
www.allitebooks.com

http://www.allitebooks.org

800 East 96th Street, Indianapolis, Indiana 46240 USA

Christopher Peri Ph.D.

SamsTeachYourself

24in

Hours

the Twitter API

www.allitebooks.com

http://www.allitebooks.org

Sams Teach Yourself the Twitter API in 24 Hours
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33110-7
ISBN-10: 0-672-33110-1

Library of Congress Cataloging-in-Publication Data

Peri, Christopher A., 1964-
Sams teach yourself the Twitter API in 24 hours / Christopher A. Peri, Bess P. Ho.

p. cm.
Includes index.
ISBN-13: 978-0-672-33110-7 (pbk. : alk. paper)
ISBN-10: 0-672-33110-1 (pbk. : alk. paper)

1. Application program interfaces (Computer software) 2. Twitter. I. Ho, Bess P.,
1967- II. Title. III. Title: Teach yourself the Twitter API in 24 hours.

QA76.76.A63P47 2011
006.7’54—dc23

2011022576

Printed in the United States of America

First Printing June 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an
“as is” basis. The authors and the publisher shall have neither liability nor responsi-
bility to any person or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Associate Publisher
Mark Taub

Signing Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Barbara Hacha

Indexer
Erika Millen

Proofreader
Sarah Kearns

Technical Editors
Doug Jones
Ronan Schwartz
Ben Schupak

Publishing Coordinator
Olivia Basegio

Cover Designer
Gary Adair

Composition
Gloria Schurick

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance
. Preface . xiii

HOUR 1 What Is Twitter? . 1

HOUR 2 Twitter Out of the Box. 11

HOUR 3 Key Issues to Consider When Developing Twitter Applications 21

HOUR 4 Creating a Development Environment. 33

HOUR 5 Making Your First API Call . 49

HOUR 6 Building a Simple Twitter Reader . 59

HOUR 7 Creating a Twitter API Framework . 73

HOUR 8 Twitter OAuth . 81

HOUR 9 Building a Simple Twitter Client, Part I . 95

HOUR 10 Building a Simple Twitter Client, Part II . 105

HOUR 11 Expanding Our Client for More API Calls . 113

HOUR 12 Direct Messages. 125

HOUR 13 Lists . 135

HOUR 14 Favorites and User Methods . 147

HOUR 15 Search . 161

HOUR 16 Trends and GEO . 177

HOUR 17 Friendships, Notification, Block, and Account Methods 193

HOUR 18 Twitter Documentation. 205

HOUR 19 Streaming API . 219

HOUR 20 FailWhale and the Future of the API. 229

HOUR 21 Getting Started in Twitter Android Application . 241

HOUR 22 Building Android Applications with Twitter . 255

HOUR 23 Getting Started with Twitter Using iOS . 279

HOUR 24 Building an iPhone and iPod Touch Application with Twitter 293

Index . 319

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

HOUR 1: What Is Twitter? 1

What Twitter Offers You . 1

A Brief History of Twitter—or Why 140 Characters?. 2

Summary . 7

Q&A . 8

HOUR 2: Twitter Out of the Box 11

What Twitter Offers You . 11

Registering Your Application . 15

The Twitter Client . 16

Summary . 18

Q&A . 18

HOUR 3: Key Issues to Consider When Developing Twitter Applications 21

Types of Twitter Users . 21

Types of Twitter Applications . 25

Platform. 30

Summary . 31

Q&A . 31

HOUR 4: Creating a Development Environment 33

Background of LAMP Stacks . 33

Setting Up a Local Web Server . 34

Securing Your Web Server . 38

Development Tools. 41

Summary . 45

Q&A . 46

HOUR 5: Making Your First API Call 49

Making a Simple Twitter API Call. 49

Making a Call in PHP. 53

www.allitebooks.com

http://www.allitebooks.org

Contents

v

Summary . 57

Q&A . 58

HOUR 6: Building a Simple Twitter Reader 59

Building Our First Twitter Client . 59

Twitter HTTP Response Codes. 65

Summary . 69

Q&A . 71

HOUR 7: Creating a Twitter API Framework 73

Twitter API Parameters . 73

Creating an API Function for Twitter Function Calls . 75

Summary . 80

Q&A . 80

HOUR 8: Twitter OAuth 81

What Is a Class and Why Do We Want to Use It? . 81

What Is OAuth? . 82

How to Register Your Application . 82

Creating the OAuth Twitter Class . 83

PHP Library for Working with Twitter’s OAuth API . 84

Setting Up the twitterOAuth Class . 85

How to Add New Functions to Your Twitter Class Object . 90

How Our Class Deals with Twitter Connection Errors . 92

Summary . 93

Q&A . 93

HOUR 9: Building a Simple Twitter Client, Part I 95

Expanding the Index File to Support Tabs . 95

Adding Support for Home Timeline . 97

Adding Support for Mentions. 99

Adding Support for Direct Messages . 101

Summary . 102

Q&A . 102

www.allitebooks.com

http://www.allitebooks.org

vi

Teach Yourself the Twitter API in 24 Hours

HOUR 10: Building a Simple Twitter Client, Part II 105

Updating and Adding New Files to Support Input Text Field . 105

Sending a Message to Twitter . 108

API Call for Direct Messages . 109

Sanitizing Messages . 110

Summary . 110

Q&A . 111

HOUR 11: Expanding Our Client for More API Calls 113

Types of API Method Calls . 113

Adding Tabs to Our UI . 114

New Timeline API Calls: Retweeted . 117

New Status API Calls: Retweeted . 119

Summary . 123

Q&A . 123

HOUR 12: Direct Messages 125

Sending a Direct Message . 125

Adding Direct Message API Support . 127

Adding More Direct Message API Support . 131

The Destroy API Method . 132

Summary . 133

Q&A . 133

HOUR 13: Lists 135

What Is a List?. 135

Implementing the List API into Our Application . 137

Three Types of List Methods . 142

Summary . 144

Q&A . 144

HOUR 14: Favorites and User Methods 147

Favorites API Methods . 147

User API Methods. 153

Summary . 158

Q&A . 159

www.allitebooks.com

http://www.allitebooks.org

Contents

vii

HOUR 15: Search 161

History of Twitter Search API . 161

Twitter’s Stance on Search . 161

The Lone Search API. 162

A Quick Guide to More Information on Search from the Twitter Docs 170

Summary . 173

Q&A . 174

HOUR 16: Trends and GEO 177

What Is a Trending Topic? . 177

Supporting Trends in Our Application . 177

Understanding the GEO Tag. 187

Summary . 190

Q&A . 190

HOUR 17: Friendships, Notification, Block, and Account Methods 193

Friendships Methods . 193

Notification Methods . 197

Block Methods . 198

Account Methods . 199

Summary . 202

Q&A . 202

HOUR 18: Twitter Documentation 205

The Twitter Dev Website . 205

Dev.twitter.com/doc . 211

Twitter Resource Page Overview . 212

Summary . 216

Q&A . 216

HOUR 19: Streaming API 219

The Three Types of Streaming APIs . 219

Streaming Methods . 222

Summary . 226

Q&A . 226

www.allitebooks.com

http://www.allitebooks.org

viii

Teach Yourself the Twitter API in 24 Hours

HOUR 20: FailWhale and the Future of the API 229

What Is Spotting the FailWhale? . 229

Review of the Application We Just Built . 231

Where Is the Twitter API Going? . 236

Summary . 237

Q&A . 238

HOUR 21: Getting Started in Twitter Android Application 241

Introducing Android . 241

Creating the Hello Android Project . 243

Summary . 251

Q&A . 252

HOUR 22: Building Android Applications with Twitter 255

Using Twitter OAuth in Android . 255

Importing Packages . 261

Summary . 276

Q&A . 276

HOUR 23: Getting Started with Twitter Using iOS 279

Introducing iOS . 279

Creating a Hello World Application . 280

Summary . 289

Q&A . 290

HOUR 24: Building an iPhone and iPod Touch Application with Twitter . . 293

Introducing Twitter xAuth . 293

Benefits of Using Twitter xAuth . 294

Selecting Twitter Objective-C Libraries . 294

Loading xAuth Token . 302

Posting Tweet . 304

Adding MGTwitterEngine Delegate Methods 305

Creating Objects in Interface Builder . 308

Summary . 315

Q&A . 316

INDEX . 319

www.allitebooks.com

http://www.allitebooks.org

About the Author
Dr. Christopher Peri received his Doctorate from the University of California, Berkeley,

in Architecture. His focus was on Collaboration in Virtual Environments delving into

methods that facilitate designers and engineers to improve communication over remote

networks.

He started playing with the Twitter API very early in the API release, creating his own

Twitter client called TwittFilter, which is geared more to the occasional user then some-

one who uses Twitter all the time. As time went on, he added more and more features

and functions for his own personal use, until one day he realized he had a fairly

sophisticated application and opened it up to the general public to use. He learned

quite a bit about the Twitter API the hard way—by simply coding things up and seeing

what happens. Although TwittFilter is still a personal project, he has already created a

number of private Twitter applications, robots, and smaller projects like

NewsSnacker.com, which is open to the public.

www.allitebooks.com

http://www.allitebooks.org

About the Contributing
Author
Bess Ho is a UI Engineer in mobile, tablet, TV, and web with a strong background in

data analytic and consumer behavior. She received her Master Degree from the

University of California, Davis in Food Science and Technology. Her focus was on

Consumer Sensory Science and Engineering. She is the winner of Nokia Open Screen

Project Fund and was elected as Samsung Star in the Samsung Mobile Innovator

worldwide program. She served as technical editor for the book titled Building

OpenSocial Apps: A Field Guide to Working with MySpace Platform (Addison

Wesley, 2009). She has presented mobile technology at Stanford University, O’Reilly

Web20 Expo SF, Where20 Conference, Silicon Valley China Wireless Conference, and

many developer events. Currently, she is Mobile Architect (EIR) for Archimedes

Ventures. She also advises many early-stage startups in UI/UXP design and mobile

development in multiple platforms. She is actively teaching many mobile classes

such as iOS SDK in Silicon Valley and online courses at Udemy.com. You can follow

her at Twitter @Bess or Slideshare at www.slideshare.net/bess.ho. Her developer blog

is at http://www.bess.co.

www.slideshare.net/bess.ho
http://www.bess.co

Acknowledgments
Christopher Peri—We would like to thank all the unknown coders on the interwebs

who have contributed to not only Twitter’s success, but creating mountains of technical

information and code examples that allows a lowly hobby programmer, like myself, to

learn how to work with Twitter API and one day...write a book on it. A number of peo-

ple have helped with this book, but I want to call out three people specifically: @chiah

for creating the foundation of Hour 1, @jon_wu for Hour 8 as well as helping with

debugging and general feedback on technical issues, and @LanceNanek for debugging

and researching Android in Hour 22.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We

value your opinion and want to know what we’re doing right, what we could do bet-

ter, what areas you’d like to see us publish in, and any other words of wisdom

you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about

this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of

this book, and that due to the high volume of mail I receive, I might not be able to

reply to every message.

When you write, please be sure to include this book’s title and author as well as

your name and phone or email address. I will carefully review your comments and

share them with the author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taub

Associate Publisher

Sams Publishing

800 East 96th Street

Indanapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/title/9780672331107

for convenient access to any updates, downloads, or errata that might be available

for this book.

www.informit.com/title/9780672331107

Preface
This book on the Twitter API is geared to the programmer who is just a bit past

beginner—who knows the basics of LAMP, including how to set up a basic server,

PHP, JavaScript, HTML, and CSS. You do not have to be an expert programmer to

use this book, but you should know how to look things up. In writing this book, we

have tried to provide you with everything you need to get a simple Twitter client up

and running. We include an hour on setting up your environment, as well as pro-

viding you with HTML and CSS codes to have something up and running. However,

it’s beyond the scope of this book to explain what is happening with these codes.

Instead, we focus on the code surrounding the API calls, OAuth, and the returns.

That does not mean that you could not use this book if you are a beginner program-

mer. Because we provide you with all the code and build an application up step by

step, you can stop at any time and look up parts of the code you do not understand.

However, if you have never coded anything before, you may find that this book

moves far too fast. It may be better to get an introductory book on basic program-

ming in PHP before reading this book.

In writing this book, we also kept in mind experienced programmers who have been

asked to create a Twitter application or include Twitter support in a current applica-

tion, even if they do not know much about Twitter. We believe it’s important to

understand what Twitter is, how it’s being used, and what makes it different from

other social media services. It’s with this understanding that you will be able to

approach your Twitter project with a more engaged understanding of what your

application is trying to accomplish, which is the best way to not only satisfy product

requirements, but also design future growth.

Sams Teach Yourself Twitter API in 24 Hours is a little different from most techni-

cal books in that the book is geared around creating a functional Twitter client,

including all HTML, CSS, JavaScript, and PHP needed to create your own applica-

tion. We also dedicated the last four hours of this book to getting you started with

making API calls on the iPhone and Android OSes in case you want to make your

own mobile Twitter application.

Unlike most books, this book was written as Twitter and the API set was going

through major changes. As such, the book and the code used in the book have been

edited many, many times. So much so that we expect there will be a technical over-

sight here and there. So be sure to check the book’s website for changes and updates

xiv

Teach Yourself the Twitter API in 24 Hours

(http://www.twitterapi24.com/). Also, as much as we tried to keep up with all the

changes happening with Twitter, we fully expect some details about the various

API’s to evolve from the time of the last edit to the time you have this book in your

hands.

We hope you enjoy this book.

http://www.twitterapi24.com/

What Twitter Offers You 1

HOUR 1

What Is Twitter?

What You’ll Learn in This Hour:
. What is Twitter?

. List of terms

. A brief history of Twitter

. How Twitter is different from other social media tools

. Example of how Twitter has been used

What Twitter Offers You
Twitter is a vast electronic conversation that is changing personal communications

through the use of new social and mobile technologies. The idea is simple: The serv-

ice enables users to post messages using 140 characters or fewer, resulting in short

bursts of communication that can be transmitted through text, mobile apps, or the

Web. Tweets can include links to video, photos, or other media hosted elsewhere on

the Internet in addition to plain text. The text link URLs are included in the 140-

character limit, so short URLs are obviously preferred.

Twitter is not designed to be any one thing; it’s different things to different people.

For some, it’s a way to talk with their friends; for others, it’s a way to broadcast out

to the world, a way to consume information, or a way to share links. As such, the

API has been designed and continues to be designed to be as agnostic as possible to

how it’s used.

For people who are not familiar with Twitter, it is a platform that allows one-to-

many communication. It is a mashup of text, email, instant messages (IM), news,

forum posts, social networks, public conversation, links, information sharing, and

the world’s biggest dinner party. The technology allows for almost instantaneous

communication between an individual and a self-selected group. You can receive

tweets through a variety of channels: the Twitter website, IM, SMS/text message, RSS,

email, or third-party applications on computers and mobile devices.

2 HOUR 1: What Is Twitter?

A useful way to think about Twitter is to imagine that you are IMing or texting

everyone you know, at the same time, in public.

The following is a list of common Twitter terms:

. Twitter—The service that allows you to communicate with anyone else

who also signs up.

. Tweets—Messages of 140 characters or fewer that are sent through the

Twitter service.

. Follower—Someone who opts in to receive your tweets.

. Following—The people whose tweets you opt in to receive.

. @reply—A public message sent as a tweet directed at one person, designat-

ed with @username typically as a response to a previous Tweet.

. Direct messages (DMs)—A message of fewer than 140 characters sent pri-

vately to one of your followers. You can send DMs only to people who are

following you.

. Private account—An account whose tweets are not public. Only people

who have accounts on Twitter and have been approved as a follower by the

owner of the account can see what has been written.

. Trending topics—The most popular terms on Twitter at a moment in time.

. Retweets (RTs)—When users find an interesting tweet and share it with

their followers.

. Hashtag—The convention of flagging a word with the hash character

#topic. This was created on Twitter to aid with keyword search and the tag-

ging of discussions. It came from users who used IRC regularly, where

#topic indicates a channel where the topic is being discussed.

A Brief History of Twitter—or Why 140
Characters?
According to Dom Sagolla (www.140characters.com/2009/01/30/how-twitter-was-

born/), Jack Dorsey came up with the idea of having a mobile text message-based

communication tool for groups, because their podcasting startup Odeo was strug-

gling to find a new direction. Text messages, also known as the Short Message

System (SMS) protocol, are limited to 160 characters for historical reasons. In 1985,

Friedhelm Hillebrand, chairman of the nonvoices services committee in the Global

www.140characters.com/2009/01/30/how-twitter-was-born/
www.140characters.com/2009/01/30/how-twitter-was-born/

A Brief History of Twitter—or Why 140 Characters? 3

System for Mobile Communications (GSM), tested his hypothesis that 160 characters

were enough to communicate a complete thought. His group of researchers pushed

forward their recommendation in 1986, and the modern text message length stan-

dard was born (http://latimesblogs.latimes.com/technology/2009/05/invented-text-

messaging.html). Twitter’s character limits resulted from that 160-character limita-

tion: 20 characters are reserved for the username, leaving 140 characters for the

message.

Even though Twttr, the original name for the project, was created in 2006, the serv-

ice really took off a year later at SXSW Interactive in March of 2007. Attendees used

it to keep track of other conference goers, and Twitter became the hit of the show,

winning the SXSW Web Award in the Blog category.

One of the big reasons for Twitter’s success is that it was first built as an SMS com-

munication platform; only later did it turn into a web-based product with simple

APIs. Because a very large user base of phones already existed that can only text,

Twitter was often the only way to engage in social media without a computer. Keep

in mind that this was before the iPhone and Android began their run to take over

the phone market.

The service continued to gain popularity and obtained massive coverage from tradi-

tional media in the November 26 Mumbai attacks, when citizens on the ground

used Twitter to relay eyewitness accounts well in advance of any reporters (see www.

informationweek.com/blog/main/archives/2008/11/twitter_in_cont.html;jsession-

id=4JPX5T2TTQKMHQE1GHPCKHWATMY32JVN). The resulting articles and TV news

reports propelled the service into the mainstream. And the leap from technologists

and bloggers continued, with celebrities like Ashton Kutcher and Oprah helping to

highlight the service.

During the Iran elections, the use of Twitter by the opposition was deemed so critical

that the U.S. government asked Twitter to delay an update to its services out of fear

of compromising one of the few channels the opposition had to communicate and

organize.

During the 2010 World Cup, traffic was so high that Twitter actually shelved one of

its new features in order to focus time and resources on the spike in traffic.

How Is Twitter Different from Other Social Tools?
The newest social technologies take information that was once passed from one per-

son to another and alter the format so the sharing is faster and more public. Now

the news can spread through Twitter, Facebook, reddit, and Digg, taking personal,

limited-distribution conversations and disseminating them to the entire world.

Although word-of-mouth news has existed since the beginning of spoken language

www.informationweek.com/blog/main/archives/2008/11/twitter_in_cont.html;jsessionid=4JPX5T2TTQKMHQE1GHPCKHWATMY32JVN
www.informationweek.com/blog/main/archives/2008/11/twitter_in_cont.html;jsessionid=4JPX5T2TTQKMHQE1GHPCKHWATMY32JVN
www.informationweek.com/blog/main/archives/2008/11/twitter_in_cont.html;jsessionid=4JPX5T2TTQKMHQE1GHPCKHWATMY32JVN
http://latimesblogs.latimes.com/technology/2009/05/invented-text-messaging.html
http://latimesblogs.latimes.com/technology/2009/05/invented-text-messaging.html

4 HOUR 1: What Is Twitter?

itself, it now accumulates in a written record, available to a much wider audience.

In addition, social technologies not only make it easy for you to share with the peo-

ple you know, it also allows the people you know to share with the people they

know. What used to be a phone conversation, text, or IM can now propagate to a

larger audience.

Social is also different from traditional media. Older media was a one-way commu-

nication channel in which a central authority sent out information for consumption

by readers. Social media technologies allow unstructured conversations to happen,

so information can flow both ways or be forwarded outward to others.

Twitter is a social networking site that is simple in format but allows each person to

use the service differently. Other social sites have narrower applications: bookmark-

ing sites, such as del.icio.us, or social news sites, such as Digg or reddit, are for shar-

ing links. Media-sharing sites like YouTube or Flickr are for distributing videos or

photos. Using Twitter, you can share any combination of links, news, photos, or

videos with your network.

One of the biggest differences between Twitter and other networks is that the social

relationship does not have to be symmetrical. You can opt in to see updates from

other people by following them, and other users can see your updates by becoming

followers. In other words, when you follow people, you receive their tweets or mes-

sages, and when they follow you, they receive your tweets or messages. As noted

previously, you can choose to get these messages as text messages on your phone,

tweets on the Web, or as output in a third-party application.

The two biggest social network platforms are Twitter and Facebook. They are differ-

ent in two ways:

. Twitter has an inherent openness, unlike Facebook, and Twitter also offers

nonreciprocal relationships that are very different from Facebook.

. Facebook began as a “walled garden,” or a system that people from only

certain universities or colleges could join, and it still hasn’t lost that sense

of protected information.

Most of the photos, status updates, or other content that you post on Facebook is

accessible only to people who are connected to you. In contrast, you can always see

users’ tweets on their Twitter page or at the URL www.twitter.com/username, provid-

ed they have not made their account private. This is further reflected in the limits of

what interactions from an API perspective are supported.

www.twitter.com/username

A Brief History of Twitter—or Why 140 Characters? 5

In the beginning, the power of Twitter was in the conversations and the networks of

people who choose to participate. Twitter is closer to the old IRC channels than to

any other form of communication. This means that for a user, the service is not use-

ful without a meaningful social network, and so it’s hard for a new user to under-

stand what to do with it. However, as the acceptance of Twitter by mainstream

media has grown, more and more users are finding Twitter as a great information

resource for news, Hollywood rumors, stock tips, and general yelling—mostly during

sporting events. Twitter has become so useful for gaining information that often a

story will break on Twitter before making it onto traditional media.

Like most things on the Web, after a tweet is sent out, there is no way to edit its con-

tent; the only thing that can be changed is that the tweet can be deleted. And even

in that case, if the tweet went out to mobile devices or third-party tools, those copies

are not deleted. So, as with anything information you put out to the Internet, if you

would not say it in public, don’t say it on Twitter.

Twitter Use Case Study: #blamedrewscancer
On May 20, 2009, Drew Olanoff was diagnosed with Hodgkin’s Lymphoma (www.

drewolanoff.com/post/117383549/thats-not-what-i-ordered), and he decided to use

his online presence to create awareness of his cancer. He chose to write a blog post

and use Twitter to share his experience. To make it interesting, he created a hashtag,

#blamedrewscancer, and encouraged his friends to blame whatever went wrong in

their lives on his cancer.

Soon, hundreds of people were tweeting about lost keys, getting stuck in traffic,

Mondays, and anything else going wrong, all using this tag. A website was created

that showed the tweets in a fun way, and news outlets started picking up the story.

In just 100 days, more than 11,000 people blamed more than 25,000 things on

Drew’s cancer (www.twitip.com/blamedrewscancer-for-this-case-study/). What started

out as a personal story of a cancer diagnosis became a phenomenon on Twitter.

People connected over their own stories of unfortunate experiences.

Twitter Use Case Study: Global Politics
On February 11th, 2011, Mubarak stepped down from his post of President that he

held since 1981. With the military taking over power, it seemed almost all of Egypt

erupted in celebration. Almost as soon as his plane reached cruising altitude, the

news broke and Twitter went nuts. Here is a Tweet I sent out the day before where he

gave a speech where everyone expected him to step down and then a Tweet after he

did the following day (see Figure 1.1).

www.allitebooks.com

www.drewolanoff.com/post/117383549/thats-not-what-i-ordered
www.drewolanoff.com/post/117383549/thats-not-what-i-ordered
www.twitip.com/blamedrewscancer-for-this-case-study/
http://www.allitebooks.org

6 HOUR 1: What Is Twitter?

FIGURE 1.1
Tweets sent dur-
ing the Egyptian
revolution.

This is not the first time that Twitter, Facebook, and other social media services have

had an influence on world events. If you remember, back to April 10th, 2008, a UC

Berkeley student sent out a single tweet that saved him from an uncertain outcome.

He tweeted the word “Arrested”...just as he was taken into custody. That single Tweet

was enough to let people know in Egypt, and back in the U.S., what had happened;

to hire a lawyer and to demand his release. Although even back then, Twitter had

already proven itself as a medium for rapid dissemination of information unlike any-

thing we have seen in the past; no one could have foreseen the impacts yet to come.

Fast forward to the beginning of 2011. The number of people on Twitter, Facebook,

and other social media climbed to the hundred of millions. Twitter and Facebook

alone, combined, claim just under one billion users. Combine those numbers along

with the explosion of online mobile devices now capable of accessing these services

and you have a flattening of communications never before seen since the advent of

the printing press, the consumer grade photocopying machine, and email. Each of

these revolutions in communication has had its impact on society; the Twitter revo-

lution is no different.

The reach of social media, especially Twitter (since it supports communication with

increasingly popular text messaging), has become so prevalent that the normal

tools used by regimes to manage their population have become compromised.

Usage of information is a tool; information control is paramount to controlling a

population. The more control over information you can impress, the greater the

likelihood the population will believe and act on whatever information you provide;

or conversely, ensure it never gets disseminated in the first place. Just in the past

year alone (2010-11), we have seen exceptional examples of states that had some

form of control over information (typically by controlling the press), but lost that

control over information because of networked communications like Twitter and

Facebook. Even with efforts to shut down Twitter and other social media platforms,

information still seems to find a way out. For example; in Egypt, access to Twitter

was blocked. In 24 hours, it was announced on the Google Blog, that the search

giant has teamed up with the SayNow team and Twitter to create a simple speak-to-

tweet service for people currently engulfed in the turmoil in Egypt. From the Google

post…

Summary 7

“It’s already live and anyone can tweet by simply leaving a voicemail on one of

these international phone numbers (+16504194196 or +390662207294 or

+97316199855) and the service will instantly tweet the message using the hashtag

#egypt. No Internet connection is required. People can listen to the messages by

dialing the same phone numbers or going to twitter.com/speak2tweet.”

We hope that this will go some way to helping people in Egypt stay connected at

this very difficult time. Our thoughts are with everyone there.

At the time of this writing (early 2011), demonstrators have clashed with police in

the Yemeni capital Sanaa, riot police in Algiers dispersed thousands of people who

had defied a government ban to demand that President Abdelaziz Bouteflika step

down, and President Mahmoud Abbas will immediately ask Prime Minister Salam

Fayyad to appoint a new cabinet. And in Iran, reports say several opposition

activists have been arrested and international broadcasters are being jammed. In

Libya, the control of the country is currently in doubt and sections of the country

are no longer in government control.

As much as it seems that the “tools” of social media was the foundation of the revo-

lutions we have been talking about, and those that seem to be coming, it’s not the

service of Twitter, Facebook, YouTube, and Google but instead the change of think-

ing that these tools have helped evolve. By allowing people to exchange ideas and

information quickly and easily and with greater reach, social media tools have

given people a sense of community and strength. And it’s this ability to create and

inform communities through social media that is the real power of Twitter, not just

sending 140 characters.

Summary
This hour introduced you to Twitter, gave a brief history of the service, covered the

basics of social media, and described how Twitter is different from other social plat-

forms. The common terms used on Twitter were defined, and you should now have

an understanding of the functionality of the platform and some of the ways people

use the medium for communication. We also discussed an example of how someone

used Twitter to create a community and illustrated some of the social norms at play

and reflected on how such a simple idea like Twitter and all the programmers the

help made it grow can have an effect on world.

8 HOUR 1: What Is Twitter?

Q&A
Q. What is an @ reply?
A. It’s a way to specify a username on Twitter. Typically, this is used to respond to

a tweet created by the user referenced.

Q. What is the character limit for a tweet?
A. 140 characters.

Q. What is a hashtag and why are they important?
A. Hashtags are a way to indicate a keyword by putting # in front of it. They are

important because it allows people to tag tweets, search for them, and also

organize all tweets from an event or chat. Think of it as a way to indicate the

subject or subjects of a tweet.

Q. Do I have to already have a network of friends on Twitter before I begin to
find the service useful?

A. No, many Twitter users send no more than a handful of messages a month.

More people read messages on Twitter than create them. There are services that

are focused on presenting Twitter messages (and the content of their links) as

stand-alone application for reading only.

Workshop

Quiz
1. Why is there a character limit in a tweet?

A. Twitter decided that’s long enough for a thought.

B. Twitter wanted to save on server space.

C. There is a hard-character limit on SMS.

2. True or False: There are two types of accounts on Twitter: one that is open and

another that is closed.

3. What is a direct message, or DM?

A. A tweet that doesn’t go through Twitter’s servers.

B. A private tweet that goes only to the person you are sending it to.

C. A message that comes from Twitter corporate.

Workshop 9

Quiz Answers
1. C. Twitter started off as a text or SMS system, and mobile phones can accept

only 160 characters; 20 are reserved by Twitter for the username.

2. True. There are private accounts that are not open to anyone who doesn’t have

permission to follow.

3. B. A direct message is not shown in the public timeline and goes only to the per-

son you are sending it to. You can send it only to someone who is following you.

Exercises
1. Visit www.twitter.com and create an account. Then follow a few of the sug-

gested users.

2. Use search.twitter.com to find keywords that are interesting.

www.twitter.com

This page intentionally left blank

[(H3F)] 11

HOUR 2

Twitter Out of the Box

What You’ll Learn in This Hour:
. What Twitter offers you

. Creating a new account

. Skinning your account

. Registering your application

What Twitter Offers You
Unlike almost any other API, Twitter exposes almost everything. Basically, if it’s on

Twitter, there is an API for it. That includes account setup and customization infor-

mation. This is one of the great approaches of Twitter—focusing on the network and

allowing others to create applications on top, and you have that right out of the

box. After you set up your account, you are ready to go with almost every function

that Twitter offers. There are limits, of course. Here are the current limits from (http:/

/dev.twitter.com/pages/rate-limiting):

1,000 total updates per day, on any and all devices (web, mobile web, phone,

API, and so on)

250 total direct messages per day, on any and all devices

150 API requests per hour

OAuth calls are permitted 350 requests per hour

Whitelisting
Here is the current policy from Twitter.com on whitelisting.

(http://groups.google.com/group/twitter-development-talk/browse_thread/thread/

1acd954f8a04fa84?pli=1)

http://dev.twitter.com/pages/rate-limiting
http://dev.twitter.com/pages/rate-limiting
http://groups.google.com/group/twitter-development-talk/browse_thread/thread/1acd954f8a04fa84?pli=1
http://groups.google.com/group/twitter-development-talk/browse_thread/thread/1acd954f8a04fa84?pli=1

Many system admins will set up an account using a user’s name and adding a 1 or
a 123 after it. For example, consider the username: myusername123. This is com-
mon practice, and hackers look for it. Do not set up an account for a new user
using this technique. Many systems now create a completely random string of let-
ters and numbers and then email the password. This is a more secure procedure.

There is no general idea of a whitelist for the Search API as with the REST API.
However, under extraordinary circumstances, Twitter will work with developers to
raise rate limiting for Search requests.

12 HOUR 2: Twitter Out of the Box

“Beginning in February 2011, Twitter no longer grants whitelisting requests. We will

continue to allow whitelisting privileges for previously approved applications; how-

ever, any unanswered requests recently submitted to Twitter will not be granted

whitelist access.

Twitter whitelisting was originally created as a way to allow developers to request

large amounts of data through the REST API. It provided developers with an increase

from 150 to 20,000 requests per hour, at a time when the API had few bulk request

options and the Streaming API was not yet available.

With authentication, an application can make 350 GET requests on a user’s behalf

every hour. This means that for every user of your service, you can request their

timelines, followers, friends, lists, and saved searches up to 350 times per hour.

Actions such as Tweeting, Favoriting, Retweeting, and Following do not count toward

this 350 limit. Using authentication on every request is recommended, so that you

are not affected by other developers who share an IP address with you.”

Setting Up Your Account
Odds are that you have already done this. However, in an effort to be complete, we

are going to briefly walk through setting up and configuring a new account.

Open up a web browser and go to www.twitter.com; then click on ‘Sign Up’.

Account Information (shown in Figure 2.1) is pretty clear; thus, I will not go over

every field. Keep in mind that these fields, with exception to email, are most likely

not checked for proper format. For example, you can see that I used “the bay” for

my location. Although there are plenty of other sites with the name of the city I live

in, back when I first set up my account, I was being a little more cautious. Yes, there

was a time when Twitter was yet just another startup. What is great about Twitter

(and now other services are seeing the value of this) is the fact that your username is

unique and part of your Twitter URL. In this case, my unique Twitter username is

Perivision. Thus, my unique Twitter address is http://twitter.com/perivision.

Watch
Out!

Did You
Know?

www.twitter.com
http://twitter.com/perivision

What Twitter Offers You 13

We want to reinforce that you use a somewhat cryptic password when you get to this

screen (see Figure 2.2). However, if you are setting up accounts for other users and

use something simple for them with the expectation they will change it, double-

check that they did change the password.

FIGURE 2.1
Example of the
Twitter setup
page.

FIGURE 2.2
Screenshot of
the password
page.

14 HOUR 2: Twitter Out of the Box

FIGURE 2.3
Screenshot of
the mobile
options on
Twitter.

In the screenshot shown in Figure 2.4, the text “Direct Text Emails” is used to
refer to “direct message.” This terminology is a holdover from when Twitter
started as an SMS service.

Twitter first started out as a text-messaging system only. Although most of the inter-

actions with Twitter are through the Web, text messaging is still an option (see

Figure 2.3). Be careful, though, if you do not have unlimited SMS messaging with

your plan; it can get out of control, and thus very expensive, very quickly.

Although you can get New Follower email alerts and Direct Message email alerts,

you can no longer get email alerts for mentions. There are third-party services that

can do this, however.

Many people believe that one reason for Twitter’s popularity is that usernames
are unique and, therefore, the vanity address is unique. At the time of this writing,
many other services, such as Facebook, LinkedIn, and Google, have moved to
“vanity” URLs.

Did You
Know?

Did you
Know?

Registering Your Application 15

Registering Your Application
With Twitter, you can register your application at (http://twitter.com/apps/net) so a

user can share OAuth credentials with you (we will cover this in later hours of this

book) and that when someone gets a tweet, the person can see what application it

came from. If you are going to create any type of Twitter client that can send mes-

sages, it’s worth your time to set this up. Wait until you have a beta version of your

site alive and running. You cannot register a nonfunctioning site. In addition, it is

possible that Twitter may review your site for promotion on Twitter.com. So, make

sure your beta is working well.

Twitter originally allowed a username-password combination for registering a new

application, but no longer. The following is from the Twitter site:

“We originally allowed applications to create a source parameter for non-

OAuth use but that has been discontinued. Applications pre-OAuth source

parameters will remain active, but new registrations are no longer accepted.”

The registration process is simple enough: Provide the name of your application,

OAuth information (http://oauth.net/about/), a short description, and a logo, and

you are ready to go. As you can see in the screenshot (see Figure 2.5), I registered

TwittFilter. I can, however, register more than one application if I choose.

You can also authorize other applications to have access to your account. Under the

Settings and then Connections tab, you can see all applications you have author-

ized. It’s a good idea to keep an eye on this for your own account as well as

accounts you manage. Figure 2.6 is an example of applications registered to have

access to the Perivision account.

FIGURE 2.4
Notices screen
in Twitter.com.

www.allitebooks.com

http://twitter.com/apps/net
http://oauth.net/about/
http://www.allitebooks.org

16 HOUR 2: Twitter Out of the Box

The Twitter Client
The default page of Twitter.com has changed a few times over the years, so what

this page will look like by the time of this printing is unknown. However, as you can

see from the screenshot shown in Figure 2.7, the folks at Twitter seem to be commit-

ted to making search and topic trending a major part of Twitter’s offering. As such,

when you are developing your application, understanding this direction is impor-

tant so that you do not develop something that later becomes a native functionality

within Twitter.

FIGURE 2.5
Example of a
registered appli-
cation.

FIGURE 2.6
List of applica-
tions that have
access to the
Perivision
Twitter account.

The Twitter Client 17

The web client that Twitter provides is bare bones and purposely so. However, most

of the features and functions you need to fully engage with Twitter are here: reading

your timeline, mentions, direct messages; managing your following and followers;

as well as managing the recently added lists. Although the Twitter.com website is

“bare bones,” it serves as a great example of the minimum functionality a Twitter

user would expect from a client, which is the following:

. Create a new tweet

. Create a new direct message

. Read your latest messages from your timeline

. Read your latest mentions

. Read your latest direct messages

. Read your lists

. Respond, reply, and retweet messages

. Reply to a direct message (which is different from replying to a public or

mention)

. Search Twitter

. Edit your lists

. Follow/unfollow a tweeter

. Block a tweeter

. Create or remove Favorites

FIGURE 2.7
Example of the
Twitter home
page as of
early 2011.

18 HOUR 2: Twitter Out of the Box

Notice that I did not include in the list anything about setting up and managing

your account. Although this is becoming more common in mature Twitter applica-

tions, it is still not considered a basic feature. This is because it is assumed you can

manage your account via Twitter.com.

There is also a form of convention on how to display a message, which you can see

in Figure 2.7. Typically, the Twitter image of the person who sent the message is dis-

played on the left, and the message box is normally wide enough to display three

lines, thus lining up nicely with the image. The date and source is normally dis-

played in a smaller font as the fourth line. You may also notice that certain words

are colored blue, indicating they are hyperlinked. The current Twitter convention is

to provide a link to any Twitter user’s account that is found within the post, any

term with a # as the first character, and any term with http:// as the lead characters.

Summary
Good job. You should have your account set up. You should also have a good idea of

what basic features and functions your client or customers may expect if you decide

to create a Twitter client. Although it’s not necessary, skinning your Twitter page is a

worthwhile exercise.

Q&A
Q. What is a vanity URL?
A. A vanity URL is a URL unique to a user that employs the username in the URL

structure.

Q. We know that there is a 150 API call limit. What are the other two limits
at this time?

A. 1,000 total updates per day, on any and all devices (web, mobile web, phone,

API, and so on) and 250 total direct messages per day, on any and all devices.

Q. Can I use my login and password when I register my application?
A. No, you need to have information from setting up OAuth within your applica-

tion, including the URL that twitter will use to verify your application.

Workshop 19

Workshop

Quiz
1. True or False: Twitter’s main objective is to build a full-featured super client

application.

2. True or False: It is never a good idea to create passwords that are easy to guess,

even if you expect it to be changed later.

Quiz Answers
1. False. Twitter wants people to build interesting products on their service. The

goal with twtter.com is to focus on an enjoyable experience.

2. True. Bots exist that try to guess common passwords.

Exercises
1. If you have not done so already, set up a Twitter account.

2. Take a look at various Twitter page designs. Can you figure out how they were

done?

3. If you have an idea of what type of Twitter application or widget you want to

build, what percentage of its features and functions are already supported on

the Twitter.com site?

This page intentionally left blank

Types of Twitter Users 21

HOUR 3

Key Issues to Consider
When Developing Twitter
Applications

What You’ll Learn in This Hour:
. Different types of Twitter users and how they impact code design

. Different types of Twitter applications and program architecture

. Things to consider if you are not building a web-based application

Types of Twitter Users
As one would expect with an API system as open as Twitter, and the explosion of

interesting applications people have developed, we have also seen the development

of different types of Twitter users. Understanding these types of users and knowing

which of them we are trying to reach will inform how we may want to build our

Twitter application framework. As with any large user base, there are a number of

ways to set up categories. In this hour, we will break down and discuss the users in

the following categories or types.

The News Reader
Twitter is a great source of breaking news, whether it’s politics, business, sports, or

following celebrities. Most users use searches to find what they are interested in, or

they follow Twitter feeds that act like RSS readers. For example, BreakingNews is

what you would guess it would be—a Twitter account publishing breaking news.

Most news outlets have such accounts: CBSNews, ABC, BBC, and so on. The screen-

shot of NewsSnacker, an application created by the author (shown in Figure 3.1) is a

good example of a Twitter application that focuses on the news.

22 HOUR 3: Key Issues to Consider When Developing Twitter Applications

FIGURE 3.1
Screenshot of
NewsSnacker.

Although making search and Twitter account API reads from Twitter does not

require authentication, you can still get dinged going over the API limit because

Twitter will limit calls from an IP address. So, you still need to keep in mind how

often you make calls. In the case of NewsSnacker, we use a white-listed account

because the user could exceed the API calls-per-hour limit since each news service is

a separate call. Suppose that the user has 10 sources and refreshes every 30 minutes.

That is 200 calls in an hour, which is over the current limit of 150 for non logged in

users. This does not include normal calls to check for new mentions or direct mes-

sages from the user’s chosen Twitter client application. An alternative approach is to

create a list of twitter news accounts and then call that list. However since

newsSnacker removes duplicate posts, a large number of returns on the list call

would be required. Both approaches have their merits however; one feature of

newsSnacker is to allow a custom list of sources. This can be done by having the user

log into the application and then select which of their lists they would like to call

thus the second approach is being pursued in the next version of the application.

Chatters
Twitter does allow for people to have conversations; it’s called a direct message.

However, many people like to hold their conversations in public and a big attraction

for these people is conversation threading. This is a very complicated proposition, so

much so that new APIs are being created to deal with this situation. We will cover

Types of Twitter Users 23

retweeting in later hours, but this could cause quite an impact on your code’s struc-

ture because of older reply techniques that use the letters RT for conversations

instead of recent API methods that support replies formally. So, supporting Twitter

conversation is a decision you will want to make early in your product’s design.

Power Users and PR Managers
Although you will have a drag-out fight between the two because one is personal

messaging and the other is more professional, the impact on product design is not

that much different. PR (public relations) managers, power users, and anyone who

consumes or monitors a lot of Twitter information will put special requirements on

you as a product developer. Like the limits to the number of API calls mentioned in

the section discussing the user group news readers, the issues with the power users

and PR managers group will be the same, with the added requirements of being

able to sort and search the stream of messages that come in. They may also need to

send messages on a schedule or from people using the same account. There is usual-

ly no simple way around this issue other than to start thinking of a well laid-out

database up front. You may want to also explore having your server make the API

calls and relay the information to your Twitter application in the form of automatic

processes or bots. Furthermore, set up your architecture to deal with a wide variety

of API calls. We will cover this later in the hour. PR managers will want more than

just searching the Twitter stream; they will want to make sense of it and make sense

of who is on that stream and their influence. The API has just expanded to handle

retweets, but not all Twitter clients will be updated to work with this API. As such,

you still need to pay attention to RT (the current convention for a retweet) and

hashtags. Plan for this up front. Also, plan to keep some of the user information in

your database; you will want to use it for user profile and relationship analysis.

Although the number of power users, compared to typical Twitter users, is quite low,

having a power user using (and advocating) your application is highly desirable,

and although every power user you talk to will have a different list of features and

functions, there are some things you must be able to support—for example, dynam-

ic search. Just providing a call and return to the search API is not good enough any-

more. The current and future power users of Twitter are going to demand just as

much power and feedback as they get using Google search. For example, power

users would want links with the tweets that are returned to be followed and ana-

lyzed in some manner. Perhaps you should show a thumbnail of the site, or display

the title and the first 50 words of the link. Be sensitive to nonstandard protocols,

such as searching stock quotes using the $ sign in front of the stock market ID. For

example, $aapl for Apple. Power users are going to demand speed and customiza-

tion and will fully expect that your application understand the nonstandard fea-

tures (social conventions) of Twitter.

24 HOUR 3: Key Issues to Consider When Developing Twitter Applications

Microbloggers
Microbloggers will want to take the time to craft each tweet carefully. Pay attention

to the ease of creating a message—that is, allowing them to save as drafts, sending

to multiple Twitter accounts, spell checking (yes, spell checking), and although this

is not easy, a quick look up of the other tweeters or access to a list of tweeters.

Especially for PR users, you may want to have a look at simple web-based CRM

products to give you ideas. A new API to Twitter is the capability to store lists of

tweeters. This is useful to all power users as well as microbloggers.

High-Frequency Users (TwitterHolics)
The current rules of the API system allow only 350 calls per hour if you are logged

in, 150 if not. This may seem like a lot, but based on what features you are provid-

ing to your users, this can go very quickly. It’s not unlikely that you could have five

API calls per user action if you need to make follow-up calls. If they are high-fre-

quency users, they may find themselves approaching the 350-call limit pretty quick-

ly. Although there are calls that do not require credentials, you could still run up

against this limit because Twitter does count the number of calls from an IP. As

such, be sure you monitor the number of calls the user has left and deal with it

accordingly. The good news is that an API call exists for checking how many API

calls the user has left which does not count against your API limit. However, calling

it over and over again too often (every 5 seconds, for example) could trigger other

traffic limit controls.

New Users
This is less an API architecture question than a GUI issue. Although GUI design is

not addressed directly in this book, consider using clear terms and common

metaphors (like an email system, for example) for the layout and functionality of

your application. Do not assume that your users will understand various social con-

ventions in Twitter, so explain it up front and design your functions’ intent clearly

using tool tips for icons for example. If you are making an application that reflects

some aspects of the Twitter.com site, be sure to follow the conventions Twitter uses.

Bots
Bots (programs that perform automated tasks), including creating spam or setting

up phishing attacks, will always be an issue. A sophisticated Twitter application will

be aware of some of these bots and try to protect users. You may, however, need to

Types of Twitter Applications 25

create your own bots (for good, not evil). For example, you might take a RSS feed

and republish it to Twitter after passing it through a business rules filter which is

something the main Author of this book does. Because a bot is nothing more than

“rules” you have for dealing with reading or creating Twitter messages or lists, you

will find creating automated processes very easy with the Twitter API.

Types of Twitter Applications
Normally, when I’m about to start writing a Twitter application, I already know

what I want it to do. Thus, based on the features and functions I have in mind, I

already know what platform and category of users I’m targeting. Because we cannot

know what you, the reader, have in mind, we will try to set up a basic framework

for thinking about the various things you can do with Twitter as we go through this

book. Part of Twitter’s success is its simplicity and wide-open API. As such, people

have developed powerful, sophisticated applications, mashups, and simple widgets

that run in other apps or on web pages. However, the approach you will take build-

ing a full-on application is different from building a simple mashup or widget.

A mashup is a web page or application that takes two or more data sources and
combines them into a new service. Typically, mashups create a functionality not
envisioned by the creators of the original sources. Twitter is a very popular
mashup source.

Building a feature-rich Twitter application takes some planning. Although we will

walk you through various examples of how to build apps around specific APIs, we

want to bring focus, too. There is an overall approach you should determine before

you write line one.

Widget
Let’s talk about architecture around a simple widget. Suppose our simple widget is

going to display the results of a search or the latest tweets from a user. This is the

easiest to build. All we have to think about is four steps: make an API call to Twitter,

parse the return, format it, and display it. That’s it. We diagrammed this simple

architecture in Figure 3.2.

By the
Way

www.allitebooks.com

http://www.allitebooks.org

26 HOUR 3: Key Issues to Consider When Developing Twitter Applications

GUI

Format

Parse

API Call

FIGURE 3.2
Example of a
simple Twitter
API diagram.

FIGURE 3.3
Screenshot of a
Twitter widget
on www.perivi-
sion.net/word-
press.

All API systems work this way, but what’s great about Twitter is that the results are

already of value. Quite often, blogging sites (mostly personal) have this type of widg-

et. I have a widget like this on my blog (see Figure 3.3).

Mashup
Because a mashup can be the combination of anything, and that’s kind of the point

of mashups, we are going to think about our architecture a bit differently. Although

technically, a mashup can be just two sources of information or very complex num-

ber and relationship of sources, we are going to stick with the spirit of what is con-

sidered a mashup by just thinking about mixing two data sources. For example, we

can take our Twitter search feed and weather data and display tweets from places

that are raining versus tweets from where it’s sunny. In this case, we need to store

our returns from Twitter somewhere while we get weather data. Then we need to

perform some business logic on those returns.

www.perivision.net/wordpress
www.perivision.net/wordpress
www.perivision.net/wordpress

Types of Twitter Applications 27

Business logic is a nontechnical term generally used to describe the functional
algorithms that handle information exchange between a database and a user
interface. It is distinguished from input/output data validation and product logic.
From Wikipedia, the free encyclopedia

In this case, we need to hold our returns in an array so that when we get the weath-

er data, we can reorganize our data. Because tweets are small, discrete messages, it

makes sense to create a multidimensional array object that we can easily explore.

So now, we will add one more layer to our diagram. As you can see in Figure 3.4, we

are using arrays to store our parsed return so that we can apply some rules (business

logic) to create a more valuable dataset.

Twitter Application
I would expect that only a small percentage of readers of this book are intending to

build a full-featured Twitter client, but if you are, you want to approach building

your application like any other application. Think about your calls to Twitter almost

like calls to a database where you provide a set of parameters with your call and get

a filtered response that can then be analyzed or applied to a set of rules. It is also

well worth your time to set up your Twitter calls in a separate class to deal with errors

and changes to the API. You should also set up another class to deal with converting

your Twitter calls into multidimensional arrays and/or storing them in a database.

The reason for this is that Twitter is still changing. Even during the writing of this

book, we had to make adjustments to the book’s index as new methods were intro-

duced and other calls were deprecated. By keeping these two processes in standalone

classes, you’re going to save yourself some headaches down the road. If you are

GUI

Business logic

Array

Parse

API Call

Array

Parse

other data source

FIGURE 3.4
Example of
combining two
data streams.

By the
Way

28 HOUR 3: Key Issues to Consider When Developing Twitter Applications

planning on building a full-scale Twitter app, we recommend bookmarking the web-

site for this book and the Twitter API site. Really! It changes and grows that much.

Also, somewhat like a database, you can store information in Twitter. For example,

a much-overlooked feature is favorites. This API call allows you to save tweets. This

can be quite useful as a means of understanding which tweeters and types of tweets

a user tends to favor. New to the API list is lists. This is a list of tweeters a user cre-

ates. Again, it’s a powerful bit of information that can be quite useful in under-

standing users’ preferences. What is more interesting, though, is using these two API

calls as storage devices if your user is under your control—a corporate account, for

example. Because the user of that account does not interact with the account per-

sonally, you can use these API calls to store tweets and lists that can have greater

meaning than originally intended. For example, suppose you have a corporate

account for company X. We can store in the favorite list all tweets that match a cer-

tain rule, like any tweet that has an unfavorable term in the tweet. Now you have a

list of tweets that public relations can examine using other than the application you

developed. Also, remember you have access to user bio, location, and other ele-

ments. Again, because of how open Twitter is with its API, you can use these fields

for anything—for example, including the updating of the Twitter background based

on the latest message from the company, or perhaps updating the location field if

you’re a mobile food van, or changing the profile image based on the time of day or

your mood. Instant database functionality ... of sorts! Now this does not mean you

should not have a database if you intended on storing anything beyond the simple

examples provided here. Also, it is not recommended to abuse this open access by

placing unrelated data in these fields. Most applications will follow a simple struc-

ture, as illustrated in Figure 3.5.

GUI

Business logic

DataBase

Parse

API Call

Business Logic

FIGURE 3.5
Example of an
architecture
placing a data-
base between
API calls and
an application’s
business logic.

Types of Twitter Applications 29

Pure Chat
This class of Twitter application is concerned with creating tweets, reading incoming

tweets, searching Twitter, retweeting, setting/getting favorites, and displaying simple

user account information. Everything can be done as a standalone command,

meaning you do not need to store information outside of Twitter. Each command

has only one or two API calls. The current Twitter.com main web page is this type of

application. Since we do not need to keep track of a state or store data, we can cre-

ate this application using nothing more than a simple collection of PHP calls. For

this class of application, we want to think about our application as a series of stand-

alone pages. It would be a good idea to use cookies on the user’s computer in case

you need to store last-seen dates or other simple pieces of information.

Structured Display
Very common with Twitter applications are the capabilities to save groups, perform

more advanced searches, display only new information and some threaded conver-

sations, and so on. Although some of these structured displays can be somewhat

complex, the approach you would take as a programmer is not that much different.

Many of these structured displays can be achieved without storing information on

the server but by using API calls and cookies instead. Consider the following exam-

ple: Suppose we want to display a column of unread tweets, tweets from our “top

10” friends, three or four saved searches, and your current favorites lists. All of these

can be achieved by passing variables within the existing API calls. You will actually

work far harder at the UI than the backend coding. For this class of application, we

want to set up our code as a series of calls that are more or less self-contained. This

will make dealing with the GUI less troublesome as redesign is requested or required.

Twitter Statistics
Collecting statistics from Twitter data provides great promise for research, improved

discover and communications. However, this class of Twitter application is a bit

harder. TwittFilter, another application created by this author is in this class as

shown in Figure 3.6.

This class of Twitter application depends on creating new information through ana-

lyzing the return or returns from past Twitter calls, and storing or modifying this

information on the server, typically in a database. This, however, is where we find

Twitter to be the most interesting; because Twitter has such a large user base, you

can gather enough data to infer information that does not have a direct user corre-

lation. Did someone say mashup? For example, a very popular and now API-sup-

ported feature called “Trends” in Twitter is nothing more than a constant search

30 HOUR 3: Key Issues to Consider When Developing Twitter Applications

FIGURE 3.6
User Scoring
screen of
TwittFilter.

Because we need to store information as well as grab details for analysis, we need to

think about how we structure our program differently. For this class of application,

we want to think of Twitter as more of a database source. Setting up our arrays that

allow for ease of use within formulas, as well as pulling and pushing into databas-

es, will be a great benefit as our analytics become more and more complex.

However, if you are not white listed, you will run into the API call limit quite quick-

ly. It’s recommended that if you plan to do statics that require large sample sets or

recursive calls, that you explore the streaming API.

Platform
Now that we know the class of application we want to develop, we need to think

about the delivery platform. If you are going to develop for UI-hosted apps, such as

native mobile apps or Adobe Air, you may again want to modify how to approach

your coding. Typically, when creating an app for the iPhone or other mobile plat-

form, many of our UI elements are going to be handled on the device. You also will

want to minimize the amount of traffic going back and forth as much as possible.

Therefore, you should design your application around the output, which could be

XML, JSON, or some custom bitcode. In this case, the organizational structure you

choose will dictate how you structure your backend code. Because we have the luxu-

ry of storing information on our target platform, we can focus on speed and ease of

architecture. Even though our backend code is not responsible for the presentation

across all messages being sent to Twitter, displaying the terms with the highest rate

of occurrence. However, because of the large user base and ease of creating tweets,

Trends tends to be one of the first places that news breaks.

Q&A 31

layer (display), you still need to follow the basic tenants of good programming

design by keeping the business logic separate from the API calls; don’t fall into the

trap of making each call from your application as a separate instance, as you may

with the Pure Chat approach. You never know when your application starts to take

on more features than you planned.

Summary
In this hour, you were introduced to various types of Twitter users. Depending on

your product’s target market, you may need to think about how you will approach

the design architecture of your product.

This was not intended to be an exhaustive list, nor an absolute one. One could easily

break this list into smaller pieces or roll it up into more general categories; instead,

it’s to provide a framework to think about the application you intend to build. We

broke this up into two sections because we want to make a distinction between the

type of use and type of application, However, do not think you can explore one with-

out the other. When designing any application, you should always start with the

user. What is the value proposition you are offering users in order for them to use

your application? Once you understand that, you can then move to the type of

application you want to create. So, we started out with an exploration of types of

Twitter users, and then types of Twitter applications. We ended this hour with a short

conversation about platforms. If you are developing for anything other than the

desktop, you are most likely already aware of these points, but we included them for

less-experienced developers as good to know.

Now, hold on to your hats because in the following hours, we are going to start build-

ing code!

Q&A
Q. Should I apply for a white-list account before I start coding?
A. No. White listed accounts are currents not available. However, you will find

that having 350 calls per hour is plenty as you learn how to develop your pro-

gram.

Q. I plan to make a simple Twitter application now, but I may expand it later.
Should I bother setting up a separate twitterAPI class?

A. Yes. If you have any plans, even just thoughts of doing something beyond a

few different types of API calls, set up a separate class for your API calls. In

addition to new APIs, current API calls can change.

32 HOUR 3: Key Issues to Consider When Developing Twitter Applications

Workshop

Quiz
1. What is meant by thinking about Twitter as a type of database?

2. I check my Twitter account only a few days a week on my iPhone. What kind

of Twitter user am I?

