


UNIVERSIDAD DE DEUSTO

SEMANTIC TUPLE SPACES FOR

CONSTRAINED DEVICES: A

WEB-COMPLIANT VISION

Tesis doctoral presentada por Aitor Gómez Goiri

dentro del Programa de Doctorado en Ingeniería Informática y

Telecomunicación

Dirigida por Dr. Diego López de Ipiña

y Dr. Íñigo Goiri Presa

Bilbao, abril de 2014



Semantic Tuple Spaces for Constrained Devices: A Web-compliant Vision

Author: Aitor Gómez Goiri

Supervisor: Dr. Diego López de Ipiña

Supervisor: Dr. Íñigo Goiri Presa

The following web-page address contains up to date information about this

dissertation and related topics:

http://gomezgoiri.net
Text printed in Bilbao

First edition, April 2014

http://gomezgoiri.net


A todo doctorando que no vea la luz al final del tunel o se sienta
desbordado por la frustración.

Ánimo.





Abstract

Ubiquitous Computing (UbiComp) envisions environments where

devices interact among themselves to work seamlessly together on

behalf of humans. In recent years, the emergence of the Internet of

Things (IoT) concept, which opts for connecting everyday objects

to the Internet, and the Mobile Computing paradigm have contrib-

uted to strengthening UbiComp. For this reason, UbiComp envir-

onments are not necessarily populated by powerful computers. On

the contrary, resource constrained devices (e.g., embedded and mo-

bile devices) are the main actors in these environments. Thus, it is

important for the environment to deal with their heterogeneity, un-

reliability, and replaceability.

In order to cope with heterogeneity, the Semantic Web has pro-

posed several standards and models to clearly define the terms so

that they can be reused across applications boundaries. Regarding

unreliability and replaceability, space-based computing (or Tuple

Spaces) promotes the uncoupled coordination of the devices. Solu-

tions based on semantic tuple spaces combine these three beneficial

aspects resulting from bridging the Semantic Web and Tuple Spaces

domains for UbiComp.

Most of these semantic tuple spaces consider embedded and mo-

bile devices as mere clients in a space managed by more powerful

devices. Such delegation helps to reduce the workload of devices

with computing and energy limitations. However, this delegation

moves the data away from where it is physically generated. This

creates a conflict between providing updated data and generating

unnecessary network traffic for unused information. In addition,



this delegation makes constrained devices intrinsically dependent

on other devices when it might not always be necessary. This dis-

sertation explores how these constrained devices can act as fully

fledged semantic knowledge providers to create a more decentral-

ized space.

In conclusion, this dissertation presents a novel adaptation of se-

mantic tuple space which considers the energy and computational

impact on the devices. Specifically, this dissertation proposes the

following contributions:

• A space model which considers the principles which have made

the web flourish in the last decades, together with the uncoup-

ling properties of space-based computing.

• An energy-aware search mechanism for autonomous constrained

devices.

• An alignment of two approaches to act on the physical envir-

onment, namely a space-based indirect actuation and a web-

based direct actuation.



Resumen

La computación ubicua (UbiComp) concibe entornos donde los dis-

positivos interactúan entre sí para trabajar en beneficio de los seres

humanos, pero de forma imperceptible para los mismos. En los últi-

mos años, la emergencia del Internet de las Cosas (IoT), que aboga

por conectar objetos cotidianos a Internet, y la computación móvil

han contribuido a fortalecer la idea de UbiComp. Es por ello que

los entornos ubicuos no están necesariamente poblados por compu-

tadoras potentes. Por contra, los actores principales de dichos entor-

nos suelen ser en su mayor parte dispositivos con recursos limitados

(p.e. dispositivos móviles y embebidos). Es por ello que para estos

entornos es de vital importancia enfrentarse a la heterogeneidad,

falta de fiabilidad y facilidad de reemplazo de dichos dispositivos.

Para hacer frente a la heterogeneidad, la web semántica propone

diversos estándares y modelos para proveer un significado preciso

a los términos para que puedan reusarse más allá de las fronteras

marcadas por las aplicaciones. En lo relativo a la falta de fiabili-

dad y facilidad de reemplazo, la computación basada en espacios

(o espacios de tuplas o Tuple Spaces) promueve una coordinación

desacoplada de los dispositivos. Las soluciones basadas en espacios

de tuplas semánticos, que unen los dominios de la web semántica

y los Tuple Spaces, combinan estos tres aspectos beneficiosos para

UbiComp.

Muchos de estos espacios semánticos de tuplas consideran a los dis-

positivos móviles y embebidos como meros clientes de un espacio

gestionado por dispositivos más potentes. Dicha delegación ayuda

a reducir la carga de trabajo de los dispositivos con limitaciones



computacionales y energéticas. Sin embargo, al mismo tiempo dis-

tancia los datos de donde fueron generados. Esto crea un conflic-

to entre proveer datos actualizados y generar tráfico de red inne-

cesario para información no usada. Además, esta delegación hace

a los dispositivos limitados intrínsecamente dependientes de otros

cuando no siempre es necesario. Esta tesis explora cómo esos dis-

positivos limitados pueden actuar como auténticos proveedores de

conocimiento semántico para crear un espacio más descentralizado.

En conclusión, esta tesis describe una adaptación novedosa de los

espacios semánticos de tuplas que considera el impacto compu-

tacional y energético en los dispositivos. Específicamente, esta tesis

presenta las siguientes contribuciones:

• Un modelo de espacio que considera los principios que han

hecho florecer a la web en las últimas décadas, junto con las

propiedades de desacoplamiento de la computación basada en

espacios.

• Un mecanismo de búsqueda energéticamente eficiente para

dispositivos limitados autónomos.

• Un alineamiento entre dos formas de actuar en un entorno físi-

co: actuación indirecta basada en espacios y actuación directa

basada en la web.



Laburpena

Konputazio ubikuoak (UbiComp) gizakientzat era hautemanezinean

lan egiten duten gailuen arteko interakzioa sustatzen duten ingu-

runeak proposatzen ditu. Azken urteotan, UbiComp indartu egin

da, Gauzen Interneten (IoT) eta konputazio mugikorraren goraka-

da dela eta. Hori dela eta, UbiComp inguruneetako eragile nagu-

siak ez dira ahalmen handiko ordenagailuak, baliabide gutxikoak

baizik (adibidez, kapsulatutako gailuak eta mugikorrak). Hortaz,

garrantzitsua da ingurune horietan beraien heterogeneotasuna, fi-

dagarritasun eza eta ordezkagarritasuna kontutan hartzea.

Heterogeneotasunari aurre egiteko, web semantikoak hainbat es-

tandar eta eredu proposatu ditu terminoei esanahi zehatza emate-

ko eta jatorrizko aplikazioen mugetatik kanpo erabili ahal izateko.

Bestalde, fidagarritasun faltari eta ordezkatzeko erraztasunari aurre

egiteko, espazioetan oinarritutako konputazioak (edo Tuple Space

delakoak) gailuen arteko koordinazio desakoplatua sustatzen du.

Tupla espazio semantikoetan oinarritutako soluzioek, hau da, web

semantikoaren eta Tuple Space delakoen domeinuak lotzen dituz-

tenek, UbiComp-erako hiru ezaugarri onuragarri horiek bateratzen

dituzte.

Kapsulatutako gailuak eta mugikorrak ahalmen handiko ordenagai-

luek kudeaturiko lekuen bezerotzat hartzen ditu Tupla espazio se-

mantiko askok. Delegazio horrek konputazio ahalmen eta autono-

mia mugatuko gailuen lan karga murrizten laguntzen du. Zoritxa-

rrez, datuak fisikoki sortzen diren lekutik aldentzen ditu delegazio

horrek. Hori dela eta, datu eguneratuak eskaintzearen eta erabil-

tzen ez den informaziorako beharrezkoa ez den trafikoa sortzearen



arteko gatazka sortzen da. Gainera, delegazio horrek gailu muga-

tuak berez beste gailu batzuen menpe uzten ditu, beti beharrezkoa

ez bada ere. Tesi honek ikertzen du nola erabili gailu mugatuak eza-

gutza semantikoaren hornitzaile gisa, espazio deszentralizatuagoa

lortzeko.

Ondorioz, tesi honek tupla espazio semantikoen egokitzapen be-

rri bat aurkezten du. Egokitzapen horrek gailuetako energia eta

konputazio eragina kontuan hartzen ditu. Zehazki, tesiak honako

ekarpenak proposatzen ditu:

• Azken hamarkadetan weba arrakastatsu bihurtu duten oina-

rriak kontuan hartzen dituen espazio eredua eta, era berean,

espazioan oinarritutako konputazioaren propietate desakopla-

tuak mantentzen dituena.

• Gailu autonomo eta mugatuentzako energiaren aldetik eragin-

korra den bilaketa mekanismoa.

• Ingurune fisikoa aldatzeko bi teknikaren errenkada: espazioe-

tan oinarritutako zeharkako jarduera eta webean oinarrituta-

ko jarduera zuzena.



Acknowledgements

Si debo a alguien la posibilidad de haber concluido esta aventura

es sin duda a aita y ama. Esta posibilidad va más allá del mundano

y sin embargo tan necesario hecho de haberme proporcionado una

cómoda vida en la que siempre pude elegir mi camino. Por voso-

tros soy como soy y soy quien soy. Podría haber salido un hijo un

poco más hablador y menos pedante, pero no será porque no os es-

forzasteis. Echando la vista atrás no puedo sino estar orgullosísimo

de la educación recibida. Por ello, vaya para vosotros mi primer

agradecimiento.

Gracias Diego por haberme dado esta enorme oportunidad. Gracias

por el tiempo y el espacio concedido. Gracias Íñigo por soportarme

en momentos de máxima incertidumbre y pesimismo. Gracias por

servirme de guía.

Gracias a todos mis compañeros y ex-compañeros. Gracias a mis

compañeros de generación por compartir sufrimientos: Edu, Iván y

Eguiluz. Gracias a esa infatigable e incansable máquina con piernas

de la que tanto se aprende que es Pablo Orduña. Gracias a los an-

cianos del lugar: Aitor y Unai. Gracias a la gente del Garilab por

aceptarme durante mi exilio. En definitiva, gracias a tanta gente

que ha pasado por la vida esmarlabense estos últimos años: Don

Jaime, Emaldi, Laiseca, el innombrable, Lázaro y un largo etc. Afor-

tunadamente, ese “largo etc” se puede consultar en la página web

del grupo haciendo uso de la consulta mostrada al final de esta sec-

ción o siguiendo el siguiente QRCode.

Thanks to all the inspiring people I’ve known during this journey.

Thanks to Geoff Coulson, Barry Porter and the rest of the people



I met at Lancaster University. Thanks to all the ETH’s Distributed

Systems group members, specially to Simon Mayer, my cicerone in

Zurich.

Gracias a todos mis compañeros de aventuras estos años. A los

ocasionales y a los fieles. En viajes por el mundo, canchas de ba-

loncesto, senderos, eventos del esmarla,... Cada segundo en que

mantuve la cabeza fuera de la tesis fue un respiro enorme.

Gracias al resto de mi familia, la sanguínea y la circunstancial. Es-

pecialmente a mi hermano Mikel y a mi abuela Teo.

Eskerrik asko,

Aitor Gómez Goiri

April 2014



XI

PREFIX swrcfe: <http://www.morelab.deusto.es/ontologies/swrcfe.owl#>

SELECT COUNT(DISTINCT ?faname) WHERE{
?job swrcfe:doneBy

<http://www.morelab.deusto.es/labman/resource/people/aitor-gomez-goiri> .
{

?job2 swrcfe:doneBy ?formerworkmate .
?formerworkmate foaf:familyName ?faname .
?formerworkmate foaf:firstName ?finame .
?job swrcfe:jobStartDate ?jobstartdate .

OPTIONAL { ?job2 swrcfe:jobEndDate ?jobenddate }
FILTER(?jobstartdate < ?jobenddate)

} UNION {
?job2 swrcfe:doneBy ?workmate .
?workmate foaf:familyName ?faname .
?workmate foaf:firstName ?finame .

OPTIONAL { ?job2 swrcfe:jobEndDate ?jobenddate }
FILTER(!bound(?jobenddate))

}
FILTER(?job != ?job2)

}





Contents

List of Figures xvii

List of Tables xix

Acronyms xxiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9

2.1 Application integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 REpresentational State Transfer . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 REST vs WS-* services . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Suitable protocols for REST . . . . . . . . . . . . . . . . . . . 15

2.3 Tuple Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 State of the Art 21

3.1 REST on UbiComp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Tuple Space on UbiComp . . . . . . . . . . . . . . . . . . . . . . . . . 24



XIV CONTENTS

3.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The Semantic Web on UbiComp . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 The Semantic Web using intermediaries . . . . . . . . . . . . 27

3.3.2 The Semantic Web applied to data providers . . . . . . . . . 28

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Semantic Tuple Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Use of semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Tuple model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Query model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.4 Space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.5 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Triple Spaces for constrained devices 41

4.1 Guiding principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 A hybrid solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Aligning TSC with HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 TSC resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Adopted TSC primitives . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 HTTP API for TSC . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Federated space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Self-managed graphs . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 New primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 New behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Coordination properties . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Networking properties . . . . . . . . . . . . . . . . . . . . . . 52

4.5.3 Properties for UbiComp . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



CONTENTS XV

5 Searching in a distributed space 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Energy-aware super-peer architecture . . . . . . . . . . . . . . . . . 69

5.3.1 Basic roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Use of intermediaries: White Page . . . . . . . . . . . . . . . 70

5.3.3 Versioning clues . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.4 Discovering a White Page . . . . . . . . . . . . . . . . . . . . . 72

5.3.5 Interacting with a White Page . . . . . . . . . . . . . . . . . . 73

5.3.6 Selecting a White Page . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Shared clues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Querying basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Content of a clue . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.3 Reasoning to expand clues . . . . . . . . . . . . . . . . . . . . 79

5.4.4 Use of ABox in clues . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.5 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Experimental environment . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.1 Types of clues shared . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.2 Network usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.3 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6.4 Performance in dynamic environments . . . . . . . . . . . . 94

5.6.5 Effects on discovery mechanisms . . . . . . . . . . . . . . . . 95

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Remote actuation 99

6.1 Space-based actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Notification mechanism . . . . . . . . . . . . . . . . . . . . . . 102

6.1.3 Baseline scenario: Implementation 1 . . . . . . . . . . . . . . 103

6.2 REST actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



XVI CONTENTS

6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 RESTdesc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3 Baseline scenario: Implementation 2 . . . . . . . . . . . . . . 108

6.3 Hybrid actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Baseline scenario: Implementation 3 . . . . . . . . . . . . . . 116

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 Obtaining resource descriptions . . . . . . . . . . . . . . . . . 117

6.4.2 Obtaining background knowledge . . . . . . . . . . . . . . . 118

6.4.3 Responsibility for triggering REST actuation . . . . . . . . . 119

6.4.4 Interoperation weakness . . . . . . . . . . . . . . . . . . . . . 120

6.4.5 Advanced challenges . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions 127

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Relevant publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Closing the gap with third-party WoT applications . . . . . 135

7.3.2 Increasing search expressibility and efficiency . . . . . . . . 136

7.3.3 Coordination space’s distribution, replication or migration 136

7.3.4 Integration of REST actuation in the space . . . . . . . . . . 137

7.3.5 Security for the middleware . . . . . . . . . . . . . . . . . . . 137

7.3.6 Measuring ease of usage . . . . . . . . . . . . . . . . . . . . . 138

7.3.7 Further evaluation on real deployments . . . . . . . . . . . . 138

7.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 141

Secondary Web Resources 161



List of Figures

1.1 Methodology followed in this dissertation . . . . . . . . . . . . . . . 6

2.1 Middleware layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Sample triples using different ontologies . . . . . . . . . . . . . . . . 18

3.1 Chapter 3 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Non-semantic works for UbiComp apart from Tuple Spaces . . . . 23

3.3 Tuple Spaces solutions for UbiComp . . . . . . . . . . . . . . . . . . . 24

3.4 The Semantic Web for Ubiquitous Computing . . . . . . . . . . . . . 27

3.5 Semantic Tuple Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Key concepts of the new TSC model presented . . . . . . . . . . . . 44

4.2 Representation of a space and the elements it is composed of . . . 46

4.3 Energy consumption for an embedded platform . . . . . . . . . . . 62

5.1 Role of White Pages in our proposal . . . . . . . . . . . . . . . . . . . 71

5.2 Sample triples and query templates . . . . . . . . . . . . . . . . . . . 78

5.3 Recall for each type of clue . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Precision for each type of clue . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Length for types of clues . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Required requests for different search strategies . . . . . . . . . . . 91

5.7 Requests between roles in our solution . . . . . . . . . . . . . . . . . 92

5.8 Average power consumption for FoxG20 during different activity

periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Activity time for each strategy . . . . . . . . . . . . . . . . . . . . . . 94



XVIII LIST OF FIGURES

5.10 Effects of dynamic scenarios in our solution . . . . . . . . . . . . . . 95

6.1 Flow charts for Node A and Node B . . . . . . . . . . . . . . . . . . . 104

6.2 Flow chart for Node D . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Total amount of requests per technique . . . . . . . . . . . . . . . . . 113

6.4 Time needed to make a change in the environment per technique 114

6.5 Sample clues, rules and the activation rule . . . . . . . . . . . . . . 119



List of Tables

3.1 Use of semantics in the analysed solutions . . . . . . . . . . . . . . . 31

3.2 Information units used by the different semantic TS middlewares 32

3.3 Querying units for semantic TSs . . . . . . . . . . . . . . . . . . . . . 33

3.4 Space model used by the different works . . . . . . . . . . . . . . . . 35

3.5 Distribution of the spaces . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 TSC’s middlewares potential conflicts with REST principles . . . . 39

3.7 Features of the solution presented in this dissertation . . . . . . . . 40

4.1 HTTP mapping for the primitives detailed in the Section 4.3.2 . . 48

4.2 HTTP mapping for the query primitive . . . . . . . . . . . . . . . . . 50

4.3 Uncoupling levels achieved by the different parts of the middle-

ware presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Properties of different architectural styles for network-based ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Direct relations between the properties analysed in previous sec-

tions and the challenges a lightweight middleware faces . . . . . . 57

5.1 Infrastructure paradigms according to their characteristics . . . . . 68

5.2 Configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Technical characteristics of the assessed devices . . . . . . . . . . . 84

5.4 Core libraries used in the semantic HTTP server implementations 85

5.5 Response times for web servers running in different devices and

providing semantic content . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Templates used in the evaluation . . . . . . . . . . . . . . . . . . . . 87



XX LIST OF TABLES

6.1 Characteristics of the discussed actuation mechanisms . . . . . . . 112

6.2 Foreseeable networking and computing impact on the nodes in-

volved in the actuation mechanism . . . . . . . . . . . . . . . . . . . 115



List of listings

1 White Page selection algorithm . . . . . . . . . . . . . . . . . . . . . . 75

2 Representation of a predicate-based clue . . . . . . . . . . . . . . . . 81

3 Representation of an aggregated clue . . . . . . . . . . . . . . . . . . 83

4 Subscription to light preferences . . . . . . . . . . . . . . . . . . . . . 104

5 Task to set the light level in a space . . . . . . . . . . . . . . . . . . . 105

6 Rule which describes the HTTP GET for a resource . . . . . . . . . 111

7 Rule which describes the HTTP POST for a resource . . . . . . . . . 123

8 Semantically described light preference . . . . . . . . . . . . . . . . 124

9 Goal rule to change the light level . . . . . . . . . . . . . . . . . . . . 124

10 Subscription to any task written into the space. . . . . . . . . . . . . 125





Acronyms

AmI Ambient Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

API application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CoAP Constrained Application Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DHT Distributed hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DNS Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DNS-SD DNS service discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

EXI Efficient XML Interchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

DPWS Device Profile for Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

FOL first-order logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

HTML Hypertext Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

HTTP Hypertext Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

IoT Internet of Things. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

JSON JavaScript Object Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

LD Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

LOD Linked Open Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

mDNS Multicast DNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

N3 Notation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

NB negative broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

OWL Web Ontology Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31



XXIV ACRONYMS

P2P peer-to-peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

RDF Resource Description Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

RDFS RDF Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

REST REpresentational State Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

CS Client-server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

S Stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

$ Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

U Uniform interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ID Identification of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

REP Manipulation of resources through representations. . . . . . . . . . .12

DESC Self-descriptive messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

HATEOAS Hypermedia as the engine of application state . . . . . . . . . . . . . . . 12

L Layered system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

COD Code on Demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

SPARQL SPARQL Protocol and RDF Query Language . . . . . . . . . . . . . . . . . .77

SOAP Simple Object Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

SW Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

TS Tuple Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

TSC Triple Space Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SWS Semantic Web Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CSpaces Conceptual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

STuples Semantic Tuple Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

TripCom Triple Space Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

UbiComp Ubiquitous Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

UDDI Universal Description, Discovery and Integration . . . . . . . . . . . . .14

UPnP Universal Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



ACRONYMS XXV

URI Uniform Resource Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

URL Uniform Resource Locator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

WoT Web of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

WP White Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

WSDL Web Services Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . 14

WWW World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2





Poets say science takes away from

the beauty of the stars - mere

globs of gas atoms. Nothing is

“mere”. I, too, can see the stars

on a desert night, and feel them.

But do I see less or more?

Richard P. Feynman

CHAPTER

1
Introduction

1.1 Motivation
Originally, the Internet was basically composed of a small number of computers

that were physically connected to a wired network. Over the years, the popular-

ity of the Internet grew and connecting computers became easier and cheaper.

Thanks to wireless technologies, devices can connect to the Internet without

having to be physically connected to a network.

These technologies have contributed to the emergence of end-user devices

such as smartphones or tablets. Furthermore, everyday objects like cars or

washing machines are now starting to be connected to the Internet to exchange

information. This is what is currently known as the IoT [6]. The objects of the

IoT, together with mobile devices, constitute the clearest sign of the importance

of Ubiquitous Computing (UbiComp) in our lives today [15].

The UbiComp concept was envisioned by Weiser in the early nineties [113].

Weiser defended that devices should imperceptibly work on our behalf. This

idea is particularly stressed by the concept of Ambient Intelligence (AmI) [97].

For instance, the washing machine could plan to finish washing the clothes two

minutes before the car gets home.



2 CHAPTER 1 · INTRODUCTION

Weiser remarked that the real power of UbiComp “comes not from any one of

these devices, it emerges from the interaction of all of them”. However, integrating

devices to accomplish such task is not simple as they usually communicate using

different protocols. To solve this problem, the Web of Things (WoT) initiative

proposes using well-established web standards to ease their communication

[32]. This, together with the already existing tools and libraries from the world

of the web, simplifies its adoption by developers [35]. Furthermore, the WoT

naturally integrates with widely used RESTful web applications.

Parallel to this initiative, Tuple Spaces (or space-based computing) [31] pro-

poses a different integration style based on the blackboard model. In Tuple

Space (TS) participants cooperate with each other by writing and reading in-

formation into a shared space. The main benefit of this paradigm is the higher-

level of decoupling its indirect communication provides.

One common problem of both the WoT and Tuple Spaces is that the format

of the data they exchange is multifarious and application domain dependent.

This implies that data will not be meaningful in other domains unless a spe-

cialized system converts and reinterprets them. A way to solve this problem is

annotating the data semantically as proposed by the World Wide Web (WWW)

[9]. Specifically, the Triple Space Computing (TSC) paradigm [24] employs

this semantic knowledge on shared spaces following the Tuple Spaces approach.

We also argue that TSC can be designed to fulfil REpresentational State Trans-

fer (REST)’s principles.

However, adding semantics may impose a burden on resource constrained

devices. To reduce this overhead in such devices, part of this computation is

usually delegated to intermediaries [54]. This approach reduces the overhead

of semantically annotated data but brings other problems:

1. When devices rely on others to provide information, it is not guaranteed

that the information accessed will accurately represent the last informa-

tion available in the data providers (i.e., the sensors).

2. Once we rely on those intermediaries, they must be available at all times.

Otherwise, the devices will not be able to talk to each other.



SECTION 1.2 · HYPOTHESIS 3

In this thesis, we propose to adapt TSC to the UbiComp environments, par-

ticularly involving limited devices in such tasks. To fulfil such an ambitious

goal, we need to carefully consider the restrictions imposed by such environ-

ments. Two key aspects to take into account are the limited energy autonomy

or computational capacity of many devices. Similarly, our solution should be

flexible enough to support a wide range of scenarios and to reuse data from

third-party applications.

This thesis addresses different key aspects of this adaptation:

• TSC’s compatibility with the REST style and the WoT vision. By aligning

the TSC design with REST one can inherit many of the benefits provided

by this style and interoperate with other REST-based solutions. At the

same time, the use of TSC can help developers to focus on higher-level

problems.

• Decentralized search on the semantic content provided by federated devices.

This search architecture enables direct communication between parti-

cipants. Furthermore, it reduces the energy consumption of the resource-

constrained devices.

• Actuation on the physical environment. We present common usage pat-

terns for space-based computing and we analyse how they can be used

in UbiComp. We also propose a space enhancement which seamlessly re-

uses external REST services. This enable us to build a bridge between our

solution and other WoT and REST solutions.

1.2 Hypothesis
The hypothesis of this dissertation is as follows:

The alignment of the TSC paradigm with the web’s principles together with
the consideration of its energy and computational impact, leads to UbiComp
environments enabled by heterogeneous embedded and mobile devices that
communicate autonomously in a decoupled and interoperable fashion.

Note that the consequence of the hypothesis involves the following aspects:



4 CHAPTER 1 · INTRODUCTION

Heterogeneity : Fully-fledged computers and resource constrained devices

(e.g., mobile and embedded devices) must coexist in these environments.

Autonomy : Devices must not depend on others to consume or provide data

on their behalf. However, they might be aided by other devices to complete

some related tasks (e.g., search the appropriate nodes to request).

Decoupling : The communication must be data-driven. From the user per-

spective devices do not directly refer to each other. Additionally, the provider

and the consumer should not coexist in time. However, note that since this

sub-aspect contradicts the autonomy principle, their selection might be left

to the user.

Interoperability : Devices must be able to exchange information with other

systems and to use that information.

1.3 Objectives
To validate the hypothesis, the main objective of this dissertation is to design

a middleware which follows the TSC paradigm according to web principles and

considering the energy and computation aspects.

This objective can be achieved through the following sub-objectives:

• Design of a dual space model where participants can coordinate through-

out the space in an uncoupling manner and enrich it with their own man-

aged knowledge.

• Design of a TSC interface for Hypertext Transfer Protocol (HTTP) which

is compatible with most of the REST principles. This resource-oriented

interface defines a minimal contract to access the semantic knowledge

provided by the space.

• Creation of a search-aware architecture which promotes end-to-end com-

munication between devices. This architecture tries to minimize the re-

quests devices have to handle by enhancing their search mechanism.



SECTION 1.4 · RESEARCH METHODOLOGY 5

The extra tasks introduced by this enhancement are performed by nodes

chosen according to their capacities.

• Comparison of different mechanisms to act on a physical environment:

the space-based actuation patterns and the direct REST service consump-

tion.

• Alignment between space-based computing and direct REST service con-

sumption to seamlessly reuse third-party application capabilities.

1.4 Research methodology
The author developed this thesis in the following phases: (1) awareness of

the problem, (2) solution suggestion, (3) development and evaluation, and

(4) conclusion. Figure 1.1 represents each of these phases together with their

sub-phases.

The problem awareness phase requires an intensive review of the state of

the art in the fields of space-based computing, Ubiquitous Computing and the

Semantic Web. As a result, the limitations of the existing works and the areas

where it is possible to make a scientific contribution are identified.

The second phase starts with the suggestion of a solution for the problem.

The solution can be refined and adjusted thanks to the feedback given by ex-

perts in the field. These experts are the supervisors, colleagues and, partners

from research projects where the author has worked or the researchers from

external groups where the author has done a research stay.

The third phase comprises planning, developing, and evaluating the differ-

ent parts which form our solution. The planning involves defining how to de-

velop these parts and how to evaluate if the desired contributions are achieved

through them. Then, the development and evaluation sub-phases are carefully

scheduled. The development sub-phase does not only include development of

the different modules, but also their design. The evaluation covers the prepar-

ation of the experimental environment, the development of the experiments,

and their execution to precisely measure the indicators previously identified.



6 CHAPTER 1 · INTRODUCTION

To conclude the third phase, we contrast the contributions with experts in

the field through workshops, conferences and journals. Note that sometimes

a thorough review of a rejected work can be as valuable as the face-to-face

feedback obtained at the venue itself. As a result of the feedback obtained, the

second phase can be iteratively resumed to refine the solution.

When the solution does not require further improvements and it is validated

by the research community, the fourth phase starts. In this last phase, we ana-

lyse the results of our work to obtain conclusions and possible future research

areas.

Limitations
identification

Review
state of the art

Solution
suggestion

Comparison with
existing works

Planning

Development

Evaluation

Contrast

Feedback

Feedback

Conclusion

Figure 1.1: Methodology followed in this dissertation.

1.5 Thesis outline
The remainder of this dissertation is structured as follows: Chapter 2 contex-

tualizes the thesis. Chapter 3 first presents and compares some relevant works

from the field of Ubiquitous Computing. It then analyses the state of the art on

existing semantic space-based solutions and scrutinizes their advantages and

limitations.



SECTION 1.5 · THESIS OUTLINE 7

Chapter 4 proposes and analyses a model to adapt TSC to the UbiComp.

This model involves limited devices by enabling them to autonomously manage

their own knowledge and later enrich the space with it. Simultaneously, it

preserves most of the space-based computing benefits through a classical space

model.

Chapter 5 describes the core of this thesis. It presents an energy-aware

search architecture. This architecture dynamically adapts to the needs of resource-

constrained devices. The goal of this architecture is two-fold: a) to promote

direct and fully distributed communication between devices; and, at the same

time, b) to reduce network communications between them, particularly the

ones directed to the less powerful devices.

Chapter 6 explores two different mechanisms to change the physical envir-

onment using TSC. Ideally, these changes should be produced by writing new

semantic information into the space. However, there is a range of actuators

which already use REST services whose actuation capacities could be reused.

To achieve this, we propose an alignment between both approaches.

Each chapter evaluates our proposals, discusses the related work, and states

our intermediate conclusions.

Finally, Chapter 7 states the conclusions of this thesis. It remarks its ad-

vantages and limitations and discusses the achieved goals. We also explain the

lessons learnt and future areas of research on this topic.





The beginning of wisdom is to de-

sire it.

Solomon Ibn Gabirol

CHAPTER

2
Background

To clarify the foundations in which our work relies and to provide a start-

ing point for understanding the rest of the thesis, this chapter introduces, cat-

egorizes, and describes the related research topics. These topics are classified

attending to their relation with a critical aspect for UbiComp: interoperability.

The IEEE defines interoperability as “the ability of two or more systems or

components to exchange information and to use the information that has been

exchanged” [1]. The heterogeneity of technologies present in UbiComp envir-

onments makes this a key property to consider. The definition clearly distin-

guishes between two requirements: (1) to exchange information; and (2) to

use that information.

Exchanging information in distributed systems covers the communication

between two systems. For the lower communication levels, we rely on standard

and widely accepted communication protocols (i.e., interoperability ab-initio).

For higher-levels (i.e., application layer), this dissertation delves into the space-

based computing and REST architectures. Section 2.1 categorizes both of them

together with other integration approaches. Then, both integration styles are

individually presented in sections 2.2 and 2.3.



10 CHAPTER 2 · BACKGROUND

Regarding the second goal, it can be analysed from two perspectives: syn-

tactically and semantically. On the one hand, syntactic interoperability is asso-

ciated with the format of the data (i.e., its syntax and encoding) [107]. On

the other hand, semantic interoperability is concerned with ensuring that the

exchanged information has a precise meaning. Its ultimate goal is to make

the information “understandable by any other application that was not initially

developed for this purpose” [2]. Section 2.4 describes a prominent movement

which is focused on this goal: the Semantic Web.

2.1 Application integration
The integration of two applications is driven by how they communicate. To

ease this communication the applications use middlewares. A middleware is a

software layer which provides a higher level of abstraction and masks the un-

derlying heterogeneity. Coulouris et al. [19] define two communication styles

on the upper layer of a middleware: the remote invocation and the indirect

communication (see Figure 2.1).

