
Toucan Bridge

Final Audit Report

July 11, 2022

Ω
Team Omega
teamomega.eth.limo

Summary 2

Scope of the Audit 3

Resolution 4

Methods Used 4

Disclaimer 4

Severity definitions 5

Findings 6

Centralization risks 6

General 7

G1. A floating pragma is set instead of a fixed pragma [info] [not resolved] 7

G2. Use the latest solidity version [info] [resolved] 7

G3. Invalid SPDX license identifier [info] [not resolved] 7

G4. Pin versions of solidity dependencies [info] [not resolved] 8

ToucanCrossChainMessenger.sol 8

T1. revertBridgeRequest allows the owner of the contract to mint an arbitrary amount of tokens
[medium] [resolved] 8

T2. Cooldown period is unenforceable as it serves to limit the admin but the admin himself
controls it [low] [resolved] 9

T3. Remove redundant import [low] [resolved] 9

T4. Use a global nonce to save some gas [low] [resolved] 10

T5. Avoid using assembly [low] [resolved] 10

T6. Unused function parameter in _handle function [info] [resolved] 11

ToucanCrossChainMessengerStorage 11

S1. add a __gap variable to reserve storage space for upgrades [low] [resolved] 11

NCT.sol and BaseCarbonTonne.sol 12

NB1. Make setRouter external [low] [resolved] 12

NB2. allowance in bridgeBurn is not necessary [low] [resolved] 12

NB3. User allowance in bridgeBurn is not updated [low] [resolved] 13

NB4. Duplicate functions - it is easier to inherit from a common source [info] [not resolved] 13

Summary

Toucan Protocol has asked Team Omega to audit the contracts that define the behavior of the bridge

contracts.

We found no high severity issues - these are issues that can lead to a loss of funds, and are essential to

fix. We classified one issue as “medium” - these are issues we believe you should definitely address. In

addition, 7 issues were classified as “low”, and 4 issues were classified as “info” - we believe the code

would improve if these issues were addressed as well.

Severity Number of issues Number of resolved issues

High 0 0

Medium 1 1

Low 7 7

Info 5 1

Scope of the Audit

We audited code from the following repositor:

https://github.com/ToucanProtocol/tokenizer/

And specifically the following Solidity contracts:

contracts/cross-chain/ToucanCrosschainMessenger.sol

contracts/cross-chain/ToucanCrosschainMessengerStorage.sol

Together with bridge-related changes in the files:

contracts/pools/BaseCarbonTonne.sol

contracts/pools/NCT.sol

The first audit report was based on the following commit:

fa768fb33f2d3fab8e52f03770b1ae93f878d35e

Resolution

The Toucan Protocol developers have subsequently addressed the findings in this report in the following

commit:

c1d89a2a7e9655e9fab7b0be7a48f6256309c043

The Toucan developers have resolved all the issues we mentioned, except a number of issues marked as

“info”, which do not present a security risk.

We have audited these changes and marked the resolution below

Methods Used

Code Review

We manually inspected the source code to identify potential security flaws.

The contracts were compiled, deployed, and tested in a test environment.

Automatic analysis

We have used static analysis tools to detect common potential vulnerabilities. No high severity issues

were identified with the automated processes. Some low severity issues, concerning mostly the variables

and functions visibility, were found and we have included them below in the appropriate parts of the

report.

Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of

the business model, regulatory regime for the business model, or any other statements about fitness of

the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes

only.

Severity definitions

High Vulnerabilities that can lead to loss of assets or data manipulations.

Medium Vulnerabilities that are essential to fix, but that do not lead to assets

loss or data manipulations

Low Issues that do not represent direct exploit, such as poor

implementations, deviations from best practice, high gas costs, etc

Info Matters of opinion

Findings

Centralization risks

The owner of the ToucanCrossChainMessenger contract has wide-ranging power to disrupt the system

by its ability to mint any amount of new tokens or upgrade the contract. Specifically, the owner of the

Toucan messenger contact can:

● call upgradeTo or upgradeToAndCall and change the logic of the messenger contract.

● call renounceOwnership and transferOwnership and transfer ownership to any account.

● call addTokenPair to map local tokens to remote tokens.

● can call addTokenPair and change an existing mapping (within one week after the last change).

● call pause and unpause and halt all operations on the bridge.

● call enrollRemoteRouter to register the address of a router (i.e. an accepted origin of cross

chain messages)

● call setAbacusConnectionManager and set or change the abacusConnectionManager that

controls the inboxes. Inboxes are addresses that can call handle and mint any amount of tokens.

The Abacus bridge has, of course, the possibility to mint any amount of tokens. These powers are

managed by the Abacus connection manager (which is set by the owner of the messenger contract). The

Abacus Connection manager itself has an owner role, and the owner account controls many crucial

aspects of the connection manager - for example, the owner can register new “Inboxes”, which are

addresses that can mint any amount of tokens.

In addition, the owner of the BCT and NCT contracts, which already had the power to upgrade those

contracts, can, with the changes we audited, also call setRouter and give any address the power to

mint any amount of tokens.

