
Shelve in:
Software Engineering/Software
Development

User Level:
Advanced

www.apress.com

Advanced API Security
Siriw

ardena
A

d
v
a

n
c
e
d

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

9 781430 268185

58499
ISBN 978-1-4302-6818-5

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: Managed APIs■■ ���1

Chapter 2: Security by Design■■ ��11

Chapter 3: HTTP Basic/Digest Authentication■■ ��33

Chapter 4: Mutual Authentication with TLS■■ ��47

Chapter 5: Identity Delegation■■ ��59

Chapter 6: OAuth 1.0■■ ��75

Chapter 7: OAuth 2.0■■ ��91

Chapter 8: OAuth 2.0 MAC Token Profile■■ ��133

Chapter 9: OAuth 2.0 Profiles■■ ���143

Chapter 10: User Managed Access (UMA)■■ ��155

Chapter 11: Federation■■ ���171

Chapter 12: OpenID Connect■■ ���181

Chapter 13: JWT, JWS, and JWE■■ ���201

Chapter 14: Patterns and Practices■■ ��221

Index��231

www.allitebooks.com

http://www.allitebooks.org

xix

Introduction

APIs are becoming increasingly popular for exposing business functionalities to the rest of the world. According to
an infographic published by Layer 7, 86.5% of organizations will have an API program in place in the next five years.
Of those, 43.2% already have one. APIs are also the foundation of building communication channels in the Internet
of Things (IoT). From motor vehicles to kitchen appliances, countless items are beginning to communicate with each
other via APIs. Cisco estimates that as many as 50 billion devices could be connected to the Internet by 2020.

This book is about securing your most important APIs. As is the case with any software system design, people
tend to ignore the security element during the API design phase. Only at deployment or at the time of integration do
they start to address security.

Security should never be an afterthought—it’s an integral part of any software system design, and it should be
well thought out from the design’s inception. One objective of this book is to educate you about the need for security
and the available options for securing an API.

The book also guides you through the process and shares best practices for designing APIs for rock-solid security.
API security has evolved a lot in the last five years. The growth of standards has been exponential. OAuth 2.0 is the
most widely adopted standard. But it’s more than just a standard—it’s a framework that lets people build standards on
top of it. The book explains in depth how to secure APIs, from traditional HTTP Basic Authentication to OAuth 2.0 and
the standards built around it, such as OpenID Connect, User Managed Access (UMA), and many more.

JSON plays a major role in API communication. Most of the APIs developed today support only JSON, not
XML. This book also focuses on JSON security. JSON Web Encryption (JWE) and JSON Web Signature (JWS) are two
increasingly popular standards for securing JSON messages. The latter part of this book covers JWE and JWS in detail.

Another major objective of this book is to not just present concepts and theories, but also explain each of them
with concrete examples. The book presents a comprehensive set of examples that work with APIs from Google,
Twitter, Facebook, Yahoo!, Salesforce, Flickr, and GitHub.

The evolution of API security is another topic covered in the book. It’s extremely useful to understand how
security protocols were designed in the past and how the drawbacks discovered in them pushed us to where we are
today. The book covers some older security protocols such as Flickr Authentication, Yahoo! BBAuth, Google AuthSub,
Google ClientLogin, and ProtectServe in detail.

I hope this book effectively covers this much-needed subject matter for API developers, and I hope you enjoy
reading it.

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Managed APIs

Enterprise API adoption has exceeded predictions. According to an infographic published by Layer 7
(http://www.layer7tech.com/infographic/img/inf-2-download.jpg), 86.5% of organizations will have an API
program in place in the next five years. Of those, 43.2% already have one. APIs are also the foundation of building
communication channels in the Internet of Things (IoT). From motor vehicles to kitchen appliances, countless
items will start communicating with each other via APIs. Cisco estimates that as many as 50 billion devices could be
connected to the Internet by 2020.

The world is more connected than ever. You can log in to Yahoo! with Facebook credentials, share photos from
Instagram in Facebook, share a location from Foursquare in Twitter, and publish tweets to your Facebook wall. The
list of connections is limitless. All this is made possible only because of public APIs, which have proliferated in the last
couple of years. In 2013, 90% of Expedia’s business was coming through its API. Salesforce generates almost 50% of its
annual $3 billion in revenue through APIs. APIs have become the coolest way of exposing business functionalities to
the outside world.

The API Evolution
API stands for application programming interface. If you’ve worked with Java, .NET, or any other programming
language, you’ve probably written code against an API. Java provides Java Database Connectivity (JDBC) as an API
to talk to different heterogeneous database management systems (DBMSs), as shown in Figure 1-1. The JDBC API
encapsulates the logic for how your application connects to the database; thus the application logic doesn’t need to
change whenever it connects to different databases. The database’s connectivity logic is wrapped in a JDBC driver and
exposed as an API. To change the database, you need to pick the right JDBC driver.

Java Application

JDBC API

MySQL JDBC Driver MySQL DB

Figure 1-1.  JDBC API

www.allitebooks.com

http://www.layer7tech.com/infographic/img/inf-2-download.jpg
http://www.allitebooks.org

Chapter 1 ■ Managed APIs

2

An API itself is an interface. It’s the interface for clients that interact with the system. Clients should only know
about the interface and nothing about its implementation. There can be more than one implementation for a given
interface; the clients written against the interface can switch between implementations seamlessly and painlessly.

The client application and the API implementation can be running in the same process or in different processes.
If they’re running in the same process, then the call between the client and the API is a native one—if not, it’s a
remote call. In the case of the JDBC API, it’s a native call. The Java client application directly invokes the JDBC API,
implemented by a JDBC driver running in the same process.

APIs can also be exposed for remote access. To invoke an API remotely, you need to have a protocol defined for
interprocess communication. Java RMI, CORBA, .NET Remoting, SOAP, and REST (over HTTP) are some protocols
that facilitate interprocess communication. Java RMI provides the infrastructure-level support to invoke a Java API
remotely from a non-local Java virtual machine (JVM, which runs in a different process than the one that runs the
Java API). All the requests from the client are serialized into the wire by the RMI infrastructure at the client side (also
known as marshalling) and are deserialized into Java objects at the server side by its RMI infrastructure (also known
as unmarshalling); see Figure 1-2. This marshalling/unmarshalling technique is specific to Java. It must be a Java
client to invoke an API exposed over Java RMI—and it’s language dependent.

Java Client Application Java Server Application

RMI Client-side RMI Server-side

Figure 1-2.  Java RMI

SOAP-based web services provide a way to build and invoke a hosted API in a language- and platform-neutral
manner. A message from one end to the other is passed as an XML payload. SOAP is very structured and is backed by
a large number of specifications. The request/response protocol between the client and the server is defined in the
SOAP specification. The way you describe a SOAP service is defined in Web Services Description Language (WSDL).
The WS-Security, WS-Trust, and WS-Federation specifications describe how to secure a SOAP-based service.
WS-Policy provides a framework to build quality-of-service expressions around SOAP services. WS-SecurityPolicy
defines the security requirements of a SOAP service in a standard way, built on top of the WS-Policy framework.
The list goes on and on. Due to the nature of SOAP-based services, which are highly decoupled, standardized, and
governed based on policies, they’re the preferred ingredient to build a service-oriented architecture (SOA).

At least, that was the story a decade ago. The popularity of SOAP-based APIs has declined, mostly due to the
inherent complexity of the WS-* standards. SOAP promised interoperability, but many ambiguities arose among
different implementation stacks. To overcome this issue and promote interoperability between implementation
stacks, the Web Services Interoperability (WS-I) organization came up with the Basic Profile for web services. The
Basic Profile helps removing ambiguities in web service standards. An API design built on top of SOAP should follow
the guidelines defined in the Basic Profile.

Note■■  S OAP was initially an acronym that stood for Simple Object Access Protocol. From SOAP 1.2 onward, it is no
longer an acronym.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Managed APIs

3

In contrast to SOAP, REST is a design paradigm, rather than a rule set. Even though Roy Fielding, who first
described REST in his PhD thesis (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.), did not
couple REST to HTTP, 99% of RESTful services or APIs today are based on HTTP. For the same reason, we could easily
argue, REST is based on the rule set defined in the HTTP specification. The Web 2.0 trend emerged in 2006-2007 and
set a course to a simpler, less complex architectural style for building APIs. Web 2.0 is a set of economic, social, and
technology trends that collectively formed the basis for the next generation of Internet computing. It was built by
tens of millions of participants. The platform built around Web 2.0 was based on the simple, lightweight, yet powerful
AJAX-based programming languages and REST—and it started to move away from SOAP-based services.

Modern APIs have their roots in both SOAP and REST. Salesforce launched its public API in 2000, and it still
has support for both SOAP and REST. Amazon launched its web services API in 2002 with support for both REST
and SOAP, but the early adoption rate of SOAP was very low. By 2003, it was revealed that 85% of Amazon API usage
was on REST. ProgrammableWeb, a registry of web APIs, has tracked APIs since 2005. In 2005, ProgrammableWeb
tracked 105 APIs, including Google, Salesforce, eBay, and Amazon. The number increased six-fold by 2008 to 601
APIs, with growing interest from social and traditional media companies to expose data to external parties. There
were 2,500 APIs by the end of 2010. The online clothing and shoe shop Zappos published a REST API, and many
government agencies and traditional brick-and-mortar retailers joined the party. The British multinational grocery
and merchandise retailer Tesco allowed ordering via APIs. The photo-sharing application Instagram became the
Twitter for pictures. The Face introduced facial recognition as a service. Twilio allowed anyone to create telephony
applications in no time. The number of public APIs rose to 5,000 by 2011; and as of this writing, there are more than
11,000 APIs registered by ProgrammableWeb. At the same time, the trend toward SOAP has nearly died: 73% of the
APIs on ProgrammableWeb today use REST, while SOAP is far behind with only 27%.

The term API has existed for decades, but only recently has it been caught up in the hype and become a popular
buzzword. The modern definition of an API mostly focused on a hosted, web-centric (over HTTP), public-facing
API to expose useful business functionalities to the rest of the world. Salesforce, Amazon, eBay, Dropbox, Facebook,
Twitter, LinkedIn, Google, Flickr, Yahoo, and most of the key players doing business online have an API platform to
expose business functionalities.

API vs. Managed API
The Twitter API can be used to tweet, get timeline updates, list followers, update profiles, and do many other things.
None of these operations can be performed anonymously—you need to authenticate first. Let’s take a concrete
example (you need to have cURL installed to try this, or you can use the Chrome Advanced REST client browser
plug-in):
 
curl https://api.twitter.com/1.1/statuses/home_timeline.json
 

This API is supposed to list all the tweets published by the authenticated user and his or her followers. If you just
invoke it, it returns an error code, specifying that the request isn’t authenticated:
 
{"errors":[{"message":"Bad Authentication data","code":215}]}
 

All the Twitter APIs are secured for legitimate access with OAuth 1.0 (which is discussed in detail in Chapter 6).
Even with proper access credentials, you can’t invoke the API as you wish. Twitter enforces a rate limit on each
API call: within a given time window, you can only invoke a Twitter API a fixed number of times. This precaution is
required for all public-facing APIs to minimize any possible denial of service (DoS) attacks. In addition to securing
and rate-limiting its APIs, Twitter also closely monitors them. Twitter API Health (https://dev.twitter.com/status)
shows the current status of each API. Security, rate limiting (throttling), and monitoring are key aspects of a managed
business API. It also must have the ability to scale up and down for high availability based on traffic.

Life-cycle management is another key differentiator between a naked API and a managed API. A managed API
has a life cycle from its creation to its retirement. A typical API life cycle might flow through Created, Published,
Deprecated, and Retired stages, as illustrated in Figure 1-3. To complete each life-cycle stage, there can be a checklist

www.allitebooks.com

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://api.twitter.com/1.1/statuses/home_timeline.json
https://dev.twitter.com/status
http://www.allitebooks.org

Chapter 1 ■ Managed APIs

4

to be verified. For example, to promote an API from Created to Published, you need to make sure the API is secured
properly, the documentation is ready, throttling rules are enforced, and so on. A naked business API, which only
worries about business functionalities, can be turned into a managed API by building these quality-of-service aspects
around it.

API vs. Service
Going back to the good old days, there was an unambiguous definition for API vs. service. An API is the interface
between two parties or two components. These two parties/components can communicate within a single process
or between different processes. A service is a concrete implementation of an API using one of the technologies/
standards available. An API that is exposed over SOAP is a SOAP service. Similarly, the same API can be exposed as
REST, and then it becomes a RESTful service.

Today, the topic of API vs. service is debatable, because there are many overlapping areas. One popular definition
is that an API is external facing whereas a service is internal facing (see Figure 1-4). An enterprise uses an API
whenever it wants to expose useful business functionality to the outside world through the firewall. This, of course,
raises another question: why would a company want to expose its precious business assets to the outside world
through an API? Twitter once again is the best example. It has a web site that lets users log in and tweet from there.
At the same time, anything that can be done through the web site can also be done via Twitter’s API. As a result,
third parties develop applications against the Twitter API; there are mobile apps, browser plug-ins, and desktop
apps. This has drastically reduced traffic to the Twitter web site. Even today, the web site doesn’t have a single
advertisement. If there was no public API, Twitter could easily have built an advertising platform around the web site,
just as Facebook did. However, having a public API helped build a strong ecosystem around Twitter.

Created Published Deprecated Retired

Figure 1-3.  API life cycle

API Service

Figure 1-4.  API vs. service. An API is external facing

Exposing corporate data via an API adds value. Not just corporate stakeholders, but also a larger audience,
have access to the data. Limitless innovative ideas may pop up and, in the end, add value to the data. Say you’re a
pizza dealer with an API that returns the number of calories for a given pizza type and the size. You can develop an
application to find out how many pizzas a person would have to eat per day to reach a body mass index (BMI) in the
obesity range.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Managed APIs

5

Discovering and Describing APIs
APIs are public facing, and that raises the need for the API description to be extremely useful and meaningful. At the
same time, APIs need to be published somewhere to be discovered. A comprehensive API management platform
needs to have at least three main components: a publisher, a store, and a gateway.

The API publisher provides tooling support to create and publish APIs. When an API is created, it needs to be
associated with API documentation and other related quality-of-service controls. Then it’s published into the API
store and deployed into the API gateway. Application developers can discover APIs from the store. ProgrammableWeb
(www.programmableweb.com) is a popular API store that has more than 11,000 APIs at the time of this writing. You
could also argue that ProgrammableWeb is simply a directory, rather than a store. A store goes beyond just listing APIs
(which is what ProgrammableWeb does): it lets API consumers and application developers subscribe to APIs, and it
manages API subscriptions. There are many open source and proprietary API management products out there that
provide support for a comprehensive API store.

App Developer

Creates Applications using APIs

Subscribes to APIs

Discovers to APIs

API Store

API Publisher

API Gateway

End User

Accesses
APIs

Publishes

Publishes

Creates APIs

API Developer

Figure 1-5.  API management platform

In the SOAP world, there are two major standards for service discovery. Universal Description, Discovery and
Integration (UDDI) was popular, but it's extremely bulky and didn’t perform to the level it was expected to. UDDI is
almost dead today. The second standard is WS-Discovery, which provides a much more lightweight approach. Most
modern APIs are REST friendly. For RESTful services or APIs, there is no widely accepted standard means of discovery
at the time of this writing. Most API stores make discovery simple via searching and tagging.

Describing a SOAP-based web service is standardized through Web Service Definition Language (WSDL).
WSDL describes what operations are exposed through the web service and how to reach them. For RESTful
services and APIs, there are two popular standards for description: Web Application Description Language (WADL,
www.w3.org/Submission/wadl/) and Swagger (https://helloreverb.com/developers/swagger). WADL is an
XML-based standard to describe RESTful or HTTP-based services. Just as in WSDL, WADL describes the API and

www.allitebooks.com

http://www.programmableweb.com/
http://www.w3.org/Submission/wadl/
https://helloreverb.com/developers/swagger
http://www.allitebooks.org

Chapter 1 ■ Managed APIs

6

its expected request/response messages. Swagger is a specification and a complete framework implementation for
describing, producing, consuming, and visualizing RESTful web services.

Managed APIs in Practice
Most of the APIs offered by popular cloud service providers and other social neworking sites are managed APIs.
Twitter, Salesforce, Amazon, Google, Microsoft, and Yahoo! all provide managed APIs.

Twitter API
Twitter provides a rich API for application developers that generates more than 90% of Twitter traffic. It has a REST
API as well as a Streaming API.

The REST API allows developers to access core Twitter data like status data and user information. It also lets
developers update the Twitter timeline. The REST API has another part, which is for Twitter search. This separate
API for search is due to historical reasons: Twitter acquired Summize Inc., which before the acquisition was an
independent company that provided search functionality over Twitter data.

The Streaming API is another RESTful service, which allows developers to get near-real-time updates by
specifying filtering criteria. All Twitter APIs from version 1.1 onward are secured with OAuth 1.0.

ACCESSING THE TWITTER API

In this exercise, you see how to invoke the Twitter API:

1.	 First you need to generate OAuth keys. To do so, you need to create a Twitter app. Go to
https://dev.twitter.com/apps, and click Create New App.

2.	 Once the app is created, go to https://dev.twitter.com/apps and click the link to the app
that you just created.

3.	G o to Permissions, check Read and Write, and click Update Settings at the bottom of the
page. Allow some time for the changes to be updated.

4.	G o to API Keys, and click Create My Access Token under Token Actions.

5.	R efresh API Keys (token generation takes some time; you may need to refresh the page few
times), and copy the values of the following attributes. You need these values to create the
app against the Twitter API:

API Key (listed under Application Settings)•	

API Secret (listed under Application Settings)•	

Access Token (listed under Your Access Token)•	

Access Token Secret (listed under Your Access Token)•	

6.	 Click the Test OAuth button in the top left corner, and then paste the following in the Request
URI text box while keeping the Request Type as GET. Then click the See OAuth Signature For
This Request button:

 
https://api.twitter.com/1.1/statuses/home_timeline.json

 
This API lists the tweets published by the authenticated user and his or her followers.

www.allitebooks.com

https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://api.twitter.com/1.1/statuses/home_timeline.json
http://www.allitebooks.org

Chapter 1 ■ Managed APIs

7

7.	 Copy the generated text against the cURL command, and execute it in the command line.
Here’s an example cURL command:

 
 �curl --get 'https://api.twitter.com/1.1/statuses/home_timeline.json'

 --header 'Authorization: OAuth
 oauth_consumer_key="mSMOiaAm9xPMJJjjY1KsKqhXM",
 oauth_nonce="a776b23996cb162cd5b8d9abd2ef2876",
 oauth_signature="HSr0%2BQo3q5ROvoXf5a3akYK%2FSL4%3D",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="1403248335",
 �oauth_token="10963912-Wwfbz5RjU1L0SFObQR3ZYh8BOmvanQh2Elg0k8oe6",

oauth_version="1.0"' --verbose
 

This returns the tweets published by the authenticated user and his or her followers in JSON
format. To format the JSON response, you can copy the JSON payload and paste it at
http://jsonformatter.curiousconcept.com/.

8.	T ry out the same cURL command few times until you see the following error. This indicates
you’ve exceeded the default rate limit, which is 15 requests per user per time window. At the
time of this writing, the default time window is 15 minutes:

 
 {"errors":[{"message":"Rate limit exceeded","code":88}]}
 
Let’s tryout another simple API, this time tweeting via cURL:

1.	 Click the Test OAuth button, and then paste the following in the Request URI text box while
setting the Request Type to POST:

 
 https://api.twitter.com/1.1/statuses/update.json
 

In the Request Query text box, type status="Having fun with Twitter API", and click See OAuth
Signature For This Request.

2.	 Copy the generated text against the cURL command, and execute it in the command line.
Here’s an example cURL command:

 
 curl --request 'POST' ' https://api.twitter.com/1.1/statuses/update.json '
 --data 'status=%E2%80%9DHaving+fun+with+Twitter+API%E2%80%9D'
 --header 'Authorization: OAuth
 oauth_consumer_key="mSMOiaAm9xPMJJjjY1KsKqhXM",
 oauth_nonce="930f8fdf2f819bcc6e8e2eda8ee8d4df",
 oauth_signature="lziGgiz3cvWMWML%2F%2F8VB4jl2d0I%3D",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="1403248803",
 oauth_token="10963912-Wwfbz5RjU1L0SFObQR3ZYh8BOmvanQh2Elg0k8oe6",
 oauth_version="1.0"' –verbose
 

If you see the following error, it means your token has expired:
 
 {"errors":[{"message":"Invalid or expired token","code":89}]}
 

You need to regenerate a new token. Go to API Keys, and click Regenerate API Keys.

This is just an appetizer. You learn more about the Twitter API and OAuth 1.0 in Chapter 6.

https://api.twitter.com/1.1/statuses/home_timeline.json
http://jsonformatter.curiousconcept.com/
https://api.twitter.com/1.1/statuses/update.json
https://api.twitter.com/1.1/statuses/update.json

Chapter 1 ■ Managed APIs

8

Salesforce API
Force.com has a comprehensive REST API that identifies each resource by a named URI and is accessible through
standard HTTP methods (HEAD, GET, POST, PATCH, DELETE). To interact with a Salesforce or Force.com organization, you
use a resource. The following are some things you can do with the Salesforce API (the complete REST API developer
guide from Salesforce is available at www.salesforce.com/us/developer/docs/api_rest/api_rest.pdf):

Retrieve summary information about the API versions available to you•	

Obtain detailed information about Salesforce objects, such as •	 Accounts or custom objects

Obtain detailed information about Force.com objects, such as •	 Users or custom objects

Perform a query or search•	

Update or delete records•	

ACCESSING THE SALESFORCE API

In this exercise, you go through a couple of scenarios step by step to see how the Salesforce API is secured:

1.	 Create a Salesforce account if you don’t have one yet. You can create a free developer
account at http://developer.force.com.

2.	A fter logging in to your Salesforce developer account, you need to create an application to
represent the application you’ll develop to consume Salesforce APIs. Make sure you’re logged
in to the Developer Account. If not, click the drop-down under your login name and select My
Developer Account. To create an application, click Setup next to your Salesforce logged-in
name, click Create under Build, and then click Apps. Under Connected Apps, click New. Fill in
the required details, and check Enable OAuth Settings.

3.	T ype an HTTPS URL as the Callback URL. For the moment, this can be anything—even
something that doesn’t exist will work. In this example, you aren’t going to use it; this is
needed only if you try to authenticate via a browser. Also pick Full Access as the OAuth
scope. Then save the changes. Now the OAuth Consumer Key and the Consumer Secret are
generated for your application; copy them for future use.

4.	 Unlike Twitter, Salesforce enforces more security controls over API access. To access an
API using the generated keys, you need to whitelist the IP addresses where you run your
application. This is extremely useful in cases where you need to make sure the APIs are
accessed only from your corporate domain/network. But keep in mind that IP addresses can
be spoofed.

5.	 If you want your Salesforce APIs to be accessible from anywhere, you need to create a
security token. To do so, under your Salesforce logged-in name, click My Settings; then,
choose under Personal ➤ Reset My Security Token ➤ Reset Security Token.
You receive the token via your registered e-mail account. Copy it; you need it in future steps.

http://www.salesforce.com/us/developer/docs/api_rest/api_rest.pdf
http://developer.force.com/

Chapter 1 ■ Managed APIs

9

You’ve finished setting up your Salesforce account to access APIs. Next you need to see how to invoke
APIs securely. For Twitter, you used cURL. But here you use a different tool: the Advanced Rest Client
Chrome App (available from https://chrome.google.com/webstore/detail/advanced-rest-client/
hgmloofddffdnphfgcellkdfbfbjeloo):

1.	A fter installing the Advanced Rest Client Chrome App, launch it via
extension://hgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html from the
Chrome browser. Simply type this URL in the browser address bar.

2.	T ype https://login.salesforce.com/services/oauth2/token in the URL box, and select
POST as the HTTP method.

3.	 You need to construct the HTTP request body required to retrieve the OAuth key or access
token. Use the following as a template, and replace the values in square brackets with your
own values:

 
 grant_type=password&
 username=[your salesforce username]&
 password=[your salesforce password][your salesforce security token]&
 client_id=[salesforce consumer key for your app]&
 client_secret=[salesforce consumer secret for your app]
 

Notice the way you generate the password. You need to concatenate your Salesforce password
with the security token you got via e-mail. If your password was foo and the security token
was bar, then the password for API access would be foobar.

After you replace this template with your actual values, copy and paste the complete line in the
Advanced Rest Client as a Raw payload. Click Form as the payload type.

4.	 Copy and paste the following line as a Raw HTTP header:
 

Content-Type: application/x-www-form-urlencoded;charset=UTF-8
 

5.	 Click Send to get an access token to access APIs. You receive the access token in a JSON
response. Copy and keep the value of the access token; you need it to invoke the Salesforce APIs.

6.	 You’re all set. Type the following API in the URL text box, and select GET as the HTTP method:
 

https://na1.salesforce.com/services/data/v20.0/
 

7.	 Copy and paste the following line as a Raw HTTP header. Make sure you replace
[access_token] with the value of the access token you received previously:

 
Authorization: Bearer [access_token]

 
8.	 Click Send to invoke the API. This returns a list of available Salesforce resources in a

JSON response:
 

{
 sobjects: "/services/data/v20.0/sobjects"
 licensing: "/services/data/v20.0/licensing"
 identity: "https://login.salesforce.com/id/00D90000000v28SEAQ/005900000026oRVAAY"

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://login.salesforce.com/services/oauth2/token
https://na1.salesforce.com/services/data/v20.0/
https://login.salesforce.com/id/00D90000000v28SEAQ/005900000026oRVAAY

Chapter 1 ■ Managed APIs

10

 connect: "/services/data/v20.0/connect"
 search: "/services/data/v20.0/search"
 query: "/services/data/v20.0/query"
 tooling: "/services/data/v20.0/tooling"
 chatter: "/services/data/v20.0/chatter"
 recent: "/services/data/v20.0/recent"
}

 
9.	T o get more information about the authenticated user, set the value of the identity attribute

from the JSON response in the URL box and, with the same access token, click Send:
 

https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4
 
This is once again just an appetizer. You learn more about the Salesforce API and OAuth 2.0 in Chapter 7.

Summary
This chapter discussed the evolution of APIs and how managed APIs are different from naked APIs. Most cloud service
providers today expose public managed APIs. The later part of the chapter focused on building two examples around
Twitter and Salesforce APIs.

In the next chapter, we will take a closer look at the basic principles everyone should know when doing a
security design.

https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4

11

Chapter 2

Security by Design

Security isn’t an afterthought. It has to be an integral part of any development project and also for APIs. It starts with
requirements gathering and proceeds through the Design, Development, Testing, Deployment, and Monitoring phases.

Design Challenges
Security brings a plethora of challenges into system design. It’s hard to build a 100% secured system, at least in theory.
The only thing you can do is to make the attacker’s job harder.

User Comfort
The most challenging thing in any security design is to find and maintain the right balance between security and the
user comfort. Say you have the most complex password policy ever, which can never be broken by any brute-force
attack. A password has to have more than 20 characters, with mandatory uppercase and lowercase letters, numbers,
and special characters. Who on Earth is going to remember their password? Either you’ll write it on a piece of paper
and keep it in your wallet, or you’ll add it as a note in your mobile device. Either way, you lose the ultimate objective
of the strong password policy. Why would someone carry out a brute-force attack when the password is written down
and kept in a wallet? The principle of psychological acceptability, discussed later in this chapter, states that security
mechanisms should not make the resource more difficult to access than if the security mechanisms were not present.

It is essential that the human interface be designed for ease of use, so that users routinely and
automatically apply the protection mechanisms correctly. Also, to the extent that the user's mental
image of his protection goals matches the mechanisms he must use, mistakes will be minimized. If
he must translate his image of his protection needs into a radically different specification language,
he will make errors.

—Jerome Saltzer and Michael Schoeder

Performance
Performance is another key criterion. What is the cost of the overhead you add to your business operations to protect
them from intruders? Say you have an API secured with a key, and each API call must be digitally signed. If the key is
compromised, an attacker can use it to access the API. How do you minimize the impact? You can make the key valid
only for a very short period; so, whatever the attacker can do with the stolen key is limited to its lifetime. What kind
of impact will this have on legitimate day-to-day business operations? Each API call should first check the validity

Chapter 2 ■ Security by Design

12

period of the key and, if it has expired, make another call to the authorization server to generate a new key. If you
make the lifetime too short, then for each API call, there will be another call to the authorization server to generate a
new key. That kills performance—but drastically reduces the impact of an intruder getting access to the API key.

Weakest Link
A proper security design should include all the communication links in the system. Your system is no stronger than its
weakest link. In 2010, it was discovered that since 2006, a gang of robbers equipped with a powerful vacuum cleaner
had stolen more than 600,000 euros from the Monoprix supermarket chain in France. The most interesting thing was
the way they did it. They found out the weakest link in the system and attacked it. To transfer money directly into the
store’s cash coffers, cashiers slid tubes filled with money through pneumatic suction pipes. The robbers realized that it
was sufficient to drill a hole in the pipe near the trunk and then connect a vacuum cleaner to capture the money. They
didn’t have to deal with the coffer shield.

Defense in Depth
A layered approach is preferred for any system being tightened for security. This is also known as defense in depth.
Most international airports, which are at a high risk of terrorist attacks, follow a layered approach in their security
design. On November 1, 2013, a man dressed in black walked into the Los Angeles International Airport, pulled
a semi-automatic rifle out of his bag, and shot his way through a security checkpoint, killing a TSA screener and
wounding at least two other officers. This was the first layer of defense. In case someone got through it, there has to be
another to prevent the gunman from entering a flight and taking control. If there had been a security layer before the
TSA, maybe just to scan everyone who entered the airport, it would have detected the weapon and probably saved the
life of the TSA officer.

The number of layers and the strength of each layer depend on which assets you want to protect and the threat
level associated with them. Why would someone hire a security officer and also use a burglar alarm system to secure
an empty garage?

Insider Attacks
Insider attacks are less powerful and less complicated, but highly effective. From the confidential US diplomatic
cables leaked by WikiLeaks to Edward Snowden’s disclosure about the National Security Agency’s secret operations,
are all insider attacks. Both Snowden and Bradley Manning were insiders who had legitimate access to the
information they disclosed. Most organizations spend the majority of their security budget to protect their systems
from external intruders; but approximately 60% to 80% of network misuse incidents originate from inside the network,
according to the Computer Security Institute (CSI) in San Francisco.

Note■■  I nsider attacks are identified as a growing threat in the military. To address this concern, the US Defense
Advanced Research Projects Agency (DARPA) launched a project called Cyber Insider Threat (CINDER) in 2010. The
objective of this project was to develop new ways to identify and mitigate insider threats as soon as possible.

Chapter 2 ■ Security by Design

13

Security by Obscurity
Kerckhoffs, Principle1 emphasizes that a system should be secured by its design, not because the design is unknown
to an adversary. Microsoft’s NTLM design was kept secret for some time, but at the point (to support interoperability
between Unix and Windows) Samba engineers reverse-engineered it, they discovered security vulnerabilities caused
by the protocol design itself. In a proper security design, it’s highly recommended not to use any custom-developed
algorithms or protocols. Standards are like design patterns: they’ve been discussed, designed, and tested in an open
forum. Every time you have to deviate from a standard, should think twice—or more.

Design Principles
Jerome Saltzer and Michael Schroeder produced one of the most widely cited research papers in the information
security domain.2 The paper, “The Protection of Information in Computer Systems,” put forth eight design principles
for securing information in computer systems, as described in the following sections.

Least Privilege
The principle of least privilege states that an entity should only have the required set of permissions to perform the
actions for which they are authorized, and no more. Permissions can be added as needed and should be revoked
when no longer in use. This limits the damage that can result from an accident or error.

Note■■  T he need to know principle is popular in military security. This states that even if someone has all the necessary
security clearance levels to access information, they should not be granted access unless there is a real/proven need.

Fail-Safe Defaults
This principle highlights the importance of making a system safe by default. A user’s default access level to any
resource in the system should be “denied” unless they’ve been granted a “permit” explicitly. The Java Security
Manager implementation follows this principle—once engaged, none of the components in the system can perform
any privileged operations unless explicitly permitted.

Economy of Mechanism
This principle highlights the value of simplicity. The design should be as simple as possible. All the component
interfaces and the interactions between them should be simple enough to understand.

1In 1883, Auguste Kerckhoffs published two journal articles on La Cryptographie Militaire in which he emphasized six design
principles for military ciphers. This resulted in the well-known Kerckhoffs’ Principle: A cryptosystem should be secured even if
everything about the system, except the key, is public knowledge.
2“The Protection of Information in Computer Systems,” http://web.mit.edu/Saltzer/www/publications/protection/,
October 11, 1974.

http://web.mit.edu/Saltzer/www/publications/protection/

Chapter 2 ■ Security by Design

14

Complete Mediation
With complete mediation, a system should validate access rights to all its resources to ensure that they’re allowed.
Most systems do this once at the entry point to build a cached permission matrix. Each subsequent operation
validates the resource permission against the permission matrix. If the access level to a given resource is being
revoked, but that isn’t reflected in the permission matrix, it would violate this principle.

Open Design
This principle highlights the importance of building a system in an open manner—with no secret, confidential
algorithms. This is the opposite of security by obscurity, discussed earlier in the section “Design Challenges.”

Separation of Privilege
The principle of separation of privilege states that granting permissions to an entity should not be purely based on
a single condition. For example, say a reimbursement claim can be submitted by any employee but can only be
approved by the manager. What if the manager wants to submit a reimbursement? According to this principle, the
manager should not be granted the right to approve his or her own reimbursement claims.

Least Common Mechanism
The principle of least common mechanism concerns the risk of sharing state among different components. If one can
corrupt the shared state, it can then corrupt all the other components that depend on it.

Psychological Acceptability
The principle of psychological acceptability states that security mechanisms should not make the resource more
difficult to access than if the security mechanisms were not present. Microsoft introduced Information Cards in 2006
as a new paradigm for authentication to fight against phishing. But the user experience was bad, with a high setup
cost, for people who were addicted to username/password-based authentication. It went down in history as another
unsuccessful initiative from Microsoft.

Confidentiality, Integrity, Availability (CIA)
Confidentiality, integrity, and availability are three key factors used in benchmarking information systems security, as
discussed next.

Confidentiality
Confidentiality means protecting data from unintended recipients, both at rest and in transit. You achieve
confidentiality by protecting transport channels and storage with encryption. For APIs, where the transport channel is
HTTP, you can use Transport Level Security (TLS), which is HTTPS. For storage, you can use disk-level encryption or
application-level encryption. Channel encryption or transport-level encryption isn’t 100% secure. In contrast, there is
message-level encryption, which happens at the application level and has no dependency on the transport channel.
If you secure data with message-level encryption, then you can use HTTP as the transport channel. Transport-level

Chapter 2 ■ Security by Design

15

encryption only provides point-to-point protection and truncates from where the connection ends. As soon as data
leaves the transport channel, it’s no longer secured. At the same time, when you connect to an API gateway through a
proxy, the data could be in cleartext while inside the proxy.

A TLS connection from the client to the gateway can be established in two ways: either with SSL bridging or
with SSL tunneling. Almost all proxy servers support both modes. For a highly secured deployment, SSL tunneling
is recommended. In SSL bridging (see Figure 2-1), the initial connection truncates from the proxy server, and a new
connection to the gateway is established from there. That means the data is in cleartext in the proxy server. Any
intruder who can plant malware in the proxy server can intercept traffic that passes through. With SSL tunneling
(see Figure 2-2), the proxy server facilitates creating a direct channel between the client machine and the gateway.
The data flow through this channel is invisible to the proxy server.

Client
Application

HTTP Proxy

TLS Negotiation TLS Negotiation

TLS Traffic TLS Traffic

API Gateway

Figure 2-1.  SSL bridging

Note■■   Secure Socket Layer (SSL) and Transport Layer Security (TLS) are often used interchangeably, but in pure
technical terms they aren’t the same. TLS is the successor of SSL 3.0. TLS 1.0, which is defined under the IETF RFC
2246, is based on the SSL 3.0 protocol specification, which was published by Netscape. The differences between TLS 1.0
and SSL 3.0 aren’t dramatic, but they’re significant enough that TLS 1.0 and SSL 3.0 don’t interoperate.

Message-level encryption, on the other hand, is independent from the underlying transport. It’s the
application developers’ responsibility to encrypt and decrypt messages. Because this is application specific, it hurts
interoperability and builds tight couplings between the sender and the receiver. Each has to know how to encrypt/
decrypt data beforehand—which will not scale up in a distributed system. To overcome this challenge, there have
been some concentrated efforts to build standards around message-level encryption. XML Encryption is one such
effort, led by the W3C. It standardizes how to encrypt an XML payload. Similarly, the IETF JavaScript Object Signing
and Encryption (JOSE) working group is in the process of building a set of standards for JSON payloads. JSON Web
Encryption and JSON Web Signature are discussed in Chapter 13.

Client
Application

HTTP Proxy

HTTP CONNECT TCP Connection Established

TSL Negotiation and TLS Traffic

Connection Established API Gateway

Figure 2-2.  SSL tunneling

Chapter 2 ■ Security by Design

16

Transport-level security encrypts the entire message. Because it relies on the underlying channel for protection,
application developers have no control over which part of the data to encrypt and which part not to. Partial encryption
isn’t supported by transport-level security, but it is supported by message-level security. The Table 2-1 summarizes
the key differences between transport-level security and message-level security.

Table 2-1.  Transport-Level Security vs. Message-Level Security

Transport-Level Security Message-Level Security

Relies on the underlying transport No dependency on the underlying transport

Point-to-point End-to-end

Partial encryption not supported Partial encryption supported

High performance Relatively less performance

Integrity
Integrity is a guarantee of data’s correctness and trustworthiness and the ability to detect any unauthorized
modifications. It ensures that data is protected from unauthorized or unintentional alteration, modification, or
deletion. The way to achieve integrity is twofold: preventive measures and detective measures. Both measures have to
take care of data in transit as well as data at rest.

To prevent data from alteration while in transit, you should use a confidential channel that only intended parties
can read. TLS is the recommended approach for transport-level encryption. TLS itself has a way of detecting data
modifications. It sends a message-authentication code in each message from the initial handshake, which can be
verified by the receiving party to make sure the data has not been modified while in transit. For data at rest, you can
calculate the message digest periodically and keep it in a secured place. The audit logs, which can be altered by an
intruder to hide suspicious activities, need to be protected for integrity.

Note■■  HTTP Digest Authentication with the quality of protection (qop) value set to auth-int can be used to protect
messages for integrity. Chapter 3 discusses HTTP Digest Authentication in depth.

Availability
Making a system available for legitimate users to access all the time is the ultimate goal of any system design. Security
isn’t the only aspect to look into, but it plays a major role in keeping the system up and running. The goal of the
security design should be to make the system highly available by protecting it from illegal access attempts. Doing so is
extremely challenging. Attacks, especially on a public API, can vary from an attacker planting malware in the system to
a highly organized distributed denial of service (DDoS) attack.

DDoS attacks are hard to eliminate fully, but with a careful design they can be minimized to reduce their impact.
In most cases, DDoS attacks must be detected at the network perimeter level—so, the application code doesn’t need
to worry too much. But vulnerabilities in the application code can be exploited to bring a system down. The research
paper “A New Approach towards DoS Penetration Testing on Web Services” by Christian Mainka, Juraj Somorovsky,
Jorg Schwenk, and Andreas Falkenberg (https://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/
ICWS_DoS.pdf) discusses eight types of DoS attacks that can be carried out against SOAP based APIs with XML
payloads:

www.allitebooks.com

https://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf
https://www.nds.rub.de/media/nds/veroeffentlichungen/2013/07/19/ICWS_DoS.pdf
http://www.allitebooks.org

Chapter 2 ■ Security by Design

17

Note■■  A ccording to eSecurity Planet, the largest-ever DDoS attack hit the Internet in March 2013 and targeted the
CloudFlare network with 120 Gbps. The upstream providers were hit by 300 Gbps DDoS at the peak of the attack. 

C•	 oercive parsing attack: The attacker sends an XML document with a deeply nested XML
structure. When a DOM-based parser processes the XML document, an out-of-memory
exception or a high CPU load can occur.

•	 SOAP array attack: Forces the attacked web service to declare a very large SOAP array. This
can exhaust the web service’s memory.

•	 XML element count attack: Attacks the server by sending a SOAP message with a high number
of non-nested elements.

•	 XML attribute count attack: Attacks the server by sending a SOAP message with a high
attribute count.

•	 XML entity expansion attack: Causes a DoS attack by forcing the server to recursively resolve
entities defined in a document type definition (DTD). This attack is also known as an XML
bomb or a billion laughs attack.

•	 XML external entity DoS attack: Causes a DoS attack by forcing the server to resolve a large
external entity defined in a DTD. If an attacker is able to execute the external entity attack, an
additional attack surface may appear.

•	 XML overlong name attack: Injects overlong XML nodes in the XML document. Overlong
nodes can be overlong element names, attribute names, attribute values, or namespace
definitions.

•	 Hash collision attack (HashDoS): Different keys result in the same bucket assignments,
causing a collision. A collision leads to resource-intensive computations in the bucket. When
a weak hash function is used, an attacker can intentionally create hash collisions that lead to a
DoS attack.

Most of these attacks can be prevented at the application level. For CPU- or memory-intensive operations, you
can keep threshold values. For example, to prevent a coercive parsing attack, the XML parser can enforce a limit on
the number of elements. Similarly, if your application executes a thread for a longer time, you can set a threshold and
kill it. Aborting any further processing of a message as soon as it’s found to be not legitimate is the best way to fight
against DoS attacks. This also highlights the importance of having authentication/authorization checks closest to the
entry point of the system.

There are also DoS attacks carried out against JSON vulnerabilities. CVE-2013-0269 explains a scenario in which
a carefully crafted JSON message can be used to trigger the creation of arbitrary Ruby symbols or certain internal
objects, to result in a DoS attack.

Security Controls
The CIA triad (confidentiality, integrity, and availability) is one of the core principles of information security. In
achieving CIA, authentication, authorization, nonrepudiation, and auditing play a vital role.

Chapter 2 ■ Security by Design

18

Authentication
Authentication is the process of validating user-provided credentials to prove that users are who they claim to be.
It can be single factor or multifactor. Something you know, something you are, and something you have are the
well-known three factors of authentication. For multifactor authentication, a system should use a combination
of at least two factors. Combining two techniques that fall under the same category isn’t considered multifactor
authentication. For example, entering a username and a password and then a PIN number isn’t considered
multifactor authentication.

Note■■  G oogle two-step verification falls under multifactor authentication. First you need to provide a username and a
password (something you know), and then a PIN number is sent to your mobile phone. Knowing the PIN number verifies
that the registered mobile phone is under your possession: it’s something you have.

Something You Know
Passwords, passphrases, and PIN numbers belong to the category of something you know. This has been the most
popular form of authentication not just for decades, but for centuries. It goes back to the 18th century. In the Arabian
folk tale “Ali Baba and the Forty Thieves” from One Thousand and One Nights, Ali Baba uses the passphrase “open
sesame” to open the door to a hidden cave. Since then, this has become the most popular form of authentication.
Unfortunately, it’s also the weakest form of authentication. Password-protected systems can be broken in several
ways. Going back to the Ali Baba’s story, his brother-in-law got stuck in the same cave without knowing the password
and tried shouting all the words he knew. This, in modern days, is known as a brute-force attack. The first known
brute-force attack took place in the 18th century. Since then, it has become a popular way of breaking password-
secured systems.

Note■■  I n April 2013, WordPress was hit with a brute-force attack of massive scale. The average scans per
day in April were more than 100,000. See “The WordPress Brute Force Attack Timeline” by Daniel Cid,
http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html, April 16, 2013.

There are different forms of brute-force attacks. The dictionary attack is one of them, where the brute-force
attack is carried out with a limited set of inputs based on a dictionary of commonly used words. This is why you
should have a corporate password policy that should enforce strong passwords with mixed alphanumeric characters
that aren’t found in dictionaries. Most public web sites enforce a captcha after few failed login attempts. This makes
automated/tool-based brute-force attacks harder to execute.

Something You Have
Certificates and smart card-based authentication fall into the category of something you have. This is a much stronger
form of authentication than something you know. SSL mutual authentication is the most popular way of securing APIs
with client certificates; this is covered in detail in Chapter 4.

http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html
http://blog.sucuri.net/2013/04/the-wordpress-brute-force-attack-timeline.html

Chapter 2 ■ Security by Design

19

Something You Are
Fingerprints, eye retinas, facial recognition, and all other biometric-based authentication techniques fall into the
category of something you are. This is the strongest form of authentication.

Authorization
Authorization is the process of validating what actions an authenticated user can perform in the system. Authorization
happens with the assumption that the user is already authenticated. Discretionary Access Control (DAC) and
Mandatory Access Control (MAC) are two modes to control access.

Discretionary Access Control (DAC) vs. Mandatory Access Control (MAC)
With DAC, the user can be the owner of the data and, at their discretion, can transfer rights to another user. Most
operating systems support DAC, including Unix, Linux, and Windows. When you create a file in Linux, you can decide
who should be able to read, write to, and execute it. Nothing prevents you from sharing it with any user or a group of
users. There is no centralized control—which can easily bring security flaws into the system.

With MAC, only designated users are allowed to grant rights. Once rights are granted, users can’t transfer them.
SELinux, Trusted Solaris, and TrustedBSD are some of the operating systems that support MAC.

Note■■   SELinux is an NSA research project that added a MAC architecture to the Linux kernel, which was then merged into
the mainstream version of Linux in August 2003. It utilizes a Linux 2.6 kernel feature called the Linux Security Modules (LSM)
interface.

The difference between DAC and MAC lies in who owns the right to delegate. In either case, you need to have a
way to represent access-control rules, or the access matrix. Authorization tables, access-control lists (see Figure 2-3),
and capabilities are three ways of representing access-control rules.

File-1

Tom Read Read

Read

ReadRead

Write Write

Write

Write

Peter

Jene

File-2 File-3

Figure 2-3.  Access-control list

An authorization table is a three-column table with subject, action, and resource. The subject can be an
individual user or a group. With access-control lists, each resource is associated with a list, indicating, for each
subject, the actions that the subject can exercise on the resource. With capabilities, each subject has an associated list
called a capability list, indicating, for each resource, the actions that the user is allowed to exercise on the resource.
A locker key can be considered a capability: the locker is the resource, and the user holds the key to the resource.

Chapter 2 ■ Security by Design

20

At the time the user tries to open the locker with the key, you only have to worry about the capabilities of the key—not
the capabilities of its owner. An access-control list is resource driven, whereas capabilities are subject driven.

These three types of representations are very coarse grained. One alternative is to use policy-based access
control. With policy-based access control, you can have authorization policies with fine granularity. In addition,
capabilities and access-control lists can be dynamically derived from policies. eXtensible Access Control Markup
Language (XACML) is the de facto standard for policy-based access control.

Note■■   XACML is an XML-based open standard for policy-based access control developed under the OASIS XACML
Technical Committee. The latest XACML 3.0 specification was standardized in January 2013. See www.oasis-open.org/
committees/tc_home.php?wg_abbrev=xacml.

XACML provides a reference architecture (see Figure 2-4), a request response protocol, and a policy language.
Under the reference architecture, it talks about a Policy Administration Point (PAP), a Policy Decision Point (PDP),
a Policy Enforcement Point (PEP), and a Policy Information Point (PIP). This is a highly distributed architecture in
which none of the components are tightly coupled with each other. The PAP is the place where you author policies.
The PDP is the place where policies are evaluated. While evaluating policies, if there is any missing information that
can’t be derived from the XACML request, the PDP calls the PIP. The role of the PIP is to feed the PDP any missing
information, which can be user attributes or any other required details. The policy is enforced through the PEP, which
sits between the client and the service and intercepts all requests. From the client request, it extracts certain attributes
such as the subject, the resource, and the action; then it builds a standard XACML request and calls the PDP. Then it
gets a XACML response from the PDP. That is defined under the XACML request/response model. The XACML policy
language defines a schema to create XACML policies for access control.

PAP

PDP PIP

PEP ResourceIf PermitsResource Request

XACML Request

XACML Response

Attributes

Attribute Request

Loads Policies

Writes (Stores) Policies

Retrieves Attributes

Policy Store

Attribute
Store

Defines Policies

Administrator

1

2

5

6

7

4

3

8

Figure 2-4.  XACML reference architecture

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Chapter 2 ■ Security by Design

21

Note■■   With the increasing popularity and adaptation of APIs, it becomes crucial for XACML to be easily understood
in order to increase the likelihood it will be adopted. XML is often considered too verbose. Developers increasingly
prefer a lighter representation using JSON, the JavaScript Object Notation. The profile “Request / Response Interface
Based on JSON and HTTP for XACML 3.0” aims at defining a JSON format for the XACML request and response.
See https://www.oasis-open.org/committees/document.php?document_id=47775.

Nonrepudiation
Whenever you do a business transaction via an API by proving your identity, later you should not be able to reject it
or repudiate it. The property that ensures the inability to repudiate is known as nonrepudiation. You do it once—you
own it forever. Nonrepudiation should provide proof of the origin and the integrity of data, both in an unforgeable
manner, which a third party can verify at any time. Once a transaction is initiated, none of its content—including user
identity, date and time, and transaction details—should be altered while in transit to maintain transaction integrity
and allow future verifications. One has to ensure that the transaction is unaltered and logged after it’s committed and
confirmed. Logs must be archived and properly secured to prevent unauthorized modifications. Whenever there is
a repudiation dispute, transaction logs along with other logs or data can be retrieved to verify the initiator, date and
time, transaction history, and so on.

Note■■  T LS ensures authentication (by verifying the certificates), confidentiality (by encrypting the data with a secret
key), and integrity (by digesting the data), but not the nonrepudiation. In TLS, the Message Authentication Code (MAC)
value of the data transmitted is calculated with a shared secret key, known to both the client and the server. Shared keys
can’t be used to achieve nonrepudiation.

Digital signatures provide a strong binding between the user (who initiates the transaction) and the transaction
the user performs. A key known only to the user should sign the complete transaction, and the server (or the service)
should be able to verify the signature through a trusted broker that vouches for the legitimacy of the user’s key. This
trusted broker can be a certificate authority (CA). Once the signature is verified, the server knows the identity of the
user and can guarantee the integrity of the data. For nonrepudiation purposes, the data must be stored securely for
any future verification.

Note■■  T he paper “Non-Repudiation in Practice,” by Chii-Ren Tsai of Citigroup (http://www.researchgate.net/
publication/240926842_Non-Repudiation_In_Practice), discusses two potential nonrepudiation architectures for
financial transactions using challenge-response one-time password tokens and digital signatures.

Auditing
There are two aspects of auditing: keeping track of all legitimate access attempts, to facilitate nonrepudiation; and
keeping track of all illegal access attempts, to identify possible threats. There can be cases where you’re permitted to
access a resource, but it should be with a valid purpose. For example, a mobile operator is allowed to access a user’s
call history, but it should not do so without a request from the corresponding user. If someone frequently accesses a

https://www.oasis-open.org/committees/document.php?document_id=47775
http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice
http://www.researchgate.net/publication/240926842_Non-Repudiation_In_Practice

Chapter 2 ■ Security by Design

22

user’s call history, this can be detected by proper audit trails. Audit trails also play a vital role in fraud detection. An
administrator must define fraud-detection patterns, and the audit logs should be evaluated in near real time. Complex
event processing is a popular technique used for fraud detection.

Security Patterns
Patterns provide solutions for common problems in a way similar to sharing industry best practices. Having a broader
understanding of security patterns can help you design solutions. The solutions proposed in security patterns are
widely recognized and well tested; hence you need not worry about reinventing the wheel.

Direct Authentication Pattern
An API can be open for anonymous access or protected for limited/restricted access. If it’s anonymous, you need not
worry about authentication. Twitter API version 1.0 had a couple of open APIs. The https://api.twitter.com/1/
statuses/public_timeline.json API, which returned the public timeline of a given Twitter user, was an open API.
From version 1.1 onward, all Twitter APIs were made protected. If you make a public API open, be sure you enforce
proper rate limits. Otherwise, this could be an invaluable source to carry out a DoS attack.

A public API can be secured for authentication with HTTP Basic/Digest Authentication. Chapter 3 digs into more
about HTTP Basic/Digest Authentication. Until then, it’s a way of accessing a protected API by sending a username
and a password in the HTTP Authorization header, along with the API invocation request. The limitation here is, you
need to own and maintain the user base or the user store. In other words, if your API is available for public access,
you also need to have a registration process to bring users into the system, and you own and maintain that user store.
HTTP Basic Authentication won’t work in a federated scenario where you want to give access to the users not owned
by you. This pattern of authentication is known as Direct Authentication.

Both public and private APIs can be secured with HTTP Basic/Digest Authentication. The difference is in the
deployment, where you carry out the authentication check. In the case of a public API, you should carry out the
authentication check inside the demilitarized zone (DMZ).

In Figure 2-5, there are three firewalls used to overcome the challenge of enabling access to the user store or the
LDAP from the DMZ. It’s a best practice to not to put any databases or user stores into the DMZ. The figure introduces
another secured zone called the yellow zone. The user store is inside the yellow zone, which is protected by two
firewalls. One firewall is between the DMZ and the yellow zone, and it only allows inbound connections from the API
gateway in the DMZ to the yellow zone. The other one is between the green zone and the yellow zone. This only allows
inbound connections from the green zone to the yellow zone. With this approach, you share the same user store,
having both internal corporate users and external users, with the two API gateways in the DMZ and the green zone.
But you never let a connection propagate from the DMZ to the green zone except through ports 80 and 443 to access
the application server. The actual API implementation is hosted in the application server.

https://api.twitter.com/1/statuses/public_timeline.json
https://api.twitter.com/1/statuses/public_timeline.json

Chapter 2 ■ Security by Design

23

Note■■  A DMZ is a physical or logical separation between the internal network and the services exposed for a larger,
untrusted environment—usually the Internet. In a typical setup, the DMZ has two firewalls: one between the DMZ and the
public Internet and the other between the DMZ and the internal network (LAN).

Managing Credentials
In a system protected with HTTP Basic Authentication, you need to be concerned about the confidentiality of
credentials. Credentials can be leaked at two stages: while in transit and at rest. To secure credentials in transit,
you must use an encrypted channel. For API calls carrying user credentials, you can use HTTP over TLS (HTTPS).
Securing the API call isn’t sufficient. A system is secured only to the level of the strength of its weakest link. You also
need to think about how the API gateway connects to the user store. In the case of LDAP, you should use LDAP over
TLS (LDAPS); and in the case of JDBC, you should use JDBC over TLS.

How do you store passwords? Ideally, passwords should only be known by the owners. They should not even be
known by system administrators or people having full access to the system—at the database level. Passwords can be
encrypted and stored in the user store. That prevents any attacker from getting access to the user store and seeing user
credentials. But system administrators would be able to see passwords in cleartext, given that they have access to the
key used to encrypt passwords. Using one-way hashing can prevent this. With hashing, you can pick whatever hashing
algorithm you need and apply it to the password in cleartext. That results in a fixed-length hash, which isn’t reversible.
In other words, given the hash and the hashing algorithm, you can’t derive the password. Also note that hashing
doesn’t involve a key.

How does this make your password safe? Anyone having access to the user store can see the hashes, but they can
never derive passwords from them. Keep in mind—you can’t log in with a hashed password. But is this safe enough?
A hacker who has access to the user store can still replace the hashed password with a hash calculated with a

API Gateway

DMZ Green Zone

API Gateway

Application
Server

Yellow Zone

LDAP

Figure 2-5.  Direct authentication with layered defense in security

Chapter 2 ■ Security by Design

24

cleartext known to the attacker. Then the attacker can log in to the corresponding account with the cleartext known to
him or her—because it’s verified against the hash value the attacker replaced in the database.

Hashing alone is never safe. Whenever you store anything in cleartext as a hashed value, you need to store it as
a salted hash. In cryptography, a salt comprises random bits that are used as one of the inputs to a key-derivation
function. The other input is usually a password or a passphrase in cleartext. The application calculates the hash
value of both the password in cleartext and the salt value and stores the salted hash in the database. The application
also has to store the salt value. As a best practice, the salt value should be kept secret, separate from the password
database. When a user enters their password for login, the application retrieves the salt value, calculates the hash over
both the salt and the entered password, and matches the result with the hash value stored in the password database.

If a hacker has access to the database and replaces the user’s password with a hash value of a cleartext password
known to the attacker, the password verification will fail, because the hash isn’t calculated with the password alone.
It's from both the password and the salt value. In this case, if the hacker wants to gain access to user accounts, they
must break into the database, which stores salt values as well. The bottom line is, hashing alone is never secure, and
salted hashing is much more secure—but all that makes it is harder to break.

Note■■   LinkedIn provides a good example of insecure hashes. In 2012, a Russian hacker broke into the LinkedIn
network and got access to more than 6.5 million user accounts with their passwords. All the passwords were securely
stored with a SHA-1 hash, but none of them were salted. Using rainbow tables, attackers managed to crack around
300,000 passwords. Rainbow tables provide a directory of precalculated hashes against cleartext passwords. If you know
the hash, you can find the corresponding word in cleartext.

Biometric Authentication
Biometric authentication implements the Direct Authentication pattern. Let’s take a fingerprint time-clock attendance
recorder as an example (see Figure 2-6). This scans the user’s fingerprint and calls an API at the backend system to
authenticate the user. Once the user is authenticated, the recorder has to update another backend system with the date
and the time. This also can be done in a single step. The fingerprint scanner directly calls the API of the time-recording
system with the fingerprint. The fingerprint goes as binary data on the wire. When it hits the API gateway, it extracts
the fingerprint and calls the API of the biometric system to validate the fingerprint. If all goes well, the user’s time is
recorded, and the user is granted access to the building.

Fingerprint
Scanner

API Gateway

Biometric
System

Application Server
(Time Recorder App)

Figure 2-6.  Biometric authentication

Chapter 2 ■ Security by Design

25

To prevent any sort of spoofing between the fingerprint scanner and the biometric system, you need to make
sure the channel between the scanner and the API gateway, as well as the channel between the API gateway and the
biometric system, are on TLS. The API gateway should connect to a biometric database or to a biometric system to
complete the authentication process. There are vendors who specifically focus on building biometric systems for
authentication, and they do expose APIs that other systems can call.

Sealed Green Zone Pattern
In Figure 2-5, given the way the deployment is layered, the DMZ has an open connection to the green zone via ports
80/443. Some system administrators are extremely strict about connections between the DMZ and the green zone,
whereas others don’t worry about opening ports 443 and 80 to the green zone. For extremely tight security, you should
not open any inbound ports to the green zone. That leaves you with a challenge: how do you access any services
running in the green zone from the DMZ?

In Figure 2-7, no ports are open toward the green zone. That restricts anyone from making connections into the
green zone. To facilitate communication between API gateway in the DMZ and the application server in the green
zone, you use a message broker. The message broker has a queue, and whenever the API gateway gets a request, it
authenticates the request first and publishes the message into the queue. The application server from the green zone
subscribes to the same queue to receive messages. This is possible because it’s okay to open outbound connections
from the green zone to the DMZ. A similar channel is used to send back the responses to the API gateway in the DMZ.

Message
Broker

API Gateway

DMZ Green Zone

API Gateway

Application
Server

Yellow Zone

LDAP

LDAP

Figure 2-7.  Sealed Green Zone pattern and Least Common Mechanism pattern

Chapter 2 ■ Security by Design

26

Least Common Mechanism Pattern
In Figure 2-5, both the internal and external user accounts are in the same user store. It’s always recommended that
you keep external user accounts in a different user store. Ideally, this should be a separate physical user store, as in
Figure 2-7. Then you don’t need a connection between the green zone and the yellow zone, because you can keep
the user store with internal users in the green zone. The principle of least common mechanism concerns the risk of
sharing infrastructure among different components.

Brokered Authentication Pattern
Password-based authentication only facilitates the Direct Authentication pattern, where you need to have control
over the user store under you. Certificate-based authentication supports both the Direct Authentication pattern as
well as the Brokered Authentication pattern. In direct authentication, each user in your system has a certificate stored
in the user store against their name. Once the validation process (or the handshake) in SSL mutual authentication is
completed, the system checks whether it has a user with that given certificate. The system looks for each individual
certificate during the authentication process. With the Brokered Authentication pattern, you don’t need to look for
each individual certificate. You only go through the validation process in SSL mutual authentication and then check
whether the CA that signed the client certificate is trusted. If the certificate is from a trusted CA, the system lets the
user in. Figure 2-8 illustrates the Brokered Authentication pattern with certificates.

API Gateway

<<Trusts>>

<<Trusts>>

CA
(Domain

Bar)

CA
(Domain

Foo)

DMZ Green Zone

Message
Broker

Application
Server

Figure 2-8.  Brokered Authentication pattern

Note■■   SSL mutual authentication is covered in detail in Chapter 4. 

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Security by Design

27

Policy-Based Access Control Pattern
The deployment in Figure 2-9 illustrates how to enforce XACML-based authorization on APIs. Just as with
authentication, for external inbound calls, you also need to enforce authorization checks in the DMZ. That makes sure
only legitimate requests pass through to the green zone.

API Gateway
(XACML PEP)

XACML PDP XACML
Policy Store

Yellow Zone

DMZ Green Zone

Application
Server

Figure 2-9.  Policy-Based Access Control pattern with XACML

The request from the end user hits the API gateway first and completes the authentication process to identify the
user who invokes the API. Then it creates a XACML request using the identified user as the subject, the context
of the API as the resource, and the HTTP method as the action, and calls the XACML PDP. The XACML PDP evaluates
the request against the policies loaded from the XACML Policy Store. After the evaluation, it returns the decision in a
XACML response.

Listing 2-1 shows a sample XACML request generated from the API gateway. It has foo as the subject, GET as the
action, and http://api.gateway/bar as the resource.

Listing 2-1.  Sample XACML Request

<Request>
 <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id">
 <AttributeValue
 DataType=http://www.w3.org/2001/XMLSchema#string>foo</AttributeValue>
 </Attribute>
 <Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">GET</AttributeValue>
 </Attribute>
 </Attributes>

http://api.gateway/bar
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema%23string

Chapter 2 ■ Security by Design

28

 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 http://api.gateway/bar
 </AttributeValue>
 </Attribute>
 </Attributes>
</Request>
 

Listing 2-2 shows a sample XACML response generated from the XACML PDP. The result is “Permit”.

