
ChainUI: A Decentralized Deployment
Framework for Component-Based Web

Applications

Grzegorz Raczek
grzegorz@vestige.fi
www.chainui.com

July 3, 2023

Abstract

This paper presents ChainUI, a novel approach to the dura-
bility problem of Web3 interfaces, addressing security risks, app
versioning and component redundancy. It assesses the current so-
lutions available and proposes a novel method using smart contract
storage. By deploying web application code into application and
component smart contracts, ChainUI makes the interfaces as en-
during as the underlying network, overcoming the limitations of
memory and ensuring regular content updates. Through these inno-
vations, ChainUI addresses the major concerns surrounding Web3
interfaces, paving the way for a more robust, resilient, and efficient
framework for decentralized web applications.

www.chainui.com 1



Contents

1 Introduction 3

2 The issues of Web3 interfaces 3
2.1 Security risks . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 App versioning . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Monolithic design . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Available solutions 5
3.1 Decentralized Storage Networks . . . . . . . . . . . . . . . 5
3.2 Decentralized Cloud Storage . . . . . . . . . . . . . . . . . 6

4 Proposed solution 7
4.1 Smart contract storage . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Memory limit . . . . . . . . . . . . . . . . . . . . . 8
4.1.2 Content updates . . . . . . . . . . . . . . . . . . . 9
4.1.3 Version management & content accessibility . . . . 10
4.1.4 Deployment . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Code renderer . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Decentralization . . . . . . . . . . . . . . . . . . . 12
4.2.2 Code fetching . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 Code interpretation . . . . . . . . . . . . . . . . . . 13
4.2.4 Abstraction of prevalent components . . . . . . . . 13

4.3 Developer build tools . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Development . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Build output . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Dependencies . . . . . . . . . . . . . . . . . . . . . 16
4.3.4 Build size optimization . . . . . . . . . . . . . . . . 16

5 Conclusion 17

6 Acknowlegements 18

www.chainui.com 2



1 Introduction

Web3 applications, in their current state, have predominantly adopted the
deployment strategies of their Web2 predecessors, with minor adaptations
to accommodate Web3 functionalities such as wallet connectors and, in
certain cases, network configurations. These adjustments have been piv-
otal in rendering smart contracts user-friendly and operational for those
who lack technical expertise. The problem lies in the fact that these prac-
tices are deeply rooted in centralization, mirroring the architecture of the
Web2 era. Consequently, a vast majority of users still rely on central-
ized hosting solutions for fund management, paradoxically counteracting
the decentralization ethos that lies at the heart of blockchain technology.
This whitepaper elucidates novel solutions to address this discrepancy,
detailing how it’s possible to leverage the blockchain’s decentralized in-
frastructure for improved durability and user interface management.

2 The issues of Web3 interfaces

Despite the emergence of blockchain technology, the existing generation of
web applications continues to largely rely on centralized infrastructures.
This inherent centralization introduces a variety of vulnerabilities. These
include a dependence on a single point of failure, additional security risks,
the possibility of user data misuse and a lack of overall user control.

2.1 Security risks

The conventional architecture of web applications is predominantly cen-
tralized, resulting in a single point of failure. This means that if the
central server is compromised or fails, the entire service becomes inac-
cessible. For Web3 applications, the consequence of this failure could be
even more severe as users may potentially lose access to their funds. Cen-
tralized servers, cloud hosts, or Domain Name Servers (DNS) are prime
targets for cyber-attacks, as disruption here cripples the entire applica-
tion. This system not only presents a considerable risk to the availability
and reliability of the application but also threatens the integrity of user
data stored or processed through these servers. This vulnerability is well
illustrated by JavaScript substitution attacks, wherein a server is manipu-
lated into disseminating harmful JavaScript code instead of the legitimate
one, jeopardizing user data and possibly causing considerable harm.

www.chainui.com 3



A practical example of this security flaw is the recent cyber-attack on
MyAlgo Wallet, which was thoroughly documented in a Twitter thread
by MyAlgo [1] and an incident report by Halborn Security [2]. In this
case, the perpetrators capitalized on the centralized infrastructure, abus-
ing Cloudflare’s Content Delivery Network (CDN) to inject malicious code
through a man-in-the-middle attack between the actual wallet web ap-
plication and the user [1]. This occurred via a potentially compromised
CDN API key, although the exact means of its acquisition remain un-
clear [1]. The MyAlgo codebase itself displayed no signs of exploitation
or vulnerability, and there was no evidence to suggest that the CDN user
account was compromised [1].