Applications, services

Remote invocation
(e.g., HTTP or WS-*)

Indirect communication
(e.g., Tuple Spaces)

Underlying interprocess communication
(sockets, message passing, multicast support, overlay networks)

Platform
(operating system + hardware)

Middleware
layers

Figure 2.1: Middleware layers.

Middleware layers according to Coulouris et al. [19] classification.

The remote invocation involves the most common two-way exchange between

senders and receivers in distributed systems. Among others, it covers request-



SECTION 2.1 · APPLICATION INTEGRATION 11

reply protocols, remote procedure calls and remote method invocation. Request-

reply protocols are the simplest and most lightweight mechanisms for client-

server computing. Within these protocols HTTP shines as one of the web pil-

lars.

HTTP can be used as the baseline to design other remote invocation paradigms

(e.g., the WS-* [3] standards). However, its design is intended to support

the web, whose modern architecture follows the REST architectural style [26].

Consequently, one can see the pervasiveness of the web applications as a proof

of REST’s success.

The indirect communication style covers all the techniques with no direct

coupling between the sender and the receiver. The group communication,

publish-subscribe systems, message queues or shared memory approaches are

examples of indirect communication. These paradigms are characterized by

two key properties [31, 19] 1 :

• Space uncoupling, which is achieved when the sender does not need to

know the receiver or receivers and vice versa.

• Time uncoupling, which happens when senders and receivers do not need

to exist at the same time2.

This dissertation delves into a particular shared memory approach: Tuple

Space computing. However, as mentioned, REST architectures’ properties have

made them massively accepted to integrate applications. Consequently, we also

take into consideration the latter mechanism in our solution conception.

1 We use the terminology of the Tuple Spaces’ seminal paper [31]. However, note that the

space uncoupling property is referred as reference autonomy by some authors [24]. These same

authors mention a third property confusingly called space autonomy (or location autonomy).

According to Fensel [24] this autonomy is achieved because: "The processes can run in com-

pletely different computational environments as long as both can access the same space".
2 Although some authors [24, 66] explain this property just in terms of communication

asynchrony, Coulouris et al. [19] make a clear distinction between them. In their words, a

communication is asynchronous when “a sender sends a message and then continues without
blocking”, whereas time uncoupling adds an extra dimension: “the sender and the receiver can
have independent existences”.



12 CHAPTER 2 · BACKGROUND

2.2 REpresentational State Transfer
REpresentational State Transfer (REST) is a network-based architectural style

proposed by Fielding [26]. It aims to cover certain properties explained in

Section 4.5.2. To achieve these properties, REST establishes the following con-

straints from other network-based architectural styles:

Client-server (CS). Providing an application programming interface (API) to

the clients, they are isolated from back-end implementation details.

Stateless (S). The state is fully stored in the client and therefore each request

has all the information needed to process it.

Cache ($). When added to the CS constraint, this style replicates content ob-

tained from a server in the client.

Uniform interface (U). It is the key constraint which distinguishes REST from

other architectural styles. This constraint is composed by the following ones:

Identification of resources (ID). Resources are the conceptual targets of

hypertext references. Their identification offers a generic interface to ac-

cess and change the values of a resource.

Manipulation of resources through representations (REP). Representations

are composed by a sequence of bytes and the metadata to describe those

bytes.

Self-descriptive messages (DESC). The client and server have to agree on

standard methods and media types. Beyond that point, each request or

response should contain all the needed data to process it [111]. There-

fore, in Fielding’s words, the type should be registered, the registry should

point to a specification and the specification should explain how to pro-

cess data according to its intent [27].

Hypermedia as the engine of application state (HATEOAS). This is a con-

troversial constraint because most of the self-proclaimed “REST” APIs fail

to follow it [77, 55]. It states that no out-of-the-band information should

guide the interaction with an API. Instead, the hypertext should guide



SECTION 2.2 · REPRESENTATIONAL STATE TRANSFER 13

it. In other words, the client must know just an initial URL and the ap-

plication’s media types. From that point, it should select the alternatives

proposed by the server to change to the next application state [28].

Layered system (L). Each layer provides services to the top layer.

Code on Demand (COD). It is the only optional constraint in REST. It occurs

when the client downloads from the server the know-how needed to process

the set of resources it already has.

Richardson [98] came up with a maturity model to help people under-

stand the REST principles in a less abstract manner. Instead of focusing on

the presented constraints, the model identifies whether an API properly uses

the web’s three most important protocols: Uniform Resource Identifier (URI),

HTTP and Hypertext Markup Language (HTML). Level zero encompasses those

APIs which use a unique URI and HTTP method (i.e., use HTTP as a tunnelling

mechanism). Level one is formed by the APIs which clearly identify several

resources by providing an URIs to each of them. Level two uses HTTP as it

was originally designed for, i.e., using its verbs, status codes, etc. appropri-

ately. The correct use of HTTP forces a developer to comply with all the REST’s

constraints except for HATEOAS [77]. Level three comprises the APIs which

return resources which describe their own capabilities and are interconnected

using preferably standard representations (i.e., those which also address the

Hypermedia as the engine of application state (HATEOAS) constraint).

According to Fielding [26], only those in the third level can be considered

REST architectures. However, there is a generalized misconception of the REST

term. Architectures and APIs at the first or second level of the Richardson Matur-

ity Model are often informally (and incorrectly) considered REST [28, 77, 63].

To avoid confusions, we want to clarify the terminology used in this dis-

sertation. To adhere to the precise meaning of REST, we consider orthodox

architectures concrete instantiations of REST and heterodox ones REST-like

architectures. In other words, in the scope of this dissertation, REST-like archi-

tectures are those described by second level of the Richardson Maturity Model.

Recently, the Hypermedia API term has emerged to refer to HTTP APIs which



14 CHAPTER 2 · BACKGROUND

fully comply with all the REST principles [64, 77, 5]. We will indistinguishably

refer to them as RESTful APIs or as hypermedia APIs.

2.2.1 REST vs WS-* services

WS-* [86, 3], also called “Big Web services”, together with RESTful architec-

tures are probably the most common remote invocation substyles currently

used in the Internet. Universal Description, Discovery and Integration (UDDI)

defines how to discover these big web services using registries. A registry re-

turns information to point to the web services’ interfaces. These interfaces are

syntactically described using the Web Services Description Language (WSDL).

Additionally, WSDL describes data and message types, interaction patterns and

protocol mappings. Using this information, the service consumer and provider

communicate through messages encapsulated using Simple Object Access Pro-

tocol (SOAP).

WS-* standards offer more features than the REST such as transactions,

reliability or message-level security. In addition, they have been adapted to

the needs of resource-constrained devices in the Device Profile for Web Ser-

vices (DPWS) specification [148]. This specification defines a minimal set of

implementation constraints. DPWS’s most remarkable features are: decentral-

ized multicast-based discovery, secure message transmission, subscription and

event notifications [78].

Note that although the web implements REST’s principles and WS-* can

contradict them 1, WS-* stands for web services. The reason for this is that it

employs web standards. However, WS-* uses some of them in ways that they

were not designed for [66]. The most paradoxical case is how it uses HTTP

as a transport layer instead of as an application layer protocol. This prevents

the resulting architectures from achieving some of HTTP’s desirable properties

such as scalability or visibility. In other words, it sacrifices some of the web’s

properties on behalf of additional features.

1Interestingly, Moritz et al. [78] came to the conclusion that DPWS can be restricted to be

fully compatible with the RESTful style and still cover some missing features (e.g., eventing

and discovery).



SECTION 2.2 · REPRESENTATIONAL STATE TRANSFER 15

One of the sacrificed properties is the simplicity. The complexity negatively

affects to (1) the ability of limited computing platforms to adopt the WS-*

stack; and (2) the developers. Specifically, developers need to take further

architectural decisions on different layers of the WS-* stack. These decisions

make people perceive it as more complex than the RESTful style [35]. This

perception influences the adoption of REST on behalf of WS-* [23, 72].

In fact, apart from technical considerations 1, REST’s acceptance is a power-

ful practical motivation for focusing on it. In the end, seamlessly integrating

with a higher number of applications seems to be a logical choice if one of the

middleware’s goals is to reuse other applications’ data. Although this accept-

ance level is subject to changes in the future, the life of the web backs REST as

a long-term choice. Or in Fielding’s words [28, comment 21], “REST is intended

for long-lived network-based applications that span multiple organizations”.

2.2.2 Suitable protocols for REST

Although an API does not adhere to the REST style just because it uses certain

protocols, the correct use of some of them can help to achieve most of its prin-

ciples [77]. Historically, HTTP has been considered a suitable protocol in that

regard. HTTP is a simple protocol which has be adopted by a wide range of

computing platforms [116, 51][143].

However, in the last few years the Constrained Application Protocol (CoAP)

[156] has emerged as a specialized web transfer protocol for resource con-

strained devices. Some noteworthy features of CoAP are (1) the reduced mes-

sage size, (2) the use of UDP as a transport layer (with the possibility of using

multicast communication), (3) similarity with HTTP (both to reuse its proper-

ties and to ease cross-protocol proxying), and (4) a resource discovery mech-

anism.

One could argue that to implement a lightweight TSC solution, CoAP should

be used as a baseline. However, we have chosen to work with HTTP for the

following reasons:

1For an extensive analysis on the advantages and disadvantages of REST and WS-*, we

refer the reader to [92] and [35].



16 CHAPTER 2 · BACKGROUND

• Direct interoperation with other web-solutions. Directly using HTTP we

can avoid proxies. Proxies may introduce latency in the response time

degrading network performance.

• Resource Description Framework (RDF)-based media-formats can be rather

verbosed. This contrasts with CoAP’s message size limitations. Dealing

with these limitations was not one of the main goals of the dissertation.

However, we have considered them at some points of the dissertation to

avoid unrealistic assumptions.

• CoAP is an ongoing standard (i.e., its definition is currently subject to

change). As a result of this immaturity, there are few libraries and tools to

work with CoAP at the moment [110]. This limits the range of platforms

which could adopt any proposed solution.

Nevertheless, due to HTTP’s similarities with CoAP [65], the future adop-

tion of the latter should be relatively straightforward.

2.3 Tuple Space
Tuple Space (TS) computing, also called space-based computing, offers an im-

provement over traditional distributed shared memory approaches. Whereas

the latter ones work at byte-level and accessing to memory addresses, the Tuple

Space works with semi-structured data which is accessed in an associative man-

ner. In other words, in TS the participants read data specifying patterns of

interest.

TS has its roots in the Linda parallel programming language [31]. In this

communication model different processes read and write pieces of information

so-called tuples into a common space. Tuples are composed by one or more

typed data fields (e.g., < ”aitor”, 1984 > or < 3,7, 21.0 >). The tuples are ac-

cessed associatively using a template. A template provides either a value or type

for different fields (e.g., < St ring, 1984 > or < Integer, Integer, F loat >).

The operations over the space are defined by different primitives. Although

the primitives may change from implementation to implementation, the most

common ones allow to:



SECTION 2.4 · THE SEMANTIC WEB 17

• Access the tuples non-destructively, using a primitive which is usually called

read or rd. This primitive returns a tuple from the space which matches

the given template without changing the space.

• Access the tuples destructively, using a primitive which is usually called take

or in. This primitive extracts a tuple which matches the given template

from the space.

• Write a new tuple into the space. This primitive is usually called write or

out.

2.4 The Semantic Web
A problem of the initial view of the Web was that it was human-centred. Re-

gardless of whether the contents were machine processable, a human needed

to interpret them to give them a meaning. Then, Berners-Lee et al. [9] pro-

posed a solution to this problem: the Semantic Web (SW). The World Wide Web

Consortium defines the SW and its key features as follows [17]:

The vision of the Semantic Web is to extend principles of the Web

from documents to data. Data should be accessed using the general

Web architecture using, e.g., URI-s; data should be related to one

another just as documents (or portions of documents) are already.

This also means creation of a common framework that allows data

to be shared and reused across application, enterprise, and com-

munity boundaries, to be processed automatically by tools as well

as manually, including revealing possible new relationships among

pieces of data.

In the SW, triples are the most basic information units. A triple is com-

posed by a subject, a predicate and an object like in a normal sentence (see

Figure 2.2). As Berners-Lee et al. explained, using triples “a document can as-

sert that things (people, web pages or whatever) have properties (such as ’is a sister

of ’, ’is the author of ’) with certain values (another person, another Web page)”.

A key difference with a normal sentence is that each concept is unambiguously



18 CHAPTER 2 · BACKGROUND

defined by an URI. These URIs form links between different triples as shown in

Figure 2.2.

morelab:dipina

gomezgoiri:aitor

wot12:restful-triple swrc:ResearchPaper

"Aitor"

dc:creator

foaf:knows

dc:creator

rdf:type

foaf:givenname

subject                    predicate                    object
URI | bnode                     URI                   URI | bnode | literal

http://gomezgoiri.net/aitor                  cito:likes                         eudbpedia:Esne_Beltza
http://gomezgoiri.net/aitor               foaf:givenname                     "Aitor"^^xsd:string
morelab:dipina                                   foaf:knows                       http://gomezgoiri.net/aitor

eudbpedia:Esne_Beltzacito:likes

Figure 2.2: Sample triples using different ontologies.

All the triples are represented graphically and some of them also textually. They describe a

researcher’s academic and personal details. The knowledge is expressed using four different

ontologies: FOAF [125], DC [124], SWRC [140] and CiTO [121]. For the sake of clarity, some

of the URIs in the figure are shortened using aliases or prefixes.

A problem with the information described so far is that two different data-

bases may use different URIs to express the same concept. To overcome this the

SW offers collections of information called ontologies. An ontology is a docu-

ment which expresses the relations between terms commonly using a taxonomy

and a set of rules to infer content. The taxonomy defines the classes of a given

domain and how they relate with each other.

Of course, different content providers may provide similar data described

according to different ontologies. To overcome this problem, ontologies can

be easily mapped by providing equivalence relations within them. Similarly,

an ontology can be extended to adapt it to different application domains. In

any case, the reuse of the same models is beneficial to ease the interoperabil-

ity. This reuse is promoted by the community through the standardization of

vocabularies.



SECTION 2.4 · THE SEMANTIC WEB 19

Remarkably, a significant part of the SW community has gathered around

the Linked Data (LD) in the last years. The Linked Data [11] term refers to a

series of principles on how to publish data. The goal of the LD is to publish

linked terms using semantics and, in fact, it has been referred as the “Semantic

Web done right” by Berners-Lee [8], coiner of both terms.





I was born not knowing and have

had only a little time to change

that here and there.

Richard P. Feynman

CHAPTER

3
State of the Art

After having presented the general research topics in which this work fits,

we analyse the specific works closely related to ours. This thesis focuses on the

intersection of the three topics represented in the Figure 3.1. It also stresses in

which areas the following sections focus on.

Firstly, Section 3.1 explores relevant works on the UbiComp field. Rather

than presenting an exhaustive (and exhausting) survey on middlewares for

UbiComp, we analyse those which follow the REST architectural style. Then,

we remark how we can solve the main limitations of these works by using a TS

middleware.

Secondly, Section 3.2 scrutinizes relevant TS proposals for the UbiComp

field. Specifically, we study their space model and, for the distributed propos-

als, how they distribute the tuples. Then, we present and justify our model’s

similarities and divergences with theirs.

Thirdly, Section 3.3 presents some semantic works for UbiComp. From

these works we derive two main approaches to semantically annotate content

provided by limited devices: a) do it in more powerful intermediaries; and

b) directly involve all the devices in the management of their content. This



22 CHAPTER 3 · STATE OF THE ART

work is interested in the second approach. Regarding related research follow-

ing this approach, we inspect their complementary proposals but we distinguish

the unaddressed needs covered by Chapter 5.

Finally, Section 3.4 analyses and compares in detail other semantic TS mid-

dlewares independently of their application domain.

Tuple Spaces Semantic Web

Ubiquitous
computing

Section 3.1

Sect
3.4

Sect
3.3

Sect
3.2

Figure 3.1: Chapter 3 outline.

This dissertation focuses on the confluence of the background areas represented in this figure.

3.1 REST on UbiComp

REST prioritizes the scalability and simplicity over other characteristics [26].

These two characteristics are particularly beneficial for UbiComp. On the one

hand, UbiComp environments demand scalability as they are usually populated

by a panoply of heterogeneous and limited devices. On the other hand, the

simplicity helps these devices to overcome such limitations easing the adop-

tion of the REST style. A representative example of how REST has influenced

UbiComp is the Web of Things (WoT).



SECTION 3.1 · REST ON UBICOMP 23

Tuple
Spaces Semantic

Web

Ubiquitous
computing

Figure 3.2: Non-semantic works for UbiComp apart from Tuple Spaces.

This subsection focuses on the solutions using REST architectures.

The Web of Things initiative encourages the use of REST-based solutions

embedding web servers in daily objects [36, 32]. In this way, the things can

seamlessly integrate with the WWW as first-class citizens [38]. This integration

brings the following benefits:

• The smart-things can be linked to enable its discovery by browsing. This

involves using the tool most users are familiar with: the browser.

• They can be bookmarked or shared through social networks [34].

• They can be integrated with other web applications through mash-ups

[33, 90, 95, 12, 104].

• Existing mechanisms such as searching, caching, load-balancing and in-

dexing can be used over the objects to achieve the scalability of the web

[37].

3.1.1 Discussion

In the last decade, probably because of its perceived simplicity [35], REST and

REST-like APIs have gained adopters in the IoT. Particularly, the WoT has



24 CHAPTER 3 · STATE OF THE ART

emerged as a simple mechanism to integrate smart objects with each other,

but also with existing web applications.

However, as any direct communication style REST introduces coupling between

senders and receivers. These complicates the application changes both in the

short-term and in the long-term [59]. In the short-term because nodes con-

stantly join and leave the environment due to mobility or to failures. In the

long-term because the space is used to solve new problems and the obsolete

devices are replaced with new technology.

This dissertation proposes a middleware to reduce this coupling. This mid-

dleware ensures that, from the developer perspective, the communication is

always driven by the data. In other words, in our middleware the devices are

unaware of others’ presence (i.e., they are space uncoupled).

3.2 Tuple Space on UbiComp
So far, Tuple Space has been adapted to Ubiquitous Computing by different

authors. This section presents the most relevant ones.

Tuple
Spaces Semantic

Web

Ubiquitous
computing

Figure 3.3: Tuple Spaces solutions for UbiComp.

Scope of section 3.2

The event heap [59] is a system used for a specific UbiComp sub-domain:

interactive workspaces. In this scenario, there are rooms with different devices



SECTION 3.2 · TUPLE SPACE ON UBICOMP 25

deployed and where mobile devices can enter. Each room has its own space

where the devices exchange tuples to cooperate. This work merely identifies

these environments’ requirements and the properties to cover them. Then, it

discusses how these properties can be satisfied using TS or some extensions.

Finally they compare their implementation both with other TSs and other co-

ordination infrastructures.

L2imbo [22, 30] replicates the tuples to avoid a single point of failure. Each

node joined to a space uses an IP multicast address to exchange messages with

other nodes in that space. Writing into a space involves sending a multicast

message to inform to the rest of the nodes of the tuple written. Reading op-

eration can usually be satisfied locally. Destructive reading of a tuple is more

complex as it requires a global withdrawal. In L2imbo only the owner of a tuple

can remove it from the space. The ownership of a tuple initially belongs to its

creator, but can be transferred.

LIME (Linda in a Mobile Environment) [94] is a TS solution for mobile

systems. In LIME each mobile device has its own space where it generally

writes its tuples. This space is shared with other devices creating federated

spaces, i.e., the aggregation of different shared spaces. In this way, each mobile

can access tuples in other mobiles whenever they become available. They also

proposed a new writing primitive to insert tuples into remote spaces. LIME has

subsequently been adapted to limited platforms [80] with TinyLIME [20] and

TeenyLIME [18].

However, Coulouris et al. [19] complain about the unrealistic assumptions

LIME’s authors make to simplify the problem. These assumptions are the uni-

form multicast connectivity between devices whose tuple spaces are aggregated

and the serialized and ordered connections and disconnections.

In the TOTA (Tuples On The Air) Project [73] tuples are disseminated to

different devices. To that end, each tuple has 3 fields: (1) the content of the

tuple; (2) a rule which defines how it should be propagated; and (3) a rule to

define its maintenance.

For instance, they consider a museum where a visitor writes a query tuple

describing a piece of art he wants to see. The propagation rule defines that

it should be propagated to all nodes in the vicinity, increasing the distance by



26 CHAPTER 3 · STATE OF THE ART

one each time. The tuple is configured to be deleted after a time-to-live period

using its maintenance rule. When it reaches the room where the piece of art is

located, this art work writes a response tuple. This response tuple jumps from

a device to another until it reaches the device which queried for it.

3.2.1 Discussion

The space can be used to (1) coordinate with other devices by writing and

extracting content and (2) check what happens in the environment by reading.

The solutions presented integrate both uses in the same space, which can be

distributed or not. However, we argue that these uses face different needs and,

therefore, should be treated separately (i.e., using two types of spaces).

The first usage demands consistency to avoid the unexpected consequences

of two devices extracting the same tuple. For this usage, we propose a typical

coordination space which will be accessed through a resource oriented HTTP

API. Whether the space itself is distributed and how, is out of the scope of this

dissertation and left up to the implementer.

For the second usage type, we aim to integrate as many external data

sources as possible. This integration demands to acknowledge their independ-

ence, and therefore limit the collaboration requirements imposed to them. Con-

sequently, for the second usage we propose a distributed space which resembles

more to LIME’s federated spaces than to TOTA or L2imbo.

3.3 The Semantic Web on UbiComp

This section analyses some notable works for UbiComp environments which use

the Semantic Web (SW) to represent the contextual information. Rather than

presenting an in-depth analysis of different architectures or their applications

to concrete UbiComp scenarios, we focus on the resource constrained devices’

perspective. We scrutinize the role of the mobile and embedded devices in the

systems which use the SW.



SECTION 3.3 · THE SEMANTIC WEB ON UBICOMP 27

Tuple
Spaces Semantic

Web

Ubiquitous
computing

Figure 3.4: The Semantic Web for Ubiquitous Computing.

Scope of Section 3.3.

3.3.1 The Semantic Web using intermediaries

Adding semantics works well for devices with high computational capacity but

may add too much overhead for limited devices. To reduce this overhead, part

of this computation is usually delegated to an intermediary. Some noteworthy

example is the one proposed by Bröring et al. [14].

These intermediaries or Semantic Gateways are in charge of managing the

semantic annotation. The devices send raw data (which can be compressed) to

the intermediaries and the gateways annotate the content semantically. Thus,

the devices do not have to care about any semantic aspect and just collect the

data as they did before.

These Semantic Gateways reduce the load to embedded devices with limited

resources by decreasing the number of requests they have to provide. In addi-

tion, a centralized intermediary can gather all the information and thus, reduce

the complexity of managing a distributed environment.

However, using intermediaries to store the semantic data of resource con-

strained devices also has some drawbacks. On the one hand, centralization does

not faithfully represent mobility situations were individuals carry their own se-

mantic information in their personal devices. In addition, the data obtained



28 CHAPTER 3 · STATE OF THE ART

from an intermediary will always be less fresh than the one obtained where it

is actually being generated (i.e., sensors). On the other hand, the servers are

critical in centralized systems and therefore, their availability determines the

operation of these solutions. They also impose a burden on the maintenance

which may be worthless in some simple scenarios.

3.3.2 The Semantic Web applied to data providers

Lately, the computing capabilities of some mobile and embedded devices have

improved enough to afford semantic processing. As a consequence, some solu-

tions have arisen to semantically annotate data where it is generated.

D’Aquin et al. [21] presents an architecture to deploy an SPARQL [162]

endpoint in Android devices [118]. In their solution the mobile devices store

and manage their own semantic knowledge by means of an embedded semantic

repository. On top of these endpoints, D’Aquin et al. envision a query federation

mechanism. This dissertation shares this view of independent data sources

sharing their own managed semantic content.

In the Web of Things, multiple solutions have considered using semantics

to enrich the data definition in a machine processable manner. Some solutions

embed the metadata in HTML using microdata [164], microformats [130] or

RDFa [165]. These contents are returned by the Internet connected objects and

are used to enhance the search-ability of the data by existing third-party search

engines. However, these search engines do not consider the mobile nature of

the data providers in the WoT. To solve this problem Trifa et al. [106] propose

a hierarchical discovery and lookup infrastructure. This infrastructure extracts

the semantic annotations from different representations and converts them to

an internal data model. This model is based on existing microformats, but

limited to certain concepts. Furthermore, the particularities of the semantic

annotations are hidden to searchers in their custom search API.

A more general way to represent semantic data is using RDF [161] based

representations (i.e., full semantics). The SPITFIRE European project [139]

represents the most remarkable effort on gathering full semantics and the WoT.

It focuses on fully integrating sensor data with the Linked Data [11].



SECTION 3.4 · SEMANTIC TUPLE SPACES 29

SPITFIRE shares with our solution the vision of a world populated by devices

acting as semantic data providers no matter how small they are [52]. There-

fore, many of their efforts are complimentary to this work. To search within

these providers, Pfisterer et al. [93] propose a model which predicts the cur-

rent state of things by computing their periodic patterns in past states. Again,

the goal of this method is to adapt search engines to the new fashion of data

provided on the Semantic Web of Things.

3.3.3 Discussion

Resource constrained devices have been extensively used to provide informa-

tion to represent the physical environments. When this information has been

semantically annotated, traditional solutions delegate on intermediaries the se-

mantization of the raw data. However, recent advances in mobile and embed-

ded devices’ capabilities have enabled to increase their responsibilities. Some of

these devices are now able to personally manage and share their own semantic

content. This completely distributed approach tries to simplify the maintenance

burden and promote the access to the most updated data.

This dissertation aims to explore this path. Specifically, the search architec-

ture presented in Chapter 5, tries to enhance the searching capability of web-

connected devices. It leads to environments where Internet-connected objects,

mobile devices or regular computers directly interact and collaborate with each

other. This contrast with the searching mechanisms presented by equivalent

solutions in Section 3.3.2. They assume that these limited devices need more

powerful machines to search, which is not always true.

3.4 Semantic Tuple Spaces
Semantic Tuple Spaces aim to join Tuple Spaces with the Semantic Web to pro-

pose a more uncoupled solution. Particularly, it benefits from the autonomies

introduced by both TS and the SW:

• Space uncoupling.



30 CHAPTER 3 · STATE OF THE ART

• Time uncoupling.

• Data-schema uncoupling.

This section provides a state-of-the-art review of the existing Semantic Tuple

Spaces solutions [87]. Instead of describing each of these solutions individually

and then include a comparison, the review is divided in sections which describe

the main aspects of a Semantic TS.

Tuple
Spaces Semantic

Web

Ubiquitous
computing

Figure 3.5: Semantic Tuple Spaces.

Scope of Section 3.4.

3.4.1 Use of semantics

The works analysed present two strategies to semantically annotate data: the

use of SW standards or the definition of their own language. Conceptual

Spaces (CSpaces) [74] and Nardini et al. [85] define their own language-

independent up to first-order logic (FOL) notation. However, these works face

an inconvenience: most of the libraries and tools available are based on the SW

standards. Therefore, they have to internally translate between both worlds in

a not-straightforward and resource consuming manner.

On the contrary, the majority of the semantic TSs use the metadata data

model in which the SW relies: RDF. We also opt for using the widely accepted



SECTION 3.4 · SEMANTIC TUPLE SPACES 31

RDF to ensure interoperability ab-initio. On top of RDF, the SW defines new

layers to increase the data expressiveness. First, RDF Schema (RDFS) [159]

describes a series of classes and properties to define vocabularies in RDF. On

top of RDFS, Web Ontology Language (OWL)[158] offers additional vocabulary

for describing properties and classes. These properties and classes allow to

reason over the knowledge both to validate the data inserted or to infer implicit

(unstated) knowledge.

Although reasoning may be desirable, its use is tangential to the model

proposed in this thesis. In any case, it is by no means mandatory in our solution

because:

• The devices which may provide information to our federated space are

autonomous. They share a minimal contract with our middleware where

we cannot define how they manage/provide their information.

• It is limited by the availability of reasoners, and nowadays there is no

light enough reasoner to run in a reasonable time span in small devices.

Table 3.1: Use of semantics in the analysed solutions.

Use of SW standards

TSC [25] Ø
SWS [105] Ø
STuples [60] Ø 1

CSpaces [74] ×
tsc++ [69, 13] Ø
TripCom [102] Ø
Smart-M3 [54] Ø
Nardini et al. [85] ×

1It uses DAML+OIL, a OWL precursor.



32 CHAPTER 3 · STATE OF THE ART

3.4.2 Tuple model

On the one hand, several works embed semantic content in one of the fields

of a common tuple. CSpaces [74] defines seven-field tuples. Semantic Tuple

Spaces (STuples) [60] extend the JavaSpace [29] middleware adding a field

with semantic content associated to the tuple object. This content follows the

DAML+OIL language (the OWL precursor). Nardini et al. [85] use the concept

of semantic tuples which are expressed in logic terms.

On the other hand, the most common tuple model is the three-field tuple

which corresponds with a RDF triple. That is, a tuple with a field for the subject,

another for the predicate and a third one for the object. However, a triple by

itself cannot express much information [67]. To solve this limitation, semantic

TSs have usually adopted the concept of RDF graphs too. A RDF graph is a set

of RDF triples identified by an URI. Although they can be accessed by their URI,

more interestingly, these middlewares also guarantee associative access.

Table 3.2: Information units used by the different semantic TS middlewares.

Tuples with RDF triple-
RDF Graphs

semantic field like tuples

TSC [25] Ø Ø
SWS [105] Ø Ø1

STuples [60] Ø
CSpaces [74] Ø
tsc++ [69, 13] Ø Ø
TripCom [102] Ø Ø
Smart-M3 [54] Ø Ø
Nardini et al. [85] Ø

1Semantic Web Spaces (SWS)’s subspaces are conceptually equivalent to RDF Graphs: an

abstraction to work with a set of RDF triples.



SECTION 3.4 · SEMANTIC TUPLE SPACES 33

3.4.3 Query model

In TS, originally tuples were selected using special tuples where wildcard values

were allowed in the fields. All the studied works which use a RDF triple as a

tuple follow this approach. In addition, they provide access to the RDF graphs

by their URIs.

Most of these works also offer advanced query languages (e.g., SPARQL

[162]) as a more expressive way to match graphs. These languages can be

decomposed in plain triple patterns. However, this requires a parser which may

not be available for resource constrained platforms. This dissertation focuses

on queries based on graph patterns and leaves the adoption of more complex

querying languages as a future enhancement.

CSpaces, STuples and Nardini et al. use less standard querying approaches.

CSpaces [74] and Nardini et al. [85] offer a formal language to select appro-

priate tuples. STuples[60] extends JavaSpace’s template by adding assertional

axioms that can be used to match semantic tuples.

Table 3.3: Querying units for semantic TSs.

Graph Advanced query
Other

patterns languages

TSC [25] Ø
SWS [105] Ø
STuples [60] Ø
CSpaces [74] Ø
tsc++ [69, 13] Ø Ø1

TripCom [102] Ø Ø
Smart-M3 [54] Ø Ø
Nardini et al. [85] Ø

1It completely depends on the underlying data store selected.



34 CHAPTER 3 · STATE OF THE ART

3.4.4 Space model

The flat model offers independent disjoint spaces. STuples, Nardini et al. [85],

TSC, tsc++ and Smart-M3 use this model. Within them, Nardini et al. [85]

present the most singular model. It extends TuCSoN [89], which presents an

evolution of the TS called tuple centre. A tuple centre can be adapted to the

application needs through reactions to communication operations. These reac-

tions allow to trigger behaviours in response to any primitives or to define new

ones.

More sophisticated models allow to create hierarchies of spaces. Three ex-

amples are SWS, Triple Space Communication (TripCom) [102] and CSpaces.

SWS [105] proposes two ways to partition the spaces: sub-spaces and contexts.

Sub-spaces are disjoint partitions of the main space. Contexts enable to virtu-

ally divide the space into overlapping partitions. These partitions are used to

enable particular clients’ views of the space.

However, probably SWS’s most distinctive feature is that it virtually divides

the spaces into two views. The data view stores syntactically valid RDF and it

is accessed using Linda-like primitives. The information view stores consistent

and satisfiable data which are managed using new primitives. The latter view

takes into account the knowledge defined by ontologies to perform semantic

matching over inferred triples.