Listing 2-2.  Sample XACML Response

<Response>
 <Result>
 <Decision>Permit</Decision>
 </Result>
</Response>
 

Listing 2-3 shows the sample XACML policy corresponding to the previous XACML request and response. The
policy returns “Permit” for any user doing a GET on http://api.gateway/bar. All other actions will be denied.

Listing 2-3.  Sample XACML Policy

<Policy>
 <Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 http://api.gateway/bar</AttributeValue>
 <AttributeDesignator MustBePresent="false"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType=http://www.w3.org/2001/XMLSchema#string />
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Rule RuleId="permit_rule" Effect="Permit">
 <Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 GET</AttributeValue>

http://www.w3.org/2001/XMLSchema#string
http://api.gateway/bar
http://api.gateway/bar
http://www.w3.org/2001/XMLSchema#string
http://api.gateway/bar
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

Chapter 2 ■ Security by Design

29

 <AttributeDesignator MustBePresent="false"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType=http://www.w3.org/2001/XMLSchema#string />
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 </Rule>
 <Rule RuleId="deny_rule" Effect="Deny">
 </Rule>
</Policy>
 

When you’re building authorization policies, there are two main concepts you should take into consideration:
the principle of least privilege and segregation of duties. When giving users access rights to resources in the system,
you should give them only the bare minimum set of permissions to perform the expected actions, and no more.
With segregation of duties, you need to make sure the ability to complete a critical task is divided between more
than one person. For example, the person responsible for adding users to the system should be different from the
person responsible for approving such actions. Being compliant with these two concepts will minimize security
vulnerabilities that could creep into the system due to human errors.

Note■■  E verything discussed so far has been related to direct access control. There is another derivation from this:
delegated access control. OAuth is the de facto standard for delegated access control. Chapter 7 talks more about OAuth
and how XACML can be integrated with it. Delegated access control is all about giving someone else access to a resource
you own so that they can perform actions on your behalf.

Threat Modeling
Threat modeling is a methodical, systematic approach to identifying possible security threats and vulnerabilities in a
system deployment. First you need to identify all the assets in the system. Assets are the resources you have to protect
from intruders. These can be user records/credentials stored in an LDAP, data in a database, files in a file system, CPU
power, memory, network bandwidth, and so on. Identifying assets also means identifying all their interfaces and the
interaction patterns with other system components. For example, the data stored in a database can be exposed in
multiple ways. Database administrators have physical access to the database servers. Application developers have
JDBC-level access, and end users have access to an API.

Once you identify all the assets in the system to be protected and all the related interaction patterns, you need to
list all possible threats and associated attacks. Threats can be identified by observing interactions, based on the CIA
triad. In Figure 2-10, you see three communication links or interactions. From the application server to the database
is a JDBC connection. A third party can eavesdrop on that connection to read or modify the data flowing through it.
That’s a threat. How does the application server keep the JDBC connection username and password? If they’re kept
in a configuration file, anyone having access to the application server’s file system can find them and then access the
database over JDBC. That’s another threat. The JDBC connection is protected with a username and password, which
can potentially be broken by carrying out a brute-force attack. Another threat.

http://www.w3.org/2001/XMLSchema#string

Chapter 2 ■ Security by Design

30

Administrators have direct access to the database servers. How do they access the servers? If access is open for
SSH via username/password, then a brute-force attack is likely a threat. If it’s based on SSH keys, where those keys are
stored? Are they stored on the physical personal machines of administrators or uploaded to a key server? Losing SSH
keys to an intruder is another threat. How about the ports? Have you opened any ports to the database servers, where
some intruder can telnet and get control or carry out an attack on an open port to exhaust system resources? Can
the physical machine running the database be accessed from outside the corporate network? Is it only available over
VPN? All these questions lead you to identifying possible threats against the database server.

End users have access to the data via the API. This is a public API, which is exposed from the corporate firewall.
A brute-force attack is always a threat if the API is secured with HTTP Basic/Digest Authentication. Having broken the
authentication layer, anyone could get free access to the data. Another possible threat is an attacker getting access to
the confidential data that flows through the transport channels. Executing a man-in-the-middle attack can do this.
DoS is also a possible threat. An attacker can send carefully crafted, malicious, extremely large payloads to exhaust
server resources.

STRIDE is a popular technique to identify threats associated with a system in a methodical manner. STRIDE
stands for Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Escalation of privileges.
Table 2-2 compares STRIDE with the security properties discussed at the start of the chapter.

Table 2-2.  Security Properties vs. Threats

Security Properties Threats

Authentication Spoofing

Integrity Tampering

Nonrepudiation Repudiation

Confidentiality Information disclosure

Availability Denial of service

Authorization Escalation of privileges

Application
Server

API over HTTP

JDBC

Direct Access

Database

Figure 2-10.  Assets and interactions

Once you’ve identified all the possible threats and associated attacks, you can start planning attacks. This
requires tooling support. You have to identify what tools would be used to carry out a brute-force attack, a DoS attack,
and so on. Once the test matrix is planned against all possible threats, you can begin executing. At the end of the test,
you can identify all possible vulnerabilities in your system. Then you need to think about countermeasures to
mitigate them.

Chapter 2 ■ Security by Design

31

Threat modeling is an exercise that must be carried out against any serious enterprise deployment before moving
to production. A proper threat-modeling exercise includes business analysts, solution architects, system architects,
developers, and testers. Each one has a role to play. The challenge faced by the moderator is to capture all the bits
and pieces, resolve any contradictions, and come up with all possible data-flow diagrams. A single missing data-flow
diagram could easily put your company on the news the day after you move to production—which could result in a
huge loss in customer confidence.

Summary
This chapter focused on building a solid foundation for the rest of the book by introducing core security principles.
It covered security principles, design challenges, security patterns and best practices, security properties, and
threat-modeling techniques.

In the next chapter, we are going to discuss HTTP basic and digest authentication as means of securing APIs for
legitimate access.

33

Chapter 3

HTTP Basic/Digest Authentication

HTTP Basic Authentication and Digest Authentication are popular for protecting resources on the web. Both are
based on usernames and passwords. HTTP/1.0 includes the specification for the Basic Access Authentication scheme,
which takes the username and password over the network in cleartext. Hence it isn’t considered to be a secured way
of authenticating users, unless it’s used over an externally secured system such as Transport Level Security (TLS).
RFC 2617 defines the specification for HTTP’s authentication framework (the original Basic Access Authentication
scheme) and Digest Access Authentication, which is based on cryptographic hashes. Unlike Basic Authentication,
Digest Authentication doesn’t take the user’s password over the wire in cleartext.

Note■■   The HTTP/1.0 specification is defined under RFC 1945. It’s available at www.rfc-base.org/txt/rfc-1945.txt.

HTTP Basic Authentication
The HTTP/1.0 specification first defined the scheme for HTTP Basic Authentication. With this model, users must
authenticate themselves with the corresponding username and password for each realm. A given user can belong to
multiple realms simultaneously. The value of the realm is shown to the user at the time of authentication. It allows the
resources on the server to be partitioned into a set of protection domains, each with its own authentication scheme
and/or authorization database. The realm value is a string, which is assigned by the authentication server. Once the
request hits the server with Basic Authentication credentials, the server will accept the request only if it can validate
the username and the password for the protected resource.

ACCESSING THE GITHUB API WITH HTTP BASIC AUTHENTICATION

The GitHub REST API is protected with HTTP Basic Authentication. Before you proceed any further, you need to
create a GitHub account at https://github.com.

Note■■   Complete documentation about the GitHub API is available at http://developer.github.com/v3/.

Let’s try to invoke the following GitHub API with cURL. It’s an open API that doesn’t require any authentication and
returns pointers to all available resources:
 
curl -v https://api.github.com/users/{github-user}
 
e.g. :
curl -v https://api.github.com/users/prabath
 

http://www.rfc-base.org/txt/rfc-1945.txt
https://github.com/
http://developer.github.com/v3/
https://api.github.com/users/
https://api.github.com/users/prabath

Chapter 3 ■ HTTP Basic/Digest Authentication

34

Now let’s try out another API. Here you create a GitHub repository with the following API call. This returns
a negative response with the HTTP status code “401 Unauthorized.” The API is secured with HTTP Basic
Authentication, and you need to provide credentials to access it:
 
curl -i -X POST -H 'Content-Type: application/x-www-form-urlencoded'
 -d '{"name": "my_github_repo"}'
 https://api.github.com/user/repos
 
Let’s invoke the same API with proper GitHub credentials. Replace $GitHubUserName and $GitHubPassword with
your values:
 
curl -i –v -u $GitHubUserName:$GitHubPassword
 -X POST -H 'Content-Type: application/x-www-form-urlencoded'
 -d '{"name": "my_github_repo"}'
 https://api.github.com/user/repos
 
Next, let’s look at the HTTP request generated from the above cURL command:
 
POST /user/repos HTTP/1.1
Authorization: Basic cHewemF0aDpwdsdsdsdE5ODc=
 
The HTTP Authorization header in the request is generated from the username and the password you provided.
The formula is simple: Basic Base64Encode(username:password). Any Base64-encoded text is no better than
cleartext—it can be decoded quite easily back to the cleartext. That is why HTTP Basic Authentication on HTTP
isn’t secured. It must be used in conjunction with an external secure system such as TLS.

Note■■   To add HTTP Basic Authentication credentials to a request generated from a cURL client, you use the option
–u username:password. This creates the Base64-encoded HTTP Basic Authorization header. –i is used to include HTTP
headers in the output, and –v is used to run cURL in verbose mode. –H is used to set HTTP headers in the outgoing
request, and –d is used to post data to the endpoint.

Observing the response from GitHub for the unauthenticated API call to create a repository, it looks as though the
GitHub API isn’t fully compliant with the HTTP 1.1 specification at the time of this writing. According to the HTTP 1.1
specification, whenever the server returns a 401 status code, it also must return the HTTP header WWW-Authenticate.

HTTP Digest Authentication
HTTP Digest Authentication was proposed by RFC 2617 to overcome some limitations in HTTP Basic Authentication.
It works in a challenge/response mode without sending the password over the wire. Because the password is never
sent over the wire with the request, TLS isn’t a must. Anyone intercepting the traffic won’t be able to discover the
password in cleartext.

Note■■   RFC 2617, which defines Basic and Digest Authentication, is available at www.ietf.org/rfc/rfc2617.txt.

https://api.github.com/user/repos
https://api.github.com/user/repos
http://www.ietf.org/rfc/rfc2617.txt

Chapter 3 ■ HTTP Basic/Digest Authentication

35

To initiate Digest Authentication, the client has to send a request to the protected resource with no
authentication information, which results in a challenge (in the response). Following is an example of how to initiate a
Digest Authentication handshake from cURL:
 
curl -k –-digest –u userName:password -v https://localhost:8443/recipe 

Note■■   To add HTTP Digest Authentication credentials to a request generated from a cURL client, use the
option --digest -u username:password.

Let’s look at the HTTP headers in the response. The first response is a 401 with the HTTP header
WWW-Authenticate, which contains a challenge:
 
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="cute-cupcakes.com", qop="auth",
 
nonce="1390781967182:c2db4ebb26207f6ed38bb08eeffc7422",
opaque="F5288F4526B8EAFFC4AC79F04CA8A6ED" 

Note■■   You learn more about the Recipe API and how to deploy it locally as you proceed through this chapter. The
“Securing the Recipe API with HTTP Digest Authentication” exercise at the end of the chapter explains how to secure an
API with Digest Authentication.

The challenge consists of four main elements. Each of these elements is defined in RFC 2617:

•	 realm: A string to be displayed to users so they know which username and password to use.
This string should contain at least the name of the host performing the authentication and
may additionally indicate the collection of users who may have access.

•	 nonce: A server-specified data string, which should be uniquely generated each time a 401
response is made. The content of the nonce is implementation dependent.

•	 opaque: A string of data, specified by the server, that should be returned by the client
unchanged in the Authorization header of subsequent requests with URIs in the same
protection space (which is the realm).

•	 qop: The “quality of protection” options applied to the response by the server. The value auth
indicates authentication while auth-int indicates authentication with integrity protection.

Once the client gets the response with the challenge, it has to respond back. Here’s the HTTP request with the
response to the challenge:
 
Authorization: Digest username="prabath", realm="cute-cupcakes.com",
 nonce="1390781967182:c2db4ebb26207f6ed38bb08eeffc7422",
 uri="/recipe", cnonce="MTM5MDc4", nc=00000001, qop="auth",
 response="f5bfb64ba8596d1b9ad1514702f5a062",
 opaque="F5288F4526B8EAFFC4AC79F04CA8A6ED"
 

Chapter 3 ■ HTTP Basic/Digest Authentication

36

Let’s have a look at the definition of each parameter:

•	 username: The identity of the user who’s going to invoke the API

•	 realm/qop/nonce/opaque: The same as in the challenge

•	 response: The response to the challenge calculated by the client

The value of response is calculated in the following manner. Digest Authentication supports multiple algorithms.
RFC 2617 recommends using MD5 or MD5-sess (MD5-session). If no algorithm is specified in the server challenge,
MD5 is used. Digest calculation is done with two types of data: security-related data (A1) and message-related data (A2).

If you use MD5 as the hashing algorithm, then you define security-related data (A1) in the following manner:
 
A1 = username:password:realm
 

If you use MD5-sess as the hashing algorithm, then you define security-related data (A1) in the following manner.
cnonce is an opaque quoted string value provided by the client and used by both client and server to avoid chosen
plaintext attacks. The value of nonce is the same as in the server challenge:
 
A1 = MD5 (username:password:realm):nonce:cnonce
 

RFC 2617 defines message-related data (A2) in two ways, based on the value of qop in the server challenge. If the
value is auth or undefined, then the message-related data (A2) is defined in the following manner. request-method is
GET, POST, PUT, DELETE, or any HTTP verb, and uri-directive-value is the request URI from the request line:
 
A2 = request-method:uri-directive-value
 

If the value of qop is auth-int, then you need to protect the integrity of the message, in addition to authenticating.
A2 is derived in following manner. When you have MD5 or MD5-sess as the hashing algorithm, H is MD5:
 
A2 = request-method:uri-directive-value:H(request-entity-body)
 

The final value of the digest is calculated in the following way, based on the value of qop. If qop is set to auth
or auth-int, then the final digest value is as shown next. The nc value is the hexadecimal count of the number of
requests (including the current request) that the client has sent with the nonce value in this request. This directive
helps the server detect replay attacks. The server maintains its own copy of nonce and the nonce count (nc); if any are
seen twice, that indicates a possible replay attack:
 
MD5(MD5(A1):nonce:nc:cnonce:qop:MD5(A2))
 

If qop is undefined, then the final digest value is
 
MD5(MD5(A1):<nonce>:MD5(A2))
 

Table 3-1 provides a comparison between HTTP basic authentication and digest authentication.

Chapter 3 ■ HTTP Basic/Digest Authentication

37

Note■■   With HTTP Digest Authentication, most user stores store either the password in cleartext or the hashed value
of username:password:realm. This is required because the server has to validate the digest sent from the client, which
is derived by the cleartext password (or the hash of username:password:realm). Neither option is safe. If you use Digest
Authentication, it’s recommended that you encrypt and store the hash of username:password:realm.

CUTE-CUPCAKE FACTORY:
DEPLOYING THE RECIPE API IN APACHE TOMCAT

In this example, you deploy a prebuilt web application with the Recipe API in Apache Tomcat. The Recipe API is
hosted and maintained by the Cute-Cupcake factory. It’s a public API with which the customers of Cute-Cupcake
can interact.

You can download the latest version of Apache Tomcat from http://tomcat.apache.org. All the examples
discussed in this book use Tomcat 7.0.50.

The Recipe API supports following five operations:

•	 GET /recipe: Returns all the recipes in the system

•	 GET /recipe/{$recipeNo}: Returns the recipe with the given recipe number

•	 POST /recipe: Creates a new recipe in the system

•	 PUT /recipe: Updates the recipe in the system with the given details

•	 DELETE /recipe/{$recipeNo}: Deletes the recipe from the system with the given recipe number

To deploy the API, download recipe.war from https://svn.wso2.org/repos/wso2/people/prabath/api-
security/recipe and copy it to [TOMCAT_HOME]\webapps. To start Tomcat, run the following from the
[TOMCAT_HOME]\bin directory:
 
[Linux] sh catalina.sh run
[Windows] catalina.bat run
 

Table 3-1.  HTTP Basic Authentication vs. HTTP Digest Authentication

HTTP Basic Authentication HTTP Digest Authentication

Sends credentials in cleartext
over the wire

Credentials are never sent in cleartext. A digest derived from the
cleartext password is sent over the wire.

Should be used in conjunction with
some external security systems like TLS

Doesn’t depend on transport-level security or external security systems.

Only performs authentication Can be used to protect the integrity of the message, in addition to
authentication (with qop=auth-int).

User store can store passwords
as a salted hash

User store should store passwords in cleartext or should store the hash
value of username:password:realm.

www.allitebooks.com

http://tomcat.apache.org/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/recipe
https://svn.wso2.org/repos/wso2/people/prabath/api-security/recipe
http://www.allitebooks.org

Chapter 3 ■ HTTP Basic/Digest Authentication

38

Once the server is started, use cURL to execute the following command. Here it’s assumed that Tomcat is running
on its default HTTP port 8080:
 
curl http://localhost:8080/recipe
 
This returns all the recipes in the system as a JSON payload:
 
{
 "recipes":[
 {
 "recipeId":"10001",
 "name":"Lemon Cupcake",
 "ingredients":"lemon zest, white sugar,unsalted butter, flour,salt, milk",
 "directions":"Preheat oven to 375 degrees F (190 degrees C). Line 30 cupcake pan
cups with paper liners...."
 },
 {
 "recipeId":"10002",
 "name":"Red Velvet Cupcake",
 "ingredients":"cocoa powder, eggs, white sugar,unsalted butter, flour,salt, milk",
 "directions":" Preheat oven to 350 degrees F. Mix flour, cocoa powder,
 baking soda and salt in medium bowl. Set aside...."
 }
]
}
 
To get the recipe of any given cupcake, use the following cURL command, where 10001 is the ID of the cupcake
you just created:
 
curl http://localhost:8080/recipe/10001
 
This returns the following JSON response:
 
{
 "recipeId":"10001",
 "name":"Lemon Cupcake",
 "ingredients":"lemon zest, white sugar,unsalted butter, flour,salt, milk",
 "directions":"Preheat oven to 375 degrees F (190 degrees C). Line 30 cupcake pan
cups with paper liners...."
}
 
To create a new recipe, use the following cURL command:
 
curl -X POST -H 'Content-Type: application/json'
 -d '{"name":"Peanut Butter Cupcake",
 "ingredients":"peanut butter, eggs, sugar,unsalted butter, flour,salt, milk",
 "directions":"Preheat the oven to 350 degrees F (175 degrees C).
 Line a cupcake pan with paper liners, or grease and flour cups..."
 }' http://localhost:8080/recipe
 

Chapter 3 ■ HTTP Basic/Digest Authentication

39

This returns the following JSON response:
 
{
 "recipeId":"10003",
 "location":"http://localhost:8080/recipe/10003",
}
 
To update an existing recipe, use the following cURL command:
 
curl -X PUT -H 'Content-Type: application/json'
 -d '{"name":"Peanut Butter Cupcake",
 "ingredients":"peanut butter, eggs, sugar,unsalted butter, flour,salt, milk",
 "directions":"Preheat the oven to 350 degrees F (175 degrees C). Line a cupcake
pan with
 paper liners, or grease and flour cups..."
 }' http://localhost:8080/recipe/10003
 
This returns the following JSON response:
 
{
 "recipeId":"10003",
 "location":"http://localhost:8080/recipe/10003",
}
 
To delete an existing recipe, use the following cURL command:
 
curl -X DELETE http://localhost:8080/recipe/10001 

Note■■   To do remote debugging with Apache Tomcat, start the server as [Linux] sh catalina.sh jdpa run or
[Windows] catalina.bat jdpa run. This opens port 8000 for remote-debugging connections.

CONFIGURING APACHE DIRECTORY SERVER (LDAP)

Apache Directory Server is an open source LDAP server distributed under Apache 2.0 license. You can download the
latest version from http://directory.apache.org/studio/. It’s recommended that you download the Studio itself,
because it comes with a set of very useful tools to configure LDAP. This book uses Apache Directory Studio 2.0.0.

Note■■   Refer to the Apache Directory Studio user guide for setup and getting-started instructions:
http://directory.apache.org/studio/users-guide/apache_directory_studio/.

http://directory.apache.org/studio/
http://directory.apache.org/studio/users-guide/apache_directory_studio/

Chapter 3 ■ HTTP Basic/Digest Authentication

40

These steps are needed only if you don’t have an LDAP server set up to run. First you need to start Apache
Directory Studio. This provides a management console to create and manage LDAP servers and connections.
Then proceed as follows:

1.	 From Apache Directory Studio, go to the LDAP Servers view. If it’s not there already, go to
Window ➤ Show View ➤ LDAP Servers.

2.	 Right-click LDAP Servers View, choose New ➤ New Server, and select ApacheDS 2.0.0. Give
any name to the server in the Server Name text box, and click Finish.

3.	 The server you created appears in the LDAP Servers view. Right-click the server, and select
Run. If it’s started properly, State is updated to Started.

4.	 To view or edit the configuration of the server, right-click it and select Open Configuration.
By default, the server starts on LDAP port 10389 and LDAPS port 10696.

Now you have an LDAP server up and running. Before you proceed any further, let’s create a test connection to it
from the Apache Directory Studio:

1.	 From Apache Directory Studio, go to the Connections view. If it’s not there already, go to
Window ➤ Show View ➤ Connections.

2.	 Right-click Connections View, and select New Connection.

3.	 In the Connection Name text box, give a name to the connection.

4.	 The Host Name field should point to the server where you started the LDAP server. In this
case, it’s localhost.

5.	 The Port field should point to the port of your LDAP server, which is 10389 in this case.

6.	 Keep Encryption Method set to No Encryption for the time being. Click Next.

7.	 Type uid=admin,ou=system as the Bind DN and secret as the Bind Password, and click
Finish. These are the default Bind DN and password values for Apache Directory Server.

8.	 The connection you just created appears in the Connections view. Double-click it, and the
data retrieved from the underlying LDAP server appears in the LDAP Browser view.

In the sections that follow, you need some users and groups in the LDAP. Let’s create a user and a group. First you
need to create an organizational unit (OU) structure under the dc=example,dc=com domain in Apache Directory Server:

1.	 In Apache Directory Studio, go to the LDAP browser by clicking the appropriate LDAP
connection in the Connections view.

2.	 Right-click dc=example,dc=com, and choose New ➤ New Entry ➤ Create Entry From
Scratch. Pick organizationalUnit from Available Object Classes, click Add, and then click Next.
Select ou for the RDN, and give it the value groups. Click Next and then Finish.

3.	 Right-click dc=example,dc=com, and choose New ➤ New Entry ➤ Create Entry From
Scratch. Pick organizationalUnit from Available Object Class, click Add, and then click Next.
Select ou for the RDN, and give it the value users. Click Next and then Finish.

4.	 Right-click dc=example,dc=com / ou=users, and choose New ➤ New Entry ➤ Create Entry
From Scratch. Pick inetOrgPerson from Available Object Classes, click Add, and then click Next.
Select uid for the RDN, give it a value, and click Next. Complete the empty fields with appropriate
values. Right-click the same pane, and choose New Attribute. Select userPassword as the Attribute
Type, and click Finish. Enter a password, select SSHA-256 as the hashing method, and click OK.

Chapter 3 ■ HTTP Basic/Digest Authentication

41

5.	 The user you created appears under dc=example,dc=com / ou=users in the LDAP browser.

6.	 To create a group, right-click dc=example,dc=com / ou=groups ➤ New ➤ New Entry
➤ Create Entry From Scratch. Pick groupOfUniqueNames from Available Object Classes, click
Add, and click Next. Select cn for the RDN, give it a value, and click Next. Give the DN of the
user created in the previous step as the uniqueMember (for example,
uid=prabath,ou=users,ou=system), and click Finish.

7.	 The group you created appears under dc=example,dc=com / ou=groups in the LDAP browser.

CONNECTING APACHE TOMCAT TO APACHE DIRECTORY SERVER (LDAP)

You’ve already deployed the Recipe API in Apache Tomcat. Let’s see how you can configure Apache Tomcat to talk
to the LDAP server you configured:

1.	 Shut down the Tomcat server if it’s running.

2.	 By default, Tomcat finds users from the conf/tomcat-users.xml file via org.apache.
catalina.realm.UserDatabaseRealm.

3.	O pen [TOMCAT_HOME]\conf\server.xml, and comment out the following line in it:
 

<Resource
 name="UserDatabase" auth="Container"
 type="org.apache.catalina.UserDatabase"
 description="User database that can be updated and saved" factory="org.apache.
 catalina.users.MemoryUserDatabaseFactory"
 pathname="conf/tomcat-users.xml" /> 

 
4.	 In [TOMCAT_HOME]\conf\server.xml, comment out the following line, which points to the

UserDatabaseRealm:
 

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase"/> 

5.	 To connect to the LDAP server, you should use JNDIRealm. Copy and paste the following
configuration into [TOMCAT_HOME]\conf\server.xml just after <Realm className="org.
apache.catalina.realm.LockOutRealm">:

 
<Realm className="org.apache.catalina.realm.JNDIRealm"
 debug="99"
 connectionURL="ldap://localhost:10389"
 roleBase="ou=groups , dc=example, dc=com"
 roleSearch="(uniqueMember={0})"
 roleName="cn"
 userBase="ou=users, dc=example, dc=com"
 userSearch="(uid={0})"/> 

Chapter 3 ■ HTTP Basic/Digest Authentication

42

SECURING AN API WITH HTTP BASIC AUTHENTICATION 

The Recipe API that you deployed in Apache Tomcat is still an open API. Let’s see how to secure it with HTTP Basic
authentication. You want to authenticate users against the corporate LDAP and also use access control based on
HTTP operations (GET, POST, DELETE, PUT):

1.	 Shut down the Tomcat server if it’s running, and make sure connectivity to the LDAP server
works correctly.

2.	O pen [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml and add the following under the
root element <web-app>. The security-role element at the bottom lists all the roles that
are allowed to access this web application:

 
 <security-constraint>
 <web-resource-collection>

 <web-resource-name>Secured Recipe API</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
  
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>cute-cupcakes.com</realm-name>
 </login-config>
  
 <security-role>
 <role-name>admin</role-name>
 </security-role>
 

This configuration will protect the complete Recipe API from unauthenticated access attempts.
A legitimate user should have an account in the corporate LDAP and also should be in the admin group.
If you don’t have a group called admin, change the configuration appropriately.

3.	 You can further enable fine-grained access control to the Recipe API by HTTP operation. You
need to have a <security-constraint> for each scenario. The following two blocks will let any
user belonging to the admin group perform GET/POST/PUT/DELETE on the Recipe API, whereas
a user belonging to the user group can only do a GET. When you define an http-method inside
a web-resource-collection, only those methods are protected. The rest can be invoked by
anyone if no other security constraint has any restrictions on those methods. For example, if you
only had the second block, then any user would be able to do a POST. Because you have the
first block that controls POST, only allowed users can do it. The security-role element at the
bottom lists all the roles that are allowed to access this web application:

 
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Secured Recipe API</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>

Chapter 3 ■ HTTP Basic/Digest Authentication

43

 <http-method>PUT</http-method>
 <http-method>POST</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>
 
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Secured Recipe API</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
</security-constraint>
 
<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>cute-cupcakes.com</realm-name>
</login-config>
  
<security-role>
 <role-name>admin</role-name>
 <role-name>user</role-name>
</security-role>
 

ENABLING TLS IN APACHE TOMCAT

The way you configured HTTP Basic Authentication in the previous exercise isn’t secure enough. It uses HTTP to
transfer credentials. Anyone who can intercept the channel can see the credentials in cleartext. Let’s see how
to enable TLS in Apache Tomcat and restrict access to the Recipe API only via TLS:

1.	 To enable TLS, first you need to have a keystore with a public/private key pair. You can
create a keystore using Java keytool. It comes with the JDK distribution, and you can find
it in [JAVA_HOME]\bin. The following command creates a Java keystore with the name
catalina-keystore.jks: 

Note■■   JAVA_HOME refers to the directory where you’ve installed the JDK. To run the keytool, you must have Java
installed in your system. 

Chapter 3 ■ HTTP Basic/Digest Authentication

44

keytool -genkey -alias localhost -keyalg RSA -keysize 1024
 -dname "CN=localhost"
 -keypass catalina123
 -keystore catalina-keystore.jks
 -storepass catalina123
 
This command uses catalina123 as the keystore password as well as the private key password.

2.	 Copy catalina-keystore.jks to [TOMCAT_HOME]\conf, and add the following element to
[TOMCAT_HOME]\conf\server.xml under the <Service> parent element. Replace the values
of keystoreFile and keystorePass appropriately:

 
<Connector
 port="8443"
 maxThreads="200"
 scheme="https"
 secure="true"
 SSLEnabled="true"
 keystoreFile="absolute/path/to/catalina-keystore.jks"
 keystorePass="catalina123"
 clientAuth="false"
 sslProtocol="TLS"/>

 
3.	 Start the Tomcat server, and execute the following cURL command to validate the TLS

connectivity. Make sure you replace the values of username and password appropriately.
They must come from the underlying user store:

  
curl -k -u userName:password https://localhost:8443/recipe

 
You’ve configured Apache Tomcat to work with TLS. Next you should make sure the Recipe API only accepts
connections over TLS.

Open [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml, and add the following under each
<security-constraint> element. This makes sure only TLS connections are allowed:
 
<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint> 

Chapter 3 ■ HTTP Basic/Digest Authentication

45

SECURING THE RECIPE API WITH HTTP DIGEST AUTHENTICATION

At the time of this writing, the Tomcat JNDIRealm that you used previously to connect to LDAP doesn’t support
HTTP Digest Authentication. If you need that support, you have to write your own Realm, extending Tomcat
JNDIRealm, and override the getPassword() method. To see how to secure an API with Digest Authentication,
switch back to the Tomcat UserDatabaseRealm:

1.	O pen [TOMCAT_HOME]\conf\server.xml, and make sure the following line is there. If you
commented this out during a previous exercise, revert it back:

 
<Resource
 name="UserDatabase"
 auth="Container"
 type="org.apache.catalina.UserDatabase"
 description="User database that can be updated and saved"
 factory="org.apache.catalina.users.MemoryUserDatabaseFactory"
 pathname="conf/tomcat-users.xml" />

 
2.	 In [TOMCAT_HOME]\conf\server.xml, make sure the following line, which points to

UserDatabaseRealm, is there. If you commented it out during a previous exercise, revert it back:
 

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase"/>

 
3.	O pen [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml, and add the following under the

root element <web-app>:
 

<security-constraint>
 <web-resource-collection>

 <web-resource-name>Secured Recipe API</web-resource-name>
 <url-pattern>/* </url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
  
 <login-config>
 <auth-method>DIGEST</auth-method>
 <realm-name>cute-cupcakes.com</realm-name>
 </login-config>
  
 <security-role>
 <role-name>admin</role-name>
 </security-role>
 

Chapter 3 ■ HTTP Basic/Digest Authentication

46

4.	O pen [TOMCAT_HOME]\conf\tomcat-users.xml, and add the following under the root
element. This adds a role and a user to Tomcat’s default file system–based user store:

 
 <role rolename="admin"/>
 <user username="prabath" password="prabath123" roles="admin"/>

 
5.	 Invoke the API with the cURL command shown next. The --digest -u userName:password

option used here generates the password in digest mode and adds it to the HTTP request.
Replace userName:password with appropriate values:

 
curl -k -v --digest -u userName:password https://localhost:8443/recipe 

Summary
HTTP Basic Authentication and Digest Authentication are the most-used authentication schemes for many APIs prior
to the OAuth era. This chapter covered both of these authentication schemes in depth. It also discussed how to secure
an API deployed in Apache Tomcat and having an Apache Directory Server user store.

In the next chapter, we are going to take a deep look into Transport Layer Security (TLS) and its applications
in API security.

47

Chapter 4

Mutual Authentication with TLS

Transport Layer Security (TLS) mutual authentication, also known as client authentication or two-way Secure Socket
Layer (SSL), is part of the TLS handshake process. In one-way TLS, only the server proves its identity to the client; this
is mostly used in e-commerce to win consumer confidence by guaranteeing the legitimacy of the e-commerce vendor.
In contrast, mutual authentication authenticates both parties—the client and the server.

Evolution of TLS
TLS has its roots in SSL. Netscape Communications introduced SSL in 1994 to build a secured channel between
the Netscape browser and the web server it connects to. This was an important need at that time, just prior to the
dot-com bubble. The SSL 1.0 specification was never released to the public, because it was heavily criticized for
the weak crypto algorithms that were used. In November 1994, Netscape released the SSL 2.0 specification with
many improvements.1 Most of its design was done by Kipp Hickman, with much less participation from the public
community. Even though it had its own vulnerabilities, it earned the trust and respect of the public as a strong
protocol. The very first deployment of SSL 2.0 was in Netscape Navigator 1.1.

In January 1996, Ian Goldberg and David Wagner discovered a vulnerability in the random-number-generation
logic in SSL 2.0.2 Mostly due to US export regulations, Netscape had to weaken its encryption scheme to use 40-bit
long keys. This limited all possible key combinations to a million million, which were tried by a set of researchers in
30 hours with many spare CPU cycles; they were able to recover the encrypted data.

Because SSL 2.0 was completely under the control of Netscape, Microsoft responded to its weaknesses by
developing its own variant of SSL in 1995, called Private Communication Technology (PCT).3 PCT fixed many security
vulnerabilities uncovered in SSL 2.0 and simplified the SSL handshake with fewer round trips required to establish a
connection.

Netscape released SSL 3.0 in 1996, and Paul Kocher was the key architect. In fact, Netscape hired Paul Kocher to
work with its own Phil Karlton and Allan Freier to build SSL 3.0 from scratch. SSL 3.0 introduced a new specification
language as well as a new record type and new data encoding, which made it incompatible with SSL 2.0. It fixed issues
in its predecessor, introduced due to MD5 hashing. The new version used a combination of the MD5 and SHA-1
algorithms to build a hybrid hash. SSL 3.0 was the most stable of all. In 1996, Microsoft came up with a new proposal to
merge SSL 3.0 and its own SSL variant PCT 2.0 to build a new standard called Secure Transport Layer Protocol (STLP).4

1Adam Shostack, the well-known author of The New School of Information Security, provides an overview of SSL 2.0 at
www.homeport.org/~adam/ssl.html.
2Ian Goldberg and David Wagner, “Randomness and the Netscape Browser: How Secure Is the World Wide Web?”
www.cs.berkeley.edu/~daw/papers/ddj-netscape.html, January 1996.
3Microsoft proposed PCT to the IETF in October 1995: http://tools.ietf.org/html/draft-benaloh-pct-00.
This was later superseded by SSL 3.0 and TLS.
4“Microsoft Strawman Proposal for a Secure Transport Layer Protocol (‘STLP’),” http://cseweb.ucsd.edu/~bsy/stlp.ps.

www.allitebooks.com

http://www.homeport.org/~adam/ssl.html
http://www.homeport.org/~adam/ssl.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://tools.ietf.org/html/draft-benaloh-pct-00
http://cseweb.ucsd.edu/~bsy/stlp.ps
http://www.allitebooks.org

Chapter 4 ■ Mutual Authentication with TLS

48

Due to the interest shown by different vendors in solving the same problem in different ways, in 1996 the IETF
initiated the TLS working group to standardize all vendor-specific implementations. All the major vendors, including
Netscape and Microsoft, met under the chairmanship of Bruce Schneier in a series of IETF meetings to decide the future
of TLS. TLS 1.0 (RFC 2246) was the result; it was released by the IETF in January 1999. The differences between TLS 1.0
and SSL 3.0 aren’t dramatic, but they’re significant enough that TLS 1.0 and SSL 3.0 don’t interoperate. TLS 1.0 was quite
stable and stayed unchanged for seven years, until 2006. In April 2006, RFC 4346 introduced TLS 1.1, which made few
major changes to 1.0. Two years later, RFC 5246 introduced TLS 1.2, which is the latest at the time of this writing.

How TLS Works
In its design, TLS can be divided into two phases: the handshake and the data transfer. During the handshake phase,
both client and server get to know about each other’s cryptographic capabilities and establish cryptographic keys to
protect the data transfer. The data transfer happens at the end of the handshake. The data is broken down into a set of
records, protected with the cryptographic keys established in the first phase, and transferred between the client and
the server. Figure 4-1 shows various TLS protocol layers built on top of TCP/IP.

HTTP

Handshake Change Cipher Spec Alert

Record

TCP/IP

FTP Telnet Others

Figure 4-1.  TLS protocol layers5

TLS Handshake
The client initiates the TLS handshake. Let’s do a quick cURL request to https://www.google.com to observe the
message flow in a TLS handshake:
 
curl -v https://www.google.com
 
Connected to www.google.com (74.125.128.99) port 443 (#0)
SSLv3, TLS handshake, Client hello (1):
SSLv3, TLS handshake, Server hello (2):
SSLv3, TLS handshake, CERT (11):
SSLv3, TLS handshake, Server finished (14):
SSLv3, TLS handshake, Client key exchange (16):
SSLv3, TLS change cipher, Client hello (1):

5A detailed description of the TLS protocol layers is available in “Overview of SSL/TLS Encryption,”
http://technet.microsoft.com/en-us/library/cc781476(v=ws.10).aspx, July 31, 2003.

https://www.google.com/
https://www.google.com/
http://www.google.com/
http://technet.microsoft.com/en-us/library/cc781476(v=ws.10).aspx

Chapter 4 ■ Mutual Authentication with TLS

49

SSLv3, TLS handshake, Finished (20):
SSLv3, TLS change cipher, Client hello (1):
SSLv3, TLS handshake, Finished (20):
SSL connection using RC4-SHA
Server certificate:
 subject: C=US; ST=California; L=Mountain View; O=Google Inc; CN=www.google.com
 start date: 2014-06-04 08:58:29 GMT
 expire date: 2014-09-02 00:00:00 GMT
 subjectAltName: www.google.com matched
 issuer: C=US; O=Google Inc; CN=Google Internet Authority G2
 SSL certificate verify ok. 

Note■■  T he TLS handshake phase includes three subprotocols: the Handshake protocol, the Change Cipher Spec
protocol, and the Alert protocol. The Handshake protocol is responsible for building an agreement between the client and
the server on cryptographic keys to be used to protect the application data. Both the client and the server precede the
Change Cipher Spec protocol to indicate to the other party that it’s going to switch to a cryptographically secured channel
for further communication. The Alert protocol is responsible for generating alerts and communicating them to the parties
involved in the TLS connection. For example, the certificate_revoked alert can be generated from the client when the
server certificate it receives during the TLS handshake is a revoked one.

Client hello is the first message from the client to the server. This includes the highest version of TLS it
supports, a random number generated by the client, cipher suites, the compression algorithm supported by the
client, and an optional session identifier. The session identifier can be used to resume an existing session rather than
doing the handshake again from scratch. The TLS handshake is very CPU intensive, but with the support for session
resumption, this overhead can be minimized.

Note■■  TL S session resumption has a direct impact on performance. The master key–generation process in the TLS
handshake is extremely costly. With session resumption, the same master secret from the previous session is reused.
It has been proven through several academic studies that the performance enhancement resulting from TLS session
resumption can be up to 20%. Session resumption also has a cost, which is mostly handled by servers. Each server has
to maintain the TLS state of all its clients and also to address high-availability aspects; it needs to replicate this state
across different nodes in the cluster.

Server hello is the first message from the server to the client. It includes the highest version of TLS that both
the client and the server can support, a random number generated by the server, the strongest cipher suite, and
the compression algorithm that both the client and the server can support. Both parties use the random numbers
generated by the client and the server independently to generate the master secret. This master secret will be used
later to derive encryption keys. To generate a session identifier, the server has several options. If no session identifier
is included in the Client hello, the server generates a new one. Even the client includes one; but if the server can’t
resume that session, then once again a new identifier is generated. If the server is capable of resuming the TLS session
corresponding to the session identifier specified in the Client hello, then the server includes it in the Server hello.
The server may also decide not to include any session identifiers for any new sessions that it’s not willing to resume in
the future.

http://www.google.com/
http://www.google.com/

Chapter 4 ■ Mutual Authentication with TLS

50

Note■■  I n the history of TLS, several attacks have been reported against the TLS handshake. Cipher suite rollback and
version rollback are a couple of them. This could be a result of a man-in-the-middle attack, where the attacker intercepts
the TLS handshake and downgrades either the cipher suite or the TLS version, or both. The problem was fixed from SSL 3.0
onward with the introduction of the Change Cipher Spec message. This requires both parties to share the hash of all TLS
handshake messages up to the Change Cipher Spec message, exactly as each party read them. Each has to confirm that
they read the messages from each other in the same way.

Once it’s finished with the Server hello, the server sends its public certificate, along with other certificates,
up to the root certificate authority (CA) in the certificate chain. The client must validate these certificates to accept
the identity of the server. It uses the public key from the server certificate to encrypt the premaster secret key later.
The premaster key is a shared secret between the client and the server to generate the master secret. If the public key
in the server certificate isn’t cable of encrypting the premaster secret key, then the TLS protocol mandates another
extra step, known as the server key exchange. During this step, the server has to create a new key and send it to the
client. Later it will be used to encrypt the premaster secret key.

If the server demands TLS mutual authentication, then the next step is for the server to request the client
certificate. The client certificate request message from the server includes a list of certificate authorities trusted by the
server and the type of certificate. After the last two optional steps, the server sends the Server hello done message to
the client. This is an empty message that only indicates to the client that the server has completed its initial phase in
the handshake.

If the server demanded the client certificate, now the client sends its public certificate along with all other
certificates in the chain up to the CA required to validate the client certificate. Next would be the Client key exchange
message, which includes the TLS protocol version as well as the premaster secret key. The TLS protocol version must be
the same as specified in the initial Client hello message. This is a guard against any rollback attacks to force the server
to use an unsecured TLS/SSL version. The premaster secret key included in the message should be encrypted with the
server’s public key obtained from the server certificate or with the key passed in the Server key exchange message.

The Certificate verify message is next in line. This is optional and is needed only if the server demands client
authentication. The client has to sign the entire set of TLS handshake messages that have taken place so far with its
private key and send the signature to the server. The server validates the signature using the client’s public key, which
was shared in a previous step. The signature-generation process varies depending on which signing algorithm you
pick. If RSA is being used, then the hash of all the previous handshake messages is calculated with both MD5 and
SHA-1. Then the concatenated hash is encrypted using the client’s private key. For Digital Signature Standard (DSS),
only a SHA-1 hash is used, and it’s encrypted using the client’s private key.

At this point, the client and the server have exchanged all the required materials to generate the master secret.
The master secret is generated using the client random number, the server random number, and the premaster secret.
The client now sends the Change cipher spec message. This indicates to the server that all messages generated from
here onward are protected with the keys already established.

The Finished message is the last one from the client to the server. It’s the hash of the complete handshake
message flow. This message is hashed and encrypted using the already-established keys. Once it’s received at the
server end, the server also sends the Change cipher spec message. This indicates to the client that the server will
start communicating with the secret keys already established. Finally, the Finished message is sent from the server.
This is the same as the Finished message generated by the client and includes the hash of the complete handshake
message flow encrypted by the generated cryptographic keys.

Note■■  T he research paper “Lessons Learned from Previous SSL/TLS Attacks: A Brief Chronology of Attacks and
Weaknesses,” by Christopher Meyer and Jorg Schwenk, explains several attacks carried out against SSL, for more than
15 years until 2013.

Chapter 4 ■ Mutual Authentication with TLS

51

Application Data Transfer
After the TLS handshake phase is complete, sensitive application data can be exchanged between the client and the
server using the TLS Record protocol. This protocol is responsible for breaking all outgoing messages into blocks and
assembling all incoming messages. Each outgoing block is compressed, a message authentication code (MAC) is
calculated, and the block is encrypted. Each incoming block is decrypted, decompressed, and MAC verified.

CRYPTOGRAPHIC KEYS IN TLS

During the TLS handshake, each side derives a master secret using the client-generated random key, the server-
generated random key, and the client-generated premaster secret. The master secret is never transferred over the
wire. Using the master secret, each side generates four more keys. The client uses first key to calculate the MAC
for each outgoing message. The server uses the same key to validate the MAC of all incoming messages from
the client. The server uses the second key to calculate the MAC for each out going message. The client uses the
same key to validate the MAC of all incoming messages from the server. The client uses the third key to encrypt
outgoing messages, and the server uses the same key to decrypt all incoming messages. The server uses the
fourth key to encrypt outgoing messages, and the client uses the same key to decrypt all incoming messages.

Note■■   Before you begin working on the examples in this chapter, be sure you have set up the example “Cute-Cupcake
Factory: Deploying the Recipe API in Apache Tomcat,” in Chapter 3.

SECURING AN API WITH TLS MUTUAL AUTHENTICATION

You’ve already deployed the Recipe API from the Cute-Cupcake factory in Apache Tomcat. Let’s see how you can
configure Apache Tomcat to secure the API with mutual authentication:

1.	T o enable TLS in Apache Tomcat, first you need to have a keystore with a public/private key
pair. You can create a keystore using Java keytool, which comes with the JDK distribution
and is in [JAVA_HOM]\bin. The following command creates a Java keystore named
catalina-keystore.jks:

 
keytool -genkey -alias localhost -keyalg RSA -keysize 1024

 -dname "CN=localhost"
 -keypass catalina123
 -keystore catalina-keystore.jks
 -storepass catalina123

 
This uses catalina123 as the keystore password as well as the private key password.

Chapter 4 ■ Mutual Authentication with TLS

52

2.	T o enable TLS mutual authentication, you also need to have a keystore to hold trusted client
certificates. The following command creates a Java keystore named catalina-truststore.jks:

 
keytool -genkey -alias localhost -keyalg RSA -keysize 1024

 -dname "CN=localhost"
 -keypass catalina123
 -keystore catalina-truststore.jks
 -storepass catalina123

 
This uses catalina123 as the keystore password as well as the private key password.

3.	 You need a key pair for the client that invokes the secured API. The following command
creates a Java keystore named client-keystore.jks:

 
keytool -genkey -alias client -keyalg RSA -keysize 1024
 -dname "CN=client"
 -keypass client23
 -keystore client-keystore.jks
 -storepass client123

 

This uses client123 as the keystore password as well as the private key password.

4.	T o ask Tomcat to trust your API client, you need to export the public certificate from
client-keystore.jks and import it into catalina-truststore.jks. The following keytool
command exports the public certificate from client-keystore.jks and saves it in the file
client.cert:

 
keytool -export -file client.cert
 -keystore client-keystore.jks
 -alias client
 -storepass client123

 
5.	T he following keytool command imports the public certificate client.cert from the

previous step into catalina-truststore.jks:
 

keytool -import -file client.cert
 -keystore catalina-truststore.jks
 -alias client
 -storepass catalina123 

Note■■   client-trustore.jks should only include the public certificates of trusted CAs. You don’t need to import each
and every user certificate. Every user can have a certificate signed by the trusted CA.

Chapter 4 ■ Mutual Authentication with TLS

53

6.	 Copy catalina-keystore.jks and catalina-truststore.jks to [TOMCAT_HOME]\conf,
and add the following element to [TOMCAT_HOME]\conf\server.xml under the <Service>
parent element. Change the values of keystoreFile, keystorePass, truststoreFile, and
truststorePass appropriately:

 
<Connector
 port="8443"
 maxThreads="200"
 scheme="https"
 secure="true"
 SSLEnabled="true"
 keystoreFile="absolute/path/to/catalina-keystore.jks"
 keystorePass="catalina123"
 truststoreFile="absolute/path/to/catalina-truststore.jks"
 truststorePass="catalina123"
 clientAuth="false"
 sslProtocol="TLS"/> 

By setting the clientAuth attribute to true, you can enable TLS mutual authentication support at the
container level in Apache Tomcat. That will affect all the APIs and web applications deployed in Tomcat.
You set this to false here and enable it only for the Recipe API later.

7.	O pen [TOMCAT_HOME]\conf\server.xml, and make sure the following line is there. If you
commented it out during a previous exercise, revert it back:

 
<Resource name="UserDatabase" auth="Container"
 type="org.apache.catalina.UserDatabase"
 description="User database that can be updated and saved"
 factory="org.apache.catalina.users.MemoryUserDatabaseFactory"
 pathname="conf/tomcat-users.xml" /> 

8.	I n [TOMCAT_HOME]\conf\server.xml, make sure the following line (which points to
UserDatabaseRealm) is there. If you commented this out during a previous exercise,
revert it back:

 
<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase"/> 

9.	O pen [TOMCAT_HOME]\webapps\recipe\WEB-INF\web.xml, and add the following under the
root element:

 
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Secured Recipe API</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>

Chapter 4 ■ Mutual Authentication with TLS

54

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>
  
<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>cute-cupcakes.com</realm-name>
</login-config>
  
<security-role>
 <role-name>admin</role-name>
</security-role>

 
This configuration sets auth-method to CLIENT-CERT, which secures the Recipe API with TLS mutual
authentication. Because you’ve set transport-guarantee to CONFIDENTIAL, no one can access the API
via cleartext. It must be a confidential channel. auth-constraint is set to a role-name, which means a
user authenticating with the certificate should belong to the admin role.

■ Note T he auth-constraint <role-name>admin</role-name> limits API access to anyone having the role admin.
If you want to make the API accessible to anyone who has authenticated into the system with a certificate, belonging to
any role, use * for the role-name : <role-name>*</role-name>.

10.	O pen [TOMCAT_HOME]\conf\tomcat-users.xml, and add the following under the root
element. This adds a role and a user to Tomcat’s default file system–based user store. The
user name is identified by the value of Subject in the client certificate, which in this case is
CN=client:
 
<role rolename="admin"/>
<user username="CN=client" roles="admin"/> 

INVOKING A SECURED API WITH TLS MUTUAL AUTHENTICATION VIA CURL

You’ve secured the Recipe API with TLS mutual authentication. Let’s see how to invoke it with cURL:

1.	T he private key and the public key of the client should be exported from the client keystore
(client-keystore.jks) in Privacy-enhanced Electronic Mail(PEM) format. This can be done
using KeyStore Explorer.

Chapter 4 ■ Mutual Authentication with TLS

55

Note■■   KeyStore Explorer is a free tool for Java keystore management. It runs on Windows, Mac OS, and Linux, and
is available from http://keystore-explorer.sourceforge.net/. Before running KeyStore Explorer, you have to patch
the JDK, allowing it to use much longer key lengths for encryption. To patch the JDK, download the Java Cryptography
Extension (JCE) unlimited-strength jurisdiction policy files corresponding to your JDK version, and copy the two jar
files in the zip file to JAVA_HOME/lib/security to replace the existing jar files. For Java 6, the download link is
www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html, and for Java 7 it’s
www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html.

2.	L aunch KeyStore Explorer, and select Open An Existing KeyStore. Point to client-keystore.jks
to load it. KeyStore Explorer asks for the keystore password at the time of loading, which is
client123.

3.	R ight-click the available key entry, and select Export ➤ Export Private Key. Type the private
key password, which is client123, select PKCS #8, and click OK.

4.	 You can export the private key as an encrypted key or in cleartext. If you don’t want the key
to be encrypted, uncheck Encrypt.

5.	 Be sure to check PEM, give an export file path (client.key), and click Export.

6.	I n the same way, you can export the public key in PEM format. Right-click the available key
entry, and select Export ➤ Export Public Key.

7.	 Be sure to check PEM, give an export file path (client.cert), and click Export.

8.	 You’ve exported both the public and private keys. Concatenate them into a single file, and name
that file client.cert. In Linux/Unix/Mac, you can use the following command from the shell:

 
cat client.cert client.key > client.pem

 
9.	 You’re all set. Use the following cURL command to invoke the API. –k is used here to accept

any server certificate. Otherwise, you have to specify the CA certificate corresponding to
the server’s public certificate. --cert specifies the concatenated public and private keys of
the client:

 
curl -k --cert client.pem https://localhost:8443/recipe

 

■ Note P KCS is a set of standards for public-key cryptography that focuses on 15 areas, from PKCS #1 to PKCS
#15. PKCS #8 talks about syntax for keeping private-key information in a standard manner, and PKCS #12 talks about
an archive file format to keep multiple cryptographic elements, such as private keys and X.509 certificates, in a single
file. A summary of the PKCS standards is available at http://coitweb.uncc.edu/~yonwang/papers/pkcs.pdf.

http://keystore-explorer.sourceforge.net/
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://coitweb.uncc.edu/~yonwang/papers/pkcs.pdf

Chapter 4 ■ Mutual Authentication with TLS

56

JKS VS. PKCS #12

Java KeyStore (JKS) and PKCS #12 are two types of popular keystore formats. A keystore in general is a container
for certificates and private keys. JKS is a Java-specific keystore format, mostly used by application servers
written in Java, such as Apache Tomcat. PKCS #12 keystores are mostly used by the Apache web server and tools
built on top of Microsoft technologies. PKCS #12 keystores carry the extension .p12 or .pfx. JKS is language
dependent, whereas PKCS #12 is language neutral.

Java keytool supports both types of keystores. To convert a JKS keystore to a PKCS #12 keystore, use the
following keytool command:
 
keytool -importkeystore
 -srckeystore client-keystore.jks -srcstoretype jks -srcstorepass client123
 -destkeystore client-keystore.p12 -deststoretype pkcs12 -deststorepass client123
 

ENCODING RULES

Abstract Station Notation One (ASN.1) is a standard that provides a set of notations for encoding/decoding and
transmitting data over communication networks. The X.690 standard specifies a set of ASN.1 encoding rules:
Basic Encoding Rules (BER), Distinguished Encoding Rules (DER), and Canonical Encoding Rules (CER). When you
export a public certificate from a Java keystore, by default it is a DER-encoded file:
 
keytool -export -file client.cert -keystore client-keystore.jks -alias client -storepass
client123
 
client.cert is the DER-encoded X.509 certificate. It can be viewed using KeyStore Explorer. PEM is the Base64-
encoded DER. Do the following to convert the DER-encoded certificate into PEM or ANS.1:

1.	L aunch KeyStore Explorer, and select Examine Certificate. Point to client.cert to load it.

2.	T o convert the DER-encoded certificate into PEM or ANS.1, click the appropriate button.

REVERSE-ENGINEERING TLS

For each session, TLS creates a master secret and derives four keys from it for hashing and encryption. What
if the private key of the server leaked out? If all the data transferred between clients and the server is being
recorded, can it be decrypted? Yes, it can. If the TLS handshake is recorded, you can decrypt the premaster secret
if you know the server’s private key. Then, using the client-generated random number and the server-generated
random number, you can derive the master secret—and then the other four keys. Using these keys, you can
decrypt the entire set of recorded conversations.

Using perfect forward secrecy (PFS) can prevent this. With PFS, just as in TLS, a session key is generated, but
the session key can’t later be derived back from the server’s master secret. This eliminates the risk of losing
the confidentiality of the data if a private key leaks out. To add support for PFS, both the server and the client

Chapter 4 ■ Mutual Authentication with TLS

57

participating in the TLS handshake should support a cipher suite with ephemeral Diffie-Hellman (DHE) or the
elliptic-curve variant (ECDHE).

Note■■   Google enabled forward secrecy for Gmail, Google+, and Search in November 2011.

CONFIGURING APACHE TOMCAT FOR PERFECT FORWARD SECRECY

In this exercise, we will be configuring Apache Tomcat to support perfect forward secrecy with the following steps:

1.	O pen [TOMCAT_HOME]\conf\server.xml, and find the following Connector configuration
for HTTPS. If you don’t see this section, follow the exercise “Securing an API with TLS Mutual
Authentication” earlier in this chapter:

 
<Connector
 port="8443"
 maxThreads="200"
 scheme="https"
 secure="true"
 SSLEnabled="true"
 keystoreFile="absolute path to catalina-keystore.jks"
 keystorePass="catalina123"
 truststoreFile="absolute path to catalina-truststore.jks"
 truststorePass="catalina123"
 clientAuth="false"
 sslProtocol="TLS"/> 

2.	T o enable PFS support in Tomcat, you need to configure the appropriate cipher suite and
disable all other weak cipher suites. Add the following cipher suite and protocol as attributes
to the Tomcat HTTPS Connector configuration. TLS in the name of the protocol suite says
to use TLS. ECDHE specifies elliptic curve Diffie-Hellman with ephemeral keys as the key
agreement protocol. ECDSA is the elliptic curve digital signature algorithm used during the
TLS handshake. AES_128_CBC uses AES as the symmetric encryption algorithm with 128-bit
cipher-block chaining to encrypt application data. SHA is the hashing algorithm:

 
ciphers="TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"
protocol="org.apache.coyote.http11.Http11NioProtocol"

 
3.	 You need to create a new keystore with a compatible key algorithm. If you’re on Oracle

JDK 1.6_*, you need to install a crypto provider that supports elliptic curve encryption.
Download the Bouncycastle crypto provider from www.bouncycastle.org/download/
bcprov-ext-jdk15on-150.jar, and copy it to JAVA_HOME/lib/ext. Then add the following
entry to JAVA_HOME/lib/security/java.security file. Replace the value of N appropriately;
it has to be a number:

 
security.provider.N=org.bouncycastle.jce.provider.BouncyCastleProvider

 

www.allitebooks.com

http://www.bouncycastle.org/download/bcprov-ext-jdk15on-150.jar
http://www.bouncycastle.org/download/bcprov-ext-jdk15on-150.jar
http://www.allitebooks.org

Chapter 4 ■ Mutual Authentication with TLS

58

Note■■   SSL debugging can be enabled in Tomcat 7 by adding the entry javax.net.debug=all to the
CATALINA_HOME/conf/catalina.properties file. 

4.	T o generate a keystore with the elliptic curve key algorithm, use the following keytool
command, and replace the current Tomcat keystore file with the new one. Here you’re using
EC as the keyalg:

 
keytool -genkey -alias localhost
 -keyalg EC
 -keysize 256
 -dname "CN=localhost"
 -keypass catalina123
 -keystore catalina-keystore.jks
 -storepass catalina123

 
5.	 By default, cURL doesn’t include TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as a cipher

suite in its Client hello. This can be forcefully included via the --ciphers parameter.
 

curl -k --cert client.pem -v
 �--ciphers TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 https://localhost:8443 

Note■■   Qualys SSL Labs provides a free online service to analyze the SSL configuration of a given public web site.
It’s available at https://www.ssllabs.com/ssltest/analyze.html.

Summary
TLS mutual authentication is a strong form of client authentication. This chapter focused on building a foundation
related to TLS and its evolution. The later part of the chapter explained how to secure an API deployed in Apache
Tomcat with TLS mutual authentication.

In the next chapter, we will take a deeper look at distinct identity delegation models, which laid the path to the
popular OAuth 2.0 standard.

https://www.ssllabs.com/ssltest/analyze.html

59

Chapter 5

Identity Delegation

Identity delegation plays a key role in enterprise security. You could be the owner but not the direct consumer of
the API. There may be a third party who wants to access it on your behalf. Sharing credentials with a third party
who wants to access a resource you own on your behalf is an anti-pattern. Most web-based applications and APIs
developed prior to 2006 utilized credential sharing to facilitate identity delegation. Post-2006, many vendors started
developing their own proprietary ways to address this concern without credential sharing. Yahoo BBAuth, Google
AuthSub, and Flickr Authentication are some of the implementations that became popular.

Any identity-delegation model has three main roles: delegator, delegate, and service provider. The delegator owns
the resource and is also known as the resource owner. The delegate wants to access a service on behalf of the delegator.
The delegator delegates a limited set of privileges to the delegate to access the service. The service provider hosts the
protected service and validates the legitimacy of the delegate. The service provider is also known as the resource server.

Direct Delegation vs. Brokered Delegation
Let’s take a step back and look at a real-world example (see Figure 5-1). Flickr is a popular cloud-based service for
storing and sharing photos. Photos stored in Flickr are the resources, and Flickr is the resource server or the service
provider. Say you have a Flickr account: you’re the resource owner (or the delegator) of the photos under your
account. You also have a Snapfish account. Snapfish is a web-based photo-sharing and photo-printing service that is
owned by Hewlett-Packard. How can you print your Flickr photos from Snapfish? To do so, Snapfish has to first import
those photos. To do that, Snapfish should have the following privileges, which should be delegated to Snapfish by
you. You’re the delegator, and Snapfish is the delegate. Other than the allowed actions, Snapfish won’t be able to do
anything with your Flickr photos (such as delete them).

Grant privileges to import
photos from Flickr

Import photos

Snapfish

Flickr

Figure 5-1.  Direct delegation

Chapter 5 ■ Identity Delegation

60

Access your Flickr account (including private content)•	

Upload, edit, and replace photos and videos in the account•	

Interact with other members’ photos and videos (comment, add notes, favorite)•	

Snapfish can now access your Flickr account on your behalf with the delegated privileges. This model is called
direct delegation: the delegator directly delegates a subset of his or her privileges to a delegate. The other model is
called indirect delegation: the delegator first delegates to an intermediate delegate, and that delegate delegates to
another delegate. This is also known as brokered delegation (see Figure 5-2).

Let’s say you have a Lucidchart account. Lucidchart is a cloud-based design tool that you can use to draw a
wide variety of diagrams. It also integrates with Google Drive. From your Lucidchart account, you have the option to
publish completed diagrams to your Google Drive. To do that, Lucidchart needs privileges to access the Google Drive
API on your behalf, and you need to delegate the relevant permissions to Lucidchart. If you want to print something
from Lucidchart, it invokes the Snapfish printing API. Snapfish needs to access the diagrams stored in your Google
Drive. Lucidchart has to delegate a subset of the permissions you delegated to it, to Snapfish. Even though you granted
read/write permissions to Lucidchart, it only has to delegate read permission to Snapfish to access your Google Drive
and print the selected drawing.

Evolution of Identity Delegation
The modern history of identity delegation can be divided into two eras: pre-2006 and post-2006. Credential sharing
mostly drove identity delegation prior to 2006. Twitter, SlideShare, and almost all web applications used credential
sharing to access third-party APIs. As shown in Figure 5-3, when you created a Twitter account prior to 2006,
Twitter asked for your e-mail account credentials so it could access your e-mail address book and invite your friends
to join Twitter. Interestingly, it displayed the message “We don’t store your login, your password is submitted securely,
and we don’t email without your permission” to win user confidence. But who knows—if Twitter wanted to read all
your e-mails or do whatever it wanted to your e-mail account, it could have done so quite easily.

