
Audit SMAK Farming

November 2021

Contents

Page

Disclaimer 2

Introduction 3

Overview 4
Project summary . 4
Audit summary . 4
Vulnerability summary . 4
Code Quality summary . 5

Vulnerability 6
V1. FA1.2 contract . 6
V2. Storage scope in code . 7
V3. Sequence computation and cost of exponentiation . 7
V4. Precision of point ratio . 8
V5. Remove double computation . 9

Code Quality 11
Q1. Source files organisation . 11
Q2. Deprecation: include . 13
Q3. Replace error string by error code . 14
Q4. Code unit organisation . 14
Q5. Checking assumption . 15
Q6. Computation of remaining rewards . 16
Q7. Iteration in functional programing . 17
Q8. Cost of nat andWeek sequence index . 18
Q9. Map update . 19
Q10.Save calls to function . 19
Q11.Use coherent data structure . 20
Q12.Factorize code by user . 21
Q13.Reducing number of operation . 21
Q14.Don’t make NOP entrypoint . 22

1

Disclaimer

This report does not provide any warranty or guarantee regarding the absolute bug-freenature of
the technology analyzed.

This report represents an extensive assessing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Smart-
chain’s position is that each company and individual are responsible for their own due diligence
and continuous security. Smart-chain’s goal is to help reduce the attack vectors and the high level
of variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

2

Introduction

This audit was commanded to Wulfman Corporation, in quality of main contributor and expert of
LigoLANG, by SmartChain, in quality of developer and publisher of the SMAK farm Contract

The object of the audit is the analysis of the SMAK farm Contractin order to identify vulnerabil-
ities and contract optimizations in the source code.

The contract targets the Tezos blockchain andwas developed in LigoLANG. The auditingmeth-
ods consist in manual review along with automated testing of the smart-contract using the ligo
test framework and a Florencenet sandbox

The auditing process paid special attention to ensuring that the contract logic is coherent and
implements the specification and the best testing schemes.

3

Overview

Project summary

Project Name SMAK farm Contract
Publisher SmartChain
Platform Tezos
Language LigoLANG(cameligo flavor)
Codebase https://github.com/MattSmartChain/auditFarm
Original commit b19c4eb1fa3b02deec2bd71a73f24ef2884fd055
Contract adress KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF
Contract url https:

//better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/storage

Audit summary

Auditer Wulfman Corporation
Delivery date November 2021
Scope Farm contract
Methodology Manual review, unit testing
Tezos version GRANADA (PtGRANADsDU8R9daYKAgWn...)
Tezos client version 10.2
LigoLANGversion 0.29.0

Vulnerability summary

Total issues 5
Critical 1
Major 1
Medium 1
Minor 1
Informational 1

4

https://github.com/MattSmartChain/auditFarm
https://better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/storage
https://better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/storage

Code Quality summary

Total improvements 19
Maintenance 3
Scalability 2
Readability 4
Origination cost 2
Gas cost 8

5

Vulnerability

Contents
V1. FA1.2 contract . 6
V2. Storage scope in code . 7
V3. Sequence computation and cost of exponentiation . 7
V4. Precision of point ratio . 8
V5. Remove double computation . 9

V1. FA1.2 contract
Category Severity Location Status
Potential Vulnerability Informational contract/main/fa12.mligo

Description
The FA 1.2 specification is the standard specification for fungible token on tezos, and at the core
of any smart-contract that will emit such non-fungible token. A bug or a vulnerability in the imple-
mentation of the standard will render the contract unusable. For this reason, the implementation
should not be realised or modified in house but instead just originate from a trusted source and
be audited.

The current FA 1.2 implementation was done by ocamlCase and publish within the dexter
DApp. Using this implementation is questionable as it imply trusting ocamlCase to not inten-
tional or non-intentionally introduce vulnerability in the contract.

The dexter DApp has be the object of an audit performed by Nomadic Lab on February 2021
which found a vulnerability. The vulnerability does not concern the FA1.2 implementation which
increase confidence in this implementation.

6

Solution
I would be preferable to obtain the FA1.2 contract directly from the Tezos Fundation through tq :
https://assets.tqtezos.com/docs/token-contracts/fa12/2-fa12-ligo/. This work has been finance
by the Tezos Fundation and imlemented by the Ligo team in order to provide a secure, bug-free,
trustworthy contract to the community.
This contract has not yet been audited by a third-party. This should be done

V2. Storage scope in code

Category Severity Location Status
Potential Vulnerability Major contract/partials/FarmMethods.mligo

Description
In the contract the storage is use as an environment to store global variable, withmany utility func-
tion reading from it and writing to it, which is a very bad design pattern.