2.2 App versioning

The versioning system of most web applications also presents a substantial
problem. In our rapidly evolving digital landscape, software is constantly
updated and improved. It’s crucial for users to be able to engage with
different iterations of a program, not only for preference but also to ensure
backward compatibility with previous smart contracts. Yet, under the
prevailing model, older versions of applications are frequently overwritten
and/or phased out.

This prevalent practice can lead to a multitude of problems. Users
can experience a loss of functionalities previously available, or in more
severe cases, lose access to funds locked in smart contracts that were sup-
ported by earlier application versions. This issue arises due to current
development frameworks being designed with their transitory nature in
mind. This inherent design perspective results in a natural misalignment
of development cycles between smart contracts, which are immutable and
persist over time, and user interfaces that are subject to continuous up-
dates and changes.

2.3 Monolithic design

Monolithic design further exacerbates the issues with the centralization
of web applications. In this design paradigm, the entire codebase of the
web application is developed, maintained, and deployed as a single entity.
This approach can lead to problems in terms of scalability, maintenance,
and updates. If one feature requires updating or patching, the entire
application must typically be redeployed.

www.chainui.com 4



Moreover, a monolithic design tends not to facilitate component re-
dundancy or the ability to work independently. This results in the ap-
plication being only as strong as its weakest component, and the failure
of a single component could disrupt the functionality of the entire appli-
cation. Furthermore, this design approach is less adaptive to changes in
the ecosystem. In the blockchain world, a monolithic design can make
the task of ensuring application longevity considerably more challenging.

This design pattern also poses difficulties when it comes to app ver-
sioning. Different versions of the application, in a monolithic setting, can
be hard to manage and may not coexist easily, leading to the aforemen-
tioned issues of incompatibility with older smart contracts.

2.4 Implications

The challenges we’ve discussed can create significant obstacles to realiz-
ing a completely decentralized internet (Web3), limiting the potential of
blockchain technology to fully revolutionize our online interactions and
transactions. We need a solution that ensures the longevity of web ap-
plications by effectively managing multiple software versions, while also
seamlessly merging smart contracts with their respective interfaces.

3 Available solutions

The challenges in achieving decentralized user interface storage are sig-
nificant, but a number of emerging solutions are being explored within
the blockchain industry.

3.1 Decentralized Storage Networks

One such approach employs Decentralized Storage Networks (DSNs).
These systems, including IPFS[4] and Filecoin[5], use a network of nodes
to store data. Leveraging cryptographic hashing and peer-to-peer pro-
tocols, DSNs ensure that data is stored securely, redundantly, and per-
manently across a distributed network. These systems are capable of
storing static files, which may include the HTML, CSS, and JavaScript
files required for a web interface.

www.chainui.com 5



While Decentralized Storage Networks (DSNs) offer several advan-
tages, they still fall short in addressing certain challenges. For example,
while they are adept at hosting static files for a web interface, they strug-
gle with handling content updates. This is due to the immutable nature of
data stored on such networks, where any alteration requires a completely
new upload and corresponding hash address.

Furthermore, while DSNs like IPFS can promise content permanence,
they do not guarantee data availability. This means that the availability
of a webpage’s user interface on IPFS relies heavily on the network’s
nodes continually deciding to host the content, something that cannot
be assured indefinitely. Therefore, while the smart contracts may be
operational 24/7 due to the blockchain’s inherent design, this does not
necessarily translate to the uptime of the user interface hosted on a DSN.

3.2 Decentralized Cloud Storage

Another promising alternative involves decentralized cloud storage plat-
forms like Storj [6] and Sia [7]. These platforms function similarly to tra-
ditional cloud storage services, but instead of storing data in centralized
data centers, they distribute data across a network of individual nodes.
This ensures that the data remains accessible even if one or several nodes
in the network go offline.