Grant read/write privileges
on Google Drive

Grant read privileges
on Google Drive

Import diagrams

Import diagramsExport diagrams

Lucidchart

Google
Drive

Snapfish

Figure 5-2.  Brokered delegation

Chapter 5 ■ Identity Delegation

61

SlideShare did the same thing. SlideShare is a cloud-based service for hosting and sharing slides. Prior to 2006,
if you wanted to publish a slide deck from SlideShare to a Blogger blog, you had to give your Blogger username and
password to SlideShare, as shown in Figure 5-4. SlideShare used Blogger credentials to access its API to post the
selected slide deck to your blog. If SlideShare had wanted to, it could have modified published blog posts, removed
them, and so on.

These are just two examples. The pre-2006 era was full of such applications. Google Calendar, introduced in
April 2006, followed a similar approach. Any third-party application that wanted to create an event in your Google
Calendar first had to request your Google credentials and use them to access the Google Calendar API. This wasn’t
tolerable in the Internet community, and Google was pushed to invent a new and, of course, better way of securing its
APIs. Google AuthSub was introduced toward the end of 2006 as a result. This was the start of the post-2006 era of
identity delegation.

Figure 5-3.  Twitter, pre-2006

Figure 5-4.  SlideShare, pre-2006

Chapter 5 ■ Identity Delegation

62

Google ClientLogin
In the very early stages of its deployment, the Google Data API was secured with two nonstandard security protocols:
ClientLogin and AuthSub. ClientLogin was intended to be used by “installed applications.” An installed application
can vary from a simple desktop application to a mobile application—but it can’t be a web application. For web
applications, the recommended way was to use AuthSub.

Note■■  T he complete Google ClientLogin documentation is available at https://developers.google.com/accounts/
docs/AuthForInstalledApps. The ClientLogin API was deprecated as of April 20, 2012. According to the Google
deprecation policy, it will operate the same until April 20, 2015. It’s recommended that you use OAuth 2.0 instead of
ClientLogin, where appropriate.

As shown in Figure 5-5, Google ClientLogin uses identity delegation with password sharing. The user has to
supply their Google credentials to the installed application in the first step. Then the installed application creates a
request token out of the credentials, and it calls the Google Accounts Authorization service. After the validation, a
CAPTCHA challenge is sent back as the response. The user must respond to the CAPTCHA and is validated again
against the Google Accounts Authorization service. Once the user is validated successfully, a token is issued to the
application. Then the application can use the token to access Google services.

1 2

3

6

8

7

9

4
User

Supplies Google
Login and Password

Requests Token with
ClientLogin

Makes CAPTCHA
Challenge

Requests Token
with CAPTCHA

Requests Data with Token

Responds with Token

Responds with Requested
Data

Forwards CAPTCHA
Challenge

Responds with CAPTCHA
Answer Installed

Application

Google Accounts
Authorization

Google Service
Access

5

Figure 5-5.  Google ClientLogin

Note■■   Some of the APIs used in this chapter could be deprecated or retired by the time you try them. One of the
objectives of this chapter is to provide a comprehensive overview of the evolution of API security; hence, those examples
are included. Knowing the history will definitely help you design in the future.

https://developers.google.com/accounts/docs/AuthForInstalledApps
https://developers.google.com/accounts/docs/AuthForInstalledApps

Chapter 5 ■ Identity Delegation

63

GOOGLE CLIENTLOGIN WITH CURL

In this example, you invoke the Google Calendar API with a token obtained via Google ClientLogin. Once you know the
Google username and the corresponding password of the end user, you can execute the following cURL command:
 
curl https://www.google.com/accounts/ClientLogin
 -d "accountType=GOOGLE"
 -d "Email=siriwardena.prabath@gmail.com"
 -d "Passwd=mypassword"
 -d "service=cl"
 -d "source=api-security-book"
 
Each Google service has its own identifier. In the previous cURL command, you’re using cl, for the Google
Calendar service. The value of the source attribute can be anything—and it’s used only for logging purposes.
As the response to the cURL command, you get the following:
 
SID=DQAAANEAAAADjFMd_40nS-9L363Js1cN7kh5_ZnPSVCKQ8efFk
 ndPQ4vVwJrEMWrdHcDD3MBcNlPx6FFThBpeAWjbZ3vyP
 
LSID=DQAAANQAAAAhJ0Fgebk3sC77NAvcxuGZXAKcNoGhqqu9e1I3e
 Cbw063zV-2EX1gwWbz8xYMXySvV_Mq320g0UKjLS4hWmHSnM
 l6pje2BKVOLZgoEpr89iQ-
 
Auth=DQAAANMAAAAhJ0Fgebk3sC77NAvcxuGZXAKcNoGhqqu9e1I3e
 Cbw063zV-2EX1gwWbz8xYMXySvV_Mq320g0UKjLS4hWmHSn8_
 R9OdKbZyhF2FcpHiaZm0m5dmBy2
 
This response includes three tokens: SID, LSID, and Auth. Auth token should be used with all the API calls.
The other two aren’t active—you can ignore them for the moment.

Before you can use the Auth token to invoke the Google Calendar API, the installed application must have an API
project created in Google. To create an API project, follow these steps:

1.	G o to https://code.google.com/apis/console/. If this is your first time, you get a
welcome message; click Continue.

2.	 Click APIs and Auth.

3.	 Click the Off button by Calendar API to switch it on.

4.	 Click APIs and Auth ➤ Credentials.

5.	 Click Public API Access ➤ Create New Key ➤ Server Key ➤ Create.

6.	 Copy the value of the API key.

Note■■   Creating an API project in Google or registering the installed application to obtain an API key is not a must.
Google allows nonregistered applications to use its APIs—but it has a very low daily rate limit. If you want to obtain a
higher quota, you need to register your application.

https://www.google.com/accounts/ClientLogin
https://code.google.com/apis/console/

Chapter 5 ■ Identity Delegation

64

To access an API on behalf of the end user, the installed application needs two tokens: Auth and the API key:
 
curl -H "Authorization : GoogleLogin
 auth=DQAAANMAAAAhJ0FgesdsdWeNAvcxuGZXAKcNo
 Ghqqu9e1I3eCbw063zV2EX1gwWbz8xYMXySvV_M
 q320g0UKjwEdWmHSn8_R9OdKbZyhF2FcpHiaZm0m5dmBy2"
 https://www.googleapis.com/calendar/v3/users/me/calendarList?
 key=AIzaSewBhq7Pewzxk4kXzN_lyAx72WIX7wKGWF4
 
The Auth token should be set in the HTTP Authorization header with the prefix GoogleLogin. The API key goes in
the query parameters with the identifier key. The previous command returns the following JSON response:
 
{
 "kind": "calendar#calendarList",
 "etag": "\"-kteSF26GsdKQ5bfmcd4H3_-u3g/BGBvKnAdZF_NzImEmH7Eq1FIK8Q\"",
 "items": [
 {
 "kind": "calendar#calendarListEntry",
 "etag": "\"-kteSF26GsdKQ5bfmcd4H3_-u3g/XWbZkPYJb1_3zLlJugl9SxzKPRU\"",
 "id": "siriwardena.prabath@gmail.com",
 "summary": "Prabath Siriwardena",
 "timeZone": "Asia/Colombo",
 "colorId": "17",
 "backgroundColor": "#9a9cff",
 "foregroundColor": "#000000",
 "selected": true,
 "accessRole": "owner",
 "defaultReminders": [
 {
 "method": "sms",
 "minutes": 30
 },
 {
 "method": "popup",
 "minutes": 30
 }
],
 "primary": true
 }
]
} 

Note■■  T he complete reference for the Google Calendar API is available at
https://developers.google.com/google-apps/calendar/v3/reference/.

https://www.googleapis.com/calendar/v3/users/me/calendarList
http://siriwardena.prabath@gmail.com/
https://developers.google.com/google-apps/calendar/v3/reference/

Chapter 5 ■ Identity Delegation

65

Google AuthSub
Google AuthSub was the recommended authentication protocol to access Google APIs via web applications in
the post-2006 era. Unlike ClientLogin, AuthSub doesn’t require credential sharing. Users don’t need to provide
credentials for a third-party web application—instead, the application provides credentials directly to Google, along
with a temporary token with a limited set of privileges. The third-party application uses the temporary token to access
Google APIs. Figure 5-6 explains the protocol flow in detail.

The end user initiates the protocol flow by visiting the web application. The web application redirects the user
to the Google Accounts Authorization service with an AuthSub request. Google notifies the user of the access rights
requested by the application, and the user can approve the request by logging in. Once approved by the user, Google
Accounts Authorization service provides a temporary token to the web application. Now the web application can use
that temporary token to access Google APIs.

Note■■  T he complete Google AuthSub documentation is available at https://developers.google.com/accounts/
docs/AuthSub. How to use AuthSub with the Google Data API is explained at https://developers.google.com/gdata/
docs/auth/authsub. The AuthSub API was deprecated as of April 20, 2012. According to the Google deprecation policy, it
will operate the same until April 20, 2015. It’s recommended that you use OAuth 2.0 instead of AuthSub, where appropriate.

GOOGLE AUTHSUB WITH CURL

In this example, you invoke the Google Calendar API from a token obtained via Google AuthSub. Before proceeding
any further, make sure you’ve created an API project in Google and have an API key readily available for your
application, as explained in the previous exercise.

The first step in AuthSub is to redirect the user to the Google Accounts Authorization service to get a token
authorized by the end user. Usually this must be initiated by a web application. Because you’re using cURL here,
you use a workaround.

Web Application

Requests Token with AuthSub

Google Accounts
Authorization

Google Service
Access

User

Redirects to the Web App with Token

Logs In and Grants/Denies Access

Displays Access Cosent Page

Requests Access with Token

Responds with Requested Data

1
2

3

4

5

6

Figure 5-6.  Google AuthSub

https://developers.google.com/accounts/docs/AuthSub
https://developers.google.com/accounts/docs/AuthSub
https://developers.google.com/gdata/docs/auth/authsub
https://developers.google.com/gdata/docs/auth/authsub

Chapter 5 ■ Identity Delegation

66

Copy and paste the following URL in the browser, replacing the value of key with your API key value:
 
http://google.com/accounts/AuthSubRequest?
 next=http://mywebapp/&
 scope=http://www.google.com/calendar/feeds/default/allcalendars/full&
 session=1&secure=0&
 key=AIzaSyDGmwx3sMDkxAJfpk9Rqv3yW5fD1ftbcSM 

Note■■  E ach Google service defines its own set of scopes. A scope is a way of reducing /limiting access to a service.
At the time the end user grants access to a service, access rights are only granted to the requested scope by the
third-party application. The current exercise uses the scope http://www.google.com/calendar/feeds/default/
allcalendars/full, which restricts API access to the allcalendars/full feed.

You’re prompted to log in to Google and authorize the request. Once authorized, you’re redirected to
http://mywebaap on browser:
 
http://mywebapp/?token=1%2FVv7CI1DjmFjtcoPbx7eatWpuO2vEVBY4n3DyZ-tcqWY
 
Copy the value of token, and decode it with a URL decoder. Keep the decoded value of the token—you’ll need it
in the future.

Note■■  A n online URL Decoder is available at http://meyerweb.com/eric/tools/dencoder/.

The token you got in the previous step is a short-lived, single-use token. You need to exchange it for a session
token. Use the following cURL command to exchange the token for a session token:
 
curl -H "Authorization : AuthSub 	 	 	 	
 token=1/zeWL0QENk6PL49NOUoypvmTZvChq4K0gT8g9ajVWKsU"
 https://www.google.com/accounts/AuthSubSessionToken?
 key=AIzaSyDGmwx3sMDkxAJfpk9Rqv3yW5fD1ftbcSM
 
Here you have the decoded token in the HTTP Authorization header, prefixed with AuthSub. As in the previous
case, you also need to specify the application’s API key as a query parameter. This returns the session token in
the response:
 
Token=1/N9oTDOX3si1bCsRKhvRmbX-HuRclCKeGOEsr951tFsA
 
Now you can use the session token to access the Google Calendar API. The value of the token is added to the
HTTP Authorization header, prefixed with AuthSub. You also need to specify the application’s API key as a query
parameter:
 
curl -H "Authorization : AuthSub
 token=1/N9oTDOX3si1bCsRKhvRmbX-HuRclCKeGOEsr951tFsA"
 https://www.googleapis.com/calendar/v3/users/me/calendarList?
 key=AIzaSyDGmwx3sMDkxAJfpk9Rqv3yW5fD1ftbcSM
 

http://google.com/accounts/AuthSubRequest
http://mywebapp/
http://www.google.com/calendar/feeds/default/allcalendars/full
http://www.google.com/calendar/feeds/default/allcalendars/full
http://www.google.com/calendar/feeds/default/allcalendars/full
http://mywebaap/
http://mywebapp/?token=1%2FVv7CI1DjmFjtcoPbx7eatWpuO2vEVBY4n3DyZ-tcqWY
http://meyerweb.com/eric/tools/dencoder/
https://www.google.com/accounts/AuthSubSessionToken
https://www.googleapis.com/calendar/v3/users/me/calendarList

Chapter 5 ■ Identity Delegation

67

This returns the following JSON response:
 
{
 "kind": "calendar#calendarList",
 "etag": "\"-kteSF26GsdKQ5bfmcd4H3_-u3g/BGBvKnAdZF_NzImEmH7Eq1FIK8Q\"",
 "items": [
 {
 "kind": "calendar#calendarListEntry",
 "etag": "\"-kteSF26GsdKQ5bfmcd4H3_-u3g/XWbZkPYJb1_3zLlJugl9SxzKPRU\"",
 "id": "siriwardena.prabath@gmail.com",
 "summary": "Prabath Siriwardena",
 "timeZone": "Asia/Colombo",
 "colorId": "17",
 "backgroundColor": "#9a9cff",
 "foregroundColor": "#000000",
 "selected": true,
 "accessRole": "owner",
 "defaultReminders": [
 {
 "method": "sms",
 "minutes": 30
 },
 {
 "method": "popup",
 "minutes": 30
 }
],
 "primary": true
 }
]
} 

Flickr Authentication API
Flickr is a popular image/video hosting service owned by Yahoo!. Flickr was launched in 2004 (before the acquisition
by Yahoo! in 2005), and toward 2005 it exposed its services via a public API. It was one of the very few companies
at that time that had a public API; this was even before the Google Calendar API. Flickr was one of the very few
applications that followed an identity delegation model without credential sharing prior to 2006. Most of the
implementations that came after that were highly influenced by the Flickr Authentication API. Unlike in Google
AuthSub or ClientLogin, the Flickr model was signature based. Each request should be signed by the application from
its application secret.

www.allitebooks.com

http://siriwardena.prabath@gmail.com/
http://www.allitebooks.org

Chapter 5 ■ Identity Delegation

68

FLICKR AUTHENTICATION API WITH CURL

In this example, you invoke a Flickr API on behalf of a user and get information about the user’s photos stored in
Flickr. The API is invoked with a token obtained via the Flickr Authentication API.

First you need to create a Flickr app:

1.	G o to www.flickr.com/services/apps/create/noncommercial/, provide the appropriate
information, and submit.

2.	N ote the key and the secret generated for your application.

3.	G o to www.flickr.com/services/apps, and click the link to the application you just created.

4.	 Click the Edit link, provide http://mywebapp as the Callback URL, and save the changes.

5.	T o access a Flickr API on behalf of a user, you need to obtain a token from Flickr that is authorized
by the user. Copy and paste the following URL into the browser; it redirects you to Flickr, and there
you can log in and authorize the app. The URL only requests read access to your Flickr account.
Replace the value of api_key with the value of the key you got for your Flickr application:
 
http://www.flickr.com/services/auth/?
 api_key=96b77823e5006334db4374785659d287&
 perms=read&
 api_sig=8E356554D9F885DC8346CED4982A46BE
 

The value of api_sig is calculated in the following manner:

Put all query parameters in ascending order (except api_sig):
 
api_key=96b77823e5006334db4374785659d287&perms=read
 
Remove all & signs and = signs:
 
api_key96b77823e5006334db4374785659d287permsread
 
Append the value of the Flickr application secret at the beginning:
 
186d6af54ad46ca0api_key96b77823e5006334db4374785659d287permsread
 
Calculate the MD5 of the previous string: that is the value of api_sign.

Note■■  Y ou can calculate the MD5/SHA1/SHA-256 of a given string or file from http://onlinemd5.com/.

6.	O nce you authorize the app, Flickr redirects you to the callback URL associated with your
application, with a temporary single-use token:
 
http://mywebapp/?frob=72157641727374043-d603b924a9cb2447-45865350
 
Copy the value of frob, and decode it with a URL decoder. Keep the decoded value of the
token—you’ll need it in the future.

http://www.flickr.com/services/apps/create/noncommercial/
http://www.flickr.com/services/apps
http://mywebapp/
http://www.flickr.com/services/auth/
http://onlinemd5.com/
http://mywebapp/?frob=72157641727374043-d603b924a9cb2447-45865350

Chapter 5 ■ Identity Delegation

69

7.	N ow you need to exchange this token for a session token:
 
curl http://flickr.com/services/rest
 -d "api_key=96b77823e5006334db4374785659d287"
 -d "frob=72157641727236925-29a09296309f597e-45865350"
 -d "method=flickr.auth.getToken"
 -d "api_sig=08CED6B68FA49C13A9D3E21CB6F97AC6"
 
Replace the value of api_key with the value of the key you got for your Flickr application,
replace the value of frob with the decoded value of frob obtained in the previous step, and
set the method to flickr.auth.getToken.

The value of api_sig needs to be calculated the same way as before:

Order all query parameters in ascending order (except api_sig):
 
api_key=96b77823e5006334db4374785659d287&
frob=72157641727236925-29a09296309f597e-45865350&
method=flickr.auth.getToken
 
Remove all & signs and = signs (no line breaks):
 
api_key96b77823e5006334db4374785659d287
frob72157641727236925-29a09296309f597
e-45865350methodflickr.auth.getToken
 
Append the value of the Flickr application secret at the beginning (no line breaks):
 
186d6af54ad46ca0
api_key96b77823e5006334db4374785659d287
frob72157641727236925-29a09296309f597
e-45865350methodflickr.auth.getToken
 
Calculate the MD5 of this string: that is the value of api_sign.

The previous cURL request returns the following response. Copy the value of token, which you use in the next step:
 
<rsp stat="ok">
<auth>
 <token>72157641727374033-f3a12f2cb198cfda</token>
 <perms>read</perms>
 <user nsid="45910672@N06" username="prabathsiriwardena" fullname="Prabath Siriwardena" />
</auth>
</rsp>
 
Now you’re all set to access the Flickr API. Use the following cURL command, and replace the values
appropriately. api_key is the value of the key you got for your Flickr application. The value of auth_token is the

http://flickr.com/services/rest

Chapter 5 ■ Identity Delegation

70

token you obtained in the previous step. The method has to be flickr.activity.userPhotos, and api_sig
should be calculated in the same way as you did before:
 
curl http://flickr.com/services/rest
 -d "api_key=96b77823e5006334db4374785659d287"
 -d "auth_token=72157641727374033-f3a12f2cb198cfda"
 -d "method=flickr.activity.userPhotos"
 -d "api_sig=A34696A187E477BE0F875E1EB5DE14E2"
 
This cURL request returns the following response:
 
<rsp stat="ok">
<items page="1" pages="0" perpage="10" total="0" />
</rsp> 

Note■■   flickr.activity.userPhotos returns the list of activities on photos belonging to the corresponding user.
The complete Flickr API specification is available at www.flickr.com/services/api/.

Yahoo! Browser-Based Authentication (BBAuth)
Yahoo! BBAuth was launched in September 2006 as a generic way of granting third-party applications access to Yahoo!
data with a limited set of privileges. Yahoo! photos and Yahoo Mail were the first two services to support BBAuth.
BBAuth, like Google AuthSub, borrowed the same concept used in Flickr (see Figure 5-7).

Third-Party Web
App Sign-In Redirect to Yahoo! for User Consent

Redirect to Web App with Token and Optional UserHash

Yahoo! Login
Page

Yahoo! BBAuth
Consent Page

Third-Party Web
App Endpoint

Figure 5-7.  Yahoo! BBAuth

The user first initiates the flow by visiting the third-party web application. The web application redirects the user
to Yahoo!, where user has to log in and approve the access request from the third-party application. Once approved by
the user, Yahoo! redirects the user to the web application with a temporary token. Now the third-party web application
can use the temporary token to access the user’s data in Yahoo! with limited privileges.

Note■■  A complete guide to Yahoo! BBAuth is available at http://developer.yahoo.com/bbauth/.

http://flickr.com/services/rest
http://www.flickr.com/services/api/
http://developer.yahoo.com/bbauth/

Chapter 5 ■ Identity Delegation

71

YAHOO! BBAUTH WITH CURL

This exercise shows you how to invoke Yahoo! data APIs from a token obtained via Yahoo! BBAuth. First you
need to create a BBAuth application at the following URL. During the registration process, you must also confirm
ownership of the domain where you’re going to host your application:
 
https://developer.apps.yahoo.com/wsregapp/
 
Once you complete the registration flow, go to https://developer.apps.yahoo.com/projects. Under the
application you just created are an application ID and a shared secret:
 
Your application id is RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA—
Your shared secret is dc214c1a0f6bcf0163038109fb32a536
 
To obtain the BBAuth token, the third-party web application has to redirect the user to the following Yahoo! URL.
This request must be initiated from the confirmed domain name:
 
https://api.login.yahoo.com/WSLogin/V1/wslogin?
 appid=RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA--&
 ts=1393746700 dc214c1a0f6bcf0163038109fb32a536&
 sig=92B453643462AD71AB32B5DB829FDEDC
 
appid is the application ID you obtained after registration, and ts is the timestamp in seconds since
January 1, 1970 GMT. The signature is calculated in the following manner:
 
sig= MD5 ("/WSLogin/V1/wslogin?appid=application_id&ts=timestamp" + secret);
 
For example:
 
sig= MD5 ("/WSLogin/V1/wslogin?
 appid=RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA--&
 ts=1393746700” + “dc214c1a0f6bcf0163038109fb32a536");
 
Once the end user has confirmed that they want to share permissions with the third-party application, Yahoo!
returns a token that is valid for 14 days in its response to the web application.

To invoke Yahoo! data APIs on behalf of the user, the third-party application has to exchange the token it obtained
in the previous step for an auth cookie and a Web Service Session Identifier (WSSID).

The following cURL command gets you back the auth cookie and the corresponding WSSID in the response:
 
curl –G https://api.login.yahoo.com/WSLogin/V1/wspwtoken_login?
 appid= RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA--&
 ts=1393748700&
 token=EKEaFUMk4DdfbBcgMWESUw70JGIdHWVRbpqYItcM--&
 sig=8f43ccb0eea8a7676cd4a16891f84e7b
 

https://developer.apps.yahoo.com/wsregapp/
https://developer.apps.yahoo.com/projects
https://api.login.yahoo.com/WSLogin/V1/wslogin
https://api.login.yahoo.com/WSLogin/V1/wspwtoken_login

Chapter 5 ■ Identity Delegation

72

appid is the application ID you obtained after registration, and ts is the timestamp in seconds since
January 1, 1970 GMT. The signature is calculated in the following manner:
 
sig= MD5 ("/WSLogin/V1/ wspwtoken_login?
 appid=application_id&
 token=token_value&ts=timestamp" + secret);
 
For example:
 
sig= MD5 ("/WSLogin/V1/wslogin?
 appid=RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA--&
 token=EKEaFUMk4DdfbBcgMWESUw70JGIdHWVRbpqYItcM--&
 ts=1393746700" + "dc214c1a0f6bcf0163038109fb32a536");
 
This returns the auth cookie and the corresponding WSSID in the response as an XML message. To invoke a
Yahoo! business service on behalf of the user, the application ID and the WSSID should be passed as query
parameters, and the auth cookie must be set as the HTTP Cookie header:
 
curl –H "Cookie:Y=DsdeHjhjdsdskDdsdseDWdet"
 –d @soap-reuqest.xml https://someservice.yahooapis.com/webservice?&
 appid= RbISImHIkY0TFeGwcaIPqhc042xvVQQr66Dz.H95SufRHA-&
 WSSID=jsdaklj9a 

Note■■   Complete documentation for the Yahoo! BBAuth authentication protocol is available at
http://developer.yahoo.com/bbauth/user.html. Documentation for making authenticated service calls
is available at http://developer.yahoo.com/bbauth/authcalls.html.

Google AuthSub, Yahoo BBAuth, Flickr Authentication all made considerable contributions to initiate a
dialog to build a common standardized delegation model. OAuth 1.0 was the first step toward identity delegation
standardization. The roots of OAuth go back to November 2006, when Blaine Cook started developing an OpenID
implementation for Twitter. In parallel, Larry Halff of Magnolia (a social bookmarking site) was thinking about
integrating an authorization model with OpenID (around this time, OpenID began gaining more traction in the Web
2.0 community). Larry started discussing the use of OpenID for Magnolia with Twitter and found out there is no way
to delegate access to Twitter APIs through OpenID. Blaine and Larry, together with Chris Messina, DeWitt Clinton,
and Eran Hammer, started a discussion group in April 2007 to build a standardized access-delegation protocol—
which later became OAuth. The access-delegation model proposed in OAuth 1.0 wasn’t drastically different from what
Google, Yahoo, and Flickr already had.

Note■■  O penID is a standard developed by the OpenID Foundation for decentralized single sign-on. The OpenID 2.0
final specification is available at http://openid.net/specs/openid-authentication-2_0.html.

The OAuth 1.0 core specification was released in December 2007. Later, in 2008, during the 73rd Internet
Engineering Task Force (IETF) meeting, a decision was made to develop OAuth under the IETF. Although it took
sometime to be established in the IETF, OAuth 1.0a was released as a community specification in June 2009 to fix a
security issue related to a session-fixation attack. In April 2010, OAuth 1.0 was released as RFC 5849 under the IETF.
Chapter 6 talks about OAuth 1.0 in detail.

https://someservice.yahooapis.com/webservice
http://developer.yahoo.com/bbauth/user.html
http://developer.yahoo.com/bbauth/authcalls.html
http://openid.net/specs/openid-authentication-2_0.html

Chapter 5 ■ Identity Delegation

73

Note■■  T he OAuth 1.0 community specification is available at http://oauth.net/core/1.0/, and 1.0a is at
http://oauth.net/core/1.0a/.

In November 2009, during the Internet Identity Workshop (IIW), Dick Hardt of Microsoft, Brian Eaton of Google,
and Allen Tom of Yahoo! presented a new draft specification for access delegation. It was called Web Resource
Authorization Profiles (WRAP), and it was built on top of the OAuth 1.0 model to address some of its limitations.
In December 2009, WRAP was deprecated in favor of OAuth 2.0. Chapter 6 discusses WRAP in detail.

Note■■  T he WRAP specification contributed to the IETF OAuth working group is available at
http://tools.ietf.org/html/draft-hardt-oauth-01.

While OAuth was being developed under the OAuth community and the IETF working group, the OpenID
community also began to discuss a model to integrate OAuth with OpenID. This effort, initiated in 2009, was called
OpenID/OAuth hybrid extension. This extension describes how to embed an OAuth approval request into an OpenID
authentication request to allow combined user approval. For security reasons, the OAuth access token isn’t returned
in the OpenID authentication response. Instead, a mechanism to obtain the access token is provided.

Note■■  T he finalized specification for OpenID/OAuth extension is available at
http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html.

OAuth 1.0 provided a good foundation for access delegation. However, criticism arose against OAuth 1.0, mainly
targeting its usability and extensibility. As a result, OAuth 2.0 was developed as an authorization framework, rather
than a standard protocol. OAuth 2.0 became RFC 6749 in October 2012 under the IETF. Chapter 7 discusses OAuth 2.0
in detail.

Summary
The identity delegation model discussed in this chapter is the foundation for almost all delegated access-control
models used at present. The chapter focused on building the foundation through the evolution of identity delegation
models. The Google ClientLogin, Google AuthSub, Flickr Authentication, and Yahoo BBAuth models were discussed
later with examples. Some of the APIs used in this chapter may be deprecated or retired by the time you try them;
but one of the objectives of this chapter was to give you a comprehensive overview of the evolution of API security.
Knowing history will help you design in the future.

In the next chapter, we will dive deeper into OAuth 1.0.

http://oauth.net/core/1.0/
http://oauth.net/core/1.0a/
http://tools.ietf.org/html/draft-hardt-oauth-01
http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html

75

Chapter 6

OAuth 1.0

As discussed in the last section of Chapter 5, OAuth 1.0 was the first step toward the standardization of identity
delegation. OAuth involves three parties in an identity delegation transaction. The delegator, also known as the user,
assigns access to his or her resources to a third party. The delegate, also known as the consumer, accesses a resource
on behalf of its user. The application that hosts the actual resource is known as the service provider. This terminology
was introduced in the first release of the OAuth 1.0 specification under oauth.net. It changed a bit when the OAuth
specification was brought into the IETF working group. In OAuth 1.0, RFC 5849, the user (delegator) is known as the
resource owner, the consumer (delegate) is known as the client, and the service provider is known as
the server.

Note■■   The OAuth 1.0 community specification is available at http://oauth.net/core/1.0/, and 1.0a is at
http://oauth.net/core/1.0a/. OAuth 1.0, RFC 5849, made OAuth 1.0 (community version) and 1.0a obsolete.
RFC 5849 is available at http://tools.ietf.org/html/rfc5849.

The Token Dance
Token-based authentication goes back to 1994, when the Mosaic Netscape 0.9 beta version added support for cookies.
For the first time, cookies were used to identify whether the same user was revisiting a given web site. Even though it’s
not a strong form of authentication, this was the first time in history that a cookie was used for identification. Later, most
browsers added support for cookies and started using them as a form of authentication. To log in to a web site, the user
gives his or her username and password. Once the user is successfully authenticated, the web server creates a session for
that user, and the session identifier is written into a cookie. To reuse the already authenticated session for each request
from then onward, the user must attach the cookie. This is the most widely used form of token-based authentication.

Note■■   RFC 6265 defines the cookie specification in the context of HTTP: see http://tools.ietf.org/html/rfc6265.

Token: A unique identifier issued by the server and used by the client to associate authenticated
requests with the resource owner whose authorization is requested or has been obtained by the
client. Tokens have a matching shared-secret that is used by the client to establish its ownership of
the token, and its authority to represent the resource owner.

—OAuth 1.0 RFC 5849

http://oauth.net/core/1.0/
http://oauth.net/core/1.0a/
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc6265

Chapter 6 ■ OAuth 1.0

76

This chapter helps you digest the formal definition given for token by RFC 5849. OAuth uses tokens at different phases
in its protocol flow (see Figure 6-1). Three main phases are defined in OAuth 1.0 handshake: the temporary-credential
request phase, the resource-owner authorization phase, and the token-credential request phase.

Note■■   All three phases in the OAuth 1.0 token dance must happen over TLS.

Temporary-Credential Request Phase
During the temporary-credential request phase, the OAuth client sends an HTTP POST to the temporary-credential
request endpoint hosted in the resource server:
 
POST /oauth/request-token HTTP/1.1
Host: server.com
Authorization: OAuth realm="simple",

Consumer
Authorization

Server

Authorization
Server

Consumer

Consumer
Authorization

Server

Protected APIConsumer

Request - Request Token

Request Token

Request Token

Authorized Request Token

Authorized Request Token

End User Authenticates and Authorizes the Request Token

End User
Redirects End User to the Authorization Server

Access Token

Access Token

Request - Access Token

1

2

5

3

7

8

6

4

Figure 6-1.  OAuth 1.0 token dance

Chapter 6 ■ OAuth 1.0

77

oauth_consumer_key="dsdsddDdsdsds",
oauth_signature_method="PLAINTEXT",
oauth_callback="http://client.net/client_cb",
oauth_signature="dsDSdsdsdsdddsdsdsd"
 

The authorization header in the request is constructed with following parameters:

•	 OAuth: The keyword used to identify the type of the authorization header. It must have the
value OAuth.

•	 realm: An identifier known to the resource server. Looking at the realm value, the resource
server can find out how to authenticate the OAuth client. The value of realm here serves the
same purpose as in HTTP Basic Authentication.

•	 oauth_consumer_key: A unique identifier issued to the OAuth client by the resource server.
This key is associated with a secret key that is known both to the client and to the resource
server.

•	 oauth_signature_method: The method used to generate the oauth_signature. This can be
PLAINTEXT, HMAC-SHA1, or RSA-SHA1. PLAINTEXT means no signature, HMAC-SHA1 means a
shared key has been used for the signature, and RSA-SHA1 means an RSA private key has been
used for the signature. The OAuth specification doesn’t mandate any signature method. The
resource server can enforce any signature method, based on its requirements.

•	 oauth_signature: The signature, which is calculated according to the method defined in
oauth_signature_method.

Note■■   With PLAINTEXT as the oauth_signature_method, the oauth_signature is the consumer secret followed by &.
For example, if the consumer secret associated with the corresponding consumer_key is Ddedkljlj878dskjds, then the
value of oauth_signature is Ddedkljlj878dskjds&. 

•	 oauth_callback: An absolute URI that is under the control of the client. In the next phase,
once the resource owner has authorized the access request, the resource server has to redirect
back to this oauth_callback URI. If this is preestablished between the client and the resource
server, the value of oauth_callback should be set to oob to indicate that it is out of band.

The temporary-credential request authenticates the client. The client must be a registered entity at the resource
server. The client-registration process is outside the scope of the OAuth specification. This is a direct HTTP POST request
from the client to the resource server, and the user isn’t aware of this phase. The client gets the following in response to
the temporary-credential request. Both the temporary credential request and the response must be over TLS:
 
HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
oauth_token=bhgdjgdds&
oauth_token_secret=dsdasdasdse&
oauth_callback_confirmed=true
 

http://client.net/client_cb

Chapter 6 ■ OAuth 1.0

78

Let’s examine the definition of each parameter.

•	 oauth_token: An identifier generated by the resource server. This is used to identify the value
of the oauth_token_secret in future requests made by the client to the resource server. This
identifier links the oauth_token_secret to the oauth_consumer_key.

•	 oauth_token_secret: A shared secret generated by the resource server. The client will use this
in future requests to generate the oauth_signature.

•	 oauth_callback_confirmed: This must be present and set to true. It helps the client to
confirm that the resource server received the oauth_callback sent in the request.

To initiate the temporary-credential request phase, the client must first be registered with the resource server
and have a consumer key / consumer secret pair. At the end of this phase, the client will have an oauth_token and an
oauth_token_secret.

Resource-Owner Authorization Phase
During the resource-owner authorization phase, the client must get the oauth_token received in the previous phase
authorized by the user or the resource owner. The client redirects the user to the resource server with the following
HTTP GET request. The oauth_token received in the previous phase is added as a query parameter. Once the request
hits the resource server, the resource server knows the client corresponding to this token and displays it to the user on
its login page. The user must authenticate first and then authorize the token:
 
GET /authorize_token?oauth_token= bhgdjgdds HTTP/1.1
Host: server.com
 

After the resource owner’s approval, the resource server redirects the user to the oauth_callback URL
corresponding to the client:
 
GET /client_cb?x=1&oauth_token=dsdsdsdd&oauth_verifier=dsdsdsds HTTP/1.1
Host: client.net
 

Let’s examine the definition of each parameter.

•	 oauth_token: An identifier generated by the resource server. It’s used to identify the value of
the oauth_token_verifier in future requests made by the client to the resource server. This
identifier links the oauth_token_verifier to the oauth_consumer_key.

•	 oauth_token_verifier: A shared verification code generated by the resource server.
The client will use this in future requests to generate oauth_signature.

Note■■   If no oauth_callback URL is registered by the client, the resource server displays a verification code to the
resource owner. The resource owner must take it and provide it to the client manually. The process by which the resource
owner provides the verification code to the client is outside the scope of the OAuth specification.

To initiate the resource-owner authorization phase, the client must have access to the oauth_token and the
oauth_token_secret. At the end of this phase, the client has a new oauth_token and an oauth_verifier.

Chapter 6 ■ OAuth 1.0

79

Token-Credential Request Phase
During the token-credential request phase, the client makes a direct HTTP POST or a GET request to the access-token
endpoint hosted at the authorization server:
 
POST /access_token HTTP/1.1
Host: server.com
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds",
oauth_token=" bhgdjgdds ",
oauth_signature_method="PLAINTEXT",
oauth_verifier=" dsdsdsds",
oauth_signature="fdfsdfdfdfdfsfffdf"
 

The authorization header in the request is constructed with the following parameters:

•	 OAuth: The keyword used to identify the type of the authorization header. It must have the
value OAuth.

•	 realm: An identifier known to the resource server. Looking at the realm value, the resource
server can decide how to authenticate the OAuth client. The value of realm here serves the
same purpose as in HTTP Basic Authentication.

•	 oauth_consumer_key: A unique identifier issued to the OAuth client by the resource server.
This key is associated with a secret key that is known to both the client and the resource server.

•	 oauth_signature_method: The method used to generate the oauth_signature. This can be
PLAINTEXT, HMAC-SHA1, or RSA-SHA1. PLAINTEXT means no signature, HMAC-SHA1 means a
shared key has been used for the signature, and RSA-SHA1 means an RSA private key has been
used for the signature. The OAuth specification doesn’t mandate any signature method. The
resource server can enforce any signature method, based on its requirements.

•	 oauth_signature: The signature, which is calculated according to the method defined in
oauth_signature_method.

•	 oauth_token: The temporary-credential identifier returned in the temporary-credential
request phase.

•	 oauth_verifier: The verification code returned in the resource-owner authorization phase.

After the authorization server validates the access token request, it sends back the following response to the client:
 
HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
oauth_token=dsdsdsdsdweoio998s&oauth_token_secret=ioui789kjhk
 

Let’s examine the definition of each parameter.

•	 oauth_token: An identifier generated by the resource server. In future requests made by the
client, this will be used to identify the value of oauth_token_secret to the authorization
server. This identifier links oauth_token_secret to the oauth_consumer_key.

•	 oauth_token_secret: A shared secret generated by the authorization server. The client will
use this in future requests to generate the oauth_signature.

To initiate the token-credential request phase, the client must have access to the oauth_token from the first phase
and the oauth_verifier from the second phase. At the end of this phase, the client will have a new oauth_token and
a new oauth_token_secret.

Chapter 6 ■ OAuth 1.0

80

Invoking a Secured Business API with OAuth 1.0
At the end of the OAuth token dance, following tokens should be retained at the OAuth client end:

•	 oauth_consumer_key: An identifier generated by the authorization server to uniquely
identify the client. The client gets the oauth_consumer_key at the time of registration with the
authorization server. The registration process is outside the scope of the OAuth specification.

•	 oauth_consumer_secret: A shared secret generated by the authorization server. The client
will get the oauth_consumer_secret at the time of registration, with the authorization server.
The registration process is outside the scope of the OAuth specification. The oauth_consumer_
secret is never sent over the wire.

•	 oauth_token: An identifier generated by the authorization server at the end of the
token-credential request phase.

•	 oauth_token_secret: A shared secret generated by the authorization server at the end of the
token-credential request phase.

Following is a sample HTTP request to access a secured API with OAuth 1.0. In addition to the previously
described parameters, it also has oauth_timestamp and oauth_nonce. Once the the authorization server validates the
authorization header, sends the corresponding response back from the invoked business service:
 
POST /student?name=pavithra HTTP/1.1
Host: server.com
Content-Type: application/x-www-form-urlencoded
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds ",
oauth_token="dsdsdsdsdweoio998s",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="1474343201",
oauth_nonce="rerwerweJHKjhkdsjhkhj",
oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D"
 

Let’s examine the definition of each parameter.

•	 oauth_timestamp: A positive integer that is the number of seconds counted since January 1,
1970 00:00:00 GMT.

•	 oauth_nonce: A randomly-generated unique value added to the request by the client. It’s used
to avoid replay attacks. The resource server must reject any request with a nonce that has been
seen before.

Demystifying oauth_signature
Of the three phases discussed in the section “The Token Dance,” oauth_signature is required in two: the temporary-
credential request phase and the token-credential request phase. In addition, oauth_signature is required in
all client requests to the protected resource. The OAuth specification defines three kinds of signature methods:
PLAINTEXT, HMAC-SHA1, and RSA-SHA1. As explained earlier, PLAINTEXT means no signature, HMAC-SHA1 means a
shared key has been used for the signature, and RSA-SHA1 means a RSA private key has been used for the signature.
The OAuth specification doesn’t mandate any signature method. The authorization server can enforce any signature
method, based on its requirements. The challenge in each signature method is how to generate the base string to sign.
Let’s start with the simplest case, PLAINTEXT (see Table 6-1).

Chapter 6 ■ OAuth 1.0

81

With the PLAINTEXT oauth_signature_method, the oauth_signature is the consumer secret followed by &. For
example, if the consumer secret associated with the corresponding consumer_key is Ddedkljlj878dskjds, the value of
oauth_signature is Ddedkljlj878dskjds&. In this case, transport-level security must be used to protect the secret key
going over the wire. This calculation of oauth_signature with PLAINTEXT is valid only for the temporary-credential
request phase. For the token-credential request phase, oauth_signature also includes the token-shared secret
after the consumer secret. For example, if the consumer secret associated with the corresponding consumer_key is
Ddedkljlj878dskjds and the value of the token-shared secret is ekhjkhkhrure, then the value of oauth_signature is
Ddedkljlj878dskjds&ekhjkhkhrure. The token-shared secret in this case is the oauth_token_secret returned in the
temporary-credential request phase.

For both HMAC-SHA1 and RSA-SHA1, first you need to generate a base string. Let’s start with the temporary-credential
request phase. The following is a sample OAuth request generated in this phase:
 

POST /oauth/request-token HTTP/1.1
Host: server.com
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds",
oauth_signature_method="PLAINTEXT",
oauth_callback="http://client.net/client_cb",
oauth_signature="dsDSdsdsdsdddsdsdsd"

 
Step 1: Get the uppercase value of the HTTP request header (GET or POST):

 
POST

 
Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the port has
a nondefault value, it needs to be included as well:

 
http://server.com
 
Step 3: Get the path and the query components in the request resource URI:

 
/oauth/request-token

 
Step 4: Get all the OAuth protocol parameters, excluding oauth_signature, concatenated
by & (no line breaks):

 
oauth_consumer_key="dsdsddDdsdsds"&
oauth_signature_method="PLAINTEXT"&
oauth_callback="http://client.net/client_cb"

 
Step 5: Concatenate the outputs from step 2 and step 3:

 
http://server.com/oauth/request-token

 

Table 6-1.  Signature Calculation with the PLAINTEXT Signature Method

Phase oauth_signature

Temporary-credential request phase consumer_secret&

Token-credential request phase consumer_secret&oauth_token_secret

http://client.net/client_cb
http://server.com/
http://client.net/client_cb
http://server.com/oauth/request-token

Chapter 6 ■ OAuth 1.0

82

Step 6: Concatenate the output from step 5 and step 4 with & (no line breaks):
 

http://server.com/oauth/request-token&
oauth_consumer_key="dsdsddDdsdsds"&
oauth_signature_method="PLAINTEXT"&
oauth_callback="http://client.net/client_cb"
 
Step 7: URL-encode the output from step 6 (no line breaks):

 
http%3A%2F%2Fserver.com%2Foauth%2F
request-token%26%20oauth_consumer_key%3D%22dsdsddDdsdsds%22%26
oauth_signature_method%3D%22PLAINTEXT%22%26
oauth_callback%3D%22http%3A%2F%2Fclient.net%2Fclient_cb%22

 
Step 8: Concatenate the output from step 1 and step 7 with &. This produces the final base
string to calculate the oauth_signature (no line breaks):

 
POST&http%3A%2F%2Fserver.com%2Foauth%2F
request-token%26%20oauth_consumer_key%3D%22dsdsddDdsdsds%22%26
oauth_signature_method%3D%22PLAINTEXT%22%26
oauth_callback%3D%22http%3A%2F%2Fclient.net%2Fclient_cb%22
 

Now, let’s see how to calculate the base string in the token-credential request phase. Following is a sample OAuth
request generated in this phase:
 

POST /access_token HTTP/1.1
Host: server.com
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds",
oauth_token=" bhgdjgdds ",
oauth_signature_method="PLAINTEXT",
oauth_verifier=" dsdsdsds",
oauth_signature="fdfsdfdfdfdfsfffdf"

 
Step 1: Get the uppercase value of the HTTP request header (GET or POST):

 
POST

 
Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the port has a
nondefault value, it needs to be included as well:

 
http://server.com

 
Step 3: Get the path and the query components in the request resource URI:

 
/oauth/access-token

 
Step 4: Get all the OAuth protocol parameters, excluding oauth_signature, concatenated
by & (no line breaks):

 
oauth_consumer_key="dsdsddDdsdsds"&
oauth_token=" bhgdjgdds"&
oauth_signature_method="PLAINTEXT"&o
auth_verifier=" dsdsdsds"

 

http://server.com/oauth/request-token
http://client.net/client_cb
http://server.com/

Chapter 6 ■ OAuth 1.0

83

Step 5: Concatenate the output from step 2 and step 3:
 

http://server.com/oauth/access-token
 

Step 6: Concatenate the output from step 5 and step 4 with & (no line breaks):
 

http://server.com/oauth/access-token&
oauth_consumer_key="dsdsddDdsdsds"&
oauth_token=" bhgdjgdds"&oauth_signature_method="PLAINTEXT"&
oauth_verifier=" dsdsdsds"

 
Step 7: URL-encode the output from step 6 (no line breaks):

 
http%3A%2F%2Fserver.com%2Foauth%2F
access-token%26oauth_consumer_key%3D%22dsdsddDdsdsds%22%26
oauth_token%3D%22%20bhgdjgdds%22%26
oauth_signature_method%3D%22PLAINTEXT%22%26
oauth_verifier%3D%22%20dsdsdsds%22%20

 
Step 8: Concatenate the output from step 1 and step 7 with &. This produces the final base
string to calculate the oauth_signature (no line breaks):

 
POST&http%3A%2F%2Fserver.com%2Foauth%2F
access-token%26oauth_consumer_key%3D%22dsdsddDdsdsds%22%26
oauth_token%3D%22%20bhgdjgdds%22%26
oauth_signature_method%3D%22PLAINTEXT%22%26
oauth_verifier%3D%22%20dsdsdsds%22%20

 
Once you’ve calculated the base string for each phase, the next step is to calculate the signature based on the

signature method. For the temporary-credential request phase, if you use HMAC-SHA1 as the signature method,
the signature is derived in the following manner:
 
oauth_signature= HMAC-SHA1 (key, text)
oauth_signature= HMAC-SHA1 (consumer_secret&, base-string)
 

For the token-credential request phase, the key also includes the token-shared secret after the consumer secret.
For example, if the consumer secret associated with the corresponding consumer_key is Ddedkljlj878dskjds and the
value of the token-shared secret is ekhjkhkhrure, then the value of the key is Ddedkljlj878dskjds&ekhjkhkhrure.
The token-shared secret in this case is the oauth_token_secret returned in the temporary-credential request phase:
 
oauth_signature= HMAC-SHA1 (consumer_secret&oauth_token_secret, base-string)
 

In either phase, if you want to use RSA-SHA1 as the oauth_signature_method, the OAuth client must register
an RSA public key corresponding to its consumer key, at the authorization server. For RSA-SHA1, you calculate the
signature in the following manner, regardless of the phase:
 
oauth_signature= RSA-SHA1 (RSA private key, base-string)
 

http://server.com/oauth/access-token
http://server.com/oauth/access-token

Chapter 6 ■ OAuth 1.0

84

In addition to the token dance, you also need to calculate the oauth_signature in each business API invocation.
In the following sample request, the OAuth client invokes the student API with a query parameter. Let’s see how to
calculate the base string in this case:

 
POST /student?name=pavithra HTTP/1.1
Host: server.com
Content-Type: application/x-www-form-urlencoded
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds ",
oauth_token="dsdsdsdsdweoio998s",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="1474343201",
oauth_nonce="rerwerweJHKjhkdsjhkhj",
oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D"

 
Step 1: Get the uppercase value of the HTTP request header (GET or POST):

 
POST

 
Step 2: Get the value of the scheme and the HTTP host header in lowercase. If the port has a
non-default value, it needs to be included as well:

 
http://server.com

 
Step 3: Get the path and the query components in the request resource URI:

 
/student?name=pavithra

 
Step 4: Get all the OAuth protocol parameters, excluding oauth_signature, concatenated
by & (no line breaks):

 
oauth_consumer_key="dsdsddDdsdsds"&oauth_token="dsdsdsdsdweoio998s"&
oauth_signature_method="HMAC-SHA1"&oauth_timestamp="1474343201"&
oauth_nonce="rerwerweJHKjhkdsjhkhj"

 
Step 5: Concatenate the output from step 2 and step 3 (no line breaks):

 
http://server.com/student?name=pavithra

 
Step 6: Concatenate the output from step 5 and step 4 with & (no line breaks):

 
http://server.com/student?name=pavithra&
oauth_consumer_key="dsdsddDdsdsds"&
oauth_token="dsdsdsdsdweoio998s"&
oauth_signature_method="HMAC-SHA1"&
oauth_timestamp="1474343201"&oauth_nonce="rerwerweJHKjhkdsjhkhj"

 

http://server.com/
http://server.com/student?name=pavithra
http://server.com/student?name=pavithra

Chapter 6 ■ OAuth 1.0

85

Step 7: URL-encode the output from step 6 (no line breaks):
 

http%3A%2F%2Fserver.com%2Fstudent%3Fname%3Dpavithra%26
oauth_consumer_key%3D%22dsdsddDdsdsds%20%22%26
oauth_token%3D%22dsdsdsdsdweoio998s%22%26
oauth_signature_method%3D%22HMAC-SHA1%22%26
oauth_timestamp%3D%221474343201%22%26
oauth_nonce%3D%22rerwerweJHKjhkdsjhkhj%22

 
Step 8: Concatenate the output from step 1 and step 7 with &. This produces the final base
string to calculate the oauth_signature (no line breaks):

 
POST& http%3A%2F%2Fserver.com%2Fstudent%3Fname%3Dpavithra%26
oauth_consumer_key%3D%22dsdsddDdsdsds%20%22%26
oauth_token%3D%22dsdsdsdsdweoio998s%22%26
oauth_signature_method%3D%22HMAC-SHA1%22%26
oauth_timestamp%3D%221474343201%22%26
oauth_nonce%3D%22rerwerweJHKjhkdsjhkhj%22

 
Once you have the base string, the OAuth signature is calculated in the following manner with the HMAC-SHA1 and

RSA-SHA1 signature methods. The value of oauth_token_secret is from the token-credential request phase:
 
oauth_signature= HMAC-SHA1 (consumer_secret&oauth_token_secret, base-string)
 
oauth_signature= RSA-SHA1 (RSA private key, base-string)

OAUTH 1.0 WITH TWITTER APIS

Before invoking any of the Twitter APIs, first you need to generate OAuth keys:

1.	 To generate OAuth keys, you need to create a Twitter App. Go to https://dev.twitter.com/apps,
and click Create New App.

2.	 Once the app is created, go to https://dev.twitter.com/apps and click the link to the app
you just created.

3.	 Go to Permissions, check Read and Write, and click Update Settings at the bottom of the
page. Allow some time for the changes to update.

4.	 Go to API Keys, and copy the values of API Key and API Secret. API Key here is the
oauth_consumer_key, and the API Secret is the consumer_secret.

5.	 Download gdata-core-1.0.0.jar and google-collect-1.0.0.jar from
https://svn.wso2.org/repos/wso2/people/prabath/api-security/twitter/lib and
add them to your Java classpath.

https://dev.twitter.com/apps
https://dev.twitter.com/apps
https://svn.wso2.org/repos/wso2/people/prabath/api-security/twitter/lib

Chapter 6 ■ OAuth 1.0

86

6.	 The following Java code shows how to get temporary credentials from Twitter in the OAuth
temporary-credential request phase. You need to invoke this method by passing your own
consumer key and consumer secret and the callback URL corresponding to your Twitter
application:
 
public void getRequestToken(String consumerKey, String consumerSecret, String
callbackUrl) throws Exception {
 
 Service.GDataRequest request;
 GoogleOAuthParameters oauthParameters = new GoogleOAuthParameters();
 oauthParameters.setOAuthConsumerKey(consumerKey);
 oauthParameters.setOAuthConsumerSecret(consumerSecret);
 OAuthHmacSha1Signer signer = new OAuthHmacSha1Signer();
 GoogleService service = new GoogleService("api_security_book_sample",
 "api_security_book_sample");
 service.setOAuthCredentials(oauthParameters, signer);
 String baseString = "https://api.twitter.com/oauth/request_token";
 
 URL feedUrl = new URL(baseString);
 request = service.createFeedRequest(feedUrl);
 request.execute();
 System.out.println(convertStreamToString(request.getResponseStream()));
}
 

7.	 The helper method convertStreamToString() takes a byte stream and converts it into a string:
 
private static String convertStreamToString(InputStream is) throws IOException {
 if (is != null) {
 StringBuilder sb = new StringBuilder();
 String line;
 BufferedReader reader
 try {
 reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
 while ((line = reader.readLine()) != null) {
 sb.append(line).append("\n");
 }
 } finally {
 is.close();
 }
 return sb.toString();
 } else {
 return "";
 }
}
 

https://api.twitter.com/oauth/request_token

Chapter 6 ■ OAuth 1.0

87

8.	 The getRequestToken() method, with the proper parameters, prints the following response:
 
oauth_token=b0jTGcb4Ul5g9ecumlhaNqaGF1DD0s1xzFJEfO7dNTY&
oauth_token_secret=7w1rqff46MCxlcbLlGsc84ZLLnE2XgGqXVmMz7TKk&
oauth_callback_confirmed=true
 

9.	 You need to get the returned token authorized by the user in the resource-owner authorization
phase. Copy and paste the following URL into the browser. Make sure you replace the value of
the oauth_token query parameter with the value you got in the previous step:
 
https://api.twitter.com/oauth/authorize?
oauth_token=b0jTGcb4Ul5g9ecumlhaNqaGF1DD0s1xzFJEfO7dNTY
 

10.	 The end user or the resource owner must log in to his or her Twitter account and approve the
authorization grant.

11.	 Once approved, the user is redirected back to the registered callback URL. Copy the values of
oauth_token and oauth_verifier:
 
https://client.net/client_cb ?
oauth_token=b0jTGcb4Ul5g9ecumlhaNqaGF1DD0s1xzFJEfO7dNTY&
oauth_verifier=h4BdfO0tNQfXJFyq9DoXs1gGbe5l9XY4TbEPrIcTU
 

12.	 Next is the token-credential request phase: the client must get an access token from Twitter.
You need to invoke this method by passing your own consumer key, consumer secret, and
oauth_token from the temporary-credential request phase; the oauth_token_secret from
the temporary-credential request phase; and the oauth_verifier from the resource-owner
authorization phase:
 
public void getAccessToken(String consumerKey, String consumerSecret, String
oauthToken, String tokenSecret, String tokenVerifier) throws Exception {
 
 Service.GDataRequest request ;
 GoogleOAuthParameters oauthParameters = new GoogleOAuthParameters();
 oauthParameters.setOAuthConsumerKey(consumerKey);
 oauthParameters.setOAuthConsumerSecret(consumerSecret);
 oauthParameters.setOAuthToken(oauthToken);
 oauthParameters.setOAuthTokenSecret(tokenSecret);
 oauthParameters.setOAuthVerifier(tokenVerifier);
 OAuthHmacSha1Signer signer = new OAuthHmacSha1Signer();
 GoogleService service = new GoogleService("api_security_book_sample",
 "api_security_book_sample");
 service.setOAuthCredentials(oauthParameters, signer);
 String baseString = "https://api.twitter.com/oauth/access_token";
 URL feedUrl = new URL(baseString);
 request = service.createFeedRequest(feedUrl);
 request.execute();
 System.out.println(convertStreamToString(request.getResponseStream()));
}
 

https://api.twitter.com/oauth/authorize
https://client.net/client_cb
https://api.twitter.com/oauth/access_token

Chapter 6 ■ OAuth 1.0

88

13.	 The getAccessToken() method, with the proper parameters, prints the following response:
 

oauth_token=10963912-Jwg57V31CxWlq3aJtVBipjZ5m5OcIXb7tAi0X8WRL&
oauth_token_secret=UtNRYryECuSqy5rTvcNokUC08lXXjftQMyGOb3pQtcI7H&
user_id=10963912&screen_name=prabath

 
That’s the end of the token dance. Now you can directly call the Twitter APIs with the tokens obtained in the
token-credential request phase.

The following Java code shows how to invoke the Twitter API https://api.twitter.com/1.1/statuses/
update.json to publish tweets on behalf of the end user. You need to invoke this method by passing your own
consumer key, consumer secret, oauth_token from the token-credential request phase and the
 oauth_token_secret from the same phase:
 
public void callTwitterAPI(String consumerKey, String consumerSecret, String oauthToken,
 String tokenSecret) throws Exception {
 
 Service.GDataRequest request ;
 GoogleOAuthParameters oauthParameters = new GoogleOAuthParameters();
 oauthParameters.setOAuthConsumerKey(consumerKey);
 oauthParameters.setOAuthConsumerSecret(consumerSecret);
 oauthParameters.setOAuthToken(oauthToken);
 oauthParameters.setOAuthTokenSecret(tokenSecret);
 OAuthHmacSha1Signer signer = new OAuthHmacSha1Signer();
 GoogleService service = new GoogleService("api_security_book_sample",
 "api_security_book_sample");
 service.setOAuthCredentials(oauthParameters, signer);
 String baseString = "https://api.twitter.com/1.1/statuses/update.json?
 status=%27Having+fun+with+Twitter+API%27";
 URL feedUrl = new URL(baseString);
 request = service.createRequest(RequestType.INSERT, feedUrl, ContentType.ANY);
 request.execute();
 System.out.println(convertStreamToString(request.getResponseStream()));

 }

Three-Legged OAuth vs. Two-Legged OAuth
The OAuth flow discussed so far involves three parties: the resource owner, the client, and the resource server (also known
as the authorization server). The client accesses a resource hosted in the resource server on behalf of the user. This is
the most common pattern in OAuth, and it’s also known as three-legged OAuth (three parties involved). In two-legged
OAuth, you have only two parties: the client becomes the resource owner. There is no access delegation in two-legged
OAuth.

Note■■   Two-legged OAuth never made it to the IETF. The initial draft specification is available at
http://oauth.googlecode.com/svn/spec/ext/consumer_request/1.0/drafts/2/spec.html.

https://api.twitter.com/1.1/statuses/update.json
https://api.twitter.com/1.1/statuses/update.json
https://api.twitter.com/1.1/statuses/update.json
http://oauth.googlecode.com/svn/spec/ext/consumer_request/1.0/drafts/2/spec.html

Chapter 6 ■ OAuth 1.0

89

If the same student API discussed earlier is secured with two-legged OAuth, the request from the client looks like
following. The value of oauth_token is an empty string. There is no token dance in two-legged OAuth. You only need
oauth_consumer_key and consumer_secret. The HMAC-SHA1 signature is generated using consumer_secret& as the key:
 
POST /student?name=pavithra HTTP/1.1
Host: server.com
Content-Type: application/x-www-form-urlencoded
Authorization: OAuth realm="simple",
oauth_consumer_key="dsdsddDdsdsds ",
oauth_token="",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="1474343201",
oauth_nonce="rerwerweJHKjhkdsjhkhj",
oauth_signature="bYT5CMsGcbgUdFHObYMEfcx6bsw%3D" 

Note■■   In both HTTP Basic Authentication and two-legged OAuth, the resource owner acts as the client and directly
invokes the API. With HTTP Basic Authentication, you pass the credentials over the wire; this must be over TLS. With
two-legged OAuth, you never pass the consumer_secret over the wire, so it need not be on TLS.

HTTP Digest Authentication looks very similar to two-legged OAuth. In both cases, you never pass credentials over the
wire. The difference is that HTTP Digest Authentication authenticates the user, whereas two-legged OAuth authenticates
the application on behalf of the resource owner. A given resource owner can own multiple applications, and each application
can have its own consumer key and consumer secret.

OAuth WRAP
As discussed in the last section of Chapter 5, in November 2009, a new draft specification for access delegation called
Web Resource Authorization Profiles (WRAP) was proposed, built on top of the OAuth 1.0 model. WRAP was later
deprecated in favor of OAuth 2.0.

Note■■   The initial draft of the WRAP profile submitted to the IETF is available at
http://tools.ietf.org/html/draft-hardt-oauth-01.

Unlike OAuth 1.0, WRAP didn’t depend on a signature scheme. At a high level, the user experience was the same
as in OAuth 1.0. The client first redirects the user to the authorization server with its consumer key and the callback
URL. Once the user authorized the access rights to the client, the user is redirected back to the callback URL with a
verification code. Then the client has to do a direct call to the access-token endpoint of the authorization server with
the verification code, to get the access token. Thereafter, the client only needs to include the access token in all API
calls (all API calls must be on TLS):
 
https://friendfeed-api.com/v2/feed/home?wrap_access_token=dsdsdrwerwr 

http://tools.ietf.org/html/draft-hardt-oauth-01
https://friendfeed-api.com/v2/feed/home?wrap_access_token=dsdsdrwerwr

Chapter 6 ■ OAuth 1.0

90

Note■■   In November 2009, Facebook joined the Open Web Foundation, together with Microsoft, Google, Yahoo!, and
many others, with a commitment to support open standards for web authentication. Keeping that promise, in December
2009, Facebook added OAuth WRAP support to FriendFeed, which it had acquired a few months earlier.

Summary
This chapter introduced OAuth 1.0, which was the first IETF standard for delegated access control. Prior to OAuth
2.0, 1.0 dominated the Web; and Twitter still uses OAuth 1.0. The chapter explained how OAuth 1.0 works by using an
example that showed how to talk to Twitter OAuth endpoints.

In the next chapter, we will delve deeper into OAuth 2.0.

91

Chapter 7

OAuth 2.0

OAuth 2.0 is a major breakthrough in identity delegation. It has its roots in OAuth 1.0, but OAuth WRAP primarily
influenced it. The main difference between OAuth 1.0 and 2.0 is that OAuth 1.0 is a standard protocol for identity
delegation, whereas 2.0 is a highly extensible framework. OAuth 2.0 is already the de facto standard for API security
and is widely used across leading web sites including Facebook, Google, LinkedIn, Microsoft (MSN, Live), PayPal,
Instagram, Foursquare, GitHub, Yammer, Meetup, and many more. There is one popular exception: Twitter still uses
OAuth 1.0.