The storage is critical data that people pay in exchange for the correctness and integrity
of such data. This is the value proposal of a smart-contract and should be treated with care

pattern which modify part of the storage just to give a few parameter to a function not only
is expensive because it requires copying the whole storage on the stack, it is at risk of return this
"temporary" storage instead of the proper one at the end of execution. For this reason, reading
and writing to the storage should be only allowed in "entrypoint" function, i.e the function directly
called by main after matching on the parameter type.

Solution
There is no automate tool to check this property to my knowledge. The good design pattern to
adopt is :

• extra the necessary value at the beginning of the entrypoint (let <value> = storage.<value>)

• write the parameters of utility function explicitly but limit it to the necessary

• return tuple of value from utility function if necessary

• update the storage once at the end of the entrypoint and immediately return it

V3. Sequence computation and cost of exponentiation

Category Severity Location Status
Specification limitation Critical contract/partials/FarmMethods.mligo

7

https://assets.tqtezos.com/docs/token-contracts/fa12/2-fa12-ligo/

Description
The contract use a geometric sequence to calculate the weekly rewards. To calculate each term,
the contract use the classical index definition of a geometric function, which makes intensive use
of thepower function. In computation, a power function is very costly as in requires at bestO(log(n))
multiplication function but in this code O(n) multiplication. Since we computing for each week,
the total number of multiplication is O(n2)whichmay be the cause of the limitation on the period
number. Furthermore, the computation of each term is quite far-fetched. It seems that due to the
absence of floating, we need to use floating point for the ratio, which leads to inaccuracy during
division. To limit the imprecision, the formula has been adapt and use 5 exponentiation instead
of the classical 2. Even with just a 100 periods, you will reach 50000 instruction. The gas limit for
operation is 1040000 This is about 21 gas for the multiplication, the subtraction, the absolute value
and the function calls. This should be enough, be we are getting close to the limit.

Solution
• As a general rule, always compute the constant value outside of the iterated code. This will
avoid unnecessary re-computation of the same value

• Use the recursive definition of the sequence. Compute the seed term outside of the iteration
and then use the previous value to generate the next one. This reduce the complexity to O(n)
computation

• Pay less attention to the division accuracy. It is important but the trade-off between correct
value and efficient code should be in favour of efficiency in general

• Compute the last week reward as the difference between the total reward and the sum of
the previous ones, instead of the recursive compute. This will fix some accuracy issues

V4. Precision of point ratio

Category Severity Location Status
Unnecessary Problem Minor contract/partials/FarmMethods.mligo

Description
Due to fix-point computation, the computation of a ration needs to firstmultiply the numerator by
a precision factor to make it several order of magnitude greater than the denominator, otherwise
the result would be 0. The number of order of magnitude gives the precision of the computation.

In order to choose a value for the precision pwe need to estimate to magnitude of

dem

num

When computing the point ration for a week the value for the user i is∑
n tn · lpn
ti · lpi

8

. with ti the time spend staking in the week and lpi the number of coin staked. (we simplified
with the assumption,that they didn’t stake and unstake during the week otherwise we have to
add extra sum on each different amount for each users, but it doesn’t changes the analysis)

In the best case, all users staked about the average amount of token < lp > during the whole
week and the fraction simplifies to (n).

In the general case, the will be
n · tweek· < lp >

ti · lpi
assuming that a significant number of user staked their token for the whole .

In the worst case, assuming the user staked its token within the last hour of the week, the
fraction became

200 · n· < lp >

lpi

. Considering a number of user of 10000we need precision to be over 2000000000 to have three digit
of precision for the fraction. But this could be the expected behaviour.

An other way to see it is that an user will never get that one unit of the reward currency (here
milliSMAK), hence we only need the precision to be equal to the maximum possible recompense,
which should be reasonable.