Decentralized cloud storage platforms are promising in ensuring data
availability and redundancy. However, they also face challenges in effec-
tively serving web applications. Similar to DSNs, the handling of dynamic
content is a significant hurdle. As these platforms are designed for general
file storage, they are not necessarily optimized for serving web content,
which may lead to slower load times and inefficient data retrieval.

Additionally, these solutions do not inherently solve the app versioning
problem. While they may store different versions of an application, they
lack a built-in system to handle version management, leaving it up to
individual users or developers to manually track and manage versions.
This can lead to confusion and increases the risk of users interacting with
outdated or incompatible versions of web applications.

Finally, these platforms still require integration with the traditional
Domain Name System (DNS) for users to access the stored content easily.
This reliance on a centralized system contradicts the goal of complete
decentralization, reintroducing a single point of failure.

www.chainui.com 6



4 Proposed solution

The aim of this project is to establish a robust system that transcends
the limitations of the current Web3 infrastructure by leveraging the in-
herent strengths of the blockchain. The proposed solution embeds web
application code within smart contracts to ensure permanent availability.
The web application can be constructed via a specially designed renderer
which retrieves the code directly from the blockchain, making the website
usable and its uptime congruent with the uptime of the entire network.
ChainUI ensures that the user interface exhibits the same degree of re-
silience and durability as the underlying smart contracts. It also makes
several improvements to the security and user experience of Web3 appli-
cations.

The framework is composed of three parts, all of which need to be
network-specific:

1. Smart contract storage - meaning the smart contract code that
will be deployed on the blockchain network. It will store application
data through any means available (state, box storage, etc.);

2. Code renderer - meaning the rendering engine which will display
the user interface after receiving a correct application reference (id,
hash, etc.);

3. Developer build tools - meaning the command line interface and
any other tools provided to the developers which will enable them
to build and deploy a web application.

All three of these components deal with complex problems related to
blockchain development, which will be discussed in detail below. The
blockhain layer used for consideration of below limitations will be the
Algorand MainNet Network [8].

4.1 Smart contract storage

The fundamental bedrock of the ChainUI framework lies in the smart
contract (SC) storage. Historically, smart contracts have served a myriad
of purposes, including complex computation execution, data storage, and
enforcement of logical rules.

www.chainui.com 7



Utilizing smart contracts to store application code brings forth a novel
set of challenges and considerations. To optimize the developer experience
and cultivate a thriving ecosystem, ChainUI’s smart contracts necessitate
a bifurcated structure:

1. Component Smart Contract - This refers to a smart contract
that preserves a specific, discrete segment of an application, anal-
ogous to the approach of component creation in frameworks like
ReactJS [10]. These components are designed to utilize parameters
relayed from the higher-level render. To prevent misuse and/or po-
tential code plagiarism by other developers (such as redeploying an
existing component, thereby severing the connection between the
original component code and the application), these components
should not incorporate any other components. They should also
store their content hash with any duplicates disallowed.

2. Application Smart Contract - This is the principal smart con-
tract code that maintains all core functionalities of an application,
capable of using components to render certain parts of it. Upon the
deployment of this smart contract, it should be obligatory to com-
pensate all the components used within the application. To ensure
compliance with this rule, references to the utilized components
should be embedded at the top-level of the smart contract, pro-
viding easy accessibility. The code renderer should then only load
data for components which have received their due payment. This
policy ensures the establishment of an equitable ecosystem where
developers are duly rewarded for their contributions whenever their
work is included in user-facing applications.

4.1.1 Memory limit

A principal obstacle is the memory constraint enforced by the majority
of blockchain networks on smart contracts. For instance, Algorand stipu-
lates a maximum of 8KB for an application’s global state [9] and a cap of
32KB for each box storage [9]. This allocation can rapidly deplete while
storing application data, disregarding even the inclusion of multimedia
content such as images or videos.

www.chainui.com 8



One can navigate around this restriction by confining the storage of
indispensable application components within the contract. This includes
elements like the primary logic and data structures, whilst deferring non-
critical items like common framework libraries (wallet connectors, Reac-
tJS [10], AlgoSDK) to an external domain. Further, UI assets like images
and media can be relegated to decentralized storage networks such as
IPFS. Consequently, even if these assets are absent from other decentral-
ized storage avenues, they won’t hinder the loading of the page’s core
functionality.