OAuth WRAP
In November 2009, during the Internet Identity Workshop (IIW), Dick Hardt of Microsoft, Brian Eaton of Google,
and Allen Tom of Yahoo! presented a new draft specification for access delegation. It was called Web Resource
Authorization Profiles (WRAP) and it was built on top of the OAuth 1.0 model. WRAP addressed some of the
limitations found in OAuth 1.0. Later in 2010, WRAP was deprecated in favor of OAuth 2.0.

Note■■   The initial draft of the OAuth WRAP specification submitted to the IETF is available at
http://tools.ietf.org/html/draft-hardt-oauth-01.

OAuth WRAP was one of the initial steps toward OAuth 2.0. Unlike OAuth 1.0, WRAP doesn’t depend on a
signature scheme. At a high level, the user experience is the same as in OAuth 1.0. The client first redirects the user
to the resource server with its consumer key and the callback URL. Once the user has authorized the access rights for
the client, the user is redirected back to the callback URL with a verification code. Then the client must do a direct call
to the access-token endpoint of the resource server with the verification code to get the access token. Thereafter, the
client only needs to include the access token in all API calls. All these API calls must be on TLS.

WRAP introduced two types of profiles for acquiring an access token: autonomous client profiles and user
delegation profiles. In autonomous client profiles, the client becomes the resource owner, or the client is acting on
behalf of itself. In other words, the resource owner is the one who accesses the resource. This is equivalent to the
two-legged OAuth model discussed regarding OAuth 1.0 in Chapter 6. In user delegation profiles, the client acts
on behalf of the resource owner. OAuth 1.0 didn’t have this profile concept, which is limited to a single flow. This
extensibility introduced by OAuth WRAP later became a key part of OAuth 2.0.

http://tools.ietf.org/html/draft-hardt-oauth-01

Chapter 7 ■ OAuth 2.0

92

Client Account and Password Profile
The OAuth WRAP specification introduced two autonomous client profiles: the Client Account and Password
Profile and the Assertion Profile. The Client Account and Password Profile uses the client’s or the resource owner’s
credentials at the authorization server to obtain an access token. This pattern is mostly used for server-to-server
authentication where no end user is involved. The following cURL command does an HTTP POST to the WRAP token
endpoint of the authorization server, with three attributes. wrap_name is the username, wrap_password is the password
corresponding to the username, and wrap_scope is the expected level of access required by the client. wrap_scope is
an optional parameter:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_name=admin&
 wrap_password=admin&
 wrap_scope=read_profile" https://authorization-server/wrap/token
 

This returns wrap_access_token, wrap_refresh_token, and wrap_access_token_expires_in parameters.
wrap_access_token_expires_in is an optional parameter that indicates the lifetime of wrap_access_token in
seconds. When wrap_access_token expires, wrap_refresh_token can be used to get a new access token. OAuth
WRAP introduced for the first time this token-refreshing functionality. The access-token refresh request only needs
wrap_refresh_token as a parameter, as shown next, and it returns a new wrap_access_token. It doesn’t return a new
wrap_refresh_token. The same token obtained in the first access-token request can be used to refresh subsequent
access tokens:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_refresh_token=Xkjk78iuiuh876jhhkwkjhewew"
 https://authorization-server/wrap/token

Assertion Profile
The other profile that falls under the autonomous client profiles is the Assertion Profile. This assumes that the client
somehow obtains an assertion—say, for example, a SAML token—and uses it to acquire a wrap-access token. The
following example cURL command does an HTTP POST to the WRAP token endpoint of the authorization server,
with three attributes: wrap_assertion_format is the type of the assertion included in the request in a way known to
the authorization server; wrap_assertion is the encoded assertion, and wrap_scope is the expected level of access
required by the client. wrap_scope is an optional parameter:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_assertion_format=saml20&
 wrap_assertion=encoded-assertion&
 wrap_scope=read_profile"
 https://authorization-server/wrap/token
 

The response is the same as in the Client Account and Password Profile, except that in the Assertion Profile, there
is no wrap_refresh_token.

https://authorization-server/wrap/token
https://authorization-server/wrap/token
https://authorization-server/wrap/token

Chapter 7 ■ OAuth 2.0

93

Username and Password Profile
The WRAP user delegation profiles introduced three profiles: the Username and Password Profile, the Web App
Profile, and the Rich App Profile. The Username and Password Profile is mostly recommended for installed trusted
applications. The application is the client, and the end user or the resource owner must provide their username and
password to the application. Then the application exchanges the username and password for an access token and stores
it in the application. This is a better approach than storing the user’s username and password—especially for mobile
applications, which, to provide a better user experience, don’t want users to have to enter their credentials repeatedly.

The following cURL command does an HTTP POST to the WRAP token endpoint of the authorization server,
with four attributes: wrap_client_id is an identifier for the application, wrap_username is the username of the end
user, wrap_password is the password corresponding to the username, and wrap_scope is the expected level of access
required by the client (wrap_scope is an optional parameter):
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_client_id=app1&
 wrap_username=admin&
 wrap_password=admin&
 wrap_scope=read_profile"
 https://authorization-server/wrap/token
 

This returns wrap_access_token and wrap_access_token_expires_in parameters. wrap_access_token_expires_in
is an optional parameter that indicates the lifetime of wrap_access_token in seconds. If the authorization server
detects any malicious access patterns, then instead of sending wrap_access_token to the client application, it
returns a wrap_verification_url. It’s the responsibility of the client application to load this URL into the user’s
browser or advise them to visit that URL. Once the user has completed that step, the user must indicate to the client
application that verification is complete. Then the client application can initiate the token request once again.
Instead of sending a verification URL, the authorization server can also enforce a CAPTCHA verification through
the client application. There the authorization server sends back a wrap_captcha_url, which points to the location
where the client application can load the CAPTCHA. Once it’s loaded and has the response from the end user, the
client application must POST it back to the authorization server along with the token request:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_captcha_url=url-encoded-captcha-url&
 wrap_captch_solution-solution&
 wrap_client_id=app1&
 wrap_username=admin&
 wrap_password=admin&
 wrap_scope=read_profile"
 https://authorization-server/wrap/token

Web App Profile
The Web App Profile defined under the WRAP user delegation profiles is mostly recommended for web applications,
where the web application must access a resource belonging to the end user on their behalf. The web application
follows a two-step process to acquire an access token: it gets a verification code from the authorization server and
then exchanges that for an access token. The end user must initiate the first step by visiting the client web application.
Then the user is redirected to the authorization server. The following example shows how the user is redirected to the
authorization server with appropriate WRAP parameters:
 

https://authorization-server/wrap/token
https://authorization-server/wrap/token

Chapter 7 ■ OAuth 2.0

94

https://authorization-server/wrap/authorize?
 wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 wrap_callback=https%3A%2F%2Fmycallback&
 wrap_client_state=client-state&
 wrap_scope=read_profile
 

wrap_client_id is an identifier for the client web application. wrap_callback is the URL where the user is
redirected after successful authentication at the authorization server. Both wrap_client_state and wrap_scope are
optional parameters. Any value in wrap_client_state must be returned back to the client web application. After
the end user’s approval, a wrap_verification_code and other related parameters are returned to the callback URL
associated with the client web application as query parameters.

The next step is to exchange this verification code to an access token:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca &
 wrap_client_secret=weqeKJHjhkhkihjk&
 wrap_verification_code=dsadkjljljrrer&
 wrap_callback=https://mycallback"
 https://authorization-server/wrap/token
 

This cURL command does an HTTP POST to the WRAP token endpoint of the authorization server, with four
attributes: wrap_client_id is an identifier for the application, wrap_client_secret is the password corresponding to
wrap_client_id, wrap_verification_code is the verification code returned in the previous step, and wrap_callback
is the callback URL where the verification code was sent. This returns wrap_access_token, wrap_refresh_token,
and wrap_access_token_expires_in parameters. wrap_access_token_expires_in is an optional parameter that
indicates the lifetime of wrap_access_token in seconds. When wrap_access_token expires, wrap_refresh_token can
be used to get a new access token.

Rich App Profile
The Rich App Profile defined under the WRAP user delegation profiles is most commonly used in scenarios where the
OAuth client application is an installed application that can also work with a browser. Hybrid mobile apps are the best
example. The protocol flow is very similar to that of the Web App Profile. The rich client application follows a two-step
process to acquire an access token: it gets a verification code from the authorization server and then exchanges that
for an access token. The end user must initiate the first step by visiting the rich client application. Then the application
spawns a browser and redirects the user to the authorization server:
 
https://authorization-server/wrap/authorize?
 wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 wrap_callback=https%3A%2F%2Fmycallback&
 wrap_client_state=client-state&
 wrap_scope=read_profile
 

wrap_client_id is an identifier for the rich client application. wrap_callback is the URL where the user is
redirected after successful authentication at the authorization server. Both wrap_client_state and wrap_scope are
optional parameters. Any value in wrap_client_state is returned back to the callback URL. After the end user’s
approval, a wrap_verification_code is returned to the rich client application.

https://authorization-server/wrap/authorize
https://mycallback/
https://authorization-server/wrap/token
https://authorization-server/wrap/authorize

Chapter 7 ■ OAuth 2.0

95

The next step is to exchange this verification code for an access token:
 
curl –v –X POST –H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" –k
 –d "wrap_client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 wrap_verification_code=dsadkjljljrrer&
 wrap_callback=https://mycallback"
 https://authorization-server/wrap/token
 

This cURL command does an HTTP POST to the WRAP token endpoint of the authorization server, with three
attributes: wrap_client_id is an identifier for the application, wrap_verification_code is the verification code
returned in the previous step, and wrap_callback is the callback URL where the verification code was sent.
This returns wrap_access_token, wrap_refresh_token, and wrap_access_token_expires_in parameters.
wrap_access_token_expires_in is an optional parameter that indicates the lifetime of wrap_access_token
in seconds. When wrap_access_token expires, wrap_refresh_token can be used to get a new access token.
Unlike in the Web App Profile, the Rich App Profile doesn’t need to send wrap_client_secret in the access-token
request.

Accessing a WRAP-Protected API
All the previous profiles talk about how to get an access token. Once you have the access token, the rest of the flow is
independent of the WRAP profile. The following cURL command shows how to access a WRAP protected resource:
 
curl –H "Authorization:WRAP
 access_token=cac93e1d29e45bf6d84073dbfb460"
 http://localhost:8080/recipe

WRAP to OAuth 2.0
OAuth WRAP was able to sort out many of the limitations and drawbacks found in OAuth 1.0: primarily extensibility.
OAuth 1.0 is a concrete protocol for identity delegation that has its roots in Flickr Authentication, Google AuthSub,
and Yahoo! BBAuth. Another key difference between OAuth 1.0 and WRAP is the dependency on signatures: OAuth
WRAP eliminated the need for signatures and mandated using TLS for all types of communications.

OAuth 2.0 is a big step forward from OAuth WRAP. It further improved the extensibility features introduced in
OAuth WRAP and introduced two major extension points: grant types and token types.

OAuth 2.0 Grant Types
A grant type defines how a client can obtain an authorization grant from a resource owner to access a resource on their
behalf. The grant types in OAuth 2.0 are very similar to the OAuth profiles in WRAP. The OAuth 2.0 core specification
introduces four core grant types: the Authorization Code grant type, the Implicit grant type, the Resource Owner
Password Credentials grant type, and the Client Credentials grant type.

https://mycallback/
https://authorization-server/wrap/token

Chapter 7 ■ OAuth 2.0

96

Authorization Code Grant Type
The Authorization Code grant type in OAuth 2.0 is very similar to the Web App Profile in WRAP. It’s mostly
recommended for applications—either web applications or native mobile applications—that have the capability to
spawn a web browser (see Figure 7-1). The resource owner that visits the application initiates the Authorization Code
grant type. The client, which must be a registered application at the authorization server, must redirect the resource
owner to the authorization server to get approval:
 
https://localhost:9443/oauth2/authorize?
 response_type=code&
 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 redirect_uri=https%3A%2F%2Fmycallback 

Resource Owner

User Credentials

User Agent
(Browser)

OAuthorizaton Grant Request

User Credentials

OAuthorization Code

OAuthorization Grant Request
Authorization Code

Access Token Request

Accsess Token

Client
Application

7

5
6

1

3

4

2

8

OAuthorization
Server

Figure 7-1.  Authorization Code grant type

Chapter 7 ■ OAuth 2.0

97

The value of response_type must be code. This indicates to the authorization server that the request is for an
authorization code. client_id is an identifier for the client application. Once the client application is registered
with the authorization server, the client gets a client_id and a client_secret. The value of redirect_uri should
be equivalent to the one registered with the authorization server. During the client-registration phase, the client
application must provide a URL under its control as the redirect_uri. The URL-encoded value of the callback URL
is added to the request as the redirect_uri parameter. In addition to these parameters, a client application can also
include a scope parameter. The value of the scope parameter is shown to the resource owner on the approval screen:
it indicates to the authorization server the level of access the client needs on the target resource/API. The previous
application returns the requested code to the registered callback URL:
 
https://mycallback/?code=9142d4cad58c66d0a5edfad8952192

Note■■   Each authorization code should have a lifetime. A lifetime longer than 10 minutes isn’t recommended.

The value of the authorization code is delivered to the client application via an HTTP redirect and is visible to
the resource owner. In the next step, the client must exchange the authorization code for an OAuth access token by
talking to the OAuth token endpoint exposed by the authorization server. This must be an authenticated request
where the client_id and the client_secret of the client application are in the HTTP Authorization header. The
token endpoint must be secured with HTTP Basic Authentication. The value of the grant_type parameter must be
the authorization_code, and the value of the code should be the one returned from the previous step. If the client
application sent a value to the redirect_uri parameter in the previous request, then it must include the same value
in the token request:

Note■■   The authorization code returned from the authorization server acts as an intermediate code. This code is used
to map the end user or resource owner to the OAuth client. The OAuth client must authenticate itself to the token endpoint
of the authorization server. The authorization server should check whether the code is issued to the authenticated OAuth
client prior to exchanging it for an access token. 

curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8" -k
 -d "grant_type=authorization_code&
 code=9142d4cad58c66d0a5edfad8952192&
 redirect_uri=https://mycallback" https://localhost:9443/oauth2/token 

Note■■   The authorization code should be used only once by the client. If the authorization server detects that it’s been
used more than once, it must revoke all the tokens issued for that particular authorization code.

https://mycallback/?code=9142d4cad58c66d0a5edfad8952192
https://mycallback/

Chapter 7 ■ OAuth 2.0

98

The previous cURL command returns the following response from the authorization server. The token_type
parameter in the response indicates the type of the token. (The section “OAuth 2.0 Token Types” talks more about
token types.) In addition to the access token, the authorization server also returns a refresh token, which is optional.
The refresh token can be used by the client application to obtain a new access token before the refresh token expires.
The expires_in parameter indicates the lifetime of the access token in seconds:
 
{
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
 "access_token":"cac93e1d29e45bf6d84073dbfb460"
} 

Note■■   Each refresh token has its own lifetime. Compared to the lifetime of the access token, the refresh token’s is
longer: the lifetime of an access token is in minutes, whereas the lifetime of a refresh token is in days.

Implicit Grant Type
The Implicit grant type to acquire an access token is mostly used by JavaScript clients running in the web browser (see
Figure 7-2). Unlike the Authorization Code grant type, the Implicit type doesn’t have any equivalent profiles in OAuth
WRAP. The JavaScript client initiates the authorization grant by redirecting the user to the authorization server. The
response_type parameter in the request indicates to the authorization server that the client expects a token, not a
code. The Implicit grant type doesn’t require to authenticate the JavaScript client; it only has to send the client_id
in the request. This is for logging and auditing purposes and also to find out the corresponding redirect_uri. The
redirect_uri in the request is optional; if it’s present, it must match what is provided at the client registration:
 
https://localhost:9443/oauth2/authorize?
 response_type=token&
 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 redirect_uri=https%3A%2F%2Fmycallback
 

Chapter 7 ■ OAuth 2.0

99

This returns the following response. The Implicit grant type sends the access token as a URI fragment and doesn’t
provide any refreshing mechanism:
 
https://mycallback/#access_token=cac93e1d29e45bf6d84073dbfb460&expires_in=3600
 

Unlike the Authorization Code grant type, the Implicit grant type client receives the access token in the grant
request.

Note■■   The authorization server must treat the authorization code, the access token, the refresh token, and the client
secret key all as extremely confidential data. They should be never sent over HTTP—the authorization server must use
TLS. These tokens should be stored securely, possibly by encrypting or hashing them.

Resource Owner

User Credentials

User Agent
(Browser)

Implicit Grant Request

User Credentials

Access Token

Implicit Grant Request

Client
Application

5
1

3

4

2

OAuthorization
Server

Figure 7-2.  Implicit grant type

https://mycallback/#access_token=cac93e1d29e45bf6d84073dbfb460&expires_in=3600

Chapter 7 ■ OAuth 2.0

100

Resource Owner Password Credentials Grant Type
Under the Resource Owner Password Credentials grant type, the resource owner must trust the client application.
This is equivalent to the Username and Password Profile in OAuth WRAP. The resource owner has to give its
credentials directly to the client application (see Figure 7-3).

Resource Owner

User Credentials

1

2

3

Client
Application

OAuthorization
Server

Access Token

Access Token Request

Figure 7-3.  Resource Owner Password Credentials grant type

The following cURL command talks to the token endpoint of the authorization server, passing the resource owner’s
username and the password as parameters. In addition, the client application must prove its identity. The token
endpoint must be secured with HTTP Basic Authentication, and the client application passes its client key and the client
secret in the HTTP Authorization header. The value of the grant_type parameter must be set to password:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;charset=UTF-8" -k
 -d "grant_type=password&
 username=admin&password=admin"
 https://localhost:9443/oauth2/token
 

This returns the following response, which includes an access token along with a refresh token:
 
{
 "token_type":"bearer",
 "expires_in":685,
 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
 "access_token":"cac93e1d29e45bf6d84073dbfb460"
}
 

Chapter 7 ■ OAuth 2.0

101

Note■■   If using the Authorization Code grant type is an option, it should be used over the Resource Owner Password
Credentials grant type. The Resource Owner Password Credentials grant type was introduced to aid migration from HTTP
Basic Authentication and Digest Authentication to OAuth 2.0.

Client Credentials Grant Type
The Client Credentials grant type is equivalent to the Client Account and Password Profile in OAuth WRAP, and to
two-legged OAuth in OAuth 1.0. With this grant type, the client itself becomes the resource owner (see Figure 7-4):
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "grant_type=client_credentials" https://localhost:9443/oauth2/token
 

1

2

Client
Application

OAuthorization
Server

Access Token

Access Token Request

Figure 7-4.  Client Credentials grant type

Table 7-1.  OAuth 2.0 Grant Types vs. OAuth WRAP Profiles

OAuth 2.0 OAuth WRAP

Authorization Code grant type Web App Profile / Rich App Profile

Implicit grant type –

Resource Owner Password Credentials grant type Username and Password Profile

Client Credentials grant type Client Account and Password Profile

This returns the following response, which includes an access token. Unlike the Resource Owner Password
Credentials grant type, the Client Credentials grant type doesn’t return a refresh token:
 
{
 "token_type":"bearer",
 "expires_in":3600,
 "access_token":"4c9a9ae7463ff9bb93ae7f169bd6a"
}
 

Table 7-1 lists out the key differences between OAuth 2.0 and OAuth WRAP.

Chapter 7 ■ OAuth 2.0

102

OAuth 2.0 Token Types
Neither OAuth 1.0 nor WRAP could support custom token types. OAuth 1.0 always used signature-based tokens, and
OAuth WRAP always used bearer tokens over TLS. OAuth 2.0 isn’t coupled into any token type. In OAuth 2.0, you can
introduce your own token type if needed. Regardless of the token type returned in the OAuth token response from the
authorization server, the client must understand it before using it. Based on the token type, the authorization server
can add additional attributes/parameters to the response.

OAuth 2.0 has two main token profiles: OAuth 2.0 Bearer Token Profile, and OAuth 2.0 MAC Token Profile. The
most popular OAuth token profile is Bearer; almost all OAuth 2.0 deployments today are based on the OAuth 2.0
Bearer Token Profile. The next section talks about the Bearer Token Profile in detail, and Chapter 8 discusses the MAC
Token Profile.

OAuth 2.0 Bearer Token Profile
The OAuth 2.0 Bearer Token Profile was influenced by OAuth WRAP, which only supported bearer tokens. As its name
implies, anyone who bears the token can use it—don’t lose it! Bearer tokens must always be used over TLS to avoid
losing them in transit. Once the bearer access token is obtained from the authorization server, the client can use it in
three ways to talk to the resource server. The most popular way is to include it in the HTTP Authorization header:

Note■■   An OAuth 2.0 bearer token is an arbitrary string. An attacker can carry out a brute-force attack to guess the
token. The authorization server must pick the right length and use other possible measures to prevent brute forcing. 

GET /resource HTTP/1.1
Host:resourceserver.com
Authorization:Bearer JGjhgyuyibGGjgjkjdlsjkjdsd
 

It can also be included as a query parameter. This approach is mostly used with the Implicit grant type, when a
JavaScript client gets the access token from the authorization server:
 
GET /resource?access_token=JGjhgyuyibGGjgjkjdlsjkjdsd
Host:resourceserver.com 

Note■■   When the value of the OAuth access token is sent as a query parameter, the name of the parameter must be
access_token. Both Facebook and Google use the correct parameter name, but LinkedIn uses oauth2_access_token
and Salesforce uses oauth_token.

It’s also possible to send the access token as a form-encoded body parameter. An authorization server supporting
the Bearer Token Profile should be able to handle any of these patterns:
 
POST /resource HTTP/1.1
Host:server.example.com
Content-Type:application/x-www-form-urlencoded
 
access_token=JGjhgyuyibGGjgjkjdlsjkjdsd
 

Chapter 7 ■ OAuth 2.0

103

Note■■   The value of the OAuth bearer token is only meaningful to the authorization server. Neither the client nor the
resource server should try to interpret what it says. To make the processing logic efficient, the authorization server may
include some meaningful but non-confidential data in the access token. For example, if the authorization server supports
multiple domains with multi-tenancy, it may include the tenant domain in the access token and then Base64-encode it.

OAuth 2.0 Client Types
OAuth 2.0 identifies two types of clients: confidential clients and public clients. Confidential clients are capable of
protecting their own credentials (the client key and the client secret), whereas public clients can’t. The OAuth 2.0
specification is built around three types of client profiles: web applications, user-agent-based applications, and
native applications. Web applications are considered to be confidential clients, running on a web server: end users
or resource owners access such applications via a web browser. User-agent-based applications are considered to be
public clients: they download the code from a web server and run it on the user agent, such as JavaScript running in the
browser. These clients are incapable of protecting their credentials—the end user can see anything in the JavaScript.
Native applications are also considered as public clients: these clients are under the control of the end user, and any
confidential data stored in them can be extracted. Android and iOS native applications are a couple of examples.

Note■■   All four grant types defined in the OAuth 2.0 core specification require the client to preregister with the
authorization server and in return get a client identifier. Under the Implicit grant type, the client doesn’t get a client
secret.

Table 7-2 lists the key differences between OAuth 1.0 and OAuth 2.0 bearer token profile.

Table 7-2.  OAuth 1.0 vs. OAuth 2.0

OAuth 1.0 OAuth 2.0 Bearer Token Profile

An access-delegation protocol An authorization framework for access delegation

Signature based: HMAC-SHA256/RSA-SHA256 Non-signature-based, Bearer Token Profile

Less extensibility Highly extensible via grant types and token types

Less developer friendly

TLS required only during the initial handshake

Secret key never passed on the wire

More developer friendly

Bearer Token Profile mandates using TLS during the entire flow

Secret key goes on the wire (Bearer Token Profile)

Note■■   OAuth 2.0 introduces a clear separation between the client, the resource owner, the authorization server, and
the resource server. But the core OAuth specification doesn’t talk about how the resource server validates an access
token. Most OAuth implementations do this by talking to a proprietary API exposed by the authorization server. Chapter 9
talks more about this.

Chapter 7 ■ OAuth 2.0

104

SECURING THE CUTE CUPCAKE FACTORY RECIPE API WITH OAUTH 2.0

In this exercise, you see how to secure an API deployed in Apache Tomcat with OAuth 2.0. According to OAuth
terminology, the Recipe API is the resource and Apache Tomcat is the resource server. In addition to the
resource server, you need an authorization server, which issues tokens to client applications. To validate the
issued tokens, which come with the API invocation request, the resource server must call an API exposed by
the authorization server.

Note■■   WSO2 Identity Server is a free, open source identity and entitlement management server released under the
Apache 2.0 license.

Follow these steps:

1.	 Download WSO2 Identity Server 5.0.0 from http://wso2.com/products/identity-server/,
set up the JAVA_HOME environment variable, and start the server from wso2server.sh/
wso2server.bat in WSO2_IS_HOME/bin. If WSO2 Identity Server 5.0.0 isn’t available from the
main download page, you can find it at http://wso2.com/more-downloads/identity-server/.

2.	 Download recipe.war from https://svn.wso2.org/repos/wso2/people/prabath/api-
security/recipe/, and copy it to CATALINA_HOME/webapps.

3.	 Download all the jars at https://svn.wso2.org/repos/wso2/people/prabath/api-
security/oauth-filter/, and copy them to CATALINA_HOME/lib.

4.	 Import WSO2 Identity Server’s certificate authority (CA) certificate to JAVA_HOME/lib/
security/cacerts as a trusted CA. Download Identity Server’s CA certificate from
https://svn.wso2.org/repos/wso2/people/prabath/api-security/wso2is.cert, and
use the following keytool command to import it to the cacerts Java keystore. The default
keystore password for cacerts is changeit:
 
cd JAVA_HOME/lib/security
keytool -import -file wso2is.cert -keystore cacerts -alias wso2is -storepass changeit
 

5.	 Start Apache Tomcat server, and then shut it down. That will make recipe.war explode. Open
CATALINA_HOME/webapps/recipe/WEB-INF/web.xml, and add the following under the root
element. This will engage the OAuth filter with the Recipe API. All requests directed to the Recipe
API are intercepted by the OAuth filter and calls WSO2 Identity Server (OAuth authorization server)
to validate the token. The username/password init-params for OAuthFilter should be changed
accordingly. It should use the credentials of a user from WSO2 Identity Server who has access to
the OAuth token validation service. By default, the credentials are admin/admin. The serverURL
init-param should point to the host/port where WSO2 Identity Server is running:
 
<filter>
 <filter-name>OAuthFilter</filter-name>
 <filter-class>org.wso2.is.oauth.OAuthFilter</filter-class>
 <init-param>
 <param-name>username</param-name>

http://wso2.com/products/identity-server/
http://wso2.com/more-downloads/identity-server/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/recipe/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/recipe/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/oauth-filter/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/oauth-filter/
https://svn.wso2.org/repos/wso2/people/prabath/api-security/wso2is.cert

Chapter 7 ■ OAuth 2.0

105

 <param-value>admin</param-value>
 </init-param>
 <init-param>
 <param-name>password</param-name>
 <param-value>admin</param-value>
 </init-param>
 <init-param>
 <param-name>serverUrl</param-name>
 <param-value>https://localhost:9443/services</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>OAuthFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
 

6.	 That’s all you need to do. Now your API is secured with OAuth. If you invoke the following
cURL command, it will fail with a 401:
 
curl http://localhost:8080/recipe
 

GETTING AN ACCESS TOKEN WITH THE OAUTH 2.0 AUTHORIZATION
CODE GRANT TYPE

In the previous exercise, you deployed the Recipe API in an Apache Tomcat server and secured it with OAuth 2.0.
To access the Recipe API, you need to have a client application. The client application first must be registered at
the OAuth authorization server to get a client key and a client secret. Follow these steps:

1.	 Start WSO2 Identity Server from wso2server.sh/wso2server.bat in WSO2_IS_HOME/bin.

2.	 Go to https://localhost:9443, and log in using admin/admin.

3.	 Go to Main ➤ Identity ➤ Service Providers ➤ Add. Give an appropriate service provider
name, and choose Register.

4.	 Choose Inbound Authentication Configuration ➤ OAuth/OpenID Connect
Configuration ➤ Configure.

5.	 Give an appropriate value for Callback Url. It should point to a URL under your application’s
domain. For example, here you use https://mycallback.

6.	 Make sure all allowed grant types are selected.

7.	 Click Add to create the application, and click Update.

8.	U nder the OAuth/OpenID Connect Configuration of the corresponding service provider, you
can find the client ID and the client secret of the application you just created:
 
Client Id 0rhQErXIX49svVYoXJGt0DWBuFca
Client Secret eYOFkL756W8usQaVNgCNkz9C2D0a
Access Token Url https://localhost:9443/oauth2/token
Authorize Url https://localhost:9443/oauth2/authorize
 

https://mycallback/

Chapter 7 ■ OAuth 2.0

106

Now your client application is registered and you have a client key and a client secret corresponding to it. The
next step is to obtain a code from the OAuth authorization server. Because you aren’t using a web application in
this example, you can simply copy the following URL and paste it in the browser. This request should go to the
Authorize Url of the authorization server. The value of redirect_uri should be the URL-encoded value of the
Callback Url you used at the time of application registration:
 
https://localhost:9443/oauth2/authorize?
 response_type=code&
 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 redirect_uri=https%3A%2F%2Fmycallback
 
You need to authenticate to WSO2 Identity Server and then approve the authorization grant. Then, you’re
redirected to the provided callback URL with the code. Copy the value of the code—you’ll need it in the future:
 
https://mycallback/?code=9142d4cad58c66d0a5edfad8952192
 
Once you have the authorization code, the next step is to exchange it for an access token:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "grant_type=authorization_code&
 code=9142d4cad58c66d0a5edfad8952192&
 redirect_uri=https://mycallback" https://localhost:9443/oauth2/token
 
This returns the following response:
 
{
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
 "access_token":"cac93e1d29e45bf6d84073dbfb460"
}
 
Now you can access the Recipe API with the following cURL command, with the access token obtained in the
previous step:
 
curl –H "Authorization:Bearer cac93e1d29e45bf6d84073dbfb460" http://localhost:8080/recipe
 

Note■■   Accessing a protected API secured with the OAuth 2.0 bearer token profile MUST be over TLS. Some examples
in this book may use HTTP to access protected APIs solely for the demonstration purpose. But this is not recommended in
a production setup. Enabling TLS for APIs deployed in Tomcat is discussed in the section “Enabling TLS in Apache Tomcat”
in Chapter 3.

https://mycallback/?code=9142d4cad58c66d0a5edfad8952192
https://mycallback/

Chapter 7 ■ OAuth 2.0

107

GETTING AN ACCESS TOKEN WITH THE OAUTH 2.0 IMPLICIT
CODE GRANT TYPE

This exercise extends the previous one to show how to obtain an access token from the authorization server
using the Implicit grant type and use it to invoke the Recipe API. By now your client application should be
registered with WSO2 Identity Server (authorization server), and you should have obtained a client key
and a secret.

To get an access token with the Implicit grant type, copy the following URL and paste it in the browser. The value
of the response_type parameter must be set to token:
 
https://localhost:9443/oauth2/authorize?
 response_type=token&
 client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
 redirect_uri=https%3A%2F%2Fmycallback
 
You need to authenticate to WSO2 Identity Server and then approve the authorization grant. Then, you’re
redirected to the provided callback URL with the access token. This comes as a URI fragment that can be
accessed by a JavaScript running in the browser:
 
https://mycallback/#access_token=cac93e1d29e45bf6d84073dbfb460&expires_in=3600
 
Now you can access the Recipe API with the following cURL command, with the access token obtained in the
previous step:
 
curl –H "Authorization:Bearer cac93e1d29e45bf6d84073dbfb460" http://localhost:8080/recipe
 

GETTING AN ACCESS TOKEN WITH THE OAUTH 2.0 RESOURCE OWNER
PASSWORD CREDENTIALS GRANT TYPE

In this exercise, you see how to get an access token with the Resource Owner Password Credentials grant type.
By now you should have registered your client application with WSO2 Identity Server (authorization server), and
you should have obtained a client key and a secret. To get an access token with the Resource Owner Password
Credentials grant type, use the following cURL command. The values of the username and password should be
from a valid user in the user store behind the authorization server:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "grant_type=password&
 username=admin&
 password=admin" https://localhost:9443/oauth2/token
 

https://mycallback/#access_token=cac93e1d29e45bf6d84073dbfb460&expires_in=3600

Chapter 7 ■ OAuth 2.0

108

This returns the following response:
 
{
 "token_type":"bearer",
 "expires_in":685,
 "refresh_token":"22b157546b26c2d6c0165c4ef6b3f736",
 "access_token":"cac93e1d29e45bf6d84073dbfb460"
}
 
Now you can access the Recipe API with the following cURL command, with the access token obtained in the
previous step:
 
curl –H "Authorization:Bearer cac93e1d29e45bf6d84073dbfb460" http://localhost:8080/recipe
 

GETTING AN ACCESS TOKEN WITH THE OAUTH 2.0 CLIENT
CREDENTIALS GRANT TYPE

In this exercise, you see how to get an access token with the Client Credentials grant type. By now you should
have registered your client application with WSO2 Identity Server (authorization server), and you should have
obtained a client key and a secret. To get an access token with the Client Credentials grant type, use the following
cURL command:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "grant_type=client_credentials" https://localhost:9443/oauth2/token
 
This returns the following response:
 
{
 "token_type":"bearer",
 "expires_in":3600,
 "access_token":"4c9a9ae7463ff9bb93ae7f169bd6a"
}
 
Now you can access the Recipe API with the following cURL command, with the access token obtained in the
previous step:
 
curl –H "Authorization:Bearer 4c9a9ae7463ff9bb93ae7f169bd6a" http://localhost:8080/recipe
 

Chapter 7 ■ OAuth 2.0

109

OAUTH 2.0 REFRESH TOKENS

Although it’s not the case with the Implicit grant type and the Client Credentials grant type, with the other two
grant types the OAuth access token comes with a refresh token. This refresh token can be used to extend the
validity of the access token without the involvement of the resource owner. The following cURL command shows
how to get a new access token from the refresh token:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "grant_type=refresh_token&
 refresh_token=22b157546b26c2d6c0165c4ef6b3f736"
 https://localhost:9443/oauth2/token
 
This returns the following response:
 
{
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"9ecc381836fa5e3baf5a9e86081",
 "access_token":"b574d1ba554c26148f5fca3cceb05e2"
} 

Note■■   The refresh token has a much longer lifetime than the access token. If the lifetime of the refresh token expires,
then the client must initiate the OAuth token flow from the start and get a new access token and refresh token. The
authorization server also has the option to return a new refresh token each time the client refreshes the access token.
In such cases, the client has to discard the previously obtained refresh token and begin using the new one.

OAuth 2.0 and Facebook
Facebook opened its login functionality to the rest of the Internet in December 2008. It was the time of OAuth 1.0,
but Facebook was reluctant to follow that path. Facebook came up with its own protocol called Facebook Connect to
give third parties access to Facebook users’ profiles. Facebook Connect was first announced during the F8 conference
in July 2008. TechCrunch, CNN, Govit, Howcast, and vLane took part in the initial launch of Facebook Connect by
implementing login with Facebook.

Note■■   The following is from the official announcement of Facebook Connect (www.facebook.com/notes/facebook/
platform-one-yearish-later/24577977130): “Facebook Connect is a new way to use applications, on the open web and
not just on Facebook. Soon, you'll be able to use your Facebook account to login and connect on websites throughout the
web. Imagine never filling out another profile at a new site, or having to find your friends all over again. Facebook Connect
will help make this a reality and allow you to use Facebook to share information from all over the web with your friends.”

http://www.facebook.com/notes/facebook/platform-one-yearish-later/24577977130
http://www.facebook.com/notes/facebook/platform-one-yearish-later/24577977130

Chapter 7 ■ OAuth 2.0

110

A few reasons kept Facebook from using OAuth 1.0. Performance was a key concern. OAuth 1.0 took four HTTP
requests to create a user login session and make an API call, whereas Facebook Connect took only two.

Note■■   In OAuth 1.0, the first HTTP request is made to acquire a request token from the authorization server. The
second request is to get it authorized by the resource owner. The third is to exchange the authorized request token to an
access token. The fourth is to make an API call using the access token.

In November 2009, Facebook joined the Open Web Foundation with Microsoft, Google, Yahoo!, and many others
with a commitment to support open standards for web authentication. Keeping this promise, in December 2009,
Facebook added OAuth WRAP support to FriendFeed, which it had acquired a few months earlier. In May 2010,
Facebook brought OAuth 2.0 into the mainstream authentication flow. By October 2010, all Facebook applications
were expected to migrate from the older Facebook Connect to OAuth 2.0. Of the four core grant types supported by
OAuth 2.0, Facebook initially added support for the Authorization Code grant type (also known as server-side) and the
Implicit grant type (also known as client-side).

Note■■   The blog post by David Recordon that introduced Facebook FriendFeed support for OAuth WRAP is at
https://developers.facebook.com/blog/post/350/. The blog post “Facebook Developer Roadmap Update:
Moving to OAuth 2.0 + HTTPS,” by Naitik Shah, is at https://developers.facebook.com/blog/post/497/.

Facebook supports three types of access tokens: user access tokens, app access tokens, and page access tokens.
The user access token is the most commonly used type, when an application wants to access a Facebook API on
behalf of another user. The application has to use either the Authorization Code grant type or the Implicit grant type
to get the access token. The application owner uses the app access token to update application settings through the
Facebook API. App access tokens are generated using the OAuth Client Credentials grant type. The page access token
is very similar to the user access token, except it has an additional manage_pages permission. Once you have the user
access token, it can be exchanged for a page access token via the Facebook Graph API.

REGISTERING A CLIENT APPLICATION WITH FACEBOOK

In this exercise, you see how to register an OAuth client application with Facebook:

1.	 Log in to Facebook, and go to https://developers.facebook.com/.

2.	 Click Apps ➤ Create New, fill in the required details, and complete the app-creation process.

3.	 The app you just created is accessible through the Apps menu at any time. Click the name
of your app, and you see that an app ID and an app secret have been generated for your
application. The app ID is the OAuth client key, and the app key is the OAuth client secret.
Copy the values of App ID and App Key—these are used in the following exercises.

4.	 Click Settings ➤ Advanced. Make sure Client OAuth Login is set to Yes.

Note■■   Only the owner can use an application registered in Facebook until it’s been promoted to the general public. To
promote the application, you need to submit it for review via the Status & Review menu item under the application you created.

https://developers.facebook.com/blog/post/350/
https://developers.facebook.com/blog/post/497/
https://developers.facebook.com/

Chapter 7 ■ OAuth 2.0

111

GETTING AN OAUTH APP ACCESS TOKEN FROM FACEBOOK

In this exercise, you see how to get an app access token from Facebook. This assumes you’ve already registered
your client application with Facebook and are in possession of an app ID and an app key.

The following cURL command shows how to get an app access token from Facebook with the Client Credentials
grant type:
 
curl -v -X POST --basic
 -u 588997174524690:d5cc4d8e01c9bd7ac14b4d5e91006b5b
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "client_id=588997174524690&
 grant_type=client_credentials"
 https://graph.facebook.com/oauth/access_token
 
This returns the following response. The returned access token can be used to manage your application:
 
access_token=588997174524690|jYDqtJ-F4M_kVvYCjeW5fwtvmL8
 
The following cURL command talks to the Facebook Graph API with the app access token to get more details
about the application. 588997174524690 is the app ID, in the URL:
 
curl https://graph.facebook.com/588997174524690?
 access_token="588997174524690|jYDqtJ-F4M_kVvYCjeW5fwtvmL8"
 
The following is the JSON response:
 
{
 "id":"588997174524690",
 "name":"apress-security-app",
 "category":"Education",
 "link":"http://www.facebook.com/apps/application.php?id=588997174524690",
 "icon_url":"http://static.ak.fbcdn.net/rsrc.php/v2/yT/r/4QVMqOjUhcd.gif",
 "logo_url":"http://photos-c.ak.fbcdn.net/hphotos-ak-prn1/
 t39.2081-0/p75x75/
 851578_455087414601994_1601110696_n.png",
 "daily_active_users":"1",
 "weekly_active_users":"1",
 "monthly_active_users":"1",
 "daily_active_users_rank":"453809",
 "monthly_active_users_rank":"1615461"
}
 

https://graph.facebook.com/oauth/access_token
https://graph.facebook.com/588997174524690
http://www.facebook.com/apps/application.php?id=588997174524690
http://static.ak.fbcdn.net/rsrc.php/v2/yT/r/4QVMqOjUhcd.gif
http://photos-c.ak.fbcdn.net/hphotos-ak-prn1/

Chapter 7 ■ OAuth 2.0

112

GETTING AN OAUTH USER ACCESS TOKEN FROM FACEBOOK

In this exercise, you see how to get a user access token from Facebook (see Figure 7-5). This assumes you’ve
already registered your client application with Facebook and are in possession of an app ID and an app key. Copy
the following URL, replace the value of client_id with the one corresponding to your application, and paste it in
a browser. Prior to that, make sure you’ve set https://www.facebook.com/connect/login_success.html as
the redirect URI of your registered client application:

User’s Browser
Your App’s

Server-Side Code
Facebook API

REDIRECT

GET

GET GET

REDIRECT

RESPONSE

Click the ‘LOGIN
with Facebook’

button

redirect_uri with
code parameter

access_token

/oauth/authorize

User accepts dialog and is sent
to the redirect_uri with code

parameter included

Sent to Login
Dialog URL

Figure 7-5.  Facebook flow to obtain a user access token

Note■■   To set a redirect URI for your client application, log in to Facebook and go to https://developers.facebook.com/.
From the Apps menu, click the name of your app, and choose Settings ➤ Advanced. Enter https://www.facebook.com/
connect/login_success.html in the Valid OAuth Redirect URIs text box, and click Save Changes. 

https://www.facebook.com/connect/login_success.html
https://developers.facebook.com/
https://www.facebook.com/connect/login_success.html
https://www.facebook.com/connect/login_success.html

Chapter 7 ■ OAuth 2.0

113

https://www.facebook.com/dialog/oauth?
 client_id=588997174524690&
 redirect_uri=https://www.facebook.com/connect/login_success.html&
 scope=publish_actions 

Note■■   Even though response_type is a required parameter in OAuth 2.0 RFC, Facebook doesn’t mandate it.
It assumes the value of response_type is code, although in case it’s not present. The value of scope should be a valid
permission defined in the Facebook Graph API. More details about Facebook permissions are at
https://developers.facebook.com/docs/facebook-login/permissions.

This returns the following response. Make sure you quickly copy the value from the browser address bar—otherwise
it could disappear. In an ideal scenario, you need a redirect URI that is under your control; the authorization code is
returned there. In the authorization grant request, you set the value of scope to publish_actions. That means your
client application is able to post messages to the user’s Facebook wall:
 
https://www.facebook.com/connect/login_success.html?
 code=AQDQoRlLf5xHIMA--vR1CsMeu-H0NBPyfM0X2JTVXN_
 0qH8z1NkQQRu7r19_vYfSu-L6WzA71ffr75LoUqlLT_wLy
 sHGqjcoJZpryH3geF7_c0vxWjTNTYwvsYTpErbK2P1nw5
 qRSeo8qJnLO57MahNgsTb8MtTZB4l7tLB4IBWTccJG8w
 vsnGTzx4vQ_Sp6iWOafq2O7dLMwzGyKZkD9HMQ8sW4
 WSqnXm95QAsZRZeWmRp7MmtPGReltHI075f4KDoALO
 R81Jx7qfruNeF4wizh4OFc-SoXpMASxagVRQUBYdRwSn
 rQVzsDON1G4_1qHZE#_=_
 
Copy the value of code from this response, and add it to the access-token request. Copy the following URL;
replace the values of the appropriate parameters (client_id, client_secret, and code), and paste it in the
browser. Make sure the value of redirect_uri is same as in the previous authorization grant request. This
returns the access token:
 
https://graph.facebook.com/oauth/access_token?
 client_id=588997174524690&
 redirect_uri=https://www.facebook.com/connect/login_success.html&
 client_secret=d5cc4d8e01c9bd7ac14b4d5e91006b5b&
 code=AQDQoRlLf5xHIMA--vR1CsMeu-H0NBPyfM0X2JTVXN_
 0qH8z1NkQQRu7r19_vYfSu-L6WzA71ffr75LoUqlLT_wLy
 sHGqjcoJZpryH3geF7_c0vxWjTNTYwvsYTpErbK2P1nw5
 qRSeo8qJnLO57MahNgsTb8MtTZB4l7tLB4IBWTccJG8w
 vsnGTzx4vQ_Sp6iWOafq2O7dLMwzGyKZkD9HMQ8sW4
 WSqnXm95QAsZRZeWmRp7MmtPGReltHI075f4KDoALO
 R81Jx7qfruNeF4wizh4OFc-SoXpMASxagVRQUBYdRwSn
 rQVzsDON1G4_1qHZE#_=_
 

https://www.facebook.com/dialog/oauth
https://www.facebook.com/connect/login_success.html
https://developers.facebook.com/docs/facebook-login/permissions
https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/oauth/access_token
https://www.facebook.com/connect/login_success.html

Chapter 7 ■ OAuth 2.0

114

Copy the value of access_token from the following response:
 
access_token=CAAIXsJdcexIBANoR7sRFbQMAlBTuVtZATUdKypc5m6
 dURLqT0irQ2hQ7oXcOqxeXzec2ylP0UHWnSFw6fZAcTG
 CJgzhNxZBtHr7q0jZCZBwGL3gzfPrUSUGHtBntNtIzDWd
 8KeYZC3WYKcmljxeTNRZAaa9ZCzHZC7oVFWWckra7z
 JCbplTHG9ElW&
expires=5179012
 
The following cURL command posts a message to the user’s Facebook wall, with the previous access token:
 
curl -v -X POST -d "message=test" https://graph.facebook.com/me/feed?
 access_token="CAAIXsJdcexIBANoR7sRFbQMAlBT
 uVtZATUdKypc5m6dURLqT0irQ2hQ7oXcOqxeXzec2ylP0UH
 WnSFw6fZAcTGCJgzhNxZBtHr7q0jZCZBwGL3gzfPrUSUGHt
 BntNtIzDWd8KeYZC3WYKcmljxeTNRZAaa9ZCzHZC7oVFWW
 ckra7zJCbplTHG9ElW"
 
If the message posted successfully, the Facebook Graph API returns the following response:
 
{"id":"787236966_10152305588201967"} 

Note■■   A complete reference for Facebook Graph API is available at
https://developers.facebook.com/docs/graph-api/reference/.

GETTING AN OAUTH PAGE ACCESS TOKEN FROM FACEBOOK

In this exercise, you see how to get a page access token from Facebook. This assumes you’ve already registered
your client application with Facebook and are in possession of an app ID and an app key. Copy the following URL,
replacing the value of client_id with the one corresponding to your application, and paste it in a browser. Prior
to that, make sure you’ve set https://www.facebook.com/connect/login_success.html as the redirect URI of
your registered client application. The page access token is very similar to the user access token, except it needs
to have the additional manage_pages permission:
 
https://www.facebook.com/dialog/oauth?
 client_id=588997174524690&
 redirect_uri=https://www.facebook.com/connect/login_success.html&
 scope=manage_pages
 
This returns the following response. Make sure you quickly copy the value from the browser address
bar—otherwise it could disappear. In an ideal scenario, you need a redirect URI that is under your control;
the authorization code is returned there. In the authorization grant request, you set the value of scope to

https://graph.facebook.com/me/feed
https://developers.facebook.com/docs/graph-api/reference/
https://www.facebook.com/connect/login_success.html
https://www.facebook.com/dialog/oauth
https://www.facebook.com/connect/login_success.html

Chapter 7 ■ OAuth 2.0

115

manage_permission. That means your client application is able to exchange the access token for a page
access token later:
 
https://www.facebook.com/connect/login_success.html?
 code=AQAkuqOXstUuEmCgMc0z9zBCUBUquTareD3Ezfx
 v0ydJd8EqglHeLYuMvg2-lNW0Tb78JRvHFHH-XjWo
 Sj3PvIaTyMDk1OiLGvgCpA89NOt3O_QQaC1TMGib
 bY6v4CCWVgh2rsoEqXTOtwNFlR4GhUPFzzivYVIah
 ZF6wUpnm5jwX-OyxD4WFyGoNQ6vltoEkUWBl3Pdfr
 S1ZQaa4Xprr_lnfHGgMlOKTW-ECPNKA6fUeG-GmK
 ylqCsmbp_SOWDatpmhwASIDER-NXv2xLUOrxEN6n
 uRR5zGP_-2-V5PfKYbDMIzKzcRaHjjTMRSGl0f8VM#_=_
 
Copy the value of code from this response, and add it to the access token request. Copy the following URL;
replacing the values of the appropriate parameters (client_id, client_secret, and code), and paste it in the
browser. Make sure the value of redirect_uri is same as in the authorization grant request. This returns the
access token:
 
https://graph.facebook.com/oauth/access_token?
 client_id=588997174524690&
 redirect_uri=https://www.facebook.com/connect/login_success.html&
 client_secret=d5cc4d8e01c9bd7ac14b4d5e91006b5b&
 code=AQAkuqOXstUuEmCgMc0z9zBCUBUquTareD3Ezfx
 v0ydJd8EqglHeLYuMvg2-lNW0Tb78JRvHFHH-XjWo
 Sj3PvIaTyMDk1OiLGvgCpA89NOt3O_QQaC1TMGib
 bY6v4CCWVgh2rsoEqXTOtwNFlR4GhUPFzzivYVIah
 ZF6wUpnm5jwX-OyxD4WFyGoNQ6vltoEkUWBl3Pdfr
 S1ZQaa4Xprr_lnfHGgMlOKTW-ECPNKA6fUeG-GmK
 ylqCsmbp_SOWDatpmhwASIDER-NXv2xLUOrxEN6n
 uRR5zGP_-2-V5PfKYbDMIzKzcRaHjjTMRSGl0f8VM#_=_
 
Copy the value of access_token from the following response:
 
access_token=CAAIXsJdcexIBAGpiefGkNX9FfdCLnxExEwvZBIk5WiQZAIavHL
 mD4gU9pjT3O5Wr40eT586xt0ogg9R9xKXsTvZB4CvzyZAiJTG2
 GGsHQuTxZBVoaAiPhMgBL0P58Kg62ZCH55wU5bzVQ8xHxsb
 4xc1egZA5TkGihshgiiJVIwZBDAoihphaaKAchgrq4f9PYcMZD&
expires=5177015
 
The following cURL command exchanges the user access token for a set of page access tokens:
 
curl -v https://graph.facebook.com/me/accounts?
 access_token="CAAIXsJdcexIBAGpiefGkNX9FfdCLnxExEwvZBIk5WiQZAIavHL
 mD4gU9pjT3O5Wr40eT586xt0ogg9R9xKXsTvZB4CvzyZAiJTG2
 GGsHQuTxZBVoaAiPhMgBL0P58Kg62ZCH55wU5bzVQ8xHxsb
 4xc1egZA5TkGihshgiiJVIwZBDAoihphaaKAchgrq4f9PYcMZD"
 

https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/oauth/access_token
https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/me/accounts

Chapter 7 ■ OAuth 2.0

116

This returns all the pages the user has access to, with the corresponding page-access tokens:
 
{
"data":[
 {
 "category":"Community",
 "name":"JAVA Colombo",
 "access_token":"CAAIXsJdcexIBACYQEcdw4nOyTlQXqwxHaTm
 Fsx2OKAiTMvg7N5CtZBUVLwZAm3WKKVg09e
 9qTYB2xMe4ZBiB2QDVZBfvnDOZBhuR0v2UNL
 ffxF8SxDJ5KHZAid9vTzMxFAGujA9YZC1O6Qgp
 pTSdZBbvyCfBHw4jeldZAICJru5SOFk4Dk2qzRAHc",
 "perms":["ADMINISTER","EDIT_PROFILE",
 "CREATE_CONTENT","MODERATE_CONTENT",
 "CREATE_ADS","BASIC_ADMIN"],
 "id":"348163825217082"
 }
]
}
 
The following cURL command posts a message to the Java Colombo page with the corresponding access token:
 
curl -v -X POST -d "message=test"
 https://graph.facebook.com/348163825217082/feed?
 access_token="CAAIXsJdcexIBACYQEcdw4nOyTlQXqwxHaTmFsx2OKAiT
 Mvg7N5CtZBUVLwZAm3WKKVg09e9qTYB2xMe4ZBiB2QD
 VZBfvnDOZBhuR0v2UNLffxF8SxDJ5KHZAid9vTzMxFAGujA
 9YZC1O6QgppTSdZBbvyCfBHw4jeldZAICJru5SOFk4Dk2qzRAHc"
 

OAuth 2.0 and LinkedIn
LinkedIn added OAuth 2.0 support in February 2013. Prior to that, LinkedIn APIs were secured with OAuth 1.0. Like
many others that migrated from OAuth 1.0 to OAuth 2.0, LinkedIn found it much easier and simpler to implement
than OAuth 1.0. But it continues to support both OAuth 1.0 and 2.0.

Note■■   The forum post by Kamyar Mohager that introduced OAuth 2.0 support for LinkedIn is available at
https://developer.linkedin.com/forum/authentication-oauth-20.

https://graph.facebook.com/348163825217082/feed
https://developer.linkedin.com/forum/authentication-oauth-20

Chapter 7 ■ OAuth 2.0

117

REGISTERING A CLIENT APPLICATION WITH LINKEDIN

In this exercise, you see how to register an OAuth client application with LinkedIn:

1.	 Go to https://www.linkedin.com/secure/developer.

2.	 Click Add New Application, complete the registration form, click Add Application, and click Done.
Keep r_basicProfile as the default scope. When you set a value for OAuth 2.0 Redirect URLs,
make sure it ends with a top-level domain name (such as https://mycallback.com).

3.	 Go to https://www.linkedin.com/secure/developer, and click the client application you
just created.

4.	 In the OAuth Keys section, the page displays four values: API Key, Secret Key, OAuth User
Token, and OAuth User Secret. Copy the values and keep them for future use.

ACCESSING LINKEDIN APIS WITH AN OAUTH CLIENT

In this exercise, you see how to acquire an access token from LinkedIn and use it to access LinkedIn APIs. Copy
the following URL, and paste it in the browser. Replace the values of client_id and redirect_uri appropriately.
The value of client_id is the API key from the previous exercise. Here you set scope to r_fullprofile:
 
https://www.linkedin.com/uas/oauth2/authorization?
 response_type=code&
 client_id=75dq25a43vewbx&
 scope=r_fullprofile&
 redirect_uri=https://mycallback.com&
 state=mystate 

Note■■   According to the OAuth 2.0 RFC, state and redirect_uri aren’t mandatory parameters in the authorization
grant request, but LinkedIn has made them mandatory. Whatever value you set in state is returned to the redirect_uri
with the authorization code. Even though state isn’t a mandatory parameter, the OAuth specification recommends using
it as a protective measure against a cross-site request forgery (CSRF).

This returns the authorization code to the redirect_uri. Copy the value of the code parameter:
 
https://mycallback.com/?
 code=AQTe0Q7sM1BdnRFFISpjTzeYBJ76nEu9xB0--
 WQeZ5c01JFRoFfDY752cxBcjg6Kui33x8wxEJnRUtnYBROX
 XwqlqXdN3FhgRHqHJaj5JPKnxmrRno4&
 state=mystate 

Note■■   The authorization code generated here has a very short lifetime—around 20 seconds. You need to be very
quick when you proceed to the next step. If you aren’t, you’ll see the error “AppId or redirect uri does not match
authorization code or authorization code expired.”

https://www.linkedin.com/secure/developer
https://mycallback.com/
https://www.linkedin.com/secure/developer
https://www.linkedin.com/uas/oauth2/authorization?
https://mycallback.com&state=mystate
https://mycallback.com&state=mystate
https://mycallback.com/

Chapter 7 ■ OAuth 2.0

118

Once you have the authorization code, you need to exchange it for an access token. Run the following cURL
command with appropriate values for code, redirect_uri, client_id, and client_secret. The value of
redirect_uri should match the value used in the previous step:
 
curl -v -X POST -d "grant_type=authorization_code&
 code=AQT-5KdfZO-bIbaflEOgXolOvRlOiVLmbYsB483
 UZLSjnxDQnNDhw-8O6mKZmPIm24yR3-x4YNK
 MAxK-8dBU4SELcefot0cpWBThkDsiaRW0Ru8-Dqk&
 redirect_uri=https://mycallback.com&
 client_id=75dq25a43vewbx&
 client_secret=nEnFqKjB4aMYh9fV"
 https://www.linkedin.com/uas/oauth2/accessToken
 
This returns an access token, which has a lifetime of 20 days:
 
{
 "expires_in":5183999,
 "access_token":"AQVKwPCyJoTDl9CZl5ID9S9hig9qd0PYJdAvks
 6oyLeBp9J59lxhyQrXcHzJ_VrJ6a-FL-1diqHs_MK
 l_kHTKOslCXXk7cnjj1pnFM8-oZeI3TI33HMsUrk
 WZkkC3vAnavvJHJUMZIlIWX3eWcOytJ6SMNH4
 3iPKetX0Er7PJwVQPy6UNiA"
}
 
Once you have the access token, you can invoke LinkedIn APIs. The following API call with this access token gets
the user’s basic profile information:
 
curl https://api.linkedin.com/v1/people/~?
 oauth2_access_token=AQVKwPCyJoTDl9CZl5ID9S9hig9qd0P
 YJdAvks6oyLeBp9J59lxhyQrXcHzJ_VrJ
 6a-FL-1diqHs_MKl_kHTKOslCXXk7cnjj1
 pnFM8-oZeI3TI33HMsUrkWZkkC3vAnav
 vJHJUMZIlIWX3eWcOytJ6SMNH43iPKet
 X0Er7PJwVQPy6UNiA 

Note■■   According to the OAuth 2.0 Bearer Token Profile, when accessing a resource protected with OAuth 2.0, the bearer
token can go in the HTTP Authorization header or be a form-encoded body parameter or a query parameter. If it’s a
query parameter, its value must be access_token. But here, LinkedIn deviates from the OAuth 2.0 Bearer Token Profile.

The response is returned as an XML payload:
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<person>
 <first-name>Prabath</first-name>
 <last-name>Siriwardena</last-name>
 <headline>Director of Security Architecture at WSO2</headline>
 <site-standard-profile-request>

https://mycallback.com/
https://www.linkedin.com/uas/oauth2/accessToken
https://api.linkedin.com/v1/people/

Chapter 7 ■ OAuth 2.0

119

 <url>http://www.linkedin.com/profile/view?id=18817210&
 authType=name&
 authToken=Zd8V&
 trk=api*a3681071*s3751911*</url>
 </site-standard-profile-request>
</person>
 

OAuth 2.0 and Salesforce
Salesforce introduced OAuth 2.0 support with its winter 2011 platform release. Currently it supports the OAuth 2.0
Authorization Code grant type, Implicit grant type, and Resource Owner Password Credentials grant type.

Note■■   The announcement of Salesforce support for OAuth 2.0 is available at:
https://developer.salesforce.com/releases/release/related/OAuth+2+Support.

REGISTERING A CLIENT APPLICATION WITH SALESFORCE

In this exercise, you see how to set up a Salesforce account and register a client application to consume
Salesforce APIs secured with OAuth 2.0:

1.	 Create a Salesforce account if you don’t have one. You can create a free developer account at
http://developer.force.com.

2.	 After you log in to your Salesforce developer account, you need to create an application to
represent the application you’re going to develop to consume Salesforce APIs. To do so, click
Setup in the drop-down menu under your Salesforce logged-in name. Under App Setup, click
Create and then Apps. Under Connected Apps, click New. Fill in the required details, and then
select Enable OAuth Settings.

3.	 Type an HTTPS URL as the Callback URL. For the moment, this can be anything—even
something that doesn’t exist will work. In this example, you aren’t using it; this is needed
only if you try to authenticate via a browser. Also select Full Access as the OAuth scope. Then
save the changes. You see the OAuth consumer key and consumer secret generated for your
application. Copy them for future use.

4.	 Salesforce enforces more security controls over API access. To access an API using the previous
keys, you need to whitelist the IP addresses where you’re going to run your application. This is
extremely useful in cases where you need to make sure the APIs are accessed only from your
corporate domain/network. Then again, keep in mind that IP addresses can be spoofed.

5.	 If you want your Salesforce APIs to be accessible from anywhere, you need to create a
security token. To do so, under My Settings/Personal/Reset My Security Token, click Reset
Security Token. You receive the security token to your registered e-mail account. Keep it;
you’ll need it in future steps.

http://www.linkedin.com/profile/view?id=18817210&
https://developer.salesforce.com/releases/release/related/OAuth+2+Support
http://developer.force.com/

Chapter 7 ■ OAuth 2.0

120

GETTING AN ACCESS TOKEN FROM THE SALESFORCE WEB SERVER
AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Salesforce using the OAuth 2.0 Authorization Code
grant type, also known as the web server authentication flow. This assumes you’ve already registered your OAuth
application with Salesforce and have the corresponding consumer key and consumer secret. Copy the following
URL, replacing the values of client_id and redirect_uri appropriately, and paste it in the browser:
 
https://login.salesforce.com/services/oauth2/authorize?
 response_type=code&
 �client_id=3MVG9Y6d_Btp4xp5jz7MvysvlXtY44T2PFwadEeJT
 B6EC1wy0uakCU3rNvRx7vNVNbT40veMfjVDoz569_nlK&
 �redirect_uri=https://mycallback.info&

state=mystate
 
This returns the authorization code to the redirect_uri, with the provided state value:
 
https://mycallback.info/?
 code=aPrxaSyVmC8fBbe0jjmyHoNhPTKehpnyzQU8WUGyIS.14C7CxLh7
 l0rAh3shDDOLHyC9om_P6w%3D%3D&
 state=mystate
 
Once you have the authorization code, you need to exchange it for an access token. Run the following cURL
command with the appropriate values for code, redirect_uri, client_id, and client_secret. The value of
redirect_uri should match the value used in the previous step:
 
curl -v -X POST -d "grant_type=authorization_code&
 code=aPrxaSyVmC8fBbe0jjmyHoNhPTKehpnyzQU8WUGyIS.
 14C7CxLh7l0rAh3shDDOLHyC9om_P6w%3D%3D&
 client_id=3MVG9Y6d_Btp4xp5jz7MvysvlXtY44T2PFwadEeJTB6
 EC1wy0uakCU3rNvRx7vNVNbT40veMfjVDoz569_nlK&
 client_secret=3623940361107861841&
 redirect_uri=https://mycallback.info"
 https://login.salesforce.com/services/oauth2/token
 
This returns the access token with an URI for the authenticated user (represented by the id attribute):
 
{
 "id":"https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4",
 "issued_at":"1395343085296",
 "scope":"id",
 "instance_url":"https://ap1.salesforce.com",
 "signature":"roZJ1pUyAJfOhS4TeJYpq1yKKapptHpilDeSrRED9AE=",
 "access_token":"00D90000000m0Zi!ARsAQJtHnsDU.hiMpa0srkDhiDR0jdZMj1P
 _J6qVJZ_OGYRzxzxuP4ppHzDNhQz8vK2RCRhFi4IAdb1ouSrZc
 EH_jbzM21K3"
}
 

https://login.salesforce.com/services/oauth2/authorize
https://mycallback.info&state=mystate
https://mycallback.info&state=mystate
https://mycallback.info/
https://mycallback.info/
https://login.salesforce.com/services/oauth2/token
https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4
https://ap1.salesforce.com/

Chapter 7 ■ OAuth 2.0

121

To get the user details, you need to talk to the specified URI, corresponding to the authenticated user (from the
previous response), with the access token:
 
curl https://ap1.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4?
 oauth_token='00D90000000m0Zi!ARsAQH9G7bNVqya4A5Qsn3Rziq
 Aybt.xfOoDJrHr_28M6G3RHV6mcVi_OT367AjorudSe_
 YkSeVsycg0yDQNH_7djHaxeNOk' 

Note■■   According to the OAuth 2.0 Bearer Token Profile, when accessing a resource protected with OAuth 2.0, the bearer
token can go in the HTTP Authorization header or be a form-encoded body parameter or a query parameter. If it’s a query
parameter, its value must be access_token. But here, Salesforce deviates from the OAuth 2.0 Bearer Token Profile.