3. Is it illegal to create bots?

4. What is the easiest type of Twitter application to create?

Quiz Answers
1. This is a two-part answer: 1) Although Twitter exposes everything, you still can

only get detail data on users one at a time although this is changing. Thus,

thinking about accessing user statistics as if you were accessing a database is a

useful way to think about what you can do with Twitter. 2) If you have control

over the Twitter account(s), you can use the fields in Twitter to store informa-

tion instead of on your database.

2. You are a news reader. Even if you are reading only your timeline (people you

follow), you are more of a consumer of information than a creator.

3. No—and not all bots are bad. However, the good folks at Twitter do actively

look for automated procesess that abuse the system.

4. A pure chat widget.

Exercises
1. Describe your typical target user and then determine the class of application

you feel is appropriate for your user.

2. If you plan to create an automated process, write down each step and then

count the number of times you will need to call Twitter to get information.

What happens if the user hits refresh 10 times in 10 minutes? Will you go over

the 150-API call limit if they are not logged in?

Background of LAMP Stacks 33

HOUR 4

Creating a Development
Environment

What You’ll Learn in This Hour:
. What is a LAMP stack?

. Setting up a local web server

. How to secure your web server

. How to choose the right development tools

Background of LAMP Stacks
If you’ve ever built a dynamic web application, it’s no news to you that you need a

web server to run your code; you can’t just open files straight from Firefox like static

HTML files. Most of the code we write in this book is in PHP, so you’ll need an

Apache web server with PHP installed to run the examples. If you already have a

development environment in place, you can skip this hour.

So, before we get started, what is LAMP? From Wikipedia:

LAMP is an acronym for a solution stack of free, open source software, origi-

nally coined from the first letters of Linux (operating system), Apache HTTP

Server, MySQL (database software), and PHP, Python, or Perl (scripting lan-

guage), principal components to build a viable general purpose web server.

Although the “P” in LAMP stands for PHP, Python, or Perl, it most commonly refers

to PHP.

PHP originally stood for Personal Home Page. Did You
Know?

34 HOUR 4: Creating a Development Environment

LAMP stack packages have become popular because configuring Apache, PHP,

MySQL, and all the necessary components is no easy task. They offer developers a

quick and easy way to get a web server running with everything they need on their

local machines. Even if you have an existing web host with everything you need, it

is often faster and more convenient to develop code locally.

Although there are entire books about LAMP, this hour will serve as a quick intro or

refresher so you can follow along for the rest of the book, even if you’re new to PHP.

Before we set up our own server, here’s an overview of each component:

. Apache—The most popular HTTP server on the Web since 1996; it currently

serves the majority of sites on the Web.

. MySQL—A relational database management system (RDBMS) used for per-

sistent storage in many applications.

. PHP: Hypertext Processor—A popular general-purpose scripting language

generally used to create dynamic web applications often running on top of

Apache and using a MySQL database for persistent storage.

*AMP is a term most commonly denoting the use of Apache, MySQL, and PHP
regardless of the operating system. There are variants such as LAMP, WAMP, and
MAMP for Linux, Windows, and Mac, respectively. All components are available on
all major operating systems, although the majority of web servers running Apache
use Linux.

Setting Up a Local Web Server
LAMP is a common term describing a web server using Apache, MySQL, and PHP,

but there are a number of ways to set up a LAMP server. Although you could install

Apache with PHP and a MySQL server independently, getting all the right compo-

nents set up and working together can be a tricky process. The easiest way to get a

web server up and running is to use one of many LAMP packages available, which

will help you install everything you need to start testing your PHP code.

Running a local web server makes development easier and faster because files can

be edited directly from your computer and do not have to be uploaded to another

server. This is sometimes referred to as the sandbox. In many cases, you can also test

your applications without Internet access, although you will need connectivity if you

are making any calls to the Twitter API. After you have a live site, developing locally

will also give you a chance to test out your code in a sandboxed environment before

making changes on your actual site. However, you should also set up a testing area

Did You
Know?

Setting Up a Local Web Server 35

in the same environment as your live server because your local web server’s configu-

ration will differ from your webhost’s.

Although LAMP packages are convenient and easy to install, they are typically
used by developers looking to get a development environment up and running and
may not be optimized for the best performance or security. Most production envi-
ronments are set up carefully by an IT professional.

Introducing XAMPP
Our LAMP package of choice is called XAMPP, where the X is cross-platform and the

extra “P” stands for Perl support (which we won’t be utilizing in this book). It is one

of the most popular LAMP distributions because it installs everything you’ll need for

most development with minimal effort, including phpMyAdmin, a popular web-

based MySQL administration tool. Because it runs on Windows, Mac, Linux, and

Solaris, you can be sure you’ll have a consistent experience no matter what platform

you’re using.

Installing XAMPP
The XAMPP installation is so simple that it tricks you into thinking anybody could

set up a web server. At the time of this writing, the current version is 1.7.2. Because

XAMPP is frequently updated, your experience may differ slightly from what we

describe here. To download the package, follow these steps:

1. Visit www.apachefriends.org.

2. Go to the XAMPP project page.

3. Click on the XAMPP icon at the top of the page to get to the links for the

download page for your platform.

4. Depending on your platform, different options may be available. For your

convenience, we’ve outlined quick installation tips for Windows, Mac, and

Linux in the sections that follow.

Regardless of your operating system, installing XAMPP will overwrite any existing
XAMPP installations. If you already have XAMPP, you can skip this section.

Windows
Windows users will see download options—XAMPP, XAMPP Lite, and XAMPP Add-

Ons. For the purposes of this book, XAMPP Lite is fine. One of the biggest differences

By the
Way

Watch
Out!

www.allitebooks.com

www.apachefriends.org
http://www.allitebooks.org

36 HOUR 4: Creating a Development Environment

is that it doesn’t include the FileZilla FTP Server or the Mercury Mail Transport

System. The easiest option is to download the XAMPP Lite EXE, which includes an

installer. Compared to the ZIP download, it is about half the download size because

of better compression.

If you don’t want XAMPP making changes to the Registry (required for all installed

Windows applications), you can follow the instructions on the download page to

install the ZIP version. You don’t need the Mercury Mail Transport System to allow

your applications to send emails. This is normally done using an existing SMTP serv-

er, such as one provided by Gmail or your web host.

Installing XAMPP Lite from the EXE installer is straightforward:

1. Fire up the downloaded XAMPP Lite EXE and click Install. The default

option will extract all the files to C:\xampplite.

2. After the files are extracted, choose the default options in the command

prompt windows that follow, until you reach the final menu, which has no

default.

3. From the final menu, choose 1 to start the XAMPP control panel (shown in

Figure 4.1).

4. Check the Svc boxes for both Apache and MySQL and confirm the prompts

that follow.

5. Click Start next to both Apache and MySQL to fire up both servers.

6. You may now exit the command prompt menu and the XAMPP control

panel.

FIGURE 4.1
XAMPP Control
Panel
(Windows).

Setting Up a Local Web Server 37

A service is a program that starts with Windows and is often automatically run by
the system even before a user logs in. If Apache and MySQL are not installed as
system services, they must be started manually.

Mac
On the Mac download page, grab the Universal Binary—the file containing Apache,

MySQL, and PHP. You do not need the developer package.

After you’ve downloaded the file, installing XAMPP on a Mac is just like installing

any other application from a DMG file:

1. Open the downloaded DMG file.

2. Drag and drop the orange XAMPP folder into your Applications folder.

3. Open XAMPP Control in /Applications/XAMPP and start Apache and

MySQL.

Linux
Download XAMPP Linux—the file containing Apache, MySQL, and PHP. If you’re

using Linux, we’ll assume you pretty much know what you’re doing, but we’ve out-

lined the installation steps to make sure we’re all on the same page:

1. Open a terminal and switch users to root or run all the subsequent com-

mands with sudo.

2. Extract the downloaded file to /opt:

tar xvfz xampp-linux-1.7.4.tar.gz -C /opt

3. Start XAMPP using the following command:

/opt/lampp/lampp start

If everything went okay, you should see something like the following out-

put:

Starting XAMPP 1.7.4...

LAMPP: Starting Apache...
LAMPP: Starting MySQL...
LAMPP started.
Ready. Apache and MySQL are running.

Did You
Know?

38 HOUR 4: Creating a Development Environment

If you encountered any errors during the preceding steps, make sure you were run-

ning all commands as root or prepending each command with sudo. Otherwise, take

a look at the Linux FAQ at www.apachefriends.org/en/faq-xampp-linux.html#start.

Does It All Work?
Presumably, you now have a local PHP-enabled web server and a MySQL database.

To see if it all works, open up a web browser and go to http://localhost.

If everything is working correctly, you’ll be redirected to http://localhost/xampp/

splash.php. If you see nothing, something is wrong. To troubleshoot, visit the down-

load page for your platform on the XAMPP website for some tips, or try reinstalling

XAMPP again from scratch using the directions on the XAMPP website. If you had

an existing web server running on your machine, try uninstalling it and reinstalling

XAMPP because they will conflict with each other if they are both using the default

settings. You may also encounter a conflict if Skype is running because it uses ports

80 and 443 as alternative ports for incoming connections. If you are having trouble

running XAMPP and have Skype installed, search the Skype documentation

for “conflicts.”

Take note of where XAMPP is installed. Inside the XAMPP root folder is a folder

called htdocs. This is your web root, and files inside it are accessible via http://local-

host. We’ll be referring to the htdocs folder for the rest of the book; it’s where all the

code goes.

Securing Your Web Server
XAMPP is designed to be a convenient package to help web developers get a server

running as easily as possible, but in many cases, convenience means risk. XAMPP’s

defaults leave your local web server open to risks on many fronts. Most people are

behind a router that typically uses Network Address Translation (NAT) to share a sin-

gle Internet connection. By default, NAT acts as a firewall by discarding all incoming

requests to your network, including those bound for your web server.

If you are using a home router and want others to be able to access your web
server, forward TCP requests on port 80 (HTTP) to the local IP of your computer
on your router’s port forwarding configuration page. In some cases, your ISP may
block incoming requests to port 80, so you may want to try another port, such as
8080, to port 80 of your local IP. When setting up port forwarding, you should also
assign your server a static IP to prevent it from changing and breaking your for-
warding rules.

Did You
Know?

www.apachefriends.org/en/faq-xampp-linux.html#start

Securing Your Web Server 39

The following are security issues with the default installation of XAMPP:

. The MySQL root account has no password.

. MySQL is accessible via network.

. phpMyAdmin is accessible via network.

. The XAMPP demo page is accessible via network.

In general, you’ll want to ensure that all your passwords are secure—containing

some combination of uppercase and lowercase letters, numbers, symbols, and no

words or names that could be found in a dictionary.

For the rest of this book, we will use the following credentials for everything, but feel

free to use your own secure usernames and passwords:

. Username—twitter or root (MySQL)

. Password—s0m3Th1ng

Note that we are using the same credentials everywhere so that this book is easy to

follow. On your own sites, it’s a good idea to use different secure credentials for

everything. If you’re wondering why there are no symbols in our password, at the

time of this writing, there is a bug in the XAMPP security console for Windows that

prevents you from setting passwords with symbols in them.

XAMPP Security Console
Although we need to fix a number of things, XAMPP makes it easy for us to take

care of everything at once. The XAMPP security console will guide you through

securing your XAMPP installation on all OSes, although each package may differ

because each uses slightly different components.

Next, we outline some steps you can take to secure your web server. If you’d like

more detail about the security issues the XAMPP security console addresses, we

explain the main issues in detail in the next few sections. Otherwise, you can skip

ahead to the “Development Tools” section.

Windows
The Windows version of XAMPP has a web-based security console to help you secure

your local development server. Go to http://localhost/security/ in your browser, and

you will see a page with a title like “XAMPP SECURITY [Security Check 1.1],” which

will give you a quick overview of security issues with your current configuration.

40 HOUR 4: Creating a Development Environment

From here, you can click the link to http://localhost/security/xamppsecurity.php,

which you’ll be able to use in the following sections to secure MySQL and the

XAMPP pages.

In the MYSQL SECTION, set the MySQL password to s0m3Th1ng using defaults for the

rest of the options. If you’d like, you can store the password you set here in a text file

by checking the last box before submitting the form. The saved password file cannot

be accessed directly from your web server because it does not reside in htdocs.

Next, we need to secure the XAMPP directory in the second section. For simplicity’s

sake, we’ll use the same login information we used for MySQL—twitter for the

username and s0m3Th1ng for the password. Again, you can check the box if you

want this login info saved to a text file.

After you’ve changed both passwords, you can go back to http://localhost/security/,

and you’ll notice that XAMPP has been secured. You may notice an UNKNOWN sta-

tus by Tomcat because we have not installed that add-on.

Mac and Linux
Run /Applications/XAMPP/xamppfiles/xampp security (Mac) or

/opt/lampp/lampp security (Linux) to secure your server. We assume that you use

twitter for all usernames except for MySQL, which uses root, and s0m3Th1ng for

all passwords.

XAMPP Pages
By default, all the pages under http://localhost/, including the demo pages at

http://localhost/xampp/, are exposed and available to anybody who can see your

computer on the network. Although the security page is available only from your

local machine, other potentially sensitive information such as the phpinfo() page is

still accessible without a password.

The phpinfo() function outputs all details of your current PHP configuration and
is useful when reconfiguring PHP, checking to see if a certain extension is
enabled, or checking the values of certain server-side variables. Although XAMPP
includes a page already, all it takes is a PHP file containing <?php phpinfo().

MySQL
There are two MySQL issues that we’ll point out. The most urgent issue is that there

is no root password, so anybody can log in to your MySQL server and make any

changes if the person knows your IP address or hostname. Our other potential issue

is that the MySQL server is accessible from other IP addresses. For the purposes of this

Did You
Know?

Development Tools 41

book, no other computer will need access to your MySQL server, so we could restrict

access to only localhost. However, because we have configured MySQL with a secure

password, the default settings should be good enough for development purposes.

The root user is the default superuser for many systems, including MySQL and,
most commonly, Linux.

phpMyAdmin
Leaving phpMyAdmin open is just as bad as leaving MySQL open to attack, because

it is a web-based interface to your MySQL database. The good news is that with the

default options, securing MySQL means that your phpMyAdmin installation is

secured because you’ll need to use your new MySQL login for phpMyAdmin. We’ll

discuss phpMyAdmin some more in the next section, “Development Tools.”

Development Tools
Having a web server set up is a good first step, but it’s about as useful as having a

foundation to a house without any tools to build the house with. Seasoned develop-

ers have their favorite tools, but if you’re just getting started or want to try some-

thing new, we’ve listed some of our favorites in this section.

Firefox
One of the most important tools in any web developer’s kit is Firefox. Sure, it might

be obvious that you need a web browser to test your code, but Firefox is really valu-

able to developers because it has a plethora of powerful extensions available to help

out with debugging. In the end, you’ll want to make sure your pages work in Firefox

because it’s the second most popular browser used today, with about one-fourth

market share.

Firebug
Firebug is a must in every web developer’s toolbox. It gives you tools for HTML, CSS,

and JavaScript and allows you to edit your pages in the browser and preview

changes live, debug code, and optimize performance. You can easily find the HTML

for any element on the page and edit it live or modify CSS styles on the page so you

can quickly see what the changes do before you hardcode them. In JavaScript, you

can see scripts in one place, whether they’re inline or in external files. The

JavaScript debugger can watch variables, inspect objects, and set breakpoints so that

you can step through your code when you run into complex issues. For performance

Did You
Know?

42 HOUR 4: Creating a Development Environment

optimization and AJAX development, the Net panel in Firebug allows you to moni-

tor all network requests and see how long they look. This includes a visual graph of

load and render time for all the initial elements on the page as well as all subse-

quent AJAX requests that occur in the background. Although Firebug adds impor-

tant features to Firefox, it also slows it down significantly so it should only be

enabled when needed.

Chrome
Google Chrome is quickly growing in popularity and like Safari, it is based on the

Webkit rendering engine which is also used on many mobile devices. The two

browsers account for more than 1 in 5 desktop users. Although it is important to test

on all supported browsers, Chrome will often render sites similarly to Safari as well

as the Android and iPhone browsers. Many web developers like Chrome too because

it offers many developer tools that offer functionality similar to Firebug without the

need for any add-ons or extensions.

Internet Explorer
Even if you think nobody uses Internet Explorer anymore, it still accounts for over

one-third of all browser traffic on the Internet. If you’re using Firefox to test most of

the time, you’ll often have to verify that everything works and looks the way it’s

supposed to from Internet Explorer. If you want to maximize your site’s exposure,

you should ensure that your site works in at least Internet Explorer (IE) 6 and later,

since many machines running Windows XP still have IE 6.

phpMyAdmin
One of the most popular graphical MySQL administration tools is phpMyAdmin

because it is open source, free, and web-based. It enables you to create and adminis-

ter MySQL databases with minimal knowledge of MySQL, but it still has features

useful to novices and professionals alike. As a result of phpMyAdmin’s popularity,

you will find it preinstalled on many web hosts. If not, installing it is as simple as

extracting the files into a folder on a web server and entering the hostname and

login credentials for your MySQL server.

For the rest of this book, phpMyAdmin will be our MySQL administration tool of

choice, but if you already prefer using the command-line interface or some other

tool, that will work equally well.

Development Tools 43

Text Editors
Although technically you can use any text editor (not a word processor) to write

your code, using an editor with programming-specific features can help you code

faster and more efficiently with features like syntax highlighting specific to each

language. Hundreds of great text editors exist, and we’ve listed a few of our favorites

for each platform:

. Notepad++ (Windows) is a lightweight text editor for Windows with many

useful features for programmers, such as syntax highlighting in every

major language and format, auto-completion, tabbed editors, and more. It

comes with a variety of plug-ins, such as a simple FTP plug-in to let you

edit remote files.

. TextMate (OS X) is a GUI editor much like Notepad++. Because of its rich

feature set and extensive support for almost every language, many people

who prefer a GUI-based editor and use a Mac stand by TextMate, even

though it costs about $60 at the time of this writing.

. Vim (all platforms) is a powerful modal text editor that is most popular

among Linux users who often prefer its command-line interface over GUI-

based text editors. Although it is most popular on Linux, it has been ported

to every major operating system, including Windows and Mac. Users accus-

tomed to GUI editors might find it difficult to use because it makes use of

many customizable keyboard shortcuts for much of its functionality.

However, most people who want an editor like vim probably already use it

or something similar; therefore, we do not recommend it for beginners.

Integrated Development Environments (IDEs)
Although a simple text editor is lightweight, fast, and gets the job done, many

developers prefer IDEs for their additional features, such as syntax checking and

intelligent code completion. These features often function like a spell checker for

your code—identifying and underlining syntax errors before you even execute your

code. Some other common features include integration with revision control, bug

tracking, and the capability to upload files directly to a web server from your IDE.

There are a handful of popular IDEs supporting PHP, but Eclipse and Netbeans are

our favorites, and they’re both free and cross-platform. Both also support a variety

of programming languages, including Java and C/C++, but they are also great for

web programming:

44 HOUR 4: Creating a Development Environment

. Eclipse is a popular IDE that supports development for many platforms,

languages, and devices. If you’re looking to try out an IDE for the first time,

we’d recommend giving Eclipse for PHP Developers a shot; it is a copy of

Eclipse that comes with all the necessary plug-ins needed for PHP and gen-

eral web development. Speaking of plug-ins, there are hundreds of thou-

sands available to extend Eclipse’s abilities from support for new lan-

guages, to support for revision control systems, to task and bug manage-

ment. Because Eclipse is popular outside of web development, getting com-

fortable with it while programming in PHP may help you in other unrelat-

ed endeavors, such as Android mobile development.

. Netbeans has been around for a long time but recently added support for

PHP. It offers many of the same features that you’ll find in Eclipse but

would be well suited for anybody who has already used it with other pro-

gramming languages. However, it’s a close match with Eclipse, so we sug-

gest giving it a shot and deciding what works best for yourself.

Revision Control Systems
Revision control systems, also known as source code management (SCM) systems,

are used to store and manage changes to files or documents. They are most com-

monly used in software development to manage source code. Because every revision

of each file is stored, developers can always revert changes back to an earlier vers-

sion of the code if things don’t go as planned. If multiple developers make edits to

the same file, the revision control system will automatically merge the changes and,

if needed, facilitate resolving any conflicts.

There are many more uses for revision control, and we encourage you to research

using one of the revision control systems listed next—especially if you’re working

with other people. Even if you’re working alone, you can save yourself the frustra-

tion of making a change that breaks everything and not knowing what code caused

the problem:

. Subversion (SVN) is one of the most popular revision control systems today

and is designed to improve on the older Concurrent Versions System (CVS).

. Git is much like SVN for basic revision control, but one of its strengths is

that there is a local repository, so changes can be committed locally even if

there is no network access to the main server. Another advantage of Git is

access to GitHub, which is a social coding website that allows you to host,

share, and collaborate on your code. At the time of this writing, if your

code is open source, it’s a free service; otherwise, there is a monthly fee.

Summary 45

Many other differences exist between Git and SVN; however, it is difficult to discuss

them without going into more depth on version control. If you’re interested, search

online for the differences and do some research on your own. In general, you’ll find

that Git is more powerful than SVN and is rapidly becoming more popular, but it

may be more confusing to new users. If you have no experience using version con-

trol, we recommend you start with SVN because it is widely used and there are

clients for more platforms and programs than Git.

Our Recommended Toolbox
If you’re new to web development, we don’t want to scare you off with all these pos-

sibilities. If you’re just starting off, we recommend that you install the following

tools (described in the previous sections):

. Firefox—The second most popular browser in use today; it works on all

platforms and supports a variety of extensions to aid you in web develop-

ment and testing.

. Firebug—A popular Firefox extension for web developers; it helps you

debug issues with HTML, CSS, and JavaScript.

. Chrome—The most popular Webkit based desktop browser has many inte-

grated development tools to help you debug and tune your site and has

similar behavior to Safari and many mobile devices.

. Eclipse for PHP Developers—This powerful IDE will help you program

with code completion and help you quickly find mistakes with syntax

checking.

We’ve recommended these tools because they’ll work on all platforms and should

get you through the entire book. However, you should always test all web pages in

Internet Explorer because it is the most popular browser.

After you’re comfortable with these tools, try using revision control to avoid irre-

versible changes and prepare yourself for working on a team of developers. Revision

control systems are used by almost all professional software developers.

Summary
In this hour, we set you up with everything you need to start writing and testing PHP

code. You learned about LAMP stacks and how to set up your own local web server

for development purposes. You also learned about a few security vulnerabilities you’ll

www.allitebooks.com

http://www.allitebooks.org

46 HOUR 4: Creating a Development Environment

encounter with a fresh XAMPP install and how to fix them. After configuring and

testing your local web server, you learned about some of our favorite web develop-

ment tools, which we will use for the rest of the book.

Q&A
Q. Why are LAMP stacks so popular?
A. It’s no coincidence that LAMP stacks are popular in the web world. Because all

of the technologies in LAMP are open source, free, and widely supported, they

are cheap and easy to deploy.

Q. If I already have an *AMP server set up, is there any reason to install
XAMPP?

A. In theory, almost any *AMP configuration with a current version of PHP should

work with the examples in this book. However, because there are so many

options to configure within Apache, MySQL, and PHP, we cannot guarantee

that things will work unless you’re using XAMPP.

Q. Why do you recommend an IDE for beginners over a simple text editor?
A. People generally take two sides when deciding what editor to recommend to

beginners. There’s no doubt that an IDE can offer useful tips and can help you

find errors in your code faster, but some people argue that an IDE can become

a crutch and others feel strongly against installing a large program with many

features they will not use. For us, our recommendation is simple. We’re here to

teach you about the Twitter API, not to teach you PHP, HTML, CSS, or

JavaScript. We want your full attention on the Twitter API, not the nuances of

programming and markup languages we’re using in this book; using an IDE

can help you worry less about the code, and more about the API itself.

Workshop

Quiz
1. What does LAMP stand for?

A. Linux Apache MySQL Python

B. Linux Apache MySQL PHP

C. Linux Apache MySQL Perl

D. All of the above

Workshop 47

2. In XAMPP, what is the name of the folder containing the files or scripts that

you can access from http://localhost?

3. True or False: When testing a web page, you can safely assume that it will look

the same in all web browsers as long as you are using valid HTML.

Quiz Answers
1. D. Although LAMP most commonly refers to the use of Linux, Apache, MySQL,

and PHP, the “P” can also stand for Perl or Python—other popular scripting

languages.

2. htdocs is the folder sometimes referred to as the web root, which is where you

put all the files that are to be accessible from the web server. If you aren’t using

XAMPP, it’s sometimes named www.

3. False. All web pages should be tested in at least Internet Explorer, Firefox, and

Chrome as pages may render differently in every browser and on every operat-

ing system. If you want to be thorough, you should try your web pages in

Safari as well as on Windows, Mac, and Linux. As a final check, you should

test your site on a variety of popular mobile devices.

Exercises
1. Create your own phpinfo() page and access it from your browser. Read over the

page as it contains interesting information about your server’s configuration

and environment variables. When you begin to develop more complex appli-

cations, this information will come in handy, especially if your application

requires special PHP extensions.

2. Set up your development and testing environment, including an editor, Inter-

net Explorer, Firefox, Chrome, Safari, and the Firebug browser extension we

mentioned in this hour. When we get around to building, you don’t want to be

distracted by having to get your toolbox in order.

3. Try setting up a version control system. We recommend Git for more experi-

enced users, but if you’re just getting started and Git looks too complicated for

you, try SVN first until you’re comfortable with it. However, it is important to

familiarize yourself with Git because it and other distributed version control

systems are quickly gaining popularity for new projects due to their power,

speed, and flexibility.

This page intentionally left blank

Making a Simple Twitter API Call 49

HOUR 5

Making Your First API Call

What You’ll Learn in This Hour:
. How to make a simple URL call

. How to make a call in php

Making a Simple Twitter API Call
OK, it’s time make a call to Twitter and get a response. Let’s dive right in and make

a simple call to the Twitter service to get the latest public timeline. Depending on

your browser and its configuration you may need to view source to see the proper

formatting.

Open a web browser, type in the following, and press Enter:

http://twitter.com/statuses/public_timeline.xml

You should get something like the following:

<statuses type=”array”>
<status>
<created_at>Thu Dec 31 03:31:08 +0000 2009</created_at>
<id>7220013867</id>
<text>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

➥eiusmod tempor
incididunt ut labore et dolore magna aliqua.</text>
<source><a href="http://apiwiki.twitter.com/"

rel="nofollow">API</source>
<truncated>false</truncated>
<in_reply_to_status_id></in_reply_to_status_id>
<in_reply_to_user_id></in_reply_to_user_id>
<favorited>false</favorited>
<in_reply_to_screen_name></in_reply_to_screen_name>
<user>
<id>11710512</id>
<name>Christopher</name>

50 HOUR 5: Making Your First API Call

<screen_name>perivision</screen_name>
<location>the bay</location>
<description>I make stuff. Currently I’m making twittFilter.com Check

➥it out and
tell me what you think.</description>

<pro
file_image_url>http://a1.twimg.com/profile_images/61029076/
chrisperi2_normal.jpg</profile_image_url>

<url>http://www.perivision.net</url>
<protected>false</protected>
<followers_count>830</followers_count>
<profile_background_color>C6E2EE</profile_background_color>
<profile_text_color>663B12</profile_text_color>
<profile_link_color>1F98C7</profile_link_color>
<profile_sidebar_fill_color>DAECF4</profile_sidebar_fill_color>
<profile_sidebar_border_color>C6E2EE</profile_sidebar_border_color>
<friends_count>172</friends_count>
<created_at>Tue Jan 01 09:29:37 +0000 2008</created_at>
<favourites_count>26</favourites_count>
<utc_offset>-28800</utc_offset>
<time_zone>Pacific Time (US & Canada)</time_zone>
<pro

file_background_image_url>http://s.twimg.com/a/1262113883/images/themes/the
me2/bg.gif</profile_background_image_url>

<profile_background_tile>false</profile_background_tile>
<notifications>false</notifications>
<geo_enabled>false</geo_enabled>
<verified>false</verified>
<following>false</following>
<statuses_count>3416</statuses_count>

</user>
<geo/>

</status>
<status>
<created_at>Thu Dec 31 03:30:37 +0000 2009</created_at> ...

Quite the mess, isn’t it? Well, no worries. We are going to clean this up a bit so that

you can see what’s going on. First, we made a call request in XML format. We could

have made that call in JSON, RSS, or ATOM, but we are sticking with XML for now.

The first thing you should notice is the nesting of information. To make this a bit

easier to explore, let’s remove the content and simplify this output:

Statuses

created_at

id

text

truncated

Making a Simple Twitter API Call 51

in_reply_to_status_id

in_reply_to_user_id

favourited

in_reply_to_screen_name

user

id

name

screen_name

location

description

url

protected

followers_count

profile_background_color

profile_text_color

profile_link_color

profile_sidebar_fill_color

friends_count

created_at

favourites_count

utc_offset

time_zone

profile_background_tile

statuses_count

notifications

following

verified

geo

..

52 HOUR 5: Making Your First API Call

Although this is a bit easier to read, we can pare this down even further by focusing

on the key fields we would use to display a typical message:

Statuses

created_at

id

text

user

id

name

screen_name

utc_offset

..

Now we have something a bit easier to deal with. These will be the values we will

want to read for each message, or statuses, that we get back from Twitter. So, let’s go

over each node of the XML schema quickly:

Created_at—This is the time the message was created in UTC Coordinated

Universal Time.

Id—This is the numerical ID number of the message.

Text—This is the contents of the message.

User—This is the Twitter user who created the message. This node also has

children. The nodes inside “user” contain information about the user.

User->id—This is the numerical id of the writer.

User->name—This is the name of the writer.

User->screen_name—This is the writer’s screen name. The writer’s name and

screen_name are sometimes the same thing.

A Twitter screen name is restrictive. You cannot use the word “twitter,” cannot
have spaces, and certain characters are not allowed.

User->utc_offset—This is the time zone offset that is relative to the creator of

the message. Because the created_at value is always at UTC, we need this

value in order to display the created time relative to our own time zone.

Watch
Out!

Making a Call in PHP 53

Making a Call in PHP
Now that we have connected to Twitter, it’s time to do it using PHP code. You should

have your development environment ready go, as outlined in Hour 4, “Creating a

Development Environment.” Let’s create a new php file called

get_public_timeline.php. The first line will read as follows:

<?php

This lets the server know that all the following lines are to be treated as PHP code.

Next, type in the following line:

$api_url = ‘http://twitter.com/statuses/public_timeline.xml’;

Here we are setting the variable $api_url to the string http://twitter.com/statuses/

public_timeline.xml. The next few lines might be a bit confusing for those who are

not used to PHP. It’s not in the scope of this book to go into great detail on the cURL

library, but we will touch on it. Type these lines into your file:

$curl_handle = curl_init();
curl_setopt($curl_handle, CURLOPT_URL, $api_url);
curl_setopt($curl_handle, CURLOPT_RETURNTRANSFER, TRUE);
$twitter_data = curl_exec($curl_handle);
curl_close($curl_handle);

What Is cURL?
cURL, sometimes written as curl, is a set of C-based libraries in PHP that support

http “get” and “post” protocol communication with a server. The name “curl” is the

contraction of “client” and “URL.” The outcome of this project is a set of routines

referred to as the libcurl, which is shorthand for curl libraries. These libraries support

FTP, FTPS, HTTP, HTTP POST, and many more. The library is also very well support-

ed on various platforms: Windows, Mac OS X, Linux, Solaris, OpenBSD, and more.

Even better, libcurl is free, thread-safe, and supports IPv6.

What’s important to us is the PHP libcurl, which is typically included in any well-

rounded PHP installation. This library and the functions within are how we are

going to manage our communications with Twitter. So, let’s go through the lines we

just added to our get_publictimeline.php file.

This line creates a reference to the curl library and assigns that reference to the vari-

able $curl_handle:

$curl_handle = curl_init();

http://twitter.com/statuses/public_timeline.xml
http://twitter.com/statuses/public_timeline.xml

54 HOUR 5: Making Your First API Call

These next two lines set options within our curl object. It’s important to notice here

that the CURLOPT URL is using a variable called $api_url:

curl_setopt($curl_handle, CURLOPT_URL, $api_url);
curl_setopt($curl_handle, CURLOPT_RETURNTRANSFER, TRUE);

These last two lines should be clear. The first makes the actual curl call to

Twitter.com and assigns $twitter_data to results. The last line closes our reference

object:

$twitter_data = curl_exec($curl_handle);
curl_close($curl_handle);

Okay, only two more lines to go. Type these in:

echo ‘Public Stream
’;
echo ‘<pre> ‘.htmlentities($twitter_data);
?>

The first line uses the command echo to print ‘Public Stream’ in your browser and

the ‘
’ is HTML to end that line and start a new one. The following line also uses

echo to print information in the browser. The <pre> HTML tag and the

htmlentities() function are there to make the display more readable for us.

Save your file. Make sure your local PHP server is up and running, and open a web

browser. Open your file get_public_timeline.php in the browser.

Did you get an output of text similar to the text below? Great! This is pretty much

the same thing we saw when we made this API call from the browser in the begin-

ning of this hour:

<statuses type=”array”>
<status>
<created_at>Thu Dec 31 03:31:08 +0000 2009</created_at>
<id>7220013867</id>
<text> Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do

➥eiusmod tempor
incididunt ut labore et dolore magna aliqua.</text>
<source><a href="http://apiwiki.twitter.com/"

rel="nofollow">API</source>
<truncated>false</truncated>
<in_reply_to_status_id></in_reply_to_status_id>
<in_reply_to_user_id></in_reply_to_user_id>
<favorited>false</favorited>
<in_reply_to_screen_name></in_reply_to_screen_name>
<user>
<id>11710512</id>
<name>Christopher</name>
<screen_name>perivision</screen_name>
<location>the bay</location>

...

Making a Call in PHP 55

Congratulations! You just made your first Twitter API call from PHP using cURL.

Now, let’s make another API call to a specific Twitter account.

User_timeline API
The API call to get the public timeline is http://twitter.com/statuses/public_timeline.

xml. The API call to get a specific twitter user’s timeline is http://twitter.com/status-

es/user_timeline/<users screen name>.xml. For example, if I wanted to see the time-

line for perivision, I would type the following into a web browser:

http://twitter.com/statuses/user_timeline/perivision.xml.

However, we want to do this in our code. All we have to do is make one change in

our code. So, let’s create a new php file and call it get_user_timeline.php. Copy the

lines from get_public_timeline.php into our new file.

Next, change this line:

$api_url = ‘http://twitter.com/statuses/public_timeline.xml’;

To this:

$api_url = ‘http://twitter.com/statuses/user_timeline/perivision.xml’;

Make the change in your code and give it a try. You should see basically the same XML

schema we have been looking at throughout this hour, but with different content.

However, suppose you want to read your timeline. There is an API call for that too,

called “../home_timeline.” However, this XML structure is a little different from the

other two. Also, readers who have used the Twitter API may be wondering why we

are not using “../friends_timeline.” The friends_timeline API call is still functional,

but it’s being deprecated in favor of “../home_timeline” because this new API call

will include replies. Let’s see what’s different about “../home_timeline.”

As you might recall, the simplified public_timeline XML schema from the beginning

of this hour looks something like this:

Statuses

created_at

id

text

user

id

www.allitebooks.com

http://twitter.com/statuses/public_timeline.xml
http://twitter.com/statuses/user_timeline/<users screen name>.xml
http://twitter.com/statuses/user_timeline/<users screen name>.xml
http://twitter.com/statuses/user_timeline/perivision.xml
http://twitter.com/statuses/public_timeline.xml
http://www.allitebooks.org

56 HOUR 5: Making Your First API Call

name

screen_name

utc_offset

...

Now, if a message was in reply to a previous message, a new child node will be pre-

sented. Here is the reply node in full:

<retweeted_status>
<created_at>Wed Nov 18 18:36:34 +0000 2009</created_at>
<id>5833513351</id>
<text>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
➥tempor
incididunt ut labore et dolore magna aliqua.</text>

<source><a href=”http://www.hootsuite.com”
➥rel=”nofollow”>HootSuite</source>

<truncated>false</truncated>
<in_reply_to_status_id></in_reply_to_status_id>
<in_reply_to_user_id></in_reply_to_user_id>
<favorited>false</favorited>
<in_reply_to_screen_name></in_reply_to_screen_name>
<user>
<id>2558...</id>
<name> jfieuu uremd</name>
<screen_name>jfieuu uremd</screen_name>
<location></location>
<description>jfisoje jilsifijis jifle<description>
<pro

file_image_url>http://a3.twimg.com/profile_images/11621.../
➥hjkuyi_73x73_normal.jpg</pro
file_image_url>

<url>http://www.trdytf.com</url>
<protected>false</protected>
<followers_count>1653473</followers_count>
<profile_background_color>08a9e7</profile_background_color>
<profile_text_color>000000</profile_text_color>
<profile_link_color>ee0077</profile_link_color>
<profile_sidebar_fill_color>ffee9a</profile_sidebar_fill_color>
<profile_sidebar_border_color>ffcc66</profile_sidebar_border_color>
<friends_count>406</friends_count>
<created_at>Fri Mar 20 22:30:24 +0000 2009</created_at>
<favourites_count>2</favourites_count>
<utc_offset>-18000</utc_offset>
<time_zone>Eastern Time (US & Canada)</time_zone>
<pro

file_background_image_url>http://a1.twimg.com/profile_background_images/
➥6859.../bgpage.g
if</profile_background_image_url>

Summary 57

<profile_background_tile>true</profile_background_tile>
<statuses_count>1740</statuses_count>
<notifications>false</notifications>
<geo_enabled>false</geo_enabled>
<verified>false</verified>
<following>false</following>

</user>
<geo/>

</retweeted_status>

Let’s simplify this a bit more:

<retweeted_status>
<created_at>Wed Nov 18 18:36:34 +0000 2009</created_at>
<id>5833513351</id>
<text>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor
incididunt ut labore et dolore magna aliqua </text>

<user>
<id>255897...</id>
<name>hkhukg</name>
<screen_name>hjkhjiiu</screen_name>

</user>
<geo/>

</retweeted_status>

We can see here that the reply node has some things in common with the message

node structure we have seen before. However, for now, we are going ignore this

node, but we will revisit it in later hours.

In addition to an additional node within the user_timeline API call, there is a new

requirement we have not seen before: You must provide user credentials. When we

first started writing this book, you could simply add your username and password

along with the cURL request. This is no longer supported because Twitter has moved

to an OAuth authentication protocol only. But don’t worry—we will be covering that

in Hour 8, “Twitter OAuth.”

Summary
Great! We have just made two API calls in this hour, both from the browser and from

PHP using cURL. Now it’s time to take our return from Twitter and parse it so that we

can display our returns in a format a little more user friendly than what we have seen

so far.

58 HOUR 5: Making Your First API Call

Q&A
Q. Can we make only API calls in XML?
A. No. You can use JSON, RSS, or ATOM. However, we have decided to stick with

XML here because of how well known it is.

Q. What is the difference between a message and a status within Twitter?
A. There is no difference. Although it can be confusing, a status is actually a mes-

sage, not the actual status of the user.

Q. Do I have to pay for the cURL libraries in PHP?
A. No, cURL is free.

Workshop

Quiz
1. What is the difference between a user ID, username, and user screen_name?

2. Why is the friends_timeline API call being deprecated for the new home_time-

line API call?

Quiz Answers
1. The user ID is a numeric identifier for the user. The username is the name the

user used when he or she registered. The user screen name is the actual Twitter

handle used within the Twitter system.

2. The home_timeline API call now includes information about the original sta-

tus if the status being viewed is a reply.

Exercise
Create an HTML text field that enables you to enter in a Twitter name and then

make a Twitter API call to get the timeline of the Twitter name entered.

Building Our First Twitter Client 59

HOUR 6

Building a Simple Twitter
Reader

What You’ll Learn in This Hour:
. How to set up a basic file structure for our Twitter client application

. How to parse returned data from Twitter

. What is an HTTP response code?

Building Our First Twitter Client
We are in Hour 6 and, believe it or not, we already have the basics required to cre-

ate our first simple Twitter Client. In this hour, we will create the basic file structure

that you would see with any typical website: the HTML, CSS, and PHP code to create

the content.

In the previous hour, we created a single standalone PHP file to make calls to and

get data back from Twitter. However, this is not the proper way to structure a pro-

gram. It is the goal of this book to have you create a Twitter client by the end of the

24 hours. As such, we are going to take a more structured approach to how we cre-

ate our application framework. If it’s been a while since you read Hour 3, “Key

Issues to Consider When Developing Twitter Applications,” I recommend that you

go back and give it a quick review.

As we go through this Hour and the rest of the Hours in the book, more advanced

programmers may be wondering why we took certain approached to our coding or

choose to use what would seem overly simple techniques. After much debate by the

writers and advisors, we decided that at the price of elegant coding, we would try to

make things more clear to the beginning programmers.

60 HOUR 6: Building a Simple Twitter Reader

Let’s put our simple framework in place. It’s a basic framework compared to more

sophisticated applications. Our basic setup will have an HTML file that is called

when the user first comes to the site, which will load main.php, as well as call three

other files, each designed to perform a certain task, as you can see in Figure 6.1.

We are going to create six files in this hour: the HTML page, the CSS file, and four

PHP files. Three of the PHP files will live in a subdirectory called includes.

Creating index.php and main.css
First, lets create the HTML code. We are not going to go into detail about the HTML

nor the CSS files, which is not in the scope of this book. You may have noticed that

we are using index.php instead of index.html. Depending on your server’s configu-

ration, you can use either one, however convention is to use index.php if you have

a php code in your file, and we very much do in our example. Create a new file

called index.php in your editor and type in the following code:

Recall That HTML Processors Ignore Extraneous Whitespace

Although most environments will allow you to mix HTML and PHP code by simply
calling out the PHP code using <?php ... ?>, this is not true with all environments.
If you find that your PHP codes are being displayed on your web page, change the
name of index.html to index.php.

Watch
Out!

<meta charset=”utf-8”>
<html>
<head>

Index.php

twitterAPI.class.php

parseTwitter.class.php

render.class.php

Display

Main.php

FIGURE 6.1
A simple client
application
framework.

Building Our First Twitter Client 61

<title>twitterAPI 24 hours</title>
<link href=”css/main.css” rel=”stylesheet” />

</head>

Here we will make a PHP call to load the various files we need to run our applica-

tion. As a means of clarity, we are going to place some of our new files into a folder

called includes. We use this convention to refer to files and the functions that are not

called on their own:

<?php
include ‘includes/twitterAPI.php’;
include ‘includes/parseTwitter.php’;
include ‘includes/render.php’;
?>

<body>
<div class=”header”>

<div class=”tweet”>TwitterAPI24</div>
</div>
<div class=”container”>

Next, we make a call to main.php, which we will use to load our content:

<? include ‘main.php’; ?>
</div>

</body>
</html>

Creating main.css
It’s not in the scope of this book to explain how CSS works, so we will simply provide

the CSS code here. Create a folder called css and then create a file in that folder

called main.css. Type in the following code:

/* Global Layout */
body {

margin:0;
padding:0;
font:12px Arial, Helvetica, sans-serif;
color:#999;
width:100%;

}
/* End of Global Layout */

/* Global Styles */
/* Disable CSS Text Decoration Property */
a {

text-decoration:none;
color:#667;

}

62 HOUR 6: Building a Simple Twitter Reader

/* Enable CSS Text Decoration Property and select underline */
a:hover {

text-decoration:underline;
}

/* End of Global Styles */

/* Section: Header */
.header {

margin:0 auto;
padding:10px 10px;
background:#333;
overflow:hidden;

}
.tweet {

padding:0 10px;
}

/* Section: Table */
/* Format the Detail Table with border */
#detail_table td{

width:330px;
padding-top:2px;
padding-left:5px;
padding-bottom:2px;
vertical-align: top;
color:#333;
border-bottom:1px solid #DBDBDB;
font-family: Trebuchet MS, Arial, Helvetica, sans-serif;
valign: top;

}

/* Section: Messages */
/* Format the Message container */
.container{

float:left;
width:320px;

}
/* Format the Message image */
.mess-pic {
background-color:#eee;
padding-right: 5px;
font-size: 10px;
float:left;

}
/* Format the Message container */
.mess-container{
float:left; width: 250px; padding-left:10px;

}
/* Format the Message content */
.mess-row-text{
float:right; padding-left:10px; width:250px;
}

Building Our First Twitter Client 63

Great. Now that we have the presentation layer out of the way, we can get to the

actual code. We are going to create four more files: main.php, parseTwitter.php, ren-

der.php, and twitterAPI.php.

Creating main.php
First, let’s start with main.php. This file will make calls to all other functions we need

to support our simple Twitter client application. The main.php script should not do

any tasks in and of itself, but instead serve as the traffic cop for calling other func-

tions. In this example, main.php is going to make three calls: first to callTwitter()

from twitterAPI.php to get the latest messages from the Twitter servers; then it will

call parseTwitterReply () from parseTwitter.php to convert the returned data into

something more usable within PHP; finally, it sends the formatted HTML code of

renderTweets() of render.php to the user’s browser.

To get started, let’s create main.php and type in our first line of code:

<?php

In the next line, we manually defined $twitterName. BREAKINGNEWS is the name

of a Twitter account. You could replace this with any valid Twitter account with pub-

lic tweets. We appended .xml to let Twitter know we want the response to our request

to be in XML format:

$twitterName =
‘http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml’;

Next, we make a call to a function called callTwitter() in our twitterAPI.php file. It is

here that we make the actual call to the Twitter servers. We will create this file later

in this hour:

$twitterRequest = callTwitter($twitterName);

After we get our return from the callTwitter() function, we call parseTwitterReply in

our parseTwitter.php file to convert the XML text reply we got from Twitter into a

structured PHP object that is easier to work with. Again, do not worry; we will create

this file later in this hour:

$twitterRequest = parseTwitterReply($twitterRequest);

After we have our reply from Twitter in a format we can use, we make a call to

renderTweets in render.php to create the HTML code we will send to the user’s browser:

echo renderTweets($twitterRequest);

?>

64 HOUR 6: Building a Simple Twitter Reader

Creating twitterAPI.php
Now that we have our main file, let’s create the file twitterAPI.php that will be

placed in the includes folder. We are going to use this file only twice. After this hour

and the following hour, we will replace it with a collection of files that support

OAuth authentication with Twitter. The twitterAPI.php file basically takes our

request and makes a cURL call to Twitter for us, just as we did in Hour 5:

<?php

function callTwitter($api_url){

First, we create a curl object to allow us to communicate with the Twitter servers.

That object is assigned to $curl_handle:

$curl_handle = curl_init();

Next, set options for our new curl object. These are metadata elements we will send

along with our request to the Twitter servers:

curl_setopt($curl_handle, CURLOPT_URL, $api_url);
curl_setopt($curl_handle, CURLOPT_RETURNTRANSFER, TRUE);

Here we set the variable $twitterResponseData to contain the data that Twitter has

sent back to us:

$twitterResponseData = curl_exec($curl_handle);

After a message is sent back to our cURL object, we can find out what the HTTP

response code is. We can then use that code to determine if there was a problem

with our request, what the problem was, and what we want to do about it. Don’t

worry about what an HTTP response code is at the moment; we will cover this later

in this hour:

$errCode=curl_getinfo($curl_handle, CURLINFO_HTTP_CODE);

Although we could set an action for each error code, we are only interested in

whether the call was successful. So, if the response code is anything but 200, we will

display an error message with whatever other information Twitter has sent us:

if(!stristr($errCode,’200’)) {echo ‘err ‘.$errCode; return; }

Now that we are done with our API call, we do not need the connection any longer.

So, here we close it:

curl_close($curl_handle);

Building Our First Twitter Client 65

Assuming a successful API call, we return our data from Twitter to the function that

called it:

return $twitterResponseData;
}

?>

You may have noticed that we have not entered any authentication information.
That is because the public and user API calls are public API calls, not requiring us
to send login information.

Twitter HTTP Response Codes
Every time you make a restful call to the Twitter API service, you will get an ‘HTTP

response code’ in addition to whatever data you requested. These response codes are

important for letting the application, and the user, know when something did go as

expected. Here is a list of the currently supplied codes from Twitter. These codes are

based on the current standard for HTTP response codes; they are not specific to

Twitter with exception to one:

200 OK—Success!

304 Not Modified—There was no new data to return.

400 Bad Request—The request was invalid. An accompanying error message

will explain why. This is the status code will be returned during rate limiting.

401 Unauthorized—Authentication credentials were missing or incorrect.

403 Forbidden—The request is understood, but it has been refused. An accom-

panying error message will explain why. This code is used when requests are

being denied due to update limits.

404 Not Found—The URI requested is invalid or the resource requested, such as

a user, does not exist.

406 Not Acceptable—Returned by the Search API when an invalid format is

specified in the request.

420 Enhance Your Calm—Returned by the Search and Trends API when you

are being rate limited.

500 Internal Server Error—Something is broken. Please post to the group so the

Twitter team can investigate.

502 Bad Gateway—Twitter is down or being upgraded.

503 Service Unavailable—The Twitter servers are up, but overloaded with

requests. Try again later.

By the
Way

66 HOUR 6: Building a Simple Twitter Reader

Depending on the amount of time you want to invest, you could write an exception

for each code and present the user with a custom message, as well as perform follow-

up actions. For example, codes 500, 502, and 503 have to do with Twitter being

unable to fulfill a request. If you get one of these codes back, you can provide a mes-

sage to your users that Twitter is unavailable. You could create a custom page to

show the famous FailWhale as shown on the creators website (http://www.whatisfail-

whale.info/). In our case, we will simply display whatever message Twitter gave back

to us if the response code is not 200.

The HTTP response code 420 is not a standard response code. Instead, Twitter
created it for their own use. We will cover this more in Hour 20.

Creating parseTwitter.php
Now let’s create parseTwitter.php. This file should be in the includes folder. This file is

focused on making calls to and parsing the returns from Twitter:

<?php
function parseTwitterReply($messages){

The variable $messages has the reply we got from Twitter. Because our reply is in

XML, we are going to use a standard PHP 5 function called SimpleXMLElement() that

will take our XML reply and convert it into an object we can work with more easily

within PHP. Explaining the SimpleXMLElement object is not in the scope of this book.

However, you can learn more at http://php.net/manual/en/book.simplexml.php.

$twitterReturn = new SimpleXMLElement($messages);
$i=0;

Now that we have our response in an object, we can get the values we are interested

in. We will create a simple ‘foreach’ loop and grab the values for <created_at>,

<text>, <profile_image_url>, and <screen_name>. These are the only four values we

need to create our simple display.

In the following loop, we are going to create a set of array objects to hold each tweet

as we loop through, the following are the values we are looking for:

$updateTime: the time a tweet was created.

$update: the content of the tweet.

$profile_image_url: the user’s profile image.

$screen_name: the screen name of the user.

Did You
Know?

http://www.whatisfail-whale.info/
http://www.whatisfail-whale.info/
http://php.net/manual/en/book.simplexml.php

Building Our First Twitter Client 67

foreach($twitterReturn->status as $status){
$updateTime[$i] = $status->created_at;
$update[$i] = $status->text;
$profile_image_url[$i] = $status->user->profile_image_url;
$screen_name[$i] = $status->user->screen_name;
$i++;

}

We now have all the tweets that Twitter gave us back into arrays. You may have

noticed that we defined our array using $i. Not every element returned by Twitter

will have a value, so we use $i to ensure that the arrays for the first tweet have infor-

mation for the first tweet returned, and the second set of arrays contains information

from the second tweet, and so on.

Now we will create a new array object called $parseReturn to hold the arrays we just

created:

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;
$parsedReturn[‘profile_image_url’]=$profile_image_url;
$parsedReturn[‘screen_name’]=$screen_name;

return $parsedReturn;

}
?>

Creating render.php
Next, let’s create render.php. This file will take the returns from parseTwitter.php and

format them in HTML to be displayed on our page. This will also be in the includes

folder:

<?php

function renderTweets($parsedReturn){

In this function, we are going to loop through each set of array objects that we creat-

ed in parseTwitter. We will then create an object that will contain the HTML codes we

need to display our tweets:

$num = count ($parsedReturn[‘update’]);
$output=””;

68 HOUR 6: Building a Simple Twitter Reader

Notice that we are using $i again to control our loop. This is to make sure we get the

correct values for each tweet. The first part of the loop will get the values from our

$parseReturn object:

for($i=0; $i<$num; $i++){
$updateTime = $parsedReturn[‘updateTime’][$i];
$update = $parsedReturn[‘update’][$i];
$profile_image_url =

➥$parsedReturn[‘profile_image_url’][$i];
$screen_name = $parsedReturn[‘screen_name’][$i];
$textBody = $update.’ ‘.$updateTime;

Because a screen name can be pretty long, we are going to cut it off at nine characters:

$screen_name_abv=”<a
➥href=’http://www.twitter.com/$screen_name’
➥target=’_blank’>”.strtolower(substr($screen_name,0,8)).””;

Now that we have our values, we can populate $output with HTML code:

$output.= “<tr><td><div id=’$screen_name’ class=’mess-
➥pic’ >

<img src=’$profile_image_url’/ width=’48px’
➥height=’48px’>

$screen_name_abv</div>
<div class=’mess-container’>
<div class=’mess-row-text’>$textBody</div></div>
<div style=’clear: both; padding-top:

➥10px’></div></td></tr>”;
}

return $output;
}

?>

So, let’s test out our code. Go to your browser and open index.html. You should see a

stream of tweets from BREAKINGNEWS similar to Figure 6.2. Congratulations! You

have made your first step in creating a basic Twitter client by creating a Twitter reader!

Did you notice the +0000 after the date and time? This indicates the time zone
that the displayed date is based on. +0000 means the time based on GMT—
Greenwich Mean Time, also known as Coordinated Universal Time (UTC).

Did You
Know?

Summary 69

FIGURE 6.2
Example of
tweets from
BREAK-
INGNEWS.

Summary
In this hour, we created a basic Twitter reader. This will serve as the foundation for the

rest of the examples we will use in the book. You were also introduced to file structure,

making calls to Twitter, parsing the reply, and displaying the data in a web-friendly

format.

PHP Code Created in This Hour
We created quite a number of files and lots of code in this hour. As such, we are

showing all the code for this hour again for your convenience.

index.php:

<meta charset=”utf-8”>
<html>
<head>

<title>twitterAPI 24 hours</title>
<link href=”css/main.css” rel=”stylesheet” />

</head>

main.php:

<?php
$twitterName =

‘http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml’;
$twitterRequest = callTwitter($twitterName);
$twitterRequest = parseTwitterReply($twitterRequest);
echo renderTweets($twitterRequest);

70 HOUR 6: Building a Simple Twitter Reader

?>

twitterAPI.php:

<?php
function callTwitter($api_url){

$curl_handle = curl_init();

curl_setopt($curl_handle, CURLOPT_URL, $api_url);
curl_setopt($curl_handle, CURLOPT_RETURNTRANSFER, TRUE);
$twitterResponseData = curl_exec($curl_handle);

$errCode=curl_getinfo($curl_handle, CURLINFO_HTTP_CODE);
if(!stristr($errCode,’200’)) {echo ‘err ‘.$errCode; return; }
curl_close($curl_handle);

return $twitterResponseData;
}
?>

parseTwitterReply.php:

<?php

function parseTwitter($messages){

$twitterReturn = new SimpleXMLElement($messages);
$i=0;
foreach($twitterReturn->status as $status){

$updateTime[$i] = $status->created_at;
$update[$i] = $status->text;
$profile_image_url[$i] = $status->user->profile_image_url;
$screen_name[$i] = $status->user->screen_name;

$i++;
}

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;
$parsedReturn[‘profile_image_url’]=$profile_image_url;
$parsedReturn[‘screen_name’]=$screen_name;

return $parsedReturn;

}
?>

render.php:

<?php

function renderTweets($parsedReturn){

Q&A 71

$num = count ($parsedReturn[‘update’]);
$output=””;

for($i=0; $i<$num; $i++){
$updateTime = $parsedReturn[‘updateTime’][$i];
$update = $parsedReturn[‘update’][$i];
$profile_image_url =

➥$parsedReturn[‘profile_image_url’][$i];
$screen_name = $parsedReturn[‘screen_name’][$i];
$textBody = $update.’ ‘.$updateTime;

$screen_name_abv=”<a
➥href=’http://www.twitter.com/$screen_name’
➥target=’_blank’>”.strtolower(substr($screen_name,0,8)).””;

$output.= “<tr><td><div id=’$screen_name’ class=’mess-
➥pic’ >

<img src=’$profile_image_url’/ width=’48px’
➥height=’48px’>

$screen_name_abv</div>
<div class=’mess-container’>
<div class=’mess-row-text’>$textBody</div></div>
<div style=’clear: both; padding-top:

➥10px’></div></td></tr>”;

}

return $output;
}
?>

Q&A
Q. Can I request my data from Twitter to be in any other format than XML?
A. Yes. The API presently supports the following data formats: XML, JSON, and

the RSS and Atom syndication formats, with some methods accepting only a

subset of these formats.