Another enhancement to this constraint lies in the conceptualization
of standalone components as distinct component smart contracts, which
proffers dual advantages. Firstly, it empowers other developers to leverage
the same snippets of code, thereby streamlining the development process
for all parties involved. Secondly, it provides a mechanism for the primary
developer to monetize their contribution to the ecosystem. This model
engenders a mutually beneficial situation: other developers gain ready
access to high-quality components, reducing their workload, while the
primary developer not only receives compensation for their efforts but
also attains the capacity to store more data within a smart contract.

Even including these solutions, optimal data structuring, streamlin-
ing, and compression gain crucial importance. Developers need to con-
sistently monitor the build size of their applications. Resources such as
templates, code boilerplates, and an extensive set of best-practice ex-
amples should be readily accessible for anyone developing with ChainUI.
While storing a single app across multiple smart contracts or boxes is fea-
sible, it’s not advisable due to the unnecessary complexity it introduces,
thereby degrading the user experience.

4.1.2 Content updates

In most blockchain networks, smart contracts are intrinsically immutable.
This means that once deployed, the coded instructions contained within
them are unmodifiable. While this immutability confers a high degree of
security and trustworthiness to the contract, it simultaneously introduces
a considerable challenge when it comes to updating application function-
ality.

www.chainui.com 9



In contrast, updates to traditional web applications are relatively
straightforward. Developers can easily deploy updates or patches to the
server, instantly reflecting these changes to the user base. To replicate
this streamlined update process for Web3 applications, it is essential to
devise mechanisms that allow smart contract owners to modify the stored
code.

Fortunately, the Algorand blockchain accommodates contract upgrades.
Additionally, it enables updates to data stored in the global state or box
state, thereby simplifying data modifications. This feature may not be
available in other blockchain networks, which highlights the significance
of facilitating content updates in smart contracts.

However, the mechanisms to perform updates should differ between
the two types of smart contracts—application and component. Applica-
tion smart contracts need to be effortlessly updatable and always present
the most recent version to the user. In contrast, component smart con-
tracts should be updated less frequently, with stringent version monitor-
ing during their usage in application rendering. Provisions must be made
to safeguard users, even in the event of potential threats from malicious
actors.

4.1.3 Version management & content accessibility

The necessity of version management for the rendering of web applications
cannot be understated, given its importance for ensuring security and
facilitating effortless retrieval of historical versions. Current versions of
the Algorand Indexer [11] are suitably equipped to provide this feature.
Specifically, it allows data to be readily recovered and temporally shifted,
contingent on the transaction history and state deltas of the associated
smart contracts.

Nevertheless, the increasing scale of the project over time proportion-
ately elevates the complexity of this issue. The ongoing growth of the
blockchain necessitates an exhaustive indexer infrastructure, the imple-
mentation of which might be either unattainable or the resulting benefits
might not offset the consequent expenditures in the frame of the ChainUI
project. To simplify this procedure, utilization of a Conduit [12] might be
a viable option, but the recommendation leans toward the employment
of box storage instead.

www.chainui.com 10



Subsequent versions should be deployed as supplementary box storage
of the application. Accessing alternate application versions can be then
achieved by retrieving the specific storage box corresponding to that ver-
sion, or by recalculating modifications based on the delta information
stored within the box. This methodology greatly enhances the overall ef-
ficiency of the process. It necessitates only a single network node for the
complete support of the ChainUI system, which can feasibly be managed
locally using relatively low-cost hardware.

4.1.4 Deployment

The deployment strategy for smart contracts ought to be standardized
and catalogued by a centralized management smart contract, whose role
is to ensure payment verification for all parties, assess the validity of each
smart contract, and manage the registration of these smart contracts for
decentralized utilization. Provision should be made for templates of suit-
able smart contracts that can be readily incorporated into the developer
tools required for constructing web applications.

