionally
compliant”; an implementation that satisfies all of the MUST level requirements but not
all of the SHOULD level requirements is said to be “conditionally compliant.”

By combining the use of RFC 2119 keywords with a clear statement on compliance
levels, developers will be able to interpret the documentation of a media type design
and create implementations that have a high probability of interoperability with other
independent implementations of the same media type.

Requirements, Compliance, and RFC 2119 | 137

Documenting Media Type Designs
One of the key aspects of designing media types is producing useful documentation for
them. In hypermedia designs, it is essential that both client and server have a clear
understanding of the media type and how it can be used in a target implementation.
Consistent, readable, and clear documentation is always the goal. When supporting
hypermedia, it is vital.

This section provides guidance on a general layout for media type documentation and
covers format-specific considerations for the most common data formats including
XML, JSON, and HTML. In addition, information on how to document domain-spe-
cific aspects of your design as well as publishing your documentation are covered.

The IETF, W3C, and IANA
The document format described in this chapter is a hybrid of features and requirements
taken from three different sources: the Internet Engineering Task Force (IETF), the
World Wide Web Consortium (W3C), and the Internet Assigned Numbers Authority
(IANA). Each of these organizations have their own rules and requirements for pub-
lishing specifications.

The IETF process for publishing specifications starts with creating an I-D (Internet
Draft) and shepherding that document through a process of review that eventually may
be published as an RFC (Request For Comment) document. The IETF maintains the
“Guidelines to Authors of Internet Drafts,” which provides details on the authoring I-
Ds. The document “The Internet Standards Process—Revision 3” (RFC 2026) describes
the IETF approval process itself.

The W3C provides the “QA Framework: Specification Guidelines” document to help
authors create and submit specifications for review. Their “World Wide Web Consor-
tium Process Document” provides a full description of “the organizational structure of
the W3C and the processes related to the responsibilities and functions they exercise
to enable W3C to accomplish its mission.”

Finally, all media type designs should be registered with the IANA. See “Registering
Media Types and Link Relations” on page 157 for more on the document format and
process of registering media types and link relations.

General Layout
No matter what style of media type you design, regardless of the data formats involved,
it is a good idea to use a consistent layout for all of your documentation, including any
support documents, examples, errata, and other materials. A consistent presentation
makes it easy for readers to find what they are looking for. It also makes it easy for
readers to spot updates, modifications, and extensions that may occur over time.

138 | Chapter 5: Documenting Hypermedia

It is also important to keep in mind that media type documentation can have multiple
audiences. Some readers will be primarily interested in how to use the media type to
express domain-specific information. Typically these authors are not focused on how
to implement a client or server, but they are more interested in whether the media type
can successfully carry the domain information needed to make an application work.
Some readers may be focused on creating working implementations. Server implemen-
tors will want to know how to use the media type to emit valid representations. Client
developers will want to understand how to interpret representations received from
servers. A small but important group of readers will want to make sure the media type
design is safe to use, stable, and reliable. All of these readers need to be able to find
what they are looking for within the media type documents.

Below are four suggested top-level sections that can make media type design docu-
mentation easy to maintain and easy to read.

Front matter

The front matter of a media type design should contain basic information that helps
readers get a quick understanding of the aims, status, and adoption of the media type.
One way to accomplish these goals is to include the following details:

Description
Provide a short, clear description of the media type and the general design empha-
sis, problem domain, or other related information. This should be only a couple
sentences in length and should help the reader know if this media type design might
meet the reader’s needs. For example:

“Collection+JSON is a JSON-based read/write hypermedia-type designed to sup-
port management and querying of simple collections. It is similar to the The Atom
Syndication Format (RFC 4287) and The Atom Publishing Protocol (RFC 5023).
However, Collection+JSON defines both the format and the semantics in a single
media type. It also includes support for Query Templates and expanded write sup-
port through the use of a Write Template.”

Registration Status
Currently, HTTP relies on the MIME media type standard for identifying media
type designs. As of this writing, the IANA is the sole registration point for MIME
media types. Your document should announce the registration status of your de-
sign by listing the MIME media type string and an indication of the media type’s
current registration status. Here are some possible examples:

• application/vnd.collection+json (unregistered)

• application/vnd.collection+json (application pending)

• application/vnd.collection+json (approved)

Documenting Media Type Designs | 139

See “Registering Media Types and Link Relations” on page 157
for more on registering media type designs.

Known Implementations
It is always helpful for readers to know there are other implementations of the
media type design already in place. Adding references to known implementations
not only provides readers with possible examples to reference, it also acts as an
indicator of the adoption level of the design. This section need only list implemen-
tations and provide links to external references including client or server imple-
mentations, available libraries that support the design, etc. However, if the design
has been formally adopted by a standards body, company, or established developer
group adding these references can help readers further evaluate the design.

Update History
All designs undergo changes over time. Whether it is the initial series of updates
before reaching “stable release” or continued improvement and extension as the
design reaches a wider audience, it is important to keep a good history of the media
type’s modifications. Readers will be able to see whether the media type is under-
going frequent modification, has reached a stable level, or has not been updated
in quite a while. This, too, is valuable information for those assessing the applic-
ability of the media type design for their needs.

Along with the four elements listed above, the front matter should include links to the
following three sections:

Format
The detailed description of the media type design.

Examples
A set of stand-alone examples of the media type including sample representations
used for requests and responses.

Tutorials
A section that provides one or more walk-through narratives that cover common
use cases for the media type design. This can be used to show readers a more
concrete demonstration of how the media type can be used to complete typical
tasks, solve familiar problems, etc.

Format

The Format section contains the details of the media type design itself. This includes
a full description of all the elements, attributes, objects, properties, etc. that can appear
within a valid representation. The exact layout and contents of this section depends on
the data format (XML, JSON, etc.) and domain style (Specific, Generic, Agnostic) of
the design.

140 | Chapter 5: Documenting Hypermedia

This section should also contain a list of all predefined enumerated values that may be
used in the document. Below is an example that shows the valid values for the method
attribute of a hypermedia control:

Sending data to the server:

Example:
<send method="{method-value}" ... />

Where {method-value} is one of the following:
- GET
- POST
- PUT
- DELETE

The Format section should also include documentation on any Link Relation values
used for the media type. These may include references to already-defined values, values
specific to this design, and references to other possible sources for Link Relation values.

A list of supported data types should also be provided in this section. These may be
references to existing data standards such as XML Types or unique definitions of data
types native to the design (i.e. integer, float, alphanumeric, etc.).

Finally, when appropriate, the Format section should include information on whether
the design is extensible and/or subject to versioning. If extensions are allowed, the
section can include information on how extensions are created, registered (if appro-
priate), and how versions can be detected in responses.

Examples

The Examples section should contain a set of stand-alone interactions between client
and server that illustrate typical request and response patterns. The goal in this section
of the documentation should be to help readers quickly locate a common interaction
and easily see how the client and server can interact to complete the conversation.

Usually the collection of examples reads like a list of well-known use cases for the media
type. For example, if the media type is domain-specific and designed to manage a simple
accounting ledger, some of the examples might be:

• Creating a chart of accounts

• Getting a list of the accounts

• Adding a new account

• Modifying an existing account

• Deleting an existing account

• Getting a list of customers

• Adding a new customer

In cases where the media type design is domain-agnostic, you can still list common use
cases even if they are more general:

Documenting Media Type Designs | 141

• Creating a new list

• Getting the list of items

• Adding a new item to the list

• Editing an existing item in the list

• Removing an item from the list

• Querying the list of items

Note that each of the examples above can stand alone. Developers interested in a par-
ticular task should be able to scan the list of examples and find one or more items that
fill their needs. While the order of the items is not all that important, grouping them
by task or alphabetically is usually the best option.

The actual content of each example can be quite simple. Often a sample client request
followed by a server response is all that is needed in order to get the point across:

Getting a List of Mazes Using the Maze+XML Media Type

Clients can request a list of available mazes by sending an HTTP GET request to the
server using the “Collection URI”:

*** REQUEST
GET /mazes/ HTTP/1.1
Host: www.example.org
Accept: application/vnd.amundsen.maze+xml

Servers SHOULD respond to valid requests to a “Collection URI” with a collection
document. Below is a simple example:

*** RESPONSE
HTTP/1.1 200 OK
Content-Type: application/vnd.amundsen.maze+xml
Content-Length: XXX

<maze>
 <collection href="http://www.example.org/mazes/">
 <link href="http://www.example.org/mazes/1" rel="maze" id="m3"/>
 <link href="http://www.example.org/mazes/2" rel="maze" id="m2"/>
 <link href="http://www.example.org/mazes/3" rel="maze" id="m3"/>
 </collection>
</maze>

Tutorials

Unlike the short, to-the-point style of the examples section, the tutorials section should
provide a more detailed explanation of how implementors can use the media type de-
sign. Usually this involves showing working code for client and/or server as well as
possible request/response representations like those that appear in the examples sec-
tion. If the media type design is not domain-specific, details on how to apply applica-
tion-domain information to media type representations should also be included. Ide-
ally, the tutorial section of the documentation should walk a developer through the
process of expressing a problem domain with the media type, illustrate sample server
code that converts private component data into valid media type representations, and

142 | Chapter 5: Documenting Hypermedia

show sample client code that consumes the server representation and properly parses
and renders the responses.

Adding to the Maze Collection

Servers may allow users to add new mazes to the collection. If this is true, the URI returned
in the <collection> element SHOULD be used. The exact details of how to add a new
maze to the collection is beyond the scope of this document. Servers may define their
own required and optional parameters, select which media types can be used to send
data to the server, and which application-level protocol(s) can be used (HTTP, XMPP,
etc.).

Below is an example showing a server that supports the HTTP POST method and the
application/x-www-form-urlencoded media type to send a single parameter (size). In this
case the server will generate a simple connected square maze where each side has a max-
imum number of cells equal to the parameter value:

*** REQUEST
POST /mazes/ HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded
Content-Length: XXX

size=10

*** RESPONSE
HTTP/1.1 201 Created
Location: http://www.example.org/mazes/1

Using HTTP POST in the manner shown here is not required.
Servers may, for example, support HTTP PUT, FTP STOR, etc. to
add new mazes to the collection, may support a wide range of pa-
rameters, and may even allow clients to upload fully defined mazes
using any number of media types (JSON, HTML, CSV, etc.).

Documenting XML Designs
Documenting media type designs that use XML as the native format should include the
following sections:

See Appendix C for a complete example of documentation for XML-
based media type design.

Elements
The list of XML elements valid for this media type including any possible attributes
and child elements.

The <cell> Element

Documenting Media Type Designs | 143

The <cell> element represents a single cell or block in the maze. The <cell> element
SHOULD have two attributes: href and rel. The href attribute MUST contain a
valid URI. The rel attribute SHOULD be set to “current”. The <cell> element MAY
have one or more of the following attributes: debug, total, and size. The <cell>
element MAY have one or more <link> child elements.

Attributes
The list of possible attributes and to which elements they may be assigned. If the
attribute supports an enumerated list of possible values, these values should be
included, too.

The href Attribute

This attribute specifies the location of a Maze+XML resource, thus defining a link
between the current resource and the destination resource defined by this attribute.
The value of the attribute MUST always be a valid URI. This is an OPTIONAL
attribute for the following elements: <collection>, <item>, <cell>, and <error>. This
is a REQUIRED attribute for the <link> element.

Link Relations
The list of possible link relation values used in this media type. If the design sup-
ports the use of author-defined link relation values or other values defined in other
documents, this information should be included.

The current Link Relation

Refers to a resource containing the most recent item(s) in a collection of resources.
Registered through IANA Link Relations. When used in the Maze+XML media type,
the associated URI returns the client’s current position in the active maze.

Data Types
The list of data types (their names and valid values) used in the design. Typically
this can be a reference to existing standards documents.

The NUMBER Data Type

Numbers MUST contain at least one digit ([0-9]). The characters “.”, “-”, and “+”
MAY also appear.

The URI Data Type

URI is defined by RFC 3986.

Documenting JSON Designs
Documenting media type designs that use JSON as the base format should include the
following sections:

See Appendix D for a complete example of documenting a JSON-based
media type design.

144 | Chapter 5: Documenting Hypermedia

Objects
The list of JSON objects valid for this media type including any possible child
objects, arrays, and properties.

The template Object

The template object contains all of the input elements used to add or edit collection
records. This is an OPTIONAL object and there MUST NOT be more than one
template object in a Collection+JSON document. It is a top-level document prop-
erty. The template object SHOULD have a data array child property.

// sample template object
{
 "template" :
 {
 "data" : [ARRAY]
 }
}

Arrays
The list of possible JSON arrays that may appear in a representation including any
child objects, arrays, and properties.

The data Array

The data array is a child property of the items array and the template object. The
data array SHOULD contain one or more anonymous objects. Each object MAY
have any of three possible properties: name (REQUIRED), value (OPTIONAL), and
prompt (OPTIONAL).

// sample data array
{
 "template" :
 {
 "data" :
 [
 {"prompt" : STRING, "name" : STRING, "value" : VALUE},
 {"prompt" : STRING, "name" : STRING, "value" : VALUE},
 ...
 {"prompt" : STRING, "name" : STRING, "value" : VALUE}
]
 }
}

Properties
A listing of all the possible properties that are valid for the media type design. If
the property supports an enumerated list of values, these values should be supplied
as well.

The render Property

The render property MAY be a child of the links array element. It SHOULD be a
STRING data type. The value MUST be either “image” or “link”. If the render
property does not appear on a links array element, it should be assumed to be set
to “link”.

Documenting Media Type Designs | 145

Link Relations
The list of possible link relation values used in this media type. If the design sup-
ports the use of author-defined link relation values or other values defined in other
documents, this information should be included.

The collection Link Relation

The target IRI points to a resource that represents a list of which the context IRI is
a member. When used in the Collection+JSON media type, this link relation value
refers to a collection document. Logged with the Microformats Existing Rel Values.

Data Types
The list of data types (their names and valid values) used in the design. Typically
this can be a reference to existing standards documents.

The OBJECT Data Type

An OBJECT structure is represented as a pair of curly brackets surrounding zero or
more name/value pairs (or members). A name is a string. A single colon comes after
each name, separating the name from the value. A single comma separates a value
from a following name. The names within an object SHOULD be unique.

Documenting HTML Designs
Unlike media types based on XML, JSON, or other formats that support domain-spe-
cific designs, HTML-based media types are, by definition, domain-agnostic and already
have their own set of native hypermedia controls. For this reason, documenting HTML-
based media type designs focuses almost exclusively on using a limited set of existing
attributes to apply domain-specific information to representations.

See Appendix E for a complete example of documenting an HTML-
based media type design.