Q. In theory, I could use a class object for almost everything in PHP. When
should I use a class and when not?

A. There is no hard and fast rule for when to use a class versus defining functions

in separate PHP files and calling them using the include statement. In general,

you should use class if what you are creating is going to be shared by other pro-

grammers or, as in our case, the functions and procedures are self-contained,

numerous and may be replaced in the future

72 HOUR 6: Building a Simple Twitter Reader

Q. Do I have to keep my class file in the same directory as my main files?
A. No. In fact, it’s better to keep as many files out of your first level (sometimes

referred to as root) directory as possible. Standard practice is to create a folder

called /Classes and place your file there.

Workshop

Quiz
1. True or False: With PHP, you have to break up your application into as many

separate files as you can.

2. Can you make API calls to Twitter without authentication?

3. What does HTTP response code 502 mean?

Quiz Answers
1. False. If you wanted to, you could write a complete application in one file. Files

are broken up to make it easier on the programmer to manage the code and to

make it easier for other programmers to read and work on the code. As such,

breaking key functions, like making calls to Twitter, is easier to modify if it’s a

single file.

2. Yes and no. There are only a few calls that you can make without providing

Twitter with authentication; these include public_timeline, user_timeline, and

search API calls.

3. Code 502 means Bad Gateway. This indicates that the Twitter service is down

or cannot respond. It’s normally a bad sign.

Exercise
Twitter returns an HTTP response code when a call is made. Create your equivalent

of a FailWhale page for the correct HTTP response codes that indicate Twitter is

unable to fulfill a request.

[(H3F)] 73

HOUR 7

Creating a Twitter API
Framework

What You’ll Learn in This Hour:
. What are Twitter API parameters?

. How to create an API function for Twitter method calls

Twitter API Parameters
In Hour 6, “Building a Simple Twitter Reader,” we created a simple Twitter reader

application. There are some shortcomings, however. Remember that we had to man-

ually create the API call to the Twitter servers.

Here is the line just to remind you:

$name = ‘http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml’;

We created the API call, the value BREAKINGNEWS, and the return type .xml manu-

ally in one line. However, to make our system more useful, we need a better way to

create this API call. In addition, we need a more dynamic framework for the various

API calls we will want to support. However, it’s not just API calls we want to support.

There is something called parameters that can be sent along with an API call.

Not only can we make calls to the Twitter API to get messages, but we can also pass

along parameters to refine that call. For example, here are the parameters that

Twitter currently accepts for our statuses/user_timeline API call (the following are all

optional parameters. Not all of these links will work directly in the browser anymore

since basic authentication has been disabled):

74 HOUR 7: Creating a Twitter API Framework

Twitter has been growing so fast that the example numbers you see here for mes-
sage ID are far larger than simply a five-digit number. At the time of this writing, a
typical message ID is as high as 20000000000. That’s 20 billion!

Watch
Out!

Because this is your first time creating a Twitter application, you might be wondering

why we need so many parameters. Not every API call has these parameters—some

have less, and some have more, but by having these parameters, we can set up some

fairly complex and refined interaction with Twitter.

For example, if we keep track of the last message ID a user has seen, we can then

request only the newest messages for that user by passing the last-known message ID

. ID: Specifies the ID or screen name of the user’s timeline. Example:

http://api.twitter.com/1/statuses/user_timeline/11710512.xml or

http://api.twitter.com/1/statuses/user_timeline/perivision.json.

. User_ID: Specifies the ID of the user’s timeline. This is useful when a valid

user ID is also a valid screen name. Example: http://api.twitter.com/1/

statuses/user_timeline.xml?user_id=11710512.

. Screen_name: Specifies the screen name of the user’s timeline. This is useful

when a valid screen name is also a user ID. Example:

http://api.twitter.com/1/statuses/user_timeline.xml?screen_name=perivision.

. Since_ID: Returns statuses with an ID greater than the specified ID.

Example:

http://api.twitter.com/1/statuses/user_timeline.xml?since_id=2000000 (this

example does not work via webpage).

. Max_ID: Returns statuses with an ID less than or equal to the specified ID.

Example:

http://api.twitter.com/1/statuses/user_timeline.xml?max_id=123456 (this

example does not work via webpage).

. Count: Specifies the number of statuses to return. This cannot be greater

than 200. Note: The number of statuses returned might be fewer than

requested because retweets are stripped out. Example:

http://api.twitter.com/1/statuses/user_timeline.xml?count=200.

. Page: Specifies the page of results to retrieve. Keep in mind that there are

pagination limits. Example:

http://api.twitter.com/1/statuses/user_timeline.rss?page=3.

As you can see, there are a number of parameters at our disposal for tuning the

reply we get from the Twitter servers.

Creating an API Function for Twitter Function Calls 75

plus one. This is very useful for keeping the number of replies from Twitter to a min-

imum, as well as letting us know if there are any new messages to act on or if

Twitter provides an empty set of new messages.

Another example is pagination. If we ask for the last 20 messages, and then the

user wants to look back 20 more messages, we can simply pass the value of ‘2’ to

the page parameter.

Although the current default reply is 20 messages on most API calls, this is not
the case with all calls. If a tweet within the set is a retweet or deleted, it will not
appear but will still count toward the returned set. In addition, Twitter could
change this value in the future.

Watch
Out!

Creating an API Function for Twitter
Function Calls
To manage all these parameters, we are going to expand our twitterAPI.php file, but

before we show you the code for this API call, let’s revisit some code from Hour 6.

Remember that we had a function called callTwitter() in our php file main.php:

$twitterName = ‘http://api.twitter.com/1/statuses/user_timeline/
BREAKINGNEWS.xml’;
$twitterRequest = callTwitter($twitterName);

The callTwitter() function call would pass our $twitterName API request to a cURL

function in twitterAPI.php. Now we need to update our twitterAPI.php file to support

the various parameters we might want to pass to it.

Open the file twitterAPI.php and add the following code at the end of the file but

before the ‘?>’:

function getUserTimeline($format, $id = NULL, $count = NULL) {

Here we begin constucting our API statement. The following ‘if’ statement checks to

see if a user ID was passed. If so, we append the user ID (in this case, ‘BREAK-

INGNEWS’) to the end of the API statement. We also append the end of the state-

ment with a ‘.’ and ‘xml’:

if ($id != NULL) {
$api_call =

sprintf(“http://api.twitter.com/1/statuses/user_timeline/%s.%s”, $id,
$format);

}
else {

$api_call =

76 HOUR 7: Creating a Twitter API Framework

sprintf(“http://api.twitter.com/1/statuses/user_timeline.%s”, $format);
}
if ($count != 20) {

$api_call .= sprintf(“?count=%d”, $count);
}

The next lines append the parameter options. You should already be familiar with

‘?’ and ‘&’ for sending requests over URL, but just to be complete, a ? after a URL

statement indicates to the receiving server that parameters are being passed. The ‘&’

allows us to pass more than one set of parameters.

Here we are using an echo statement so that you can see the API statement we have

created. You can remove this later:

echo “<h4>$api_call</h4>”;

Finally, we return our results back to main.php:

return callTwitter($api_call);
}

Save this file and close it.

Because we have a function to create our API call for us, we no longer need to man-

ually construct our API statement. So, open main.php and make a modification.

Delete these two lines:

$name =
‘http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml’;

$twitterRequest = callTwitter(‘xml’, $name);

And replace them with these two:

$name = ‘BREAKINGNEWS’;
$twitterRequest = getUserTimeline(‘xml’, $name);

Save the file and close it.

Now let’s give our new code a test. Open your web browser and load index.php in

your development environment. You should see a set of returns, shown in Figure 7.1,

that look a lot like what we saw in Hour 6.

We now are making a call to getUserTimeline() and passing two values, as follows:

. ‘xml’—We want our reply to be in XML format. We could have used JSON

if we wanted.

. $name—We redefined $name to be just BREAKINGNEWS. We could have

used any value Twitter name.

Creating an API Function for Twitter Function Calls 77

FIGURE 7.1
Example of
tweets from
BREAK-
INGNEWS.

Now let’s open up main.php again and make a slight change to our code.

Modify this line:

$twitterRequest = getUserTimeline(‘xml’, $name);

To read:

$twitterRequest = getUserTimeline(‘xml’, $name, ‘3’);

With this change, we now are making a call to getUserTimeline() and passing three

values, as follows:

. ‘xml’—We want our reply to be in XML format. We could have used JSON

if we wanted.

. $name—We redefined $name to be just BREAKINGNEWS. We could have

used any value Twitter name.

. ‘3’—Here we are passing our first parameter: the number of tweets we

want to get back. If we had left this empty, we would get the default 20

messages back.

We are done with our changes to main.php, so save and close the file.

Next, let’s open our Twitter application and see what we get.

78 HOUR 7: Creating a Twitter API Framework

You should see something like Figure 7.2. Notice the following line at the top of

the page:

http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml?count=3

FIGURE 7.2
Example of
three latest
tweets from
BREAK-
INGNEWS.

This is the actual request we are sending Twitter. Using ‘echo’ to see what com-

mands are being sent to Twitter is a great debugging tool. We will leave this in for

now, but do remember to remove it once you feel comfortable with what these calls

look like.

Let’s add one more API function.

Creating getPublicTime API Function
First, let’s see what parameters Twitter supports for this API call. In this case, there is

just one: ‘since_id.’

This makes our function call pretty simple. Open up twitterAPI.php and add the fol-

lowing lines at the end of the file but before ‘?>’:

function getPublicTimeline($format, $since_id = 0) {
$api_call =

sprintf(“http://api.twitter.com/1/statuses/public_timeline.%s”,
$format);

if ($since_id > 0) {
$api_call .= sprintf(“?since_id=%d”, $since_id);

}
echo “<h4>$api_call</h4>”;
return callTwitter($api_call);

}

http://api.twitter.com/1/statuses/user_timeline/BREAKINGNEWS.xml?count=3

Creating an API Function for Twitter Function Calls 79

This should seem quite simple compared to all the parameters we had to worry

about with ‘user_timeline.’

Save the file and close it.

Now to test this new function call, all we have to do is change one line in main.php.

Open main.php and delete (or comment out) the following line:

$twitterRequest = getUserTimeline(‘xml’, $name, ‘3’);

Then add this line:

$twitterRequest = getPublicTimeline(‘xml’);

Save your file and close it. Now let’s try our application again.

You should see the latest public tweets from Twitter, as shown in Figure 7.3. And all

you had to do was change one line!

FIGURE 7.3
Example of lat-
est public
tweets.

This is going to be the basis of our framework going forward. We will create a UI

that will enable users to click tabs to choose which API calls they want to make. We

will get to that in later hours.

80 HOUR 7: Creating a Twitter API Framework

Summary
In this hour, we took the first steps in creating the twitterAPI portion of our frame-

work. We also introduced the concept of parameters and a structured way of dealing

with them. In addition, we discovered in this hour that we can make different API

calls to Twitter by changing one line within our framework.

Q&A
Q. Can I use multiple parameters in a call? For example, can I use both

since_id and max_id together?
A. Technically, you can, but it’s a bad idea. Twitter sometimes has issues with

since_id and max_id, especially with search, so it’s normally a good idea to use

only one or the other. There are no known issues with mixing other parameters

however, always test first.

Workshop

Quiz
1. True or False: You have to use at least one parameter when making an API call.

2. True or False: The XML return for all Twitter API calls is the same.

Quiz Answers
1. False. If you do not pass any parameters outside the normal API call, Twitter

will assume default values for you.

2. False. Although the XML returns are similar and reflect the same basic con-

structs, there are subtle differences resulting from the ever-evolving API require-

ments and modifications.

Exercises
1. Try various calls with different parameters to see what you can do. There is a

way to confuse and get nothing back from Twitter by asking for conflicting

parameters. Try to do this.

2. Toward the end of this hour, we added support for the parameter since_id but

did not actually use it. Try to find the most recent message ID and then make

the call again. Try a number in the future and see what you get as a return.

What Is a Class and Why Do We Want to Use It? 81

HOUR 8

Twitter OAuth

What You’ll Learn in This Hour:
. What is a class and why do we use it?

. What is OAuth? (Briefly)

. How to create a simple Twitter class object

. How to add new functions to your Twitter class object

. How our class deals with Twitter connection errors

What Is a Class and Why Do We Want
to Use It?
The rewrite of PHP5 from PHP4 includes updating and upgrading the underlying

Object model, which includes the class object. First, what is an object? Object-orient-

ed programming, or OOP, has been around since the 1960s but did not really enter

the mainstream until the early 1990s. OOP programming is pretty common in

today’s languages, and although we are using PHP in this book, most languages

you may use to build your Twitter application will likely support the OOP constructs.

So, what is an object? Let’s look to Wikipedia.

An object is actually a discrete bundle of functions and procedures, all relating to

a particular real-world concept such as a bank account holder or hockey player

in a computer game. Other pieces of software can access the object only by call-

ing its functions and procedures that have been allowed to be called by outsiders.

Isolating objects in this way makes their software easy to manage and keep track

of. (http://en.wikipedia.org/wiki/Object-oriented_programming_language)

http://en.wikipedia.org/wiki/Object-oriented_programming_language

82 HOUR 8: Twitter OAuth

In our case, the object is a collection of Twitter API calls. The functions and proce-

dures we will isolate will be the individual API calls, as well as a few procedures to

deal with Twitter instability. A class is a type of object. Because it’s not in the scope

of this book to define OOP in depth, we will continue on from here.

The advantage of using a class is that it gives us a clean and clear way to think

about our code, as well as ensuring that if you are working with others and thus

sharing this code, that no confusion or duplication errors are introduced into the

code set.

Now that we know what a class is, and the advantages it gives us, let’s have a look

at a class for handling the Twitter API.

What Is OAuth?
From the Oauth.net site:

OAuth provides a method for clients to access server resources on behalf of a

resource owner (such as a different client or an end-user). It also provides a

process for end-users to authorize third-party access to their server resources

without sharing their credentials (typically, a username and password pair),

using user-agent redirections...

In the traditional client-server authentication model, the client uses its creden-

tials to access its resources hosted by the server. With the increasing use of dis-

tributed web services and cloud computing, third-party applications require

access to these server-hosted resources.

OAuth introduces a third role to the traditional client-server authentication

model: the resource owner. In the OAuth model, the client (which is not the

resource owner, but is acting on its behalf) requests access to resources con-

trolled by the resource owner, but hosted by the server. In addition, OAuth

allows the server to verify not only the resource owner authorization, but also

the identity of the client making the request.

(http://tools.ietf.org/html/rfc5849)

How to Register Your Application
To get the OAuth information for your application, you need to register it with

Twitter.

http://tools.ietf.org/html/rfc5849

Creating the OAuth Twitter Class 83

Registering an application is fairly simple. Open your browser and go to this

address: http://dev.twitter.com/apps/new.

Fill out your application as appropriate. If you are not sure, use the following:

Application Type: ‘Browser’

Default Access Type: Read & Write

Don’t worry; you can change these settings at any time.

After you have filled out the application, you should get something like the screen-

shot in Figure 8.1.

Creating the OAuth Twitter Class
So, now that we know what a class is and we know what OAuth is, we need to cre-

ate an OAuth class. However, creating our own OAuth class is outside the bounds of

this book, so instead we will get one that is recommended from the Twitter.com site.

The example we are using here came from a class written by Abraham Williams |

abraham@poseurte.ch | http://abrah.am twitter name: @abraham.

FIGURE 8.1
Twitter
Application
Registration
screen.

http://dev.twitter.com/apps/new
http://abrah.am

84 HOUR 8: Twitter OAuth

PHP Library for Working with Twitter’s
OAuth API

Documentation: http://wiki.github.com/abraham/twitteroauth/documentation

Source: http://github.com/abraham/twitteroauth

Twitter: http://apiwiki.twitter.com

It is not in the scope of this book to explain what OAuth is in detail, much less

deconstruct Abraham’s code. There are whole books dedicated to the subject.

Instead, we are going to walk through the steps needed to get this working for us

and then learn how to write API calls within this class.

First, the general overview of how the OAuth API works: the following steps come

directly from the documentation within Abraham’s code set. I added a few notes

where I felt clarification would be useful in our case.

▼ Flow Overview
1. Build TwitterOAuth object using client credentials.

This is where we start. Typically, you would store this information either in the cookie

or in a database. In our case, we are not going to support a persistent login, so after

the browser is closed, or the OAuth session is closed by some other means, the user

will have to reauthenticate.

2. Request temporary credentials from Twitter.

3. Build authorize URL for Twitter.

4. Redirect user to authorize URL.

This URL is found in the config.php file.

5. User authorizes access and returns from Twitter.

6. Rebuild TwitterOAuth object with client credentials and temporary credentials.

7. Get token credentials from Twitter.

8. Rebuild TwitterOAuth object with client credentials and token credentials.

9. Query Twitter API.

A more detailed explanation of the preceding flow overview can be found in

Abraham’s documentation.

▲

http://wiki.github.com/abraham/twitteroauth/documentation
http://github.com/abraham/twitteroauth
http://apiwiki.twitter.com

Setting Up the twitterOAuth Class 85

Setting Up the twitterOAuth Class
Now that we have an introductory understanding of what OAuth is and how it

works, let’s take Abraham’s code, place it in our development environment, and test

it out.

First, if you have not done so already, download his code from github. You should

have the following:

images/

darker.png

lighter.png

twitteroauth/

OAuth.php

twitteroauth.php

DOCUMENTATION

LICENSE

README

callback.php

clearsessions.php

config.php

connect.php

html.inc

index.php

redirect.php

test.php

Copy these files into the root directly of your development environment. Now we

need to modify a few things:

Open config.php.

In this file, you are going to put your CONSUMER_KEY and CONSUMER_SECRET

that we got when registering our application.

86 HOUR 8: Twitter OAuth

The OAUTH_CALLBACK is the location of our root directory. For example, on my

local build, it’s the following:

define(‘OAUTH_CALLBACK’, ‘http://localhost/callback.php’);

Note: Using localhost as a callback does not always work. If that happens, try using

the following workaround: http://127.0.0.1:8000/twitter_callback.

If this does not work, try this. You can use bit.ly, a URL-shortening service. Just short-

en the url “http://localhost:3000/twitter_callback” and register the shortened URL as

the callback in your Twitter app. For this method, you have to create another Twitter

OAuth app for development so that the callback URLs can differ. (Thanks to Toni for

this workaround: http://www.tonyamoyal.com/2009/08/17/how-to-quickly-set-up-a-

test-for-twitter-oauth-authentication-from-your-local-machine/.)

Save and close.

Now open a web browser and click index.php. You should see something like the

screenshot in Figure 8.2. If you do not, there is one more thing you may want to

check. Sometimes you need to set your system to GMT time. Another possibility is

that you need to create a new Twitter application if you were trying to use an exist-

ing twitter application.

Click the Sign In with Twitter button, and you will see a message from Twitter ask-

ing: An application would like to connect to your account. Select Allow. Next, you

should see something like Figure 8.3.

If you got an error saying the curl could not be initiated, be sure you have the

php_curl extension uncommented. For example:

Fatal error: Call to undefined function curl_init() in

C:\xampplite\htdocs\api\twitteroauth\twitteroauth.php on line 199

extension=php_curl.dll

PHP supports libcurl, a library created by Daniel Stenberg that allows you to con-
nect and communicate to many types of servers with many types of protocols.

FIGURE 8.2
Abraham OAuth
login screen.

By the
Way

http://www.tonyamoyal.com/2009/08/17/how-to-quickly-set-up-a-test-for-twitter-oauth-authentication-from-your-local-machine/
http://www.tonyamoyal.com/2009/08/17/how-to-quickly-set-up-a-test-for-twitter-oauth-authentication-from-your-local-machine/

Setting Up the twitterOAuth Class 87

FIGURE 8.3
Your account
information.

Great. Now that we have our OAuth class in place, we are going to add to it to sup-

port our API calls. But first, a little tweak.

Open index.php and save it under a new name. Call it oauth_index.php. We will be

changing index.php. This will allow us to create our own index.php file. By the way,

I used an underscore as a personal habit when I rename a core file from another

framework.

Edit oauth_index.php
If you do not have it open already, open the file oauth_index.php. Change the vari-

able $connection to $twitter in this line:

(old)

$connection = new TwitterOAuth(CONSUMER_KEY, CONSUMER_SECRET,
$access_token[‘oauth_token’], $access_token[‘oauth_token_secret’]);

(new)

$twitter = new TwitterOAuth(CONSUMER_KEY, CONSUMER_SECRET,
$access_token[‘oauth_token’], $access_token[‘oauth_token_secret’]);

Do the same for the following line:

(old)

$content = $connection->get(‘account/verify_credentials’);

88 HOUR 8: Twitter OAuth

(new)

$content = $twitter->get(‘account/verify_credentials’);

Finally, comment out the last line:

(old)

include(‘html.inc’);

(new)

//include(‘html.inc’);

We do not have to make this change. However, it’s easier to read that you are open-

ing a connection to Twitter. Thus, just for readability, we are changing the variable

name. Save and close this file.

We have one more file to edit.

Edit twitteroauth.php
Open the file twitteroauth/twitteroauth.php.

Change the following line:

(old)

public $format = ‘json’;

(new)

public $format = ‘xml’;

We are making this change because it’s easier to read raw XML than raw JSON.

Next, find the function oAuthRequest().

We are going to change this line:

$url = “{$this->host}{$url}.{$this->format}”;

To this line:

$url = “{$this->host}{$url}”;

We are doing this because in later hours, we are going to make JSON calls, so we will

define when to use XML and when to use JSON in another part of our code.

Now we are going to add some new lines.

Setting Up the twitterOAuth Class 89

At the end of the file, but before the last “}”, add the following:

###
########################### New Code ##################################
###

function getHomeTimeline($format, $id = NULL, $count = 60, $since
➥= NULL) {

if ($id != NULL) {
$api_call =

sprintf(“statuses/home_timeline/%s.%s”, $id, $format);
}
else {

$api_call =
sprintf(“statuses/home_timeline.%s”, $format);
return $this->get($api_call); }

}

We have added a function that will make the API call home_timeline for us. The rea-

son we want to have a separate function here in the class is to give us maximum

flexibility for default actions on an API call, as well as having all our calls in one

place in case we need to make any changes or worry about scope. Do not worry

about what this function is doing; we will cover it later in the hour.

Save and close.

Great! We have a basic working Twitter class object that we can call. So now, let’s

write some code to call it. Create a new file and call it firstcall.php. In this file, put

the following code:

<?php
ini_set(‘display_errors’, ‘1’);
include ‘oauth_index.php’;

global $twitter;
$messages=$twitter->getHomeTimeline(‘xml’);
echo ‘Home Timeline
 ‘;
print_r($messages);

?>

This first line is for reporting errors; this is useful for testing:

ini_set(‘display_errors’, ‘1’);

This line is where we initiate our OAuth sessions:

include ‘oauth_index.php’;

90 HOUR 8: Twitter OAuth

Now we set our $twitter object within scope of our function:

global $twitter;

And finally, we make our first API call using the OAuth class we put in place.

$messages=$twitter->getHomeTimeline(‘xml’);

Save and close.

Open the file firstcall.php in your web browser, and you should see a stream of con-

tent from Twitter. Congratulations! You have a working Twitter class.

How to Add New Functions to Your
Twitter Class Object
Now that we have a basic class, we can easily add more functions to it. So, let’s add

a function to allow us to get a user’s timeline using the API call ‘users_timeline’.

Edit twitteroauth.php
Let’s open twitteroauth.php again and add a new function. At the end of the file, but

before the last “}”, add the following code:

function getUsersTimeline ($format, $id = NULL, $since = NULL) {
if ($id != NULL) {

$api_call = sprintf(“statuses/user_timeline/%s.%s”, $id,
➥$format);

}
else {

$api_call = sprintf(“statuses/user_timeline.%s”,
➥$format);

}
if ($since != NULL) {

$api_call .= sprintf(“?since=%s”, urlencode($since));
}
return $this->get($api_call);

}

Next, open firstcall.php and find this line:

$messages=$twitter->getHomeTimeline(‘xml’);

Comment out this line:

//$messages=$twitter->getHomeTimeline(‘xml’);

How to Add New Functions to Your Twitter Class Object 91

Below the line that you commented out, add the following:

$messages=$twitter->getUsersTimeline(‘xml’, ‘perivision’);

This new function we created in our Twitter class does look a little like the

‘getHomeTimeline’ function. Next, we need to look at a few new lines. Let’s look at

the second and third lines:

if ($id != NULL) {
$api_call = sprintf(“statuses/user_timeline/%s.%s”, $id,

➥$format);
}

If we do not pass a value for $id in our function call, we will skip the following line

because the curl object via OAuth already knows who we are when we first created

the object. However, we will provide a value for $id, so let’s look at the next line:

$api_call = sprintf(“statuses/user_timeline/%s.%s”, $id, $format);

Remember the new line we added in firstcall.php?

$messages=$twitter->getUsersTimeline(‘xml’, ‘perivision’);

This line is going to call our new getUsersTimeline function in the Twitter class and

pass two values: ‘perivision’, which is assigned to $id, and ‘xml’, which is assigned to

$format. So, the variable $api_call will have the value of this string:

statuses/user_timeline/perivision.xml.

Now if we did not provide a value for $id, the following lines in our new function

will handle that contingency by assigning the viable $api_call with the string value

of statuses/user_timeline.xml:

else {
$api_call = sprintf(“statuses/user_timeline.%s”,

➥$format);
}

The Twitter API call user_timeline will provide the timeline of whichever credentials

were passed if an ID is not provided.

The next lines in our new function deals with an attribute of the Twitter API that

allows us to decide how far back in time to look for messages:

if ($since != NULL) {
$api_call .= sprintf(“?since=%s”, urlencode($since));

}

In this case, we did not pass a value for $since, so this attribute will be ignored and

the default value of 20 will be used.

92 HOUR 8: Twitter OAuth

The final line in our new function is something you have already seen before. This

line calls the private function that makes the actual API call to twitter.com:

return $this->APICall($api_call, true);

Save both files and open or refresh the web page firstcall.php. You should get a

stream of information, but this time from the Perivision Twitter account.

How Our Class Deals with Twitter
Connection Errors
Twitter is a great service, but it’s not perfect and sometimes is unavailable. When

this first started to happen, Twitter.com provided an error page, sometimes with the

picture of a whale trying to be supported by a collection of small birds, a.k.a the

FailWhale.

So, what do we do when we try to make a call and Twitter does not give us a reply

we expected? We place some code in our Twitter class to deal with this exception.

An exception is a generally accepted reserved word that deals with errors encoun-
tered by the program. In this case, we are taking exception a bit out of context
because a return from Twitter is not an error as much as a message saying the
system is not available.

Twitter.com’s API provides a variety of replies, as do most HTTP-based services.

However, in this hour, we will focus on whether we got a good reply.

Because Twitter provides a status code for each reply, we can check that status value

to see if we got a good return. The status code for a good return from Twitter is ‘200’.

So, all we need to do is check to see if we got ‘200’ as a status code.

Insert the following code into twitteroauth/twitteroauth.php below these lines:

curl_setopt($ci, CURLOPT_URL, $url);
$response = curl_exec($ci);
$this->http_code = curl_getinfo($ci, CURLINFO_HTTP_CODE);
$this->last_api_call = $url;

Code to insert:

$http_status = curl_getinfo($ci, CURLINFO_HTTP_CODE);
echo ‘status ‘.$http_status.’
’;
if ($http_status!=200) return $http_status;

By the
Way

Q&A 93

These three lines are fairly straightforward. The first line gets the status code from

the curl object. The next line “prints” the value of $http_status on the screen. The

third line is our ‘if’ statement. If the value of $http_status is not 200, then we return

whatever the value is.

In a proper application, we will want to deal with this exception in a more proper

manner; however, in our case, we simply want to know if the call worked.

There is no reason to keep this code because we will deal with this more properly

toward the end of the book, but you can keep it for now it you like.

Summary
In this hour, we implemented our OAuth class object that we will reply on and

expand upon throughout the rest of this book. Understanding the class object is not

only useful to our goals here in building Twitter applications, but good programming

in general. We also only touched on the basics of OAuth; however, there are many

great sources of detailed information on how OAuth works. You will find many such

links on docs.twitter.com.

Q&A
Q. When I first started programming with the Twitter API, I was using a sim-

ple username and password, and only recently it stopped working. Will
they ever bring it back?

A. Very unlikely. If you have any past code that used ‘Basic Auth’, you would be

advised to go back and update that code. With exception to public streams and

the various forms of search, access to Twitter requires the use of OAuth only.

94 HOUR 8: Twitter OAuth

Workshop
Quiz

1. What is a class object?

2. What is a callback URL?

3. What does the status code 200 mean?

Quiz Answers
1. An object is actually a discrete bundle of functions and procedures, all relating

to a particular real-world concept, such as a bank account holder or player

info in a computer game.

2. This is the URL Twitter will call when trying to verify your OAuth process.

3. It means the API cURL call you made resulted in a successful

return.

Exercises
1. Try changing the search from “perivision” to some other Twitter name.

2. Knowing the HTTP response code is very important when building a Twitter

client, try to find where the HTTP response code is returned within the

twitter.class and display it to the viewer using echo.

Expanding the Index File to Support Tabs 95

HOUR 9

Building a Simple Twitter
Client, Part I

What You’ll Learn in This Hour:
. How to create a simple framework for our Twitter client

. How to put tabs in HTML

. How to support parameters in your framework

Expanding the Index File to Support Tabs
First, we need to add a few tabs to our index.php file so that we can select between

reading home_timeline, mentions, and our direct messages. So, let’s create a new file

called header.inc, and we will put it in the includes folder. By the way, it is not nec-

essary to label header.inc with a .inc extension. This is a convention used by this

Author.

To know what page the user wants, we passed that page identifier in the URL link

and picked it up using the $_GET command:

<? $page = $_GET[‘page’]; ?>

<div id=”header”>
<div class=”header-bg”>

<div class=”header”>
twitterAPI in 24 hours.

You can add the following line optionally to help keep track of what hour you are

currently working on. Remember to update this as you move from hour to hour:

Hour 9

</div>

</div>

96 HOUR 9: Building a Simple Twitter Client, Part I

<!— main navigation —>
<div id=”nav-box”>

<ul id=”main-nav”>

Here you can see where we set the $page value:

Home
<a href=”/?page=mentions”

>Mentions
Messages

</div>

</div>

Save and close this file. Now let’s open the file index.php and add this file we just

created.

After this line:

include ‘includes/render.php’;

Add the following line:

include ‘includes/header.inc’;

Great. Save the file and close. Load index.php, and we should see our new tabs; they

should look something like Figure 9.1.

FIGURE 9.1
Tabs now added
to the top of
the web page.

Adding Support for Home Timeline 97

Adding Support for Home Timeline
First, we need to set a switch to call the correct set of functions.

Open includes/parseTwitter.php in your editor and add the following code at the end

of the file but before the ?>:

function getTwitterData($command) {

global $twitter;
switch ($command) {

case ‘timeline’:
{ $messages=$twitter->getHomeTimeline(‘xml’); return

➥call_timeline($messages); }
break;

case ‘mentions’:
{ $messages=$twitter->getMentions(‘xml’); return

➥call_timeline($messages); }
break;

case ‘direct’:
{ $messages=$twitter->getMessages(‘xml’); return

➥call_direct($messages); }
break;

}
}

This is a simple case routine that will not only make the correct API call for us, but

also pass the returned data to the correct parsing function. Now we need to define

the functions this case will call:

function call_timeline($messages){

We are going to use a PHP5 call called SimpleXMLElement(). Again, it’s not in the

scope of this book to explain PHP, but if you would like to know more, go to this

site: http://us3.php.net/simplexml:

$twitterReturn = new SimpleXMLElement($messages);

We are again using a counter ($i) to make sure our arrays are aligned:

$i=0;
foreach($twitterReturn->status as $status){

$updateTime[$i] = parseDate($status->created_at);
$update[$i] = $status->text;
$profile_image_url[$i] = $status->user->profile_image_url;
$screen_name[$i] = $status->user->screen_name;

$i++;
}

http://us3.php.net/simplexml

98 HOUR 9: Building a Simple Twitter Client, Part I

Now that we have Twitter attribute values in arrays, we are going to create another

associative array to hold the ones we just defined:

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;
$parsedReturn[‘profile_image_url’]=$profile_image_url;
$parsedReturn[‘screen_name’]=$screen_name;

return $parsedReturn;

}

Save your file and now open main.php.

Delete everything between the <?php and the ?> and replace them with these two

lines:

$twitterReturn = getTwitterData($page);
echo renderTweets ($twitterReturn);

This is the last file to edit. Open the file ‘twitteroauth/twitteroauth.php’ in your edi-

tor and add the following function at the bottom of the file but before the last “}”:

This will look alot like what we used in Hour 7 with the following exceptions:

function getHomeTimeline($format, $id = NULL, $count = 60, $since
➥= NULL) {

if ($id != NULL) {

Notice here that we have changed the first annotation to the $api_call variable.

This is because this part of the API call http://api.twitter.com/1/ is handled in the

OAuth class:

$api_call =
sprintf(“statuses/home_timeline/%s.%s”, $id, $format);

}
else {

$api_call =
sprintf(“statuses/home_timeline.%s”, $format);

}
if ($since != NULL){

$api_call .= sprintf(“?since_id=%s”,
urlencode($since));

$count=0;
}

Notice that both if statements offer to add a question mark. A more proper pro-

gramming technique would be to use switch or some control to change the question

mark to an ampersand if more than one variable is passed to this function.

http://api.twitter.com/1/

Adding Support for Mentions 99

However, we want to keep this simple to get the idea across. In addition, it’s not a

great idea to stack parameters—the results are not always guaranteed:

if ($count != 60 AND $count!=’’) {
$api_call .= sprintf(“?count=%d”, $count);

}
// Now we return this API call.

Here is the second change. We are now calling ‘get’ instead of ‘call_twitter’:

return $this->get($api_call);
}

Let’s save and close our files and give this a go. Load index.php, and you should

have something like we saw in Figure 9.1 but with different content. We have not

added new functionality to our application, but instead we have made our frame-

work a little more flexible.

Adding Support for Mentions
The next API call we are going to make is to get our mentions (statuses/mentions).

Remember that a mention in Twitter is any tweet that has your Twitter name in it

preceded by an ampersand. For example: “Chatted with @perivision at the twitter

hackup today.” This tweet will then show up in the statuses/mentions feed. If we have

a look at the parameters that the mention API call accepts, we will see that they are

the same as the home API call. These are the current parameters as listed in the

Twitter docs (http://dev.twitter.com/doc/get/statuses/mentions).

Parameters:

. since_id: Returns only statuses with an ID greater than (that is, more

recent than) the specified ID.

Example: http://api.twitter.com/1/statuses/mentions.xml?since_id=12345

. max_id: Returns only statuses with an ID less than (that is, older than) or

equal to the specified ID.

Example: http://api.twitter.com/1/statuses/mentions.xml?max_id=54321

. count: Specifies the number of statuses to retrieve. May not be greater

than 200.

Example: http://api.twitter.com/1/statuses/mentions.xml?count=200

http://dev.twitter.com/doc/get/statuses/mentions

100 HOUR 9: Building a Simple Twitter Client, Part I

. page: Specifies the page or results to retrieve. Note: there are pagination

limits. (More information on pagination limits can be found here: http:/

/apiwiki.twitter.com/Things-Every-Developer-Should-

Know#6Therearepaginationlimits.)

Example: http://api.twitter.com/1/statuses/mentions.xml?page=3

. trim_user: When set to either true, t or 1, each tweet returned in a timeline

will include a user object including only the status authors numerical ID.

Example: http://api.twitter.com/1/statuses/mentions.json?trim_user=true

. include_rts: When set to either true, t or 1,the timeline will contain native

retweets (if they exist) in addition to the standard stream of tweets.

Example: http://api.twitter.com/1/statuses/mentions.json?include_rts=true

. include_entities: When set to either true, t or 1, each tweet will include a

node called “entities,”. This node offers a variety of metadata about the

tweet in a discreet structure, including: user_mentions, urls, and hashtags.

Example: http://api.twitter.com/1/statuses/mentions.json?include_entities=true

We can use this to our advantage as we expand our classes, but for now, it’s enough

to make note of this, but the main point is to understand the variety of options we

have available to us. Many of these parameters only became available just recently.

Here is the code for our new call. Open the file ‘twitteroauth/twitteroauth.php’ in

your editor and add the following function at the bottom of the file but before the

last “}”:

function getMentions($format, $page = 0, $since_id=0) {
$api_call = sprintf(“statuses/mentions.%s”, $format);
if ($page) {

$api_call .= sprintf(“?page=%d”, $page);
}
if ($since_id) {

$api_call .= sprintf(“?since_id=%d”, $since_id);
}
return $this->get($api_call);

}

Notice that we did not write code to support all the parameters listed. However, the

code should be clear enough to add new parameters if desired.

Because the XML return for mentions is very much like the return for home_time-

line, we can use the same XML parser function as well as the same display. So revis-

iting our includes/parseTwitter.php file, we can use the same parsing XML for both

home_timeline and mentions.

http://apiwiki.twitter.com/Things-Every-Developer-Should-Know#6Therearepaginationlimits
http://apiwiki.twitter.com/Things-Every-Developer-Should-Know#6Therearepaginationlimits
http://apiwiki.twitter.com/Things-Every-Developer-Should-Know#6Therearepaginationlimits

Adding Support for Direct Messages 101

return call_ timeline($messages);
Let’s save our code and close. Load your index.php file, select the Mentions tab, and

you should see the 20 most recent messages with your Twitter name that you have

received. If you have yet to receive a mention before, you may want to ask a friend

to send you one or two.

Adding Support for Direct Messages
We have added two API calls, and now it’s time to add a third. By now, you should

see a pattern to how our framework is going to work. So, let’s add the API call for

getting direct messages that were sent to us.

Open the file ‘twitteroauth/twitteroauth.php’ in your editor and add the following

function at the bottom of the file but before the last “}”:

function getMessages($format, $page = 1, $since = NULL, $since_id = 0) {
$api_call = sprintf(“direct_messages.%s”, $format);
if ($since != NULL) {

$api_call .= sprintf(“?since=%s”, urlencode($since));
}
if ($since_id > 0) {

$api_call .= sprintf(“%ssince_id=%d”, (strpos($api_call,
“?since”) === false) ? “?” : “&”, $since_id);

}
if ($page > 1) {

$api_call .= sprintf(“%spage=%d”, (strpos($api_call,
“?since”) === false) ? “?” : “&”, $page);

}
return $this->get($api_call);

}

It looks pretty much like the rest of the API calls, doesn’t it? However, again, the

XML that is returned is slightly different, and again, we need to account for this.

What is different with the mention API call is the return. We cannot use the same

parser call as we used for the home API call because the XML is structured a little

differently.

Open ‘includes/parseTwitter.class.php’ in your editor and add the following code:

function call_direct($messages){

$twitterReturn = new SimpleXMLElement($messages);
$i=0;

102 HOUR 9: Building a Simple Twitter Client, Part I

Most of this code will look much like the function call_timeline() we defined in the

beginning of this hour. However, you can see that because the returned XML is

structured differently, we need to get our data differently:

foreach($twitterReturn->direct_message as $status){
$updateTime[$i] = parseDate($status->created_at);

$update[$i] = $status->text;
$profile_image_url[$i] = $status->sender->profile_image_url;
$screen_name[$i] = $status->sender->screen_name;

$i++;
}

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;
$parsedReturn[‘profile_image_url’]=$profile_image_url;
$parsedReturn[‘screen_name’]=$screen_name;

return $parsedReturn;
}

Let’s save our code and close. Load your index.php file, select the Messages tab, and

you should see the 20 most direct messages to you. If you have yet to receive a direct

message, you may want to ask a friend to send you one or two.

Summary
In this hour, we completed Part 1 of building a simple Twitter client. We added three

new API calls: home, getMentions, and getMessages. You should now have a pretty

good understanding of our Twitter framework and how to add new API calls to the

framework.

Q&A
Q. Is there a way to ask for only the fields I want from Twitter?
A. Unfortunately, no. Even if all you need is just a few fields, Twitter will provide a

feed with everything included. This may change in the future, however.

Q. Is there a way to use just one XML parser call instead of having different
ones for each API call?

A. Yes. Because the XML returns for the API calls are mostly the same, you could

write exception rules for various sets of API calls. However, this will make your

code messy and difficult for others to understand. In the interest of simplicity

and clarity, we have created separate function calls for various sets of API calls.

Workshop 103

Workshop

Quiz
1. True or False: A mention is any time your name shows up in the Twitter

stream.

2. True or False: The SimpleXMLElement is the only PHP library call I can use to

parse replies from Twitter.

Quiz Answers
1. False. Remember that a mention in Twitter is any tweet that has your Twitter

name in it with an ‘at’ symbol (@).

2. False. There are other XML parsing functions you can use. Also, Twitter can

return JSON as well.

Exercise
As you read in this hour, there are a number of parameters you can pass to Twitter to

refine what Twitter returns, including since_id, max_id, count, and page. Try each

parameter one at a time so you can experience how the returns are affected.

This page intentionally left blank

[(H3F)] 105

HOUR 10

Building a Simple Twitter
Client, Part II

What You’ll Learn in This Hour:
. How to send a message to Twitter

. How to send a direct versus a normal tweet

. How to sanitize messages

Updating and Adding New Files to
Support Input Text Field
Now that we have a simple Twitter client to read messages, we need to work on

making our client application send messages. The good news is that we can still use

our current framework with a few additional files. In addition, we will introduce a

few JavaScript calls to support user interaction.

First, we need to add to our index.php file to allow a user to type in a message.

Edit index.php
Open the file index.php, and after this line:

<title>twitterAPI 24</title>

Add the following line:

<script type=’text/javascript’ src=’js/base.js’></script>

Now we need to add a few more files to include; we will create them in a moment.

106 HOUR 10: Building a Simple Twitter Client, Part II

After the following line:

include ‘includes/header.inc’;

Add the following two lines:

include ‘includes/createMessage.php’;
include ‘sendMessage.php’;

Notice that we did not place sendMessage.php in the include folder. That is because

this file will be called by JavaScript and, thus, for simplicity, needs to live in the

same folder as our OAuth code.

Create createMessage.php
Let’s add a new file. Create a new file called ‘createMessage.php’ within the includes

folder and type in the following code:

<div class=”sendMessage”>
<div class=”messageTextBox”>
<form name=”sendMessForm” method=”get” action=”” class=”asholder”>

➥<label id=”prefex”></label>
<textarea id=”testinput” name=”sendMessField” class=”inputbox”

➥rows=”2” cols=”80” ></textarea>

<input class=”inputbox” type=”button” value=”Send”

➥onmouseup=”sendMessage()” />

</form>
<div id=”serverMessages”>
</div>

</div>
</div>

Then save this file and close it.

Edit main.css
Now let’s open css/main.css and add two entries.

After the following lines:

.tweet {
padding:0 10px;

}

Add the following lines:

.sendMessage {
padding: 15px 10px 0px;
}

Updating and Adding New Files to Support Input Text Field 107

.messageTextBox {
width: 600px;
}

Then save this file and close it.

Create base.js
Now that we have a text field and a Send button, we need some JavaScript code to

catch the button click and pass the message to a new PHP file we will create soon. If

you are not familiar with JavaScript, this might look a bit scary, but all we are really

doing here is making a call to our server, getting the response, and putting that

response on our page. This is known as an AJAX call:

<!--

function sendMessage(){
message = document.getElementById(“prefex”).innerHTML;
message += document.sendMessForm.sendMessField.value;
url=’sendMessage.php?message=’+message;
document.sendMessForm.sendMessField.value=’’;
document.getElementById(“prefex”).innerHTML=’’;
callPage(url, ‘serverMessages’);

}

//###
############

var k=0; req = Array();

function callPage(pageUrl, divElementId, loadingMessage, pageErrorMessage) {
if(!loadingMessage || loadingMessage==’’) loadingMessage = “ContentSet is

loading, Please Wait...”;
if(!pageErrorMessage || pageErrorMessage==’’) pageErrorMessage=”Error in

Loading page />”;
document.getElementById(divElementId).innerHTML = loadingMessage+’Calling

➥twitter...’;
try {
req[k] = new XMLHttpRequest(); /* e.g. Firefox */
} catch(e) {
try {
req[k] = new ActiveXObject(‘Msxml2.XMLHTTP’); /* some versions IE */
} catch (e) {
try {
req[k] = new ActiveXObject(‘Microsoft.XMLHTTP’); /* some versions IE */
} catch (E) {
req[k] = false;
}

}

108 HOUR 10: Building a Simple Twitter Client, Part II

}
req[k].onreadystatechange = function() {responsefromServer(divElementId,

➥pageErrorMessage);};
req[k].open(‘GET’,pageUrl,true);
req[k].send(null);

}

function responsefromServer(divElementId, pageErrorMessage) {
var output = req[k].responseText;
if(req[k].readyState == 4) {

if(req[k].status == 200) {
output = req[k].responseText;
document.getElementById(divElementId).innerHTML = output;
} else {
document.getElementById(divElementId).innerHTML =

➥pageErrorMessage+’\n’+output;
}

}
}

-->

Now let’s save and close the file.

Create sendMessage.php
This next file are going to create will be placed in the home or root directory of our

development environment. Create a new file called sendMessage.php and add the

following code:

<?php

include ‘oauth_index.php’;

$message=$_GET[‘message’];

$output=$twitter->updateStatus($message);
$twitterReturn = new SimpleXMLElement($output);
echo ‘Twitter said ‘;
print_r ($twitterReturn);

?>

Save and close this file.

Sending a Message to Twitter
Finally, we need to have a file to catch the newly created message and make the API

call. Open twitteroauth/twitteroauth.php.

Updating and Adding New Files to Support Input Text Field 109

FIGURE 10.1
Raw return
from sending a
message.

API Call for Direct Messages
Sending a direct message is different from sending a regular message and thus

requires a different API call. As such, we need to know when the user wants to send

a direct message and when the user wants to send a regular message. There are a

number of ways to approach this: One way is to simply look for a message that

starts with the letter “d” followed by a space as an indicator that the user wants to

send a direct message. Why is this? Because in the early days of Twitter, when it was

SMS only, the only way to send a direct message was to use the letter “d” and a

space followed by the Twitter name the message is to be delivered to, a space, and

then your message. Even now, we can type d <twittername> and a message, and

At the end of the file, but before the “} ?>”, add the following lines:

function updateStatus($status) {
$status = urlencode(stripslashes(urldecode($status)));
$api_call = sprintf(“statuses/update.xml?status=%s”,

➥$status);

We are going to add an echo statement here so that you can see the structure of

your API call, as we have done on other functions:

echo “<h4>$api_call</h4>
”;
return $this->post($api_call);

}

Save and close this file.

Open index.php, and let’s try sending our first message. Type something into the

text box and hit Send.

If you see something like Figure 10.1, you have successfully sent your first tweet

from an API call!

110 HOUR 10: Building a Simple Twitter Client, Part II

Twitter will automatically treat this as a direct message. There is a downside to this,

however. There are only 140 characters within a tweet, so we lose those characters to

the “d,” the space, the Twitter username, and another space. This may not seem like

much, but it adds up, especially if the Twitter user’s name is long.

To get around this, the Twitter API provides us with a separate API call for direct

messages. Because this is a separate process, we will explore this API in Hour 12,

“Direct Messages.” However, depending on what your Twitter client is going to do,

you may want to look for the “d” shortcut pattern and extend the number of char-

acters users can send in their message if you plan to implement a character counter

in your application.

Sanitizing Messages
Although our current implementation works, we need to account for a few things.

Because we are sending information over the Web back to our application, we need to

make sure that the characters we use are web safe. So, let’s add the following code to

our JavaScript to sanitize the message before we send it to our sendMessage.php file.

Edit base.js
Open base.js, and after the following line:

message += document.sendMessForm.sendMessField.value;

Add this line:

message=encodeURIComponent(message);

Just to be clear, the encodeURIComponent function will replace certain non-web safe

symbols with a URI code. This is much like the string replace function here, $mes-

sage = str_replace(“%23”, “#”, $message), but for all non web-safe characters.

Save and close this file.

Great! We now have a working Twitter client that can read messages as well as send

messages. We also implemented AJAX within our application. And it’s only Hour 10.

Summary
In this hour, we have finished up the basics for our simple Twitter application and set

the foundation for further expansion through the rest of book.

We also created our first AJAX call for sending messages, and we created a PHP file

for responding to the requests that come from our JavaScript AJAX call.

Workshop 111

Q&A
Q. How do you send a direct message from the message box in Twitter?
A. Type d, then a space, and then your message. This is one of many shortcuts

that you can use with Twitter.

Q. Why does Twitter have shortcuts?
A. Twitter started out as a SMS-only communication system. Using a single letter

was a simple way to send Twitter a command or indicate the type of message

being sent.

Workshop

Quiz
1. True or False: If, for some reason, a non-web safe character is sent to Twitter, it

will return an error.

2. True or False: If you wanted to, you could send a message through the normal

API and place the letter d, a space, and then a valid username, and it would

work just as well as using the direct message API call.

Quiz Answers
1. False. Most likely it will simply truncate the message and execute the requested

API request. However, ALWAYS be sure that any message you send to Twitter is

web-safe.

2. True for now. Although this can be done (there is no guarantee this will continue

to work), it’s not a good idea. However, many users still use short cuts, so it’s in

your best interest to look for a message that starts with a d, a space, and a valid

username, and then send it as a direct message through the correct API call.

Exercise
In this hour, we simply displayed what Twitter returns after sending a direct message.

Try displaying only the message you sent to Twitter. Hint: You would parse return in

a similar manner as you have parsed other returns from Twitter.

This page intentionally left blank

Types of API Method Calls 113

HOUR 11

Expanding Our Client for
More API Calls

What You’ll Learn in This Hour:
. How to add multiple tabs to our UI

. More statuses API calls

. How to send a retweet through the API

. The various ways to handle retweets

Types of API Method Calls
Congratulations. This is Hour 11, and we have already created a Twitter client appli-

cation. But we have only scratched the surface of what can be done with Twitter

through the API set. We will not go through every API call in detail, because that

would make this book so large we would have to break into multiple volumes. But

we will list and discuss them all so that you can get an idea of what options you

have for the Twitter application you would like to build. At the time of this writing,

the Twitter development documents break up the API sets into the following groups:

(http://dev.twitter.com/doc)

. Timeline

. Status

. User

. List Members

. List Subscribers

. Direct Message

http://dev.twitter.com/doc

114 HOUR 11: Expanding Our Client for More API Calls

. Friendship

. Social Graph

. Account

. Favorite

. Notification

. Block

. Spam

. Saved Searches

. OAuth

. Local Trends

. Geo

. Help

. Search

Quite a lot, isn’t there? A vast majority of our time will be spent around the

Timeline, Status, and Search methods. As such, we are going to spend this hour

updating our User Interface (UI) so that we can support more API calls. By the end

of this hour, we will have all the Timeline methods covered.

Adding Tabs to Our UI
To make it a bit easier for us to add new API calls, we need more buttons in our UI.

We will also have these tabs organized such to reflect how Twitter currently has their

API reference documents organized as well as the order of what we will be building

in this book. So, let’s open includes/header.inc and expand the code.

Edit header.inc
Erase everything after the line <!-- main navigation --> and add the following lines:

<div id=”nav-box”>
<div class=”nav-box”>

<ul id=”globalnav”>

Timeline

Public
Home

Adding Tabs to Our UI 115

User
Mentions

Retweeted By Me
Retweeted To Me
Retweeted Of Me

List

User

Direct Message

Favorites

Search

Saved Search

</div>

</div>
</div>

Save and close. Now let’s create a new CSS file to support these tabs:

Create nav.css
Create a new file in your css folder called nav.css and add the following code:

#globalnav {
position:relative;
float:left;
width:100%;
padding:0 0 1.75em 1em;
margin:0;
list-style:none;
line-height:1em;

}

#globalnav LI {
float:left;
margin:0;
padding:0;

}

#globalnav A {
display:block;
color:#444;
text-decoration:none;
font-weight:bold;
background:#c0deed;

116 HOUR 11: Expanding Our Client for More API Calls

margin:0;
padding:0.25em 1em;
border-left:1px solid #fff;
border-top:1px solid #fff;
border-right:1px solid #aaa;

}

#globalnav A:hover,
#globalnav A:active,
#globalnav A.here:link,
#globalnav A.here:visited {

background:#a8d0e3;
}

#globalnav A.here:link,
#globalnav A.here:visited {

position:relative;
z-index:102;

}

/*subnav*/

#globalnav UL {
position:absolute;
left:0;
top:1.5em;
float:left;
background:#a8d0e3;
width:100%;
margin:0;
padding:0.25em 0.25em 0.25em 1em;
list-style:none;
border-top:1px solid #fff;

}

#globalnav UL LI {
float:left;
display:block;
margin-top:1px;

}

#globalnav UL A {
background:#a8d0e3;
color:#fff;
display:inline;
margin:0;
padding:0 1em;
border:0

}

#globalnav UL A:hover,
#globalnav UL A:active,
#globalnav UL A.here:link,

New Timeline API Calls: Retweeted 117

#globalnav UL A.here:visited {
color:#444;

}

Save and close. We have one more file to go. We need to update index.php to see

the new css file.

Edit index.php
After this line:

<link href=”css/main.css” rel=”stylesheet” type=”text/css” media=”screen” />

Add the following line:

<link href=”css/nav.css” rel=”stylesheet” type=”text/css”
media=”screen” />

Save and close. Now open index.html in your browser, and you should see some-

thing like Figure 11.1.

New Timeline API Calls: Retweeted
We are going to create three new API calls (retweeted by me, to me, and of me), and

because of how we created our code structure, you will find that it will be very easy

because we are cutting and pasting code from functions we have already created.

However, let’s explore these three calls first.

FIGURE 11.1
New tabs are
now added to
the top of the
web page.

118 HOUR 11: Expanding Our Client for More API Calls

Retweeted by Me
Depending on the Twitter account you are using and the type of client application

you have used, you may or may not get returns from this API call. That is because

the retweeted_by_me API call relies on the application to send a retweet using a cer-

tain format. We will cover this later. If the application you have been using to

retweet does not use the retweet API call, you may not see any returns, or they may

be older returns. If this is the case, the best thing to do is log in to Twitter.com and

retweet a message; then return to your code. You should see your retweeted message.

Retweeted to Me and of Me
The retweeted_to_me and retweeted_of_me API calls are very similar. So much so, you

may find the same display when you click between the two buttons. That is because a

message that is retweeted_to_me are retweets from people in your friends list. Message

that are retweeted_of_me are from anyone—a slight but important difference.

Now let’s add a few new API calls.

Edit parseTwitter.php
We have added new tabs to our UI. Now we need to account for the new tabs in our

parsing statement. Open parseTwitter.php, and after the following lines:

case ‘direct’:
{ $messages=$twitter->getMessages(‘xml’); return

➥call_direct($messages); }
break;

Add these lines:

case ‘rt_by_me’:
{ $messages=$twitter->getRTByMe(‘xml’); return

➥call_timeline($messages); }
break;

case ‘rt_to_me’:
{ $messages=$twitter-> getRTtoMe (‘xml’); return

➥call_timeline($messages); }
break;

case ‘rt_of_me’:
{ $messages=$twitter-> getRTofMe (‘xml’); return

➥call_timeline($messages); }
break;
}

As you can see, we have extended our case statement. Also, because the XML

returns of the new API calls are similar to our home_timeline call, we will simply

reuse the same function call to display our returns.