A critical aspect of this process, particularly in the context of the
application smart contract, entails the remuneration for usage directed
towards other developers, and the accurate allocation of other smart con-
tract references within the application’s state. The central smart contract
should enforce this payment protocol and prohibit registration within the
project in the event of non-compliance. This procedure is to be reiterated
for every smart contract update, although payment should be verified only
upon addition of previously unused components.

Major revisions to the ChainUI project ought to incorporate new man-
agement contracts to ensure accurate interpretation of deployed applica-
tion data by code renderers. This approach will enhance the long-term
adaptability and maintainability of the system as well as continuous sup-
port of thepreviously deployed smart contracts.

www.chainui.com 11



4.2 Code renderer

The code renderer is a crucial part of the ChainUI framework, responsible
for retrieving and rendering the web application code stored within the
smart contracts. It is also the only part used by non-technical users, mak-
ing it possibly the weakest link of the entire project. To ensure seamless
operation and high-quality user experience, the code renderer must over-
come several significant challenges related to decentralization, fetching
the code, interpreting it correctly, and effectively abstracting transactions
and wallet connectors.

4.2.1 Decentralization

Given that the entirety of the code renderer cannot be stored on the
blockchain, it becomes crucial to ensure its availability via alternative
avenues, such as IPFS [4], various storage providers, or significant simpli-
fication of the code renderer to an extent where it becomes exceedingly
straightforward to recall. Ideally, most of the renderer’s code should be
embedded on-chain. This would enable users to write down or remember
the code renderer application identifier and subsequently embed the code
into an HTML iframe, thereby automating all other requisite operations.

The utilization of multiple, hard-to-control storage mediums is rec-
ommended in order to preclude third-party entities from erasing or mod-
ifying the content stored on the blockchain network. The priority should
always be given to the renderer’s availability over its functionality. This
means that the integration of new features should be carefully considered;
they should only be implemented if they do not undermine the ease of
accessing the renderer.

4.2.2 Code fetching

The incorporation of diversified data retrieval avenues, preferably those
under the complete ownership and management of application users (that
is, self-run nodes), is of utmost significance. It is advised that maintain-
ers of ChainUI supply a contingency data source, the operation of which
could be financed by revenues generated through the project. Any addi-
tional publicly accessible data sources, including nodes managed by other
developers within the ecosystem, should be integrated into the code ren-
derer. The availability of a wider range of data sources enhances the
overall reliability and efficiency of the system.

www.chainui.com 12



Ensuring the accuracy of the data is paramount and should be guar-
anteed through the application of cryptographic hash algorithms, thereby
safeguarding against potential node manipulation and anticipated JavaScript
substitution attacks. Every data retrieval operation should be accompa-
nied by the confirmation of the data hash fetched from a separate, inde-
pendent node. This hash ought to be ubiquitously embedded across the
system, for instance, in the global state of the application as well as in
the deployment transaction’s note field. Prior to rendering the JavaScript
code in the user’s browser, the hash should be subjected to local verifica-
tion to affirm its authenticity and proper retrieval.

4.2.3 Code interpretation

Following the assurance of code security, it becomes essential to decom-
press the code and render it using an appropriate framework in a uni-
form manner. For conventional JavaScript (JS) code, this might be as
straightforward as integrating the code into a pre-existing HTML tem-
plate. Considering that all references associated with other application
identifiers are incorporated prior to the decompression of the code, it be-
comes feasible to retrieve them simultaneously, facilitating a relatively
simultaneous display of the entire webpage.

The code renderer should be designed to remain neutral, neither inter-
vening in nor modifying the presentation of content encapsulated within
on-chain applications. It should not fall within the purview of the code
renderer to amend missing references or similar errors. It is critical to
ensure consistent functionality and display across various code renderers.
As a result, these issues should be addressed during the build and deploy-
ment stages, rather than at the rendering stage, to prevent unintentional
modifications to the intended behavior of the application as conceived by
the developer. In instances where an application code proves unrender-
able, the user should be notified of this circumstance without any further
attempts to rectify these issues.