Documentation for HTML-based media type designs should include the following sec-
tions:

Class Attribute Values
In HTML designs, the class attribute can be used to mark data elements in a
response (div, p, span, etc.). This includes indicating possible child elements and
whether they are optional or required.

The message Class

Applied to an LI tag. A representation of a single message. It SHOULD contain the
following descendant elements:

• SPAN.class="user-text”

• A.rel="user”

• SPAN.class="message-text

146 | Chapter 5: Documenting Hypermedia

• A.rel="message”

It MAY also contain the following descendant elements:

• IMG.class="user-image”

• SPAN.class="date-time”

The class attribute can also be used to identify state transition elements (form, a,
etc.).

The user-search Class

Applied to a FORM tag. A link template to search all of the users. The element
MUST be set to FORM.method="get” and SHOULD contain the descendant ele-
ment: INPUT[text].name="search".

Name Attribute Values
The name attribute is used in HTML-based designs to indicate values used in state
transitions. These are usually applied to input, textarea, and select elements.

user-image

Applied to an INPUT[file] element. The image for the user.

website

Applied to an INPUT[text]. The URL of a website associated with the user profile.
When supplied, it SHOULD be valid per RFC 3986.

ID Attribute Values
The id attribute can be used to identify a unique element or block within the rep-
resentation. Often this is handy for marking sections of the representation that only
appear once within the response.

The queries ID

Applied to a DIV tag. The list of valid queries in this representation. MAY have one
or more FORM and/or A descendant elements (see “rel” and “class” section for
details).

Link Relation Values
Link relation values are used to mark HTML.A tags with identifiers that can be
used by user agents to render and/or activate in order to initiate a state transition.
Some transitions may actually point to HTML.FORM elements that can be used
to perform a query or update data on the server.

message

Applied to an A tag. A reference to a message representation.

message-post

Applied to an A tag. A reference to the message-post FORM.

messages-search

Applied to an A tag. A reference to the messages-search FORM.

Documenting Media Type Designs | 147

Documenting Application Domain Specifics
Most media type designs (that are not domain-specific) require additional documen-
tation of application domain specifics. For example, implementing a to-do application
using HTML will require designers to mark elements in the response as key data fields
(task name, due date, description, status, etc.). Since HTML does not have native
markup elements with these names, existing elements need to be annotated or deco-
rated with the application-specific information.

As was shown in “Expressing Application Domain Semantics in
HTML5” on page 96, HTML has several attributes that are used to hold application-
specific information (id, name, class, and rel). Other media type designs that are not
domain-specific will have similar features. For example, the Collection+JSON media
type design introduced in Chapter 3, provides the name and rel properties for applica-
tion-specific information.

Data elements

Media type designs need to support identifying domain-specific data elements in rep-
resentations. For example, a to-do application will have a set of domain-specific data
points such as “title”, “description”, “due-date”, and “status”, etc.

The examples given here are just that, examples. The key point is to make sure devel-
opers have clear documentation mapping domain-specific information to existing ele-
ments in the media type design. When the design is domain-specific, this is relatively
easy. When the design is domain-generic, additional text is needed to complete the
mapping.

Media type designs that are domain-specific will have ele-
ments with these same names:

Expressing data elements in a domain-specific design

<!-- an XML example -->
<task>
 <title>Sample Task</title>
 <description>This is a sample task item.</description>
 <due-date>2012-03-01</due-date>
 <status>completed</status>
</task>

/* a JSON example */
{
 "task" :
 {
 "title" : "Simple Task",
 "description" : "THis is a simple task item.",
 "due-date" : "2012-03-01",
 "status" : "completed"
 }
}

Domain-specific data elements.

148 | Chapter 5: Documenting Hypermedia

Using the above example as a guide, media type documentation would list the elements
by name and provide descriptive text regarding the meaning and use of the element.

The item element’s name property should be set to the value “task”. The item element
should have four data child elements. Their name properties should be set to “title”,
“description”, “due-date”, and “status”. The value properties of the “title” and “de-
scription” data elements MUST contain a valid xsd:string value. The value properties
of the “due-date” data element MUST contain a valid xsd:dateTime value. The value
property of the “status” data element MUST contain either the string “completed” or
“pending”.

Media type designs that are not domain-specific will need
to support other ways for authors to indicate domain-specific information. Typically
this is done using attributes to decorate XML-style media types or, in other formats,
designated properties.

 Expressing data elements in a domain-generic design

<!-- an XML example -->
<item name="task">
 <data name="title">Sample Task</data>
 <data name="description">This is a sample task item.</data>
 <data name="due-date">2012-03-01</data>
 <data name="status">completed</data>
</item>

/* a JSON example */
{
 "item" :
 {
 "name" : "task",
 "data" [
 {"name" : "title", "value" : "Sample Task"},
 {"name" : "description", "value" : "This is a simple task."},
 {"name" : "due-date", "value" : "2011-03-01"},
 {"name" : "status", "value" : "completed"}
]
 }
}

In this second example, the documentation of the media type will be separate from the
documentation of the application-domain information. Typically, developers will rely
on two sets of documentation. First, the documentation of the media type itself and
second, a document that matches the domain-specific data elements with the domain-
generic media type elements.

The task element has four possible child elements (title, description, due-date, and
status). The title and description fields MUST contain a valid xsd:string value. The
due-date field MUST contain a valid xsd:dateTime value. The status field MUST contain
either the string “completed” or “pending”.

Domain-generic data elements.

Documenting Media Type Designs | 149

Hypermedia affordances

Along with expressing domain-specific data in representations, responses from the
server need to include hypermedia details that describe the possible transitions. These
are sometimes referred to as hypermedia “affordances” or simply hypermedia controls.
The hypermedia controls need to communicate the basic H-Factors described in
“Identifying Hypermedia : H-Factors” on page 13 (LE, LO, LT, LN, and LI). In domain-
specific designs, hypermedia controls will have very clear names and can be mapped
directly to the protocol-level actions associated with them.

Just as in the handling of domain data elements, the style of the media type design
dictates the methods used to apply domain-specific information to hypermedia controls
in the representation.

In domain-specific designs, the hypermedia controls
have names that relate directly to application-domain information:

Expressing hypermedia controls in domain-specific designs

<!-- an XML example -->
<create href="http://example.org/tasks/">
 <title>Sample Task</title>
 <description>This is a sample task item.</description>
 <due-date>2012-03-01</due-date>
 <status>pending</status>
</create>
...
<task-list href="http://example.org/tasks/">
...
<delete href="http://example.org/tasks/1">

/* a JSON example */
{
 "create" :
 {
 "href" : "http://example.org/tasks/"
 "title" : "Simple Task",
 "description" : "THis is a simple task item.",
 "due-date" : "2012-03-01",
 "status" : "pending"

 }
}
...
{"task-list" : "http://example.org/tasks/"}
...
{"delete" : "http://example.org.tasks/1"}

Media type documentation for domain-specific hypermedia controls needs to include
details on which protocol methods should be used with each control. In the previous
example, the documentation might read as follows:

Domain-specific hypermedia controls.

150 | Chapter 5: Documenting Hypermedia

The create element is used to indicate clients should create a body representation using
the application/x-www-form-urlencoded media type where the child element name and
the child element value are converted to name-value pairs in the form {name}={value}
followed by the & character to separate consecutive pairs. The resulting representation
should be sent via the POST method (for HTTP) to the URI supplied by the href property
of the create element.

In media type designs that are not domain-specific, the
hypermedia controls are usually identified with the protocol-level action they support:

Expressing hypermedia in domain-generic designs

/* a JSON example */
{
 "send" :
 {
 "action" : "ceate",
 "href" : "http://example.org/tasks/"
 "data" [
 {"name" : "title", "value" : "Sample Task"},
 {"name" : "description", "value" : "This is a simple task."},
 {"name" : "due-date", "value" : "2011-03-01"},
 {"name" : "status", "value" : "completed"}
]
 }
}
...
{"link" : {"action" : "read", href" : "http://example.org/tasks/", "rel" : "tasks"}}
...
{"link" : {"action" : "remove", "href" : "http://example.org/tasks/1", "rel" : "edit"}}

<!-- an HTML example -->
<form method="post" action="http://example.org/tasks/" class="tasks">
 <input name="title" value="Sample Task" />
 <textarea name="description">This is a simple task.</textarea>
 <input name="due-date" value="2011-03-01" />
 <select name="status">
 <option>pending</option>
 <option selected="true">completed</option>
 </select>
</form>
...
Tasks

As can be seen from the above examples, domain-generic hypermedia controls need to
support the use of properties or attributes that associate the controls with domain-
specific information. Usually this is in the form of rel, name, and other similar names.
Documentation for domain-generic hypermedia controls also reflects this approach:

The send element with the action property set to “create” can be used to create new tasks
on the server. This element should have four child data elements (“title”, “description”,
“due-date”, and “status”). Client implementations should use the data elements to create
a valid JSON payload and send that payload to the URI contained in the href property
using the HTTP POST method.

Domain-generic hypermedia controls.

Documenting Media Type Designs | 151

Publishing Media Type Designs
Media type designs should be published online at a stable address. This means the URL
for the documentation should be one that will be supported for a long time. For ex-
ample: http://www.example.org/media-types/maze. If the document must be moved, a
permanent redirect (301 Moved Permanently) should be associated with the stable ad-
dress so that existing bookmarks and written documentation will still be able to locate
the current version of the documentation.

If, over time, multiple editions of the design documents are produced (e.g. “Maze+XML
1.0”, “Maze+XML 1.1”, etc.). The stable address should respond with a general docu-
ment that lists the current version, all historical versions, and allows users to navigate
to the document of their choice.

If the media type design will be registered with the IANA or some other
party, a stable address will be required. It is a good idea to select a lo-
cation over which the designer(s) will have control for the foreseeable
future.

Extending and Versioning Media Types
No matter how much effort is put into the initial media type design, it is quite likely
that not all possible uses are anticipated, not all flaws in the design are expunged. Even
if the initial design is solid, it is possible that the media type will become so widely used
that new and inventive use cases will emerge for the media type. In these cases, it is
important to have a clear understanding of the possible ways in which an already-
deployed media type design can be improved, corrected, and expanded to meet the
needs of the developer community.

In a distributed network like the WWW, it is possible that developers
will implement clients and servers based on a registered media type de-
sign without ever consulting or informing the media type designer. For
this reason, once a design has been registered and made available to the
public, it is important that media type designers take special care when
modifying its design.

This section looks at two opposing approaches to updating an existing media type:
extending and versioning. Extending a media type design works when the aim is to
introduce changes in way that is compatible with already existing implementations.
Versioning a media type can be used when it is important to break or invalidate any
existing implementations.

152 | Chapter 5: Documenting Hypermedia

Extending
The word “extend” comes from the Latin pandere or “stretch.” The word “expand”
has the same etymology. Essentially, extending a media type design means adding new
features or elements: expanding or stretching the media type. For the purposes of this
text, extending a media type design means adding features or functionality in a way
that does not break existing client or server implementations. Whenever possible, me-
dia type designers should use the technique of extending to make modifications to a
media type design.

Extending a media type design means supporting compatibility. In other words,
changes in the media type can be accomplished without causing crashes or misbehavior
in existing client or server implementations. There are two forms of compatibility to
consider when extending a media type: forward and backward.

Forward compatibility

An extension can be considered “forward compatible” if the changes do not break
existing implementations. This means existing client applications will continue to work
successfully when they receive a representation that contains the new features. Servers
will continue to function properly when they receive a representation that contains the
new features. Usually, this means the new features/functionality can be safely ignored
by implementations that do not recognize them.

Forward-compatible design changes are ones that are safe to add to the
media type without adversely affecting previously existing implemen-
tations.

Backward compatibility

Backward-compatible changes are those that allow any future implementations to con-
sume older versions of the design. For example, if a client that supports one or more
of the new extensions receives a representation from a server that does not support
these new extensions, the client implementation will continue to function successfully.
Usually, this means the new extensions do not create a required dependency that causes
implementations to break if that extension is missing.

Backward-compatible changes are ones that are safe to add to the media
type design without adversely affecting future implementations.

Often backward-compatible changes mean that implementations need to be prepared
to handle representations that are missing expected elements. This may mean that some

Extending and Versioning Media Types | 153

functionality or feature is not available to an implementation and that implementation
must work around that missing element or fall back to a mode that supports an older
design of the media type.

Rules for extending media types

In order to support both forward and backward compatibility, there are some general
guidelines that should be followed when making changes to media type designs.

If the media type has established that a feature/
element may exist in representations, then an extension cannot require that the element
not appear in representations. For example, if the media type requires that every rep-
resentation start with the <root> element, designers cannot remove this rule. Or, if the
media type defines an optional {"revision" :{...}} object, future extensions of the
media type cannot require implementations to reject representations that contain that
element.

Once a feature/element is pub-
lished as part of the media type design, the meaning associated with the element or the
processing rules for the element cannot be changed. Or, if the media type defines the
{"status" :{...}} element as a representation of “the status of the current document,”
extensions cannot change the meaning of that element to “the status of the current
logged-in user,” etc. Or, if the design states that the <suggested-name> element in client
representations will be used by servers when establishing new resource identifiers, a
media type extension cannot require servers to ignore this element and not process it
as was originally described.

Any new representation elements (including
the processing of those elements) must be defined as optional. For example, if the media
type extension supports adding a {"concurrency-check : "..."} client representations
sent to the server, the extension cannot make that value a required element for all client-
initiated representations.

Versioning
The word “version” has its roots in the Latin vertere (“to turn”) and its derivation
versus. One dictionary definition of the word “version” is “a particular form or variation
of an earlier or original type.” For the purposes of this text, “versioning” a media type
means creating a new variation on the original, a new media type.

Versioning a media type means making changes to the media type that will likely cause
existing implementations of the original media type to “break” or misbehave in some
significant way. Designers should only resort to versioning when there is no possible
way to extend the media type design in order to achieve the required feature or func-
tionality goals. Versioning should be seen as a last resort.

Existing design elements cannot be removed.

The meaning or processing of existing elements cannot be changed.

New design elements must be treated as optional.

154 | Chapter 5: Documenting Hypermedia

There may be cases where it is desirable to introduce a new version of
a media type. For example, a designer might want to invalidate all pre-
vious implementations of a media type in order to overcome a serious
flaw in the original design or as a way of obsoleting existing implemen-
tations for some other reason.

Deciding when to version a media type

Any change to the design of a media type that does not meet the requirements previously
described in are indications that a new version of the media type is needed. Examples
of these changes are:

A change that alters the meaning or functionality of an existing feature or element.
For example, the meaning of the <id> element of a media type must be changed
from the identifier of the document to the identifier of the version of the document.