Solution
The best is to avoid introducing ratios and doing the final computation in one step. In the current
code, there is a percentage vector which is computed to then be then use twice. The first time to
compute the rewards from the percentages, and the second time just to get theweek indices. The
second usage is not required and bymerge the first one with the computation of the percentage,
you will not need to introduce the precision by simplifying

points · precision
farm_points

· weekly_reward
precision

=
points · weekly_reward

farm_points

V5. Remove double computation

Category Severity Location Status
Potential inaccuracy Medium contract/partials/FarmMethods.mligo

Description
In the processing of Stake and Unstake, you compute the increase of user points and the increase
of farms points separately while they are equal, as indicate that you use wrote the same function
twice. First of all, when you have similar function like those, you could consider factorizing them
(this may require adding extra parameter to the function to remove the difference). Second of
all by computing it twice you remove the guaranty that the two quantity are equal. Either due
to one of the computation being erroneous or some computing. (Very unlikely, but an hardware
malfunction could cause the result of a computation to be faulty). Not having this guaranty is an
issues for your application.

9

Solution
Compute the delta and add it to both the farm total points and the user points. And it would be
better to do that in one loop instead of first computing the vector of deltas, and then the vector of
the farm and user (see Q11.).

10

Code Quality

Contents
Q1. Source files organisation . 11
Q2. Deprecation: include . 13
Q3. Replace error string by error code . 14
Q4. Code unit organisation . 14
Q5. Checking assumption . 15
Q6. Computation of remaining rewards . 16
Q7. Iteration in functional programing . 17
Q8. Cost of nat andWeek sequence index . 18
Q9. Map update . 19
Q10.Save calls to function . 19
Q11.Use coherent data structure . 20
Q12.Factorize code by user . 21
Q13.Reducing number of operation . 21
Q14.Don’t make NOP entrypoint . 22

Q1. Source files organisation

Category Impact Location Status
Organisation Maintenance & Scalability root folder

Description
The project is organise using the following tree :

11

There is several remark to make on the organisation that could hinder scalability in the futur:

1. not very important but the sources parents directory is name contract instead src and the
test folder should be outside this folder. Those are just convention that can be of course
modify, but the importance of following convention is to improve performance of developer
(not having to think about where to look at things) and tools (script breaking for folder being
at the wrong place).

2. The code is split between ‘main‘ and ‘partials‘. ‘partials‘ is a bad name as it doesn’t give extra
information. A better name would be farm as it regroup the implementation of the Farm
logic for the project.

3. The file in the partilas folder have inconsistent naming, some are prefix with Farm others
are not. In the case where the folder is named farm, both options are valid but shouldn’t
be mixed. In the other case, the prefix should be used. As it is, it give the impression that
Error.mligo is for all project while it is only for the Farm.

4. The fa12.mligo file should not be your implementation (see). It should be place in a lib or
vendors folder next to the src folder

5. The main folder contains a main and a farms. This is already non standard but it turns out
that farms is a standalone contract that does something else entirely and should be outside
of this folder tree.

6. The close naming of the two contract farm and farms can leads two confusions, like mixing
up the two. farms also lack precision, is it a manager ? is it a factory ?

12

7. The file use different case convention. Camel case inmain, Pascal case in partials. It is com-
monpractice tousedifferent case for differentiate things (i.e. file vs folder) but it’s badpractice
to mix it for the same things, like source code filenames.

Solution
Following this recommendation will lead to this filetree:

Q2. Deprecation: include

Category Impact Location Status
Deprecation Maintenance all source files

Description
The #include preprocessor directive, was introduce very early in LigoLANGdevelopment to quickly
meet the demand for an ability to split the code into multiple file. What it does is literally insert
the text of the include file at the location, which can lead to low-level "hack" and other improper
design pattern. Moreover it necessitate all source file to have the same syntax.

13

A year ago, LigoLANGhas released a proper solution for separate compilation with the #import
primitive. #import "<path to file name>" "<ModuleName>" will produce the compilation of the file
at "<path to file name>" alone, verifying that it typechecks, and package its declarations into a
module "<ModuleName>" to not interfere with local declarations. It is possible to import file written
in other flavors.

Since then, #include is deprecated

Solution
Replace all #include "<file name>"with #include "<file name>" "<ModuleName>" choosing "<ModuleName>"
wisely. The code in the files has tobeadapt replacing <symbol> from "<file name>"with <ModuleName>.<symbol>

Q3. Replace error string by error code

Category Impact Location Status
Suggestions Origination cost contract/partials/Error.mligo

Description
The contract define 14 custom error message, accounting for 600 extra bytes in the final contract
which is 10% of the rest of the code. replacing them with integer will reduce the total size of the
contract from 7338 bytes to 6581 bytes, and thus reducing the gas cost

This however comes with several drawbacks : you have to provide the user with an interpre-
tation tables and you need to be assure that they are not conflicting with other error codes from
libraries

Originating thecontracts on themockupnode,weobtain (7564bytes, 2930.956gas, tz1.95525)
against (6983 bytes, 2923.030 gas, tz1.81)

Solution
Replace all string in Error.mligo with non repeated integer and add a signification table in your
documentation.