4.2.4 Abstraction of prevalent components

To enhance the functionality and efficiency of the ChainUI system, it is es-
sential to incorporate the abstraction of frequently employed components
within the code renderer. These components can be broadly classified
into two categories:

www.chainui.com 13



1. Network configuration

The network configuration is a crucial aspect in ensuring seamless
user experiences in a Web3 environment. Aspects such as wallet
connections, node configurations, and management of transaction
messaging between the network and the application, can be entirely
integrated into the code renderer. This comprehensive integration
offers several advantages to both users and developers, including:
streamlined node configurations, the requirement of a single wal-
let connection for the user to access all applications available on
ChainUI, simplified transaction signing processes for developers,
and a reduction in the build size.

The components encompassed in the network configuration should
manifest as visual elements, rendered as an unobtrusive, customiz-
able overlay that appears upon hover, or through any other imple-
mentation that remains consistent across renders of different appli-
cations. These prepackaged functions can be made available to a
rendered application through the use of the window [13] object or
any other global reference method.

2. Developer-requested imports

This category encapsulates the libraries that can be seamlessly lo-
cated and embedded into the rendered application. It includes
libraries such as AlgoSDK, ReactJS, and other popular libraries
accessible via JavaScript Content Delivery Networks (CDNs) like
cdnjs [14], Cloudflare JS CDN [15], or jsDelivr [16]. These libraries
can then be embedded by also using the window object or any other
viable method.

The requested imports should be specified by the developer, ideally
in the form of application state, in a manner that can be readily
interpreted and fetched from any available CDN networks. The for-
mat of these requests should uniform and independent of any con-
tent delivery method used, such as the NPM[17] name and version
of the library. This leverages the fact that removing these libraries
from CDNs would significantly disrupt most of Web2. However,
lesser-known libraries, although accessible from CDNs, should not
be included due to the potential risk that their removal or inacces-
sibility could disrupt the functionality of the ChainUI app, while
leaving most other websites unaffected.

www.chainui.com 14



In order to circumvent any unwarranted expansion of the code ren-
derer’s size, it is vital that it remains devoid of any extraneous libraries,
save those pertinent to network connectivity. Crucially, the code ren-
derer must abstain from imposing any global styling rules and any other
modifications which could interfere with the usability of the rendered
application.

4.3 Developer build tools

Developer tools play a pivotal role in fostering an efficient development
experience while satisfying the prerequisites of the ChainUI system. Al-
though application development should not deviate significantly from con-
ventional standards, certain discrepancies might arise during later stages.

4.3.1 Development

To ensure a familiar experience akin to existing build tools, the implemen-
tation of ChainUI developer tools should primarily leverage a Command-
Line Interface (CLI), entrusted with supervising all stages of develop-
ment. These tools should capitalize on existing technologies such as
Webpack [18] and package manager scripts defined in the package.json
file.

For an intuitive and consistent work experience, the entire develop-
ment cycle should employ a standard code renderer, mitigating potential
frustrations in subsequent stages of application development.

4.3.2 Build output

The necessity of storing the entire application on-chain lends preference
to housing it within a single data structure. This can be achieved using
a standard HTML template. Unlike conventional development where
JavaScript, CSS, and HTML files exist separately, they could be merged
into a cohesive unit. This consolidation simplifies storage and facilitates
more efficient optimization.

To ensure code comprehensibility, it would be beneficial to also deploy
code source maps. However, since these aren’t vital, they need not be
stored on the node. They can conveniently be stored off-chain following
their transmission in a transaction note or any other (preferably durable)
means of storage.

www.chainui.com 15



4.3.3 Dependencies

The inclusion of library dependencies into the project without embedding
them in the project’s code constitutes a significant aspect of the process.
As discussed earlier, some of these will be prepackaged into the code ren-
derer, while others will be fetched as per the developer’s request. These
requests fall into two categories: libraries available on-chain such as com-
ponent smart contracts, and libraries unavailable on-chain like AlgoSDK
or ReactJS.

Although it might be feasible to incorporate these into the applica-
tion’s build file, many of these libraries have not been optimized suffi-
ciently to be embedded without straining smart contract space. They
can be stored and maintained by the developers of the ChainUI project
on-chain or dynamically loaded from Content Delivery Networks (CDNs).
Library names and versions should be archived in the smart contract
metadata to enable the renderer to correctly interpret and display the
web application.