A change that causes an existing element to disappear or become disallowed.
For example, the {"user-secret-key" : "..."} property of the existing media type
is now absolutely prohibited in representations sent from the client to the server.

A change that converts an optional element into a required element
For example, the <input name="document-tag" value="..." /> in representations
from the client has changed from OPTIONAL to REQUIRED.

If the media type design must be changed in these ways, a new version of the media
type should be declared.

Rules for versioning a media type

While versioning a media type should be seen as a last resort, there are times when it
is necessary. The following guidelines can help when creating a new version of a media
type.

When the version of a media type
changes, it should be easy for implementors, both client and server, to recognize the
change. There are a number of ways in which this can be done.

The most explicit option is to register a new MIME Media Type identifier with the
IANA:

application/vnd.custom+xml
application/vnd.custom-v2+xml

A similar approach is to define and use a version parameter in your MIME media type
registration:

application/custom+JSON;version=1
application/custom+JSON;version=2

RFC 4229 (HTTP Header Field Registrations) lists the Version header. This header is
described in a 1992 W3C online (Object Headers) as:

It should be easy to identify new versions of a media type.

Extending and Versioning Media Types | 155

“[A] string defining the version of an evolving object. Its format is currently undefined,
and so it should be treated as opaque to the reader, defined by the information provider.
The version field is used to indicate evolution along a single path of a particular work.”

*** REQUEST ***
PUT /users/1 HTTP/1.1
Host: www.example.org
Content-Type: application/vnd.custom+xml
Length:xxx
Version: 2
...

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.custom+xml
Length:xxx
Version: 2
...

It is also possible to place version information directly in the representation body:

<custom version="2">
...
</custom>

{"custom" :
 "version" : "2",
 {"content" : {...}}
}

While the exact method of communicating versions in media type representations is a
design choice, it should be noted that the MIME media type identifier option is likely
to be the most easily recognizable and consistently supported option. It is possible that
intermediaries such as caches and proxies may ignore or strip out the Version header
and intermediaries will not be able to see the version information carried in the repre-
sentation body.

These last two points can have implications on the caching of representations. Imagine
a case where there are two servers, each supporting a different version of the media
type, each presenting the same representations (i.e. some public data shared among
servers). It is possible that caching intermediaries can receive multiple media type ver-
sions of the same representation. If the version information is not recognized (in the
case of the header) or unavailable (in the case of the representation body), it is possible
that caches will overwrite that representation and/or deliver the wrong version of the
representation to clients.

Any client or server that does not explicitly
support a particular version of a media type should reject the representation and issue
an appropriate message. When using the HTTP protocol, servers can report status code
415 (Media Type Not Supported) when that server receives a representation that is not
a supported version. Clients should inspect the version of the response representation
and reject any unsupported versions.

Implementations should reject unsupported versions.

156 | Chapter 5: Documenting Hypermedia

In order to work properly, support for versioning needs to be coded into both clients
and servers ahead of time. In other words, clients and servers must check for unsup-
ported versions of the media type upon receipt of every single representation and be
prepared to respond accordingly.

Registering Media Types and Link Relations
While registering media type designs and unique link relations is not required, it is very
valuable and should be encouraged. First, the process of registering designs with or-
ganizations such as the IANA, IEFT, and W3C usually involves some level of peer
review. This can help improve the design and is likely to promote uniformity and con-
sistency in designs in general.

Also, registering designs is an excellent way to publish work and gain adoption. Some
implementors will use registration as a measure of the value of the design and may favor
registered designs over those that are not.

There are a number of ways in which to register media types and link relations. This
text covers interactions with three organizations: the Microformats community, the
IANA, and the IETF.

Media Types
Internet RFC 4288 (Media Type Specifications and Registration Procedures) outlines
the details of media type registration and review. Currently the IANA is the organization
charged with handling the registration of media types.

A complete list of the currently registered media types can be found at
the IANA MIME Media Types page.

The RFC document also identifies a categorization of registrations called “Registration
Trees.” The procedure for two of the categories (“Vendor” and “Personal”) are rela-
tively easy and brief. The procedure for the “Standard” category is more involved.

Vendor/Personal tree media type registrations

Registering a media type with the IANA under the Vendor and Personal categories
(called trees in RFC 4288) requires the following:

Publish the media type design
This includes the process of completing the documentation and publishing that
documentation at a stable address (see “Documenting Media Type De-
signs” on page 138).

Registering Media Types and Link Relations | 157

http://www.iana.org/assignments/media-types/

Submit the completed IANA media type registration template
The IANA requires all media type registrations via a standard form. The IANA
conveniently supplied an online form at their website (http://www.iana.org/cgi-bin/
mediatypes.pl) that designers can use to complete the registration document (see
Appendix F for an example of the IANA Media Type registration form).

Respond to reviewer queries
Once the IANA registration is completed, Vendor and Personal registrations are
sent to an IANA-designated reviewer. The reviewer may send the designer ques-
tions/suggestions via email in order to clarify and, if needed, modify the registration
details in order to comply with IANA standard for Vendor and Personal registra-
tions.

Throughout the process, designers can monitor the progress of the registration using
the IANA website (https://tools.iana.org/public-view/).

After all questions have been answered and the reviewer is satisfied that the design
meets the IANA standard for Vendor and Personal media type registrations, the de-
signer will receive notice of the approved registration along with a link to the IANA
website where the official registration will be located.

The process of achieving IANA approval for Vendor/Personal registrations usually
takes four weeks or fewer, depending on backlog and the amount of interaction needed
between the reviewer and the designer.

Standard tree media type registrations

The process of gaining IANA registration for media types in the Standards Tree is es-
sentially the same (publish, register, review, approval). However, the process of pub-
lishing is different. Unlike Vendor/Personal registrations where the only publishing
requirement is to produce a complete document at a stable address, Standards Tree
registrations require the designer to publish the documentation through the IETF.

See Appendix G for an example of a completed IETF RFC for a Stand-
ards Tree Media Type registration.

The IETF process for publishing a media type starts with the creation of an Internet
Draft (I-D). This draft is subject to a much more extensive review. Instead of a single
IANA-designated reviewer, I-Ds are subject to peer review via an IETF mailing list
(iesg@ietf.org). Along the way, it is typical for the designer to produce several versions
of the I-D in order to accommodate the feedback and comments of IANA peers.

158 | Chapter 5: Documenting Hypermedia

http://www.iana.org/cgi-bin/mediatypes.pl
http://www.iana.org/cgi-bin/mediatypes.pl
https://tools.iana.org/public-view/

The IETF uses its own XML schema to publish I-Ds and makes tem-
plates available to help authors complete valid documents. Each draft
is submitted to the IETF via its Data Tracker website (https://datatracker
.ietf.org/submit/), which includes basic syntax and template checking
before automatically logging the new draft, producing diff documents
and announcing the new draft to the appropriate mailing list for further
review. Details on producing I-Ds can be found here: http://www.ietf
.org/id-info/guidelines.html.

Once the I-D review is complete, designers will receive confirmation that the document
is ready for final review and elevation to an RFC (Request for Comment), the final stage
of an IETF publication document. At this time the designer will be able to complete
the IANA registration and use the published RFC as the stable address for the regis-
tration.

Suggested Stages for Registering a Media Type Design
Typically the first stage for a media type design is the initial publication. This document
can be used as a guide for sample implementations. At this point the design could be
considered an unstable draft as it is likely that the design will change as new discoveries
and uses emerge in the early iterations of the design.

Once the design is stable, it makes sense to register the design with the IANA under
the Vendor/Personal Tree. This will subject the design to basic review by the IANA and
result in a public registration available for implementors to find and utilize. When the
IANA registration is completed, the design can be marked as “IANA registered.”

For many uses, achieving IANA registrations in the Vendor/Personal tree is all that is
needed. However, if the design is on the path for wide adoption, it is wise to pursue
additional review and publication status. This is usually handled via the IEFT, but can
also be done through the W3C, ISO, or some other organization.

IANA registration via the Standards Tree means publishing an I-D through the IETF,
which can result in an RFC. At this point the RFC becomes the official documentation
of the media type. The W3C has a similar process (see “The IETF, W3C, and
IANA” on page 138 above) for details.

Link Relation Types
The values used to identify link relations are also subject to registration and review. In
2010, the IETF published RFC 5988 (Web Linking), which describes the process of
registering Link Relations Types (sometimes referred to as “rel values”). In that docu-
ment, the IANA is designated as the official registrar of Link Relation Types. Adding
values to the IANA registry currently requires publishing an RFC through the IETF.

Registering Media Types and Link Relations | 159

https://datatracker.ietf.org/submit/
https://datatracker.ietf.org/submit/
http://www.ietf.org/id-info/guidelines.html
http://www.ietf.org/id-info/guidelines.html

Section 4.2 of RFC 5988 also describes Extension Relation Types, which
can be used without the need for format registration. In this case, as
long as the Link Relation Type is a fully qualified URI, it does not need
to be registered in order to be considered a fully compliant Link Relation
Type.

In addition to RFC 5988, the W3C’s HTML5 documentation designates the Micro-
formats community as the official repository of Link Relation Types for the HTML
media type. Adding values to the Microformats repository involves editing a public wiki
page and undergoing expert review via the Microformats community.

Registering link relations with the Microformats community

In order to register your Link Relation Type with the Microformats community you
need to do the following:

Maintain an active Microformats wiki account
The Microformats community maintains an active wiki where, among other things,
their Link Relations Values (http://microformats.org/wiki/existing-rel-values) repo-
sitory is maintained. An active wiki account is needed in order to contribute to this
repository. As of this writing, obtaining an account is very simple and requires only
a completed registration form.

Edit the Existing Link Rels Repository
The Existing Link Rels page on the Microformats wiki includes a number of lists.
The most likely place to add new Link Relation Types is the “Non-HTML” list.
There are also other lists on that page that, depending on your media type design,
may be more appropriate.

Add a new Link Relation Value
The wiki page expects the following values:

• Link Relation Value

• Description (a short sentence that describes the semantic meaning of this value)

• Documention Reference (e.g. the media type document, RFC, etc. that defines
this value)

• Existing uses of this value (e. g. examples from in the wild where this value is in
active use)

Respond to reviewer queries
Once the new value is added to the wiki, one or more individuals from the Micro-
formats community will review the entry and provide feedback on the addition.
This can occur via email or via the Microformats IRC channel (irc://irc.freenode
.net/microformats).

160 | Chapter 5: Documenting Hypermedia

http://microformats.org/wiki/existing-rel-values
irc://irc.freenode.net/microformats
irc://irc.freenode.net/microformats

See Appendix G for an example of a completed Link Relations Value
entry for the Microformats community.

Assuming the values are acceptable, they will be allowed to remain on the active wiki
page listing. If not, they will be removed after a final decision is made. The total time
it takes to successfully publish a new Link Relation Value can be as little as the time it
takes to edit the wiki and respond to feedback on the IRC channel, possibly only mi-
nutes.

Once the value is accepted, designers can update their documentation to indicate the
Link Relation Type is registered with the Microformats community.

Registering link relations with the IANA

Registering a Link Relations Type with the IANA requires submitting an Internet Draft
(I-D) to the IETF and shepherding that document to RFC status. Once the RFC is
approved, the value will be added to the IANA Link Relations Registry (http://www
.iana.org/assignments/link-relations/link-relations.xml).

See Appendix G for an example of a completed I-D for an IANA-regis-
tered Link Relations Type.

The IETF maintains a public mailing list (link-relations@ieft.org) where new relations
should be first proposed. This list contains a number of expert reviewers willing to
provide feedback and suggestions on how to complete the I-D/RFC process for Link
Relation Types. There is also a simple I-D template available to help authors submit
proper documents to the IETF Data Tracker.

The process for registering a new Link Relations Type through the IANA is as follows:

Join the IETF’s Link Relations mailing list
Joining the list (link-relations@ietf.org) is as easy as providing your email and set-
ting a password. Once you are a member of the list you can post an informal mes-
sage to the list indicating your interest in publishing a new Link Relations Type.
Members of the list will provide general feedback and most likely encourage start-
ing the process of creating an I-D using the supplied template.

Publish an I-D and solicit review
After publishing the first draft of the I-D, post the results to the mailing list and
respond to any and all queries from list members.

Registering Media Types and Link Relations | 161

http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

Submit the I-D for final review
Once all the feedback from the mailing list is incorporated in the I-D, the designer
will be given the go-ahead to advance the I-D as a proposed RFC. This will trigger
a final round of review at the IETF level which can result in a new RFC. Once the
RFC is published, the new Link Relation Type(s) will be added to the IANA registry.

Since the process of registering Link Relations Types with the IANA involves complet-
ing an IETF RFC, typically this takes weeks, possibly months to complete.

Suggested Stages for Registering a Link Relation Type
If your design needs a new link relation identifier, the first logical choice is to follow
RFC 5988 and use a unique URI as the link relation value.

If the new Link Relation turns out to be useful to a wider audience, it may make sense
to convert the URI to a single value and register that value with the Microformats
community. This step provides an initial level of expert review and can gain an even
wider adoption for the Link Relation.

If the Microformats-registered Link Relation achieves wide use, it is a good idea to add
that value to the IANA Link Relation Type registry via an IETF RFC document.

Design and Implementation Tips
Aside from the details of proper documentation, registration, and maintenance of a
media type design, it helps to keep some general design and implementation tips in
mind when creating a new media type or applying a domain-specific implementation
to an existing hypermedia type. Below are some additional insights and advice from a
number of sources that can assist in building quality, robust, and useful hypermedia
APIs.

Joshua Bloch’s Characteristics of a Good API
In 2006, Joshua Bloch gave a talk entitled “How to Design a Good API and Why it
Matters.” While his talk was not geared toward media type designers, his list of “Char-
acteristics of a Good API” is still applicable to hypermedia designs.

Below is a summary of his list:

Easy to learn
The design of the API should feel natural or familiar.

Easy to use, even without documentation
The design should not be so complex or unpredictable that developers must con-
stantly consult the documentation in order to use it.

Hard to misuse
Good APIs won’t let you do the wrong thing.

162 | Chapter 5: Documenting Hypermedia

Easy to read and maintain code that uses it
The design of the API should encourage readable and easily maintainable code.

Sufficiently powerful to satisfy requirements
More power isn’t necessarily better. The API should be powerful enough.

Easy to extend
Even if you get the API right the first time, you are not likely to get it complete.
Over time people will want to do more things with it and you should design your
API with extension in mind.

Appropriate to the audience
An API written for physics is probably not going to be good for finance. You should
write the API “in the language of the people who are going to use it.”

Bloch also emphasized in the same presentation that APIs can be either a company’s
or individual’s greatest asset, or its greatest liability. It is a good idea to review media
type designs with these characteristics as a measure. The easier the media type is to use,
maintain, and extend, the more likely it is to become popular and widely implemented.