This returns the following JSON response:
 
{
 "id":"https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4",
 "asserted_user":true,
 "user_id":"00590000001QHFEAA4",
 "organization_id":"00D90000000m0ZiEAI",
 "username":"prabath@wso2.com",
 "nick_name":"prabath1.3686094247092776E12",
 "display_name":"Prabath Siriwardena",
 "email":"prabath@wso2.com",
 "first_name":"Prabath",
 "last_name":"Siriwardena",
 "status":{
 "created_date":null,
 "body":null
 },
 "photos":{
 "picture":"https://c.ap1.content.force.com/profilephoto/005/F",
 "thumbnail":"https://c.ap1.content.force.com/profilephoto/005/T"
 },
 "urls":{
 "enterprise":"https://ap1.salesforce.com/services/Soap/c/{version}/00D90000000m0Zi",
 "metadata":"https://ap1.salesforce.com/services/Soap/m/{version}/00D90000000m0Zi",
 "partner":"https://ap1.salesforce.com/services/Soap/u/{version}/00D90000000m0Zi",
 "rest":"https://ap1.salesforce.com/services/data/v{version}/",
 "sobjects":"https://ap1.salesforce.com/services/data/v{version}/sobjects/",
 "search":"https://ap1.salesforce.com/services/data/v{version}/search/",
 "query":"https://ap1.salesforce.com/services/data/v{version}/query/",
 "recent":"https://ap1.salesforce.com/services/data/v{version}/recent/",
 "profile":"https://ap1.salesforce.com/00590000001QHFEAA4",
 "feeds":"https://ap1.salesforce.com/services/data/v{version}/chatter/feeds",
 "groups":"https://ap1.salesforce.com/services/data/v{version}/chatter/groups",
 "users":"https://ap1.salesforce.com/services/data/v{version}/chatter/users",
 "feed_items":"https://ap1.salesforce.com/services/data/v{version}/chatter/feed-items",
 "custom_domain":"https://wso2-dev-ed.my.salesforce.com"
 },

https://ap1.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4
https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4
https://c.ap1.content.force.com/profilephoto/005/F
https://c.ap1.content.force.com/profilephoto/005/T
https://ap1.salesforce.com/services/Soap/c/
https://ap1.salesforce.com/services/Soap/m/
https://ap1.salesforce.com/services/Soap/u/
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/00590000001QHFEAA4
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://ap1.salesforce.com/services/data/v
https://wso2-dev-ed.my.salesforce.com/

Chapter 7 ■ OAuth 2.0

122

 "active":true,
 "user_type":"STANDARD",
 "language":"en_US",
 "locale":"en_US",
 "utcOffset":-28800000,
 "last_modified_date":"2013-08-20T02:15:22.000+0000"
}
 

GETTING AN ACCESS TOKEN FROM THE SALESFORCE USER AGENT
AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Salesforce using the OAuth 2.0 Implicit grant type, also
known as the user agent authentication flow. This assumes you’ve already registered your OAuth application with
Salesforce and have the corresponding consumer key and consumer secret. Copy the following URL, replacing the
values of client_id and redirect_uri appropriately, and paste it in the browser. The value of response_type
here is set to token:
 
https://login.salesforce.com/services/oauth2/authorize?
 response_type=token&
 client_id=3MVG9Y6d_Btp4xp5jz7MvysvlXtY44T2PFwadEeJTB6
 EC1wy0uakCU3rNvRx7vNVNbT40veMfjVDoz569_nlK&
 redirect_uri=https://mycallback.info&
 state=mystate
 
This returns the access token to the redirect_uri, with the provided state value:
 
https://mycallback.info/#
 access_token=00D90000000m0Zi%21ARsAQPbh5eOqaGnm8X
 PUkb1H1sKvEiNqYxX6fgVi4Iray_tF5.gb.nxYJNItT
 MM7GD8Zam22TN7YyAwLIUadrjeuS24R5VKY&
 instance_url=https%3A%2F%2Fap1.salesforce.com&
 id=https%3A%2F%2Flogin.salesforce.com%2Fid%2F00D90000000m0ZiEAI%2F
 00590000001QHFEAA4&
 issued_at=1395347773975&
 signature=X26nqmRmKMoml6OdsCdtrqySt0tD4qn6H96v%2BFq3Qy0%3D&
 state=mystate&scope=id 

Note■■   The access token response from Salesforce includes a set of Salesforce-specific parameters. The value of
signature is the Base64 value of HMAC-SHA256(id+issued_at), signed with the client secret.

To get the user details, you need to talk to the specified URI, corresponding to the authenticated user (from the
previous response in the parameter id), with the access token:
 
curl https://ap1.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4?
 oauth_token='00D9000000NqYxX6fgVi4Iray_tF5.gb.nxYJNItTMM7GD8Zam
 22TN7YyAwLIUadrjeuS24R5VKY'
 

https://login.salesforce.com/services/oauth2/authorize
https://mycallback.info/
https://mycallback.info/
https://ap1.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4

Chapter 7 ■ OAuth 2.0

123

GETTING AN ACCESS TOKEN FROM THE SALESFORCE
USERNAME-PASSWORD AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Salesforce using the OAuth 2.0 Resource Owner
Password Credentials grant type, also known as the username-password authentication flow. This assumes
you’ve already registered your OAuth application with Salesforce and have the corresponding consumer key and
consumer secret. Run the following cURL command after replacing the values of client_id and client_secret
appropriately. The value of username is your Salesforce username, and the value of password is constructed by
concatenating your Salesforce password with your security token. For example, if the Salesforce password is
mypassword and the security token is XXXXYYYY, then the password is mypasswordXXXXYYYY:

Note■■   To create a security token, under My Settings/Personal/Reset My Security Token, click Reset Security Token.
You receive the security token to your registered e-mail account.

curl -v -k ––form client_id=3MVG9Y6d_Btp4xp5jz7MvysvlXtY44T2PFwadEeJT
 B6EC1wy0uakCU3rNvRx7vNVNbT40veMfjVDoz569_nlK
 --form client_secret=3623940361107861841
 --form grant_type=password
 --form username=prabath@wso2.com
 --form password='myPasswordvWtDk1CrPhKgzQkDPma5S2W4'
 https://login.salesforce.com/services/oauth2/token
 
This returns the following response with the access token:
 
{
 "id":"https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4",
 "issued_at":"1395351938998",
 "instance_url":"https://ap1.salesforce.com",
 "signature":"IsKKlf2ejVSfHaBxXawJ6Lxo+NeyRBld6xJ9Ru8P3rs=",
 "access_token":"00D90000000m0Zi!ARsAQMNVC5Ltk_UXzlxQmG
 5F3hY9y12B5dKX6B12U8wI_BT0ULPstqayGojkw
 goBoXlQcfCT6nkNk6Vt6_4Tbn1J5ESDxf.6"
}
 
To get the user details, you need to talk to the specified URI, corresponding to the authenticated user (from the
previous response under the parameter id), with the access token:
 
curl https://ap1.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4?
 oauth_token='00D90000000m0Zi!ARsAQMNVC5Ltk_UXzlxQmG5F3
 hY9y12B5dKX6B12U8wI_BT0ULPstqayGojkwgoBoXlQcfCT
 6nkNk6Vt6_4Tbn1J5ESDxf.6'
 

https://login.salesforce.com/services/oauth2/token
https://login.salesforce.com/id/00D90000000m0ZiEAI/00590000001QHFEAA4
https://ap1.salesforce.com/
https://ap1.salesforce.com/id/00D90000000m0ZiEAI/

Chapter 7 ■ OAuth 2.0

124

OAuth 2.0 and Google
Google began with its own identity delegation protocols, Google ClientLogin and Google AuthSub. Then, in 2008,
Google announced its support for OAuth 1.0. In March 2011, Google introduced OAuth 2.0 support for its APIs.

Note■■   The blog post that introduced OAuth 2.0 support for Google APIs is available at
http://googledevelopers.blogspot.com/2011/03/making-auth-easier-oauth-20-for-google.html.

REGISTERING A CLIENT APPLICATION WITH GOOGLE

In this exercise, you register an OAuth client application with Google and then access the Google Calendar API:

1.	 Go to https://console.developers.google.com, click Create Project, provide an
appropriate name, and complete the registration.

2.	 Go to https://console.developers.google.com, where you see the project you just
created listed. Click your project name.

3.	 Click APIs and Auth.

4.	 Click the Off button next to Calendar API to switch it On.

5.	 Click APIs and Auth ➤ Credentials.

6.	 Click OAuth ➤ Create New Client ID, and select Web Application as the Application Type.
Provide a valid redirect URI, such as https://mycallback.com, and click Create Client ID.

7.	 Copy the values of Client ID and Client Secret.

8.	 Click OAuth ➤ Create New Client ID, and select Installed Application as the Application Type.
Click Create Client ID.

9.	 Copy the values of Client ID and Client Secret.

GETTING AN ACCESS TOKEN FROM THE GOOGLE WEB SERVER
APPLICATION AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Google using the OAuth 2.0 Authorization Code grant type,
also known as the web server application authentication flow. This assumes you’ve already registered your OAuth
application as a web application with Google and have the corresponding client key and client secret. Copy the
following URL, replacing the values of client_id and redirect_uri appropriately, and paste it in the browser:
 
https://accounts.google.com/o/oauth2/auth?
 scope=email&
 state=mystate&
 redirect_uri=https://mycallback.com&
 response_type=code&

http://googledevelopers.blogspot.com/2011/03/making-auth-easier-oauth-20-for-google.html
https://console.developers.google.com/
https://console.developers.google.com/
https://mycallback.com/
https://accounts.google.com/o/oauth2/auth
https://mycallback.com/

Chapter 7 ■ OAuth 2.0

125

 client_id=825249835659-te8qgl701kgonnomnp
 4sqv7erhu1211s.apps.googleusercontent.com&
 approval_prompt=force 

Note■■   A list of Google authorization scopes is available at https://developers.google.com/+/api/oauth.
The parameter approval_prompt in the authorization grant request indicates to the authorization server whether to
prompt for user consent. If the value is force, then no matter what, the authorization server should prompt the end user
with the user consent page.

This returns the access token to the redirect_uri, with the provided state value:
 
https://mycallback.com/?
 state=mystate&
 code=4/dlfuPEHWG8QU9MaJN8vCSEpTzuYo.YlcCVmKswV4SXE-sT2ZLcbQrzK7PiQI
 
Once you have the authorization code, you need to exchange it for an access token. Run the following cURL
command with the appropriate values for code, redirect_uri, client_id, and client_secret. The value of
redirect_uri should match the value used in the previous step:
 
curl -v -X POST -d "grant_type=authorization_code&
 code=4/dlfuPEHWG8QU9MaJN8vCSEpTzuYo.
 YlcCVmKswV4SXE-sT2ZLcbQrzK7PiQI&
 client_id=825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.
 apps.googleusercontent.com&
 client_secret=jNjXE0D922mmcFopsjJJXNJc&
 redirect_uri=https://mycallback.com"
 https://accounts.google.com/o/oauth2/token
 
This returns the access token in the following JSON response:
 
{
 "access_token":"ya29.1.AADtN_WY1SHPAYomlwrcutZZnw
 WToBds-DbrYvqIsUUStWKodxdf4YwKBK0d1BradEvh",
 "token_type":"Bearer",
 "expires_in":3600,
 "id_token":""
}
 
To get the user details, you need to talk to the Google userinfo endpoint with the access token obtained in the
previous step:
 
curl https://www.googleapis.com/oauth2/v1/userinfo?
 access_token=ya29.1.AADtN_WY1SHPAYomlwrcutZZnw
 WToBds-DbrYvqIsUUStWKodxdf4YwKBK0d1BradEvh
 

https://developers.google.com/+/api/oauth
https://mycallback.com/
https://mycallback.com/
https://accounts.google.com/o/oauth2/token
https://www.googleapis.com/oauth2/v1/userinfo

Chapter 7 ■ OAuth 2.0

126

This returns the following JSON response:
 
{
 "id":"104063262378861625904",
 "email":"siriwardena.prabath@gmail.com",
 "verified_email":true,
 "name":"Prabath Siriwardena",
 "given_name":"Prabath",
 "family_name":"Siriwardena",
 "link":"https://plus.google.com/104063262378861625904",
 "picture":"https://lh3.googleusercontent.com/-nA7Ndz8oYF8/AAAAAAAAAAI/
 AAAAAAAABC0/2vY1M8egglA/photo.jpg",
 "gender":"male",
 "locale":"en"
} 

Note■■   Detailed documentation for the Google web server application authentication flow is available at
https://developers.google.com/accounts/docs/OAuth2WebServer.

GETTING AN ACCESS TOKEN FROM THE GOOGLE INSTALLED
APPLICATION AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Google using the installed application authentication flow.
This assumes you’ve already registered your OAuth application as an installed application with Google and have the
corresponding client key and client secret. Copy the following URL, replacing the values of client_id and redirect_
uri appropriately, and paste it in the browser. The value of redirect_uri should be urn:ietf:wg:oauth:2.0:oob:
 
https://accounts.google.com/o/oauth2/auth?
 scope=email&
 redirect_uri=urn:ietf:wg:oauth:2.0:oob&
 response_type=code&
 client_id=825249835659-a2d01b6j8ogcn30ms3rm2lcj
 mijrdsds.apps.googleusercontent.com 

Note■■   The Google installed application flow is better suited for installed applications on a mobile device, a tablet,
or a computer that have access to a browser.

This redirects you to the following URL, with the authorization code:
 
https://accounts.google.com/o/oauth2/approval?
 as=-4923a7231af76cc2&hl=en&
 pageId=none&
 xsrfsign=APsBz4gAAAAAUy0fNKFyCD_AiOdZuMuYtouMWNpYSsjJ
 

https://plus.google.com/104063262378861625904
https://lh3.googleusercontent.com/-nA7Ndz8oYF8/AAAAAAAAAAI/
https://developers.google.com/accounts/docs/OAuth2WebServer
https://accounts.google.com/o/oauth2/auth
https://accounts.google.com/o/oauth2/approval

Chapter 7 ■ OAuth 2.0

127

The authorization code is in the browser title bar:
 
4/3nnHXjncHJMyd2r0Kr0sf6pahkTc.Mkpg7y3BBgoWXE-sT2ZLcbSrolDQiQI 

Note■■   The Google installed application flow still uses the OAuth Authorization Code grant type, like the web server
application flow, with a couple of exceptions. In the installed application flow, the redirect_uri must be either
urn:ietf:wg:oauth:2.0:oob or http://localhost. The value urn:ietf:wg:oauth:2.0:oob instructs the authorization
server to send the authorization code to the browser’s title bar. If it’s http://localhost, then the authorization server
sends the authorization code as a query parameter.

Once you have the authorization code, you need to exchange it for an access token. Run the following cURL
command with the appropriate values for code, redirect_uri, client_id, and client_secret. The value of
redirect_uri should match the value used in the previous step:
 
curl -v -X POST -d "grant_type=authorization_code&
 code=4/3nnHXjncHJMyd2r0Kr0sf6pahkTc.
 Mkpg7y3BBgoWXE-sT2ZLcbSrolDQiQI&
 client_id=825249835659-a2d01b6j8ogcn30ms3rm2lcjmijrdsds.
 apps.googleusercontent.com&
 client_secret=Nd4Ql9dbqTxnuvjvri2hrzhJ&
 redirect_uri=urn:ietf:wg:oauth:2.0:oob"
 https://accounts.google.com/o/oauth2/token
 
This returns the access token in the following JSON response:
 
{
 "access_token":"ya29.1.AADtN_VMrQRuZh7HpL5ZawpM1c8sB0VZ5
 PpkqBDemHp25l_tiRUroKKIyyxdXqOtxl1WDQ",
 "token_type":"Bearer",
 "expires_in":3600,
 "id_token":"",
 "refresh_token":"1/C86hKGezzDWb4myzFgYpMuorTgRlIJse-pfbmJgG3b4"
}
 
To get the user details, you need to talk to the Google userinfo endpoint with the access token obtained in the
previous step:
 
curl https://www.googleapis.com/oauth2/v1/userinfo?
 access_token=ya29.1.AADtN_VMrQRuZh7HpL5ZawpM1c8s
 B0VZ5PpkqBDemHp25l_tiRUroKKIyyxdXqOtxl1WDQ 

Note■■   Detailed documentation for the Google installed application authentication flow is available at
https://developers.google.com/accounts/docs/OAuth2InstalledApp.

https://accounts.google.com/o/oauth2/token
https://www.googleapis.com/oauth2/v1/userinfo
https://developers.google.com/accounts/docs/OAuth2InstalledApp

Chapter 7 ■ OAuth 2.0

128

GETTING AN ACCESS TOKEN FROM THE GOOGLE CLIENT-SIDE
APPLICATION AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Google using the OAuth 2.0 Implicit grant type, also
known as the client-side application authentication flow. This assumes you’ve already registered your OAuth
application as a web application with Google and have the corresponding client key and client secret. Copy the
following URL, replacing the values of client_id and redirect_uri appropriately, and paste it in the browser.
The value of response_type should be set to token:
 
https://accounts.google.com/o/oauth2/auth?
 scope=email&
 state=mystate&
 redirect_uri=https://mycallback.com&
 response_type=token&
 client_id=825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.
 apps.googleusercontent.com&
 approval_prompt=force
 
This returns the access token as a query parameter to the registered callback URL:
 
https://mycallback.com/#
 state=mystate&
 access_token=ya29.1.AADtN_UBJudPXr8aGUgHVhVCcksLe
 Fx2zMS7ngADpSqShUf8RPEFTu1N-T8HM4iQRgdyNA&
 token_type=Bearer&
 expires_in=3600
 
Unlike in other cases, the Google client-side application flow requires you to validate the access token returned in
the previous step by talking to the Google tokeninfo endpoint:
 
curl https://www.googleapis.com/oauth2/v1/tokeninfo?
 access_token=ya29.1.AADtN_UBJudPXr8aGUgHVhVCcksLe
 Fx2zMS7ngADpSqShUf8RPEFTu1N-T8HM4iQRgdyNA
 
This returns the following JSON response:
 
{
 "issued_to":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "audience":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "user_id":"104063262378861625904",
 "scope":"https://www.googleapis.com/auth/userinfo.email
 https://www.googleapis.com/auth/plus.me",
 "expires_in":3240,
 "email":"siriwardena.prabath@gmail.com",
 "verified_email":true,
 "access_type":"online"
}
 

https://accounts.google.com/o/oauth2/auth
https://mycallback.com/
https://mycallback.com/
https://www.googleapis.com/oauth2/v1/tokeninfo
https://www.googleapis.com/auth/userinfo.email
https://www.googleapis.com/auth/plus.me

Chapter 7 ■ OAuth 2.0

129

To get the user details, you need to talk to the Google userinfo endpoint with the access token obtained in the
previous step:
 
curl https://www.googleapis.com/oauth2/v1/userinfo?
 access_token=ya29.1.AADtN_UBJudPXr8aGUgHVhV
 CcksLeFx2zMS7ngADpSqShUf8RPEFTu1N-T8HM4iQRgdyNA 

Note■■   Detailed documentation for the Google client-side application authentication flow is available at
https://developers.google.com/accounts/docs/OAuth2UserAgent.

GETTING AN ACCESS TOKEN FROM THE GOOGLE DEVICE
AUTHENTICATION FLOW

In this exercise, you see how to get an access token from Google using the device authentication flow.
The device authentication flow targets applications running on devices with limited input capabilities. Google
has gone beyond the standard OAuth grant types and introduced its own custom grant type to cater to this
requirement, identified by http://oauth.net/grant_type/device/1.0. This expects users to first interact
with the application running on the device, get a user code and a URL, and then go to a device having access
to a browser, enter the code, and grant access to the device. The device can use its device code to acquire an
access token.

This assumes you’ve already registered your OAuth application as an installed application with Google and have the
corresponding client key and client secret. Run the following cURL command, replacing the value of client_id:
 
curl -v -X POST
 -d "client_id=825249835659-a2d01b6j8ogcn30ms3rm2lcjmijrdsds.
 apps.googleusercontent.com&
 scope=email"
 https://accounts.google.com/o/oauth2/device/code
 
This returns the following JSON response. It includes a device_code, a user_code, and a verification_url.
You need to copy the value of verification_url and paste it in a browser, and then paste the value of
user_code and grant access to the device:
 
{
 "device_code":"4/Ny8hHFSUzLEKVp67GWaxsRV020rs",
 "user_code":"47bkr67a",
 "verification_url":"http://www.google.com/device",
 "expires_in":1800,
 "interval":5
}
 

https://www.googleapis.com/oauth2/v1/userinfo
https://developers.google.com/accounts/docs/OAuth2UserAgent
http://oauth.net/grant_type/device/1.0
https://accounts.google.com/o/oauth2/device/code
http://www.google.com/device

Chapter 7 ■ OAuth 2.0

130

After verifying the code, you can return to the device. The device application can acquire an access token by
executing the following cURL command:
 
curl -v -X POST
 -d "client_id=825249835659-a2d01b6j8ogcn30ms3rm2lcj
 mijrdsds.apps.googleusercontent.com&
 client_secret=Nd4Ql9dbqTxnuvjvri2hrzhJ&
 code=4/Ny8hHFSUzLEKVp67GWaxsRV020rs&
 grant_type=http://oauth.net/grant_type/device/1.0"
 https://accounts.google.com/o/oauth2/token
 
This returns an access token in the following JSON response:
 
{
 �"access_token":"�ya29.1.AADtN_Vzh1jZ85XMAXvlY88k2FYFgz5VIZWqh5RiigKnov5htKR1fis_

A5WaiMxgGJhyEA",
 "token_type":"Bearer",
 "expires_in":3600,
 "id_token":"",
 "refresh_token":"1/lbaTPe0zgfzoPLJwHqCcZ8ii3mwqoNT8zEiInPPjuNw"
}
 
To get the user details, you need to talk to the Google userinfo endpoint with the access token obtained in the
previous step:
 
curl https://www.googleapis.com/oauth2/v1/userinfo?
 access_token=ya29.1.AADtN_Vzh1jZ85XMAXvlY88k2
 FYFgz5VIZWqh5RiigKnov5htKR1fis_A5WaiMxgGJhyEA 

Note■■   Detailed documentation for the Google Device authentication flow is available at
https://developers.google.com/accounts/docs/OAuth2ForDevices.

SUMMARY OF OAUTH 2.0 VENDOR IMPLEMENTATIONS

OAuth 2.0 Authorization Endpoints

•	 Facebook: https://www.facebook.com/dialog/oauth

•	 LinkedIn: https://www.linkedin.com/uas/oauth2/authorization

•	 Salesforce: https://login.salesforce.com/services/oauth2/authorize

•	 Google: https://accounts.google.com/o/oauth2/auth

http://oauth.net/grant_type/device/1.0
https://accounts.google.com/o/oauth2/token
https://www.googleapis.com/oauth2/v1/userinfo
https://developers.google.com/accounts/docs/OAuth2ForDevices
https://www.facebook.com/dialog/oauth
https://www.linkedin.com/uas/oauth2/authorization
https://login.salesforce.com/services/oauth2/authorize
https://accounts.google.com/o/oauth2/auth

Chapter 7 ■ OAuth 2.0

131

OAuth 2.0 Token Endpoints

•	 Facebook: https://graph.facebook.com/oauth/access_token

•	 LinkedIn: https://www.linkedin.com/uas/oauth2/accessToken

•	 Salesforce: https://login.salesforce.com/services/oauth2/token

•	 Google: https://accounts.google.com/o/oauth2/token

User Info Endpoints

•	 Facebook: https://graph.facebook.com/me

•	 LinkedIn: https://api.linkedin.com/v1/people/~

•	 Salesforce: https://login.salesforce.com/id/{domain_id}/{use_id}

•	 Google: https://www.googleapis.com/oauth2/v1/userinfo

Authentication vs. Authorization
In the simplest terms, authentication is the act of proving who you are, whereas authorization is the act of determining
what you can do. OAuth 2.0 is about delegated authorization, not about authentication. This may be somewhat
confusing, because there are many instances in which you use OAuth 2.0 to log in to client web applications. If you use
OAuth 2.0 for login, isn’t it about authentication? If you secure an API with OAuth 2.0, isn’t it all about authentication?
Not really. An authentication process must end by figuring out and validating the identity of the end user. OAuth
doesn’t do that. OAuth only provides a temporary token, which can be used to access a resource on behalf of the end
user—but it doesn’t provide any identity information about the user.

Let’s look at a few examples. The following is the response you get from the Facebook token endpoint; it doesn’t
include any user information. If you use this token against an API, the API only checks whether this is a valid token
and whether it’s authorized to invoke the given API:
 
access_token=CAAIXsJdcexIBANoR7sRFbQMAlBTuVtZATUdK
 ypc5m6dURLqT0irQ2hQ7oXcOqxeXzec2ylP0UH
 WnSFw6f ZAcTGCJgzhNxZBtHr7q0jZCZBwGL3g
 zfPrUSUGHtBntNtIzDWd8KeYZC3WYKcmljxeTN
 RZAaa9ZCzHZC7oVFWWckra7zJCbplTHG9ElW&
expires=5179012
 

If the API wants to find out more about the user, it has to talk to Facebook’s user endpoint. That is what completes
the authentication, and that is how most applications use Facebook Login. The following cURL command returns the
logged-in user’s information:
 
curl https://graph.facebook.com/me/feed?
 access_token="CAAIXsJdcexIBANoR7sRFbQMAlBTuVtZAT
 UdKypc5m6dURLqT0irQ2hQ7oXcOqxeXzec
 2ylP0UHWnSFw6fZAcTGCJgzhNxZBtHr7q0
 jZCZBwGL3gzfPrUSUGHtBntNtIzDWd8KeY
 ZC3WYKcmljxeTNRZAaa9ZCzHZC7oVFWW
 ckra7zJCbplTHG9ElW" 

https://graph.facebook.com/oauth/access_token
https://www.linkedin.com/uas/oauth2/accessToken
https://login.salesforce.com/services/oauth2/token
https://accounts.google.com/o/oauth2/token
https://graph.facebook.com/me
https://api.linkedin.com/v1/people/~
https://login.salesforce.com/id/
https://www.googleapis.com/oauth2/v1/userinfo
https://graph.facebook.com/me/feed

Chapter 7 ■ OAuth 2.0

132

Note■■   OpenID Connect is an OAuth profile that talks about authentication. Chapter 12 takes an in-depth look at
OpenID Connect.

Summary
OAuth 2.0 is the de facto standard for API security. This chapter explored OAuth 2.0 and also discussed its immediate
predecessor, OAuth WRAP. OAuth 2.0 concepts were demonstrated using real-world examples with Facebook,
LinkedIn, Salesforce, and Google. One of the extensions in OAuth 2.0 is the token type. The OAuth 2.0 core
specification doesn’t bind to a specific token type. All the examples used in this chapter assumed the use of the
OAuth 2.0 Bearer Token Profile.

The next chapter looks at the MAC Token Profile for OAuth 2.0.

133

Chapter 8

OAuth 2.0 MAC Token Profile

The OAuth 2.0 core specification doesn’t mandate any specific token type. It’s one of the extension points introduced
in OAuth 2.0. Almost all public implementations use the OAuth 2.0 Bearer Token Profile. This came up with the OAuth
2.0 core specification, but as an independent profile, documented under RFC 6750. Eran Hammer, who was the lead
editor of the OAuth 2.0 specification by that time, introduced the MAC Token Profile for OAuth 2.0. (Hammer also
led the OAuth 1.0 specification.) Since its introduction to the OAuth 2.0 IETF working group in November 2011, the
MAC Token Profile has made a slow progress. The slow progress was mostly due to the fact that the working group was
interested in building a complete stack around bearer tokens before moving into another token type. In this chapter,
we will take a deeper look into the OAuth 2.0 MAC token profile and its applications.

OAUTH 2.0 AND THE ROAD TO HELL

One of the defining moments of OAuth 2.0 history was the resignation of OAuth 2.0 specification lead editor Eran
Hammer. On July 26, 2012, he wrote a famous blog post titled “OAuth 2.0 and the Road to Hell”1 after announcing
his resignation from the OAuth 2.0 IETF working group. As highlighted in the blog post, Hammer thinks OAuth 2.0
is a bad protocol, just like any WS-* (web services) standard. In his comparison, OAuth 1.0 is much better than
OAuth 2.0 in terms of complexity, interoperability, usefulness, completeness, and security. Hammer was worried
about the direction in which OAuth 2.0 was heading, because it was not that intended by the web community that
initially formed the OAuth 2.0 working group.

According to Hammer, the following were the initial objectives of the OAuth 2.0 working group:

Build a protocol very similar to OAuth 1.0.•	

Simplify the signing process.•	

Add a light identity layer.•	

Address native applications.•	

Add more flows to accommodate more client types.•	

Improve security.•	

1Available at http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/.

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

Chapter 8 ■ OAuth 2.0 MAC Token Profile

134

In his blog post, Hammer highlighted the following architectural changes from OAuth 1.0 to 2.0 (extracted from
http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/):

•	 Unbounded Tokens: In 1.0, the client has to present two sets of credentials on each protected
resource request, the token credentials and the client credentials. In 2.0, the client credentials
are no longer used. This means that tokens are no longer bound to any particular client
type or instance. This has introduced limits on the usefulness of access tokens as a form of
authentication and increased the likelihood of security issues.

•	 Bearer Tokens: 2.0 got rid of all signatures and cryptography at the protocol level. Instead it
relies solely on TLS. This means that 2.0 tokens are inherently less secure as specified. Any
improvement in token security requires additional specifications and as the current proposals
demonstrate, the group is solely focused on enterprise use cases.

•	 Expiring Tokens: 2.0 tokens can expire and must be refreshed. This is the most significant
change for client developers from 1.0, as they now need to implement token state management.
The reason for token expiration is to accommodate self-encoded tokens – encrypted tokens,
which can be authenticated by the server without a database look-up. Because such tokens are
self-encoded, they cannot be revoked and therefore must be short-lived to reduce their exposure.
Whatever is gained from the removal of the signature is lost twice in the introduction of the token
state management requirement.

•	 Grant Types: In 2.0, authorization grants are exchanged for access tokens. Grant is an abstract
concept representing the end-user approval. It can be a code received after the user clicks
‘Approve’ on an access request, or the user’s actual username and password. The original
idea behind grants was to enable multiple flows. 1.0 provides a single flow, which aims to
accommodate multiple client types. 2.0 adds significant amount of specialization for different
client type.

Most of all, Hammer wasn’t in favor of the authorization framework built by OAuth 2.0 and the extensibility
introduced. His argument was that the Web doesn’t need another security framework: what it needs is a simple,
well-defined security protocol. Regardless of these arguments, over the years OAuth 2.0 has become the de facto
standard for API security—and the extensibility introduced by OAuth 2.0 is paying off.

Bearer Token vs. MAC Token
Bearer tokens are just like cash. Whoever owns one can use it. At the time you use it, you don’t need to prove you’re
the legitimate owner. It’s similar to the way you could use stolen cash with no problem; what matters is the validity of
the cash, not the owner.

MAC tokens, on the other hand, are like credit cards. Whenever you use a credit card, you have to authorize the
payment with your signature. If someone steals your card, the thief can’t use it unless they know how to sign exactly
like you. That’s the main advantage of MAC tokens.

With bearer tokens, you always have to pass the token secret over the wire. But with MAC tokens, you never
pass the token secret over the wire. The key difference between bearer tokens and MAC tokens is very similar to the
difference between HTTP Basic Authentication and HTTP Digest Authentication.

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell/

Chapter 8 ■ OAuth 2.0 MAC Token Profile

135

Note■■   Draft 5 of the OAuth 2.0 MAC Token Profile is available at http://tools.ietf.org/html/draft-ietf-oauth-
v2-http-mac-05. This chapter is based on draft 5, but this is an evolving specification. The objective of this chapter is
to introduce the MAC Token Profile as an extension of OAuth token types. The request/response parameters discussed
in this chapter may change as the specification evolves, but the basic concepts will remain the same. It’s recommended
that you keep an eye on https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-http-mac/ to find out the latest
changes taking place.

Obtaining a MAC Token
The OAuth 2.0 core specification isn’t coupled with any of the token profiles. The OAuth flow discussed under the
bearer token flow in Chapter 7 applies in the same way for MAC tokens. OAuth grant types don’t have any dependency
on the token type. A client can obtain a MAC token by using any grant type. Under the Authorization Code grant type,
the resource owner that visits the application initiates the flow. The client, which must be a registered application at
the authorization server, redirects the resource owner to the authorization server to get approval. The following is a
sample HTTP redirect, which takes the resource owner to the OAuth authorization server:
 
https://localhost:9443/oauth2/authorize?response_type=code&
client_id=0rhQErXIX49svVYoXJGt0DWBuFca&
redirect_uri=https%3A%2F%2Fmycallback
 

The value of response_type must be code. This indicates to the authorization server that the request is for an
authorization code. client_id is an identifier for the client application. Once the client application is registered
with the authorization server, the client gets a client_id and a client_secret. The value of redirect_uri should
be equivalent to the value registered with the authorization server. During the client-registration phase, the client
application must provide a URL under its control as the redirect_uri. The URL-encoded value of the callback URL
is added to the request as the redirect_uri parameter. In addition to these parameters, a client application can also
include a scope parameter. The value of the scope parameter is shown to the resource owner on the approval screen.
It indicates to the authorization server the level of access the client needs on the target resource/API. The previous
HTTP redirect returns the requested code to the registered callback URL:
 
https://mycallback/?code=9142d4cad58c66d0a5edfad8952192
 

The value of the authorization code is delivered to the client application via an HTTP redirect and is visible to
the resource owner. In the next step, the client must exchange the authorization code for an oauth access token by
talking to the OAuth token endpoint exposed by the authorization server. This must be an authenticated request
with the client_id and the client_secret of the client application in the HTTP authorization header. The token
endpoint must be secured with HTTP Basic Authentication. The value of the grant_type parameter must be the
authorization_code, and the value of the code should be the one returned from the previous step. If the client
application set a value for the redirect_uri parameter in the previous request, then it must include the same
value in the token request. The client can’t suggest to the authorization server the type of the token it expects:
it’s entirely up to the authorization server to decide, or it can be based on a pre-agreement between the client and
the authorization server at the time of client registration, which is outside the scope of OAuth.

http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-http-mac/
https://mycallback/?code=9142d4cad58c66d0a5edfad8952192

Chapter 8 ■ OAuth 2.0 MAC Token Profile

136

The following cURL command to exchange the authorization code for a MAC token is very similar to what you
saw for the Bearer Token Profile. The only difference is that this introduces a new parameter called audience,
which is a must for a MAC token request:
 
curl -v -X POST --basic
 -u 0rhQErXIX49svVYoXJGt0DWBuFca:eYOFkL756W8usQaVNgCNkz9C2D0a
 -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" -k
 -d "grant_type=authorization_code&
 code=9142d4cad58c66d0a5edfad8952192&
 redirect_uri=https://mycallback&
 audience=https://resource-server-URI"
 https://localhost:9443/oauth2/token 

Note■■   The audience parameter is defined in the OAuth 2.0: Audience Information Internet draft available at
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00. This is a new parameter introduced into the
OAuth token request flow and is independent of the token type. Once it’s approved as an IETF proposed standard, the
Bearer Token Profile also will be updated to include this in the access token request.

OAUTH 2.0: AUDIENCE INFORMATION

The objective of the audience parameter introduced by the OAuth 2.0: Audience Information Internet draft is to
identify the audience of an issued access token. With this, the access token issued by the authorization server
is for a specific client, to be used against a specific resource server or a specific set of resource servers. All
resource servers should validate the audience of the access token before considering it valid.

After completing the authorization-granting phase, the client must decide which resource server to access and
should find the corresponding audience URI. That must be included in the access-token request to the token
endpoint. Then the authorization server must check whether it has any associated resource servers that can
be identified by the provided audience URI. If not, it must send back the error code invalid_request. If all
validations pass at the authorization server, the new Internet draft suggests including the allowed audience in the
access token. While invoking an API hosted in the resource server, it can decode the access token and find out
whether the allowed audience matches its own.

The previous cURL command returns the following response:
 
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
 {
 "access_token": "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM ",
 "token_type":"mac",
 "expires_in":3600,
 "refresh_token":"8xLOxBtZp8",
 "kid":"22BIjxU93h/IgwEb4zCRu5WF37s=",
 "mac_key":"adijq39jdlaska9asud",
 "mac_algorithm":"hmac-sha-256"
}
 

https://mycallback/
https://resource-server-uri/
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00

Chapter 8 ■ OAuth 2.0 MAC Token Profile

137

Let’s examine the definition of each parameter.

access_token: The OAuth 2.0 access token, which binds the client, the resource owner, and
the authorization server together. With the introduction of the audience parameter, this
now binds all of those with the resource server, as well. Under the MAC Token Profile, by
decoding the access token, you should be able to find the audience of the access token.
If someone tampers with the access token to change the audience, that will make the token
validation fail automatically at the authorization server.

token_type: Type of the token returned from the authorization server. The client should
first try to understand the value of this parameter and begin processing accordingly.
The processing rules differ from one token type to another. Under the MAC Token Profile,
the value of the token type must be mac.

expires_in: The lifetime of the access token in seconds.

refresh_token: The refresh token associated with the access token. The refresh token can
be used to acquire a new access token.

kid: Stands for key identifier. This is an identifier generated by the authorization server.
It’s recommended that you generate the key identifier by Base64-encoding the hashed
access token: kid = base64encode (sha-1 (access_token)). This identifier uniquely
identifies the mac_key used later to generate the MAC while invoking the resource APIs.

mac_key: A session key generated by the authorization server, having the same lifetime
as the access token. The mac_key is a shared secret used later to generate the MAC while
invoking the resource APIs. The authorization server should never reissue the same
mac_key or the same kid.

mac_algorithm: The algorithm to generate the MAC during API invocation. The value of
the mac_algorithm should be well understood by the client, authorization server, and
resource server.

Note■■   The OAuth 2.0 access token is opaque to anyone outside the authorization server. It may or may not carry
meaningful data, but no one outside the authorization server should try to interpret it. The OAuth 2.0 MAC Token Profile
defines a more meaningful structure for the access token; it’s no longer an arbitrary string. The resource server should
understand the structure of the access token generated by the authorization server. Still, the client should not try to
interpret it.

The access token returned from the authorization server to the client is encoded with the audience, key identifier, and
encrypted value of the mac_key. The mac_key must be encrypted with the public key of the resource server or with a
shared key established between the resource server and the authorization server via a prior agreement outside the scope
of OAuth. When accessing a protected API, the client must send the access token along with the request. The resource
server can decode the access token and get the encrypted mac_key, which it can later decrypt from its own private key
or the shared key.

Chapter 8 ■ OAuth 2.0 MAC Token Profile

138

Invoking an API Protected with the OAuth 2.0 MAC Token Profile
Following any of the grant types, you can obtain a MAC token from the authorization server. Unlike with the Bearer
Token Profile, this needs more processing at the client end before you invoke an API protected with the MAC
Token Profile. Prior to invoking the protected API, the client must construct an authenticator. The value of the
authenticator is then added to the HTTP authorization header of the outgoing request. The authenticator is
constructed from the following parameters:

kid: The key identifier from the authorization grant response.

ts: Timestamp, in milliseconds, since January 1, 1970.

seq-nr: Indicates the initial sequence number to be used during the message exchange
between the client and the resource server, from client to server.

access_token: The value of the access token from the authorization grant response.

mac: The value of the MAC for the request message. Later, this chapter discusses how to
calculate the MAC.

h: Colon-separated header fields, used to calculate the MAC.

cb: Specifies the channel binding. Channel bindings are defined in “Channel Bindings for
TLS,” RFC 5929, available at http://tools.ietf.org/html/rfc5929.

Note■■   The “Channel Bindings for TLS” RFC defines three bindings: tls-unique, tls-server-end-point, and
tls-unique-for-telnet.

The following is a sample request to access an API secured with an OAuth 2.0 MAC token profile.
 
GET /patient?name=peter&id=10909HTTP/1.1
Host: medicare.com
Authorization: MAC kid="22BIjxU93h/IgwEb4zCRu5WF37s=",
 ts="1336363200",
 seq-nr="12323",
 access_token="eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM",
 mac="bhCQXTVyfj5cmA9uKkPFx1zeOXM=",
 h="host",
 cb="tls-unique:9382c93673d814579ed1610d3"

Calculating the MAC
The OAuth 2.0 MAC Token Profile defines two algorithms to calculate the MAC: HMAC-SHA1 and HMAC-SHA256. It also
provides an extension for additional algorithms.

http://tools.ietf.org/html/rfc5929
http://medicare.com/

Chapter 8 ■ OAuth 2.0 MAC Token Profile

139

Note■■   The message authentication code (MAC) provides integrity and authenticity assurance for the associated
message. The MAC algorithm accepts a message and a secret key to produce the associated MAC. To verify the MAC,
the receiving party should have the same key and calculate the MAC of the received message. If the calculated MAC is
equal to the MAC in the message, that guarantees integrity and authenticity.

A hash-based Message Authentication Code (HMAC) is a specific way of calculating the MAC using a hashing
algorithm. If the hashing algorithm is SHA-1, it’s called HMAC-SHA1. If the hashing algorithm is SHA-256, then it’s called
HMAC-SHA256. More information about HMAC is available at http://tools.ietf.org/html/rfc2104. The HMAC-SHA1
and HMAC-SHA256 functions need to be implemented in the corresponding programming language.

Here’s the calculation with HMAC-SHA1:
 
mac = HMAC-SHA1(mac_key, input-string)
 

And here it is with HMAC-SHA256:
 
mac = HMAC-SHA256(mac_key, input-string)
 

For an API invocation request, the value of input-string is the Request-Line from the HTTP request, the
timestamp, the value of seq-nr, and the concatenated values of the headers specified under the parameter h.

HTTP REQUEST-LINE

The HTTP Request-Line is defined in section 5 of the HTTP RFC, available at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html. The request line is defined as follows:
 
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
 
The value of Method can be OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT, or any extension method.
SP stands for space—to be technically accurate, it’s ASCII code 32. Request-URI identifies the representation of
the resource where the request is sent. According to the HTTP specification, there are four ways to construct a
Request-URI:
 
Request-URI = "*" | absoluteURI | abs_path | authority
 
The asterisk (*) means the request targets not a specific resource but the server it self.
For example, OPTIONS * HTTP/1.1.
 
The absolute URI must be used when the request is made through a proxy. For example, GET
https://resource-server/myresource HTTP/1.1.

abs_path is the most common form of a Request-URI. In this case, the absolute path with respect to the host
server is used. The URI or the network location of the server is transmitted in the HTTP Host header. For example:
 
GET /myresource HTTP/1.1
Host: resource-server
 

http://tools.ietf.org/html/rfc2104
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
https://resource-server/myresource

Chapter 8 ■ OAuth 2.0 MAC Token Profile

140

The authority form of the Request-URI is only used with HTTP CONNECT method. This method is used to make a
connection through a proxy with tunneling, as in the case of SSL tunneling.

After the Request-URI must be a space and then the HTTP version, followed by a carriage return and a line feed.

Let’s take the following example:
 
POST /patient?name=peter&id=10909&blodgroup=bpositive HTTP/1.1
Host: medicare.com
 

The value of the input-string is
 
POST /patient?name=peter&id=10909&blodgroup=bpositive HTTP/1.1 \n
1336363200 \n
12323 \n
medicare.com \n
 

1336363200 is the timestamp, 12323 is the sequence number, and medicare.com is the value of the Host header.
The value of the Host header is included here because it is set in the h parameter of the API request under the HTTP
Authorization header. All of these entries should be separated by newline separator characters, denoted by \n in
the example. Once the input string is derived, the MAC is calculated on it using the mac_key and the MAC algorithm
specified under mac_algorithm.

MAC Validation by the Resource Server
To access any API secured with the OAuth 2.0 MAC Token Profile, the client should send the relevant parameters with
the API invocation request. If any of the parameters are lacking in the request or the provided values are invalid, the
resource server will respond with an HTTP 401 status code. The value of the WWW-Authenticate header should be set
to MAC, and the value of the error parameter should explain the nature of the error:
 
HTTP/1.1 401 Unauthorized
WWW-Authenticate: MAC error="Invalid credentials"
 

Let’s consider the following valid API request, which comes with a MAC header:
 
GET /patient?name=peter&id=10909HTTP/1.1
Host: medicare.com
Authorization: MAC kid="22BIjxU93h/IgwEb4zCRu5WF37s=",
 ts="1336363200",
 seq-nr="12323",
 access_token="eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBM",
 mac="bhCQXTVyfj5cmA9uKkPFx1zeOXM=",
 h="host",
 cb="tls-unique:9382c93673d814579ed1610d3"
 

To validate the MAC of the request, the resource server has to know the mac_key. The client must pass the
mac_key to the resource server, encoded in the access_token. The first step in validation is to extract the mac_key from
the access_token in the request. Once the access_token is decoded, the resource server has to verify its audience.
The authorization server encodes the audience of the access _token is into the access_token.

Once the access token is verified and the scopes associated with it are validated, the resource server can cache
the mac_key by the kid. The cached mac_key can be used in future message exchanges.

http://medicare.com/
http://medicare.com/
http://medicare.com/
http://medicare.com/

Chapter 8 ■ OAuth 2.0 MAC Token Profile

141

Note■■   According to the MAC Token Profile, the access_token needs to be included only in the first request from the
client to the resource server. The resource server must use the cached mac_key (against the kid) to validate subsequent
messages in the message exchange. If the initial access_token doesn’t have enough privileges to invoke a later API, the
resource server can request a new access_token or a complete authenticator by responding with an HTTP
WWW-Authenticate header.

The resource server must calculate the MAC of the message the same way the client did before and compare
the calculated MAC with the value included in the request. If the two match, the request can be considered a valid,
legitimate one. But you still need to make sure there are no replay attacks. To do that, the resource server must verify
the timestamp in the message by comparing it with its local timestamp.

Note■■   An attacker that can eavesdrop on the communication channel between the client and the resource server can
record messages and replay them at a different time to gain access to the protected resource. The OAuth 2.0 MAC Token
Profile uses timestamps as a way of detecting and mitigating replay attacks.

OAuth Grant Types and the MAC Token Profile
OAuth grant types and token types are two independent extension points introduced in the OAuth 2.0 core specification.
They don’t have any direct dependency between each other. This chapter only talks about the Authorization Code
grant type, but all the other grant types work in the same manner: the structure of the access token returning from
the Implicit grant type, the Resource Owner Password Credentials grant type, and the Client Credentials grant type
is the same.

OAuth 1.0 vs. OAuth 2.0 MAC Token Profile
Eran Hammer (who at that point was the lead editor of the OAuth 2.0 specification) submitted the initial OAuth 2.0
MAC Token Profile draft to the OAuth working group in May 2011, and the first draft (also submitted by Hammer)
followed with some improvements in February 2012. Both drafts were greatly influenced by the OAuth 1.0
architecture. After a long break, and after Hammer’s resignation from the OAuth working group, Internet draft 4 of the
MAC Token Profile introduced a revamped architecture. This architecture, which was discussed in this chapter, has
many architectural differences from OAuth 1.0 (see Table 8-1).

Chapter 8 ■ OAuth 2.0 MAC Token Profile

142

Summary
The OAuth 2.0 MAC Token Profile is an extension of the OAuth 2.0 core specification that provides a way of accessing
a protected API without passing credentials over the wire. This chapter discussed the internals of the MAC Token
Profile and where it stands with respect to OAuth 1.0 and the OAuth 2.0 Bearer Token Profile.

In the next chapter, we will take a deeper look at four key OAuth 2.0 profiles: Token Introspection profile,
Chain Grant Type profile, Dynamic Client Registration profile, and Token Revocation profile.

Table 8-1.  OAuth 1.0 vs. OAuth 2.0 MAC Token Profile

OAuth 1.0 OAuth 2.0 MAC Token Profile

Requires a signature both during the initial handshake
and during the business API invocation.

Requires a signature only for the business API invocation.

The resource server must know the secret key used to
sign the message beforehand.

The shared secret doesn’t have an associated lifetime.

Doesn’t have any audience restrictions. Tokens can be
used against any resource server.

The encrypted shared secret used to sign the message is
passed to the resource server, embedded in the
access_token.

A lifetime is associated with the mac_key, which is used
as the key to sign.

The authorization server enforces an audience restriction
on the issued access_tokens, so that those access tokens
can’t be used against any resource server.

143

Chapter 9

OAuth 2.0 Profiles

OAuth 2.0 is a framework for delegated authorization. It doesn’t address all specific enterprise API security use cases.
The OAuth 2.0 profiles built on top of the core framework work to build a security ecosystem to make OAuth 2.0 ready
for enterprise grade deployments. OAuth 2.0 introduced two extension points via grant types and token types. The
profiles for OAuth 2.0 are built on top of this extensibility. This chapter talks about four key OAuth 2.0 profiles for
token introspection, chained API invocation, dynamic client registration, and token revocation.

Token Introspection Profile
OAuth 2.0 doesn’t define a standard API for communication between the resource server and the authorization
server. As a result, vendor-specific, proprietary APIs have crept in to couple the resource server to the authorization
server. The Token Introspection profile for OAuth 2.0 fills this gap by proposing a standard API to be exposed by the
authorization server, allowing the resource server to talk to it and retrieve token metadata.

Note■■   OAuth 2.0 Token Introspection Internet draft is available at
https://datatracker.ietf.org/doc/draft-richer-oauth-introspection/.

Any party in possession of the access token can generate a token-introspection request. The introspection
endpoint must be secured with HTTP Basic Authentication:
 
POST /introspection HTTP/1.1
Accept: application/x-www-form-urlencoded
Host: authz.server.com
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3
token=X3241Affw.4233-99JXJ&
token_type_hint=access_token&
resource_id=http://my-resource
 

Let’s examine the definition of each parameter.

•	 token: The value of the access_token or the refresh_token

•	 token_type_hint: The type of the token (either the access_token or the refresh_token)

•	 resource_id: An identifier that represents the corresponding resource for introspection

https://datatracker.ietf.org/doc/draft-richer-oauth-introspection/
http://authz.server.com/
http://my-resource/

Chapter 9 ■ OAuth 2.0 Profiles

144

This request returns the following JSON response:
 
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
{
 "active": true,
 "client_id":"s6BhdRkqt3",
 "scope": "read write dolphin",
 "sub": "2309fj32kl",
 "aud": "http://my-resource/*"
 }
 

Let’s examine the definition of each parameter.

•	 active: Indicates whether the token is active. To be active, the token should not be expired or
revoked. The authorization server can define its own criteria for how to define active.

•	 client_id: The identifier of the client to which the token was issued.

•	 scope: Approved scopes associated with the token.

•	 sub: The subject identifier of the user who approved the authorization grant.

•	 aud: The allowed audience for the token.

Note■■   The audience (aud) parameter is defined in the OAuth 2.0: Audience Information Internet draft available at
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00. This is a new parameter introduced into the
OAuth token-request flow and is independent of the token type.

While validating the response from the introspection endpoint, the resource server should first check whether
the value of active is set to true. Then it should check whether the value of aud in the response matches the aud
URI associated with the resource server or the resource. Finally, it can validate the scope. The required scope to
access the resource should be a subset of the scope values returned in the introspection response. If the resource
server wants to do further access control based on the client or the resource owner, it can do so with respect to the
values of sub and client_id.

FINE-GRAINED ACCESS CONTROL WITH XACML

eXtensible Access Control Markup Language (XACML) is a standard developed by the OASIS XACML technical
committee. Over the years, it has become the de facto standard for fine-grained access control. In February
2003, the first XACML specification (1.0) was released, followed in July 2003 by 1.1. The XACML 2.0 specification
released in February 2005 was a major breakthrough and is the most popular specification so far. XACML 3.0,
released in January 2013, is the latest.

Note■■   You can learn more about XACML 1.0 vs. 2.0 at http://xml.coverpages.org/JoslinXACMLDiffs1-2.html. You can
learn more about XACML 2.0 vs. 3.0 at https://wiki.oasis-open.org/xacml/DifferencesBetweenXACML2.0AndXACML3.0.

http://my-resource/
http://tools.ietf.org/html/draft-tschofenig-oauth-audience-00
http://xml.coverpages.org/JoslinXACMLDiffs1-2.html
https://wiki.oasis-open.org/xacml/DifferencesBetweenXACML2.0AndXACML3.0

Chapter 9 ■ OAuth 2.0 Profiles

145

As discussed in Chapter 2, XACML provides a reference architecture (see Figure 9-1), a request response
protocol, and a policy language. The reference architecture includes a Policy Administration Point (PAP), a
Policy Decision Point (PDP), a Policy Enforcement Point (PEP), and a Policy Information Point (PIP). This is a
highly distributed architecture in which none of these components are tightly coupled with each other. The
PAP is where you author policies and the PDP is where policies are evaluated. While evaluating policies, if any
information is missing and can’t be derived from the XACML request, the PDP calls the PIP. The role of the PIP
is to feed the PDP any missing information, which can be user attributes or any other required details. The
policy is enforced through the PEP, which sits between the client and the service and intercepts all requests.
From the client request, it extracts certain attributes like the subject, the resource, and the action, after which
it builds a standard XACML request and calls the PDP. It gets a XACML response back from the PDP; this is
defined under XACML request/response model. The XACML policy language defines a schema to create XACML
policies for access control.

PAP

PEP PDP

Policy Store PIP

PIP

PIP

LDAP

Database

Service

Figure 9-1.  XACML reference architecture

Figure 9-2 shows the XACML runtime policy execution flow.

Chapter 9 ■ OAuth 2.0 Profiles

146

XACML and OAuth Token Introspection
The token-introspection endpoint only returns metadata about the token. It isn’t supposed to do any sort of access
control other than checking the token’s status. Access control needs to happen at the resource-server end. The
resource server can build a XACML request from the introspection response and talk to a XACML policy decision
point. If it returns PERMIT, the API gateway can route the request to the resource server. The API gateway, as shown in
Figure 9-3, acts as a security gateway that does all authentication and authorization centrally.

PAPAdministrator

Defines Policies

PDP PIP

Retreives Attributes

Policy StoreWrites (Stores) Policies

Loads Policies

Attribute Request

Attributes

XACML Response

XACML Request

Resource Request If PermitsPEP Resource

Attribute
Store

1

2

5

6

7

8

3

4

Figure 9-2.  XACML Runtime Execuction

Chapter 9 ■ OAuth 2.0 Profiles

147

Let’s take the following token-introspection response as an example. This is returned from the introspection
endpoint of the OAuth authorization server to the API gateway:
 
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
{
 "active": true,
 "client_id":"s6BhdRkqt3",
 "scope": "read write dolphin",
 "sub": "2309fj32kl",
 "aud": "http://my-resource/*"
 }
 

With this response, you can generate the following XACML request. Table 9-1 shows the relationship between
the introspection response and the XACML request attributes. In addition to the introspection response, the API
gateway takes other attributes from the API request. The HTTP method from the request is urn:oasis:names:tc:
xacml:1.0:action:action-id, and the context of the API is urn:oasis:names:tc:xacml:1.0:resource:resource-id
in the XACML request:  

API Gateway

Policy Decision
Point

Authorization Server

Resource Server

Policy Store

LDAP

Token Store

Key Store

Figure 9-3.  XACML and OAuth token introspection

Table 9-1.  Attribute Mapping between the OAuth Introspection-Token Response and the XACML Request

Token Introspection Response XACML Request

client_id urn:oasis:names:tc:xacml:1.0:client:client-id

scope urn:oasis:names:tc:xacml:1.0:scope:scope-id

sub urn:oasis:names:tc:xacml:1.0:subject:subject-id

http://my-resource/

Chapter 9 ■ OAuth 2.0 Profiles

148

<Request>
 <Attributes Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 s6BhdRkqt3</AttributeValue>
 </Attribute>
 <Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:oauth-client">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:client:client-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 2309fj32kl</AttributeValue>
 </Attribute>
 <Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">GET</AttributeValue>
 </Attribute>
 </Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:scope">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:scope:scope-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 read write dolphin</AttributeValue>
 </Attribute>
 </Attributes>
 <Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">
 http://my-resource/accounts</AttributeValue>
 </Attribute>
 </Attributes>
</Request>
 

Once the XACML PDP receives the request, it evaulates the request against all matching policies. The XACML
engine picks the matching policies by comparing the request with the Target element of each policy. In the following
policy, the Target element looks for any XACML request that has an attribute with attribute ID urn:oasis:names:tc:
xacml:1.0:resource:resource-id and an attribute value that matches the regular expression http://my-resource/*.
Once the engine chooses a policy, it goes through each matching rule in the policy. Each rule also can have its own
Target element. In the Rule element, there can be a Condition element that defines the criteria for access control. For
example, you can check whether the subject (or the end user) belongs to a particular role:
 
<Policy>
 <Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">
 <AttributeValue

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
http://my-resource/accounts
http://my-resource/

Chapter 9 ■ OAuth 2.0 Profiles

149

 DataType="http://www.w3.org/2001/XMLSchema#string">
 http://my-resource/*</AttributeValue>
 <AttributeDesignator MustBePresent="false"
 Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 </AttributeDesignator>
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Rule RuleId="permit_rule" Effect="Permit">
 </Rule>
 <Rule RuleId="deny_rule" Effect="Deny">
 </Rule>
</Policy>

Chain Grant Type Profile
Once the audience restriction is enforced on OAuth tokens, they can only be used against the intended audience.
You can access an API with an access token that has an audience restriction corresponding to that API. If this API
wants to talk to another protected API to form the response to the client, the first API must authenticate to the second
API. When it does so, the first API can’t just pass the access token it received initially from the client. That will fail the
audience-restriction validation at the second API. The Chain Grant Type OAuth 2.0 profile defines a standard way to
address this concern.

As shown in Figure 9-4, according to the OAuth Chain Grant Type profile, the API hosted in the first resource
server must talk to the authorization server and exchange the OAuth access token it received from the client for a new
one that can be used to talk to the other API hosted in the second resource server.

Authorization Server

Resource Server

Resource Server
LDAP

Token Store

Key Store

Figure 9-4.  OAuth 2.0 Chain Grant Type profile

Note■■   The Chain Grant Type for OAuth 2.0 profile is available at
https://datatracker.ietf.org/doc/draft-hunt-oauth-chain.

http://www.w3.org/2001/XMLSchema#string
http://my-resource/*
http://www.w3.org/2001/XMLSchema#string
https://datatracker.ietf.org/doc/draft-hunt-oauth-chain

Chapter 9 ■ OAuth 2.0 Profiles

150

The chain grant type request must be generated from the first resource server to the authorization server. The
value of the grant type must be set to http://oauth.net/grant_type/chain and should include the OAuth access
token received from the client. The scope parameter should express the required scopes for the second resource in
space-delimited strings. Ideally, the scope should be the same as or a subset of the scopes associated with original
access token. If there is any difference, then the authorization server can decide whether to issue an access token.
This decision can be based on an out-of-band agreement with the resource owner:
 
POST /token HTTP/1.1
Host: authz.server.net
Content-Type: application/x-www-form-urlencoded
grant_type= http://oauth.net/grant_type/chain
oauth_token=dsddDLJkuiiuieqjhk238khjh
scope=read
 

This returns the following JSON response. The response includes an access token with a limited lifetime, but
it should not have a refresh token. To get a new access token, the first resource server once again must present the
original access token:
 
HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache
{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type" :"Bearer",
 "expires_in" :1800,
}
 

The first resource server can use the access token from this response to talk to the second resource server. Then
the second resource server talks to the authorization server to validate the access token.

Dynamic Client Registration Profile
According to the OAuth 2.0 core specification, all OAuth clients must be registered with the OAuth authorization
server and obtain a client identifier before any interactions. The aim of the Dynamic Client Registration OAuth 2.0
profile is to expose an endpoint for client registration in a standard manner to facilitate on-the-fly registrations.

Note■■   The Dynamic Client Registration OAuth 2.0 profile is available at
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg.

The dynamic-registration endpoint exposed by the authorization server can be secured or not. If it’s secured,
it can be secured with OAuth, HTTP Basic Authentication, Mutual TLS, or any other security protocol as desired by
the authorization server. The Dynamic Client Registration profile doesn’t enforce any authentication protocols over

http://oauth.net/grant_type/chain
http://oauth.net/grant_type/chain
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg

Chapter 9 ■ OAuth 2.0 Profiles

151

the registration endpoint, but it must be secured with TLS. If the authorization server decides that it should allow the
endpoint to be public and let anyone be registered, it can do so. To register a client, it must pass all its metadata to the
registration endpoint:
 
POST /register HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: authz.server.com
{
 "redirect_uris":["https://client.org/callback","https://client.org/callback2"],
 "token_endpoint_auth_method":"client_secret_basic",
 "grant_types": ["authorization_code" , "implicit"],
 "response_types": ["code" , "token"],
}
 

Let’s examine the definition of each parameter.