Regarding components stored on-chain, the code renderer should pro-
vide functions to fetch and render these components, passing all available
props. Upon building, references to these components should be extracted
from the source code and then embedded in the smart contract metadata
for accurate rendering.

4.3.4 Build size optimization

One of the most critical processes to prepare the web app for storage is op-
timizing the build file’s size. This can be achieved using any combination
of prevalent lossless compression algorithms such as gzip[19], Brotli[20],
or lz-string[21]. The precise combination of these algorithms should be
preserved in the smart contract metadata, allowing the code renderer to
decompress and render the original file as intended.

Code renderer should provide all required libraries to decompress the
stored on-chain data. As before, these libraries can also be stored on-
chain or dynamically loaded from CDNs.

www.chainui.com 16



5 Conclusion

This paper introduced ChainUI, a novel decentralized deployment frame-
work for component-based web applications, designed to address a num-
ber of key issues found in Web3 interfaces. Traditional Web3 interfaces
are fraught with security risks and struggle with effective app version-
ing. These difficulties, while substantial, are not intractable, and we have
examined existing solutions, such as decentralized storage networks and
decentralized cloud storage, as pathways towards resolution.

However, these extant solutions are not sufficiently customised for
user interfaces, which motivated us to design the ChainUI framework. In
ChainUI, web application code is deployed into smart contracts, and a
specialized renderer facilitates code loading directly from the blockchain.
The system comprises two parts: an application smart contract and a
component smart contract. Both types store code on-chain, with the
former using the latter. Critically, the smart contracts incorporate a
versioning system, enhancing code management and accessibility.

Nevertheless, we recognized that the adoption of such a system faces
challenges related to smart contract memory limits, content updates, and
deployment. To address these, we proposed a solution that makes use of
a code renderer, which through code fetching and interpretation displays
the intended application to the end user. To facilitate this system, we
also proposed the creation of build tools to streamline the development
process and optimize build size.

In conclusion, the ChainUI system offers a promising solution to ad-
dress the persistent issues facing Web3 interfaces. By ensuring persistent
availability and operational functionality of web applications, this solu-
tion represents a significant leap forward in the domain of decentralized
applications (dApps). The versioning system provides an efficient way to
manage application updates and to ensure the stability of older versions.
Despite the potential challenges and constraints, we believe that the ro-
bustness and resiliency of the proposed system provide a viable solution
to persistent issues in the field. Future work may extend the ChainUI
framework to include additional features and improvements to ensure the
system’s viability and utility in an ever-evolving technological landscape.

www.chainui.com 17



6 Acknowlegements

I would like to express my deepest gratitude to Erik Hasselwander and
Mariano Dominguez for their invaluable contributions to our discussions.
Erik’s innovative suggestion to employ a box storage-based versioning
system, rather than relying on transaction delta recovery, significantly
enhanced the efficacy and self-reliance of the project by eliminating the
need for indexers and other sources of history management. Mariano’s
diligent proofreading and insightful comments played an instrumental
role in refining the final version of the paper. Their collective expertise
and dedication have undoubtedly enriched this project and the research
experience.

www.chainui.com 18



References

[1] MyAlgo. Final Hack Findings and Report. Twitter, April 21, 2023

https://twitter.com/myalgo_/status/1649427794139525121

[2] Halborn. RandLabs - MyAlgo Wallet, Executive Summary. GitHub,
April 19, 2023

https://github.com/HalbornSecurity/PublicReports/blob/04
eea6a271aac7457a325e4decc7c2ac55e7ff5d/Incident%20Report
s/RandLabs_MyAlgo_Wallet_Executive_Summary_Halborn%20.pdf