Roy Fielding’s Hypertext API Guidelines
In October of 2008, Roy Fielding posted his list of rules for designing hypermedia APIs
(“REST APIs must be hypertext-driven”). That blog post and the subsequent comment
stream that followed is a very interesting read, a window into some of the thinking that
went into the REST architectural style. Even in cases where Fielding’s REST style is not
employed, his list for how to approach hypermedia implementations is still valuable.

Below is a summary of Fielding’s six rules:

A REST API should not be dependent on any single communication protocol.
While most designers will assume HTTP is the protocol to be used for an API, it
is possible implementations may want to use FTP, XMPP, or some other protocol
in the future. Good API designs do not restrict the transfer protocols used in send-
ing and receiving media type messages.

A REST API should not contain any changes to the communication protocols.
When designing an API, there is no need to create new protocol-level methods (i.e.
adding a SUBSCRIBE method to the HTTP protocol or redefining the meaning of the
HTTP HEAD method, etc.). Instead, APIs should allow implementors to use existing
protocol methods as they were originally described.

A REST API should spend almost all of its descriptive effort in defining the media type(s)
used [and] in defining extended relation names and/or hypertext-enabled markup for ex-
isting standard media types.

API designs should focus on media types and the details surrounding them (dec-
orating data elements, hypermedia controls, etc.). See “Hypermedia Design Ele-
ments” on page 20 for details on this process.

Design and Implementation Tips | 163

A REST API must not define fixed resource names or hierarchies.
Good APIs do not require servers or clients to use specific URIs or hierarchies.
Instead, they allow servers to determine their own URI scheme and allow clients
to treat URIs as opaque identifiers. This principle was first mentioned in the
Tip on page 41.

A REST API should never have typed resources that are significant to the client.
As was discussed in “The Type-Marshaling Dilemma” on page 7, media type de-
signs are not simply serializations of private domain objects. For example, devel-
opers should not need to know the object graphs implemented on the server in
order to implement a compliant client application. This is covered in “The Type-
Marshaling Dilemma” on page 7.

A REST API should be entered with no prior knowledge beyond the initial URI and set of
standardized media types.

Good APIs only require client applications to know where to start (an initial URI)
and what media types are used. All details of application flow, such as state tran-
sitions, should be supplied as hypermedia controls within response representa-
tions. Client applications should not contain hardcoded rules on how to navigate
links or how and when to compose transitions, but should instead know how to
recognize this information within the response representations themselves. See
“Application Flow” on page 29 for more on this topic.

By keeping these rules in mind, media type designers can avoid a number of common
pitfalls when creating hypermedia APIs.

Jon Postel’s Robustness Principle
When authoring the Transmission Control Protocol (TCP) document (RFC 761), Jon
Postel included a section entitled “The Robustness Principle.”

“TCP implementations should follow a general principle of robustness: be conservative
in what you do, be liberal in what you accept from others.”

The same general rule applies to implementing media types. Implementations (clients
and servers), whenever possible, should strive to send “unconditionally compliant”
representations. They should also be lenient when receiving representations. Whenever
possible, implementors should do their best to parse and processing representations
unless they are found to be unsupportable (based on the Versioning rules above) or
absolutely noncompliant (based on the Extending rules above).

A common example of being “liberal in what you accept” is for the
receiver to ignore any and all elements that are not recognized or un-
derstood. This is commonly referred to as the “must ignore” rule.

164 | Chapter 5: Documenting Hypermedia

Media type designers should keep Postel in mind. Designers can make supporting the
Robustness Principle easier for implementors by keeping the number of MUST ele-
ments in the compliance profile to a minimum. The fewer MUST elements implemen-
tors need to support, the more likely it is that they will be able to craft compliant
representations using that media type.

Other Considerations
Below are some other tips and considerations when designing media types and hyper-
media APIs.

Getting it right but not complete

When designing a media type, it is important to get it right the first time. The primary
reason for this goal is that public media types are forever. Once you register your media
type and/or create working implementations, it will be extremely difficult to alter your
design in ways that break existing implementations. As has already been pointed out,
you can safely extend your design, but rarely can you version it without adversely af-
fecting already working clients and severs.

Good media type designers focus on getting the initial design right (i.e.
doing a good job of solving the problem at hand) and ensuring the media
type can easily support extensions for future uses.

This last point is important. A well-designed media type supports future extendability.
That means it is not necessarily important that your first release is complete. It need
not cover all perceived use cases, but your design does need to support the possibility
of future extensions to cover unforeseen uses and applications.

Maintain media type design and schema separately

Media types themselves exist as standalone designs. While it may be that some media
types lend themselves to validation via a published schema (DTD, XSD, RelaxNG, etc.),
implementing media types should not require the use of schema documents. Part of
the reason for this is to continue to encourage Postel’s Robustness Principle. Imple-
mentations should be liberal in what they accept. The use of schema document in
implementations may lead to rejecting representations that could be successfully pro-
cessed.

It is the author’s opinion that one of the things that has hampered the
adoption of XHTML (1.0, 1.1, and 2.0) is the strict implementation of
schema validation employed by common web browsers.

Design and Implementation Tips | 165

This is not to say that media type designs cannot benefit from schema. A simple defi-
nition of the word schema is “a diagrammatic representation; an outline or model.” In
this light, every media type design relies on some form of schema even if that schema
exists only in the head of the designer. Independent validation of representations can
be useful diagnostic aid when testing an implementation. The W3C maintains several
validation services that allow users to submit representations and/or links to represen-
tations in order to test their work. It may be a good idea to provide a validation service
for your designs, too.

Finally, it should be noted that it is possible to update the schema of an existing media
type without changing its version. For example, the HTML media type has gone
through several updates (1.0, 2.0, 3.2, 4.01, 5) and in each case the MIME media type
identifier has stayed the same (text/html). That is because the media type has not
changed versions (see “Versioning” on page 154 for more on this topic) but has instead
only changed its schema.*

Authentication is not part of the hypermedia design

The reader may have noticed that none of the designs shown in this book include
authentication elements. That is because authentication is usually orthogonal to com-
mon transfer protocols. HTTP, for example, supports an extensible authentication
model based on two key headers (WWW-Authenticate and Authorization) along with
specific status codes (401 Not Authorized and 403 Forbidden).

As of this writing, there is an RFC that defines two authentication
schemes for HTTP: Basic and Digest (RFC 2617). There are additional
authentication schemes, some of which do not use the method outlined
for HTTP.

It is a good design practice to keep authentication details removed from media type
designs. Ideally, media types should not be coupled with, or limited to, any authenti-
cation scheme. This allows implementors to select their own authentication details and
even change them over time without any impact on the media type design itself.

Testing media type designs

When creating media type designs, be sure to test them by implementing example
servers and clients. Often, designs that seem to make sense in the beginning turn out
to have notable weaknesses or shortcomings once you try to create working imple-
mentations. If possible, try to enlist others into creating clients and servers based on
your media type design.

* The concept of viewing schema updates differently than media type versions was first introduced to me by
Jan Algermissen.

166 | Chapter 5: Documenting Hypermedia

Also, it is important to note that testing media type designs requires more than vali-
dating requests and responses that are properly formed. The ultimate aim of those using
a media type is to do something (i.e. add or modify record in the system, compute and
result, produce a report, etc.). Therefore it is important to test whether client applica-
tions can actually accomplish goals they set out to achieve. In other words, designers
should assess not just the correctness of their designs, but also their suitability for
meeting the needs of those using it.

One way to test the quality of media type design work is to create an environment where
several test developers have no reference material other than the media type design and
any accompanying domain-specific mapping for that media type. If the resulting work-
ing implementations can achieve true interoperability among each other, even when
the testing parties completed their implementations independently, it is likely that the
design and the documentation are both of sufficient quality to support wide adoption.

Design and Implementation Tips | 167

Afterword

When you have completed 95 percent of your journey, you are only halfway there.

- Japanese Proverb

And so we reach the end of this little adventure.*But, even though the page count for
this project has reached its conclusion, the book itself is far from complete.

Over the last few years, I have been researching, experimenting, and speaking about
the role hypermedia plays in implementing long-lived solutions running over HTTP.
A distillation of many of those ideas appears within these pages. However, there are
still many more areas to explore, many more examples that could be provided to amplify
and clarify the ideas exposed here. In my mind, at least, this list is endless.

However, the aim of this book was not to create a definitive work on designing hyper-
media APIs. Instead, it was to identify helpful concepts, suggest useful methodologies,
and provide pertinent examples that encourage architects, designers, and developers
to see the value and utility of hypermedia in their own implementations. This book is
more of an invitation to explore than an admonition to follow my lead.

At the start of many of my presentations I warn my audience to be aware that I have
an underlying agenda of which they should be aware. That, along with imparting in-
formation about the power and promise of hypermedia-oriented designs, my work has
another purpose. I tell my listeners that one of my goals is, quite simply, to increase the
amount of links and forms in the data messages sent along the Internet; to increase the
usability and utility of each and every response representation.

I hope that this book gives readers the tools and encouragement to do the same; that
readers will be able to look at their current projects with a new eye for the value hy-
permedia can provide and that, as a result, we can enjoy the benefits of a more con-
nected more hyper-Internet.

Mike Amundsen, September 2011

* As Simon (my exasperated editor) will attest, the end has been too long in coming!

169

APPENDIX A

References

Chapter 1
HTTP/0.9, http://www.w3.org/Protocols/HTTP/AsImplemented.html

W3 address syntax: BNF, http://www.w3.org/Addressing/BNF.html

Basic HTTP as defined in 1992, http://www.w3.org/Protocols/HTTP/HTTP2.html

Hypertext Transfer Protocol -- HTTP/1.0, http://tools.ietf.org/html/rfc1945

Hypertext Transfer Protocol -- HTTP/1.1, http://tools.ietf.org/html/rfc2068

Hypertext Transfer Protocol -- HTTP/1.1, http://tools.ietf.org/html/rfc2616

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, http://tools
.ietf.org/html/rfc2046

Returning Values from Forms: multipart/form-data, http://tools.ietf.org/html/rfc2388

Scalable Vector Graphics (SVG) 1.1 (Second Edition), http://www.w3.org/TR/SVG/

Cascading Style Sheets, http://www.w3.org/Style/CSS/

The Atom Publishing Protocol, http://tools.ietf.org/html/rfc5023

The Atom Syndication Format, http://tools.ietf.org/html/rfc4287

HTML Current Status, http://www.w3.org/standards/techs/html

JSON, http://json.org/

JSONPath, http://goessner.net/articles/JsonPath/

JSON Schema, http://json-schema.org/

Extensible Markup Language (XML), http://www.w3.org/XML/

XML Inclusions (XInclude) Version 1.0 (Second Edition), http://www.w3.org/TR/xin
clude/

XSL Transformations (XSLT), http://www.w3.org/TR/xslt

171

http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Addressing/BNF.html
http://www.w3.org/Protocols/HTTP/HTTP2.html
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2388
http://www.w3.org/TR/SVG/
http://www.w3.org/Style/CSS/
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4287
http://www.w3.org/standards/techs/html
http://json.org/
http://goessner.net/articles/JsonPath/
http://json-schema.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xslt

XML Path Language (XPath), http://www.w3.org/TR/xpath/

XQuery 1.0: An XML Query Language (Second Edition), http://www.w3.org/TR/
xquery/

XML Schema, http://www.w3.org/XML/Schema

Schematron, http://www.schematron.com/

XML Pointer Language (XPointer), http://www.w3.org/TR/xptr/

XML Linking Language (XLink) Version 1.1, http://www.w3.org/TR/xlink11/

XForms 1.1, http://www.w3.org/TR/xforms11/

Resource Description Framework (RDF), http://www.w3.org/RDF/

RDF Forms, http://www.markbaker.ca/2003/05/RDF-Forms/

RDF/XML Syntax Specification (Revised), http://www.w3.org/TR/rdf-syntax-gram
mar/

RDFa, http://rdfa.info/

Markdown, http://daringfireball.net/projects/markdown/

YAML: YAML Ain’t Markup Language, http://www.yaml.org/

Common Format and MIME Type for Comma-Separated Values (CSV) Files, http://
www.rfc-editor.org/rfc/rfc4180.txt

Protocol Buffers, http://code.google.com/apis/protocolbuffers/

Voice Extensible Markup Language (VoiceXML) 2.1, http://www.w3.org/TR/voi
cexml21/

Microformats Existing Rel Values, http://microformats.org/wiki/existing-rel-values

IANA Link Relations, http://www.iana.org/assignments/link-relations/link-relations
.xml

Dublin Core Terms, http://dublincore.org/documents/dcmi-terms/

URI Resolution Services Necessary for URN Resolution - The text/uri-list Internet Me-
dia Type, http://tools.ietf.org/html/rfc2483#section-5

OpenSearch 1.1 (Draft 4), http://www.opensearch.org/Specifications/OpenSearch/1.1

The application/opensearchdescription+xml media type (Expired Internet Draft), http:
//tools.ietf.org/html/draft-ellermann-opensearch-01

Web Linking, http://tools.ietf.org/html/rfc5988

URI Template draft-gregorio-uritemplate-04, http://tools.ietf.org/html/draft-gregorio
-uritemplate-04

Latest SOAP versions, http://www.w3.org/TR/soap/

172 | Appendix A: References

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/XML/Schema
http://www.schematron.com/
http://www.w3.org/TR/xptr/
http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/xforms11/
http://www.w3.org/RDF/
http://www.markbaker.ca/2003/05/RDF-Forms/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://rdfa.info/
http://daringfireball.net/projects/markdown/
http://www.yaml.org/
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
http://code.google.com/apis/protocolbuffers/
http://www.w3.org/TR/voicexml21/
http://www.w3.org/TR/voicexml21/
http://microformats.org/wiki/existing-rel-values
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml
http://dublincore.org/documents/dcmi-terms/
http://tools.ietf.org/html/rfc2483#section-5
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://tools.ietf.org/html/draft-ellermann-opensearch-01
http://tools.ietf.org/html/draft-ellermann-opensearch-01
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://www.w3.org/TR/soap/

Chapter 2
Key words for use in RFCs to Indicate Requirement Levels, http://tools.ietf.org/html/
rfc2119

REST APIs must be hypertext-driven, http://roy.gbiv.com/untangled/2008/rest-apis
-must-be-hypertext-driven

Uniform Resource Identifier (URI): Generic Syntax (RFC3986), http://tools.ietf.org/
html/rfc3986

HTML 4.01 Document Type Definition: Link Types, http://www.w3.org/TR/html401/
sgml/dtd.html#LinkTypes