Q4. Code unit organisation

Category Impact Location Status
Organisation Readability contract/partials/FarmTypes.mligo

14

Description
1. The source file contains constant declaration in the middle of the type declaration. This is

a problem for two reason : First, there is no reason to declare not first declare all the type
and then all constant. Second, since the filename end with Types the assumption is that
it contains only types and the constant are define in another file and at usage, it would be
counter intuitive to write FarmTypes.constant_name

2. The type of the entrypoint may be better located in the main file. The reason is that files in
this folder should be focus ondescribing a farmand the entrypoint type describe the contract
entrypoint, but thedifference is really thin. It is also an expectation to read the entrypoint type
next to the entrypoint. But this it also apply recursively to the type in the entrypoint typedef
leading to move all types to the main file which may not be the best solution

Solution
1. Either rename the file andmove the constants to the end or move the constant to a new file,

FarmConstants.mligo using you current convention.

2. Move entrypoint typedef tomain.mligo

Q5. Checking assumption

Category Impact Location Status
Language issue Readability contract/partials/FarmMethods.mligo

Description
In the file, assumption are verified using the syntax

let _check_if_no_tez : bool =
if Tezos.amount = 0tez

then true
else (failwith(amount_must_be_zero_tez) : bool)

in

The good point of this line is the naming of the constant. However, there is not really a reason
for it to be a boolean. The condition should return a unit instead, and would make the cast of the
failwith unecessary.

At some location, the syntax deviate to make a constant definition if the assumption is true.
This should be avoided as it make the code less readable and the gain on the generated code is
uncertain.

There is a function in LigoLANGmade for this purpose : {assert_with_error}which can be use
to improve clarity.

15

Solution

let _check_if_no_tez : unit =
asssert_with_error (Tezos.amount = 0tez) amount_must_be_zero_tez in

Q6. Computation of remaining rewards

Category Impact Location Status
Code smell Gas cost contract/partials/FarmMethods.mligo

Description
In increaseReward, to compute the new amount of reward to distribute, we need to know how
much has been distributed already, to know how much is left before increase. This is done by
parsing the map of reward per week and summing the values for the past weeks, but checking
which are in the set of remaining weeks.

First of all, a similar code can directly sum the values for the remaining weeks, which is what
we want in the first place and will avoid an unnecessary natural subtraction followed by a cast.
Most importantly, the set of the remaining list is unnecessary for this check. We just have to com-
pare themap key against the current week number. This reduce the algorithmic complexity from
O(n · log(n)) to O(n)

Solution
Replace

let folded (acc, elt: nat * (nat * nat)) : nat =
if Set.mem elt.0 weeks_set then acc else acc + elt.1 in

let sum_R : nat = Map.fold folded s.reward_at_week 0n in
let new_r_total : nat = delta + abs(s.total_reward - sum_R) in

with

let folded (acc, elt: nat * (nat * nat)) : nat =
if elt.0 < current_week then acc else acc + elt.1 in

let remaining_r : nat = Map.fold folded s.reward_at_week 0n in
let new_r_total : nat = delta + remaining_r in

and remove the unused weeks_set

16

Q7. Iteration in functional programing

Category Impact Location Status
Code Smell Gas cost contract/partials/FarmMethods.mligo

Description
When calculating the reward for all theweeks, the program iterate over theweek indices. The code
generate a list of indices and run a recursive function over them, which reminds of the python style
loops. This lead to writing custom code for handling the parsing of the list element and the stop-
ping condition, which may be incorrect or inefficient.