[3] js-algorand-sdk. The official JavaScript SDK for Algorand. GitHub.
Accessed July 3, 2023

https://algorand.github.io/js-algorand-sdk/

[4] InterPlanetary File System (IPFS). IPFS Powers the Distributed Web.
Accessed July 3, 2023

https://ipfs.tech/

[5] Filecoin. A decentralized storage network for humanity’s most impor-
tant information | Filecoin. Accessed July 3, 2023

https://filecoin.io/

[6] Storj. Storj - Make the world your data center. Accessed July 3, 2023

https://www.storj.io/

[7] Sia. Sia - Decentralized data storage. Accessed July 3, 2023

https://sia.tech/

[8] Algorand. Algorand | The Blockchain for FutureFi. Accessed July 3,
2023

https://algorand.com/

[9] Algorand Developer Portal. Contract storage. Accessed July 3, 2023

https://developer.algorand.org/docs/get-details/dapps/sma
rt-contracts/apps/state/

[10] React. The library for web and native user interfaces. Accessed July
3, 2023

https://react.dev/

www.chainui.com 19

https://twitter.com/myalgo_/status/1649427794139525121
https://github.com/HalbornSecurity/PublicReports/blob/04eea6a271aac7457a325e4decc7c2ac55e7ff5d/Incident%20Reports/RandLabs_MyAlgo_Wallet_Executive_Summary_Halborn%20.pdf
https://github.com/HalbornSecurity/PublicReports/blob/04eea6a271aac7457a325e4decc7c2ac55e7ff5d/Incident%20Reports/RandLabs_MyAlgo_Wallet_Executive_Summary_Halborn%20.pdf
https://github.com/HalbornSecurity/PublicReports/blob/04eea6a271aac7457a325e4decc7c2ac55e7ff5d/Incident%20Reports/RandLabs_MyAlgo_Wallet_Executive_Summary_Halborn%20.pdf
https://algorand.github.io/js-algorand-sdk/
https://ipfs.tech/
https://filecoin.io/
https://www.storj.io/
https://sia.tech/
https://algorand.com/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/apps/state/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/apps/state/
https://react.dev/


[11] Algorand Developer Portal. Indexer. Accessed July 3, 2023

https://developer.algorand.org/docs/get-details/indexer/

[12] conduit. Algorand’s data pipeline framework. GitHub. Accessed July
3, 2023

https://github.com/algorand/conduit

[13] W3Schools. The Window Object. Accessed July 3, 2023

https://www.w3schools.com/jsref/obj_window.asp

[14] cdnjs. cdnjs - The #1 free and open source CDN built to make life
easier for developers. Accessed July 3, 2023

https://cdnjs.com/

[15] Cloudflare. cdnjs.cloudflare.com. Accessed July 3, 2023

https://cdnjs.cloudflare.com/

[16] jsDelivr. jsDelivr - A free, fast, and reliable CDN for JS and open
source. Accessed July 3, 2023

https://www.jsdelivr.com/

[17] npm.js. npm. Accessed July 3, 2023

https://www.npmjs.com/

[18] webpack. webpack. Accessed July 3, 2023

https://webpack.js.org/

[19] GNU Project. Gzip - GNU Project - Free Software Foundation. Ac-
cessed June 22, 2023

https://www.gnu.org/software/gzip/

[20] Google. Brotli compression format. GitHub. Accessed June 22, 2023

https://github.com/google/brotli

[21] pieroxy. LZ-based compression algorithm for JavaScript. GitHub. Ac-
cessed June 22, 2023

https://github.com/pieroxy/lz-string

www.chainui.com 20

https://developer.algorand.org/docs/get-details/indexer/
https://github.com/algorand/conduit
https://www.w3schools.com/jsref/obj_window.asp
https://cdnjs.com/
https://cdnjs.cloudflare.com/
https://www.jsdelivr.com/
https://www.npmjs.com/
https://webpack.js.org/
https://www.gnu.org/software/gzip/
https://github.com/google/brotli
https://github.com/pieroxy/lz-string

	Introduction
	The issues of Web3 interfaces
	Security risks
	App versioning
	Monolithic design
	Implications

	Available solutions
	Decentralized Storage Networks
	Decentralized Cloud Storage

	Proposed solution
	Smart contract storage
	Memory limit
	Content updates
	Version management & content accessibility
	Deployment

	Code renderer
	Decentralization
	Code fetching
	Code interpretation
	Abstraction of prevalent components

	Developer build tools
	Development
	Build output
	Dependencies
	Build size optimization


	Conclusion
	Acknowlegements