Save and close.

New Status API Calls: Retweeted 119

Edit twitteroauth.php
Now that we have the new API calls in parseTwitter, we need to add functions to

twitteroauth.php to catch those calls.

Open twitteroauth.php and add the following lines at the end of the file, but before

‘} ?>’:

function getRTByMe() {
$api_call = ‘ statuses/retweeted_by_me.xml’;
return $this->get($api_call);

}

function getRTToMe() {
$api_call = ‘statuses/retweeted_to_me.xml’;
return $this->get($api_call);

}

function getRTOfMe() {
$api_call = ‘statuses/retweets_of_me.xml’;
return $this->get($api_call);

}

If these functions seem a lot like our getHomeTimeline function call, it’s because

they are. Many API calls to Twitter are similar in fashion, and we get to take advan-

tage of this. However, what is different is that we are not using the sprint() function

anymore. Although we could have continued to use the sprint() functions, the extra

code will only make reading more confusing as well as cause extra typing for you.

Save and close this file.

Now let’s give it a try. Load index.php and click the three new function calls we just

created. You have three new functional API calls!

New Status API Calls: Retweeted
The retweet API call is not required because it’s still a convention to prepend a mes-

sage with the letters ‘rt’ and the tweeter’s name. However, this introduces extra char-

acters, and if the original message is close to 140 characters, the addition of ‘rt’ and

the tweeter’s name could put it over. In addition, if you wanted to trace back a mes-

sage that generated the retweet in the first place, you would have to search all

tweets with this message or keep a log yourself. To deal with this issue, as well as

make it more feasible to display related tweets inline, the Twitter API has a method

called retweet that has one required input: the ID of the tweet to be retweeted.

120 HOUR 11: Expanding Our Client for More API Calls

Retweet
Now this is tricky; in order for our user to retweet a message, we need to offer a

Retweet button, which needs to pass the ID of that message back to the server. There

are two ways to do this. We can create a dumb button that makes a unique call

back to the server with the message ID and thus load a new page, or we can make

an AJAX call. The AJAX call is a bit more involved but provides a far superior user

experience.

We need to add a few lines of code to our framework, so we are going to add a case

switch here.

Edit sendMessages.php
After this line:

$message = $_GET[‘message’];

Add the following:

$id = $_GET[‘id’];
$command = $_GET[‘command’];

switch ($command) {
case ‘’:

{ echo ‘Err: No command found’; }
break;

case ‘update’:
{ $output=$twitter->updateStatus($message); }
break;

case ‘retweet’:
{ $output=$twitter->retweet(‘xml’, $id); }

break;
}

Save and close.

Edit twitteroauth.php
Next we need to pass the retweet request on to Twitter, so let’s edit twitteroauth.php.

Open twitteroauth.php and add the following lines at the end of the file, but before

‘} ?>’:

function retweet($format, $id = NULL) {
if(!$id) { return ‘Err; cannot retweet. no id found’; }

$api_call = sprintf(‘statuses/retweet/%s.%s’, $id,
➥$format);

return $this->post($api_call);
}

New Status API Calls: Retweeted 121

Edit parseTwitter.php
Once we get our return from Twitter, we need to parse. Open parseTwitter.php:

After this:

foreach($twitterReturn->status as $status){
$updateTime[$i] = parseDate($status->created_at);

$update[$i] = $status->text;

Add this:

$id[$i] = $status->id;

After this:

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;

Add this:

$parsedReturn[‘id’]=$id;

Edit render.php
And of course, we need to modify how we render so that we can provide the user

with a retweet button. We are just using letters, here, but you could replace this with

an icon. Open render.php:

After this:

for($i=0; $i<$num; $i++){
$updateTime = $parsedReturn[‘updateTime’][$i];
$update = $parsedReturn[‘update’][$i];

Add the following line:

$id = $parsedReturn[‘id’][$i];

After this:

$output.= “<tr><td><div id=’$screen_name’ class=’mess-
pic’ >

<img src=’$profile_image_url’/ width=’48px’
height=’48px’>

$screen_name_abv</div>

Add the following lines:

<div class=’mess-actions’>
RT</div>

122 HOUR 11: Expanding Our Client for More API Calls

Edit main.css
We need to make some space for our retweet button, so lets make some via our CSS

file. Open main.css:

Add this at the end of the file:

.mess-actions{
float:left; padding-left:3px; width:10px;
}

Edit base.js
We will add a function in our javascript file to catch the users click. Add this at the

end of the file of base.js:

function retweet(mess_id){
alert(‘retweet ‘+mess_id);

url=’sendMessage.php?command=retweet&id=’+mess_id;
callPage(url, mess_id);

}

If you did not already know, the JavaScript function ‘alert()’, which is built in to

JavaScript, will pop up a window and stop any further execution of JavaScript code.

This serves as a very useful debugging tool. If everything went well with this call,

you can comment out or remove this line.

retweets/id, id/retweeted_by, id/retweeted by/ids
We are not going to write code for the next three API calls, but I do want to cover

them briefly. You can find this and more information in the Twitter docs. (http://dev.

twitter.com/doc/get/statuses/retweets/:id)

retweets/id—http://api.twitter.com/1/statuses/retweets/id.format

Retweets give up to 100 retweet status (messages) based on a given status ID.

In other words, if we pass a status id, as we did to create a retweet to the sta-

tus/retweets API call, we would get back up to 100 statuses that are retweets of

the original status. The value of this is not the actual status, because they

would all be the same, RT @<screen_name> <original message>, but instead

the list of people who retweeted the original tweet.

id/retweeted_by—http://api.twitter.com/1/statuses/id/retweeted_by.format

Show user objects of up to 100 members who retweeted the status represent-

ed by ID.

http://dev.twitter.com/doc/get/statuses/retweets/:id
http://dev.twitter.com/doc/get/statuses/retweets/:id
http://api.twitter.com/1/statuses/retweets/id.format
http://api.twitter.com/1/statuses/id/retweeted_by.format

Workshop 123

id/retweeted_by/ids—http://api.twitter.com/1/statuses/id/retweeted_by/ids.

format

Note ids here refers to the support of multiple ids that can be passed

Show user IDs of up to 100 users who retweeted the status represented by ID.

Keep in mind this will only return users’ IDs.

Summary
In this hour, we expanded the UI of our application to support tabs, which we will

need as we include more and more API calls. We also introduced the concept of

retweeting. The various ways to read a retweet include messages retweeted by the

user, messages retweeted to the user, and retweets about the user.

We also dealt with passing a message ID back to our script from the client using

JavaScript, which we will see again in coming hours.

Q&A
Q. Is ‘RT’ a shortcut like ‘d’?
A. No. RT was never officially supported by Twitter. It was a convention that

many people and later Twitter programmers, like you, implemented.

Q. Because the difference between retweeted_to_me and retweeted_of_me is
so slight, do I really need to support both in my application?

A. It depends on what you are trying to accomplish, but for most basic applica-

tions, you could get away with just retweeted_of_me.

Workshop

Quiz
1. What are the three different types of retweeted messages?

2. Because ‘RT’ is only a convention, can I ignore it in my application?

http://api.twitter.com/1/statuses/id/retweeted_by/ids

124 HOUR 11: Expanding Our Client for More API Calls

Quiz Answers
1. The three types are retweeted_by_me, retweeted_to_me, and retweeted_of_me.

2. No, it’s only a convention; however, many people and older programs still fol-

low this convention, so you may want to look for a message starting with or

containing a ‘RT’ and then decide what you should do based on what your

application is trying to accomplish. Caution, many users will us RT but change

the message somewhat.

Exercise
Although we did not code an example for any of the Retweet API methods, pick one

and implement it into our sample application.

Sending a Direct Message 125

HOUR 12

Direct Messages

What You’ll Learn in This Hour:
. Send direct messages through the API

. Test for the existence of friendships between users

. How to delete direct messages using destroy method

Sending a Direct Message
Although we have briefly discussed direct messages in Hour 10, in this hour we add

support for sending direct messages, as well as a few other methods. We will also

look at another set of API calls, called friends, in order to know if we can send a

direct message in the first place.

Adding UI Elements for Direct Messages
However, the first thing we will do is revisit reading our direct messages. Because we

already have this in our API set, we just need to populate the button on our UI.

Edit index.php
After this line:

<meta charset=”utf-8”>

Add this line:

$nav = $_GET[‘nav’];

Edit header.inc
After these lines:

126 HOUR 12: Direct Messages

Retweeted Of Me

<? } ?>

Add the following lines:

<a href=”/?nav=direct” <? if($nav==’direct’) echo
➥‘class=”here”’; ?> >Direct Message

<? if($nav==’direct’) { ?>

Direct Message

<? } ?>

Testing if a Direct Message Can Be Sent
Now that we have that in place, let’s create an API call that deals with sending

direct messages.

In Twitter, you can send a direct message only to someone who follows you. If the

Twitter user does not follow you, you will get back an error. So, before we send our

direct message, we should check to see whether the Twitter user is following us. That

means a new API call: friendships/exists.

This will be a new type of API call that we have not seen before. This call returns a

simple true or false. We pass two parameters: the Twitter name of user A and the

Twitter name of user B. If Twitter user A follows user B (A->B), Twitter will return a

value of true. If not, it returns a value of false.

There are a few ways to determine if a direct message can be sent or not:

. Get a list of IDs of every follower a user has. Then check to see if the Twitter

ID displayed in the message stream is contained within this list. The only

problem with this option is what do you do if the user has a very large

number of followers? The current paging limit is 5,000 IDs per page. This

could become cumbersome if the user has a lot of followers: 20,000 follow-

ers is not that rare.

. Get a list and store it in a database. This would be the more typical solu-

tion for a high-level functioning Twitter application. You would go through

the list of pages of follower IDs, store them in a database, and then make

calls as each new Twitter ID is found in the incoming stream.

. Check one at a time at the moment the user tries to create a message.

That is the approach we are going to use here. This keeps the API calls to a

Adding Direct Message API Support 127

minimum and is the easiest to code as a book example. However, this is

not practical if we need to determine a large number of friendship relation-

ships at once. It also has the drawback that you cannot indicate to the user

ahead of time if someone can receive a direct message or not.

. Send the message and alert the user if an error has occurred. This is similar

to the previous point but instead of testing is a friendship exists, you look

for an error from Twitter. This is not recommended since it reflects poor cod-

ing techniques as well as depends on the Twitter error code not changing.

Because we are going to check the friendship status only after the direct message

button or the letters DM in our case were clicked, we will have two events to man-

age. First, we are going to populate the message box with the “d” shorthand and the

Twitter name we want to send the direct message to. Second, within the

sendMessage.php file, we will detect for that shorthand and use the proper API

method. The reason we want to do this is to support the older shorthand of using

the letter d and the username that some Twitter users still employ. We are using this

approach to help illustrate how to deal with short hand. In a typical application,

you would use other means to indicate that a message is a direct message.

Here is what an example call would look like:

http://api.twitter.com/1/friendships/exists.xml?user_a=tweetapi24&user_b=
➥perivision

We need two Twitter names to make this work: the name of the user and the name

of the person who we want to send the direct message to. We will pass those names

to the API, and if we get a true value back, we will allow the user to send a message.

If we get back a false value, we will pop up a warning that the direct message will

not go through. Of course, we could accomplish the same thing by simply trying to

send the message and look for the error response back from Twitter, but this is a

book on Twitter API programming, so we are going to do it the more formal way.

Adding Direct Message API Support
In this section, we add direct message API support.

Edit Render.php
We are going to add another mouse rollover action to our UI. We will add the letters

“DM” under the “RT” we created in Hour 11:

global $twitterName;

128 HOUR 12: Direct Messages

After this line:

function renderTweets ($parsedReturn){

Add this line:

global $twitterName;

Edit this line:

RT</div>

To read:

RT

This will remove “</div>”.

Now add the following under the line we just edited:

DM
</div>

Open index.php, and we should now see a ‘DM’ under our ‘RT’ in the Twitter

stream.

Edit base.js
The next step is to populate the message box with the letter “d” and the screen

name of the person we want to send the direct message to. We also want to check to

see whether the user is following us. We will initiate both actions in this JavaScript

function call.

Add the following function after the ‘retweet()’ function:

function direct(nameA, nameB){

document.getElementById(“serverMessages”).innerHTML =
➥‘Checking... ‘;

document.sendMessForm.sendMessField.value=’d ‘+nameA+’ ‘;

Here we are defining our URL to call sendMessage.php and pass the two names we

want to compare:

url = ‘sendMessage.php?command=testFriendship¶meterA=
➥’+nameA+’¶meterB=’+nameB;

callPage(url, ‘serverMessages’);
}

Adding Direct Message API Support 129

Edit sendMessage.php
Now we need to catch our new DM request in the sendMessage.php file. So, let’s add

a few more lines of code.

After this line:

$id = $_GET[‘id’];

Add the following lines:

$parameterA = $_GET[‘parameterA’];
$parameterB = $_GET[‘parameterB’];

Notice that we have made our variables more generic; that will allow us to use these

over again for other calls. We have chosen to make these variables generic for illus-

trative reason for this book.

Next, we need to add a new case to our switch.

After these lines:

case ‘retweet’:
{ $output=$twitter->retweet(‘xml’, $id); }
break;

Add the following lines:

case ‘direct’:
{ $output=$twitter->sendDirectMessage(‘xml’, $id,

➥$message); }
break;

case ‘testFriendship’:
{ $output=$twitter->friendshipExists($parameterA,

➥$parameterB);
if(stristr($output, ‘false’)) echo ‘<h3>This

➥person does not follow you. They may not receive the message</h3>’;
return; }

break;

Edit twitteroauth.php
The friendships/exists API method we are going to call will be a bit different from

the other API calls we have been making, mostly because all we need is a true or

false based on two parameters.

At the end of the file, but before the last brace }, add the following lines:

function friendshipExists($a, $b){
$api_call = “ friendships/exists.xml?user_a=$a&user_b=$b”;

return $this->get($api_call);
}

130 HOUR 12: Direct Messages

The friendships/exists is not the only API call we could have made here. We could

have called friendships/show. Here is an example:

http://api.twitter.com/1/friendships/show.xml?source_id=3191321&target_scre
en_name=noradio

The reply would be the following:

<relationship>
–
<target>
<screen_name>ev</screen_name>
<id_str>20</id_str>
<followed_by type=”boolean”>true</followed_by>
<following type=”boolean”>true</following>
<id type=”integer”>20</id>
</target>
–
<source>
<want_retweets nil=”true”/>
<marked_spam nil=”true”/>
<all_replies nil=”true”/>
<screen_name>noradio</screen_name>
<id_str>3191321</id_str>
<blocking nil=”true”/>
<followed_by type=”boolean”>true</followed_by>
<notifications_enabled nil=”true”/>
<can_dm type=”boolean”>true</can_dm>
<following type=”boolean”>true</following>
<id type=”integer”>3191321</id>
</source>
</relationship>

So, although we get more information this way, we do not get anything that we

would act upon for our requirement. By using friendships/exits, we can use an

‘if(stristr)’ statement and look for true or false.

Okay, let’s give it a try. Open index.php, and click DM from any Twitter name that

you know does not follow you. You should get something like the screenshot in

Figure 12.1.

Now let’s try sending a direct message. Click the DM of a Twitter user who you know

is following you and send them a message.

You should get something like the screenshot in Figure 12.2.

There are few other direct message API calls available to us, so let’s add them to our

application.

Adding More Direct Message API Support 131

FIGURE 12.1
Screenshot
showing the
Not Following
warning.

FIGURE 12.2
Screenshot
showing the
Following con-
firmed mes-
sage.

Adding More Direct Message API
Support
Now let’s add more direct message API support.

Edit twitteroauth.php
After this code:

function getMessages($format, $id = NULL, $count = 60, $since =
➥NULL) {

$api_call = sprintf(“direct_messages.%s”, $format);
if($since != NULL){

$api_call .= sprintf(“?since_id=%s”,
➥urlencode($since));

$count=0;
}
if ($count != 60 AND $count!=’’) {

$api_call .= sprintf(“?count=%d”, $count);
}
return $this->get($api_call);

}

132 HOUR 12: Direct Messages

Add the following lines:

function getMessagesSent($format, $id = NULL, $count = 20, $since
➥= NULL) {

$api_call = sprintf(“direct_messages/sent.%s”, $format);
if($since != NULL){

$api_call .= sprintf(“?since_id=%s”,
➥urlencode($since));

$count=0;
}
if ($count != 20 AND $count!=’’) {

$api_call .= sprintf(“?count=%d”, $count);
}
return $this->get($api_call);

}

Edit parseTwitter.php
After this code:

case ‘direct’:
{ $messages=$twitter->getMessages(‘xml’); return

➥call_direct($messages); }
break;

Add the following lines:

case ‘directSent’:
{ $messages=$twitter->getMessagesSent(‘xml’); return

➥call_direct($messages); }
break;

Edit header.inc
After this code:

Direct Message

Add the following line:

Direct Messages Sent

The Destroy API Method
There is one more direct message API method we did not cover: direct_messages/

destroy. This is for direct messages that have been sent to you. Yes, it would be great

if you could delete a direct message that you sent, but alas, that is not the case. So,

never tweet in anger. In addition, your message is not removed off the server, it’s

Workshop 133

simply marked as deleted. It’s up to the client application to respect this tag. This

may change in the future.

Here is the format of the destroy call:

http://api.twitter.com/version/direct_messages/destroy/:id.format

Summary
In this hour, we explored the direct message methods. To ensure that we can send a

direct message, we also learned how to test whether two users are friends with each

other—a requirement for a direct message to be successfully sent. We also learned

that we cannot take back a direct message once it’s sent. So, think before you tweet.

Q&A
Q. Can I send a direct message without using the API?
A. Yes. You can send a normal message by placing a d and the name of a valid

user who is following you. This is not recommended, however.

Q. Can I use Destroy to delete a direct message I sent?
A. No. Destroy will delete messages sent to you.

Workshop

Quiz
1. True or False: For a friendship to exist, both you and you friend must follow

each other.

2. True or False: Using the destroy method on a message you have sent will not

remove the message.

3. True or False: If you send a direct message to someone who does not follow

you, they will get a request to follow you so that your message can go through.

http://api.twitter.com/version/direct_messages/destroy/:id.format

134 HOUR 12: Direct Messages

Quiz Answers
1. False. All that is required for someone to receive a direct message is that they

follow the sender. The sender does not need to follow the recipient of the direct

message.

2. True. You can only destroy messages that have been sent to you. Hopefully this

is changed in the future.

3. False. The target of the direct message will not receive any alerts. As such, it’s

up to the sender to let the recipient know they cannot receive a direct message.

Exercises
1. We did not implement the Destroy method in this hour. As an exercise, let’s

implement it now.

Because you can only destroy a direct message that was sent to you, you will

need to create a second twitter account or get a friend to send you a few direct

messages. Remember, you need the message ID to destroy this message. Look

back to Hour 11 to remind yourself how to do this.

2. Because we can simply look for an error from Twitter when we try to send a

direct message instead of checking for a friendship, try changing your code to

skip the friendship checking procedures and instead simply display the error

message Twitter provides you.

What Is a List? 135

HOUR 13

Lists

What You’ll Learn in This Hour:
. What is a Twitter list?

. The List Timeline resources

. The List Members resources

. The List Subscribers resources

. A new approach to restful calls not seen so far

. How to use the DELETE cURL method and what to do if your host envi-
ronment does not support it

What Is a List?
Lists in Twitter are interesting—as you would guess, they are lists of Twitter accounts.

For something so simple, there are lots of API methods to support it. Most of them

around the identification of who is on a list or who is following a list. But first, let’s

get to know what a list is. On the @perivision account is a list called news-feeds. The

members of this list are a few major news outlets. When you view a feed based on a

list, it’s the same as viewing any other feed.

Based on such a simple concept, you might be surprised at the number of API meth-

ods Twitters offers at http://dev.twitter.com/doc. Click on lists on the right. Here is

the current list:

. http://dev.twitter.com/doc/post/:user/lists

. http://dev.twitter.com/doc/post/:user/lists/:id

. http://dev.twitter.com/doc/get/:user/lists

. http://dev.twitter.com/doc/get/:user/lists/:id

http://dev.twitter.com/doc
http://dev.twitter.com/doc/post/:user/lists
http://dev.twitter.com/doc/post/:user/lists/:id
http://dev.twitter.com/doc/get/:user/lists
http://dev.twitter.com/doc/get/:user/lists/:id

136 HOUR 13: Lists

. http://dev.twitter.com/doc/delete/:user/lists/:id

. http://dev.twitter.com/doc/get/:user/lists/:id/statuses

. http://dev.twitter.com/doc/get/:user/lists/memberships

. http://dev.twitter.com/doc/get/:user/lists/subscriptions

. http://dev.twitter.com/doc/get/:user/:list_id/members

. http://dev.twitter.com/doc/post/:user/:list_id/members

. http://dev.twitter.com/doc/post/:user/:list_id/create_all

. http://dev.twitter.com/doc/delete/:user/:list_id/members

. http://dev.twitter.com/doc/get/:user/:list_id/members/:id

. http://dev.twitter.com/doc/get/:user/:list_id/subscribers

. http://dev.twitter.com/doc/post/:user/:list_id/subscribers

. http://dev.twitter.com/doc/delete/:user/:list_id/subscribers

. http://dev.twitter.com/doc/get/:user/:list_id/subscribers/:id

It would not be practical to try to add each method to our sample application, so we

are going to add only the ones needed to create and display a list. But we will go

through these in more detail at the end of the hour. However, we need to point out a

few odd things about these methods and deal with them within our code.

Formal Use of GET, POST, and DELETE
You may notice that many of the methods defined here are duplicates. So, how do

we tell them apart and what do they do differently? Let’s take user/lists, for example.

The API method user/lists can do two things. It can create a list, or it can list a user’s

list—a list of a list if you like. Private lists are not included unless it’s your own list

you are accessing.

If this seems confusing, that’s because it is. The difference between these two API

calls is in the way you make the call. If you make a GET call, Twitter interprets this

as a request to get a list of the user’s lists. If you make a POST call, Twitter interprets

this as a request to create a list.

If you look again at the list, you may notice that user/:id/subscribers is listed three

times! We already know that there is a GET and a POST option. What would be the

third? DELETE. DELETE unsubscribes the authenticated user from the specified list.

But what if your cURL implementation does not support DELETE?

http://dev.twitter.com/doc/delete/:user/lists/:id
http://dev.twitter.com/doc/get/:user/lists/:id/statuses
http://dev.twitter.com/doc/get/:user/lists/memberships
http://dev.twitter.com/doc/get/:user/lists/subscriptions
http://dev.twitter.com/doc/get/:user/:list_id/members
http://dev.twitter.com/doc/post/:user/:list_id/members
http://dev.twitter.com/doc/post/:user/:list_id/create_all
http://dev.twitter.com/doc/delete/:user/:list_id/members
http://dev.twitter.com/doc/get/:user/:list_id/members/:id
http://dev.twitter.com/doc/get/:user/:list_id/subscribers
http://dev.twitter.com/doc/post/:user/:list_id/subscribers
http://dev.twitter.com/doc/delete/:user/:list_id/subscribers
http://dev.twitter.com/doc/get/:user/:list_id/subscribers/:id

Implementing the List API into Our Application 137

There is a workaround for clients that cannot issue DELETE requests; instead, use

POST with the added parameter _method=DELETE.

Fortunately for us, taking the extra step of separating the function call from the

actual API method request means we can deal with these new approaches fairly eas-

ily. So, let’s add a few List methods to our application. We’ll take a slightly different

approach from the methods we have placed so far. This time, we are going to make

a call to Twitter to get a list of our list. Yes, a list of a list. We will display the list and

create a hyperlink on each list to make a call to that list and display the list’s

Twitter stream. That may sound a bit confusing, but it will make perfect sense after

we put the code in place and try it out.

If you have not created a list before, it’s easy to do so from the Twitter website, as

you can see in Figure 13.1.

Implementing the List API into Our
Application
Because we are here to learn about the Twitter API, let’s create a list using an API

call. We are going to take a slightly different approach. This time, we are going to

create a new page when we click the List button. So, let’s create that first. Open the

index.php page and save that code as list.php. Basically we are making a copy of

index.php and calling it list.php. Keep the file open; we need to edit a few things.

Edit list.php
Remove this line:

include ‘includes/create_message.php’;

Then remove this line:

<? include ‘main.php’; ?>

FIGURE 13.1
Creating a list
on the Twitter
website.

138 HOUR 13: Lists

After this line:

<div class=”container”>

Add the following lines:

<p />
<form name=’createlist’>
<input type=”text” name=”inputbox” value=””>
<input type=button OnClick=”createListItem(this.form);” value=”Create

➥a new list”>
</form>
<?php getTwitterData(showList); ?>

Edit base.js
Now we need to add a few lines in our JavaScript file to support the button we just

put in.

Let’s add this function after the direct function:

function createListItem(form) {

url=’commandLine.php?command=createList&name=’+form.inputbox.value;
callPage(url, ‘serverMessages’);

}

Because we are going to make an AJAX call, we need a file to call on the remote

server just like we did with sendMessage.php. We will call this file

commandLine.php because we will use this to respond to single requests that does

not refresh the page.

Create commandLine.php
Let’s create a new file at the root directory and call it ‘commandLine.php’.

Add the following lines:

<?php

$command=$_GET[‘command’];
$name = $_GET[‘name’];
include ‘oauth_index.php’;

switch ($command) {
case ‘’;
case ‘createList’:

{ $messages=$twitter->createList($name); echo ($messages); }
break;

case ‘deleteList’:

Implementing the List API into Our Application 139

{ $messages=$twitter->deleteList($name, $twitterName); echo
➥($messages); }

break;
}
?>

Edit twitteroauth.php
To support our new call, let’s add a new function at the end of the file

twitteroauth.php but before the last }:

function createList($name , $twitterName){
$api_call = $twitterName.’/lists/’.$name.’.xml’;
return $this->post($api_call);

}

Now that we have created a few lists, let’s edit our application to display that list

and the feeds for each list item.

Edit header.inc
First, we need to add the correct UI elements. We are going to add only one button

to our list tab, and that button will call our Twitter account and display the lists we

can create.

After these lines:

<a href=”/?nav=direct” <? if($nav==’direct’) echo
➥‘class=”here”’; ?> >Direct Message

<? if($nav==’direct’) { ?>

Direct Messages

➥received
Direct Messages

➥Sent

<? } ?>

Add the following lines:

<a href=”/?nav=list” <? if($nav==’list’) echo ‘class=”here”’;
➥?> >List

<? if($nav==’list’) { ?>

Show a list of

➥lists

<? } ?>

140 HOUR 13: Lists

Edit parseTwitter.php
Now that we have our UI in place, let’s account for our new commands in our case

switch. Open the file parseTwitter.php.

After the following lines:

case ‘rt_of_me’:
{ $messages=$twitter->getMentions(‘xml’); return

➥call_timeline($messages); }
break;

Add these lines:

case ‘showList’:
{ $messages=$twitter->showLists(); return call_showList($messages); }
break;

case ‘renderList’:
{ $messages=$twitter->renderLists($name, $twitterName); return

➥call_timeline($messages); }
break;

After this function:

function call_direct($messages){ ...

Add this function:

function call_showList($messages){

Notice that we have done something different here. Normally, we use the

SimpleXMLElement() PHP call to parse our return from Twitter, but in this case we

cannot. Here is the return the ‘list.xml’ <get> method returns us:

<lists_list>
<lists type=”array”>
<list>
<id>20003603</id>
<name>testlistno6</name>
<full_name>@perivision/testlistno6</full_name>
<slug>testlistno6</slug>
<description></description>
<subscriber_count>0</subscriber_count>
<member_count>1</member_count>
<uri>/perivision/testlistno6</uri>
<following>false</following>
<mode>public</mode>
<user>
<id>11710512</id>
<name>Christopher</name>
<screen_name>perivision</screen_name>
<location>the bay</location>

Implementing the List API into Our Application 141

The word ‘list’ is a reserved word with SimpleXMLElement(), so we are going to go

with another XML parsing technique:

...
$parser = xml_parser_create();
xml_parser_set_option($parser,XML_OPTION_SKIP_WHITE,1);
xml_parser_set_option($parser,XML_OPTION_CASE_FOLDING,0);
xml_parse_into_struct($parser,$messages,$d_ar,$i_ar) or

➥print_error();
xml_parser_free($parser);

Here we make another departure from how we have been doing things up to this

point. Because all we are going to do is display a simple list of our Twitter list, we do

not need to return back to main and render:

$i=0;
while($i_ar[‘name’][$i]){
$user_name = $i_ar[‘slug’][$i];
$user_name = $d_ar[$user_name][value];
echo ‘<a href=”/hour13/?nav=list&page=renderList&name=’.

$user_name.’” >’.$user_name.’’;
$i++;

}
}

Edit twitteroauth.php
Now let’s add a new function to twitteroauth.php to support our request.

After this function:

function friendshipExists($a, $b){
$api_call = “ friendships/exists.xml?user_a=$a&user_b=$b”;

return $this->get($api_call);
}

Add these functions:

function showLists(){
$api_call = ‘lists.xml’;
return $this->get($api_call);

}
function renderLists($name, $twitterName){

$api_call = $twitterName.’/lists/’.$name.’/statuses.xml’;
return $this->get($api_call);

}

142 HOUR 13: Lists

Three Types of List Methods
Twitter groups the List methods into three categories:

. List resources

. List Members resources

. List Subscribers resources

We have already gone through some of the methods as we added new functions to

our application; however, we need to cover many more.

List Resources
List resources are methods that focus on managing the list; that is, creating, editing,

and deleting the list.

Following is a summary of the methods from the Twitter docs:

. GET user/:lists—Lists the lists of the specified user. Private lists will be

included if the authenticated user is the same as the user whose lists are

being returned.

. POST user/:lists—Creates a new list for the authenticated user. Accounts

are limited to 20 lists.

. GET user/lists/:id—Shows the specified list. Private lists will be shown only

if the authenticated user owns the specified list.

. POST user/lists/:id—Updates the specified list.

. DELETE user/lists/:id—Deletes the specified list. Must be owned by the

authenticated user.

. GET user/lists/:id/statuses—Shows tweet timeline for members of the spec-

ified list.

. GET :user/lists/memberships—Lists the lists the specified user has been

added to.

. GET :user/lists/subscriptions—Lists the lists the specified user follows.

Clients who cannot issue DELETE requests can POST with the added parameter
_method=DELETE.

By the
Way

Three Types of List Methods 143

List Members Resources
Members resources are the List methods that provide access to who is following a list

as well as manipulating the members of a list. Although the use case is limited, the

most common use would be for automatically updating a list based on other crite-

ria. Perhaps you want to automatically create a list of the people you interact with

most often. In this case, you could add a name to this list anytime you do a reply or

send a direct message, and you can remove people from the list if they do not show

up in any of your sent messages for a set of time or the last 100 messages.

Here is a brief summary of the list from the Twitter docs:

. GET :user/:list_id/members—Returns the members of the specified list.

. POST :user/:list_id/members—Adds a member to a list. The authenticated

user must own the list to be able to add members to it. Lists are limited to

having 500 members.

. DELETE :user/:list_id/members—Removes the specified member from the

list. The authenticated user must be the list’s owner to remove members

from the list.

. POST :user/:list_id/create_all—Adds multiple members to a list by specify-

ing a comma-separated list of member IDs or screen names. The authenti-

cated user must own the list to be able to add members to it. Lists are limit-

ed to having 500 members, and you are limited to adding up to 100 mem-

bers to a list at a time with this method.

List Subscribers Resources
The Subscribers method deals with the subscribers of a list. This is different from the

List Members methods in that we are dealing with those who are following ‘sub-

scribed’ to a list versus managing lists that a member is subscribed to. Again, this is

a confusing but important distinction. Read through these carefully. You may need

to read over this section more than once:

. Member—Adds a userID to a list.

. Subscriber—Adds a list to a userID’s list of lists.

For example, the GET :user/:list_id/members method returns the members of a list,

whereas the GET :user/:list_id/members/:id method checks to see if the user is a

member of a list. Some methods seem to perform the same actions; however, they

are different. POST :user/:list_id/members adds a member to a list. POST

:user/:list_id/subscribers : makes the authenticated user follow the specified list. For

144 HOUR 13: Lists

example, if we have a list called football, we could pass the following to the Twitter

servers:

http://api.twitter.com/1/twitterapi24/football/members.xml?id=12345

This would add the Twitter user 12345 to the list football. However, if we pass this

request to Twitter:

http://api.twitter.com/1/twitterapi24/football/subscribers.xml?id=12345

It would add the list ‘football’ to the user ‘12345’ list of lists.

Here is a brief summary of the list:

. GET :user/:list_id/ subscribers /:id: Checks if a user is a member of the

specified list.

. POST :user/:list_id/subscribers: Makes the authenticated user follow the

specified list.

. DELETE :user/:list_id/subscribers: Unsubscribes the authenticated user

form the specified list.

. GET :user/:list_id/subscribers/:id: Checks if a user is a subscriber of the

specified list.

Summary
In this hour, we learned about the three types of List methods: timeline, members,

and subscribers. We also learned the numerous ways we can manage a list. This hour

also saw us again using more advanced techniques of the REST protocol.

We also created a new file called commandLine.php, which we do not call directly,

but instead make a call from a JavaScript action. We will use this file a few more

times in the book.

Q&A
Q. Why did the good folks at Twitter start a new API method where API calls

are the same name?
A. The API is always evolving, and the list API calls are some of the most recent.

Thus, it could be an indication of how future API calls will be designed.

http://api.twitter.com/1/twitterapi24/football/subscribers.xml?id=12345

Workshop 145

Workshop

Quiz
1. Name the three list types.

2. List the three types of cURL request.

3. If your service does not support DELETE, what can you do?

Quiz Answers
1. List resources, List Members resources, and List Subscribers resources.

2. GET, POST, and DELETE.

3. A workaround for clients that cannot issue DELETE requests can use POST with

the added parameter _method=DELETE instead.

Exercise
As suggested in an earlier part of this hour, add users to a list if you send them a

message or retweet one of their messages. Remember to check to see if they are a

member of the list first before adding.

Did you notice the function we called in the following lines?

.$parser = xml_parser_create();
xml_parser_set_option($parser,XML_OPTION_SKIP_WHITE,1);
xml_parser_set_option($parser,XML_OPTION_CASE_FOLDING,0);
xml_parse_into_struct($parser,$messages,$d_ar,
$i_ar) or print_error();
xml_parser_free($parser);

We did not define ‘prtint_error()’. Let’s do that now.

This page intentionally left blank

Favorites API Methods 147

HOUR 14

Favorites and User Methods

What You’ll Learn in This Hour:
. What is a favorite?

. How to create, read, and destroy favorites

. Learn about user functions

. How to create an image-based address book of Twitter friends and
followers

Favorites API Methods
One of the most underrated features of Twitter but yet has the most promise is

favorites. Favorites are only just now beginning to surface as a powerful feature for

both the user and those performing analytics on Twitter data. A favorite is a tweet

that a user saves. It’s somewhat like creating a bookmark of a web page, except the

user saves a message ID instead of a URL. The only thing missing is the ability to

see other peoples’ favorites, but who knows? Perhaps that will change in the future.

The API method calls for favorites are pretty simple; there are only three:

. GET http://api.twitter.com/1/favorites.format

. POST http://api.twitter.com/1/favorites/create/id.format

. POST/DELETE http://api.twitter.com/1/favorites/destroy/id.format

These methods work much like the rest of the methods we have been working with,

so let’s get to coding and add these methods to our application.

http://api.twitter.com/1/favorites.format
http://api.twitter.com/1/favorites/create/id.format
http://api.twitter.com/1/favorites/destroy/id.format

148 HOUR 14: Favorites and User Methods

Adding Favorites Methods to Our Application
Now that we understand what a favorite is, let’s update our application to support

these API calls. First, place the code to read your list of favorites.

Edit header.inc
Keeping with how we have been adding other methods, we are going to add a few

lines to our header so that we can make the call to favorites. After the HTML tags

 lists , add the following lines:

<a href=”/?nav=showFavorites&page=showFavorites” <?
if($nav==’showFavorites’) echo ‘class=”here”’; ?> >Favorites

<? if($nav==’showFavorites’) { ?>

Show

➥Favorites

<? } ?>

Edit parseTwitter.php
Now that we have our text button, let’s edit parseTwitter.php to catch the user

action. Because the return from Twitter will be a standard feed of tweets, we can use

the ‘call_timeline()’ function to display our return.

After the case statement:

case ‘renderList’:
{ $messages=$twitter->renderLists($name, $twitterName); return

call_timeline($messages); }
break;

Add the following lines:

case ‘showFavorites’:
{ $messages=$twitter->showFavorites(); return call_timeline($messages); }
break;

Edit twitteroauth.php
Next, we need to support the showFavorites() we just created. Open twitteroath.php

and add the following function at the end of the file but before the last ‘}’:

function showFavorites(){
$api_call = ‘favorites.xml’;

return $this->get($api_call);
}

Favorites API Methods 149

Edit base.js
Next, let’s add a function in our JavaScript file to accept the clicks we are setting up.

Open base.js and add these two functions after the createListItem() function:

function favorite(mess_id){
url=’commandLine.php?command=createFavorite&id=’+mess_id;

callPage(url, mess_id);
}

Save and close your files and give it a test. This will work only if you have selected a

few messages as favorites. If you have not, you will get nothing back. If you do not

know how to create a favorite, go to Twitter and click the star of any tweet. The star

will show up when you mouse over the tweet, as shown in Figure 14.1. Go ahead

and favor a few tweets; then go back to our application and make sure they show

up when you click on the tab titled “favorites.”

Create a Favorite Tweet Using the Twitter API
Method
Now that you can get your favorites, we need to be able to create favorites via

Twitter API method calls. To create a favorite, we need the message’s ID. The easiest

way to do that is similar to how we supported creating a retweet message and popu-

lating our message box to send a direct message. We are going to place a link with-

in the message itself.

Edit render.php
Open the render.php file and remove the trailing </div> by editing the following

line from:

DM</
div>

To:

DM

Now add the following code:

F</div>

FIGURE 14.1
Create a
favorite on
Twitter.

150 HOUR 14: Favorites and User Methods

Save your file and refresh or open index.php and then select Favorites. You should

see your list of favorite Twitter messages with an “F” below the “RT” and the “DM.”

Clicking this F will not do anything yet because we need to capture this click in

JavaScript, so let’s add some code to both commandLine.php and twitteroath.php to

execute the request.

Edit commandLine.php
After the case switch:

case ‘deleteList’:
{ $messages=$twitter->deleteList($name); echo ($messages); }
break;

Add the following case switch:

case ‘createFavorite’:
{ $messages=$twitter->createFavorite($id); echo ($messages); }
break;

Save and close this file.

Edit twitteroauth.php
Now let’s add the method call to our twitteroauth class. Open twitteroauth.php and

add the following code after the last function but before the last ‘}’:

function createFavorite($id){
$api_call = ‘ favorites/create/’.$id.’.xml’;
return $this->post($api_call);

}

Save and close this file.

We should now be able to create a favorite tweet from our application. Open your

application and click the F from any tweet. You should get back an unstructured

XML reply from Twitter, similar to Figure 14.2.

Pretty simple, right? To delete a favorite, we are going to destroy it. I’m guessing the

good folks at Twitter decided that it was not good enough to delete a favorite—you

have to go all out and destroy it. For this method, we can use either POST or

DELETE; however, there is one tricky bit around the UI. To destroy a favorite, we

need to have that message’s ID, and the best way to capture that is when we are

rendering the tweet stream. So, we are going to be a bit creative here and put an if

statement in the render.php call so that we can offer to delete (destroy) a tweet.

Favorites API Methods 151

FIGURE 14.2
XML return
from creating a
favorite on
Twitter.

Edit render.php
We need to add one extra line of code to support this if statement. To know whether

we are showing the favorite list, we are going to look at the URL and see if

nav=showFavorites. If it does, instead of rendering the ‘F’ link, we will display a ‘Del’

(delete) link.

Open render.php and at the top of the file, find the following line:

global $twitterName;

Add the following code:

$nav = $_GET[‘nav’];

Now that we know what navigation page we are on, we can create our if statement.

Find the following line of code:

F</div>

And add a trailing quote and semi colon as shown:

F</div> “;

152 HOUR 14: Favorites and User Methods

And add the following:

if($nav==’showFavorites’) { $output.=”<a href=’#’
➥onmouseup=\”destroyFavorite(‘$id’)\”>Del</div> “;

} else { $output.=”<a href=’#’
➥onmouseup=\”favorite(‘$id’)\”>F</div> “; }
$output.=”

Save and close the file.

Edit base.js
Now that we have created a new link, let’s catch it in JavaScript. Open base.js and

add the following function after the ‘favorite’ function:

function destroyFavorite(mess_id){
url=’commandLine.php?command=destroyFavorite&id=’+mess_id;
callPage(url, mess_id);

}

Save and close.

Edit twitteroauth.php
Just as we did before, we will add a function call in twitteroauth to catch and

process the destroy request.

Open twitteroauth.php and add the following function at the end of the file but

before the ‘}’:

function destroyFavorite($id){
$api_call = ‘favorites/destroy/’.$id.’.xml’;
return $this->post($api_call);

}

If you remember our reference to the destroy method in the beginning of this hour,

we could use either POST or DELETE for this method call. We are going to use

DELETE because it’s more informative when we read the code. Either way will work;

however, using DELETE could prove to be more future proofed as Twitter continues to

evolve the API set.

Save and close the file.

Now let’s give it a shot. Open index.php and click Favorites. Now click ‘Del’ on one

of the messages. You should get an XML return similar to Figure 14.3 that indicates

you have destroyed that favorite message.

User API Methods 153

FIGURE 14.3
XML return
from destroying
a favorite on
Twitter.

User API Methods
The user methods in Twitter are straightforward in that they are methods for getting

information about a Twitter user. The user methods are as follows, all using the GET

method:

. users/show

. users/lookup

. users/search

. users/suggestions

. users/suggestions/category

. statuses/friends

. statuses/followers

Add users/show to Our Application
The users/show method is much like the other API methods we have seen so far.

Placing support for it in our application will take a familiar path. We will create a

tab on the UI and then support the link with new code within parseTwitter.php and

twitteroauth.php.

154 HOUR 14: Favorites and User Methods

Edit header.inc
First, we’ll add a new tab. After the following code:

<a href=”/?nav=showFavorites&page=showFavorites” <?
if($nav==’showFavorites’) echo ‘class=”here”’; ?> >Favorites

<? if($nav==’showFavorites’) { ?>

Show

➥Favorites

<? } ?>

Add the following code:

<a href=”/?nav=user&page=showUser” <? if($nav==’user’) echo
➥‘class=”here”’; ?> >User

<? if($nav==’user’) { ?>

Show Users

<? } ?>

Save and close the file.

Edit parseTwitter.php
Open parseTwitter.php and add a new case switch using the following code:

case ‘showUser’:
{ $messages=$twitter->showUser($twitterName); echo($messages); }
break;

Save and close the file.

Edit twitteroauth.php
Finally, we will add support for the method call. Open twitteroauth.php and add the

following function at the end of the file but before the last ‘}’:

function showUser($name){
$api_call = ‘users/show.xml?screen_name=’.$name;
return $this->get($api_call);

}

Save and close the file.

Now open index.php and click the User tab. You should get an unstructured XML

stream from Twitter with details on your Twitter account, similar to Figure 14.4.

User API Methods 155

FIGURE 14.4
XML details on
your Twitter
account.

Accessing Other User Information
What if you wanted to get information on someone else? Easy enough—simply

replace your Twitter name with another Twitter name or ID. You can also get more

than one detailed report on a Twitter account at a time. With the API method call

GET users/lookup, you can pass more than one screen_name or ID at a time. It’s the

same structure that we used for ‘users/show’, except we use ‘users/lookup’ and pro-

vide a list of names or IDs separated by commas. For example, we just used

‘http://api.twitter.com/1/users/show.xml?screen_name=perivision’, where ‘perivision’

is my account name. To construct a ‘lookup’ API call, it would look something like

the following:

http://api.twitter.com/1/users/lookup.xml?screen_name=perivision,cbsnews,
➥abc,breakingnews, ...

You would then get a list of <users> in your XML return, each with details about the

user. Notice that I did not include a space after the comma. This is an HTTP request,

and there should never be a space—but you know that, didn’t you?

Understanding More of the Users APIs
GET users/search is an interesting API method in that it will return the first 100

users that best match a search. This functions much like the Find People button on

Twitter.com.

The next three methods are interesting, but useful only for targeted applications:

. GET users/suggestions—Access to Twitter’s suggested user list. This returns

the list of suggested user categories. The category can be used in the

users/suggestions/category endpoint to get the users in that category. And

where would we use this category? In the following method call:

. GET users/suggestions/:slug—Access the users in a given category of the

Twitter suggested user list.

http://api.twitter.com/1/users/lookup.xml?screen_name=perivision,cbsnews,abc,breakingnews,...
http://api.twitter.com/1/users/lookup.xml?screen_name=perivision,cbsnews,abc,breakingnews,...

156 HOUR 14: Favorites and User Methods

For example, we can get a list of Twitter recommended users based on the cate-

gory ‘books’. The API call would look like the following:

http://api.twitter.com/1/users/suggestions/books.xml

This API call would then return a list of users whom Twitter thinks is a best fit

for the category ‘books’.

. GET users/profile_image/:screen_name—Access the profile image in vari-

ous sizes for the user with the indicated screen_name. If no size is provided,

the normal image is returned. Note this warning from the Twitter docs:

This resource does not return JSON or XML, but instead returns a 302

redirect to the actual image resource.

This method should be used only by application developers to look up or check the

profile image URL for a user. This method must not be used as the image source URL

presented to users of your application.

Basically, what the Twitter folks are saying here is DO NOT USE THIS! Really, there is

very little reason to use this call.

Create a Simple Thumbnail Viewer in Our
Application
We have two more calls to look at:

. GET statuses/friends—Returns a user’s friends, each with current status

inline. They are ordered by the order in which the user followed them; the

most recently followed are first, 100 at a time.

. GET statuses/followers—Returns the authenticating user’s followers, each

with current status inline. They are ordered by the order in which they fol-

lowed the user, 100 at a time.

These last two calls can be quite useful for creating an image thumbnail viewer

which could be the foundation of an address book of sorts for our application. So,

let’s add these to our application. We’ll create a page of Twitter images and screen

names so that we can skim through the list to find the person we are interested in.

Edit header.inc
First, we need a button, so open the file header.inc, and after this line:

Show Users

http://api.twitter.com/1/users/suggestions/books.xml

User API Methods 157

Add the following line:

Show Friends
Show Followers

Save and close this file.

Edit parseTwitter.php
We will now add two new case switches for our new requests. Open parseTwitter.php,

and after this case switch:

case ‘showUser’:
{ $messages=$twitter->showUser($twitterName); echo $messages;

➥return; }
break;

Add the following code:

case ‘showFriends’:
{ $messages=$twitter->showFriends($twitterName); return

➥call_users($messages); }
break;

case ‘showFollowers’:
{ $messages=$twitter->showFollowers($twitterName); return

➥call_users($messages); }
break;

Don’t close just yet. We need to create a function to render our list of images and

screen names. Within this same file, add the following function after the function

‘call_showList($messages)’:

function call_users($messages){
$twitterReturn = new SimpleXMLElement($messages);
foreach($twitterReturn->user as $status){

$profile_image_url = $status->profile_image_url;
$screen_name = $status->screen_name;
echo “

<div id=’$screen_name’ class=’mess-pic’ \” >

<img src=’$profile_image_url’/ width=’48px’
➥height=’48px’>

$screen_name
</div>”;

}
}

Because each return is a ‘user’, we stepped through the XML return $twitterReturn set-

ting $status to each ‘user’ node instead of ‘status’ node, as we have done in the past.

Save and close this file.

158 HOUR 14: Favorites and User Methods

Edit twitteraouth.php
Finally, we need to implement the actual API method calls. Open twitteroauth.php

and add the following functions at the end of the file but before the last ‘}’:

function showFriends($name){
$api_call = ‘ statuses/friends.xml?screen_name=’.$name;
return $this->get($api_call);

}
function showFollowers($name){
$api_call = ‘statuses/followers.xml?screen_name=’.$name;
return $this->get($api_call);

}

Save and close this file.

Now open index.php and click users, friends, or followers. Assuming you have at

least one or more friends or followers, you should see something like the screenshot

in Figure 14.5.

FIGURE 14.5
List of friends
using images
and screen
names.

Summary
In this hour, we learned about favorites and how to create, edit, and destroy through

the API. We also used the JavaScript to commandLine.php technique again because

of the need to track message IDs. You should be fairly comfortable with this tech-

nique by now. If not, you should reread the past two hours because future Twitter API

methods will rely more and more on IDs to perform actions as the API evolves.

Workshop 159

We also explored users’ methods in this hour. Unlike the methods we have been

working with in the past two hours, the users’ methods are based on GET only.

Q&A
Q. Can I send an update using ‘F’ like I can with ‘D’?
A. Yes. Any currently supported shortcut can be used via the update method.

Q. Because there is a way to use ‘POST’ to delete a favorite, why should I
bother with DESTROY?

A. Although either cURL call will work, we do not know what the future of the API

will be, but indications are that more formal uses of the cURL protocol will be

used, and that includes DESTROY.

Workshop

Quiz
1. Does ‘GET users/profile_image/:screen_name’ return JSON or XML?

2. How many returns do I get with the call ‘GET statuses/friends’?

3. What does GET statuses/search do?

Quiz Answers
1. Neither. It returns the URL of an image only.

2. 100 at a time.

3. Returns the first 100 Twitter users that best match the search term provided.

Exercise
Now that know how to show friends and we can show followers, write a script that

will check to see what user we both friend and follower. Create a new tab for this.

This page intentionally left blank

History of Twitter Search API 161

HOUR 15

Search

What You’ll Learn in This Hour:
. The history of the Search API and why it’s different from the other Twitter

API methods

. About the single Search API call

. How to construct a search query using attributes

. How to convert characters not supported though REST requests

. How to make and parse a JSON request

History of Twitter Search API
Users who remember using Twitter from the very beginning know that Search was

not a feature of Twitter. Many things were not a feature of Twitter in fact, and thus

many other companies started writing software to fill this void. Summize was one of

these companies. Like Twitter, Summize offered an API so other programmers could

access the Summize Search service. Search is, as you would imagine, a means to

search through the Twitter history of tweets. However, there are billions of tweets,

and searching through all of them is simply not practical. But in the beginning,

when the number was only in the six-figures range, not only was it practical, it was

downright useful—so useful that Twitter made Summize its first major acquisition.

Here is a bit more on Twitter Search from the site documents:

Twitter’s Stance on Search
“The Twitter API consists of three parts: two REST APIs and a Streaming API. The two

distinct REST APIs are entirely due to history. Summize, Inc. was originally an inde-

pendent company that provided search capability for Twitter data. Summize was

162 HOUR 15: Search

later acquired and rebranded as Twitter Search. Rebranding the site was easy; fully

integrating Twitter Search and its API into the Twitter codebase is more difficult. It is

in our pipeline to unify the APIs, but until resources allow, the REST API and Search

API will remain as separate entities. The Streaming API is distinct from the two REST

APIs as Streaming supports long-lived connections on a different architecture.

The Twitter REST API methods allow developers to access core Twitter data. This

includes update timelines, status data, and user information. The Search API meth-

ods give developers methods to interact with Twitter Search and trends data. The

concern for developers given this separation is the effects on rate limiting and out-

put format.”

The Lone Search API
The Search API has only one API method: search. That’s it. However, the power of

Search is within the options you pass to Twitter. First, let’s have a look at the API

definition and then the option list:

GET search—Returns tweets that match a specified query.

Note that as of April 1, 2010, the Search API provides an option to retrieve “popular

tweets” in addition to real-time search results. In an upcoming release, this will

become the default, and clients that don’t want to receive popular tweets in their

search results will have to explicitly opt out. See the result_type parameter for more

information.

Be aware that the user IDs in the Search API are different from those we have seen

so far. This means that the to_user_id and from_user_id field vary from the actual

user ID on Twitter.com. Applications will have to perform a screen name-based

lookup with the users/show method to get the correct user ID if necessary.

The most typical search attribute you will use is ?q=. q stands for query. However,

there are other options. Let’s have a look at the current list from the Twitter docs

(http://dev.twitter.com/doc/get/search):

. callback—Available only for JSON format. If supplied, the response will

use the JSON format with a callback of the given name.

. lang—Restricts tweets to the given language, given by an ISO 639-1 code.

. locale—Specifies the language of the query you are sending (only ja is cur-

rently effective). This is intended for language-specific clients, and the

default should work in the majority of cases:

http://search.twitter.com/search.json?locale=ja

http://dev.twitter.com/doc/get/search
http://search.twitter.com/search.json?locale=ja

The Lone Search API 163

. rpp—The number of tweets to return per page, up to a max of 100:

http://search.twitter.com/search.json?rpp=100

. page—The page number (starting at 1) to return, up to a max of roughly

1,500 results (based on rpp * page):

http://search.twitter.com/search.json?page=10

. since_id—Returns results with an ID greater than (that is, more recent

than) the specified ID. There are limits to the number of tweets that can be

accessed through the API. If the limit of tweets has occurred since the

since_id, the since_id will be forced to the oldest ID available. If the since_id

used is too old, a HTTP 404 error will be returned:

http://search.twitter.com/search.json?since_id=12345

. until—Optional. Returns tweets generated before the given date. Date

should be formatted as YYYY-MM-DD:

http://search.twitter.com/search.json?until=2010-03-28

. geocode—Returns tweets by users located within a given radius of the

given latitude/longitude. The location is preferentially taking from the

Geotagging API, but will fall back to the Twitter profile. The parameter

value is specified by latitude,longitude,radius, where radius units must be

specified as either mi (miles) or km (kilometers). Note that you cannot use

the near operator via the API to geocode arbitrary locations; however, you

can use this geocode parameter to search near geocodes directly:

http://search.twitter.com/search.json?geocode=37.781157,-122.398720,1mi

. show_user—When true, prepends “:” to the beginning of the tweet. This is

useful for readers that do not display Atom’s author field. The default is false.

. result_type—Optional. Specifies what type of search results you would

prefer to receive. The current default is “mixed.” Valid values include the fol-

lowing:

. mixed—Includes both popular and real-time results in the response.

. recent—Returns only the most recent results in the response.

. popular—Returns only the most popular results in the response.

http://search.twitter.com/search.json?result_type=mixed
http://search.twitter.com/search.json?result_type=recent
http://search.twitter.com/search.json?result_type=popular

http://search.twitter.com/search.json?rpp=100
http://search.twitter.com/search.json?page=10
http://search.twitter.com/search.json?since_id=12345
http://search.twitter.com/search.json?until=2010-03-28
http://search.twitter.com/search.json?geocode=37.781157,-122.398720,1mi
http://search.twitter.com/search.json?result_type=mixed
http://search.twitter.com/search.json?result_type=recent
http://search.twitter.com/search.json?result_type=popular

164 HOUR 15: Search

Quite a bit, right? We will go through this step by step and cover the major options

you would most commonly use.

Search Request Parameters
First, let’s have a look at a simple search request. Open up your web browser and

type this into the URL address text field:

http://search.twitter.com/search?q=football

You should have a reply from the Twitter website that looks similar to Figure 15.1.

Here we set the value of q to football and got a return of the latest searches with

the keyword football in the latest tweet. This is not the only option for Search that is

available to us. Consider the following search request:

http://search.twitter.com/search?q=football+bears

By using the ‘+’ sign, we now get tweets that have both words. However, if we want

to have two words in a specific order, we would use quotes, as in the following

example:

http://search.twitter.com/search?q=”cal+bears”

Remember, you can only use web-safe symbols when making http calls.

FIGURE 15.1
Search on
Twitter.com.

Watch
Out!

http://search.twitter.com/search?q=football
http://search.twitter.com/search?q=football+bears

The Lone Search API 165

You can see how this works. We control our Twitter search completely through the

options we pass to Twitter. Let’s have a look at the various options as described in

the Twitter docs (http://search.twitter.com/api/):

. Find tweets containing a word:

http://search.twitter.com/search.atom?q=twitter

. Find tweets from a user:

http://search.twitter.com/search.atom?q=from%3Aalexiskold

. Find tweets to a user:

http://search.twitter.com/search.atom?q=to%3Atechcrunch

. Find tweets referencing a user:

http://search.twitter.com/search.atom?q=%40mashable

. Find tweets containing a hashtag:

http://search.twitter.com/search.atom?q=%23haiku

. Combine any of the operators together:

http://search.twitter.com/search.atom?q=movie+%3A%29

The API also supports the following optional URL parameters:

. lang—Restricts tweets to the given language, given by an ISO 639-1 code.