HTML 4.01 - SGML Basic Types, http://www.w3.org/TR/html4/types.html#h-6.2

HTML 4.01 Specification, http://www.w3.org/TR/html4/

Namespaces in XML 1.0 (Third Edition), http://www.w3.org/TR/xml-names/

Chapter 3
The Atom Publishing Protocol, http://tools.ietf.org/html/rfc5023

The Atom Syndication Format, http://tools.ietf.org/html/rfc4287

Key words for use in RFCs to Indicate Requirement Levels, http://tools.ietf.org/html/
rfc2119

JSON Grammar, http://tools.ietf.org/html/rfc4627#section-2

The application/json Media Type for JavaScript Object Notation (JSON) (RFC4627),
http://tools.ietf.org/html/rfc4627

Uniform Resource Identifier (URI): Generic Syntax (RFC3986), http://tools.ietf.org/
html/rfc3986

Chapter 4
XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition), http://
www.w3.org/TR/xhtml1/

HTML 4.01 Specification, http://www.w3.org/TR/html401/

REST APIs must be hypertext-driven, http://roy.gbiv.com/untangled/2008/rest-apis
-must-be-hypertext-driven

Xhtml Meta Data Profiles, http://gmpg.org/xmdp/

H-Factors, http://amundsen.com/hypermedia/hfactor/

| 173

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/html401/sgml/dtd.html#LinkTypes
http://www.w3.org/TR/html401/sgml/dtd.html#LinkTypes
http://www.w3.org/TR/html4/types.html#h-6.2
http://www.w3.org/TR/html4/http://www.w3.org/TR/html4/
http://www.w3.org/TR/xml-names/
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4627#section-2
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/html401/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://gmpg.org/xmdp/
http://amundsen.com/hypermedia/hfactor/

HTTP Authentication: Basic and Digest Access Authentication [RFC2617], http://tools
.ietf.org/html/rfc2617

Key words for use in RFCs to Indicate Requirement Levels [RFC2119], http://tools.ietf
.org/html/rfc2119

HTTP State Management Mechanism [RFC2109], http://tools.ietf.org/html/rfc2109

Internet Message Format [RFC5322], http://tools.ietf.org/html/rfc5322

Uniform Resource Identifier (URI): Generic Syntax [RFC3986], http://tools.ietf.org/
html/rfc3986

Date and Time on the Internet: Timestamps [RFC3339], http://tools.ietf.org/html/
rfc3339

Microformats, http://microformats.org

W3C Markup Validation Service, http://validator.w3.org/

Microdata, http://www.w3.org/TR/microdata/

RDFa in XHTML: Syntax and Processing, http://www.w3.org/TR/rdfa-syntax/

RDFa Primer, http://www.w3.org/TR/xhtml-rdfa-primer/

Chapter 5
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, 1997, http://
tools.ietf.org/html/rfc2119

Guidelines to Authors of Internet-Drafts, R. Housely, 2010, http://www.ietf.org/id-info/
guidelines.html

The Internet Standards Process -- Revision 3, S. Bradner 1996, http://tools.ietf.org/html/
rfc2026

QA Framework: Specification Guidelines, Dubost, et al, 2005, http://www.w3.org/TR/
qaframe-spec/

HTTP Header Field Registrations, Nottingham & Mogul, 2005, http://tools.ietf.org/
html/rfc4229

Object Headers, Tim Berners-Lee, 1992, http://www.w3.org/Protocols/HTTP/Object
_Headers.html

TRANSMISSION CONTROL PROTOCOL, Jon Postel, 1981, http://tools.ietf.org/
html/rfc793

How to Design a Good API and Why it Matters, Joshua Bloch, 2006, http://www.infoq
.com/presentations/effective-api-design

REST APIs must be hypertext-driven, Roy Fielding, 2008 http://roy.gbiv.com/untangled/
2008/rest-apis-must-be-hypertext-driven

174 | Appendix A: References

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2109
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://microformats.org
http://validator.w3.org/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.ietf.org/id-info/guidelines.html
http://www.ietf.org/id-info/guidelines.html
http://tools.ietf.org/html/rfc2026
http://tools.ietf.org/html/rfc2026
http://www.w3.org/TR/qaframe-spec/
http://www.w3.org/TR/qaframe-spec/
http://tools.ietf.org/html/rfc4229
http://tools.ietf.org/html/rfc4229
http://www.w3.org/Protocols/HTTP/Object_Headers.html
http://www.w3.org/Protocols/HTTP/Object_Headers.html
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://www.infoq.com/presentations/effective-api-design
http://www.infoq.com/presentations/effective-api-design
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

HTTP Authentication: Basic and Digest Access Authentication, Franks, et al., 1999,
http://www.ietf.org/rfc/rfc2617.txt

Media Type Specifications and Registration Procedures, Freed & Klensin, 2005, http:
//tools.ietf.org/html/rfc4288

| 175

http://www.ietf.org/rfc/rfc2617.txt
http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc4288

APPENDIX B

Additional Reading

Books
Alexander, Christopher. The Timeless Way of Building. New York; Oxford University
Press; 1979.

Anderson, J Chris; Lehnardt, Jan; Slater, Noah. CouchDB : The Definitive Guide, Se-
bastopol, CA: O’Reilly, 2011.

Brusilovsky, Peter; Kobsa, Alfred, Vassileva, Julita. Adpative Hypertext and Hyperme-
dia, Klwer Academic Publishers, 1998

Holt, Bradley. Scaling CouchDB, Sebastopol, CA: O’Reilly, 2011.

Holt, Bradley. MapReduce Views in CouchDB, Sebastopol, CA: O’Reilly, 2011

Hughes-Croucher, Thomas. Node: Up and Running, O’Reilly Media. 2011

Lowe, David; Hall, Wendy. Hypermedia & the Web : An Engineering Approach, Wiley
& Sons, 1999

Nelson, Ted. Computer Lib/Dream Machines, Redmond, WA : Tempus Books, 1974.

Pilgrim, Mark. HTML5: up and running. Sebastopol, CA: O’Reilly, 2010.

Taylor, Medividovic, Dashofy. Software Architecture: Foundations, Theory, and Prac-
tice. Wiley, 2009

Teixeira, Pedro. Hands On Node.JS, Self-Published. 2011

Vignelli, Massimo. The Vignelli Canon. Baden, Switzerland; Lars Muller Publishers,
2010.

Other
Bush, Vannevar (July 1945). “As We May Think,” Atlantic Magazine http://www.the
atlantic.com/magazine/archive/1945/07/as-we-may-think/3881/

177

http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/

Engelbart, Douglas C. (October 1962). “Augmenting Human Intellect: A Conceptual
Framework.” SRI Summary Report AFOSR-3223. Prepared for: Director of Informa-
tion Sciences, Air Force Office of Scientific Research. http://dougengelbart.org/pubs/
augment-3906.html

Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine, 2000. http://www
.ics.uci.edu/~fielding/pubs/dissertation/top.htm

178 | Appendix B: Additional Reading

http://dougengelbart.org/pubs/augment-3906.html
http://dougengelbart.org/pubs/augment-3906.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

APPENDIX C

Maze+XML Media Type

The Maze+XML media type is an XML data format for sharing maze state information
between clients and servers. It can be used to implement simple mazes, adventure
games, and other related data.

The IANA Registry lists the media type identifier as application/vnd.amundsen.maze
+xml.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119.

Elements
Below is a map of the Maze+XML media type. This map shows all of the possible
elements, attributes, link relations, and data types.

It should be noted that the media type map below does not necessarily represent a valid
instance of a Maze+XML document. It is only useful as a map to explore the various
features of the media type:

<maze version="1.0">
 <collection href="URI">
 <link href="URI" rel="maze" />
 <link href="URI" rel="maze" />
 ...
 </collection>
 <item href="URI" >
 <link href="URI" rel="start" />
 <debug>CDATA</debug>
 </item>
 <cell href="URI" debug="TEXT" total="NUMBER" side="NUMBER">
 <link href="URI" rel="current" debug="TEXT" total="NUMBER" side="NUMBER" /> <!--
alternate 'current' link -->
 <link href="URI" rel="north" />

179

 <link href="URI" rel="south" />
 <link href="URI" rel="east" />
 <link href="URI" rel="west" />
 <link href="URI" rel="exit" />
 </cell>
 <error href="URI">
 <title>TEXT</title>
 <code>TEXT</code>
 <message>CDATA</message>
 </error>
</maze>

cell
The <cell> element represents a single cell or block in the maze.

The <cell> element SHOULD have two attributes: href and rel. The href attribute
MUST contain a valid URI. The rel attribute SHOULD be set to “current”.

The <cell> element MAY have one or more of the following attributes: debug, total,
and size.

The <cell> element MAY have one or more <link> child elements.

code
The <code> element is a child element of the <error> element. It can be used to provide
a human-friendly error code for the error being reported. It SHOULD contain valid
TEXT data. It is an OPTIONAL element.

collection
The <collection> element represents the list of available mazes in this collection.

The <collection> element SHOULD have an href attribute with a URI value that points
to this resource. If present, this URI MAY be used with the HTTP POST method to
create a new maze or game as a child resource of the collection URI.

The <collection> element MAY have one or more <link> child elements. Each of these
child elements SHOULD have a rel attribute with a value of “maze”. This indicates
the associated href of the link element has a URI which points to the the starting point
of a maze or game.

debug
This element is a child of the <item>. It contains additional information that can be
used to help debug or inspect the state of the maze or game. This data is defined by
and supplied by the server. This element SHOULD contain only valid CDATA. This is
an OPTIONAL element.

180 | Appendix C: Maze+XML Media Type

error
The <error> element is an OPTIONAL element. It MAY contain one or more child
elements. The list of valid child elements is: <title>, <code>, <message>, and <link>.

Each of the above child elements MUST appear no more than once within the
<error> element. If the <error> element appears in the document, it SHOULD be the
only child element of the <maze> element.

item
The <item> element represents a complete maze or game. The <item> element SHOULD
have an href attribute. The href attribute MUST contain a valid URI. The <item> ele-
ment SHOULD have a <link> child element whose attributes SHOULD point to the
start of a maze or game. The <item> element MAY have a <debug> child element.

link
The <link> element MUST have two attributes: href and rel. The href attribute MUST
contain a valid URI. The rel attribute SHOULD contain one of the valid Link Relation
values. The <link> MAY appear as the child element of the <collection>, <item>, and
<error> elements.

If the <link> element has a rel attribute set to “current” it MAY also
have the following additional attributes: debug, size, and total.

maze
A valid Maze+XML document MUST have a root element of <maze>. It MAY have one
or more of the following child elements: <collection>, <item>, <cell>, and <error>.

Each of these child elements MUST NOT appear more than once within the document.
If the <error> element appears, it SHOULD be the only child element of the document.

message
The <message> element is a child element of the <error> element. It holds additional
information about the error that is represented by the <error> element. It SHOULD
contain only valid CDATA characters. It is an OPTIONAL element.

Elements | 181

title
The <title> element is a child element of the <error> element. It can be used to provide
a human-friendly title for the error being reported. It SHOULD contain valid TEXT
data. It is an OPTIONAL element.

Attributes
Below is a list of all the attributes used in the Maze+XML media type:

debug
This attribute contains text data that represents debugging information supplied by the
server. Its value MUST be TEXT. This is an OPTIONAL attribute. If present, it MUST
only appear on the <cell> element.

href
This attribute specifies the location of a Maze+XML resource, thus defining a link
between the current resource and the destination resource defined by this attribute.
The value of the attribute MUST always be a valid URI.

This is an OPTIONAL attribute for the following elements: <collection>, <item>,
<cell>, and <error>.

This is a REQUIRED attribute for the <link> element.

rel
This attribute describes the relationship from the current representation to the URI
specified by the href attribute. The value of this attribute SHOULD be one of the values
listed in the Attributes section of this document. This is a REQUIRED attribute for the
<link> element.

side
This attribute indicates the number of cells on a single side of the maze represented by
this document. The value of this attribute MUST be a valid NUMBER. This is an OP-
TIONAL attribute. If it is present, it MUST only appear on the <cell> element.

total
This attribute indicates the total number of cells in the maze represented by this docu-
ment. The value of this attribute MUST be a valid NUMBER. This is an OPTIONAL
attribute. If it is present,it MUST only appear on the <cell> element.

182 | Appendix C: Maze+XML Media Type

version
Indicates the version of this Maze+XML media-type document. The value of this at-
tribute MUST be set to “1.0” for this version of the documentation. This is an OP-
TIONAL attribute. If it is present, it MUST only appear on the <maze> element.

Link Relations
Below is a list of all the valid link relation values for the rel attribute of the Maze+XML
document:

collection
Refers to a resource that returns a list of the target document/entities, etc. Logged with
the Microformats Existing Rel Values.

When used in the Maze+XML media type, the associated URI returns the available
collections of mazes.

current
Refers to resource containing the most recent item(s) in a collection of resources. Reg-
istered through IANA Link Relations.

When used in the Maze+XML media type, the associated URI returns the client’s cur-
rent position in the active maze.

east
Refers to a resource to the east of the current resource. Logged with the Microformats
Existing Rel Values.

When used in the Maze+XML media type, the associated URI points to a neighboring
cell resource to the east in the active maze.

exit
Refers to a resource that represents the exit or end of the current client activity or
process. Logged with the Microformats Existing Rel Values.

When used in the Maze+XML media type, the associated URI points to the final exit
resource of the active maze.

maze
Refers to a single maze/game document.

Link Relations | 183

When used in the Maze+XML media type, the associated URI points to an existing
resource that represents a maze.

north
Refers to a resource that is north of the current resource. Logged with the Microformats
Existing Rel Values.

When used in the Maze+XML media type, the associated URI points to a neighboring
cell resource to the north in the active maze.

south
Refers to a resource that is south of the current resource. Logged with the Microformats
Existing Rel Values.

When used in the Maze+XML media type, the associated URI points to a neighboring
cell resource to the south in the active maze.

start
Refers to the first resource in a collection of resources. Registered through IANA Link
Relations.

When used in the Maze+XML media type, the associated URI refers to the starting cell
resource within a maze.

west
Refers to a resource that is west of the current resource. Logged with the Microformats
Existing Rel Values.

When used in the Maze+XML media type, the associated URI points to a neighboring
cell resource to the west in the active maze.

Data Types
Below are the data types used in Maze+XML documents. The reference for most of the
data type definitions below is the SGML basic types section of the HTML 4.01 Speci-
fication.

CDATA
CDATA is a sequence of characters from the document character set and may include
character entities.

184 | Appendix C: Maze+XML Media Type

NUMBER
Numbers MUST contain at least one digit ([0-9]). The characters “.”, “-”, and “+” MAY
also appear.

TEXT
Text is meant to be human readable.

URI
URI is defined by RFC 3986.