TripCom shares some similarities with SWS’s model. It uses subspaces to

form nested multiple spaces. Doing so it restricts the communication to a part

of the whole space leading to scalability and completeness. In addition, it offers

a mechanism to overlap spaces called scopes. Using scopes a client can create a

temporary copy of some tuples. However, any insertion and deletion would not

apply to the whole Triple Space.

CSpaces [74] proposes two types of spaces: individual and shared. An in-

dividual space belongs to a single process. Two participants can agree on how

to represent the knowledge to share their individual spaces forming a shared

space. Shared spaces can join to others forming a tree structure. In a shared

space the updates are versioned and can be revoked by any member. However,



SECTION 3.4 · SEMANTIC TUPLE SPACES 35

neither the registration process needed for the agreement or the revocation pro-

cess are detailed. Furthermore, to the best of our knowledge, this conceptual

exercise never went beyond a rather limited prototype.

Table 3.4: Space model used by the different works.

Flat
Nested Overlapping

Disjoint views

TSC [25] Ø
SWS [105] Ø
STuples [60] Ø
CSpaces [74] Ø Ø
tsc++ [69, 13] Ø
TripCom [102] Ø Ø
Smart-M3 [54] Ø
Nardini et al. [85] Ø

3.4.5 Distribution

Participant nodes usually access semantic spaces on client/server basis.

Tsc++[69, 13] proposes an exception to the client/server access to the space.

It relies on the Jxta P2P framework [128] to propagate queries using differ-

ent strategies. In tsc++, spaces correspond to groups of nodes which locally

manage their data.

In client/server spaces, the back-end of the server can be distributed or

centralized in a single machine. Centralized Tuple Spaces are much simpler

and easier to implement. Therefore, they usually offer more features than the

distributed ones. However, they also impose a single-point-of-failure.

Within the distributed approaches we can distinguish those works which

replicate data and those which do not. TSC belongs to the first group, and

replicates all the triples in each deployed kernel. In TripCom each kernel stores

one or more subspaces and can contact other kernels responsible for different

spaces. To do that, if the space’s Uniform Resource Locator (URL) is provided,



36 CHAPTER 3 · STATE OF THE ART

it simply resolves this URL using Domain Name System (DNS) and contacts the

other kernel. Otherwise, the kernel uses three additional strategies:

• Triple Provider. It uses shortcuts to know who answered a query in the

past.

• Recommender. It uses shortcuts to know which kernel successfully routed

a query in the past.

• Indexing - Distributed hash table (DHT). It creates indexes using a hash

function over the subject, predicate, object and space URL. Then, it stores

these indexes in a distributed database which relies in a structured peer-

to-peer (P2P) system.

CSpaces uses a similar but vaguely described super-peer network [75].

As discussed in Section 3.2, we also deal with distribution of data in one

of the spaces of our hybrid model. As detailed in the following chapters, we

locally manage the content and we distribute the queries. This resembles to

the tsc++’s strategy. However, instead of using a P2P framework to access the

contents, we individually access them using several HTTP requests. In other

words, each client may access various servers to obtain a result for a given

primitive.

Honkola et al. [54] defend that Smart-M3’s space can be distributed using

the distributed deductive closure protocol. However, to the best of our knowledge

this idea has never been implemented or evaluated, making Smart-M3’s space

de facto centralized. For the communication between the clients and the space,

Smart-M3 defines a stateful protocol called Smart Access Protocol (SSAP). The

authors defend that this protocol is communication agnostic because it can be

implemented on top of different communication mechanisms (e.g., WS-* web

services, XMPP [151], Bluetooth [120] or TCP/IP). Kiljander et al. [61] propose

an enhanced stateless access protocol designed to fit the needs of low capacity

devices.



SECTION 3.4 · SEMANTIC TUPLE SPACES 37

Table 3.5: Distribution of the spaces.

C/S Distributed Distribution

access space strategy

TSC [25] Ø Ø Replication

SWS [105] Ø × -

STuples [60] Ø × -

CSpaces [74] Ø Ø Not detailed

tsc++ [69, 13] × Ø Local writing, different query

strategies

TripCom [102] Ø Ø Structured network, different

strategies

Smart-M3 [54] Ø Ø Theoretical

Nardini et al. [85] Ø × -

3.4.6 Discussion

The use of standard semantic protocols and RDF triple-like tuples characterizes

Triple Space Computing. TSC was born to realign web services (WS-*) with

the web. To ensure this alignment, it was based on REST architectural style’s

principles [24, 53]. However, TSC has never been true to all these principles.

Furthermore, the more features are added to the TSC design (e.g., subscriptions

or transactions), the more difficult it is to reconciliate both worlds.

Regardless of their incompatibility with other features or practical technical

difficulties, we defend that, per se, TSC does not contradict in any sense the

REST principles described in Chapter 2:

Client-server (CS). Accessing to a space through a server in a CS fashion is

completely feasible. Indeed, this does not prevent to use a distributed solu-

tion in the back end (e.g., a distributed semantic repository).

Stateless (S). The primitives to access the space imply simple reads and writes

which do not store any state in the server.

Cache ($). Despite of the difficulties detected by Fensel et al. [25], nothing

prevents the semantic content stored in the space to be cached. However,



38 CHAPTER 3 · STATE OF THE ART

the dynamism of the knowledge can make effective caching challenging to

achieve.

Identification of resources (ID). In TSC, there can be up to three type of

resources which can be identified by an URI : spaces, RDF Graphs and certain

elements of the RDF Triples. The space can be seen as a coarse-grained view

of the underlying graphs. The graphs have sets of triples which are usually

related and describe a unit of knowledge. Self-identified triple’s subjects,

predicates or objects are the source of concept linking in the SW.

Manipulation of resources through representations (REP). The RDF graphs

and triples mentioned above can be represented using different standard

serializations.

Self-descriptive messages (DESC). The messages derived from the primit-

ives are self-describing since they are expressed on standard RDF-based lan-

guages. Therefore the server and clients know how to process the content

according to its language and certain vocabularies. These vocabularies spe-

cifications (i.e., ontologies) are referenced in the content.

Hypermedia as the engine of application state (HATEOAS). The lack of nat-

ive hypermedia support in RDF-based representations makes this the most

challenging property to achieve [4, 91]. However, some recent works pro-

pose means to fulfil this property. Kjernsmo [62] proposes a vocabulary for

hypermedia RDF. Steiner and Algermissen [103] and Verborgh et al. [108]

propose to enrich the HTTP header with hypermedia information. While

the first changes representations, the latter is a more general way to provide

hypermedia.

Layered system (L). Encapsulation of functionalities can be achieved through

a layered system. For example, to balance the load to a space replicated in

two machines.

Code on Demand (COD). There are several cases where the know how can

be downloaded from the server in TSC:



SECTION 3.4 · SEMANTIC TUPLE SPACES 39

1. Modelling scripts using appropriate ontologies.

2. A semantic reasoner can be considered an interpreter for the content

downloaded from the server. It is used to extract unstated information

from the content received from the server. Therefore, the client down-

loads know-how to process the resource in the following situations:

• Through the taxonomies defined in ontology files. These taxonom-

ies are modelled using standard semantic languages.

• Through semantically expressed rules [10].

Table 3.6 shows the conflicts that the analysed works present with these

principles. None of them achieve the HATEOAS principle. In fact, its use in

the SW is subject of current research. Most of them guarantee the access to

the space in the CS basis. The only exception is tsc++ [69, 13], where each

participant of the space is a peer in a P2P network. However, when the sub-

scription/notification systems are offered as part of TSC, the CS property is

certainly affected. Similarly, the statefulness of these middlewares conflicts

with the transactionality feature. While the transactionality need in TSC can

be argued, subscriptions are useful to ensure certain level of asynchrony in the

system (see Section 6.1.2).

This dissertation proposes a return to the origins to recover the simplicity

loss in the previous works. The rationale behind this decision is that resource

constrained devices will benefit from this simplicity. In the proposed middle-

ware they will be able not only to write and read knowledge into an external

Table 3.6: TSC’s middlewares potential conflicts with REST principles.

The asterisk denotes a middleware which is not firmly compliant with the CS principle because

it provides asynchronous notifications to the clients.

CS S HATEOAS

TSC [25] ×∗ × ×
SWS [105] ×
tsc++ [69, 13] × ×
TripCom [102] ×∗ × ×
Smart-M3 [54] ×∗ ×



40 CHAPTER 3 · STATE OF THE ART

space, but also to enrich it providing their own managed data. Table 3.7 sum-

marizes the features of this middleware.

Table 3.7: Features of the solution presented in this dissertation.

Use of SW standards Ø
Tuple model RDF triple-like tuples & RDF Graphs

Query model Graph patterns

Space model Flat

C/S access Ø
Distributed space Ø
Distribution strategy Local management, distributed query



The original idea of the web was

that it should be a collaborative

space where you can communic-

ate through sharing information.

Tim Berners-Lee

CHAPTER

4
Triple Spaces for

constrained devices

In recent years, the Internet of Things (IoT) has become a reality due to

the increasing number of everyday objects equipped with computing and net-

working capabilities. The use of these objects together with the rising of mobile

computing greatly contributes to the UbiComp vision. This vision can bene-

fit from the Triple Space Computing (TSC) paradigm’s decoupling properties.

However, other properties are derived from how TSC is materialized.

This chapter focuses on this materialization, i.e., the design of our own

space model. To that end, Section 4.1 discusses the principles which guide

our proposal. Section 4.2 proposes a mix model which encompasses (a) an

independent space which can be used for coordination purposes, and (b) an

enriched view of this space which also shows the information provided by

autonomous devices. Section 4.3 describes a REST-like API to access the first

space. Section 4.4 details the additional extensions needed to support the en-

riched view. Finally, Section 4.5 evaluates the properties achieved with this

model.



42 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

4.1 Guiding principles
In Section 3.4.6 we showed how TSC can comply with all the constraints of the

REST style. One of these constraints is that the access to a space is done in a

client-server basis. The easiest way to achieve this constraint is by centralizing

all the content of each space in the server itself.

However, data in a UbiComp environment is not generated at a single point.

In fact, the plethora of sensors where data are generated can be enormous. In

addition, each of these sensors may generate data continuously. This creates a

trade off between efficiency and freshness difficult to overcome:

• The more frequently each sensor sends contents to the server, the more

inefficient is the solution in terms of network usage.

• The less frequent this communication is, the less updated is the data in

the server. This leads to spaces which misrepresent the environments.

Consequently, a sensible solution is to let these sensors manage their own

information. This strategy is not only useful to ensure the access to up-to-date

data, but also for the following causes:

• The devices directly connected to the sensors and actuators will know

how to represent these contents better than others. For example, the unit

of a temperature measure.

• They know when to create, update or delete data. Furthermore, they can

opt for creating data on demand.

• Data may be reused by other spaces or even other applications. These ap-

plications would not be required to use a space-based approach. There-

fore, they will not depend on the correct functioning of our whole system.

• Carrying the information can be useful in certain mobility situations. For

example, let us imagine a person which stores her user profile in her per-

sonal smartphone. She could share it with different spaces or applications

as it moves along the city.



SECTION 4.2 · A HYBRID SOLUTION 43

Still, most of the IoT devices or mobile phones are unreliable: they can join

and leave at any moment. As a result, distributing the shared space among

unreliable nodes comes with a number of drawbacks:

• Devices rely on the data written and read from the space to coordinate

themselves. Therefore, the access to these pieces of information must be

guaranteed regardless of dynamic devices’ availability.

• A blocking mechanism is important in space-based computing. For ex-

ample, a worker node may block until some tasks become available in

the space. A way to implement it in a distributed space is by means of a

notification system. However, the efficient implementation of this system

using unreliable devices is challenging.

Overcoming the previous difficulties, usually implies a high network traffic.

This traffic negatively influences the energy consumption of nodes whose en-

ergy autonomy might be limited.

In conclusion, our design must face two apparently contradictory principles:

• To consider data from independent and limited data providers.

• To rely on the providers of the data which enables the coordination of the

space participants.

4.2 A hybrid solution
We can distinguish two different usage patterns of a space: (1) coordinating

with other devices by writing and extracting content; and (2) checking what

happens in the environment by reading. So far, other semantic space-based

works have always tried to integrate both strategies within the same space.

However, the needs of both usages are different. The first one demands avail-

ability of the data regardless of its generator availability. The second does not.

Therefore, we propose a novel approach: to treat them independently.

As explained in the previous section, limited devices are not reliable enough

to manage data for the first usage. Nevertheless, they can contribute to an



44 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

enriched view of the space (i.e., the second usage pattern). Accordingly, we

propose a dual model where: (1) the content needed to coordinate devices

will be managed by independent machines; and (2) readings in the space will

consider not only the previous content, but also the knowledge provided by

autonomous providers. Summarizing, we propose to enrich the TS view with

autonomous federated subspaces.

Figure 4.1 presents the key elements of this new model. The coordination

space is where the graphs can be written, read and taken by any participant.

The coordination space is held by one or many devices called coordinators. The

outer space is composed by the graphs managed by independent and probably

limited devices. We call these devices asteroids and their graphs self-managed

graphs.

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

T
S

C
 H

T
T

P
  A

P
I

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

asteroid 1

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

asteroid N

O
S

A
P

I

Outer spaceCoordination space

O
S

A
P

I

...

coordinator

Figure 4.1: Key concepts of the new TSC model presented.

At networking level, we define a minimal contract between the asteroids and

the coordinators through two APIs. Both are REST-like APIs. In our view, this

choice’s appropriateness for resource constrained devices is endorsed by WoT

initiative.

For the coordination space, we propose a uniform access to the space through

the HTTP API described in Section 4.3. This API can provide data from a distrib-

uted space like some approaches in Section 3.4.5 do. However, this dissertation



SECTION 4.3 · ALIGNING TSC WITH HTTP 45

does not cope with this problem. Hence, the reader can assume that each space

is managed by a unique server for the sake of clarity.

The coordination space will be enriched with data from the outer space. This

data is exposed with the OSAPI, which must be implemented by any node will-

ing to share self-managed graphs. The outer space demands an extension of the

classical TSC model presented in Section 4.3. Section 4.4 presents this exten-

sion’s new concepts, primitives and behaviour.

4.3 Aligning TSC with HTTP
This section presents our materialization of a TSC API over HTTP. This materi-

alization gives a practical overview of TSC’s RESTfulness.

4.3.1 TSC resources

Three key concepts are important to understand the resources in our proposal:

agents share information in a common space. A space is identified by an URI.

Therefore, all the operations in TSC are performed against a particular space.

Within a space, the information is stored in sets of triples called graphs. Each

graph can also be identified by an URI. Each triple is composed by a subject

(which is a URI or a blank node), a predicate (a URI) and an object (which can

be a URI, a blank node or a literal), as shown in the Figure 2.2.

As detailed later, TSC’s primitives add or remove graphs. To perform these

operations, which enable the selection of a subset of the semantic content hold

in a given space, a template is required. The wildcard templates used are

special triples with optional wildcard subject, predicate and/or object. For

example, the template ?s foaf:knows gomezgoiri:aitor could be em-

ployed to select instances which represent people who know Aitor (see Fig-

ure 4.2).

Note that this thesis does not consider using more sophisticated query lan-

guages like SPARQL [162]. The rationale behind this decision is that we wanted

to avoid the complexity introduced by these languages in our API. While the

advanced query languages need to be interpreted by parsers not available in



46 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

morelab:porduna

gomezgoiri:aitor

chb:otsopack_light

swrc:ResearchPaper

"Aitor"

dc:creator

foaf:knows
dc:creator

rdf:type

foaf:givenname

eudbpedia:Esne_Beltza

cite:likes

http://space.is/graphs/graph1http://space.is/

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

s1 p1 o1 .

s2 p2 o2 .

s3 p3 o3 .

Figure 4.2: Representation of a space and the elements it is composed of.

The figure shows a space with four graphs and sample triples for one of these graphs. Note

that the figure uses prefixes, i.e., aliases for the beginning of the URIs, for the sake of clarity.

many embedded platforms, wildcard templates are straightforward to imple-

ment and to process. This simplicity eases the adoption of the API by as many

platforms as possible. However, since the wildcard templates are the base for

the advanced query languages, our API could be extended to allow their use.

In any case, this extension is left as a future work.

4.3.2 Adopted TSC primitives

TSC derives some primitives originally defined in the Linda language [31] to

access the semantic information hold in each graph.

• The write primitive allows writing a graph into a given space (identified

by its URI). The set of triples received by this primitive will be stored

together in the same graph, returning the URI which identifies that graph.

The graph URI can be used to access directly to that graph later on, or to

create new triples and relate contents.

wr i te ( space_URI , t r i p l e s ) : URI [1]

• The read returns a graph belonging to a given space which contains at

least a triple matching the given template or has the given URI as its

identifier. If more than one graph fulfils one of these conditions, just one



SECTION 4.3 · ALIGNING TSC WITH HTTP 47

of them is returned (nondeterministically). It should be remarked that it

has been designed as a non blocking operation.

read ( space_URI , graph_URI ) : t r i p l e s [2]
read ( space_URI , template ) : t r i p l e s [3]

• The take primitive behaves like a destructive read, deleting the graph

returned from the space.

take ( space_URI , graph_URI ) : t r i p l e s [4]
take ( space_URI , template ) : t r i p l e s [5]

4.3.3 HTTP API for TSC

As both TSC and HTTP are REST compliant, their similarities are evident. In

the same way TSC has the already explained primitives, HTTP has verbs to get,

create, update or remove resources (GET, PUT, POST, DELETE). Consequently,

the translation between these two worlds is straightforward.

According to the REST principles the interaction with an API must be

hypertext-driven [28]. To ease its usage by developers, we provide a human-

oriented HTML representation of the API which is completely browseable. Re-

garding the machine-oriented representation of the API, Verborgh et al. [108]

and Kjernsmo [62] have proposed solutions to enable hypermedia driven se-

mantic APIs. Independently of the mechanism adopted, in this section we pro-

pose a optional API which stresses TSC’s compliance with HTTP.

The list of spaces a node is joined to are available under /spaces. Each

space is identified by an URI (e.g., http://space1). If this URI is also a URL,

/spaces/{space_uri} (summarized by sp from now on) can simply redirect to

it. All the resources of that space, both real (i.e., graphs) or virtual (i.e., query)

are listed under {sp}/. Each graph is available on {sp}/graph/{graph_uri}. If

we make an HTTP DELETE to that resource, under TSC’s perspective, we take

that graph from the space. The rest of the mappings are shown in the Table 4.1.

http://space1


48 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

Table 4.1: HTTP mapping for the primitives detailed in the Section 4.3.2.

sp is a space URI, g is a graph URI, s, p and o-uri are subject, predicate and object URIs or

wildcards (represented with an as *). When the template’s object is a literal, it can be expressed

specifying its value (o-val) and its type (o-type).

HTTP request URL Returns

POST {sp}/graphs/ [1]
GET {sp}/graphs/{g} [2]
GET {sp}/graphs/wildcards/{s}/{p}/{o-uri} [3]

{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-val}
DELETE {sp}/graphs/{g} [4]
DELETE {sp}/graphs/wildcards/{s}/{p}/{o-uri} [5]

{sp}/graphs/wildcards/{s}/{p}/{o-type}/{o-val}

4.3.3.1 Status codes

The API should be compliant with the standardized HTTP status codes [150].

These codes are sent back in the response as part of the header. For instance,

the TSC middleware returns the 404 error when no significant result can be

found for a primitive. This adoption, apart from enhancing the compatibility

with other web applications, can enable the modular adoption of the API. For

example, if a space does not offer a wildcard based read, it can simply return

a 501 Not Implemented. The participants would then be aware of the problem

and use an alternative primitive to obtain the data needed. This modularity

becomes crucial to ease the partial adoption on new platforms.

4.3.3.2 Content negotiation

Another key aspect of the HTTP protocol that our API should take advantage of

is the content negotiation. This mechanism allows to specify the desired repres-

entation for a content on the client side and to express what representation is

sent as a response from the data provider side. For that purpose, the client adds

an Accept field to the HTTP header with a weighted list of media types it knows

how to interpret. Then, the server will answer with the best possible format it

understands, specifying the Content-type in the response.



SECTION 4.4 · FEDERATED SPACE 49

The benefits of using this mechanism in the TSC middleware presented are

two-fold. Firstly, it enhances the browsability of the primitives with human

understandable HTTP responses. Secondly, it allows different semantic rep-

resentations (e.g., RDF/XML [160], N-Triples [152] or N3 [145]). The latter

characteristic becomes crucial since not all the nodes may understand all the

formats (e.g., a mobile phone may not have a RDF/XML parser). In these cases,

the compatibility of both sides can be ensured through a conversion carried

out in the server side. Furthermore, expressing the preference for a semantic

format can be useful too in other cases. For example, to obtain the less verbose

answer.

4.4 Federated space
The OSAPI extends the API previously presented with the primitives and con-

cepts explained in this section.

4.4.1 Self-managed graphs

These graphs are shared with other participants, but can only be managed by

the devices called asteroids. In other words, self-managed graphs enrich the

space but cannot be externally written or removed. Therefore, they are second-

class graphs which provide information about the environment but cannot be

used for coordination purposes.

Each asteroid makes these graphs accessible to others through HTTP. The

final goal is to potentially allow to reuse the data provided by any existing

RESTful service. Therefore, the API should be or tend to be RESTful. However,

we leave the hypermedia API as a future work. Instead, we require a man-

datory OSAPI to be implemented in each asteroid to guarantee access to the

self-managed graphs.

4.4.2 New primitives

To make the most of the information in a space, we propose a new primitive

to query all the semantic information stored in the space. The RESTfulness



50 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

Table 4.2: HTTP mapping for the query primitive.

sp is a space URI, s, p and o-uri are subject, predicate and object URIs or wildcards (represented

with an as *). When the template’s object is a literal, it can be expressed specifying its value

(o-val) and its type (o-type).

HTTP request URL Returns

GET {sp}/query/wildcards/{s}/{p}/{o-uri} [6]
{sp}/query/wildcards/{s}/{p}/{o-type}/{o-val}

of this primitive could be argued since it does not operate at resource level

(i.e., returning graphs), but mixing several resources (i.e., triples from differ-

ent graphs). However, we believe that it is useful to have an endpoint for

the queries which involve many graphs. Kjernsmo [62] discusses this topic in

depth.

This new primitive is defined as follows:

• The query primitive aims to see the space as a whole, returning all the

triples matching the given template.

query ( space_URI , template ) : t r i p l e s [6]

The Table 4.2 extends Table 4.1 to include this new primitive.

A key point of the API is that the asteroids might not even follow the TSC

paradigm. For instance, the OSAPI can encapsulate data provided by a third

middleware. However, a primitive to ease that management can be a conveni-

ence for the developers which do not need a more customized behaviour. With

that in mind, we propose another writing primitive. This primitive only has

local effects and therefore has no HTTP equivalent:

• The write_self primitive writes a self-managed graph and returns an URI

which identifies it.

w r i t e _ s e l f ( space_URI , t r i p l e s ) : URI

• The read_self and take_self primitives only affect to self-managed graphs.



SECTION 4.5 · EVALUATION 51

r e a d _ s e l f ( space_URI , graph_URI ) : t r i p l e s
r e a d _ s e l f ( space_URI , template ) : t r i p l e s
t a k e _ s e l f ( space_URI , graph_URI ) : t r i p l e s
t a k e _ s e l f ( space_URI , template ) : t r i p l e s

4.4.3 New behaviours

This section tries to clarify how the different behaviours coexist:

Writing. The most basic writing primitive allows a client to remotely write a

graph into the coordination space. However, we also presented the write_self

primitive. Write_self locally writes into an asteroid an externally untakeable

graph (i.e., self-managed graphs).

Reading. Query performs a traversal query over the aggregated view of all the

graphs in a space (including the self-managed graphs). Read and take work at

resource level. Read_self and take_self are their equivalents for self-managed

graphs. Finally, the read primitive’s results will be enriched with self-managed

graphs from the outer space.

4.5 Evaluation

With the model presented in this chapter, we aimed to retain the desirable

properties of both REST and TSC. However, some questions arise from this

integration: (1) does it in fact retain all the properties of REST and TSC separ-

ately? Otherwise, which properties are affected? (2) which other benefits does

it offer compared with the usage of separate TSC and REST middleware?

To answer these questions, we analyse the presented solution from different

points-of-view: (1) its coordination properties (Section 4.5.1), (2) its network–

level properties (Section 4.5.2), (3) how the latter work together to contribute

to the challenges of an UbiComp environment (Section 4.5.3).



52 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

4.5.1 Coordination properties

As has already been discussed in Section 2.1, indirect communication middle-

ware can have two key properties:

• The sender does not need to know the receiver or receivers and vice versa

(i.e., space uncoupling).

• Senders and receivers do not need to exist at the same time to commu-

nicate with each other (i.e., time uncoupling).

The primitives used in our space-based computing implementation force it

to be space uncoupled. On the contrary, it is not always time uncoupled. If

two nodes write and read from the coordination space, they are time uncoupled;

but if a node accesses to others’ content (i.e., self-managed graphs), they are

not. In other words, time uncoupling is not achieved by the extension of the

model presented in Section 4.4 (i.e., in the outer space). As a future work, this

could be alleviated by a caching mechanism implemented in the coordinator or

coordinators.

Table 4.3: Uncoupling levels achieved by the different parts of the middleware

presented.

Space Time

uncoupling uncoupling

Coordination space Ø Ø
Outer space Ø ×

4.5.2 Networking properties

Section 3.4.6 described how TSC does not intrinsically contradict any of the

REST principles. However, the adaptation presented in this thesis does not

completely adhere to the REST style. This section presents how these diver-

gences affect to REST’s properties.



SECTION 4.5 · EVALUATION 53

In Fielding’s words, the relevant properties which describe a network-based

system are the following ones 1:

Performance is divided into network performance, user-perceived perform-

ance and efficiency.

• Network performance is affected by the number of interactions and

the granularity of data elements.

• User-perceived performance refers to the impact perceived by a user

in front of an application.

• Efficiency is achieved by minimizing the use of the network.

Scalability measures how an architecture supports a big amount of compon-

ents and interactions between them.

Simplicity is achieved through the separation of concerns for the components

and the generality of architectural elements.

Modifiability indicates how easily gradual changes can be introduced in the

system. These changes contribute to form different implementations which

should coexist.

• Evolvability refers to the degree in which a component can be imple-

mented without negatively impacting on others.

• Extensibility measures the ability to add functionality to the system.

• Customization is the ability to adjust the behaviour of an architectural

element temporarily.

• Configurability is related with extensibility and reusability.

• Reusability is the ability to reuse components, connectors or data ele-

ments without modifying other applications.

Visibility is the ability of a component of monitoring or mediating in the in-

teraction between other two components.

1We refer to the reader to Fielding [26] for the complete thorough analysis.



54 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

Portability is the ability of working in different environments.

Reliability is the degree in which an architecture depends on the failures of

the system or components, connectors or partially incorrect data.

Table 4.4 summarizes how different architectural styles achieve these prop-

erties. Particularly, it shows the styles from which REST derives (see Sec-

tion 2.2). The ultimate goal of the solution explained in Section 4.2 is twofold:

1. Provide a REST access to a semantic space. This would ease its integration

with the rest of the web.

2. Enrich that space with the knowledge provided by other REST APIs.

Therefore, ideally, its networking properties would be the same as the REST

style.

4.5.2.1 REST or REST-like API?

Defining a 100% REST compliant API may be challenging. Indeed, as explained

in Section 2.2, most of the self-proclaimed RESTful APIs are not [55]. Most of

them fail to achieve the HATEOAS constraint.

Regarding the SW, some recent efforts have tried to move closer to the

hypermedia constraint [103, 62]. However, these worlds remain quite isolated.

In fact, SW APIs usually present another main divergence with the REST style:

the use of query endpoints. These endpoints intend to solve some inefficiency

issues which REST shows when working with a big amount of data. To that end,

they allow expressive query languages and offer results where the boundaries

of the different resources often blurs [115].

In the UbiComp both the efficiency on the communications and the reusab-

ility of the API are important:

1S represents the difference between CSS and CS in [26].
2Corresponds to the C$SS style in [26].
3Although it is not explicitly included in the original table, U has been derived from Field-

ing’s description.
4Derived from the addition of U to LCODC$SS.



SECTION 4.5 · EVALUATION 55

Table 4.4: Properties of different architectural styles for network-based applica-

tions.

This table is an adaptation of the one originally conceived by Fielding [26]. These adaptations

are remarked inside the table.

Each plus symbol (+) represents a positive influence and each minus symbol (-) a negative one.

Plus-minus (±) denotes that it depends on some aspect of the problem domain.

The leftmost column contains each of the network substyles REST derives from: Client-server

(CS), Stateless (S), Cache ($), Uniform interface (U), Layered system (L) and Code on Demand

(COD).

The horizontal line indicates that the immediate row below is composed by all the rows from

the upper level.

Style N
et

Pe
rf

or
m

U
P

Pe
rf

or
m

Ef
fic

ie
nc

y

Sc
al

ab
ili

ty

Si
m

pl
ic

it
y

Ev
ol

va
bi

lit
y

Ex
te

ns
ib

ili
ty

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

Vi
si

bi
lit

y

Po
rt

ab
ili

ty

R
el

ia
bi

lit
y

CS + + +
S1 − + + +
$ + + + +
Early web2 − + + ++ + + + +
L − + + + +
COD + + + ± + + −
LCODC$SS − ++ ++ +4+ +±+ ++ + + + ± + +
U3 + + +
REST4 − ++ ++ +4+ +±++ ++ + + ++ +± + +



56 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

• Efficiency: mobile and embedded devices have restricted energy autonomy.

This autonomy is severely affected by network communications. Particu-

larly, the access to the data they provide by means of hypertext may result

in many HTTP requests.

• Reusability: due to the heterogeneity of the devices, assuming they all

share a common and unevolvable API may not be realistic. Normally, an

environment will be populated by different APIs from many WoT solu-

tions. In that situation, allowing a client to autonomously learn how to

use them would be ideal.

We opt for promoting efficiency at the expense of reusability. In other words,

we use two REST-like APIs whose use is known out-of-band by the clients

(i.e., they are not guided by the hypermedia). However, we provide a human-

oriented version of our API to ease its use by developers which does comply

with HATEOAS.The evolution of the APIs to fully RESTful machine-oriented

ones is left as future work.

In conclusion, the properties achieved by the network communication style

selected corresponds with LCODC$SS plus simplicity and visibility (see Table 4.4).

4.5.3 Properties for UbiComp

A middleware is a software layer which provides a higher level of abstraction

and masks the underlying heterogeneity. The middleware presented in this dis-

sertation is oriented to UbiComp environments and the devices which populate

them (particularly mobile and embedded devices). Whereas the devices part of

the IoT are a subset of the ones present in UbiComp, we observed that the chal-

lenges they have to cope with are the same ones. For instance, smartphones are

not part of the IoT, but cope with similar energy and computational limitations

as the embedded devices.

Therefore, we will consider the challenges identified by the Internet-of-

Things Architecture European project [112] to analyse our solution. Walewski

et al. state that the IoT must overcome the following challenges: interoper-

ability, scalability, manageability, mobility, security and privacy and reliability.



SECTION 4.5 · EVALUATION 57

Furthermore, we also consider energy-related and computational constraints to

be addressed by devices in UbiComp.

Table 4.5, shows how the properties explained in the previous sections dir-

ectly affect these challenges. The following sections clarify this table.

Table 4.5: Direct relations between the properties analysed in previous sections

and the challenges a lightweight middleware faces.

Network prop.
Coord.

prop.

Pe
rf

or
m

an
ce

Sc
al

ab
ili

ty

Si
m

pl
ic

it
y

M
od

ifi
ab

ili
ty

Vi
si

bi
lit

y

Po
rt

ab
ili

ty

R
el

ia
bi

lit
y

Sp
ac

e
un

co
up

l.

Ti
m

e
un

co
up

l.

Se
m

an
ti

c
W

eb

Interoperability × × ×
Scalability ×
Manageability

Mobility × ×
Security

Reliability × ×
Limited comp. ×
Limited energy × ×

4.5.3.1 Interoperability

Interoperability is the key to deal with a wide range of heterogeneous techno-

logies. The use of both the network style and the semantic data contribute to

this challenge.