For example: http://search.twitter.com/search.atom?lang=en&q=devo

. rpp—The number of tweets to return per page, up to a max of 100. For

example: http://search.twitter.com/search.atom?lang=en&q=devo&rpp=15

. page—The page number to return, up to a max of roughly 1,500 results

(based on rpp * page).

. since_id—Returns tweets with status IDs greater than the given ID.

. geocode—Returns tweets by users located within a given radius of the given

latitude/longitude, where the user’s location is taken from the Twitter pro-

file. The parameter value is specified by “latitide,longitude,radius”, where

radius units must be specified as either “mi” (miles) or “km” (kilometers).

For example: http://search.twitter.com/search.atom?geocode=

40.757929%2C-73.985506%2C25km. Note that you cannot use the near

operator via the API to geocode arbitrary locations; however, you can use

this geocode parameter to search near geocodes directly.

. show_user—When “true”, adds “<user>:” to the beginning of the tweet.

This is useful for readers that do not display Atom’s author field. The

default is “false”.

http://search.twitter.com/api/
http://search.twitter.com/search.atom?q=twitter
http://search.twitter.com/search.atom?q=from%3Aalexiskold
http://search.twitter.com/search.atom?q=to%3Atechcrunch
http://search.twitter.com/search.atom?q=%40mashable
http://search.twitter.com/search.atom?q=%23haiku
http://search.twitter.com/search.atom?q=movie+%3A%29

166 HOUR 15: Search

Integrating Search into Our Application
Now that we have a good idea about how Search works, we can start to get Search

integrated into our application. We are going to take a slightly different approach

from what we have been doing in this book so far, but we are still going to work

within our normal framework.

Edit header.inc
Let’s add a new button. After the last tag we created in Hour 14, <a

href=”/?nav=user&page=showUser..., we’ll add the following code:

<a href=”/?nav=search&page=search” <? if($nav==’search’) echo
‘class=”here”’; ?> >Search

<? if($nav==’search’) { ?>

Search

<? } ?>

Save and close.

Edit parseTwitter.php
Now let’s add a switch to our case statement to catch the new link we just created.

Open parseTwitter.php and add the following case switch at the end of the switch

statement:

case ‘search’:
{ $messages=$twitter->search($options); return

➥call_search($messages); }
break;

Don’t save and close just yet. Remember that we are not dealing with the normal

method calls we have seen throughout the book. Search does not have an option to

return XML; instead, we can get only JSON, ATOM, or RSS. In our case, we are going

to request a JSON feed.

JSON is one of the more popular formats for sending and receiving data over the
web. It is based on a subset of the JavaScript Programming Language, Standard
ECMA-262 3rd Edition - December 1999. You can learn more about JSON by going
to this website:

www.json.org/

Did You
Know?

www.json.org/

The Lone Search API 167

To handle parsing JSON instead of XML as we have so far in the book, we need to

make a few changes to our parse function. We are going to start with our

call_timeline() function and then make some changes.

We’ll create a new function below the function call_users() in this file. Add the

following code:

function call_search($messages){
$twitterReturn = json_decode($messages);

Here we have introduced a new PHP library call called json_decode(). This func-

tion will convert the json return into a PHP variable:

$i=0;
foreach($twitterReturn->results as $status){

Now that we have the return converted to a PHP object, we can step through each of

the results and get our values, just as we did with our other parse functions:

$updateTime[$i] = parseDate($status->created_at);
$update[$i] = $status->text;
$id[$i] = $status->id;
$profile_image_url[$i] = $status->profile_image_url;
$screen_name[$i] = $status->from_user;

$i++;
}

$parsedReturn = array();
$parsedReturn[‘updateTime’]=$updateTime;
$parsedReturn[‘update’]=$update;
$parsedReturn[‘id’]=$id;
$parsedReturn[‘profile_image_url’]=$profile_image_url;
$parsedReturn[‘screen_name’]=$screen_name;

return $parsedReturn;
}

Save and close.

Edit twitteroauth.php
Now we can put our Search API request function code in. Open twitteroauth.php

and add the following function at the end of the file but before the last ‘}’:

function search($options){
$api_call = ‘http://search.twitter.com/search.json?’.$options;
return $this->get($api_call);

}

168 HOUR 15: Search

Did you notice that we are passing the variable $options to our API statement? We

are going populate that using JavaScript. To do so, we need to edit a few more files.

Also did you notice how we defined the $api_call varible? We used a full path

instead of the short hand we have been using. Remember that the OAuth library we

are using will supply the default https://api.twitter.com/1/ for us if we do not have

http in our call. In this case we need to call search.twitter.com instead of

api.twitter.com, thus the override.

Save and close.

Edit create_message.php
Open create_message.php. It’s been a while since we have opened this file. We are

going to make only a small change. We want to know when we are sending a nor-

mal message or requesting a search so that we can call the appropriate JavaScript

function. We also want to keep the request in the text field after the page has

reloaded. So, let’s take care of that now.

Replace this line:

<textarea id=”testinput” name=’sendMessField’ class=’inputbox’
➥rows=”2” cols=”80” ></textarea>

With the following line:

<textarea id=”testinput” name=’sendMessField’ class=’inputbox’
➥rows=”2” cols=”80” ><? echo $_GET[‘options’]; ?></textarea>

Remember that we are reloading this page, so this small bit of PHP will populate the

text field box with whatever we typed in before. Now on to the next edit.

Find this line:

<input class=’inputbox’ type=’button’ value=’Send’
➥onmouseup=’sendMessage()’ />

And replace it with the following code:

<? if($nav==search){ ?>
<input class=’inputbox’ type=’button’ value=’Send’

➥onmouseup=’sendSearch()’ />
<? } else { ?>
<input class=’inputbox’ type=’button’ value=’Send’

➥onmouseup=’sendMessage()’ />
<? } ?>

https://api.twitter.com/1/

The Lone Search API 169

Here we are checking to see if we navigated to the Search tab, thus setting

$nav=’search’. If we want to submit the contents to search, we will call the

JavaScript function sendSearch instead of sendMessage as we do for sending a

tweet. Speaking of which, we should put some JavaScript code in place to catch this

new onmouseup() request we just created.

Save and close this file.

Edit base.js
Open base.js and create a new function call after the destroyFavorite() call we

created in the previous hour.

Put in the following code:

function sendSearch(){
message = document.getElementById(“prefex”).innerHTML;
message += document.sendMessForm.sendMessField.value;

message=encodeURIComponent(message);

trace(message);
url = location.href.split(“?”);
url = url[0]+’?nav=search&page=search&options=’+message
window.open(url, ‘_self’);

}

This looks quite a bit like the JavaScript function sendMessage(), except we

are not going to make an AJAX call here. Instead we are going to make a PHP

request from our server passing the contents of our text box as an argument.

We defined url as our current location, location.href; added nav and page

identifiers, ?nav=search&page=search; and finally, the contents of the text box,

&options=’+message;. This will allow us to experiment with Search options. Let’s

give it a try. Save and close this file.

Open index.php and click the Search tab. Do not worry if you do not see anything.

We haven’t populated a search request yet, but we’ll do that now. In the text field,

type in the following:

q=’football’

Then click the Send button. Do note that the quotes (either single or double) are

optional here. You could have typed q=football and would get the same result.

You should get something like Figure 15.2.

170 HOUR 15: Search

FIGURE 15.2
Search result
from our appli-
cation.

Now let’s try some of the options we used earlier in this hour. Try typing the follow-

ing content into the Search text box and see what kind of results you get:

. q=so+cool

. q=”cal+bears”

. q=+junk+#food

. q=devo&rpp=3

. q=+good+#cal+since:<today’s date>

Note that when using the since operator, there is little reason to set the date more

than two days older than today’s date. A typical search will go back only a few

days, depending on how the Twitter Search servers are feeling that day. As of this

writing, you cannot use time with the since operator.

A Quick Guide to More Information on
Search from the Twitter Docs
Now that we have a basic understanding of how Search works, let’s look at some of

the more detailed notes from the Twitter documents. The following section is a pretty

good reference, but keep in mind that docs change and update all the time, so be

sure to check the following link for the most updated information. Here we have

A Quick Guide to More Information on Search from the Twitter Docs 171

included only the core elements you should be aware of when thinking about your

Search options. Let’s again refer to the Twitter online docs (http://dev.twitter.com/

doc/get/search)

GET Search
Required:

. q—Search query. Should be URL encoded. Queries will be limited by com-

plexity:

http://search.twitter.com/search.json?q=@noradio

Optional:

. callback—Available only for JSON format. If supplied, the response will

use the JSON format with a callback of the given name.

. lang—Restricts tweets to the given language, given by an ISO 639-1 code.

. locale—Specifies the language of the query you are sending (only ja is cur-

rently effective). This is intended for language-specific clients, and the

default should work in the majority of cases:

http://search.twitter.com/search.json?locale=ja

. rpp—The number of tweets to return per page, up to a max of 100.

http://search.twitter.com/search.json?rpp=100

. page—The page number (starting at 1) to return, up to a max of roughly

1,500 results (based on rpp * page):

http://search.twitter.com/search.json?page=10

. since_id—Returns results with an ID greater than (that is, more recent

than) the specified ID. There are limits to the number of tweets that can be

accessed through the API. If the limit of tweets has occurred since the

since_id, the since_id will be forced to the oldest ID available:

http://search.twitter.com/search.json?since_id=12345

. until—Optional. Returns tweets generated before the given date. Date

should be formatted as YYYY-MM-DD:

http://search.twitter.com/search.json?until=2010-03-28

http://dev.twitter.com/doc/get/search
http://dev.twitter.com/doc/get/search
http://search.twitter.com/search.json?q=@noradio
http://search.twitter.com/search.json?locale=ja
http://search.twitter.com/search.json?rpp=100
http://search.twitter.com/search.json?page=10
http://search.twitter.com/search.json?since_id=12345
http://search.twitter.com/search.json?until=2010-03-28

172 HOUR 15: Search

. geocode—Returns tweets by users located within a given radius of the

given latitude/longitude. The location is preferentially taking from the

Geotagging API, but will fall back to the Twitter profile. The parameter

value is specified by “latitude,longitude,radius”, where radius units must be

specified as either “mi” (miles) or “km” (kilometers). Note that you cannot

use the near operator via the API to geocode arbitrary locations; however,

you can use this geocode parameter to search near geocodes directly:

http://search.twitter.com/search.json?geocode=37.781157,-122.398720,1mi

. show_user—When true, prepends “:” to the beginning of the tweet. This is

useful for readers that do not display Atom’s author field. The default is false.

. result_type—Optional. Specifies what type of search results you would

prefer to receive. The current default is “mixed.” Valid values include the

following:

. mixed—Includes both popular and real-time results in the response.

. recent—Returns only the most recent results in the response.

. popular—Returns only the most popular results in the response.

http://search.twitter.com/search.json?result_type=mixed
http://search.twitter.com/search.json?result_type=recent
http://search.twitter.com/search.json?result_type=popular

Usage Notes
Search does have a few issues and rules you need to be aware of. Most are common

sense, such as knowing that your query string must be URL encoded. Some are trial

and error, like the second item saying queries are limited by complexity. Sometimes

you do not know what “complex” means until you try it. So, do not assume you can

string some long query combination. Always test every possible combination you

want to support first. Returning back to the Twitter docs:

. Query strings should be URL encoded.

. Queries may be limited by complexity.

. Some users may be absent from search results.

. The since_id parameter will be removed from the next_page element

because it is not supported for pagination. If since_id is removed, a warn-

ing will be added to alert you.

http://search.twitter.com/search.json?geocode=37.781157,-122.398720,1mi
http://search.twitter.com/search.json?result_type=mixed
http://search.twitter.com/search.json?result_type=recent
http://search.twitter.com/search.json?result_type=popular

Summary 173

. This method will return an HTTP 404 error if since_id is used and is too old

to be in the Search index.

. If you are having trouble constructing your query, use the advanced

search form to construct your search, which is located here: http://dev.

twitter.com/console. Then add the format. For example, http://search.twit-

ter.com/search?q=twitter would become

http://search.twitter.com/search.json?q=twitter.

. Applications must have a meaningful and unique User Agent when using

this method. An HTTP Referrer is expected but not required. Search traffic

that does not include a User Agent will be rate limited to fewer API calls per

hour than applications including a User Agent string. More information on

rate limiting can be found here: https://dev.twitter.com/pages/rate-limiting.

More information on Twitter Search best practices can be found here: http://support.

twitter.com/forums/10713/entries/42646.

Notes on Metadata in Responses
The metadata node will sometimes contain a result_type field with a value of either

“recent” or “popular”—although other values may be possible in the future. Popular

results are derived by an algorithm that Twitter computes, and up to three will

appear in “mixed mode” at the top of the resultset. Popular results will also include

another node to metadata called “recent_retweets” and will indicate how many

retweets the tweet was bestowed recently. The metadata node will contain more

fields as time goes on.

Refreshing Search Results
For those using client-side search widgets, by default the first request might include

popular results. If you want to display these, you can use the result_type attribute to

visually differentiate them. If you don’t want to display these, you can always pass

the “result_type” parameter with a value of “recent” along with your request, and

they’ll never be included.

Summary
In this hour, we learned about the Search method and why it’s different from other

Twitter method calls. We discovered that all searches are performed using only one

method! Instead, Search queries are constructed through attributes passed through

the single Search method call.

http://dev.twitter.com/console
http://dev.twitter.com/console
http://search.twitter.com/search.json?q=twitter
http://support.twitter.com/forums/10713/entries/42646
http://support.twitter.com/forums/10713/entries/42646
https://dev.twitter.com/pages/rate-limiting

174 HOUR 15: Search

We also learned that despite having only one method call, we can use a rich variety

of attributes for our search. However, we also discovered that there are certain restric-

tions on how many and what attributes we can use together in one call.

We also were introduced to the JSON protocol because XML is not supported in

Search. In fact, many programmers prefer JSON over XML. So, we learned how to

parse a JSON reply to be compatible with our rendering code.

Q&A
Q. Search is the only API method. Will there be others in the future?

A. No one knows for sure, but in the short term, no—it will be only Search.

Workshop

Quiz
1. Who is Summize?

2. Twitter Search uses only one API call. Why?

3. What is the operator to search back tweets by time?

Quiz Answers
1. It is the name of a company that created a Twitter Search technology that was

purchased by Twitter. Hopefully, you got the Jeopardy reference.

2. The Summize product was originally created to search only Twitter; thus, it

needs to perform only one function: Search.

3. Trick question. You cannot. You can only search by date, not time.

Exercises
Try these various operators listed below. Remember, these are examples. For exam-

ple, using the exact date as listed from some of these examples may not work. Be

aware of context.

Exercises 175

Operator Finds Tweets...

twitter search containing both “twitter” and “search.”
This is the default operator.

”happy hour” containing the exact phrase “happy hour.”

love OR hate containing either “love” or “hate” (or both).

beer -root containing “beer” but not “root.”

#haiku containing the hashtag “haiku.”

from:alexiskold sent from person “alexiskold.”

to:techcrunch sent to person “techcrunch.”

@mashable referencing person “mashable.”

“happy hour” near:“san
francisco”

containing the exact phrase “happy hour”
and sent near “san francisco.”

near:NYC within:15mi sent within 15 miles of “NYC.”

superhero since:2010-09-01 containing “superhero” and sent since date
“2010-09-01” (year-month-day).

ftw until:2010-09-01 containing “ftw” and sent up to date
“2010-09-01.”

movie -scary :) containing “movie,” but not “scary,” and with a
positive attitude.

flight :(containing “flight” and with a negative attitude.

traffic ? containing “traffic” and asking a question.

hilarious filter:links containing “hilarious” and linking to URLs.

news source:twitterfeed containing “news” and entered via TwitterFeed.

This page intentionally left blank

What Is a Trending Topic? 177

HOUR 16

Trends and GEO

What You’ll Learn in This Hour:
. What is a Twitter trend?

. Not all returns from the Trend method are in order based on time.

. What is the WOEID format?

. GEO methods.

What Is a Trending Topic?
Trends are an interesting aspect of Twitter that has been originated and copied by

many other services. A trend is just a type of search; a term that is trending is simply

a term that appears in higher frequency than other terms over a set amount of time.

For example, during the World Cup final of 2010, when Holland played Spain, the

terms “holland,” “spain,” and “worldcup” would have been trending highly because

Twitter was almost brought to its knees by the amount of traffic during the final. As

you would expect, a trending topic term, more commonly referred to as a trending

topic, tends to reflect the major events of the day. What is really fascinating is that

trending topics on Twitter tend to beat most news outlets for fast-breaking news.

Supporting Trends in Our Application
The API for Trends is a lot like Search given that it’s based on Search. So, as you

would expect, we are going to use JSON and various operators to fine tune what we

get back for Twitter.

To start out, let’s add a new menu item to our application to display finding topics.

178 HOUR 16: Trends and GEO

Edit header.inc
This should be almost routine at this point. Let’s add a new button to our UI. Open

header.inc and add a new .. tag set with the following code:

<a href=”/?nav=trends&page=trends” <? if($nav==’trends’) echo
‘class=”here”’; ?> >Trends

<? if($nav==’trends’) { ?>

Trends

<? } ?>

Save and close.

Edit parseTwitter.php
Now that we have our tab, let’s add a switch to support our new request. There are

no options with this method, so we will make an empty function call. Open

parseTwitter.php and add the following case statement at the end of our switch:

case ‘trends’:
{ $messages=$twitter->showTrends(); return call_trends($messages); }
break;

Notice that we are making a call to the function call_trends(). A new parsing

function is required for the JSON return we get back from Twitter. So, let’s create a

new function called call_trends() and add it after the function call_search().

Here is the code for our new function:

function call_trends($messages){
$twitterReturn = json_decode($messages);
foreach($twitterReturn->trends as $status){

$query = explode(‘?’,$status->url);
echo “<p />

Term: $status->name”;
}

}

Let’s go through this function because there are some tricky things going on behind

the scenes that you should be aware of. First, let’s have a look a typical raw JSON

return from the trends request using var_dump():

<urlrequest>url
https://api.twitter.com/1/account/verify_credentials.xml</urlrequest>

➥<urlrequest>url
http://api.twitter.com/1/trends.json?</urlrequest>
object(stdClass)#5
➥(2) {
[“as_of”]=>

Supporting Trends in Our Application 179

string(31) “Sat, 04 Sep 2010 04:45:05 +0000”
[“trends”]=>
array(10) {
[0]=>
object(stdClass)#7 (2) {
[“url”]=>
string(53) “http://search.twitter.com/search?q=Duke+Nukem+Forever”
[“name”]=>
string(18) “Duke Nukem Forever”

}
[1]=>
object(stdClass)#8 (2) {
[“url”]=>
string(51) “http://search.twitter.com/search?q=%23lessonlearned”
[“name”]=>
string(14) “#lessonlearned”

}
[2]=>
object(stdClass)#9 (2) {
[“url”]=>
string(42) “http://search.twitter.com/search?q=Mitchie”
[“name”]=>
string(7) “Mitchie”

}
[3]=>
object(stdClass)#10 (2) {
[“url”]=>
string(44) “http://search.twitter.com/search?q=Birdhouse”
[“name”]=>
string(9) “Birdhouse”

}
...

[9]=>
object(stdClass)#16 (2) {
[“url”]=>
string(45) “http://search.twitter.com/search?q=Earthquake”
[“name”]=>
string(10) “Earthquake”

}
}

}

Notice that the “url” string has a full URL to http://search.twitter.com/

search?q=<term>. This is great if we want our users to go to Twitter. However, if we

want to keep the users on our application, we are going to need to parse this string

to get the query value the text after the ?q=. So, we are using the PHP library call

explode function to split all text after the ‘?’ so that we can use our Search function

that we created in Hour 15.

Save and close this file.

http://search.twitter.com/search?q=<term
http://search.twitter.com/search?q=<term

180 HOUR 16: Trends and GEO

Edit twitteroauth.php
Let’s add our API call. Open twitteroauth.php and add the following function at the

end of the file but before the last ‘}’:

function showTrends(){
$api_call = ‘trends.json’;
return $this->get($api_call);

}

Save and close this file.

Now we’ll give it a go. Open index.php in your browser and click Trends. You should

see something like Figure 16.1.

Trends: Recent, Daily, Weekly
There are a few more Trend API calls we can make; however, its usefulness is most

likely only within a select domain. The following three API calls return the same

information in general: a collection of trending terms based on a segment of time—

most recent, daily, and weekly. Let’s have a look at the returns for trend/daily.json:

<urlrequest>url
https://api.twitter.com/1/account/verify_credentials.xml</urlrequest>

➥<urlrequest>url
http://api.twitter.com/1/trends/daily.json?</urlrequest>
array(2) {
[“trends”]=>
array(24) {

FIGURE 16.1
Screenshot of
Trends.

Supporting Trends in Our Application 181

[“2010-09-04 03:40”]=>
array(20) {
[0]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(18) “Duke Nukem Forever”
[“promoted_content”]=>
NULL
[“name”]=>
string(18) “Duke Nukem Forever”

}
[1]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(14) “#lessonlearned”
[“promoted_content”]=>
NULL
[“name”]=>
string(14) “#lessonlearned”

}
[2]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(10) “#voltaxuxa”
[“promoted_content”]=>
NULL
[“name”]=>
string(10) “#voltaxuxa”

}
[3]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(10) “#camprock2”
[“promoted_content”]=>
NULL
[“name”]=>
string(10) “#camprock2”

}
...

[19]=>
array(4) {
[“events”]=>
NULL
[“query”]=>

182 HOUR 16: Trends and GEO

string(9) “Hurricane”
[“promoted_content”]=>
NULL
[“name”]=>
string(9) “Hurricane”

}
}
[“2010-09-04 05:40”]=>
array(20) {
[0]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(10) “Duke Nukem”
[“promoted_content”]=>
NULL
[“name”]=>
string(10) “Duke Nukem”

}
[1]=>
array(4) {
[“events”]=>
NULL
[“query”]=>
string(14) “#lessonlearned”
[“promoted_content”]=>
NULL
[“name”]=>
string(14) “#lessonlearned”

}

...

The rest of the output is truncated.

There are 20 items per date. As you can imagine, this is quite a large dataset being

returned. You may have also noticed that the key for the first array attribute is the

date and time when those terms where trending. Let’s have a look at the first five:

[“2010-09-04 03:40”]=>
[“2010-09-04 05:40”]=>
[“2010-09-04 07:40”]=>
[“2010-09-03 18:40”]=>
[“2010-09-04 04:40”]=>

As you can see, the first three seem to respect a two-hour interval, but after that, it’s

fairly random which time slice is going to show up when. As such, you need to

parse and convert these times into a date/time object so that you can sort them

properly. In addition, the dates are not value pairs but the key of the nested array

within the object. As such, we need to do a bit more work to parse these returns.

Supporting Trends in Our Application 183

The value of looking at trending term data in time slices is to compare which terms

are rising and which terms are declining and at what rate. Creating that capability

in our application is a bit out of scope, but we still want to display the data, so let’s

instead display the returns separated by date but still linking to our search function.

Edit header.inc
Let’s add a few more tabs to our Trends section. Under the following line:

Trends

Add the following lines:

Daily
Weekly
Current

Save and close.

Edit parseTwitter.php
Now let’s add three new case statements to our switch. Open parseTwitter.php and

add these case statements at the end of the switch function:

case ‘trends_daily’:
{ $messages=$twitter->showTrends_daily($options); return

call_trends_time($messages); }
break;

case ‘trends_weekly’:
{ $messages=$twitter->showTrends_weekly($options); return

call_trends_time($messages); }
break;

case ‘trends_current’:
{ $messages=$twitter->showTrends_current($options); return

call_trends_time($messages); }
break;

Notice that all three are sending the returns to the same function. Let’s create that

function now.

In this same file, create a new function under the previous function we created called

‘call_trends()’:

function call_trends_daily($messages){
$twitterReturn = json_decode($messages, true);

Notice that I have used the option ‘true’ while using json_decode. I’m doing this

because it’s sometimes easier to work with an array than with an object. Because we

184 HOUR 16: Trends and GEO

want to display the date, we need the key as we loop through the nested arrays. The

array_keys() function within PHP makes that very easy for us:

$keys=array_keys($twitterReturn[‘trends’]);

Here we set $keys to the array of dates from our JSON return:

$i=0;
foreach($twitterReturn[‘trends’] as $foo){

echo ‘
’.$keys[$i].’
 ‘;
foreach($twitterReturn[‘trends’][$keys[$i]] as $trend){

Now that we know the time, we can access the nested array for each of the 20

returns per time segment:

echo “
Term: “.$trend[‘name’].””;

echo ‘<p />’;
}

$i++;
}

}

Save and close the file.

Edit twitteroauth.php
Now that we have our parsing in place, let’s insert the code to make the API requests

to Twitter. Open twitteroauth.php and add the following three function calls at the

end of the file but before the last ‘}’:

function showTrends_daily($options){
$api_call = ‘trends/daily.json?’.$options;
return $this->get($api_call);

}
function showTrends_weekly($options){
$api_call = ‘trends/weekly.json?’.$options;
return $this->get($api_call);

}
function showTrends_current($options){
$api_call = ‘trends/current.json?’.$options;
return $this->get($api_call);

}

Save and close this file.

Now let’s see what we get when we run our application. Open index.php in your

web browser, and you should see something similar to Figure 16.2. Remember to

scroll down the page to see more returns and times.

Supporting Trends in Our Application 185

Click Trends/weekly, and you will see something very much like Trends/daily but

again with some of the dates out of sequence.

Clicking Trends/current returns something very much like the generic ‘trends’ API

call, but based on a time slice in the recent past. Note that you will only get the top

ten with this API. I expect this to change in the future.

Trends/Available and WOEID
Let’s have a look at the API call Trends/available from Twitter documents: http:/

/dev.twitter.com/doc/get/trends/:woeid.

The API call trends/available returns the locations that Twitter has trending

topic information for. The response is an array of “locations” that encode the loca-

tion’s WOEID and some other human-readable information, such as a canonical

name and country the location belongs in. A WOEID is a Yahoo! Where On Earth ID.

Clearly there is something different here. The trends/available call relies on another

API service from Yahoo! called “Yahoo! Where On Earth ID,” or WOEID.

What is WOEID?—WOEID stands for Where On Earth ID by Yahoo!. It’s a stand-

alone integer that represents a place. A more detailed explanation relevant to

Twitter was posted at http://engineering.twitter.com/2010/02/woeids-in-twitters-

trends.html, by Raffi Krikorian @raffi.

Basically, Twitter will try to determine a location for a tweet based on its content,

not just the location of the tweet’s owner. This could be quite powerful and

FIGURE 16.2
Screenshot of
Trends/daily.

http://dev.twitter.com/doc/get/trends/:woeid
http://dev.twitter.com/doc/get/trends/:woeid
http://engineering.twitter.com/2010/02/woeids-in-twitters-trends.html
http://engineering.twitter.com/2010/02/woeids-in-twitters-trends.html

186 HOUR 16: Trends and GEO

interesting when studying large numbers of tweets. Keep in mind that this applies

only to trending topics, not ALL tweets.

The actual API method call, trends/:woeid is pretty typical, as most of the API calls

we have seen so far. It returns the top 10 trending topics for a specific WOEID, if

trending information is available for it. The response is an array of “trend” objects

that encode the name of the trending topic, the query parameter that can be used to

search for the topic on Twitter Search, and the Twitter Search URL. Keep in mind

that return for this call is cached for 5 minutes on the Twitter servers so calling it

more frequently will not return any more data, and will count against your rate

limit usage.

Example: http://api.twitter.com/1/trends/23424975.xml

Output:

<matching_trends type=”array”>
–
<trends as_of=”2010-09-04T01:12:21Z” created_at=”2010-09-04T00:54:16Z”>
–
<locations>
–
<location>
<woeid>23424975</woeid>
<name>United Kingdom</name>
</location>
</locations>
<trend url=”http://search.twitter.com/search?q=Duke+Nukem+Forever”
query=”Duke+Nukem+Forever”>Duke Nukem Forever</trend>
<trend url=”http://search.twitter.com/search?q=Dries+Roelvink”
query=”Dries+Roelvink”>Dries Roelvink</trend>
<trend url=”http://search.twitter.com/search?q=Vanessa+Feltz”
query=”Vanessa+Feltz”>Vanessa Feltz</trend>
<trend url=”http://search.twitter.com/search?q=Blues+Brothers”
query=”Blues+Brothers”>Blues Brothers</trend>
<trend url=”http://search.twitter.com/search?q=Heart+Vacancy”
query=”Heart+Vacancy”>Heart Vacancy</trend>
<trend url=”http://search.twitter.com/search?q=%23lessonlearned”
query=”%23lessonlearned”>#lessonlearned</trend>
<trend url=”http://search.twitter.com/search?q=Cloverfield”
query=”Cloverfield”>Cloverfield</trend>
<trend url=”http://search.twitter.com/search?q=Glyn”
query=”Glyn”>Glyn</trend>
<trend url=”http://search.twitter.com/search?q=Cyril”
query=”Cyril”>Cyril</trend>
<trend url=”http://search.twitter.com/search?q=ITV4”
query=”ITV4”>ITV4</trend>
</trends>
</matching_trends>

There are other API calls with trends that can be found here: http://dev.twitter.com/

doc/get/trends.

http://dev.twitter.com/doc/get/trends
http://dev.twitter.com/doc/get/trends

Understanding the GEO Tag 187

Many of the Trends API functions are still in development, so I would expect that

there will be some evolution of these methods as time goes on. Similar to WOEID,

another API method we can look at is the GEO tag.

Understanding the GEO Tag
The GEO methods are very interesting in that you can filter tweets based on loca-

tion. The most obvious example is to map tweets over a map. A typical example is

Trendsmap.com. This site will take your location, if enabled, and provide all trend-

ing topics in this area.

So, let’s have a look at GEO API call from the Twitter docs.

GET geo/search
The geo/search API call will search for places that can be attached to a

status/update. Given a latitude and a longitude pair, an IP address, or a name, this

request will return a list of all the valid places that can be used as the place_id when

updating a status.

This is the recommended method to use to find places that can be attached to sta-

tuses/update. Unlike geo/reverse_geocode, which provides raw data access, this end-

point can potentially reorder places in regard to the user who is authenticated. This

approach is also preferred for interactive place matching with the user.

As we have seen before with other switch operator, there are GEO-centric search oper-

ators we can look at. Here’s the current list from the Twitter docs (http://dev.twitter.

com/doc/get/geo/search):

. lat

. long

. query

. ip

. granularity

. accuracy

. max_results

. contained_within

. attribute:street_address

. callback

http://dev.twitter.com/doc/get/geo/search
http://dev.twitter.com/doc/get/geo/search

188 HOUR 16: Trends and GEO

A rich list of operators, right? Let’s take one and see what it looks like. Here is an

example search using the attribute:street_address operator:

http://api.twitter.com/1/geo/search.json?attribute:street_address=795%

➥20Folsom%20St

If we look at the sample JSON return from the Twitter docs, we can see that we get a

rich amount of information. First, here is the sample return:

{
“result”: {
“places”: [
{
“name”: ”Twitter HQ”,
“country”: ”The United States of America”,
“country_code”: ”US”,
“attributes”: {
“street_address”: ”795 Folsom St”

},
“url”: ”http://api.twitter.com/1/geo/id/247f43d441defc03.JSON”,
“id”: ”247f43d441defc03”,
“bounding_box”: {
“coordinates”: [
[
[
-122.400612831116,
37.7821120598956

],
[
-122.400612831116,
37.7821120598956

],
[
-122.400612831116,
37.7821120598956

],
[
-122.400612831116,
37.7821120598956

]
]

],
”type”: ”Polygon”

},
”contained_within”: [
{
”name”: ”San Francisco”,
”country”: ”The United States of America”,
”country_code”: ”US”,
”attributes”: {

Understanding the GEO Tag 189

},
”url”: ”http://api.twitter.com/1/geo/id/5a110d312052166f.JSON”,
”id”: ”5a110d312052166f”,
”bounding_box”: {
”coordinates”: [
[
[
-122.51368188,
37.70813196

],
[
-122.35845384,
37.70813196

],
[
-122.35845384,
37.83245301

],
[
-122.51368188,
37.83245301

]
]

],
”type”: ”Polygon”

},
”full_name”: ”San Francisco, CA”,
”place_type”: ”city”

}
],
”full_name”: ”Twitter HQ, San Francisco”,
”place_type”: ”poi”

}
]

},
”query”: {
”url”:

”http://api.twitter.com/1/geo/search.JSON?query=Twitter+HQ&accuracy=0&
➥autocomplete=false&granularity=neighborhood”,

”type”:
”search”,

”params”: {
“granularity”:

”neighborhood”,
“accuracy”: 0,
“autocomplete”: false,
“query”:

”Twitter HQ”
}

}
}

190 HOUR 16: Trends and GEO

What is interesting here is getting not only an area bounding box for the address,

but also for the city in general where the address is located. The number of options

for searching is quite useful. As we can see from the preceding options list, we can

use lat, long, ip, and—what I would think would be the most useful—query.

Summary
In this hour, we learned about trending topic and some of the limitations of how

returns are presented to us. We also discovered that trends do not provide a timeline

themselves, but instead a set of terms that are trending that we can thus use with the

search method to get a timeline of tweets using that term.

We also learned how to search Twitter using GEO codes, including using the WOEID

protocol created by Yahoo!. You will have discovered that the returns from the GEO

methods are rich with information that lends itself nicely to a mapping application.

Q&A
Q. Because a trending topic is much like a search, can I employ the same

search parameters?
A. No, although there are parameters you can use to refine the returns.

Q. Will we see other GEO tools that we can use with Twitter other than
WOEID?

A. Yes, in fact, as of the writing of this book, a new set of reference tools is being

Alpha tested.

Workshop

Quiz
1. What does WOEID mean?

2. What is a trending topic?

3. Why do hash keywords seem to appear in trending topics so often?

Workshop 191

Quiz Answers
1. Yahoo! Where On Earth ID.

2. A trending topic is a keyword that has appeared repeatedly in a given bracket

of time.

3. Remember, a hash (#) is an unofficial convention to designate the subject of a

Tweet. As such, a subject will appear more often than standalone words.

Exercises
1. When we get a return from a GEO method call, we get a return type ‘Polygon’.

Take the information from this return and draw a polygon using Google Maps

API.

2. Create a simple script to display the top 10 trending topic keywords. For each

topic, place code that will allow the user to perform a search of that keyword.

This page intentionally left blank

Friendships Methods 193

HOUR 17

Friendships, Notification,
Block, and Account
Methods

What You’ll Learn in This Hour:
. How to follow and unfollow a user with the Friendships methods

. Notification methods

. Block methods

. Account methods

Friendships Methods
The Friendships methods are what you would expect: the ability to create or destroy

a friendship, which is also known as following and unfollowing a user. This is a core

functionality and something that is expected to be supported by most Twitter appli-

cations. There are two ways to approach supporting the friendships. First, we can try

to find out if we are already following the user, and based on that condition, offer a

follow or unfollow button. Or, we can provide one button that assumes to follow,

and if we get an HTTP reply of 403, meaning we are already following the Twitter

user, we can offer to unfollow. The second procedure is more useful for automated

systems, so we are going to go with the first option—checking to see if we are follow-

ing someone and then offering the appropriate button.

194 HOUR 17: Friendships, Notification, Block, and Account Methods

Implement Friendships Methods in Our
Application
Although the notification API seems straightforward, not all API methods return the

status of whether you are following someone. As such, we will have to write a nested

if() statement within our function call of render.php.

Edit render.php
Because we are using letters for our action buttons, we are going to use ‘FOL’ for a

follow request and ‘LEV’ for a leave request.

After the following line:

$textBody = formatUpdates($update, $updateTime);

Add this line:

$following = $parsedReturn[‘following’][$i];

Now we need to add the code to render the ‘LEV’ link. In the same file, find the fol-

lowing code:

if($nav==’showFavorites’) { $output.=”<a href=’#’ on-
mouseup=\”destroyFavorite(‘$id’)\”>Del</div> “;

} else { $output.=”<a href=’#’
onmouseup=\”favorite(‘$id’)\”>Fav</div> “; }

And replace it with the following, removing the trailing ‘</div>’s:

if($nav==’showFavorites’) { $output.=”<a href=’#’
onmouseup=\”destroyFavorite(‘$id’)\”>Del “;

} else { $output.=”Fav “; }

Now we can add our new code. Add the following under the code you just changed:

if($following==null) {$output.= ‘</div>’; } else {
if($following==’true’) { $output.=”<a

➥href=’#’ onmouseup=\”leave(‘$screen_name’)\”>LEV</div> “;
} else { $output.=”<a href=’#’

➥onmouseup=\”follow(‘$screen_name’)\”>Fol</div> “; }
}

Save and close.

Friendships Methods 195

Edit base.js
Now we need to catch these links in JavaScript. Add the following function after the

function sendGeoSearch() in base.js:

function follow(id){
url=’commandLine.php?command=follow&id=’+id;

callPage(url, ‘serverMessages’);
}
function leave(id){
url=’commandLine.php?command=leave&id=’+id;

callPage(url, ‘serverMessages’);
}

Save and close.

Edit commandLine.php
Now we need to catch the AJAX request we made in base.js. We will use the same

approach as we have for the other AJAX calls.

At the end of the file, but before the last ‘}’, add the following code:

case ‘follow’:
{ $messages=$twitter->follow($id); echo ($messages); }
break;

case ‘leave’:
{ $messages=$twitter->leave($id); echo ($messages); }
break;

Save and close.

Edit twitteroauth.php
Now let’s put our notification methods into twitteroauth.php. Open

twitteroauth.php and add these two functions at the end of the file but before the

last ‘}’:

function follow($options){
$api_call = “friendships/create.XML?screen_name=$options”;

return $this->post($api_call);
}
function leave($options){

$api_call = “ friendships/destroy.XML?screen_name=$options”;
return $this->post($api_call);

}

Save and close.

196 HOUR 17: Friendships, Notification, Block, and Account Methods

Edit parseTwitter.php
Finally, we need to parse our return to find out whether the owner of the tweet in

the returned stream is following us. Not all APIs return this value, so we are only

going to put code into our function call_timeline(). Fortunately, this is a simple

matter of adding two more lines.

After the following line:

$screen_name[$i] = $status->user->screen_name;

Add this line:

$following[$i] = $status->user->following;

And after this line:

$parsedReturn[‘screen_name’]=$screen_name;

And this line:

$parsedReturn[‘following’]=$following;

Save and close.

Now let’s give it a try. You should see something like Figure 17.1.

Try clicking on a FOL, and you should see a raw dump of the tweeter’s information,

as shown in Figure 17.2.

FIGURE 17.1
Screenshot of
Following
method but-
tons.

Notification Methods 197

FIGURE 17.2
Screenshot
showing user
info from a noti-
fication call.

Notification Methods
The notification methods are somewhat like the account methods in that they are

used to get information about or change the operation of a user’s account. There are

only two methods to review: notifications/follow and notifications/leave. They also

work much the same as many of the API methods. Simply POST the proper http:

request with either the user_id or screen_name, and you will get back a code 200

with profile information about the person you followed or left. Let’s have a look at

these methods and then we will add this feature to our application. First notifica-

tions/follow as defined in the Twitter docs:

. POST notifications/follow: Enables device notifications for updates from

the specified user. Returns the specified user when successful.

We have a choice of operators for letting Twitter know who we want to follow. We
can use either user_id or screen_name. In our example, let’s use screen_name.

Example:
OK, now let’s have a look at the API from the Twitter docs about notifications/leave:

. POST notifications/leave: Disables notifications for updates from the

specified user to the authenticating user. Returns the specified user when

successful.

Pretty simple, right? Sometimes, it’s just that easy.

Did You
Know?

198 HOUR 17: Friendships, Notification, Block, and Account Methods

Block Methods
Blocking occurs when a user blocks another user from following you, sending you a

@reply or @mention, or putting your account on any of their lists. When users are

blocked, they are not notified that they have been blocked. Keep in mind, though, if

you have a public Twitter account, which most people do, your tweets will still show

up in the public stream and thus a blocked user will still be able to see them.

The methods for blocking are very similar to friends and follows. So, let’s look at

these methods from the Twitter docs:

. POST blocks/create: Blocks the user specified in the ID parameter as the

authenticating user. Destroys a friendship to the blocked user if it exists.

Returns the blocked user in the requested format when successful.

Now, the next one may seem confusing and, if so, don’t feel bad. To remove a block,

you do not unblock or delete the block—you destroy it! Let’s look at blocks/destroy

from Twitter docs:

. POST (DELETE) blocks/destroy: Unblocks the user specified in the ID

parameter for the authenticating user. Returns the unblocked user in the

requested format when successful.

We can also see if a block exists. Again, from the Twitter docs:

. GET blocks/exists: Returns if the authenticating user is blocking a target

user. Returns the blocked user’s object if a block exists, and returns an error

with an HTTP 404 response code otherwise.

This next API is a bit different; blocks/blocking returns a list of blocked accounts:

. GET blocks/blocking: Returns an array of user objects that the authenticat-

ing user is blocking.

The blocks/blocking/ids is just like the blocks/blocking API call except the return is

user IDs:

. GET blocks/blocking/ids: Returns an array of numeric user IDs the

authenticating user is blocking.

There are quite a number of methods for blocking, right? And you may not even

know right off what you may use blocking for, but once you start to build more com-

plete Twitter applications, or integrations into a larger application, you will find

these to be more useful than you think.

Account Methods 199

Account Methods
As we have mentioned before, Twitter exposed almost all the elements of its func-

tionality through its API system. This includes managing a user’s account. We have

already used one of these methods: account/verify_credentials. There are a few other

useful credentials we can access. For example, ‘account/rate_limit_status’ can be a

useful warning to users that they are approaching the limit of how many API calls

they can make for the hour or day.

Here is a list currently supported:

. account/verify_credentials

. account/rate_limit_status

. account/end_session

. account/update_delivery_device

. account/update_profile_colors

. account/update_profile_image

. account/update_profile_background_image

. account/update_profile

Just for fun, let’s add a display in our application for displaying the rate limit of our

user. We will make this call when we make the account/verify_credentials call.

Adding the Rate Status Method to Our Application
These next series of edits will be pretty simple because we are going to make a single

API call and display the results, but no new menu items are needed. Also, it’s good to

note that making this API method call does not count against the user’s API limit

counts.

Edit header.inc
We’ll do something a little different this time from a presentation point of view. We

are going use the space on the right of our dark header bar to display this informa-

tion. Let’s open header.inc.

Near the top of the file, find this line:

TwitterAPI in 24 hours.

200 HOUR 17: Friendships, Notification, Block, and Account Methods

Then add the following lines:

<div style=’float: right’>
<? echo getTwitterData(‘getUserRate’); ?>

</div>

Save and close.

Edit parseTwitter.php
Because we make a request of getTwitterData(), we need to create a switch to catch

it. Open parseTwitter.php, and add this case to the switch function:

case ‘getUserName’:
{ $messages=$twitter->getVerifyCredentials(‘XML’); return

call_credentials($messages); }
break;

Save and close.

Edit twitteroauth.php
Now we need to create the API method call to support our new request. Open twit-

teroauth.php and at the end of the file, but before the last ‘}’, add the following

function:

function getUserRate() {
$api_call = ‘account/rate_limit_status.XML’;

return $this->get($api_call);
}

Save and close.

Now let’s give it a try. Open index.php in your browser, and you should see some-

thing like Figure 17.3. Do not worry if you do not have as many calls as shown in

the figure. This is from a whitelisted account.

FIGURE 17.3
Screenshot
showing API
calls remaining.

Account Methods 201

This does not always work because of aggressive OAuth caching. Always provide
an option to log out from Twitter.com.

. POST account/update_profile_colors: Sets one or more hex values that

control the color scheme of the authenticating user’s profile page on

Twitter.com. Each parameter’s value must be a valid hexadecimal value

and may be either three or six characters (ex: #fff or #ffffff).

URL: http://api.twitter.com/version/account/update_profile_colors.format

. POST account/update_profile_image: Updates the authenticating user’s

profile image. Note that this method expects raw multipart data, not a URL

to an image. This method asynchronously processes the uploaded file before

updating the user’s profile image URL. You can either update your local

cache the next time you request the user’s information, or, at least 5 seconds

after uploading the image, ask for the updated URL using

users/profile_image/:screen_name.

URL: http://api.twitter.com/version/account/update_profile_image.format

. POST account/update_profile_background_image: Updates the authenti-

cating user’s profile background image. Note that this method expects raw

multipart data, not a URL to an image.

URL: http://api.twitter.com/version/account/update_profile_background_

image.format

. POST account/update_profile: Sets values that users are able to set under

the Account tab of their settings page. Only the parameters specified will

be updated.

URL: http://api.twitter.com/version/account/update_profile.format

Additional Account Methods
For reference, let’s have a look at some of the other methods we have access to via

‘account’ method calls from the Twitter docs. It is not likely you will use these meth-

ods in more typical Twitter client applications, but it’s good to be aware of them.

Again referencing the Twitter docs, let’s have a quick look at some additional

account methods that you have access to via the APIs:

. POST account/end_session: Ends the session of the authenticating user,

returning a null cookie. Use this method to sign users out of client-facing

applications like widgets.

URL: http://api.twitter.com/version/account/end_session.format

Watch
Out!

http://api.twitter.com/version/account/update_profile_colors.format
http://api.twitter.com/version/account/update_profile_image.format
http://api.twitter.com/version/account/update_profile_background_image.format
http://api.twitter.com/version/account/update_profile_background_image.format
http://api.twitter.com/version/account/update_profile.format
http://api.twitter.com/version/account/end_session.format

202 HOUR 17: Friendships, Notification, Block, and Account Methods

Summary
In this hour, we explored the Friendships and Notification methods, which are used

to get information about or change the operation of a user’s account. We looked at

blocking and the methods associated with that account.

We also looked at the Account methods and how we can use some of those methods

to track how many API calls a user has per hour. We also used a new portion of our

UI to display API rate information in the upper right.

Q&A
Q. What API method would you use to change an account holder’s email

address?
A. Trick question. You are not allowed to change a user’s email address due to

security reasons because a password reminder is sent to a user via email.

Q. What are the API method calls to follow and unfollow another twitter
user?

A. To follow a user: .. /friendships/create. To unfollow a user: .. /

friendships/destroy.

Workshop

Quiz
1. What are the five profile colors methods we have access to?

2. When you block a user, will the user you block be notified?

3. Does the rate_limit_status API call count against your API limits?

Quiz Answers
1. They are as follows:

Background_color

Text_color

Link_color

Sidebar_fill_color

Sidebar_border_color

Workshop 203

2. No, the user is not notified.

3. No, but if you create a loop making this call too often, you can run into limits

of any calls coming from the same IP too often, as well as other traffic monitor-

ing tools that are not publicly expressed or have yet to be deployed.

Exercises
1. Check to see how many tweets a user has made in the past 24 hours and

change the background color based on that number. For example, blue could

mean 1 or less in 24; red could be 40 tweets or more. Use color gradation based

on the number of tweets.

2. In the commandline.php file, we used echo to see the return after creating a

friendship. Parse this return and provide the user with something more useful.

3. When we reviewed notification methods, we did not implement them into our

application. Try to do that now.

This page intentionally left blank

[(H3F)] 205

HOUR 18

Twitter Documentation

What You’ll Learn in This Hour:
. How to navigate the Twitter Development website

. How to use dev.twitter.com/console

. About the Tweet Button widget

. How to navigate Twitter documents

. Some recommended best practices from Twitter

The Twitter Dev Website
Twitter has been taking great pains to make working with the Twitter API as clear as

possible. However, as the API evolves, so does the documentation; as of this writing,

the documentation is evolving. Much of the information in this book is a combina-

tion of references from the old docs and the new docs. Both versions of the docu-

ment will still be online by the time this book is published, so be sure to pay atten-

tion to the URL when you look things up. It should be dev.twitter.com.

Currently, Figure 18.1 is the front page when you go to dev.twitter.com.

206 HOUR 18: Twitter Documentation

FIGURE 18.1
dev.twitter.com.

FIGURE 18.2
The
dev.twitter.com/
start page.

Getting Started
From dev.twitter.com, click Getting Started or navigate to dev.twitter.com/start. You

might see something like Figure 18.2. Click Explore the API with the Twurl Web

Console or navigate to dev.twitter.com/console. You should see something like

Figure 18.3.

The Twitter Dev Website 207

FIGURE 18.3
The
dev.twitter.com/
console page.

FIGURE 18.4
statuses/user_
timeline con-
sole response.

This is a useful tool for exploring exactly how the Twitter API is returning data at the

moment. You need to have a registered application to use this tool. As you can see in

this example, I’m using my own application twittFilter.com. If you have not done

this already, you may want to refer back to Hour 2 on registering your application.

Something really useful with this tool is the display of the response headers. For

example, here are the response headers I get when making the call

‘..statuses/user_timeline’, as you can see in Figure 18.4.

208 HOUR 18: Twitter Documentation

Response headers:

X-Ratelimit-Reset: 1284408284
Etag: “f739af2f2888af9...”
Expires: Tue, 31 Mar 1981 05:00:00 GMT
Last-Modified: Mon, 13 Sep 2010 19:04:44 GMT
X-Ratelimit-Limit: 150
X-Transaction: 1284404684-62667-59215
Connection: close
Content-Type: application/xml; charset=utf-8
X-Runtime: 0.71764
Server: hi
Date: Mon, 13 Sep 2010 19:04:45 GMT
X-Ratelimit-Class: api
Content-Length: 47666
X-Ratelimit-Remaining: 150
X-Revision: DEV
Set-Cookie: k=192.168.30.2.1284404684672016; path=/; expires=Mon, 20-Sep-10
19:04:44
GMT; domain=.twitter.com, guest_id=1284404684xxxxx; path=/; expires=Wed,
13 Oct 2010
19:04:44 GMT, lang=en; path=/,
_twitter_sess=BAh7CjoPY3JlYXRlZF9hdGwrCI8nfAwrAToTcGFzc3dxxxxxxxxxxx...; do-
main=.twitter.com; path=/
Vary: Accept-Encoding
Cache-Control: no-cache, no-store, must-revalidate, pre-check=0, post-
check=0
Status: 200 OK
Pragma: no-cache

Notice that we use the ‘status’ element of the response header to determine whether

we received a valid response. In this case, we got a 200, which is ‘ok’.

Now let’s click the Request tab. You should see something like Figure 18.5. You can

see the actual HTTP GET request that we normally see in our application:

opening connection to api.local.twitter.com...
opened
<- “GET /1/statuses/user_timeline.xml HTTP/1.1
Accept: */*
Connection: close
User-Agent: OAuth gem v0.3.4.1
Authorization: OAuth oauth_nonce=\”moGd323sds...\”,
oauth_signature_method=\”HMAC-SHA1\”,
oauth_timestamp=\”1284404684\”, oauth_consumer_key=\”wIRkjfiul...\”,
oauth_token=\”1171057892...\”, oauth_signature=\”sAnXnlTl6XY7s8s....\”,
oauth_version=\”1.0\”
Host: api.local.twitter.com:9000

The Twitter Dev Website 209

The Tweet Button
Let’s refer back to the main page dev.twitter.com. As you saw in Figure 18.1, there is

more on this page than navigation options. Currently, Twitter’s Tweet button is fea-

tured. Because it’s here, let’s have a look at it.

The Tweet button is a simple JavaScript call that you can place on your web page to

allow a user to retweet web content. For example, on my personal blog, “As seen

through PeriVisioN,” I have a retweet button for each article, as shown in Figure 18.6.

FIGURE 18.5
statuses/user_
timeline con-
sole request.

FIGURE 18.6
Retweet button
on PeriVisioN.

The user experience for using the Tweet button is standard, as you can see from the

following steps and Figure 18.7:

1. The user clicks the Tweet button.

2. The user is asked to log in to Twitter if the user isn’t already logged in. The

user who is new to Twitter can also create an account.

3. The Share box appears already completed with the information provided in

the properties of the Tweet button. Users can change the content if they wish.

210 HOUR 18: Twitter Documentation

4. Posting of the Tweet is confirmed, and the user is suggested a maximum of

two accounts the user may want to follow as provided in the properties of

the Tweet button.

5. The Share box remains open until the user clicks Close.

FIGURE 18.7
Retweet button
experience.

Implementation is also easy. Here are three ways you can do it, as posted on http:/

/dev.twitter.com/pages/tweet_button.

Using JavaScript
The easiest way to add the Tweet button to your website is to use JavaScript. This

method requires adding a line of JavaScript and an HTML anchor to your web page.

With this method, you can customize the Tweet button using data attributes and

query string parameters.

Notice how the anchor element has a class of twitter-share-button. This is required

for the Tweet button JavaScript to know which anchor elements to convert to buttons:

<script src=”http://platform.twitter.com/widgets.js”
type=”text/javascript”></script>
Tweet

Using an iframe
If you prefer, you can add a Tweet button using an iframe. When using this method,

you have to use query string parameters to customize the Tweet button’s behavior:

<iframe allowtransparency=”true” frameborder=”0” scrolling=”no”
src=”http://platform.twitter.com/widgets/tweet_button.html”
style=”width:130px; height:50px;”></iframe>

http://dev.twitter.com/pages/tweet_button
http://dev.twitter.com/pages/tweet_button

Dev.twitter.com/doc 211

Building Your Own
If you want to be able to customize the way the Tweet button looks, you will want to

use this basic format. When using this method, you have to use query string param-

eters to customize the Tweet button’s behavior as well as handle the pop-up of the

Share box.

The dimensions of the Share box are listed here in the FAQ: http://dev.twitter.com/

pages/tweet_button_faq#dimensions.

Dev.twitter.com/doc
The current set of Twitter API docs that you would find on dev.twitter.com is not the

same documents that Twitter started with. In fact, this collection is fairly recent; the

original site was created using a wiki: http://apiwiki.twitter.com/. A screenshot of the

original documentation resource can be seen in Figure 18.8, in contrast to the new

system shown in Figure 18.9.

FIGURE 18.8
Twitter API wiki.

http://dev.twitter.com/pages/tweet_button_faq#dimensions
http://dev.twitter.com/pages/tweet_button_faq#dimensions
http://apiwiki.twitter.com/

212 HOUR 18: Twitter Documentation

FIGURE 18.9
New twitter API
page.

At the time of this writing, all the API methods have been moved, but not every-

thing has been fully documented, and there are a few errors, omissions, and even

grammatical errors, of which we are sure we have plenty ourselves, in the new docu-

ment. It is anticipated that these errors will go away as the new documents mature.

It’s not in the scope to go through all these documents, but instead we’ll highlight a

few interesting and generally useful resources.

Twitter Resource Page Overview
Although the API Documentation (http://dev.twitter.com/doc) is still being created

and refined, these documents are still a great resource for any programmer or prod-

uct developer. The Twitter docs are broken up into seven sections:

. Guidelines and Terms

. Authentication

. REST API and General

. Streaming API and User Streams

. Search API

. @Anywhere and Tweet Button

. Ecosystem

http://dev.twitter.com/doc

Twitter Resource Page Overview 213

Guidelines and Terms
There are three sections to Guidelines and Terms: Rules of the Road, Display

Guidelines, and Geo Developer Guidelines.

Rules of the Road (http://dev.twitter.com/pages/api_terms) are “a set of (“Rules”)

that describe the policies and philosophy around what type of innovation is permit-

ted with the content and information shared on Twitter.” This section is the meatiest

of the Guidelines. Here we can read about how and where you can use Twitter data.

You will also discover what you CANNOT do with Twitter data, including trying to

sell access to the Twitter API, and if you provide an API that returns Twitter data,

you can only return IDs. Also from the docs, “Exporting Twitter Content to a datas-

tore as a service or other cloud-based service, however, is not permitted.” So, be sure

you read ALL of the Twitter Content section before you even start to develop your

application. You will also find information on commercial use as well as legal terms.