Extensibility
This document describes the Maze+XML markup vocabulary. Markup from other vo-
cabularies (i.e. foreign markup) can be used in a Maze+XML document. Any extensions
to the Maze+XML vocabulary MUST not redefine any elements, attributes, link rela-
tions, or data types defined in this document. Clients that do not recognize extensions
to the Maze+XML vocabulary SHOULD ignore them.

The details of designing and implementing Maze+XML is beyond the scope of this
document.

It is possible that future forward-compatible modifications to this spec-
ification will include new elements, attributes, link relations, and data
types. Extension designers should take care to prevent future modifica-
tions from breaking or redefining those extensions. The safest way to
do this is to use a unique XML Namespace for each extension.

Extensibility | 185

APPENDIX D

Collection+JSON Media Type

Collection+JSON is a JSON-based read/write hypermedia type designed to support
the management and querying of simple collections. It is similar to the The Atom Syn-
dication Format (RFC 4287) and The Atom Publishing Protocol (RFC 5023) . However,
Collection+JSON defines both the format and the semantics in a single document and
includes support for Query Templates and expanded write support through the use of
a Write Template.

The IANA Registry lists the media type identifier as application/vnd.Collection+JSON.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119.

General Concepts
This section contains general concepts that apply to all Collection+JSON documents.

The Collection+JSON hypermedia type is designed to support full read/write capability
for simple lists (e.g. contacts, tasks, blog entries, etc.). The standard application se-
mantics supported by this media type include Create, Read, Update, and Delete
(CRUD) along with support for predefined queries including query templates (similar
to HTML GET forms). Write operations are defined using a template object supplied
by the server as part of the response representation.

Each item in a Collection+JSON collection has an assigned URI (via the href property)
and an optional array of one or more data elements along with an optional array of one
or more link elements. Both arrays support a name property for each object in the col-
lection in order to decorate these elements with domain-specific semantic information
(e.g. "data" : [{"name" : "first-name", ...},...]).

187

The Collection+JSON hypermedia type has a limited set of predefined link relation
values and supports additional values applied by implementors in order to better de-
scribe the application domain to which the media type is applied.

The following sections describe the process of reading and writing data using the Col-
lection+JSON hypermedia type as well as the way to parse and execute Query Tem-
plates.

Reading and Writing Data
The Collection+JSON media type supports a limited form of read/write semantics: the
Create-Read-Update-Delete (or CRUD) pattern. In addition to CRUD operations, the
Collection+JSON media type supports Query Templates.

This section describes the details of how clients can recognize and implement reads
and writes found within Collection+JSON responses.

Reading collections

To get a list of the items in a collection, the client sends an HTTP GET request to the
URI of a collection. A Collection+JSON Document is returned whose item array con-
tains the URI of item resources. The response may describe all, or only a partial list, of
the items in a collection:

*** REQUEST ***
GET /my-collection/ HTTP/1.1
Host: www.example.org
Accept: application/vnd.Collection+JSON

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.Collection+JSON
Content-Length: xxx

{ "collection" : {...}, ... }

Adding an item

To create a new item in the collection, the client first uses the template object to com-
pose a valid item representation and then uses HTTP POST to send that representation
to the server for processing.

If the item resource was created successfully, the server responds with a status code of
201 and a Location header that contains the URI of the newly created item resource:

*** REQUEST ***
POST /my-collection/ HTTP/1.1
Host: www.example.org
Content-Type: application/vnd.Collection+JSON

{ "template" : { "data" : [...] } }

188 | Appendix D: Collection+JSON Media Type

*** RESPONSE ***
201 Created HTTP/1.1
Location: http://www.example.org/my-collection/1

Once an item resource has been created and its URI is known, that URI can be used to
read, update, and delete the resource.

Reading an item

Clients can retrieve an existing item resource by sending an HTTP GET request to the
URI of an item resource. If the request is valid, the server will respond with a repre-
sentation of that item resource.

*** REQUEST ***
GET /my-collection/1 HTTP/1.1
Host: www.example.org
Accept: application/vnd.Collection+JSON

*** RESPONSE ***
200 OK HTTP/1.1
Content-Type: application/vnd.Collection+JSON
Content-Length: xxx

{ "collection" : { "href" : "...", "items" [{ "href" : "...", "data" : [...].} } }

Note that the valid response is actually a complete collection document that contains
only one item (and possibly related queries and template properties).

Updating an item

To update an existing resource, the client uses the template object as a guide to com-
posing a replacement item representation and then uses HTTP PUT to send that rep-
resentation to the server.

If the update is successful, the server will respond with HTTP status code 200 and
possibly a representation of the updated item resource representation:

*** REQUEST ***
PUT /my-collection/ HTTP/1.1
Host: www.example.org
Content-Type: application/vnd.Collection+JSON

{ "template" : { "data" : [...] } }

*** RESPONSE ***
200 OK HTTP/1.1

Deleting an item

Clients can delete existing resources by sending an HTTP DELETE request to the URI
of the item resource.

General Concepts | 189

If the delete request is successful, the server SHOULD respond with an HTTP status
code of 204:

*** REQUEST ***
DELETE /my-collection/ HTTP/1.1
Host: www.example.org

*** RESPONSE ***
204 No Content HTTP/1.1

Query Templates
Clients that support the Collection+JSON media type SHOULD be able to recognize
and parse query templates found within responses. Query templates consist of a data
array associated with an href property. The queries array supports query templates.

For query templates, the name/value pairs of the data array set are appended to the
URI found in the href property associated with the queries array (with a question mark
as separator) and this new URI is sent to the processing agent:

// query template sample
{
 "queries" :
 [
 {
 "href : "http://example.org/search",
 "rel" : "search",
 "prompt" : "Enter search string",
 "data" :
 [
 {"name" : "search", "value" : ""}
]
 }
]
}

In the above example, if the user supplied “JSON” for the value property, the user agent
would construct the following URI:

http://example.org/search?search=JSON

Objects
An object is an unordered collection of zero or more name/value pairs, where a name
is a string and a value is a string, number, boolean, null, object, or array. The following
elements are always represented as objects in Collection+JSON documents: collection,
error, and template.

190 | Appendix D: Collection+JSON Media Type

collection
The collection object contains all of the records in the representation. This is a RE-
QUIRED object and there MUST NOT be more than one collection object in a Col-
lection+JSON document. It is a top-level document property.

The collection object SHOULD have a version property. For this release, the value of
the version property MUST be set to 1.0. If there is no version property present, it
should be assumed to be set to 1.0.

The collection object SHOULD have an href property. The href property MUST con-
tain a valid URI. This URI SHOULD represent the address used to retrieve a represen-
tation of the document. This URI MAY be used to add a new record (See Reading and
Writing Data).

The collection object MAY have a links array child property.

The collection object MAY have an items array child property.

The collection object MAY have a queries array child property.

The collection object MAY have a template object child property.

The collection object MAY have an error object child property.

// sample collection object
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "links" : [ARRAY],
 "items : [ARRAY],
 "queries" : [ARRAY],
 "template" : {OBJECT},
 "error" : {OBJECT}
 }
}

error
The error object contains additional information on the latest error condition reported
by the server. This is an OPTIONAL object and there MUST NOT be more than one
error object in a Collection+JSON document. It is a top-level document property.

The following elements MAY appear as child properties of the error object: code, mes-
sage, and title.

// sample error object
{
 "error" :
 {
 "title" : STRING,
 "code" : STRING,

Objects | 191

 "message" : STRING
 }
}

template
The template object contains all of the input elements used to add or edit collection
records. This is an OPTIONAL object and there MUST NOT be more than one tem-
plate object in a Collection+JSON document. It is a top-level document property.

The template object SHOULD have a data array child property:

// sample template object
{
 "template" :
 {
 "data" : [ARRAY]
 }
}

Arrays
An array is an ordered sequence of zero or more values. The following elements are
always represented as arrays in Collection+JSON documents: data, items, links, and
queries.

data
The data array is a child property of the items array and the template object. The data
array SHOULD contain one or more anonymous objects. Each object MAY have any
of three possible properties: name (REQUIRED), value (OPTIONAL), and prompt
(OPTIONAL).

// sample data array
{
 "template" :
 {
 "data" :
 [
 {"prompt" : STRING, "name" : STRING, "value" : VALUE},
 {"prompt" : STRING, "name" : STRING, "value" : VALUE},
 ...
 {"prompt" : STRING, "name" : STRING, "value" : VALUE}
]
 }
}

192 | Appendix D: Collection+JSON Media Type

items
The items array represents the list of records in the Collection+JSON document. It is
a child property of the collection object. Each element in the items array SHOULD
contain an href property. The href property MUST contain a URI. This URI MAY be
used to retrieve a Collection+JSON document representing the associated item. It MAY
be used to edit or delete the associated item. See Reading and Writing Data for details.

The items array MAY have a data array child property.

The items array MAY have a links array child property.

// sample items array
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "items" :
 [
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" : [ARRAY]
 },
 ...
 {
 "href" : URI,
 "data" : [ARRAY],
 "links" : [ARRAY]
 }
]
 }
}

links
The links array is an OPTIONAL child property of the items array. It SHOULD contain
one or more anonymous objects. Each has five possible properties: href (REQUIRED),
rel (REQURIED), name (OPTIONAL), render (OPTIONAL), and prompt (OP-
TIONAL).

// sample links array
{
 "collection" :
 {
 "version" : "1.0",
 "href" : URI,
 "items" :
 [
 {
 "href" : URI,
 "data" : [ARRAY],

Arrays | 193

 "links" :
 [
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING, "render" :
"image"},
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING, "render" :
"link"},
 ...
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING}
]
 }
]
 }
}

queries
The queries array is an OPTIONAL top-level property of the Collection+JSON docu-
ment. The queries array SHOULD contain one or more anonymous objects. Each object
composed of five possible properties: href (REQUIRED), rel (REQUIRED), name (OP-
TIONAL), prompt (OPTIONAL), and a data array (OPTIONAL).

If present, the data array represents query parameters for the associated href property
of the same object. See Query Templates for details.

// sample queries array
{
 "queries" :
 [
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING},
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING,
 "data"
 [
 {"name" : STRING, "value" : VALUE}
]
 },
 ...
 {"href" : URI, "rel" : STRING, "prompt" : STRING, "name" : STRING}
]
}

Properties
Properties represent individual name/value pairs for objects within Collection+JSON
documents.

code
The code property MAY be a child property of the error object. It SHOULD be a
STRING type.

194 | Appendix D: Collection+JSON Media Type

href
The href property MAY be a child property of the collection object, items array,
links array, and queries array elements. It MUST contain a valid URI.

message
The message property MAY be a child property of the error object. It SHOULD be a
STRING type.

name
The name property MAY be a child element of the data array and the links array. It
SHOULD be a STRING data type.

prompt
The prompt property MAY appear as a child property of the queries array, the links
array, and the data array. It SHOULD be a STRING data type.

rel
The rel MAY be a child property of the links array elements and queries array ele-
ments. It SHOULD be a STRING data type.

render
The render property MAY be a child property of the links array element. It SHOULD
be a STRING data type. The value MUST be either image or link. If the render property
does not appear on a links array element, it should be assumed to be set to link.

title
The title property MAY be a child property of the error object. It SHOULD be a
STRING type.

value
The value property MAY be a child element of data array elements. It MAY contain
one of the following data types: STRING, NUMBER, true, false, or null.

Properties | 195

version
The version SHOULD be a child property of the collection element. It SHOULD be
a STRING data type. For this release, the version SHOULD be set to “1.0”.

Link Relations
Link relation values can be used to annotate the links array and queries array proper-
ties.

collection
Refers to a collection document.

items
Refers to an individual item in a collection.

template
Refers to the template object of a collection.

queries
Refers to the queries array of a collection.

Other Link Relation Values
The Collection+JSON media type has a limited set of defined link relations. Imple-
mentors are free to use any additional link relation values as needed and are encouraged
to use already-defined link relation values found in existing registries. Suggested reg-
istries include but are not limited to:

IANA Link Relations
Microformats Existing Rel Values
Expressing Dublin Core metadata using HTML/XHTML meta and link elements

Implementors may also wish to create their own unique link relation values using the
standards outlined in RFC 5988.

Data Types
Below are the data types used in Collection+JSON documents. The reference for most
of the data type definitions below is the JSON Grammar section of the RFC 4627.

196 | Appendix D: Collection+JSON Media Type

ARRAY
An ARRAY structure is represented as square brackets surrounding zero or more values
(or elements). Elements are separated by commas.

NUMBER
A NUMBER contains an integer component that may be prefixed with an optional minus
sign, which may be followed by a fraction part and/or an exponent part.

Octal and hex forms are not allowed. Leading zeros are not allowed. A fraction part is
a decimal point followed by one or more digits.

An exponent part begins with the letter E in upper or lowercase, which may be followed
by a plus or minus sign. The E and optional sign are followed by one or more digits.

OBJECT
An OBJECT structure is represented as a pair of curly brackets surrounding zero or more
name/value pairs (or members). A name is a string. A single colon comes after each
name, separating the name from the value. A single comma separates a value from a
following name. The names within an object SHOULD be unique.

STRING
A STRING begins and ends with quotation marks. All Unicode characters may be placed
within the quotation marks except for the characters that must be escaped: quotation
mark, reverse solidus, and the control characters (U+0000 through U+001F).

URI
A URI is defined by RFC 3986.

VALUE
A VALUE data type MUST be a NUMBER, STRING, or one of the following literal names:
false, null, or true.

This release of Collection+JSON does not support OBJECT or ARRAY as a
valid VALUE.

Data Types | 197

Extensibility
This document describes the Collection+JSON markup vocabulary. Markup from
other vocabularies (i.e. foreign markup) can be used in a Collection+JSON document.
Any extensions to the Collection+JSON vocabulary MUST not redefine any objects (or
their properties), arrays, properties, link relations, or data types defined in this docu-
ment. Clients that do not recognize extensions to the Collection+JSON vocabulary
SHOULD ignore them.

The details of designing and implementing Collection+JSON extensions is beyond the
scope of this document.

It is possible that future forward-compatible modifications to this spec-
ification will include new objects, arrays, properties, link relations, and
data types. Extension designers should take care to prevent future mod-
ifications from breaking or redefining those extensions.

198 | Appendix D: Collection+JSON Media Type

APPENDIX E

Microblogging HTML Semantic Profile

The purpose of a Semantic Profile is to document the application-level semantics of a
particular implementation. This is accomplished by describing elements of response
representations for a target media type. For example, identifying markup elements re-
turned (i.e. semantic HTML with Microformats) and state transitions (i.e. HTML.A
and HTML.FORM elements) that advance the state of the current application.