This makes for three separate admin-controlled roles that could, if compromised, do extreme damage to

the value of the token by minting any amount of tokens. A compromise of these accounts would be

categorized as “High Severity” on our severity scale.

Specific care should be taken by making sure these roles are only assigned to trusted accounts.

Especially, the various “owner” roles should probably be held by multi-sig contracts with a non-trivial

amount of signers (e.g. 3-out-of-5 or 4-out-of-7).

In addition, we strongly recommend that crucial functions (such as the upgradeTo,

transferOwnership , setRouter), be called via a Timelock, so that if the multisig is compromised,

users and the community have time to react and can possibly mitigate the damage.

General

G1. A floating pragma is set instead of a fixed pragma [info] [not resolved]

The Solidity pragma version used in the contracts is set as floating:

pragma solidity ^0.8.0

Setting it to a fixed version will make the compilation step more deterministic, and make it easier for

third parties to verify the deployed bytecode.

Recommendation: Remove the ^ symbol in the pragma definition to make the solidity version fixed and

ensure bytecode consistency.

Severity: Info

Resolution: This issue was not resolved. A range is now specified instead of a floating pragma, but this

still leaves nearly the same level of ambiguity with regards to the compiler version used.

G2. Use the latest solidity version [info] [resolved]

The contracts use Solidity version 0.8.4, while the latest version is 0.8.14.

Recommendation: Use the latest Soldity version.

Severity: Info

Resolution: This issue was resolved as recommended.

G3. Invalid SPDX license identifier [info] [not resolved]

The contracts contain the following SPDX-License-Identifier invocation:

// SPDX-License-Identifier: UNLICENSED

“UNLICENSED” is not a known license identifier (cf. https://spdx.org/licenses/), and therefore the license

expression is not valid

Recommendation: If the objective is to NOT release the software under any license at all, this purpose

can be obtained by simply removing the SPDX license identifier.

Severity: Info. Although UNLICENSED is not a valid SPDX expression, it is often used in Solidity projects.

Resolution: This issue was not resolved. The developers communicated that they prefer to keep

UNLICENSED as a placeholder until they decide on a proper license.

https://spdx.org/licenses/

G4. Pin versions of solidity dependencies [info] [not resolved]

In package.json, a possible range of versions of the OpenZeppelin dependencies is specified rather

than a single one:

"@openzeppelin/contracts": "^4.6.0",

"@openzeppelin/contracts-upgradeable": "^4.6.0",

This can lead to unexpected problems when a new version of OpenZeppelin is released and other

developers (or the continuous integration process, or yourself at a later date) will recompile the

contracts with this new version.

Recommendation: Specify fixed versions of smart contract dependencies in package.json, instead of

ranges, so that the solidity code can be verified and there is no ambiguity about the actual code you are

to deploy or already have deployed.

Severity: Info

Resolution: This issue was not resolved.

ToucanCrossChainMessenger.sol

T1. revertBridgeRequest allows the owner of the contract to mint an arbitrary amount of

tokens [medium] [resolved]

The function revertBridgeRequest allows the owner of the ToucanCrossChainMessenger to mint

new BCT or NCT tokens on the home chain for each historical bridging request.

This has different security implications, some of which we discussed with the team in private. We believe

the main vulnerability here is that the owner effectively has a license to mint an unlimited amount of

tokens, by repeating the following steps:

1. Send N tokens from the home chain to the destination chain, which will burn N tokens on the

home chain and mint N new tokens on destination chain

2. Call revertBridgeRequest tokens and mint N tokens on the home chain

3. repeat

Recommendation: The intended use of this function is to give the owner of the messenger contract a

way to recover when the bridge fails to deliver a message.

The function can be used for this purpose, although in that case we do recommend to implement a

mechanism that will guarantee that the bridge does not deliver the message after

revertBridgeRequest was called (this could be done by implementing a function that invalidates

incoming requests and calling that on the destination chain).

The power given here to the owner, namely to mint any amount of tokens when the bridge is functioning

correctly, far exceeds the specific scenario of reverting the sending of an undelivered message.

In addition, there are many reasons that the bridge can fail; failure to deliver messages is just one of

them, and relatively limited in its consequences.

We recommend to re-evaluate the failure modes of the bridge and their probability, and decide on the

basis of that whether it is worth changing the security model of the bridge.

Severity: Medium. The architecture already has a considerable centralization risk (see the “privileged

roles” section about), this functionality adds further risks by giving an administrative account (which is

responsible to add new token pairs) unlimited minting power.

Resolution: This issue was resolved - the revertBridgeRequest was removed. Nonetheless, see the

“Centralization risks” section for a more detailed analysis of other owner related risks.

T2. Cooldown period is unenforceable as it serves to limit the admin but the admin

himself controls it [low] [resolved]

The function revertBridgeRequest is subject to a cooldown period - requests can not be reverted

before at least cooldownPeriod seconds have passed.

This cooldown period is however not enforceable, as the owner can just set it to 0 and then immediately

revert the request.

Recommendation: Remove the cooldown period, or, if it is needed, hardcode a value or make it settable

by another agent that is not the owner.