The Display Guidelines (http://dev.twitter.com/pages/display_guidelines) section is

pretty straightforward and reflects the recommended way to display a tweet. You

will notice that our application already follows most of these guidelines. At this

point in the book, you should feel confident to make the modifications to satisfy this

display requirement.

The Geo Developer Guidelines (http://dev.twitter.com/pages/geo_dev_guidelines) are

more around privacy about a user’s location as well as certain functions you should

allow the user.

Authentication
We discussed OAuth in Hour 8. However, it is still a good idea to check the OAuth

FAQ every now and again to see what has changed:

. Which authorization path should I choose?

. Authentication

. Transitioning from Basic Auth to OAuth

. OAuth Libraries

. OAuth FAQ

. Overview of “Sign in with Twitter”

It is strongly recommended that you look at the “OAuth Libraries” section to look

for a more recent and feature-rich OAuth library than we used here now that you

have a good idea of how OAuth works.

http://dev.twitter.com/pages/api_terms
http://dev.twitter.com/pages/display_guidelines
http://dev.twitter.com/pages/geo_dev_guidelines

214 HOUR 18: Twitter Documentation

REST API and General
This area is where most programmers spend their time, and not just within the API

section. Because these are new documents, a few corrections and annotations are

expected:

. Recently Updated Documentation

Whenever you find that something is not working the way you expect, it’s a

good idea to check the Recently Updated section in case something changed,

updating your previous understanding on how the API functions.

. Introduction to @twitterapi

A nice slideshow from @raffi on Twitter API development.

There are 99 slides in the deck at the time of this writing. Although they go
fast, pace yourself.

. Things Every Developer Should Know

. Twitter API FAQ

. API Overview

. API Support

. Security Best Practices

Whether you are a first-time coder or have been writing for years, it’s a good

idea to always have security in mind. Twitter provides a good checklist of

things to keep in mind when building and testing your application. Even the

outline from the site on its own serves as a good check-off list.

. Rate Limiting

. Rate Limiting FAQ

. HTTP Responses and Errors

. Counting Characters

. Tweet Entities

We did not spend much time on Tweet Entities in our previous hours because the

feature is still in development and not fully live yet. Tweet Entities are additional

structured data elements that automatically identify and reformat various known

Watch
Out!

Twitter Resource Page Overview 215

Streaming API Documentation and Search API
Streaming on Twitter is normally used only in very specific applications, and as

such was not included in this book in detail. However, we will discuss it in Hour 19.

As for search, we covered much of these sections in previous hours; however, the

search API section is a very handy reference section for building a search query, so

that is worth bookmarking.

@Anywhere and Tweet Button
@Anywhere and the Tweet Buttons are Twitter’s early attempts at creating widgets

for making the adding of Twitter functionality to a website easier. @Anywhere is an

interesting effort by Twitter that will allow you to place Twitter widgets within other

applications. For example, one of the @Anywhere widgets is a ‘hovercard’. This

widget pops up a simple Twitter card upon rollover, as shown in Figure 18.10.

The code to implement this is pretty easy:

<script type=”text/javascript”>

twttr.anywhere(function (T) {
T.hovercards();

});

</script>

From Wikipedia

URL shortening is a technique on the World Wide Web in which a URL may be
made substantially shorter in length. This involves using an HTTP Redirect on a
domain name that is short to link to a website that has a long URL. Domain
names are linked to IP addresses; however, in order to be human friendly, the
Latin alphabet can be used. Sometimes this can lead to extremely long URLs.
For example, the URL http://en.wikipedia.org/w/index.php?title=TinyURL&diff=
283621022&oldid=283308287 can be shortened to http://tinyurl.com/
mmw6lb.

By the
Way

Twitter conventions for you. For example, if a hyperlink is discovered within a tweet,

that hyperlink will be provided via an attribute within JSON or XML. If the link is

shorted, the full link will be provided as well. This is becoming necessary as well as

useful to guard against malicious links being hidden in a URL-shortened link.

http://tinyurl.com/mmw6lb
http://tinyurl.com/mmw6lb

216 HOUR 18: Twitter Documentation

Ecosystem
This section contains information about non-programmatic issues, like libraries,

where to find Developers, mention of @twitterapi - a twitter account about the

Twitter API, and a mailing list.

As a developer, I’m on one of the mailing lists, but I caution you, there is a lot of

traffic on these lists. I would strongly recommend that you select the option to

receive only one email a day.

Summary
In this hour, we looked at many of the API resources that are made available on

dev.twitter.com. Many of these documents we have referenced before. We explored

the console page and looked at the Twitter widget Reweet button.

Also in this hour, we looked at the online Twitter docs and explored how they are struc-

tured. We also touched on recommended best practices and security recommendations.

Q&A
Q. Because the old API docs on apiwiki.twitter.com/ are being deprecated in

favor of dev.twitter.com/docs, can we ignore the apiwiki completely?

A. At some point, yes, but at the time of this writing, a few small details in the old

docs have not made it to the new ones. So, if you do not find what you looking

for, it may be worth the time to try the older docs.

Twitter recommends that you set and register a separate application for use
with @Anywhere

FIGURE 18.10
@Anywhere
hovercard

Watch
Out!

Workshop 217

Q. If the user does not have Tweeting With Location enabled, can I enable via
API calls?

A. At this time, you cannot, nor do I think you will able to in the future, but that

could change.

Workshop

Quiz
1. If you wanted to look at response headers, what tool does Twitter offer to help

with this?

2. What is a URL shortener?

3. What are the “Rules of the Road?”

Quiz Answers
1. Dev.twitter.com/console.

2. URL shortening is a technique on the Web in which a URL may be made sub-

stantially shorter in length. This involves using an HTTP Redirect on a domain

name that is short to link to a website that has a long URL.

3. A set of (“Rules”) that describes the policies and philosophy around what type

of innovation is permitted with the content and information shared on Twitter.

Make sure you read them.

Exercise
We did not do this in our sample program, so as an exercise, put the Retweet button

in your application. Use either the JavaScript or iframe version.

This page intentionally left blank

The Three Types of Streaming APIs 219

HOUR 19

Streaming API

What You’ll Learn in This Hour:
. The three types of streaming APIs

. The user streams and site streams

. The Firehose, Gardenhose, Birddog, and Shadow

The Three Types of Streaming APIs
Because search was never designed to support large-scale queries or the volume of

tweets Twitter has seen recently, the streaming architecture was put in place.

There are three Twitter API sets: the RESTful APIs, Search, and the streaming APIs.

Streaming is as it sounds, opening up a connection to the Twitter servers and getting

a stream of information back.

There are three main streaming products: the Streaming API, user streams, and sites

streams. How we would call and work with each type of stream is basically the

same, but each one has its own particular focus. Let’s have a look at these as

defined in the Twitter docs. http://dev.twitter.com/pages/streaming_api:

. Streaming API—Public statuses from all users, filtered in various ways: by

userid, by keyword, by random sampling, by geographic location, and so on.

. User streams—Nearly all data required to update a user’s display. This

requires the user’s OAuth token. It provides public and protected statuses

from followings, direct messages, mentions, and other events taken on and

by the user. A large number of user streams may not be created from the

same host or service. For example, an application that displays a few

http://dev.twitter.com/pages/streaming_api

220 HOUR 19: Streaming API

accounts at once may open a connection per account. The primary use

case is providing updates to a Twitter client.

. Site streams—Allows multiplexing of multiple user streams over a site

stream connection. When more than a handful of user stream connections

are opened from the same host or service, site streams must be used. The

primary use case is website and other service integrations.

Although there are three types of streams listed, the streaming and user streams

API’s would be the ones you would most likely be interested in. You can think of the

Streaming API and the incoming stream from Twitter and the user streams as outgo-

ing or what you would provide to Twitter. We will get into the particulars of how to

use these API calls later in this hour.

Who Would Normally Use Streaming?
Streaming is mostly targeted to people who make the same search over and over or

who need a large dataset for research or data analysis. For example, suppose you

want to track the performance of a keyword over time. You would open a stream

and pass the results through a set of business rules and thus update a log file(s) or a

database. Trends are done somewhat like this. A stream of tweets is tracked and all

found keywords are logged, so you could create your own trending application using

streaming.

As stated in the Twitter docs, each of the three products has its intended uses.

The Streaming API is very useful for data analysis. To discover interesting trends in

the Twitter universe, you may need quite a bit of data. For example, a very interesting

experiment was done to track the movement of the swine flu virus by tracking people

who tweeted the words “swine” or “flu” and displaying that information on a map.

The user streams product has a different objective. It’s intended to give you every-

thing you need or want to know about a user. This includes nonpublic information

like DMs, private tweets, and so on, so you will need the user’s OAuth information.

Remember, we already have access to this information through our Twitter applica-

tion for anyone who logs in. The user streams enable us to get much of the informa-

tion that takes many API calls using just one call.

Site streams is basically user streams en mass. A vast majority of developers would

not need to use site streams, but large-scale integration operations or those clients

with many users would use this product.

The Three Types of Streaming APIs 221

What Makes Streaming Different?
The Streaming API methods are similar to search methods, with one major excep-

tion. This is a streaming connection, not your normal REST connection where we

pass a request and we get a response. Instead, we are opening a socket connection

(or a stream) to Twitter, and the Twitter servers will happily continue to feed us data

for as long as we (or Twitter) keep the connection open. Keep in mind that in com-

parison to REST where you parse the complete response when the connection is

closed, you just create a single persistent connection that has responses separated by

carriage returns \r (http://dev.twitter.com/pages/streaming_api_concepts#parsing-

responses).

It’s important to stress that you only get one connection per account. From the

Twitter docs: “Each account may create only one standing connection to the

Streaming API. Subsequent connections from the same account may cause previous-

ly established connections to be disconnected. Excessive connection attempts,

regardless of success, will result in an automatic ban of the client’s IP address.

Continually failing connections will result in your IP address being blacklisted from

all Twitter access.”

Pre-Launch Checklist
Within the Twitter docs we visited in the previous section, there is a checklist of

things to consider before you start your streaming request. At the time of this writ-

ing, there are 11 items on the checklist. Why 11 and not the traditional 10?

Actually, it was 10 when we first started writing this book, and now they have added

another one—yet another indication of how fast things with Twitter change and get

updated. That or it’s an homage to Spinal Tap. Look it up.

1. Using the correct product?

2. Not purposefully attempting to circumvent access limits and levels?

3. Creating the minimal number of connections?

4. Avoiding duplicate logins?

5. Avoiding needless reconnection?

6. Backing off from failures: none for first disconnect, seconds for repeated

network (TCP/IP) level issues, minutes for repeated HTTP (4XX codes)?

7. Using long-lived connections?

8. Tolerant of other objects and newlines in markup stream (non <status>

objects...)?

http://dev.twitter.com/pages/streaming_api_concepts#parsing-responses
http://dev.twitter.com/pages/streaming_api_concepts#parsing-responses

222 HOUR 19: Streaming API

9. Tolerant of duplicate and out-of-order messages?

10. Carefully monitoring the Twitter-API-Announce mailing list and using the

Twitter-Dev-Talk list for questions?

11. Following @twitterapi and the @sitestreams accounts?

Item 6 is of the most important in my opinion, although I’m sure you will not be

making any friends by violating item 2. Before you make any calls, make sure you

have a timeout switch to kill the connection before trying to make a new one.

Although you can use cURL to make this call, using cURL tends to have operational

gotchas, so it’s best to use cURL for debugging. It would also be a good idea to limit

how long you keep the stream open if you are storing the information to a file. Keep

in mind that Twitter will hold a connection indefinitely short of server-side errors.

However, what item 6 is referring to is failing gracefully. There are plenty of reasons

a connection can fail: network errors, server overload, or perhaps your client cannot

keep up with the traffic flow. The best solution is to look for any HTTP response code

that is over 200 and have your script pause before trying to reconnect again. It is

suggested to start at 250 milliseconds and continue to up the wait time to around 16

seconds. I would recommend that after 10 consecutive errors, send a message to a

human to look at the issue. Keep a log of the errors.

Parsing JSON responses from the Streaming API is simple: Every object is returned

on its own line and ends with a carriage return. Newline characters (\n) may occur

in object elements (the text element of a status object, for example), but carriage

returns (\r) should not.

Not listed on the checklist, but probably should be, is planning for growth. Every

time we think Twitter has gotten as big as it’s going to get, it doubles again. You

should make sure that whatever system you put in place to read and process the

stream has enough hardware power and storage space to handle three times what-

ever you are experiencing now.

Streaming Methods
There are a number of API methods available to us within the stream.twitter.com

API call. Each type of stream is geared to a particular use. Unlike any of the other

API calls we have seen in Twitter, these types of streams all have names. For exam-

ple, the most common and simple method to use is called Spritzer. This API stream

provides a sample of tweets from the Twitter stream.

Streaming Methods 223

Keep in mind that sometimes a status will come with a delete status or a delete loca-

tion. Twitter requests that you honor this delete status and remove statuses from

your client and storage. Some of these delete and scrub requests can come signifi-

cantly out of order. Try to account for this. Here are examples of the delete status

and delete geo attributes.

Delete Status:

JSON : { “delete”: { “status”: { “id”: 1234, “user_id”: 3 } } }

Delete Geo (scrub):

JSON: {“scrub_geo”:{“user_id”:14090452,”up_to_status_id”:23260136625}}

Remember that the API is changing all the time, so make sure your code can han-
dle unexpected attributes that will be coming in the future.

Because of volume, the Twitter stream may not provide each status update in
exactly the correct chronological order. It is not unusual to have status updates
delivered 3 seconds or more out of order. If the order of the status is critical to
your application, you may want to delay updates for 5 seconds to be sure that sta-
tuses are presented based on creation date, not the order it was delivered.

Types of Stream Methods
Given the enormous volume of status updates flowing through the Twitter servers,

it’s not necessary or practical to provide everyone with a stream of every status

update. As such, Twitter provides different levels of samples from the stream. All

accounts may access the statuses/sample and statuses/filter methods at default

access levels. To apply for greater level access, refer to the support page (http://dev.

twitter.com/pages/support) or email Twitter directly at api@twitter.com.

The Streaming methods are similar to the search methods, including supporting

only JSON. Let’s have a look at these methods as currently documented in Twitter

docs (http://dev.twitter.com/pages/streaming_api_methods).

POST statuses/filter: Returns public statuses that match one or more filter predi-

cates. At least one predicate parameter, follow, locations, or track must be specified.

Multiple parameters may be specified, which allows most clients to use a single con-

nection to the Streaming API. Placing long parameters in the URL may cause the

request to be rejected for excessive URL length. Use a POST request header parameter

to avoid long URLs.

Watch
Out!

Watch
Out!

http://dev.twitter.com/pages/streaming_api_methods
http://dev.twitter.com/pages/support
http://dev.twitter.com/pages/support

224 HOUR 19: Streaming API

There are various levels of access (or roles) you can apply for with the API filter:

. The default access level allows up to 400 track keywords, 5,000 follow

userids, and 25 0.1-360 degree location boxes.

. Shadow role allows 100,000 follow userids.

. Birddog role allows 400,000 follow userids.

. Restricted track role allow for 10,000 track keywords.

. Partner Track role allows for 200,000 track keywords.

. LocRestricted role supports 200 0.1-360 degree location boxes.

Any increased track access levels also pass a higher proportion of statuses before

limiting the stream. You can apply for greater tracking and access by filling out the

online form currently found here:

https://spreadsheets.google.com/viewform?hl=en&formkey=dFBTbHZIMVhseUtqS2N

kT283RTluX3c6MQ&ndplr=1#gid=0.

Here is an abbreviated list of parameters statuses/filter supports. Details on these

parameters can be found in the referenced Twitter docs:

. count—Indicates the number of previous statuses to consider for delivery

before transitioning to live stream delivery.

. delimited—Indicates that statuses should be delimited in the stream.

Statuses are represented by a length, in bytes, a newline, and the status

text that is exactly length bytes.

. follow—Returns public statuses that reference the given set of users. Users

are specified by a comma-separated list.

. locations—Specifies a set of bounding boxes to track. Only tweets that are

both created using the Geotagging API and are placed from within a

tracked bounding box will be included in the stream.

. track—Specifies keywords to track. Keywords are specified by a comma-sep-

arated list.

GET statuses/firehose: Returns all public statuses. The Firehose is not a generally

available resource. Few applications require this level of access. Creative use of a

combination of other resources and various access levels can satisfy nearly every

application use case.

https://spreadsheets.google.com/viewform?hl=en&formkey=dFBTbHZIMVhseUtqS2NkT283RTluX3c6MQ&ndplr=1#gid=0
https://spreadsheets.google.com/viewform?hl=en&formkey=dFBTbHZIMVhseUtqS2NkT283RTluX3c6MQ&ndplr=1#gid=0

Streaming Methods 225

Here is an abbreviated list of parameters statuses/firehose supports. Details on these

parameters can be found in the referenced Twitter docs:

. count—Indicates the number of previous statuses to consider for delivery

before transitioning to live stream delivery.

. delimited—Indicates that statuses should be delimited in the stream.

Statuses are represented by a length, in bytes, a newline, and the status

text that is exactly length bytes.

GET statuses/links: Returns all statuses containing http: and https:. The links

stream is not a generally available resource.

Here is an abbreviated list of parameters statuses/retweet supports. Details on these

parameters can be found in the referenced Twitter docs:

. count—Indicates the number of previous statuses to consider for delivery

before transitioning to live stream delivery.

. delimited—Indicates that statuses should be delimited in the stream.

Statuses are represented by a length, in bytes, a newline, and the status

text that is exactly length bytes.

GET statuses/retweet: Returns all retweets. The retweet stream is not a generally

available resource. Few applications require this level of access. Creative use of a

combination of other resources and various access levels can satisfy nearly every

application use case.

Here is an abbreviated list of parameters statuses/retweet supports. Details on these

parameters can be found in the referenced Twitter docs:

. delimited—Indicates that statuses should be delimited in the stream.

Statuses are represented by a length, in bytes, a newline, and the status

text that is exactly length bytes.

GET statuses/sample: Returns a random sample of all public statuses. The default

access level provides a small proportion of the Firehose. The “Gardenhose” access

level provides a proportion more suitable for data mining and research applications

that desire a larger proportion to be statistically significant sample.

Here is an abbreviated list of parameters statuses/sample supports. Details on these

parameters can be found in the referenced Twitter docs:

. count—Indicates the number of previous statuses to consider for delivery

before transitioning to live stream delivery.

226 HOUR 19: Streaming API

. delimited—Indicates that statuses should be delimited in the stream.

Statuses are represented by a length, in bytes, a newline, and the status

text that is exactly length bytes.

Summary
In this hour, we learned about the Streaming API and the three main products of the

Streaming API: the Streaming API, user streams, and site streams. We also learned

about a very useful pre-launch checklist provided by Twitter.

In addition, we learned about filtering the stream and the various parameters we

can employ.

Q&A
Q. If I’m building a normal Twitter client, do I really need to employ streaming?

A. No. Streaming is typically used for special purposes where you need lots of data

for analysis.

Q. What is the advantage of using streaming?

A. In addition to a far greater amount of data being available to you, it also is a

persistent connection, meaning that you do not have to keep making cURL

calls to maintain a flow of data. If your application requires real-time data or

a large amount of data, streaming is worth the extra work required to support

it.

Workshop

Quiz
1. Twitter gave you a list of 11 things you need to consider before you start

streaming. Can you list five of them without looking back at the text?

2. What are the sampling rates for Spritzer and Gardenhose?

3. What type of connection gives you everything?

Workshop 227

Quiz Answers
1. Things to consider before streaming include the following:

. Using the correct product?

. Not purposefully attempting to circumvent access limits and levels?

. Creating the minimal number of connections?

. Avoiding duplicate logins?

. Avoiding needless reconnection?

. Backing off from failures: none for first disconnect, seconds for repeated net-

work (TCP/IP) level issues, minutes for repeated HTTP (4XX codes)?

. Using long-lived connections?

. Tolerant of other objects and newlines in markup stream (non <status>

objects...)?

. Tolerant of duplicate and out-of-order messages?

. Using JSON if at all possible?

. Planning for growth.

2. ~1% for Spritzer, ~5% for Gardenhose.

3. Firehose, but this is only by request.

Exercises
Create a test page that opens up a stream for 3 seconds and then displays the result.

Do not worry about displaying formatting for this exercise; the key is to open a con-

nection, process the data, and then close the connection. After you have done it for 3

seconds, try 15, and then try 5 minutes. You may find it easier to open and write the

output to a file.

This page intentionally left blank

What Is Spotting the FailWhale? 229

HOUR 20

FailWhale and the Future of
the API

What You’ll Learn in This Hour:
. The History of the FailWhale

. How to get your application to retry if Twitter is not working

. What 420 really means

. The future of the Twitter API

What Is Spotting the FailWhale?
We touched this briefly in Hour 6, but now it’s time to formalize how we deal with

getting replies back from Twitter that are other than what we expect, and twitter

servers being over capacity; sometimes referred to as spotting the FailWhale. First,

what is the FailWhale?

The designer behind the FailWhale, Yiying Lu (http://www.yiyinglu.com/sc/

illustration) had posted the image to the stock photo website, iStockPhoto (that image

is now removed). The original title of this artwork was “Lifting a Dreamer.” Twitter

adapted this image for its 502 and 503 HTTP response pages. In a discussion thread on

FriendFeed about Twitter’s downtime art, Robert Scoble deemed that it should be called

FailWhale, and it stuck. “Fail” was already an existing Internet meme, at the time

used for anything that was not successful in one way or another. For a brief time,

Twitter tried to get rid of the FailWhale with a generic overcapacity message, and later

other graphics, but user backlash caused it to be reinstated. The FailWhale has become

so popular that it even has a fan club, failwhale.com (http://failwhale.com/). Because

Twitter’s growth and popularity exceeded anyone’s expectations, the FailWhale was

seen over and over again, and it became a reference for Twitter being down.

http://www.yiyinglu.com/sc/illustration
http://www.yiyinglu.com/sc/illustration
http://failwhale.com/

230 HOUR 20: FailWhale and the Future of the API

The FailWhale has become so well known that other variations have appeared,

including Homer Simpson as the whale, a beer called Fail Whale Pale Ale, cakes,

pumpkins, and of course printed on t-shirts, jackets, and coffee mugs.

Now that we know the history of the FailWhale, and why it appears, let’s figure out

a way to deal with it so we can have our own “Fail” art pages.

Just a reminder, the following are the currently supported HTTP response codes from

Twitter:

. 200 OK—Success!

. 304 Not Modified—There was no new data to return.

. 400 Bad Request—The request was invalid. An accompanying error mes-

sage will explain why. This is the status code that will be returned during

rate limiting.

. 401 Unauthorized—Authentication credentials were missing or incorrect.

. 403 Forbidden—The request is understood, but it has been refused. An

accompanying error message will explain why. This code is used when

requests are being denied because of update limits.

. 404 Not Found—The URI requested is invalid or the resource requested,

such as a user, does not exist.

. 406 Not Acceptable—Returned by the Search API when an invalid format

is specified in the request.

. 420 Enhance Your Calm—Returned by the Search and Trends API when

you are being rate limited.

. 500 Internal Server Error—Something is broken. Please post to the group

so the Twitter team can investigate.

. 502 Bad Gateway—Twitter is down or being upgraded.

. 503 Service Unavailable—The Twitter servers are up, but overloaded with

requests. Try again later.

There is a standard for what HTTP response codes are supposed to indicate, but
it’s up to the one who set up the server configuration to decide what they will
mean. For example, 420 used by Twitter is not a standard response code. There
is even a 418 code saying, I’m a teapot: The HTCPCP server is a teapot. The
responding entity may be short and stout. Defined by the April Fools specification
RFC 2324. See Hypertext Coffee Pot Control Protocol for more information: http:/
/en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol.

Did You
Know?

http://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol
http://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol

Review of the Application We Just Built 231

Review of the Application We Just Built
It’s Hour 20, and we have covered a lot of ground in very little time. It’s a good time

to step back to review what we have built, how we are using the API currently, and

how we may want to use it in the future.

Application Architecture
In Hour 3, we talked about the various types of Twitter applications. So, what did we

just build over the past 20 hours? Well, believe it or not, we created a functioning

Twitter application. Notice I did not say full featured because there are some ele-

ments we glossed over in the interest of time.

The first Twitter.com website had fewer features than what we have created here.
Only recently has Twitter.com updated its site’s features and functions with a
major upgrade in the fall of 2010.

So, let’s take a look at a diagram of our application architecture, as shown in

Figure 20.1.

We have a straightforward application structure that can support almost any future

API methods that Twitter will come up with. Let’s take a closer look at the API Call

box in our architecture diagram in Figure 20.2.

GUI

Parse
Business

Logic

API Call

FIGURE 20.1
High-level archi-
tectural view of
our Twitter
application.

Did You
Know?

232 HOUR 20: FailWhale and the Future of the API

As we can see from the diagram, we have three main parts of the class: Catch API

Request, Process Request, and Catch Exceptions. In Hour 8, we explored Abraham

Williams’ OAuth class and talked a little bit about how it worked, but now that we

have learned about the API, it’s a good idea revisit this class and understand it with-

in the larger context of developing a Twitter application.

Catch API Request
Almost all our work on the file twitteroauth.php has been around defining function

calls to catch requests from our application. A good question to ask is, “Why didn’t

we just build the request in the application?” The reason is that the Twitter API is

ever evolving. Twitter makes a great effort to make sure its changes will not break

things, but as Twitter continues its massive growth and evolution of product offer-

ings, we have to be prepared. Another reason to keep the API class outside the appli-

cation is the ease of replacing the current class with a more updated class library.

Although the class library we used in this book serves our purpose in its clarity and

simplicity, you may be well served to explore more recent and sophisticated classes

to use with your application. So, let’s take a look at one of the functions we use to

format our API call for catching API calls:

function showgeo_search($options){
$api_call = ‘/geo/search.json?query=’.$options;
return $this->get($api_call);

}

API
Request

Format
Request

Catch API
Request

Check
OAuth
Creds

Create
cURL

Request

Process
Request

Send API
Request

Get
Return

Check
Response

Code

Return
Error

Message

Return
Response

Catch
Exceptions

FIGURE 20.2
Architecture of
our API class.

Review of the Application We Just Built 233

This should be old hat to you by now. We have our function call, the options we

want to pass, construction of the $api_call variable, and the actual call to the func-

tion that begins the Process Request part of our class. This is pretty typical, but do

you remember this function call?

function getMentions($format, $id = NULL, $count = 60, $since = NULL) {
if ($id != NULL) {

$api_call = sprintf(“statuses/mentions/%s.%s”, $id,
➥$format);

}
else {

$api_call = sprintf(“statuses/mentions.%s”, $format);
}

if($since != NULL){
$api_call .= sprintf(“?since_id=%s”, urlencode($since));
$count=0;

}

if ($count != 60 AND $count!=’’) {
$api_call .= sprintf(“?count=%d”, $count);

}

return $this->get($api_call);
}

Not every API request catch function is a few simple lines. As Twitter starts to get

more and more RESTful, we will see more attributes that will be passed to Twitter

after the initial REST call. Also, by keeping these calls separate, we can customize our

default setting based on our needs. For example, we may write a function knowing

the default response from Twitter is 20 statuses. Then, it changes to 60, but our appli-

cation is not set up to handle that many status updates. By explicitly stating how

many returns we expect to get back by default, we can better manage changes in

how Twitter provides returns to us.

What to Do When the Twitter Service Is Down
From time to time, the Twitter servers will not be able to respond to your API request.

There will also be times when your users have used more than the current limit of

Twitter API calls. To deal with this, we need to examine the HTTP response codes we

talked about at the top of this hour and respond accordingly.

First, we’ll add a few simple lines of code to allow us to respond to the unexpected.

234 HOUR 20: FailWhale and the Future of the API

Edit twitteroauth.php
Open the twitteroauth.php file and add some code. Find the following lines:

curl_setopt($ci, CURLOPT_URL, $url);
$response = curl_exec($ci);
$this->http_code = curl_getinfo($ci, CURLINFO_HTTP_CODE);
$this->last_api_call = $url;

Add the following lines, including the comment text:

$errCode = $this->http_code;
/*
200 OK: Success!
304 Not Modified: There was no new data to return.
400 Bad Request: The request was invalid. An accompanying error message
will explain why. This is the status code will be returned during rate
limiting.
401 Not Authorized: Authentication credentials were missing or incorrect.
403 Forbidden: The request is understood, but it has been refused. An
accompanying error message will explain why. This code is used when
requests are being denied due to update limits.
404 Not Found: The URI requested is invalid or the resource requested, such
as a user, does not exist.
406 Not Acceptable: Returned by the Search API when an invalid format is
specified in the request.
420 Enhance Your Calm—Returned by the Search and Trends API when you are
being rate limited.
500 Internal Server Error: Something is broken. Please post to the group so
the Twitter team can investigate.
502 Bad Gateway: Twitter is down or being upgraded.
503 Service Unavailable: The Twitter servers are up, but overloaded with
requests. Try again later. The search and trend methods use this to
indicate when you are being rate limited.
*/

switch ($errCode) {
case ‘400’:

{ return $response; }
break;

case ‘401’:
{ return $response; }

break;
case ‘403’:

{ return ‘<err>403</err> ‘; }
break;

}
if(stristr($errCode,’200’)) {} else {
print ‘<h4>status ‘.$response.’</h4>
’;
print “Calling Twitter again ...<p>”;
$i++; if ($i>2) { print ‘Giving up’; return; }

sleep(2);
curl_setopt($ci, CURLOPT_CONNECTTIMEOUT , $timeout);

➥//CURLOPT_TIMEOUT
$response = curl_exec($ci);

Review of the Application We Just Built 235

if (empty($response)){
print “<h4>Sorry, twitter just does not want to talk now. Try

➥again in a few min? <p></h4>”;
break;

}
}

Save your file and close.

The commented code is clear enough. We are keeping a log of the existing possible

HTTP response codes that Twitter will return. This is useful for when new error codes

come into being, such as the 420 code: Enhance your calm.

420 is a fairly well-known shorthand in the Internet community to represent smok-
ing, planting, or just identifying the use of marijuana. The joke here is that you are
trying to hit the Search and Trends servers too often and need to slow down. Who
says the people at Twitter do not have a sense of humor?

The next lines are pretty straightforward. We are using a case switch for some of the

40x conditions. We also set up the switch to make one of the exercises at the end of

the hour easier for some beginning programmers.

The next line, however, is more interesting:

if(stristr($errCode,’200’)) {} else {

Here we are checking to see if we have any response code other than ‘200’.

Remember that we already have accounted for 400–403, so all other current and

future codes will be handled here.

We want to catch the unknown exceptions here because often, and more often than

Twitter would like, the service will be come unavailable. However, waiting one or

two seconds can be enough that the service will come back on again. So, we want to

put our script to sleep for two seconds and then try the API call again. You can see

how we are doing by using $i as a counter to keep track of how many times we retry

hitting the Twitter servers, as you can see in the following lines:

$i++; if ($i>2) { print ‘Giving up’; return; }
sleep(2);
curl_setopt($ci, CURLOPT_CONNECTTIMEOUT , $timeout); //CURLOPT_TIMEOUT
$twitter_data = curl_exec($ci);

Notice that if $i is greater than 2, we printed ‘Giving up’ and then return the func-

tion call. You could set this higher and keep hitting Twitter over and over, but this is

frowned upon and considered bad practice. In addition, if Twitter finds that you are

Did You
Know?

236 HOUR 20: FailWhale and the Future of the API

constantly hitting the servers and the same non-200 response code is given, you

may find yourself flagged and have your privileges revoked.

We also have a check for when ‘nothing’ comes back:

if (empty($twitter_data)){
print “<h4>Sorry, twitter just does not want to talk now.. Try again in a

few min? <p></h4>”;
break;

}

Although here we print a simple message saying that Twitter does not want to talk

right now, we could also put our own version of a FailWhale at this point.

Where Is the Twitter API Going?
Those of us who have been using the Twitter API since the beginning have seen

some interesting changes in the approach and style of how the API is designed and

implemented. Although Twitter tries not to break past applications with API

changes, it has happened and most likely will happen again. Greater and greater

load requirements exist for Twitter to make changes to support the growing user

base and expand Twitter’s functionality.

First, if you were to ask 10 people at Twitter where the API is going, you will get 11

responses back, most likely because at least one person will change his or her mind.

That is not unexpected because right now the major focus of Twitter is to keep the

system stable. Changes in the API, however, can give us clues about where it will be

in the future.

Have a look at the List API methods. Remember from Hour 13 that we had an

approach to the API we had not seen before. With the List API, we use the same URL

method call for :user/:lists/:id, but to accomplish three different tasks. This is because

we would use different cURL protocols; for example, GET: Shows the specified list;

POST: Updates the specified list; and DELETE: Deletes the specified list.

Although there is no official position on this, I would expect that we will see future

API calls working this way.

Remember Search? The search and trend protocols do not work like the rest of the

Twitter API family because of search having been developed by an outside company.

There have been intentions to revise the search API to work more like the rest of the

Twitter API, but because of the amount of work required to keep Twitter running

and to update features and functions, it is simply not worth the time and effort to

revise something that already works. Will we see major changes in the search or

Summary 237

trends APIs in the future? Not likely. Instead, Twitter has invested significant time

and effort in its streaming functionality, which has taken a good deal of pressure off

the search API methods.

Attributes
Twitter has been working to expand the functionality of the API set to allow users to

become even more creative. One idea was to allow users to define their own attrib-

utes that would be attached to each status. It was a great idea but had to be put on

the shelf because of some technical difficulties and yet another massive traffic

growth spike. Although on the sideline for now, I fully expect user-defined attributes

at some point in the future. A user-defined attribute could be quite interesting and

allow tweets to become more self-defining. Imagine a tweet having meta informa-

tion about the tweet. Perhaps the tweet is a headline and the attribute contains

more information like the source of the story, or type of tweet (that is, funny, busi-

ness, stock, and so on). How would this work with the API? Most likely the same way

we have seen all the other API calls: perhaps /userDefined?

Widgets and a New Web Interface
In 2010, two big changes happened with Twitter, but not around the API. Twitter

introduced widgets. We discussed them briefly in Hour 18. We can expect a few more

widgets to be released by Twitter, and perhaps an API that is dedicated to interacting

with special functions on these widgets. We also saw a new web interface in mid-

2010 that did not expose more API calls; however, as Twitter starts to put more effort

into its web-based tools, as well as its recently released iPhone and iPad applica-

tions, perhaps we can look forward to new features and functionality that can be

exposed via the API.

Speaking of iPhones, it’s clear that mobile devices and thin tablets will become more

and more prevalent. There are features and functions that lend themselves to

mobile and tablet devices that are not needed or well supported with a web-based

client. As Twitter matures its current offering in this sphere, new features and func-

tions will come online and, hopefully, the API will expand to support information

generated or unique to its display.

Summary
In this hour, we learned that Twitter shows a graphic when something is wrong on

the server side, normally overcapacity. This image was coined the FailWhale and

gained a significant level of popularity as a standalone meme.

238 HOUR 20: FailWhale and the Future of the API

We learned how to catch HTTP response codes that are not 200, meaning everything

seems fine, and perform different actions based on the response code. We also

learned how to pause and resend our request to Twitter as a workaround incase the

Twitter servers are not able to fulfill our API requests.

Q&A
Q. If the Twitter servers are not responding, and given the massive growth Twit-

ter has experienced, what would be the most likely HTTP response code you
would see when Twitter is overloaded?

A. 502 or 503.

Q. What is the advantage of keeping our API library separated from our applica-
tion code?

A. The advantage is making changes, upgrade, or complete library replacement

easier. Given the rapid changes at Twitter, this is highly recommended.

Q. What is the future of Twitter?

A. Trick question. No one knows the future of Twitter, not even the people at

Twitter.

Workshop

Quiz
1. Of the HTTP response codes we have explored in this hour, which one is not

standard HTTP response code?

2. Why is it not a good idea to build API calls directly in the application?

3. What is the HTTP response code 304, and what type of error page should be

created for it?

Quiz Answers
1. 420 Enhance Your Calm. It is returned by the Search and Trends API when you

are being rate limited.

Workshop 239

2. It’s not a good idea because the API is always evolving and expanding. Also,

new libraries are created and old ones are updated often, so it’s to your advan-

tage to make updating and changing the API library as easy as possible.

3. Not Modified—There was no new data to return. Unlike other HTTP Response

codes, 304 as well as 200 are not errors; thus, an error page would not be

appropriate for this response.

Exercise
Build your own custom pages for each error message. Try to come up with an image

for each.

This page intentionally left blank

[(H3F)] 241

HOUR 21

Getting Started in Twitter
Android Application

What You’ll Learn in This Hour:
. Creating an AVD

. Using the Android Development Tools (ADT) plug-in for Eclipse

. Building your first Hello Android application

. Using Eclipse and Android Emulator

. Getting Twitter Java library and OAuth Java library

Introducing Android
We have spent the last 20 hours learning about the Twitter API and how to employ

it using the LAMP stack. Now we are going spend the last 4 hours learning how to

set up a Twitter library for mobile devices, in our case, Android and iOS4. Unless

you decided to skip ahead directly to this hour, you should already be comfortable

with the various API calls and how to employ them, so we will instead focus on sim-

ply getting you up and running on your mobile platform with OAuth.

Before we get started, a few words of warning. As we have stated before, this book is

not intended for beginners, but those that have some experienced with program-

ming. However, we did try to accommodate beginning programmers who are willing

to look up terms and concepts that they do not understand. In the following 4

hours, we took the same approach; however, these hours are very dense with infor-

mation and move quite quickly. Although a beginning programmer could success-

fully navigate the mobile section with the step by step technique used throughout

this book, you may find yourself getting lost in the flurry of terminology used. Do

not despair, you will get through it, just have a little faith and do LOTS of web

searches for terms you do not understand. Also, be sure to check this book’s website

(http://www.twitterapi24.com/) for any changes or update since this book has gone

to print. Doing so may save you some headaches down the road.

http://www.twitterapi24.com/

242 HOUR 21: Getting Started in Twitter Android Application

First, we are going to start with the Android SDK and Eclipse IDE, by creating a Hello

Android application. A simple Hello Android application contains the basic Android

application functionality and prints out the text “Hello Android” on the device

screen.

You can download the Android SDK at http://developer.android.com/sdk/. Follow

the Official Android documentation to install Android SDK at http://developer.

android.com/sdk/installing.html. You can download the Eclipse IDE at http://www.

eclipse.org/downloads/. The preferred Eclipse version for mobile development is

Eclipse Classic.

It’s important that you set up your Android Development Environment properly

before we start working on Twitter API: Android SDK (Software Development Kit),

AVD (Android Virtual Devices) Manager, Eclipse IDE (Integrated Development

Environment), and ADT (Android Development Tools) plug-in.

Android ADT Plug-In
The ADT (Android Development Tools) plug-in provides the tools to develop, com-

pile, package, and deploy Android applications:

. The Android Project Wizard

. The Android SDK (Software Development Kit) and AVD (Android Virtual

Devices) Manager

. The Eclipse DDMS (Dalvik Debug Monitor Service) for monitoring and

debugging Android applications

. The Android LogCat logging

. Automated builds and application deployment to Android emulators and

devices

. Packing and code-signing tools for application deployment

Creating an AVD
Before you can launch the Android Emulator, you have to create an Android Virtual

Device (AVD). This AVD defines the system image and device settings used by the

emulator.

To create an AVD, follow these steps:

1. In Eclipse, select Window, Android SDK and AVD Manager.

2. In the left panel, select Virtual devices.

3. Click New.

http://developer.android.com/sdk/
http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

Creating the Hello Android Project 243

4. Enter the name of AVD.

5. Select the target of platform (version of Android SDK) for the Android

emulator.

6. Click Create AVD.

Creating the Hello Android Project
The Android Project Wizard creates all the required files for an Android application.

Before you can create an Android project from Eclipse, ADT plug-in for Eclipse must

be installed properly. Follow these steps to create a new project:

1. In Eclipse, select File, New, Project.

2. Select the Android folder and choose Android Project, as shown in Figure

21.1. Click Next.

In the Build Target, you can select Android X.X or Google APIs. If you decide to
use Google Map in your Android Application, select Google APIs. If you would
like to use Google Android Market License APIs, select Google APIs.

Did You
Know?

3. Enter HelloAndroid in the project name.

4. Select Create new project in workspace.

5. Select the Use default location check box.

FIGURE 21.1
Selecting
Android Project
in the Android
Project Wizard.

244 HOUR 21: Getting Started in Twitter Android Application

FIGURE 21.2
Creating a New
Android Project
in the Android
Project Wizard.

6. In the Build Target section, select Android 2.2 on Platform 2.1 or Google

APIs on Platform 2.1, as shown in Figure 21.2.

7. In the Properties section, type Hello Android in the Application name.

This application name will appear on the application screen of Android

Emulator or Device.

8. Type com.example.helloandroid in the Package name. This is the pack-

age namespace where all your source code will reside. The package name

must be unique across all packages installed on the Android. It is suggested

to use a standard domain-style package for the application such as

“com.example.com” namespace.

9. Select Create Activity check box. Type helloandroid in the Create Activity.

This is for your main Activity class. It’s an optional field.

10. Enter a Min SDK Version. Type 8. This is an integer to indicate the mini-

mum API Level required to run your application. This value will automati-

cally set the minSdkVersion attribute in the <uses-sdk> of your Android

Manifest file.

11. Click Finish.

Creating the Hello Android Project 245

If you don’t see the Android folder in the Android Project Wizard, you may not have
a properly installed ADT plug-in.

Watch
Out!

Exploring the helloandroid.java File
By now, your Android project should be created. It should be visible in the Package

Explorer in the left panel. You can find the helloandroid.java file at helloandroid,

src, com.example.helloandroid.

This helloandroid.java file contains the following source code:

package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class helloandroid extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

The class is based on the Activity class. The onCreate() method will be called by the

Android system after the activity starts. This is where you initialize and set up the UI.

To add import packages to your project, you can use Ctrl+Shift+O (PC) or Cmd-
Shift-O (Mac). It’s an Eclipse short key to identify missing packages based on
your code and add them.

Did You
Know?

Eclipse detects the missing packages and added android.R package to the code.

Eclipse adds the import statement of android.R package to the helloandroid.java file:

package com.example.helloandroid;

import android.R;
import android.app.Activity;
import android.os.Bundle;

public class helloandroid extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

246 HOUR 21: Getting Started in Twitter Android Application

If you run the HelloAndroid application now, you will encounter an error: R.lay-
out.main cannot be resolved in helloandroid.java line 12. You can view the error
description in the Problem window.

Watch
Out!

Creating the Hello Android Application
After creating the HelloAndroid project, it’s time to add your own codes.

The Android UI is composed of hierarchies of objects named Views. A view is a draw-

able object in the UI layout element, such as a button, image, or text label. The sub-

class that handles text is TextView.

You create a TextView with the class constructor that takes Android Context instance

as its parameter. Define the text content with the setText() method. Display the con-

tent by passing TextView to the setContentView() method for the Activity UI.

In helloandroid.java, you will create a TextView, define the text in the setText()

method, and display the content in the setContentView() method:

package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class helloandroid extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
TextView viewHello = new TextView(this);
viewHello.setText(“Hello Android”);
setContentView(viewHello);

}
}

Eclipse detects the missing packages and adds android.widget.TextView. We can now

remove the unnecessary android.R package:

1. In Eclipse, select the HelloAndroid project on the left panel. Select Run, Run

As, Android Application.

2. Select Android Application and click OK.

3. In your first time, the Android AVD Error window will appear and show “Do

you wish to add a new Android Virtual Device?” Click Yes.

Creating the Hello Android Project 247

4. In the Android Device Choose window, select Launch a new Android

Virtual Device.

5. Select New.

6. In the Create new Android Virtual Device (AVD), enter Android.

7. In the Target drop-down list, select Android 2.2 – API Level 8.

8. In the SD Card section, select Size and MiB and enter 20.

9. Leave Skin as Built-in Default (WVGA800).

10. Click Create AVD.

11. Select Android from the list of existing Android Virtual Devices.

12. Click Start.

13. Android emulator starts and launches the Android operating system, as

shown in Figure 21.3.

14. Click the Menu button to unlock the home screen.

FIGURE 21.3
Unlocking the
screen on the
Android home
screen.

15. After unlocking the home screen, the text string “Hello Android” inside the

TextView appears on the screen, as shown in Figure 21.4.

The Eclipse plug-in generates the Title Bar in gray below the Status Bar. The Title

Bar shows the string “Hello Android”. The Eclipse plug-in creates the Title Bar

automatically based on the string defined in the res/values/strings.xml file and

AndroidManifest.xml file. The text below the Title Bar is the text string you have

created in the TextView object.

The purpose of running the Hello Android application is to verify that your Eclipse,

Android SDK, and Android ADT are properly installed. If you cannot run the Hello

Android application, be sure you use the Official Android documentation as a guide

and repeat the entire installation.

248 HOUR 21: Getting Started in Twitter Android Application

FIGURE 21.4
Launching
HelloAndroid
application.

You must enter at least 9 MiB in size in your SD Card section.Watch
Out!

If you have created an AVD, you can select an existing AVD in the Android Device

Chooser window. Click OK. Be sure your selected AVD Target API Level matches your

android:minSdkVersion in your AndroidManifest.xml file.

Android automatically generates this manifest.xml file for new Android project. To

check your minimal SDK version of your Android project, open the AndroidManifest.

xml file. Check the value in the <uses-sdk> tag.

1. In the Package Explorer, select and double-click to open the

AndroidManifest.xml file in your HelloAndroid project folder.

Creating the Hello Android Project 249

2. Select the AndroidManifest.xml tab below the window to view the file in

XML format.

In HelloAndroid Manifest:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

package=”com.example.helloandroid”
android:versionCode=”1”
android:versionName=”1.0”>

<uses-sdk android:minSdkVersion=”8” />

<application android:icon=”@drawable/icon”
android:label=”@string/app_name”>

<activity android:name=”.HelloAndroid”
android:label=”@string/app_name”>

<intent-filter>
<action android:name=”android.intent.action.MAIN” />
<category android:name=”android.intent.category.LAUNCHER” />

</intent-filter>
</activity>

</application>
</manifest>

In the AndroidManifest.xml <uses-sdk> tag, always check if your android:minSdk

Version matches your selected AVD Target API Level. If it doesn’t, change the

android:minSdkVersion.

This list specifies the API Level supported by each version of the Android platform:

. Android 3.0—API Level: 11

. Android 2.3.3—API Level: 10

. Android 2.3.1—API Level: 9

. Android 2.2—API Level: 8

. Android 2.1—API Level: 7

. Android 2.0.1—API Level: 6

. Android 2.0—API Level: 5

. Android 1.6—API Level: 4

. Android 1.5—API Level: 3

. Android 1.1—API Level: 2

. Android 1.0—API Level: 1

250 HOUR 21: Getting Started in Twitter Android Application

You can always find more updates and information about API Levels at the Android

developer site: http://developer.android.com/guide/appendix/api-levels.html.

To understand the landscape of device distribution and prioritize the development of

your Android application features, let’s reveal the current distribution published by

Android on May 2, 2011:

. Android 1.5 API Level 3—Distribution: 2.3%

. Android 1.6 API Level 4—Distribution: 3.0%

. Android 2.1 API Level 7—Distribution: 24.5%

. Android 2.2 API Level 8—Distribution: 65.9%

. Android 2.3 API Level 9—Distribution: 1.0%

. Android 2.3.3 API Level 10—Distribution: 3.0%

. Android 3.0 API Level 11—Distribution: 0.3%

You can always find up-to-date data at the Android developer site: http://developer.

android.com/resources/dashboard/platform-versions.html.

Resolving Any AVD-Related Issues
Sometimes you may not set up everything properly to match API levels in your

application. You need to start fresh. To do so, follow these steps:

1. Select the gen folder of your Android project in the Package Explorer, and

right-click to select Delete.

2. Click OK.

3. Disable Project Build Automatically by selecting Project, Build

Automatically.

4. Clean the project by selecting Project, Clean.

5. Select Project, Build All.

6. Debug by checking the Console window for any errors.

Resolving Any Android SDK Issues
Sometimes you will run into problems in Android ADT relating to upgrading your

Android SDK or Android ADT or Eclipse. Sometimes the latest Android SDK will

require a newer version of Eclipse. You would have to download and install the

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

Summary 251

newer Eclipse version and then install Android ADT. To resolve any Android ADT

issues, follow these steps:

1. Start a terminal window.

2. Locate your directory where you save the Android SDK. You can find the

path of /android-sdk-mac_x86/platform-tools/android.

3. At the terminal prompt, type ls –a to view the file list.

4. Type rm –rf .android to remove the entire directory.

Downloading the Twitter4J Library
The Twitter developer website suggests a list of Twitter Libraries at http://dev.twitter.

com/pages/libraries. Among the Java libraries, Twitter4J is widely accepted by

Android developers.

Twitter4J is a Java library for the Twitter API. You can download the latest version

of Twitter4J file twitter4j-core-<version>.jar at http://twitter4j.org/en/index.

html#download.

A list of Twitter APIs supported by Twitter4J is documented at http://twitter4j.org/en/

api-support.html.

Twitter4J is thread-safe, and you can make method calls concurrently.

Downloading the OAuth Library for Java
Oauth-signpost is a simple OAuth message signing for Java. Signpost is widely

accepted by Android developers. The latest version can be downloaded at http:/

/code.google.com/p/oauth-signpost/downloads/list. Download both signpost-core-

<version>.jar and signpost-commonshttp4-<version>.jar. Documentation of Signpost

is available at http://kaeppler.github.com/signpost/index.html.

Summary
Congratulations! You are now an Android developer. You have downloaded tools,

created a development environment and created your first Android project, however

this is just the start. You still have to attach an OAuth library to allow messages to be

sent back and forth to the Twitter API servers. We will cover this in the next hour..

Finally, you have run your newly created Android application on the Android Emu-

lator. You also have downloaded Twitter libraries for Android.

Did You
Know?

http://dev.twitter.com/pages/libraries
http://dev.twitter.com/pages/libraries
http://twitter4j.org/en/index.html#download
http://twitter4j.org/en/index.html#download
http://twitter4j.org/en/api-support.html
http://twitter4j.org/en/api-support.html
http://code.google.com/p/oauth-signpost/downloads/list
http://code.google.com/p/oauth-signpost/downloads/list
http://kaeppler.github.com/signpost/index.html

252 HOUR 21: Getting Started in Twitter Android Application

Q&A
Q. What kind of a development environment do I need for creating an Android

application?

A. You need the JDK, Android SDK, Eclipse IDE, Android Developer Tools (ADT)

plug-in, and SDK components.

Q. What operating systems are supported for Android application development?

A. It is supported by Microsoft Windows XP, Vista and Windows 7, Mac OS X,

and Linux.

Q. What features does the Android ADT plug-in provide?

A. The Android ADT plug-in adds capacity to Eclipse to create new projects, create

UIs, add components based on the Android Framework API, manage installed

APIs, manage AVDs, debug using Android SDK tools, and export signed or

unsigned APKs to distribute application.

Workshop

Quiz
1. Which programming languages do I use to code and develop an Android

application?

A. Objective-C

B. Java

C. HTML / JavaScript / CSS

D. C++

2. Which file do you use to create the layout of the Android application?

A. helloandroid.java

B. main.xml

C. AndroidManifest.xml

Workshop 253

3. Which element attribute in the XML<uses-sdk> tag of the AndroidManifest.xml

file specifies the minimum API Level that the application is able to run?

A. android:minSdkVersion

B. android:targetSdkVersion

C. android:maxSdkVersion

Quiz Answers
1. B. Use Java to write the code for the Android application.

2. B. Use main.xml to create the layout.

3. A. Use android:minSdkVersion in the <uses-sdk> tag.

Exercises
1. Install JDK, Android SDK, Eclipse, ADT plug-in, and SDK components. Create a

HelloAndroid application.

2. Build Project and run the application in the Android Emulator.

This page intentionally left blank

Using Twitter OAuth in Android 255

HOUR 22

Building Android
Applications with Twitter

What You’ll Learn in This Hour:
. Creating the Android OAuth application

. Adding Java library

. Creating a layout in main.xml

. Adding Intent Filters and Permission

. Using the Java OAuth library

. Posting a tweet from an Android application

. Using xAuth in an Android application

Using Twitter OAuth in Android
At the launch of the Twitter API platform, Twitter introduced Basic Authentication.

Twitter allows developers to capture and save the username and password in the

native app and use them to make all API calls directly. In August 2010, Twitter

banned the use of Basic Auth due to security concerns. Twitter now supports both

OAuth and xAuth.

Twitter accepts the use of OAuth and xAuth to authenticate the application in a

device. OAuth (Open Authorization) is an open standard for authorization that was

initially designed for web authentication.

256 HOUR 22: Building Android Applications with Twitter

After the Android application initiates a request token, it sends the user to the

Twitter website to authorize the request token in exchange for returning the access

token to the user.

OAuth-Signpost is a simple HTTP message signing on the Java platform in confor-

mance with the OAuth Core 1.0a standard. OAuth-Signpost has been widely used in

Android.

Selecting Twitter Java Libraries
The most popular Twitter Java libraries, Twitter4J and JTwitter, support Android

implementation. OAuth Java library OAuth-Signpost works well with these Twitter

Java libraries.

Creating an Android OAuth Application
It’s time to start a new Android project and add the external libraries. Be sure you

follow these steps:

1. In the Package Explorer panel, right-click the project and select New,

Folder.

2. Enter lib in the folder name field and click Finish.

3. Open the folder where you keep the downloaded libraries.

4. Select the signpost-commonshttp4-<version>.jar, signpost-core-

<version>.jar, and twitter4j-core-<version>.jar files.

5. Drag these files from the folder to the lib folder inside the Package

Explorer panel.

6. In the Package Explorer panel, right-click the project and select Properties.

7. Select Java Build Path and select the Libraries tab.

8. Click the Add JARs button.

9. Expand the Android project until you see the lib folder. Select all .jar files

and click OK.

10. You should see the added .jar files, as shown in Figure 22.1.

11. Click OK.

After adding the external libraries, you will find that a new folder, Referenced

Libraries, is created by Eclipse.

Using Twitter OAuth in Android 257

FIGURE 22.1
Adding external
libraries to the
Android project.

Creating the Layout
The layout is the architecture for the user interface in an Activity. The layout also

defines the layout structure and holds all the visible UI elements. You can declare UI

elements in XML or instantiate layout elements at runtime. You can create and

manipulate the View and ViewGroup objects and its properties programmatically.

In this Android application, we declare the UI in XML. The advantage is that it sep-

arates the presentation layer from your behavior, similar to the MVC model. It

allows you to create XML layouts for different screen orientations, different device

screen sizes, and different languages. It is much easier to debug layout issues to

visualize the UI structure in XML.

Each layout file must contain only one root element of a View or ViewGroup object.

In this XML layout, we use a vertical LinearLayout to hold a TextView and a Button.

The layout file is located in res/layout/main.xml:

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”

> </LinearLayout>

258 HOUR 22: Building Android Applications with Twitter

In this app layout, we first create a text label “Twitter OAuth” by using a TextView

tag with an id “TextView”:

<TextView android:text=”Twitter OAuth” android:id=”@+id/TextView” an-
droid:layout_width=”wrap_content” android:layout_height=”wrap_content” an-
droid:layout_marginBottom=”20dp”>
</TextView>

ID is associated with View object. It is used to uniquely identify the View within the

tree. When the Android application is compiled, the ID is referenced as an integer,

but the ID is assigned in the layout XML file as a string in the XML id attribute. The

at symbol (@) at the beginning of the string states that the XML parser should parse

and expand the entire ID string and identify it as an ID resource. The plus-symbol

(+) refers to a new resource name that must be created and added to the R.java file:

android:id=”@+id/TextView”

TextView contains XML attributes of android:layout_width and

android:layout_height. android:layout_width specifies the basic width of the

TextView. It is a required attribute for any view inside of a containing layout man-

ager. Available units are px (pixels), dp (density-independent pixels), sp (scaled pix-

els based on preferred font size), in (inches), and mm (millimeters). wrap_content

defines to size itself to the dimension required by its content (with padding). Another

option is fill_parent (renamed match_parent in API Level 8), which resizes the view

as big as its parent view group (without padding). Similar rules apply to

android:layout_height.