It should be noted that this documentation does not contain any of the following:

• URI construction rules

• Suggested resource names

• HTTP request/response samples

• Example resource representations

This work was inspired by Roy T. Fielding’s “REST APIs must be hypertext driven”
blog post. The implementation approach is based on Tantek Çelik’s HTML Meta Data
Profiles.

General Concepts
The profile here contains details on customizing the HTML media type for a specific
application domain: microblogging. It contains descriptions of valid @class, @id,
@name, and @rel values that can appear within HTML resource representations. The
identified base media type (HTML) along with the list of attributes, values, and their
meaning describes a hypermedia interface. This document is presented as a complete
blueprint for implementing a compliant client or server that supports the basic features
of the target application domain (microblogging).

Compliance
An implementation is not compliant if it fails to satisfy one or more of the MUST or
REQUIRED level requirements. An implementation that satisfies all of the MUST or

199

REQUIRED and all of the SHOULD level requirements, is said to be “unconditionally
compliant.” One that satisfies all of the MUST level requirements but not all the
SHOULD level requirements is said to be “conditionally compliant.”

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in RFC 2119.

Design Characteristics
Base Format

HTML

Domain Semantics
Specific (via Semantic Profile)

State Transfer
Ad hoc (via HTML FORMs)

Application Flow
Applied (via Semantic Profile)

H-Factors
LO, LE, LT, LN, CM, CL

Additional Constraints
• All resource representations MUST be valid HTML documents.

• Servers MAY require clients to support HTTP Authentication (BASIC or DIGEST)
for some requests.

• Servers MAY provide additional markup or features not covered in this profile, but
these additions MUST NOT contradict the semantics outlined here.

• Servers MAY supply code-on-demand elements with their resource representations
(JavaScript, CSS, XSLT, etc.), but servers SHOULD NOT assume clients will sup-
port them.

Semantic Profile
What follows is a list of HTML attributes and their possible values. Servers SHOULD
send resource representations that contain these values along with appropriate markup
and data. Servers are free to decide which elements are appropriate for each resource
representation. Servers are also free to determine which of the elements below are to
be supported.

200 | Appendix E: Microblogging HTML Semantic Profile

Clients SHOULD be prepared to properly handle all of the attributes and elements
described here. Clients SHOULD also be prepared to provide state transfers (FORMs)
back to the server as indicated. Servers MAY provide additional semantics and clients
MAY support those additional semantics.

The phrase “designated user” means: 1) the currently authenticated (logged-in) user;
2) a user identified via other state information such as cookies; or 3) a user selected by
some other means such as following a link.

Class Attribute Values
The following class values MAY appear within the response representation:

all
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages” it MAY have one or more LI.class="message” descendant ele-
ments. When this element is a descendant of DIV.id="users” it MAY have one or
more LI.class="user” descendant elements.

date-time
Applied to a SPAN tag. Contains the UTC date and time the message was posted.
When present, it SHOULD be valid per RFC 3339.

description
Applied to a SPAN tag. Contains the text description of a user.

friends
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages” it contains the list of messages posted by the designated user’s
friends and MAY have one or more LI.class="message” descendant elements.
When this element is a descendant of DIV.id="users” it contains the list of users
who are the friends of the designated user and MAY have one or more
LI.class="user” descendant elements.

followers
Applied to a UL tag. A list representation of all of the users from the designated
user’s friends list. MAY have one or more LI.class="user” descendant elements.

me
Applied to a UL tag. When this element is a descendant of DIV.id="messages” it
contains the list of messages posted by the designated user and MAY have one or
more LI.class="message” descendant elements. When this element is a descendant
of DIV.id="users” it SHOULD contain a single descendant LI.class="user” with
the designated user’s profile.

Semantic Profile | 201

mentions
Applied to a UL tag. A list representation of all of the messages that mention the
designated user. It MAY contain one or more LI.class="message" descendant ele-
ments.

message
Applied to an LI tag. A representation of a single message. It SHOULD contain the
following descendant elements:

SPAN.class="user-text"
A.rel="user"
SPAN.class="message-text"
A.rel="message"

It MAY also contain the following descendant elements:

IMG.class="avatar"
SPAN.class="date-time"

message-post
Applied to a FORM tag. A link template to add a new message to the system by
the designated, or logged-in, user. The element MUST be set to
FORM.method="post" and SHOULD contain a descendant element:

TEXTAREA.name="message"

message-reply
Applied to a FORM tag. A link template to reply to an existing message. The ele-
ment MUST be set to FORM.method="post" and SHOULD contain the following
descendant elements:

INPUT[hidden].name="user" (the author of the original post)
TEXTAREA.name="message"

single
When this element is a descendant of DIV.id="messages" it contains the message
selected via a message link. SHOULD have a single LI.class="message" descendant
element. When this element is a descendant of DIV.id="users" it contains the user
selected via a user link. SHOULD have a single LI.class="user" descendant element.

messages-search
Applied to a FORM tag. A link template to search all of the messages. The element
MUST be set to FORM.method="get" and SHOULD contain the following de-
scendant elements:

INPUT[text].name="search"

message-text
Applied to a SPAN tag. The text of a message posted by a user.

202 | Appendix E: Microblogging HTML Semantic Profile

search
Applied to a UL tag. A list representation. When this element is a descendant of
DIV.id="messages" it contains a list of messages and MAY have one or more
LI.class="message" descendant elements. When this element is a descendant of
DIV.id="users" it contains a list of users and MAY have one or more LI.class="user"
descendant elements.

shares
Applied to a UL tag. A list representation of all the messages posted by the desig-
nated user that were shared by other users. It MAY contain one or more
LI.class="message" descendant elements.

user
Applied to an LI tag. A representation of a single user. It SHOULD contain the
following descendant elements:

SPAN.class="user-text"
A.rel="user"
A.rel="messages"

It MAY also contain the following descendant elements:

SPAN.class="description"
IMG.class="avatar"
A.rel="website"

user-add
Applied to a FORM tag. A link template to create a new user profile. The element
MUST be set to FORM.method="post" and SHOULD contain the following de-
scendant elements:

INPUT[text].name="user"
INPUT[text].name="email"
INPUT[password].name="password"

It MAY also contain the following descendant elements:

TEXTAREA.name="description"
INPUT[file].name="avatar"
INPUT[text].name="website"

user-follow
Applied to a FORM tag. A link template to add a user to the designated user’s
friend list. The element MUST be set to FORM.method="post" and SHOULD
contain the descendant element:

INPUT[text].name="user"

avatar
Applied to an IMG tag. A reference to an image of the designated user.

Semantic Profile | 203

user-text
Applied to a SPAN tag. The user nickname text.

user-update
Applied to a FORM tag. A link template to update the designated user’s profile.
The element MUST be set to FORM.method="post" and SHOULD contain the
following descendant elements:

INPUT[hidden].name="user"
INPUT[hidden].name="email"
INPUT[password].name="password"

It MAY also contain the following descendant elements:

TEXTAREA.name="description"
INPUT[file].name="avatar"
INPUT[text].name="website"

users-search
Applied to a FORM tag. A link template to search all of the users. The element
MUST be set to FORM.method="get" and SHOULD contain the descendant ele-
ment:

INPUT[text].name="search"

ID Attribute Values
The following id values SHOULD appear within response representations:

messages
Applied to a DIV tag. The list of messages in this representation. MAY have one
or more of the following descendant elements:

UL.class="all"
UL.class="friends"
UL.class="me"
UL.class="mentions"
UL.class="search"
UL.class="shares"
UL.class="single"

queries
Applied to a DIV tag. The list of valid queries in this representation. MAY have
one or more FORM and/or A descendant elements (see “rel” and “class” section
for details).

users
Applied to a DIV tag. The list of users in this representation. MAY have one or
more of the following descendant elements:

204 | Appendix E: Microblogging HTML Semantic Profile

UL.class="all"
UL.class="friends"
UL.class="followers"
UL.class="me"
UL.class="search"
UL.class="single"

Name Attribute Values
The following name values MAY appear within response representations:

description
Applied to a TEXTAREA element. The description of the user.

email
Applied to an INPUT[text] or INPUT[hidden] element. The email address of a
user. When supplied, it SHOULD be valid per RFC 5322.

message
Applied to a TEXTAREA element. The message to post (for the designated user).

name
Applied to an INPUT[text] element. The full name of a user.

password
Applied to an INPUT[password] element. The password of the user login.

search
Applied to an INPUT[text]. The search value to use when searching messages
(when applied to FORM.class="message-search") or when searching users (when
applied to FORM.class="users-search").

user
Applied to an INPUT[text] or INPUT[hidden] element. The public nickname of a
user.

avatar
Applied to an INPUT[file] element. The image for the user.

website
Applied to an INPUT[text]. The URL of a website associated with the user profile.
When supplied, it SHOULD be valid per RFC 3986.

Rel Attribute Values
The following rel values MAY appear within response representations.

first
Applied to an A tag. A reference to the first page in a list of data (messages, users).

Semantic Profile | 205

index
Applied to an A tag. A reference to the starting URI for the application.

last
Applied to an A tag. A reference to the last page in a list of data (messages, users).

message
Applied to an A tag. A reference to a message representation.

message-post
Applied to an A tag. A reference to the message-post FORM.

message-reply
Applied to an A tag. A reference to the message-reply FORM.

message-share
Applied to an A tag. A reference to the message-share FORM.

messages-all
Applied to an A tag. A reference to a list representation of all the messages in the
system.

messages-friends
Applied to an A tag. A reference to a list representation of all the messages from
the designated user’s friends list.

messages-me
Applied to an A tag. A reference to a list representation of all the messages posted
by the designated user.

messages-mentions
Applied to an A tag. A reference to a list representation of all the messages that
mention the designated user.

messages-shares
Applied to an A tag. A reference to a list representation of all the messages posted
by the designated user that were shared by other users.

messages-search
Applied to an A tag. A reference to the messages-search FORM.

next
Applied to an A tag. A reference to the next page in a list of data (messages, users).

previous
Applied to an A tag. A reference to the previous page in a list of data (messages,
users).

self
Applied to an A tag. A reference to the currently loaded resource representation.

user
Applied to an A tag. A reference to a user representation.

206 | Appendix E: Microblogging HTML Semantic Profile

user-add
Applied to an A tag. A reference to the user-add FORM.

user-follow
Applied to an A tag. A reference to the user-follow FORM.

user-me
Applied to an A tag. A reference to the designated user’s representation.

user-update
Applied to an A tag. A reference to the user-update FORM.

users-all
Applied to an A tag. A reference to a list representation of all the users in the system.

users-friends
Applied to an A tag. A reference to list representation of the designated user’s friend
users.

users-followers
Applied to an A tag. A reference to list representation of the users who follow the
designated user.

users-search
Applied to an A tag. A reference to the users-search FORM.

website
Applied to an A tag. A reference to the website associated with a user.

Semantic Profile | 207

APPENDIX F

IANA Media Type Registration
Document

Below is a completed Internet Assigned Numbers Authority (IANA) media type regis-
tration document. This is the result of registering a media type using the IANA’s “Ap-
plication for Media Types” online form (found at http://www.iana.org/cgi-bin/medi
atypes.pl). This results in the official registration of the application/vnd.amundsen.maze
+xml media type.

The most recent version of this document can be found online at http://www.iana.org/
assignments/media-types/application/vnd.amundsen.maze+xml.

(last updated 2011-02-01)

Name : Mike Amundsen

Email : mca&amundsen.com

MIME media type name : Application

MIME subtype name : Vendor Tree - vnd.amundsen.maze+xml

Required parameters : none

Optional parameters :
charset
This parameter has identical semantics to the charset parameter of
the "application/xml" media type as specified in RFC 3023.

Encoding considerations : binary
Same as encoding considerations of application/xml as specified in RFC 3023.

Security considerations :
Maze+XML shares security issues common to all XML content types. It does
not provide executable content. Information contained in Maze+XML
documents do not require privacy or integrity services.

209

http://www.iana.org/cgi-bin/mediatypes.pl
http://www.iana.org/cgi-bin/mediatypes.pl
http://www.iana.org/assignments/media-types/application/vnd.amundsen.maze+xml
http://www.iana.org/assignments/media-types/application/vnd.amundsen.maze+xml

Interoperability considerations :
Maze+XML is not described by a DTD and applies only the well-formedness
rules of XML. It should only be parsed by a non-validating parser.

Published specification :
http://amundsen.com/media-types/maze/

Applications which use this media :
Various

Additional information :

1. Magic number(s) : none
2. File extension(s) : .xml
3. Macintosh file type code : TEXT
4. Object Identifiers: none

Person to contact for further information :

1. Name : Mike Amundsen
2. Email : mca&amunndsen.com

Intended usage : Common
The Maze+XML media type is an XML data format for sharing maze state
information between clients and servers. It can be used to implement
simple mazes, adventure games, and other related data.

Author/Change controller : Mike Amundsen

(file created 2011-02-01)

210 | Appendix F: IANA Media Type Registration Document

APPENDIX G

IETF Link Relations Internet Draft

Below is a complete Internet Engineering Task Force (IETF) Internet Draft (I-D) for
registering Link Relations. This document (which is still a work in progress) was sub-
mitted through the IETF’s Data Tracker (http://datatracker.ietf.org/submit/).

The most recent updates for this I-D can be viewed here: http://datatracker.ietf.org/doc/
draft-amundsen-item-and-collection-link-relations/

Network Working Group M. Amundsen
Internet-Draft October 9, 2011
Intended status: Informational
Expires: April 11, 2012

 The Item and Collection Link Relations
 draft-amundsen-item-and-collection-link-relations-04

Abstract

 RFC 5988 [RFC5988] standardized a means of indicating the
 relationships between resources on the Web. This specification
 defines a pair of reciprocal link relation types that may be used to
 express the relationship between a collection and its members.

Editorial Note (To be removed by RFC Editor)

 Distribution of this document is unlimited. Comments should be sent
 to the IETF Apps-Discuss mailing list (see
 <https://www.ietf.org/mailman/listinfo/apps-discuss>).

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

211

http://datatracker.ietf.org/submit/
http://datatracker.ietf.org/doc/draft-amundsen-item-and-collection-link-relations/
http://datatracker.ietf.org/doc/draft-amundsen-item-and-collection-link-relations/

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 11, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the

Amundsen Expires April 11, 2012 [Page 1]

Internet-Draft The Item and Collection Link Relations October 2011

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

1. Introduction

 RFC 5988 [RFC5988] standardized a means of indicating the
 relationships between resources on the Web. This specification
 defines a pair of reciprocal link relation types that may be used to
 express the relationship between a collection and its members.