4.5.3.1.1 Semantics

Using semantics we promote the reuse of data describing them in a more rich

and abstract way. The semantic web is composed by a series of standardized



58 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

technologies which allow to formally describe the models (i.e., the concepts

and how they relate to each other). Two key mechanisms of the Semantic Web

in this aspect are the inference of new data and the mapping of equivalent

models.

4.5.3.1.2 Networking

For the communication between nodes, we rely on the widely supported HTTP

protocol. Communication with devices using other protocols must be done by

means of specialized gateways. Therefore, adhering to a unique protocol does

not help dealing with various communication technologies.

However, a wide range of current applications use HTTP to define their

network accessible API’s. This makes it a de facto requirement to interoperate

with these applications. In fact, this success has also its counterpart on resource

constrained platforms. The clearer sign for this tendency is the upcoming WoT

initiative.

At a finer grained level, there are several properties which help different

HTTP implementations to interoperate:

Modifiability is the ease for introducing gradual changes in the system. Par-

ticularly dynamic modifiability avoids restarting the entire system when in-

troducing a change. This property allows different implementations to coex-

ist reducing issues on the communication between two nodes.

Portability: HTTP’s portability is backed by the plethora of HTTP libraries and

frameworks available for most of the computing platforms. Consequently, a

huge number of platforms can interoperate through HTTP.

In addition, in our HTTP API the following issues remain unsolved:

• Using third-party applications’ data:

1. Section 4.5.2 details how a pure REST API contributes to a higher

decoupling between clients and servers. In REST architectures cli-

ents can autonomously adapt to use different APIs or to different



SECTION 4.5 · EVALUATION 59

API versions. Of course, this comes at the cost of more complex cli-

ents. These clients have the additional responsibility of discerning

the next state transition from the representations obtained.

Our middleware is not hypermedia-driven. As a consequence, it re-

quires third-party applications to implement a uniform API (i.e., OS-

API) on top of them to allow our middleware to consume their data.

However, the API is resource-oriented and simple to implement.

2. Another obstacle for achieving a real application-level interoperabil-

ity in our middleware is the use of distinct isolated spaces. In other

words, two applications using two different spaces would not share

their content. Although this could be avoided by defining a default

space, as explained in Section 3.4.4, their use is justified in terms of

scalability.

• Making our data reusable by third-party applications:

We encourage sharing data in resource constrained devices through an

HTTP API. Using this API any other application able to use HTTP and to

manage semantics can reuse data from our middleware. However, since

this API is not hypermedia-driven either, third-party applications must

know how to use it beforehand.

4.5.3.2 Scalability

The architecture of the web is scalable by design. Indeed, the large number

of components and interactions between them that coexist in the web are a

good proof this. These components share an even larger amount of data which

leads to scalability issues on the search process [68]. In fact, considering that

in UbiComp environments the data is constantly generated or updated, this

challenge can be harder. However, these challenges and other considerations

related to the search process are analysed in the next chapter.



60 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

4.5.3.3 Manageability

Manageability helps to cope with a big number of devices allowing them to have

an autonomous behaviour. It encompasses self-management, self-configuration,

self-healing, self-optimization, and self-protection. This dissertation proposes a

self-managed architecture which eases searching self-managed graphs.

4.5.3.4 Mobility

The ability to cope with mobility situations can be improved through the de-

coupling brought by space-based computing. Firstly, mobility situations may

impede two nodes to coexist at the same time. In this case, time uncoupling

enables their communication.

Secondly, the provider of a piece of information may vary over the time. The

primitives used care about the data and not about the specific provider of these

data (i.e., the nodes are space uncoupled). This avoids any reconfiguration of

the data consumer when the provider is replaced. In fact, a content can be also

delivered by more than a provider.

4.5.3.5 Security and privacy

This property is considered out-of-the-scope of this dissertation. However, we

are currently working on a lightweight security solution [81]. For our future

work, we are considering to integrate it with the presented middleware.

4.5.3.6 Reliability

Reliability in UbiComp is crucial to handle connectivity losses in various ad

hoc-like ways. Particularly, HTTP handles it through caching.

4.5.3.7 Limited computation

Mobile and embedded devices impose computation restrictions. These restric-

tions result in unacceptable response times from the application perspective.



SECTION 4.5 · EVALUATION 61

Due to HTTP’s simplicity, computation complexity is found in semantic pro-

cessing. For example, some really limited platforms may find difficult parsing

long files. However, we made the following assumptions:

• Data providers will be able to process wildcard-based templates and gen-

erate appropriate responses from their self-managed graphs.

• Data consumers are able to process the responses they receive at least in

one semantic format, e.g., N3 [145] or RDF/XML [160].

Beyond that point, our middleware will not impose anything. This means

that a developer using the middleware cannot assume:

• The inference process on data providers. Reasoning over the content to

provide unstated implicit knowledge must be desirable. Still, most of the

mobile and embedded devices are not able to process big amount of data.

Furthermore, reasoners are not available or optimized for many limited

platforms.

• The inference process on data consumers. Another alternative or com-

plement for inferring data on the providers is to do it in the consumers

after receiving the responses. Again, it is a desirable property, but our

middleware does not force it.

• General use of more complex query languages. Their expressibility bene-

fits the network performance since they can restrict the results returned.

However, parsing them is not trivial and consequently parsing libraries

are unavailable for most limited platforms. Therefore, a provider can-

not assume that providers know how to process something beyond the

wildcard based templates. As an alternative, providers can decompose

these queries in simpler wildcard based templates and locally process the

results afterwards using the complex queries as filters.

The searching mechanism explained in the Chapter 5 takes into account the

computing limitations of embedded and mobile devices.



62 CHAPTER 4 · TRIPLE SPACES FOR CONSTRAINED DEVICES

4.5.3.8 Limited energy

Both data computation and networking operations directly affect energy con-

sumption. As an example, Figure 4.3 shows the energy consumption on an

embedded platform in an inactive period, whilst doing networking operations

and when computing semantic data. There are some crucial characteristics

which negatively affect energy autonomy of resource constrained devices:

• Too complex computation tasks. As explained in the previous section,

semantic processing is the clearest example of that. We have limited its

impact on resource constrained platforms through the searching mechan-

ism.

• Regarding HTTP, its statelessness contributes to a bad network perform-

ance. In addition, the verboseness of most of the semantic formats also

contributes negatively to that aspect.

Figure 4.3: Energy consumption for an embedded platform.

Energy consumption, measured in miliwatts, for a FoxG20 [126] during different activity

periods.

On the other hand, the network usage reduction contributes to energy sav-

ings (i.e., improves network efficiency):



SECTION 4.6 · SUMMARY 63

• HTTP’s network efficiency can be improved with code on demand and cach-

ing.

• The searching mechanism improves recall and precision (see Chapter 5).

4.6 Summary
The previous sections have reviewed the strengths and weaknesses of the pro-

posed model. With regards to other semantic HTTP-based solutions, the solu-

tion presented provides a better handling of mobility situations. The uncoup-

ling properties provided come at the cost of simplicity to implement the mid-

dleware. The main strength of our TSC model is that it enriches the knowledge

shared in a classical space model with content provided by autonomous em-

bedded and mobile devices. This opens de door to interoperate with other

HTTP-based applications.

Within its weaknesses we found performance problems and a coupling between

applications due to a non hypermedia-driven API. The performance problems

may result of handling semantic data and are particularly important for re-

source constrained devices. The coupling due to a mandatory HTTP API com-

plicates reusing third-party applications’ data.

The benefits of bringing together TSC and HTTP is an unified and simple

API for the developer. Due to the primitives’ simplicity and to the standard and

well accepted technologies used (i.e., HTTP and SW standards), this API can

be ported to a range of platforms.





I woke up one morning thinking

about wolves and realized that

wolf packs function as families.

Everyone has a role, and if you

act within the parameters of your

role, the whole pack succeeds,

and when that falls apart, so does

the pack.

Jodi Picoult

CHAPTER

5
Searching in a distributed

space

In Chapter 4 we presented a TSC model for UbiComp environments which

is composed of two spaces: the coordination space and the outer space. The

outer space is formed by the semantic data provided (self-managed graphs) by

any participating device. Searching for a graph in that outer space is not trivial

because it is composed by dynamic and unreliable devices.

This chapter presents an architecture to enable searching for semantic con-

tent in a decentralized energy efficient manner. This searching mechanism can

be generalized to other WoT solutions and scenarios. To empathize this, during

the rest of the chapter we avoid explicitly mentioning the TSC middleware or

related concepts (e.g., outer space).

This chapter is organized as follows: Section 5.1 gives an overview of the

problem addressed. Section 5.2 discusses the related work. Section 5.3 presents

in detail our energy-aware architecture. Section 5.4 describes the information

that devices exchange to maintain this architecture. Section 5.5 presents our

experimental environment and Section 5.6 evaluates our solution. Finally, Sec-

tion 5.7 states the conclusions of this chapter.



66 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

5.1 Introduction
Integrating mobile or embedded devices is not trivial as they usually communic-

ate using different protocols. To solve this problem, the Web of Things initiative

proposes to use well-established web standards to ease their communication.

However, the format of the data they exchange is also multifarious and applica-

tion domain dependent. This implies that data will not be meaningful in other

domains unless a specialized system converts and reinterprets them. A way

to solve this problem is annotating the data semantically as proposed by the

WWW.

Adding semantics to the IoT works well for devices with high computational

capacity but it adds too much overhead for most of the devices composing

the IoT. To reduce this overhead in such devices, part of this computation is

usually delegated to intermediaries [54]. This approach reduces the overhead

of semantically annotated data but brings other problems:

1. When devices rely on others to provide information, it is not guaranteed

that the information accessed will accurately represent the last informa-

tion available in the data providers (e.g., the sensors).

2. Once they rely on intermediaries, these intermediaries must be available

at all time. Otherwise, the devices would not be able to talk to each other.

We propose a solution where intermediaries are used to release some work-

load from the less powerful devices, but at the same time, the direct commu-

nication between the devices is promoted. In particular, our system uses inter-

mediaries to search where the data is located in it and then queries the final

devices directly.

In our solution, the devices can become or stop being intermediaries dynam-

ically. To decide which device will be an intermediary, we evaluate the state of

a device (i.e., energy and computation capacity). Using this dynamic architec-

ture, the absence of a particular intermediary does not collapse the system. In

addition, our system is flexible enough to support a wide range of scenarios.

To enable the search for information in this system, intermediaries need to

know the information available in it. To do that, they aggregate summaries



SECTION 5.2 · BACKGROUND 67

sent by each device. We propose alternatives to summarize and aggregate this

information taking into account the payload of the shared information and the

accuracy of the search.

Our approach is compared against other common approaches. In particular,

we focus on the energy aspect, demonstrating that our approach helps energy

constrained devices to cope with fewer unnecessary requests. We also evaluate

other important metrics like the number of messages that a device has to ex-

change to perform a request, and the accuracy of the search results provided

by the intermediaries. We perform this evaluation under different scenarios to

prove the flexibility of our proposal.

In summary, we make the following contributions:

• Present a new architecture for managing semantics on the WoT which

reduces the load for resource-constrained devices.

• Propose and evaluate different approaches to aggregate and summarize

the semantic information available in the devices and enable semantic

search in this architecture.

• Demonstrate the advantages of our approach compared to other typical

searching approaches under different scenarios.

5.2 Background
Querying over the semantic content provided by independent sources trans-

parently is a problem which often appears in the Linked Open Data (LOD).

Görlitz and Staab [50] classify the possible LOD infrastructures according to

(1) how they store data, (2) whether the index used to search is distributed,

and (3) whether data sources cooperate. Table 5.1 summarizes the resulting

infrastructure types: central repository, federation and P2P data management.

The solutions which distribute the semantic content are federation and P2P

data management. While the latter distributes the index to look for content

in multiple machines, federation does not. Our solution proposes a federation

infrastructure with some particularities:



68 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

Table 5.1: Infrastructure paradigms according to their characteristics.

Note: This table was created by Görlitz and Staab [50].

Central Data Storage Distributed Data Storage

Independent
n/a

Federation

n/a
Data Sources Central

Cooperative
n/a

Repository P2P Data

Data Sources Management

Distr. Index Central Index Distr. Index

• There is a unique node in charge of managing the main version of the

metadata needed to create indexes. However, it is dynamically chosen

among all the participants and can change over the time. Consumers

hold copies of the manager’s metadata.

• Each consumer builds its own index from its metadata replica. This allows

consumers not to critically depend on the availability of any other node

to search.

FedX [100, 101], DARQ [96] and SemWIQ [71] are the most relevant solu-

tions to perform federated queries over independent semantic data sources.

DARQ and SemWIQ require locally preprocessed metadata about data sources,

while Fedex uses on-demand queries together with a caching mechanism. In

that aspect, our solution resembles DARQ and SemWIQ since it also requires

this metadata (called clues in our solution). In fact, we propose two types

of clues which are equivalent to the metadata used by DARQ and SemWIQ.

DARQ maintains predicate indexes to find relevant data sources. SemWIQ

maintains a local catalog with the type information of RDF entities provided

by data sources. In contrast with our solution, DARQ and SemWIQ also use

statistics about data sources to optimize their queries.

A key difference with the mentioned systems is the context where we have

applied our solution. It is intended to serve in UbiComp environments. This

means that there will be many more data sources and with less information to

process in each of them. Furthermore, their nature also differs from the usual



SECTION 5.3 · ENERGY-AWARE SUPER-PEER ARCHITECTURE 69

LOD endpoints’ one: the mobile and embedded devices which may provide data

are less reliable, more dynamic and more restricted in computation and energy.

Therefore, we designed and evaluated our solution considering this nature and

restrictions. To the best of our knowledge, this is the first approximation to the

problem within the explained context.

Considering the constrained architecture of the data sources, we acknow-

ledge that some of them will not be able to process SPARQL [162]. Con-

sequently, we require the lowest common denominator: basic triple patterns.

This causes the main weakness of our solution compared to FedX, DARQ and

SemWIQ: a less sophisticated querying mechanism. For our future work, we

are considering using SPARQL just with the endpoints able to manage it as

a halfway solution. This will allow us to introduce some of the optimization

techniques presented by other solutions.

In sections 3.3.1 and 3.3.2 we have analyzed other solutions for UbiComp

which use semantics. However, none of them have addressed federated distrib-

uted search in resource constrained devices.

5.3 Energy-aware super-peer architecture

In a semantic WoT, nodes are part of a network where they share semantically

described information. These nodes gather their information in Spaces 1.

For example, a hotel can create its own semantic Space with the semantically

described information of its services and the data provided by its devices (e.g.,

sensors) spread around the hotel. Thus, clients can use their own personal

devices (e.g., smartphones) to interact with the devices of the hotel and search

useful information. Using this approach, a client, for example, can check the

current swimming pool occupancy rate using his personal mobile phone.

1 Note that in this chapter, the term Space refers to a group of devices usually co-located

which form an intelligent environment. It has an obvious correspondence with our solution’s

outer space. However, note that despite of this correspondence, the solution presented in this

chapter transcends space-based computing.



70 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

However, not all devices can afford the costs of fully managing the addi-

tional overhead of semantics. This section presents our architecture to man-

age such environments and deal with the limitations of resource-constrained

devices.

5.3.1 Basic roles

Devices can be part of one or multiple Spaces. A device can provide data (Pro-

viders), consume data (Consumers) or both at the same time.

Providers: This is the simplest role which any device in our system can carry

out, even the smallest sensor. Providers must manage their own semantic

information. In particular, they must organize triples in RDF graphs.

Consumers: This is the role a device must take to get information from the

system. These devices need to be able to use semantics to find the data they

require.

Note that a device could hold just one or both roles at the same time or

switch between them. For example, a Provider could become a Consumer to get

data from the system or a Consumer could stop asking for data.

5.3.2 Use of intermediaries: White Page

Tasks involving the use of semantics can be expensive for some devices. To

reduce the load on such resource-constrained devices, we need to use interme-

diaries to carry out some of these tasks. However, we do not want devices to

completely rely on intermediaries for three reasons:

1. Data consumers need to get fresh data and we can only get this by direct

access to the actual Provider.

2. We must support mobile scenarios where personal devices carry their own

data.



SECTION 5.3 · ENERGY-AWARE SUPER-PEER ARCHITECTURE 71

3. We need to reduce the maintenance complexity (nodes may join or leave

at any time).

For these reasons, we cannot rely on intermediaries to host and provide

all the semantic information. However, we use intermediaries as searching

enablers in the semantic Space. This kind of intermediary is what we call White

Page.

White Pages (WPs) manage metadata or clues about the information shared

by others. The Consumers rely on WPs to enhance the search process and re-

duce the number of requests generated. Consequently, the Providers process

less semantic data and reduce their overall overhead. Thus, our architecture

enables an intermediary-aided energy-aware information search.

White page

Clues

Consumer

get clues

Provider

send clues

make clues

Semantic datadirect access to data

Figure 5.1: Role of White Pages in our proposal.

Figure 5.1 shows the role of WPs in our proposal. In particular, WPs manage

clues which summarize the semantic information shared by the Providers. These

clues, which are described in detail in Section 5.4, are pieces of information

useful to determine which nodes can answer to a certain query. Consumers

use these clues to directly access the semantic information on the Providers.

Summarizing, the main tasks of a WP are:

• Manage the clues sent by all the nodes in the system.

• Aggregate clues sent by Providers in a unique response.

• Reply to requests from Consumers with aggregated clues or a list of nodes

(details in Section 5.3.5).



72 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

WPs only store clues for a period of time, expiring afterwards. Using this

approach, we avoid storing information from no longer available nodes.

5.3.3 Versioning clues

As previously explained, the WP aggregates clues sent by Providers. This ag-

gregation is versioned using a version number and a generation number. The

version number increases each time the WP receives a new clue update. The

generation number (gid) is a timestamp that represents the moment a new WP

was chosen. This requires the clocks to be synchronized in all the nodes to

avoid problems. In any case, the WP must guarantee that the gid is higher than

the one used by a previous WP.

The WP maintains two version numbers: (1) the one used during the setup

to do the first load (setup version) and (2) the version of the last aggregated

clue. The first one is shared through the discovery mechanism. The second one

is shared with both Providers and Consumers in HTTP responses. The versioning

is used to improve the WP selection process explained in Section 5.3.6.

5.3.4 Discovering a White Page

In our architecture, when a Consumer joins the Space it relies on a WP to find

information. Hence, the first thing a node needs to do afterwards is discovering

who is the WP in that Space.

To run our proposal, we require a discovery system able to (1) get the Spaces

that a particular node belongs to, (2) identify the WP in the system and its setup

version, and (3) provide additional information about nodes to decide which

one can be the next WP. To implement our architecture, the information about

the nodes must include: battery level, available memory, storage space and the

approximate time passed since the node joined the Space for the last time (to

estimate its reliability).

How to discover the nodes in the Space is transversal to this dissertation.

We could either extend approaches like Universal Plug and Play (UPnP) [142],

Multicast DNS (mDNS) [147] or lmDNS [58] or use HTTP, CoAP [156] and



SECTION 5.3 · ENERGY-AWARE SUPER-PEER ARCHITECTURE 73

DNS together as proposed by Ishaq et al. [56; 57]. In particular, in Section 5.6.5

we use mDNS to evaluate our solution.

Note that we assume that any node in the Space can reach to the other

nodes. In particular, we assume IP addressability (no matter whether the node

is wired or wireless). As a consequence, to use devices from Wireless Sensor

Networks (e.g., Zigbee or 6LoWPAN) as Providers, one should rely on gateways.

5.3.5 Interacting with a White Page

When a node needs to access a piece of information, it asks the WP for the

information about the other devices in the Space. Using this information, the

node can find the owner of the required data and ask it for this information.

In our architecture, Providers and Consumers have additional duties.

Providers. They manage their own semantic information and generate clues

about the information they host. Then, they send these clues to the Space WP.

As a response, they receive the last version of the aggregated clue they have

contributed to. Providers will send their clues to the WP (1) every time a clue is

updated, (2) before the lifetime of a clue expires, or (3) whenever there is a new

WP in the Space with a lower setup version than the one in the Provider. Note

that clues do not change frequently since they represent the type of information

the nodes host rather than the specific data which is constantly generated.

Consumers. When a Consumer needs to get information from the system, it

first needs to find the WP in the Space and use this WP to obtain an aggregated

clue of all the nodes. Then, it processes this aggregated clue to decide which

are the nodes to query. Finally, it sends the query through HTTP requests, one

per provider identified in the previous step.

They perform this process synchronously for the first query and periodically

in an asynchronous manner for the following ones. This period should have an

upper limit to ensure a fresh view of the Space and a lower limit to guarantee

that the WP is not flooded. To adjust the update frequency within these two

limits, we evaluate the frequency of the last 10 requests to that node. Thus,

the view of the Space will be fairly up to date when the Consumer processes the

next query.



74 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

Optimizations for resource constrained devices. Note that Providers will

update the WP with new information and Consumers will periodically check the

WP. Using this approach, the WP reduces the network load and in particular, it

decreases the load for resource constrained devices.

In addition, aggregated clues can be too long for some really limited devices.

As an optimization for such devices, the WP is able to answer specifically the

node to address a query. Thus, these nodes will only maintain a list of the nodes

they should ask for several predefined queries.

5.3.6 Selecting a White Page

Depending on the setup, having a dedicated WP (e.g., a high-end server) can

be too expensive. For example, in a domestic environment, it is not worth

dedicating a full server to be a WP. However, when we have a large setup (e.g.,

a hotel), it is convenient to dedicate a few servers to decrease the load in small

devices.

We have to be able to manage the complexity of a system composed by

heterogeneous devices. For example, making a small device a WP may be inap-

propriate in highly populated environments. On the contrary, having multiple

dedicated servers implies a high management overhead which is unnecessary

in simple environments. Our architecture is flexible and any node can be a

Provider, a Consumer, a WP or any of them at the same time.

When does the WP selection start? The selection process can start (1) when

no WP is available or (2) when the current WP gets a worse score than other

nodes. In the first case, the first node to realize there is no WP starts the

selection process. In the second case, the current WP periodically checks if

there is another node with a better score. If this actually happens, it starts

the process. We limit the frequency for this checking to avoid the overhead

associated with this change.

How to select a WP? The node in charge of selecting a WP retrieves inform-

ation of available nodes using the discovery mechanism. It ranks them, selects

the top one, and informs it that it should become a WP. If a selected node

rejects the new role, the selector chooses the next one on the ranking.



SECTION 5.3 · ENERGY-AWARE SUPER-PEER ARCHITECTURE 75

The node in charge of the selection sends its aggregated clue to the new

WP. If this aggregated clue is fresher than the one in the WP, the WP will

use this one. Otherwise, the WP will use its own. In case there is no previous

aggregated clue, the new WP will start from scratch (version to -1). Once

the node becomes the new WP, it notifies the version used to initialize the

discovery system. Doing so, Providers will realize if they must send their clue

again because it is not included in the aggregation provided by the WP.

Note that the discovery mechanism must provide the following information

about each node in the Space to the selection algorithm: (1) memory of the

device, (2) storage capacity of the device, (3) time since it joined the Space,

and (4) its battery charge. We use the algorithm detailed in Listing 1 to rank

the nodes.

1: nodes← f il terthreshold(nodes, “memor y ′′, thresholdmemor y)
2: nodes← f il terthreshold(nodes, “storage′′, totalnodes × storage_neededavg)
3: if anyWith(nodes, bat ter yin f ini te) then

4: nodes← f il ter(nodes, “bat ter y ′′, bat ter yin f ini te)
5: nodes← orderB y(nodes, “bat ter y ′′)
6: else

7: if anyGreaterThan(nodes, “ joined_since′′, joinedthreashold) then

8: nodes← f il terscore(nodes, “ joined_since′′)
9: end if

10: nodes← f il terscore(candidates, “bat ter y ′′)
11: nodes← orderB y(nodes, “memor y ′′)
12: end if

13: return nodes

Listing 1: White Page selection algorithm.

Lines 1 and 2 of the algorithm apply filters based on thresholds. In par-

ticular, the second threshold is variable and depends on the number of nodes

(more nodes will generate more clues to store). After that, we check the power

availability of the devices. We first select the nodes connected to the power

grid (represented by Bat ter yin f ini te). If there are not devices connected to the

electrical grid, we select devices which are steady enough to apply a filter by



76 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

joined_since field. Filters in lines 8 and 10 choose nodes with z-scores higher

than one for the specified fields. If no node fits that filter, it returns the nodes

with values higher or equal to the mean.

Summarizing, the algorithm prioritizes energy autonomous nodes and within

the nodes with battery limitations, it prefers steady ones. In both cases, it finally

selects a node with enough storage and memory (including mobile devices).

Due to out-of-date information, two nodes may become WPs at the same

time. Our solution would eventually correct this situation thanks to a conflict

resolution algorithm. When a WP A detects another WP B in the Space, it has

to check which one has a better score according to Listing 1. If B has a better

rank, A simply resigns as WP and notifies it to the discovery system. Otherwise,

it forces B to resign through an HTTP invocation. Other nodes will be aware of

these changes through the discovery mechanism.

5.4 Shared clues

As we introduced before, WPs host clues about the information in the Space.

Using a clue, a Consumer can find which node (or nodes) is the Provider of a

piece of information. Providers generate these clues by digesting the semantic

information they store.

Thanks to these clues, resource constrained devices do not have to process

unnecessary requests. We also limit the length of the clues to reduce the band-

width, the memory, and the storage overhead on these devices.

This section describes in detail these clues, the information they contain and

their format.

5.4.1 Querying basics

A Consumer directly queries the information to the selected Providers. This

selection is done using the clues described in the rest of this Section. However,

in this section we explain how Consumers directly query for information to the

selected Providers.



SECTION 5.4 · SHARED CLUES 77

We assume that Providers offer an HTTP API which accepts queries. Whether

this API redirects the requests to the RDF graph which describes a specific re-

source, it creates a response with RDF triples belonging to different resources or

it offers hyperlinks to the relevant graphs is transversal to our solution. There

is only one requirement regarding this API: all the Consumers and Providers

must agree on it. In the context of this thesis, this API corresponds with the one

defined in Chapter 4.

To perform the queries, which enable the selection of a subset of the se-

mantic content hold in a given Space, we require a template. We assume the

use of wildcard templates, which are special triples with optional wildcard sub-

ject, predicate and/or object (see Figure 5.2). We could use more sophisticated

query languages (e.g., SPARQL Protocol and RDF Query Language (SPARQL)

[162]), but processing them may be too demanding for devices with con-

strained capabilities. On the other hand, simple wildcard templates can be

managed by any node able to manage RDF triples. In any case, complex quer-

ies can be decomposed into wildcard templates and our solution would still

apply.

5.4.2 Content of a clue

To find out which is the most appropriate solution for UbiComp scenarios, we

have to consider scenarios populated by mobile devices and sensors. Mobile

devices usually share data which rarely changes and is described using a few on-

tologies (e.g., the user profile and his preferences). On the other hand, sensors

are constantly generating new instances of the same ontology (also called indi-

viduals). In both cases, the data shared by each node is described according to

one or few vocabularies or taxonomies.

At this point, it is important to define the TBox and ABox concepts following

the definition of Nardi and Brachman [84]. TBox contains knowledge describ-

ing general properties of concepts or terminology and ABox contains knowledge

specific to the individuals of the domain of discourse. An example of TBox in-

formation is the device type or the elements which is made of, while ABox can

describe the mobile phone brand or the temperature sensed by a thermometer.



78 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

ssn:Observation

weather:RainfallObservation

rdfs:subClassOf

ex:observation_001rdf:type

?s                                    rdf:type                 weather:RainfallObservation
ex:sensor_003                ssn:observes        ?o
ex:observation_001        ?p                          ?o

ex:sensor_003

ssn:observedBy

sweet:Rainfall

ssn:observes
ssn:Sensor

rdf:type

Figure 5.2: Sample triples and query templates .

The top of the figure shows some sample triples. It highlights the different parts used for each

type of clue: the information used in class-based clues in orange, the prefix-based clues in blue,

and the predicate-based clues in brown. The bottom shows query template examples for these

triples.

Each mobile device or sensor usually generates ABox according to the same

TBox. Using this information, we propose avoiding the use of URIs which rep-

resent ABox information in general terms. Specifically, we propose and evaluate

three possible type of clues to share.

Prefix-based clue. The individuals (ABox) are described according to different

ontologies (TBox). Each ontology usually employs a common namespace. This

means that the URIs of the concepts in these ontologies share a unique prefix.

Furthermore, each Provider uses a few prefixes to generate the URIs of its indi-

viduals. In this type of clue, we propose a coarse-grained method to filter nodes

which do not have individuals with the prefixes used by the query template. To

create prefix-based clues, the Providers have to extract the prefixes used in their

graphs.

Following the example in Figure 5.2, a Provider P may have that graph.

Thanks to the clues, the Consumer knows that P has URIs starting with sweet,

ssn, ex and weather. Consequently, it will send to P a query which uses any

of the templates shown in Figure 5.2. On the contrary, if the template is ?s



SECTION 5.4 · SHARED CLUES 79

pref2:sth ?o, it will avoid sending the template to P.

Predicate-based clue. The predicates relate subjects with other subjects or

literals. These predicates are defined in the TBox (e.g., to state they relate

concept A with concept B) and used in each triple of the ABox. In this approach,

we propose extracting the set of predicates used in the graphs stored by each

node. Using this information, they can be simply matched with the predicate

defined in the query template.

Class-based clue. In the third approach, we propose sharing the classes of con-

cepts (rdf:type) provided by the nodes. Using this information and the TBox,

each node can check if the information matching certain query template is sus-

ceptible to be stored in other nodes. For this kind of clues, we assume that each

node should have (or be able to obtain) the TBox related to the template used

for querying. This is a reasonable assumption since the ontologies which mainly

describe the TBox are usually accessible on the URL described by its prefix.

To understand how it works, consider that, according to the TBox, a predic-

ate p relates the concept A with another concept. We assume that the nodes

storing instances of the class A are more likely to use this predicate in their

graphs. Therefore, if a query template uses that predicate, we will send it to all

nodes storing instances of the class A.

5.4.3 Reasoning to expand clues

Through a reasoning process one can know unstated knowledge. Using this

knowledge, we can detect more relevant nodes. For example, let us consider

the previous example where the class A defines the predicate p. Providing that

C is a subclass of A, a node which has many instances of the class C, may also

use the predicate p. Thanks to the reasoning, we can discover that the node

has knowledge of the type A and therefore, it may be relevant. The drawback,

is that reasoning consumes a lot of resources. This limitation will be further

analysed in Section 5.6.1.



80 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

5.4.4 Use of ABox in clues

As stated before, in general terms, we want to avoid the use of ABox URIs (in-

dividuals) in our clues. Thus, we fulfil two goals: (1) generate smaller clues

and (2) the clues will not change too frequently and therefore, less communic-

ation to update clues will be required. However, in some cases, the use of ABox

content in the clues may be beneficial. For instance, assume a URI that refers to

the specific location L. If we want to search for devices in location L, we cannot

deduce anything about it using the proposed clues.

For this reason, we need to consider sharing the N most queried individuals

in our clues. To do that, the WP needs to store a list with the statistics about the

information collected by each Consumer. Consumers can send this information

together with the request to update a clue. Providers can obtain a list of the

current most popular URIs before sending their updated clues to the WP. Using

this list, Providers can know if they have these URIs and include them in the

clue to be sent to the WP. Note that this process would imply an extra request

per Provider before each update.

This simple approach implies sending not only TBox but also ABox. The

amount of extra information added to each clue will depend on the size of this

list (N). The effectiveness of this method will depend on the number of queries

using one of the N URIs in their subjects or objects.

5.4.5 Format

Many formats to represent the content of a clue can be used. One option is

the ongoing Efficient XML Interchange (EXI) format [157]. EXI is designed to

efficiently interchange XML data and therefore, we could obtain better com-

pression rates than with JavaScript Object Notation (JSON). However, we have

chosen JSON for its simplicity and its wide adoption in the WWW.

The prefix-based clue is the easiest one to represent in JSON since it is

formed by a set of URIs. We can also represent the predicate-based and the

class-based clues using a set of URIs. However, the prefixes of those URIs are

usually repeated and for this reason, we do not use plain URIs transmission for



SECTION 5.5 · EXPERIMENTAL ENVIRONMENT 81

these clues. We show an example in Listing 2. It first defines the prefixes used

and gives them a name and then, it specifies the URI endings for each prefix.