TextView contains XML attributes of android:layout_marginBottom. android:lay-

out_marginBottom specifies the extra space on the bottom side of the view, and this

space is outside the view’s bounds. Other options are android:layout_marginLeft,

android:layout_marginRight, and android:layout_marginTop.

Next, we create a button with the text label “Authenticate” by using a <Button> tag

with an id “ButtonLogin”:

<Button android:text=”Authenticate” android:id=”@+id/ButtonLogin” an-
droid:layout_width=”wrap_content” android:layout_height=”wrap_content” an-
droid:layout_marginBottom=”50dp”>
</Button>

Last, we create an empty text label by using a <TextView> tag with an id “tweet”:

<TextView android:text=”” android:id=”@+id/tweet” an-
droid:layout_width=”wrap_content” android:layout_height=”wrap_content”>
</TextView>

Using Twitter OAuth in Android 259

Both Data Scheme and Data Authority matching are case sensitive. It is recom-
mended to use all lowercase letters.

The order of the codes in the layout main.xml is shown here:

Did You
Know?

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

android:orientation=”vertical”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”

><TextView android:text=”Twitter OAuth” android:id=”@+id/TextView” an-
➥droid:layout_width=”wrap_content” android:layout_height=”wrap_content”
➥android:layout_marginBottom=”20dp”>
</TextView>
<Button android:text=”Authenticate” android:id=”@+id/ButtonLogin” an-
➥droid:layout_width=”wrap_content” android:layout_height=”wrap_content”
➥android:layout_marginBottom=”50dp”>
</Button>
<TextView android:text=”” android:id=”@+id/tweet” an-
➥droid:layout_width=”wrap_content” android:layout_height=”wrap_content”>
</TextView>
</LinearLayout>

Adding Intent Filters and Permission
Intent is an abstract description of a performed operation. It is heavily used in

launching activities and is sometimes described as the glue between activities.

IntentFilter objects are XML <intent-filter> tags in the AndroidManifest.xml file. You

can filter Intent into three areas: action, data, and categories.

Action matches if any values match the Intent action or if no actions were specified

in the filter. Categories match if all categories in the Intent match categories given

in the filter. Data Type matches if any values match the Intent type. Data Type is

classified into Data Scheme, Data Authority, and Data Path.

It is not recommended to use absolute units such as pixels in specifying a lay-
out width and height. It is highly recommended to use relative measurements,
such as density-independent pixel units in dp, wrap_content, or fill_parent.

Did You
Know?

android.intent.action.VIEW is Activity Action that displays the data to the user.

android.intent.category.DEFAULT is set if the activity should be an option for the

default action to perform on data. android.intent.category.BROWSABLE is activities

that invoke from a browser.

260 HOUR 22: Building Android Applications with Twitter

android:scheme is scheme part of a URI and used as a filter. android: host is the host

part of a URI authority. This android: host attribute is meaningless unless

android:scheme scheme attribute is also specified in the filter.

android.permission.INTERNET allows applications to open network sockets. This

gives permission to access the Internet.

An Android application uses the android:minSdkVersion attribute to indicate the

lowest system API Level it supported. System checks the value of

android:minSdkVersion and allows the install only if the referenced integer is less

than or equal to the API Level integer stored in the system. The Minimal SDK ver-

sion level is set at 4 in the <uses-sdk> tag.

In this AndroidManifest.xml, it shows intent filter and permission required to inte-

grate Twitter. The <uses-permission> tag is used to give the app permission on inter-

net. In the <activity> tag, the single instance is added in the android:launchMode.

This is to restrict the main activity to one stance:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

package=”com.example.twitteroauth”
android:versionCode=”1”
android:versionName=”1.0”>

<application android:icon=”@drawable/icon”
➥android:label=”@string/app_name”>

<activity android:name=”.TwitterOauth”
android:label=”@string/app_name”
android:launchMode=”singleInstance”>

<intent-filter>
<action android:name=”android.intent.action.MAIN” />
<category android:name=”android.intent.category.LAUNCHER” />

</intent-filter>
<intent-filter>
<action android:name=”android.intent.action.VIEW” />
<category android:name=”android.intent.category.DEFAULT” />
<category android:name=”android.intent.category.BROWSABLE” />
<data android:scheme=”myapp” android:host=”twitteroauth” />

</intent-filter>
</activity>

</application>
<uses-sdk android:minSdkVersion=”4” />
<uses-permission android:name=”android.permission.INTERNET”></uses-
permission>
</manifest>

Importing Packages 261

Loading the XML Resource
The Android application main Java file is located in

src/com.example.twitteroauth/TwitterOauth.java. When the Android application is

compiled, each XML layout file is compiled into a View resource. Calling

setContentView() method will load the referenced layout resource in the form of

R.layout.<layout_filename>, such as R.layout.main. onCreate() method in the

Activity is called by the Android framework when your Activity is launched. Keep in

mind that the activity will be destroyed and re-created in an orientation change or if

a physical keyboard is opened (even if the orientation is locked).

This is the default TwitterOauth.java file that is created by Android project. This is

your starting point where we would include packages and add codes to support

Twitter authentication and posting tweet. Let’s put this class in place:

package com.example.twitteroauth;

import android.app.Activity;
import android.os.Bundle;

public class TwitterOauth extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Importing Packages
Java classes are groups in packages. A package is the same as the directory name

that contains the .java file. You declare the packages when you define the Android

application. Name the packages from other libraries in an import statement.

Activity class is in the app package, which is located in the Android package.

Android.app.Activity is a standard screen with no specialization.

It’s time to add the additional packages from other libraries we need from Twitter4J,

Signpost, and additional Android packages.

In TwitterOauth.java:

package com.example.twitteroauth;

import java.sql.Date;

262 HOUR 22: Building Android Applications with Twitter

import oauth.signpost.OAuthConsumer;
import oauth.signpost.OAuthProvider;
import oauth.signpost.commonshttp.CommonsHttpOAuthConsumer;
import oauth.signpost.commonshttp.CommonsHttpOAuthProvider;
import twitter4j.Twitter;
import twitter4j.TwitterFactory;
import twitter4j.auth.AccessToken;
import twitter4j.conf.ConfigurationBuilder;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class TwitterOauth extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

Adding OAuth
First, we declare APP as string in the private static final statement. Private indicates

that it is visible only to the objects of the same class. Static gives only one instance

of this member. Final allows it to be assigned once.

Next, we declare twitter as Twitter, provider as OAuthProvider, and consumer as

CommonsHttpOAuthConsumer:

private Twitter twitter;
private OAuthProvider provider;
private OAuthConsumer consumer;

We also declare the CONSUMER_KEY in string, CONSUMER_SECRET in string, and

CALLBACK_URL in string. This is where you insert your Twitter Application con-

sumer key, consumer secret, and callback url from the application settings from

your Twitter app:

private String CONSUMER_KEY = “<Consumer Key>”;
private String CONSUMER_SECRET = “<Consumer Secret>”;
private String CALLBACK_URL = “http://www.twitter.com”;

Importing Packages 263

Now we declare variables tweetTextView as TextView, and buttonLogin as Button

used in the layout. In the app, we are adding a label and a button:

private TextView tweetTextView;
private Button buttonLogin;

onCreate(Bundle) is where you initialize the activity. Call setContentView(int) to

define the UI from the layout resource. Call findViewById(int) to retrieve the UI

widget.

This onClick(View v) method is called when a view has been clicked:

public void onClick(View v){}

In TwitterOauth.java:

package com.example.twitteroauth;

import java.sql.Date;

import oauth.signpost.OAuthConsumer;
import oauth.signpost.OAuthProvider;
import oauth.signpost.commonshttp.CommonsHttpOAuthConsumer;
import oauth.signpost.commonshttp.CommonsHttpOAuthProvider;
import twitter4j.Twitter;
import twitter4j.TwitterFactory;
import twitter4j.auth.AccessToken;
import twitter4j.conf.ConfigurationBuilder;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

/**
* Using Twitter4J Java library and Signpost OAuth library to access
Twitter
*/
public class TwitterOauth extends Activity {

private static final String APP = “TWITTEROAUTH”;

private Twitter twitter;
private OAuthProvider provider;
private OAuthConsumer consumer;

private String CONSUMER_KEY = “v7xwr2xFzDEsgDvg962Paw”;

264 HOUR 22: Building Android Applications with Twitter

private String CONSUMER_SECRET =
➥“YlbknWgtA9t5u4q6q18IwHTQ2vtOlHesVBO9u5EtEy4”;

private String CALLBACK_URL = “myapp://twitteroauth”;

private TextView tweetTextView;
private Button buttonLogin;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
tweetTextView = (TextView)findViewById(R.id.tweet);
buttonLogin = (Button)findViewById(R.id.ButtonLogin);
buttonLogin.setOnClickListener(new OnClickListener() {

public void onClick(View v) {
askOAuth();

}
});

}

Authenticating the Application
To focus on illustrating the Twitter authentication process, we will not go into details

in explaining Java programming line by line. Instead, we will highlight a few things

that are unique or key to understand for implementing this framework. We also

include the section code so you can see the logic and workflow in the codes.

To authenticate the Android application, we add a private method askOAuth() to

verify against the Twitter application consumer key and secret:

askOAuth();

This is a key section where we declare the objects for the OAuth HTTP messaging for

the consumer and provider. To make it more secure, we are using “https” version of

Twitter urls for request token, access token, and authorize. We define a string object

authURL after authentication is completed:

// Use Apache HttpClient for HTTP messaging
consumer = new CommonsHttpOAuthConsumer(CONSUMER_KEY, CONSUMER_SECRET);
provider = new CommonsHttpOAutProvider
(“https://api.twitter.com/oauth/request_token”,
“https://api.twitter.com/oauth/access_token”,
“https://api.twitter.com/oauth/authorize”);
String authUrl = provider.retrieveRequestToken(consumer, CALLBACK_URL);

Here we introduce the android.widget class Toast. A toast is a view containing a

quick message to the user. This class creates and shows this message. It appears as a

floating view, and it is unobtrusive to the user, as shown in Figure 22.2.

Importing Packages 265

FIGURE 22.2
Showing the
Toast class on
the app.

Toast.makeText() is to make a standard toast that contains a text view. We want to

show the message “Authorize this app!” as text:

Toast.makeText(this, “Authorize this app!”, Toast.LENGTH_LONG).show();

Toast.LENGTH_LONG is a constant, showing the text notification for a long period

of time. Another option is LENGTH_SHORT. Toast.show() is to show the view for the

specified duration.

this.startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse(authUrl)));

The startActivity (Intent intent) method is to launch a new activity. The intent is

ACTION_VIEW displaying the data to the user. authUrl is a URI string. The

Uri.parse() method is to create a Uri that parses the given encoded URI string of

authUrl variable:

/**
* Direct to Twitter to authenticate the user
*/
private void askOAuth() {

try {
// Use Apache HttpClient for HTTP messaging
consumer = new CommonsHttpOAuthConsumer(CONSUMER_KEY,

➥CONSUMER_SECRET);
provider = new

➥CommonsHttpOAuthProvider(“https://api.twitter.com/oauth/request_token”,

“https://api.twitter.com/oauth/access_token”,

266 HOUR 22: Building Android Applications with Twitter

The default OAuth implementation in Android won’t work with Twitter API. It is
highly recommended not to use the DefaultOAuth* implementation in Android
because there is a bug in Android’s java.net.HttpURLConnection that keeps it
from working with some service providers. Instead, CommonsHttpOAuth* classes
are used in Android. You can find more detail information at http://code.google.
com/p/oauth-signpost. You can find examples at http://github.com/kaeppler/
signpost-examples.

Responding After Authentication
We add another onNewIntent() method to process after authenticating the Android

application:

@Override
protected void onNewIntent(Intent intent) {

}

We retrieve the URI by using intent.getData() method. If the returning URL is not

null and it matches the CALLBACK_URL string, we define the string variable verifier

from oauth.signpost.OAuth.OAUTH_VERIFIER parameter:

Uri uri = intent.getData();
if (uri != null && uri.toString().startsWith(CALLBACK_URL))

This getQueryParameter(String key) method is to search the query string for the first

value with the given key. We create a string object “verifier” to keep the returning

query string from the search:

String verifier = uri.getQueryParameter(oauth.signpost.OAuth.OAUTH_
VERIFIER);

“https://api.twitter.com/oauth/authorize”);
String authUrl = provider.retrieveRequestToken(consumer,

➥CALLBACK_URL);
Toast.makeText(this, “Authorize this app!”,

➥Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

➥Uri.parse(authUrl)));
} catch (Exception e) {

Log.e(APP, e.getMessage());
Toast.makeText(this, e.getMessage(),

➥Toast.LENGTH_LONG).show();
}

}

Watch
Out!

http://code.google.com/p/oauth-signpost
http://code.google.com/p/oauth-signpost

Importing Packages 267

We populate the token and token_secret from the consumer object:

// Populate token and token_secret in consumer
provider.retrieveAccessToken(consumer, verifier);

// TODO: you might want to store token and token_secret in you app settings!
AccessToken a = new AccessToken(consumer.getToken(),
consumer.getTokenSecret());

Then we initialize Twitter4J:

// Initialize Twitter4J
ConfigurationBuilder confbuilder = new ConfigurationBuilder();
confbuilder.setOAuthAccessToken(a.getToken())
.setOAuthAccessTokenSecret(a.getTokenSecret())
.setOAuthConsumerKey(CONSUMER_KEY)
.setOAuthConsumerSecret(CONSUMER_SECRET);
twitter = new TwitterFactory(confbuilder.build()).getInstance();

The System.currentTimeMillis() method retrieves the date from the standard “wall”

clock date/time in milliseconds since the epoch:

Date d = new Date(System.currentTimeMillis());

The toLocaleString() method (replaced by DateFormat) formats the date to the current

Locale. Date/time is added to the end of the string as tweet.

We are creating a string object “tweet” for posting the message to a Twitter update.

First, we include the Twitter message we like to post in a string ”Twitter API 24

HRS: TwitterOAuth works on Android “. We add the d.toLocaleString() to the

end. Twitter API has a detecting mechanism to prevent you from posting the same

tweet message more than once in a given time period. By adding a date time string,

each message we define will be different at a different date time. We will be able to

pass the Twitter filtering system to show the message from our API call:

String tweet = “Twitter API 24 HRS: TwitterOAuth works on Android “ +
d.toLocaleString();

The tweet is posted using updateStatus() method in twitter class:

twitter.updateStatus(tweet);

We display the tweet object inside the tweetTextView:

tweetTextView.setText(tweet);

We add the Toast to show the tweet object as an indicator of success:

Toast.makeText(this, tweet, Toast.LENGTH_LONG).show();

268 HOUR 22: Building Android Applications with Twitter

setVisibility(int visibility) method is to set the enabled state of the view. Options are

VISIBLE, INVISIBLE, or GONE. GONE refers to invisible, but it doesn’t take any space

for layout. Basically, we make the button disappear from the layout in the last step:

buttonLogin.setVisibility(Button.GONE);

Now let’s wrap this section. Here is the complete set of codes so you can follow and

understand the order:

/**
* Get the verifier from the callback URL.
* Retrieve token and token_secret.
* Feed them to twitter4j along with consumer key and secret
*/
@Override
protected void onNewIntent(Intent intent) {

super.onNewIntent(intent);

Uri uri = intent.getData();
if (uri != null && uri.toString().startsWith(CALLBACK_URL)) {

String verifier =
➥uri.getQueryParameter(oauth.signpost.OAuth.OAUTH_VERIFIER);

try {
// Populate token and token_secret in consumer
provider.retrieveAccessToken(consumer,

➥verifier);

// TODO: you might want to store token and
➥token_secret in you app settings!

AccessToken a = new
➥AccessToken(consumer.getToken(), consumer.getTokenSecret());

// Initialize Twitter4J
ConfigurationBuilder confbuilder = new

➥ConfigurationBuilder();
confbuilder.setOAuthAccessToken(a.getToken())

➥.setOAuthAccessTokenSecret(a.getTokenSecret())
.setOAuthConsumerKey(CONSUMER_KEY)
.setOAuthConsumerSecret(CONSUMER_SECRET);

twitter = new
➥TwitterFactory(confbuilder.build()).getInstance();

// Create a tweet
Date d = new Date(System.currentTimeMillis());
String tweet = “Twitter API 24 HRS: TwitterOAuth

➥works on Android “ + d.toLocaleString();

// Post the tweet

Importing Packages 269

twitter.updateStatus(tweet);

// Show message
tweetTextView.setText(tweet);
Toast.makeText(this, tweet,

➥Toast.LENGTH_LONG).show();
buttonLogin.setVisibility(Button.GONE);

} catch (Exception e) {
Log.e(APP, e.getMessage());
Toast.makeText(this, e.getMessage(),

➥Toast.LENGTH_LONG).show();
}

}
}

}

Complete Code
This is the complete code in the TwitterOAuth.java file. It combines all the code we

have discussed and explained in each section earlier:

package com.example.twitteroauth;

import java.sql.Date;

import oauth.signpost.OAuthConsumer;
import oauth.signpost.OAuthProvider;
import oauth.signpost.commonshttp.CommonsHttpOAuthConsumer;
import oauth.signpost.commonshttp.CommonsHttpOAuthProvider;
import twitter4j.Twitter;
import twitter4j.TwitterFactory;
import twitter4j.auth.AccessToken;
import twitter4j.conf.ConfigurationBuilder;
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

/**
* Using Twitter4J Java library and Signpost OAuth library to access
Twitter
*/
public class TwitterOauth extends Activity {

private static final String APP = “TWITTEROAUTH”;

270 HOUR 22: Building Android Applications with Twitter

private Twitter twitter;
private OAuthProvider provider;
private OAuthConsumer consumer;

private String CONSUMER_KEY = “v7xwr2xFzDEsgDvg962Paw”;
private String CONSUMER_SECRET =

➥“YlbknWgtA9t5u4q6q18IwHTQ2vtOlHesVBO9u5EtEy4”;
private String CALLBACK_URL = “myapp://twitteroauth”;

private TextView tweetTextView;
private Button buttonLogin;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
tweetTextView = (TextView)findViewById(R.id.tweet);
buttonLogin = (Button)findViewById(R.id.ButtonLogin);
buttonLogin.setOnClickListener(new OnClickListener() {

public void onClick(View v) {
askOAuth();

}
});

}

/**
* Direct to Twitter to authenticate the user
*/
private void askOAuth() {

try {
// Use Apache HttpClient for HTTP messaging
consumer = new CommonsHttpOAuthConsumer(CONSUMER_KEY,

➥CONSUMER_SECRET);
provider = new

➥CommonsHttpOAuthProvider(“https://api.twitter.com/oauth/request_token”,

➥“https://api.twitter.com/oauth/access_token”,

➥“https://api.twitter.com/oauth/authorize”);
String authUrl =

➥provider.retrieveRequestToken(consumer, CALLBACK_URL);
Toast.makeText(this, “Authorize this app!”,

➥Toast.LENGTH_LONG).show();
this.startActivity(new Intent(Intent.ACTION_VIEW,

➥Uri.parse(authUrl)));
} catch (Exception e) {

Log.e(APP, e.getMessage());
Toast.makeText(this, e.getMessage(),

➥Toast.LENGTH_LONG).show();
}

}

Importing Packages 271

/**
* Get the verifier from the callback URL.
* Retrieve token and token_secret.
* Feed them to twitter4j along with consumer key and secret
*/
@Override
protected void onNewIntent(Intent intent) {

super.onNewIntent(intent);

Uri uri = intent.getData();
if (uri != null && uri.toString().startsWith(CALLBACK_URL)) {

String verifier =
➥uri.getQueryParameter(oauth.signpost.OAuth.OAUTH_VERIFIER);

try {
// Populate token and token_secret in consumer
provider.retrieveAccessToken(consumer,

➥verifier);

// TODO: you might want to store token and
➥token_secret in you app settings!

AccessToken a = new
➥AccessToken(consumer.getToken(), consumer.getTokenSecret());

// Initialize Twitter4J
ConfigurationBuilder confbuilder = new

➥ConfigurationBuilder();
confbuilder.setOAuthAccessToken(a.getToken())

➥.setOAuthAccessTokenSecret(a.getTokenSecret())
.setOAuthConsumerKey(CONSUMER_KEY)
.setOAuthConsumerSecret(CONSUMER_SECRET);

twitter = new
➥TwitterFactory(confbuilder.build()).getInstance();

// Create a tweet
Date d = new Date(System.currentTimeMillis());
String tweet = “Twitter API 24 HRS: TwitterOAuth

➥works on Android “ + d.toLocaleString();

// Post the tweet
twitter.updateStatus(tweet);

// Show message
tweetTextView.setText(tweet);
Toast.makeText(this, tweet,

➥Toast.LENGTH_LONG).show();
buttonLogin.setVisibility(Button.GONE);

} catch (Exception e) {
Log.e(APP, e.getMessage());

272 HOUR 22: Building Android Applications with Twitter

Toast.makeText(this, e.getMessage(),
➥Toast.LENGTH_LONG).show();

}
}

}
}

Whew, quite a lot of code, eh? But now we are ready to build and run the Android

app. By now, you should know the steps to run the Android app in Android

Emulator inside Eclipse. In this Android example, we are creating a simple app with

a text label and an Authenticate button, as shown in Figure 22.3. Once the button is

pressed, it calls the method we explained previously.

FIGURE 22.3
Launching the
Twitter OAuth in
the Android
emulator.

Older versions of Twitter4J library use the setOAuthAccessToken(AccessToken
accessToken) method. This method is deprecated. Use the
TwitterFactory.getInstance(twitter4j.http.Authorization) method. Keep in mind
that the Twitter4J library author is updating the library regularly, including chang-
ing methods without notice on each update. It’s important that you understand
how this works and be able to make any necessary changes in your own code.

Did You
Know?

In this Android example, we are using OAuth to authenticate the user by redirecting

to the Android browser that is pointing to the Twitter OAuth mobile page, as shown

in Figure 22.4.

Importing Packages 273

FIGURE 22.4
Showing Twitter
authentication
in the Android
emulator.

FIGURE 22.5
Entering your
Twitter account
and pressing
the Authorize
button in the
Android
emulator.

As we can see in Figure 22.4, Twitter shows an OAuth page that is optimized for

mobile devices. It shows the Twitter application name, developer name, and website.

It also shows what the Twitter application is allowed to do if the user grants authen-

tication. This is where you enter your Twitter account username and password, as

shown in Figure 22.5.

274 HOUR 22: Building Android Applications with Twitter

FIGURE 22.6
Showing the
Twitter redirect-
ing page to the
app in the
Android
emulator.

After waiting a few seconds, you will be redirected from the device browser back to

the Twitter Android app you defined in the code:

private String CALLBACK_URL = “myapp://twitteroauth”;

After you launch and authenticate the Android application in the Android emula-

tor, you will be redirected to the CALLBACK_URL that you define in the

TwitterOauth.java file. This overrides the callback URL that you save in your Twitter

Application setting.

Twitter4J library allows developers to re-direct the browser to the Android app with-

out any additional modifications. In this chapter, we intend to show you the sim-

plest method to authenticate OAuth. Ideally, you would create a WebView to show

the Twitter OAuth screen within the same Android app.

After the user successfully grants authorization by verifying his or her Twitter

account and then get redirected to the Twitter app, we hide the Authenticated but-

ton. Instead, we show him or her the posted tweet in the TextView in the place of the

Scroll down to see the bottom of the Twitter OAuth page. After entering your user-

name or email and password, press Authorize app button.

The Confirm dialog box will appear, asking if the user wants to keep the password

on the browser or not. After closing this dialog box, you will be re-directed to anoth-

er Twitter mobile page, as shown in Figure 22.6.

Importing Packages 275

FIGURE 22.7
Showing the
Twitter redirect-
ing page to the
app in the
Android
emulator.

xAuth
xAuth is alternative authenticate method. This method is available only to desktop

or mobile apps. xAuth requires the developer to request permission to use it. Twitter

will review your xAuth submission before granting its use. Your xAuth enabled or

disabled status will not show in your Twitter application settings.

xAuth for Twitter is not the same as Xauth (http://xauth.org/). xAuth is still OAuth.

The only difference is you skip the request_token and authorize steps of the OAuth

flow. xAuth allows the mobile app to exchange the username and password for an

OAuth access token.

According to Twitter’s recommendation, once the access token is retrieved, Twitter

suggests for developers to dispose of the username and password. Twitter also sug-

gests for you to consider the standard web OAuth flow or PIN-code out-of-band flow

before considering xAuth. xAuth requires you to use header-based OAuth authenti-

cation against an SSL access token endpoint, using the POST HTTP method. More

details are at http://dev.twitter.com/pages/xauth.

Authenticated button and the Toast indicator at the bottom of the app, as shown in

Figure 22.7. A successful posted tweet includes the date time stamp at the end of the

tweet string you defined in the code.

Congratulations! You have a working Twitter OAuth app in Android.

http://xauth.org/
http://dev.twitter.com/pages/xauth

276 HOUR 22: Building Android Applications with Twitter

The Twitter4J library does support xAuth as well as OAuth. In order to implement

xAuth, you would have to create a new layout to provide a user interface to enter

the Twitter account username and password. Due to the limitation of this hour’s

space, we decided not to cover xAuth. As such, we decided to use the OAuth method

in our example.

The Twitter4J library enables you to use a CALLBACK_URL to redirect user from the

Android browser to the Android app on the device. Twitter4J library supports the

OAuth method without requiring the user to perform any steps to open the same

Android app and without requiring developers to do any extra work to close the

browser. Thus, because of this simplicity, we decided to go with the OAuth method.

Summary
Congratulations! You’ve added Twitter Java library and OAuth Java library to your

Android OAuth project. You’ve created an Android application using the OAuth

Consumer key and Consumer secret. And last, you have posted a tweet from your

Android application using Android Emulator.

Q&A
Q. What are the supporting Java libraries for Twitter API integration?

A. Twitter4J library and JTwitter library.

Q. What is the most accepting Java OAuth library for Android?

A. Oauth-signpost library.

Workshop

Quiz
1. What authentication type does Twitter not support?

A. Basic Auth

B. OAuth

C. xAuth

Workshop 277

2. What must be included in an Android application to request an OAuth token?

A. Consumer key

B. Consumer secret

C. Both

3. Which tab should you use to add third-party Java libraries (JARs) in the pro-

ject’s properties of Java Build Path?

A. Source

B. Projects

C. Libraries

D. Order and Export

Quiz Answers
1. A. Twitter does not accept Basic Auth due to security concerns.

2. C. You are required to include Consumer key and Consumer secret from your

Twitter application settings.

3. C. You use the Libraries tab of Java Build Path inside Project’s properties to add

all the third-party Java libraries (JARs) for OAuth and Twitter libraries.

Exercises
1. Add Twitter Java libraries into your Android application.

2. Create a new Twitter application in your Twitter developer account. Save the

Consumer key and Consumer secret into your Android application.

3. Create an Android application to send a tweet using OAuth.

This page intentionally left blank

[(H3F)] 279

HOUR 23

Getting Started with Twitter
Using iOS

What You’ll Learn in This Hour:
. Building your first Hello World application

. Using the Xcode and Interface Builder

. Requesting Twitter xAuth

. Using Twitter Objective-C library

. Verifying your Twitter xAuth

Introducing iOS
In 2007, Apple released iOS as its mobile operating system. In early 2008, Apple

released the beta iPhone SDK for native application development. Apple announced

the iPad as a tablet in early 2010 and iPhone 4 in the summer of 2010. Apple also

renamed iPhone SDK to iOS SDK. iOS SDK supports iPhone, iPod Touch, iPad, and

iPhone 4. iOS SDK is written in C, C++, and Objective-C. iOS SDK includes Xcode,

Interface Builder, Instruments, and iPhone and iPad Simulator.

To learn about the iOS SDK and Xcode, we will start by creating a Hello World appli-

cation on the iPhone. A simple Hello World application contains the basic iPhone

application functionality and prints out the text “Hello World” on the screen—typi-

cally the first program you would create when learning any language. Because set-

ting up the iOS environment is a bit tricky, we will spend a bit more time trying to

get you up and running.

280 HOUR 23: Getting Started with Twitter Using iOS

Creating a Hello World Application
We are sure you already know this, but you need to have a computer that can run

the Apple OS X operating system running Snow Leopard or better, and you must

have a license to publish iOS applications. Currently, a license will run you $99.00 a

year. You can download a copy of the iOS SDK without the license, but you will not

be able to put anything in the store. So, if you have not done so already, download

and install Xcode OS4 and let’s get going.

Open Xcode to create a new project. Xcode will create all the required files for an

iOS iPhone application. Follow these steps to create a new project:

1. In Xcode, select File, New, New Project....

2. In the New Project window, select iOS, Application on the OS panel, as

shown in Figure 23.1.

FIGURE 23.1
Selecting View-
based
Application.

3. In the template panel, select View-based Application. Click Next.

4. In the Project Options window, enter helloworld in the Product Name

field. Leave the Company Identifier field as it is as shown in Figure 23.2.

5. Select iPhone in the Device Family drop-down menu. Click Next.

6. Select the directory to which you would like to save the Xcode project. Save

the project by clicking Create.

7. In the Xcode’s Project Navigator inside the Xcode project, the template

files are created inside the Group folder named helloworld, as shown in

Figure 23.3.

Introducing iOS 281

8. Click the file helloworldViewController.xib to launch Interface Builder in

the editor area of the workspace window.

9. Click the View Right Panel icon in the Selector Bar to show the Utility area.

10. Select the Attributes icon in the Inspector Selector Bar to show the

Attributes Inspector.

11. Click on the Interface Builder object View inside the Editor area. Attributes

Inspector will display the UIView’s details.

12. In the View section, select Default in the Background drop-down menu to

switch away from the gray background. It gives a white background.

13. Select the Object icon in the Library selector bar to show the Object Library.

FIGURE 23.3
Showing Xcode
project summa-
ry panel after
creating the
project.

FIGURE 23.2
Naming the
helloworld in
the Product
Name field.

282 HOUR 23: Getting Started with Twitter Using iOS

14. Select the Icon View icon or List View icon to show the Object Library

objects, as shown in Figure 23.4.

FIGURE 23.4
Showing
Attributes
Inspector and
Object Library
in Utility area.

FIGURE 23.5
Showing the
“Hello World”
label on the
view in the
Editor area.

15. Select the Label and drag it to the View inside the Editor area.

16. Double-click the Label object until the entire label is selected in the View

object.

17. Enter the text “Hello World” inside the Label object (as shown in Figure

23.5) and press Enter on the keyboard.

18. Select File, Save or hold both <Command>+S key buttons to save the file.

Introducing iOS 283

19. In the Xcode, select Product, Run, or click the Run button at the top left of

the Xcode window.

If everything went well, you should have a working application displaying

the text “Hello World,” as shown in Figure 23.6.

FIGURE 23.6
Showing “Hello
World” in the
iPhone
Simulator.

Creating a Twitter Application for xAuth Request
Before you can request and activate xAuth, you need to create a Twitter application.

You should have done this already in Hour 8, “Twitter OAuth,” but if not, be sure to

do this now.

To do so, go to http://twitter.com/apps.

1. Click the link “Register a new application” at the bottom of the page.

2. Complete the application form.

3. Click Save.

Objects will not be displayed on the iPhone Simulator in the Run and Build
process until the objects inside the Interface Builder are properly saved. When
the file icon is highlighted in gray in the Project Navigator, it indicates that the
file changes are not saved in Xcode. Build and Run won’t render the updates.

Did You
Know?

http://twitter.com/apps

284 HOUR 23: Getting Started with Twitter Using iOS

Requesting Twitter xAuth
In Hour 8, we discussed registering your application and getting an OAuth number.

In most cases, this should be fine. However, you can also request something called

xAuth, which is more tailored for mobile apps. However, this spec is ever-changing

and evolving. Be sure to check Twitter for the latest updates with xAuth.

You can request for xAuth activation by opening a support ticket at http://support.

twitter.com/forms. Select “Everything else” in the menu. Include your App ID of your

app in your support ticket. Your App ID is the number at the end of the URL of your

app:

http://twitter.com/oauth_clients/details/<your app id>

Twitter xAuth API
After it is approved, you will be able to make a call to the following API method:

http://api.twitter.com/oauth/access_token

and send three parameters:

x_auth_username – username
x_auth_password – password
x_auth_mode – set the value to “client_auth”

This API method returns the authorized access token similar to OAuth. xAuth

authorized tokens can be saved and reused for any subsequent API calls because the

tokens do not expire.

Retrieving Consumer Key and Consumer Secret
After Twitter API approves your xAuth request and activates xAuth on your Twitter

application, you can retrieve your Consumer key and Consumer secret by visiting

http://dev.twitter.com/apps/<your app id> or http://twitter.com/oauth_clients/

details/<your app id>.

Now let’s log into your Twitter account to retrieve your App ID, the Consumer key,

and Consumer secret and copy them into a text file, as we did in Hour 8. We will

use them in the code later:

1. Log in to your Twitter account.

2. Select your xAuth-activated application at http://twitter.com/apps.

After selecting your application, you should see the Application Details.

This is where you find the Consumer key and Consumer secret.

http://support.twitter.com/forms
http://support.twitter.com/forms
http://twitter.com/oauth_clients/details/
http://api.twitter.com/oauth/access_token
http://dev.twitter.com/apps/
http://twitter.com/oauth_clients/details/
http://twitter.com/oauth_clients/details/
http://twitter.com/apps

Introducing iOS 285

Twitter application settings do not support xAuth status. The only method to verify
your xAuth approval and activation is the email confirmation from Twitter API.

3. Retrieve your App ID by looking up the application URL. Your App ID is the

number at the end of the URL of your app:

http://twitter.com/oauth_clients/details/<your app id>.

4. Copy the Consumer key and Consumer secret and store them into a

notepad.

5. Click Edit Application Settings.

The Application Settings is where you define the Application Type and

Default Access Type. You should choose Client as Application Type to sup-

port xAuth on iPhone app. You should choose Read & Write on Default

Access Type in this application.

6. Select Client as the Application Type.

7. Select Read & Write on Default Access Type.

Downloading MGTwitterEngine Library
The Twitter developer website suggests a list of Twitter Libraries at http://dev.twitter.

com/pages/libraries. MGTwitterEngine is the most accepted Objective-C Cocoa

library by iOS developers. This Twitter library includes OAuth and xAuth support for

Mac OS X and iOS.

MGTwitterEngine is an Objective-C Cocoa library for the Twitter API. You can down-

load the latest version of MGTwitterEngine at https://github.com/mattgemmell/

MGTwitterEngine.

xAuth implementation in iOS application requires additional resources in addition

to the MGTwitterEngine library.

Downloading MGTwitterEngineDemo
MGTwitterEngineDemo is a complete Xcode project packaged with additional

resources to support Twitter xAuth on an iPhone application. You can download the

latest version of MGTwitterEngineDemo at https://github.com/aral/

MGTwitterEngineDemo.

It also allows you to verify your Twitter application xAuth activation and test your

Consumer key and Consumer secret.

By the
Way

http://twitter.com/oauth_clients/details/
http://dev.twitter.com/pages/libraries
http://dev.twitter.com/pages/libraries
https://github.com/mattgemmell/MGTwitterEngine
https://github.com/mattgemmell/MGTwitterEngine
https://github.com/aral/MGTwitterEngineDemo
https://github.com/aral/MGTwitterEngineDemo

286 HOUR 23: Getting Started with Twitter Using iOS

Targeting Active SDK
The latest build on MGTwitterEngineDemo may not support your latest or previous

iOS SDK you installed for your Xcode. You would need to take additional steps to

select the Base SDK:

1. Launch the MGTwitterEngineDemo project in Xcode by opening

MGTwitterEngineDemo.xcodeproj in the folder.

2. TARGETS should be selected by Default, showing the Summary tab.

3. Select the Building Settings tab.

4. In Architectures, Base SDK, select the latest iOS Device SDK version from

the drop-down list.

5. Click on the Scheme button at the top left of Xcode. Select iPhone

Simulator from the drop-down list to set the active scheme.

6. Click the Run button at the top left of the Xcode to run the project.

Verifying xAuth
MGTwitterEngineDemo requires xAuth-activated Consumer key and Consumer secret

to call Twitter API. Twitter is no longer allowing apps to store Twitter usernames and

passwords on the device to log into the user’s Twitter account for the Basic Auth

method. In order to integrate xAuth, you are required to include the Twitter OAuth

Consumer key and Consumer secret in the app to authenticate the app.

Inside the MGTwitterEngineDemoViewController.h file, #define statement is where

you define the constant of Twitter OAuth Consumer key and Consumer secret.

In MGTwitterEngineDemoViewController.h:

#define kOAuthConsumerKey @””
#define kOAuthConsumerSecret @””

If you run the project without including your application Twitter OAuth Consumer

key and Consumer secret, you will be receiving an alert box with a title “Missing

oAuth details,” as shown in Figure 23.7.

Introducing iOS 287

Now you retrieve the Consumer key and Consumer secret you saved in the text file.

Copy those values inside the Objective-C String. The value should be copied inside

the double quotes after the @ symbol:

1. In MGTwitterEngineDemoViewController.h, enter your Consumer key in the

Objective-C string @”” of kOAuthConsumerKey constant.

2. Enter your Consumer secret in the Objective-C string @”” of

kOAuthConsumerSecret constant.

3. Click the Run button at the top left of the Xcode.

After running the project, you will see two empty text field input boxes in

the iPhone Simulator. Enter your valid Twitter username and password

under the title “Twitter account details,” as shown in Figure 23.8.

FIGURE 23.7
Showing the
Missing oAuth
details in
iPhone
Simulator alert.

288 HOUR 23: Getting Started with Twitter Using iOS

4. Enter your valid Twitter username and password in the iPhone Simulator.

5. Click the Get xAuth Access Token button.

Selecting the Get xAuth Access Token button will send a Twitter API request

to Twitter to authenticate your app based on your Twitter OAuth Consumer

key and Consumer secret. Before selecting the Get xAuth Access Token but-

ton, the Send Test Tweet button is disabled and is grayed out. After the

xAuth is successfully authenticated by Twitter, the Send Test Tweet button

will be enabled.

6. Click the Send Test Tweet button when it is enabled.

The Send Test Tweet button will send a hard-coded Twitter message to your

Twitter account. You will receive an alert box title “Tweet sent!,” as shown

in Figure 23.9.

FIGURE 23.8
Showing the
Twitter account
form in the
iPhone
Simulator.

Summary 289

7. Log in to your Twitter account to verify the successful tweet message in

your Twitter timeline feed, as shown in Figure 23.10.

You can log into your Twitter account to see the test message on your Home

Timeline status. A random number is generated at the end of the message

to avoid Twitter from blocking any duplicated message.

FIGURE 23.9
Showing the
success alert
message in the
iPhone
Simulator.

FIGURE 23.10
Showing the
successful
tweet message
on Twitter feed.

Summary
Congratulations! You are now an iOS developer. You’ve created your first iPhone

project. You also have created a Twitter application and requested xAuth from Twit-

ter. Finally, you learned how to verify your xAuth tokens by testing your application’s

Consumer key and Consumer secret.

290 HOUR 23: Getting Started with Twitter Using iOS

Q&A
Q. What kind of a development environment do I need for creating an iPhone

application?

A. You need the latest iOS SDK, Xcode, Interface Builder, and iPhone Simulator.

Q. What operating systems are supported for iOS application development?

A. Mac OS X Snow Leopard.

Q. What is xAuth?

A. xAuth is Twitter’s preferred authentication method for iOS native app after

Twitter discontinued the support in Basic Authentication.

Workshop

Quiz
1. Which programming languages do I use to code and develop an iPhone

application?

A. Objective-C

B. Java

C. HTML / JavaScript / CSS

D. C++

2. What are the types of authentications Twitter accepts?

A. Basic Authentication

B. OAuth

C. xAuth

D. B and C only

3. How do you request Twitter xAuth?

A. Twitter generates xAuth when you create your Twitter developer account.

B. Twitter generates xAuth when you create a new Twitter application.

C. Email Twitter at api@twitter.com with your application ID to request

xAuth.

Workshop 291

Quiz Answers
1. A. Use Objective-C to write the code for the iOS application.

2. D. Twitter accepts OAuth and xAuth and bans the use of Basic Authentication.

3. C. Twitter manually approves xAuth on each request.

Exercises
1. Register the Apple developer account. Install your iOS SDK. Create a view-

based template project in Xcode. Create a hello iPhone application.

2. Build and run the application in the iPhone Simulator.

3. Create a new Twitter application. Find your application’s Consumer key and

Consumer secret, and your App ID.

4. Request xAuth from Twitter.

5. Verify your xAuth after Twitter activates your xAuth.

This page intentionally left blank

Introducing Twitter xAuth 293

HOUR 24

Building an iPhone and iPod
Touch Application with
Twitter

What You’ll Learn in This Hour:
. Creating an iPhone xAuth application

. Adding Objective-C library

. Creating layout in Interface Builder

. Using Objective-C xAuth library

. Posting a Tweet from iPhone application

Introducing Twitter xAuth
Twitter introduces and extends xAuth to support mobile application and authenti-

cates the mobile application without storing the username and password in the

application.

In the iOS application, the Twitter OAuth authentication process forces the user to

exit the app and to authorize the request on the Twitter website in an opened Safari

browser. Initially, the Twitter OAuth web interface was not optimized for mobile. The

option of using UIWebView to request and exchange OAuth tokens within the same

iOS application is considered a hacked approach. Developers have reported that it

takes a default preset 10 seconds for Twitter to redirect to the OAuth successful page

within UIWebView. Twitter has not responded to any suggestion to shorten or opti-

mize the 10-second redirect for mobile native apps.

294 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

Because Twitter bans the use of Basic Auth and disallows storing Twitter usernames

and passwords on devices, the next option Twitter embraced for mobile native apps

is xAuth.

xAuth is a preferred authentication method for iOS application. Developers can

exchange both usernames and passwords for authorized tokens in one API call

using xAuth.

Benefits of Using Twitter xAuth
Using xAuth enhances your organic marketing effort by displaying the source

parameter at the bottom of every tweet (display as “via My App”).

Selecting Twitter Objective-C Libraries
MGTwitterEngine is one of the few Objective-C libraries supporting Twitter APIs.

MGTwitterEngine supports OAuth and xAuth, as well as iOS SDK for iPhone, iTouch,

and iPad applications. MGTwitterEngineDemo contain the JSON library, OAuth

library, and helper files to support MGTwitterEngine Twitter library.

Creating xAuth Application
MGTwitterEngineDemo is a nice way to verify your xAuth activation, validate your

Consumer key and Consumer secret, and confirm your Twitter username and pass-

word. However, it is not for designing commercial application containing many

alerts for debugging. Let’s start with a new project:

FIGURE 24.1
Showing the
Revoke Access
in Connections
panel for
Twitter account
settings.

Twitter initially allowed applications to create a source parameter for non-OAuth
use. Twitter no longer accepts new registrations for source request. However,
applications using pre-OAuth source parameters will remain active.

Did You
Know?

xAuth improves security in case of a stolen device. You can revoke access to your

application by visiting your Twitter account settings; select the Connections tab at

http://twitter.com/settings/connections to see the list of Twitter applications. Use the

“Revoke Access” button on the right side of the application to enable Revoke Access,

as shown in Figure 24.1.

http://twitter.com/settings/connections

Selecting Twitter Objective-C Libraries 295

1. In Xcode, select File, New, New Project....

2. Select the View-based Application template in the New Project window.

3. Click Next.

4. Enter xauth in the Product Name input box. Select iPhone in the drop-

down menu of Device Family.

5. Click Next.

6. Select the directory to save the Xcode project.

7. Click Create.

8. Click Build Phases tab under Project TARGETS.

9. Expand the arrow icon next to Link Binary With Libraries item.

10. Click + icon to open the Frameworks & Libraries drop-down list.

MGTwitterEngine requires additional frameworks to support the Twitter

OAuth library. Security.framework and libxml2.dylib are added to the

Project TARGETS in the Build Phases tab. You can add each framework one

by one or you can hold down the Command key on the keyboard to select

more than one framework, as shown in Figure 24.2.

11. Select Security.framework and click Add.

12. Select libxml2.dylib and click Add.

FIGURE 24.2
Adding
Frameworks to
Xcode project.

296 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

13. Select both Security.framework and libxml2.dylib and drag them into the

Frameworks Group.

14. Open the MGTwitterEngineDemo Xcode project. Select the Libraries Group

from the Project Navigator panel. Drag the entire Libraries Group from the

MGTwitterEngineDemo Xcode project into your xauth Group of your new

Xcode project inside the Project Navigator panel. You should see a green +

icon when you drag the folder into the Project Navigator panel.

15. Check the Destination box Copy items into destination group’s folder (if

needed).

16. The Folder radio button should be selected for Create groups for any added

folders, as shown in Figure 24.3.

17. Click Finish.

18. Click Build Settings tab under Project TARGETS.

19. Click the search box.

20. Enter Header Search Paths into the search box.

21. Enter return.

22. Select Header Search Paths in the Setting Column, as shown in Figure 24.4.

23. Add $(SDKROOT)/usr/include/libxml2 in the column Value.

FIGURE 24.3
Copying the
library.

Selecting Twitter Objective-C Libraries 297

If you build the project now without libXML framework libxml2.dylib, you will get
hundreds of errors. The classes from MGTwitterEngineDemo require libXML to be
a target of the project build. Make sure you add the framework libxml2.dylib.

The MGTwitterEngineDemo library uses third-party libraries OAuth Consumer

library to support OAuth and scifihifi-iphone-security library to store account infor-

mation in the keychain for security. Both OAuth Consumer library and scifihifi-

iphone-security library require iOS SDK Security framework (Security.framework).

MGTwitterEngineDemo library is required to parse Twitter XML responses. Based on

the MGTwitterEngineDemo recommendation, LibXML parser is preferred over the

NSXMLParser. Libxml2 included by Apple in the iOS SDK is used to perform tree-

based parsing. Because libxml2 is a .dylib and is not an iOS SDK framework, it is

necessary to include libxml2 path in the Project Target’s Build Settings tab in the

“Header Search Paths”.

Now we have added the missing Security Framework and LibXML parser .dylib to the

project. We can explore the files inside the MGTwitterEngineDemo library.

MGTwitterEngineDemo library is consisting of several third-party libraries. These

libraries are grouped together inside Twitter+OAuth and CocoaHelpers Groups.

MGTwitterEngineDemo library includes Twitter+OAuth and CocoaHelpers folders.

FIGURE 24.4
Targeting
Header Search
Paths in the
Build tab.

Watch
Out!

298 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

MGTwitterEngineDemo library contains the following:

. MGTwitterEngine library—It supports Twitter APIs.

. TouchJSON library—It supports JSON parsing.

. OAuthConsumer library—It supports Twitter OAuth.

. scifihifi-iphone-security library—It supports Keychain storage and

retrieval. Source code is at https://github.com/ldandersen/scifihifi-iphone/

tree/master/security/.

. CocoaHelpers—It is a collection of Objective-C class files to generate alerts

to inform users.

LibXML is a native parser. Unlike NSXMLParser, LibXML is faster with a smaller
memory footprint.

YAJL is JSON library written in ANSI C. YAJL is a small event-driven (SAX-style)
JSON parser and a validating JSON generator. You can find more info about
YAJL library at http://lloyd.github.com/yajl/.

Did You
Know?

The MGTwitterEngine library does not include the source files from the TouchJSON

library and YAJL library. The MGTwitterEngine library requires users to include the

source files in your Xcode project. Because both TouchJSON and YAJL libraries are

JSON parsers, there is no reason to keep two similar JSON libraries in the same

Xcode project. In this xAuth implementation, the TouchJSON library is used as a

JSON parser instead of YAJL library. It is necessary to remove all the YAJL dependen-

cy files from the compile sources in the project target in order to run the xAuth ver-

sion of MGTwitterEngine in MGTwitterEngineDemo.

So, let’s remove those dependency files in the following steps:

1. Click Build Phases tab of Project TARGETS.

2. Click the arrow next to Compile Sources item.

3. Delete the following YAJL dependency files by selecting the file and click the

minus sign button to delete the file:

. MGTwitterMessagesYAJLParser.m

. MGTwitterStatusesYAJLParser.m

. MGTwitterYAJLParser.m

. MGTwitterSearchYAJLParser.m

http://lloyd.github.com/yajl/
https://github.com/ldandersen/scifihifi-iphone/tree/master/security/
https://github.com/ldandersen/scifihifi-iphone/tree/master/security/

Selecting Twitter Objective-C Libraries 299

. MGTwitterUsersYAJLParser.m

. MGTwitterMiscYAJLParser.m

4. Click Run icon to run the project.

The latest release of YAJL is not compatible with the MGTwitterEngine library. It is
best to remove all the YAJL dependency files at the target.

Exploring ViewController.h
The view-based application template generates both header (.h) and implementa-

tion (.m) files for your <project name>ViewController in Xcode project. In the Header

file, you declare variable instances, properties, and methods.

In xauthViewController.h:

#import <UIKit/UIKit.h>

@interface xauthViewController : UIViewController {

}

@end

Importing Libraries to Header Files
Add the libraries from MGTwitterEngine and OAuth in the ViewController.h file.

In xauthViewController.h, add the import statements of header files:

#import “MGTwitterEngineDelegate.h”
#import “OAToken.h”

Add the following constants:

#define kOAuthConsumerKey @”<Consumer key>”
#define kOAuthConsumerSecret @”<Consumer secret>”
#define kTokenKey @”tokenKey”
#define kHaveCachedToken @”haveCachedToken”
#define kMGTwitterEngineDemoServiceName @”MGTwitterEngineDemoService”

Add class MGTwitterEngineDelegate:

@class MGTwitterEngine;

Watch
Out!

300 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

Add MGTwitterEngineDelegate protocol to the @interface:

@interface xauthViewController : UIViewController
<MGTwitterEngineDelegate> {

}

Declare Variable Instances
Before we can use any objects such as TextField, TextView, or Button in

ViewController, we need to declare each object type and object variable instance in

@interface directive.

In xauthViewController.h, add the following variable instances:

@interface xauthViewController : UIViewController
<MGTwitterEngineDelegate> {

UITextField *usernameTextField;
UITextField *passwordTextField;
UITextView *messageTextView;
UIButton *postButton;
MGTwitterEngine *twitterEngine;}

Declare Properties and Methods
We declare the property types and add IBOutlet to each object. We also declare the

method used in ViewController’s implementation .m file.

In xauthViewController.h, add the following @property and methods:

@property (nonatomic, retain) IBOutlet UITextField *usernameTextField;
@property (nonatomic, retain) IBOutlet UITextField *passwordTextField;
@property (nonatomic, retain) IBOutlet UITextView *messageTextView;
@property (nonatomic, retain) IBOutlet UIButton *postButton;
@property (nonatomic, retain) MGTwitterEngine *twitterEngine;

- (IBAction)postMessage;

Exploring ViewController.m
The implementation .m file of ViewController is where you execute the Objective-C

methods. The view-based template you selected in creating the new Xcode project

would generate some templates files including xauthViewController.m file. The

codes you see in xauthViewController.m are default codes from the view-based

template.

In xauthViewController.m:

#import “xauthViewController.h”
@implementation xauthViewController

Selecting Twitter Objective-C Libraries 301

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];

}
- (void)viewDidUnload {
}
- (void)dealloc {

[super dealloc];
}
@end

Importing Libraries to Implementation File
Include the supporting libraries once with the #import directive” above the @imple-

mentation directive in xauthViewController.m:

#import “MGTwitterEngine.h”
#import “SFHFKeychainUtils.h”
#import “UIAlertView+Helper.h”
#import “OAToken.h”

After the @implementation directive, add the following to xauthViewController.m:

@synthesize usernameTextField;
@synthesize passwordTextField;
@synthesize messageTextView;
@synthesize postButton;
@synthesize twitterEngine;

@synthesize directive will generate getter and setter methods for the property you

defined in the header .h file.

Adding Pragma Mark Directive
#pragma mark is a simple directive that helps us to organize our implementation

code. It functions similar to bookmarks. It helps developers to jump to user-defined

sections by adding #pragma mark in the project navigation toolbar above the

Xcode’s Editor area. #pragma mark adds a line, and #pragma mark <title> adds a

title to the project navigation toolbar drop-down menu.

Add the following Pragma Mark directives to xauthViewController.m:

#pragma mark -
#pragma mark Memory management

Managing Memory
The viewDidUnload method is called when controller’s view is released from memo-

ry. This method resets the objects on the view.

302 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

The Dealloc method is called when controller deallocates the memory occupied by

the receiver. This method releases the memory of the objects on the view.

After @synthesize, add the following in xauthViewController.m:

- (void)viewDidUnload {
self.usernameTextField = nil;
self.passwordTextField = nil;
self.messageTextView = nil;
self.postButton = nil;

}

- (void)dealloc {
[usernameTextField release];
[passwordTextField release];
[messageTextView release];
[postButton release];
[twitterEngine release];
[super dealloc];

}

Initializing MGTwitterEngine
The initWithCoder: method is used to create a variable instance of the

MGTwitterEngine object called twitterEngine.

Add #pragma mark directives and the initWithCoder: method in

xauthViewController.m:

-(id)initWithCoder:(NSCoder *)aDecoder{
self = [super initWithCoder:aDecoder];
if (self)
{

// Custom initialization
self.twitterEngine = [[[MGTwitterEngine alloc]

initWithDelegate:self] autorelease];
}
return self;

}

Loading xAuth Token
The viewDidLoad method is called after the controller’s view is loaded into memory.

This method is where we handle the success and error if there is any missing

Consumer key and Consumer secret in the application, and if xAuth token is cached

and loaded from the Keychain.

Loading xAuth Token 303

Token key is saved in NSUserDefaults and token secret is stored in the Keychain

using SFHFKeychainUtils. SFHFKeychainUtils offers better security than storing both

token keys and secrets in NSUserDefaults.

The xAuth access token is stored as an NSString object. This cached token is used for

future sessions.

Twitter apps that use multiple accounts, or apps allowing users to change the

account in apps with a single account, update the xAuth access token manually

within the session.

The view-based template generates commented viewDidLoad method by default.

Delete the entire default viewDidLoad method and add our own viewDidLoad

method instead.

Add the following viewDidLoad method in xauthViewController.m:

- (void)viewDidLoad {
[super viewDidLoad];

// Sanity check
if ([kOAuthConsumerKey isEqualToString:@””] || [kOAuthConsumerSecret

➥isEqualToString:@””])
{

NSLog(@”Twitter Consumer key or Consumer secret is missing!”);
}
else
{

[self.twitterEngine setConsumerKey:kOAuthConsumerKey
➥secret:kOAuthConsumerSecret];

}

NSUserDefaults *userDefaults = [NSUserDefaults
➥standardUserDefaults];

if ([userDefaults boolForKey:kHaveCachedToken])
{

// Get the cached (saved) token.
NSString *tokenKey = [userDefaults

➥objectForKey:kTokenKey];

NSError *error = nil;
NSString *tokenSecret = [SFHFKeychainUtils

➥getPasswordForUsername:tokenKey
➥andServiceName:kMGTwitterEngineDemoServiceName
➥sharedKeychainAccessGroupName:nil error:&error];

if (error)
{

// Error loading oAuth token from keychain
NSLog(Can’t load OAuth token from Keychain %d: %@”,

➥[error code], [error localizedDescription]);
}
else

304 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

{
// Success in loading OAuth token from keychain
OAToken *token = [[OAToken alloc] initWithKey:tokenKey

➥secret:tokenSecret];

self.twitterEngine.accessToken = token;

NSLog(xAuth token cached”);
self.postButton.enabled = YES;

}
}

// Set initial focus.
[self.usernameTextField becomeFirstResponder];

}

MGTwitterEngineDemo uses UIAlert to display messages for debugging. NSLog
is replacing UIAlert displaying messages in Console for debugging.

Did You
Know?

Posting Tweet
A new method postMessage is created to connect the UIButton named postButton

created in Interface Builder via (IBAction).

First, the username, password, and message are stored in NSString objects. Then, the

getXAuthAccessTokenForUsername:password: method retrieves xAuth access

token from Twitter API.

To avoid Twitter’s 403 Status Is a Duplicate error, we add a random number to the

end of the message using random generator arc4random()%144. Display the entire

message in an NSString object named tweetText.

Finally, use sendUpdate: method to post the message to Twitter feed in Timeline.