Solution
When iterating over collection, the functional operators iter, map and fold has to be use instead.
iter to perform test on elements, map to apply a function on all elements separately and return the
collection of the result, fold to accumulate the function result in a single value, or propagate an
effect while parsing the collection. In this case, we want a fold

replacing

let rec modify_rewards_func(resulting_acc, weeks_indices : (nat, nat) map * nat list) : (nat, nat) map =
let week_indice_opt : nat option = List.head_opt weeks_indices in

match week_indice_opt with
| None -> resulting_acc
| Some(week_indice) ->

let modified : (nat, nat) map =
update_reward_per_week_func(week_indice, s.rate, s.weeks, s.total_reward, resulting_acc) in

let remaining_weeks_opt : nat list option = List.tail_opt weeks_indices in
let remaining_weeks : nat list = match remaining_weeks_opt with

| None -> ([] : nat list)
| Some(l) -> l

in
modify_rewards_func(modified, remaining_weeks)

in
let final_rewards : (nat, nat) map = modify_rewards_func(s.reward_at_week, weeks) in

with

let modify_rewards_func(resulting_acc, weeks_indices : (nat, nat) map * nat list) : (nat, nat) map =
update_reward_per_week_func(week_indice, s.rate, s.weeks, s.total_reward, resulting_acc)

in
let final_rewards : (nat, nat) map = List.fold modify_rewards_func s.reward_at_week weeks in

17

Furthermore, we don’t actually want to iterate over a list here, we want to iterate with a counter
from 1 to max_1, un functional programming this is done with the unfold function which is not
yet implemented in LigoLANG, but can be easily done by using tail-recursive function

let rec modify_rewards_func(resulting_acc, weeks_indice : (nat, nat) map * nat) : (nat, nat) map =
if week_indice > s.weeks

then resulting_acc
else

let modified : (nat, nat) map =
update_reward_per_week_func(week_indice, s.rate, s.weeks, s.total_reward, resulting_acc) in

modify_rewards_func(modified, week_indice + 1)
in
let final_rewards : (nat, nat) map = modify_rewards_func(s.reward_at_week, weeks) in

which doesn’t necessitate the creation of a list.
In the case that you do need to parse a list with a recursive function, because of more complex

processing that you can’t do with the classical iterators. Or because you need one that has not
been implemented yet. Then you will need to extract the head and the tail of the list. But not with
List.head_opt and List.tail_opt, but with the list destructuring head :: tail like such

let rec function lst res =
match lst with

| [] -> res
| hd :: tl ->

// do stuff using the current value of the list hd and potential extra argument of the function
function tl res

Q8. Cost of nat and Week sequence index

Category Impact Location Status
Code Smell Gas cost contract/partials/FarmMethods.mligo

Description
Natural in Michelson and Ligo are a data structure whose purpose is too guaranty that they will
never be negative. But this guaranty comes at the cost of extra abs operation when making op-
eration with integers and subtraction. These could be avoided by not using naturals when the
guaranty is not necessary. Not using abs when the sign of an operation can be know from static
analysis and reducing the number of subtraction required.

When indexing element of a sequence, there is either the possibility to start at 1 the index
encoding the position, or at 0, the index encoding the distance from the first element. By choosing
the first encoding, getting the distance will require subtracting by 1 and an abs if the index is a
natural. With the later encoding, the former is obtained by adding 1 and no cast are necessary.

18

Solution
Index your maps starting from 1 and adapt your operation accordingly.

Q9. Map update

Category Impact Location Status
Language issue Gas cost contract/partials/FarmMethods.mligo

this :

let value_opt : nat option = Map.find_opt (week_indice+offset) map_accumulator in
let new_map : (nat, nat) map = match value_opt with
| None -> Map.add (week_indice+offset) result map_accumulator
| Some(_v) -> Map.update (week_indice+offset) (Some(result)) map_accumulator
in
new_map

is logically equivalent to

Map.update (week_indice+offset)(Some(result)) map_accumulator

but much more costly in gas

Q10. Save calls to function

Category Impact Location Status
Language issue Gas cost contract/partials/FarmMethods.mligo

Description
The syntax is confusing but Tezos.sender is not an access to the variable sender that is store some-
where. It is a call to the operation SENDER with talk to the protocol to get the sender. Using this
value multiple time means calling it multiple time which should be more expensive than a data
access.

Solution
Store the result of the call in a variable and use the variable instead. And that applies to other
processing as well, similarly to ??. If the call to SENDER is cheaper than a data access. You can easily
revert the change by using the [@inline] attribute for the variable declaration.

19

Q11. Use coherent data structure

Category Impact Location Status
Language issue All contract/partials/FarmMethods.mligo

Description
After closer inspection to your coding style. It seems tome that your choice of data-structure,more
specifically the maps was an attempt to recreate Array in functional programming which doesn’t
have them. Which then lead you to many code smells for trying to use an imperative style in a
functional programming language.