•	 redirect_uris: An array of URIs under the control of the client. The user is redirected to one
of these redirect_uris after the authorization grant.

•	 token_endpoint_auth_method: The supported authentication scheme when talking to the
token endpoint. If the value is client_secret_basic, the client sends its client ID and the
client secret in the HTTP Basic Authorization header. If it’s client_secret_post, the client ID
and the client secret are in the HTTP POST body. If the value is none, the client doesn’t want to
authenticate, which means it’s a public client (as in the case of the OAuth Implicit grant type).

•	 grant_types: An array of grant types supported by the client.

•	 response_types: An array of expected response types from the authorization server.

Based on the policies of the authorization server, it can decide whether it should proceed with the registration.
Even if it decides to go ahead with the registration, the authorization server need not accept all the suggested
parameters from the client. For example, the client may suggest using both authorization_code and implicit
as grant types, but the authorization server can decide what to allow. The same is true for the token_endpoint_
auth_method: the authorization server can decide what to support. The following is a sample response from the
authorization server:
 
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
{
 "client_id":"iuyiSgfgfhffgfh",
 "client_secret": "hkjhkiiu89hknhkjhuyjhk",
 "client_id_issued_at":2343276600,
 "client_secret_expires_at":2503286900,
 "redirect_uris":["https://client.org/callback", "https://client.org/callback2"],
 "grant_types": "authorization_code",
 "token_endpoint_auth_method": "client_secret_basic",
}
 

http://authz.server.com/
https://client.org/callback
https://client.org/callback2
https://client.org/callback
https://client.org/callback2

Chapter 9 ■ OAuth 2.0 Profiles

152

Let’s examine the definition of each parameter.

•	 client_id: A generated unique identifier for the client.

•	 client_secret: The generated client secret corresponding to the client_id. This is optional.
For the Implicit grant type, client_secret isn’t required.

•	 client_id_issued_at: The number of seconds since January 1, 1970.

•	 client_secret_expires_at: The number of seconds since January 1, 1970.

•	 redirect_uris: Accepted redirect_uris.

•	 token_endpoint_auth_method: The accepted authentication method for the token endpoint.

Note■■   The Dynamic Client Registration OAuth 2.0 profile is extremely useful in mobile applications. Mobile client
applications secured with OAuth have the client ID and the client secret baked into the application. These are the same
for all installations for a given application. If a given client secret is compromised, that will affect all installations, and
rogue client applications can be developed using the stolen keys. These rogue client applications can generate more
traffic on the server and exceed the legitimate throttling limit, hence causing a denial of service attack. With dynamic
client registration, you need not set the same client ID and client secret for all installations. During the installation
process, the application can talk to the authorization server’s registration endpoint and generate a client ID and a client
secret per installation.

Token Revocation Profile
Two parties can perform OAuth token revocation. The resource owner should be able to revoke an access token
issued to a client, and the client should be able to revoke an access token or a refresh token it has acquired. The Token
Revocation OAuth 2.0 profile addresses the latter. It introduces a standard token-revoke endpoint at the authorization
server end. To revoke an access token or a refresh token, the client must notify the revoke endpoint.

Note■■   In October 2013, there was an attack against Buffer (a social media management service that can be used to
cross-post between Facebook, Twitter, and others). Buffer was using OAuth to access user profiles in Facebook and Twit-
ter. Once Buffer detected that it was under attack, it revoked all its access keys from Facebook, Twitter, and other social
media sites, which prevented attackers from getting access to users’ Facebook and Twitter accounts.

The cient must initiate the token-revocation request. The client must authenticate to the authorization server
via HTTP Basic Authentication (with its client ID and client secret) and then talk to the revoke endpoint. The
request should consist of either the access token or the refresh token and then a token_type_hint that informs the
authorization server about the type of the token (access token or refresh token). This parameter may not be required,
but the authorization server can optimize its search criteria using it.

Note■■   The OAuth 2.0 Token Revocation profile is defined under RFC 7009 and is available at
https://tools.ietf.org/html/rfc7009.

https://tools.ietf.org/html/rfc7009

Chapter 9 ■ OAuth 2.0 Profiles

153

Here is an sample request:
 
POST /revoke HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSdadsdI9iuiaHk99kjkh
token=dsd0lkjkkljkkllkdsdds&token_type_hint=access_token
 

In response to this request, the authorization server first must validate the client credentials and then proceed with
the token revocation. If the token is a refresh token, the authorization server must invalidate all the access tokens issued
for the authorization grant associated with the refresh token. If it’s an access token, it’s up to the authorization server
to decide whether to revoke the refresh token. In most cases, it’s ideal to revoke the refresh token, too. Once the token
revocation is completed successfully, the authorization server must send an HTTP 200 status code back to the client.

REVOKING A SALESFORCE ACCESS TOKEN

Salesforce has support for the OAuth 2.0 Token Revocation profile. In this exercise, you see how to revoke an
access token issued by Salesforce. This assumes you already have a client ID, a client secret, and an access token.

Note■■   To register an application with Salesforce and obtain a client ID and a client secret, follow the steps in the
exercise “Registering a Client Application with Salesforce” in Chapter 7. To get an access token from Salesforce, follow the
steps in the exercise “Getting an Access Token from the Salesforce Web Server Authentication Flow,” also in Chapter 7.

Say your client ID is
3MVG9Y6d_Btp4xp5jz7MvysvlXtY44T2PFwadEeJTB6EC1wy0uakCU3rNvRx7vNVNbT40veMfjVDoz569_nlK,
your client secret is 3623940361107861841, and the access token is
00D90000000m0Zi!ARsAQMhPVU5k8tqz926Nyo2MCU1ZmfYgvsNPk31xGPBfmfRYdG8DvRKsgP4
Eld1gFuel59sjYTMRh262Udj6KVl5wTeo4RMT. The following cURL command revokes the access token:
 
curl https://login.salesforce.com/services/oauth2/revoke?
token='00D90000000m0Zi!ARsAQMhPVU5k8tqz926Nyo
 2MCU1ZmfYgvsNPk31xGPBfmfRYdG8DvRKsgP
 4Eld1gFuel59sjYTMRh262Udj6KVl5wTeo4RMT' 

Note■■   The Salesforce token-revocation endpoint isn’t protected. Anyone who has access to the access token can
revoke the token.

Summary
OAuth profiles help to build the ecosystem around OAuth 2.0. This chapter focused on four key OAuth 2.0 profiles:
the Token Introspection profile, the Chain Grant Type profile, the Dynamic Client Registration profile, and the Token
Revocation profile.

In the next chapter, we will take a deeper look at the User Managed Access (UMA) OAuth 2.0 profile.

http://server.example.com/
https://login.salesforce.com/services/oauth2/revoke

155

Chapter 10

User Managed Access (UMA)

User Managed Access (UMA, pronounced “OOH-mah”) is an OAuth 2.0 profile. OAuth 2.0 decouples the resource
server from the authorization server. UMA takes one step forward: it lets you control a distributed set of resource
servers from a centralized authorization server. It also enables the resource owner to define a set of policies at the
authorization server, which can be evaluated at the time a client is granted access to a protected resource. This
eliminates the need for the resource owner’s presence to approve access requests from arbitrary clients or requesting
parties. The authorization server can make the decision based on the policies defined by the resource owner.

Note■■   The historic blog post “ProtectServe News: User-Managed Access Group,” by Eve Maler, announcing the
launch of the UMA working group under the Kantara Initiative, is available at www.xmlgrrl.com/blog/2009/07/20/
protectserve-news-user-managed-access-group/.

ProtectServe
UMA has its roots in the Kantara Initiative. The Kantara Initiative is a non-profit professional association focused on
building digital identity management standards. The first meeting of the UMA working group was held on August
6, 2009. There were two driving forces behind UMA: ProtectServe and vendor relationship management (VRM).
ProtectServe is a standard that was heavily influenced by VRM. The goal of ProtectServe was to build a permissioned
data-sharing model that was simple, secure, efficient, RESTful, powerful, OAuth-based, and system-identity agnostic.
ProtectServe defines four parties in its protocol flow: the user, the authorization manager, the service provider,
and the consumer.

The service provider (SP) manages the user’s resources and exposes them to the rest of the world. The
authorization manager (AM) keeps track of all service providers associated with a given user. The user is the resource
owner, who introduces all their service providers to the authorization manager and builds access-control policies
that define the basis on which to share resources with others. The consumer consumes the user’s resources via the SP.
Before consuming any services or resources, the consumer must request an access grant from the AM. The requested
access grant is evaluated against the policies defined on the associated service by its owner, at the AM. ProtectServe
uses OAuth 1.0 as the protocol for access delegation.

The steps in the ProtectServe protocol flow are as follows:

	 1.	 The user or the resource owner introduces the SP to the AM (see Figure 10-1):

a.	 The user provides the metadata URL of the AM to the SP.

b.	 The SP talks to the metadata endpoint of the AM and gets details related to the
consumer-key issuer, the request-token issuer, the access-token issuer, and the
associated policies.

http://www.xmlgrrl.com/blog/2009/07/20/protectserve-news-user-managed-access-group/
http://www.xmlgrrl.com/blog/2009/07/20/protectserve-news-user-managed-access-group/

Chapter 10 ■ User Managed Access (UMA)

156

c.	 The SP initiates an OAuth 1.0 flow by requesting an OAuth request token from the
request-token issuer (which could be the same AM).

d.	 The AM generates an authorization-request token and sends it back to the SP.

e.	 The SP redirects the user to the AM with a token reference, to get it authorized.

f.	 Once authorized by the user, the authorization manager returns the authorized
request token to the SP.

g.	 To complete the OAuth 1.0 flow, the SP exchanges the authorized request token for an
access token, with the AM.

h.	 Once the OAuth flow is completed, the SP talks to the AM endpoint (which is secured
with OAuth 1.0) to get a SP handle.

i.	 The AM validates the OAuth signature and, once verified, issues a SP handle to the
SP. A SP handle is a unique identifier generated by the AM to identify the SP in future
communications.

Metadata Endpoint

Service Provider Authorization Manager

Get metadata (token endpoints & policies)

Get consumer key and consumer secret

Get authorized request token

Get access token

Get service provider handle

Consumer Key
Issuer Endpoint

Request Token
Issuer Endpoint

Access Token
Issuer Endpoint

Authorization
Manager Endpoint

R1

R2

R3

R4

Figure 10-1.  The service provider bootstraps trust with the authorization manager. R1, R2, R3, and R4 represent resources

That completes the initial step in the ProtectServe protocol flow.

Chapter 10 ■ User Managed Access (UMA)

157

Note■■   The service provider handle is a key that uniquely identifies the service provider at the authorization manager.
This information is publicly available. A given service provider can have multiple service provider handles—one per each
associated authorization manager. 

	 2.	 Each consumer who wants to get access to protected resources must be provisioned with
corresponding consumer keys:

a.	 The consumer tries to access a protected resource hosted in a SP.

b.	 The SP detects the unauthenticated access attempt and returns an HTTP 401 status
code with required details to get the SP metadata (see Figure 10-2).

Metadata Endpoint

Service ProviderConsumer

HTTP GET R1

HTTP status code 401

Get service provider handle and the corresponding
authorization manager endpoint

R1

Figure 10-2.  The consumer is rejected by the service provider with a 401 response. R1 represents a resource

c.	 With the details in the 401 response, the consumer talks to the SP’s metadata endpoint
(see Figure 10-3).

Chapter 10 ■ User Managed Access (UMA)

158

d.	 The SP metadata endpoint returns the SP handle (which is registered at the AM) and
the corresponding AM endpoint.

e.	 The consumer talks to the AM endpoint to obtain a consumer key and a
consumer secret.

f.	 The consumer requests an access token from the AM, with its consumer key and the SP
handle. The request must be digitally signed by the corresponding consumer secret.

g.	 The AM validates the parameters in the access-token request and issues an access
token and a token secret to the consumer.

	 3.	 A consumer with a valid access token can access the protected resource hosted in the SP
(see Figure 10-4):

a.	 The consumer tries to access the protected resource in the SP with its access token,
signed with the access-token secret.

b.	 The SP talks to the AM and gets the secret key corresponding to the consumer’s access
token. If required, the SP can store it locally.

c.	 The SP validates the signature of the request using the access-token secret.

d.	 If the signature is valid, the SP talks to the policy-decision endpoint of the AM, passing
the access token and the SP handle. The request must be digitally signed by the
corresponding access-token secret.

e.	 The AM first validates the request, next evaluates the corresponding policies set by the
user or the resource owner, and then sends the decision to the SP.

f.	 If the decision is a Deny, the location of the terms is returned to the SP, and the SP
returns the location to the consumer with a 403 HTTP status code.

Metadata Endpoint

Consumer Authorization Manager

Get metadata (token endpoints & policies)

Get consumer key and consumer secret

Get authorized request token

Get access token

Consumer Key
Issuer Endpoint

Request Token
Issuer Endpoint

Access Token
Issuer Endpoint

Figure 10-3.  The consumer gets an access token from the authorization manager

Chapter 10 ■ User Managed Access (UMA)

159

g.	 The consumer requests the terms by talking to the terms endpoint hosted in the AM.
The request includes the consumer key, signed with the consumer secret.

h.	 When the consumer receives the terms, it evaluates them and talks to the AM with
additional information to prove its legitimacy. This request includes the consumer
key and is signed with the consumer secret.

i.	 The AM evaluates the additional information and claims provided by the consumer.
If those meet the required criteria, the AM creates an agreement resource and sends
the location of the agreement resource to the consumer.

j.	 If this requires the user’s consent, the AM must send it for the user’s approval before
sending the location of the agreement resource.

k.	 Once the consumer receives the location of the agreement resource, it can talk to
the corresponding endpoint hosted in the AM and get the agreement resource to see
the status.

Consumer

GET R1+ OAuth1.0 signature

Get OAuth token secret

Validates OAuth
signature

Evaluates
policies against the

request

Can consumer access R1?

Deny + Location of Terms

Request Terms

Additional Information

Agreement Resource

Check the status of token request by talking to the Agreement Resource

Deny + Location of Terms

Service Provider Authorization Manager

Figure 10-4.  The consumer accesses a resource hosted at the service provider with valid OAuth credentials, but with
limited privileges

Chapter 10 ■ User Managed Access (UMA)

160

	 4.	 Once approved by the authorization manager, the consumer can access the protected
resource with its access token and the corresponding secret key (see Figure 10-5):

a.	 The consumer tries to access the protected resource at the SP with its access token,
signed with the access-token secret.

b.	 The SP talks to the AM and gets the secret key corresponding to the consumer’s access
token. If required, the SP can store it locally.

c.	 The SP validates the signature of the request using the access-token secret.

d.	 If the signature is valid, the SP talks to the policy-decision endpoint of the AM, passing
the access token and SP handle, signed with the corresponding access-token secret.

e.	 The AM first validates the request, next evaluates the corresponding policies set by the
user or the resource owner, and then sends the decision to the SP.

f.	 If the decision is an Allow from the AM, the SP returns the requested resource to the
corresponding consumer.

g.	 The SP can cache the decision from the AM. Subsequent calls by the same consumer
for the resource can utilize the cache instead of going to the AM.

Consumer

GET R1+ OAuth1.0 signature

Get OAuth token secret

Validates OAuth
signature

Evaluates
policies against the

request

Can consumer access R1?

Allow

Allow

Service Provider Authorization Manager

Figure 10-5.  The consumer accesses a resource hosted at the SP with valid OAuth credentials and with required privileges

UMA and OAuth
Over the years, ProtectServe evolved into UMA. ProtectServe used OAuth 1.0 to protect its APIs, and UMA moved from
OAuth 1.0 to OAuth WRAP to OAuth 2.0. The UMA specification, which was developed under the Kantara Initiative for
almost three years, was submitted to the IETF OAuth working group on July 9, 2011 as a draft recommendation for a
user-managed data access protocol.

Chapter 10 ■ User Managed Access (UMA)

161

UMA Architecture
The UMA architecture has five main components (see Figure 10-6): the resource owner (analogous to the user in
ProtectServe), the resource server (analogous to the service provider in ProtectServe), the authorization server
(analogous to the authorization manager in ProtectServe), the client (analogous to the consumer in ProtectServe),
and the requesting party. These five components interact with each other during the three phases as defined in the
UMA core specification.

Resource Server Authorization Server

Protection API

Authorization API

Client

AAT

RPT

PAT

Requesting Party

Protected
Resource

Resource Owner

Figure 10-6.  UMA high-level architecture

UMA Phases
The first phase of UMA is to protect the resource. The resource owner initiates this phase by introducing the resource
servers associated with him or her to a centralized authorization server.

The client initiates the second phase when it wants to access a protected resource. The client talks to the
authorization server and obtains the required level of authorization to access the protected resource that’s hosted in
the resource server. Finally, in the third phase, the client directly accesses the protected resource.

Note■■   The latest draft of the UMA core specification is available at
http://tools.ietf.org/html/draft-hardjono-oauth-umacore-09.

UMA Phase 1: Protecting a Resource
Resources are owned by the resource owner and may be at different resource servers. Let’s look at an example. Suppose
my photos are with Flickr, my calendar is with Google, and my friend list is with Facebook. How can I protect all these
resources, which are distributed across different resource servers, with a centralized authorization server? The first step

http://tools.ietf.org/html/draft-hardjono-oauth-umacore-09

Chapter 10 ■ User Managed Access (UMA)

162

is to introduce the centralized authorization server to Flickr, Google, and Facebook—to all the resource servers. The
resource owner must do this. The resource owner can log in to each resource server and provide the authorization-server
configuration endpoint to each of them. The authorization server must provide its configuration data in JSON format.

The following is a set of sample configuration data. The data in this JSON format should be understood by any of
the resource servers that support UMA. This section digs into the details of each configuration element as you proceed:
 
{
 "version":"1.0",
 "issuer":"https://auth.server.com",
 "pat_profiles_supported":["bearer"],
 "aat_profiles_supported":["bearer"],
 "rpt_profiles_supported":["bearer"],
 "pat_grant_types_supported":["authorization_code"],
 "aat_grant_types_supported":["authorization_code"],
 "claim_profiles_supported":["openid"],
 "dynamic_client_endpoint":"https://auth.server.com/dyn_client_reg_uri",
 "token_endpoint":"https://auth.server.com/token_uri",
 "user_endpoint":"https://auth.server.com/user_uri",
 "resource_set_registration_endpoint":"https://auth.server.com/rs/rsrc_uri",
 "introspection_endpoint":"https://auth.server.com/rs/status_uri",
 "permission_registration_endpoint":"https://auth.server.com/perm_uri",
 "rpt_endpoint":"https://auth.server.com/rpt",
 "authorization_request_endpoint":"https://auth.server.com/authorize"
}
 

Once the resource server is introduced to the authorization server via its configuration data endpoint, the
resource server can talk to the dynamic client-registration endpoint (dynamic_client_endpoint) to register itself at
the authorization server.

Note■■   The Dynamic Client Registration OAuth 2.0 profile is available at https://datatracker.ietf.org/doc/
draft-ietf-oauth-dyn-reg.

The dynamic client-registration endpoint exposed by the authorization server can be secured or not. It can
be secured with OAuth, HTTP Basic Authentication, Mutual TLS, or any other security protocol as desired by the
authorization server. The Dynamic Client Registration profile doesn’t enforce any authentication protocols over the
registration endpoint, but it must be secured with TLS. If the authorization server decides to allow the endpoint to be
public and let anyone be registered, it can do so. To register a client, it has to pass all its metadata to the registration
endpoint. Here’s a sample JSON message for client registration:
 
POST /register HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: authz.server.com
{
 "redirect_uris":["https://client.org/callback","https://client.org/callback2"],
 "token_endpoint_auth_method":"client_secret_basic",
 "grant_types": ["authorization_code" , "implicit"],
 "response_types": ["code" , "token"],
}
 

https://auth.server.com/
https://auth.server.com/dyn_client_reg_uri
https://auth.server.com/token_uri
https://auth.server.com/user_uri
https://auth.server.com/rs/rsrc_uri
https://auth.server.com/rs/status_uri
https://auth.server.com/perm_uri
https://auth.server.com/rpt
https://auth.server.com/authorize
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg
http://authz.server.com/
https://client.org/callback
https://client.org/callback2

Chapter 10 ■ User Managed Access (UMA)

163

A successful client registration results in the following JSON response, which includes the client and the client
secret to be used by the resource server:
 
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
{
 "client_id":"iuyiSgfgfhffgfh",
 "client_secret": "hkjhkiiu89hknhkjhuyjhk",
 "client_id_issued_at":2343276600,
 "client_secret_expires_at":2503286900,
 "redirect_uris":["https://client.org/callback", "https://client.org/callback2"],
 "grant_types": "authorization_code",
 "token_endpoint_auth_method": "client_secret_basic",
} 

Note■■   You aren’t required to use the Dynamic Client Registration API. Resource servers can use any method they
prefer to register at the authorization server. The registration at the authorization server is a one-time operation, not
per resource owner. If a given resource server has already been registered with a given authorization server, then it
doesn’t need to register again at the authorization server when the same authorization server is introduced by a different
resource owner.

Once the initial resource-server registration process is complete, the next step in the first phase is for the resource
server to obtain a protection API token (PAT) to access the Protection API exposed by the authorization server.
(You learn more on PAT in the section “Protection API,” later in the chapter.) PAT is issued per resource server, per
resource owner. In other words, each resource owner must authorize a PAT so the resource server can use it to protect
resources with the centralized authorization server. The authorization-server configuration file declares the types of
PAT tokens it supports. In the previous example, the authorization server supports OAuth 2.0 bearer tokens:
 
pat_profiles_supported":["bearer"]
 

In addition to the PAT token type, the authorization-server configuration file also declares the way to obtain the
PAT token. In this case, it should be via the OAuth 2.0 Authorization Code grant type. The resource server must initiate
an OAuth flow with the Authorization Code grant type to obtain the PAT token in bearer format:
 
"pat_grant_types_supported":["authorization_code"] 

Note■■   The scope of the PAT token must be http://docs.kantarainitiative.org/uma/scopes/prot.json.
This must be included in the scope value of the Authorization Code grant request.

https://client.org/callback
https://client.org/callback2
http://docs.kantarainitiative.org/uma/scopes/prot.json

Chapter 10 ■ User Managed Access (UMA)

164

Following is a sample Authorization Code grant request to obtain a PAT token:
 
GET /authorize?response_type=code
 &client_id=dsdasDdsdsdsdsdas
 &state=xyz
 &redirect_uri=https://flickr.com/callback
 &scope=http://docs.kantarainitiative.org/uma/scopes/prot.json
 
HTTP/1.1 Host: auth.server.com
 

Once the resource server gets the PAT token, it can be used to access the Resource Set Registration API exposed
by the authorization server, to register a set of resources that needs to be protected by the given authorization server.
The endpoint of the Resource Set Registration API is defined under the authorization server configuration file (you
learn more about the Resource Set Registration API in the section “Protection API”):
 
"resource_set_registration_endpoint":"https://auth.server.com/rs/rsrc_uri",

UMA Phase 2: Getting Authorization
According to the UMA specification, phase 2 begins after a failed access attempt by the client. The client tries to access
a resource hosted in the resource server and gets an HTTP 401 status code (see Figure 10-7). In addition to the 401
response, the resource server includes the endpoint (as_uri) of the corresponding authorization server where the
client can obtain a requesting party token (RPT):
 
HTTP/1.1 401 Unauthorized
WWW-Authenticate: UMA realm="my-realm",
 host_id="photos.flickr.com",
 as_uri=https://auth.server.com
 

No RPT found in
the request

Requesting Party (via Client) Resource Server

GET R1

401 + Authorization Endpoint

Figure 10-7.  The resource server rejects any request without an RPT

https://flickr.com/callback
http://docs.kantarainitiative.org/uma/scopes/prot.json
http://auth.server.com/
https://auth.server.com/rs/rsrc_uri
http://photos.flickr.com/
https://auth.server.com/

Chapter 10 ■ User Managed Access (UMA)

165

According to UMA, to access a protected resource, the client must present a valid RPT. (You learn more about
RPT in the section “Authorization API.") The RPT endpoint that must be included in the 401 response is declared in
the authorization server configuration file:
 
"rpt_endpoint":"https://auth.server.com/rpt"
 

Once rejected by the resource server with a 401, the client has to talk to the RPT endpoint of the authorization
server. To do so, the client must have an Authorization API token (AAT). To get an AAT, the client must be registered
at the corresponding authorization server. The client can use the OAuth Dynamic Client Registration API or any
other way it prefers to register. After it’s registered with the authorization server, the client gets a client key and a
client secret. The requesting party can be a different entity from the client. For example, the client can be a mobile
application or a web application, whereas the requesting party could be a human user who uses either the mobile
application or the web application. The ultimate goal is for the requesting party to access an API owned by a
resource owner, hosted in a resource server, via a client application. To achieve this, the requesting party should get
an RPT from an authorization server trusted by the resource server. To get an RPT, the requesting party should first
get an AAT via the client application. To get an AAT, the client must follow the OAuth grant type supported by the
authorization server to issue AAT tokens. That is declared in its authorization-server configuration file. In this case,
the authorization server supports the Authorization Code grant type to issue AAT tokens:
 
"aat_grant_types_supported":["authorization_code"]
 

Once the client is registered at the authorization server, to get an AAT on behalf of the requesting party, it must
initiate the OAuth Authorization Code grant type flow, with the following scope:
 
http://docs.kantarainitiative.org/uma/scopes/authz.json
 

Following is a sample Authorization Code grant request to obtain an AAT token:
 
GET /authorize?response_type=code
 &client_id=dsdasDdsdsdsdsdas
 &state=xyz
 &redirect_uri=https://flickr.com/callback
 &scope=http://docs.kantarainitiative.org/uma/scopes/authz.json
 
HTTP/1.1 Host: auth.server.com 

Note■■   You aren’t required to use the Dynamic Client Registration API. The client can use any method it prefers to
register at the authorization server. The registration at the authorization server is a one-time operation and not per resource
server or per requesting party. If a given client has already been registered with a given authorization server, then it doesn’t
need to register again when a different requesting party uses the same authorization server. The AAT is per client per
requesting party per authorization server and is independent from the resource server.

Once you have the AAT, upon the 401 response from the resource server, the client can talk to the authorization
server’s RPT endpoint and get the corresponding RPT (see Figure 10-8). To get an RPT, the client must authenticate with
the AAT. In the following example, the AAT is used in the HTTP Authorization header as an OAuth 2.0 bearer token:
 
POST /rpt HTTP/1.1
Host: as.example.com
Authorization: Bearer GghgjhsuyuE8heweds 

https://auth.server.com/rpt
http://docs.kantarainitiative.org/uma/scopes/authz.json
https://flickr.com/callback
http://docs.kantarainitiative.org/uma/scopes/authz.json
http://auth.server.com/
http://example.com/

Chapter 10 ■ User Managed Access (UMA)

166

Note■■   The RPT endpoint is defined under the rpt_endpoint attribute of the authorization-server configuration.

The following shows a sample response from the RPT endpoint of the authorization server. If this is the first
issuance of the RPT, it doesn’t have any authorization rights attached. It can only be used as a temporary token to get
the “real” RPT:
 
HTTP/1.1 201 Created
Content-Type: application/json
{
 "rpt": "dsdsJKhkiuiuoiwewjewkej"
}
 

When the client is in possession of the initial RPT, it can once again try to access the resource. In this case, the
RPT goes as an OAuth 2.0 bearer token in the HTTP Authorization header. Now the resource server extracts the RPT
from the resource request and talks to the Introspection API exposed by the authorization server. The Introspection
API can tell whether the RPT is valid and, if it is, the permissions associated with it. In this case, because you’re still
using the initial RPT, there are no permissions associated with it, even though it’s a valid token.

Requesting Party (via Client) Resource Server

Get RPT with AAT

Get R1 with RPT

403+
Permission Token Identifier +

Authorization Endpoint

Is RPT valid and has permissions?

Not enough permissions

Register required permissions

Permission Token Identifier

Get RPT with AAT + initial RPT + Permission Token Identifier

RPT (with permissions)

RPT

Authorization Server

Evaluates policies
against the

permission request

Figure 10-8.  The client gets an authorized RPT from the authorization server

Chapter 10 ■ User Managed Access (UMA)

167

Note■■   The Introspection API exposed by the authorization server is OAuth protected. The resource server must present
a valid PAT to access it. The PAT is another bearer token that goes in the HTTP Authorization header.

If the RPT doesn’t have enough permissions to access the resource, the resource server talks to the Client
Requested Permission Registration API exposed by the authorization server, and registers the required set of
permissions to access the desired resource. When permission registration is successfully completed, the authorization
server returns a permission-ticket identifier.

Note■■   The Client Requested Permission Registration endpoint is defined under the permission_registration_end-
point attribute in the authorization-server configuration. This endpoint, which is part of the UMA Protection API, is
secured with OAuth 2.0. The resource server must present a valid PAT to access the API.

The following is a sample request to the permission registration endpoint of the authorization server. It must
include a unique resource_set_id corresponding to the requested resource and the required set of scopes associated
with it:
 
POST /perm_uri HTTP/1.1
Content-Type: application/json
Host: auth.server.com
{
 "resource_set_id": "1122wqwq23398100",
 "scopes": [
 "http://photoz.flickr.com/dev/actions/view",
 "http://photoz.flickr.com/dev/actions/all"
]
}
 

In response to this request, the authorization server generates a permission token:
 
HTTP/1.1 201 Created
Content-Type: application/json
 
{ "ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de" }
 

When the permission ticket is created at the authorization server, the resource server sends the following
response to the client:
 
HTTP/1.1 403 Forbidden
WWW-Authenticate: UMA realm="my-realm",
 host_id=" photos.flickr.com ",
 as_uri="https://auth.server.com"
 error="insufficient_scope"
 
{ "ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de" }
 

http://auth.server.com/
http://photoz.flickr.com/dev/actions/view
http://photoz.flickr.com/dev/actions/all
http://photos.flickr.com/
https://auth.server.com/

Chapter 10 ■ User Managed Access (UMA)

168

Now the client has to get a new RPT with the required set of permissions. Unlike in the previous case, this time
the RPT request also includes the ticket attribute from the previous 403 response:
 
POST /rpt HTTP/1.1
Host: as.example.com
Authorization: Bearer GghgjhsuyuE8heweds
 
{
 "rpt": "dsdsJKhkiuiuoiwewjewkej",
 "ticket": "016f88989-f9b9-11e0-bd6f-0cc66c6004de "
} 

Note■■   The RPT endpoint of the authorization server is secured with OAuth 2.0. To access the RPT endpoint, the client
must use an AAT in the HTTP Authorization header as the OAuth bearer token.

At this point, prior to issuing the new RPT to satisfy the requested set of permissions, the authorization server
evaluates the authorization policies set by the resource owner against the client and the requesting party. If the
authorization server needs more information regarding the requesting party while evaluating the policies, it can
interact directly with the requesting party to gather the required details. Also, if it needs further approval by the
resource owner, the authorization server must notify the resource owner and wait for a response. In any of these cases,
once the authorization server decides to associate permissions with the RPT, it creates a new RPT and sends it across
to the client:
 
HTTP/1.1 201 Created
Content-Type: application/json
  
{ "rpt": "dsdJhkjhkhk879dshkjhkj877979" } 

UMA Phase 3: Accessing the Protected Resource
At the end of phase 2, the client got access to a valid RPT with the required set of permissions. Now the client can use
it to access the protected resource. The resource server again uses the Introspection API exposed by the authorization
server to check the validity of the RPT. If the token is valid and has the required set of permissions, the corresponding
resource is returned to the client.

UMA APIs
UMA defines two main APIs: the Protection API and the Authorization API (see Figure 10-9). The Protection API sits
between the resource server and the authorization server, and the Authorization API sits between the client and the
authorization server. Both APIs are secured with OAuth 2.0. To access the Protection API, the resource server must present
a PAT as the bearer token; and to access the Authorization API, the client must present an AAT as the bearer token.

http://as.example.com/

Chapter 10 ■ User Managed Access (UMA)

169

Protection API
The Protection API is the interface exposed to the resource server by the authorization server. It consists of three sub-
elements: the OAuth Resource Set Registration endpoint, the Client Requested Permission Registration endpoint, and
the OAuth Token Introspection endpoint.

Note■■   The latest draft of the OAuth Resource Set Registration specification is available at
http://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-01.

These three APIs that fall under the Protection API address different concerns. The resource server uses the
Resource Set Registration API to publish semantics and discovery properties of its resources to the authorization
server. The resource server does this in an ongoing manner. Whenever it finds a resource set that needs to be
protected by an external authorization server, it talks to the corresponding Resource Set Registration endpoint
to register new resources. This action can be initiated by the resource server itself or by the resource owner. The
following example shows a JSON request to the Resource Set Registration API of the authorization server. The value of
the name attribute should be human-readable text, and the optional icon_uri can point to any image that represents
this resource set. The scopes array should list all the scope values required to access the resource set. The type
attribute describes the semantics associated with the resource set; the value of this attribute is meaningful only to the
resource server and can be used to process the associated resources:
 
{
 "name": "John's Family Photos",
 "icon_uri": "http://www.flickr.com/icons/flower.png",
 "scopes": [

Resource Server Authorization Server

Protection API

Authorization API

Client

AAT

RPT

PAT

Requesting Party

Protected
Resource

Resource Owner

Figure 10-9.  UMA APIs

http://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-01
http://www.flickr.com/icons/flower.png

Chapter 10 ■ User Managed Access (UMA)

170

 "http://photoz.flickr.com/dev/scopes/view",
 "http://photoz.flickr.com/dev/scopes/all"
],
 "type": "http://www.flickr.com/rsets/photoalbum"
}
 

This JSON message is also known as the resource description. Each UMA authorization server must present a
REST API to create (PUT), update (POST), list (GET), and delete (DELETE) resource-set descriptions. The resource server
can utilize this endpoint either during phase 1 or in an ongoing manner.

The resource server accesses the Client Requested Permission Registration endpoint during phase 2 of UMA flow.
The resource server uses this API to inform the authorization server about the level of permissions required for the
client to access the desired resource. The resource server uses the Introspection API to check the validity of the RPT.

Note■■   The OAuth 2.0 Token Introspection Internet draft is available at
https://datatracker.ietf.org/doc/draft-richer-oauth-introspection/.

Authorization API
The Authorization API is the interface between the client and the authorization server. The main responsibility of this
API is to issue RPTs.

The Role of UMA in API Security
At the time of this writing, UMA is an emerging and promising standard with very few implementations. At its core, it
presents a wide range of practical use cases. Even though it hasn’t being used widely, the role of UMA in API security
shouldn’t be underestimated. UMA is the right model to control access in a centralized manner to APIs owned by a
single entity but distributed across different servers.

Note■■   UMA earned the Best Innovation in Information Security Award in 2014 from the European Identity & Cloud
Conference (https://kantarainitiative.org/uma-takes-home-award-from-eic-2014/).

Summary
This chapter focused on User Managed Access (UMA), which is an emerging standard built on top of the OAuth 2.0
core specification as a profile. UMA has its roots in ProtectServe, which is built on top of OAuth 1.0 and was discussed
at the beginning of the chapter. UMA still has very few vendor implementations, but it promises to be a highly
recognized standard in the near future. It’s highly recommended that you keep an eye on the Kantara foundation and
its UMA initiatives.

In the next chapter, we will delve into how to access and secure APIs beyond enterprise borders.

http://photoz.flickr.com/dev/scopes/view
http://photoz.flickr.com/dev/scopes/all
http://www.flickr.com/rsets/photoalbum
https://datatracker.ietf.org/doc/draft-richer-oauth-introspection/
https://datatracker.ietf.org/doc/draft-richer-oauth-introspection/
https://kantarainitiative.org/uma-takes-home-award-from-eic-2014/

171

Chapter 11

Federation

Recent research performed by Quocirca confirms that many businesses now have more external users who interact
with enterprise applications than internal ones. In Europe, 58% of businesses transact directly with users from other
firms and/or consumers. In the UK alone, the figure is 65%.

If you look at recent history, most enterprises today grow via acquisitions, mergers, and partnerships. In the
United States alone, the volume of mergers and acquisitions totaled $865.1 billion in the first nine months of 2013,
according to Dealogic. That’s a 39 percent increase over the same period of the previous year, and the highest
nine-month total since 2008. What does this mean for API security? It indicates that you need to have the ability to
deal with multiple heterogeneous security systems across borders.

Enabling Federation
Federation, in the context of API security, is about propagating user identities across distinct identity-management
systems or distinct enterprises. Let’s start with a simple use case where you have an API exposed to your partners.
How would you authenticate users from different partners? These users belong to the external partners and are
managed by them. HTTP Basic Authentication won’t work. You don’t have access to the external users’ credentials
and, at the same time, you don’t dare expose an LDAP or a JDBC connection outside your firewall to external parties.
Asking for usernames and passwords simply doesn’t work in a federation scenario. Would OAuth 2.0 work? To access
an API secured with OAuth, the client must present an access token issued by the owner of the API. Users from
external parties have to authenticate first with the OAuth authorization server and then obtain an access token.

Neither the Authorization Code grant type nor the Implicit grant type mandates how to authenticate users at the
authorization server. It’s up to the authorization server to decide. If the user is local to the authorization server, then
it can use a username and password or any other direct authentication protocol. If the user is from an external entity,
then you have to use some kind of brokered authentication.

Brokered Authentication
With brokered authentication, at the time of authentication, the authorization server need not trust each and every
individual user from external parties. Instead, it can trust a broker from the given domain. Each external party should
have a trust broker whose responsibility is to authenticate its own users (possibly through direct authentication) and
then pass the authentication decision back to OAuth authorization server in a reliable and trusted manner. The trust
relationship between the broker and the OAuth authorization server (or between two federation domains) must
be established out of band. In other words, it has to be established with a prior agreement between two parties. In
most scenarios, trust between different entities is established through X.509 certificates. Let’s walk through a sample
brokered-authentication use case.

Chapter 11 ■ Federation

172

Going back to OAuth principles, you need to deal with four entities in a federation scenario: the resource owner,
the resource server, the authorization server, and the client application. All these entities can reside in the same
domain or in different ones.

Let’s start with the simplest scenario first. The resource owner, resource server, and authorization server are in
a single domain, and the client application is in a different domain. For example, you’re an employee of Foo Inc. and
want to access a web application hosted by Bar Inc. Once you log in to the web application at Bar Inc., it needs to
access an API hosted by Foo Inc. on your behalf. Using OAuth terminology, you’re the resource owner, and the API
is hosted in the resource server. Both are from the Foo domain. The web application hosted by Bar Inc. is the OAuth
client application.

Figure 11-1 illustrates how brokered authentication works for OAuth client applications. The resource owner
from Foo Inc. visits the web application at Bar Inc. (step 1). To authenticate the user, the web application redirects
the user to the OAuth authorization server at Foo Inc., which is also the home domain of the resource owner
(step 2). To use the OAuth Authorization Code grant type, the web application also needs to pass its client ID
along with the authorization code grant request during the redirection. At this time, the authorization server won’t
authenticate the client application and will only validate its existence. In a federation scenario, the authorization
server need not trust every individual application (or OAuth client); rather, it trusts the corresponding domain. The
authorization server accepts authorization grant requests from any client that comes from a trusted domain. This also
avoids the cost of client registration. You don’t need to register each client application from Foo Inc.—instead, you can
build a trust relationship between the authorization server from Foo Inc. and the trust broker from Bar Inc. During the
authorization code grant phase, the authorization server only needs to record the client ID. It doesn’t need to validate
the client’s existence.

Bar Inc.

Trust Broker

Authenticate

4
Web Application

OAuth Authorization Code

Redirects user

Signed Assertion

access
token

Resource Owner

OAuth
Authorization

Server

Foo Inc.

3

2

7

5

6

1

code + signed assertion

Figure 11-1.  Brokered authentication for OAuth client applications

Note■■  T he OAuth client identifier (ID) isn’t treated as a secret. It’s publicly visible to anyone.

Once the client application gets the authorization code from the authorization server (step 3), the next step is
to exchange it for a valid access token. This step requires client authentication. Because the authorization server
doesn’t trust each individual application, the web application must first authenticate to its own trust broker in its own

Chapter 11 ■ Federation

173

domain (step 4) and get a signed assertion (step 5). This signed assertion can be used as a token of proof against the
authorization server in Foo Inc. The authorization server validates the signature of the assertion and, if it’s signed
by an entity it trusts, returns the corresponding access token to the client application (steps 6 and 7). The client
application can use the access token to access the APIs in Foo Inc. on behalf of the resource owner, or it can talk to a
user endpoint at Foo Inc. to get more information about the user.

Note■■  T he definition of assertion, according to the Oxford English Dictionary, is: “a confident and forceful statement of
fact or belief.” The fact or belief here is that the entity that brings this assertion is an authenticated entity at the trust broker.
If the assertion isn’t signed, anyone in the middle can alter it. Once the trust broker (or the asserting party) signs the
assertion with its private key, no one in the middle can alter it. If it’s altered, any alterations can be detected at the authorization
server during signature validation. The signature is validated using the corresponding public key of the trust broker.

SECURITY ASSERTION MARKUP LANGUAGE (SAML)

Security Assertion Markup Language (SAML) is an OASIS standard for exchanging authentication, authorization,
and identity-related data between interested parties in an XML-based data format. SAML 1.0 was adopted as
an OASIS standard in 2001, and in 2002 SAML 1.1 was ratified as an OASIS standard. At the same time, the Liberty
Alliance donated its Identity Federation Framework to OASIS. SAML 2.0 became an OASIS standard in 2005 by
converging SAML 1.1, Liberty Alliance’s Identity Federation Framework, and Shibboleth 1.3. SAML 2.0 has four
basic elements:

•	 Assertions: Authentication, Authorization, and Attribute assertions.

•	 Protocol: Request and Response elements to package SAML assertions.

•	 Bindings: How to transfer SAML messages between interested parties. HTTP binding and SOAP
binding are two examples. If the trust broker uses a SOAP message to transfer a SAML assertion,
then it has to use SOAP binding for SAML.

•	 Profiles: How to aggregate the assertions, protocol, and bindings to address a specific use case.
A SAML 2.0 Web Single Sign-On (SSO) profile defines a standard way to establish SSO between
different service providers via SAML.

Note■■   The blog post at http://blog.facilelogin.com/2011/11/depth-of-saml-saml-summary.html provides a
high-level overview of SAML.

SAML 2.0 Profile for OAuth: Client Authentication
To achieve client authentication with the SAML 2.0 profile for OAuth 2.0, you can use the parameter client_assertion_type
with the value urn:ietf:params:oauth:client-assertion-type:saml2-bearer in the access-token request
(see step 6 in Figure 11-1). The OAuth flow starts from step 2.

http://blog.facilelogin.com/2011/11/depth-of-saml-saml-summary.html

Chapter 11 ■ Federation

174

Now let’s dig into each step. The following shows a sample authorization code grant request initiated by the web
application at Bar Inc.:
 
GET /authorize?response_type=code
 &client_id=wiuo879hkjhkjhk3232
 &state=xyz
 &redirect_uri=https://bar.com/cb
HTTP/1.1 
Host: auth.foo.com
 

This results in the following response, which includes the requested authorization code:
 
HTTP/1.1 302 Found
Location: https://bar.com/cb?code=SplwqeZQwqwKJjklje
 &state=xyz
 

So far it’s the normal OAuth authorization code flow. Now the web application has to talk to the trust broker in its
own domain to obtain a SAML assertion. This step is outside the scope of OAuth. Because this is machine-to-machine
authentication (from the web application to the trust broker), you can use a SOAP-based WS-Trust protocol to obtain
the SAML assertion. The web application need not do this each time a user logs in; it can be a one-time operation
governed by the lifetime of the SAML assertion. The following is a sample SAML assertion obtained from the trust
broker”
 
<?xml version="1.0" encoding="UTF-8"?>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 ID="_cd3649b3639560458bc9d9b33dfee8d21378409114655"
 IssueInstant="2013-09-05T19:25:14.654Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 bar.com
 </saml:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo></ds:SignedInfo>
 <ds:SignatureValue></ds:SignatureValue>
 <ds:KeyInfo></ds:KeyInfo>
 </ds:Signature>
 <saml:Subject xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 18982198kjk2121
 </saml:NameID>
 <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:SubjectConfirmationData NotOnOrAfter="2013-09-05T19:30:14.654Z"
 Recipient="https://foo.com/oauth2/token"/>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2013-09-05T19:25:14.654Z" NotOnOrAfter="2013-09-05T19:30:14.654Z"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:AudienceRestriction xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:Audience>https://foo.com/oauth2/token</saml:Audience>

https://bar.com/cb
https://bar.com/cb?code=SplwqeZQwqwKJjklje
http://www.w3.org/2000/09/xmldsig
https://foo.com/oauth2/token
https://foo.com/oauth2/token

Chapter 11 ■ Federation

175

 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2013-09-05T19:25:14.655Z"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:AuthnContext xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified
 </saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
</saml:Assertion>
 

To use this SAML assertion in an OAuth flow to authenticate the client, it must adhere to following rules:

The assertion must have a unique identifier for the •	 Issuer element, which identifies the
token-issuing entity.

The assertion must have a •	 NameID element inside the Subject element that uniquely
identifies the client application. This is treated as the client ID of the client application at the
authorization server.

The •	 SubjectConfirmation method must be set to urn:oasis:names:tc:SAML:2.0:cm:bearer.

If the assertion issuer authenticates the client, then the assertion must have a single •	
AuthnStatment.

Note■■   WS-Trust is an OASIS standard for SOAP message security. WS-Trust, which is built on top of the WS-Security
standard, defines a protocol to exchange identity information, and it’s wrapped in a token (SAML), between two trust
domains. The blog post at http://blog.facilelogin.com/2010/05/ws-trust-with-fresh-banana-service.html
explains WS-Trust at a high level. The latest WS-Trust specification is available at
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html.

Once the client web application gets the SAML assertion from the trust broker, it has to base64url-encode the
assertion and send it to the authorization server along with the access token request. In the following sample HTTP
POST message, client_assertion_type is set to urn:ietf:params:oauth:client-assertion-type:saml2-bearer,
and the base64url-encoded SAML assertion is set to the client_assertion parameter:

Note■■   Base64url encoding is defined in RFC 4648, http://tools.ietf.org/html/rfc4648. 

POST /token HTTP/1.1
Host: auth.foo.com
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code&code=SplwqeZQwqwKJjklje
&client_assertion_type=urn:ietf:params:oauth:client-assertion-type:saml2-bearer
&client_assertion=HdsjkkbKLew...[omitted for brevity]...OT
 

http://blog.facilelogin.com/2010/05/ws-trust-with-fresh-banana-service.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://tools.ietf.org/html/rfc4648

Chapter 11 ■ Federation

176

Note■■  T he SAML 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants is available at
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-20.

Once the authorization server receives the access-token request, it validates the SAML assertion. If it’s valid, an
access token is issued, along with a refresh token.

SAML 2.0 Profile for OAuth: Grant Type
The previous section explained how to use a SAML assertion to authenticate a client application. That is one
federation use case that falls under the context of OAuth. There the trust broker was running inside Bar Inc., where the
client application was running. In the other use case, the end user authenticates to the web application with a SAML
assertion. A trust broker in the user’s domain must issue this assertion. The client application uses this assertion to
obtain an access token to access an API on behalf of the logged-in user.

Figure 11-2 illustrates how brokered authentication with a SAML grant type for OAuth 2.0 works. The first three
steps are outside the scope of OAuth. The resource owner first logs in to the web application owned by Bar Inc. via
SAML 2.0 Web SSO. The SAML 2.0 Web SSO flow is initiated by the web application by redirecting the user to the
SAML identity provider at Foo Inc. (step 2). Once the user authenticates to the SAML identity provider, the SAML
identity provider creates a SAML response (which wraps the assertion) and sends it back to the web application (step 3).
The web application validates the signature in the SAML assertion and, if a trusted identity provider signs it, allows the
user to log in to the web application. Once the user logs in to the web application, the web application has to exchange
the SAML assertion for an access token by talking to its own internal authorization server (steps 4 and 5). The way to
do this is defined in the SAML 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants specification.

Bar Inc.

Authorization
Server

Web Application

SAML Assertion

SAML Assertion

Redirects user

Resource Owner

SAML Identity
Provider (Trust

Broker)

Foo Inc.

3

2

4 5

1

Access Token

Figure 11-2.  Brokered authentication with the SAML grant type for OAuth 2.0

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer-20

Chapter 11 ■ Federation

177

The following is a sample POST message from the web application to the authorization server. There the value
of grant_type must be urn:ietf:params:oauth:grant-type:saml2-bearer, and the base64url-encoded SAML
assertion is set to the assertion parameter:

Note■■  N o refresh tokens are issued under the SAML Bearer grant type. The lifetime of the access token should not
exceed the lifetime of the SAML bearer assertion by a significant amount. 

POST /token HTTP/1.1
Host: auth.bar.com
Content-Type: application/x-www-form-urlencoded
grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer
&assertion=QBNhbWxwOl...[omitted for brevity]...OT4
 

This request is validated at the authorization server. The SAML assertion is once again validated via its signature;
and, if a trusted identity provider signs it, the authorization server issues a valid access token.

Note■■  T he scope of the access token issued under the SAML Bearer grant type should be set out of band by the
resource owner. Out of band here indicates that the resource owner makes a pre-agreement with the resource
server/authorization server with respect to the scope associated with a given resource when the SAML grant type is being
used. The client application can include a scope parameter in the authorization grant request, but the value of the scope
parameter must be a subset of the scope defined out of band by the resource owner. If no scope parameter is included in
the authorization grant request, then the access token inherits the scope set out of band.

Both federation use cases discussed assume that the resource server and the authorization server are running in the
same domain. If that isn’t the case, the resource server must invoke an API exposed by the authorization server to
validate the access token at the time the client tries to access a resource. If the authorization server supports the OAuth
Introspection specification (discussed in Chapter 9), the resource server can talk to the introspection endpoint and finds
out whether the token is active or not and also what scopes are associated with the token. The resource server can then
check whether the token has the required set of scopes to access the resource.

SAML 2.0 BEARER GRANT TYPE FOR OAUTH WITH WSO2 IDENTITY SERVER

In this exercise, you see how to obtain an OAuth 2.0 access token using the SAML 2.0 Bearer grant type. You run
two instances of WSO2 Identity Server: one as the SAML 2.0 identity provider (in domain Foo) and the other as the
OAuth authorization server (in domain Bar).

Note■■   WSO2 Identity Server is a free-of-charge, open source identity- and entitlement-management server, released
under the Apache 2.0 license.

Chapter 11 ■ Federation

178

Follow these steps:
1.	D ownload WSO2 Identity Server 5.0.0 from http://wso2.com/products/identity-server/,

set up the JAVA_HOME environment variable, and start the server from
wso2server.sh/wso2server.bat in WSO2_IS_HOME/bin. If WSO2 Identity Server 5.0.0
isn’t available from the main download page, you can find it at http://wso2.com/more-
downloads/identity-server/.

2.	 By default, WSO2 Identity Server starts on HTTPS port 9443. You use the default port for
the SAML 2.0 identity provider. You also need another identity server running as the OAuth
authorization server. For that, unzip the identity server zip file you downloaded before to a
different location, and change its port to start on 9445. To change the ports, open
WSO2_IS_HOME/repository/conf/carbon.xml, search for the element <Offset>, and
change its value to 2. Now you have two identity server instances running: one on port 9443,
and one on port 9445.

3.	 Let’s configure the SAML 2.0 identity provider first. Log in to https://localhost:9443 with
the default username and password: admin/admin.

4.	 First you need to add the web application running in the Bar domain as a trusted service
provider. Choose Main ➤ Service Providers ➤ Add. Provide a name, say, bar-web-app, and
click Register.

5.	 Choose Inbound Authentication Configuration ➤ SAML2 Web SSO Configuration ➤ Configure.

6.	P rovide a name for Issuer and https://localhost:9445/oauth2/token/ for the Assertion
Consumer URL. The value of Assertion Consumer URL must be equal to the OAuth token
endpoint of the OAuth authorization server running in the Bar domain.

7.	 Check Enable Assertion Signing, and check Enable Response Signing.

8.	 Check Enable Audience Restriction, type https://localhost:9445/oauth2/token/ in the
text box, and click Add Audience. This should be the value of the token endpoint of the OAuth
authorization server running in the Bar domain.

9.	 Click Update.

10.	 Click Update on the service provider page to complete the service provider registration.

11.	N ow you can start configuring the OAuth authorization server running in the Bar domain. Log
in to https://localhost:9445 with the default username and password: admin/admin.

12.	T he OAuth authorization server in the Bar domain must trust the Foo domain identity provider.
Choose Home ➤ Identity Providers ➤ Add. Provide a value for the identity provider name,
say foo.com.

13.	 Make sure the value of Alias is set to https://localhost:9445/oauth2/token/. This
should match the Audience value you set while configuring the SAML 2.0 identity provider.

14.	 Upload the public certificate of the SAML 2.0 identity provider running on port 9443 in the
field Identity Provider Public Certificate. You can download the public certificate of the WSO2
Identity Server by visiting https://localhost:9443 in Firefox: right-click the page, and
choose View Page Info ➤ Security ➤ View Certificate ➤ Details ➤ Export. Select DER as the
file format. Similar options are available in other browsers as well.

http://wso2.com/products/identity-server/
http://wso2.com/more-downloads/identity-server/
http://wso2.com/more-downloads/identity-server/

Chapter 11 ■ Federation

179

15.	 Click Federated Authenticators ➤ SAML2 Web SSO Configuration. Check Enable SAML2
Web SSO, and set localhost as the Identity Provider Entity ID. This is the default entity ID of
the SAML 2.0 identity provider running on port 9443. Enter bar.com as the Service Provider
Entity ID.

16.	 Click Register to complete the identity provider registration.

17.	I n this use case, the web application running on the Foo domain also acts as an OAuth client
to its own OAuth authorization server. To talk to the authorization server via the SAML 2.0
bearer grant type, the web application must have a client ID and a client secret.

18.	T o get an OAuth client ID and a client secret to the web application, you need to register it as
a service provider at the OAuth authorization server.

19.	 Choose Main ➤ Service Providers ➤ Add. Enter a name, say, bar-oauth-app, and click
Register.

20.	 Choose Inbound Authentication Configuration ➤ OAuth and OpenID Connect Configuration ➤
Configure.

21.	 Uncheck all grant types except SAML. Make sure the OAuth version is set to 2.0.

22.	 Copy the values of OAuth Client Key and OAuth Client Secret.

23.	 You’re all set. Now comes testing time. First you need to generate the SAML assertion.
To do that, log in to the SAML 2.0 identity provider running on port 9443, and choose
Tools ➤ SAML ➤ SAML Response Builder. Pick the Service Provider which you registered by
the issuer name, type admin in the User Name text box, and click Generate.

24.	T his generates the complete SAML response in the way that it will be sent to the web
application running in the Bar domain. You only need the Assertion part of it. Copy from
<saml2:Assertion> to </saml2:Assertion>.

25.	 You need to base64url-encode the copied assertion. Go to
http://kjur.github.io/jsjws/tool_b64uenc.html, paste the copied Assertion value,
and click Encode It. Copy the base64url-encoded string from there.

26.	T ry the following cURL command. Replace the values in bold appropriately:
 
curl -k -X POST -u "oauth client key:oauth client secret"
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8"
 -d "grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer&
 assertion=base64url encoded assertion"
 https://localhost:9445/oauth2/token

http://kjur.github.io/jsjws/tool_b64uenc.html

Chapter 11 ■ Federation

180

JWT Profile for OAuth 2.0 Client Authentication and
Authorization Grants
JSON Web Token (JWT) is a well-structured JSON message. What the SAML profile does in the XML world, the
JWT profile does in the JSON world. Both profiles address the same use cases. The following example shows how
to use a JWT assertion for OAuth client authentication. There the client_assertion_type parameter is set to
urn:ietf:params:oauth:client-assertion-type:jwt-bearer, and the client_assertion parameter is set to the
signed JWT assertion (Chapter 13 discusses JWT further):
 
POST /token HTTP/1.1
Host: auth.foo.com
Content-Type: application/x-www-form-urlencoded
grant_type=authorization_code
&code=vAZEIHjQTHuGgaSvyW9hO0RpusLzkvTOww3trZBxZpo
&client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer
&client_assertion=eyJhwsas87NiJ9.eyJpc3Mi[...omitted for brevity...].
 cCwqPo[...omitted for brevity...]
 

The following example shows how to use a JWT assertion with the JWT grant type. Here the value of the grant_
type parameter should be set to urn:ietf:params:oauth:grant-type:jwt-bearer:
 
POST /token HTTP/1.1
Host: auth.bar.com
Content-Type: application/x-www-form-urlencoded
  
grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
&assertion=eewewbGciOiJFUzewqew.eewew3Mi[...omitted for brevity...].
 ewe-ZhwP[...omitted for brevity...] 

Note■■  T he JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants is available at
http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-09.

Summary
Identity federation is about propagating user identities across boundaries. These boundaries can be between distinct
enterprises, or even distinct identity-management systems within the same enterprise. This chapter highlighted two
OAuth 2.0 profiles—SAML 2.0 grant type and JWT grant type—to build federation scenarios for API security.

The next chapter takes a closer look at the identity layer built on top of OAuth 2.0: that is, OpenID Connect.

http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer-09

181

Chapter 12

OpenID Connect

OpenID Connect was ratified as a standard by its membership on February 26, 2014. OpenID Connect provides a
lightweight framework for identity interactions in a RESTful manner. It was developed under the OpenID Foundation
and has its roots in OpenID, but it was greatly affected by OAuth 2.0.

Note■■   The announcement by the OpenID Foundation regarding the launch of the OpenID Connect standard is available
at: http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard/.

A Brief History of OpenID Connect
OpenID, which followed in the footsteps of SAML in 2005, revolutionized web authentication. Brad Fitzpatrick, the
founder of LiveJournal, initiated it. The basic principle behind both OpenID and SAML, discussed in Chapter 11,
is the same. Both can be used to facilitate web single sign-on (SSO) and cross-domain identity federation. OpenID is
more community friendly, user centric, and decentralized. Yahoo! added OpenID support in January 2008, MySpace
announced its support for OpenID in July of that same year, and Google joined the party in October. By December 2009,
there were more than 1 billion OpenID-enabled accounts. It was a huge success as a web SSO protocol.

OPENID QUICK START

How many profiles do you maintain today at different web sites? Perhaps you have one on Yahoo!, one on
Facebook, one on Google, and so on. Each time you update your mobile number or home address, either you have
to update all your profiles or you risk outdating most of your profiles. OpenID solves the problem of scattered
profiles on different web sites. With OpenID, you maintain your profile only at your OpenID provider, and all the
other sites become OpenID relying parties. These “talk” with your OpenID provider to obtain your information.

Each time you try to log in to a relying party web site; you’re redirected to your OpenID provider. At the OpenID
provider, you have to authenticate and approve the request of the relying party for your attributes. Upon approval,
you’re redirected back to the relying party with the requested attributes. This goes beyond simple attribute
sharing to facilitate decentralized SSO.

http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard/

Chapter 12 ■ OpenID Connect

182

With SSO, you only log in once at the OpenID provider. That is, a relying party redirects you the first time. After
that, your OpenID provider doesn’t ask for credentials but uses the authenticated session you created before at
the OpenID provider. This authenticated session is maintained either by a cookie until the browser is closed, or
with persistent cookies. Figure 12-1 illustrates how OpenID works.

7

5

8

3 4

9

1

2

6

Redirects to OP

End User

Relying Party

Types user’s OpenID or picks the OpenID Provider

OpenID
Provider

Figure 12-1.  OpenID protocol flow

The end user initiates the OpenID flow by typing his or her OpenID on the relying party web site (step 1). An OpenID
is a unique URL (or an XRI). For example, http://prabath.myopenid.com is an OpenID. Once the user types
his or her OpenID, the relying party has to do a discovery based on it to find out the corresponding OpenID provider
(step 2). The relying party performs an HTTP GET on the OpenID to get back the HTML text behind it. For example,
if you view the source that is behind http://prabath.myopenid.com, you’ll see the following tag. This is exactly
what the relying party sees during the discovery phase. This tag indicates what the OpenID provider is behind the
provided OpenID:
 
<link rel="openid2.provider" href="http://www.myopenid.com/server" /> 

OpenID has another way of identifying the OpenID provider, other than asking for an OpenID from the end user.
This is known as directed identity, and Yahoo!, Google, and many other OpenID providers use it. If a relying party uses
directed identity, it already knows who the OpenID provider is, so a discovery phase isn’t needed. The relying party
lists the set of OpenID providers it supports, and the user has to pick which one it wants to authenticate against.

Once the OpenID provider is discovered, the next step depends on the type of the relying party. If it’s a smart
relying party, then it executes step 3 in Figure 12-1 to create an association with the OpenID provider. During
the association, a shared secret key is established between the OpenID provider and the relying party. If a key is
already established between the two parties, this step is skipped, even for a smart relying party. A dumb relying
party always ignores step 3.

http://prabath.myopenid.com/
http://prabath.myopenid.com/
http://www.myopenid.com/server

Chapter 12 ■ OpenID Connect

183

In step 5, the user is redirected to the discovered OpenID provider. In step 6, the user has to authenticate and
approve the attribute request from the relying party. Upon approval, the user is redirected back to the relying
party. A key known only to the OpenID provider and the corresponding relying party signs this response. Once the
relying party receives the response, if it’s a smart relying party, it validates the signature itself. The key shared
during the association phase should sign the message. If it’s a dumb relying party, it directly talks to the OpenID
provider in step 8 (not a browser redirect) and asks to validate the signature. The decision is passed back to the
relying party in step 9, and that concludes the OpenID protocol flow.

OpenID and OAuth 1.0 address two different concerns. OpenID is about authentication, whereas OAuth 1.0 is
about delegated authorization. As both of these standards were gaining popularity in their respective domains, there
was interest in combining them so that it would be possible to authenticate a user and also get a token to access their
resources on their behalf in a single step.

The Google Step 2 project is the first serious effort in this direction. It introduced an OpenID extension for OAuth,
which basically takes OAuth-related parameters in the OpenID request/response. The same people who initiated the
Google Step 2 project later brought it into the OpenID Foundation.

Note■■   The Google Step 2 OpenID extension for OAuth specification is available at
http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html.

OpenID has gone through three generations to date. OpenID 1.0/1.1/2.0 was the first generation, and the OpenID
extension for OAuth is the second. OpenID Connect is the third generation of OpenID.