1 {
2 "s": [
3 [ "so", "http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#" ]
4 ],
5 "p": {
6 "so": ["result", "procedure", "observedProperty", "samplingTime"]
7 }
8 }

Listing 2: Representation of a predicate-based clue in JSON. The node send-

ing the clue has RDF triples which use the predicates so:result, so:procedure,

so:observedProperty and so:samplingTime.

These are isolated clues sent from a Provider to the WP. However, the WP

gathers all these clues in an aggregated clue which is sent to the Consumer.

We show an example of an aggregated clue in Listing 3. As one can see, the

aggregated clue defines the type of clues wrapped through the numeric field i. G

and v form the version of this aggregated clue. The field s defines the prefixes.

Finally, for each node, each prefix is related with the URI endings.

5.5 Experimental environment
We use simulation to study the performance of our solution and compare it

against a flooding-based one. Using a simulation, we can evaluate multiple

scenarios and repeat experiments for different approaches under the same con-

ditions. The source code for the evaluation has been made publicly available1.

5.5.1 Methodology

Table 5.2 shows the main parameters of our simulator. We vary these paramet-

ers to simulate a wide range of scenarios.

1http://gomezgoiri.net/files/code/gomezgoiri2014energy.html

http://gomezgoiri.net/files/code/gomezgoiri2014energy.html


82 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

Table 5.2: Configuration parameters.

Name Description

Network size The number of nodes in a network. In the

simulations conducted, all the nodes are Pro-
viders.

Number of writes Amount of writes performed during the sim-

ulation period.

Number of queries Amount of queries performed during the sim-

ulation period.

Number of Consumers Amount of nodes querying to other nodes in

the Space.

Distribution strategy Our solution or negative broadcasting (NB).

In NB nodes write locally and spread the

queries to the rest of the nodes in the Space.

Drop interval At the beginning of this interval a node ab-

ruptly leaves the network.

At the end, the node joins the network and a

new one is chosen to leave it.



SECTION 5.5 · EXPERIMENTAL ENVIRONMENT 83

1 {
2 "i": 1,
3 "g": 2435467,
4 "v": 556,
5 "s": [
6 ["dc", "http://purl.org/dc/elements/1.1/"],
7 ["dul","http://www.loa.istc.cnr.it/ontologies/DUL.owl#"],
8 ["ssn", "http://purl.oclc.org/NET/ssnx/ssn#"] ],
9 "p": {

10 "node1": {
11 "ssn": ["observedBy", "observationResult"],
12 "dul": ["isClassifiedBy"]
13 },
14 "node0": {
15 "ssn": ["observes"],
16 "dc": ["description"]
17 }
18 }
19 }

Listing 3: Representation of an aggregated clue in JSON. Line 2 defines that it

embeds predicate clues (i.e., type 1). Lines 3 and 4, contain the version of the ag-

gregated clue. The remaining lines express the predicates used by two nodes. For

example, Node1 has at least a RDF triple which uses the predicate ssn:observedBy.

As we simulate HTTP, we assume point to point communication between

devices which exchange RDF Triples. We discuss how the discovery process af-

fects the solution in Section 5.6.4. In the remaining sections, the node discovery

process is omitted as it represents the same overhead for all strategies.

To represent the data managed by each node, we use data from diverse

sensor network environments. These data follow the Semantic Sensor Network

Ontology (SSN) [163]. SSN has been used in many projects and scenarios to

describe semantically the data provided by heterogeneous sensors. Specific-

ally, we use data from the following datasets: AEMET metereological dataset

[117], University of Luebeck Wisebed Sensor Readings [141], Kno.e.sis Linked

Sensor Data [129] and Bizkaisense [119]. These datasets contain descriptions



84 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

Table 5.3: Technical characteristics of the assessed devices.

Device Processor RAM Reference

XBee - 8 MB [122]
FoxG20 400Mhz Atmel ARM9 64 MB [126]
Samsung Galaxy Tab 1 GHz Cortex-A8 512 MB [135]
Regular computer 2.26 GHz Intel Core 2 Duo 4 GB -

about the sensing stations and the data sensed by them during certain periods.

The analogy between stations which have different sensors and the IoT devices

is reasonable. The datasets are adapted to provide just one measure of each

sensor at each moment (to emulate the storage restrictions from embedded

devices) and to use as many stations as nodes has the network (depending on

the network size).

However, not only sensors but also personal devices (e.g., mobile phones)

usually populate UbiComp environments. To represent such circumstance, we

add semantic data of people to represent their profiles [136].

We use SimPy [138] to simulate each scenario. SimPy is a process-based

discrete-event simulation language for Python. To accurately simulate the time

needed by each node to provide a response, we consider measures taken from

real embedded web servers [46]. These servers run on a ConnectPort X2 IP

gateway [122] for Digi’s XBee sensors [123] (XBee from now on), on a FoxG20

[126] and on a Samsung Galaxy Tab [135]. We also provide measures taken

from a regular computer. Table 5.3 shows the technical specifications of these

devices.

These devices serve semantic content through HTTP. Table 5.4 shows the

platforms and libraries used in each device to implement such servers.

Finally, Table 5.5 details the time needed by each device to answer a request

depending on the number of concurrent requests. As mentioned, the next sec-

tion’s simulations are parametrized according to these measures.



SECTION 5.5 · EXPERIMENTAL ENVIRONMENT 85

Table 5.4: Core libraries used in the semantic HTTP server implementations.

Device
Platform

REST libraries
Semantic

version libraries

XBee Python 2.4 [131] Python Std Lib None

FoxG20 Python 2.5 Python Std Lib RDFLib [133]
Samsung Galaxy Tab Android 2.2 [118] Restlet [134] Sesame [137]
Regular computer Java SE 6.0 [127] Restlet Rdf2Go (Sesame)

[132]

Table 5.5: Response times for web servers running in different devices and provid-

ing semantic content.

Each provider replies from 1 to 15 concurrent requests. The response times’ means and the

standard deviations (in parenthesis) are measured in milliseconds.

Devices

Concurrent
XBee FoxG20

Samsung Regular

requests Galaxy tab computer

1 77 (1) 17 (0) 223 (349) 5 (1)

5 392 (8) 97 (16) 256 (76) 8 (4)

10 775 (8) 174 (28) 372 (171) 13 (8)

15 - 282 (43) 497 (191) 18 (13)



86 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

5.5.2 Performance metrics

To evaluate the fundamental properties of the strategies, we use the following

metrics:

• Precision: the fraction of nodes which answered relevant results (those

responses which were not not found responses). It measures the exactness

of the results.

• Recall: the fraction of relevant answers that are returned. It measures the

completeness of the results.

• Size: the size of each type of clue.

• Total requests: the number of HTTP requests performed during a simula-

tion.

• Response time: the average time needed to obtain an HTTP response.

• Active time: the total time spent by each node either querying other nodes

or handling a query.

5.6 Evaluation

5.6.1 Types of clues shared

As presented in Section 5.4, the type of clue used will affect (1) the preci-

sion and recall to find the nodes with the appropriate information; and (2) the

amount of information to transfer over the network (both requests and re-

sponses) and nodes have to process. Increasing precision reduces the number of

unsuccessful requests to handle and thus, it reduces the energy consumption.

Similarly, sending more information over the network implies more processing

time and more energy consumption.

Precision and recall. We evaluate the precision and the recall of the proposed

algorithm in a network of 470 nodes issuing the query templates shown in

Table 5.6. In average, the nodes manage instances belonging to 6.34 different



SECTION 5.6 · EVALUATION 87

classes (standard deviation, SD = 1.31) among a total of 17 distinct classes in

the Space. The distinct predicates managed by each node in average are 16.01

(SD = 1.53) out of 68 different predicates in the Space.

Table 5.6: Templates used in the evaluation.

Name Template

T1 ?s rdf:type ssn-weather:RainfallObservation
T2 ?s wsg84:long ?o
T3 ?s ssn:observedProperty ?o
T4 bizkaisense:ABANTO ?p ?o
T5 ?s dc:identifier ?o

In Figures 5.3 and 5.4, the class-based clue shows a good precision and

recall for T1 and T2. T1 asks exactly for the information this type of clues

define (i.e., nodes having instances of a certain class). T2 evaluates which

nodes have instances in the domain of the long predicate (SpatialThing). Note

that this works thanks to the RDFS inference because some nodes in the Space

only write Point instances (a subclass of SpatialThing). The domain of T3 and

T5’s predicates could not be inferred just using RDFS inference. Even solving

this limitation, we would expect a bad precision since both predicates relate

very general concepts. In addition, when a class-based clue has no enough

information to predict the nodes, it simply floods the query. This is why the

recall of T4 is high.

We can see a bad prediction for T1 and T4 for predicate-based clues. T1

defines a very common predicate and therefore, it cannot discriminate any

node. T4 suffers the same problem explained for the class-based clues. We

proposed a possible solution for this problem in Section 5.4.4.

Finally, prefix-based clue shows a slightly better precision for T4, since it can

discriminate some nodes not using the bizkaisense prefix. On the other hand,

it obtains marginally worse precision than predicate-based clues for T3 and T5.

This worsening could be greater if few nodes using the prefixes ssn and dc used

the predicates defined in both templates.



88 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

Figure 5.3: Recall for each type of clue.

Figure 5.4: Precision for each type of clue.



SECTION 5.6 · EVALUATION 89

Verbosity. The clues verbosity is also a critical aspect for resource constrained

devices. Figure 5.5 shows a higher variance for prefix-based clues’ length and

lower verbosity of class based clues. This is because the nodes virtually have

a different number of sensors. In addition, the links to concepts of other on-

tologies vary within the datasets used in the parametrization. In any case, the

diagram shows a similar verbosity for all the clues for the semantic content

considered in this evaluation.

Bytes

Figure 5.5: Length for types of clues.

Summary. Class-based clues are useful for templates asking for a specific type

of content. However, they still require inference to obtain a good precision. In

Gómez-Goiri et al. [46], we tested the inference process on the devices and

data used in this simulation. We could not run any reasoner in the ConnectPort

X2 Gateway. Actually, we could only run RDFS reasoners in more powerful

embedded and mobile devices such as the FoxG20 and the Samsung Galaxy

Tab. In the FoxG20, it took 48.9 seconds the first load of all the ontologies

used and 1.4 seconds to reason over each measurement written. In a Samsung

Galaxy Tab, it took 17.3 seconds and 0.2 the following measurement writings.

Considering these results, we can conclude that there is a clear need for efficient



90 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

embedded reasoners. Therefore, the class-based approach is promising but it is

impossible to adopt in current embedded and mobile devices.

Between the predicate-based and prefix-based clues, we propose to use the

predicate-based clues since they subsume much of the information provided by

the prefix-based clues. The rest of the prefixes are referred in the subjects or

the objects. They could be easily added to predicate-based clues on the prefixes

field. In addition to the use of predicate-based clues, we could implement the

solution for the specific individual search proposed in Section 5.4.4.

5.6.2 Network usage

We conduct a simulation study to evaluate the benefits of our solution against

a flooding-based approach (i.e., NB). In addition, to give a more exhaustive

comparison, we implement and test query caching on top of NB. We simulate

multiple nodes that join the same Space as Providers and periodically write new

information to the Space. During one hour, 1 or 100 Consumers perform 1000

queries in total using the templates described in Table 5.6.

As expected, our solution scales much better than the one with NB (Fig-

ure 5.6). However, adding caching to NB works slightly better than our solution

with just one node querying the Space. This is due to the limited amount of dif-

ferent query templates used in the simulation. When we increase the number

of Consumers in the Space, the caching strategy behaves closer to the NB. In

the same situation, our solution handles better an increase on the number of

Consumers in the Space.

In Figure 5.7, we take a closer look to the origin of the traffic of our ap-

proach in a Space with 100 Consumers. The communication between the Pro-

viders and the WP is much more infrequent than the other communication

types. The reason is that writing into a node only results in a clue update

when the structure of the managed information changes. The first time the

metadata about the node (sensor) is written, the second time the first measure

and following writings, just add or replace a measure. Therefore, the clue does

not change after the second step. This matches with the assumption made to

share TBox information in our clues.



SECTION 5.6 · EVALUATION 91

300.000

250.000

200.000

150.000

100.000

50.000

Figure 5.6: Required requests for different search strategies.

Required requests for negative broadcasting (NB), NB with caching with 1 and 100 Consumers

and our solution with 1 and 100 Consumers.

The communication between Consumers and WP is in between the other

two communication patterns. It is greater than the one from Providers to WP

because Consumers need to maintain an updated view of the Space. Recall

that the update time depends on the query frequency of each Consumer. The

maximum and minimum updating frequency were set to 10 and 1 minute(s)

respectively.

The communications between Consumers and Providers assumes most of the

total communications. This shows that the overhead added by the use of WP

on our solution is not significant and it is justified by the reduction of the total

number of communications shown in Figure 5.6.

5.6.3 Energy consumption

Our solution tries to save energy by making Providers handle fewer requests

from Consumers. These savings contrast to the overhead added by the commu-

nication with the WP. However, our results demonstrate that this overhead is



92 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

0 50 100 150 200 250 300

Number of nodes

0

10.000

20.000

30.000

40.000

50.000

Requests
prov-WP cons-WP cons-prov

Figure 5.7: Requests between roles in our solution.

The Space evaluated has 100 Consumers and from 105 to 295 nodes in total (including the

Consumers). “Prov-WP” denotes the communication between Providers and the WP, “Cons-WP”

the communication between Consumers and the WP, and “Cons-Prov” Consumers’ requests to

Providers.



SECTION 5.6 · EVALUATION 93

small in comparison to the total number of communications.

The energy consumption in mobile and embedded devices increases each

time a device needs to process something or communicate with another node

(see Figure 5.8). To analyse how communications impact their energy autonomy,

we have to consider not only the number of communications but also their time

length (see Table 5.5). For example, a mobile phone will consume less energy

asking clues to a server than asking them to an embedded device as it has to

wait less for the response.

Figure 5.8: Average power consumption for FoxG20 during different activity peri-

ods.

The experiment consists of 300 nodes joined to a Space running on 1 server,

30 galaxy tabs, 75 FoxG20 and 194 XBees. We increase the number of devices

as their price and capacity decrease. Using this approach, we mimic a typical

Space where cheap devices are more common.

As shown in Figure 5.9, our solution reduces the activity of each device by

more than 5 times compared to negative broadcasting. The diagram on the

right details the average activity for each type of device.

In our solution, we can check how the load moves from the embedded

devices (XBee and FoxG20) to the server (which is indeed chosen as a WP).



94 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

The exceptional activity registered by the Galaxy Tabs is caused by their ex-

tremely high response time. However, we plan to reduce this response time

changing the HTTP library used in our Android implementation.

secondsseconds

Figure 5.9: Activity time for each strategy.

The first part shows the average active time a node spends on each strategy. The second one

shows the active time classified by the type of device each node has run on.

5.6.4 Performance in dynamic environments

We evaluate the network usage of our solution in ordinary situations in sec-

tions 5.6.2 and 5.6.3. Nevertheless, we do not evaluate scenarios where the

nodes frequently join and leave the Space. In such situation, the communica-

tion needed to manage the clues might be a burden.

To assess the effect of dynamic networks on the performance of our solu-

tion, we used the scenario presented in Section 5.6.3, Then, we simulate nodes

joining and leaving the Space at different intervals: 30 seconds, 1 minute, 5

minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes. Particularly, for

our solution, we tested the most harmful situation: the node leaving the Space

abruptly is always the WP. We also added an scenario with no drops as a

baseline. Note that we represent this scenario by configuring the drop-interval

with a greater value than the simulation time.



SECTION 5.6 · EVALUATION 95

300.000

250.000

200.000

150.000

100.000

50.000

16.000

14.000

12.000

10.000

8.000

6.000

4.000

2.000

Figure 5.10: Effects of dynamic scenarios in our solution.

Note that the last interval in the x-axis represents a simulation with no drops.

In Figure 5.10, we see the results of these simulations. These results show

that even in such dynamic situations, our solution requires fewer communic-

ations than negative broadcasting. In our solution, most of the communica-

tions are between Consumers and Providers. To evaluate the overhead added

by our solution, the graphic on the right hand side shows the communications

involving WPs.

We can appreciate that the updates on Consumers are independent of the

number of times the WP changes. We can also see a minimal change between

the scenario where the WP is always available and the one with 5 minutes drop-

interval. In this case, when the WP drops, many Consumers have the latest

version of the aggregated clue. This situation increases the chances of getting

an updated version for the initialization of the new WP (see Section 5.3.6).

Thus, it reduces the number of messages from Providers to the new WP.

5.6.5 Effects on discovery mechanisms

We want to prove the feasibility of our solution using a common discovery

mechanism. To that end, we simulate the behaviour of the mDNS and DNS

service discovery (DNS-SD) [146] protocols. Both protocols are based on the



96 CHAPTER 5 · SEARCHING IN A DISTRIBUTED SPACE

well known and widely accepted DNS. DNS associates different pieces of in-

formation (i.e., records) with domain names in a distributed manner.

On the one hand, DNS-SD proposes a new use for DNS’s TXT records. The

TXT record was originally intended to associate an arbitrary human-readable

text with a domain name. DNS-SD proposes to use this type of record, to share

key-value pairs in its data field. We use these key-value pairs to share the

information needed by the selection algorithm among the nodes.

On the other hand, mDNS defines how this and other records are shared

through UDP multicast (or unicast in certain situations). We ignore the cost

of browsing the nodes to discover new nodes because it is the same for both

strategies. However, note that as explained above, our strategy does differ from

negative broadcasting in the use of TXT records.

The nodes announce records during the start up or whenever they have a

resource record with new data. Therefore, each time a record is updated, we

send a multicast message that increases the network traffic. In our solution the

TXT record may change (1) when a new WP is selected or (2) when we update

the time elapsed since it joined the Space and its battery charge level. The last

two parameters need to be updated to select an appropriate WP but they do

not need to change too frequently.

In the most static scenario the TXT record is written only once. The more

dynamic scenario from the previous section, on the contrary, updates that re-

cord 126 times after writing it for the first time. This demonstrates that the

overhead generated on the discovery system by our solution is minimal even in

the worst-case scenario.

5.7 Summary

This chapter presented a dynamic architecture to enhance the search of se-

mantic contents in the Web of Things. In particular, this architecture chooses

an intermediary according to its capabilities to support resource constrained

devices. Intermediaries can use different types of clues to summarize the in-

formation in the semantic Space. Thanks to this support, the devices can directly



SECTION 5.7 · SUMMARY 97

interrogate others to obtain fresh information while reducing their semantic

overhead.

The main characteristic of our solution is the ability of the devices to share

semantic data directly, no matter how simple they are. Under this assump-

tion, a flooding-based strategy would obtain a high recall. However, our eval-

uation shows that our solution requires fewer messages between devices than

a flooding-based strategy (i.e., is far more precise). Even if we use caching

strategies to alleviate these effects, our solution performs better for scenarios

with more data consumers and query types. In addition, our approach reduces

the workload of mobile and embedded devices which indirectly results into

energy savings.

For our future work, we will consider allowing more expressive query lan-

guages such as SPARQL. This would force Consumers to discriminate between

the Providers able to process it and the rest. On top of these queries, we could

use query optimization techniques in the Consumers [101]. Using these tech-

niques, we could transform the queries before sending them to (a) obtain better

results or (b) use the network more efficiently.





If you live among wolves you have

to act like a wolf.

Nikita Khrushchev

CHAPTER

6
Remote actuation

In the previous chapter, we presented an energy-aware technique to search

on the completely distributed semantic space. However, acting over an UbiComp

environment is as important as observing what happens on it. Although this

dissertation describes this problem less thoroughly, we consider interesting to

discuss it to provide the complete story.

This chapter presents and compares two techniques to change the physical

environment. The first technique is based on common TS usage patterns while

the second one relies on semantically described REST services to create a plan

to fulfil a given goal. The rest of this chapter refers to them as Space-based

actuation and REST actuation respectively.

Note that the second actuation technique is out the scope of the space-based

communication covered in this dissertation. However, the seamless integration

of these REST services opens the door to reuse the capabilities of many exist-

ing devices. Therefore, we propose reusing the HTTP APIs of already existing

semantically described providers.

This chapter explores this reuse helped by a simple real-world scenario. The

goal of the scenario is to remotely change the light of a lamp.



100 CHAPTER 6 · REMOTE ACTUATION

This chapter is organized as follows. Sections 6.1 and 6.2 present the two

techniques and their corresponding implementations of the baseline scenario1.

Section 6.3 compares these techniques and explores how they can interoper-

ate. This exploration is done by means of a new implementation1 which re-

uses much of the implementations from sections 6.1 and 6.2. After that, Sec-

tion 6.4 discusses the advantages and limitations of the previous implementa-

tion presenting further implementation alternatives. Finally, Section 6.5 con-

cludes the chapter.

6.1 Space-based actuation
This section presents the first technique to change the physical environment.

That technique is space-based, i.e., participants coordinate by reading and writ-

ing into a shared Space. This encourages an uncoupled communication between

applications using the same Space.

Section 6.1.1 briefly describes Tuple Space’s most common application pat-

terns and discusses which ones are suitable for UbiComp environments. These

patterns constitute the base of what we called Space-based actuation. Sec-

tion 6.1.2 presents the Space-based actuation’s core requirement: a subscrip-

tion mechanism. Finally, Section 6.1.3 explains how to implement the baseline

scenario according to the space usage patterns.

6.1.1 Background

According to Freeman et al. [29], there are four main application patterns

which can be used in TS:

Replicated-worker pattern. In this pattern, there is a master process and

many worker processes able to compute the same task. The master takes a

problem, divides it into smaller tasks, and writes these tasks into the space.

Any available worker takes a task, processes it, and writes the result back

1 The implementations of the baseline scenario have been made public at https://
github.com/gomezgoiri/reusingWebActuatorsFromSemanticSpace.

https://github.com/gomezgoiri/reusingWebActuatorsFromSemanticSpace
https://github.com/gomezgoiri/reusingWebActuatorsFromSemanticSpace


SECTION 6.1 · SPACE-BASED ACTUATION 101

into the space. When all the workers have written their results, the master

takes these results and combines them into a meaningful merged solution.

This pattern is scalable and naturally balances the load on the space.

Command pattern. This pattern encapsulates the behaviour into the tuples

shared in the space. Therefore, it requires (1) to share behaviour through

the space, and (2) any generic worker to be able to compute the behaviour.

Marketplace pattern. In this pattern, producers (or sellers) and consumers

(or buyers) of resources interact to find the best deal.

Specialist patterns. In contrast to the replicated-worker pattern, in this pat-

tern, each worker is specialized. Therefore, each worker performs a particu-

lar task. Freeman et al. enumerate three subtypes:

Blackboard pattern. It associates the concept of the space to a blackboard.

Following this analogy, the master is associated with a teacher, tasks with

problems and the specialized workers with students. The blackboard pat-

tern starts when the teacher writes a problem in the blackboard. The stu-

dents observe the space and write their intention to contribute to solve

the problem (i.e., raise their hands). The teacher selects an expert which

will make a modification. After the modification, the teacher decides if it

has found the solution or another student should contribute.

Trellis pattern. In this pattern, the master arranges the problem into low-

level, mid-level, and high-level pieces. The workers of each level benefit

from the refined data provided by the immediate level below.

Collaborative patterns. It encompasses all the patterns which allow nodes

to collaborate to complete a greater task (i.e., by creating a workflow).

To summarize, the replicated-worker pattern is centred in optimizing the

computation by parallelising tasks. The command pattern can be seen as an

abstraction of the latter where the behaviour is shipped in the tuples. The

marketplace pattern allows negotiation of two entities through the space. Fi-

nally, the specialist pattern allows nodes with distinct capabilities to cooperate

towards a common goal.



102 CHAPTER 6 · REMOTE ACTUATION

Regarding the application of these patterns to UbiComp, we observed that:

• Devices in UbiComp often serve to very specific and local needs. For ex-

ample, let us imagine a mobile phone showing a message or an embedded

device turning on the air conditioning of a room.

• These tasks are usually lightweight. They intent to achieve concrete and

simple goals which usually imply more I/O operations than processing

ones.

Therefore, UbiComp generally faces a problem of collaboration between nodes

with different capabilities. In this problem, computation or negotiation aspects

are secondary. Consequently, we believe that the specialist patterns fit UbiComp

needs best.

6.1.2 Notification mechanism

In the patterns described in the previous section, some writings in the space

trigger other node’s action. For example, a device might show a message

whenever a new warning is written into the space. To be aware of these writ-

ings, the node can either poll the space or rely on a notification mechanism.

Obviously, the later leads to a more efficient use of the network.

As a consequence, a notification mechanism is highly advisable to fulfil TS’s

application patterns in a distributed environment. Although the implementa-

tion of this notification mechanism is beyond the scope of this thesis, it should

comply with the following aspects:

• Do not substitute the pull-based search. The middleware must provide

additional read and take primitives.

• Since the notification mechanism intends to allow coordination patterns,

it must consider the knowledge from the coordination space. In other

words, knowledge from the outer space will not trigger notifications.

• The evaluation of the subscriptions must not interfere with the writing

process (e.g., introducing a delay). Therefore, it must run asynchron-

ously.



SECTION 6.1 · SPACE-BASED ACTUATION 103

• Ease its adoption by any type of computing platform. This can be achieved

by reducing the requirements on the clients. For instance, a callback URL

passed during the subscription can represent a minimal contract between

the client and the server.

• Provide additional subscription removal mechanisms. UbiComp scenarios

are composed by unreliable devices which may frequently join and leave

the space. In this situation, the correct use of unsubscription primitives

cannot be guaranteed. This may worsen the performance of the system

with useless subscriptions from absent devices. Therefore, the device

managing the subscriptions should adopt more proactive mechanisms.

For example, it may let the subscriptions expire after a lifetime or remove

them when it discovers the unavailability of a callback URL.

The main drawback of any subscription mechanism is that it breaks the

Stateless property of the REST style. According to Section 4.5.2, this implies

that network performance will improve at the cost of scalability, simplicity and

reliability.

6.1.3 Baseline scenario: Implementation 1

This section describes how to implement the baseline scenario using the Space-

based actuation. The implementation presents the following nodes:

(A) A node which reacts to the tasks written into a shared semantic space.

The node running this implementation is aware of the tasks written into

the space and changes the light’s value accordingly. Figure 6.1(a) shows

the initialisation of this node and the process performed when a graph is

detected.

(B) A node which writes tasks into a shared semantic space describing its

desire to change the light’s value. Figure 6.1(b) shows the actions taken

by this node. As it can be seen, the process is divided in two temporarily

independent processes. The first writes the task and the second processes

the result whenever it is written into the space.



104 CHAPTER 6 · REMOTE ACTUATION

(a) Node A (b) Node B

Figure 6.1: Flow charts for Node A and Node B

Node A first subscribes to changes in the space (see Listing 4). Then, Node

B writes a task to be performed (see Listing 5) and subscribes to its result. As

a consequence of the writing, Node A reacts by taking the task, interpreting it,

changing the environment through its actuator and writing the result. Finally,

Node B gets a notification of the written result, takes it and processes it.

1 select ?value where{
2 ?observation a frap:Preference ;
3 a ssn:ObservationValue ;
4 dul:isClassifiedBy ucum:lux ;
5 dul:hasDataValue ?value .
6 }

Listing 4: Subscription to light preferences written into the space.

To simplify the implementation of the scenario, we consider a purely cent-

ralized space with a subscription mechanism. This mechanism uses SPARQL

[162] and defines two different primitives. The first one takes into account the

knowledge from the last graph written to trigger the notifications. The second

primitive considers the knowledge from the whole space and hence is more

computationally costly.



SECTION 6.1 · SPACE-BASED ACTUATION 105

1 :obsv a ssn:ObservationValue, frap:Preference ;
2 dul:isClassifiedBy ucum:lux ;
3 dul:hasDataValue 21 .

Listing 5: Task to set the light level in a space. Note that the preference is concep-

tually equivalent to a task.

6.1.3.1 Actuation modelling

The most abstract way to actuate on the environment would be to invoke a

change referring to the sensed values. For example, stating “set Room A’s light-

level to 19 luxes”. This would require the coordination of all the actuators

which directly or indirectly affect this value. Following the example, the lamps

in Room A and the curtains of Room A’s windows should coordinate to give the

exact desired value.

Even in this case, many other physical aspects would affect the value. For in-

stance, the daylight at each time of the day or the location of the light sensor. As

a consequence, we opt for clearly distinguishing between actuators and sensors.

In our implementations, the data measured by the sensors can only be indirectly

affected by the actuators.

These indirect effects on the sensed values can be modelled for each actu-

ator. For example, to state that switching on a lamp increases the light meas-

ured by a sensor. However, precisely anticipating the exact value of the new

measure is difficult if not impossible due to the mentioned external physical

conditions. Considering this difficulty to predict their relationship and its tan-

gential importance for the baseline scenario’s implementations, we simply ig-

nore these relationships. We assume that the consumer previously determined

which actuators it should change to fulfil its initial abstract goal.

6.1.3.2 Ontologies used

The glue between the two actuation worlds presented in this chapter is their

data. Therefore, the implementations presented in this chapter represent the

environment according to the same ontologies. This section provides the ra-

tionale behind the selection of the ontologies used.



106 CHAPTER 6 · REMOTE ACTUATION

To represent the value of a lamp actuator, we use the SSN ontology [163].

For example, we express that “the lamp actuator has a light value of N luxes”.

The SSN ontology is intended to describe measures for sensors, so its use for ac-

tuators can sound contradictory. Note how the previous statement differs from

“the light sensed by a sensor located near the lamp has a value of N luxes”.

However, to the best of our knowledge, there is no more widely-accepted onto-

logy to specifically describe actuators.

The preferences ontology is another core ontology used in our implement-

ations. It is used to clearly distinguish between the value of an actuator and a

consumer’s intention or desire to change it. A preference can turn into an actu-

ator’s new state, but it is not always necessarily true. The actuator can discard

a preference due to an usage policy, a malfunction or any other reason.

6.2 REST actuation
The actuation technique presented in the previous section uses the Space (i.e.,

it is indirect). This technique implies that the actuator must be aware of the

Space’s content. For instance, a heater must check the space to find if a new

desired temperature was written.

In contrast, this section presents a second technique which directly actuates

in the environment without using any Space. A consumer following this tech-

nique directly uses REST APIs. These APIs expose the devices’ capabilities to

make physical changes in the environment.

However, this apparently simple mechanism hides a difficulty: the consumer

needs to discern how to use these APIs to make such changes. According to the

REST principles, a client should navigate through the resources of an API with

no prior knowledge of it. The client should (1) interpret the representations

provided by the server and then (2) choose the appropriate state transition

from the hypertext according to its intention. To do this, this section advocates

for a semantic description of these APIs’ resources.

Section 6.2.1 briefly compares different alternatives to build semantic REST

APIs. Section 6.2.2 presents the selected alternative and Section 6.2.3 imple-

ments the baseline scenario using it.



SECTION 6.2 · REST ACTUATION 107

6.2.1 Background

As Section 4.5.2 explained, semantic representations do not include a native

way to express the hypertext. To solve this, three solutions can be adopted:

1. To use an ontology to represent the hypertext [62].

2. To embed the hypertext independently to the representations on the HTTP

headers [88].

3. To provide a description of the state changes each HTTP request triggers

[108, 109].

The latter two enable to discover resources and state transitions without

adding metadata to the representations. This allows not only to describe se-

mantic representations, but any type of formats.

Nottingham’s [88] approach is extended by Wilde [114] to define how to

embed additional semantics to process a resource representation. Wilde [114]

calls these additional semantics profiles and identifies them using URIs.

Verborgh et al. [109] present a more expressive solution which goes beyond

simply describing a resource type. It also allows to semantically describe the

knowledge needed to use a concrete HTTP verb on a resource, and the content

this request returns. The materialization of this proposal is called RESTdesc

[108]. Mayer and Basler [76] use RESTdesc in an environment populated by

web-powered devices. This environment is analogous to the ones envisioned

by this dissertation.

We consider RESTdesc the best current solution which helps to achieve truly

RESTful APIs. Therefore, this chapter assumes that the HTTP APIs whose cap-

abilities we want to reuse in our space model describe their APIs with RESTdesc.