Array doesn’t make in functional programming because al variables are immutable. Which
means that when you modify a variable you actually create a new variable with the new value.
Thenmodifying and array cost O(n), accessing an immutable array is not different than accessing
a variable, and parsing an array is equivalent to parsing a list. That why their is no array collection
in functional programming.

The immutability of variables means that we need to separate the processing and the data. In
imperative programming, you often iterate over a collection or an value, perform some processing
and then store the result into a mutable array before going to the next loop. which correspond
to the abstract model of a Turing or a Von Newman machine. You take data from a memory,
you process it and then you store it in your writable memory. In functional programming, we
define functions the describes how to transform and process a datum, and then we apply these
function on our data to get a result (with iter,map or fold or others). It is the abstract model of
a data processing pipeline, with the data coming from one source (for instance light) and going
through several transformation (for instance a camera) to get the output data (in that case, the
numeric video flux). If it helps, you can imagine a product going through an assembly line.

This imply that having an index to get data from a collection and store it to a collection in an
iteration doesn’t makes a lot of sense in functional programming.

Solution
Instead of usingMaps to implement Array, use List. Maps should be reserve for key that are not just
index from 1 to n and data that you won’t just loop through it. They are look up table, that you use
when you need to search if a value exist or get a specific value while List are use for a sequence of
data that you will parse and transform. user_points and user_stakes are a good use of Maps. There
is nothing wrong with the use of Maps for weekly reward and weekly points. But not using them
will force you to adopt a functional coding style

The reason you try to get an index in you loop is because you want to get a value at the same
position in another array. Even in some imperative language like python, this is better done by
iterating over both data structure at the same time using map2 ormaking a single list with a pair of
the two datas, using zip. Both are not yet implemented in ligo, so instead you’ll have to fall back
to recursive function like this :

20

let rec function lst1 lst2 res =
match lst1, lst2 with

[], [] -> res
[], _lst -> failwith "size don't match"
_lst, [] -> failwith "size don't match"
hd1::tl1, hd2::tl2 ->

// do your processing with hd1 and hd2 as your current data
function tl1 tl2 res

This work for any number of data structure.

Q12. Factorize code by user

Category Impact Location Status
Code Smell Readability contract/partials/FarmMethods.mligo

Description
Following the previous point, the code of the claimAll function is odd. The code is constantly
modifying the user_point Map which is inefficient unless you are handling data for several user.
This challenges a functional program assumption and makes it harder to read.

Solution
Use the expected and better design.

1. Take the data concerning the user to process

2. Feed them to the processing function for one user.

3. Store all the results at the same time

Q13. Reducing number of operation

Category Impact Location Status
Code Smell Gas cost contract/partials/FarmMethods.mligo

Description
When sending the rewardmoney to the user, the contract send an operation by weeks. Thismult-
ply thenumber of transaction for thenetwork to handle and the fee to handle themby thenumber
of the week

21

Solution
Unless their is a good reason to separate the reward per weeks. Sum the reward and send them
in one transaction.

Q14. Don’t make NOP entrypoint

Category Impact Location Status
Code Smell Gas cost contract/main/farms.mligo

Description
The farms contract has an entrypoint that does nothing on purpose. I really don’t see the point
of such an operation. You are just paying money for no doing anything. They may be a use case
for calling the entrypoint from another contract but in that case itmakemore sense to retrieve the
current storagebefore the transaction from https://better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/
storage.

Solution
Don’t do it

22

https://better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/storage
https://better-call.dev/mainnet/KT1FtoNPPTQUuFFmzF6Ee7mStSZg6wPUYjUF/storage

	Disclaimer
	Introduction
	Overview
	Project summary
	Audit summary
	Vulnerability summary
	Code Quality summary

	Vulnerability
	FA1.2 contract
	Storage scope in code
	Sequence computation and cost of exponentiation
	Precision of point ratio
	Remove double computation

	Code Quality
	Source files organisation
	Deprecation: ocamlinclude
	Replace error string by error code
	Code unit organisation
	Checking assumption
	 Computation of remaining rewards
	Iteration in functional programing
	Cost of nat and Week sequence index
	Map update
	Save calls to function
	Use coherent data structure
	Factorize code by user
	Reducing number of operation
	Don't make NOP entrypoint