Note■■   Yahoo!, Google, and many other OpenID providers will discontinue their support for OpenID 2.0 by mid-2015
and migrate into OpenID Connect.

AMAZON USES OPENID!

Few have noticed that Amazon still uses (at the time of this writing) OpenID for user authentication. Check it out
yourself: go to www.amazon.com, and click the Sign In button. Then observe the browser address bar. You see
something similar to the following, which is an OpenID authentication request:
 
https://www.amazon.com/ap/signin?_encoding=UTF8
 &openid.assoc_handle=usflex
 &openid.claimed_id=
 http://specs.openid.net/auth/2.0/identifier_select
 &openid.identity=
 http://specs.openid.net/auth/2.0/identifier_select
 &openid.mode=checkid_setup
 &openid.ns=http://specs.openid.net/auth/2.0
 &openid.ns.pape=
 http://specs.openid.net/extensions/pape/1.0
 &openid.pape.max_auth_age=0
 &openid.return_to=
 https://www.amazon.com/gp/yourstore/home

http://step2.googlecode.com/svn/spec/openid_oauth_extension/latest/openid_oauth_extension.html
http://www.amazon.com/
https://www.amazon.com/ap/signin?_encoding=UTF8
http://specs.openid.net/auth/2.0/identifier_select
http://specs.openid.net/auth/2.0/identifier_select
http://specs.openid.net/auth/2.0
http://specs.openid.net/extensions/pape/1.0
https://www.amazon.com/gp/yourstore/home

Chapter 12 ■ OpenID Connect

184

Understanding OpenID Connect
Unlike the OpenID extension for OAuth, OpenID Connect was built on top of OAuth. It simply introduces an identity
layer on top of OAuth 2.0. This identity layer is abstracted into an ID token. An OAuth authorization server that
supports OpenID Connect returns an ID token along with the access token.

Note■■   See the blog entry “OpenID Connect vs. OAuth 2.0” at
http://blog.facilelogin.com/2013/11/oauth-20-vs-openid-connect.html

Anatomy of the ID Token
The ID token is the primary add-on to OAuth 2.0 to support OpenID Connect. It’s a JSON web token (JWT) that
transports authenticated user information from the authorization server to the client application. Chapter 13 delves
deeper into JWT. The structure of the ID token is defined by the OpenID Connect specification. The following shows a
sample ID token:
 
 {
 "iss":"https://auth.server.com",
 "sub":"prabath@apache.org",
 "aud":"67jjuyuy7JHk12",
 "nonce":"88797jgjg32332",
 "exp":1416283970,
 "iat":1416281970,
 "auth_time":1311280969,
 "acr":"urn:mace:incommon:iap:silver",
 "amr":"password",
 "azp":"67jjuyuy7JHk12"
 }
 

Let’s examine the definition of each attribute.

iss: The token issuer (authorization server)’s identifier in the format of an HTTPS URL with
no query parameters or URL fragments.

sub: The local identifier of the authenticated user.

aud: The audience of the token. This can be an array of identifiers, but it must have the
OAuth client ID in it; otherwise the client ID should be added to the azp parameter.

nonce: A new parameter introduced by the OpenID Connect specification to the initial
authorization grant request. In addition to the parameters defined in OAuth 2.0, the client
application can optionally include the nonce parameter. This parameter was introduced
to mitigate replay attacks. The authorization server must reject any request if it finds two
requests with the same nonce value. If a nonce is present in the authorization grant request,
then the authorization server must include the same value in the ID token. The client
application must validate the value of the nonce once it receives the ID token from the
authorization server.

exp: The token-expiration time in seconds from 1970-01-01T0:0:0Z (UTC).

iat: The token-issued time in seconds from 1970-01-01T0:0:0Z (UTC).

http://blog.facilelogin.com/2013/11/oauth-20-vs-openid-connect.html
https://auth.server.com/

Chapter 12 ■ OpenID Connect

185

auth_time: The time at which the end user authenticates with the authorization server.
If the user is already authenticated, then the authorization server won’t ask user to
authenticate back. How a given authorization server authenticates the user, and how it
manages the authenticated session, is outside the scope of OpenID Connect. A user can
create an authenticated session with the authorization server in its first login attempt
from a different application, other than the OpenID client application. In such cases, the
authorization server must maintain the authenticated time. This is the value that must be
included in the parameter auth_time.

acr: Stands for authentication context reference. The value of this parameter must be
understood by both the authorization server and the client application. It gives an
indication of the level of authentication.

amr: Stands for authentication method references. It indicates how the authorization server
authenticates the user. It may consist of an array of values. Both the authorization server
and the client application must understand the value of this parameter.

azp: Stands for authorized party. It’s needed when there is one audience (aud) and its value
is different from the OAuth client ID. The value of azp must be set to the OAuth client ID.

Note■■   The authorization server must sign the ID token, as defined in JSON Web Signature (JWS) specification.
Optionally, it can also be encrypted. Token encryption should follow the rules defined in the JSON Web Encryption (JWE)
specification. If the ID token is encrypted, it must be signed first and then encrypted. This is because signing the
encrypted text is questionable in many legal entities. Chapter 13 talks about JWT, JWS, JWD, and JWE.

OPENID CONNECT WITH WSO2 IDENTITY SERVER

In this exercise, you see how to obtain an OpenID Connect ID token along with an OAuth 2.0 access token. You run
WSO2 Identity Server as the OAuth authorization server.

Note■■   WSO2 Identity Server is a free, open source identity- and entitlement-management server, released under the
Apache 2.0 license.

Follow these steps:

1.	 Download WSO2 Identity Server 5.0.0 from http://wso2.com/products/identity-
server/, set up the JAVA_HOME environment variable, and start the server from the
wso2server.sh/wso2server.bat file in WSO2_IS_HOME/bin. If the WSO2 Identity Server
5.0.0 isn’t available from the main download page, you can find it at
http://wso2.com/more-downloads/identity-server/.

2.	 By default, the WSO2 Identity Server starts on HTTPS port 9443.

3.	 Log in to the identity server running at https://localhost:9443 with its default username
and password (admin/admin).

http://wso2.com/products/identity-server/
http://wso2.com/products/identity-server/
http://wso2.com/more-downloads/identity-server/

Chapter 12 ■ OpenID Connect

186

4.	 To get an OAuth client ID and a client secret for the client application, you need to register it
as a service provider on the OAuth authorization server. Choose Main ➤ Service Providers ➤
Add. Enter a name, say, oidc-app, and click Register.

5.	 Choose Inbound Authentication Configuration ➤ OAuth and OpenID Connect Configuration ➤
Configure.

6.	 Uncheck all the grant types except Code. Make sure the OAuth version is set to 2.0.

7.	 Provide a value for the Callback Url text box—say, https://localhost/callback—and
click Add.

8.	 Copy the values of OAuth Client Key and the OAuth Client Secret.

9.	 You use cURL here instead of a full-blown web application. First you need to get an
authorization code. Copy the following URL, and paste it into a browser. Replace the values of
client_id and redirect_uri appropriately. You’re directed to a login page where you can
authenticate with admin/admin and then approve the request by the client:
 
https://localhost:9443/oauth2/authorize?
 response_type=code&scope=openid&
 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 redirect_uri=https://localhost/callback 

Note■■   In OpenID Connect, the authorization grant request must have openid as the scope. 

10.	 Once approved, you’re redirected back to redirect_uri with the authorization code, as
shown here. Copy the value of the authorization code:
 
https://localhost/callback?code=577fc84a51c2aceac2a9e2f723f0f47f
 

11.	N ow you can exchange the authorization code for an ID token and an access token. Replace
the value of client_id, client_secret, code, and redirect_uri appropriately. The value of
–u is constructed as client_id:client_secret:
 
curl -v -X POST --basic
 -u NJ0LXcfdOW20EvD6DU0l0p01u_Ya:EsSP5GfYliU96MQ6BMrUdJ7cZoEa
 -H "Content-Type:application/x-www-form-urlencoded;
 charset=UTF-8" -k
 -d "client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 grant_type=authorization_code&
 code=577fc84a51c2aceac2a9e2f723f0f47f&
 redirect_uri=https://localhost/callback"
 https://localhost:9443/oauth2/token
 
This results in the following JSON response:
 
{
 "scope":"openid",
 "token_type":"bearer",

Chapter 12 ■ OpenID Connect

187

 "expires_in":3299,
 "refresh_token":"1caf88a1351d2d74093f6b84b8751bb",
 "id_token":"eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0=\r\n.eyJleHAiO
 jE2NjI3MTYyMzAsImF6cCI6Ik5KMExYY2ZkT1cyMEV2RD
 ZEVTBsMHAwMXVfWWEiLCJz\r\ndWIiOiJhZG1pbkBjYX
 Jib24uc3VwZXIiLCJhdWQiOiJOSjBMWGNmZE9XMjBFdk
 Q2RFUwbDBwMDF1\r\nX1lhIiwiaXNzIjoiaHR0cHM6XC9c
 L2xvY2FsaG9zdDo5NDQzXC9vYXV0aDJlbmRwb2ludHNc
 L3Rv\r\na2VuIiwiaWF0IjoxNjU5MTE2MjMwfQ==\r\n.",
 "access_token":"6cc611211a941cc95c0c5caf1385295"
}
 

12.	 The value of id_token is base64-encoded. Once it’s base64-decoded, it looks like following:
 
{
 "alg":"none",
 "typ":"JWT"
}.
{
 "exp":1667236118,
 "azp":"NJ0LXcfdOW20EvD6DU0l0p01u_Ya",
 "sub":"admin@carbon.super",
 "aud":"NJ0LXcfdOW20EvD6DU0l0p01u_Ya",
 "iss":"https://localhost:9443/oauth2endpoints/token",
 "iat":1663636118
}
 

Note■■   At the time of this writing, WSO2 Identity Server doesn’t support JWS and JWE. A set of open source libraries
that support JWS and JWE is available at http://openid.net/developers/libraries/.

OpenID Connect Request
The ID token is the heart of OpenID Connect, but that isn’t the only place where it deviates from OAuth 2.0. OpenID
Connect introduced some optional parameters to the OAuth 2.0 authorization grant request. The previous exercise
didn’t use any of those parameters. Let’s examine a sample authorization grant request with all the optional
parameters:
 
https://localhost:9443/oauth2/authorize?response_type=code
 scope=openid&
     client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 redirect_uri=https://localhost/callback&
 response_mode=.....&
 nonce=.....&
 display=....&
 prompt=....&

http://openid.net/developers/libraries/

Chapter 12 ■ OpenID Connect

188

 max_age=.....&
 ui_locales=.....&
 id_token_hint=.....&
 login_hint=.....&
 acr_value=.....
 

Let’s review the definition of each attribute.

response_mode: Determines how the authorization server sends back the parameters in
the response. This is different from the response_type parameter, defined in the OAuth 2.0
core specification. With the response_type parameter in the request, the client indicates
whether it expects a code or a token. In the case of an Authorization Code grant type, the
value of response_type is set to code, whereas with an Implicit grant type, the value of
response_type is set to token.

The response_mode parameter addresses a different concern. If the value of response_mode
is set to query, the response parameters are sent back to the client as query parameters
appended to the redirect_uri; and if the value is set to fragment, then the response
parameters are appended to the redirect_uri as a URI fragment.

nonce: Mitigates replay attacks. The authorization server must reject any request if it finds
two requests with the same nonce value. If a nonce is present in the authorization grant
request, then the authorization server must include the same value in the ID token. The
client application must validate the value of the nonce once it receives the ID token from
the authorization server.

display: Indicates how the client application expects the authorization server to display
the login page and the user consent page. Possible values are page, popup, touch, and wap.

prompt: Indicates whether to display the login or the user consent page at the authorization
server. If the value is none, then neither the login page nor the user consent page should be
presented to the user. In other words, it expects the user to have an authenticated session
at the authorization server and a preconfigured user consent. If the value is login, the
authorization server must reauthenticate the user. If the value is consent, the authorization
server must display the user consent page to the end user. The select_account option can be
used if the user has multiple accounts on the authorization server. The authorization server
must then give the user an option to select from which account he or she requires attributes.

max_age: In the ID token is a parameter that indicates the time of user authentication. The
max_age parameter asks the authorization server to compare that value with max_age. If it’s
less than (current time - max_age), the authorization server must reauthenticate the user.
When the client includes the max_age parameter in the request, the authorization server
must include the auth_time parameter in the ID token.

ui_locales: Expresses the end user’s preferred language for the user interface.

id_token_hint: An ID token itself. This could be an ID token previously obtained by the
client application. If the token is encrypted, it has to be decrypted first and then encrypted
back by the public key of the authorization server and then placed into the authentication
request. If the value of the parameter prompt is set to none, then the id_token_hint should
be present in the request, but it isn’t a requirement.

Chapter 12 ■ OpenID Connect

189

login_hint: This is an indication of the login identifier that the end user may use at the
authorization server. For example, if the client application already knows the e-mail
address or phone number of the end user, this could be set as the value of the login_hint.
This helps provide a better user experience.

acr_values: Stands for authentication context reference values. It includes a
space-separated set of values that indicates the level of authentication required at the
authorization server. The authorization server may or may not respect these values.

Note■■   All OpenID Connect authentication requests must have a scope parameter with the value openid.

Requesting User Attributes
OpenID Connect defines two ways to request user attributes. The client application can either use the initial
OpenID Connect authentication request to request attributes or else later talk to a UserInfo endpoint hosted by
the authorization server. If it uses the initial authentication request, then the client application must include the
requested claims in the claims parameter as a JSON message. The following authorization grant request asks to
include the user’s e-mail address and the given name in the ID token:
 
https://localhost:9443/oauth2/authorize?
 response_type=code&
 scope=openid&
 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 redirect_uri=https://localhost/callback&
 claims={ "id_token":
 {
 "email": {"essential": true},
 "given_name": {"essential": true},
 }
 } 

Note■■   The core OpenID Connect specification defines 20 standard user claims. These identifiers should be
understood by all of the authorization servers and client applications that support OpenID Connect. The complete set of
OpenID Connect standard claims is defined in section 5.1 of the OpenID Connect core specification, available at
http://openid.net/specs/openid-connect-core-1_0.html.

The other approach to request user attributes is via the UserInfo endpoint. The UserInfo endpoint is an
OAuth 2.0-protected resource on the authorization server. Any request to this endpoint must carry a valid OAuth
2.0 token. Once again, there are two ways to get user attributes from the UserInfo endpoint. The first approach is
to use the OAuth access token. With this approach, the client must specify the corresponding attribute scope in
the authorization grant request. The OpenID Connect specification defines four scope values to request attributes:
profile, email, address, and phone. If the scope value is set to profile, that implies that the client requests access
to a set of attributes, which includes name, family_name, given_name, middle_name, nickname, preferred_username,
profile, picture, website, gender, birthdate, zoneinfo, locale, and updated_at.

The following authorization grant request asks permission to access a user’s e-mail address and phone number:

http://openid.net/specs/openid-connect-core-1_0.html

Chapter 12 ■ OpenID Connect

190

Note■■   The UserInfo endpoint must support both HTTP GET and POST. All communication with the UserInfo endpoint
must be over Transport Layer Security (TLS). 

https://localhost:9443/oauth2/authorize?
 response_type=code&
 scope=openid phone email&
 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 redirect_uri=https://localhost/callback
 

This results in an authorization code response. Once the client application has exchanged the authorization code
for an access token, by talking to the token endpoint of the authorization server, it can use the access token it received
to talk to the UserInfo endpoint and get the user attributes corresponding to the access token:
 
GET /userinfo HTTP/1.1
Host: auth.server.com
Authorization: Bearer SJHkhew870hooi90
 

The above request to the UserInfo endpoint results in the following JSON message, which includes the user’s
e-mail address and phone number:
 
HTTP/1.1 200 OK
Content-Type: application/json
 
 {
 "phone": "94712841302",
 "email": "joe@authserver.com",
 }
 

The other way to retrieve user attributes from the UserInfo endpoint is through the claims parameter. The
following example shows how to retrieve the e-mail address of the user by talking to the OAuth-protected UserInfo
endpoint:
 
POST /userinfo HTTP/1.1
Host: auth.server.com
Authorization: Bearer SJHkhew870hooi90
 
claims={ "userinfo":
 {
 "email": {"essential": true}
 }
 } 

Note■■   Signing or encrypting the response message from the UserInfo endpoint isn’t a requirement. If it’s signed or
encrypted, then the response should be wrapped in a JWT, and the Content-Type of the response should be set to
application/jwt.

Chapter 12 ■ OpenID Connect

191

Grant Types for OpenID Connect
All the examples in this chapter so far have used an Authorization Code grant type to request an ID token—but it isn’t a
requirement. It can be Authorization Code grant type, Implicit grant type, or hybrid flow. The type of authorization grant
flow is decided by the value of response_type. For an Authorization Code grant type, the value of response_type must be
set to code, and both the ID token and access token are returned from the token endpoint of the authorization server.

For implicit flow under the context of OpenID Connect, the value of response_type can be either id_token or
id_token token (separated by a space). If it’s just id_token, then the authorization endpoint returns an ID token; if it
includes both, then both the ID token and the access token are included in the response.

The hybrid flow can use different combinations. If the value of response_type is set to code id_token (separated
by a space), then the response from the authorization endpoint includes the authorization code as well as the id_
token. If it’s code token (separated by a space), then it returns the authorization code along with an access token (for
the UserInfo endpoint). If response_type includes all three (code token id_token), then the response includes an
ID token, an access token, and the authorization code.

Table 12-1 summarizes this discussion.

Table 12-1.  Grant Types for OpenID Connect

Type of Flow response_type Tokens Returned

Authorization Code code Authorization code

Implicit id_token ID token

Implicit id_token token ID token and access token

Hybrid code id_token ID token and authorization code

Hybrid code id_token token ID token, authorization code, and access token

Hybrid code token Access token and authorization code

Note■■   When id_token is being used as the response_type in an authorization grant flow, the client application
never has access to an access token. In such a scenario, the client application can use the scope parameter to request
attributes, and those are added to the ID token.

Requesting Custom User Attributes
As discussed, OpenID Connect defines 20 standard claims. These claims can be requested via the scope parameter or
through the claims parameter. The only way to request custom-defined claims is through the claims parameter. The
following is a sample authorization grant request that asks for custom-defined claims:
 
https://localhost:9443/oauth2/authorize?
 response_type=code&
 scope=openid&
 client_id=NJ0LXcfdOW20EvD6DU0l0p01u_Ya&
 redirect_uri=https://localhost/callback&
 claims={ "id_token":
 {
 "http://apress.com/claims/email": {"essential": true},
 "http://apress.com/claims/phone": {"essential": true},
 }
 }

http://apress.com/claims/email
http://apress.com/claims/phone

Chapter 12 ■ OpenID Connect

192

OPENID CONNECT WITH GOOGLE

In this exercise, you register an OpenID Connect client application with Google and get user information via an
ID token:

1.	 Go to https://console.developers.google.com, and click Create Project. Provide an
appropriate name, and complete the registration.

2.	 Go to https://console.developers.google.com. You see the project you just created
listed. Click the project name.

3.	 Click APIs And Auth.

4.	 Click the Off button on the Calendar API to switch it to On.

5.	 Click APIs And Auth, and click Credentials.

6.	 Choose OAuth ➤ Create New Client ID, and select Web Application as the Application Type.
Provide a valid redirect URI, say, https://mycallback.com , and click Create Client ID.

7.	 Copy the value of the Client ID and Client Secret.

8.	 Copy the following URL; replacing the values of client_id and redirect_uri appropriately,
and paste it into the browser:
 
https://accounts.google.com/o/oauth2/auth?
 scope=openid email&
 state=mystate&
 redirect_uri=https://mycallback.com&
 response_type=code&
 client_id=825249835659te8qgl701kgonnomnp4sqv7erhu1211s.
 apps.googleusercontent.com&
 approval_prompt=force
 
This returns the access token to the redirect_uri with the provided state value:
 
https://mycallback.com/?
 state=mystate&
 code=4/dlfuPEHWG8QU9MaJN8vCSEpTzuYo.YlcCVmKswV4SXE-sT2ZLcbQrzK7PiQI
 

9.	 Once you have the authorization code, you need to exchange it for an access token. Run the
following cURL command with the appropriate values for code, redirect_uri, client_id,
and client_secret. The value of redirect_uri should match the value used in the
previous step:
 
curl -v -X POST
 -d "grant_type=authorization_code&
 code=4/dlfuPEHWG8QU9MaJN8vCSEpTzuYo.YlcCVmKswV4SXE-sT2ZLcbQrzK7PiQI&
 client_id=825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.
 apps.googleusercontent.com&
 client_secret=jNjXE0D922mmcFopsjJJXNJc&
 redirect_uri=https://mycallback.com"
 https://accounts.google.com/o/oauth2/token 

https://console.developers.google.com/
https://console.developers.google.com/
https://mycallback.com/
https://accounts.google.com/o/oauth2/auth?scope=openid
https://accounts.google.com/o/oauth2/auth?scope=openid
https://mycallback.com/
https://mycallback.com/?state=mystate
https://mycallback.com/?state=mystate
https://mycallback.com/
https://accounts.google.com/o/oauth2/token

Chapter 12 ■ OpenID Connect

193

This returns the access token in the following JSON response:
 
{
 "access_token":"ya29.1.AADtN_WY1SHPAYomlwrc",
 "token_type":"Bearer",
 "expires_in":3600,
 "id_token":""
}
 
The value of the id_token parameter isn’t displayed in the sample code due to its length. It’s basically a
base64-encoded JWT in three parts. Each part is separated by a dot (.). The first part up to the first dot is
the JWT header. The second part is the JWT body. The third part is the signature. Chapter 13 talks more
about JWT signatures.

The following is the base64-decoded value of the JWT header from the ID token:
 
{
 "alg":"RS256",
 "kid":"78b4cf23656dc395364f1b6c02907691f2cdffe1"
}
 
The following is the base64-decoded value of the JWT body from the ID token:
 
{
 "iss":"accounts.google.com",
 "id":"110502251158920147732",
 "sub":"110502251158920147732",
 "azp":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "email":"prabath@wso2.com",
 "at_hash":"UYIWTc0OQ8mUv1rnOXfdZw",
 "email_verified":true,
 "aud":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "hd":"wso2.com",
 "token_hash":"UYIWTc0OQ8mUv1rnOXfdZw",
 "verified_email":true,
 "cid":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "iat":1401903279,
 "exp":1401907179
} 

Note■■   The value of the at_hash parameter in the ID token is the hash value of the OAuth access token issued along
with the ID token. The hash value is calculated using the hashing algorithm (alg) defined in the JWT header. 

10.	 To obtain user information, you need to talk to the Google UserInfo endpoint with the access
token obtained in the previous step:
 
curl https://www.googleapis.com/oauth2/v1/userinfo?
 access_token=ya29.1.AADtN_WY1SHPAYomlwrc
 

https://www.googleapis.com/oauth2/v1/userinfo

Chapter 12 ■ OpenID Connect

194

This returns the following JSON response:
 
{
 "id":"104063262378861625904",
 "email":"siriwardena.prabath@gmail.com",
 "verified_email":true,
 "name":"Prabath Siriwardena",
 "given_name":"Prabath",
 "family_name":"Siriwardena",
 "link":"https://plus.google.com/104063262378861625904",
 "picture":"https://lh3.googleusercontent.com/-nA7Ndz8oYF8/AAAAAAAAAAI/
 AAAAAAAABC0/2vY1M8egglA/photo.jpg",
 "gender":"male",
 "locale":"en"
}

OpenID Connect Discovery
The beginning of the chapter discussed how OpenID relying parties discover OpenID providers through the user-
provided OpenID (which is a URL). OpenID Connect discovery addresses the same concern, but in a different way
(see Figure 12-2). In order to authenticate users via OpenID Connect, the OpenID Connect relying party first needs to
figure out what authorization server is behind the end user. OpenID Connect utilizes the WebFinger protocol for this
discovery.

1

2

3

4

5

6

7

89

WebFinger Endpoint

OpenID Connect
Provider Metadata

Endpoint

Client Registration
Endpoint

Authorization Grant
/ Token Endpoint

Find the Identity Provider

Identity Provider Endpoint

Get Identity Provider Metadata

Metadata

Get Client ID/Client Secret

Client ID / Client Secret

Get ID Token

ID Token

OpenID Connect
Relying Party

User Identifier

End User

Figure 12-2.  OpenID Connect discovery

https://plus.google.com/104063262378861625904
https://lh3.googleusercontent.com/-nA7Ndz8oYF8/AAAAAAAAAAI/AAAAAAAABC0/2vY1M8egglA/photo.jpg
https://lh3.googleusercontent.com/-nA7Ndz8oYF8/AAAAAAAAAAI/AAAAAAAABC0/2vY1M8egglA/photo.jpg

Chapter 12 ■ OpenID Connect

195

Note■■   The OpenID Connect discovery specification is available at
http://openid.net/specs/openid-connect-discovery-1_0.html. If a given OpenID Connect relying party already knows
who the authorization server is, it can simply ignore the discovery phase.

Let’s assume a user called Peter visits an OpenID Connect relying party and wants to log in. To authenticate Peter,
the OpenID Connect relying party should know the authorization server corresponding to Peter. To discover this,
Peter has to provide to the relying party some unique identifier that relates to him. Using this identifier, the relying
party should be able to find the WebFinger endpoint corresponding to Peter.

Let’s say that the identifier Peter provides is his e-mail address, peter@apress.com. The relying party should be
able find enough detail about the WebFinger endpoint using Peter’s e-mail address. In fact, the relying party should be
able derive the WebFinger endpoint from the e-mail address. The relying party can then send a query to the WebFinger
endpoint to find out which authorization server (or the identity provider) corresponds to Peter. This query is made
according to the WebFinger specification. The following shows a sample WebFinger request for peter@apress.com:

Note■■   The WebFinger specification is available at http://tools.ietf.org/html/rfc7033. 

GET /.well-known/webfinger?resource=acct:peter@apress.com&
 rel=http://openid.net/specs/connect/1.0/issuer
HTTP/1.1
Host: apress.com
 

The WebFinger request has two key parameters: resource and rel. The resource parameter should uniquely
identify the end user, whereas the value of rel is fixed for OpenID Connect and must be equal to
 http://openid.net/specs/connect/1.0/issuer. The rel (relation-type) parameter acts as a filter to determine the
OpenID Connect issuer corresponding to the given resource.

A WebFinger endpoint can accept many other discovery requests for different services. If it finds a matching
entry, the following response is returned to the OpenID Connect relying party. The value of the OpenID identity
provider or the authorization server endpoint is included in the response:
 
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/jrd+json
{
 "subject":"acct:peter@apress.com",
 "links":[
 {
 "rel":"http://openid.net/specs/connect/1.0/issuer",
 "href":"https://auth.apress.com"
 }
]
}
 

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://tools.ietf.org/html/rfc7033
http://openid.net/specs/connect/1.0/issuer
http://openid.net/specs/connect/1.0/issuer
http://openid.net/specs/connect/1.0/issuer
https://auth.apress.com/

Chapter 12 ■ OpenID Connect

196

Note■■  N either the WebFinger nor the OpenID Connect Discovery specification mandates the use of the e-mail address
as the resource or the end user identifier. It must be a URI that conforms to the URI definition in RFC 3986, which can be
used to derive the WebFinger endpoint. If the resource identifier is an e-mail address, then it must be prefixed with acct.

The acct URI scheme is defined in http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07. When the acct
URI scheme is being used, everything after the @ sign is treated as the hostname. The WebFinger hostname is derived
from an e-mail address as per the acct URI scheme, which is the part after the @ sign.

If a URL is being used as the resource identifier, the host name (and port number) of the URL is treated as the WebFinger
hostname. If the resource identifier is https://auth.server.com:9443/prabath, then the WebFinger hostname is
auth.server.com:9443.

Once the endpoint of the identity provider is discovered, that concludes the role of WebFinger. Yet you don’t have
enough data to initiate an OpenID Connect authentication request with the corresponding identity provider. More
information about the identity provider is found by talking to its metadata endpoint, which must be a well-known
endpoint.

Note■■   Both the WebFinger and OpenID Connect Discovery specifications use the Defining Well-Known URIs
(http://tools.ietf.org/html/rfc5785) specification to define endpoint locations. The RFC 5785 specification
introduces a path prefix called /.well-known/ to identify well-known locations. Most of the time, these locations are
metadata endpoints or policy endpoints.

The WebFinger specification has the well-known endpoint /.well-known/webfinger. The OpenID Connect Discovery
specification has the well-known endpoint for OpenID provider configuration metadata,
/.well-known/openid-configuration.

OpenID Connect Identity Provider Metadata
An OpenID Connect identity provider, which supports metadata discovery, should host its configuration at the
endpoint /.well-known/openid-configuration. In most cases, this is a non-secured endpoint, which can be
accessed by anyone. An OpenID Connect relying party can send an HTTP GET to the metadata endpoint to retrieve the
OpenID provider configuration details as follows:
 
GET /.well-known/openid-configuration HTTP/1.1
Host: auth.server.com
 

This results in the following JSON response, which includes everything an OpenID Connect relying party needs
to know to talk to the OpenID provider or the OAuth authorization server:
 
HTTP/1.1 200 OK
 Content-Type: application/json
 
 {
 "issuer":"https://auth.server.com",
 "authorization_endpoint":"https://auth.server.com/connect/authorize",

http://tools.ietf.org/html/draft-ietf-appsawg-acct-uri-07
https://auth.server.com:9443/prabath
http://tools.ietf.org/html/rfc5785
https://auth.server.com/
https://auth.server.com/connect/authorize

Chapter 12 ■ OpenID Connect

197

 "token_endpoint":"https://auth.server.com/connect/token",
 "token_endpoint_auth_methods_supported":["client_secret_basic", "private_key_jwt"],
 "token_endpoint_auth_signing_alg_values_supported":["RS256", "ES256"],
 "userinfo_endpoint":"https://auth.sever.com/connect/userinfo",
 "check_session_iframe":"https://auth.server.com/connect/check_session",
 "end_session_endpoint":"https://auth.server.com/connect/end_session",
 "jwks_uri":"https://auth.server.com/jwks.json",
 "registration_endpoint":"https://auth.server.com/connect/register",
 "scopes_supported":["openid", "profile", "email", "address", "phone", "offline_access"],
 "response_types_supported":["code", "code id_token", "id_token", "token id_token"],
 "acr_values_supported":["urn:mace:incommon:iap:silver", urn:mace:incommon:iap:bronze"],
 "subject_types_supported":["public", "pairwise"],
 "userinfo_signing_alg_values_supported":["RS256", "ES256", "HS256"],
 "userinfo_encryption_alg_values_supported":["RSA1_5", "A128KW"],
 "userinfo_encryption_enc_values_supported":["A128CBC-HS256", "A128GCM"],
 "id_token_signing_alg_values_supported":["RS256", "ES256", "HS256"],
 "id_token_encryption_alg_values_supported":["RSA1_5", "A128KW"],
 "id_token_encryption_enc_values_supported":["A128CBC-HS256", "A128GCM"],
 "request_object_signing_alg_values_supported":["none", "RS256", "ES256"],
 "display_values_supported":["page", "popup"],
 "claim_types_supported":["normal", "distributed"],
 "claims_supported":["sub", "iss", "auth_time", "acr",
 "name", "given_name", "family_name", "nickname",
 "profile", "picture", "website","email", "email_verified",
 "locale", "zoneinfo",
 "http://example.info/claims/groups"],
 "claims_parameter_supported":true,
 "service_documentation":"http://auth.server.com/connect/service_documentation.html",
 "ui_locales_supported":["en-US", "fr-CA"]
 } 

Note■■   If the endpoint of the discovered identity provider is https://auth.server.com, then the OpenID provider
metadata should be available at https://auth.server.com/.well-known/openid-configuration. If the endpoint is
https://auth.server.com/openid, then the metadata endpoint is
https://auth.server.com/openid/.well-known/openid-configuration.

OpenID Connect Dynamic Client Registration
Once the OpenID provider endpoint is discovered via WebFinger (and all the metadata related to it through OpenID
Connect discovery), the OpenID Connect relying party still needs to have a client ID and a client secret (not under
the Implicit grant type) registered at the OpenID provider to initiate the authorization grant request or the OpenID
Connect authentication request. The OpenID Connect Dynamic Client Registration specification facilitates a
mechanism to register dynamically OpenID Connect relying parties at the OpenID provider.

Note■■   The OpenID Connect Dynamic Client Registration specification is available at
http://openid.net/specs/openid-connect-registration-1_0.html.

https://auth.server.com/connect/token
https://auth.sever.com/connect/userinfo
https://auth.server.com/connect/check_session
https://auth.server.com/connect/end_session
https://auth.server.com/jwks.json
https://auth.server.com/connect/register
http://example.info/claims/groups
http://auth.server.com/connect/service_documentation.html
https://auth.server.com/
https://auth.server.com/.well-known/openid-configuration
https://auth.server.com/openid
https://auth.server.com/openid/.well-known/openid-configuration
http://openid.net/specs/openid-connect-registration-1_0.html

Chapter 12 ■ OpenID Connect

198

The response from the OpenID provider metadata endpoint includes the endpoint for client registration under
the parameter registration_endpoint. To support dynamic client registrations, this endpoint should accept open
registration requests, with no authentication requirements.

To fight against denial of service (DoS) attacks, the endpoint can be protected with rate limits, accepting only 10
registration requests from a given IP address within a 60-second timeframe. To initiate client registration, the OpenID
relying party sends an HTTP POST message to the registration endpoint with its own metadata.

The following is a sample client registration request:
 
POST /connect/register HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: auth.server.com
 
{
 "application_type":"web",
 "redirect_uris":["https://app.client.org/callback","https://app.client.org/callback2"],
 "client_name":"Foo",
 "logo_uri":"https://app.client.org/logo.png",
 "subject_type":"pairwise",
 "sector_identifier_uri":"https://other.client.org/file_of_redirect_uris.json",
 "token_endpoint_auth_method":"client_secret_basic",
 "jwks_uri":"https://app.client.org/ public_keys.jwks",
 "userinfo_encrypted_response_alg":"RSA1_5",
 "userinfo_encrypted_response_enc":"A128CBC-HS256",
 "contacts":["prabath@wso2.com", "prabath@apache.org"],
 "request_uris":["https://app.client.org/rf.txt#qpXaRLh_n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]
 }
 

In response, the OpenID Connect provider or the authorization server sends back the following response. This
response includes client_id and client_secret:
 
HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
 
 {
 "client_id":"Gjjhj678jhkh89789ew",
 "client_secret":"IUi989jkjo_989klkjuk89080kjkuoikjkUIl",
 "client_secret_expires_at":2590858900,
 "registration_access_token":"this.is.an.access.token.value.ffx83",
 "registration_client_uri":"https://auth.server.com/connect/register?client_id=Gjjhj678jhkh89789ew ",
 "token_endpoint_auth_method":"client_secret_basic",
 "application_type":"web",
 "redirect_uris":["https://app.client.org/callback", "https://app.client.org/callback2"],
 "client_name":"Foo",
 "logo_uri":"https://client.example.org/logo.png",
 "subject_type":"pairwise",
 "sector_identifier_uri":"https://other.client.org/file_of_redirect_uris.json",
 "jwks_uri":"https://app.client.org/public_keys.jwks",
 "userinfo_encrypted_response_alg":"RSA1_5",

https://app.client.org/callback
https://app.client.org/callback2
https://app.client.org/logo.png
https://other.client.org/file_of_redirect_uris.json
https://app.client.org/ public_keys.jwks
https://app.client.org/callback
https://app.client.org/callback2
https://client.example.org/logo.png
https://other.client.org/file_of_redirect_uris.json
https://app.client.org/public_keys.jwks

Chapter 12 ■ OpenID Connect

199

 "userinfo_encrypted_response_enc":"A128CBC-HS256",
 "contacts":["prabath@wso2.com", "prabath@apache.org"],
 "request_uris":["https://app.client.org/rf.txt#qpXaRLh_n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]
 }
 

Once the OpenID Connect relying party obtains a client ID and a client secret, it concludes the OpenID Connect
discovery phase. The relying party can now initiate the OpenID Connect authentication request.

Note■■   Section 2.0 of the OpenID Connect Dynamic Client Registration specification lists all the attributes that can be
included in an OpenID Connect client registration request:
http://openid.net/specs/openid-connect-registration-1_0.html.

OpenID Connect for Securing APIs
So far, you have seen a detailed discussion about OpenID Connect. But in reality, how will it help you in securing
APIs? OpenID Connect can be used to authenticate into web applications, mobile applications, and much more.
Nonetheless, why would you need OpenID Connect to secure a headless API? At the end of the day, all the APIs
are secured with OAuth 2.0, and you need to present an access token to talk to the API. The API (or the policy-
enforcement component) validates the access token by talking to the authorization server. Why would you need to
pass an ID token to an API?

OAuth is about delegated authorization, whereas OpenID Connect is about authentication. An ID token is an
assertion about your identity: that is, a proof of your identity. It can be used to authenticate into an API. As of this
writing, no HTTP binding is defined for JWT.

The following example suggests passing the JWT assertion (or the ID token) to a protected API as an access
token in the HTTP Authorization header. The ID token, or the signed JWT, is base64-encoded in three parts.
Each part is separated by a dot (.). The first part up to the first dot is the JWT header. The second part is the JWT
body. The third part is the signature. Once the JWT is obtained by the client application, it can place it in the HTTP
Authorization header in the manner shown here:
 
POST /employee HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: resource.server.com
Authorization: Bearer eyJhbGciOiljiuo98kljlk2KJl.IUojlkoiaos298jkkdksdosiduIUiopo.oioYJ21sajds
{
 "empl_no":"109082",
 "emp_name":"Peter John",
 "emp_address":"Mountain View, CA, USA"
}
 

To validate the JWT, the API (or the policy-enforcement component) has to extract the JWT assertion from the
HTTP Authorization header, base64-decode it, and validate the signature to see whether it’s signed by a trusted
issuer. In addition, the claims in the JWT can be used for authentication and authorization.

https://app.client.org/rf.txt#qpXaRLh_n93TTR9F252ValdatUQvQiJi5BDub2BeznA
http://openid.net/specs/openid-connect-registration-1_0.html

Chapter 12 ■ OpenID Connect

200

Note■■   When an OpenID Connect identity provider issues an ID token, it adds the aud parameter to the token to
indicate the audience of the token. This can be an array of identifiers.

When using ID tokens for authenticating APIs, a URI known to the API should also be added to the aud parameter.
Currently this can’t be done in the OpenID Connect authentication request, so it must be set out of band at the OpenID
Connect identity provider.

Summary
OpenID Connect, which was developed under the OpenID Foundation, adds the identity layer to OAuth 2.0. This
chapter discussed the evolution of OpenID Connect from OpenID and its applications as an OAuth 2.0 profile. It also
discussed how OpenID Connect utilizes the WebFinger protocol in its discovery process along with OpenID Connect
dynamic client registration and identity provider metadata configuration.

The next chapter takes a deeper look at JSON Web Signature (JWS) and JSON Web Encryption (JWE).

201

Chapter 13

JWT, JWS, and JWE

JavaScript Object Notation (JSON) provides a way of exchanging data in a language-neutral, text-based, and
lightweight manner. It was originally derived from the ECMAScript programming language. JSON data interchange
format is defined in RFC 7159: http://tools.ietf.org/html/rfc7159. JSON and XML are the most commonly
used data exchange formats for APIs. Looking at the trend over the last five years, it’s more than obvious that JSON is
replacing XML. Most of the APIs out there have support for JSON, and some support both JSON and XML. It’s now
very difficult even to find an XML-only API.

JSON Web Token
JSON Web Token (JWT) defines a container to transport data between interested parties in JSON. The ongoing work
of the JWT specification group under IETF is available at https://datatracker.ietf.org/doc/draft-ietf-oauth-
json-web-token/. The OpenID Connect specification, discussed in Chapter 12, uses a JWT to represent the ID token.
Let’s examine the OpenID Connect ID token returned from the Google API:
 
eyJhbGciOiJSUzI1NiIsImtpZCI6Ijc4YjRjZjIzNjU2ZGMzOTUzNjRmMWI2YzAyOTA3
NjkxZjJjZGZmZTEifQ.eyJpc3MiOiJhY2NvdW50cy5nb29nbGUuY29tIiwic3ViIjoiMT
EwNTAyMjUxMTU4OTIwMTQ3NzMyIiwiYXpwIjoiODI1MjQ5ODM1NjU5LXRlOHF
nbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xldXNlcmNvb
nRlbnQuY29tIiwiZW1haWwiOiJwcmFiYXRoQHdzbzIuY29tIiwiYXRfaGFzaCI6InpmO
DZ2TnVsc0xCOGdGYXFSd2R6WWciLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiYXVkI
joiODI1MjQ5ODM1NjU5LXRlOHFnbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFz
LmFwcHMuZ29vZ2xldXNlcmNvbnRlbnQuY29tIiwiaGQiOiJ3c28yLmNvbSIsImlhdCI6
MTQwMTkwODI3MSwiZXhwIjoxNDAxOTEyMTcxfQ.TVKv-pdyvk2gW8sGsCbsnkq
srS0T-H00xnY6ETkIfgIxfotvFn5IwKm3xyBMpy0FFe0Rb5Ht8AEJV6PdWyxz8rMgX
2HROWqSo_RfEfUpBb4iOsq4W28KftW5H0IA44VmNZ6zU4YTqPSt4TPhyFC9fP2D
_Hg7JQozpQRUfbWTJI
 

This entire JWT is base64url-encoded. It’s divided into three sections. Each section is separated by a period (.).
Let’s identify each separate section. The first part is called the JavaScript Object Signing and Encryption (JOSE)

header. The JOSE header describes the cryptographic operations applied on the JWT claim set.
 
eyJhbGciOiJSUzI1NiIsImtpZCI6Ijc4YjRjZjIzNjU2ZGMzOTUzNjRmMWI2YzAyOTA3
NjkxZjJjZGZmZTEifQ
 

The following shows the base64url-decoded JOSE header:
 
{"alg":"RS256","kid":"78b4cf23656dc395364f1b6c02907691f2cdffe1"}
 

http://tools.ietf.org/html/rfc7159
https://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token/
https://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token/

Chapter 13 ■ JWT, JWS, and JWE

202

The second part is known as either the JWT payload or the JWT claim set. It carries the real business data. In the
following example, it includes information about the authenticated user:
 
eyJpc3MiOiJhY2NvdW50cy5nb29nbGUuY29tIiwic3ViIjoiMTEwNTAyMjUxMTU4OT
IwMTQ3NzMyIiwiYXpwIjoiODI1MjQ5ODM1NjU5LXRlOHFnbDcwMWtnb25ub21uc
DRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xldXNlcmNvbnRlbnQuY29tIiwiZW1ha
WwiOiJwcmFiYXRoQHdzbzIuY29tIiwiYXRfaGFzaCI6InpmODZ2TnVsc0xCOGdGYX
FSd2R6WWciLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiYXVkIjoiODI1MjQ5ODM1NjU
5LXRlOHFnbDcwMWtnb25ub21ucDRzcXY3ZXJodTEyMTFzLmFwcHMuZ29vZ2xld
XNlcmNvbnRlbnQuY29tIiwiaGQiOiJ3c28yLmNvbSIsImlhdCI6MTQwMTkwODI3MS
wiZXhwIjoxNDAxOTEyMTcxfQ
 

The following shows the base64url-decoded JWT claim set
 
{
 "iss":"accounts.google.com",
 "sub":"110502251158920147732",
 "azp":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "email":"prabath@wso2.com",
 "at_hash":"zf86vNulsLB8gFaqRwdzYg",
 "email_verified":true,
 "aud":"825249835659-te8qgl701kgonnomnp4sqv7erhu1211s.apps.googleusercontent.com",
 "hd":"wso2.com",
 "iat":1401908271,
 "exp":1401912171
} 

Note■■   Whitespaces can be explicitly retained while building the JWT claim set—no canonicalization is required before
base64url-encoding. Canonicalization is the process of converting different forms of a message into a single standard
form. This is used mostly before signing XML messages.

In XML, the same message can be represented in different forms but carries the same meaning. For example,
<vehicles><car></car></vehicles> and <vehicles><car/></vehicles> are equivalent in meaning, but have two
different canonical forms. Before signing an XML message, you should follow a canonicalization algorithm to build a
standard form.

The JWT specification defines three classes of claims: registered claims, public claims, and private claims.
Registered claims are registered in the Internet Assigned Numbers Authority (IANA) JSON Web Token Claims registry,
as follows:

•	 iss: Issuer of the JWT.

•	 sub (subject): The issued token is about this entity.

•	 aud (audience): The intended recipient list of the token.

•	 exp: The token will be expired after the specified time.

•	 nbf (not before): The token isn’t valid before the specified time.

Chapter 13 ■ JWT, JWS, and JWE

203

•	 iat (issued at): The time at which the token was issued.

•	 jti (JWT ID): A unique token identifier.

Even though these claims are treated as registered claims, the JWT specification doesn’t mandate their usage.
It’s totally up to the corresponding application to decide which are mandatory and which aren’t. For example, in
OpenID Connect, iss is a mandatory claim.

Public claims are defined by the applications that use JWT. In these cases, to avoid any collisions, names should
either be registered in the IANA JSON Web Token Claims registry or defined in a collision-resistant manner with a
proper namespace. For example, the OpenID Connect specification defines its own set of claims to be included in an
ID token, and those claims are registered in the IANA JSON Web Token Claims registry.

Private claims should indeed be private and shared between a given identity provider and a selected set of client
applications. These claims should be used with caution, because there is a chance for collision.

The third part of the JWT is the signature, which is also base64url-encoded. The cryptographic parameters
related to the signature are defined in the JOSE header. In this scenario, Google uses RSASSA-PKCS1-V1_5 with the
SHA-256 hashing algorithm, which is denoted by RS256.

Note■■  P laintext JWT doesn’t have a signature. It has only two parts. The value of the alg parameter in the JOSE
header must be set to none. 

The following shows the signature element of the JWT returned back from Google:

TVKv-pdyvk2gW8sGsCbsnkqsrS0TH00xnY6ETkIfgIxfotvFn5IwKm3xyBMpy0
FFe0Rb5Ht8AEJV6PdWyxz8rMgX2HROWqSo_RfEfUpBb4iOsq4W28KftW5
H0IA44VmNZ6zU4YTqPSt4TPhyFC-9fP2D_Hg7JQozpQRUfbWTJI 

Note■■  R SASSA-PKCS1-V1_5 is defined in RFC 3447: www.ietf.org/rfc/rfc3447.txt. It uses the signer’s RSA
private key to sign the message in the way defined by PKCS#1.

GENERATING A PLAINTEXT JWT

The following Java code generates a plaintext JWT. You need to add references to nimbus-jose-jwt-2.26.jar,
json-smart-1.1.1.jar, jcip-annotations-1.0.jar, and bcprov-jdk15on-1.50.jar. You can download all of
these jars from https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib:
 
import java.text.ParseException;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;
 
import com.nimbusds.jose.*;
import com.nimbusds.jwt.*;
 

http://www.ietf.org/rfc/rfc3447.txt
https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib

Chapter 13 ■ JWT, JWS, and JWE

204

public static String buildPlainJWT() {
  
 // create a claim set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet();
  
 // set the value of the issuer.
 jwtClaims.setIssuer("https://apress.com");
  
 // set the subject value - JWT belongs to this subject.
 jwtClaims.setSubject("john");
  
 // set values for audience restriction.
 List<String> aud = new ArrayList<String>();
 aud.add("https://app1.foo.com");
 aud.add("https://app2.foo.com");
 jwtClaims.setAudience(aud);
  
 // expiration time set to 10 minutes.
 jwtClaims.setExpirationTime(new Date(new Date().getTime() + 1000 * 60 * 10));
  
 Date currentTime = new Date();
  
 // set the valid from time to current time.
 jwtClaims.setNotBeforeTime(currentTime);
  
 // set issued time to current time.
 jwtClaims.setIssueTime(currentTime);
  
 // set a generated UUID as the JWT identifier.
 jwtClaims.setJWTID(UUID.randomUUID().toString());
  
 // create plaintext JWT with the JWT claims.
 PlainJWT plainJwt = new PlainJWT(jwtClaims);
  
 // serialize into string.
 String jwtInText = plainJwt.serialize();
  
 // print the value of the JWT.
 System.out.println(jwtInText);
  
 return jwtInText;
}
 
This code produces the following output, which is the JWT:
 
eyJhbGciOiJub25lIn0.eyJleHAiOjE0MDIwMzcxNDEsInN1YiI6ImpvaG4iLCJuYm
YiOjE0MDIwMzY1NDEsImF1ZCI6WyJodHRwczpcL1wvYXBwMS5mb28uY29tIi
wiaHR0cHM6XC9cL2FwcDIuZm9vLmNvbSJdLCJpc3MiOiJodHRwczpcL1wvYX
ByZXNzLmNvbSIsImp0aSI6IjVmMmQzM2RmLTEyNDktNGIwMS04MmYxLWJl
MjliM2NhOTY4OSIsImlhdCI6MTQwMjAzNjU0MX0.
 

https://apress.com/
https://app1.foo.com/
https://app2.foo.com/

Chapter 13 ■ JWT, JWS, and JWE

205

The following Java code shows how to parse a base64-encoded JWT:
 
public static PlainJWT parsePlainJWT() throws ParseException {
 
 // get JWT in base64-encoded text.
 String jwtInText = buildPlainJWT();
  
 // build a plain JWT from the bade64 encoded text.
 PlainJWT plainJwt = PlainJWT.parse(jwtInText);
  
 // print the JOSE header in JSON.
 System.out.println(plainJwt.getHeader().toString());
  
 // print JWT body in JSON.
 System.out.println(plainJwt.getPayload().toString());
  
 return plainJwt;
}
 
This code produces the following output, which includes the parsed JOSE header and the payload:
 
{"alg":"none"}
{
 "exp":1402038339,
 "sub":"john",
 "nbf":1402037739,
 "aud":["https:\/\/app1.foo.com","https:\/\/app2.foo.com"],
 "iss":"https:\/\/apress.com",
 "jti":"1e41881f-7472-4030-8132-856ccf4cbb25",
 "iat":1402037739
} 

Note■■   Way back in 2009, Microsoft introduced Simple Web Token (SWT). It is neither JSON nor XML. It simply defines
a token format to carry out a set of HTML form-encoded name/value pairs. Even though this was developed as a
proposed standard for IETF, it never got that far. More information about Microsoft SWT is available at:
http://msdn.microsoft.com/en-us/library/hh781551.aspx.

JOSE Working Group
Many working groups within the IETF work directly with JSON, including the OAuth working group and the System
for Cross-domain Identity Management (SCIM) working group. The SCIM working group is building a provisioning
standard based on JSON. Outside the IETF, the OASIS XACML working group is working on building a JSON profile for
XACML 3.0.

The OpenID Connect specification, which is developed under the OpenID Foundation, is also heavily based on
JSON. Due to the rise of standards built around JSON and the heavy usage of JSON for data exchange in APIs, it has
become absolutely necessary to define how to secure JSON messages at the message level. Use of Transport Layer

http://msdn.microsoft.com/en-us/library/hh781551.aspx

Chapter 13 ■ JWT, JWS, and JWE

206

Security (TLS) only provides confidentiality and integrity at the transport layer. The JOSE working group, formed
under the IETF, has the goal of coming up with a set of standards for protecting JSON messages with integrity and
confidentiality. JSON Web Signature, JSON Web Encryption, JSON Web Key, and JSON Web Algorithms standards are
currently being developed under the JOSE working group.

Note■■  T o follow the rest of the chapter, you’re expected to have a basic knowledge of cryptography.

JSON Web Signature
The JSON Web Signature (JWS) specification, developed under the IETF JOSE working group, defines how JSON
messages can be digitally signed or MACed. It introduces ten attributes to be included in the JWS header of a signed
JSON payload; the signed JSON payload is known as a JWS. The following shows a sample JWS header, which carries
attributes related to the message signature:

Note■■  T he JSON Web Signature specification is available at http://tools.ietf.org/html/draft-ietf-jose-
json-web-signature-26. 

{
 "alg": "",
 "jku": "",
 "jwk": "",
 "kid": "",
 "x5u": "",
 "x5c": "",
 "x5t": "",
 "typ": "",
 "cty": "",
 "crti": ""
}
 

Let’s review the definition of each attribute:

alg: The name of the algorithm, which is used to sign the JSON payload.

jku: JSON Web Key Set URL. This points to a set of JSON-encoded public keys, where one of
the keys is used to sign the JSON payload.

jwk: JSON Web Key. This is the public key corresponding to the key that is used to sign the
JSON payload. The key is represented as defined in the JSON Web Key specification.

kid: Key identifier of the key that is used to sign the JSON payload.

x5u: X.509 URL. This URL points to the X.509 certificate (or the certificate chain) that
corresponds to the private key used to sign the JSON payload.

http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-26
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature-26

Chapter 13 ■ JWT, JWS, and JWE

207

x5c: The X.509 certificate (or the certificate chain), which corresponds to the private key, is
used to sign the JSON payload. The certificate or the certificate chain has to be represented
in a JSON array of certificate value strings. The certificate corresponding to the key used to
sign the message should be in the first element of the array, and each element in the array
should be a base64-encoded DER PKIX certificate value.

x5t: The thumbprint of the X.509 certificate corresponding to the key used to sign the
JSON payload.

typ: The media type of the JWS. For JWSs using JWS compact serialization and JWEs
using JWE compact serialization, the value JOSE can be used. For JWSs using JWS JSON
serialization and JWEs using JWE JSON serialization, the value JOSE+JSON can be used.
(JWS/JWE serialization is discussed later in this chapter.)

cty: The content type of the JWS.

crit: Indicates that custom header parameters are being used in the JWS header, and those
should be well understood and processed by the recipient. The value of this attribute is an
array of names of custom attributes.

Signature Algorithms
Table 13-1 lists acceptable JWS signature algorithms.

Table 13-1.  JWS Signature Algorithms

Identifier (alg) Signature or MAC algorithm

HS256 HMAC using SHA256

HS384 HMAC using SHA384

HS512 HMAC using SHA512

RS256 RSASSA-PKCS-V1_5 using SHA256

RS384 RSASSA-PKCS-V1_5 using SHA384

RS512 RSASSA-PKCS-V1_5 using SHA512

ES256 ECDSA using P-256 and SHA256

ES384 ECDSA using P-384 and SHA384

ES512 ECDSA using P-512 and SHA512

PS256 RSASSA-PSS using SHA256 and MGF1 with SHA256

PS384 RSASSA-PSS using SHA384and MGF1 with SHA384

PS512 RSASSA-PSS using SHA512 and MGF1 with SHA512

None No signature or MAC

Note■■   Further details of JWS algorithms are explained in the JSON Web Algorithms specification at
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-26.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-26

Chapter 13 ■ JWT, JWS, and JWE

208

Serialization
The JWS (a signed JSON payload) can be serialized in two ways. One is known as JWS compact serialization and the
other is known as JWS JSON serialization. The Google OpenID Connect example discussed earlier uses JWS compact
serialization. In fact, the OpenID Connect specification mandates the use of JWS compact serialization and JWE
compact serialization whenever necessary.

JWS/JWE JSON serialization isn’t used in OpenID Connect. JWS compact serialization represents a signed
JSON payload as a compact URL-safe string. As discussed earlier, this compact string has three sections separated by
periods (.). The last section is the signature. If you use compact serialization against a JSON payload, then you can
have only a single signature, and that signature is over the complete JWS header and JWS body.

JWS JSON serialization can produce multiple signatures. The following code shows a signed JSON payload with
JSON serialization. It introduces five new attributes that should be present in a JWS, which are described after the listing:
 
{
"payload":"eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzOD",
"signatures":[
 {
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "header":{"kid":"2014-06-29"},
 "signature":"cC4hiUPoj9Eetdgtv3hF80EGrhuB"
 },
 {
 "protected":"eyJhbGciOiJFUzI1NiJ9",
 "header":{"kid":"e909097a-ce81-4036-9562-d21d2992db0d"},
 "signature":"DtEhU3ljbEg8L38VWAfUAqOyKAM"
 }
]
}
 

Let’s review the definition of each attribute:

payload: Contains the base64url-encoded value of the complete JWS body.

signatures: Contains an array of JSON objects, where each element contains a signature
and the associated metadata.

protected: Includes the base64url-encoded JWS header elements, which should be signed
along with the JWS body. If you base64url-decode the value of the first protected element in
the previous example, you see {"alg":"RS256"}.

header: Contains other header elements corresponding to this signature, but these elements
should not be signed. The final JWS header corresponding to this signature is calculated by
combining both the protected headers and unprotected headers. In the previous example,
the complete JWS header would be {"alg":"RS256", "kid":"2010-12-29"}.

signature: The value of the signature calculated against the protected header elements
and the body.

Note■■   JWT must use JWS compact serialization.

Chapter 13 ■ JWT, JWS, and JWE

209

GENERATING A SIGNED JWT WITH HMAC-SHA256

The following Java code generates a signed JWT with HMAC-SHA256. You need to add references to
nimbus-jose-jwt-2.26.jar, json-smart-1.1.1.jar, jcip-annotations-1.0.jar, and
bcprov-jdk15on-1.50.jar. You can download all of these jars from https://svn.wso2.org/repos/wso2/
people/prabath/api-security/jose/lib. The method buildHmacSha256SignedJWT() should be invoked by
passing a secret value that is used as the shared key to sign:
 
import java.text.ParseException;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;
 
import com.nimbusds.jose.*;
import com.nimbusds.jwt.*;
import com.nimbusds.jose.crypto.*;
 
public static String buildHmacSha256SignedJWT(String sharedSecretString)
 throws JOSEException {
 // create a claim set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet();
 
 // set the value of the issuer.
 jwtClaims.setIssuer("https://apress.com");
 
 // set the subject value - JWT belongs to this subject.
 jwtClaims.setSubject("john");
 
 // set values for audience restriction.
 List<String> aud = new ArrayList<String>();
 aud.add("https://app1.foo.com");
 aud.add("https://app2.foo.com");
 jwtClaims.setAudience(aud);
 
 // expiration time set to 10 minutes.
 jwtClaims.setExpirationTime(new Date(new Date().getTime() + 1000 * 60 * 10));
 
 Date currentTime = new Date();
 
 // set the valid from time to current time.
 jwtClaims.setNotBeforeTime(currentTime);
 
 // set issued time to current time.
 jwtClaims.setIssueTime(currentTime);
 

https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib
https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib
https://apress.com/
https://app1.foo.com/
https://app2.foo.com/

Chapter 13 ■ JWT, JWS, and JWE

210

 // set a generated UUID as the JWT identifier.
 jwtClaims.setJWTID(UUID.randomUUID().toString());
 
 // create JWS header with HMAC-SHA256 algorithm.
 JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.HS256);
 
 // create signer with the provider shared secret.
 JWSSigner signer = new MACSigner(sharedSecretString);
 
 // create the signed JWT with the JWS header and the JWT body.
 SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);
 
 // sign the JWT with HMAC-SHA256.
 signedJWT.sign(signer);
 
 // serialize into base64-encoded text.
 String jwtInText = signedJWT.serialize();
 
 // print the value of the JWT.
 System.out.println(jwtInText);
 
 return jwtInText;
}
 
This code produces the following output, which is the signed JSON payload (a JWS):
 
eyJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0MDIwMzkyOTIsInN1YiI6ImpvaG4iLCJuYm
YiOjE0MDIwMzg2OTIsImF1ZCI6WyJodHRwczpcL1wvYXBwMS5mb28uY29tIiw
iaHR0cHM6XC9cL2FwcDIuZm9vLmNvbSJdLCJpc3MiOiJodHRwczpcL1wvYXBy
ZXNzLmNvbSIsImp0aSI6ImVkNjkwN2YwLWRlOGEtNDMyNi1hZDU2LWE5ZmE
5NjA2YTVhOCIsImlhdCI6MTQwMjAzODY5Mn0.3v_pa-QFCRwoKU0RaP7pLOox
T57okVuZMe_A0UcqQ8
 
The following Java code shows how to validate the signature of a signed JSON message with HMAC-SHA1. To do
that, you need to know the shared secret used to sign the JSON payload:
 
public static boolean isValidHmacSha256Signature()
 throws JOSEException, ParseException {
 
 String sharedSecretString = "mysecretkey";
 
 // get signed JWT in base64-encoded text.
 String jwtInText = buildHmacSha256SignedJWT(sharedSecretString);
 
 // create verifier with the provider shared secret.
 JWSVerifier verifier = new MACVerifier(sharedSecretString);
 
 // create the signed JWT with the base64-encoded text.
 SignedJWT signedJWT = SignedJWT.parse(jwtInText);
 

Chapter 13 ■ JWT, JWS, and JWE

211

 // verify the signature of the JWT.
 boolean isValid = signedJWT.verify(verifier);
 
 if (isValid) {
 System.out.println("valid JWT signature");
 } else {
 System.out.println("invalid JWT signature");
 }
 
 return isValid;
} 

GENERATING A SIGNED JWT WITH RSA-SHA256

The following Java code generates a signed JWT with RSA-SHA256. You need to add references to
nimbus-jose-jwt-2.26.jar, json-smart-1.1.1.jar, jcip-annotations-1.0.jar, and bcprov-
jdk15on-1.50.jar. You can download all of these jars from https://svn.wso2.org/repos/wso2/people/
prabath/api-security/jose/lib. First you need to invoke the method generateKeyPair() and pass the
PrivateKey (generateKeyPair().getPrivateKey()) into the method buildRsaSha256SignedJWT():
 
import java.text.ParseException;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;
import java.security.*;
import java.security.interfaces.*;
 
import com.nimbusds.jose.*;
import com.nimbusds.jwt.*;
import com.nimbusds.jose.crypto.*;
  
public static KeyPair generateKeyPair()
 throws NoSuchAlgorithmException {
 
 // instantiate KeyPairGenerate with RSA algorithm.
 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");
 
 // set the key size to 1024 bits.
 keyGenerator.initialize(1024);
 
 // generate and return private/public key pair.
 return keyGenerator.genKeyPair();
}
 

https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib
https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib

Chapter 13 ■ JWT, JWS, and JWE

212

 public static String buildRsaSha256SignedJWT(PrivateKey privateKey)
 throws JOSEException {
 
 // create a claim set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet();
 
 // set the value of the issuer.
 jwtClaims.setIssuer("https://apress.com");
 
 // set the subject value - JWT belongs to this subject.
 jwtClaims.setSubject("john");
 
 // set values for audience restriction.
 List<String> aud = new ArrayList<String>();
 aud.add("https://app1.foo.com");
 aud.add("https://app2.foo.com");
 jwtClaims.setAudience(aud);
 
 // expiration time set to 10 minutes.
 jwtClaims.setExpirationTime(new Date(new Date().getTime() + 1000 * 60 * 10));
 
 Date currentTime = new Date();
 
 // set the valid from time to current time.
 jwtClaims.setNotBeforeTime(currentTime);
 
 // set issued time to current time.
 jwtClaims.setIssueTime(currentTime);
 
 // set a generated UUID as the JWT identifier.
 jwtClaims.setJWTID(UUID.randomUUID().toString());
 
 // create JWS header with RSA-SHA256 algorithm.
 JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.RS256);
 
 // create signer with the RSA private key..
 JWSSigner signer = new RSASSASigner((RSAPrivateKey)privateKey);
 
 // create the signed JWT with the JWS header and the JWT body.
 SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);
 
 // sign the JWT with HMAC-SHA256.
 signedJWT.sign(signer);
 
 // serialize into base64-encoded text.
 String jwtInText = signedJWT.serialize();
 
 // print the value of the JWT.
 System.out.println(jwtInText);
 
 return jwtInText;
 }
 

https://apress.com/
https://app1.foo.com/
https://app2.foo.com/

Chapter 13 ■ JWT, JWS, and JWE

213

The following Java code shows how to invoke the previous two methods:
 
KeyPair keyPair = generateKeyPair();
buildRsaSha256SignedJWT(keyPair.getPrivate());
 
Let’s examine how to validate a JWT signed by RSA-SHA256. You need to know the PublicKey corresponding to
the PrivateKey used to sign the message:
 
public static boolean isValidRsaSha256Signature()
 throws NoSuchAlgorithmException,
 JOSEException, ParseException {
 
 // generate private/public key pair.
 KeyPair keyPair = generateKeyPair();
 
 // get the private key - used to sign the message.
 PrivateKey privateKey = keyPair.getPrivate();
 
 // get public key - used to verify the message signature.
 PublicKey publicKey = keyPair.getPublic();
 
 // get signed JWT in base64-encoded text.
 String jwtInText = buildRsaSha256SignedJWT(privateKey);
 
 // create verifier with the provider shared secret.
 JWSVerifier verifier = new RSASSAVerifier((RSAPublicKey) publicKey);
 
 // create the signed JWT with the base64-encoded text.
 SignedJWT signedJWT = SignedJWT.parse(jwtInText);
 
 // verify the signature of the JWT.
 boolean isValid = signedJWT.verify(verifier);
 
 if (isValid) {
 System.out.println("valid JWT signature");
 } else {
 System.out.println("invalid JWT signature");
 }
 return isValid;
}

JSON Web Encryption
The JSON Web Encryption (JWE) specification, developed under the IETF JOSE working group, defines how JSON
messages can be encrypted. It introduces two new attributes (enc and zip) to be included in the JWE header of an
encrypted JSON payload, in addition to those discussed in the section “JSON Web Signature.” An encrypted JSON
payload is known as a JWE.