6.2.2 RESTdesc

RESTdesc describes HTTP methods using rules expressed in the Notation 3 (N3)

language [145]. A rule’s premise expresses the requirements to invoke a REST



108 CHAPTER 6 · REMOTE ACTUATION

service. A rule’s conclusion expresses both the REST call that needs to be made

and the description of that invocation result.

Verborgh et al. [108] suggest three complementary alternatives to discover

descriptions. The first and second alternatives use HTTP mechanisms: content

negotiation and the HTTP OPTIONS verb. Using content negotiation a client

can obtain a dereferenceable link’s representation which corresponds to the de-

scription. Requesting a resource using the HTTP OPTIONS verb a client can

obtain the description in the response body. Finally, the third alternative is not

HTTP-centric and it depends on repositories to store and retrieve the descrip-

tions.

Verborgh et al. [109] propose a service composition mechanism for Web

APIs using RESTdesc. This mechanism uses as inputs: (1) an initial state, (2) a

goal state, (3) Web API descriptions using RESTdesc, and (4) optional back-

ground knowledge. Each of these inputs are semantically expressed and there-

fore, they can be processed by standard N3 reasoners. These reasoners generate

proofs about how to achieve the goal starting from the initial state and using

the rest of the inputs. These proofs can be seen as steps that need to be made

to reach a desired state.

Additionally, Verborgh et al. distinguish between pre-proof and post-proof.

The first, are those which assume that the execution of all API calls will behave

as expected. The latter, can be seen as a revision of the pre-proof. It executes

the Web API of the pre-proofs and uses actual execution results to generate a

new proof.

6.2.3 Baseline scenario: Implementation 2

The proposed implementation for the baseline scenario using RESTdesc presents

the following nodes:

(C) A node which exposes the lamp and its actuators through a REST API.

This API is described using RESTdesc. To physically change the light value,

any client must send an HTTP request to the resource which represents

the light actuator.



SECTION 6.2 · REST ACTUATION 109

(D) A node which directly communicates with the desired provider. To discern

which provider’s resources has to call and how to do it, this implement-

ation reasons to obtain a plan. This plan determines how to fulfil the

node’s initial goal invoking the needed HTTP APIs. Figure 6.2 shows the

actions performed by this node in detail.

Figure 6.2: Flow chart for Node D.



110 CHAPTER 6 · REMOTE ACTUATION

The HTTP API provided by the Node C is modelled using the following re-

sources:

• /lamp: It provides basic information about the lamp.

• /lamp/actuators: It enumerates the actuators which compose the smart

lamp.

• /lamp/actuators/light: It represents the unique actuator which composes

the lamp in our simple example (i.e., the lamp’s light).

• /lamp/actuators/light/01: It represents a concrete preference to change

the light.

To instruct consumers on how to use the services provided, they are annot-

ated using RESTdesc. The HTTP OPTIONS returns listings 7 and 6 for /lamp/ac-

tuators/light. Thanks to these descriptions and to the dereferenceable URIs

[99], starting from /lamp any client can crawl the API to autonomously learn

how to use it.

In addition to the crawled content, the Node D provides two extra pieces of

information to the reasoner: a preference and a goal (see listings 8 and 9). The

preference allows the consumer to express the interest in changing a resource,

which may not always be feasible. The goal drives the reasoning process, which

tries to extract a plan to achieve it.

With this plan, the consumer just needs to call to the different HTTP re-

sources that it defines. If more than a resource needs to be called, the plan also

indicates how to use the information obtained from previous steps, i.e., prior

calls, in the current one.

6.3 Hybrid actuation
The actuation technique presented in Section 6.1 is the natural way of acting

using a Space. However, REST and REST-like services are well-accepted mech-

anisms to expose limited devices’ actuation capabilities [36]. Therefore, their



SECTION 6.3 · HYBRID ACTUATION 111

1 {
2 actuators:light ssn:madeObservation ?light_obs .
3 } => {
4 _:request http:methodName "GET" ;
5 http:requestURI ?light_obs ;
6 #http:body actuators:light ;
7 http:resp [ http:body ?light_obs ].
8

9 ?light_obs a ssn:Observation ;
10 ssn:observedProperty sweet:Light ;
11 ssn:observedBy actuators:light ;
12 ssn:observationResult ?so .
13

14 ?so ssn:hasValue ?ov .
15

16 ?ov a ssn:ObservationValue ;
17 dul:isClassifiedBy ucum:lux ;
18 dul:hasDataValue _:val .
19 }.

Listing 6: Rule which expresses that having a light sensor observation, one can

obtain details about the observation through an HTTP GET.

seamless integration (i.e., interoperation) opens the door to reuse the capab-

ilities of many existing devices. This section aims to integrate semantically

described REST services in our space-based model. That is, mix Space-based

actuation with REST actuation.

Section 6.3.1 compares Space-based actuation and REST actuation and ar-

gues the need of this integration. Then, Section 6.3.2 presents a new imple-

mentation of the baseline scenario. This implementation shows how the Space

can transparently invoke REST services on behalf of any consumer following the

Space-based actuation. To this end, it reuses nodes from the implementations

presented in sections 6.1.3 and 6.2.3.



112 CHAPTER 6 · REMOTE ACTUATION

6.3.1 Comparison

The actuation technique explained in Section 6.1 requires a subscription mech-

anism, but in exchange, it provides space and time decoupling. Obviously, this

decoupling comes at the price of dependency on the Space. That is, two nodes

will not be able to communicate with each other without the Space.

The second approach presented in Section 6.2 offers independence of the

Space: any node can directly invoke a service to act on the environment. This

approach allows reusing WoT applications’ actuation capabilities, providing

they are properly described. This reuse is enabled by a rule-based reasoning

engine.

Table 6.1: Characteristics of the discussed actuation mechanisms.

Actuation
Communication

Benefits
Required

style features

Space-based Indirect Decoupled communication Subscriptions

REST-based Direct Reuse of third-party WoT Rule-based

applications reasoning

The effect of both mechanisms in resource-constrained devices is affected

by their computing and networking activities. In order to analyse these activ-

ities, we measure the time needed to make a change and the total amount of

requests. In addition, as the number of additional actuators in the physical en-

vironment affects these measurements, we consider four additional variations

of the scenarios previously explained. Apart from the scenario with 1 actuator,

we contemplate scenarios with 200, 400, 600, 800 and 1000 actuators.

In order to measure the networking activity, we calculate the total number

of requests performed in each scenario. We assume that each new actuator will

behave exactly as each of the actuators described in Implementation 1 and in

Implementation 2. Consequently, in Space-based actuation each new actuator

writes 2 graphs into the space and in the REST actuation each API is crawled

once. The crawler checks the 5 different calls clients can make to each API



SECTION 6.3 · HYBRID ACTUATION 113

Figure 6.3: Total amount of requests per technique.

(1 HTTP OPTIONS request and 4 HTTP GET requests). Figure 6.3 shows the

estimations for these scenarios.

The number of requests which need to be made per new provider depends

on the parameters previously detailed (i.e. graphs written, times each API is

crawled and calls needed to discover a whole API). As these parameters are

design-dependent, the slopes shown by the Figure 6.3 might vary from one

implementation to another. In any case, the figure shows that none of the

techniques behave in a scalable manner.

In Space-based actuation, all the participants must be aware of what is writ-

ten into the space to react (i.e., they are proactive). Both consumers and pro-

viders read and write from the space, subscribe to specific changes and receive

notifications. Thanks to this specificity, they are only affected by the contents

they are interested in. On the contrary, the Space will be involved in any net-

working activity. Therefore, although it depends on the number of providers

and consumers’ interactions, the networking activity will presumably be high

for the node hosting the Space.

On the other hand, REST actuation requires consumers to have prior know-

ledge about the environment to reason over it. Since this knowledge must

be acquired from remote nodes before reasoning, this approach demands an



114 CHAPTER 6 · REMOTE ACTUATION

extra network usage that the first does not. Therefore, depending on the net-

work size, this technique might not be appropriate for resource-constrained

consumers.

In order to analyse the computation activity in the scenarios’ implementa-

tions, we measure the time needed to run both implementations of the scenario

in a Raspberry Pi (Model B1). In this case, we also contemplate scenarios with

1, 200, 400, 600, 800 and 1000 actuators. The additional actuators represent

smart-heaters and mimic Node A and Node C in each implementation. That is,

in Space-based actuation’s executions each actuator writes 2 graphs (5 triples

in total) and subscribes to temperature preference changes. In the REST actu-

ation’s executions each actuator has an API equivalent to Node C’s API (i.e., 2

rules and 14 triples are exposed). For example, in REST actuation’s executions

with 1000 actuators, Node D reasons over 2000 additional rules and 14000 ad-

ditional triples. Figure 6.4 shows the results of these executions (each case is

executed N=50 times). Note that the time measured (1) only includes the time

Node B and Node D need to make a change in the physical environment (i.e.,

it excludes actuators’ previous writings and subscriptions), and (2) ignores the

delays added by the communication between nodes.

seconds

Figure 6.4: Time needed to make a change in the environment per technique.

1 RAM Memory: 512MB.

CPU: 700 MHz Low Power ARM1176JZ-F Applications Processor.



SECTION 6.3 · HYBRID ACTUATION 115

Figure 6.4 shows that Space-based actuation needs much less time than

REST actuation to make a change. Furthermore, consumers and providers in

Space-based actuation only perform trivial computing tasks: interpreting res-

ults. The space, which corresponds to our solution’s coordination space, will be

in charge of querying and notification mechanisms. The computation activity

in the space varies depending on the complexity of these mechanisms’ imple-

mentation, which is beyond the scope of this dissertation. However, note that

due to the prototype nature of the subscription mechanism implemented, the

Space-based actuation has still room for a great performance improvement in

this metric.

Finally, regarding the time needed to complete REST actuation’s executions,

the consumer spends most of it reasoning. Consequently, from the data con-

sumer perspective, this approach will generally be more energy demanding

than the first one. In contrast, this mechanism demands few things to the pro-

vider: to serve HTTP resources and to provide their descriptions.

Table 6.2: Foreseeable networking and computing impact on the nodes involved

in the actuation mechanism.

Actuation Perspective
Activity

Networking Computation

Space-based

Provider Proactive, limited activity Limited: Results Interpreta-

tion

Consumer Proactive, limited activity Limited: Results Interpreta-

tion

Space Reactive, high activity Varies with the

implementation

REST-based
Provider Reactive, limited activity Limited: Handling requests

Consumer Proactive, high activity Demanding: Reasoning

Table 6.2 summarizes the previous discussion. As can be appreciated, the

providers in the second actuation mechanism are more lightweight. They just

attend to the request received using HTTP. Probably as a consequence of these

few requirements, exposing the actuation capabilities of the limited devices



116 CHAPTER 6 · REMOTE ACTUATION

with HTTP is a consolidated trend. This tendency is backed by the WoT ini-

tiative. To make these web-enabled actuators automatically reusable by con-

sumers, the second mechanism only requires them to describe their resources

semantically. This can be done before deploying them and does not affect to

their usual operation.

From the perspective of our space-based computing solution, reusing the

existing HTTP providers will potentially open a new world of actuation pos-

sibilities. Preferably, we should do it keeping Space-based actuation consumers’

simplicity.

6.3.2 Baseline scenario: Implementation 3

This implementation aims to prove that our space-based middleware can easily

reuse third-party applications’ providers capabilities. It presents the space and

the consumer (i.e., Node B) from the Implementation 1, but it replaces the pro-

vider with the one from the Implementation 2 (i.e., Node C). Both nodes have

a good foundation for the interoperation because they use the same vocabu-

laries. However, the Node C and the Node B rely on different communication

mechanisms: direct communication and indirect communication.

To close the gap between these two worlds, we avoid changing the parti-

cipant node’s implementations. Instead, we create an agent which acts on the

consumers’ behalf. This agent resides in the same machine as the Space, but its

existence must not interfere with the Space one. Therefore, it should run on an

independent process.

The agent takes care of the tasks that Node D does in the Implementation 2:

(1) crawls the discovered APIs1, (2) reasons about their data to get a plan, and

(3) follows the resulting plan performing HTTP requests.

To trigger the reasoning, the agent awaits for new tasks written into the

space. Listing 10 shows the subscription template used by the agent. Providing

that after reasoning the agent does not find a plan to achieve a task, it will

write it into the space again. This way, another node which may know how to

process it may take the task.

1The discovery process is out of the scope of this implementation.



SECTION 6.4 · DISCUSSION 117

Demanding new data from the developer would impede the transparent

reuse of the nodes from Implementation 1 and Implementation 2. Therefore, the

agent reuses all the information pieces that it needs:

• It uses the Node B’s subscription to the task result as a goal for the reason-

ing. In our implementation, this correspondence needs a minimal map-

ping between N3QL [144] and SPARQL [162]. The reason why we use

both languages are the underlying frameworks: EYE [149] and RDFLib

[133].

• The agent uses all the content written into the space as additional know-

ledge for the reasoning process. This is feasible because the agent resides

in the same machine as the space. Otherwise, acquiring this knowledge

through the network would be too consuming both in bandwidth and in

time.

6.4 Discussion
The following points scrutinize the strengths and weaknesses of the previous

implementation and discuss other alternative designs.

6.4.1 Obtaining resource descriptions

The core of the REST actuation are the descriptions of the resources. They

must be read by the nodes willing to actuate prior to reasoning. This action

is performed by the consumer in Implementation 2 and by the agent in Imple-

mentation 3. Both nodes crawl a given API starting from an URL to obtain the

descriptions. The discovery of the initial URLs is out of the scope of this chapter.

Another alternative to discover these descriptions is to make them part of

the clues presented in Chapter 5. This option ensures that they will be available

in any Consumer. Furthermore, the static nature of these descriptions does not

break the clues stability assumption in which our architecture is founded.

In any case, this chapter focuses on the interoperability problem, not on how

to obtain the descriptions. Consequently, for the sake of clarity, we opted for



118 CHAPTER 6 · REMOTE ACTUATION

the more intuitive and common alternative. That is, we assume that a process

crawls the descriptions in the background.

6.4.2 Obtaining background knowledge

In addition to resource descriptions, Verborgh et al.’s actuation mechanism

also requires an initial state and background knowledge as inputs (see Sec-

tion 6.2.2). In Implementation 2, the consumer obtains this knowledge crawl-

ing all the possible APIs. In Implementation 3, we also add all the knowledge

from the space. This is feasible because it is located in the same machine as the

agent which needs it. So, it does not demand any network usage.

However, as explained in Chapter 5, the data in UbiComp changes too fre-

quently to simply crawl it from time to time. Crawling all the APIs each time

a change occurs is also highly inefficient. Hence, the approach used to obtain

knowledge is a simplification.

A possible optimization would be to benefit from the search architecture

presented in Chapter 5. To reduce readings on the space (i.e., network usage),

we propose a procedure composed by two reasoning steps. In the first one, we

only use local incomplete knowledge derived from the clues. Then, we read

from the Space just the knowledge needed to confirm the pre-proofs obtained

in the first reasoning. The second reasoning uses this knowledge to get real

pre-proofs.

Therefore, a node which wants to actuate will need to obtain the clues from

the WP. Let us assume that these clues are composed by the predicates used

by the nodes which provide content. The existence of a predicate used in a

premise does not necessarily imply that this rule can be used. Nevertheless,

its absence does imply that it will not be used (see Figure 6.5). Therefore, we

can create temporary activation rules from clues which activate those potential

rules.

An activation rule for a rule R contains a true in the premise. The conclusion

is made by R’s premise substituting the variables with fictitious URIs with a

common prefix (see Figure 6.5). These fictitious URIs are used to distinguish

when a triple should be replaced by actual knowledge from the space.



SECTION 6.4 · DISCUSSION 119

:pred1
:pred3

1. Clues

{
    ?s1 :pred1 :o1 .
    :o1 :pred3 ?o2 .
} => {
    ?s1 :pred4 ?o2
} .

{
    ?s1 :pred1 :o1 .
    :o1 :pred4 ?o2 .
} => {
    ?s1 :pred5 ?o2
} .

{
    true
} => {
    fp:s1 :pred1 :o1 .
    :o1 :pred3 fp:o2 .
} .

2. Checking rules 3. Creating activation rule

Figure 6.5: Sample clues, rules and the activation rule.

According to the shown clues, the second rule will never be invoked. Consequently, only an

activation rule for the first one is created.

6.4.3 Responsibility for triggering REST actuation

Section 6.2.2 describes two coarse-grained steps to learn how to use web APIs

which use RESTdesc:

1. Reasoning over the descriptions, background knowledge, an initial state

and a goal state. The result of the reasoning process if a pre-proof, which

can be seen as a tentative execution plan to achieve the goal.

2. Check the execution plan by following it.

Implementation 3 opts for triggering the reasoning process when an agent

receives a notification. Previously, it subscribes to any type of task written into

the space.

The reasoning can be performed in any node apart from the one which holds

the Space:

• Any Consumer interested in changing the environment can trigger the

process.

If these Consumers use the search mechanism presented in Chapter 5,

they will have background knowledge about other nodes.



120 CHAPTER 6 · REMOTE ACTUATION

This reduces the dependency on the node providing the coordination

space. However, it requires them to perform tasks such as reasoning and

checking the pre-proofs.

Unfortunately, the first task increases the computation and the second

the network usage. As we already mentioned in previous chapters, these

tasks severely affect to the energy consumption. Furthermore, some con-

strained platforms will not even be able to reason.

• To mitigate this problem, we can delegate this task only on the nodes

able to perform such tasks. In fact, these nodes can follow the replicated-

worker pattern. That is, they can read from the space goals to trigger the

process (i.e., reasoning tasks). Apart from balancing the load between

all the worker nodes, any node can stop being worker at any time by

not taking more tasks (e.g., if it has low energy). These nodes must be

Consumers to use the clues from the search mechanism as background

knowledge.

Although both alternatives avoid the dependency on the Space, the space-

based actuation mechanism intrinsically depends on the Space. Therefore, it

makes sense that the unavailability of the space will cause the unavailability of

actuating on the space. On the contrary, it simplifies the consumers’ responsib-

ilities, which just need to worry about writing a task into the space.

6.4.4 Interoperation weakness

The previous sections presented various alternative designs and their likely im-

pacts on the actuation performance. However, none of them addresses the

interoperability flaws of Implementation 3. In this regard, the simple mapping

between a consumer’s subscription and a goal is probably its most evident in-

teroperability flaw.

In Implementation 3, the consumer subscription to a result and the goal for

the reasoning must match. However, there is no guarantee that the consumer

will always use a subscription which matches with a goal. For instance, the con-

sumer could use a more general subscription and then filter the particular tasks



SECTION 6.5 · SUMMARY 121

it is interested in. Even worse, there is no guarantee that the consumer will

subscribe to any result. Thus, the universality of the proposed alignment can

be easily affected. To avoid this undesired effect, any developer of a consumer

node should bear in mind some good practices.

A more universal approach would be to deduce the goal from the task. For

instance, from a task of regulate temperature to 6◦ C the Space could deduce

the goal state of temperature of 6◦ C. In this case, the mapping should be either

(1) provided by the consumer or (2) pre-set in the space. The first choice

demands to feed the Space with additional information. The second choice

assumes that a predefined ontology must be used or extended by the user to

represent tasks. Therefore, it would limit the freedom of choosing any vocabu-

lary to define a task.

Since this chapter simply wants to remark the potential interoperability of

the presented approaches, we opted for selecting the automatic translation

from a subscription to a goal. The implementation of the rest of the approaches

is left as future work.

6.4.5 Advanced challenges

The scenario used as a guiding example is very basic. Consequently, the shown

interoperation example requires further work to check its feasibility in more

advanced scenarios. We anticipate the following challenges:

• If there are two or more paths to reach a goal, how can we discern which

one to follow? This problem is specific to the REST actuation.

• How does the middleware deal with the coexistence of both mechanisms?

When both methods can be applied, which one is triggered? Will one of

them prevail over the second?

6.5 Summary
This chapter presented two techniques to actuate on the physical environment.

The first technique is the usual way to operate through spaces and provides a



122 CHAPTER 6 · REMOTE ACTUATION

higher degree of decoupling. However, it requires actuator nodes to use our

middleware’s primitives.

The second actuation mechanism directly consumes RESTful HTTP APIs.

This mechanism relies in the semantic description of the services, additional

background knowledge and a goal state. With that information, it is able to

generate executions plans towards a goal. These plans detail which resources

to change and how to reach the desired goal.

We implemented the same scenario using these two actuation mechanisms.

In addition, since interoperability is one of our middleware’s guiding principles,

we sketched a third implementation which reuses these RESTful HTTP APIs in

our Space model. This hybrid actuation technique avoids any alteration on the

space-based consumer or the HTTP provider. Instead, it improves the Space

implementation with an agent in charge of generating execution plans. This

agent reuses the information from the space-based actuation not to require any

additional information to the developer.

This implementation alignment between our space-based actuation and the

direct web APIs consumption-based one presents some limitations. For some of

these limitations, we discussed other design alternatives and compared them

with the chosen one. The rest of the limitations only appear in more complex

scenarios which are beyond the scope of this dissertation. For our future work,

we will implement these complex scenarios where advanced conflicts between

the REST and space-based computing worlds can arise.



SECTION 6.5 · SUMMARY 123

1 {
2 # it is not ’just a measure’
3 ?obsv a ssn:ObservationValue ;
4 # it is also a preference
5 a frap:Preference ;
6 dul:isClassifiedBy ucum:lux ;
7 dul:hasDataValue ?desired_value .
8 } => {
9 _:request http:methodName "POST";

10 http:requestURI actuators:light ;
11 http:body ?desired_value ;
12 http:resp [ http:body ?lightObs ].
13

14 actuators:light ssn:madeObservation ?lightObs .
15

16 ?lightObs a ssn:Observation ;
17 ssn:observedProperty sweet:Light ;
18 ssn:observedBy actuators:light ;
19 ssn:observationResult ?so .
20

21 ?so ssn:hasValue ?ov .
22

23 ?ov a ssn:ObservationValue ;
24 dul:isClassifiedBy ucum:lux ;
25 dul:hasDataValue ?desired_value .
26 }.

Listing 7: Rule which expresses that having a preference which is measured in

luxes, one can create a light observation using the HTTP POST.



124 CHAPTER 6 · REMOTE ACTUATION

1 @prefix frap: <http://purl.org/frap/> .
2 @prefix dul: <http://www.loa.istc.cnr.it/ontologies/DUL.owl#> .
3 @prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .
4 @prefix ucum: <http://purl.oclc.org/NET/muo/ucum/> .
5 @prefix : <http://example.org/lamp/>.
6

7

8 # Description of the preference
9 :obsv a ssn:ObservationValue, frap:Preference ;

10 dul:isClassifiedBy ucum:lux ;
11 dul:hasDataValue 19 .

Listing 8: A preference which expresses the interest in modifying the sensed value

of a light.

1 {
2 # More things could be specified.
3 # E.g. location.
4

5 actuators:light ssn:madeObservation ?light .
6

7 ?light ssn:observedProperty sweet:Light ;
8 ssn:observationResult ?so .
9

10 ?so ssn:hasValue ?ov .
11

12 ?ov a ssn:ObservationValue ;
13 dul:isClassifiedBy ucum:lux ;
14 dul:hasDataValue 19 .
15 } => {
16 ?ov dul:hasDataValue ?val .
17 }.

Listing 9: A goal which expresses the interest in modifying the value for a light.



SECTION 6.5 · SUMMARY 125

1 prefix frap: <http://purl.org/frap/>
2

3 select ?pref where{
4 ?pref a frap:Preference .
5 }

Listing 10: Subscription to any task written into the space.





If we build for a better future the

immigrants will stay there.

Man in Big Gay Pile

South Park. Season 8, Episode 6.

CHAPTER

7
Conclusions

This dissertation explores the design of a distributed TSC middleware suit-

able for UbiComp environments. The middleware’s most remarkable character-

istic is its alignment with the web world. This alignment pursues the interop-

erability of the middleware with other semantic web applications and semantic

WoT solutions. Firstly, it reuses their data requiring them to implement a min-

imal REST-like API. Secondly, it enables these third-party web applications to

reuse the data written into the space by means of an analogous API.

To preserve as many beneficial properties as possible from the web and TS

worlds, the middleware presents a conceptual division of each Space (Chapter 4).

Any Space is composed by the coordination space and the outer space. The co-

ordination space enables a completely indirect communication, time and space

decoupled, between the nodes which write and read semantic content into it.

The outer space acknowledges the distributed nature of UbiComp environments

by letting the nodes manage their own semantic content. However, this con-

tent is shared with the rest of nodes forming a virtual space. Developers access

the content of the space in a associative manner keeping the space decoupling

property. Both spaces are accessed through a resource-oriented HTTP API to

promote their data reuse by third-party REST or REST-like applications.



128 CHAPTER 7 · CONCLUSIONS

The distribution of the information avoids participants’ dependency on other

devices, but arises other challenges. This dissertation tackles two main chal-

lenges: how to search in a decentralized way (Chapter 5) and how to act on

the physical environment through the space (Chapter 6).

To enhance the search process between devices limiting their dependencies

on others, this dissertation proposes an architecture. This architecture dynam-

ically chooses an intermediary according to its capabilities to support the most

limited devices. The final result is that fewer requests are required in overall,

specifically reducing the load on resource constrained devices. As a result, their

energy consumption is also reduced.

To actuate on the physical environment, the dissertation explains how to

apply TS application patterns to the UbiComp vision. Although these actu-

ation mechanisms promote indirect communication between nodes, they re-

quire them to use the coordination space. This avoids the seamless integration

of actuators from the WoT world. To overcome this limitation, i.e., to promote

the reuse of third-party WoT applications’ actuation capabilities, we describe

how to integrate a REST-based actuation mechanism with the regular TSC us-

age.

7.1 Contributions

This section summarizes the contributions of this dissertation.

• Chapter 3 presented an in-depth state-of-the-art review.

– It portrayed this dissertation regarding the relevant works from re-

lated research fields. Particularly, it intensified the analysis on the

semantic space-based computing middleware. This analysis showed

that other works do not address the problems tackled in this disser-

tation.

• Chapter 4 depicted a two-space model which (1) preserves TSC’s decoup-

ling properties and (2) considers UbiComp’s distributed nature.



SECTION 7.1 · CONTRIBUTIONS 129

– It described a dual space model. The first space is a common place

where all the participants can write and read. The second space is a

read-only virtual Space formed by contents managed by the different

participants. It is accessed by any node as a whole using the same

primitives as the first one.

– It designed the middleware by presenting the adopted primitives

and how the spaces can be accessed through an HTTP API.

– It analysed the properties of the designed middleware from different

perspectives. Particularly, it scrutinized which beneficial properties

from TSC or REST are retained. It also remarked the middleware’s

suitability for resource constrained devices.

• Chapter 5 presented a search architecture for semantic WoT solutions.

This architecture is compatible with, but it is not only applicable to, the

space model proposed.

– It presented a search architecture that:

∗ Balances the load that the architecture management generates.

This balance considers devices’ computing and energy capacit-

ies.

∗ Structures the nodes in different dynamic roles with different

responsibilities.

∗ Promotes end-to-end HTTP requests between constrained devices.

They do not need an intermediary to search (i.e., to select the

appropriate providers to request).

– It assessed different types of information summaries the nodes can

use to improve their search.

– It evaluated the proposal with a simulated but yet realistic environ-

ment.

• Chapter 6 analysed how to actuate on the physical environment using a

space. Particularly, it showed how to interoperate with existing REST-

based actuators from space-based computing.



130 CHAPTER 7 · CONCLUSIONS

– It explained how to use TSC to coordinate actuator nodes and nodes

willing to actuate.

– It depicted the need of a subscription system and its key require-

ments.

– It compared the space-based actuation technique with a direct actu-

ation one based on the REST architectural style.

– It contributed with a hybrid approach which seamlessly reuses REST

APIs from our space model.

• In addition, as a result of the theoretical work made on this dissertation,

we have done the following technical contributions:

– Otsopack [155]: a TSC middleware which works over HTTP and

implements most of the ideas presented in the dissertation. This

middleware is publicly available for different computing platforms

and has been used in several research projects.

– A fully parametrizable simulation framework to evaluate different

communication strategies [154].

– Three different implementations of the same simple UbiComp scen-

ario which illustrate the ideas explained in Chapter 6. Much of

these implementations are fully reusable for further future evalu-

ations [153].

Finally, parallel to this dissertation, but deeply influenced by it, the author

of this dissertation has collaborated with other academic institutions, research

centres and companies to make further scientific and technical contributions.

• Lightweight user access control for resource constrained devices.

• Apply the Otsopack middleware in several scenarios:

– Homes: automating them according to the user’s preferences.

– Hospitals and residences: tracking the evolution of patients with

cognitive impairments.



SECTION 7.2 · RELEVANT PUBLICATIONS 131

– Supermarkets: aiding to buy and easing mobility using robots.

– Hotels: intelligently adapting them to the customers’ needs.

7.2 Relevant publications
Most of the previous section’s contributions have been presented to the sci-

entific community in journals, conferences and workshops.

Particularly, the following publications have addressed how to search on a

distributed space:

Aitor Gómez-Goiri, Iñigo Goiri, and Diego López-de-Ipiña. Energy-aware

architecture for information search in the semantic web of things. Inter-

national Journal of Web and Grid Services, 10:192–217, 2014. To appear.

Aitor Gómez-Goiri and Diego López-de-Ipiña. Assessing data dissem-

ination strategies within triple spaces on the web of things. In 2012

Sixth International Conference on Innovative Mobile and Internet Ser-

vices in Ubiquitous Computing (IMIS), pages 763 –769, July 2012. doi:

10.1109/IMIS.2012.120

We have considered the interoperation issues between different actuation

techniques in:

Aitor Gómez-Goiri, Iñigo Goiri, and Diego López-de-Ipiña. Reusing web-

enabled actuators from a semantic space-based perspective. In Third

International Workshop on Extending Seamlessly to the Internet of Things

(esIoT), July 2014. To appear.

Although, this dissertation includes some updates and improvements on the

middleware design, early works on aligning TSC and REST/WoT include:

Aitor Gómez-Goiri, Pablo Orduña, Javier Diego, and Diego López-de-

Ipiña. Otsopack: Lightweight semantic framework for interoperable

ambient intelligence applications. Computers in Human Behavior, 30:

460–467, January 2014. ISSN 0747-5632. doi: 10.1016/j.chb.2013.

06.022. URL http://www.sciencedirect.com/science/article/
pii/S0747563213002148

http://www.sciencedirect.com/science/article/pii/S0747563213002148
http://www.sciencedirect.com/science/article/pii/S0747563213002148


132 CHAPTER 7 · CONCLUSIONS

Aitor Gómez-Goiri, Pablo Orduña, and Diego López-de-Ipiña. RESTful

triple spaces of things. In Proceedings of the Third International Workshop

on the Web of Things, WOT ’12, page 5:1–5:6, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1603-3. doi: 10.1145/2379756.2379761. URL

http://doi.acm.org/10.1145/2379756.2379761

Aitor Gómez-Goiri, Pablo Orduña, David Ausin, Mikel Emaldi, and Diego

López-de-Ipiña. Collaboration of sensors and actuators through triple

spaces. In 2011 IEEE Sensors, pages 651–654, Limerick, Ireland, Octo-

ber 2011. IEEE. ISBN 978-1-4244-9290-9. doi: 10.1109/ICSENS.2011.

6127316

Aitor Gómez-Goiri and Diego López-de-Ipiña. On the complementarity of

triple spaces and the web of things. In Proceedings of the Second Interna-

tional Workshop on Web of Things, WoT ’11, page 12:1–12:6, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0624-9. doi: 10.1145/1993966.

1993983. URL http://doi.acm.org/10.1145/1993966.1993983

Prior to that work, we explored the idea of a distributed TSC middleware

and how to use it in UbiComp in several scientific articles.