Immediately release all the NSString object memory.

Add #pragma mark directives and a postMessage method in

xauthViewController.m:

#pragma mark -
#pragma mark Actionable methods

- (IBAction)postMessage {
// Retrieve your username and password from Textfields
NSString *username = self.usernameTextField.text;
NSString *password = self.passwordTextField.text;
NSString *message = self.messageTextView.text;

// Retrieve xAuth access token from username and password

Adding MGTwitterEngine Delegate Methods 305

NSLog(%@ Password: %@”, username, password);
NSLog(%@”, message);
[self.twitterEngine getXAuthAccessTokenForUsername:username

➥password:password];

// Adding random number to the tweet to avoid Twitter’s 403 “Status is
➥a duplicate” error.

NSString *tweetText = [NSString stringWithFormat:@”%@ %d”, message,
➥arc4random()%144];

NSLog(@”About to post message to Twitter: \”%@\””, tweetText);

[self.twitterEngine sendUpdate:tweetText];
[username release];
[password release];
[message release];
[tweetText release];

}

Adding MGTwitterEngine Delegate
Methods
These are the MGTwitterEngine Delegate methods that would return the resulting

responses from Twitter APIs. Each Delegate method will return a specific message in

an alert window:

. statusesReceived:(NSArray *)statuses forRequest:(NSString

*)connectionIdentifier

. accessTokenReceived:(OAToken *)token forRequest:(NSString

*)connectionIdentifier

. requestSucceeded:(NSString *)connectionIdentifier

. requestFailed:(NSString *)connectionIdentifier withError:(NSError *)error

Add #pragma mark directives and MGTwitterEngine Delegate method in

xauthViewController.m:

#pragma mark -
#pragma mark MGTwitterEngineDelegate methods

- (void)statusesReceived:(NSArray *)statuses forRequest:(NSString
*)connectionIdentifier{

// Since we’re just sending a tweet in this example, we can
➥assume that’s the tweet that’s returned

// and use this as a success handler.
UIAlertViewQuick(@”Tweet sent!”, @”The tweet was successfully

➥sent. Everything works!”, @”OK”);

306 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

}

- (void)accessTokenReceived:(OAToken *)token forRequest:(NSString
*)connectionIdentifier{

//
// We’ve got an oAuth access token from Twitter. Let’s save it.
//
NSString *tokenKey = token.key;
NSString *tokenSecret = token.secret;

// Save the token securely in the keychain.
// (Note: this SFHFKeychainUtils method doesn’t return a value.)
NSError *error = nil;
[SFHFKeychainUtils storeUsername:tokenKey andPassword:tokenSecret

➥forService-Name:kMGTwitterEngineDemoServiceName
➥sharedKeychainAccessGroupName:nil updateExist-ing:YES error:&error];

if (error)
{

NSString *errorMessage = [NSString
➥stringWithFormat:@”Error saving to-ken”, @”I couldn’t save the oAuth
➥token to the keychain. %d: %@”, [error code], [errorlocalized
➥Description]];

UIAlertViewQuick(@”Error saving token”, errorMessage,
➥@”OK”);

}
else
{

// Save the token key and flag that we have a cached
➥token.

NSLog(@”Got the oAuth token and about to save it.”);
NSUserDefaults *userDefaults = [NSUserDefaults

➥standardUserDefaults];
[userDefaults setObject:tokenKey forKey:kTokenKey];
[userDefaults setBool:YES forKey:kHaveCachedToken];
[userDefaults synchronize];

}

// Set the access token on the twitter engine
// (Why doesn’t MGTwitterEngine do this automatically?)
self.twitterEngine.accessToken = token;

}

- (void)requestSucceeded:(NSString *)connectionIdentifier{
NSLog(@”Twitter request succeeded: %@”, connectionIdentifier);

}

- (void)requestFailed:(NSString *)connectionIdentifier withError:(NSError
➥*)error{

NSLog(@”Twitter request failed: %@ with error:%@”,
➥connectionIdentifier, error);

if ([[error domain] isEqualToString: @”HTTP”])
{

Adding MGTwitterEngine Delegate Methods 307

switch ([error code]) {

case 401:
{

// Unauthorized. The user’s
➥credentials failed to verify.

UIAlertViewQuick(@”Oops!”, @”Your
➥username and pass-word could not be verified. Double check that you
➥entered them correctly and tryagain.”, @”OK”);

break;
}

case 502:
{

// Bad gateway: twitter is down or
➥being upgraded.

UIAlertViewQuick(@”Fail whale!”,
@”Looks like Twitteris down or being updated. Please wait a few seconds and
try again.”, @”OK”);

break;
}

case 503:
{

// Service unavailable
UIAlertViewQuick(@”Hold your taps!”,

@”Looks likeTwitter is overloaded. Please wait a few seconds and try
➥again.”, @”OK”);

break;
}

default:
{

NSString *errorMessage = [[NSString
alloc] initWith-Format: @”%d %@”, [error code], [error
localizedDescription]];

UIAlertViewQuick(@”Twitter error!”,
➥errorMessage, @”OK”);

[errorMessage release];
break;

}
}

}
else
{

switch ([error code]) {

case -1009:
{

UIAlertViewQuick(@”You’re offline!”,
@”Sorry, it lookslike you lost your Internet connection. Please reconnect
and try again.”, @”OK”);

308 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

break;
}

case -1200:
{

UIAlertViewQuick(@”Secure connection
failed”, @”Icouldn’t connect to Twitter. This is most likely a temporary
issue, please try again.”,@”OK”);

break;
}

default:
{

NSString *errorMessage = [[NSString
➥alloc] initWith-
Format:@”%@ xx %d: %@”, [error domain], [error code], [error
➥localizedDescription]];

UIAlertViewQuick(@”Network Error!”,
errorMessage ,@”OK”);

[errorMessage release];
}

}
}

}

Now we finish all the codes in .h and .m files for the xauthViewController.

Creating Objects in Interface Builder
It’s time to create all the objects required in the Interface Builder for the

xauthViewController:

1. Click the interface builder file named xauthViewController.xib in Xcode’s

Project Navigator.

2. Select View, Utilities, Object Library or click on View Right Panel icon at the

top right of Xcode to show the Utility panel and select the Object Library

icon to open the Object Library, as shown in Figure 24.5.

3. Create a UILabel by dragging a Label from the Object Library to the View

within the Interface Builder Editor.

4. Create a UIText field for username by dragging a TextField from the

Objective Library to the View. Create another text field for password.

Creating Objects in Interface Builder 309

FIGURE 24.5
Selecting the
UILabel in
Library.

5. Create a UIText view for the message by dragging a TextView from the

Object Library to the View.

6. Create a UIButton by dragging a Button from the Object Library to the View.

7. Select File, Save.

8. Click Run icon to run the project.

The View in Interface Builder is laid out to give sufficient space for the
Keyboard to display in the lower half of View. The Keyboard in iPhone OS is 216
pixels high. You can use Size Inspector to guide you on the layout dimension.

Did You
Know?

UITextField object is designed for one line only. To display multiple lines, you
would have to use UITextView object. UITextView object is filled with random
text by default. The default text is longer than Twitter messages, which are
restricted to 140 characters. The example is using only 140 characters from
the default random text to guide the layout. 140 characters fit well in four lines
in the UITextView object.

Did You
Know?

310 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

Defining Object Attributes in Interface Builder
After the objects are created on the View, it’s time to define the object attributes:

1. Click xauthViewController.xib in the Xcode’s Project Navigator to open

the file.

2. Select the username UITextField object in the View inside Interface Builder

Editor.

3. Select the Attributes icon to open the Attributes Inspector in the Utilities area.

4. In the Attributes Inspector, enter Username in Placeholder, as shown in

Figure 24.6.

5. In the Clear Button menu, select Is Always Visible.

6. Click the check box Clear When Editing Begins.

7. In the Correction menu, select No.

8. Select the password UITextField object in the View inside Interface Builder

Editor.

9. In the Attributes Inspector, enter Password in Placeholder.

10. In the Clear Button menu, select Is Always Invisible.

FIGURE 24.6
Setting the
properties for
username Text
Field in
Attributes
Inspector.

Creating Objects in Interface Builder 311

11. Click the check box Clear When Editing Begins.

12. In the Correction menu, select No.

13. Click the check box Secure.

14. Select the message UITextView object in the View within Interface Builder

Editor.

15. Click the check box Editable.

16. Delete all the characters longer than 140 characters in the Text box. Adjust

the TextView object size by dragging the object handlers until it is 300 pix-

els wide and 98 pixels high. Now remove all the characters in the Text box.

17. In the Correction menu, select No.

18. In the Return Key menu, select Done.

19. In Scrollers of the Scroll View section, remove all the default settings from

the Scroller check boxes.

20. Select Button object in the View within Interface Builder Editor.

21. In the Attributes Inspector, enter Post in Title.

22. Save all the changes by selecting File, Save in File menu.

Connecting Objects in Interface Builder
Everything is in place now. It’s time to connect the objects in Interface Builder to the

methods in Xcode:

1. Select the username UITextField object in the View within Interface Builder

Editor, as shown in Figure 24.7.

2. Click the Connections icon to open the Connections Inspector in the

Utilities area. In the Connections Inspector, mouse over the circle next to

New Referencing Outlet until it appears as a plus (+) sign (see Figure 24.8).

3. Click and hold the mouse down. Drag it outside the circle until you see a

blue line. Drag the blue line across the interface builder Editor area to the

orange cube File’s Owners icon. It is the first icon at the top of the vertical

bar in the interface builder dock bar.

312 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

4. Release the mouse until you see a pop-up menu showing the Text Field

objects, as shown in Figure 24.9.

5. Select usernameTextField to connect the username UITextField object. You

should see usernameTextField is connected to File’s Owner in the

Connections Inspector.

FIGURE 24.8
Selecting New
Referencing
Outlet for Text
Field in
Connections
Inspector.

FIGURE 24.7
Selecting
Username
UITextField in
the View in
Interface
Builder.

Creating Objects in Interface Builder 313

FIGURE 24.9
Selecting
usernameText
Field in File’s
Owner.

6. Repeat the same for the password UITextField object. Connect it to

passwordTextField of the File’s Owner icon.

7. Select the UITextView object in the View within Interface Builder Editor.

8. Connect it from Referencing Outlet in Connections Inspector to

messageTextView at the File’s Owner icon.

9. Select the UIButton object in the View within Interface Builder Editor.

10. Connect it from Referencing Outlet in Connections Inspector to postButton

at the File’s Owner icon.

11. Select the UIButton object in the View again within the Interface Builder

Editor.

12. Connect it from Touch Up Inside under Events in the Connections Inspector

to postMessage at the File’s Owner icon.

13. Select File, Save in the File menu. If you open the Connections Inspector,

you should see that the postButton method is connected to the File’s Owner

of UIButton object, and the postMessage method is connected to the Touch

Up Inside on the Sent Events list, as shown in Figure 24.10.

314 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

FIGURE 24.10
Showing the
connections of
UIButton in the
Connections
Inspector.

FIGURE 24.11
Showing the
completed app
in iPhone
Simulator.

14. Click Run icon to run the project and launch the iPhone Simulator. You

should see the app is showing the username, password, message, and post

button objects inside the iPhone Simulator, as shown in Figure 24.11.

Summary 315

FIGURE 24.12
Showing the
Successful
message in
Alert view on
the iPhone
Simulator.

18. Log in to your Twitter account to view the Send Tweet submitted from the

iPhone Simulator. Bask in the glow of your success.

Summary
Congratulations! You’ve added Twitter Objective-C library, JSON Objective-C library,

and OAuth Objective-C library to your iPhone xAuth project. You’ve created an

iPhone xAuth application using your activated xAuth Consumer key and Consumer

secret. Last, you have posted a Tweet from your iPhone application in the iPhone

Simulator.

15. In the iPhone Simulator, enter a valid Twitter username and password.

16. Enter a text message under 140 characters.

17. Click the Post button. You should see the successful alert message in the

app, as shown in Figure 24.12. It indicates that your xAuth is properly

implemented and your Twitter account is valid.

316 HOUR 24: Building an iPhone and iPod Touch Application with Twitter

Q&A
Q. Why is xAuth the preferred authentication method in the iOS application?

A. xAuth library authenticates the iOS application without requiring users to visit

the Twitter OAuth page. It is considered a better user experience.

Q. Why is the xAuth token stored in the Keychain?

A. It is a better security practice to store the xAuth token in the Keychain than in

user defaults.

Workshop

Quiz
1. Which parsing method(s) are integrated in processing Twitter resulting

responses in MGTwitterEngine library?

A. XML

B. JSON

C. Both

2. What must be included in the iOS application to request an xAuth token?

A. Consumer key

B. Consumer secret

C. Both

3. What Inspector do you use to connect the interface builder object to the File’s

Owner?

A. Attributes Inspector

B. Size Inspector

C. Connection Inspector

D. Identity Inspector

Workshop 317

Quiz Answers
1. C. libxml2.dylib framework is added to parse Twitter XML results, and TouchJ-

SON is included to parse Twitter JSON results.

2. C. Twitter requires both the Consumer key and Consumer secret to generate

xAuth access tokens.

3. C. The Connection Inspector provides the interface to connect the interface

builder object in the view to the File’s Owner.

Exercises
1. Create an xAuth Xcode project using the View-based template.

2. Add the entire MGTwitterDemo library into your iPhone Xcode project.

3. Add the application’s Consumer key and Consumer secret into your iPhone

application.

4. Complete an iPhone application to send a Tweet using xAuth.

5. Add another View Controller to show your Twitter timeline feed.

This page intentionally left blank

Index

Symbols

(hashtag), 2, 8

#pragma mark, 301

$ (dollar sign), 23

@ (at symbol), 258

+ (plus symbol), 258

200 OK response code, 242

304 Not Modified response
code, 230

400 Bad Request response
code, 230

401 Unauthorized response
code, 230

403 Forbidden response
code, 230

404 Not Found response
code, 230

406 Not Acceptable response
code, 230

420 Enhance Your Calm response
code, 230, 235

500 Internal Server Error
response code, 230

502 Bad Gateway response
code, 230

503 Service Unavailable response
code, 230

A

accessing other user information,
155

accessTokenReceived: method,
305-308

account methods

account/end_session, 201

account/update_profile, 201

account/update_profile_back
ground_image, 201

account/update_profile_
colors, 201

account/update_profile_
image, 201

adding to applications

header.inc, 199-200

parseTwitter.php, 200

twitteroauth.php, 200

list of, 199

320

account/end_session method

account/end_session method,
201

accounts

private accounts, 2

rate limiting, 11, 18

setting up, 12-15

whitelisting, 11-12, 31

account/update_profile method,
201

account/update_profile_backgrou
nd_image method, 201

account/update_profile_colors
method, 201

account/update_profile_image
method, 201

active SDK, targeting, 285

ADT (Android Development Tools)
plug-in, 242, 252

Android applications, 241-242

ADT (Android Development
Tools) plug-in, 242, 252

Android OAuth application,
255-261

creating, 256

intent filters and
permission, 259-260

layout, 257-259

Twitter Java libraries, 256

XML resources, 261

AVD (Android Virtual Device),
creating, 242

development environments,
252

Hello Android project

AndroidManifest.xml,
248-249

AVD (Android Virtual
Device), 250

creating, 243-244

helloandroid.java,
245-246

launching, 246-248

SDK issues, 250-251

supported API levels,
249-250

views, 246

importing packages, 261-275

adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

Oauth-signpost, 251

supported operating systems,
252

Twitter4J library, 251

xAuth, 275-276

Android Development Tools (ADT)
plug-in, 242, 252

Android OAuth application

importing packages

adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

Twitter Java libraries, 256

Android SDK, downloading, 241

Android Virtual Device (AVD),
242, 250

android:layout_marginBottom
attribute, 258

android:layout_width attribute,
258

AndroidManifest.xml, 248-249

@Anywhere and Tweet Button
(dev.twitter.com), 215

Apache, 34

API calls

account methods, 199

block methods, 198

blocks/blocking/ids, 198

blocks/create, 198

blocks/destroy, 198

blocks/exists, 198

blocks/unblocking, 198

catching API requests,
232-233

creating

cURL, 53-55, 58

in PHP, 53-57

for Twitter function calls,
75-78

user_timeline API, 55-57

in XML, 49-52

DELETE calls, 136-137

destroy, 132-133

direct message methods,
109-110

favorites API methods.
See favorites

Friendships methods

explained, 193

supporting in applications,
194-197

geo/search, 187-190

GET calls, 136-137

list calls, 135-136

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

How can we make this index more useful? Email us at indexes@samspublishing.com

call_timeline() function

321

notification methods, 197

parameters

explained, 73-75

multiple parameters, 80

POST calls, 136-137

retweet methods

id/retweeted_by, 122

retweet, 119-123

retweeted_by_me, 118

retweeted_of_me,
118-119

retweeted_to_me,
118-119

retweets/id, 122

search. See Search

streaming methods, 222-226

Trends. See trending topics

types of, 113-114

user API methods

accessing other user
information, 155

adding to applications,
153-154

list of, 153

statuses/followers, 156

statuses/friends, 156

thumbnail viewer, creating,
156-158

users/profile_image, 156

users/search, 155

users/show, 153-154

users/suggestions, 155

users/suggestions/:slug,
155-156

API levels (Android), 249-250

API parameters, 73-75

$api_call variable, 98

$api_url variable, 53

apiwiki.twitter.com, 84, 211

applications, 25

mashups, 25-27

platforms, 30-31

pure chat applications, 29

registering, 15-16, 82-83

structured displays, 29

Twitter clients. See Twitter
clients, creating

Twitter statistics, 29-30

widgets, 25-26

askOAuth() method, 264-266

at symbol (@), 258

attributes, 237

authenticating Android
applications, 264-266

Authentication section
(dev.twitter.com), 213

AVD (Android Virtual Device),
242, 250

B

base.js, 107-110

direct message support, 128

favorites support, 149, 152

Friendships methods support,
195

list support, 138

Retweet button support, 122

search support, 169-170

Basic Authentication, 255

#blamedrewscancer, 5

block methods, 198

blocks/blocking/ids, 198

blocks/create, 198

blocks/exists, 198

blocks/unblocking, 198

blocking users, 198

blocks/blocking/ids method, 198

blocks/destroy method, 198

blocks/exists method, 198

blocks/unblocking method, 198

bots, 24-25

BreakingNews, 21

browsers

Chrome, 42

Firefox, 41

Internet Explorer, 42

business logic, 27

buttons

Retweet, 122

base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122

parseTwitter.php, 121

render.php, 121

sendMessages.php, 120

twitteroauth.php, 120

Tweet,

adding with iframe, 210

adding with JavaScript,
210

customizing, 210-211

C

call_ timeline() function, 101

call_direct() function, 101, 140

call_search() function, 167

call_showList() function, 140

call_timeline() function, 97

call_trends() function, 178-179

322

call_trends_daily() function

call_trends_daily() function, 183

call_users() function, 157

callback attribute (search),
162, 171

callPage() function, 107-108

calls (API). See API calls

callTwitter() function, 63-64, 75

capabilities of Twitter, 1-2

catching API requests, 232-233

character limit for tweets, 8

chatters, 22-23

choosing passwords, 12-13

Chrome, 42

classes

advantages of, 82

class files, storing, 93

explained, 81-82

OAuth

adding functions to, 90-92

creating, 83

twitterOAuth

creating, 85-87

getUserTimeline()
function, 90-92

oauth_index.php, 87-88

Twitter connection errors,
handling, 92-93

twitteroauth.php, 88-92

when to use, 93

clients (Twitter), creating, 16-18,
27-28, 59-60

Android applications,
241-242

ADT (Android Development
Tools) plug-in, 242

Android OAuth application,
255-261

AVD (Android Virtual
Device), 242

development
environments, 252

Hello Android project,
243-251

importing packages,
261-275

supported operating
systems, 252

xAuth, 275-276

API calls. See API calls

application architecture
diagram, 231-232

block methods, 198

blocks, 198

catching API requests,
232-233

direct messages

adding API support for,
101-102, 109-110,
127-130, 131-132

call_direct() function, 101

callPage() function,
107-108

deleting, 132-133

destroy API call, 132-133

direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

renderTweets() function,
128

sanitizing, 110

sendMessage() function,
107-108

testing, 126-127

UI elements, adding,
125-126

favorites

adding to applications,
148-149

createFavorite() function,
150

creating, 149

definition of, 147

destroyFavorites()
function, 152

destroying, 152

favorite() function, 149

showFavorites() function,
148

Friendships methods

explained, 193

supporting in applications,
194-197

home timeline, 97-99

HTTP response codes, 65-66

index.php, 60-61, 69, 95-96

input text fields

base.js, 107-108, 110

createMessage.php, 106

index.php, 105-106

main.css, 106-107

sendMessage.php, 108

iOS. See iOS

lists

API support for, 135-136

creating, 137-141

definition of, 135

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

main.css, 61-63

main.php, 63, 69-70

mentions

adding support for,
99-101

call_ timeline() function,
101

getMentions() function,
99-101

notifications

disabling, 197

enabling, 197

parseTwitter.php, 66-67

render.php, 67-71

retrying if Twitter is down,
233-236

Retweet button

base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122

parseTwitter.php, 121

render.php, 121

retweets/id API call, 122

sendMessages.php, 120

twitteroauth.php, 120

Search. See Search

streaming, 219

advantages of, 226

limits on, 221

pre-launch checklist,
221-222

site streams, 220

Streaming API, 219

streaming methods,
222-226

user streams, 219-220

when to use, 220

tabs. See tabs

trending topics

call_trends() function,
178-179

definition of, 166-167

recent, daily, and weekly
trends, 180-185

showTrends() function,
178-179

supporting in applications,
177-180

Tweet button, 209

adding with iframe, 210

adding with JavaScript,
210

customizing, 210-211

Twitter clients, creating

ADT (Android Development
Tools) plug-in, 252

getMessagesSent()
function, 132

twitterAPI.php, 64-65, 70

colors (profile), 201-203

commandLine.php

favorites support, 150

Friendships methods support,
195

list support, 138-139

commands, $_GET, 95

config.php, 85

configuring

accounts, 12-15

local web servers, 34-38

connection errors, handling,
92-93

console page (dev.twitter.com),
207

Consumer key, retrieving,
284-285

Consumer secret, retrieving,
284-285

Count parameter, 74

count parameter (getMentions()
function), 99

create_message.php, 168-169

createFavorite() function, 150

createList() function, 139

createListItem() function, 138

createMessage.php, 106

cURL, 53-55, 58

$curl_handle variable, 53, 64

curl_setopt() function, 92

currentTimeMillis() method, 267

customizing Tweet button,
210-211

D

daily trends, 180-185

call_trends_daily() function,
183

header.inc, 183

parseTwitter.php, 183-184

showTrends_daily() function,
184

twitteroauth.php, 184-185

declaring

properties/methods, 300

variables, 300

DELETE calls, 136-137

deleting direct messages,
132-133

destroy API call, 132-133

destroyFavorites() function, 152

destroying favorites, 152

development environments

for Android, 252

LAMP stacks

explained, 33-34

How can we make this index more useful? Email us at indexes@samspublishing.com

development environments

323

popularity of, 46

XAMPP, 35-38

local web servers,
configuring, 34-38

tools

Chrome, 42

Firebug, 41-42

Firefox, 41

IDEs (integrated
development
environments), 43-44

Internet Explorer, 42

phpMyAdmin, 42

recommended toolbox, 45

revision control systems,
44-45

text editors, 43

web server security, 38-41

MySQL, 40-41

phpMyAdmin, 41

XAMPP pages, 40

XAMPP security console,
39-40

development tools

Chrome, 42

Firebug, 41-42

Firefox, 41

IDEs (integrated development
environments), 43-44

Internet Explorer, 42

phpMyAdmin, 42

recommended toolbox, 45

revision control systems,
44-45

text editors, 43

dev.twitter.com website, 211

@Anywhere and Tweet
Button, 212

Authentication, 212

console page, 207

Ecosystem, 216

Guidelines and Terms, 213

REST API and General, 214

start page, 206

Streaming API Documention
and Search API, 215

direct() function, 128

direct messages, 125

adding API support for,
101-102, 109-110

base.js, 128

header.inc, 132

parseTwitter.php, 131-132

render.php, 127-128

sendMessage.php, 129

twitteroauth.php, 129-132

call_direct() function, 101

callPage() function, 107-108

deleting, 132-133

destroy API call, 132-133

direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

getMessagesSent() function,
132

input text fields. See input
text fields

renderTweets() function, 128

sanitizing, 110

sending message to Twitter,
108-109

sendMessage() function,
107-108

testing, 126-127

UI elements, adding

header.inc, 125-126

index.php, 125

direct messages (DMs), 2

directives

#pragma mark, 301

@interface, 300

disabling notifications, 197

Display Guidelines
(dev.twitter.com), 213

DMs (direct messages), 2

documentation

apiwiki.twitter.com, 211

dev.twitter.com website, 211

@Anywhere and Tweet
Button, 212

Authentication, 212

console page, 207

Ecosystem, 216

Guidelines and Terms,
213

REST API and General,
214

start page, 206

Streaming API
Documention and
Search API, 215

dollar sign ($), 23

Dorsey, Jack, 2-3

downloading

Android SDK, 241

MGTwitterEngine library, 285

MGTwitterEngineDemo, 285

Oauth-signpost, 251

Twitter4J library, 251

324

development environments

E

Eclipse, 43-44, 241

Ecosystem section
(dev.twitter.com), 216

editing

index.php, 105-106

twitteroauth.php, 90-92

editors (text), 43

Egyption revolution, tweets sent
during, 5-7

enabling notifications, 197

ending sessions, 201

errors, Twitter connection errors,
92-93

exceptions

definition of, 92

Twitter connection errors,
handling, 92

F

Facebook, compared to Twitter, 4

FailWhale, 229-230

favorite() function, 149

favorites

adding to applications, 148

base.js, 149

header.inc, 148

parseTwitter.php, 148

twitteroauth.php, 148

createFavorite() function, 150

creating, 149

base.js, 152

commandLine.php, 150

render.php, 149-152

twitteroauth.php,
150, 152

definition of, 147

destroyFavorites() function,
152

destroying, 152

favorite() function, 149

showFavorites() function, 148

fields, input text fields

base.js, 107-110

createMessage.php, 106

index.php, 105-106

main.css, 106-107

sendMessage.php, 108

files. See also specific files

class files, storing, 93

organizing, 72

Firebug, 41-42

Firefox, 41

follow() function, 195

followers, 2

following, 2

friendshipExists() function,
129-130, 141

Friendships methods

explained, 193

supporting in applications

base.js, 195

commandLine.php, 195

parseTwitter.php, 196-197

render.php, 194

twitteroauth.php, 195

functions. See also API calls

adding to twitterOAuth class,
90-92

askOAuth(), 264-266

call_ timeline(), 101

call_direct(), 101, 140

call_search(), 167

call_showList(), 140

call_timeline(), 97

call_trends(), 178

call_trends_daily(), 183

call_users(), 157

callPage(), 107-108

callTwitter(), 63-64, 75

createList(), 139

createListItem(), 138

curl_setopt(), 92

currentTimeMillis(), 267

direct(), 128

favorite(), 149

follow(), 195

friendshipExists(), 129-130,
141

getData(), 266

getHomeTimeline(), 89

getMentions(), 233

code listing, 100

parameters, 99-100

getMessages(), 101, 131

getMessagesSent(), 132

getPublicTimeline(), 78-79

getQueryParameter(), 266

getRTByMe(). See also API
calls

getRTOfMe(). See also API
calls

getRTToMe(). See also API
calls

getTwitterData(), 97

getUserRate(), 200

getUserTimeline(), 75-78,
90-92

How can we make this index more useful? Email us at indexes@samspublishing.com

functions

325

htmlentities(), 54

leave(), 195

makeText(), 265, 267

oAuthRequest(), 88

onCreate(), 261

onNewIntent(), 266

parseTwitter(), 70

parseTwitterReply(), 63

parseTwitterReply (), 66

phpinfo(), 40

postMessage(), 304-305

renderLists(), 141

renderTweets(), 63, 67, 128

responsefromServer(), 108

search(), 167-168

sendMessage(), 107-108

sendSearch(), 169

setContentView(), 261

setText(), 267

setVisibility(), 268

showFollowers(), 158

showFriends(), 158

showgeo_search(), 232

showLists(), 141

showTrends(), 178-179

showTrends_current(), 184

showTrends_daily(), 184

showTrends_weekly(), 184

showUser(), 154

SimpleXMLElement(), 97

toLocaleString(), 267

updateStatus(), 108, 267

future of Twitter API, 236-237

G

Geo Developer Guidelines
(dev.twitter.com), 213

GEO tag, 187-190

geocode attribute (search), 163,
165, 172

geo/search API call, 187-190

GET calls, 136-137

$_GET command, 95

Get xAuth Access Token button,
288

get_public_timeline.php, 53

getData() method, 266

getHomeTimeline() function, 89

getMentions() function, 233

code listing, 100

parameters, 99-100

getMessages() function, 101, 131

getMessagesSent() function, 132

getPublicTimeline() function,
78-79

getQueryParameter() method,
266

getRTByMe() function, 119

getRTOfMe() function. See also
API calls

getRTToMe() function. See also
API calls

getTwitterData() function, 97

getUserRate() function, 200

getUsersTimeline() function,
90-92

getUserTimeline() function, 75-78

getXAuthAccessTokenForUsernam
e:password: method, 304

Git, 44

Global System for Mobile
Communications (GSM), 2-3

Google Chrome, 42

GSM (Global System for Mobile
Communications), 2-3

Guidelines and Terms section
(dev.twitter.com), 213

H

hashtag, 2, 8

header.inc, 114-115

account methods, 199-200

direct message support,
125-126, 132

favorites support, 148

list support, 139

recent, daily, and weekly
trends, 183

search support, 166

thumbnail viewer, creating,
156-157

trending topics support, 178

user API methods, 154

Hello Android project

AndroidManifest.xml,
248-249

AVD (Android Virtual Device),
250

creating, 243-244

helloandroid.java, 245-246

launching, 246-248

Oauth-signpost, 251

SDK issues, 250-251

supported API levels,
249-250

Twitter4J library, 251

views, 246

326

functions

Hello World application (iOS),
280-283

helloandroid.java, 245-246

high-frequency users, 24

history of Twitter, 2-3

home page (Twitter), 16-18

home timeline, creating, 97-99

htmlentities() function, 54

HTTP response codes

catching, 232-236

creating, 65-66

supported codes, 230

Hypertext Coffee Pot Control
Protocol, 230

I

$i counter, 97

ID parameter, 74

IDEs (integrated development
environments), 43-44

id/retweeted_by API call, 122

id/retweeted_by/ids API call, 123

iframe, adding Tweet button
with, 210

images, profile images, 201

importing

libraries

to header files, 299-300

to implementation files,
301

packages, 261-275

adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java,
269-275

include_entities parameter
(getMentions() function), 100

include_rtf parameter
(getMentions() function), 100

index.php, 95-96, 105-106

creating, 60-61, 69

direct message support, 125

expanding to support
tabs, 117

initializing MGTwitterEngine
library, 302

initWithCoder: method, 302

input text fields

base.js, 107-110

createMessage.php, 106

index.php, 105-106

main.css, 106-107

sendMessage.php, 108

installing XAMPP, 35-38

on Linux, 37-38

on Mac OS, 37

troubleshooting installation,
38

on Windows, 35-37

integrated development
environments (IDEs), 43-44

intent filters, adding to Android
OAuth application, 259-260

IntentFilter objects, 259-260

Interface Builder

connecting objects in,
309-311

creating objects in, 308-315

defining object attributes in,
309-311

@interface directive, 300

Internet Explorer, 42

iOS, 279

active SDK, targeting, 285

Consumer key and Consumer
secret, retrieving, 284-285

Hello World application,
280-283

memory management,
301-302

MGTwitterEngine library

Delegate methods,
305-308

downloading, 285

initializing, 302

objects, creating in Interface
Builder, 308-315

#pragma mark, 301

tweets, posting, 304-305

ViewController.h, 299

declaring properties and
methods, 300

declaring variable
instances, 300

importing libraries to
header files, 299-300

ViewController.m, 300-301

xAuth

advantages of, 294

creating xAuth application,
294-299

definition of, 293-294

explained, 284

loading xAuth tokens,
302-304

requesting, 284

Twitter application for
xAuth request, 283

verifying, 286-289

How can we make this index more useful? Email us at indexes@samspublishing.com

iOS

327

iPhone platform, 30-31. See also
iOS

iPod Touch platforms. See iOS

J-K

Java libraries, 256

JavaScript, adding Tweet button
with, 210

JSON, parsing, 166-167

JTwitter library, 256

Krikorian, Raffi, 185

L

LAMP stacks

explained, 33-34

popularity of, 46

XAMPP, 35

installing, 35-38

security console, 39-40

lang attribute (search), 162,
165, 171

launching Hello Android project,
246-248

layout of Android OAuth
application, 257-259

leave() function, 195

libraries

cURL, 53-55, 58

importing to implementation
files, 301

MGTwitterEngine, initializing,
302

MGTwitterEngine library

Delegate methods,
305-308

downloading, 285

Oauth-signpost, 251

Twitter Java libraries, 256

Twitter4J, 251

limits on Twitter use, 11, 18

Linux, 33

XAMPP installation, 37-38

XAMPP security console, 40

List Members resources, 143

List Subscribers resources,
143-144

list.php, 137-138

lists

API support for, 135-136

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

creating

base.js, 138

call_direct() function, 140

call_showList() function,
140

commandLine.php,
138-139

createList() function, 139

createListItem() function,
138

friendshipExists() function,
141

header.inc, 139

list.php, 137-138

parseTwitter.php, 140-141

renderLists() function, 141

showLists() function, 141

twitteroauth.php, 139,
141

definition of, 135

loading

xAuth tokens, 302-304

XML resources, 261

local web servers, configuring,
34-38

locale attribute (search),
162, 171

logic, business logic, 27

Lu, Yiying, 229

M

Mac OS. See also iOS

XAMPP installation, 37

XAMPP security console, 40

main.css, 106-107

creating, 61-63

Retweet button support, 122

main.php, creating, 63, 69-70

makeText() method, 265, 267

mashups, 25-27

max_id parameter (getMentions()
function), 99

memory management, iOS,
301-302

mentions, adding support for,
99-101

messages

compared to statuses, 58

direct messages, 125

adding API support for,
101-102, 109-110,
127-130, 131-132

328

iPhone platform

call_direct() function, 101

callPage() function,
107-108

deleting, 132-133

destroy API call, 132-133

direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

renderTweets() function,
128

sanitizing, 110

sendMessage() function,
107-108

testing whether messages
can be sent, 126-127

UI elements, adding,
125-126

getMessagesSent() function,
132

sending message to Twitter,
108-109

metadata mode (Search), 173

methods. See specific methods

MGTwitterEngine library

Delegate methods, 305-308

downloading, 285

initializing, 302

MGTwitterEngineDemo, 285

MGTwitterEngineDemoViewContro
ller.h, 280-283

microbloggers, 24

mobile platforms, 30-31

Mubarek, Muhammed Hosni
Sayed, 5-7

multiple parameters, 80

MySQL, 34, 40-41

N

NAT (Network Address
Translation), 38

navs.cc, 115-117

Netbeans, 44

Network Address Translation
(NAT), 38

new users, 24

news readers, 21-22

NewsSnacker, 21-22

Notepad++, 43

notification methods, 197

notifications

disabling, 197

enabling, 197

notifications/follow method, 164

notifications/leave method, 197

O

OAuth, 255-261

adding, 262-264

Android OAuth application

creating, 256

intent filters and
permission, 259-260

layout, 257-259

Twitter Java libraries, 256

XML resources, 261

definition of, 82

flow overview, 84

OAuth class, creating, 83

Twitter connection errors,
handling, 92-93

twitterOAuth class

adding functions to, 90-92

creating, 85-87

getUserTimeline()
function, 90-92

oauth_index.php, 87-88

twitteroauth.php, 88-92

OAuth class, creating, 83

oauth_index.php, 87-88

oAuthRequest() function, 88

Oauth-signpost, 251

objects

creating in Interface Builder,
308-315

definition of, 81-82

Odeo, 2-3

onCreate() function, 261

onNewIntent() method, 266

organizing files, 72

P

packages, importing, 261-275

adding OAuth, 262-264

authenticating application,
264-266

responding after
authentication, 266-269

TwitterOAuth.java, 269-275

page attribute (search),
163-165, 171

Page parameter, 74, 100

parameters

explained, 73-75

for getMentions() function,
99-100

How can we make this index more useful? Email us at indexes@samspublishing.com

parameters

329

parseTwitter() function, 70

parseTwitter.php, 118

account methods, 200

creating, 66-67

direct message support, 132

favorites support, 148

Friendships methods support,
196-197

list support, 140-141

parsing JSON, 166-167

recent, daily, and weekly
trends, 183-184

Retweet button support, 121

search support, 166-167

thumbnail viewer, creating,
157

trending topics support,
178-179

user API methods, 154

parseTwitterReply() function,
63, 66

parseTwitterReply.php, 70

parsing JSON, 166-167

passwords, choosing, 12-13

Perl, 33

permissions, adding to Android
OAuth application, 259-260

PHP, 33-34, 53-57

phpinfo() function, 40

phpMyAdmin, 41-42

platforms, 30-31

plus symbol (+), 258

POST calls, 136-137

posting tweets (iOS), 304-305

postMessage() method, 304-305

power users, 23

PR managers, 23

private accounts, 2

$profile_image_url variable, 66

profiles

profile colors, 201-203

profile images, 201

properties, declaring, 300

protocols

Hypertext Coffee Pot Control
Protocol, 230

NAT (Network Address
Translation), 38

SMS (Short Message
System), 2-3

public relations managers, 23

pure chat applications, 27-28

Python, 33

Q-R

q attribute (search), 171

rate limiting, 11, 18

readers. See clients (Twitter)

recent trends, 180-185

header.inc, 183

parseTwitter.php, 183-184

twitteroauth.php, 184-185

recommended toolbox, 45

refreshing search results, 173

registering applications, 15-16,
82-83

renderLists() function, 141

render.php

creating, 67-68, 70-71

direct message support,
127-128

favorites support, 149-152

Friendship methods support,
194

Retweet button support, 121

renderTweets() function, 63,
67, 128

@reply, 2, 8

requestFailed: method, 305-308

requesting Twitter xAuth, 284

requests (Search), 164-165

requestSucceeded: method,
305-308

responding after authentication,
266-269

response codes (HTTP). See HTTP
response codes

responsefromServer() function,
108

REST API and General section
(dev.twitter.com), 214

result_type attribute (search),
163, 172

retrieving Consumer key and
Consumer secret, 284-285

retrying if Twitter is down,
233-236

retweet API call, 119-123

Retweet button

base.js, 122

id/retweeted_by API call, 122

id/retweeted_by/ids API call,
123

main.css, 122

parseTwitter.php, 121

render.php, 121

retweets/id API call, 122

sendMessages.php, 120

twitteroauth.php, 120

330

parseTwitter() function

retweeted_by_me API call, 118

retweeted_of_me API call,
118-119

retweeted_to_me API call,
118-119

retweets, 2

retweets/id API call, 122

revision control systems, 44-45

roid:layout_height attribute, 258

rpp attribute (search), 163,
165, 171

RTs (retweets), 2

Rules of the Road
(dev.twitter.com), 213

S

Sagolla, Dom, 2-3

sanitizing messages, 110

SCMs (source code management)
systems, 44-45

Scoble, Robert, 229

Screen_name parameter, 74

$screen_name variable, 66

SDK issues (Android), 250-251

Search, 161

adding to applications

base.js, 169-170

call_search() function, 167

create_message.php,
168-169

header.inc, 166

parseTwitter.php, 166-167

search() function,
167-168

sendSearch() function,
169

twitteroauth.php, 167-168

metadata mode, 173

refreshing search results,
173

search attributes, 162-164,
170-172

search requests, 164-165

Twitter’s stance on, 161-162

usage notes, 172-173

search API method. See Search

search() function, 167-168

security for web servers, 38-41

MySQL, 40-41

phpMyAdmin, 41

XAMPP pages, 40

XAMPP security console,
39-40

Send Test Tweet button, 288

sending direct messages, 125

API support for, 127-130

testing whether messages
can be sent, 126-127

UI elements, adding, 125-126

sendMessage() function, 107-108

sendMessage.php, 108, 129

sendMessages.php, 120

sendSearch() function, 169

sendUpdate: method, 304

servers, web. See web servers

sessions, ending, 201

setContentView() function, 261

setOAuthAccessToken()
method, 268

setText() method, 267

setting up

accounts, 12-15

local web servers, 34-38

setVisibility() method, 268

SFHFKeychainUtils, 303

Short Message System), 2-3

shortcuts, 111

show_user attribute (search),
163, 165, 172

showFavorites() function, 148

showFollowers() function, 158

showFriends() function, 158

showgeo_search() function, 232

showLists() function, 141

showTrends() function, 180

showTrends_current() function,
184

showTrends_daily() function, 184

showTrends_weekly() function,
184

showUser() function, 154

Signpost, 251

SimpleXMLElement() function, 97

since_id attribute (search), 163,
165, 171

Since_ID parameter, 74

since_id parameter
(getMentions() function), 99

site streams, 220

SMS (Short Message System),
2-3

source code management (SCM)
systems, 44-45

spotting the FailWhale, 229-230

statistics (Twitter), 29-30

statuses, compared to
messages, 58

statuses/filter method, 223-224

How can we make this index more useful? Email us at indexes@samspublishing.com

statuses/filter method

331

statuses/firehose method,
224-225

statuses/followers API method,
156

statuses/friends API method, 156

statuses/links method, 225

statusesReceived: method,
305-308

statuses/retweet method, 225

statuses/sample method,
225-226

Stenberg, Daniel, 86

streaming, 219

advantages of, 226

limits on, 221

pre-launch checklist, 221-222

site streams, 220

Streaming API, 219

streaming methods, 222-226

statuses/filter, 223-224

statuses/firehose,
224-225

statuses/links, 225

statuses/retweet, 225

statuses/sample,
225-226

user streams, 219-220

when to use, 220

Streaming API, 219

Streaming API Documention and
Search API section
(dev.twitter.com), 215

structured displays, 29

Subversion (SVN), 44

SVN (Subversion), 44

T

tabs, supporting, 114-117

header.inc, 114-115

index.php, 95-96, 117

navs.cc, 115-117

targeting active SDK, 285

testing direct messages, 126-127

text editors, 43

text fields. See input text fields

TextMate, 43

thumbnail viewer, creating

header.inc, 156-157

parseTwitter.php, 157

twitteroauth.php, 158

time zone, displaying, 68

toLocaleString() method, 267

trending topics

call_trends() function,
178-179

definition of, 2, 177

recent, daily, and weekly
trends, 180-185

call_trends_daily()
function, 183

header.inc, 183

parseTwitter.php, 183-184

showTrends_current()
function, 184

showTrends_daily()
function, 184

showTrends_weekly()
function, 184

showTrends() function,
178-179

supporting in applications

header.inc, 178

parseTwitter.php, 178-179

twitteroauth.php, 180

Trends/available API call,
185-187

twitteroauth.php, 184-185

trends. See trending topics

Trends/available API call,
185-187

trim_user parameter
(getMentions() function), 100

troubleshooting

Twitter HTTP response codes,
65-66

XAMPP installation, 38

Tweet button, 209

adding with iframe, 210

adding with JavaScript, 210

customizing, 210-211

tweets

character limit for, 8

definition of, 2

use case studies

#blamedrewscancer, 5

Egyption revolution, 5-7

Twitter API, future of, 236-237

Twitter clients, creating, 16-18,
59-60, 199

Android applications,
241-242

ADT (Android Development
Tools) plug-in, 242, 252

Android OAuth application,
255-261

AVD (Android Virtual
Device), 242

development
environments, 252

Hello Android project,
243-251

importing packages,
261-275

332

statuses/firehose method

supported operating
systems, 252

xAuth, 275-276

API calls. See API calls

application architecture
diagram, 231-232

block methods, 198

blocks, 198

catching API requests,
232-233

direct messages

adding API support for,
101-102, 109-110,
127-130, 131-132

call_direct() function, 101

callPage() function,
107-108

deleting, 132-133

destroy API call, 132-133

direct() function, 128

friendshipExists() function,
129-130

getMessages() function,
101, 131

getMessagesSent()
function, 132

renderTweets() function,
128

sanitizing, 110

sending message to
Twitter, 108-109

sendMessage() function,
107-108

testing, 126-127

UI elements, adding,
125-126

favorites

adding to applications,
148-149

createFavorite() function,
150

creating, 149-152

definition of, 147

destroyFavorites()
function, 152

destroying, 152

favorite() function, 149

showFavorites() function,
148

Friendships methods

explained, 193

supporting in applications,
194-197

home timeline, 97-99

HTTP response codes, 65-66

index.php, 60-61, 69, 95-96

input text fields, 108

base.js, 107-108, 110

createMessage.php, 106

index.php, 105-106

main.css, 106-107

sendMessage.php, 108

iOS. See iOS

lists

API support for, 135-136

creating, 137-141

definition of, 135

List Members resources,
143

List resources, 142

List Subscribers
resources, 143-144

main.css, 61-63

main.php, 63, 69-70

mentions

adding support for,
99-101

call_ timeline() function,
101

getMentions() function,
99-101

notifications

disabling, 197

enabling, 197

parseTwitter.php, 66-67

render.php, 67-71

retrying if Twitter is down,
233-236

Retweet button

base.js, 122

id/retweeted_by API call,
122

id/retweeted_by/ids API
call, 123

main.css, 122

parseTwitter.php, 121

render.php, 121

retweets/id API call, 122

sendMessages.php, 120

twitteroauth.php, 120

Search. See Search

streaming, 219

advantages of, 226

limits on, 221

pre-launch checklist,
221-222

site streams, 220

Streaming API, 219

streaming methods,
222-226

user streams, 219-220

when to use, 220

tabs. See tabs

How can we make this index more useful? Email us at indexes@samspublishing.com

Twitter clients, creating

333

trending topics

call_trends() function,
178-179

definition of, 166-167

recent, daily, and weekly
trends, 180-185

showTrends() function,
178-179

supporting in applications,
177-180

Tweet button, 209

adding with iframe, 210

adding with JavaScript,
210

customizing, 210-211

twitterAPI.php, 64-65, 70

Twitter statistics, 29-30

Twitter xAuth. See xAuth

Twitter4J library, 251, 256

twitterAPI.php, creating,
64-65, 70

TwitterHolics, 24

twitterOAuth class

adding functions to, 90-92

creating, 85-87

getUserTimeline() function,
90-92

oauth_index.php, 87-88

Twitter connection errors,
handling, 92-93

twitteroauth.php, 88-92

TwitterOAuth.java, 269-275

twitteroauth.php, 88-92, 119

account methods, 200

direct message support,
129-132

favorites support, 148, 150,
152

Friendships methods support,
195

list support, 139, 141

recent, daily, and weekly
trends, 184-185

retrying if Twitter is down,
233-236

Retweet button support, 120

search support, 167-168

thumbnail viewer, creating,
158

trending topics support, 180

user API methods, 154

$twitterResponseData variable,
64

TwittFilter, 29-30

Twurl Web Console, 206

U

UITextField object, 309

unblocking users, 198

until attribute (search), 163, 171

$update variable, 66

updateStatus() function, 109, 267

$updateTime variable, 66

updating profile images, 201

URL shortening, 215

URLs

Twitter URLs, 12

vanity URLs, 14, 18

user API methods

accessing other user
information, 155

adding to applications, 154

header.inc, 154

twitteroauth.php, 154

list of, 153

statuses/followers, 156

statuses/friends, 156

thumbnail viewer, creating,
156-158

header.inc, 156-157

parseTwitter.php, 157

twitteroauth.php, 158

users/profile_image, 156

users/search, 155

users/show, 153-154

users/suggestions, 155

users/suggestions/:slug,
155-156

user streams, 219-220

User_ID parameter, 74

user_timeline API, 55-57

:user/:list_id/ subscribers /:id
method, 144

:user/:list_id/create_all
method, 143

:user/:list_id/members
method, 143

:user/:list_id/subscribers
method, 144

:user/:list_id/subscribers/:id
method, 144

:user/:lists method, 142

:user/lists/:id method, 142

:user/lists/:id/statuses
method, 142

:user/lists/memberships
method, 142

:user/lists/subscriptions
method, 142

users, 21

blocking, 198

bots, 24-25

chatters, 22-23

high-frequency users, 24

microbloggers, 24

334

Twitter clients, creating

new users, 24

news readers, 21-22

power users, 23

PR managers, 23

unblocking, 198

users/profile_image API
method, 156

users/search API method, 155

users/suggestions API
method, 155

users/suggestions/:slug API
method, 155-156

V

vanity URLs, 14, 18

variables, declaring, 300. See
also specific variables

verifying xAuth, 286-289

ViewController.h, 299

declaring properties and
methods, 300

declaring variable instances,
300

importing libraries to header
files, 299-300

ViewController.m, 300-301

viewDidLoad method, 302-304

views, Hello Android project, 246

Vim, 43

W

web interface, 237

web servers

configuring, 34-38

security, 38-41

MySQL, 40-41

phpMyAdmin, 41

XAMPP pages, 40

XAMPP security console,
39-40

websites, dev.twitter.com, 205

weekly trends, 180-185

header.inc, 183

parseTwitter.php, 183-184

showTrends_weekly() function,
184

twitteroauth.php, 184-185

Where On Earth ID (WOEID),
185-186

whitelisting, 11-12, 31

widgets, 25-26, 237

Williams, Abraham, 83

Windows

XAMPP installation, 35-37

XAMPP security console,
39-40

WOEID (Where On Earth ID),
185-186

X-Y-Z

XAMPP, 35

installing, 35-38

on Linux, 37-38

on Mac OS, 37

troubleshooting
installation, 38

on Windows, 35-37

security console, 39-40

xAuth, 275-276

advantages of, 294

creating xAuth application,
294-299

definition of, 290

explained, 284

loading xAuth tokens,
302-304

requesting Twitter xAuth, 284

Twitter application for xAuth
request, 283

verifying, 286-289

ViewController.h, 299

declaring properties and
methods, 300

declaring variable
instances, 300

importing libraries to
header files, 299-300

ViewController.m, 300-301

xauthViewController.xib,
308-315

xauthViewController.m, 300-301

xauthViewController.xib, 308-315

Xcode, 280-283

XML

API calls, creating, 49-52

XML resources (Android
OAuth application), 261

How can we make this index more useful? Email us at indexes@samspublishing.com

XML

335

Whatever your need and whatever your time frame,

there’s a Sams Teach Yourself book for you. With a

Sams Teach Yourself book as your guide, you can

quickly get up to speed on just about any new

product or technology—in the absolute shortest

period of time possible. Guaranteed.

Learning how to do new things with your computer

shouldn’t be tedious or time-consuming. Sams

Teach Yourself makes learning anything quick,

easy, and even a little bit fun.

Drupal in 24 Hours

Jesse Feiler
ISBN-13: 978-0-672-33126-8

SamsTeachYourself
When you only have time

for the answers™

Sams Teach Yourself books are available at most retail and online bookstores. For more information

or to order direct, visit our online bookstore at informit.com/sams.

Online editions of all Sams Teach Yourself titles are available by subscription from Safari Books

Online at safari.informit.com.

PHP, MySQL and
Apache All in One

Julie C. Meloni
ISBN-13: 978-0-672-33543-3

ASP.NET 4 in 24 Hours

Scott Mitchell
ISBN-13: 978-0-672-33305-7

Android Application
Development in 24
Hours, Second Edition

Lauren Darcey
Shane Conder
ISBN-13: 978-0-672-33569-3

iPhone Application
Development in
24 Hours

John Ray
ISBN-13: 978-0-672-33220-3

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Your purchase of Sams Teach Yourself the Twitter API in 24 Hours includes access to
a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Sams book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as Addison-
Wesley Professional, Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall,
and Que.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: GQPQFDB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Table of Contents
	HOUR 1: What Is Twitter?
	What Twitter Offers You
	A Brief History of Twitter—or Why 140 Characters?
	Summary
	Q&A

	HOUR 2: Twitter Out of the Box
	What Twitter Offers You
	Registering Your Application
	The Twitter Client
	Summary
	Q&A

	HOUR 3: Key Issues to Consider When Developing Twitter Applications
	Types of Twitter Users
	Types of Twitter Applications
	Platform
	Summary
	Q&A

	HOUR 4: Creating a Development Environment
	Background of LAMP Stacks
	Setting Up a Local Web Server
	Securing Your Web Server
	Development Tools
	Summary
	Q&A

	HOUR 5: Making Your First API Call
	Making a Simple Twitter API Call
	Making a Call in PHP
	Summary
	Q&A

	HOUR 6: Building a Simple Twitter Reader
	Building Our First Twitter Client
	Twitter HTTP Response Codes
	Summary
	Q&A

	HOUR 7: Creating a Twitter API Framework
	Twitter API Parameters
	Creating an API Function for Twitter Function Calls
	Summary
	Q&A

	HOUR 8: Twitter OAuth
	What Is a Class and Why Do We Want to Use It?
	What Is OAuth?
	How to Register Your Application
	Creating the OAuth Twitter Class
	PHP Library for Working with Twitter’s OAuth API
	Setting Up the twitterOAuth Class
	How to Add New Functions to Your Twitter Class Object
	How Our Class Deals with Twitter Connection Errors
	Summary
	Q&A

	HOUR 9: Building a Simple Twitter Client, Part I
	Expanding the Index File to Support Tabs
	Adding Support for Home Timeline
	Adding Support for Mentions
	Adding Support for Direct Messages
	Summary
	Q&A

	HOUR 10: Building a Simple Twitter Client, Part II
	Updating and Adding New Files to Support Input Text Field
	Sending a Message to Twitter
	API Call for Direct Messages
	Sanitizing Messages
	Summary
	Q&A

	HOUR 11: Expanding Our Client for More API Calls
	Types of API Method Calls
	Adding Tabs to Our UI
	New Timeline API Calls: Retweeted
	New Status API Calls: Retweeted
	Summary
	Q&A

	HOUR 12: Direct Messages
	Sending a Direct Message
	Adding Direct Message API Support
	Adding More Direct Message API Support
	The Destroy API Method
	Summary
	Q&A

	HOUR 13: Lists
	What Is a List?
	Implementing the List API into Our Application
	Three Types of List Methods
	Summary
	Q&A

	HOUR 14: Favorites and User Methods
	Favorites API Methods
	User API Methods
	Summary
	Q&A

	HOUR 15: Search
	History of Twitter Search API
	Twitter’s Stance on Search
	The Lone Search API
	A Quick Guide to More Information on Search from the Twitter Docs
	Summary
	Q&A

	HOUR 16: Trends and GEO
	What Is a Trending Topic?
	Supporting Trends in Our Application
	Understanding the GEO Tag
	Summary
	Q&A

	HOUR 17: Friendships, Notification, Block, and Account Methods
	Friendships Methods
	Notification Methods
	Block Methods
	Account Methods
	Summary
	Q&A

	HOUR 18: Twitter Documentation
	The Twitter Dev Website
	Dev.twitter.com/doc
	Twitter Resource Page Overview
	Summary
	Q&A

	HOUR 19: Streaming API
	The Three Types of Streaming APIs
	Streaming Methods
	Summary
	Q&A

	HOUR 20: FailWhale and the Future of the API
	What Is Spotting the FailWhale?
	Review of the Application We Just Built
	Where Is the Twitter API Going?
	Summary
	Q&A

	HOUR 21: Getting Started in Twitter Android Application
	Introducing Android
	Creating the Hello Android Project
	Summary
	Q&A

	HOUR 22: Building Android Applications with Twitter
	Using Twitter OAuth in Android
	Importing Packages
	Summary
	Q&A

	HOUR 23: Getting Started with Twitter Using iOS
	Introducing iOS
	Creating a Hello World Application
	Summary
	Q&A

	HOUR 24: Building an iPhone and iPod Touch Application with Twitter
	Introducing Twitter xAuth
	Benefits of Using Twitter xAuth
	Selecting Twitter Objective-C Libraries
	Loading xAuth Token
	Posting Tweet
	Adding MGTwitterEngine Delegate Methods
	Creating Objects in Interface Builder
	Summary
	Q&A

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