Chapter 13 ■ JWT, JWS, and JWE

214

The following shows a sample JWE header, which carries attributes related to message encryption:
 
{
 "alg": "",
 "enc": "",
 "zip": "",
 "jku": "",
 "jwk": "",
 "kid": "",
 "x5u": "",
 "x5c": "",
 "x5t": "",
 "typ": "",
 "cty": "",
 "crti": ""
}
 

Let’s review the definition of each attribute:

alg: Represents the name of the algorithm that is used to encrypt the content-encryption
key. The content-encryption key is used to encrypt the actual content, and this key is
encrypted using the algorithm specified by the alg attribute. In most cases, symmetric
encryption is used to encrypt the content, whereas an asymmetric encryption algorithm
is used to encrypt the content-encryption key.

enc: Represents the name of the algorithm that is used to encrypt the content.

zip: Specifies the compression algorithm. The plaintext content can be compressed before
encryption.

jku: JSON Web Key Set URL. This points to a set of JSON-encoded public keys, where one is
used to encrypt the JSON payload.

jwk: JSON Web Key. This is the public key that is used to encrypt the JSON payload. The key
is represented as defined in the JSON Web Key specification.

kid: Key identifier of the key. It’s used to encrypt the JSON payload.

x5u: X.509 URL. This points to the X.509 certificate (or the certificate chain), which is used
to encrypt the JSON payload.

x5c: X.509 certificate (or the certificate chain), which is used to encrypt the JSON payload.
The certificate or the certificate chain has to be represented in a JSON array of certificate
value strings. The certificate corresponding to the key used to encrypt the message should
be in the first element of the array, and each element in the array should be a base64-encoded
DER PKIX certificate value.

x5t: Represents the thumbprint of the X.509 certificate used to encrypt the JSON payload.

typ: Indicates the media type of the JWE. For JWSs using JWS compact serialization and
JWEs using JWE compact serialization, the value JOSE can be used. For JWSs using JWS
JSON serialization and JWEs using JWE JSON serialization, the value JOSE+JSON can be
used. (JWE serialization is discussed later in this chapter.)

Chapter 13 ■ JWT, JWS, and JWE

215

cty: Indicates the content type of the JWE.

crit: Indicates that custom header parameters are being used in the JWE header, and those
should be well understood and processed by the recipient. The value of this attribute is an
array of names of custom attributes.

Note■■  T he JSON Web Encryption specification is available at
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-26.

Content Encryption vs. Key Wrapping
The JWE header uses the enc parameter to indicate the content encryption algorithm, and it uses the alg parameter to
specify the key wrapping or the key encryption algorithm. Let’s look at the following JWE header:
 
{"alg":"RSA-OAEP","enc":"A256GCM"} 

Note■■  A uthenticated Encryption simultaneously provides a confidentiality, integrity, and authenticity guarantee for
data. ISO/IEC 19772:2009 has standardized six different authenticated encryption modes: GCM, OCB 2.0, CCM, Key Wrap,
EAX, and Encrypt-then-MAC. Authenticated Encryption with Associated Data (AEAD) extends this model to add the ability
to preserve the integrity and authenticity of additional authenticated data that isn’t encrypted. AEAD algorithms take two
inputs: plaintext to be encrypted and the associated authentication data, and result in two outputs: the ciphertext and the
authentication tag. The authentication tag ensures the integrity of the ciphertext and the associated authenticated data.
RFC 5116 defines an interface and algorithms for Authenticated Encryption: http://tools.ietf.org/html/rfc5116.

For content encryption, this uses A256GCM; and for key wrapping, it uses RSA-OAEP. A256GCM uses AES GCM
with a 256-bit key, and it’s a symmetric key algorithm used for AEAD. Symmetric keys are mostly used for content
encryption. Symmetric-key encryption is much faster than asymmetric-key encryption. At the same time, asymmetric
encryption can’t be used to encrypt large messages.

In this scenario, the entity that encrypts the message generates a random key and encrypts the message using the
key following the AES GCM algorithm. Next, the key used to encrypt the message is encrypted using RSA-OAEP, which
is an asymmetric encryption scheme. The encrypted symmetric key is placed in the JWE.

Serialization
Similar to JWS, a JWE can be serialized in two ways: JWE compact serialization and JWE JSON serialization. JWE
compact serialization produces five parts separated by periods (.). With compact serialization, you can’t encrypt the
content encryption key with different keys. JWE JSON serialization lets you encrypt the content encryption key for
distinct recipients using different keys, using the following data structure:
 
{
 "protected":"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "unprotected":{
 "jku":"https://server.example.com/keys.jwks"
 },

http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-26
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-26
http://tools.ietf.org/html/rfc5116
https://server.example.com/keys.jwks

Chapter 13 ■ JWT, JWS, and JWE

216

 "recipients":[
 {
 "header":{"alg":"RSA1_5","kid":"2011-04-29"},
 "encrypted_key":"UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlI
 KOK1nN94nHPoltGRhWhw7Zx0-kFm1NJn8LE
 9XShH59_i8J0PH5ZZyNfGy2xGd"
 },
 {
 "header":{"alg":"A128KW","kid":"7"},
 "encrypted_key":"6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ"
 }
],
 "iv":"AxY8DCtDaGlsbGljb3RoZQ",
 "ciphertext":"KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
 "tag":"Mz-VPPyU4RlcuYv1IwIvzw"
}
 

Let’s look at the definition of each attribute used in this code snippet:

protected: Contains the base64url-encoded value of the JWE header elements protected
for integrity by authenticated encryption. There is one protected element in a JWE.

unprotected: Contains the value of the JWE header elements that aren’t protected for
integrity by authenticated encryption. There is one unprotected element in a JWE, at the
root level.

recipients: An array of recipient elements. Each member consists of a header element and
an encrypted key element, which expresses the cryptographic properties of each recipient.

header: Contains the value of the JWE header elements that aren’t protected for integrity by
authenticated encryption for each recipient.

encrytedkey: Base64url-encoded value of the encrypted key. This is the key used to encrypt
the message payload. The key is encrypted in different ways for each recipient.

iv: The value of the initial vector used for encryption.

ciphertext: Base64url-encoded value of the resultant ciphertext.

tag: Base64url-encoded value of the authenticated tag, which resulted in AEAD.

Note■■  A s mentioned earlier, unlike a JWS, a JWE has five parts (with JWE compact serialization), separated by periods (.).
Each part must be base64url-encoded before being placed into the JWE. The first part is the JWE header. The second part
is the encrypted key; this is the key used to encrypt the content. The third part is the initialization vector: a random value
generated by the entity that encrypts the message. Some encryption algorithms require an initialization vector. To decrypt
the message successfully, the value of the initialization vector must be passed to the entity that decrypts the message.
The fourth part is the encrypted text, and the fifth part is the JWE authentication tag.

Chapter 13 ■ JWT, JWS, and JWE

217

GENERATING AN ENCRYPTED JWT WITH RSA-OAEP AND AES

The following Java code generates an encrypted JWT with RSA-OAEP and AES. You need to add references
to nimbus-jose-jwt-2.26.jar, json-smart-1.1.1.jar, jcip-annotations-1.0.jar, and bcprov-
jdk15on-1.50.jar. You can download all of these jars from https://svn.wso2.org/repos/wso2/people/
prabath/api-security/jose/lib. First you need to invoke the method generateKeyPair() and pass the
PublicKey (generateKeyPair().getPublicKey()) into the method buildEncryptedJWT():
 
import java.text.ParseException;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.UUID;
import java.security.*;
import java.security.interfaces.*;
 
import com.nimbusds.jose.*;
import com.nimbusds.jwt.*;
import com.nimbusds.jose.crypto.*;
  
public static KeyPair generateKeyPair() throws NoSuchAlgorithmException {
 
 // instantiate KeyPairGenerate with RSA algorithm.
 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");
 
 // set the key size to 1024 bits.
 keyGenerator.initialize(1024);
 
 // generate and return private/public key pair.
 return keyGenerator.genKeyPair();
}
 
public static String buildEncryptedJWT(PublicKey publicKey) throws JOSEException {
 
 // create a claim set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet();
 
 // set the value of the issuer.
 jwtClaims.setIssuer("https://apress.com");
 
 // set the subject value - JWT belongs to this subject.
 jwtClaims.setSubject("john");
 
 // set values for audience restriction.
 List<String> aud = new ArrayList<String>();
 aud.add("https://app1.foo.com");
 aud.add("https://app2.foo.com");
 jwtClaims.setAudience(aud);
 

https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib
https://svn.wso2.org/repos/wso2/people/prabath/api-security/jose/lib
https://apress.com/
https://app1.foo.com/
https://app2.foo.com/

Chapter 13 ■ JWT, JWS, and JWE

218

 // expiration time set to 10 minutes.
 jwtClaims.setExpirationTime(new Date(new Date().getTime() + 1000 * 60 * 10));
 
 Date currentTime = new Date();
 
 // set the valid from time to current time.
 jwtClaims.setNotBeforeTime(currentTime);
 
 // set issued time to current time.
 jwtClaims.setIssueTime(currentTime);
 
 // set a generated UUID as the JWT identifier.
 jwtClaims.setJWTID(UUID.randomUUID().toString());
 
 // create JWE header with RSA-OAEP and AES/GCM.
 JWEHeader jweHeader = new JWEHeader(JWEAlgorithm.RSA_OAEP,
 EncryptionMethod.A128GCM);
 
 // create encrypter with the RSA public key.
 JWEEncrypter encrypter = new RSAEncrypter((RSAPublicKey) publicKey);
 
 // create the encrypted JWT with the JWE header and the JWT payload.
 EncryptedJWT encryptedJWT = new EncryptedJWT(jweHeader, jwtClaims);
 
 // encrypt the JWT.
 encryptedJWT.encrypt(encrypter);
 
 // serialize into base64-encoded text.
 String jwtInText = encryptedJWT.serialize();
 
 // print the value of the JWT.
 System.out.println(jwtInText);
 
 return jwtInText;
}
 
The following Java code shows how to invoke the previous two methods:
 
KeyPair keyPair = generateKeyPair();
buildEncryptedJWT(keyPair.getPublic());
 
Let’s see how to decrypt a JWT encrypted by RSA-OAEP. You need to know the PrivateKey corresponding to the
PublicKey used to encrypt the message:
 
public static void decryptJWT() throws NoSuchAlgorithmException,
 JOSEException, ParseException {
 
 // generate private/public key pair.
 KeyPair keyPair = generateKeyPair();
 

Chapter 13 ■ JWT, JWS, and JWE

219

 // get the private key - used to decrypt the message.
 PrivateKey privateKey = keyPair.getPrivate();
 
 // get the public key - used to encrypt the message.
 PublicKey publicKey = keyPair.getPublic();
 
 // get encrypted JWT in base64-encoded text.
 String jwtInText = buildEncryptedJWT(publicKey);
 
 // create a decrypter.
 JWEDecrypter decrypter = new RSADecrypter((RSAPrivateKey) privateKey);
 
 // create the encrypted JWT with the base64-encoded text.
 EncryptedJWT encryptedJWT = EncryptedJWT.parse(jwtInText);
 
 // decrypt the JWT.
 encryptedJWT.decrypt(decrypter);
 
 // print the value of JOSE header.
 
 System.out.println("JWE Header:" + encryptedJWT.getHeader());
 
 // JWE content encryption key.
 System.out.println("JWE Content Encryption Key: " + encryptedJWT.getEncryptedKey());
 
 // initialization vector.
 System.out.println("Initialization Vector: " + encryptedJWT.getInitializationVector());
 
 // ciphertext.
 System.out.println("Ciphertext : " + encryptedJWT.getCipherText());
 
 // authentication tag.
 System.out.println("Authentication Tag: " + encryptedJWT.getAuthenticationTag());
 
 // print the value of JWT body
 System.out.println("Decrypted Payload: " + encryptedJWT.getPayload());
 
}
 
This code produces the following output:
 
JWE Header:{
 "alg":"RSA-OAEP",
 "enc":"A128GCM"
 }
 
JWE Content Encryption Key: NbIuAjnNBwmwlbKiIpEzffU1duaQfxJpJaodkxDj
SC2s3tO76ZdUZ6YfPrwSZ6DU8F51pbEw2f2MK_C7kLpgWUl8hMHP7g2_Eh3y
Th5iK6Agx72o8IPwpD4woY7CVvIB_iJqz-cngZgNAikHjHzOC6JF748MwtgSiiyrI
9BsmU
 

Chapter 13 ■ JWT, JWS, and JWE

220

Initialization Vector: JPPFsk6yimrkohJf
 
Ciphertext: XF2kAcBrAX_4LSOGejsegoxEfb8kV58yFJSQ0_WOONP5wQ07HG
mMLTyR713ufXwannitR6d2eTDMFe1xkTFfF9ZskYj5qJ36rOvhGGhNqNdGEpsB
YK5wmPiRlk3tbUtd_DulQWEUKHqPc_VszWKFOlLQW5UgMeHndVi3JOZgiwN
gy9bvzacWazK8lTpxSQVf-NrD_zu_qPYJRisvbKI8dudv7ayKoE4mnQW_fUY-U10
AMy-7Bg4WQE4j6dfxMlQGoPOo
 
Authentication Tag: pZWfYyt2kO-VpHSW7btznA
 
Decrypted Payload:
{
 "exp":1402116034,
 "sub":"john",
 "nbf":1402115434,
 "aud":["https:\/\/app1.foo.com","https:\/\/app2.foo.com"],
 "iss":"https:\/\/apress.com",
 "jti":"a1b41dd4-ba4a-4584-b06d-8988e8f995bf",
 "iat":1402115434
}

Summary
In this chapter, you had a closer look at JSON security. JSON has nearly become the de facto message-exchange
format for APIs. Here you saw examples of how to sign a JSON message with JWS and encrypt with JWE.

The next chapter takes a deeper look at common API security patterns used in the industry.

221

Chapter 14

Patterns and Practices

Chapter 2 touched on some of the key patterns surrounding API security. This chapter expands on that discussion
with more concrete details. Here we present ten API security patterns to address the ten most common enterprise
security problems. All of the patterns are derived from the concepts and theories discussed in previous chapters.

Direct Authentication with the Trusted Subsystem Pattern
Suppose a medium-scale enterprise has a limited number of RESTful APIs. Company employees are allowed to access
these APIs via a single web application while they’re behind the company firewall. All user data is stored in a Microsoft
Active Directory, and the web application is connected to it to authenticate users. The web application passes the
logged-in user’s identifier to the back-end APIs, and it retrieves data related to the user.

The problem is straightforward, and Figure 14-1 illustrates the solution. You need to use some kind of direct-
authentication pattern. User authentication happens at the front-end web application, and once the user is
authenticated, the web application needs to access the back-end APIs. The catch here is that the web application
passes the logged-in user’s identifier to the API. That implies that the APIs can be invoked in a user-aware manner by
the web application.

Active
Directory

End User

Application Server
(Web App)

Application Server
(APIs)TLS Mutual Auth

Figure 14-1.  Direct authentication with the Trusted Subsystem pattern

Chapter 14 ■ Patterns and Practices

222

You need to worry not about authenticating the end user to the back-end API, but about authenticating them
to the web application. This is the Trusted Subsystem pattern. The web application acts as the trusted subsystem.
In such a scenario, the best way to secure APIs is through Transport Layer Security (TLS) mutual authentication.
All requests generated from the web application are secured with TLS mutual authentication.

In some scenarios, there is a resistance to using TLS due to the overhead it adds. In such cases, in a controlled
environment, security between the application server and the container that hosts APIs can be achieved at the
network level. Network-level security must provide the assurance that no component other than the web application
server can talk to the container that hosts the APIs.

Note■■  T he article “Trusted Subsystem Design” by Frederick Chong provides a great deal of information about the
Trusted Subsystem pattern. You can find it at http://msdn.microsoft.com/en-us/library/aa905320.aspx.

Single Sign-On with the Delegated Access Control Pattern
Next, suppose a medium-scale enterprise has a limited number of RESTful APIs. Company employees are allowed to
access these APIs via web applications while they’re behind the company firewall. All user data is stored in a Microsoft
Active Directory, and all the web applications are connected to a Security Assertion Markup Language (SAML) 2.0 identity
provider to authenticate users. The web applications need to access back-end APIs on behalf of the logged-in user.

The catch here is this last statement: “The web applications need to access back-end APIs on behalf of the
logged-in user.” This suggests the need for an access-delegation protocol: OAuth. However, users don’t present their
credentials directly to the web application—they authenticate through a SAML 2.0 identity provider.

In this case, you need to find a way to exchange the SAML token received via the SAML 2.0 Web SSO protocol
for an OAuth access token, which is defined in the SAML grant type for the OAuth 2.0 specification. Once the web
application receives the SAML token, as shown in step 3 of Figure 14-2, it has to exchange it with an access token by
talking to the OAuth authorization server.

Active
Directory

Application Server
(Web App)

Application Server
(APIs)

Application Server
(Web App)

SAM 2.0 Identity
Provider

SAM Token

End User

SAML Auth Req

2

1 3

4

5

SAML Grant Type for OAuth

Access Token

<<Trusts>>

OAuth 2.0
Authorized Server

Validate Access Token

6

Figure 14-2.  Single sign-on with the Delegated Access Control pattern

http://msdn.microsoft.com/en-us/library/aa905320.aspx

Chapter 14 ■ Patterns and Practices

223

The authorization server must trust the SAML 2.0 identity provider. Once the web application gets the access
token, it can use it to access back-end APIs. The SAML grant type for OAuth doesn’t provide a refresh token. The
lifetime of the access token issued by the OAuth authorization server must match the lifetime of the SAML token used
in the authorization grant.

After the user logs in to the web application with a valid SAML token, the web application creates a session for
the user from then onward, and it doesn’t worry about the lifetime of the SAML token. This can lead to some issues.
Say the SAML token expires, but the user still has a valid browser session in the web application. Because the SAML
token has expired, you can expect that the corresponding OAuth access token obtained at the time of user login has
expired as well. Now, if the web application tries to access a back-end API, the request will be rejected because the
access token is expired. In such a scenario, the web application has to redirect the user back to the SAML 2.0 identity
provider, get a new SAML token, and exchange that token for a new access token. If the session at the SAML 2.0
identity provider is still live, then this redirection can be made transparent to the end user.

Single Sign-On with the Integrated Windows
Authentication Pattern
Now, let’s consider a medium-scale enterprise that has a limited number of RESTful APIs. Company employees are
allowed to access these APIs via multiple web applications while they’re behind the company firewall. All user data
is stored in Microsoft Active Directory, and all the web applications are connected to a SAML 2.0 identity provider
to authenticate users. The web applications need to access back-end APIs on behalf of the logged-in user. All the
users are in a Windows domain, and once they’re logged in to their workstations, they shouldn’t be asked to provide
credentials at any point for any other application.

This use case is very similar to that for SSO with the Delegated Access Control pattern. The catch here is the
statement, “All the users are in a Windows domain, and once they’re logged in to their workstations, they shouldn’t be
asked to provide credentials at any point for any other application.”

You need to extend the solution provided using SSO with the Delegated Access Control pattern. In that case,
the user logs in to the SAML 2.0 identity provider with their Active Directory username and password. Here, this
isn’t acceptable. Instead, you can use Integrated Windows Authentication (IWA) to secure the SAML 2.0 identity
provider. When you configure the SAML 2.0 identity provider to use IWA, then once the user is redirected there for
authentication, the user is automatically authenticated; as in the case of SSO with the Delegated Access Control
Pattern, a SAML response is passed to the web application. The rest of the flow remains unchanged.

Identity Proxy with the Delegated Access Control Pattern
Suppose a medium-scale enterprise has a limited number of RESTful APIs. Company employees, as well as employees
from trusted partners, are allowed to access these APIs via web applications. All the internal user data is stored in
Microsoft Active Directory, and all the web applications are connected to a SAML 2.0 identity provider to authenticate
users. The web applications need to access back-end APIs on behalf of the logged-in user.

This use case is an extension of using SSO with the Delegated Access Control pattern. The catch here is the
statement, “Company employees, as well as employees from trusted partners, are allowed to access these APIs via web
applications.” You now have to go beyond the company domain. Everything in Figure 14-2 remains unchanged. The
only thing you need to do is to change the authentication mechanism at the SAML 2.0 identity provider.

Regardless of the end user’s domain, the client web application only trusts the identity provider in its own
domain. Internal as well as external users are first redirected to the internal SAML identity provider. The identity
provider should offer the user the option of whether to authenticate with their username and password (for internal
users) or to pick their corresponding domain. Then the identity provider can direct the user to the identity provider
running in the external user’s home domain. Now the external identity provider returns a SAML response to the
internal identity provider.

Chapter 14 ■ Patterns and Practices

224

The external identity provider signs this SAML token. If the signature is valid, and if it’s from a trusted external
identity provider, the internal identity provider issues a new SAML token signed by itself to the calling application.
The flow then continues as shown in Figure 14-3.

SAML Response

SAML Auth Request

Internal User

SAML Auth Req

SAML Token

3

2a

2b

1

2

SAML 2.0 Identity
Provider (internal)

SAML 2.0
Identity

Provider
(external)

Application Server
(Web App)

External User

1

Figure 14-3.  Identity proxy with the Delegated Access Control pattern

Note■■   One benefit of this approach is that the internal applications only need to trust their own identity provider.
The identity provider handles the brokering of trust between other identity providers outside its domain. In this scenario,
the external identity provider also talks SAML, but that can’t be expected all the time. There are also identity providers that
support other protocols. In such scenarios, the internal identity provider must be able to transform identity assertions
between different protocols.

Delegated Access Control with the JSON Web Token Pattern
Now, consider a medium-scale enterprise that has a limited number of RESTful APIs. Company employees are
allowed to access these APIs via web applications while they’re behind the company firewall. All user data is stored
in Microsoft Active Directory, and all the web applications are connected to an OpenID Connect identity provider to
authenticate users. The web applications need to access back-end APIs on behalf of the logged-in user.

This use case is also an extension of SSO with the Delegated Access Control pattern. The catch here is the
statement, “all the web applications are connected to an OpenID Connect identity provider to authenticate users.”
You need to replace the SAML identity provider shown in Figure 14-2 with an OpenID Connect identity provider, as
illustrated in Figure 14-4. This also suggests the need for an access-delegation protocol (OAuth).

Chapter 14 ■ Patterns and Practices

225

In this case, however, users don’t present their credentials directly to the web application; rather, they authenticate
through an OpenID Connect identity provider. Thus you need to find a way to exchange the ID token received in
OpenID Connect authentication for an OAuth access token, which is defined in the JWT grant types for the OAuth 2.0
specification. Once the web application receives the ID token in step 3, which is also a JWT, it has to exchange it for an
access token by talking to the OAuth authorization server. The authorization server must trust the OpenID Connect
identity provider. When the web application gets the access token, it can use it to access back-end APIs.

Note■■   Why would someone exchange the ID token obtained in OpenID Connect for an access token when it directly
gets an access token along with the ID token? This is not required when both the OpenID Connect server and the
OAuth authorization server are the same. If they aren’t, you have to use the JWT Bearer grant type for OAuth 2.0 and
exchange the ID token for an access token. The access token issuer must trust the OpenID Connect identity provider.

Nonrepudiation with the JSON Web Signature Pattern
Next, suppose a medium-scale enterprise in the finance industry needs to expose an API to its customers
through a mobile application, as illustrated in Figure 14-5. One major requirement is that all the API calls should
support nonrepudiation.

Active
Directory

Application Server
(Web App)

Application Server
(APIs)

Application Server
(Web App)

OpenID Connect
Identity Provider

End User
2

5

1

JWT Grant Type for OAuth

OAuth 2.0
Authorization Server

Validate Access Token

6
3

Access Token

<<Trusts>>

ID Token

OIDC Auth Req

Figure 14-4.  Delegated access control with the JWT pattern

End User

Mobile App Application Server
(APIs)JWS and JWE

Figure 14-5.  Nonrepudiation with the JSON Web Signature pattern

Chapter 14 ■ Patterns and Practices

226

The catch here is the statement, “all the API calls should support nonrepudiation.” When you do a business
transaction via an API by proving your identity, you shouldn’t be able to reject it later or repudiate it. The property that
ensures the inability to repudiate is known as nonrepudiation. Basically, you do it once, and you own it forever.

Nonrepudiation should provide proof of the origin and the integrity of data in an unforgeable manner, which a
third party can verify at any time. Once a transaction is initiated, none of its content, including the user identity, date,
time, and transaction details, should be altered while in transit, in order to maintain transaction integrity and to allow
for future verifications. Nonrepudiation has to ensure that the transaction is unaltered and logged after it’s committed
and confirmed.

Logs must be archived and properly secured to prevent unauthorized modifications. Whenever there is a
repudiation dispute, transaction logs, along with other logs or data, can be retrieved to verify the initiator, date, time,
transaction history, and so on.

The way to achieve nonrepudiation is via signature. Each message should be signed by a key known only to the
end user.

In this case, the financial institution must issue a key pair to each of its customers, signed by a certificate
authority under its control. It should only store the corresponding public certificate, not the private key. The customer
can install the private key in his or her mobile device and make it available to the mobile application. All API calls
generated from the mobile application must be signed by the private key of the user and encrypted by the public key
of the financial institution.

To sign the message, the mobile application can use JSON Web Signature (JWS); and for encryption, it can use
JSON Web Encryption (JWE). When using both the signature and encryption on the same payload, the message must
be signed first, and then the signed payload must be encrypted for legal acceptance.

Chained Access Delegation Pattern
Suppose a medium-scale enterprise that sells bottled water has a RESTful API (Water API) that can be used to update
the amount of water consumed by a registered user. Any registered user can access the API via any client application.
It could be an Android app, an iOS app, or even a web application.

The company only provides the API—anyone can develop client applications to consume it. All the user data
is stored in Microsoft Active Directory. Client applications shouldn’t be able to access the API directly and query to
find out information about users. Only registered users can access the API. These users shouldn’t be able to see other
users’ information. At the same time, for each update made by a user, the Water API must update the user’s healthcare
record maintained at MyHealth.org. The user also has a personal record at MyHealth.org, and it too exposes an API
(MyHealth API). The Water API has to call the MyHealth API to update the user record on the user’s behalf.

In summary, a mobile application accesses the Water API on behalf of the end user, and then the Water API has
to access the MyHealth API on behalf of the end user. The Water API and the MyHealth API are in two independent
domains. This suggests the need for an access-delegation protocol.

Again, the catch here is the statement, “the Water API must also update the user’s healthcare record maintained at
MyHealth.org.” This has two solutions. In the first solution, the end user must get an access token from MyHealth.org
for the Water API (the Water API acts as the OAuth client), and then the Water API must store the token internally
against the user’s name. Whenever the user sends an update through a mobile application to the Water API, the
Water API first updates its own record and then finds the MyHealth access token corresponding to the end user and
uses it to access the MyHealth API. With this approach, the Water API has the overhead of storing the MyHealth API
access token, and it should refresh the access token whenever needed.

The second solution is explained in Figure 14-6. It’s built around the OAuth 2.0 Chain Grant Type profile.
The mobile application must carry a valid access token to access the Water API on behalf of the end user. In step 3,
the Water API talks to its own authorization server to validate the access token. Then, in step 4, the Water API
exchanges the access token it got from the mobile application for a JWT access token.

Chapter 14 ■ Patterns and Practices

227

The JWT access token is a special access token that carries some meaningful data, and the authorization server in
the Water API’s domain signs it. The JWT includes the end user’s local identifier as well as its mapped identifier in the
MyHealth domain. The end user must permit this action at the Water API domain.

In step 6, the Water API accesses the MyHealth API using the JWT access token. The MyHealth API validates the
JWT access token by talking to its own authorization server. It verifies the signature; and, if it’s signed by a trusted
entity, the access token is treated as valid.

Because the JWT includes the mapped username from the MyHealth domain, it can identify the corresponding
local user record. However, this raises a security concern. If you let users update their profiles in the Water API
domain with the mapped MyHealth identifier, they can map it to any user identifier, and this leads to a security hole.
To avoid this, the account-mapping step must be secured with OpenID Connect authentication. When the user wants
to add his or her MyHealth account identifier, the Water API domain initiates the OpenID Connect authentication
flow and receives the corresponding ID token. Then the account mapping is done with the user identifier in the ID
token.

Trusted Master Access Delegation Pattern
Now let’s look at a large-scale enterprise that has a set of RESTful APIs. The APIs are hosted in different departments,
and each department runs its own OAuth authorization server due to vendor incompatibilities in different
deployments. Company employees are allowed to access these APIs via web applications while they’re behind the
company firewall, regardless of the department to which they belong.

All user data is stored in a centralized Active Directory, and all the web applications are connected to a
centralized OAuth authorization server (which also supports OpenID Connect) to authenticate users. The web
applications need to access back-end APIs on behalf of the logged-in user. These APIs may come from different
departments, each of which has its own authorization server. The company also has a centralized OAuth
authorization server, and an employee having an access token from the centralized authorization server must be able
to access any API hosted in any department.

Once again, this is an extended version of using SSO with the Delegated Access Control pattern. You have a
master OAuth authorization server and a set of secondary authorization servers. An access token issued from the
master authorization server should be good enough to access any of the APIs under the control of the secondary
authorization servers. In other words, the access token returned to the web application, as shown in step 3 of
Figure 14-7, should be good enough to access any of the APIs.

Mobile App

OAuth 2.0
Authorization Server

OAuth 2.0
Authorization Server

MyHealth API

<<Trusts>>

2

1

3 4

5

6

7

End User

Access Token Water API JWT Access Token

Validate Access Token

Validate Access Token
New JWT Access Token

Request new access token for MyHealth

Figure 14-6.  Chained Access Delegation pattern

Chapter 14 ■ Patterns and Practices

228

To make this possible, you need to make the access token self-explanatory. Ideally, you should make the access
token a JWT with the iss (issuer) field. In step 4, the web application accesses the API using the access token; and in
step 5, the API talks to its own authorization server to validate the token. The authorization server can look at the JWT
header and find out whether it issued this token or if a different server issued it. If the master authorization server
issued it, then the secondary authorization server can talk to the master authorization server’s OAuth introspection
endpoint to find out more about the token. The introspection response specifies whether the token is active and
identifies the scopes associated with the access token. Using the introspection response, the secondary authorization
server can build an eXtensible Access Control Markup Language (XACML) request and call a XACML policy decision
point (PDP). If the XACML response is evaluated to Permit, then the web application can access the API.

Resource Security Token Service (STS) with the Delegated
Access Control Pattern
Suppose a global organization has APIs and API clients are distributed across different regions. Each region operates
independently from the others. Currently, both clients and APIs are non-secured. You need to secure the APIs without
making any changes either at the API or the client end.

The solution is based on a simple theory in software engineering: introducing a layer of indirection can solve
any problem. You need to introduce two interceptors. One sits in the client region, and all the non-secured messages
generated from the client are intercepted. The other interceptor sits in the API region, and all the API requests are
intercepted. No other component except this interceptor can access the API in a non-secured manner.

This restriction can be enforced at the network level. Any request generated from outside has no path to the API
other than through the API interceptor. You can also call this component a Policy Enforcement Point (PEP). The PEP
validates the security of all incoming API requests. The interceptor’s responsibility, sitting in the client region, is to
add the necessary security parameters to the non-secured message generated from the client and to send it to the API.
In this way, you can secure the API without making changes at either the client or the API end.

Still, you have a challenge. How do you secure the API at the PEP? This is a cross-domain scenario, and the
obvious choice is to use SAML grant type for OAuth 2.0.

1

2

3

4

6 5

Application Server
(Web App)

Application Server
(Web App)

Authorization Server Authorization Server

APIs APIs

Validate

Validate

Validate

OIDC Auth Req

Access Token Access Token

End User
ID Token + Access Token

Master Authorization
Server (with OIDC

support)

Figure 14-7.  Trusted Master Access Delegation pattern

Chapter 14 ■ Patterns and Practices

229

Figure 14-8 explains how the solution is implemented. Non-secured requests from the client application are
captured by the interceptor component in step 1. Then it has to talk to its own Security Token Service (STS). In step 2,
the interceptor uses a default user account to access the STS through SOAP-based WS-Trust. STS authenticates the
request and issues a SAML token having the STS in the API region as the audience of the token.

4

5

4

6

7

1

2

API
Access Token

<<Trusts>>

<<Trusts>>

Security Token
Service (STS)

Security Token
Service (STS)

Validate

PEP

OAuth Authorization
Server

Client Application

Interceptor

Get New SAML Token

Non-secured request Get Access Token with SAML Grant Type

Get SAML Assertion for the STS at the API
domain

Figure 14-8.  Resource STS with the Delegated Access Control Pattern

In step 3, the client side interceptor authenticates to the STS at the API region with the SAML token and gets a
new SAML token. The audience of the new SAML token is the OAuth authorization server running in the API region.
Step 3 also happens through SOAP-based WS-Trust. Before issuing the new SAML token, the STS at the API region
must validate its signature and check whether a trusted entity has signed it.

To make this scenario happen, the STS in the API region must trust the STS on the client side. The OAuth
authorization server only trusts its own STS. That is why step 4 is required. Step 4 initiates the SAML grant type for
OAuth 2.0, and the client interceptor exchanges the SAML token for an access token. Then it uses the access token to
access the API in step 5.

The PEP in the API region intercepts the request and calls the authorization server to validate the access token.
If the token is valid, the PEP lets the request hit the API (step 7).

Delegated Access Control with the Hidden Credentials Pattern
Finally, suppose a company wants to expose an API to its employees. However, user credentials must never go over
the wire.

This is a straightforward problem with an equally straightforward solution. Both OAuth 2.0 bearer tokens and
HTTP Basic Authentication take user credentials over the wire. Even though both these approaches use TLS for
protection, still some companies worry about passing user credentials over communication channels.

You have two options: use either HTTP Digest authentication or OAuth 2.0 MAC tokens. Using OAuth 2.0 MAC
tokens is the better approach because the access token is generated for each API, and the user can also revoke the
token if needed without changing the password.

Chapter 14 ■ Patterns and Practices

230

Summary
This chapter highlights the ten most-used solution patterns in API security. Each pattern is built on top of the
concepts discussed throughout the book. API security is an ever-evolving subject. More and more standards and
specifications are popping up, and most of them are built around the core OAuth 2.0 specification. Security around
JSON is another evolving area, and the IETF JOSE working group is currently working on it.

It’s highly recommended that if you wish to continue beyond this book, you should keep an eye on the IETF
OAuth working group, the IETF JOSE working group, the OpenID Connect Foundation, and the Kantara Initiative.

A�       �
Apache Directory Server

Apache Tomcat, 41
configuration, 39–41

Apache Tomcat, enable TLS, 43
Application programming interface (API), 1

definition of, 3
JDBC, 1
vs. Managed APIs, 3
marshalling/unmarshalling technique, 2
ProgrammableWeb, 3
for remote access, 2
RESTful services, 3
vs. service, 4
SOAP-based web services, 2
UDDI, 5
WS-Discovery, 5

Assertion, 173
Authentication vs. authorization, 131
Authorization API token (AAT), 165

B�       �
Brokered authentication, 171

authorization server, 172
OAuth client applications, 172

C�       �
Chain grant type profile, 149

authorization server, 149
resource server, 150
scope parameter, 150

cURL command
Flickr authentication, 68
Google AUTHSUB, 65
Google ClientLogin, 63
Yahoo! BBAuth, 71

D�       �
Delegated access control, 222

hidden credentials, 229
Proxy identity, 223–224
STS, 228–229
with JWT, 224–225

Dynamic client registration, 150

E�       �
eXtensible Access Control Markup

Language (XACML), 144, 228
architecture, 145
runtime execution, 145
target element, 148
Token introspection profile

API gateway, 147
attribute mapping, 147
security gateway, 147

F�       �
Facebook, 109–110

access token, 111
client registration, 110
Page access token, 114
user access token, 112

Federation, 171
brokered authentication

(see Brokered authentication)
identity management systems, 171

G�       �
Google

application authentication, 126
authorization code, 124
client registration, 124

Index

231

device authentication, 129
implicit code, 128

H�       �
Hash-based Message Authentication Code (HMAC), 139
HTTP Basic authentication, 33

API security, 42
GitHub API, 33

HTTP Digest Authentication, 33
vs. Basic Authentication, 36
limitations, 34
message-related data, 36
multiple algorithm support, 36
nonce, 35
opaque, 35
quality of protection, 35
realm, 35
Recipe API security, 45
RFC 2617, 36
security-related data, 36

I�       �
Identity delegation model, 59

brokered delegation, 60
Google Drive, 60
Lucidchart account, 60

direct delegation, 59
Flickr account, 59
Snapfish, 59

Flickr Authentication, 67
Google AuthSub, 65
Google ClientLogin, 62
internet engineering task force (IETF), 72
internet identity workshop (IIW), 73
roles, 59
SlideShare, 61
twitter, 60
web resource authorization profiles (WRAP), 73
Yahoo! BBAuth, 70

Integrated Windows Authentication (IWA), 223
Internet Assigned Numbers Authority (IANA), 202
Internet engineering task force (IETF), 72

J, K, L�       �
JSON Web Encryption (JWE), 201, 213

attributes, 214–215
content encryption vs. key wrapping, 215
header, 214
serialization, 220

attributes, 216
data structure, 215–216

Java coding, 217–218
PublicKey, 218–219

JSON Web Signature (JWS), 201, 206, 225
algorithms, 207
attribute, 206–207
serialization

attributes, 208
coding implementation, 208
definition, 208
Java coding, 209–212
JSON payload, 210
PrivateKey, 213

specification, 206
JSON Web Token (JWT), 180, 201

claim set, 202
definition, 201
Java code, 203–205
JOSE header, 201, 205
OpenID connect, 201
private claims, 203
public claims, 203
registered claims, 202

M, N�       �
MAC token profile, 133, 135

audience parameter, 136
authentication, 138
authorization code

client application, 135
cURL command, 136
grant type, 135–136
HTTP header, 135
parameters, 137

bearer tokens, 134
calculation, 138
Expiring tokens, 134
grant types, 134, 141
HMAC, 139
HTTP Request-Line, 139
OAuth 1.0 vs. OAuth 2.0, 141
resource server, 140
unbounded tokens, 134
working principles, 133

Managed APIs, 1
Salesforce API, 8
Twitter API, 6

Message authentication
code (MAC), 139

O�       �
OAuth

MAC token profile (see MAC token profile)
three-legged vs. two-legged, 88

■ index

232

Google (cont.)

token based authentication (see Token-based
authentication)

WRAP, 89 (see also Web resource
authorization profiles (WRAP))

OAuth 1.0 vs. OAuth 2.0, 103
OAuth 2.0, 91

client types
confidential clients, 103
public clients, 103

Facebook, 109
access token, 111
client registration, 110
Page access token, 114
user access token, 112

Google, 124
application authentication, 126
authorization code, 124
client registration, 124
device authentication, 129
implicit code, 128

LinkedIn, 116
access token, 117
client registration, 117

Recipe API, 104
authorization code, 105
client credentials, 108
implicit code, 107
resource owner password, 107

refresh token, 109
salesforce, 119

authorization code, 120
client registration, 119
implicit code, 122
resource owner password, 123

WRAP (see Web resource
authorization profiles (WRAP))

OpenID Connect, 181
Amazon, 183
API security, 199
directed identity, 182
dynamic client registration, 197
flow chart representation, 194
google, 192
grant types, 191
identity provider metadata, 196
ID token, 184

attributes, 184
JSON web encryption (JWE), 185
JSON web signature (JWS), 185
JSON web token (JWT), 184

overview, 181
protocol flow, 182
relying party, 181
request attributes, 187

user attributes, 189, 191
WebFinger protocol, 194

identity provider, 196
rel parameter, 195
resource parameter, 195

WSO2 Identity Server, 185

P, Q�       �
Patterns, 221

chained access delegation, 226
delegated access control

hidden credentials, 229
Proxy identity, 223–224
STS, 228–229
with JWT, 224–225

nonrepudiation, 225
Single Sign-On (SSO)

delegated access control, 222
IWA, 223

trusted master access delegation, 227–228
Trusted Subsystem, 221

Perfect forward secrecy (PFS), 56
Policy Enforcement Point (PEP), 228
Private Communication Technology (PCT), 47
Profiles, 143

chain grant type, 149
dynamic client registration profile, 151
token introspection

(see Token introspection profile)
token revocation, 152

R�       �
Recipe API deployment, Apache Tomcat, 37
Requesting party token (RPT), 164

S�       �
Secure Transport Layer

Protocol (STLP), 47
Security, 11

auditing, 21
authentication, 18
authorization, 19
availability, 16
Brokered Authentication pattern, 26
complete mediation, 14
confidentiality, 14

message-level encryption, 15
SSL bridging, 15
TLS tunneling, 15

DAC vs. MAC, 19
defense in depth, 12

■ Index

233

Direct Authentication pattern, 22
biometric authentication, 24
limitations, 22
managing credentials, 23
yellow zone, 22

fail-safe defaults, 13
insider attacks, 12
integrity, 16
Kerckhoff’s principle, 13
least common mechanism pattern, 14, 26
least privilege principle, 13
nonrepudiation, 21
open design, 14
performance, 11
policy-based access control pattern, 27
psychological acceptability, 14
sealed green zone pattern, 25
seperation of privilege, 14
simplicity, 13
threat modeling, 29
user comfort, 11
weakest link, 12

Security Assertion Markup Language (SAML), 173
client authentication, 174
grant type

brokered authentication, 177
identity provider, 176
JWT profile, 180
out of band, 177
WSO2 identity server, 177

Security Token Service (STS) pattern, 228
System for Cross-domain Identity

Management (SCIM) working group, 205

T�       �
Threat modeling, 29
Token-based authentication, 75–76

resource-owner authorization phase, 78
secured business API, 80
signature methods, 80

HMAC-SHA1, 83
PLAINTEXT, 81
RSA-SHA1, 83

temporary-credential request phase, 76
authorization header, 77
client-registration process, 77

token-credential request phase, 79
twitter APIs, 85
unique identifier, 75

Token introspection profile, 143
HTTP authentication, 143
JSON response, 144
validation, 144

XACML, 144
API gateway, 147
architecture, 145
attribute mapping, 147
runtime execution, 146
security gateway, 146
Target element, 148

Token revocation profile, 152
Transport Level

Security (TLS), 206, 222
Transport Layer Security (TLS)

mutual authentication, 47
API security, 51
cryptographic keys, 51
cURL, 54
data transfer, 48, 51
encoding rules, 56
evolution of, 47
handshake, 48

Alert protocol, 49
Certificate verify message, 50
Change Cipher Spec message, 50
Change Cipher Spec protocol, 49
Client hello message, 49
Finished message, 50
Handshake protocol, 49
premaster key, 50
Server hello message, 49
server key exchange, 50

JKS vs. PKCS #12, 56
protocol layers, 48
reverse engineering, 56

U, V�       �
Universal Description, Discovery

and Integration (UDDI), 5
User managed access (UMA), 155, 161

APIs, 168
authorization, 170
protection, 169
security, 170

architecture, 161
authorization, 164, 166

AAT tokens, 165
HTTP Authorization header, 166
permission-ticket identifier, 167
requesting party, 168
requesting party

token (RPT), 165
401 response, 165

ProtectServe, 155
authorization manager (AM), 155–156
consumer access token, 158
OAuth credentials, 159–160

■ index

234

Security (cont.)

401 response, 157
service provider (SP), 155

resource protection
access, 168
centralized authorization server, 162
dynamic client-registration, 162
PAT token, 163

W, X, Y, Z�       �
Web resource authorization profiles (WRAP), 73

autonomous client profiles, 91
Assertion profile, 92
client account profile, 92
Password profile, 92

grant types, 95
authorization code, 96
client credentials, 101
implicit code, 98
resource owner, 100

internet identity workshop (IIW), 91
protected resource, 95
token types, 95, 102

Bearer token profile, 102
MAC token profile, 102

user delegation profiles, 91
Rich APP profile, 94
username and password profile, 93
Web APP profile, 93

WSO2 Identity Server, 178

■ Index

235

Advanced API Security
Securing APIs with OAuth 2.0, OpenID

Connect, JWS, and JWE

Prabath Siriwardena

Advanced API Security: Securing APIs with OAuth 2.0, OpenID Connect, JWS, and JWE

Copyright © 2014 by Prabath Siriwardena

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6818-5

ISBN-13 (electronic): 978-1-4302-6817-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Robert Hutchinson
Developmental Editor: Gary Schwartz
Technical Reviewer: Michael Peacock
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Rita Fernando
Copy Editor: Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to two great ladies: my mother and my wife.

vii

Contents

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: Managed APIs■■ ���1

The API Evolution��1

API vs. Managed API���3

API vs. Service��4

Discovering and Describing APIs��5

Managed APIs in Practice���6

Twitter API��� 6

Salesforce API��� 8

Summary��10

Chapter 2: Security by Design■■ ��11

Design Challenges��11

User Comfort��� 11

Design Principles��13

Least Privilege�� 13

Fail-Safe Defaults��� 13

Economy of Mechanism��� 13

Complete Mediation�� 14

Open Design��� 14

Separation of Privilege��� 14

■ Contents

viii

Least Common Mechanism�� 14

Psychological Acceptability�� 14

Confidentiality, Integrity, Availability (CIA)���14

Confidentiality��� 14

Integrity�� 16

Availability�� 16

Security Controls��17

Authentication�� 18

Authorization�� 19

Nonrepudiation��� 21

Auditing�� 21

Security Patterns��22

Direct Authentication Pattern��� 22

Sealed Green Zone Pattern��� 25

Least Common Mechanism Pattern�� 26

Brokered Authentication Pattern�� 26

Policy-Based Access Control Pattern�� 27

Threat Modeling���29

Summary��31

Chapter 3: HTTP Basic/Digest Authentication■■ ��33

HTTP Basic Authentication���33

HTTP Digest Authentication��34

Summary��46

Chapter 4: Mutual Authentication with TLS■■ ��47

Evolution of TLS��47

How TLS Works���48

TLS Handshake��48

Application Data Transfer���51

Summary��58

■ Contents

ix

Chapter 5: Identity Delegation■■ ��59

Direct Delegation vs. Brokered Delegation���59

Evolution of Identity Delegation��60

Google ClientLogin�� 62

Google AuthSub�� 65

Flickr Authentication API��� 67

Yahoo! Browser-Based Authentication (BBAuth)�� 70

Summary��73

Chapter 6: OAuth 1.0■■ ��75

The Token Dance��75

Temporary-Credential Request Phase�� 76

Resource-Owner Authorization Phase�� 78

Token-Credential Request Phase�� 79

Invoking a Secured Business API with OAuth 1.0��� 80

Demystifying oauth_signature���80

Three-Legged OAuth vs. Two-Legged OAuth��88

OAuth WRAP���89

Summary��90

Chapter 7: OAuth 2.0■■ ��91

OAuth WRAP���91

Client Account and Password Profile�� 92

Assertion Profile��� 92

Username and Password Profile�� 93

Web App Profile�� 93

Rich App Profile�� 94

Accessing a WRAP-Protected API���95

WRAP to OAuth 2.0���95

OAuth 2.0 Grant Types��95

Authorization Code Grant Type�� 96

Implicit Grant Type�� 98

■ Contents

x

Resource Owner Password Credentials Grant Type�� 100

Client Credentials Grant Type�� 101

OAuth 2.0 Token Types���102

OAuth 2.0 Bearer Token Profile��� 102

OAuth 2.0 Client Types��103

OAuth 2.0 and Facebook��109

OAuth 2.0 and LinkedIn��116

OAuth 2.0 and Salesforce���119

OAuth 2.0 and Google���124

Authentication vs. Authorization���131

Summary��132

Chapter 8: OAuth 2.0 MAC Token Profile■■ ��133

Bearer Token vs. MAC Token��134

Obtaining a MAC Token��135

Invoking an API Protected with the OAuth 2.0 MAC Token Profile��138

Calculating the MAC���138

MAC Validation by the Resource Server���140

OAuth Grant Types and the MAC Token Profile���141

OAuth 1.0 vs. OAuth 2.0 MAC Token Profile��141

Summary��142

Chapter 9: OAuth 2.0 Profiles■■ ���143

Token Introspection Profile���143

XACML and OAuth Token Introspection��� 146

Chain Grant Type Profile���149

Dynamic Client Registration Profile��150

Token Revocation Profile��152

Summary��153

■ Contents

xi

Chapter 10: User Managed Access (UMA)■■ ��155

ProtectServe���155

UMA and OAuth��� 160

UMA Architecture���161

UMA Phases���161

UMA Phase 1: Protecting a Resource��� 161

UMA Phase 2: Getting Authorization��� 164

UMA Phase 3: Accessing the Protected Resource�� 168

UMA APIs��168

Protection API��� 169

Authorization API�� 170

The Role of UMA in API Security���170

Summary��170

Chapter 11: Federation■■ ���171

Enabling Federation���171

Brokered Authentication���171

SAML 2.0 Profile for OAuth: Client Authentication��173

SAML 2.0 Profile for OAuth: Grant Type��176

JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants���������������������������������180

Summary��180

Chapter 12: OpenID Connect■■ ���181

A Brief History of OpenID Connect��181

Understanding OpenID Connect���184

Anatomy of the ID Token��� 184

OpenID Connect Request�� 187

Requesting User Attributes��� 189

Grant Types for OpenID Connect��� 191

Requesting Custom User Attributes�� 191

OpenID Connect Discovery��� 194

■ Contents

xii

OpenID Connect Identity Provider Metadata��� 196

OpenID Connect Dynamic Client Registration��� 197

OpenID Connect for Securing APIs�� 199

Summary��200

Chapter 13: JWT, JWS, and JWE■■ ���201

JSON Web Token��201

JOSE Working Group��205

JSON Web Signature��206

Signature Algorithms�� 207

Serialization�� 208

JSON Web Encryption���213

Content Encryption vs. Key Wrapping��� 215

Serialization�� 215

Summary��220

Chapter 14: Patterns and Practices■■ ��221

Direct Authentication with the Trusted Subsystem Pattern��221

Single Sign-On with the Delegated Access Control Pattern���222

Single Sign-On with the Integrated Windows Authentication Pattern��223

Identity Proxy with the Delegated Access Control Pattern���223

Delegated Access Control with the JSON Web Token Pattern��224

Nonrepudiation with the JSON Web Signature Pattern��225

Chained Access Delegation Pattern���226

Trusted Master Access Delegation Pattern��227

Resource Security Token Service (STS) with the Delegated Access Control Pattern�����������������228

Delegated Access Control with the Hidden Credentials Pattern���229

Summary��230

Index��231

xiii

About the Author

Prabath Siriwardena is the Director of Security Architecture at WSO2 Inc.,
a company that produces a wide variety of open source software from data to screen.
He is a member of the OASIS Identity Metasystem Interoperability (IMI) TC, OASIS
eXtensible Access Control Markup Language (XACML) TC, OASIS Security Services
(SAML) TC, OASIS Identity in the Cloud TC, and OASIS Cloud Authorization
(CloudAuthZ) TC. Prabath is also a member of Apache Axis PMC and has spoken at
numerous international conferences including OSCON, ApacheCon, WSO2Con, the
European Identity Conference (EIC), IDentity Next, the API Strategy Conference,
and OSDC. He has more than ten years of industry experience and has worked with
many Fortune 100 companies. Advanced API Security is his second book. His first
book was Enterprise Integration with WSO2 ESB (Packt Publishing, 2013).

xv

About the Technical Reviewer

Michael Peacock is an experienced software developer and team lead from
Newcastle, UK. Michael holds a degree in software engineering from the University
of Durham.

After spending a number of years running his own web agency and
subsequently working directly for a number of software startups, Michael now
serves as a technical consultant for a range of companies, helping with application
development, software processes, and technical direction.

He is the author of Creating Development Environments with Vagrant,
PHP 5 Social Networking, PHP 5 E-Commerce Development, Drupal 7 Social
Networking, Selling online with Drupal e-Commerce, and Building Websites with
TYPO3. Michael has been involved with other publications including Mobile
Web Development, Jenkins Continuous Integration Cookbook, and Drupal for
Education and E-Learning, on which he served as a technical reviewer.

Michael has presented at a number of user groups and technical conferences including the PHP UK Conference,
the Dutch PHP Conference, ConFoo, PHPNE, PHPNW, and Could Connect Santa Clara.

You can follow Michael on Twitter (@michaelpeacock) or find out more about him through his web site
(www.michaelpeacock.co.uk).

www.michaelpeacock.co.uk

xvii

Acknowledgments

I would first like to thank Jonathan Hassel, senior editor at Apress, for evaluating and accepting my proposal for this
book. Then, of course, I must thank Rita Fernando, coordinating editor at Apress, who was extremely patient and
tolerant of me throughout the publishing process. Thank you very much Rita for your excellent support—I really
appreciate it. Also, Gary Schwartz and Tiffany Taylor did an amazing job reviewing the manuscript—many thanks,
Gary and Tiffany! Michael Peacock served as technical reviewer—thanks, Michael, for your quality review comments,
which were extremely useful. Thilina Buddhika from Colorado State University also helped in reviewing the first two
chapters of the book—many thanks, again, Thilina!

Dr. Sanjiva Weerawarana, the CEO of WSO2, and Paul Fremantle, the CTO of WSO2, are two constant mentors
for me. I am truly grateful to both Dr. Sanjiva and Paul for everything they have done for me. I also must express my
gratitude to Asanka Abeysinghe, the Vice President of Solutions Architecture at WSO2 and a good friend of mine—we
have done designs for many Fortune 500 companies together, and those were extremely useful in writing this book.
Thanks, Asanka!

Of course, my beloved wife, Pavithra, and my little daughter, Dinadi, supported me throughout this process.
Pavithra wanted me to write this book even more than I wanted to write it. If I say she is the driving force behind this
book, it’s no exaggeration. She simply went beyond just feeding me with encouragement—she also helped immensely
in reviewing the book and developing samples. She was always the first reader. Thank you very much, Pavithra.

My parents and my sister have been the driving force behind me since my birth. If not for them, I wouldn’t be
who I am today. I am grateful to them for everything they have done for me. Last but not least, my wife’s parents—they
were amazingly helpful in making sure that the only thing I had to do was to write this book, taking care of almost all
the other things that I was supposed to do.

The point is that although writing a book may sound like a one-man effort, it’s the entire team behind it who
makes it a reality. Thank you to everyone who supported me in many different ways.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Managed APIs
	The API Evolution
	API vs. Managed API
	API vs. Service
	Discovering and Describing APIs
	Managed APIs in Practice
	Twitter API
	Salesforce API

	Summary

	Chapter 2: Security by Design
	Design Challenges
	User Comfort
	Performance
	Weakest Link
	Defense in Depth
	Insider Attacks
	Security by Obscurity

	Design Principles
	Least Privilege
	Fail-Safe Defaults
	Economy of Mechanism
	Complete Mediation
	Open Design
	Separation of Privilege
	Least Common Mechanism
	Psychological Acceptability

	Confidentiality, Integrity, Availability (CIA)
	Confidentiality
	Integrity
	Availability

	Security Controls
	Authentication
	Something You Know
	Something You Have
	Something You Are

	Authorization
	Discretionary Access Control (DAC) vs. Mandatory Access Control (MAC)

	Nonrepudiation
	Auditing

	Security Patterns
	Direct Authentication Pattern
	Managing Credentials
	Biometric Authentication

	Sealed Green Zone Pattern
	Least Common Mechanism Pattern
	Brokered Authentication Pattern
	Policy-Based Access Control Pattern

	Threat Modeling
	Summary

	Chapter 3: HTTP Basic/Digest Authentication
	HTTP Basic Authentication
	HTTP Digest Authentication
	Summary

	Chapter 4: Mutual Authentication with TLS
	Evolution of TLS
	How TLS Works
	TLS Handshake
	Application Data Transfer
	Summary

	Chapter 5: Identity Delegation
	Direct Delegation vs. Brokered Delegation
	Evolution of Identity Delegation
	Google ClientLogin
	Google AuthSub
	Flickr Authentication API
	Yahoo! Browser-Based Authentication (BBAuth)

	Summary

	Chapter 6: OAuth 1.0
	The Token Dance
	Temporary-Credential Request Phase
	Resource-Owner Authorization Phase
	Token-Credential Request Phase
	Invoking a Secured Business API with OAuth 1.0

	Demystifying oauth_signature
	Three-Legged OAuth vs. Two-Legged OAuth
	OAuth WRAP
	Summary

	Chapter 7: OAuth 2.0
	OAuth WRAP
	Client Account and Password Profile
	Assertion Profile
	Username and Password Profile
	Web App Profile
	Rich App Profile

	Accessing a WRAP-Protected API
	WRAP to OAuth 2.0
	OAuth 2.0 Grant Types
	Authorization Code Grant Type
	Implicit Grant Type
	Resource Owner Password Credentials Grant Type
	Client Credentials Grant Type

	OAuth 2.0 Token Types
	OAuth 2.0 Bearer Token Profile

	OAuth 2.0 Client Types
	OAuth 2.0 and Facebook
	OAuth 2.0 and LinkedIn
	OAuth 2.0 and Salesforce
	OAuth 2.0 and Google
	Authentication vs. Authorization
	Summary

	Chapter 8: OAuth 2.0 MAC Token Profile
	Bearer Token vs. MAC Token
	Obtaining a MAC Token
	Invoking an API Protected with the OAuth 2.0 MAC Token Profile
	Calculating the MAC
	MAC Validation by the Resource Server
	OAuth Grant Types and the MAC Token Profile
	OAuth 1.0 vs. OAuth 2.0 MAC Token Profile
	Summary

	Chapter 9: OAuth 2.0 Profiles
	Token Introspection Profile
	XACML and OAuth Token Introspection

	Chain Grant Type Profile
	Dynamic Client Registration Profile
	Token Revocation Profile
	Summary

	Chapter 10: User Managed Access (UMA)
	ProtectServe
	UMA and OAuth

	UMA Architecture
	UMA Phases
	UMA Phase 1: Protecting a Resource
	UMA Phase 2: Getting Authorization
	UMA Phase 3: Accessing the Protected Resource

	UMA APIs
	Protection API
	Authorization API

	The Role of UMA in API Security
	Summary

	Chapter 11: Federation
	Enabling Federation
	Brokered Authentication
	SAML 2.0 Profile for OAuth: Client Authentication
	SAML 2.0 Profile for OAuth: Grant Type
	JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants
	Summary

	Chapter 12: OpenID Connect
	A Brief History of OpenID Connect
	Understanding OpenID Connect
	Anatomy of the ID Token
	OpenID Connect Request
	Requesting User Attributes
	Grant Types for OpenID Connect
	Requesting Custom User Attributes
	OpenID Connect Discovery
	OpenID Connect Identity Provider Metadata
	OpenID Connect Dynamic Client Registration
	OpenID Connect for Securing APIs

	Summary

	Chapter 13: JWT, JWS, and JWE
	JSON Web Token
	JOSE Working Group
	JSON Web Signature
	Signature Algorithms
	Serialization

	JSON Web Encryption
	Content Encryption vs. Key Wrapping
	Serialization

	Summary

	Chapter 14: Patterns and Practices
	Direct Authentication with the Trusted Subsystem Pattern
	Single Sign-On with the Delegated Access Control Pattern
	Single Sign-On with the Integrated Windows Authentication Pattern
	Identity Proxy with the Delegated Access Control Pattern
	Delegated Access Control with the JSON Web Token Pattern
	Nonrepudiation with the JSON Web Signature Pattern
	Chained Access Delegation Pattern
	Trusted Master Access Delegation Pattern
	Resource Security Token Service (STS) with the Delegated Access Control Pattern
	Delegated Access Control with the Hidden Credentials Pattern
	Summary

	Index