 These link relation types can be applied to a wide range of use cases
 across multiple media types. For example, the 'collection' and
 'item' link relation types are used in these media types:

 1. OpenSearch 1.1: see Section 4.5.4.1 of [OpenSearch]

 2. Maze+XML: see Section 3 of [Maze]

 3. Collection+JSON: see Section 5 of [CollectionJSON]

2. Link Relations

212 | Appendix G: IETF Link Relations Internet Draft

 The following link relations are defined.

2.1. 'item'

 When included in a resource which represents a collection, the 'item'
 link relation identifies a target resource that represents a member
 of that collection.

 For example, if a resource represents a catalog of products, that
 same representation may include one or more links to resources which
 represent members of that catalog.

Amundsen Expires April 11, 2012 [Page 2]

Internet-Draft The Item and Collection Link Relations October 2011

 <html>
 ...
 <h1>Product Group X Listing</h1>
 ...
 View Product X001
 View Product X002
 ...
 </html>

 or, in the case of a Link Header field

 Link: <...>; rel="item"; title="View Product X001"
 Link: <...>; rel="item"; title="View Product X002"

2.2. 'collection'

 When included in a resource which represents a member of a
 collection, the 'collection' link relation identifies a target
 resource that represents a collection of which the context resource
 is a member.

 For example, if a resource represents a single product in a catalog,
 that same representation may include a link to a resource which
 represents a product group to which this single product belongs:

 Return to Product Group X

 or, in the case of a Link Header field

IETF Link Relations Internet Draft | 213

 Link: <...>; rel="collection"; title="Return to Product Group X"

 Since it is possible that a resource could be a member of multiple
 collections, multiple 'collection' link relations may appear within
 the same representation:

 View other widgets
 View all discontinued items

 The target resource representation need not be restricted to
 representing a list. It may simply be a document that provides
 details on the collection of which the context resource is a member:

 Link: <...>; rel="collection";
 title="Shakespeare's Collected Works - A History"

Amundsen Expires April 11, 2012 [Page 3]

Internet-Draft The Item and Collection Link Relations October 2011

3. IANA Considerations

 IANA is asked to register the 'collection' and 'item' Link Relations
 below as per [RFC5988].

3.1. 'item' Link Relation Registration

 Relation Name:

 item

 Description:

 The target IRI points to a resource that is a member of the
 collection represented by the context IRI.

 Reference:

 See Section 2

3.2. 'collection' Link Relation Registration

 Relation Name:

 collection

 Description:

214 | Appendix G: IETF Link Relations Internet Draft

 The target IRI points to a resource which represents a collection
 of which the context IRI is a member.

 Reference:

 See Section 2

4. Security Considerations

 The two link relation types defined in this document are not believed
 to introduce any new security issues to those which are discussed in
 Section 7 of RFC5988 [RFC5988].

5. Internationalisation Considerations

 The 'item' and 'collection' link relation types do not have any
 internationalization considerations other than those which are
 discussed in Section 8 of RFC5988 [RFC5988].

6. References

Amundsen Expires April 11, 2012 [Page 4]

Internet-Draft The Item and Collection Link Relations October 2011

6.1. Normative References

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 October 2010.

6.2. Informative References

 [OpenSearch] Clinton, D., "Open Search 1.1", Work in Progress ,
 March 2011, <http://www.opensearch.org/
 Specifications/OpenSearch/1.1/>.

 [Maze] Amundsen, M., "Maze+XML - Format", Web Page ,
 December 2010,
 <http://amundsen.com/media-types/maze/format/>.

 [CollectionJSON] Amundsen, M., "Collection+JSON - Document Format",
 Web Page , July 2011, <http://amundsen.com/
 media-types/collection/format/>.

Appendix A. Acknowledgements

 The author gratefully acknowledges the contributions of Julian
 Reschke and Mykyta Yevstifeyev.

Author's Address

 Mike Amundsen

IETF Link Relations Internet Draft | 215

 EMail: mca@amundsen.com
 URI: http://amundsen.com

216 | Appendix G: IETF Link Relations Internet Draft

APPENDIX H

Source Code, Software, and
Installation Notes

Below are notes on the source code contained in this book and the software used in its
preparation including some hints on installing CouchDB and Node.js on Ubuntu.

Source Code
A number of source code artifacts were produced in the writing of this book. These
include:

• HTML5 markup

• CSS documents

• Client-side JavaScript files

• Server-side JavaScript for Node.js

• JavaScript for CouchDB

• Bash scripts for installing the databases

All of these documents, along with any additional materials related to the book, can
be found by visiting the Hypermedia page at amundsen.com.

Prerequisites
The items below were installed to prep Ubuntu for CouchDB and Node.js.

These were installed via the command line:

sudo apt-get install curl
sudo apt-get install git
sudo apt-get pkg-config

The following were installed using Ubuntu’s Software Center:

217

http://amundsen.com/hypermedia/

• python (2.6)

• GNU C++ Compiler

• libssl-dev

CouchDB
Installing CouchDB from the command line was very easy:

sudo apt-get install couchdb

To test the install, you can bring up your browser and open the Futon helper app:

http://localhost:5984/_utils/

You can run the CouchDB Test Suite from Futon if you wish. In my case, all tests passed
(using FF3.6), but a few scripts run long enough that FF popped up a dialog a few times
asking if I wanted to kill the script. I always answered “No” and let the tests continue.

Node.js
I used a script from the Node.js git site (https://gist.github.com/579814) called node-
and-npm-in-30-seconds.sh:

echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc
. ~/.bashrc
mkdir ~/local
mkdir ~/node-latest-install
cd ~/node-latest-install
curl http://nodejs.org/dist/node-latest.tar.gz | tar xz --strip-components=1
./configure --prefix=~/local
make install # ok, this step probably takes more than 30 seconds...
curl http://npmjs.org/install.sh | sh

For the record, despite the script’s name, it takes more than 30 seconds to build Node.js.

I also installed the following packages using npm:

npm install express
npm install ejs
npm install cradle

Cloud Services
I relied on a handful of cloud services throughout the writing, coding, and testing of
the contents of this book. I did this primarily as an experiment to see just how easily I
would be able to complete tasks while relying only on the cloud. I must say that I was
pleasantly surprised by the sophistication of available services and their overall relia-
bility.

The following services were used in the creation of the book:

218 | Appendix H: Source Code, Software, and Installation Notes

https://gist.github.com/579814

GitHub
I used GitHub’s site to host several Git repositories, share code and examples with
others, and as a staging area for my online editing (see the next item).

Cloud9 IDE
This development-as-a-service offering allowed me to grab content from my Gi-
tHub repos, edit, debug, and deploy implementations all without the need for a
full-featured desktop or laptop machine. I was even able to deliver extended pre-
sentations and participate in coding sessions all from my Chromebook device con-
nected to Cloud9’s servers.

Joyent Node hosting
I used Joyent’s Node hosting services to run my sample applications on publicly
available servers (see “Source Code” on page 217 for more details on how to access
publicly available content related to this book). I was also able to deploy my code
directly from the Cloud9 IDE to Joyent’s servers in a single step. This made for a
very enjoyable working experience from start to finish.

Cloudant CouchDB hosting
I used Cloudant’s servers to host my CouchDB data stores on a publicly available
server. Cloudant’s support includes access to the command line (via CURL) as well
as support for the Futon UI to manage data stores. I was able to easily script data
store creation and population directly from my workstation, too.

Authoring
I used several machines throughout the writing of this book:

• Meerkat Ion NetTop

• HP HDX X16-1040US Premium Notebook PC

• HP Mini Notebook 1030NR Notebook PC

• Google Chromebook

The software listed below was used to write the book. Since I often switch between
physical machines and used two different operating systems in the process (Ubuntu
and Windows), the products selected for the task all have installations for multiple
platforms:

• XMLMind Editor (for writing the book text)

• gedit (for editing code the examples)

• RapidSVN (Source Control for the book)

Finally lots of notes, research, and initial drafts were written up (and shared) using
Google Docs.

Authoring | 219

About the Author
Mike Amundsen, an internationally known author and lecturer, travels throughout
the United States and Europe consulting and speaking on a wide range of topics in-
cluding distributed network architecture, web application development, cloud com-
puting, and other subjects. His recent work focuses on the role hypermedia plays in
creating and maintaining applications that can successfully evolve over time. He has
more than a dozen books to his credit and recently contributed to the RESTful Web
Services Cookbook by Subbu Allamaraju. When he is not working, Mike enjoys spend-
ing time with his family in Kentucky, USA.

	Table of Contents
	Foreword
	Preface
	Hypermedia API Design
	Intended Audience
	What Is Not Covered
	Contents of This Book
	Coding Style for This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. Understanding Hypermedia
	HTTP, MIME, and Hypermedia
	HTTP Is the Transfer Protocol
	MIME Is the Media Type Standard
	Hypermedia Is the Engine
	From links to controls
	Hypermedia types

	Programming the Web with Hypermedia APIs
	The Type-Marshaling Dilemma
	Shared schema
	URI construction
	Payload decoration
	Narrow media types

	The Hypermedia Solution
	Metadata about the data
	Metadata about the application
	Summary

	Identifying Hypermedia : H-Factors
	Link Factors
	Embedding Links (LE)
	Outbound Links (LO)
	Templated Links (LT)
	Idempotent Links (LI)
	Non-Idempotent Links (LN)

	Control Factors
	Read Controls (CR)
	Update Controls (CU)
	Method Controls (CM)
	Link Annotation Controls (CL)
	Summary

	Hypermedia Design Elements
	Base Format
	XML
	JSON
	HTML
	Others

	State Transfer
	Read-only
	Predefined
	Ad-Hoc

	Domain Style
	Specific
	General
	Agnostic

	Application Flow
	None
	Intrinsic
	Applied

	Summary
	What’s Next?

	Chapter 2. XML Hypermedia
	Scenario
	Designing the Maze XML Media Type
	Identifying the State Transitions
	Selecting the Basic Design Elements
	The Maze+XML Document
	The collection element
	The item element
	The cell element
	The error element

	Sample Data
	The Server Code
	The Collection State Response
	The Item State Response
	The Cell State Response
	The Exit State Response

	The Client Code
	Maze Game Example
	HTML5 Markup
	JavaScript

	Maze Bot Example
	HTML5 Markup
	JavaScript

	Summary

	Chapter 3. JSON Hypermedia
	Scenario
	Designing the Collection+JSON Media-Type
	Identifying the State Transitions
	Selecting the Basic Design Elements
	The Collection+JSON Document
	Objects
	The collection object
	The error object

	Arrays
	The template object
	The data array
	The items array
	The links array

	The Tasks Application Semantics
	The Data Model
	The Write Template
	Predefined Queries

	Sample Data
	Task Documents
	Design Document

	The Server Code
	The Collection Response
	The Item Response
	The Query Representations
	Handling Template Writes

	The Client Code
	The Tasks SPI Example
	HTML5 markup
	JavaScript

	The Tasks Command Line Example
	The general approach
	The add-task.js application

	Summary

	Chapter 4. HTML5 Hypermedia
	Scenario
	Designing the Microblog Media Type
	Expressing Application Domain Semantics in HTML5
	Identifying the State Transitions
	State blocks
	Users
	Messages

	Transfer blocks
	Queries
	Create new user
	Update existing user
	Follow a user
	Search for users
	Add a new message

	Selecting the Basic Design Elements
	The Microblog Application Profile
	Current user and state data
	ID attribute values
	Class attribute values
	Name attributes values
	Rel attribute values

	Sample Data
	User Documents
	Message Documents
	Follow Documents
	Design Document

	The Server Code
	Authenticating Users
	Registering a New User
	Message Responses
	User Responses

	The Client Code
	The POSH Example
	The Ajax QuoteBot Example
	The QuoteBot scenario
	QuoteBot HTML5
	QuoteBot JavaScript
	Setup code
	Making requests
	Processing responses
	Support routines

	Summary

	Chapter 5. Documenting Hypermedia
	Requirements, Compliance, and RFC 2119
	The RFC 2119 Keywords
	Sample Documentation Using RFC 2119 Keywords
	Defining Compliance

	Documenting Media Type Designs
	General Layout
	Front matter
	Format
	Examples
	Tutorials

	Documenting XML Designs
	Documenting JSON Designs
	Documenting HTML Designs
	Documenting Application Domain Specifics
	Data elements
	Domain-specific data elements
	Domain-generic data elements

	Hypermedia affordances
	Domain-specific hypermedia controls
	Domain-generic hypermedia controls

	Publishing Media Type Designs

	Extending and Versioning Media Types
	Extending
	Forward compatibility
	Backward compatibility
	Rules for extending media types

	Versioning
	Deciding when to version a media type
	Rules for versioning a media type
	It should be easy to identify new versions of a media type
	Implementations should reject unsupported versions

	Registering Media Types and Link Relations
	Media Types
	Vendor/Personal tree media type registrations
	Standard tree media type registrations

	Link Relation Types
	Registering link relations with the Microformats community
	Registering link relations with the IANA

	Design and Implementation Tips
	Joshua Bloch’s Characteristics of a Good API
	Roy Fielding’s Hypertext API Guidelines
	Jon Postel’s Robustness Principle
	Other Considerations
	Getting it right but not complete
	Maintain media type design and schema separately
	Authentication is not part of the hypermedia design
	Testing media type designs

	Afterword
	Appendix A. References
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Appendix B. Additional Reading
	Books
	Other

	Appendix C. Maze+XML Media Type
	Elements
	cell
	code
	collection
	debug
	error
	item
	link
	maze
	message
	title

	Attributes
	debug
	href
	rel
	side
	total
	version

	Link Relations
	collection
	current
	east
	exit
	maze
	north
	south
	start
	west

	Data Types
	CDATA
	NUMBER
	TEXT
	URI

	Extensibility

	Appendix D. Collection+JSON Media Type
	General Concepts
	Reading and Writing Data
	Reading collections
	Adding an item
	Reading an item
	Updating an item
	Deleting an item

	Query Templates

	Objects
	collection
	error
	template

	Arrays
	data
	items
	links
	queries

	Properties
	code
	href
	message
	name
	prompt
	rel
	render
	title
	value
	version

	Link Relations
	collection
	items
	template
	queries
	Other Link Relation Values

	Data Types
	ARRAY
	NUMBER
	OBJECT
	STRING
	URI
	VALUE

	Extensibility

	Appendix E. Microblogging HTML Semantic Profile
	General Concepts
	Compliance
	Design Characteristics
	Additional Constraints

	Semantic Profile
	Class Attribute Values
	ID Attribute Values
	Name Attribute Values
	Rel Attribute Values

	Appendix F. IANA Media Type Registration Document
	Appendix G. IETF Link Relations Internet Draft
	Appendix H. Source Code, Software, and Installation Notes
	Source Code
	Prerequisites
	CouchDB
	Node.js
	Cloud Services
	Authoring