Severity: Low

Resolution: This issue was resolved as recommended. The cooldown period (and the entire revert logic)

was removed.

T3. Remove redundant import [low] [resolved]

The ToucanCrossChainMessenger file contains the following import statement:

import {XAppConnectionClient} from './optics/xapp-contracts/XAppConnectionClient.sol';

This import is not used and could be safely removed.

Recommendation: Remove the import statement.

Severity: Low

Resolution: This issue was resolved as recommended.

T4. Use a global nonce to save some gas [low] [resolved]

The messenger contract keeps a nonce for each address that sends messages to the bridge.

mapping(address => uint256) public nonce;
...
nonce[msg.sender] = currentNonce;

There is however no need to keep a separate nonce for each sender, and some gas can be saved by using

a global nonce.

Recommendation: Use a simple state variable instead of a mapping for keeping track of the nonces

uint public nonce;
...
nonce = currentNonce;

Severity: Low

Resolution: This issue was resolved as recommended.

T5. Avoid using assembly [low] [resolved]

On line 50ff:

assembly {
chainId := chainid()

}

These lines can be replaced by:

block.chainid

Recommendation: it is best practice to avoid using assembly if that does not lead to immediate gains,

and we recommend to follow that practice here as well.

Severity: Low

Resolution: This issue was resolved as recommended.

T6. Unused function parameter in _handle function [info] [resolved]

The compiler emits the following warning:

Warning: Unused function parameter. Remove or comment out the variable

name to silence this warning.

--> contracts/cross-chain/ToucanCrosschainMessenger.sol:121:9:

|

121 | bytes32 _sender,

| ^^^^^^^^^^^^^^^

The warning refers to the _sender argument in the _handle function - this is the address of the Router

contract on the source chain.

Recommendation: Fix the warning, either by commenting out the variable name, or by using the

variable, for example by adding the sender as an argument to the BridgeRequestReceived event.

Resolution: This issue was resolved as recommended. The variable name was commented out to remove

the linter warning.

ToucanCrossChainMessengerStorage

S1. add a __gap variable to reserve storage space for upgrades [low] [resolved]

If the ToucanCrossChainMessenger contract will be deployed as an upgradeable proxy, we

recommend preparing for future upgrades of the contract and reserve some space for any additional

variables that may be defined in this class at a future date.

For more information, see the OpenZeppelin documentation

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

Recommendation: Add a line such as the following to the contract, below the declarations of the other

state variables:

uint256[50] private __GAP; // gap for upgrade safety

Severity: Low

Resolution: This issue was resolved. A __gap variable was not added, but all state variables were moved

over from the ToucanCrossChainMessenger to the ToucanCrossChainMessengerStorage

contract, so that the Storage contract controls the last slots in the storage layout of the contract. No

extra gap is necessary with this structure. In future iterations, developers should take care that if they

define state variables in the messenger contracts, it would be convenient to add a __gap to the storage

contract.

NCT.sol and BaseCarbonTonne.sol

NB1. Make setRouter external [low] [resolved]

On line 684, the setRouter function can be declared external

Recommendation: Declare the function as external.

Severity: Low

Resolution: This issue was resolved as recommended.

NB2. allowance in bridgeBurn is not necessary [low] [resolved]

The bridgeBurn function requires that the account whose tokens are being burnt has given an explicit

approval to burn these tokens:

function bridgeBurn(address _account, uint256 _amount) external onlyRouter
{

require(
allowance(_account, msg.sender) >= _amount,
'Not enough allowance'

);
_burn(_account, _amount);

}

This function is only callable by the router, which is expected to be an instance of

CrossChainMessenger. This means that the bridgeBurn function will be called as part of a

sendMessage request, and that the value for _account passed to bridgeBurn is actually the msg.sender

of the original request. In other words, we can be sure that the transaction has been initiated by the

owner of the tokens that are being burnt, and so adding this check does not in any way add additional

security.

Recommendation: Remove the check for allowance, as it does not add to security, but does present a UX

annoyance for the message sender, which must sign and send two transactions instead of a single one.

Severity: Low

Resolution: The issue was resolved as recommended.

NB3. User allowance in bridgeBurn is not updated [low] [resolved]

The bridgeBurn function checks that the caller has an allowance to spend tokens. However, the

allowance is not updated after the tokens have been burnt. This means that even if an account has set a

limited allowance, the sender of the message the option can burn any amount of tokens by repeatedly

calling the bridgeBurn function

Recommendation: Update the user allowance when tokens are burnt (unless of course you remove the

check for allowance altogether as we recommend in NB2).

Severity: Low

Resolution: This issue was resolved by removing the allowance check altogether.

NB4. Duplicate functions - it is easier to inherit from a common source [info] [not

resolved]

The BaseCarbonTonne and the NCT contracts each define a number of functions that are specifically

used for managing the token bridge, such as setRouter, onlyRouter, bridgeMint and bridgeBurn.

This means that about 40 lines of code are duplicated over two files.

Recommendation: we recommend refactoring the code: create a new base contract where these

bridge-specific functions are defined, and inherit from that contract.

Severity: Info

Resolution: This issue was not resolved.