Aitor Gómez-Goiri and Diego López-de-Ipiña. A triple space-based se-

mantic distributed middleware for internet of things. In Florian Daniel

and Federico Facca, editors, Current Trends in Web Engineering, volume

6385 of Lecture Notes in Computer Science, page 447–458. Springer Berlin

/ Heidelberg, September 2010. URL http://dx.doi.org/10.1007/
978-3-642-16985-4_43. 10.1007/978-3-642-16985-4_43

Aitor Gómez-Goiri, Mikel Emaldi, and Diego López-de-Ipiña. A se-

mantic resource oriented middleware for pervasive environments. UP-

GRADE journal, 2011, Issue No. 1:5–16, February 2011. ISSN 1684-

5285. URL http://www.cepis.org/upgrade/media/UPGRADE_1_
2011_Full1.pdf

http://doi.acm.org/10.1145/2379756.2379761
http://doi.acm.org/10.1145/1993966.1993983
http://dx.doi.org/10.1007/978-3-642-16985-4_43
http://dx.doi.org/10.1007/978-3-642-16985-4_43
http://www.cepis.org/upgrade/media/UPGRADE_1_2011_Full1.pdf
http://www.cepis.org/upgrade/media/UPGRADE_1_2011_Full1.pdf


SECTION 7.2 · RELEVANT PUBLICATIONS 133

Aitor Gómez-Goiri, Mikel Emaldi, and Diego López-de-Ipiña. Middleware

semántico orientado a recursos para entornos ubicuos. Novatica journal,

(209):9–16, February 2011. ISSN 0211-2124

As previously stated, this TSC middleware has been used to solve problems

from different domains. The following publications explain some of these ap-

plication domains.

Eduardo Castillejo, Pablo Orduña, Xabier Laiseca, Aitor Gómez-Goiri,

Diego López-de-Ipiña, and Fínez Sergio. Distributed semantic middle-

ware for social robotic services. In Robot 2011, Seville, Spain, November

2011

Aitor Gómez-Goiri, Eduardo Castillejo, Pablo Orduña, Xabier Laiseca,

Diego López-de-Ipiña, and Sergio Fínez. Easing the mobility of dis-

abled people in supermarkets using a distributed solution. In José Bravo,

Ramón Hervás, and Vladimir Villarreal, editors, Ambient Assisted Liv-

ing, number 6693 in Lecture Notes in Computer Science, pages 41–

48. Springer Berlin Heidelberg, January 2011. ISBN 978-3-642-21302-

1, 978-3-642-21303-8. URL http://link.springer.com/chapter/
10.1007/978-3-642-21303-8_6

Xabier Laiseca, Eduardo Castillejo, Pablo Orduña, Aitor Gómez-Goiri,

Diego López-de-Ipiña, and Ester González Aguado. Distributed track-

ing system for patients with cognitive impairments. In José Bravo,

Ramón Hervás, and Vladimir Villarreal, editors, Ambient Assisted Liv-

ing, number 6693 in Lecture Notes in Computer Science, pages 49–

56. Springer Berlin Heidelberg, January 2011. ISBN 978-3-642-21302-

1, 978-3-642-21303-8. URL http://link.springer.com/chapter/
10.1007/978-3-642-21303-8_7

Finally, we have also worked on securing the communication with resource

constrained devices.

http://link.springer.com/chapter/10.1007/978-3-642-21303-8_6
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_6
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_7
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_7


134 CHAPTER 7 · CONCLUSIONS

Juan Álvaro Muñoz Naranjo, Aitor Gómez-Goiri, Pablo Orduña, Diego

López-de-Ipiña, and Leocadio González Casado. Extending a user ac-

cess control proposal for wireless network services with hierarchical user

credentials. In Álvaro Herrero, Bruno Baruque, Fanny Klett, Ajith Ab-

raham, Václav Snášel, André C. P. L. F. de Carvalho, Pablo García Brin-

gas, Ivan Zelinka, Héctor Quintián, and Emilio Corchado, editors, In-

ternational Joint Conference SOCO’13-CISIS’13-ICEUTE’13, number 239

in Advances in Intelligent Systems and Computing, pages 601–610.

Springer International Publishing, January 2014. ISBN 978-3-319-01853-

9, 978-3-319-01854-6. URL http://link.springer.com/chapter/
10.1007/978-3-319-01854-6_61

Juan Álvaro Muñoz Naranjo, Pablo Orduña, Aitor Gómez-Goiri, Diego

López-de-Ipiña, and Leocadio González Casado. Enabling user access con-

trol in energy-constrained wireless smart environments. Journal of Uni-

versal Computer Science, 19(17):2490–2505, November 2013. URL http:
//www.jucs.org/jucs_19_17/enabling_user_access_control

Juan Álvaro Muñoz Naranjo, Pablo Orduña, Aitor Gómez-Goiri, Diego

López-de-Ipiña, and L. G. Casado. Lightweight user access control in

energy-constrained wireless network services. In José Bravo, Diego

López-de-Ipiña, and Francisco Moya, editors, Ubiquitous Computing and

Ambient Intelligence, Lecture Notes in Computer Science, pages 33–

41. Springer Berlin Heidelberg, January 2012. ISBN 978-3-642-35376-

5, 978-3-642-35377-2. URL http://link.springer.com/chapter/
10.1007/978-3-642-35377-2_5

7.3 Future work

Previous chapters of this dissertation have pointed out several limitations and

open issues. These limitations and issues open the door to interesting future

work which is detailed below.

http://link.springer.com/chapter/10.1007/978-3-319-01854-6_61
http://link.springer.com/chapter/10.1007/978-3-319-01854-6_61
http://www.jucs.org/jucs_19_17/enabling_user_access_control
http://www.jucs.org/jucs_19_17/enabling_user_access_control
http://link.springer.com/chapter/10.1007/978-3-642-35377-2_5
http://link.springer.com/chapter/10.1007/978-3-642-35377-2_5


SECTION 7.3 · FUTURE WORK 135

7.3.1 Closing the gap with third-party WoT applications

One of the middleware’s goals is to achieve interoperability with third-party

web applications. That is, ideally, applications using our middleware should

reuse these other applications’ data transparently and vice-versa. This goal can

be seen as a two-fold strategy: ease the access to data and make data reusable.

Accessing data. It must be done by means of an API. In this thesis we have

defended the need of using HTTP for that purpose. An adaptation to the up-

coming CoAP would ease its adoption by new limited platforms. However,

the most challenging aspect is not to replicate it in other suitable protocols.

The most challenging aspect is to automatize the consumption of heterogen-

eous third-party APIs. Instead, this dissertation proposes a common API that

needs to be implemented in any device willing to share content.

According to the REST principles, the HATEOAS constraint can help to auto-

mate clients to use any API independently of its specific shape. However,

making any of these clients understand other APIs from the same domain

would require the standardization of data types and application states [28].
Therefore, any step in that direction would require the agreement of the

community around the domain (e.g., home automation lighting). Further-

more, hypermedia-driven APIs may lead to more network usage, which is

particularly harmful for devices with energy autonomy limitations. Con-

sequently, this trade-off between the interoperability and the network effi-

ciency should also be assessed.

Reusing data. The semantic knowledge contributes to that goal. However, as

Barnaghi et al. [7] point out, the use of semantic descriptions alone does not

ensure interoperability. Additionally, they suggest the need of: (1) stand-

ardizing ontologies and using them or referencing to standardized upper

ontologies whenever custom ontologies are used; and (2) interpreting the

annotations effectively. While the first one requires the consensus of the

community, the second demands for efficient reasoners for mobile and em-

bedded platforms [79]. This efficiency is particularly important since it dir-

ectly influences their energy consumption.



136 CHAPTER 7 · CONCLUSIONS

7.3.2 Increasing search expressibility and efficiency

We did not consider using query languages such as SPARQL [162] on the dis-

tributed search because of the difficulties most constrained platforms may find

in parsing them. With this decision, we design a uniform API for all types of

devices. However, we could adopt SPARQL in an optional extended API. In this

case, all the nodes should consider that some of them are only able to interpret

triple pattern templates.

The use of SPARQL in some nodes would benefit the developers and im-

prove the middleware performance. The users of the middleware would be

able to made more expressive queries. The performance could be enhanced by

introducing optimization techniques from the distributed databases field [101].

7.3.3 Coordination space’s distribution, replication or migra-

tion

The current design demands the coordination space to be accessible through an

HTTP API. For the sake of simplicity, at some points of the dissertation we have

assumed that this space is centralized in a unique machine. However, the access

through an HTTP API does not avoid the distribution of the coordination space.

Some alternatives that can be worth exploring are:

• Replication of the space to increase the system performance (e.g., using

load balancing).

• Distribution of the content over different machines to enhance its scalab-

ility.

• Migration from a machine to another to avoid a single point of failure. For

example, this strategy would allow to select the space holder dynamically,

easing the coordination space manageability and deployment. This would

be analogous to the WP role of our search architecture.

In addition, by monitoring the middleware usage, one alternative or another

could be dynamically chosen depending on the specific needs of each situation.



SECTION 7.3 · FUTURE WORK 137

7.3.4 Integration of REST actuation in the space

Chapter 6 presented a hybrid actuation technique which combines consumers

using the Space-based actuation and REST providers. The key for this integra-

tion is the direct translation of the coordination space’s subscriptions into goals

needed by the REST actuation. This avoids requiring any new piece of informa-

tion which does not conceptually belong to TSC to the developer. However, the

consumer is not forced to perform any subscription. Therefore, the middleware

should force the developer to use subscriptions for a task result or extract the

goals from other pieces of information.

An option would be to translate the tasks written into the space to trigger

an actuator change into goals. This way, no new information would be required

to the consumer following the Space-based actuation. This translation requires

further work to ensure that it is generalizable.

Another interesting issue is to discern which path to follow to achieve a

goal when two or more paths are available. We believe that additional high-

level rules or policies can be defined (e.g., to select the path which consumed

less energy). Storing them into the space may enable reusing these behaviours

by third-party applications’ developers.

Finally, although we put effort in reusing third-party WoT applications’ actu-

ation capabilities in TSC, the opposite problem raises an unanswered question:

How to reuse actuation mechanisms of nodes using TS patterns from WoT solu-

tions?

7.3.5 Security for the middleware

Two key aspects for UbiComp deployments are (1) to authenticate the parts

involved in the communication; and (2) to ensure the privacy of the message

being transmitted. Although both problems have been deeply discussed in the

literature, devices in UbiComp face severe computing and energy restrictions.

To solve that, we have already proposed a solution appropriate for sensor net-

works and mobile devices.

The next step is to evaluate it in more demanding scenarios and the final

goal is to integrate it in our TSC middleware.



138 CHAPTER 7 · CONCLUSIONS

7.3.6 Measuring ease of usage

A subtle goal of any middleware is to ease the development of applications by

encapsulating complex tasks (i.e., searching on a distributed space). Some ob-

jective indicators can be extracted from the code by implementing the same

application with and without the middleware (e.g., the total number of lines

needed). However, from the human perspective these indicators do not ne-

cessarily express how easy, comfortable or pleasant is to use the middleware.

Although the primitives are rather simple, the configuration or just the semantic

annotation can complicate the learning process of any developer. Future work

could measure the impact the middleware has on them. As a result, some im-

provements could be proposed (e.g., to create a version for a specific domain

which masks all the semantic issues).

7.3.7 Further evaluation on real deployments

Rather than designing the best theoretical but yet unrealistic solution, in this

dissertation we have tried to present a realizable solution. For that, we have

implemented most of the ideas in the Otsopack middleware and we have pro-

moted its use in different research projects. This has helped us to identify the

key problems to solve.

In addition, to efficiently evaluate our solution under very different and

extreme circumstances, in some occasions we have simulated the scenarios.

In these simulations, we have tried to present always realistic assumptions.

However, there is always a gap between what is perceived as realistic and the

reality.

To bridge both worlds, the next natural step would be assessing some as-

pects of our middleware in a real world environment:

• The search architecture. For that, we should deploy an scenario with a

considerable number of heterogeneous devices running a task during a

long period. Then, we could measure their network usage and energy

consumption to either tune up some parameters of the architecture or

redesign some aspects.



SECTION 7.4 · FINAL THOUGHTS 139

• Interoperability. New unconsidered problems could arise trying to reuse

data from existing WoT applications. Each manual intervention needed

to make our middleware work together with these applications would be

a sign of an interoperability problem.

7.4 Final Thoughts
This dissertation is the result of years of work towards a Triple Space Computing

middleware for Ubiquitous Computing. It describes the latest shape of the idea

which I began sketching even before I finally decided to start this thesis. But the

evolution of this idea would not have been possible without other researchers

who have directly or indirectly helped me. In the same way, I hope that this

thesis will contribute or inspire at some degree to the scientific community.



140 CHAPTER 7 · CONCLUSIONS

If I have seen further it is by standing on the shoulders of giants.
Isaac Newton

( This figure is derived from the following images: “Standing upon the shoulders of giants” by

Mushon Zer-Aviv and “Aerial view - mountains” by Gabriel Gilder )

http://www.flickr.com/photos/mushon/282287572/
http://www.flickr.com/photos/mushon/282287572/
http://www.flickr.com/photos/futurefashion/130994094/


Bibliography

[1] IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, pages 1–84, 1990. doi: 10.1109/IEEESTD.1990.101064.

[2] European interoperability framework for pan-european eGovernment ser-

vices. Technical Report 1, European Communities, 2004. URL http:
//ec.europa.eu/idabc/servlets/Docd552.pdf?id=19529.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web

Services: Concepts, Architectures and Applications. Springer Publishing

Company, Incorporated, 2010.

[4] Mike Amundsen. API for RDF? don’t do it!, December 2010. URL http:
//www.amundsen.com/blog/archives/1083.

[5] Mike Amundsen. Building Hypermedia APIs with HTML5 and Node.

O’Reilly, 2011. ISBN 978-1449306571.

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet

of things: A survey. Computer Networks, 54(15):2787–2805, Oc-

tober 2010. ISSN 1389-1286. doi: 10.1016/j.comnet.2010.05.

010. URL http://www.sciencedirect.com/science/article/
pii/S1389128610001568.

[7] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. Semantics

for the internet of things. International Journal on Semantic Web and

Information Systems, 8(1):1–21, 2012. ISSN 1552-6283, 1552-6291.

http://ec.europa.eu/idabc/servlets/Docd552.pdf?id=19529
http://ec.europa.eu/idabc/servlets/Docd552.pdf?id=19529
http://www.amundsen.com/blog/archives/1083
http://www.amundsen.com/blog/archives/1083
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568


142 BIBLIOGRAPHY

doi: 10.4018/jswis.2012010101. URL http://www.igi-global.com/
article/content/70584.

[8] Tim Berners-Lee. Linked open data, 2008. URL http://www.w3.org/
2008/Talks/0617-lod-tbl/#(3).

[9] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.

Scientific American, 284(5):34–43, 2001.

[10] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim Hend-

ler. N3Logic: a logical framework for the world wide web. Theory

and Practice of Logic Programming, 8(03):249–269, 2008. ISSN 1475-

3081. doi: 10.1017/S1471068407003213. URL http://journals.
cambridge.org/article_S1471068407003213.

[11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the

story so far. International Journal on Semantic Web and Information

Systems, 5(3):1–22, 2009. ISSN 1552-6283, 1552-6291. doi: 10.

4018/jswis.2009081901. URL http://dx.doi.org/10.4018/jswis.
2009081901.

[12] Michael Blackstock and Rodger Lea. WoTKit: a lightweight toolkit for

the web of things. In Proceedings of the Third International Workshop on

the Web of Things, WOT ’12, page 3:1–3:6, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1603-3. doi: 10.1145/2379756.2379759. URL

http://doi.acm.org/10.1145/2379756.2379759.

[13] Daniel Blunder, Reto Krummenacher, and Dieter Fensel. A

distributed triple space realization. Master’s thesis, University

of Innsbruck, Institute of Computer Science, Innsbruck, June

2009. URL http://www.sti-innsbruck.at/sites/default/
files/thesis/danielblunder_DistrTripleSpace_2009.pdf.

[14] Arne Bröring, Krzysztof Janowicz, Christoph Stasch, and Werner Kuhn.

Semantic challenges for sensor plug and play. In James D. Carswell,

http://www.igi-global.com/article/content/70584
http://www.igi-global.com/article/content/70584
http://www.w3.org/2008/Talks/0617-lod-tbl/#(3)
http://www.w3.org/2008/Talks/0617-lod-tbl/#(3)
http://journals.cambridge.org/article_S1471068407003213
http://journals.cambridge.org/article_S1471068407003213
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.4018/jswis.2009081901
http://doi.acm.org/10.1145/2379756.2379759
http://www.sti-innsbruck.at/sites/default/files/thesis/danielblunder_DistrTripleSpace_2009.pdf
http://www.sti-innsbruck.at/sites/default/files/thesis/danielblunder_DistrTripleSpace_2009.pdf


BIBLIOGRAPHY 143

A. Stewart Fotheringham, and Gavin McArdle, editors, Web and Wire-

less Geographical Information Systems, number 5886 in Lecture Notes

in Computer Science, pages 72–86. Springer Berlin Heidelberg, Janu-

ary 2009. ISBN 978-3-642-10600-2, 978-3-642-10601-9. URL http://
link.springer.com/chapter/10.1007/978-3-642-10601-9_6.

[15] Ramón Cáceres and Adrian Friday. Ubicomp systems at 20: Progress,

opportunities, and challenges. IEEE Pervasive Computing, 11(1):14–21,

March 2012. ISSN 1536-1268. doi: 10.1109/MPRV.2011.85.

[16] Eduardo Castillejo, Pablo Orduña, Xabier Laiseca, Aitor Gómez-Goiri,

Diego López-de-Ipiña, and Fínez Sergio. Distributed semantic middle-

ware for social robotic services. In Robot 2011, Seville, Spain, November

2011.

[17] World Wide Web Consortium. W3c semantic web faq, August 2011. URL

http://www.w3.org/2001/sw/SW-FAQ.

[18] Paolo Costa, Luca Mottola, Amy Lynn Murphy, and Gian Pietro Picco.

Programming wireless sensor networks with the TeenyLime middleware.

In Renato Cerqueira and Roy H. Campbell, editors, Middleware 2007,

number 4834 in Lecture Notes in Computer Science, pages 429–449.

Springer Berlin Heidelberg, January 2007. ISBN 978-3-540-76777-

0, 978-3-540-76778-7. URL http://link.springer.com/chapter/
10.1007/978-3-540-76778-7_22.

[19] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Dis-

tributed Systems: Concepts and Design. Addison Wesley, 5 edition, 2012.

ISBN 9780132143011.

[20] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti,

Amy Lynn Murphy, and Gian Pietro Picco. TinyLIME: bridging mobile

and sensor networks through middleware. In Third IEEE International

Conference on Pervasive Computing and Communications, 2005. PerCom

2005, pages 61–72, 2005. doi: 10.1109/PERCOM.2005.48.

http://link.springer.com/chapter/10.1007/978-3-642-10601-9_6
http://link.springer.com/chapter/10.1007/978-3-642-10601-9_6
http://www.w3.org/2001/sw/SW-FAQ
http://link.springer.com/chapter/10.1007/978-3-540-76778-7_22
http://link.springer.com/chapter/10.1007/978-3-540-76778-7_22


144 BIBLIOGRAPHY

[21] Mathieu D’Aquin, Andry Nikolov, and Enrico Motta. Enabling lightweight

semantic sensor networks on android devices. In Proceedings of the 4th

International Workshop on Semantic Sensor Networks, volume 839 of CEUR

Workshop Proceedings, pages 89–94, 2011. URL http://ceur-ws.org/
Vol-839/daquin.pdf.

[22] Nigel Davies, Adrian Friday, Stephen P. Wade, and Gordon S. Blair.

L2imbo: a distributed systems platform for mobile computing. Mobile

Networks and Applications, 3(2):143–156, August 1998. ISSN 1383-

469X. doi: 10.1023/A:1019116530113. URL http://dx.doi.org/
10.1023/A:1019116530113.

[23] Fred D. Davis. Perceived usefulness, perceived ease of use, and

user acceptance of information technology. MIS Quarterly, 13(3):

319, September 1989. ISSN 02767783. doi: 10.2307/249008.

URL http://www.jstor.org/discover/10.2307/249008?uid=
20425920&uid=3737952&uid=2&uid=3&uid=16734728&uid=
67&uid=62&sid=21102588550311.

[24] Dieter Fensel. Triple-space computing: Semantic web services based on

persistent publication of information. In Finn Arve Aagesen, Chutiporn

Anutariya, and Vilas Wuwongse, editors, Intelligence in Communication

Systems, volume 3283 of Lecture Notes in Computer Science, pages 43–

53. Springer Berlin / Heidelberg, 2004. URL http://dx.doi.org/10.
1007/978-3-540-30179-0_4. 10.1007/978-3-540-30179-0_4.

[25] Dieter Fensel, Reto Krummenacher, Omair Shafiq, Eva Kühn, Johannes

Riemer, Ying Ding, and Bernd Draxler. Tsc – triple space computing.

Elektrotechnik und Informationstechnik, 124:31–38, 2007. ISSN 0932-

383X. doi: 10.1007/s00502-006-0408-1. URL http://dx.doi.org/
10.1007/s00502-006-0408-1.

[26] Roy Thomas Fielding. Architectural styles and the design of network-

based software architectures. PhD thesis, University of California, Irvine,

http://ceur-ws.org/Vol-839/daquin.pdf
http://ceur-ws.org/Vol-839/daquin.pdf
http://dx.doi.org/10.1023/A:1019116530113
http://dx.doi.org/10.1023/A:1019116530113
http://www.jstor.org/discover/10.2307/249008?uid=20425920&uid=3737952&uid=2&uid=3&uid=16734728&uid=67&uid=62&sid=21102588550311
http://www.jstor.org/discover/10.2307/249008?uid=20425920&uid=3737952&uid=2&uid=3&uid=16734728&uid=67&uid=62&sid=21102588550311
http://www.jstor.org/discover/10.2307/249008?uid=20425920&uid=3737952&uid=2&uid=3&uid=16734728&uid=67&uid=62&sid=21102588550311
http://dx.doi.org/10.1007/978-3-540-30179-0_4
http://dx.doi.org/10.1007/978-3-540-30179-0_4
http://dx.doi.org/10.1007/s00502-006-0408-1
http://dx.doi.org/10.1007/s00502-006-0408-1


BIBLIOGRAPHY 145

2000. URL http://www.industrex.com/dynamic/reading/ics.
uci.edu.fielding.dissertation.1col.pdf.

[27] Roy Thomas Fielding. Seeking feedback on the blinksale API,

October 2006. URL http://groups.yahoo.com/neo/groups/
rest-discuss/conversations/topics/6594.

[28] Roy Thomas Fielding. REST APIs must be hypertext-driven,

October 2008. URL http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven.

[29] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles,

patterns, and practice. Addison-Wesley Professional, 1999.

[30] Adrian Friday, Nigel Davies, Jochen Seitz, Matt Storey, and Stephen P.

Wade. Experiences of using generative communications to support adapt-

ive mobile applications. Distributed and Parallel Databases, 7(3):319–342,

1999.

[31] David Gelernter. Generative communication in linda. ACM Transactions

on Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

ISSN 0164-0925.

[32] Dominique Guinard. A Web of Things Application Architecture – Integrating

the Real-World into the Web. Ph.d., ETH Zurich, 2011. URL http://
webofthings.org/dom/thesis.pdf.

[33] Dominique Guinard, Vlad Trifa, Thomas Pham, and Olivier Liechti. To-

wards physical mashups in the web of things. In Networked Sensing Sys-

tems (INSS), 2009 Sixth International Conference on, pages 1–4, June

2009. doi: 10.1109/INSS.2009.5409925.

[34] Dominique Guinard, Mathias Fischer, and Vlad Trifa. Sharing using social

networks in a composable web of things. In 2010 8th IEEE International

Conference on Pervasive Computing and Communications Workshops (PER-

COM Workshops), pages 702–707. IEEE, April 2010. ISBN 978-1-4244-

6605-4. doi: 10.1109/PERCOMW.2010.5470524.

http://www.industrex.com/dynamic/reading/ics.uci.edu.fielding.dissertation.1col.pdf
http://www.industrex.com/dynamic/reading/ics.uci.edu.fielding.dissertation.1col.pdf
http://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/6594
http://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/6594
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://webofthings.org/dom/thesis.pdf
http://webofthings.org/dom/thesis.pdf


146 BIBLIOGRAPHY

[35] Dominique Guinard, Iulia Ion, and Simon Mayer. In search of an internet

of things service architecture: REST or WS-*? a developers’ perspective.

In Proceedings of Mobiquitous 2011 (8th International ICST Conference on

Mobile and Ubiquitous Systems), Copenhagen, Denmark, December 2011.

[36] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.

From the internet of things to the web of things: Resource oriented archi-

tecture and best practices. In Architecting the Internet of Things. Springer,

May 2011. ISBN 978-3-642-19156-5.

[37] Vipul Gupta, Poornaprajna Udupi, and Arshan Poursohi. Early lessons

from building Sensor.Network: an open data exchange for the web of

things. In 2010 8th IEEE International Conference on Pervasive Computing

and Communications Workshops (PERCOM Workshops), pages 738–744.

IEEE, March 2010. ISBN 978-1-4244-6605-4. doi: 10.1109/PERCOMW.

2010.5470530.

[38] Vipul Gupta, Ron Goldman, and Poornaprajna Udupi. A network archi-

tecture for the web of things. In Proceedings of the Second International

Workshop on Web of Things - WoT ’11, page 1, San Francisco, Califor-

nia, 2011. doi: 10.1145/1993966.1993971. URL http://dl.acm.org/
citation.cfm?id=1993971&CFID=38852141&CFTOKEN=66966366.

[39] Aitor Gómez-Goiri and Diego López-de-Ipiña. A triple space-based se-

mantic distributed middleware for internet of things. In Florian Daniel

and Federico Facca, editors, Current Trends in Web Engineering, volume

6385 of Lecture Notes in Computer Science, page 447–458. Springer Berlin

/ Heidelberg, September 2010. URL http://dx.doi.org/10.1007/
978-3-642-16985-4_43. 10.1007/978-3-642-16985-4_43.

[40] Aitor Gómez-Goiri and Diego López-de-Ipiña. On the complementarity of

triple spaces and the web of things. In Proceedings of the Second Interna-

tional Workshop on Web of Things, WoT ’11, page 12:1–12:6, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0624-9. doi: 10.1145/1993966.

1993983. URL http://doi.acm.org/10.1145/1993966.1993983.

http://dl.acm.org/citation.cfm?id=1993971&CFID=38852141&CFTOKEN=66966366
http://dl.acm.org/citation.cfm?id=1993971&CFID=38852141&CFTOKEN=66966366
http://dx.doi.org/10.1007/978-3-642-16985-4_43
http://dx.doi.org/10.1007/978-3-642-16985-4_43
http://doi.acm.org/10.1145/1993966.1993983


BIBLIOGRAPHY 147

[41] Aitor Gómez-Goiri and Diego López-de-Ipiña. Assessing data dissem-

ination strategies within triple spaces on the web of things. In 2012

Sixth International Conference on Innovative Mobile and Internet Ser-

vices in Ubiquitous Computing (IMIS), pages 763 –769, July 2012. doi:

10.1109/IMIS.2012.120.

[42] Aitor Gómez-Goiri, Eduardo Castillejo, Pablo Orduña, Xabier Laiseca,

Diego López-de-Ipiña, and Sergio Fínez. Easing the mobility of dis-

abled people in supermarkets using a distributed solution. In José Bravo,

Ramón Hervás, and Vladimir Villarreal, editors, Ambient Assisted Liv-

ing, number 6693 in Lecture Notes in Computer Science, pages 41–

48. Springer Berlin Heidelberg, January 2011. ISBN 978-3-642-21302-

1, 978-3-642-21303-8. URL http://link.springer.com/chapter/
10.1007/978-3-642-21303-8_6.

[43] Aitor Gómez-Goiri, Mikel Emaldi, and Diego López-de-Ipiña. Middleware

semántico orientado a recursos para entornos ubicuos. Novatica journal,

(209):9–16, February 2011. ISSN 0211-2124.

[44] Aitor Gómez-Goiri, Mikel Emaldi, and Diego López-de-Ipiña. A se-

mantic resource oriented middleware for pervasive environments. UP-

GRADE journal, 2011, Issue No. 1:5–16, February 2011. ISSN 1684-

5285. URL http://www.cepis.org/upgrade/media/UPGRADE_1_
2011_Full1.pdf.

[45] Aitor Gómez-Goiri, Pablo Orduña, David Ausin, Mikel Emaldi, and Diego

López-de-Ipiña. Collaboration of sensors and actuators through triple

spaces. In 2011 IEEE Sensors, pages 651–654, Limerick, Ireland, Octo-

ber 2011. IEEE. ISBN 978-1-4244-9290-9. doi: 10.1109/ICSENS.2011.

6127316.

[46] Aitor Gómez-Goiri, Pablo Orduña, and Diego López-de-Ipiña. RESTful

triple spaces of things. In Proceedings of the Third International Workshop

on the Web of Things, WOT ’12, page 5:1–5:6, New York, NY, USA, 2012.

http://link.springer.com/chapter/10.1007/978-3-642-21303-8_6
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_6
http://www.cepis.org/upgrade/media/UPGRADE_1_2011_Full1.pdf
http://www.cepis.org/upgrade/media/UPGRADE_1_2011_Full1.pdf


148 BIBLIOGRAPHY

ACM. ISBN 978-1-4503-1603-3. doi: 10.1145/2379756.2379761. URL

http://doi.acm.org/10.1145/2379756.2379761.

[47] Aitor Gómez-Goiri, Iñigo Goiri, and Diego López-de-Ipiña. Energy-aware

architecture for information search in the semantic web of things. Inter-

national Journal of Web and Grid Services, 10:192–217, 2014. To appear. .

[48] Aitor Gómez-Goiri, Iñigo Goiri, and Diego López-de-Ipiña. Reusing web-

enabled actuators from a semantic space-based perspective. In Third

International Workshop on Extending Seamlessly to the Internet of Things

(esIoT), July 2014. To appear. .

[49] Aitor Gómez-Goiri, Pablo Orduña, Javier Diego, and Diego López-de-

Ipiña. Otsopack: Lightweight semantic framework for interoperable

ambient intelligence applications. Computers in Human Behavior, 30:

460–467, January 2014. ISSN 0747-5632. doi: 10.1016/j.chb.2013.

06.022. URL http://www.sciencedirect.com/science/article/
pii/S0747563213002148.

[50] Olaf Görlitz and Steffen Staab. Federated data management and query

optimization for linked open data. In Athena Vakali and Lakhmi C.

Jain, editors, New Directions in Web Data Management 1, number 331

in Studies in Computational Intelligence, pages 109–137. Springer Ber-

lin Heidelberg, January 2011. ISBN 978-3-642-17550-3, 978-3-642-

17551-0. URL http://link.springer.com/chapter/10.1007/
978-3-642-17551-0_5.

[51] Michael J Hammel. Mongoose: an embeddable web server in c. Linux

Journal, 2010(192):2, 2010.

[52] Henning Hasemann, Alexander Kroller, and Max Pagel. RDF provision-

ing for the internet of things. In Internet of Things (IOT), 2012 3rd

International Conference on the, pages 143 –150, October 2012. doi:

10.1109/IOT.2012.6402316.

http://doi.acm.org/10.1145/2379756.2379761
http://www.sciencedirect.com/science/article/pii/S0747563213002148
http://www.sciencedirect.com/science/article/pii/S0747563213002148
http://link.springer.com/chapter/10.1007/978-3-642-17551-0_5
http://link.springer.com/chapter/10.1007/978-3-642-17551-0_5


BIBLIOGRAPHY 149

[53] Antonio Garrote Hernández and María N. Moreno García. A formal defin-

ition of RESTful semantic web services. In Proceedings of the First Interna-

tional Workshop on RESTful Design, WS-REST ’10, page 39–45, New York,

NY, USA, 2010. ACM. ISBN 978-1-60558-959-6. doi: 10.1145/1798354.

1798384. URL http://doi.acm.org/10.1145/1798354.1798384.

[54] Jukka Honkola, Hannu Laine, Ronald Brown, and Olli Tyrkko. Smart-

m3 information sharing platform. In 2010 IEEE Symposium on Computers

and Communications (ISCC), pages 1041–1046. IEEE, June 2010. ISBN

978-1-4244-7754-8. doi: 10.1109/ISCC.2010.5546642.

[55] Cory House. How RESTful is your API?, August 2012. URL http://www.
bitnative.com/2012/08/26/how-restful-is-your-api/.

[56] Isam Ishaq, Jeroen Hoebeke, Jen Rossey, Eli De Poorter, Ingrid Moer-

man, and Piet Demeester. Facilitating sensor deployment, discovery and

resource access using embedded web services. In 2012 Sixth Interna-

tional Conference on Innovative Mobile and Internet Services in Ubiquit-

ous Computing (IMIS), pages 717–724, Palermo, Italy, July 2012. doi:

10.1109/IMIS.2012.48.

[57] Isam Ishaq, Jeroen Hoebeke, Jen Rossey, Eli De Poorter, Ingrid Moerman,

and Piet Demeester. Enabling the web of things: Facilitating deployment,

discovery and resource access to iot objects using embedded web services.

International Journal of Web and Grid Services, 10, 2014. To appear.

[58] Antonio J. Jara, Pedro Martinez-Julia, and Antonio Skarmeta. Light-

weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-Based resource

and service discovery for the web of things. In 2012 Sixth Interna-

tional Conference on Innovative Mobile and Internet Services in Ubiquit-

ous Computing (IMIS), pages 731–738, Palermo, Italy, July 2012. doi:

10.1109/IMIS.2012.200.

[59] Brad Johanson and Armando Fox. Extending tuplespaces for co-

ordination in interactive workspaces. Journal of Systems and Soft-

ware, 69(3):243 – 266, 2004. ISSN 0164-1212. doi: 10.1016/

http://doi.acm.org/10.1145/1798354.1798384
http://www.bitnative.com/2012/08/26/how-restful-is-your-api/
http://www.bitnative.com/2012/08/26/how-restful-is-your-api/


150 BIBLIOGRAPHY

S0164-1212(03)00054-2. URL http://www.sciencedirect.com/
science/article/pii/S0164121203000542. Ubiquitous Comput-

ing.

[60] Deepali Khushraj, Ora Lassila, and Tim Finin. sTuples: semantic tuple

spaces. In The First Annual International Conference on Mobile and Ubiquit-

ous Systems: Networking and Services, 2004. MOBIQUITOUS 2004, pages

268–277, August 2004. doi: 10.1109/MOBIQ.2004.1331733.

[61] Jussi Kiljander, Francesco Morandi, and Juha-Pekka Soininen. Knowledge

sharing protocol for smart spaces. International Journal of Advanced Com-

puter Science and Applications, 3(9), 2012.

[62] Kjetil Kjernsmo. The necessity of hypermedia RDF and an approach to

achieve it. In Proceedings of the First Linked APIs workshop at the Ninth Ex-

tended Semantic Web Conference, May 2012. URL http://lapis2012.
linkedservices.org/papers/1.pdf.

[63] Steve Klabnik. Nobody understands REST or HTTP, July

2011. URL http://blog.steveklabnik.com/posts/
2011-07-03-nobody-understands-rest-or-http.

[64] Steve Klabnik. REST is OVER!, February 2012. URL http://blog.
steveklabnik.com/posts/2012-02-23-rest-is-over.

[65] Matthias Kovatsch. CoAP for the web of things: From tiny resource-

constrained devices to the web browser. In Proceedings of the 2013

ACM Conference on Pervasive and Ubiquitous Computing Adjunct Public-

ation, UbiComp ’13 Adjunct, page 1495–1504, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-2215-7. doi: 10.1145/2494091.2497583. URL

http://doi.acm.org/10.1145/2494091.2497583.

[66] Reto Krummenacher, Martin Hepp, Axel Polleres, Christoph Bussler, and

Dieter Fensel. WWW or what is wrong with web services. In Proceedings

of the Third European Conference on Web Services, ECOWS ’05, page 235,

Washington, DC, USA, November 2005. IEEE Computer Society. ISBN

http://www.sciencedirect.com/science/article/pii/S0164121203000542
http://www.sciencedirect.com/science/article/pii/S0164121203000542
http://lapis2012.linkedservices.org/papers/1.pdf
http://lapis2012.linkedservices.org/papers/1.pdf
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://doi.acm.org/10.1145/2494091.2497583


BIBLIOGRAPHY 151

0-7695-2484-2. doi: http://dx.doi.org/10.1109/ECOWS.2005.30. URL

http://dx.doi.org/10.1109/ECOWS.2005.30.

[67] Reto Krummenacher, Edward Kilgarriff, Galway Brahmananda Sapkota,

and Galway Omair Shafiq. Specification of mediation, discovery and data

models for triple space computing, 2006.

[68] Reto Krummenacher, Elena Simperl, and Dieter Fensel. Scalability in se-

mantic computing: Semantic middleware. In 2008 IEEE International

Conference on Semantic Computing, pages 538–545. IEEE, August 2008.

ISBN 978-0-7695-3279-0. doi: 10.1109/ICSC.2008.39.

[69] Reto Krummenacher, Daniel Blunder, Elena Simperl, and Michael Fried.

An open distributed middleware for the semantic web. International Con-

ference on Semantic Systems (I-SEMANTICS), 2009.

[70] Xabier Laiseca, Eduardo Castillejo, Pablo Orduña, Aitor Gómez-Goiri,

Diego López-de-Ipiña, and Ester González Aguado. Distributed track-

ing system for patients with cognitive impairments. In José Bravo,

Ramón Hervás, and Vladimir Villarreal, editors, Ambient Assisted Liv-

ing, number 6693 in Lecture Notes in Computer Science, pages 49–

56. Springer Berlin Heidelberg, January 2011. ISBN 978-3-642-21302-

1, 978-3-642-21303-8. URL http://link.springer.com/chapter/
10.1007/978-3-642-21303-8_7.

[71] Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A semantic web

middleware for virtual data integration on the web. In Sean Bech-

hofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis,

editors, The Semantic Web: Research and Applications, number 5021

in Lecture Notes in Computer Science, pages 493–507. Springer Ber-

lin Heidelberg, January 2008. ISBN 978-3-540-68233-2, 978-3-540-

68234-9. URL http://link.springer.com/chapter/10.1007/
978-3-540-68234-9_37.

http://dx.doi.org/10.1109/ECOWS.2005.30
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_7
http://link.springer.com/chapter/10.1007/978-3-642-21303-8_7
http://link.springer.com/chapter/10.1007/978-3-540-68234-9_37
http://link.springer.com/chapter/10.1007/978-3-540-68234-9_37


152 BIBLIOGRAPHY

[72] Paul Legris, John Ingham, and Pierre Collerette. Why do

people use information technology? a critical review of the tech-

nology acceptance model. Information & Management, 40(3):

191–204, January 2003. ISSN 0378-7206. doi: 10.1016/

S0378-7206(01)00143-4. URL http://www.sciencedirect.com/
science/article/pii/S0378720601001434.

[73] Marco Mamei and Franco Zambonelli. Programming pervasive and mo-

bile computing applications: The TOTA approach. ACM Trans. Softw. Eng.

Methodol., 18(4):15:1–15:56, July 2009. ISSN 1049-331X. doi: 10.1145/

1538942.1538945. URL http://doi.acm.org/10.1145/1538942.
1538945.

[74] Francisco Martín-Recuerda. Towards cspaces: A new perspective for

the semantic web. In Max Bramer and Vagan Terziyan, editors, In-

dustrial Applications of Semantic Web, volume 188 of IFIP International

Federation for Information Processing, pages 113–139. Springer Boston,

2005. ISBN 978-0-387-28568-9. URL http://www.springerlink.
com/content/a8655013r477v151/abstract/.

[75] Francisco Martín-Recuerda. Application integration using conceptual

spaces (CSpaces). In Riichiro Mizoguchi, Zhongzhi Shi, and Fausto

Giunchiglia, editors, The Semantic Web – ASWC 2006, volume 4185

of Lecture Notes in Computer Science, pages 234–248. Springer Berlin

/ Heidelberg, 2006. ISBN 978-3-540-38329-1. URL http://www.
springerlink.com/content/7863872281654711/abstract/.

[76] Simon Mayer and Gianin Basler. Semantic metadata to support device

interaction in smart environments. In Proceedings of the 2013 ACM

conference on Pervasive and ubiquitous computing adjunct publication,

UbiComp ’13 Adjunct, page 1505–1514, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-2215-7. doi: 10.1145/2494091.2497584. URL

http://doi.acm.org/10.1145/2494091.2497584.

http://www.sciencedirect.com/science/article/pii/S0378720601001434
http://www.sciencedirect.com/science/article/pii/S0378720601001434
http://doi.acm.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://www.springerlink.com/content/a8655013r477v151/abstract/
http://www.springerlink.com/content/a8655013r477v151/abstract/
http://www.springerlink.com/content/7863872281654711/abstract/
http://www.springerlink.com/content/7863872281654711/abstract/
http://doi.acm.org/10.1145/2494091.2497584


BIBLIOGRAPHY 153

[77] Jon Moore. Hypermedia APIs, November 2010. URL http://vimeo.
com/20781278.

[78] Guido Moritz, Elmar Zeeb, Steffen Prüter, Frank Golatowski, Dirk Tim-

mermann, and Regina Stoll. Devices profile for web services and the

REST. In Industrial Informatics (INDIN), 2010 8th IEEE International Con-

ference on, page 584–591, 2010.

[79] Boris Motik, Ian Horrocks, and Su Myeon Kim. Delta-reasoner: A se-

mantic web reasoner for an intelligent mobile platform. In Proceed-

ings of the 21st International Conference Companion on World Wide Web,

WWW ’12 Companion, page 63–72, New York, NY, USA, 2012. ACM.

ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2187988. URL http:
//doi.acm.org/10.1145/2187980.2187988.

[80] Amy Lynn Murphy and Gian Pietro Picco. Transiently shared tuple spaces

for sensor networks. In Proc. of the Euro-American Workshop on Middle-

ware for Sensor Networks, 2006.

[81] Juan Álvaro Muñoz Naranjo, Pablo Orduña, Aitor Gómez-Goiri, Diego

López-de-Ipiña, and L. G. Casado. Lightweight user access control in

energy-constrained wireless network services. In José Bravo, Diego

López-de-Ipiña, and Francisco Moya, editors, Ubiquitous Computing and

Ambient Intelligence, Lecture Notes in Computer Science, pages 33–

41. Springer Berlin Heidelberg, January 2012. ISBN 978-3-642-35376-

5, 978-3-642-35377-2. URL http://link.springer.com/chapter/
10.1007/978-3-642-35377-2_5.

[82] Juan Álvaro Muñoz Naranjo, Pablo Orduña, Aitor Gómez-Goiri, Diego

López-de-Ipiña, and Leocadio González Casado. Enabling user access con-

trol in energy-constrained wireless smart environments. Journal of Uni-

versal Computer Science, 19(17):2490–2505, November 2013. URL http:
//www.jucs.org/jucs_19_17/enabling_user_access_control.

http://vimeo.com/20781278
http://vimeo.com/20781278
http://doi.acm.org/10.1145/2187980.2187988
http://doi.acm.org/10.1145/2187980.2187988
http://link.springer.com/chapter/10.1007/978-3-642-35377-2_5
http://link.springer.com/chapter/10.1007/978-3-642-35377-2_5
http://www.jucs.org/jucs_19_17/enabling_user_access_control
http://www.jucs.org/jucs_19_17/enabling_user_access_control


154 BIBLIOGRAPHY

[83] Juan Álvaro Muñoz Naranjo, Aitor Gómez-Goiri, Pablo Orduña, Diego

López-de-Ipiña, and Leocadio González Casado. Extending a user ac-

cess control proposal for wireless network services with hierarchical user

credentials. In Álvaro Herrero, Bruno Baruque, Fanny Klett, Ajith Ab-

raham, Václav Snášel, André C. P. L. F. de Carvalho, Pablo García Brin-

gas, Ivan Zelinka, Héctor Quintián, and Emilio Corchado, editors, In-

ternational Joint Conference SOCO’13-CISIS’13-ICEUTE’13, number 239

in Advances in Intelligent Systems and Computing, pages 601–610.

Springer International Publishing, January 2014. ISBN 978-3-319-01853-

9, 978-3-319-01854-6. URL http://link.springer.com/chapter/
10.1007/978-3-319-01854-6_61.

[84] Daniele Nardi and Ronald J. Brachman. An introduction to description

logics. The description logic handbook: theory, implementation, and applic-

ations, pages 1–40, 2003.

[85] Elena Nardini, Andrea Omicini, and Mirko Viroli. Semantic

tuple centres. Science of Computer Programming, 78(5):569–582,

May 2013. ISSN 0167-6423. doi: 10.1016/j.scico.2012.10.

004. URL http://www.sciencedirect.com/science/article/
pii/S0167642312001876.

[86] Eric Newcomer. Understanding Web Services: XML, WQSDL, SOAP and

UDDI. Addison-Wesley Professional, 2002.

[87] Lyndon J. B. Nixon, Elena Simperl, Reto Krummenacher, and Francisco

Martin-Recuerda. Tuplespace-based computing for the semantic web: a

survey of the state-of-the-art. The Knowledge Engineering Review, 23(02):

181–212, 2008.

[88] Mark Nottingham. Web linking, October 2010. URL http://tools.
ietf.org/html/rfc5988.

[89] Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model

for mobile information agents. In Proceedings of the 1st Workshop on In-

novative Internet Information Systems, volume 138, 1998.

http://link.springer.com/chapter/10.1007/978-3-319-01854-6_61
http://link.springer.com/chapter/10.1007/978-3-319-01854-6_61
http://www.sciencedirect.com/science/article/pii/S0167642312001876
http://www.sciencedirect.com/science/article/pii/S0167642312001876
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988


BIBLIOGRAPHY 155

[90] Benedikt Ostermaier, Fabian Schlup, and Kai Romer. WebPlug: a frame-

work for the web of things. In 2010 8th IEEE International Conference

on Pervasive Computing and Communications Workshops (PERCOM Work-

shops), page 690–695. IEEE, 2010.

[91] Kevin R. Page, David C. De Roure, and Kirk Martinez. REST and linked

data: a match made for domain driven development? In Proceedings

of the Second International Workshop on RESTful Design, WS-REST ’11,

page 22–25, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0623-

2. doi: 10.1145/1967428.1967435. URL http://doi.acm.org/10.
1145/1967428.1967435.

[92] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web

services vs. big’web services: making the right architectural decision. In

Proceeding of the 17th international conference on World Wide Web, page

805–814, 2008.

[93] Dennis Pfisterer, Kay Römer, Daniel Bimschas, Oliver Kleine, Richard

Mietz, Cuong Truong, Henning Hasemann, Alexander Kröller, Max Pa-

gel, Manfred Hauswirth, Marcel Karnstedt, Myriam Leggieri, Alexandre

Passant, and Ray Richardson. SPITFIRE: toward a semantic web of things.

IEEE Communications Magazine, 49(11):40–48, November 2011. ISSN

0163-6804. doi: 10.1109/MCOM.2011.6069708.

[94] Gian Pietro Picco, Amy Lynn Murphy, and Gruia-Catalin Roman. LIME:

linda meets mobility. In Proceedings of the 21st international confer-

ence on Software engineering, pages 368–377. ACM Press, 1999. ISBN

1581130740. doi: 10.1145/302405.302659. URL http://dl.acm.
org/citation.cfm?id=302659.

[95] Antonio Pintus, Davide Carboni, and Andrea Piras. The anatomy

of a large scale social web for internet enabled objects. In Pro-

ceedings of the Second International Workshop on Web of Things -

WoT ’11, page 1, San Francisco, California, 2011. doi: 10.1145/

http://doi.acm.org/10.1145/1967428.1967435
http://doi.acm.org/10.1145/1967428.1967435
http://dl.acm.org/citation.cfm?id=302659
http://dl.acm.org/citation.cfm?id=302659


156 BIBLIOGRAPHY

1993966.1993975. URL http://dl.acm.org/citation.cfm?id=
1993975&CFID=38852141&CFTOKEN=66966366.

[96] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with

SPARQL. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and

Manolis Koubarakis, editors, The Semantic Web: Research and Applica-

tions, number 5021 in Lecture Notes in Computer Science, pages 524–

538. Springer Berlin Heidelberg, January 2008. ISBN 978-3-540-68233-

2, 978-3-540-68234-9. URL http://link.springer.com/chapter/
10.1007/978-3-540-68234-9_39.

[97] Carlos Ramos, Juan Carlos Augusto, and Daniel Shapiro. Ambient intelli-

gence - the next step for artificial intelligence. IEEE Intelligent Systems, 23

(2):15–18, 2008. ISSN 1541-1672. doi: http://doi.ieeecomputersociety.

org/10.1109/MIS.2008.19.

[98] Leonard Richardson. Introducing real-world REST, November

2008. URL http://qconsf.com/sf2008/dl/qcon-sanfran-2008/
slides_/LeonardRichardson.pdf.

[99] Leo Sauermann and Richard Cyganiak. Cool URIs for the semantic web,

December 2008. URL http://www.w3.org/TR/cooluris/.

[100] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Mi-

chael Schmidt. FedX: a federation layer for distributed query pro-

cessing on linked open data. In Grigoris Antoniou, Marko Grobel-

nik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leen-

heer, and Jeff Pan, editors, The Semanic Web: Research and Applica-

tions, number 6644 in Lecture Notes in Computer Science, pages 481–

486. Springer Berlin Heidelberg, January 2011. ISBN 978-3-642-21063-

1, 978-3-642-21064-8. URL http://link.springer.com/chapter/
10.1007/978-3-642-21064-8_39.

[101] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael

Schmidt. FedX: optimization techniques for federated query processing

on linked data. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor,

http://dl.acm.org/citation.cfm?id=1993975&CFID=38852141&CFTOKEN=66966366
http://dl.acm.org/citation.cfm?id=1993975&CFID=38852141&CFTOKEN=66966366
http://link.springer.com/chapter/10.1007/978-3-540-68234-9_39
http://link.springer.com/chapter/10.1007/978-3-540-68234-9_39
http://qconsf.com/sf2008/dl/qcon-sanfran-2008/slides_/LeonardRichardson.pdf
http://qconsf.com/sf2008/dl/qcon-sanfran-2008/slides_/LeonardRichardson.pdf
http://www.w3.org/TR/cooluris/
http://link.springer.com/chapter/10.1007/978-3-642-21064-8_39
http://link.springer.com/chapter/10.1007/978-3-642-21064-8_39


BIBLIOGRAPHY 157

Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva Blomqvist, ed-

itors, The Semantic Web – ISWC 2011, number 7031 in Lecture Notes

in Computer Science, pages 601–616. Springer Berlin Heidelberg, Janu-

ary 2011. ISBN 978-3-642-25072-9, 978-3-642-25073-6. URL http://
link.springer.com/chapter/10.1007/978-3-642-25073-6_38.

[102] Elena Simperl, Reto Krummenacher, and Lyndon Nixon. A coordina-

tion model for triplespace computing. In Proceedings of the 9th inter-

national conference on Coordination models and languages, COORDINA-

TION’07, page 1–18, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN

978-3-540-72793-4. URL http://dl.acm.org/citation.cfm?id=
1764606.1764608.

[103] Thomas Steiner and Jan Algermissen. Fulfilling the hypermedia con-

straint via HTTP OPTIONS, the HTTP vocabulary in RDF, and link head-

ers. In Proceedings of the Second International Workshop on RESTful

Design, WS-REST ’11, page 11–14, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0623-2. doi: 10.1145/1967428.1967433. URL http:
//doi.acm.org/10.1145/1967428.1967433.

[104] Vlad Stirbu. Towards a RESTful plug and play experience in the web

of things. In 2008 IEEE International Conference on Semantic Computing,

pages 512–517, 2008. doi: 10.1109/ICSC.2008.51.

[105] Robert Tolksdorf, Elena Paslaru Bontas, and Lyndon J. B. Nixon. A co-

ordination model for the semantic web. In Proceedings of the 2006 ACM

symposium on Applied computing, SAC ’06, page 419–423, New York, NY,

USA, 2006. ACM. ISBN 1-59593-108-2. doi: 10.1145/1141277.1141375.

URL http://doi.acm.org/10.1145/1141277.1141375.

[106] Vlad Trifa, Dominique Guinard, and Simon Mayer. Leveraging the web

for a distributed location-aware infrastructure for the real world. In

Erik Wilde and Cesare Pautasso, editors, REST: From Research to Prac-

tice, pages 381–400. Springer New York, January 2011. ISBN 978-1-

4419-8302-2, 978-1-4419-8303-9. URL http://link.springer.com/
chapter/10.1007/978-1-4419-8303-9_17.

http://link.springer.com/chapter/10.1007/978-3-642-25073-6_38
http://link.springer.com/chapter/10.1007/978-3-642-25073-6_38
http://dl.acm.org/citation.cfm?id=1764606.1764608
http://dl.acm.org/citation.cfm?id=1764606.1764608
http://doi.acm.org/10.1145/1967428.1967433
http://doi.acm.org/10.1145/1967428.1967433
http://doi.acm.org/10.1145/1141277.1141375
http://link.springer.com/chapter/10.1007/978-1-4419-8303-9_17
http://link.springer.com/chapter/10.1007/978-1-4419-8303-9_17


158 BIBLIOGRAPHY

[107] Hans Van der Veer and Anthony Wiles. Achieving technical interoperab-

ility - the ETSI approach, October 2006. URL http://www.etsi.org/
website/document/whitepapers/wp3_iop_final.pdf.

[108] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Coppens, Joa-

quim Gabarró Vallés, and Rik Van de Walle. Functional descriptions as

the bridge between hypermedia APIs and the semantic web. In Proceed-

ings of the Third International Workshop on RESTful Design, WS-REST ’12,

pages 33–40, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1190-

8. doi: 10.1145/2307819.2307828. URL http://doi.acm.org/10.
1145/2307819.2307828.

[109] Ruben Verborgh, Thomas Steiner, Sofie Van Hoecke, Jos De Roo, Sam

Coppens, Erik Mannens, Rik Van de Walle, and Joaquim Gabarró Vallés.

The pragmatic proof: A functionality-based approach to Web API com-

position. International Journal of Communication Systems, 2014. ISSN

1074-5351.

[110] Berta Carbadillo Villaverde, Dirk Pesch, Rodolfo De Paz Alberola, Szy-

mon Fedor, and Menouer Boubekeur. Constrained application protocol

for low power embedded networks: A survey. In 2012 Sixth International

Conference on Innovative Mobile and Internet Services in Ubiquitous Com-

puting (IMIS), pages 702–707, 2012. doi: 10.1109/IMIS.2012.93.

[111] Andrew Wahbe. Self-descriptive hypermedia, July

2010. URL http://linkednotbound.net/2010/07/19/
self-descriptive-hypermedia/.

[112] Joachim W. Walewski, Martin Bauer, Nicola Bui, Pierpaolo Giacomin,

Nils Gruschka, Stephan Haller, Edward Ho, Ralf Kernchen, Mario Lis-

chka, Jourik De Loof, Carsten Magerkurth, Stefan Meissner, Sonja Meyer,

Andreas Nettstrater, Francisco Oteiza Lacalle, Alexander Salinas Segura,

Alexandru Serbanati, Martin Strohbach, and Vicent Toubiana. Project

deliverable d1.2 – initial architectural reference model for IoT, June

http://www.etsi.org/website/document/whitepapers/wp3_iop_final.pdf
http://www.etsi.org/website/document/whitepapers/wp3_iop_final.pdf
http://doi.acm.org/10.1145/2307819.2307828
http://doi.acm.org/10.1145/2307819.2307828
http://linkednotbound.net/2010/07/19/self-descriptive-hypermedia/
http://linkednotbound.net/2010/07/19/self-descriptive-hypermedia/


BIBLIOGRAPHY 159

2011. URL http://www.iot-a.eu/public/public-documents/
documents-1/1/1/d1.2/at_download/file.

[113] Mark Weiser. The computer for the 21st century. Scientific American, 265

(3):94–104, 1991.

[114] Erik Wilde. The ’profile’ link relation type, March 2013. URL http:
//tools.ietf.org/html/rfc6906.

[115] Erik Wilde and Michael Hausenblas. RESTful SPARQL? you name it!

aligning SPARQL with REST and resource orientation. In Proceedings

of the 4th Workshop on Emerging Web Services Technology, WEWST ’09,

page 39–43, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-776-

9. doi: 10.1145/1645406.1645412. URL http://doi.acm.org/10.
1145/1645406.1645412.

[116] Dogan Yazar and Adam Dunkels. Efficient application integration in

IP-based sensor networks. In Proceedings of the First ACM Workshop on

Embedded Sensing Systems for Energy-Efficiency in Buildings, page 4348,

2009.

http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.2/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.2/at_download/file
http://tools.ietf.org/html/rfc6906
http://tools.ietf.org/html/rfc6906
http://doi.acm.org/10.1145/1645406.1645412
http://doi.acm.org/10.1145/1645406.1645412




Secondary Web Resources

[117] Aemet metereological dataset. http://datahub.io/dataset/
aemet.

[118] Android mobile platform. http://www.android.com.

[119] Bizkaisense dataset. http://helheim.deusto.es/bizkaisense/.

[120] Bluetooth technology. http://www.bluetooth.com/.

[121] Cito ontology. http://purl.org/spar/cito.

[122] Connectport x2 ip gateway. http://tinyurl.com/connectportx2.

[123] Digi’s XBee sensors. http://tinyurl.com/xbee-sensors.

[124] Dublin core ontology. http://dublincore.org/.

[125] Foaf ontology. http://www.foaf-project.org/.

[126] Foxg20. http://www.acmesystems.it/FOXG20.

[127] Java se 6 documentation. http://docs.oracle.com/javase/6/
docs/.

[128] Jxta protocol. https://jxta.kenai.com.

[129] Kno.e.sis linked sensor data. http://wiki.knoesis.org/index.
php/LinkedSensorData.

[130] Microformats.org. http://microformats.org.

http://datahub.io/dataset/aemet
http://datahub.io/dataset/aemet
http://www.android.com
http://helheim.deusto.es/bizkaisense/
http://www.bluetooth.com/
http://purl.org/spar/cito
http://tinyurl.com/connectportx2
http://tinyurl.com/xbee-sensors
http://dublincore.org/
http://www.foaf-project.org/
http://www.acmesystems.it/FOXG20
http://docs.oracle.com/javase/6/docs/
http://docs.oracle.com/javase/6/docs/
https://jxta.kenai.com
http://wiki.knoesis.org/index.php/LinkedSensorData
http://wiki.knoesis.org/index.php/LinkedSensorData
http://microformats.org


162 SECONDARY WEB RESOURCES

[131] Python programming language. http://www.python.org.

[132] Rdf2gb. http://semanticweb.org/wiki/RDF2Go.

[133] Rdflib. https://github.com/RDFLib.

[134] Restlet. http://restlet.org/.

[135] Samsung galaxy tab. http://www.samsung.com/global/
microsite/galaxytab/2010/.

[136] Semantic profiles of morelab members. http://www.morelab.
deusto.es/joseki/articles.

[137] Sesame framework for processing rdf data. http://www.openrdf.
org/.

[138] Simpy process-based discrete-event simulation framework. http://
simpy.readthedocs.org.

[139] Spitfire european project. http://spitfire-project.eu.

[140] Swrc ontology. http://ontoware.org/swrc/.

[141] University of luebeck wisebed sensor read-

ings. http://thedatahub.org/dataset/
university-of-luebeck-wisebed-sensor-readings.

[142] Upnp forum. http://upnp.org.

[143] Webduino. https://github.com/sirleech/Webduino.

[144] Tim Berners-Lee. N3ql - rdf data query language. http://www.w3.
org/DesignIssues/N3QL.html, July 2004.

[145] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf

syntax. http://www.w3.org/TeamSubmission/n3/, March 2011.

[146] S. Cheshire and M. Krochmal. Dns-based service discovery. http://
tools.ietf.org/html/rfc6763, February 2013.

http://www.python.org
http://semanticweb.org/wiki/RDF2Go
https://github.com/RDFLib
http://restlet.org/
http://www.samsung.com/global/microsite/galaxytab/2010/
http://www.samsung.com/global/microsite/galaxytab/2010/
http://www.morelab.deusto.es/joseki/articles
http://www.morelab.deusto.es/joseki/articles
http://www.openrdf.org/
http://www.openrdf.org/
http://simpy.readthedocs.org
http://simpy.readthedocs.org
http://spitfire-project.eu
http://ontoware.org/swrc/
http://thedatahub.org/dataset/university-of-luebeck-wisebed-sensor-readings
http://thedatahub.org/dataset/university-of-luebeck-wisebed-sensor-readings
http://upnp.org
https://github.com/sirleech/Webduino
http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/DesignIssues/N3QL.html
http://www.w3.org/TeamSubmission/n3/
http://tools.ietf.org/html/rfc6763
http://tools.ietf.org/html/rfc6763


SECONDARY WEB RESOURCES 163

[147] S. Cheshire and M. Krochmal. Multicast dns. http://tools.ietf.
org/html/rfc6762, February 2013.

[148] OASIS consortium. Devices profile for web services (dpws). http://
docs.oasis-open.org/ws-dd/ns/dpws/2009/01, June 2009.

[149] Jos De Roo. Euler yet another proof engine. http://eulersharp.
sourceforge.net.

[150] Roy Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk, Larry Mas-

inter, Paul Leach, and Tim Berners-Lee. Status code definitions, hyper-

text transfer protocol – http/1.1. http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html, June 1999.

[151] XMPP Standards Foundation. The extensible messaging and presence

protocol (xmpp). http://xmpp.org.

[152] Jan Grant and Dave Beckett. Rdf test cases, n-triples. http://www.w3.
org/TR/rdf-testcases/#ntriples, February 2004.

[153] Aitor Gómez-Goiri. Actuation using triple spaces. https://github.
com/gomezgoiri/actuation-using-Triple-Spaces.

[154] Aitor Gómez-Goiri. Semantic wot environment

simulation. https://github.com/gomezgoiri/
Semantic-WoT-Environment-Simulation, https://bitbucket.
org/gomezgoiri/semantic-wot-environment-simulation.

[155] Aitor Gómez-Goiri and Pablo Orduña. Otsopack middleware. https:
//github.com/gomezgoiri/otsopack.

[156] The Internet Engineering Task Force (IETF). Constrained ap-

plication protocol (coap). https://datatracker.ietf.org/doc/
draft-ietf-core-coap/, June 2013.

[157] John Schneider and Takuki Kamiya. Efficient xml interchange (exi)

format 1.0. http://www.w3.org/TR/exi/, March 2011.

http://tools.ietf.org/html/rfc6762
http://tools.ietf.org/html/rfc6762
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://eulersharp.sourceforge.net
http://eulersharp.sourceforge.net
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://xmpp.org
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/rdf-testcases/#ntriples
https://github.com/gomezgoiri/actuation-using-Triple-Spaces
https://github.com/gomezgoiri/actuation-using-Triple-Spaces
https://github.com/gomezgoiri/Semantic-WoT-Environment-Simulation
https://github.com/gomezgoiri/Semantic-WoT-Environment-Simulation
https://bitbucket.org/gomezgoiri/semantic-wot-environment-simulation
https://bitbucket.org/gomezgoiri/semantic-wot-environment-simulation
https://github.com/gomezgoiri/otsopack
https://github.com/gomezgoiri/otsopack
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
http://www.w3.org/TR/exi/


164 SECONDARY WEB RESOURCES

[158] World Wide Web Consortium (W3C). Owl web ontology language.

http://www.w3.org/TR/owl-features/, February 2004.

[159] World Wide Web Consortium (W3C). Rdf vocabulary description lan-

guage 1.0: Rdf schema. http://www.w3.org/TR/rdf-schema/, Feb-

ruary 2004.

[160] World Wide Web Consortium (W3C). Rdf/xml syntax specification.

http://www.w3.org/TR/REC-rdf-syntax/, February 2004.

[161] World Wide Web Consortium (W3C). Resource description framework

(rdf). http://www.w3.org/RDF/, February 2004.

[162] World Wide Web Consortium (W3C). Sparql query language for rdf.

http://www.w3.org/TR/rdf-sparql-query/, January 2008.

[163] World Wide Web Consortium (W3C). Semantic sensor network ontology.

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/,

June 2011.

[164] World Wide Web Consortium (W3C). Html microdata. http://www.
w3.org/TR/microdata/, October 2012.

[165] World Wide Web Consortium (W3C). Rdfa 1.1 primer. http://www.
w3.org/TR/rdfa-primer/, August 2013.

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/rdfa-primer/
http://www.w3.org/TR/rdfa-primer/


This dissertation was finished writing in Bilbao on Monday 7th April, 2014


